

Last updated: December 24, 2010

Ivan Marsic
Department of Electrical and Computer Engineering

Rutgers University

NE WOR
KS

erf a do Q of erm ncea n ity ServQualnce ice

T
COMPUT

ER

P

Copyright © 2010 by Ivan Marsic. All rights reserved.

Book website: http://www.ece.rutgers.edu/~marsic/books/QoS/

 i

Preface

This book reviews modern computer networks with a particular focus on performance and quality
of service. There is a need to look towards future, where wired and wireless/mobile networks will
be mixed and where multimedia applications will play greater role. In reviewing these
technologies, I put emphasis on underlying principles and core concepts, rather than
meticulousness or completeness.

Audience

This book is designed for upper-division undergraduate and graduate courses in computer
networking. It is intended primarily for learning, rather than reference. I also believe that the
book’s focus on basic concepts should be appealing to practitioners interested in the “whys”
behind the commonly encountered networking technologies. I assume that the readers will have
basic knowledge of probability and statistics, which are reviewed in the Appendix. Most concepts
do not require mathematical sophistication beyond a first undergraduate course.

Most of us have a deep desire to understand logical cause-effect relationships in our world.
However, some topics are either inherently difficult or poorly explained and they turn us off. I
tried to write a computer networking book for the rest of us, one that has a light touch but is still
substantial. I tried to present a serious material in a fun way so the reader may have fun and learn
something nontrivial. I do not promise that it will be easy, but I hope it will be worth your effort.

Approach and Organization

In structuring the text, I faced the choice between logically grouping the topics vs. gradually
identifying and addressing issues. The former creates a neater structure and the latter is more
suitable for teaching new material. I compromised by opportunistically adopting both approaches.
I tried to make every chapter self-contained, so that entire chapters can be skipped if necessary.

Chapter 1 reviews essential networking technologies. It is condensed but more technical than
many current networking books. I tried to give an engineering overview that is sufficiently
detailed but not too long. This chapter serves as the basis for the rest of the book.

Chapter 2 reviews the mechanisms for congestion control and avoidance in data networks. Most
of these mechanisms are implemented in different variants of Transmission Control Protocol
(TCP), which is the most popular Internet protocol.

Chapter 3 reviews requirements and solutions for multimedia networking.

Chapter 4 describes how network routers forward data packets. It also describes simple
techniques for modeling queuing delays.

Ivan Marsic • Rutgers University

ii

ii

Chapter 5 describes router techniques for reducing or redistributing queuing delays across data
packets. These include scheduling and policing the network traffic.

Chapter 6 describes wireless networks, focusing on the network and link layers, rather than on
physical layer issues.

Chapter 7 describes network measurement techniques.

Chapter 8 describes major protocols used in the Internet that I are either not essential or are
specific implementations of generic protocols presented in earlier chapters. The most essential
Internet protocols, such as TCP and IP are presented in earlier chapters.

The Appendix provides a brief review of probability and statistics.

Solved Problems

This book puts great emphasis on problems for two reasons. First, I believe that specific problems
are the best way to explain difficult concepts. Second, I wanted to keep the main text relatively
short and focused on the main concepts; therefore, I use problems to illustrate less important or
advanced topics. Every chapter (except for Chapter 9) is accompanied with a set of problems.
Solutions for most of the problems can be found at the back of the text, starting on page 401.

Additional information about team projects and online links to related topics can be found at the
book website: http://www.ece.rutgers.edu/~marsic/books/QoS/.

 iii

Contents at a Glance

PREFACE .. I

CONTENTS AT A GLANCE .. III

TABLE OF CONTENTS ... IV

CHAPTER 1 INTRODUCTION TO COMPUTER NETWORKS .. 1

CHAPTER 2 TRANSMISSION CONTROL PROTOCOL (TCP) ...139

CHAPTER 3 MULTIMEDIA AND REAL-TIME APPLICATIONS ...181

CHAPTER 4 SWITCHING AND QUEUING DELAY MODELS ..218

CHAPTER 5 MECHANISMS FOR QUALITY-OF-SERVICE ..256

CHAPTER 6 WIRELESS NETWORKS ...296

CHAPTER 7 NETWORK MONITORING ...331

CHAPTER 8 INTERNET PROTOCOLS ...337

CHAPTER 9 TECHNOLOGIES AND FUTURE TRENDS ..376

PROGRAMMING ASSIGNMENTS ...393

SOLUTIONS TO SELECTED PROBLEMS..401

APPENDIX A: PROBABILITY REFRESHER ...471

REFERENCES ..483

ACRONYMS AND ABBREVIATIONS ..491

INDEX ..494

 iv

Table of Contents

PREFACE .. I

CONTENTS AT A GLANCE .. III

TABLE OF CONTENTS ... IV

CHAPTER 1 INTRODUCTION TO COMPUTER NETWORKS .. 1

1.1 INTRODUCTION .. 1
1.1.1 The Networking Problem .. 1
1.1.2 Communication Links ... 5
1.1.3 Packets and Statistical Multiplexing ... 9
1.1.4 Communication Protocols .. 10

1.2 RELIABLE TRANSMISSION VIA REDUNDANCY .. 23
1.2.1 Error Detection and Correction by Channel Coding ... 23
1.2.2 Interleaving ... 24

1.3 RELIABLE TRANSMISSION BY RETRANSMISSION .. 25
1.3.1 Stop-and-Wait ... 29
1.3.2 Sliding-Window Protocols .. 32
1.3.3 Broadcast Links .. 36

1.4 ROUTING AND ADDRESSING .. 50
1.4.1 Networks, Internets, and the IP Protocol ... 53
1.4.2 Link State Routing .. 60
1.4.3 Distance Vector Routing ... 64
1.4.4 IPv4 Address Structure and CIDR .. 69
1.4.5 Autonomous Systems and Path Vector Routing .. 76

1.5 LINK-LAYER PROTOCOLS AND TECHNOLOGIES ... 86
1.5.1 Point-to-Point Protocol (PPP) ... 88
1.5.2 Ethernet (IEEE 802.3) .. 91
1.5.3 Wi-Fi (IEEE 802.11) ..103

1.6 QUALITY OF SERVICE OVERVIEW ...112
1.6.1 QoS Outlook ..115
1.6.2 Network Neutrality vs. Tiered Services ..116

1.7 SUMMARY AND BIBLIOGRAPHICAL NOTES ...117
PROBLEMS ...122

CHAPTER 2 TRANSMISSION CONTROL PROTOCOL (TCP) ...139

Computer Networks • Contents v

2.1 INTRODUCTION ...139
2.1.1 Reliable Byte Stream Service ...140
2.1.2 Retransmission Timer ..144
2.1.3 Flow Control ...147

2.2 CONGESTION CONTROL ..150
2.2.1 TCP Tahoe ...157
2.2.2 TCP Reno ...160
2.2.3 TCP NewReno ...163

2.3 FAIRNESS ..170
2.4 RECENT TCP VERSIONS..171
2.5 TCP OVER WIRELESS LINKS ...171
2.6 SUMMARY AND BIBLIOGRAPHICAL NOTES ...172
PROBLEMS ...175

CHAPTER 3 MULTIMEDIA AND REAL-TIME APPLICATIONS ...181

3.1 APPLICATION REQUIREMENTS ..181
3.1.1 Application Types ..182
3.1.2 Standards of Information Quality ..186
3.1.3 User Models ...188
3.1.4 Performance Metrics ...191

3.2 SOURCE CHARACTERISTICS AND TRAFFIC MODELS ..193
3.2.1 Traffic Descriptors ..193
3.2.2 Self-Similar Traffic ..194

3.3 APPROACHES TO QUALITY-OF-SERVICE ...194
3.3.1 End-to-End Delayed Playout ...195
3.3.2 Multicast Routing ..199
3.3.3 Peer-to-Peer Routing ...207
3.3.4 Resource Reservation and Integrated Services ..208
3.3.5 Traffic Classes and Differentiated Services ...210

3.4 ADAPTATION PARAMETERS ..212
3.5 QOS IN WIRELESS NETWORKS ..212
3.6 SUMMARY AND BIBLIOGRAPHICAL NOTES ...212
PROBLEMS ...214

CHAPTER 4 SWITCHING AND QUEUING DELAY MODELS ..218

4.1 PACKET SWITCHING IN ROUTERS ..220
4.1.1 How Routers Forward Packets ..220
4.1.2 Router Architecture ...222
4.1.3 Forwarding Table Lookup ...226
4.1.4 Switching Fabric Design ...227
4.1.5 Where and Why Queuing Happens ..232

4.2 QUEUING MODELS ..236
4.2.1 Little’s Law ..239
4.2.2 M / M / 1 Queuing System ..241
4.2.3 M / M / 1 / m Queuing System ..244
4.2.4 M / G / 1 Queuing System ..245

Ivan Marsic • Rutgers University

vi

4.3 NETWORKS OF QUEUES ..248
4.4 SUMMARY AND BIBLIOGRAPHICAL NOTES ...249
PROBLEMS ...250

CHAPTER 5 MECHANISMS FOR QUALITY-OF-SERVICE ..256

5.1 SCHEDULING ...256
5.1.1 Scheduling Disciplines ..257
5.1.2 Fair Queuing ...259
5.1.3 Weighted Fair Queuing ...269

5.2 POLICING ..270
5.3 ACTIVE QUEUE MANAGEMENT ...271

5.3.1 Random Early Detection (RED) ..272
5.3.2 Explicit Congestion Notification (ECN) ..274

5.4 MULTIPROTOCOL LABEL SWITCHING (MPLS) ...274
5.4.1 MPLS Architecture and Operation ..276
5.4.2 Label Distribution Protocols ...284
5.4.3 Traffic Engineering ..287
5.4.4 Virtual Private Networks ...288
5.4.5 MPLS and Quality of Service ..288

5.5 SUMMARY AND BIBLIOGRAPHICAL NOTES ...289
PROBLEMS ...292

CHAPTER 6 WIRELESS NETWORKS ...296

6.1 MESH NETWORKS ...296
6.2 ROUTING PROTOCOLS FOR MESH NETWORKS ..297

6.2.1 Dynamic Source Routing (DSR) Protocol ...298
6.2.2 Ad Hoc On-Demand Distance-Vector (AODV) Protocol ..300

6.3 MORE WIRELESS LINK-LAYER PROTOCOLS ...301
6.3.1 IEEE 802.11n (MIMO Wi-Fi) ..301
6.3.2 WiMAX (IEEE 802.16) ..327
6.3.3 ZigBee (IEEE 802.15.4) ...327
6.3.4 Bluetooth ..327

6.4 WI-FI QUALITY OF SERVICE ...328
6.5 SUMMARY AND BIBLIOGRAPHICAL NOTES ...329
PROBLEMS ...330

CHAPTER 7 NETWORK MONITORING ...331

7.1 INTRODUCTION ...331
7.2 AVAILABLE BANDWIDTH ESTIMATION ...332

7.2.1 Packet-Pair Technique ..332
7.3 DYNAMIC ADAPTATION ..333

7.3.1 Data Fidelity Reduction ...334
7.3.2 Application Functionality Adaptation ...335
7.3.3 Computing Fidelity Adaptation ...335

7.4 SUMMARY AND BIBLIOGRAPHICAL NOTES ...336
PROBLEMS ...336

Computer Networks • Contents vii

CHAPTER 8 INTERNET PROTOCOLS ...337

8.1 INTERNET PROTOCOL VERSION 6 (IPV6) ..337
8.1.1 IPv6 Addresses ..339
8.1.2 IPv6 Extension Headers ..342
8.1.3 Transitioning from IPv4 to IPv6 ..345

8.2 ROUTING PROTOCOLS ...345
8.2.1 Routing Information Protocol (RIP) ..345
8.2.2 Open Shortest Path First (OSPF) ..347
8.2.3 Border Gateway Protocol (BGP) ..351
8.2.4 Multicast Routing Protocols ..362

8.3 ADDRESS TRANSLATION PROTOCOLS ...363
8.3.1 Address Resolution Protocol (ARP) ..363
8.3.2 Dynamic Host Configuration Protocol (DHCP) ...366
8.3.3 Network Address Translation (NAT) ...366
8.3.4 Mobile IP ...367

8.4 DOMAIN NAME SYSTEM (DNS) ..369
8.5 NETWORK MANAGEMENT PROTOCOLS ...370

8.5.1 Internet Control Message Protocol (ICMP) ..370
8.5.2 Simple Network Management Protocol (SNMP) ...370

8.6 MULTIMEDIA APPLICATION PROTOCOLS ..372
8.6.1 Session Description Protocol (SDP) ..372
8.6.2 Session Initiation Protocol (SIP) ...372

8.7 SUMMARY AND BIBLIOGRAPHICAL NOTES ...373
PROBLEMS ...375

CHAPTER 9 TECHNOLOGIES AND FUTURE TRENDS ..376

9.1 NETWORK TECHNOLOGIES ...376
9.1.1 Mobile Wi-Fi ...376
9.1.2 Wireless Broadband ..377
9.1.3 Ethernet ...378
9.1.4 Routers and Switches ...379

9.2 MULTIMEDIA COMMUNICATIONS ...379
9.2.1 Internet Telephony and VoIP ...379
9.2.2 Unified Communications ...382
9.2.3 Wireless Multimedia ..382
9.2.4 Videoconferencing ...383
9.2.5 Augmented Reality ...383

9.3 THE INTERNET OF THINGS ..384
9.3.1 Smart Grid ...384
9.3.2 The Web of Things ...388

9.4 CLOUD COMPUTING ..388
9.5 NETWORK NEUTRALITY VS. TIERED SERVICES ...390
9.6 SUMMARY AND BIBLIOGRAPHICAL NOTES ...391

PROGRAMMING ASSIGNMENTS ...393

Ivan Marsic • Rutgers University

viii

SOLUTIONS TO SELECTED PROBLEMS..401

APPENDIX A: PROBABILITY REFRESHER ...471

REFERENCES ..483

ACRONYMS AND ABBREVIATIONS ..491

INDEX ..494

1

Contents
1.1 Introduction

1.1.1 The Networking Problem
1.1.2 Communication Protocols
1.1.3 Packets and Statistical Multiplexing
1.1.4 Communication Links

1.2 Reliable Transmission via Redundancy
1.2.1 Error Detection and Correction by Channel

Coding
1.2.2 Interleaving
1.2.3

1.3 Reliable Transmission by Retransmission
1.3.1 Stop-and-Wait
1.3.2 Sliding-Window Protocols
1.3.3 Broadcast Links
1.3.4 x

1.4 Routing and Addressing
1.4.1 Networks, Internets, and the IP Protocol
1.4.2 Link State Routing
1.4.3 Distance Vector Routing
1.4.4 IPv4 Address Structure and CIDR
1.4.5 Autonomous Systems and Path Vector

Routing

1.5 Link-Layer Protocols and Technologies
1.5.1 Point-to-Point Protocol (PPP)
1.5.2 Ethernet (IEEE 802.3)
1.5.3 Wi-Fi (IEEE 802.11)

1.6 Quality of Service Overview
1.5.1 x
1.5.2 x
1.5.3 x

1.7 Summary and Bibliographical Notes

Problems

Chapter 1
Introduction to Computer Networks

1.1 Introduction

A network is a set of devices (often referred to as nodes)
connected by communication links that are built using different
physical media. A node can be a computer, telephone, or any
other device capable of sending and receiving messages. The
communication medium is the physical path by which message
travels from sender to receiver. Example media include fiber-optic
cable, copper wire, or air carrying radio waves.

1.1.1 The Networking Problem

Networking is about transmitting messages from senders to
receivers (over a “communication channel”). Key issues we
encounter include:

• “Noise” damages (corrupts) the messages; we would like
to be able to communicate reliably in the presence of
noise

• Establishing and maintaining physical communication
lines is costly; we would like to be able to connect
arbitrary senders and receivers while keeping the
economic cost of network resources to a minimum

• Time is always an issue in information systems as is generally in life; we would like to be
able to provide expedited delivery particularly for messages that have short deadlines

Ivan Marsic • Rutgers University

2

Figure 1-1 illustrates what the customer usually cares about and what the network engineer can
do about it. The visible network variables (“symptoms”), easily understood by a non-technical
person include:

Delivery: The network must deliver data to the correct destination(s). Data must be received only
by the intended recipients and not by others.

Correctness: Data must be delivered accurately, because distorted data is generally unusable.

Timeliness: Data must be delivered before they need to be put to use; else, they would be useless.

Fault tolerance and cost effectiveness are important characteristics of networks. For some of these
parameters, the acceptable value is a matter of degree, judged subjectively. Our focus will be on
network performance (objectively measurable characteristics) and quality of service
(psychological determinants).

Limited resources can become overbooked, resulting in message loss. A network should be able
to deliver messages even if some links experience outages.

The tunable parameters (or “knobs”) for a network include: network topology, communication
protocols, architecture, components, and the physical medium (connection lines) over which the
signal is transmitted.

Network
Engineer

Network
topology

Communication
protocols

Network
architecture

Components
Physical
medium

Tunable network parameters:

Customer

Visible network properties:

Correctness Fault tolerance Timeliness CostDelivery

Figure 1-1: The customer cares about the visible network properties that can be controlled
by the adjusting the network parameters.

Chapter 1 • Introduction to Computer Networking 3

- Connection topology: completely connected graph compared to link sharing with multiplexing
and demultiplexing. Paul Baran considered in 1964 theoretically best architecture for
survivability of data networks (Figure 1-2). He considered only network graph topology and
assigned no qualities to its nodes and links1. He found that the distributed-topology network
which resembles a fisherman’s net, Figure 1-2(c), has the greatest resilience to element (node or
link) failures. Figure 1-3 shows the actual topology of the entire Internet (in 1999). This topology
evolved over several decades by incremental contributions from many independent organizations,
without a “grand plan” to guide the overall design. In a sense, one could say that the Internet
topology evolved in a “self-organizing” manner. Interestingly, it resembles more the
decentralized-topology network with many hubs (Figure 1-2(b)), and to a lesser extent the
distributed topology (Figure 1-2(c)).

1 When discussing computer networks, the term “host” is usually reserved for communication endpoints

and “node” is used for intermediary computing nodes that relay messages on their way to the destination.

Centralized DistributedDecentralized

Node

Link

(a) (b) (c)

Figure 1-2: Different network topologies have different robustness characteristics relative to
the failures of network elements.

Ivan Marsic • Rutgers University

4

- Network architecture: what part of the network is a fixed infrastructure as opposed to being ad
hoc built for a temporary need

- Component characteristics: reliability and performance of individual hardware components
(nodes and links). Faster and more reliable components are also more costly. When a network
node (called switch or router) relays messages from a faster to a slower link, a congestion and a
waiting-queue buildup may occur under a heavy traffic. In practice, all queues have limited
capacity of their “waiting room,” so loss occurs when messages arrive at a full queue.

- Performance metrics: success rate of transmitted packets (or, packet loss rate), average delay of
packet delivery, and delay variability (also known as jitter)

- Different applications (data/voice/multimedia) have different requirements: sensitive to loss vs.
sensitive to delay/jitter

There are some major problems faced by network engineers when building a large-scale network,
such as the Internet that is now available worldwide. Some of these problems are non-technical:

- Heterogeneity: Diverse software and hardware of network components need to coexist and
interoperate. The diversity results from different user needs and their economic capabilities, as

Figure 1-3. The map of the connections between the major Internet Service Providers
(ISPs). [From the Internet mapping project: http://www.cheswick.com/]

Chapter 1 • Introduction to Computer Networking 5

well as because installed infrastructure tends to live long enough to become mixed with several
new generations of technologies.

- Autonomy: Different parts of the Internet are controlled by independent organizations. Even a
sub-network controlled by the same multinational organization, such as IBM or Coca Cola, may
cross many state borders. These independent organizations are generally in competition with each
other and do not necessarily provide one another the most accurate information about their own
networks. The implication is that the network engineer can effectively control only a small part of
the global network. As for the rest, the engineer will be able to receive only limited information
about the characteristics of others’ autonomous sub-networks. Any local solutions must be
developed based on that limited information about the rest of the global network.

- Scalability: Although a global network like the Internet consists of many autonomous domains,
there is a need for standards that prevent the network from becoming fragmented into many non-
interoperable pieces (“islands”). Solutions are needed that will ensure smooth growth of the
network as many new devices and autonomous domains are added. Again, information about
available network resources is either impossible to obtain in real time, or may be proprietary to
the domain operator.

1.1.2 Communication Links

There are many phenomena that affect the transmitted signal, some of which are illustrated in
Figure 1-4. Although the effects of time constants and noise are exaggerated, they illustrate an
important point. The input pulses must be well separated because too short pulses will be
“smeared” together. This can be observed for the short-duration pulses at the right-hand side of
the pulse train. Obviously, the receiver of the signal in the bottom row of Figure 1-4 will have
great difficulty figuring out whether or not there were pulses in the transmitted signal. You can
also see that longer pulses are better separated and easier to recognize in the distorted
signal. The minimum tolerable separation depends on the physical characteristics of
a transmission line (e.g., copper vs. optical fiber). If each pulse corresponds to a

Voltage at transmitting end

Idealized voltage at receiving end

Line noise

Voltage at receiving end

Figure 1-4: Digital signal distortion in transmission due to noise and time constants
associated with physical lines.

Ivan Marsic • Rutgers University

6

single bit of information, then the minimum tolerable separation of pulses determines the
maximum number of bits that can be transmitted over a particular transmission line.

It is common to represent data transmissions on a timeline diagram as shown in Figure 1-5. This
figure also illustrates delays associated with data transmission. Although information bits are not
necessarily transmitted as rectangular pulses of voltage, all transmission lines are conceptually
equivalent, as represented in Figure 1-6, because the transmission capacity for every line is
expressed in bits/sec or bps. The time required to transmit a single bit on a given link is known as
bit time. In this text, we will always visualize transmitted data as a train of digital pulses. The
reader interested in physical methods of signal transmission should consult a communications-
engineering textbook, such as [Haykin, 2006].

T
im

e

Sender Receiver

Communication link
Physical setup:

Timeline diagram:

transm
ission

delay

propagation
delay

101101

101101

Start of transmission

End of reception

Electromagnetic wave propagation

Electromagnetic wave propagation

First drop of the fluid
enters the pipe

Fluid packet in transit

Last drop of the fluid
exits the pipe

Fluid flow analogy:

Figure 1-5: Timeline diagram for data transmission from sender to receiver.

Chapter 1 • Introduction to Computer Networking 7

A common characterization of noise on transmission lines is bit error rate (BER): the fraction of
bits received in error relative to the total number of bits received in transmission. Given a packet
n bits long and assuming that bit errors occur independently of each other, a simple
approximation for the packet error rate is

BERnn eBERPER ⋅−−≈−−= 1)1(1 (1.1)

An important attribute of a communication link is how many bitstreams can be transmitted on it
at the same time. If a link allows transmitting only a single bitstream at a time, then the nodes
connected to the link must coordinate their transmissions to avoid different bitstreams corrupting
each other (known as data collision). Such links are known as broadcast links or multiple-access
links. Point-to-point links often support data transmissions in both directions simultaneously. This
kind of a link is said to be full duplex. A point-to-point link that supports data flowing in only
one direction at a time is called half duplex. In other words, the nodes on each end of this kind of
a link can both transmit and receive, but not at the same time—they only can do it by taking
turns. It is like a one-lane road with bidirectional traffic. We will assume that all point-to-point
links are full duplex, unless stated otherwise. A full-duplex link can be implemented in two ways:
either the link must contain two physically separate transmission paths, one for sending and one
for receiving, or the capacity of the communication channel is divided between signals traveling
in opposite directions. The latter is usually achieved by time division multiplexing (TDM) or
frequency division multiplexing (FDM).

01 1 1 0 0 1

01 11001
Time

Link 1:
1 Mbps

Link 2:
10 Mbps

100 ns

1 μs

Figure 1-6: Transmission link capacity determines the speed at which the link can transmit
data. In this example, each bit on Link 1 is 1 μs wide, while on Link 2 each bit is 100 ns
wide. Hence, Link 2 can transmit ten times more data than Link 1 in the same time interval.

Ivan Marsic • Rutgers University

8

Wireless Link

Consider a simple case of a point source radiating electromagnetic waves in all directions (Figure
1-7, left). The received signal strength decreases exponentially with the sender-receiver distance.
As with any other communication medium, the wireless channel is subject to thermal noise,
which distorts the signal randomly according to a Gaussian distribution of noise amplitudes. As
the distance between a transmitter and receiver increases, the received signal strength decreases to
levels close to the background noise floor. At a certain distance from the sender, the signal
strengths will become so weak that the receiver will not be able to discern reliably signal from
noise. This distance, known as transmission range, is decided arbitrarily, depending on what is
considered acceptable bit error rate. For example, we can define the transmission range as the
sender-receiver distance for which the packet error rate is less than 10 %.

In addition to thermal noise, the received signal may be distorted by parallel transmissions from
other sources (Figure 1-7, right). This phenomenon is known as interference. Because this
normally happens only when both sources are trying to transmit data (unknowingly of each
other’s parallel transmissions), this scenario is called packet collision. A key observation is that
collisions occur at the receiver—the sender is not disturbed by concurrent transmissions, but
receiver cannot correctly decode sender’s message if it is combined with an interfering signal. If
the source and receiver nodes are far away from the interfering source, the interference effect at
the receiver will be a slight increase in the error rate. If the increased error rate is negligible, the
source and receiver will be able to carry out their communication despite the interference. Notice,
however, that the interference of simultaneously transmitting sources never disappears—it only is
reduced exponentially with an increasing mutual distance (Figure 1-8). The minimum distance
(relative to the receiver) at which interferer’s effect can be considered negligible is called
interference range. In Figure 1-8, node D is within the interference range of receiver B. Nodes C
and E are outside the interference range. However, although outside the interference range
defined for a single interferer, if nodes C and E are transmitting simultaneously their combined
interference at B may be sufficiently high to cause as great or greater number of errors as a single
interferer within the interference range.

Figure 1-7: Wireless transmission. Left: single point source. Right: interference of two point
sources.

Chapter 1 • Introduction to Computer Networking 9

1.1.3 Packets and Statistical Multiplexing

The communication channel essentially provides an abstraction of a continuous stream of
symbols transmitted that are subject to a certain error probability. When interacting with another
person, whether face-to-face or over the telephone, we think of units of communication in terms
of conversational turns: first one person takes a turn and delivers their message, then the other
person takes a turn, and so on. Messages could be thought of as units of communication
exchanged by two (or more) interacting persons. We notice that there are benefits of slicing a
long oration into a sequence of smaller units of discourse. This slicing into messages gives the
other person chance to clarify a misunderstanding or give a targeted response to a specific item.

In computer communication networks, messages are represented as strings of binary symbols (0
or 1), known as bits. Generally, messages are of variable length and some of them may still be
considered too long for practical network transmission. There are several reasons for imposing a
limit on message length. One is that longer messages stand a higher chance of being corrupted by
an error (see equation (1.1)). Another reason is to avoid the situation where a sending application
seizes the link for itself by sending very long messages while other applications must wait for a
long time. Therefore, messages are broken into shorter bit strings known as packets. These
packets are then transmitted independently and reassembled into messages at the destination. This
allows individual packets to opportunistically take alternate routes to the destination and
interleave the network usage by multiple sources, thus avoiding inordinate waiting periods for
some sources to transmit their information.

Different network technologies impose different limits on the size of data blocks they can handle,
which is known as the maximum transmission unit (MTU). For example, a regular Ethernet

A

TransmissionTransmission
rangerange

InterferenceInterference
rangerange

InterferingInterfering
sourcesource

Sender

Receiver

Transmitted
signal power

Received signal
power from an
interfering source

B

C

D

E

InterferingInterfering
sourcesource

Threshold

InterferingInterfering
sourcesource

Threshold

0 0 Distance from receiverDistance from sender

Figure 1-8: Transmission range and interference range for wireless links.

Ivan Marsic • Rutgers University

10

frame uses a frame format that limits the size of the payload it sends to 1,500 bytes. Notice that
the MTU value specifies the maximum payload size and does not include the header size of the
header that is prepended to the payload of a packet.

Statistical Multiplexing

Link sharing using packet multiplexers

Real-world systems are designed with sub-peak capacity for economic reasons. As a result, they
experience congestion and delays during peak usage periods. Highways experience traffic
slowdown during rush hours; restaurants or theaters experience crowds during weekend evenings;
etc. Designing these systems to support peak usage without delays would not be economically
feasible—most of the time they would be underutilized. Figure 1-10

1.1.4 Communication Protocols

A protocol is a set of rules agreed-upon by interacting entities, e.g., computing devices, that
govern their communicative exchanges. It is hard to imagine accomplishing any task involving
multiple entities without relying on a protocol. For example, one could codify the rules for how a
customer (C) purchases goods from a merchant (M) as follows:

1. C→M Request catalog of products

2. C←M Respond catalog

3. C→M Make selections

4. C←M Deliver selections

5. C→M Confirm delivery

6. C←M Issue bill

7. C→M Make payment

Person BPerson A

Physical transport obeys
transportation and traffic rules




Letter

(Message)

Letter in
envelope
(Packet)





Postal-vehicle
service-transportation
routes obey carrier-

route maps and
delivery timetables

Customer interaction obeys
mail acceptance and delivery
procedures (Postal Service’s

Mail Manual)

User-to-user interactions
obey social norms



Figure 1-9: Protocol layers for conventional mail transport.

Chapter 1 • Introduction to Computer Networking 11

8. C←M Issue confirmation

The customer and merchant may be located remote from each other and using other entities to
help accomplish the purchasing task, such as a bank for credit-card transactions, or a postal
service for parcel delivery.

An important characteristic of protocols is that the units of communication are data packets.
Each data packet consists of a header that contains the packet guidance information to help guide
the packet from its source to its destination, and the payload, which is the user information to be
delivered to the destination address. In packet-switched networks, packets are transmitted at
random times, and the receiver at the end of a communication link must have a means to
distinguish an arriving packet from random noise on the line. For this purpose, each packet is
preceded with a special sequence of bits that mark the start of the packet. This special bit pattern
is usually called the preamble. Each receiver is continuously hunting for the preamble to catch

City A

City C

City C

City A

City B

City B

(a)

(b)

City D

City D

Figure 1-10: An analogy illustrating dedicated lines (a) compared to statistical maultiplexing (b).

Ivan Marsic • Rutgers University

12

the arriving packet. If the preamble is corrupted by random noise, the packet will be lost (i.e.,
unnoticed by the receiver).

Communication in computer networks is very complex. One effective means of dealing with
complexity is known as modular design with separation of concerns. In this approach, the system
is split into modules and each module is assigned separate tasks to do (“concerns”). Network
designers usually adopt a restricted version of modular design, know as layered design. Each
layer defines a collection of conceptually similar functions (or, services) distinct from those of
the other layers. The restriction in layered design is that a module in a given layer provides
services to the layer just above it and receives services from the layer just below it. The layering
approach forbids the modules from using services from (or providing to) non-adjacent layers.

Each layer of the layered architecture contains one or more software modules that offer services
characteristic for this layer. Each module is called protocol. A protocol defines two application-
programming interfaces (APIs):

1. Service interface to the protocols in the layer above this
layer. The upper-layer protocols use this interface to “plug
into” this layer and hand it data packets to send(). Each
layer also defines a handle() callback operation
through which the lower layer calls this layer to handle an
incoming packet.

2. Peer interface to the counterpart protocol on a remote
machine. This interface defines the format and meaning of data packets exchanged
between peer protocols to support communication.

There are many advantages of layered design, primarily because it decomposes the problem of
building a network into more manageable components. Each component can be developed
independently and used interchangeably with any other component that complies with its service
interface. However, there are some disadvantages, as well. For example, when a layer needs to
make a decision about how to handle a data packet, it would be helpful to know what kind of
information is inside the packet. Because of strict separation of concerns, particularly between the
non-adjacent layers, this information is not available, so a more intelligent decision cannot be
made. This is the reason why recently cross-layered designs are being adopted, particularly for
wireless networks (see Chapter 6).

Layer i

Layer i − 1

send() handle()

Chapter 1 • Introduction to Computer Networking 13

Three-Layer Model

In recent years, the three-layer model (Figure 1-11) has emerged as reference architecture of
computer networking protocols.

LAYER-1 – Link layer: is at the bottom of
the protocol stack and implements a packet
delivery service between nodes that are
attached to the same physical link (or, physical
medium). The physical link may be point-to-
point from one transmitter to a receiver, or it
may be shared by a number of transmitters and receivers (known as “broadcast link,” Section
1.3.3).

There is the “physical layer,” which implements a digital transmission system that delivers bits.
But, you would not know it because it is usually tightly coupled with the link layer by the link
technology standard. Link and physical layers are usually standardized together and technology
vendors package them together, as will be seen later in Section 1.5.

Layered architecture Layer function

• IEEE 802.11 WiFi
• IEEE 802.3 Ethernet
• PPP (modems, T1)

• Internet Protocol (IP)

Examples

• Transmission Control
Protocol (TCP)

• Real-time Transport
Protocol (RTP)

Application specific connections

Source-to-destination routing

Packet exchange

2: Network

1: Link

3: End-to-End

Service interface between L2 & L3

Service interface between L1 & L2

Layered architecture Layer function

• IEEE 802.11 WiFi
• IEEE 802.3 Ethernet
• PPP (modems, T1)

• Internet Protocol (IP)

Examples

• Transmission Control
Protocol (TCP)

• Real-time Transport
Protocol (RTP)

Application specific connections

Source-to-destination routing

Packet exchange

2: Network

1: Link

3: End-to-End

Service interface between L2 & L3

Service interface between L1 & L2

Figure 1-11: Three-layer reference architecture for communication protocol layering.

Ivan Marsic • Rutgers University

14

In wireless networks, physical communication is much more complex than in wired networks.
Therefore, it may be justifiable to distinguish the physical and link layers, to keep both
manageable. Because this book is mainly about protocols and not about physical communication,
I will consider both together as a single, Link layer.

The link layer is not concerned with bridging end hosts across (many) intermediate links; this is
why we need the network layer.

LAYER-2 – Network layer: provides
concatenation of links to connect arbitrary end
hosts. It will be elaborated in Section 1.4
where we describe the most popular network
layer protocol: the Internet Protocol (IP).
However, host computers are not the
endpoints of communication—application
programs running on these hosts are the actual
endpoints of communication! The network
layer is not concerned with application requirements. It may provide a range of choices for an
upper layer to select from. For example, the network layer may support “quality of service”
through “service level agreements,” “resource reservation,” but it does not know which one of
these choices is the best for a particular application program; this is why we need the end-to-end
layer.

LAYER-3 – End-to-end layer:
this layer brings together
(encapsulates) all communication-
specific features of an application
program. Here is the first time that
we are concerned with application
requirements.

The figure on the right is meant to
illustrate that different applications need different type of connection for optimal performance.
For example, manipulation-based applications (such as video games) require an equivalent of
mechanical links to convey user’s action. Telephony applications need an equivalent of a
telephone wire to carry user’s voice, etc. A most prominent example of an end-to-end protocol is
TCP, described in Chapter 2.

A fundamental design principle of network protocols and distributed systems in general is the
end-to-end principle. The principle states that, whenever possible, communications protocol
operations should occur at the end-points of a communications system, or as close as possible to
the resource being controlled. According to the end-to-end principle, protocol features are only
justified in the lower layers of a system if they are a performance optimization.

Figure 1-12 shows the layers involved when a message is sent from an application running on one
host to another running on a different host. The application on host A hands the message to the
end-to-end layer, which passes it down the protocol stack on the same host machine. Every layer
accepts the payload handed to it and processes it to add its characteristic information in the form
of an additional header (Figure 1-13). The link layer transmits the message over the physical

Chapter 1 • Introduction to Computer Networking 15

medium. As the message travels from A to B, it may pass through many intermediate nodes,
known as switches or routers. In every receiving node (including the intermediate ones), the
message is received by the bottommost (or, link) layer and passed up through their protocol stack.
Because intermediate nodes are not the final destination (or, end point), they do not have the
complete protocol stack, but rather only the two bottommost layers: link and network layers (see
Figure 1-12).

Pseudo code of a generic protocol module in layer i is given in Listing 1-1.

Listing 1-1: Pseudo code of a protocol module in layer i.

// Definition of packet format for layer i.
// Implementing the java.io.Externalizable interface makes possible to serialize
// a Packet object to a byte stream (which becomes the payload for the lower-layer protocol).
 1 public class PacketLayer_i implements java.io.Externalizable {
 2 // packet header
 3 private String sourceAddress;
 4 private String receiverAddress;
 5 private String packetID; // this packet’s identifier
 6 private String receivingProtocol; // upper layer protocol at receiver

 7 // packet payload

1:

2:

3:

1:

2:

:1

:2

:3

Physical communication Physical communication

End host A End host B

Intermediate
node (router)

Physical setup:Physical setup:

Protocol stack:Protocol stack:

Communication link

Communication link

Link

Network

Link

Network

Link

Network

End-to-End

Application

Link

Network

End-to-End

Application

Link

Network

End-to-End

Application

Link

Network

End-to-End

Application

Figure 1-12: Protocol layering in end hosts and intermediate nodes (switches or routers).

Ivan Marsic • Rutgers University

16

 8 private byte[] payload;

 9 // constructor
10 public PacketLayer_i(
10a byte[] data, String recvAddr, String upperProtocol
10b) {
11 payload = data;
12 sourceAddress = address of my host computer;
13 receiverAddress = recvAddr;
14 packetID = generate unique identifier for this packet;
15 receivingProtocol = upperProtocol;
16 }

17 public void writeExternal(ObjectOutput out) {
18 // Packet implements java.io.Externalizable instead of java.io.Serializable
18a // to be able to control how the serialization stream is written, because
18a // it must follow the standard packet format for the given protocol.
19 }
20 public void readExternal(ObjectOutput out) {
21 // reconstruct a Packet from the received bytestream
22 }
23 }
 // Definition of a generic protocol module in layer i.

 1 public class ProtocolLayer_i {
 2 // maximum number of outstanding packets at sender (zero, if NOT a persistent sender)
 3 public static final int N; // (N is also called the sliding window size

 4 // lower layer protocol that provides services to this protocol
 5 private ProtocolLayer_iDOWN lowerLayerProtocol;

 6 // look-up table of upper layer protocols that use services of this protocol
 7 private HashMap upperLayerProtocols;

 8 // look-up table of next-receiver node addresses based on final destination addresses
 8a // (this object is shared with the routing protocol, shown in Listing 1-2)
 9 private HashMap forwardingTable;

10 // list of unacknowledged packets that may need to be retransmitted
10a // (maintained only for persistent senders that provide reliable transmission)
11 private ArrayList unacknowledgedPackets = new ArrayList();

12 // constructor
13 public ProtocolLayer_i(
13a ProtocolLayer_iDOWN lowerLayerProtocol
13b) {
14 this.lowerLayerProtocol = lowerLayerProtocol;
15 }

16 // sending service offered to the upper layer protocols, called in a top-layer thread
17 public void send(
17a byte[] data, String destinationAddr,
17b ProtocolLayer_iUP upperProtocol
17c) throws Exception {
18 // if persistent sender and window of unacknowledged packets full, then do nothing

Chapter 1 • Introduction to Computer Networking 17

19 if ((N > 0) && (N - unacknowledgedPackets.size() <= 0))) {
20 throw exception: admission refused by overbooked sender;
21 }

22 // create the packet to send
23 PacketLayer_i outgoingPacket =
23a new PacketLayer_i(data, destinationAddr, upperProtocol);

24 // serialize the packet object into a byte-stream (payload for lower-layer protocol)
25 java.io.ByteArrayOutputStream bout =
25a new ByteArrayOutputStream();
26 java.io.ObjectOutputStream outstr =
26a new ObjectOutputStream(bout);
27 outstr.writeObject(outgoingPacket);

28 // look-up the receiving node of this packet based on the destination address
28a // (requires synchronized access because the forwarding table is shared
28b // with the routing protocol)
29 synchronized (forwardingTable) { // critical region
30 String recvAddr = forwardingTable.get(destinationAddr);
31 } // end of the critical region

32 // hand the packet as a byte-array down the protocol stack for transmission
33 lowerLayerProtocol.send(
33a bout.toByteArray(), recvAddr, this
33b);
34 }

34 // upcall method, called from the layer below this one, when data arrives
35a // from a remote peer (executes in a bottom-layer thread!)
36 public void handle(byte[] data) {

37 // reconstruct a Packet object from the received data byte-stream
38 ObjectInputStream instr = new ObjectInputStream(
38a new ByteArrayInputStream(data)
38b);
39 PacketLayer_i receivedFrame =
40 (PacketLayer_i) instr.readObject();

41 // if this packet is addressed to me ... (on a broadcast medium)
42 if (receivedFrame.getReceiverAddress() == my address) {
43 // ...determine which upper layer protocol should handle this packet's payload
44 synchronized (upperLayerProtocols) { // critical region
45 ProtocolLayer_iUP upperProtocol = (ProtocolLayer_iUP)
45a upperLayerProtocols.get(
45b receivedFrame.getReceivingProtocol()
45c);
46 } // end of the critical region

47 // remove this protocol's header and
47a // hand the payload over to the upper layer protocol
48 upperProtocol.handle(receivedFrame.getPayload());
49 }
50 }

Ivan Marsic • Rutgers University

18

51 public void setHandler(
51a String receivingProtocol, ProtocolLayer_iUP upperProtocol
51b) {
52 // add a <key, value> entry into the routing look-up table
53 upperLayerProtocols.put(receivingProtocol, upperProtocol);
54 }

55 // Method called by the routing protocol (running in a different thread or process)
56 public void setReceiver(
56a String destinationAddr, String receiverAddr
56b) {
57 // add a <key, value> entry into the forwarding look-up table
58 synchronized (forwardingTable) { // critical region
59 forwardingTable.put(destinationAddr, receiverAddr);
60 } // end of the critical region
61 }
62 }

Here I provide only a brief description of the above pseudocode. We will encounter and explain
the details later in this chapter, as new concepts are introduced. The attribute upperProtocol
is used to decide to which upper-layer protocol to deliver a received packet’s payload. This
process is called protocol demultiplexing and allows the protocol at a lower-layer layer to serve
different upper-layer protocols.

To keep the pseudo code manageable, some functionality is not shown in Listing 1-1. For
example, in case of a persistent sender in the method send() we should set the retransmission
timer for the sent packet and store the packet in the unacknowledgedPackets list. Similarly,
in the method handle() we should check what packet is acknowledged and remove the
acknowledged packet(s) from the unacknowledgedPackets list. Also, the method send()
is shown to check only the forwardingTable to determine the intermediary receiver
(recvAddr) based on the final destination address. In addition, we will see that different
protocol layers use different addresses for the same network node (Section 8.3.1). For this reason,
it is necessary to perform address translation from the current-layer address (recvAddr) to the
address of the lower layer before passing it as an argument in the send() call, in Line 33. (See
Section 8.3 for more about address translation.)

Chapter 1 • Introduction to Computer Networking 19

The reader who carefully examined Listing 1-1 will have noticed that packets from higher layers
become nested inside the packets of lower layers as they are passed down the protocol stack
(Figure 1-13). The protocol at a lower layer is not aware of any structure in the data passed down
from the upper layer, i.e., it does not know if the data can be partitioned to header and payload or
where their boundary is—it simply considers the whole thing as an unstructured data payload.

The generic protocol implementation in Listing 1-1 works for all protocols in the layer stack.
However, each layer will require some layer-specific modifications. The protocol in Listing 1-1
best represents a Network layer protocol for source-to-destination packet delivery.

The Link layer is special because it is at the bottom of the protocol stack and cannot use services
of any other layer. It runs the receiveBits() method in a continuous loop (perhaps in a
separate thread or process) to hunt for arriving packets. This method in turn calls Link layer’s
handle(), which in turn calls the upper-layer (Network) method handle(). Link layer’s
send() method, instead of using a lower-layer service, itself does the sending by calling this
layer’s own method sendBits().

Application data

Layer-3
header

Layer-3 payload
Layer-3
header

Layer-3 payload

010010110110001011100100101100000101101

Application data
Layer-2
header

Layer-2 payload

Layer-1
header

Application dataLayer-1 payload

Application data

Layer-3
header

Layer-3 payload
Layer-3
header

Layer-3 payload

010010110110001011100100101100000101101

Application data
Layer-2
header

Layer-2 payload

Layer-1
header

Application dataLayer-1 payload

Physical
communication

Sender’s
protocol stack

Receiver’s
protocol stack

Figure 1-13: Packet nesting across the protocol stack: an entire packet of an upper layer
becomes the data payload of a lower layer.

Ivan Marsic • Rutgers University

20

An important feature of a link-layer protocol is data transparency, which means that it must
carry any bit pattern in the data payload. An example of a special bit pattern is the packet
preamble that helps the receiver to recognize the start of an arriving packet (mentioned at the start
of this section). Data transparency means that the link layer must not forbid the upper-layer
protocol from sending data containing special bit patterns. To implement data transparency, link-
layer protocol uses a technique known as bit stuffing (or, byte stuffing, depending on what the
smallest units used to measure the payload is). Bit stuffing defines a special control escape bit
pattern, call it ESC (Figure 1-14). The method sendBits()examines the payload received from
the upper-layer protocol. If it encounters a special control sequence, say preamble (call it PRE),
then it “stuffs” (adds) a control escape sequence ESC into the transmitted data stream, before PRE
(resulting in ESC PRE), to indicate that the following PRE is not a preamble but is, in fact, actual
data. Similarly, if the control escape pattern ESC itself appears as actual data, it too must be
preceeded by an ESC. The method receiveBits() removes any control escape patterns that it
finds in the received packet before delivering it to the upper-layer method handle() (Figure
1-14).

The pseudo code in Listing 1-1 is only meant to illustrate how one would write a protocol
module. It is extremely simplified and certainly not optimized for performance. My main goal is
to give the reader an idea about the issues involved in protocol design. We will customize the
pseudo code from Listing 1-1 for different protocols, such as routing protocols in Listing 1-2,
Section 1.4, and TCP sender in Listing 2-1, Section 2.1.1.

Link
layer

Link
layer

handle()

send()01111110 1010010111101011 01111110 1010010111101011

01111110 1010010111101011 01111110 1010010111101011

receiveBits() sendBits()

0111111001111110 10111110101111101110101111101011 0111111001111110 1010010110100101

Packet start pattern
(preamble)

Header Payload

actual data
that looks like

preamble

escape

“stuffed” data

“stuffing” removed

SENDERSENDERRECEIVERRECEIVER

Figure 1-14: Bit stuffing to escape special control patterns in the frame data.

Chapter 1 • Introduction to Computer Networking 21

When Is a "Little in the Middle" OK? The Internet's End-to-End Principle Faces More Debate; by
Gregory Goth -- http://ieeexplore.ieee.org/iel5/8968/28687/01285878.pdf?isnumber

Why it’s time to let the OSI model die; by Steve Taylor and Jim Metzler, Network World,
09/23/2008 -- http://www.networkworld.com/newsletters/frame/2008/092208wan1.html

Open Systems Interconnection (OSI) Reference Model

The OSI model has seven layers (Figure 1-15). The layer functionality is as follows:

Layer 7 – Application: Its function is to provide application-specific services. Examples include
call establishment and management for a telephony application (SIP protocol, Section 8.6.2), mail
services for e-mail forwarding and storage (SMTP protocol), and directory services for looking
up global information about various network objects and services (LDAP protocol). Notice that
this layer is distinct from the application itself, which provides business logic and user interface.

Layer 6 – Presentation: Its function is to “dress” the messages in a “standard” manner. It is
sometimes called the syntax layer because it deals with the syntax and semantics of the
information exchanged between the network nodes. This layer performs translation of data
representations and formats to support interoperability between different encoding systems
(ASCII vs. Unicode) or hardware architectures. It also performs encryption and decryption of
sensitive information. Lastly, this layer also performs data compression to reduce the number of
bits to be transmitted, which is particularly important for multimedia data (audio and video).

Layer 5 – Session: Its function is to maintain a “conversation” across multiple related exchanges
between two hosts (called session), to keep track of the progress of their communication. This
layer establishes, manages, and terminates sessions. Example services include keeping track of
whose turn it is to transmit (dialog control) and checkpointing long conversations to allow them
to resume after a crash.

Layer 4 – Transport: Its function is to provide reliable or expedient delivery of messages, or
error recovery.

Layer 3 – Network: Its function is to move packets from source to destination in an efficient
manner (called routing), and to provide internetworking of different network types (a key service
is address resolution across different networks or network layers).

Layer 2 – Link: Its function is to organize bits into packets or frames, and to provide packet
exchange between adjacent nodes.

Layer 1 – Physical: Its function is to transmit bits over a physical medium, such as copper wire
or air, and to provide mechanical and electrical specifications.

Visit http://en.wikipedia.org/wiki/OSI_model for more details on the OSI Reference ArchitectureVisit http://en.wikipedia.org/wiki/OSI_model for more details on the OSI Reference Architecture

Ivan Marsic • Rutgers University

22

The seven layers can be conceptually organized to three subgroups. First, layers 1, 2, and 3—
physical, link, and network—are the network support layers. They deal with the physical aspects
of moving data from one device to another, such as electrical specifications, physical connections,
physical addressing, etc. Second, layers 5, 6, and 7—session, presentation, and application—can
be thought of as user support layers. They allow interoperability among unrelated software
systems. Third, layer 4—the transport layer—ensures end-to-end reliable data transmission, while
layer 2 may ensure reliable data transmission on a single link.

When compared to the three-layer model (Figure 1-11), OSI layers 1, 2 correspond to layer 1, the
Link layer, in the three-layer model. OSI layer 3 corresponds to layer 2, the Network layer, in the
three-layer model. Finally, OSI layers 4, 5, 6, and 7 correspond to layer 3, the End-to-end layer,
in the three-layer model.

The OSI model serves mainly as a reference for thinking about protocol architecture issues. There
are no actual protocol implementations that follow the OSI model. Because it is dated, I will
mainly use the three-layer model in the rest of this text.

7: Application

6: Presentation

5: Session

4: Transport

3: Network

2: Link

1: Physical

• Wireless link (WiFi)
• Wired link (Ethernet)

• Radio spectrum
• Infrared
• Fiber
• Copper

• Source-to-destination (IP)
• Routing
• Address resolution

• Reliable (TCP)
• Real-time (RTP)

MAC

• Data translation (MIME)
• Encryption (SSL)
• Compression

• Application
services (SIP, FTP,
HTTP, Telnet, …)

• Dialog control
• Synchronization

Figure 1-15: OSI reference architecture for communication protocol layering.

Chapter 1 • Introduction to Computer Networking 23

1.2 Reliable Transmission via Redundancy

To counter the line noise, a common technique is to add redundancy or context to the message.
For example, assume that the transmitted word is “information” and the received word is
“inrtormation.” A human receiver would quickly figure out that the original message is
“information,” because this is the closest meaningful word to the one that is received. Similarly,
assume you are tossing a coin and want to transmit the sequence of outcomes (head/tail) to your
friend. Instead of transmitting H or T, for every H you can transmit HHH and for every T you can
transmit TTT. The advantage of sending two redundant letters is that if one of the original letters
flip, say TTT is sent and TTH is received, the receiver can easily determine that the original
message is TTT, which corresponds to “tail.” Of course, if two letters become flipped,
catastrophically, so TTT turns to THH, then the receiver would erroneously infer that the original
is “head.” We can make messages more robust to noise by adding greater redundancy. Therefore,
instead of two redundant letters, we can have ten: for every H you could transmit
HHHHHHHHHH and for every T you could transmit TTTTTTTTTT. The probability that the
message will be corrupted by noise catastrophically becomes progressively lower with more
redundancy. However, there is an associated penalty: the economic cost of transmitting the longer
message grows higher because every communication line can transmit only a limited number of
bits per unit of time. Finding the right tradeoff between robustness and cost requires the
knowledge of the physical characteristics of the transmission line as well as the knowledge about
the importance of the message to the receiver (and the sender).

Example of adding redundancy to make messages more robust will be seen in Internet telephony
(VoIP), where forward error correction (FEC) is used to counter the noise effects.

If damage/loss can be detected, then an option is to request retransmission but, request +
retransmission takes time  large response latency. FEC is better but incurs overhead.

1.2.1 Error Detection and Correction by Channel Coding

To bring the message home, here is a very simplified example for the above discussion. Notice
that this oversimplifies many aspects of error coding to get down to the essence. Assume that you
need to transmit 5 different messages, each message containing a single integer number between
1 – 5. You are allowed to “encode” the messages by mapping each message to a number between
1 – 100. Assume that the noise amplitude is distributed according to the normal distribution, as
shown in [Figure X]. What are the best choices for the codebook?

Note: this really represents a continuous case, not digital, because numbers are not binary and
errors are not binary. But just for the sake of simplicity…

Ivan Marsic • Rutgers University

24

1.2.2 Interleaving

Redundancy and error-correcting codes are useful when errors are randomly distributed. If errors
are clustered, they are not effective. Consider the following example. Say you want to send the
following message to a friend: “All science is either physics or stamp collecting.”2 A random
noise in the communication channel may result in the following distorted message received by
your friend: “All scidnce is eitjer physocs or statp colletting.” By simply using a spelling checker,
your friend may easily recover the original message. One the other hand, if the errors were
clustered, the received message may appear as: “All science is either checker or stamp
collecting.” Obviously, it is impossible to guess the original message unless you already know
what Rutherford said.

This kind of clustered error is usually caused by a jamming source. It may not necessarily be a
hostile adversary trying to prevent the communication, but it could be a passive narrow-band
jamming source, such as microwave owen, which operates in the same frequency range as Wi-Fi
wireless networking technology.

To recover from such errors, one can use interleaving. Let us assume that instead of sending the
original message as-is, you first scramble the letters and obtain the following message:

Now you transmit the message “theme illicts scenic graphics since poorest Ally.” Again, the
jamming source inflicts a cluster of errors, so the word “graphics” turns into “strictly,” and your
friend receives the following message: “theme illicts scenic strictly since poorest Ally.” Your
friend must know how to unscramble the message by applying an inverse mapping to obtain:

Therefore, with interleaving, the receiver will obtain a message with errors randomly distributed,
rather than missing a complete word. By applying a spelling checker, your friend will recover the
original message.

2 Ernest Rutherford, in J. B. Birks, “Rutherford at Manchester,” 1962.

“theme illicts scenic graphics since poorest Ally.”

“All science is either physics or stamp collecting.”

“theme illicts scenic graphics since poorest Ally.”

“All science is either physics or stamp collecting.”
Forward
interleaving:

A l l s c i e n c e i s

e csl tt lt e imh i c s

e e nc gc io l l tei t h r o r s t a m pp h y s i c s e nc gc io l l tei t h r o r s t a m pp h y s i c s

ie n c g c i oh e r tor s la p s A li cn ep ys

detail

“theme illicts scenic strictly since poorest Ally.”

“All sctence is eitcer ihysicy ot strmp lollectins.”

Inverse
interleaving:

Chapter 1 • Introduction to Computer Networking 25

1.3 Reliable Transmission by
Retransmission

We introduced channel encoding as a method for dealing with errors (Section 1.2). But, encoding
provides only probabilistic guarantees about the error rates—it can reduce the number errors to an
arbitrarily small amount, but it cannot eliminate them. When error is detected that cannot be
corrected, it may be remedied by repeated transmission. This is the task for Automatic Repeat
Request (ARQ) protocols. In case retransmission fails, the sender should persist with repeated
retransmissions until it succeeds or decides to give up. Of course, even ARQ retransmission is a
probabilistic way of ensuring reliability and the sender should not persist infinitely with
retransmissions. After all, the link to the receiver may be broken, or the receiver may be dead.
There is no absolutely certain way to guarantee reliable transmission.

Failed transmissions manifest themselves in two ways:

• Packet error: Receiver receives the packet and discovers error via error control

• Packet loss: Receiver never receives the packet (or fails to recognize it as such)

If the former, the receiver can request retransmission. If the latter, the sender must detect the loss
by the lack of response from the receiver within a given amount of time.

Common requirements for a reliable protocol are that: (1) it delivers at most one copy of a given
packet to the receiver; and, (2) all packets are delivered in the same order they are presented to
the sender. “Good” protocol:

• Delivers a single copy of every packet to the receiver application

• Delivers the packets in the order they were presented to the sender

A lost or damaged packet should be retransmitted. A persistent sender is a protocol participant
that tries to ensure that at least one copy of each packet is delivered, by sending repeatedly until it
receives an acknowledgment. To make retransmission possible, a copy is kept in the transmit
buffer (temporary local storage) until it is successfully received by the receiver and the sender
received the acknowledgement. Buffering generally uses the fastest memory chips and circuits
and, therefore, the most expensive memory, which means that the buffering space is scarce. Disk
storage is cheap but not practical for packet buffering because it provides relatively slow data
access.

During network transit, different packets can take different routes to the destination, and thus
arrive in a different order than sent. The receiver may temporarily store (buffer) the out-of-order
packets until the missing packets arrive. Different ARQ protocols are designed by making
different choices for the following issues:

• Where to buffer: at sender only, or both sender and receiver?

• What is the maximum allowed number of outstanding packets, waiting to be
acknowledged?

Ivan Marsic • Rutgers University

26

• How is a packet loss detected: a timer expires, or the receiver explicitly sends a “negative
acknowledgement” (NAK)? (Assuming that the receiver is able to detect a damaged
packet.)

The sender utilization of an ARQ connection is defined as the fraction of time that the sender is
busy sending data.

The throughput of an ARQ connection is defined as the average rate of successful message
delivery.

The goodput of an ARQ connection is defined as the rate at which data are sent uniquely, i.e., this
rate does not include error-free data that reach the receiver as duplicates. In other words, the
goodput is the fraction of time that the receiver is receiving data that it has not received before.

The transmissions of packets between a sender and a receiver are usually illustrated on a timeline
as in Figure 1-16. There are several types of delay associated with packet transmissions. To
illustrate, here is an analogy: you are in your office, plan to go home, and on your way home you
will stop at the bank to deposit your paycheck. From the moment you start, you will get down to
the garage (“transmission delay”), drive to the bank (“propagation delay”), wait in the line
(“queuing delay”), get served at teller’s window (“processing delay” or “service delay”), and
drive to home (additional “propagation delay”).

The first delay type is transmission delay, which is the time that takes the sender to place the
data bits of a packet onto the transmission medium. In other words, transmission delay is
measured from when the first bit of a packet enters a link until the last bit of that same packet
enters the link. This delay depends on the transmission rate R offered by the medium (in bits per
second or bps), which determines how many bits (or pulses) can be generated per unit of time at
the transmitter. It also depends on the length L of the packet (in bits). Hence, the transmission
delay is:

)secondper bits(

)bits(

bandwidth

lengthpacket

R

L
tx == (1.2)

T
im

e
T

im
e

Sender Receiver

Datatransmission
delay propagation

delay

Data

ACK

processing
delay

processing
delay

Figure 1-16: Timeline diagram for reliable data transmission with acknowledgements.

Chapter 1 • Introduction to Computer Networking 27

Propagation delay is defined as the time elapsed between when a bit is sent at the sender and
when it is received at the receiver. This delay depends on the distance d between the sender and
the receiver and the velocity v of electromagnetic waves in the transmission medium, which is
proportional to the speed of light in vacuum (c ≈ 3×108 m/s), v = c/n, where n is the index of
refraction of the medium. Both in copper wire and glass fiber or optical fiber n ≈ 3/2, so v ≈ 2 ×
108 m/s. The index of refraction for dry air is approximately equal to 1. The propagation delay is:

)m/s(

)m(

velocity

distance

v

d
t p == (1.3)

Processing delay is the time needed for processing a received packet. At the sender side, the
packet may be received from an upper-layer protocol or from the application. At the receiver side,
the packet is received from the network or from a lower-layer protocol. Examples of processing
include conversion of a stream of bytes to frames or packets (known as framing or packetization),
data compression, encryption, relaying at routers, etc. Processing delays usually can be ignored
when looking from an end-host’s viewpoint. However, processing delay is very critical for
routers in the network core that need to relay a huge number of packets per unit of time, as will be
seen later in Section 1.4.4.

Another important parameter is the round-trip time (or RTT), which is the time a bit of
information takes from departing until arriving back at the sender if it is immediately bounced
back at the receiver. This time on a single transmission link is often assumed to equal RTT =

Layer 1
(sender)

Layer 1
(receiver)

Layer 2
(sender)

Layer 2
(receiver)

Figure 1-17: Fluid flow analogy for delays in packet delivery between the protocol layers.

Ivan Marsic • Rutgers University

28

2 × tp. Determining the RTT is much more complex if the sender and receiver are connected over
a network where multiple alternative paths exist, as will be seen later in Section 2.1.2. However,
even on a single link, the notion of RTT is much more complex than just double the propagation
delay. To better understand RTT, we need to consider what it is used for and how it is measured.
RTT is most often used by sender to set up its retransmission timer in case a packet is lost.
Obviously, network nodes do not send individual bits; they send packets. RTT is measured by
recording the time when a packet is sent, reading out the time when the acknowledgement is
received, and subtracting these two values:

RTT = (time when the acknowledgement is received) − (time when the packet is sent) (1.4)

To understand what contributes to RTT, we need to look at how packets travel through the
network. First, acknowledgements may be piggybacked on data packets coming back for the
receiver. Therefore, even if the transmission delay is not included at the sender side, receiver’s
transmission delay does contribute to the RTT. (However, when an acknowledgement is
piggybacked on a regular data packet from receiver to sender, the transmission time of this packet
must be taken into account.)

Second, we have to remember that network nodes use layered protocols (Section 1.1.4).
Continuing with the fluid flow analogy from Figure 1-5, we illustrate in Figure 1-17 how delays
are introduced between the protocol layers. The physical-layer (layer 1) receiver waits until the
bucket is full (i.e., the whole packet is received) before it delivers it to the upper layer (layer 2).

The delay components for a single link and a three-layer protocol are illustrated in Figure 1-18.
Sender’s transmission delay will not be included in the measured RTT only if the sender operates
at the link/physical layer. A sender operating at any higher layer (e.g., network or transport
layers), cannot avoid having the transmission delay included in the measured RTT, because it
cannot know when the packet transmission on the physical medium will actually start or end.

Third, lower layers of sender’s protocol stack may incur significant processing delays. Suppose
that the sender is at the transport layer and it measures the RTT to receive the acknowledgement

Transport layer

Network layer

Link+Phys layer

Sender

Send
data

Receive
ACK

Send
packet

Receive
packet

Transport layer

Network layer

Link+Phys layer

Receiver

Send
ACK

Receive
data

Send
packet

Receive
packet

Propagation delay (sender → receiver)

Propagation delay (receiver → sender)

Processing and transmission delays
within link/physical layers

Processing delay within network layers

Processing delay within transport layersTransport layer

Network layer

Link+Phys layer

Sender

Send
data

Receive
ACK

Send
packet

Receive
packet

Transport layer

Network layer

Link+Phys layer

Receiver

Send
ACK

Receive
data

Send
packet

Receive
packet

Propagation delay (sender → receiver)

Propagation delay (receiver → sender)

Processing and transmission delays
within link/physical layers

Processing delay within network layers

Processing delay within transport layers

Figure 1-18: Delay components that contribute to round-trip time (RTT).

Chapter 1 • Introduction to Computer Networking 29

from the receiver, which is also at the transport layer. When a lower layer receives a packet from
a higher layer, the lower layer may not forward the packet immediately, because it may be busy
with sending some other packets. Also, if the lower layer uses error control, it will incur
processing delay while calculating the checksum or some other type of error-control code. Later
we will learn about other types of processing delays, such as time spent looking up forwarding
tables in routers (Section 1.4), time spent dividing a long message into fragments and later
reassembling it (Section 1.4.1), time spent compressing data, time spent encrypting and
decrypting message contents, etc.

Fourth, lower layers may implement their own reliable transmission service, which is transparent
to the higher layer. An example are broadcast links (Section 1.3.3), which keep retransmitting lost
packets until a retry-limit is reached. The question, then, is: what counts as the transmission delay
for a packet sent by a higher layer and transmitted by a lower layer, which included several
retransmissions? Should we count only the successful transmission (the last one), or the preceding
unsuccessful transmissions, as well?

In summary, the reader should be aware that RTT estimation is a complex issue even for a
scenario of a single communication link connecting the sender and receiver. Although RTT is
often approximated as double the propagation delay, this may be grossly inaccurate and the
reader should examine the feasibility of this approximation individually for each scenario.

Mechanisms needed for reliable transmission by retransmission:

• Error detection for received packets, e.g., by checksum

• Receiver feedback to the sender, via acknowledgement or negative acknowledgement

• Retransmission of a failed packet, which requires storing the packet at the sender until the
sender obtains a positive acknowledgement that the packet reached the receiver error-free

• Sequence numbers, so the receiver can distinguish duplicate packets

• Retransmission timer, if packet loss on the channel is possible (not only error corruption),
so that the sender can detect the loss

Several popular ARQ protocols are described next.

1.3.1 Stop-and-Wait

Problems related to this section: Problem 1.2 → Problem 1.4; also see Problem 1.12

The simplest retransmission strategy is stop-and-wait. This protocol buffers only a single packet
at the sender and does not deal with the next packet before ensuring that the current packet is
correctly received (Figure 1-16). A packet loss is detected by the expiration of a timer, which is
set when the packet is transmitted.

When the sender receives a corrupted ACK/NAK, it could send back to the receiver a NAK
(negative acknowledgement). For pragmatic reasons (to keep the sender software simple),
receiver does nothing and the sender just re-sends the packet when its retransmission timer
expires.

Ivan Marsic • Rutgers University

30

Assuming error-free communication, the utilization of a Stop-and-wait sender is determined as
follows. The entire cycle to transport a single packet takes a total of (tx + 2 × tp) time. (We assume
that the acknowledgement packets are tiny, so their transmission time is negligible.) Of this time,
the sender is busy tx time. Therefore

px

xWS
sender tt

t
U

⋅+
=

2
& (1.5)

Given a probability of packet transmission error pe, which can be computed using Eq. (1.1), we
can determine how many times, on average, a packet will be (re-)transmitted until successfully
received and acknowledged. This is known as the expected number of transmissions. Our
simplifying assumption is that error occurrences in successively transmitted packets are
independent events3. A successful transmission in one round requires error-free transmission of
two packets: forward data and feedback acknowledgement. We again assume that these are
independent events, so the joint probability of success is

() ()ACKDATA
succ 11 ee ppp −⋅−= (1.6)

The probability of a failed transmission in one round is pfail = 1 − psucc. Then, the number of
attempts K needed to transmit successfully a packet is a geometric random variable. The
probability that the first k attempts will fail and the (k+1)st attempt will succeed equals:

() succfail
1
succsucc1

0
)1,0(pppp

k
kQ kk ⋅=⋅−⋅








=+ (1.7)

where k = 1, 2, 3, … . The round in which a packet is successfully transmitted is a random
variable N, with the probability distribution function given by (1.7). Its expected value is

() () 






 ⋅+⋅=⋅⋅+=+⋅+= 
∞

−

∞

=

∞

=

∞

= 0
fail

0
failsucc

0
succfail

0

1)1,0(1}{
k

k

k

k

k

k

k

pkppppkkQkNE

Recall that the well-known summation formula for the geometric series is

()2
00 1

,
1

1

x

x
xk

x
x

k

k

k

k

−
=⋅

−
= 

∞

=

∞

=

Therefore we obtain (recall that pfail = 1 − psucc):

() succ
2

fail

fail

fail
succ

1

11

1
}{

pp

p

p
pNE =










−
+

−
⋅= (1.8)

We can also determine the average delay per packet as follows. Successful transmission of one
packet takes a total of tsucc = tx + 2×tp, assuming that transmission time for acknowledgement
packets can be ignored. A single failed packet transmission takes a total of tfail = tx + tout, where tout
is retransmission timer’s countdown time. If a packet is successfully transmitted after k failed

3 This is valid only if we assume that thermal noise alone affects packet errors. However, the independence

assumption will not be valid for temporary interference in the environment, such as a microwave oven
interference on a wireless channel.

Chapter 1 • Introduction to Computer Networking 31

attempts, then its total transmission time equals: succfail
total

1 ttkTk +⋅=+ , where k = 0, 1, 2, … (see

Figure 1-19). The total transmission time for a packet is a random variable total
1+kT , with the

probability distribution function given by (1.7). Its expected value is

() 






 ⋅+⋅=⋅⋅+⋅= 
∞

=

∞

=

∞

= 0
failfail

0
failsuccsuccsucc

0
failsuccfail

total}{
k

k

k

k

k

k pktptpppttkTE

Following a derivation similar as for Eq. (1.8), we obtain

() fail
succ

fail
succ2

fail

failfail

fail

succ
succ

total

11
}{ t

p

p
t

p

tp

p

t
pTE ⋅+=









−
⋅+

−
⋅= (1.9)

The expected sender utilization in case of a noisy link is

{ }
failfailsuccsucc

total
&

}{

}{

tptp

t

TE

NEt
UE xxWS

sender ⋅+⋅
=⋅= (1.10)

Here, we are considering the expected fraction of time the sender will be busy of the total
expected time to transmit a packet successfully. That is, (tx ⋅ E{N}) includes both unsuccessful
and successful (the last one) transmissions.

T
im

e

Sender Receiver

1s
t a

tte
m

p
t

transmission
time

timeout
time

2n
d

at
te

m
p

t
k-

th
at

te
m

p
t

k+
1s

t a
tte

m
pt transmission

time

RTT
Received
error-free

(error)

(error)

(error)

ACK

Packet i

Packet i (retransmission)

Packet i (retransmission)

Packet i (retransmission)

Send data
Set timer

Timer expires
Resend data
Set new timer

Timer expires
Resend data
Set new timer

Receive ACK
Reset timer

Figure 1-19: Stop-and-Wait with errors. The transmission succeeds after k failed attempts.

Ivan Marsic • Rutgers University

32

1.3.2 Sliding-Window Protocols

Problems related to this section: Problem 1.5 → Problem 1.12

Stop-and-wait is very simple but also very inefficient, because the sender spends most of the time
idle waiting for the acknowledgement. We would like the sender to send as much as possible,
short of causing path congestion or running out of the memory space for buffering copies of the
outstanding packets. One type of ARQ protocols that offer higher efficiency than Stop-and-wait is
the sliding window protocol.

The sender window size N is a measure of the maximum number of outstanding (i.e.,
unacknowledged) packets in the network. Figure 1-20 shows the operation of sliding window
protocols in case of no errors in communication. The receiver window size W gives the upper
bound on the number of out-of-order packets that the receiver is willing to accept. In the case
shown in Figure 1-20, both sender and receiver have the same window size. In general case it is
required that N ≤ W.

The sliding window sender should store in local memory (buffer) all outstanding packets for
which the acknowledgement has not yet been received. Therefore, the send buffer size should be
N packets large. The sent-but-unacknowledged packets are called “in-flight” packets or “in-
transit” packets. The sender must ensure that the number of in-flight packets is always ≤ N.

The sliding window protocol is actually a family of protocols that have some characteristics in
common and others different. Next, we review two popular types of sliding window protocols:

Sender

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

Sender
window N = 4

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Already ACK’d

Sent, not yet ACK’d

Allowed to send

NOT allowed to send

Key:
Already ACK’d

Sent, not yet ACK’d

Allowed to send

NOT allowed to send

Key:

Receiver

PktPkt--11

PktPkt--22

PktPkt--33

PktPkt--00

AckAck--11

AckAck--22

AckAck--33

AckAck--00

PktPkt--55

PktPkt--66

PktPkt--77

PktPkt--44

AckAck--55

AckAck--66

AckAck--77

AckAck--44

PktPkt--99

PktPkt--88

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11

Received in-order & ACK’d

Expected, not yet received

Acceptable to receive

NOT acceptable

Key:
Received in-order & ACK’d

Expected, not yet received

Acceptable to receive

NOT acceptable

Key:

Receiver
window W = 4

Figure 1-20: Sliding window protocol in operation over an error-free link.

Chapter 1 • Introduction to Computer Networking 33

Go-back-N (GBN) and Selective Repeat (SR). The TCP protocol described in Chapter 2 is
another example of a sliding window protocol. The key difference between GBN and SR is in the
way they deal with communication errors.

Go-back-N
The key idea of the Go-back-N protocol is to have the receiver as simple as possible. This means
that the receiver accepts only the next expected packet and immediately discards any packets
received out-of-order. Hence, the receiver needs only to memorize what is the next expected
packet (single variable), and does not need any memory to buffer the out-of-order packets.

As with other sliding-window protocols, the Go-back-N sender should be able to buffer up to N
outstanding packets.

The operation of Go-back-N is illustrated in Figure 1-21. The sender sends sender-window-size
(N = 3) packets and stops, waiting for acknowledgements to arrive. When Ack-0 arrives,
acknowledging the first packet (Pkt-0), the sender slides its window by one and sends the next
available packet (Pkt-3). The sender stops again and waits for the next acknowledgement.

Because Pkt-1 is lost, it will never be acknowledged and its retransmission timer will expire.
When a timeout occurs, the Go-back-N sender resends all packets that have been previously sent

Sender ReceiverWindow N = 3

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

2 3 4 5 6 7 8 9 10 11

Timeout for Pkt-1

1 2 3 4 5 6 7 8 9 10 11

discard Pkt-2

discard Pkt-3

1 2 3 4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10

4 5 6 7 8 9 10

Next expected
seq.num.

(loss)
Ack-0

Pkt-0

Pkt-1

Pkt-2

Ack-0

Ack-1

Ack-2

Ack-3

Pkt-3

Pkt-1

Pkt-2

Pkt-3

Ack-0

(loss)

Pkt-5

Pkt-6
Ack-4

Pkt-4

(re
tra

nsm
iss

ions)

Figure 1-21: Go-back-N protocol in operation under communication errors.

Ivan Marsic • Rutgers University

34

but have not yet been acknowledged, that is, all “in-flight” packets. This is where this protocol’s
name comes from. Because the sender will usually have N in-flight packets, a timeout will cause
it to go back by N and resend the N outstanding packets. The rationale for this behavior is that if
the oldest outstanding packet is lost, then all the subsequent packets are lost as well, because the
Go-back-N receiver automatically discards out-of-order packets.

As mentioned, the receiver memorizes a single variable, which is the sequence number of the
next expected packet. The Go-back-N receiver considers a packet correctly received if and only if

1. The received packet is error-free

2. The received packet arrived in-order, i.e., its sequence number equals next-expected-
sequence-number.

In this example, Pkt-1 is lost, so Pkt-2 arrives out of order. Because the Go-back-N receiver
discards any packets received out of order, Pkt-2 is automatically discarded. One salient feature
of Go-back-N is that the receiver sends cumulative acknowledgements, where an
acknowledgement with sequence number m indicates that all packets with a sequence number up
to and including m have been correctly received at the receiver. The receiver sends
acknowledgement even for incorrectly received packets, but in this case, the previously correctly
received packet is being acknowledged. In Figure 1-21, the receipt of Pkt-2 generates a duplicate
acknowledgement Ack-0. Notice also that when Ack-2 is lost, the sender takes Ack-3 to

0 1 2 3 4 5 6 7 8 9 10 11

Sender ReceiverSender window N = 3

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11

Timeout for Pkt-1

1 2 3 4 5 6 7 8 9 10 11

buffer Pkt-2

buffer Pkt-3

4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11

window W = 3

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

(loss)
Ack-0

Pkt-0

Pkt-1

Pkt-2

Ack-2

Ack-1

Pkt-3

Pkt-1

Ack-3

Ack-4

Ack-5

Pkt-4

Pkt-5

Pkt-6

(retransmission)

Figure 1-22: Selective Repeat protocol in operation under communication errors.

Chapter 1 • Introduction to Computer Networking 35

acknowledge all previous packets, including Pkt-2. Hence, a lost acknowledgement does not need
to be retransmitted as long as the acknowledgement acknowledging the following packet arrives
before the retransmission timer expires.

Selective Repeat (SR)

The key idea of the Selective Repeat protocol is to avoid discarding packets that are received
error-free and, therefore, to avoid unnecessary retransmissions. Go-back-N suffers from
performance problems, because a single packet error can cause Go-back-N sender to retransmit a
large number of packets, many of them unnecessarily. Figure 1-22 illustrates the operation of the
Selective Repeat protocol. Unlike a Go-back-N sender which retransmits all outstanding packets
when a retransmission timer times out, a Selective Repeat sender retransmits only a single
packet—the oldest outstanding one.

Unlike a Go-back-N receiver, a Selective Repeat receiver sends individual acknowledgements,
where an acknowledgement with sequence number m indicates only that the packet with sequence
number m has been correctly received. There is no requirement that packets are received in order.
If a packet is received out of order but error-free, it will be buffered in the receiver’s memory
until the in-order missing packets are received.

Figure 1-23 illustrates the difference between the behaviors of GBN cumulative
acknowledgements and SR individual acknowledgements. Notice that both protocols require the
sender to acknowledge duplicate packets, which were received and acknowledged earlier. The
reason for this requirement is that a duplicate packet usually indicates that the acknowledgement
has been lost. Without an acknowledgement, the sender window would never move forward and

(a) Go-back-N (b) Selective Repeat

Sender Receiver

1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

3 4 5 6 7

1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

2 3 4 5 6 7

3 4 5 6 7

4 5 6 7

3 4 5 6 7

Sender Receiver

1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Timeout for Pkt-1
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

discard
duplicate Pkt-1

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Ack-0

Ack-1

Ack-2

Pkt-0

Pkt-1

Pkt-2

(loss)

Pkt-1

Ack-3

Pkt-3

Ack-1

Ack-0

Ack-1

Ack-2

Pkt-0

Pkt-1

Pkt-2

(loss)

Pkt-4

Pkt-6

Ack-3

Pkt-3

Pkt-5

Figure 1-23: Comparison of Go-back-N and Selective-Repeat acknowledgments.

Ivan Marsic • Rutgers University

36

the communication would come to a halt. (Notice also that a packet can be retransmitted when its
acknowledgement is delayed, so the timeout occurs before the acknowledgement arrives. In this
case, the sender window would simply move forward.) Again, SR acknowledges only the last
received (duplicate) packet, whereas GBN cumulatively acknowledges all the packets received up
to and including the last one. In Figure 1-23(a), Ack-1 was lost, but when Ack-2 arrives it
acknowledges all packets up to and including Pkt-2. This acknowledgement shifts the sender’s
window forward by 2 and the sender advances uninterrupted. Unlike this, in Figure 1-23(b) the
SR sender needs to retransmit Pkt-1 because it never receives Ack-1 before its timeout expired.

In practice, a combination of selective-ACK and Go-back-N is used, as will be seen with TCP in
Chapter 2.

SIDEBAR 1.1: The Many Faces of Acknowledgements

♦ The attentive reader may have noticed that acknowledgements are used for multiple
purposes. For example, earlier we saw that a received ACK informs the sender that: (a) the
corresponding data packet arrived at the receiver; (b) the sender may stop the retransmission-
timer countdown for the corresponding data packet; (c) the sender may discard the copy of the
acknowledged packet and release the memory buffer space; and, (d) the sender may send
another data packet. Notice that an acknowledgment usually only confirms that the data packet
arrived error-free to the receiver, but it does not say anything about whether the receiver acted
upon the received data and completed the required processing. This requires additional
acknowledgement at the application level. Later, in Chapter 2, we will learn about some
additional uses of acknowledgements in the TCP protocol.

1.3.3 Broadcast Links

Broadcast links allow connecting multiple network nodes via the same link. Hence, when one
node transmits, all or most other nodes on the link can hear the transmission. If two or more
nodes are transmitting simultaneously, their signals will interfere with each other (see Figure 1-7
for interference on a wireless link). A receiver that receives the interference signal will not be
able to decode either of the original signals; this is known as a collision. Therefore, the nodes
should take turns transmitting their packets. However, this is easier said than done: when a node
has a packet ready for transmission, it does not know whether any other nodes are also about to
transmit. A key technical problem for broadcast links is coordination of transmissions, to
control collisions.

There are several techniques for transmission coordination on broadcast links. Collisions could be
prevented by designing strictly timed transmissions; avoided by listening before speaking; or,
detected after they happen and remedied by retransmission of corrupted information. An example
of preventing collisions by design is TDMA (Time Division Multiple Access). It creates unique
time slots and assigns a different time slot to each node. A node is allowed to transmit only within
its assigned time slot. After all nodes are given opportunity to transmit, the cycle is repeated. The
problem with this technique is that if some nodes do not have data ready for transmission, their

Chapter 1 • Introduction to Computer Networking 37

slot goes unused. Any other nodes that may wish to transmit are delayed and have to wait for
their predetermined slot even though the link is currently idle.

A popular class of protocols for broadcast links is random-access protocols, which are based on
the Stop-and-Wait ARQ, with addition of the backoff delay mechanism. Backoff mechanism is a
key mechanism for coordination of multiple senders on a broadcast link. Stop-and-wait has no
reason to backoff because it assumes that the sender is not contending for the link against other
senders and any loss is due to a transmission error. Conversely, a random-access protocol
assumes that any packet loss is due to a collision of concurrent senders and it tries to prevent
further collisions by introducing a random amount of delay (backoff) before attempting a re-
transmission. It is a way to provide stations with “polite behavior.” This method is commonly
used when multiple concurrent senders are competing for the same resource; another example
will be seen for the TCP protocol (Section 2.1.2). The sender usually doubles the range of backoff
delays for every failed transmission, which is why this method is also known as binary
exponential backoff. Increasing the backoff range increases the number of choices for the
random delay. This, in turn, makes it less likely that several stations will select the same delay
value and, therefore, reduces the probability of repeated collisions. It is like first deciding how
long to wait by tossing a coin (two choices: heads or tails); if both make the same choice and
again experience a collision, then they try by rolling a dice (six choices), etc.

The reason for addressing reliability at the link layer is as follows. A wireless link is significantly
more unreliable than a wired one. Noise, interference, and other propagation effects result in the

T
im

e
T

im
e

(a)

Sender Receiver

Packet transmission

propagation
delay = 333 nstransmission

delay = 8.192 ms

propagation constant β ≈ 0.00004
(local area network, diameter = 100m)

Sender Receiver

Packet transmission

propagation
delay =
119.3 ms

transmission
delay = 8.192 ms

(b)

propagation constant β ≈ 14.6
(geosynchronous satellite)

Figure 1-24: Propagation constant β for different wireless networks.

Dice
six choices

{1, 2, 3, 4, 5, 6}

Coin
two choices

{0, 1}

Roulette
38 choices (American)
{0, 00, 1, 2, 3, …, 36}

Ivan Marsic • Rutgers University

38

loss of a significant number of frames. Even with error-correction codes, a number of MAC
frames may not successfully be received. This situation can be dealt with by reliability
mechanisms at a higher layer, such as transport-layer protocol. However, timers used for
retransmission at higher layers (which control paths comprising many links) are typically on the
order of seconds (see TCP timers in Section 2.1.2). It is therefore more efficient to deal with
errors at the link level and retransmit the corrupted packets.

The time (in packet transmission units) required for all network nodes to detect a start of a new
transmission or an idle channel after a transmission ends is an important parameter. Intuitively,
the parameter β is the number of bits that a transmitting station can place on the medium before
the station furthest away receives the first bit of the first packet.

Recall that signal propagation time is tp = distance/velocity, as given earlier by Eq. (1.3). The
transmission delay is tx = packet-length/bandwidth, as given by Eq. (1.2). The parameter β is
calculated as

Lv

Rd

t

t

x

p

⋅
⋅==β (1.11)

The velocity of electromagnetic waves in dry air equals v ≈ 3 × 108 m/s, and in copper or optical
fiber it equals v ≈ 2 × 108 m/s. Therefore, propagation time is between 3.33 and 5 nanoseconds
per meter (ns/m). Given a wireless local area network (W-LAN) where all stations are located
within a 100 m diameter, the (maximum) propagation delay is tp ≈ 333 ns. If the bandwidth (or,
data rate) of the same W-LAN is 1 Mbps, the transmission delay for a 1 Kbytes packet equals tx =
8.192 ms. The relationship is illustrated in Figure 1-24(a). Recall from Figure 1-6 that on a 1
Mbps link, 1 bit is 1 μs wide, so the leading edge of the first bit will reach the receiver long
before the sender is done with the transmission of this bit. In other words, the propagation delay
is practically negligible. On the other hand, the altitude of a geosynchronous satellite is 35,786
km above the Earth surface, so the propagation delay is tp ≈ 119.3 ms. As shown in Figure 1-24,
the respective β parameters for these networks are βLAN ≈ 0.00004 and βGSS ≈ 14.6. The time
taken by the electronics for detection should also be added to the propagation time when
computing β, but it is usually ignored as negligible. We will see later how parameter β plays an
important role in network design.

The ALOHA Protocol

Problems related to this section: Problem 1.13 → Problem 1.15

A simple protocol for broadcast media is called ALOHA. There are two versions of ALOHA:
pure or plain ALOHA transmits packets as soon as they become ready, and slotted ALOHA which
transmits packets only at regular intervals. The state diagram for the sender side of both variations
of the protocol is shown in Figure 1-25. Plain ALOHA sends the packet immediately as it
becomes ready, while slotted ALOHA has to wait for the start of the next time interval (or, slot).
In other words, in slotted ALOHA, all transmissions are strictly clocked at regular time intervals.
After transmission, the sender stops-and-waits for the acknowledgement. If the acknowledgement
arrives, this is the end of the current cycle, and the sender expects the next packet to become
available for sending. If the acknowledgement does not arrive, the sender assumes that this is
because collision happened and it increases its backoff interval. The backoff interval is the

Chapter 1 • Introduction to Computer Networking 39

amount of time the sender waits to reduce the probability of collision with another sender that
also has a packet ready for transmission. After waiting for backoff countdown, the sender repeats
the cycle and retransmits the packet. As we know from the earlier discussion, the sender does not
persist forever in resending the packet, and if it exceeds a given threshold, the sender gives up
and aborts the retransmissions of this packet.

ALOHA is a very simple protocol, almost identical to Stop-and-Wait ARQ, except for the
backoff interval. ALOHA also does not initiate transmission of the next packet before ensuring
that the current packet is correctly received. Let us first consider a pure ALOHA protocol. To
derive its throughput, we make the following assumptions:

• There are a total of m wireless nodes and each node generates new packets for
transmission according to a Poisson process (see Appendix) with rate λ/m.

• Each node can hold only a single packet at a time, and the packet is stored until the node
receives a positive acknowledgement that the packet is successfully transmitted. While
storing the packet, the node is said to be backlogged.

• When a new packet is generated, what happens to it depends on whether or not the node
is already backlogged. If the node it is backlogged, the newly generated packet is
discarded; if the node is not backlogged, the newly generated packet is immediately
transmitted (in pure ALOHA) and stored until acknowledgement is received.

• A backlogged node can retransmit at any moment with a certain probability.

• All packets have the same length. The time needed for packet transmission (transmission
delay) is called slot length, and it is normalized to equal 1.

• If only a single node transmits, the transmission is always successful (noiseless channel);
if two or more nodes transmit simultaneously, there will be a collision and all collided

START

HERE:

New packet

ready

Figure 1-25: The sender’s state diagram for ALOHA and Slotted ALOHA protocols.

Ivan Marsic • Rutgers University

40

packets will be lost; all nodes receive instantaneous feedback about the success or failure
of the transmission. In other words, the acknowledgement is received immediately upon
packet transmission, without any propagation delays.

This system can be modeled as in Figure 1-26. For a reasonable throughput, we would expect
0 < λ < 1 because the system can successfully carry at most one packet per slot, i.e., only one
node can “talk” (or, transmit) at a time. Also, for the system to function, the departure rate of
packets out from the system should equal the arrival rate in equilibrium. In equilibrium, on one
hand, the departure rate cannot physically be greater than the arrival rate; on the other hand, if it
is smaller than the arrival rate, all the nodes will eventually become backlogged.

The following simplified derivation yields a reasonable approximation. In addition to the new
packets, the backlogged nodes generate retransmissions of the packets that previously suffered
collisions. If the retransmissions are sufficiently randomized, it is plausible to approximate the
total number of transmission attempts per slot, retransmissions and new transmissions combined,
as a Poisson random variable with some parameter G > λ.

The probability of successful transmission (i.e., throughput S) is the probability of an arrival
times the probability that the packet does not suffer collision; because these are independent
events, the joint probability is the product of their probabilities. The probability of an arrival is

(b)

System
ReceiverReceiver

λ/m

λ/mλ/m

λ/m

System Output = S

Transmission Attempts = G

(a)

User m

User
1

User
2 System Input = m ⋅ = λλ

mSystem Input = m ⋅ = λλ
m

“Fresh” station

“Backlogged” station

Key:

“Fresh” station

“Backlogged” station

Key:

Channelλ
G

S
G⋅P0

G⋅(1 − P0)

Fresh
packets

Collided packets
(to be retransmitted)

Successfully
transmitted packets

Combined, fresh and
retransmitted packets

Channelλ
G

S
G⋅P0

G⋅(1 − P0)

Fresh
packets

Collided packets
(to be retransmitted)

Successfully
transmitted packets

Combined, fresh and
retransmitted packets

Figure 1-26: (a) ALOHA system representation. (b) Modeled as a feedback system.

Chapter 1 • Introduction to Computer Networking 41

Pa = τ ⋅ G, where τ = 1 is the slot duration and G is the total arrival rate on the channel
(new and backlogged packets, combined).

The packet will not suffer collision if no other senders have transmitted their packets during the
so-called “vulnerable period” or “window of vulnerability.” We define receiver’s vulnerable
period as the time during which other transmissions may cause collision with sender’s
transmission. For pure ALOHA, the vulnerable period is two slots long [t − 1, t + 1), as illustrated
in Figure 1-27. Any transmission that started within one packet-time before this transmission or
during this transmission will overlap with this transmission and result in a collision. For slotted
ALOHA, the vulnerable period lasts one slot [t, t + 1), assuming that all stations are synchronized
and can start transmission only at slot intervals. From the Poisson distribution formula (see
Appendix A), P0 = P{A(t + τ) − A(t) = 0}. With τ = 1 for slotted ALOHA, we have

() { } G
a eGtAtAPGPPS −⋅==−+⋅⋅=⋅= 0)()1(10 (1.12)

For pure ALOHA, τ = 2, so S = G⋅e−2G. In equilibrium, the arrival rate (system input), λ, to the
system should be the same as the departure rate (system output), S = G⋅e−G. The reader should
recall Figure 1-26(a), and this relationship is illustrated in Figure 1-28.

We see that for slotted ALOHA, the maximum possible throughput of 1/e ≈ 0.368 occurs at G =
1. This is reasonable, because if G < 1, too many idle slots are generated, and if G > 1, too many
collisions are generated. At G = 1, the packet departure rate is one packet per packet time (or, per

0 0.5 1.0 1.5 2.0 3.0

0.1

0.2

0.3

0.4 Slotted ALOHA: S = Ge–G

Pure ALOHA: S = Ge–2G

G (transmission attempts per packet time)

Arrival rate λ

Equilibrium

S
(t

hr
ou

gh
pu

t p
er

 p
ac

ke
t

tim
e)

0 0.5 1.0 1.5 2.0 3.0

0.1

0.2

0.3

0.4 Slotted ALOHA: S = Ge–G

Pure ALOHA: S = Ge–2G

G (transmission attempts per packet time)

Arrival rate λ

Equilibrium

S
(t

hr
ou

gh
pu

t p
er

 p
ac

ke
t

tim
e)

Figure 1-28: Efficiency of the ALOHA MAC protocol. (In the case of Slotted ALOHA, the
packet time is equal to the slot time.)

T
im

e
T

im
e

Sender B

transmission
delay

Sender A Receiver

Data

ACK

propagation
delay from A

Data

propagation
delay from B

receiver’s
vulnerable
period
(for receiving data from A)

vulnerable period length = 2 × packet-time

Figure 1-27: The receiver’s vulnerable period during which collisions are possible.

Ivan Marsic • Rutgers University

42

slot), the fraction 1/e of which are newly arrived packets and
e

1
1− are the successfully

retransmitted backlogged packets.

Carrier Sense Multiple Access Protocols (CSMA)

Problems related to this section: Problem 1.17 → ?

The key problem with the ALOHA protocol is that it employs a very simple strategy for
coordinating the transmissions: a node transmits a new packet as soon as it is created, and in case
of collision, it retransmits with a retransmission probability.

An improved coordination strategy is to have the nodes “listen before they talk.” That is, the
sender listens to the channel before transmitting and transmits only if the channel is detected as
idle. Listening to the channel is known as carrier sense, which is why this strategy has the name
carrier sense multiple access (CSMA).

The medium is decided idle if there are no transmissions for time duration the parameter β time
units, because this is the propagation delay between the most distant stations in the network. The
time taken by the electronics for detection should also be added to the propagation time when
computing channel-sensing time, but it is usually ignored as negligible.

The key issues with a listen-before-talk approach are:

(1) When to listen and, in case the channel is found busy, whether to keep listening until it
becomes idle or stop listening and try later

(2) Whether to transmit immediately upon finding the channel idle or slightly delay the
transmission

Upon finding the channel busy, the node might listen persistently until the end of the ongoing
transmission. Another option is to listen periodically. Once the channel becomes idle, the node
might transmit immediately, but there is a danger that some other nodes also waited ready for
transmission, which would lead to a collision. Another option is, once the channel becomes idle,
to hold the transmission briefly for a random amount of time, and only if the channel remains
idle, start transmitting the packet. This reduces the chance of a collision significantly, although it
does not remove it, because both nodes might hold their transmissions for the same amount of

Table 1-1: Characteristics of three basic CSMA protocols when the channel is sensed idle or
busy. If a transmission was unsuccessful, all three protocols perform backoff and repeat.

CSMA Protocol Sender’s listening-and-transmission rules

Nonpersistent If medium is idle, transmit.
If medium is busy, wait random amount of time and sense channel again.

1-persistent If medium is idle, transmit (i.e., transmit with probability 1).
If medium is busy, continue sensing until channel is idle;
 then transmit immediately (i.e., transmit with probability 1).

p-persistent If medium is idle, transmit with probability p.
If medium is busy, continue sensing until channel is idle;
 then transmit with probability p.

Chapter 1 • Introduction to Computer Networking 43

time. Several CSMA protocols that make different choices regarding the listening and
transmission start are shown in Table 1-1. For each of the protocols in Table 1-1, when the sender
discovers that a transmission was unsuccessful (by a retransmission timer timeout), the sender
behaves the same way: it inserts a randomly distributed retransmission delay (backoff) and
repeats the listening-and-transmission procedure.

The efficiency of CSMA is better than that of ALOHA because of CSMA’s shorter vulnerable
period: The stations will not initiate transmission if they sense a transmission already in progress.
Notice that nonpersistent CSMA is less greedy than 1-persistent CSMA in the sense that, upon
observing a busy channel, it does not continually sense it with intention of seizing it immediately
upon detecting the end of the previous transmission (Table 1-1). Instead, nonpersistent CSMA
waits for a random period and then repeats the procedure. Consequently, this protocol leads to
better channel utilization but longer delays than 1-persistent CSMA.

Wireless broadcast networks show some phenomena not present in wireline broadcast networks.
The air medium is partitioned into broadcast regions, rather than being a single broadcast
medium. This is simply due to the exponential propagation loss of the radio signal, as discussed
earlier in Section 1.1.2. As a result, two interesting phenomena arise: (i) not all stations within a
partition can necessarily hear each other; and, (ii) the broadcast regions can overlap. The former
causes the hidden station problem and the latter causes the exposed station problem.

Unlike the wireline broadcast medium, the transitivity of connectivity does not apply. In wireline
broadcast networks, such as Ethernet, if station A can hear station B and station B can hear station
C, then station A can hear station C. This is not always the case in wireless broadcast networks, as
seen in Figure 1-29(a). In the hidden station problem, station C cannot hear station A’s
transmissions and may mistakenly conclude that the medium is available. If C does start
transmitting, it will interfere at B, wiping out the frame from A. Generally, a station X is
considered to be hidden from another station Y in the same receiver’s area of coverage if the
transmission coverages of the transceivers at X and Y do not overlap. A station that can sense the
transmission from both the source and receiver nodes is called covered station.

Different air partitions can support multiple simultaneous transmissions, which are successful as
long as each receiver can hear at most one transmitter at a time. In the exposed station problem,

Range of A’s
transmissions

A

C is a “hidden station” to A

B
C

C is an “exposed station” to B

Range of C’s
transmissions

A
B

C
D

Range of B’s
transmissions

Range of C’s
transmissions

(a) (b)

Figure 1-29: (a) Hidden station problem: C cannot hear A’s transmissions. (b) Exposed
station problem: C defers transmission to D because it hears B’s transmission.

Ivan Marsic • Rutgers University

44

station C defers transmission to D because it hears B’s transmission, as illustrated in Figure
1-29(b). If C senses the medium, it will hear an ongoing transmission and falsely conclude that it
may not send to D, when in fact such a transmission would cause bad reception only in the zone
between B and C, where neither of the intended receivers is located. Thus, the carrier sense
mechanism is insufficient to detect all transmissions on the wireless medium.

Hidden and exposed station problems arise only for CSMA-type protocols. ALOHA, for instance,
does not suffer from such problems because it does not perform channel sensing before
transmission (i.e., it does not listen before talking). Under the hidden stations scenario, the
performance of CSMA degenerates to that of ALOHA, because carrier-sensing mechanism
essentially becomes useless. With exposed stations it becomes worse because carrier sensing
prevents the exposed stations from transmission, where ALOHA would not mind the busy
channel.

CSMA/CD

Problems related to this section: ? → ?

Persistent and nonpersistent CSMA protocols are clearly an improvement over ALOHA because
they ensure that no station begins to transmit when it senses the channel busy. Another
improvement is for stations to abort their transmissions as soon as they detect a collision4.
Quickly terminating damaged packets saves time and bandwidth. This protocol is known as
CSMA with Collision Detection, or CSMA/CD, which is a variant of 1-persistent CSMA. It works
as follows (Figure 1-30):

4 In networks with wired media, the station compares the signal that it places on the wire with the one

observed on the wire to detect collision. If these signals are not the same, a collision has occurred.

Chapter 1 • Introduction to Computer Networking 45

1. Wait until the channel is idle.

2. When the channel is idle, transmit immediately and sense the carrier during the
transmission (or, “listen while talking”).

3. If you detect collision, abort the ongoing packet transmission, double the backoff range,
choose a random amount of backoff delay, wait for this amount of delay, and go to step 1.

A given station can experience a collision during the initial part of its transmission (the collision
window) before its transmitted signal has had time to propagate to all stations on the CSMA/CD
medium. Once the collision window has passed, a transmitting station is said to have acquired the
medium; subsequent collisions are avoided because all other stations can be assumed to have
noticed the signal and to be deferring to it. The time to acquire the medium is thus based on the
round-trip propagation time. If the station transmits the complete frame successfully and has
additional data to transmit, it will again listen to the channel before attempting a transmission
(Figure 1-30).

The collision detection process is illustrated in Figure 1-31. At time t0 both stations are listening
ready to transmit. The CSMA/CD protocol requires that the transmitter detect the collision before
it has stopped transmitting its frame. Therefore, the transmission time of the smallest frame must
be larger than one round-trip propagation time, i.e., 2β, where β is the propagation constant
described in Figure 1-24. The station that detects collision must transmit a jam signal, which
carries a special binary pattern to inform the other stations that a collision occurred. The jam
pattern consists of 32 to 48 bits. The transmission of the jam pattern ensures that the collision
lasts long enough to be detected by all stations on the network.

Figure 1-30: The sender’s state diagram for CSMA/CD protocol.

Ivan Marsic • Rutgers University

46

It is important to realize that collision detection is an analog process. The station’s hardware must
listen to the cable while it is transmitting. If what it reads back is different from what it is putting
out, it knows that a collision is occurring.

After k collisions, a random number of slot times is chosen from the backoff range [0, 2k − 1].
After the first collision, each sender might wait 0 or 1 slot times. After the second collision, the
senders might wait 0, 1, 2, or 3 slot times, and so forth. As the number of retransmission attempts
increases, the number of possibilities for the choice of delay increases. The backoff range is
usually truncated, which means that after a certain number of increases, the retransmission
timeout reaches a ceiling and the exponential growth stops. For example, if the ceiling is set at
k=10, then the maximum delay is 1023 slot times. In addition, as shown in Figure 1-30, the
number of attempted retransmissions is limited, so that after the maximum allowed number of
retransmissions the sender gives up and aborts the retransmission of this frame. The sender resets
its backoff parameters and retransmission counters at the end of a successful transmission or if
the transmission is aborted.

Notice that CSMA/CD achieves reliable transmission without acknowledgements. If the sender
does not detect collision, this means that the sender has not detected any errors during the
transmission. Therefore, it simply assumes that the receiver received the same signal (i.e., the
frame was received error free), and there is no need for an acknowledgement.

Here is an example:

Example 1.1 Illustration of a Timing Diagram for CSMA/CD

Consider a local area network of three stations using the CSMA/CD protocol shown in Figure 1-30. At
the end of a previous transmission, station-1 and station-3 each have one frame to transmit, while

STA 1 STA 2

Both stations are listening
t1

t2

t3

t4

t5

STA1 begins transmission

STA2 begins
transmission

STA2 detects
collision and

transmits
jam signal

STA1 detects
collision before

ending transmission

Time

Figure 1-31: Collision detection by CSMA/CD stations.

Chapter 1 • Introduction to Computer Networking 47

station-2 has two frames. Assume that all frames are of the same length. After the first collision
assume that the randomly selected backoff values are: STA1 = 1; STA2 = 0; STA3=0. Next, after the
second collision, the backoff values are: STA1 = 1; STA2 = 0; STA3=2. Then, after the third collision,
the backoff values are: STA1 = 3; STA2 = 1; STA3=3. Finally, after the fourth collision the backoff
values are: STA1 = 6; (STA2 is done by now); STA3=2. Show the timing diagram and indicate the
contention window (CW) sizes.

The solution is shown in Figure 1-32. Initially, all three stations attempt transmission and there is a
collision; they all detect the collision, abort their transmissions in progress, and send the jam signal.
After this, all three stations set their contention window (CW) size to 2 and randomly choose their
delay periods from the set {0, …, CW} = {0, 1}. As given in the problem statement, station-1 chooses
its backoff delay as 1, while stations 2 and 3 booth choose their backoff delay as 0. This leads to the
second collision. After the second backoff delay, station-2 succeeds in transmitting its first frame and
resets its backoff parameters (including the contention window CW) to their default values. The other
two stations keep the larger ranges of the contention window because they have not successfully
transmitted their frames yet. This gives station-2 an advantage after the third collision. Because it
chooses the backoff delay from a shorter range of values (CW=2), it is more likely to select a small
value and, therefore, again succeed in transmitting another frame.

To derive the performance of the CSMA/CD protocol, we will assume a network of m stations
with heavy and constant load, where all stations are always ready to transmit. We make a
simplifying assumption that there is a constant retransmission probability in each slot. If each
station transmits during a contention slot with probability p, the probability A that some station
will acquire the channel in that slot is

() 11 −−⋅⋅= mppmA

A is maximized when p = 1/m, with A → 1/e as m → ∞. Next, we calculate the average number of
contention slots that a station wastes before it succeeds in transmitting a packet. The probability
that the station will suffer collision (j − 1) times as succeed on the jth attempt (i.e., that the
contention interval has exactly j slots in it) is A⋅(1 − A) j −1. Therefore, the average number of slots
per contention is given as the expected value

()
A

AAj
j

j 1
1

0

1 =−⋅⋅
∞

=

−

STA 1

STA 2

STA 3

Previous
frame

STA2, 1st frame

Time

0

1 0

0

0

1 0

2 1 0

1

3

0

3

CWSTA1 = 2

CWSTA2
= 0

CWSTA1 = 8

CWSTA3 = 2 CWSTA3 = 4

STA2, 2nd frame

STA3, 1st frame

2

2

1 0

1 0 6

2 1

5

0

4 3

CWSTA1 = 16

CWSTA3 = 16

2 1 0

STA1, 1st frame

CWSTA1 = 4

CWSTA3 = 8

Collision (abort
transmission)

Jam signal

Key:

Backoff slot

CWSTA2 = 0

CWSTA3 = 0

CWSTA2
= 2

CWSTA2
= 4 CWSTA2 = 2

STA 1

STA 2

STA 3

Previous
frame

STA2, 1st frame

TimeTime

0

1 0

0

0

1 0

2 1 0

1

3

0

3

CWSTA1 = 2

CWSTA2
= 0

CWSTA1 = 8

CWSTA3 = 2 CWSTA3 = 4

STA2, 2nd frame

STA3, 1st frame

2

2

1 0

1 0 6

2 1

5

0

4 3

CWSTA1 = 16

CWSTA3 = 16

2 1 0

STA1, 1st frame

CWSTA1 = 4

CWSTA3 = 8

Collision (abort
transmission)

Jam signal

Key:

Backoff slot

Collision (abort
transmission)

Jam signal

Key:

Backoff slot

CWSTA2 = 0

CWSTA3 = 0

CWSTA2
= 2

CWSTA2
= 4 CWSTA2 = 2

Figure 1-32: Example of three CSMA/CD stations transmission with collision and backoff.

Ivan Marsic • Rutgers University

48

Because each slot is 2⋅β long, the mean contention interval, w, is 2⋅β /A. Assuming optimal p, the
average number of contention slots is never more than e, so w is at most 2⋅β⋅e ≈ 5.4×β. If an
average frame takes tx = L/R seconds to transmit, then the channel efficiency is

LReARL

RL

/21

1

/2/

/
CSMA/CD ⋅⋅⋅+

=
⋅+

=
ββ

η (1.13)

where A is substituted with the optimal value 1/e.

We will see in Section 1.5.2 how IEEE 802.3 LAN, known as Ethernet, uses CSMA/CD.

CSMA/CA

Problems related to this section: Problem 1.20 → Problem 1.23

In wireless LANs, it is not practical to do collision detection because of two main reasons:

1. Implementing a collision detection mechanism would require the implementation of a full
duplex radio, capable of transmitting and receiving at once. Unlike wired LANs, where a
transmitter can simultaneously monitor the medium for a collision, in wireless LANs the
transmitter’s power overwhelms a collocated receiver. The dynamic range of the signals
on the medium is very large. This is mainly result of the propagation loss, where the
signal drops exponentially from its source (recall Figure 1-7!). Thus, a transmitting
station cannot effectively distinguish incoming weak signals from noise and the effects of
its own transmission.

2. In a wireless environment, we cannot assume that all stations hear each other, which is
the basic assumption of the collision detection scheme. Again, due to the propagation loss
we have the following problem. The fact that the transmitting station senses the medium
free does not necessarily mean that the medium is free around the receiver area. (This is
the known as the hidden station problem, as described in Figure 1-29.)

As a result, when a station transmits a frame, it has no idea whether the frame collided with
another frame until it receives an acknowledgement from the receiver (or times out due to the
lack of an acknowledgement). In this situation, collisions have a greater effect on performance
than with CSMA/CD, where colliding frames can be quickly detected and aborted while the
transmission is in progress. Thus, it makes sense to try to avoid collisions, if possible, and a
popular scheme for this is CSMA/Collision Avoidance, or CSMA/CA. CSMA/CA is essentially
p-persistence, with the twist that when the medium becomes idle, a station must wait for a time
period to learn about the fate of the previous transmission before contending for the medium.
Figure 1-33 shows sender’s state diagram. After a frame was transmitted, the maximum time until
a station detects a collision is twice the propagation time of a signal between the stations that are
farthest apart plus the detection time. Thus, the station needs at least 2×β to ensure that the station
is always capable of determining if another station has accessed the medium at the start of the
previous slot. The interval between frames (or, packets) needed for the carrier-sense mechanism
to determine that the medium is idle and available for transmission is called a backoff slot.

Chapter 1 • Introduction to Computer Networking 49

When a station wants to transmit data, it first senses the medium whether it is busy. If the medium
is busy, the station enters the access deferral state. The station continuously senses the medium,
waiting for it to become idle. When the medium becomes idle, the station first sets a contention
timer to a time interval randomly selected in the range [0, CW−1], where CW is a predefined
contention window length. Notice that unlike CSMA/CD (Figure 1-30), CSMA/CA station
performs carrier sensing after every slot counted down, i.e., it is listening during the contention
window (Figure 1-33). In other words, during the backoff procedure, if the station senses the
channel as idle for the duration of a backoff slot, the station decrements the counter by one. If the
channel is sensed as busy, the station freezes the countdown and waits for the channel to become
idle. The station can transmit the frame after it counts down to zero.

After transmitting a frame, the station waits for the receiver to send an ACK. If no ACK is
received, the frame is assumed lost to collision, and the source tries again, choosing a contention
timer at random from an interval twice as long as the one before (binary exponential backoff).
The decrementing counter of the timer guarantees that the station will transmit, unlike a
p-persistent approach where for every slot the decision of whether or not to transmit is based on a
fixed probability p or qr. Thus regardless of the timer value a station starts at, it always counts
down to zero. If the station senses that another station has begun transmission while it was
waiting for the expiration of the contention timer, it does not reset its timer, but merely freezes it,

Figure 1-33: The sender’s state diagram for CSMA/CA protocol.

Ivan Marsic • Rutgers University

50

and restarts the countdown when the frame completes transmission. In this way, stations that
happen to choose a longer timer value get higher priority in the next round of contention.

As it can be seen, CSMA/CA deliberately introduces delay in transmission in order to avoid
collision. Avoiding collisions increases the protocol efficiency in terms of the percentage of
frames that get successfully transmitted (useful throughput). Notice that efficiency measures only
the ratio of the successful transmission to the total number of transmissions. However, it does not
specify the delays that result from the deferrals introduced to avoid the collisions. Error!
Reference source not found. shows the qualitative relationship for the average packet delays,
depending on the packet arrival rate.

We will see in Section 1.5.3 how IEEE 802.11 wireless LAN, known as Wi-Fi, uses CSMA/CA.

1.4 Routing and Addressing

In general networks, arbitrary source-destination node pairs communicate via intermediary
network nodes. These intermediary nodes are called switches or routers and their main purpose is
to bring packets to their destinations. A good routing protocol will also do it in an efficient way,
meaning via the shortest path or the path that is in some sense optimal. The data-carrying capacity
of the resulting source-to-destination path directly depends on the efficiency of the routing
protocol employed.

Bridges, Switches, and Routers

A packet switch is a network device with several incoming and outgoing links that forwards
packets from incoming to outgoing links. Each attachment to a network is known as a network
interface or network port. When a packet is received by a switch, the appropriate outgoing port
is decided based on the packet’s guidance information (contained in the packet header).

Two general approaches are used to interconnect multiple networks: bridges or routers. Bridges
are simple networking devices that are used for interconnecting local area networks (LANs) that
use identical protocols for the physical and link layers of their protocol stack. The terms “bridge”
and “switch” are often used synonymously. Because bridged networks use the same protocols, the
amount of processing required at the bridge is minimal. There are also more sophisticated
bridges, which are capable of mapping from one link-layer format to another. More information
on bridges and switches is available in Section 1.5.2.

Routers are general-purpose packet switches that can interconnect arbitrary networks. A router
has two important functions: (1) routing, which is the process of finding and maintaining optimal
paths between source and destination nodes; and, (2) forwarding (or switching), which is the
process of relaying incoming data packets along the routing path. A router is a switch that builds
its forwarding table by routing algorithms. Routing often searches for the shortest path, which in
abstract graphs is a graph distance between the nodes. Shortest path can be determined in
different ways, such as:

Chapter 1 • Introduction to Computer Networking 51

• Knowing the graph topology, calculate the shortest path

• Send “boomerang” probes on round trips to the destination along the different outgoing
paths. Whichever returns back the first is the one that carries the information about the
shortest path

Figure 1-34 illustrates an analogy between a crossroads and a router. Similar to a road sign, the
router maintains a forwarding table that directs the incoming packets to the appropriate exit
interfaces, depending on their final destination. Of course, as the road signs on different road
intersections list different information depending on intersection’s location relative to the
roadmap, so the routing tables in different routers list different information depending on router’s
location relative to the rest of the network.

A router is a network device that interconnects two or more computer
networks, where each network may be using a different link-layer protocol.
The two major problems of delivering packets in networks from an
arbitrary source to an arbitrary location are:

• How to build the forwarding tables in all network nodes

• How to do forwarding (efficiently)

Usually, a requirement is that the path that a packet takes from a source to a destination should be
in some sense optimal. There are different optimality metrics, such as quickest, cheapest, or most

“Forwarding table”

“Packets”

“Interface 1”
“Interface 2”

“Interface 3”

“Interface 4”

Packets
Router

Forwarding table

(a)

(b) Destination

ece.rutgers.edu

cs.rutgers.edu

Output Interface

Interface 3

Interface 2

Destination

ece.rutgers.edu

cs.rutgers.edu

Output Interface

Interface 3

Interface 2

Figure 1-34: A router can be thought of as a crossroads, with connecting points
corresponding to the router interfaces. When a car (packet) enters the intersection, it is
directed out by looking up the forwarding table.

Layer 2:

Network

Layer 1:

Link

Layer 3:

End-to-End

Routing Protocol
(OSPF, RIP, BGP, …)

Routing Protocol
(OSPF, RIP, BGP, …)

Ivan Marsic • Rutgers University

52

secure delivery. Later, in Sections 1.4.2 and 1.4.3, we will learn about some algorithms for
finding optimal paths, known as routing algorithms.

Pseudo code of a routing protocol module is given in Listing 1-2.

Listing 1-2: Pseudo code of a routing protocol module.

 1 public class RoutingProtocol extends Thread {
 2 // specifies how frequently this node advertises its routing info
 3 public static final int ADVERTISING_PERIOD = 100;

 4 // link layer protocol that provides services to this protocol
 5 private ProtocolLinkLayer linkLayerProtocol;

 6 // associative table of neighboring nodes
 6a // (associates their addresses with this node's interface cards)
 7 private HashMap neighbors;

 8 // information received from other nodes
 9 private HashMap othersRoutingInfo;

10 // this node's routing table
11 private HashMap myRoutingTable;

12 // constructor
13 public RoutingProtocol(
13a ProtocolLinkLayer linkLayerProtocol
13b) {
14 this.linkLayerProtocol = linkLayerProtocol;

15 populate myRoutingTable with costs to my neighbors;
16 }

17 // thread method; runs in a continuous loop and sends routing-info advertisements
17a // to all the neighbors of this node
18 public void run() {
19 while (true) {
20 try { Thread.sleep(ADVERTISING_PERIOD); }
21 catch (InterruptedException e) {
22 for (all neighbors) {
23 Boolean status = linkLayerProtocol.send();
24 // If the link was down, update own routing & forwarding tables
24a // and send report to the neighbors
25 if (!status) {
26 }
27 }
28 }
29 }
30 }

31 // upcall method (called from the layer below this one, in a bottom-layer thread!)
31a // the received packet contains an advertisement/report from a neighboring node
32 public void handle(byte[] data) throws Exception {

Chapter 1 • Introduction to Computer Networking 53

33 // reconstruct the packet as in Listing 1-1 (Section 1.1.4) for a generic handle()
33a // but there is no handover to an upper-layer protocol;
34 // update my routing table based on the received report
35 synchronized (routingTable) { // critical region
36 } // end of the critical region

37 // update the forwarding table of the peer forwarding protocol
37a // (note that this protocol is running in a different thread!)
38 call the method setReceiver() in Listing 1-1
39 }
40 }

The code description is as follows: … to be described …

As will be seen later, routing is not an easy task. Optimal routing requires a detailed and timely
view of the network topology and link statuses. However, obtaining such information requires a
great deal of periodic messaging between all nodes to notify each other about the network state in
their local neighborhoods. This is viewed as overhead because it carries control information and
reduces the resources available for carrying user information. The network engineer strives to
reduce overhead. In addition, the finite speed of propagating the messages and processing delays
in the nodes imply that the nodes always deal with an outdated view of the network state.
Therefore, in real-world networks routing protocols always deal with a partial and outdated view
of the network state. The lack of perfect knowledge of the network state can lead to a poor
behavior of the protocol and/or degraded performance of the applications.

Path MTU is the smallest maximum transmission unit of any link on the current path (also known
as route) between two hosts. The concept of MTU is defined in Section 1.1.3.

This section deals mainly with the control functions of routers that include building the routing
tables. Later, in Section 4.1 we will consider how routers forward packets from incoming to
outgoing links. This process consists of several steps and each step takes time, which introduces
delays in packet delivery. Also, due to the limited size of the router memory, some incoming
packets may need to be discarded for the lack of memory space. Section 4.1 describes methods to
reduce forwarding delays and packet loss due to memory shortage.

1.4.1 Networks, Internets, and the IP Protocol

A network is a set of computers directly connected to each other, i.e., with no intermediaries. A
network of networks is called internetwork.

Ivan Marsic • Rutgers University

54

Consider an example internetwork in Figure 1-35(a), which consists of five physical networks
interconnected by two routers. The underlying network that a device uses to connect to other
devices could be a LAN connection like Ethernet or Token Ring, a wireless LAN link such as
802.11 (known as Wi-Fi) or Bluetooth, or a dialup, DSL, or a T-1 connection. Each physical
network will generally use its own frame format, and each format has a limit on how much data
can be sent in a single frame (link MTU, Section 1.1.3).

Two types of network nodes are distinguished: hosts vs. routers. Each host usually has a single
network attachment point, known as network interface, and therefore it cannot relay packets for
other nodes. Even if a host has two or more network interfaces, such as node B in Figure 1-35(a),
it is not intended to be used for transit traffic. Hosts usually do not participate in the routing
algorithm. Unlike hosts, routers have the primary function of relaying transit traffic from other
nodes. Each router has a minimum of two, but usually many more, network interfaces. In Figure
1-35(a), both routers R1 and R2 have three network attachment points (interfaces) each. Each
interface on every host and router must have a network address that is globally unique.5 A node
with two or more network interfaces is said to be multihomed6 (or, multiconnected). Notice that
multihomed hosts do not participate in routing or forwarding of transit traffic. Multihomed hosts
act as any other end host, except they may use different interfaces for different destinations,
depending on the destination distance.

The whole idea behind a network layer protocol is to implement the concept of a “virtual
network” where devices talk even though they are far away, connected using different physical
network technologies. This means that the layers above the network layer do not need to worry
about details, such as differences in packet formats or size limits of underlying link-layer

5 This is not necessarily true for interfaces that are behind NATs, as discussed later.
6 Most notebook computers nowadays come with two or more network interfaces, such as Ethernet, Wi-Fi,

Bluetooth, etc. However, the host becomes “multihomed” only if two or more interfaces are assigned
unique network addresses and they are simultaneously active on their respective physical networks.

R1

R2

E F

A

B

C

DNetwork 2:
Wi-Fi

Network 1:
Ethernet

Network 5: Ethernet

Network 4:
Point-to-point

Network 3:
Point- to-point

(a) (b)

R1

R2

A

B

C

D

E F

Interfaces on
Network 1

Interfaces on
Network 5

Interfaces on
Network 2

Interfaces on
Network 3

Interfaces on
Network 4

Figure 1-35: Example internetwork: (a) The physical networks include 2 Ethernets, 2 point-
to-point links, and 1 Wi-Fi network. (b) Topology of the internetwork and interfaces.

Chapter 1 • Introduction to Computer Networking 55

technologies. The network layer manages these issues seamlessly and presents a uniform
interface to the higher layers. The most commonly used network layer protocol is the Internet
Protocol (IP). The most commonly deployed version of IP is version 4 (IPv4). The next
generation, IP version 6 (IPv6),7 is designed to address the shortcomings of IPv4 and currently
there is a great effort in transitioning the Internet to IPv6. IPv6 is reviewed
in Section 8.1.

IP Header Format

Data transmitted over an internet using IP is carried in packets called IP
datagrams. Figure 1-36 shows the format of IP version 4 datagrams. Its
fields are as follows:

Version number: This field indicates version number, to allow evolution of the protocol. The
value of this field for IPv4 datagrams is 4.

Header length: This field specifies the length of the IP header in 32-bit words. Regular header
length is 20 bytes, so the default value of this field equals 5, which is also the minimum allowed

7 IP version 5 designates the Stream Protocol (SP), a connection-oriented network-layer protocol. IPv5 was

an experimental real-time stream protocol that was never widely used.

8-bit type of service
(TOS)

16-bit datagram length
(in bytes)

16-bit datagram identification

options (if any)

data

0 15 16 31

8-bit time to live
(TTL)

16-bit header checksum

13-bit fragment offset

4-bit
version
number

20
bytes

4-bit
header
length

32-bit destination IP address

32-bit source IP address

8-bit user protocol

u
n
u
s
e
d

D
F

M
F

7 8

flags

Figure 1-36: The format of IPv4 datagrams.

Layer 2:

Network

Layer 1:

Link

Layer 3:

End-to-End

IP (Internet Protocol)

Ivan Marsic • Rutgers University

56

value. In case the options field is used, the value can be up to 42 − 1 = 15, which means that the
options field may contain up to (15 − 5) × 4 = 40 bytes.

Type of service: This field is used to specify the treatment of the datagram in its transmission
through component networks. It was designed to carry information about the desired quality of
service features, such as prioritized delivery. It was never widely used as originally defined, and
its meaning has been subsequently redefined for use by a technique called Differentiated Services
(DS), which will be described later in Section 3.3.5.

Datagram length: Total datagram length, including both the header and data, in bytes.

Identification: This is a sequence number that, together with the source address, destination
address, and user protocol, is intended to identify a datagram uniquely.

Flags: There are three flag bits, of which only two are currently defined. The first bit is reserved
and currently unused. The DF (Don’t Fragment) bit prohibits fragmentation when set. This bit
may be useful if it is known that the destination does not have the capability to reassemble
fragments. However, if this bit is set and the datagram exceeds the MTU size of the next link, the
datagram will be discarded. The MF (More Fragments) bit is used to indicate the fragmentation
parameters. When this bit is set, it indicates that this datagram is a fragment of an original
datagram and this is not its last fragment.

Fragment offset: This field indicates the starting location of this fragment within the original
datagram, measured in 8-byte (64-bit) units. This implies that the length of data carried by all
fragments before the last one must be a multiple of 8 bytes. The reason for specifying the offset
value in units of 8-byte chunks is that only 13 bits are allocated for the offset field, which makes
possible to refer to 8,192 locations. On the other hand, the datagram length field of 16 bits allows
for datagrams up to 65,536 bytes long. Therefore, to be able to specify any offset value within an
arbitrary-size datagram, the offset units are in 65,536 ÷ 8,192 = 8-byte units.

Time to live: The TTL field specifies how long a datagram is allowed to remain in the Internet,
to catch packets that are stuck in routing loops. This field was originally set in seconds, and every
router that relayed the datagram decreased the TTL value by one. In current practice, a more
appropriate name for this field is hop limit counter and its default value is usually set to 64.

User protocol: This field identifies the higher-level protocol to which the IP protocol at the
destination will deliver the payload. In other words, this field identifies the type of the next
header contained in the payload of this datagram (i.e., after the IP header). Example values are 6
for TCP, 17 for UDP, and 1 for ICMP. A complete list is maintained at
http://www.iana.org/assignments/protocol-numbers.

Header checksum: This is an error-detecting code applied to the header only. Because some
header fields may change during transit (e.g., TTL, fragmentation fields), this field is reverified
and recomputed at each router. The checksum is formed by taking the ones complement of the
16-bit ones-complement addition of all 16-bit words in the header. Before the computation, the
checksum field is itself initialized to a value of zero.

Source IP address: This address identifies the end host that originated the datagram. Described
later in Section 1.4.4.

Destination IP address: This address identifies the end host that is to receive the datagram.

Chapter 1 • Introduction to Computer Networking 57

Options: This field encodes the options requested by the sending user.

To send messages using the IP protocol, we encapsulate the data from a higher-layer (“user”)
protocol into IP datagrams. These datagrams must then be sent down to the link-layer protocol,
where they are further encapsulated into the frames of whatever technology is going to be used to
physically convey them, either directly to their destination, or indirectly to the next intermediate
step in their journey to their intended recipient. (The encapsulation process is illustrated in Figure
1-13.) The link-layer protocol puts the entire IP datagram into the data portion (the payload) of its
frame format, just as IP puts end-to-end layer messages, end-to-end headers and all, into its IP
Data field.

Naming and Addressing

Names and addresses play an important role in all computer systems as well as any other
symbolic systems. They are labels assigned to entities such as physical objects or abstract
concepts, so those entities can be referred to in a symbolic language. Because computation is
specified in and communication uses symbolic language, the importance of names should be
clear. It is important to emphasize the importance of naming the network nodes, because if a node
is not named, it does not exist! We simply cannot target a message to an unknown entity8. The
main issues about naming include:

• Names must be unique so that different entities are not confused with each other

• Names must be bound to and resolved with the entities they refer to, to determine the
object of computation or communication

It is common in computing and communications to differentiate between names and addresses of
objects. Technically, both are addresses (of different kind), but we distinguish them for easier
usage. Names are usually human-understandable, therefore variable length (potentially rather

8 Many communication networks allow broadcasting messages to all or many nodes in the network. Hence,

in principle the sender could send messages to nodes that it does not know of. However, this is not an
efficient way to communicate and it is generally reserved for special purposes.

128 . 6 . 29 . 131

32-bit IPv4 address (binary representation):

dotted decimal notation:

host name:

10000000 00000110 00011101 10000011

ece . rutgers . edu

associated by
a lookup table

(application-layer address)

(network-layer address)

Figure 1-37: Dotted decimal notation for IP version 4 addresses.

Ivan Marsic • Rutgers University

58

long) and may not follow a strict format. Addresses are intended for machine use, and for
efficiency reasons have fixed lengths and follow strict formatting rules. For example, you could
name your computers: “My office computer for development-related work” and “My office
computer for business correspondence.” The addresses of those computers could be: 128.6.236.10
and 128.6.237.188, respectively. Figure 1-37 illustrates the relationship between the binary
representation of an IP address, its dotted-decimal notation, and the associated name. One could
say that “names” are application-layer addresses and “addresses” are network-layer addresses.
Notice that in dotted-decimal notation the maximum decimal number is 255, which is the
maximum number that can be represented with an 8-bit field. The mapping between the names
and addresses is performed by the Domain Name System (DNS), described in Section 8.4.

Distinguishing names and addresses is useful for another reason: this separation allows keeping
the same name for a computer that needs to be labeled differently when it moves to a different
physical place (see Mobile IP in Section 8.3.4). For example, the name of your friend may remain
the same in your email address book when he or she moves to a different company and changes
their email address. Of course, the name/address separation implies that there should be a
mechanism for name-to-address binding and address-to-name resolution.

Two most important address types in contemporary networking are:

• Link-layer address of a device, also known as medium access control (MAC) address,
which is a physical address for a given network interface card (NIC), also known as
network adaptor or line card. These addresses are standardized by the IEEE group in
charge of a particular physical-layer communication standard, assigned to different
vendors, and hardwired into the physical devices.

• Network-layer address of a device, which is a logical address and can be changed by the
end user. This address is commonly referred to as IP address, because IP is by far the
most common network-layer protocol. Network-layer addresses are standardized by the
Internet Engineering Task Force (http://www.ietf.org).

Notice that a quite independent addressing scheme is used for telephone networks and it is
governed by the International Telecommunications Union (http://www.itu.int).

People designed postal addresses with a structure that facilitates human memorization and post-
service delivery of mail. So, a person’s address is structured hierarchically, with country name on
top of the hierarchy, followed by the city name, postal code, and the street address. One may
wonder whether there is anything to be gained from adopting a similar approach for network
computer naming. After all, computers deal equally well with numbers and do not need
mnemonic techniques to help with memorization and recall. It turns out that in very large
networks, the address structure can assist with more efficient message routing to the destination.
Section 1.4.4 describes how IPv4 addresses are structured to assist routing.

Datagram Fragmentation and Reassembly

Problems related to this section: Problem 1.24

The Internet Protocol’s main responsibility is to deliver data between devices on different
networks, i.e., across an internetwork. For this purpose, the IP layer encapsulates data received

Chapter 1 • Introduction to Computer Networking 59

from higher layers into IP datagrams for transmission. These datagrams are then passed down to
the link layer where they are sent over physical network links.

In Section 1.1.3, we saw that underlying network technology imposes the upper limit on the
frame (packet) size, known as maximum transmission unit (MTU). As the datagram is forwarded
along the source-destination path, each hop may use a different physical network, with a different
maximum underlying frame size. If an IP datagram is larger than the MTU of the underlying
network, it may be necessary to break up the datagram into several smaller datagrams. This
process is called fragmentation. The fragment datagrams are then sent individually and
reassembled at the destination into the original datagram.

IP is designed to manage datagram size in a seamless manner. It matches the size of the IP
datagram to the size of the underlying link-layer frame size, and performs fragmentation and
reassembly so that the upper-layer protocols are not aware of this process. Here is an example:

Example 1.2 Illustration of IP Datagram Fragmentation

In the example scenario shown in Figure 1-38, an application on host A, say email client, needs to send
a JPEG image to the receiver at host D. Assume that the sender uses the TCP protocol (described in
Chapter 2), which in turn uses IP as its network-layer protocol. The first physical network is Ethernet
(Section 1.5.2), which for illustration is configured to limit the size of the payload it sends to 1,200
bytes. The second network uses a Point-to-Point protocol that limits the payload size 512 bytes and the
third network is Wi-Fi (Section 1.5.3) with the payload limit equal to 1024 bytes.

Figure 1-39 illustrates the process by which IP datagrams are fragmented by the source device and
possibly routers along the path to the destination. As we will learn in Chapter 2, TCP learns from IP
about the MTU of the first link and prepares the TCP packets to fit this limit, so the host’s IP layer
does not need to perform any fragmentation. However, router B needs to break up the datagram into
several smaller datagrams to fit the MTU of the point-to-point link. As shown in Figure 1-39, the IP
layer at router B creates three smaller datagrams from the first datagram it receives from host A.

The bottom row in Figure 1-39(b) shows the contents of the fragmentation-related fields of the
datagram headers (the second row of the IP header shown in Figure 1-36). Recall that the length of
data carried by all fragments before the last one must be a multiple of 8 bytes and the offset values are
in units of 8-byte chunks. Because of this constraint, the size of the first two datagrams created by
fragmentation on router B is 508 bytes (20 bytes for IP header + 488 bytes of IP payload). Although
the MTU allows IP datagrams of 512 bytes, this would result in a payload size of 492, which is not a

Wi-Fi

E
th

e
rn

et
point-to-point

Host A

Host D

Router B

Router C

MTU = 1200 bytes

MTU = 512 bytes

MTU = 1024 bytes

Figure 1-38: Example scenario for IP datagram fragmentation.

Ivan Marsic • Rutgers University

60

multiple of 8 bytes. Notice also that the offset value of the second fragment is 61, which means that
this fragment starts at 8 × 61 = 488 bytes in the original IP datagram from which this fragment is
created.

It is important to reemphasize that lower layer protocols do not distinguish any structure in the
payload passed to them by an upper-layer protocol (Figure 1-13). Therefore, although in the
example of Figure 1-39 the payload of IP datagrams contains both TCP header and user data, the
IP does not distinguish any structure within the datagram payload. When the IP layer on Router B
receives an IP datagram with IP header (20 bytes) + 1,180 bytes of payload, it removes the IP
header and does not care what is in the payload. Router B’s IP layer splits the 1,180 bytes into
three fragments, so that when it adds its own IP header in front of each payload fragment, none of
the resulting IP datagrams will exceed 512 bytes in size. Router B then forwards the three
datagrams to the next hop.

1.4.2 Link State Routing

Problems related to this section: Problem 1.25 → ?

A key problem of routing algorithms is finding the shortest path between any two nodes, such
that the sum of the costs of the links constituting the path is minimized. The two most popular
algorithms used for this purpose are Dijkstra’s algorithm, used in link state routing, and Bellman-
Ford algorithm, used in distance vector routing. The link state routing is presented first, followed
by the distance vector routing; Section 1.4.5 describes the path vector routing, which is similar to
the distance vector routing.

Application

TCP layer

IP
layer

JPEG image
1.5 Kbytes

JPEG
header

Image pixels

1,536 bytes

TCP
header

TCP payload
(1,160 bytes)

1,180 bytes

TCP
header

TCP payload
(376 bytes)

396 bytes

TCP
header

TCP payload
(1,160 bytes)

1,200 bytes

IP
header

IP payload
(1,180 bytes)

1,200 bytes

IP
header

IP
header

IP payload
(488 bytes)

508 bytes

IP
header

IP payload
(488 bytes)

508 bytes

IP
header

IP pyld
164 B

184 bytes

Host A

Router B

MF-flag = 1
Offset = 0
ID = 73592

MF-flag = 0
Offset = 0
ID = 73592

MF-flag = 0
Offset = 0
ID = 73593

IP
header

MF-flag = 1
Offset = 61
ID = 73592

MF-flag = 0
Offset = 122
ID = 73592

Headers of the fragment datagrams

IP
layer

Application

TCP layer

IP
layer

JPEG image
1.5 Kbytes

JPEG
header

Image pixels

1,536 bytes

TCP
header

TCP payload
(1,160 bytes)

1,180 bytes

TCP
header

TCP payload
(376 bytes)

396 bytes

TCP
header

TCP payload
(1,160 bytes)

1,200 bytes

IP
header

IP payload
(1,180 bytes)

1,200 bytes

IP
header

IP
header

IP payload
(488 bytes)

508 bytes

IP
header

IP payload
(488 bytes)

508 bytes

IP
header

IP pyld
164 B

184 bytes

Host A

Router B

MF-flag = 1
Offset = 0
ID = 73592

MF-flag = 0
Offset = 0
ID = 73592

MF-flag = 0
Offset = 0
ID = 73593

IP
header

MF-flag = 1
Offset = 61
ID = 73592

MF-flag = 0
Offset = 122
ID = 73592

Headers of the fragment datagrams

IP
layer

Figure 1-39: IP datagram fragmentation at Router B of the network shown in Figure 1-38.
The fragments will be reassembled at the destination (Host D) in an exactly reverse process.

Chapter 1 • Introduction to Computer Networking 61

The key idea of the link state routing algorithm is to disseminate the information about local
connectivity of each node to all other nodes in the network. Once all nodes gather the local
information from all other nodes, each node knows the topology of the entire network and can
independently compute the shortest path from itself to any other node in the network. This is done
by iteratively identifying the closest node from the source node in the order of increasing path
cost (Figure 1-40). At the kth step we have the set N′k(A) of k closest nodes to node A (“confirmed
nodes”) as well as the shortest distance DX from each node X in N′k(A) to node A. Of all paths
connecting some node not in N′k(A) (“unconfirmed nodes”) with node A, there is the shortest one
that passes exclusively through nodes in N′k(A), because c(X, Y) ≥ 0. Therefore, the (k + 1)st
closest node should be selected among those unconfirmed nodes that are neighbors of nodes in
N′k(A). These nodes are marked as “tentative nodes” in Figure 1-40.

When a router (network node A) is initialized, it determines the link cost on each of its network
interfaces. For example, in Figure 1-40 the cost of the link connecting node A to node B is labeled
as “7” units, that is c(A, B) = 7. The node then advertises this set of link costs to all other nodes in
the network (not just its neighboring nodes). Each node receives the link costs of all nodes in the
network and, therefore, each node has a representation of the entire network. To advertise the link
costs, the node creates a packet, known as Link-State Advertisement (LSA) or Link-State Packet
(LSP), which contains the following information:

• The ID of the node that created the LSA

• A list of directly connected neighbors of this node, with the link cost to each one

• A sequence number for this packet

• A time-to-live for this packet

TentatTentat
nodesnodes

iveiveTentatTentat
nodesnodes

iveive

11

11

11

11

4444

25

4

7

Node
B

Node
C

Node
D

Source
node A

Node
E

11

11

Set of confirmed
nodes N′ (A)

25

7
B

C

D

A

E

UnconfirmedUnconfirmed
nodes nodes NN −− N N ′′(A)(A)

25

7
B

C

D

A

E

Step 0

Step 1 Step 2

Node
F66

F
66

F
66

TentativeTentative
nodesnodes

TentativeTentative
nodesnodes

0 00

N′ (A)1N′ (A)1 N′ (A)2N′ (A)2

Figure 1-40: Illustration of finding the shortest path using Dijkstra’s algorithm.

Ivan Marsic • Rutgers University

62

In the initial step, all nodes send their LSAs to all other nodes in the network using the
mechanism called broadcasting. The shortest-path algorithm, which is described next, starts with
the assumption that all nodes already exchanged their LSAs. The next step is to build a routing
table, which is an intermediate step towards building a forwarding table. A routing table of a
node (source) contains the paths and distances to all other nodes (destinations) in the network. A
forwarding table of a node pairs different destination nodes with appropriate output interfaces of
this node (recall Figure 1-34(b)).

The link state routing algorithm works as follows. Let N denote the set of all nodes in a network.
In Figure 1-41, N = {A, B, C, D}. The process can be summarized as an iterative execution of the
following steps

1. Check the LSAs of all nodes in the confirmed set N′ to update the tentative set (recall that
tentative nodes are unconfirmed nodes that are neighbors of confirmed nodes)

2. Move the tentative node with the shortest path to the confirmed set N′.

3. Go to Step 1.

The process stops when N′ = N. Here is an example:

Example 1.3 Link State Routing Algorithm

Consider the network in Figure 1-41(a) and assume that it uses the link state routing algorithm.
Starting from the initial state for all nodes, show how node A finds the shortest paths to all other nodes
in the network. The figure below shows how node A’s link-state advertisement (LSA) is broadcast
through the network.

1

10

C

A

B

D

B C

10 1

Neighbor

Cost

Seq.#
= 1

Node
ID
= A

B C

10 1

Neighbor

Cost

Seq.#
= 1

Node
ID
= A

A’s LSA
broadcast from node A

A’s LSA
re-broadcast from B

A’s LSA
re-broadcast from C

7

1

1

10

C

A

B

D1

7

1

1

10

C

A

B

D1

Original network
Scenario 1:

Cost c(C,D) ← 1
Scenario 2:

Link BD outage
Scenario 3:

Link BC outage

71

10

C

A

B

D1

71

10

C

A

B

D1

7

1

1

10

C

A

B

D

7

1

1

10

C

A

B

D

7

1

1

10

C

A

B

D1

1

7

1

1

10

C

A

B

D1

1

(a) (b) (c) (d)

Figure 1-41: Example network used for illustrating the routing algorithms.

Chapter 1 • Introduction to Computer Networking 63

Assume that all nodes broadcast their LSAs and each node already received LSAs from all other nodes
in the network before it starts the shortest path computation, as shown in this figure:

7

1

1

10

C

A

B

D1

A C D

10 1 1

Neighbor

Cost

Seq.#
= 1

Node
ID
= B

A C D

10 1 1

Neighbor

Cost

Seq.#
= 1

Node
ID
= B

A B D

1 1 7

Neighbor

Cost

Seq.#
= 1

Node
ID
= C

A B D

1 1 7

Neighbor

Cost

Seq.#
= 1

Node
ID
= C

B C

1 7

Neighbor

Cost

Seq.#
= 1

Node
ID
= D

B C

1 7

Neighbor

Cost

Seq.#
= 1

Node
ID
= D

B C

10 1

Neighbor

Cost

Seq.#
= 1

Node
ID
= A

B C

10 1

Neighbor

Cost

Seq.#
= 1

Node
ID
= A

LSA from node A

LSA from node B

LSA from node C

LSA from node D

Table 1-2 shows the process of building a routing table at node A of the network shown in Figure
1-41(a). Each node is represented with a triplet (Destination node ID, Path length, Next hop). The node
x maintains two sets (recall Figure 1-40): Confirmed(x) set, denoted as N′, and Tentative(x) set. At
the end, the routing table in node A contains these entries: {(A, 0, −), (C, 1, C), (B, 2, C), (D, 3, C)}.
Every other node in the network runs the same algorithm to compute its own routing table.

To account for failures of network elements, the nodes should repeat the whole procedure
periodically. That is, each node periodically broadcasts its LSA to all other nodes and recomputes

Table 1-2: Steps for building a routing table at node A in Figure 1-41. Each node is
represented with a triplet (Destination node ID, Path length, Next hop).

Step Confirmed set N ′ Tentative set Comments
0 (A, 0, −) ∅ Initially, A is the only member of Confirmed(A),

so examine A’s LSA.
1 (A, 0, −) (B, 10, B),

(C, 1, C)
A’s LSA says that B and C are reachable at costs
10 and 1, respectively. Since these are currently
the lowest known costs, put on Tentative(A) list.

2 (A, 0, −), (C, 1, C) (B, 10, B) Move lowest-cost member (C) of Tentative(A)
into Confirmed set. Next, examine LSA of
newly confirmed member C.

3 (A, 0, −), (C, 1, C) (B, 2, C),
(D, 8, C)

Cost to reach B through C is 1+1=2, so replace
(B, 10, B). C’s LSA also says that D is reachable
at cost 7+1=8.

4 (A, 0, −), (C, 1, C),
(B, 2, C)

(D, 8, C) Move lowest-cost member (B) of Tentative(A)
into Confirmed, then look at B’s LSA.

5 (A, 0, −), (C, 1, C),
(B, 2, C)

(D, 3, C) Because D is reachable via B at cost 1+1+1=3,
replace the Tentative(A) entry for D.

6 (A, 0, −), (C, 1, C),
(B, 2, C), (D, 3, C)

∅ Move lowest-cost member (D) of Tentative(A)
into Confirmed. END.

Ivan Marsic • Rutgers University

64

its routing table based on the received LSAs.

Limitations: Routing Loops

Link state routing needs large amount of resources to calculate routing tables. It also creates
heavy traffic because of flooding the LSA packets from each node throughout the network.

On the other hand, link state routing converges much faster to correct values after link failures
than distance vector routing (described in Section 1.4.3), which suffers from the so-called
counting-to-infinity problem.

Before the nodes start their routing table computation (as in Table 1-2), they all must have
received the same LSAs from all other nodes in the network. If not all of the nodes are working
from exactly the same map, routing loops can form. A routing loop is a subset of network nodes
configured so that data packets may wander aimlessly in the network, making no progress
towards their destination, and causing traffic congestion for all other packets. In the simplest form
of a routing loop, two neighboring nodes each think the other is the best next hop to a given
destination. Any packet headed to that destination arriving at either node will loop between these
two nodes. Routing loops involving more than two nodes are also possible.

The reason for routing loops formation is simple: because each node computes its shortest-path
tree and its routing table without interacting in any way with any other nodes, then if two nodes
start with different maps, it is easy to have scenarios in which routing loops are created.

The most popular practical implementation of link-state routing is Open Shortest Path First
(OSPF) protocol, reviewed in Section 8.2.2.

1.4.3 Distance Vector Routing

Problems related to this section: Problem 1.27 → Problem 1.29

The key idea of the distance vector routing algorithm is that each node assumes that its neighbors
already know the shortest path to each destination node. The node then selects the neighbor for
which the overall distance (from the source node to its neighbor, plus from the neighbor to the
destination) is minimal. The process is repeated iteratively until all nodes settle to a stable
solution. This algorithm is also known by the names of its inventors as Bellman-Ford algorithm.
Figure 1-42 illustrates the process of finding the shortest path in a network using Bellman-Ford
algorithm. The straight lines indicate single links connecting the neighboring nodes. The wiggly
lines indicate the shortest paths between the two end nodes (other nodes along these paths are not
shown). The bold line indicates the overall shortest path from source to destination.

Next, we describe the distance vector routing algorithm. Let N denote the set of all nodes in a
network. In Figure 1-41, N = {A, B, C, D}. The two types of quantities that this algorithm uses
are:

Chapter 1 • Introduction to Computer Networking 65

(i) Link cost assigned to an individual link directly connecting a pair of nodes (routers). Link
costs are given to the algorithm either by having the network operator manually enter the
cost values or by having an independent program determine these costs. For example, in
Figure 1-41 the cost of the link connecting the nodes A and B is labeled as “10” units, that
is c(A, B) = 10.

(ii) Node distance for an arbitrary pair of nodes, which represents the lowest sum of link
costs for all links along all the possible paths between this node pair. The distance from
node X to node Y is denoted as DX(Y). These will be computed by the routing algorithm.

The distance vector of node X is the vector of distances from node X to all other nodes in the
network, denoted as DV(X) = {DX(Y); Y ∈ N}. When determining the minimum-cost path (i.e.,
distance), it is important to keep in mind that we are not interested in how people would solve this
problem. Rather, we wish to know how a group of computers can solve such a problem.
Computers (routers) cannot rely on what we people see by looking at the network’s graphical
representation; computers must work only with the information exchanged in messages.

Let η(X) symbolize the set of neighboring nodes of node X. For example, in Figure 1-41 η(A) =
{B, C} because B and C are the only nodes directly linked to node A. The distance vector routing
algorithm runs at every node X and calculates the distance to every other node Y ∈ N, Y ≠ X,
using the following formula:

() { })(),(min
)(

YDVXcYD V
XV

X +=
∈η

 (1.14)

To apply this formula, every node must receive the distance vector from all other nodes in the
network. Every node maintains a table of distance vectors, which includes its own distance vector
and distance vectors of its neighbors. Initially, the node assumes that the distance vectors of its
neighbors are filled with infinite elements. Here is an example:

Example 1.4 Distributed Distance Vector Routing Algorithm

Consider the original network in Figure 1-41(a) and assume that it uses the distributed distance vector
routing algorithm. Starting from the initial state for all nodes, show the first few steps until the routing
algorithm reaches a stable state.

25

4

7

Neighbor
1

Neighbor
2

Destin
ation

Neighbor
3

Source

8

29

19
shortest paths from each neighbor

to the destination node

shortest path (src → dest) =
Min { 7 + 19, 4 + 29, 25 + 8 } =

7 + 19 = 26

Figure 1-42: Illustration of finding the shortest path using Bellman-Ford algorithm. The
thick line (crossing Neighbor 1) represents the shortest path from Source to Destination.

Ivan Marsic • Rutgers University

66

For node A, the routing table initially looks as follows.

A B C A B C D

A

B

C

0 10 1

∞ ∞ ∞

∞ ∞ ∞

F
ro

m

Distance to

A

B

CF
ro

m

Distance to

0 2 1

10 0 1

1 1 0

8

1

7

10 0 1 1

Received Distance Vectors

From B

Routing table at node A: Initial Routing table at node A: After 1st exchange

A B C D

1 1 0 7
From C

A B C D

1 1 0 7
From C

A B C D

Notice that node A only keeps the distance vectors of its immediate neighbors, B and C, and not that of
any other nodes, such as D. Initially, A may not even know that D exists. Next, each node sends its
distance vector to its immediate neighbors and, as a result, A receives distance vectors from B and C.
For the sake of simplicity, let us assume that at every node all distance vector packets arrive
simultaneously. Of course, this is not the case in reality, but asynchronous arrivals of routing packets
do not affect the algorithm operation. When a node receives an updated distance vector from its
neighbor, the node overwrites the neighbor’s old distance vector in its routing table with the new one.
As shown in the figure above, A overwrites the initial distance vectors for B and C. In addition, A re-
computes its own distance vector according to Eq. (1.14), as follows:

{ } { } 211,010min)(),(),(),(min)(=++=++= BDCAcBDBAcBD CBA

{ } { } 101,110min)(),(),(),(min)(=++=++= CDCAcCDBAcCD CBA

{ } { } 871,110min)(),(),(),(min)(=++=++= DDCAcDDBAcDD CBA

The new values for A’s distance vector are shown in the rightmost table in the above figure.

Similar computations will take place on all other nodes and the whole process is illustrated in Figure
1-43. The end result is as shown in Figure 1-43 as the second column entitled “After 1st exchange.”
Because for every node the newly computed distance vector is different from the previous one, Figure
1-43 shows that each node sends its new distance vector to its immediate neighbors. The cycle repeats
for every node until there is no difference between the new and the previous distance vector. As shown
in Figure 1-43, this happens after three exchanges.

A distance-vector routing protocol requires that each router informs its neighbors of topology
changes periodically and, in some cases, when a change is detected in the topology of a network
(triggered updates). Routers can detect link failures by periodically testing their links with
“heartbeat” or HELLO packets. However, if the router crashes, then it has no way of notifying
neighbors of a change. Therefore, distance vector protocols must make some provision for timing
out routes when periodic routing updates are missing for the last few update cycles.

Chapter 1 • Introduction to Computer Networking 67

Compared to link-state protocols, which require a router to inform all the other nodes in its
network about topology changes, distance-vector routing protocols have less computational
complexity and message overhead (because each node informs only its own neighbors).

Limitations: Routing Loops and Counting-to-Infinity

Distance vector routing works well if nodes and links are always up, but it suffers from several
problems when links fail and become restored. The problems happen because the node does not
reveal the information it used to compute its distance vector when it distributes the vector to the
neighbors. As a result, remote routers do not have sufficient information to determine whether
their choice of the next hop will cause routing loops to form. Although reports about lowering
link costs (good news) are adopted quickly, reports about increased link costs (bad news) only
spread in slow increments. This problem is known as the “counting-to-infinity
problem.”

Consider Scenario 2 in Figure 1-41(c) reproduced here in the figure on the right,
where after the network stabilizes, the link BD fails. Before the failure, the distance
vector of the node B will be as shown in the figure below. After B detects the link

C

R
ou

tin
g

ta
bl

e
at

 n
od

e
C

A

B

C

D

F
ro

m

Distance to

A B C D

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

1 1 0 7

∞ ∞ ∞ ∞

A

B

C

D

F
ro

m

Distance to

A B C D

0 10 1 ∞

10 0 1 1

1 1 0 2

∞ 1 7 0

A

B

C

D
F

ro
m

Distance to

A B C D

0 2 1 8

2 0 1 1

1 1 0 2

8 1 2 0

A

B

C

D

F
ro

m

Distance to

A B C D

0 2 1 3

2 0 1 1

1 1 0 2

3 1 2 0

A

B

C

F
ro

m

Distance to

A B C

0 10 1

∞ ∞ ∞

∞ ∞ ∞

A

B

Initial routing tables: After 1st exchange: After 2nd exchange: After 3rd exchange:

R
ou

tin
g

ta
bl

e
at

 n
od

e
A

R
ou

tin
g

 t
a

bl
e

at
 n

od
e

B

A

B

C

D

F
ro

m

Distance to

A B C D

∞ ∞ ∞ ∞

10 0 1 1

∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

A

B

C

D

F
ro

m

Distance to

A B C D

0 10 1 ∞

2 0 1 1

1 1 0 7

∞ 1 7 0

A

B

C

D

F
ro

m

Distance to

A B C D

0 2 1 8

2 0 1 1

1 1 0 2

8 1 2 0

A

B

C

D

F
ro

m

Distance to

A B C D

0 2 1 3

2 0 1 1

1 1 0 2

3 1 2 0

A

B

C

F
ro

m

Distance to

A B C D

0 2 1 8

10 0 1 1

1 1 0 7

A

B

C

F
ro

m

Distance to

A B C D

0 2 1 3

2 0 1 1

1 1 0 2

A

B

C

F
ro

m

Distance to

A B C D

0 2 1 3

2 0 1 1

1 1 0 2

B

C

D

F
ro

m

Distance to

B C D

∞ ∞ ∞

∞ ∞ ∞

1 7 0

D

R
ou

tin
g

ta
bl

e
at

 n
od

e
D

B

C

D

F
ro

m

Distance to

A B C D

10 0 1 1

1 1 0 7

8 1 2 0

B

C

D

F
ro

m

Distance to

A B C D

2 0 1 1

1 1 0 2

3 1 2 0

B

C

D

F
ro

m

Distance to

A B C D

2 0 1 1

1 1 0 2

3 1 2 0

Figure 1-43: Distance vector (DV) algorithm for the original network in Figure 1-41.

71

10

C

A

B

D1

71

10

C

A

B

D1

Ivan Marsic • Rutgers University

68

failure, it sets its own distance to D as ∞. (Notice that B cannot use old distance vectors it
obtained earlier from its neighbors to recompute its new distance vector, because it does not know
if they are valid anymore.) If B sends immediately its new distance vector to C,9 C would figure
out that D is unreachable, because its previous best path led via B and now it became unavailable.
However, it may happen that C just sent its periodic update (unchanged from before the link BD
failure) to B and B receives it after discovering the failure of BD but before sending out its own
update. Node B then recomputes its new distance to node D as

{ } { } 321,310min)(),(),(),(min)(=++=++= DDCBcDDABcDD CAB

and B choses C as the next hop to D. Because we humans can see the entire network topology, we
know that C has the distance to D equal to 2 going via the link BC followed by the link CD.
However, because C received from B only the numeric values of the distances, not the paths over
which these distances are computed, C does not know that itself lays on B’s shortest path to D!

A B C D

A

B

CF
ro

m

Distance to

1

0

1

2

Routing table at node B before BD outage

D

1 30 2

2 0

1 1

3 1 2 0

A B C D

A

B

CF
ro

m

Distance to

1

0

3

2

Routing table at node B after BD outage

D

1 30 2

2 0

1 1

3 1 2 0

1. B detects BD outage
2. B sets c(B, D) = ∞
3. B recomputes its

distance vector
4. B obtains 3 as the

shortest distance
to D, via C

Given the above routing table, when B receives a data packet destined to D, it will forward the
packet to C. However, C will return the packet back to B because for C, B is the next hop on the
shortest path from C to D. The packet will bounce back and forth between these two nodes
forever (or until their forwarding tables are changed). This phenomenon is called a routing loop,
because packets may wander aimlessly in the network, making no progress towards their
destination.

Because B’s distance vector has changed, it reports its new distance vector to its neighbors A and
C (triggered update). After receiving B’s new distance vector, C will determine that its new
shortest path to D measures 4, via C. Now, because C’s distance vector changed, it reports its new
distance vector to its neighbors, including B. The node B now recomputes its new distance vector
and finds that the shortest path to D measures 5, via C. B and C keep reporting the changes until
they realize that the shortest path to D is via C because C still has a functioning link to D with the
cost equal to 7. This process of incremental convergence towards the correct distance is very slow
compared to other route updates, causing the whole network not noticing a router or link outage
for a long time, and was therefore named counting-to-infinity problem.

A simple solution to the counting-to-infinity problem is known as hold-down timers. When a
node detects a link failure, it reports to its neighboring nodes that an attached network has gone
down. The neighbors immediately start their hold-down timers to ensure that this route will not be
mistakenly reinstated by an advertisement received from another router that has not yet learned

9 Node B will also notify its neighbor A, but for the moment we ignore A because A’s path to D goes via C,

and on, via B. Hence, A will not be directly affected by this situation.

Chapter 1 • Introduction to Computer Networking 69

about this route being unavailable. Until the timer elapses, the router ignores updates regarding
this route. Router accepts and reinstates the invalid route if it receives a new update with a better
metric than its own or the hold-down timer has expired. At that point, the network is marked as
reachable again and the routing table is updated. Typically, the hold-down timer is greater than
the total convergence time, providing time for accurate information to be learned, consolidated,
and propagated through the network by all routers.

Another solution to the counting-to-infinity problem is known as split-horizon routing. The key
idea is that it is never useful to send information about a route back in the direction from which it
came. Therefore, a router never advertises the cost of a destination to its neighbor N, if N is the
next hop to that destination. The split-horizon rule helps prevent two-node routing loops. In the
above example, without split horizons, C continues to inform B that it can get to D, but it does not
say that the path goes through B itself. Because B does not have sufficient intelligence, it picks up
C’s route as an alternative to its failed direct connection, causing a routing loop. Conversely, with
split horizons, C never advertises the cost of reaching D to B, because B is C’s next hop to D.
Although hold-downs should prevent counting-to-infinity and routing loops, split horizon
provides extra algorithm stability.

An improvement of split-horizon routing is known as split horizon with poisoned reverse. Here,
the router advertises its full distance vector to all neighbors. However, if a neighbor is the next
hop to a given destination, then the router replaces its actual distance value with an infinite cost
(meaning “destination unreachable”). In a sense, a route is “poisoned” when a router marks a
route as unreachable (infinite distance). Routers receiving this advertisement assume the
destination network is unreachable, causing them to look for an alternative route or remove this
destination from their routing tables. In the above example, C would always advertise the cost of
reaching D to B as equal to ∞, because B is C’s next hop to D.

In a single-path internetwork (chain-of-links configuration), split horizon with poisoned reverse
has no benefit beyond split horizon. However, in a multipath internetwork, split horizon with
poisoned reverse greatly reduces counting-to-infinity and routing loops. The idea is that increases
in routing metrics generally indicate routing loops. Poisoned reverse updates are then sent to
remove the route and place it in hold-down. Counting-to-infinity can still occur in a multipath
internetwork because routes to networks can be learned from multiple sources. None of the above
methods works well in general cases. The core problem is that when X tells Y that it has a path to
somewhere, Y has no way of knowing whether it itself is on the path.

The most popular practical implementation of link-state routing is Routing Information Protocol
(RIP), reviewed in Section 8.2.1.

1.4.4 IPv4 Address Structure and CIDR

Problems related to this section: Problem 1.31 → Problem 1.33

Section 1.4.1 briefly mentions that the structure of network addresses should be designet to assist
with message routing along the path to the destination. This may not be obvious at first, so let us
consider again the analogy between a router and a crossroads (Figure 1-34). Suppose you are
driving from Philadelphia to Bloomfield, New Jersey (Figure 1-44). If the sign on the road
intersection contained all small towns in all directions, you can imagine that it would be very

Ivan Marsic • Rutgers University

70

difficult to build and use such “forwarding tables.” The intersections would be congested by cars
looking-up the long table and trying to figure out which way to exit out of the intersection. The
problem is solved by listing only the major city names on the signs. Notice that in this case “New
York” represents the entire region around the city, including all small towns in the region. That
is, you do not need to pass through New York to reach Bloomfield, New Jersey. On your way, as
you are approaching New York, at some point there will be another crossroads with a sign for
Bloomfield. Therefore, hierarchical address structure gives a hint about the location that can be
used to simplify routing.

Large computer networks, such as the Internet, encounter a similar problem with building and
using forwarding tables. The solution has been to divide the network address into two parts: a
fixed-length “region” portion (in the most significant bits) and an “intra-region” address. These
two parts combined represent the actual network address. In this model, forwarding is simple:
The router first looks at the “region” part of the destination address; if it sees a packet with the
destination address not in this router’s region, it does a lookup on the “region” portion of the
address and forwards the packet onwards. Conversely, if the destination address is in this router’s
region, it does a lookup on the “intra-region” portion and forwards the packet on. This structuring
of network-layer addresses dramatically reduces the size of the forwarding tables. The data in the
forwarding table for routes outside the router’s region is at most equal to the number of regions in
the entire network, typically much smaller than the total number of possible addresses.

The idea of hierarchical structuring can be extended to a multi-level hierarchy, starting with
individual nodes at level 0 and covering increasingly larger regions at higher levels of the
addressing hierarchy. In such a network, as a packet approaches its destination, it would be

BLOOMFIELD 91 mi.

ELIZABETH 80 mi.

UNION CITY 93 mi.

PATERSON 99 mi.

NEW YORK 96 mi.

KEARNY 89 mi.

NEWARK 85 mi.

CARTERET 75 mi.

LINDEN 80 mi.

EAST ORANGE 88 mi.

New York

Philadelphia

Princeton

Newark

Bayonne

Fort LeeBloomfield

Paterson

East Orange

Irvington

Elizabeth

Linden

Carteret

Union
City

Allentown

New Brunswick

Trenton NEW YORK 96 mi.NEW YORK 96 mi.

compared to

Figure 1-44: Illustration of the problem with the forwarding-table size. Real world road
signs contain only a few destinations (lower right corner) to keep them manageable.

Chapter 1 • Introduction to Computer Networking 71

forwarded more and more precisely until it reaches the destination node. The key issues in
designing such hierarchical structure for network addresses include:

• Should the hierarchy be uniform, for example so that a region at level i+1 contains twice as
many addresses as a region at level i. In other words, what is the best granularity for
quantizing the address space at different levels, and should the hierarchy follow a regular or
irregular pattern?

• Should the hierarchy be statically defined or could it be dynamically adaptive? In other
words, should every organization be placed at the same level regardless of how many
network nodes it manages? If different-size organizations are assigned to different levels,
what happens if an organization outgrows its original level or merges with another
organization? Should organization’s hierarchy (number of levels and nodes per level)
remain forever fixed once it is designed?

The original solution for structuring IPv4 addresses (standardized with RFC-791 in 1981) decided
to follow a uniform pattern for structuring the network addresses and opted for a statically
defined hierarchy. IPv4 addresses were standardized to be 32-bits long, which gives a total of 232
= 4,294,967,296 possible network addresses. At that time, the addresses were grouped into four
classes, each class covering different number of addresses. In computer networks, “regions”
correspond to sub-networks, or simply networks, within an internetwork (Section 1.4.1).
Depending on the class, the first several bits correspond to the “network” identifier and the
remaining bits to the “host” identifier (Figure 1-45). Class A addresses start with a binary “0” and
have the next 7 bits for network number and the last 24 bits for host number. Class B addresses
start with binary “10”, use the next 14 bits for network number, and the last 16 bits for host
number (e.g., Rutgers has a Class B network, with addresses in dotted-decimal notation of the
form 128.6.*). Class C addresses start with binary “110” and have the next 21 bits for network
number, and the last 8 bits for host number. A special class of addresses is Class D, which are
used for IP multicast (described in Section 3.3.2). They start with binary “1110” and use the next
28 bits for the group address. Multicast routing is described later in Section 3.3.2. Addresses that
start with binary “1111” are reserved for experiments.

Ivan Marsic • Rutgers University

72

The router-forwarding task in IPv4 is a bit more complicated than for an unstructured addressing
scheme that requires an exact-match. For every received packet, the router examines its
destination address and determines whether it belongs to the same region as this router’s
addresses. If so, it looks for an exact match; otherwise, it performs a fixed-length lookup
depending on the class.

In the original design of IPv4, address space was partitioned in regions of three sizes: Class A
networks had a large number of addresses, 224 = 16,777,216, Class B networks had 216 = 65,536
addresses each, and Class C networks had only 28 = 128 addresses each. For example, the Rutgers
University IP addresses belong to Class B because the network part starts with bits 10 (Figure
1-37), so the network part of the address is: 10000000 00000110 or 128.6.* in dotted-
decimal notation. The address space has been managed by IETF and organizations requested and
obtained a set of addresses belonging to a class. As the Internet grew, most organizations were
assigned Class B addresses, because their networks were too large for a Class C address, but not
large enough for a Class A address. Unfortunately, large part of the address space went unused.
For example, if an organization had slightly more than 128 hosts and acquired a Class B address,
almost 65,400 addresses went unused and could not be assigned to another organization.

Figure 1-46 lists special IPv4 addresses.

CIDR Scheme for Internet Protocol (IPv4) Addresses

By 1991, it became clear that the 214 = 16,384 Class B addresses would soon run out and a
different approach was needed. It was observed that addresses from the enormous Class C space
were rarely allocated and the solution was proposed to assign new organizations contiguous
subsets of Class C addresses instead of a single Class B address. This allowed for a refined
granularity of address space assignment. In this way, the allocated set of Class C addresses could
be much better matched to the organization needs than with whole Class B sets. This solution
optimizes the common case. The common case is that most organizations require at most a few

Network part

Reserved for future use

Network part Host partClass

0 31

0 Host part

0 317 8

Class A

0 311 15 16

0 311 23 24

0 311

2

2 3

IPv4
old address
structure

1 Host partNetwork partClass B 0

1 Host partNetwork partClass C 1 0

01 Multicast group partClass D 1 1

(a)

(b)

0 311 2 3

11Class E 1 1

8 bits 24 bits

n bits (32 − n) bits

Figure 1-45: (a) Class-based structure of IPv4 addresses (deprecated). (b) The structure of
the individual address classes.

Chapter 1 • Introduction to Computer Networking 73

thousand addresses, and this need could not be met with individual Class C sets, while an entire
Class B represented a too coarse match to the need. A middle-road solution was needed.

Routing protocols that work with aggregated Class C address sets are said to follow Classless
Interdomain Routing or CIDR (pronounced “cider”). CIDR not only solved the problem of
address shortages, but also by aggregating Class C sets into contiguous regions, it reduced the
forwarding table sizes because routers aggregate routes based on IP prefixes in a classless
manner. Instead of having a forwarding-table entry for every individual address, the router now
keeps a single entry for a subset of addresses (see analogy in Figure 1-44).

The CIDR-based addressing works as follows. An organization is assigned a region of the address
space defined by two numbers, A and m. The assigned address region is denoted A/m. A is called
the prefix and it is a 32-bit number (often written in dotted decimal notation) denoting the
address space, while m is called the mask and it is a decimal number between 1 and 32.
Therefore, when a network is assigned A/m, it means that it gets the 2(32 − m) addresses, all sharing
the first m bits of A. For example, the network “192.206.0.0/21” corresponds to the 2(32 − 21) =
2048 addresses in the range from 192.206.0.0 to 192.206.7.255.

SIDEBAR 1.2: Hierarchy without Topological Aggregation

This host

A host on this network

Broadcast on this network

Broadcast on a distant network

Loopback within this network
(most commonly used: 127.0.0.1)

31

31

31

31

0

00000000 00000000 00000000 00000000

0

11111111 11111111 11111111 11111111

31

Anything

0 7 8

01111111

0

Network id 1111.............1111

(length depends on IP address class)

0

000....000 Host identifier

(length depends on IP address class)

Figure 1-46: Special IP version 4 addresses.

Ivan Marsic • Rutgers University

74

♦ There are different ways to organize addresses hierarchically. Internet addresses are
aggregated topologically, so that addresses in the same physical subnetwork share the same
address prefix (or suffix). Another option is to partition the address space by manufacturers of
networking equipment. The addresses are still globally unique, but not aggregated by proximity
(i.e., network topology). An example is the Ethernet link-layer address, described in Section
1.5.2. Each Ethernet attachment adaptor has assigned a globally unique address, which has two
parts: a part representing the manufacturer’s code, and a part for the adaptor number. The
manufacturer code is assigned by a global authority, and the adaptor number is assigned by the
manufacturer. Obviously, each Ethernet adaptor on a given subnetwork may be from a
different manufacturer, and noncontiguous subnetworks may have adaptors from the same
manufacturer. However, this type of hierarchy is not suitable for routing purposes because it
does not scale to networks with tens of millions of hosts, such as the Internet. Ethernet
addresses cannot be aggregated in routing tables, and large-scale networks cannot use Ethernet
addresses to identify destinations. Equally important, Ethernet addresses cannot be summarized
and exchanged by the routers participating in the routing protocols. Therefore, topological
aggregation of network addresses is the fundamental reason for the scalability of the Internet’s
network layer. (See more discussion in Section 8.3.1.)

Chapter 1 • Introduction to Computer Networking 75

Suppose for the sake of illustration that you are administering your organization’s network as
shown in Figure 1-35, reproduced here in Figure 1-47(a). Assume that you know that this
network will remain fixed in size, and your task is to acquire a set of network addresses and
assign them optimally to the hosts. Your first task is to determine how many addresses to request.
As seen in Section 1.4.1, both routers R1 and R2 have 3 network interfaces each. Because your
internetwork has a total of 13 interfaces (3 + 3 for routers, 2 for host B and 5 × 1 for other hosts),
you need 13 unique IP addresses. However, you would like to structure your organization’s
network hierarchically, so that each subnet is in its own address space, as shown in Figure
1-47(b). Subnets 3 and 4 have only two interfaces each, so they need 2 addresses each. Their
assignments will have the mask m = 31. You can group these two in a single set with m = 30.
Subnets 1, 2, and 5 have three interfaces each, so you need at least 2 bits (4 addresses) for each
and their masks will equal m = 30. Therefore, you need 4 × 4 addresses (of which three will be
unused) and your address region will be of the form w.x.y.z/28, which gives you 2(32 − 28) = 24 = 16
addresses. Let us assume that the actual address subspace assignment that you acquired is

R1

R2

E F

A

B

C

D

Subnet-2

Subnet-1

Subnet-5
Subnet-4

Subnet-3

(a)

(b) (c)

R1

R2

A

B

C

D

E F

Subnets-3&4:
w.x.y.z+8/30

Organization’s address subspace:
w.x.y.z/28

Subnet-3:
w.x.y.z+8/31

Subnet-4:
w.x.y.z+10/31

Subnet-2:
w.x.y.z+4/30

Subnet-1:
w.x.y.z/30

Subnet-5:
w.x.y.z+12/30

Subnet-1:
204.6.96.176/30

Subnet-2:
204.6.96.180/30

Subnet-4:
204.6.96.186/31

Subnet-3:

204.6.96.184/31

Subnet-5:
204.6.96.188/30

204.6.94.184

204.6.94.177 20
4.

6.
94

.1
81

204.6.94.176

204.6.94.178

204.6.94.187

204.6.94.180

204.6.94.186

204.6.94.182

204.6.94.185

204.6.94.188
204.6.94.189

204.6.94.190

(b) (c)

R1

R2

A

B

C

D

E F

Subnets-3&4:
w.x.y.z+8/30

Organization’s address subspace:
w.x.y.z/28

Subnet-3:
w.x.y.z+8/31

Subnet-4:
w.x.y.z+10/31

Subnet-2:
w.x.y.z+4/30

Subnet-1:
w.x.y.z/30

Subnet-5:
w.x.y.z+12/30

Subnet-1:
204.6.96.176/30

Subnet-2:
204.6.96.180/30

Subnet-4:
204.6.96.186/31

Subnet-3:

204.6.96.184/31

Subnet-5:
204.6.96.188/30

204.6.94.184

204.6.94.177 20
4.

6.
94

.1
81

204.6.94.176

204.6.94.178

204.6.94.187

204.6.94.180

204.6.94.186

204.6.94.182

204.6.94.185

204.6.94.188
204.6.94.189

204.6.94.190

Figure 1-47: (a) Example internetwork with five physical networks reproduced from Figure
1-35 above. (b) Desired hierarchical address assignment under the CIDR scheme. (c)
Example of an actual address assignment.

Ivan Marsic • Rutgers University

76

204.6.94.176/28. Then you could assign the individual addresses to the network interfaces as
shown in Table 1-3 as well as in Figure 1-47(c).

1.4.5 Autonomous Systems and Path Vector Routing

Problems related to this section: Problem 1.35 → ?

Figure 1-35 presents a naïve view of the Internet, where many hosts are mutually
connected via intermediary nodes (routers or switches) that live inside the “network
cloud.” This would imply that the cloud is managed by a single administrative
organization and all nodes cooperate to provide the best service to the consumers’ hosts.

In reality the Internet is composed of many independent networks (or, “clouds”), each managed
by a different organization driven by its own commercial or
political interests. (The reader may also wish to refer to Figure 1-3
to get a sense of complexity of the Internet.) Each individual
administrative domain is known as an autonomous system (AS).
Given their divergent commercial interests, these administrative
domains are more likely to compete (for profits) than to
collaborate in harmony with each other.

Both distance vector and link state routing protocols have been used for interior routing (or,
internal routing). That is, they have been used inside individual administrative domains or
autonomous systems. However, both protocols become ineffective in large networks composed of
many domains (autonomous systems). The scalability issues of both protocols were discussed
earlier. In addition, they do not provide mechanisms for an administrative entity to represent its
economic interests as part of the routing protocol. Economic interests can be described using
logical rules that express the routing policies to reflect the economic interests. For this purpose,
we need exterior routing (or, external routing) protocols for routing between different
autonomous systems.

We first review the challenges posed by interacting autonomous domains and then present the
path vector routing algorithm that can be used to address some of those issues.

Table 1-3: CIDR hierarchical address assignment for the internetwork in Figure 1-47.

Subnet Subnet mask Network prefix Interface addresses

1 204.6.94.176/30 11001100 00000110 01011110 101100--

A: 204.6.94.176
R1-1: 204.6.94.177
B-1: 204.6.94.178

2 204.6.94.180/30 11001100 00000110 01011110 101101--

C: 204.6.94.180
R1-2: 204.6.94.181
D: 204.6.94.182

3 204.6.94.184/31 11001100 00000110 01011110 1011100-
R1-3: 204.6.94.184
R2-1: 204.6.94.185

4 204.6.94.186/31 11001100 00000110 01011110 1011101-
R2-2: 204.6.94.186
B-2: 204.6.94.187

5 204.6.94.188/30 11001100 00000110 01011110 101111--

R2-3: 204.6.94.188
E: 204.6.94.189
F: 204.6.94.190

Chapter 1 • Introduction to Computer Networking 77

Autonomous Systems: Peering Versus Transit

An Autonomous System (AS) can independently decide whom to exchange traffic with on the
Internet, and it is not dependent upon a third party for access. Networks of Internet Service
Providers (ISPs), hosting providers, telecommunications companies, multinational corporations,
schools, hospitals, and even individuals can be Autonomous Systems; all one needs is a unique
Autonomous System Number (ASN) and a block of IP addresses. A central authority
(http://iana.org/) assigns ASNs and assures their uniqueness. At the time of this writing (2010), the
Internet consists of over 25,000 Autonomous Systems. Most organizations and individuals do not
interconnect autonomously to other networks, but connect via an ISP. One could say that an end-
user is “buying transit” from their ISP.

Figure 1-48 illustrates an example of several Autonomous Systems. In order to get traffic from
one end-user to another end-user, ASs need to have an interconnection mechanism. These
interconnections can be either direct between two networks or indirect via one or more
intermediary networks that agree to transport the traffic. Most AS connections are indirect, since
it is nearly impossible to interconnect directly with all networks on the globe. In order to make it
from one end of the world to another, the traffic will often be transferred through several indirect
interconnections to reach the end-user. The economic agreements that allow ASs to interconnect
directly and indirectly are known as “peering” or “transit,” and they are the two mechanisms that
underlie the interconnection of networks that form the Internet.

A peering agreement (or, swap contract) is a voluntary interconnection of two or more
autonomous systems for exchanging traffic between the customers of each AS. This is often done
so that neither party pays the other for the exchanged traffic; rather, each derives revenue from its
own customers. Therefore, it is also referred to as “settlement-free peering.”

In a transit agreement (or, pay contract), one autonomous system agrees to carry the traffic that
flows between another autonomous system and all other ASs. Since no network connects directly
to all other networks, a network that provides transit will deliver some of the traffic indirectly via
one or more other transit networks. A transit provider’s routers will announce to other networks
that they can carry traffic to the network that has bought transit. The transit provider receives a
“transit fee” for the service.

The transit fee is based on a reservation made up-front for a certain speed of access (in Mbps) or
the amount of bandwidth used. Traffic from (upstream) and to (downstream) the network is
included in the transit fee; when one buys 10Mbps/month from a transit provider, this includes 10
up and 10 down. The traffic can either be limited to the amount reserved, or the price can be
calculated afterward (often leaving the top five percent out of the calculation to correct for
aberrations). Going over a reservation may lead to a penalty.

An economic agreement between ASs is implemented through (i) a physical interconnection of
their networks, and (ii) an exchange of routing information through a common routing protocol.
This section reviews the problems posed by autonomous administrative entities and requirements
for a routing protocol between Autonomous Systems. Section 8.2.3 describes the protocol used in
the current Internet, called Border Gateway Protocol (BGP), which meets these requirements.

The Internet is intended to provide global reachability (or, end-to-end reachability), meaning that
any Internet user can reach any other Internet user as if they were on the same network. To be

Ivan Marsic • Rutgers University

78

able to reach any other network on the Internet, Autonomous System operators work with each
other in following ways:

• Sell transit (or Internet access) service to that AS (“transit provider” sells transit service to
a “transit customer”),

• Peer directly with that AS, or with an AS who sells transit service to that AS, or

• Pay another AS for transit service, where that “transit provider” must in turn also sell, peer,
or pay for access.

Therefore, any AS connected to the Internet must either pay another AS for transit, or peer with
every other AS that also does not purchase transit.

Consider the example in Figure 1-48. Tier-1 Internet Service Providers (ISPα and ISPβ) have
global reachability information and can see all other networks and, because of this, their
forwarding tables do not have default entries. They are said to be default-free. At present (2010)
there are about 10 Tier-1 ISPs in the world. The different types of ASs (mainly by their size) lead
to different business relationships between them. ISPs enter peering agreements mostly with other
ISPs of the similar size (reciprocal agreements). Therefore, a Tier-1 ISP would form a peering
agreement with other Tier-1 ISPs, and sell transit to lower tiers ISPs. Similarly, a Tier-2 (regional

ISP β
ISP α

ISP δ

γ’s customers

η’s customers

ϕ’s customers

Noodle.comMacrospot.com

ISP ε

ISP χ

ISP φ

ISP ϕ
ISP ηISP γ

Tier-1
Tier-1

Tier-2

Tier-2
Tier-2

Tier-3

Tier-3 Tier-3
Tier-3

ISP β
ISP α

ISP δ

γ’s customers

η’s customers

ϕ’s customers

Noodle.comMacrospot.com

ISP ε

ISP χ

ISP φ

ISP ϕ
ISP ηISP γ

Tier-1
Tier-1

Tier-2

Tier-2
Tier-2

Tier-3

Tier-3 Tier-3
Tier-3

Figure 1-48: An example collection of Autonomous Systems with physical interconnections.

Chapter 1 • Introduction to Computer Networking 79

or countrywide) ISP would form a peering agreement with other Tier-2 ISPs, pay for transit
service to a Tier-1 ISP, and sell transit to lower Tier-3 ISPs (local). As long as the traffic ratio of
the concerned ASs is not highly asymmetrical (e.g., up to 4-to-1 is a commonly accepted ratio),
there is usually no financial settlement for peering.

Transit relationships are preferable because they generate revenue, whereas peering relationships
usually do not. However, peering can offer reduced costs for transit services and save money for
the peering parties. Other less tangible incentives (“mutual benefit”) include:

• Increased redundancy (by reducing dependence on one or more transit providers) and
improved performance (attempting to bypass potential bottlenecks with a “direct” path),

• Increased capacity for extremely large amounts of traffic (distributing traffic across many
networks) and ease of requesting for emergency aid (from friendly peers).

Figure 1-49 shows reasonable business relationships between the ISPs in Figure 1-48. ISPφ
cannot peer with another Tier-3 ISP because it has a single physical interconnection to a Tier-2
ISPδ. An Autonomous System that has only a single connection to one other AS is called stub
AS. The two large corporations at the top of Figure 1-49 each have connections to more than one
other AS but they refuse to carry transit traffic; such an AS is called multihomed AS. ISPs

ISP β
ISP α

ISP δ

γ’s customers

η’s customers

ϕ’s customers

Noodle.comMacrospot.com

ISP ε

ISP χ

ISP φ

ISP ϕ
ISP ηISP γ

Tier-1
Tier-1

Tier-2

Tier-2
Tier-2

Tier-3

Tier-3 Tier-3
Tier-3

$

$

$

$

$

$

$

$$

$
$

$

$

$

$
Transit
Peering

Key:

ISP β
ISP α

ISP δ

γ’s customers

η’s customers

ϕ’s customers

Noodle.comMacrospot.com

ISP ε

ISP χ

ISP φ

ISP ϕ
ISP ηISP γ

Tier-1
Tier-1

Tier-2

Tier-2
Tier-2

Tier-3

Tier-3 Tier-3
Tier-3

$

$

$

$

$

$

$

$$

$
$

$

$

$

$
Transit
Peering

Key:
$

Transit
Peering

Key:

Figure 1-49: Feasible business relationships for the example ASs in Figure 1-48.

Ivan Marsic • Rutgers University

80

usually have connections to more than one other AS and they are designed to carry both transit
and local traffic; such an AS is called transit AS.

When two providers form a peering link, the traffic flowing across that link incurs a cost on the
network it enters. Such a cost may be felt at the time of network provisioning: in order to meet the
negotiated quantity of traffic entering through a peering link, a provider may need to increase its
network capacity. A network provider may also see a cost for entering traffic on a faster
timescale; when the amount of incoming traffic increases, congestion on the network increases,
and this leads to increased operating and network management costs. For this reason, each AS
needs to decide carefully what kind of transit traffic it will support.

Each AS is in one of three types of business relationships with the ASs to which is has a direct
physical interconnection: transit provider, transit customer, or peer. To its paying customers, the
AS wants to provide unlimited transit service. However, to its provider(s) and peers it probably
wishes to provide a selective transit service. Figure 1-50 gives examples of how conflicting
interests of different parties can be resolved. The guiding principle is that ASs will want to avoid
highly asymmetrical relationships without reciprocity. In Figure 1-50(a), both ASη and ASϕ
benefit from peering because it helps them to provide global reachability to their own customers.
In Figure 1-50(b), ASγ and ASϕ benefit from using transit service of ASη (with whom both of

$ $

AS η AS ϕ

$

AS γ

AS δ AS ε

$$

η’s
customers

γ’s
customers

$

ϕ’s
customers

$

AS γ

γ’s
customers

$ $

AS ϕ

$ $

AS η AS ϕ

$

AS γ

AS η

$ $

AS η AS ϕ

$

AS γ

AS δ AS ε

$
$

η’s
customers

η’s
customers

$

$ $

AS η AS ϕ

$

AS γ

AS δ AS ε

$
$

η’s
customers

γ’s
customers

$

η’s
customers

ϕ’s
customers

γ’s
customers

ϕ’s
customers

ϕ’s
customers

ϕ’s
customers

γ’s
customers

(a)

(b) (c)

(d) (e)

Figure 1-50: Providing selective transit service to make or save money.

Chapter 1 • Introduction to Computer Networking 81

them are peers), but ASη may lose money in this arrangement (because of degraded service to its
own customers) without gaining any benefit. Therefore, ASη will not carry transit traffic between
its peers. An appropriate solution is presented in Figure 1-50(c), where ASγ and ASϕ use their
transit providers (ASδ and ASε, respectively), to carry their mutual transit traffic. ASδ and ASε
are peers and are happy to provide transit service to their transit customers (ASγ and ASϕ).
Figure 1-50(d) shows a scenario where higher-tier ASδ uses its transit customer ASη to gain
reachability of ASϕ. Again, ASη does not benefit from this arrangement, because it pays ASδ for
transit and does not expect ASδ in return to use its transit service for free. The appropriate
solution is shown in Figure 1-50(e) (which is essentially the same as Figure 1-50(c)).

To implement these economic decisions and prevent unfavorable arrangements, ASs design and
enforce routing policies. An AS that wants avoid providing transit between two neighboring ASs,
simply does not advertise to either neighbor that the other can be reached via this AS. The
neighbors will not be able to “see” each other via this AS, but via some other ASs. Routing
policies for selective transit can be summarized as:

• To its transit customers, the AS should make visible (or, reachable) all destinations that it
knows of. That is, all routing advertisements received by this AS should be passed on to
own transit customers;

• To its peers, the AS should make visible only its own transit customers, but not its other
peers or its transit provider(s), to avoid providing unrecompensed transit;

• To its transit providers, the AS should make visible only its own transit customers, but
not its peers or its other transit providers, to avoid providing unrecompensed transit.

In the example in Figure 1-49, Tier-1 ISPs (ASα and ASβ) can see all the networks because they
peer with one another and all other ASs buy transit from them. ASγ can see ASη and its
customers directly, but not ASϕ through ASη. ASδ can see ASϕ through its peer ASε, but not via
its transit customer ASη. Traffic from ASϕ to ASφ will go trough ASε (and its peer ASδ), but not
through ASη.

To illustrate how routers in these ASs implement the above economic policies, let us imagine
example routers as in Figure 1-51. Suppose that a router in ASφ sends an update message
advertising the destination prefix 128.34.10.0/24. The message includes the routing path
vector describing how to reach the given destination. The path vector starts with a single AS
number {ASφ}. A border router (router K) in ASδ receives this message and disseminates it to
other routers in ASδ. Routers in ASδ prepend their own AS number to the message path vector to
obtain {ASδ, ASφ} and redistribute the message to the adjacent ASs. Because ASη does not have
economic incentive to advertise a path to ASφ to its peer ASϕ, it sends an update message with
path vector containing only the information about ASη’s customers. On the other hand, ASε has
economic incentive to advertise global reachability to its own transit customers. Therefore,
routers in ASε prepend their own AS number to the routing path vector from ASδ to obtain {ASε,
ASδ, ASφ} and redistribute the update message to ASϕ. Routers in ASϕ update their routing and
forwarding tables based on the received path vector. Finally, when a router in ASϕ needs to send
a data packet to a destination in the subnet 128.34.10.0/24 (in ASφ) it sends the packet first
to the next hop on the path to ASφ, which is ASε.

Ivan Marsic • Rutgers University

82

Path Vector Routing

Path vector routing is used for inter-domain or exterior routing (routing between different
Autonomous Systems). The path vector algorithm is somewhat similar to the distance vector
algorithm (Section 1.4.3). Each border (or edge) router in a given AS advertises the destinations it
can reach to its neighboring routers (in different ASs). However, instead of advertising the
networks in terms of a destination address and the distance to that destination, the networks are
advertised as destination addresses with path descriptions to reach those destinations. A route is
defined as a pairing between a destination and the attributes of the path to that destination, thus
the name, path vector routing. The path vector contains a complete path as a sequence of ASs to
reach the given destination. The path vector is carried in a special path attribute that records the
sequence of ASs through which the reachability message has passed. The path that contains the
smallest number of ASs becomes the preferred path to reach the destination.

At predetermined times, each node advertises its own network address and a copy of its path
vector down every attached link to its immediate neighbors. An example is shown in Figure 1-51,
where a router in ASφ sends a scheduled update message. After a router receives path vectors
from its neighbors, it performs path selection by merging the information received from its

η’s customers
γ’s customers ϕ’s customers

AS β

AS α

AS δ
AS ε

AS χ

AS φ

AS ϕAS ηAS γ

RR

LL
KK

NN
PPOO

QQ

HH

JJ

II

MM

AA

FF

BB

GG

DD

CC

EE

{AS{ASφφ}}

{A
S

{A
Sδδ, A

S
, A

Sφφ}}

{AS
{ASεε, AS

, ASδδ, AS
, ASφφ}}

{{CustCustηη}}

{AS{ASδδ, AS, ASφφ}}

{A
S

{A
Sδδ,

 A
S

, A
Sφφ

}}

Noodle.comMacrospot.com

SS

{A
S

{A
Sδδ,

AS
, A

Sφφ}}

η’s customers
γ’s customers ϕ’s customers

AS β

AS α

AS δ
AS ε

AS χ

AS φ

AS ϕAS ηAS γ

RR

LL
KK

NN
PPOO

QQ

HH

JJ

II

MM

AA

FF

BB

GG

DD

CC

EE

{AS{ASφφ}}
{AS{ASφφ}}

{A
S

{A
Sδδ, A

S
, A

Sφφ}}

{A
S

{A
Sδδ, A

S
, A

Sφφ}}

{AS
{ASεε, AS

, ASδδ, AS
, ASφφ}}

{AS
{ASεε, AS

, ASδδ, AS
, ASφφ}}

{{CustCustηη}}{{CustCustηη}}

{AS{ASδδ, AS, ASφφ}}
{AS{ASδδ, AS, ASφφ}}

{A
S

{A
Sδδ,

 A
S

, A
Sφφ

}}

{A
S

{A
Sδδ,

 A
S

, A
Sφφ

}}

Noodle.comMacrospot.com

SS

{A
S

{A
Sδδ,

AS
, A

Sφφ}}

{A
S

{A
Sδδ,

AS
, A

Sφφ}}

Figure 1-51: Example of routers within the ASs in Figure 1-48. Also shown is how a routing
update message from ASφ propagates to ASϕ.

Chapter 1 • Introduction to Computer Networking 83

neighbors with that already in its existing path vector. The path selection is based on some kind of
path metric, similar to distance vector routing algorithm (Section 1.4.3). Again, Eq. (1.14) is
applied to compute the “shortest” path. Here is an example:

Example 1.5 Path Vector Routing Algorithm

Consider the network topology in Figure 1-41(a) (reproduced below) and assume that it uses the path
vector routing algorithm. Instead of router addresses, the path vector works with Autonomous System
Numbers (ASNs). Starting from the initial state for all nodes, show the first few steps until the routing
algorithm reaches a stable state.

The solution is similar to that for the distributed distance vector routing algorithm (Example 1.4). For
AS α, the initial routing table is as in the leftmost table below. The notation d | χ, ξ, ζ symbolizes
that the path from the AS under consideration to AS ζ is d units long, and χ and ξ are the ASs along
the path to ζ. If the path metric simply counts the number of hops, then the path-vector packets do not
need to carry the distance d, because it can be determined simply by counting the ASs along the path.

α β γ

α

β

γ

10 | β0 | α 1 | γ

∞ |  ∞ |  ∞ | 

∞ |  ∞ |  ∞ | 

F
ro

m

Path to

10 | α 0 | β 1 | γ 1 | δ

Received Path Vectors (1st exchange)

From β

Routing table at AS α: Initial

7

1

1

10

1
α β γ δ

1 | γ 1 | β 0 | γ 7 | δ
From γ

α β γ δ

α β γ δ

α

β

γ

F
ro

m
Path to

2 | γ, β 1 | γ

10 | α 0 | β 1 | γ

1 | β 0 | γ1 | α

0 | α 8 | γ, δ

1 | δ

7 | δ

Routing table at node α: After 1st exchange:

α

β

γ

δ

Again, AS α only keeps the path vectors of its immediate neighbors, β and γ, and not that of any other
ASs, such as δ. Initially, α may not even know that δ exists. Next, each AS advertises its path vector to
its immediate neighbors, and α receives their path vectors. When an AS receives an updated path
vector from its neighbor, the AS overwrites the neighbor’s old path vector with the new one. In
addition, A re-computes its own path vector according to Eq. (1.14), as follows:

{ } { } 211,010min)(),(),(),(min)(=++=++= βγγαββαβ βα DcDcD  path: 2 | γ, β

{ } { } 101,110min)(),(),(),(min)(=++=++= γγαγβαγ γβα DcDcD  path: 1 | γ

{ } { } 871,110min)(),(),(),(min)(=++=++= δγαδβαδ γβα DcDcD  path: 8 | γ, δ

The new values for α’s path vector are shown in the above table at the right. Notice that α’s new path
to β is via γ and the corresponding table entry is 2 | γ, β.

Similar computations will take place on all other nodes and the whole process is illustrated in [Figure
XYZ]. The end result is as shown in [Figure XYZ] as column entitled “After 1st exchange.” Because
for every node the path vector computed after the first exchange is different from the previous one,
each node advertises its path new vector to its immediate neighbors. The cycle repeats for every node
until there is no difference between the new and the previous path vector. As shown in [Figure XYZ],
this happens after three exchanges.

Ivan Marsic • Rutgers University

84

To implement routing between Autonomous Systems, each Autonomous System must have one
or more border routers that are connected to networks in two or more ASs (its own network and a
neighboring AS network). Such a node is called a speaker node or gateway router. For
example, in Figure 1-51 the speaker nodes in ASα are routers A, B, F, and G; in ASβ the speaker
nodes are routers H and J; and in ASδ the speakers are routers K and N. A speaker node creates a
routing table and advertises it to adjoining speaker nodes in the neighboring Autonomous
Systems. The idea is the same as with distance vector routing, except that only speaker nodes in
each Autonomous System can communicate with routers in other Autonomous Systems (i.e.,
speaker nodes in those ASs). The speaker node advertises the path, not the metric of the links, in
its AS or other ASs. In other words, there are no weights attached to the links in a path vector, but
there is an overall cost associated with each path.

Integrating Inter-Domain and Intra-Domain Routing

Administrative entities that manage different Autonomous Systems have different concerns for
routing messages within their own Autonomous System as opposed to routing messages to other
Autonomous Systems or providing transit service for them. Within an Autonomous System, the
key concern is how to route data packets from the origin to the destination in the most efficient
manner. For this purpose, intra-domain or interior routing protocols, such as those based on
distance-vector routing (Section 1.4.3) or link-state routing (Section 1.4.2). These protocols are
known as Interior Gateway Protocols (IGPs). Unlike this, the key concern of any given
Autonomous System is how to route data packets from the origin to the destination in the manner
that is most profitable for this AS. These protocols are known as Exterior Gateway Protocols10
and are based on path-vector routing, described above. This duality in routing goals and solutions
means that each border router (or, speaker node) will maintain two different routing tables: one
obtained by the interior routing protocol and the other by the exterior routing protocol.

A key problem is how the speaker node should integrate its dual routing tables into a meaningful
forwarding table. The speaker that first receives path information about a destination in another
AS simply adds a new entry into its forwarding table. However, the problem is how to exchange
the routing information with all other routers within this AS and achieve a consistent picture of
the Internet viewed by all of the routers within this ASs. The goal is that, for a given data packet,
each router in this AS should make the same forwarding decision (as if each had access to the
routing tables of all the speaker routers within this AS). Each speaker node must exchange its
routing information with all other routers within its own AS (known as internal peering). This
includes both other speakers in the same AS (if there are any), as well as the remaining non-
speaker routers. For example, in Figure 1-51 speaker K in ASδ needs to exchange routing
information with speaker N (and vice versa), as well as with non-speaker routers L and M. Notice
again that only speaker routers run both IGP and Exterior Gateway Protocol (and each maintains
two routing tables); non-speaker routers run only IGP and maintain a single routing table.

The forwarding table contains pairs destination, output-port for all possible destinations. The
output port corresponds to the IP address of the next hop router to which the packet will be
forwarded. Recall that each router performs the longest CIDR prefix match on each packet’s

10 In the literature, the acronym EGP is not used for a generic Exterior Gateway Protocol, because EGP

refers to an actual protocol, described in RFC-904, now obsolete, that preceded BGP (Section 8.2.3).

Chapter 1 • Introduction to Computer Networking 85

destination IP address (Section 1.4.4). All forwarding tables must have a default entry for
addresses that cannot be matched, and only routers in Tier-1 ISPs are default-free because they
know prefixes to all networks in the global Internet.

Consider again the scenario shown in Figure 1-51 where ASφ advertises the destination prefix
128.34.10.0/24. If the AS has a single speaker node leading outside the AS, then it is easy
to form the forwarding table. For example, in Figure 1-51 ASη has a single speaker router R that
connects it to other ASs. If non-speaker router S in ASη receives a packet destined to ASφ, the
packet will be forwarded along the shortest path (determined by the IGP protocol running in
ASη) to the speaker S, which will then forward it to N in ASδ. Consider now a different situation
where router B in ASα receives a packet destined to ASφ. B should clearly forward the packet to
another speaker node, but which one? As seen in Figure 1-51, both A or F will learn about ASφ
but via different routes. To solve the problem, when a speaker node learns about a destination
outside its own AS, it must disseminate this information to all routers within its own AS. This
dissemination is handled by the AS’s interior gateway protocol (IGP).

When a router learns from an IGP advertisement about a destination outside its own AS, it needs
to add the new destination into its forwarding table. This applies to both non-speaker routers and
speaker routers that received this IGP advertisement from the fellow speaker router (within the
same AS), which first received the advertisement via exterior gateway protocol from a different
AS. One approach that is often employed in practice is known as hot-potato routing. In hot-
potato routing, the Autonomous System gets rid of the packet (the “hot potato”) as quickly as
possible (more precisely, as inexpensively as possible). This is achieved by having the router send
the packet to the speaker node that has the lowest router-to-speaker cost among all speakers with
a path to the destination. Figure 1-52 summarizes the steps taken at a router for adding the new
entry to its forwarding table. In Figure 1-51, when B receives a packet for ASφ it will send it to A
or F based on the lowest cost within ASα only, rather than overall lowest cost to the destination.

The most popular practical implementation of path vector routing is Border Gateway Protocol
(BGP), currently in version 4 (BGP4). Section 8.2.3 describes how BGP4 meets the above
requirements.

Learn from IGP
protocol that

destination x external
to own AS is reachable
via multiple speakers.

Use info from IGP
routing tables to

determine least-cost
paths to each of the

speakers.

Hot-potato routing:
Choose the speaker
with the lowest least-

cost.

Determine the interface
O that leads to the
least-cost speaker.

Enter (x,O) in
forwarding table

Figure 1-52: Integrating an external destination to a router’s forwarding table.

Ivan Marsic • Rutgers University

86

1.5 Link-Layer Protocols and Technologies

In packet-switched networks, blocks of data bits (generally called packets)
are exchanged between the communicating nodes. That is, the nodes send
packets rather than continuous bit-streams. At the link layer, packets are
called frames. The key function of the link layer is transferring frames from
one node to an adjacent node over a communication link. This task is
complex because there are a great variety of communication link types. The
key characteristics of a link include data rate, duplexity (half or full
duplex), and multiplicity of the medium (i.e., point-to-point or shared broadcast). The link-layer
services include:

• Framing is encapsulating a network-layer datagram into a link-layer frame by adding the header
and the trailer. It is particularly challenging for a receiving node to recognize where an arriving
frame begins and ends. For this purpose, special control bit-patterns are used to identify the start
and end of a frame. On both endpoints of the link, receivers are continuously hunting for the start-
of-frame bit-pattern to synchronize on the start of the frame. Having special control codes, in
turn, creates the problem of data transparency (the need to avoid confusion between control
codes and data) and requires data stuffing (described earlier in Figure 1-14).

• Medium access control (MAC) allows sharing a broadcast medium (Section 1.3.3) MAC
addresses are used in frame headers to identify the sender and the receiver of the frame. MAC
addresses are different from IP addresses and require a special mechanism for translation between
different address types (Section 8.3.1). Point-to-point protocols do not need MAC.

• Reliable delivery between adjacent nodes includes error detection and error recovery. The
techniques for error recovery include forward error correction code (Section 1.2) and
retransmission by ARQ protocols (Section 1.3).

• Connection liveness is the ability to detect a link outage that makes impossible to transfer data
over the link. For example, a wire could be cut, or a metal barrier could disrupt the wireless link.
The link-layer protocol should signal this error condition to the network layer.

• Flow control is pacing between adjacent sending and receiving nodes to avoid overflowing the
receiving node with messages at a rate it cannot process. A link-layer receiver is expected to be
able to receive frames at the full datarate of the underlying physical layer. However, a higher-
layer receiver may not be able receive packets at this full datarate. It is usually left up to the
higher-layer receiver to throttle the higher-layer sender. (An example for the TCP protocol will be
seen in Section 2.1.3.) Sometimes the link layer may also participate in flow control. A simple
way of exerting backpressure on the upper-layer protocol is shown in Listing 1-1 (Section 1.1.4)
at the start of the method send(), where an exception is thrown if the buffer for storing the
unacknowledged packets is full.

There are two types of communication links: (1) point-to-point link with one sender and one
receiver on the link, and no medium access control (MAC) or explicit MAC addressing; and, (2)

Layer 2:
Network

Layer 1:
Link

Layer 3:

End-to-End

PPP, IEEE 802. ∗
(Ethernet, Wi-Fi, …)
PPP, IEEE 802. ∗

(Ethernet, Wi-Fi, …)

Chapter 1 • Introduction to Computer Networking 87

broadcast link over a shared wire or air medium. Point-to-point link is easier to work with than a
broadcast link because broadcast requires coordination of many stations for accessing the
medium. The basics of medium access control are already described in Section Section 1.3.3 and
more will be covered later in this section.

Because broadcast links are so complex, it is common to subdivide the link layer of the protocol
stack into three sublayers (Figure 1-53): logical-link-control (LLC) sublayer, medium access
control (MAC) sublayer, and physical (PHY) sublayer. In the OSI reference model (Section
1.1.4), Layer 2 is subdivided into two sublayers: LLC and MAC sublayer. The network layer may
directly use the services of a MAC sublayer (Figure 1-53(b)), or it may interact with a logical-
link-control (LLC) sublayer (Figure 1-53(a)). We will see examples of both approaches later in
this section. The IP protocol (Section 1.4.1) usually directly interacts with a MAC sublayer.

IEEE specified the 802.2 standard for LLC, which is the common standard for all broadcast links
specified by the IEEE Working Group 802, such as Ethernet (Section 1.5.2) and Wi-Fi (Section
1.5.3) broadcast links. 802.2 LLC hides the differences between various kinds of IEEE 802 links
by providing a single frame format and service interface to the network layer. 802.2 LLC also
provides options for reliable delivery and flow control. Figure 1-54 shows the LLC packet format.

Network layer / User

Link
layer

Logical link control
(LLC) sublayer

Medium access control
(MAC) sublayer

Physical
(PHY) sublayer

(a)

Network layer / User

Link
layer

Logical link control
(LLC) sublayer

Medium access control
(MAC) sublayer

Physical
(PHY) sublayer

(a)

Medium access control
(MAC) sublayer

Physical
(PHY) sublayer

Network layer / User

Link
layer

(b)

Medium access control
(MAC) sublayer

Physical
(PHY) sublayer

Network layer / User

Link
layer

(b)

Figure 1-53: Sublayers of the link layer for broadcast communication links.

LLC controlSSAP address

bytes: 1 1 1 or 2 variable

DSAP address Data

I/G DSAP value C/R SSAP value

bits: 1 7 1 7

LLC address fields
DSAP = Destination service access point
SSAP = Source service access point

I/G = Individual/Group
C/R = Command/Response

Figure 1-54: Packet format for Logical Link Control (LLC) protocol.

Ivan Marsic • Rutgers University

88

The two address fields specify the destination and source users of LLC, where the “user” is
usually an upper-layer protocol, such as IP (Figure 1-53). The LLC user addresses are referred to
as “service access points” (SAPs), which is the OSI terminology for the user of a protocol layer.
The DSAP address field identifies one or more destination users for which the LLC packet data is
intended. This field corresponds to the receivingProtocol field in Listing 1-1. The SSAP
address field identifies the upper-layer protocol that sent the data.

Section 1.5.1 reviews a link-layer protocol for point-to-point links. Sections 1.5.2 and 1.5.3
review link-layer protocol for broadcast links: Ethernet for wire broadcast links and Wi-Fi for
wireless broadcast links. Within a single building, broadcast local-area networks such as Ethernet
or Wi-Fi are commonly used for interconnection. However, most of the wide-area (long distance)
network infrastructure is built up from point-to-point leased lines.

1.5.1 Point-to-Point Protocol (PPP)

Problems related to this section: Problem 1.40

Figure 1-55 illustrates two typical scenarios where point-to-point links are used. The first is for
telephone dialup access, where a customer’s PC calls up an Internet service provider’s (ISP)
router and then acts as an Internet host. When connected at a distance, each endpoint needs to be
fitted with a modem to convert analog communications signals into a digital data stream. Figure
1-55 shows modems as external to emphasize their role, but nowadays computers have built-in
modems. Another frequent scenario for point-to-point links is connecting two distant routers that
belong to the same or different ISPs (right-hand side of Figure 1-55). Two most popular point-to-
point link-layer protocols are PPP (point-to-point protocol), which is byte-oriented, viewing each
frame as a collection of bytes; and HDLC (high-level data link control), which is bit-oriented.
PPP, although derived from HDLC, is simpler and includes only a subset of HDLC functionality.

Modem

PPP
over dialup telephone line

Customer’s home

Modems Router

Internet provider’s premises

PPP over
fiber optic link

Router

PC

Figure 1-55: Point-to-point protocol (PPP) provides link-layer connectivity between a pair
of network nodes over many types of physical networks.

Visit http://en.wikipedia.org/wiki/HDLC for more details on High-Level Data Link Control (HDLC)Visit http://en.wikipedia.org/wiki/HDLC for more details on High-Level Data Link Control (HDLC)

Chapter 1 • Introduction to Computer Networking 89

(This book does not cover HDLC and the reader should check the bibliography in Section 1.7 for
relevant references.)

The format of a PPP frame is shown in Figure 1-56. The PPP frame always begins and ends with
a special character (called “flag”). The Flag makes it possible for the receiver to recognize the
boundaries of an arriving frame. Notice that the PPP frame header does not include any
information about the frame length, so the receiver recognizes the end of the frame when it
encounters the trailing Flag field. The second field (Address) normally contains all ones (the
broadcast address of HDLC), which indicates that all stations should accept this frame. Because
there are only two hosts attached to a PPP link, PPP uses the broadcast address to avoid having to
assign link-layer addresses. The third field (Control) is set to a default value 00000011. This
value indicates that PPP is run in connectionless mode, meaning that frame sequence numbers are
not used and out-of-order delivery is acceptable.

Because the Address and Control fields are always constant in the default configuration, the
nodes can negotiate an option to omit these fields and reduce the overhead by 2 bytes per frame.

The Protocol field is used for demultiplexing at the receiver: it identifies the upper-layer protocol
(e.g., IP) that should receive the payload of this frame. The code for the IP protocol is
hexadecimal 2116. The reader may wish to check Listing 1-1 (Section 1.1.4) and see how the
method handle() calls upperProtocol.handle() to handle the received payload.

The Payload field is variable length, up to some negotiated maximum; if not negotiated, the
default length of 1500 bytes is used. After Payload comes the Checksum field, which is by default
2 bytes, but can be negotiated to a 4-byte checksum. PPP checksum only detects errors, but has
no error correction/recovery.

Figure 1-57 summarizes the state diagram for PPP; the actual finite state machine of the PPP
protocol is more complex and the interested reader should consult RFC-1661 [Simpson, 1994].
There are two key steps before the endpoints can start exchanging network-layer data packets:

1. Establishing link connection: during this phase, the link-layer connection is set up. The
link-layer peers must configure the PPP link (e.g., maximum frame length,
authentication, whether to omit the Address and Control fields). PPP’s Link Control
Protocol (LCP) is used for this purpose.

2. Connecting to network-layer protocol: after the link has been established and options
negotiated by the LCP, PPP must choose and configure one or more network-layer
protocols that will operate over the link. PPP’s Network Control Protocol (NCP) is
used for this purpose. Once the chosen network-layer protocol has been configured,
datagrams can be sent over the link.

bytes: 1 1 1 1 or 2 variable 2 or 4 1

Flag Address Control Protocol Flag

01111110 11111111 00000011 01111110

Data payload Checksum

Figure 1-56: Point-to-point protocol (PPP) frame format.

Ivan Marsic • Rutgers University

90

If transition through these two states is successful, the connection goes to the Open state, where
data transfer between the endpoints takes place.

The Authenticating state (sub-state of Establishing Link Connection) is optional. The two
endpoints may decide, during the Establishing sub-state, not to go through authentication. If they
decide to proceed with authentication, they will exchange several PPP control frames.

Listing 1-1 in Section 1.1.4 shows how application calls the protocols down the protocol stack
when sending a packet. However, before send() can be called, lowerLayerProtocol must
be initialized. Link-layer protocol is usually built-in in the firmware of the network interface card,
and the initialization happens when the hardware is powered up or user runs a special application.
Therefore, NCP in step 2 above establishes the connection between the link-layer PPP protocol
and the higher-layer (e.g., IP) protocol that will use its services to transmit packets.

LCP and NCP protocols send control messages encapsulated as the payload field in PPP frames
(Figure 1-58). The receiving PPP endpoint delivers the messages to the receiving LCP or NCP
module, which in turn configures the parameters of the PPP connection.

Although PPP frames do not use link-layer addresses, PPP provides the capability for network-
layer address negotiation: endpoint can learn and/or configure each other’s network address.

In summary, PPP has no error correction/recovery (only error detection), no flow control, and
out-of-order delivery is acceptable. No specific protocol is defined for the physical layer in PPP.

Carrier
detected /

Establishing Link Connection

Start

Dead

Options agreed on /

Failed /

Done /
Drop carrier

NCP configure /

Completed /

Failed /
/ Drop carrier

/ Exchange
TERMINATE packets

Send & receive
frames

Connecting to
Network-Layer

Protocol

Terminating

Establishing

Authenticating

Open

Figure 1-57: State diagram for the point-to-point protocol (PPP).

Chapter 1 • Introduction to Computer Networking 91

1.5.2 Ethernet (IEEE 802.3)

Problems related to this section: Problem 1.41 → Problem 1.43

Ethernet is a network protocol for local area networks (LANs). The MAC protocol for Ethernet is
based on the CSMA/CD protocol shown in Figure 1-30. The frame format for Ethernet is shown
in Figure 1-59. The Ethernet was first standardized by DEC, Intel and Xerox, known as the DIX
standard. (See Section 1.7 for an overview of Ethernet history.) When IEEE released the 802.3
standard, it adopted a slightly different frame format, as shown in Figure 1-59(b). The Type field
in a DIX frame represents the upper-layer protocol that is using Ethernet as its link layer. On the
other hand, an 802.3 frame carries instead the frame Length. In 802.3 frame, the upper-layer
protocol is specified in the LLC frame as DSAP address (also see Figure 1-54). Because the DIX
standard was widely used by the time IEEE 802.3 was released, a compromise is reached as
follows. If the Type/Length field contains a number ≤1500 than it represents the frame Length
and the receiver should look for the upper-layer protocol in the contained LLC packet. If the
Type/Length field contains a number >1500 than it identifies the upper-layer protocol, and the
data field does not contain an LLC-formatted packet, but rather a network-layer packet (e.g., an
IP datagram). All versions of Ethernet up to date use this frame format.

The Ethernet link-layer address or MAC-48 address is a globally unique 6-byte (48-bit) string
that comes wired into the electronics of the Ethernet attachment. An Ethernet address has two
parts: a 3-byte manufacturer code, and a 3-byte adaptor number. IEEE acts as a global authority
and assigns a unique manufacturer’s registered identification number, while each manufacturer
gives an adaptor a unique number. Although intended to be a permanent and globally unique
identification, it is possible to change the MAC address on most of today’s hardware, an action
often referred to as MAC spoofing.

When a frame arrives at an Ethernet attachment, the electronics compares the destination address
with its own and discards the frame if the addresses differ, unless the address is a special
“broadcast address” which signals that the frame is meant for all the nodes on this network.

We know from Section 1.3.3 that for the CSMA/CD protocol, the transmission time of the
smallest frame must be larger than one round-trip propagation time, i.e., 2β. This requirement
limits the distance between two computers on an Ethernet LAN. The smallest frame is 64 bytes.

Flag Address Control ProtocolProtocol PayloadPayload Checksum Flag

Code ID Length
Information for

the control operation

bytes: 1 1 2 variable

Value for LCP: C02116

Value for NCP: C02316

Figure 1-58: LCP or NCP packet encapsulated in a PPP frame.

Ivan Marsic • Rutgers University

92

This 64-byte value is derived from the original 2500-m maximum distance between Ethernet
interfaces plus the transit time across up to four repeaters plus the time the electronics takes to
detect the collision. The 64 bytes correspond to 51.2 μs over a 10 Mbps link, which is larger than
the round-trip time across 2500 m (about 18 μs) plus the delays across repeaters and the
electronics to detect the collision.

Sensing the medium idle takes time, so there will necessarily be an idle period between
transmissions of Ethernet frames. This period is known as the interframe space (IFS), interframe

bytes: 8 6 6 2 0 to 1500 0 to 46 4

Preamble
Destination

address
Source
address

Type Data Pad Checksum

MAC header

(a)

Link
layer

Network layer

LLC

MAC

PHY

Link
layer

Network layer

LLC

MAC

PHY

(b)

Link
layer

MAC

PHY

Network layer

Link
layer

MAC

PHY

Network layer

bytes: 7 1 6 6 2 0 to 1500 0 to 46 4

Preamble
Destination

address
Source
address

Leng
th

Data Pad Checksum
S
O
F

SOF = Start of Frame

MAC header

DSAP
address

SSAP
address

Control DataLLC packet:

Figure 1-59: Link-layer frame format for DIX standard Ethernet Version 2.0 (a) and for
IEEE standard 802.3 (b). LLC packet format is shown in Figure 1-54.

Table 1-4: Parameter values for the Ethernet MAC protocol (CSMA/CD).

Parameter
Data rate

Up to and including
100 Mbps

1 Gbps 10 Gbps

Backoff slot time 512 bit times 4096 bit times not applicable
Interpacket gap / IFS 96 bits 96 bits 96 bits
Attempts limit 16 16 not applicable
Backoff limit 10 10 not applicable
Jam size 32 bits 32 bits not applicable
Maximum frame size 1518 bytes 1518 bytes 1518 bytes
Minimum frame size 512 bits (64 bytes) 512 bits (64 bytes) 512 bits (64 bytes)

Chapter 1 • Introduction to Computer Networking 93

gap, or interpacket gap. It is the spacing between two non-colliding frames, from start of idle after
the last bit of the FCS field of the first frame to the first bit of the Preamble of the subsequent
frame. In other words, if an Ethernet network adapter senses that there is no signal energy
entering the adapter from the channel for IFS-bit times, it declares the channel idle and starts to
transmit the frame. The minimum interframe space is 96-bit times (the time it takes to transmit 96
bits of raw data on the medium), which is 9.6 μs for 10 Mbps Ethernet, 960 ns for 100 Mbps
(fast) Ethernet, 96 ns for 1 Gbps (gigabit) Ethernet, and 9.6 ns for 10 Gbps (10 gigabit) Ethernet.

The Ethernet specification for a bus-based design allows no more than 1,024 hosts and it can span
only a geographic area of 2,500 m. Table 1-4 lists some important parameters of the Ethernet
MAC protocol for different data rates of the physical sublayer.

Evolution of Ethernet

Ethernet has evolved over the past 35 years since it was invented. This evolution was shaped by
physical characteristics of communication links, such as data rate, duplexity (half or full duplex),
and multiplicity of the medium (i.e., point-to-point or shared broadcast). Ethernet operation is
specified for data rates from 1 Mbps to 10 Gbps using a common MAC protocol (CSMA/CD). In
1997, IEEE Std 802.3x specified full duplex operation. The CSMA/CD MAC protocol specifies
shared medium (half duplex) operation where frame collisions can occur, as well as full duplex

BNC T-connector
with terminator

BNC
T-connector

Computer

Computer

Computer

BNC T-connector
with terminator

BNC
T-connector

Computer

Computer

Computer

BNC
T-connector

Thin Ethernet
cable

BNC connector

BNC
T-connector

Thin Ethernet
cable

BNC connector

Figure 1-60: Thin coaxial cable Ethernet represents a bus-based design.

Ivan Marsic • Rutgers University

94

operation that operates without collisions. Ethernet Physical Sublayer (PHY) is standardized for
operation over coaxial, twisted-pair or fiber-optic cables.

Ethernet was first standardized for operation over coaxial cables (Figure 1-60). A cable (ether)
with multiple devices attached to it in parallel is called a multidrop cable. This is also known as
bus-based design for Ethernet. The multidrop cable with all stations attached to it are called a
collision domain. If two or more stations in a collision domain transmit simultaneouly, their
frames will collide and will not be successfully received. First appeared the so-called Thick
Ethernet (or, 10Base5) which used a thick coaxial cable with markings to show where
transcievers can be screwed onto the cable (2.5 meters apart). The second cable type was Thin
Ethernet (or, 10Base2), which used standard BNC connectors to form T-junctions on the
carrier cable (Figure 1-60). Multidrop-cable Ethernets were followed by a star-patterned
wiring, where all computers in the LAN have a cable running to a central hub and
incident spokes (Figure 1-61). Historically, the first instance of this design is 10Base-T.
The Ethernet version notation consists of three parts, as follows:

Data rate
(e.g., 10 Mbps, 10 Gbps)

Baseband/Broadband
transmission

Wiring type (e.g., coaxial,
twisted pair or fiber optic)

For example, 10Base-T means 10 Mbps baseband transmission over unshielded twisted-pair cable
(Category 5 UTP); 10GBase-X means 10 Gbps baseband over two pairs of twisted-pair cable.

Computer

Ethernet hub / bridge / switch

Computer Computer

Network
port

Twisted pair
cable

Computer

Ethernet hub / bridge / switch

Computer Computer

Network
port

Twisted pair
cable

Figure 1-61: Bridged or switched Ethernet represents a star-based (hub-and-spokes) design.

Chapter 1 • Introduction to Computer Networking 95

The star design in Figure 1-61 has many variations, depending on whether the central device
operates at the physical layer (OSI Layer 1) or at the link layer (OSI Layer 2) and whether the

File Server

NodesA
Printer

Ethernet Hub

A
Printer

Ethernet Switch

A
Printer

B C

(c)

(b)

(a)

Figure 1-62: Comparing bus-based multidrop-cable Ethernet (a), hub-based Ethernet (b)
and switch-based Ethernet (c). Dotted ovals indicate independent collision domains.

Ivan Marsic • Rutgers University

96

links are half duplex or full duplex. The central device was historically first called bridge. In the
simplest version, the bridge is called hub or repeater and it operates at the physical layer in a
half-duplex mode. A hub does not understand anything beyond bits, i.e., does not recognize
frames or knows about device addresses. It simply switches bits that come in one network
interface (or, port) to all other interfaces. The whole network forms a single collision domain, so
conceptually this design is equivalent to a bus-based design.

A more spohisticated bridge is known as a switch, but the term “bridge” is also often used
synonymously. An Ethernet switch moves frames from input to output ports based on their Layer-
2 destination addresses (described above as MAC-48 addresses). In other words, unlike a hub
which switches bits to all interfaces, a switch switches a frame exclusively to a port determined
by the frame’s destination address.

Figure 1-62 illustrates the difference between hubs and switches. Ethernet hubs (Figure 1-62(b))
are conceptually equivalent to the bus-based Ethernet (Figure 1-62(a)) because both designs form
a single collision domain. Conversely, each network port of an Ethernet switch forms an
independent collision domain (Figure 1-62(c)). With switch-based design, each cable has only
two stations attached: on one end is a switch’s port and on the other end is a computer host. This
is essentially a point-to-point link, but collisions are still possible between the endpoints and
CSMA/CD must be employed. More detail on Ethernet switches is provided later in this section.

Figure 1-63 summarizes the current family of Ethernet protocols. The figure also indicates
whether the physical sublayer has the ability to perform full-duplex link transmission and
reception, which is described next.

Full-duplex Mode and Collision-free Ethernet

Traditionally, Ethernet MAC sublayer implements the CSMA/CD algorithm, which creates a
half-duplex link. In half-duplex mode, media access method is the means by which two or more
stations share a common transmission medium (broadcast). To transmit, a station waits (defers)
for a quiet period on the medium (that is, no other station is transmitting) and then sends the
intended message in bit-serial form. If, after initiating a transmission, the message collides with

10 Mbps PHY
IEEE Std 802.3-1985

802.3a, 802.3i, …

100 Mbps PHY
IEEE Std 802.3u

1000 Mbps PHY
IEEE Std 802.3z

10 Gbps PHY
IEEE Std 802.3ae

10Base2*, 10Base5*,
10Base-F, 10Base-FB,
10Base-FL, 10Base-FP,
10Base-T

100Base-T, 100Base-T2,
100Base-T4*, 100Base-TX,
100Base-X, 100Base-BX10,
100Base-FX, 100Base-LX10

1000Base-T, 1000Base-X,
1000Base-BX10

10GBase-E, 10GBase-L,
10GBase-R, 10GBase-S,
10GBase-T, 10GBase-W,
10GBase-X

(*) Not capable of operating in full duplex mode

IEEE 802.3 MAC
(CSMA/CD)

Figure 1-63: Ethernet standards family for IEEE Std 802.3-2008 (current).

Chapter 1 • Introduction to Computer Networking 97

that of another station, then each transmitting station intentionally transmits for an additional
predefined period to ensure propagation of the collision throughout the system. The station
remains silent for a random amount of time (backoff) before attempting to transmit again.

Ethernet 802.3 standard provides for two modes of operation of the MAC sublayer:

(a) In half-duplex mode, stations contend for the use of the physical medium, using the
CSMA/CD algorithms specified. This is the traditional CSMA/CD contention-based
operation. Bidirectional communication is accomplished by sequential exchange of
frames, rather than simultaneous transmission in both directions. Half-duplex operation
is possible on all supported media; it is required on those media that are incapable of
supporting simultaneous transmission and reception without interference, such as
10Base2 and 100Base-T4 (Figure 1-63).

(b) The full-duplex mode of operation allows simultaneous communication between a pair
of stations using point-to-point media (dedicated channel). Full-duplex operation does
not require that transmitters defer, nor do they monitor or react to receive activity
(“collision detection”), as there is no contention for a shared medium in this mode. Full-
duplex operation can be used when all of the following are true:

1) The physical medium is capable of supporting simultaneous transmission and
reception without interference (Figure 1-63).

2) There are exactly two stations connected with a full duplex point-to-point link.
Because there is no contention for use of a shared medium, the multiple access (i.e.,
CSMA/CD) algorithms are unnecessary.

3) Both stations on the LAN are capable of, and have been configured to use, full
duplex operation.

The most common configuration envisioned for full-duplex operation consists of a central switch
(or, bridge) with a dedicated LAN connecting each switch port to a single station. Ethernet hubs
or repeaters are outside the scope of full duplex operation. By definition, an IEEE 802.3 LAN
operating in full-duplex mode comprises exactly two stations, so full-duplex mode creates an
Ethernet point-to-point link.

An Ethernet device operates in either half or full duplex mode at any one time. A device is
configured for one specific mode of operation (e.g. 1000Base-X Full Duplex). Auto-Negotiation
is performed as part of the initial set-up of the link, and allows the PHYs at each end to advertise
their capabilities (speed, PHY type, half or full duplex) and to automatically select the operating
mode for communication on the link. The term “CSMA/CD MAC” is used synonymously with
“802.3 MAC,” and may represent an instance of either a half duplex or full duplex mode device,
although full-duplex devices do not implement the traditional CSMA/CD algorithm. In full-
duplex mode, stations do not implement the CSMA/CD algorithms traditionally used to arbitrate
access to shared-media LANs. Full-duplex operation constitutes a proper subset of the MAC
functionality required for half-duplex operation.

The current Ethernet standard (IEEE Std 802.3-2008)

Ivan Marsic • Rutgers University

98

Ethernet Switches

An Ethernet switch consists of a high-speed backplane and a number of plug-in line cards,
typically 4 to 32 (Figure 1-64). Each line card contains one or more (e.g., eight) network ports or
connectors. A twisted pair cable leads from each connector to a host computer. When a computer
sends a frame, the frame first reaches an associated line card, which checks whether the frame is
destined to a station connected to the same card. If so, the frame is copied to the given
port/connector on this line card. If not, the frame is sent over the backplane to the destination
computer’s line card. The backplane typically runs at data rates of many Gbps, using a
proprietary protocol. More about switch design is available in Section 4.1.

A hub or repeater transmits a frame on an output port while it is being received on an input port.
This is known as cut-through switching. Unlike a hub/repeater, a switch or bridge first receives
the entire frame then stores it, waiting for the network attached to the frame’s outgoing port to
become idle. This is known as store-and-forward switching. With store-and-forward switching, it
is possible for two stations on different ports of the switch to transmit simultaneously without a
collision. We say that switch ports form independent collision domains (Figure 1-62).

Backplane

Ethernet switch

To a host
computer

Network ports

Line cards

Figure 1-64: Ethernet switch architecture.

Chapter 1 • Introduction to Computer Networking 99

As already pointed out, switches switch packets based on their link-layer (or, MAC) addresses,
i.e., switches operate at OSI Layer-2. They are also known as LAN switches. In Section 1.4 we
also learned about another kind of switches: routers. Routers switch packets based their network-
layer addresses, i.e., switches operate at OSI Layer-3. Routers are more complex because they
need to run routing protocols to discover the topology of the entire internetwork consisting of
many networks. It is also said that LAN switches are transparent to the computers in the network.
Unlike routers, where nodes know of the next-hop routers, LAN nodes are unaware of
intermediate switches and their forwarding role. When a computer sends a frame, the frame is
addressed to another computer, rather than addressing the frame to a switch. The frame will pass
through a switch when going from one LAN segment to another without the switch identifying
itself as the device that transmitted the frame to the next segment. Therefore, switches are
transparent to each other, as well. Routers are described in Section 4.1.

LAN switches perform two basic functions: frame forwarding and frame filtering. Frame
forwarding helps move a frame toward its ultimate destination. A switch moves a frame from an
input port to an output port based on frame’s MAC address by looking up the switching table.
The switching table is similar to a router’s forwarding table. Consider a network in Figure 1-65.
The switching table of the switch is shown in Table 1-5. The MAC addresses of stations A, B, and
D are listed in the table. For example, if a frame arrives on Port-2 destined for MAC address 00-
01-03-1D-CC-F7 (station A), the switch outputs the frame on Port-1. If a frame arrives on Port-1
destined for 49-BD-2F-54-1A-0F (station C), which is currently not listed in the switching table,
the switch will output the frame to all other ports. In this example, Port-2 is the only other port.

SwitchA

B

C

D

Port 2

Port 1

Network 1

Network 2

A3-B0-21-A1-60-35

MAC address:
00-01-03-1D-CC-F7

01-23-45-67-89-AB

49-BD-2F-54-1A-0F

Figure 1-65: Example Ethernet networks connected by an Ethernet switch.

Table 1-5: The switching table for the example LAN in Figure 1-65.

MAC address Network port Time last frame received

00-01-03-1D-CC-F7 1 10:39

01-23-45-67-89-AB 1 10:52

A3-B0-21-A1-60-35 2 10:17

Ivan Marsic • Rutgers University

100

Frame filtering relates to discarding frames that are headed in a direction where they do not need
to go. For example, if in Figure 1-65 a frame arrives on Port-2 with the destination address 00-01-
03-1D-CC-F7 (station A), then according to Table 1-5 this frame should be output on Port-1. On
the other hand, assume that a frame arrives on Port-2 with the destination address A3-B0-21-A1-
60-35. The switch realizes that it is a station on a network segment attached on Port-2 sending a
frame to another station on the same segment. In our case, it is station C sending a frame to
station D. There is no need to forward this frame because all other stations on the same segment
already received this frame, so the switch filters this frame and discards it.

The switching table can be filled up manually, but this is a tedious and error-prone task for large
number of stations. Instead, the switch performs backward learning of the switching table.
Initially, the table is empty. When the switch receives a frame from a station for which it has no
address in the table, the switch automatically creates a new entry. The entry records the MAC
address in the frame’s Source address field (Figure 1-59), the network port on which the frame
arrived, and the time of the arrival. If every station on all attached networks sends a frame, then
every station will eventually be recorded in the table. The parameter called aging time
determines how long the table entries are valid. If the switch does not receive a frame with a
given address as its source address, the entry will be deleted from the table. For example, in Table
1-5 a frame with source address A3-B0-21-A1-60-35 (station D Figure 1-59) arrived last time at
10:17 on Port-2. Suppose that the aging time for this switch is 50 minutes. If no frame arrives
with source address A3-B0-21-A1-60-35 arrives until 11:07, the switch will remove the entry for
station D from the table. In this way, if a computer is unplugged or moved around the building
and plugged in again somewhere else, the network can operate without manual intervention.

Consider now the network in Figure 1-66. The two switches connect the two networks via two
alternative paths, thus forming a loop (or, cycles) in the topology. This may happen by accidence,
if the network administrator is not careful when upgrading the network, or it may be done
purposefully to provide for alternate paths in case of switch failures (fault tolerance by
redundancy). Let us assume that the switching tables of both switches are as in Table 1-5 and that

Switch 1A

B

C

Port 2

Port 1

D

Network 1

Network 2

Switch 2

Port 2

Port 1

Figure 1-66: Example switched network with a loop formed by two switches.

Chapter 1 • Introduction to Computer Networking 101

station C sends a frame to another station (the destination to which C sends is irrelevant for this
example). The frame will arrive on both switches on Port-2, and each switch will record in its
switching table that C arrived on Port-2 (resides on Network 2) and enqueue the frame for
forwarding on its Port-1 (Figure 1-67(a)). Let us say that Switch 1 is the first to seize the access to
the medium and succeed in relaying the frame to Network 1. Because switches are transparent to
each other, the frame will appear on Port-1 of Switch 2 exactly as if transmitted by station C.
Switch 2 will record in its table that C arrived on Port-1 (as if C now resides on Network 1!) and
enqueue the frame for forwarding on its Port-2 (Figure 1-67(b)). Next, suppose that Switch 2
succeeds in transmitting its first received frame onto Network 1 (Figure 1-67(c)). Switch 1 will
record that C moved to Port-1 and enqueue the frame on its Port-2. Figure 1-67(d) shows one
more iteration, where Switch 2 transmits its second received frame onto Network 2, but this
process continues to infinity. Notice also that during this process any frames from other stations
heading to station C may be misdirected and eventually discarded.

The solution to this problem is to remove the loops, which produces a tree from a general graph.
A spanning tree of a graph is a subgraph of this graph that connects (spans) all the nodes, but
contains no cycles. That is, a spanning tree keeps all the nodes of the original graph, but removes

C

Switch 1

Port 2

Port 1

Network 1

Network 2

P1

P2

Switch 2

C

S-1

P2

P1

Netw-1

Netw-2

P1

P2

S-2

C

S-1

P2

P1

Netw-1

Netw-2

P1

P2

S-2

C

S-1

P2

P1

Netw-1

Netw-2

P1

P2

S-2

C P2C P2 C P2C P2 C P2C P2 C P1C P1

C P1C P1 C P1C P1

C P2C P2

C P1C P1

(a) (b)

(c) (d)

Figure 1-67: Packet proliferation in the network with a loop in Figure 1-66.

Ivan Marsic • Rutgers University

102

some links. In terms of Ethernet networks, each LAN segment corresponds to a graph node, and
each switch corresponds to a link in the graph. A spanning tree of a network can be derived
automatically using the spanning tree protocol (STP), specified in the IEEE 802.1D standard.

Each switch in the network sends a configuration message on all of its attached networks, which
includes the MAC address of the switch. The switches use the Spanning Tree Protocol to compute
the spanning tree, which has these five steps:

1. Elect a root switch. The switches choose one switch as the root switch of the spanning tree.
The choice is the switch with the smallest (lowest) identifier. Each switch has a unique identifier
(its MAC address) and a configurable priority number; the switch ID contains both numbers. To
compare two IDs, the priority is compared first. If two switches have equal priority, then their
MAC addresses (48-bit binary numbers) are compared and the switch with the smaller address is
chosen as the root switch. Of course, before configuration messages from all switches are
received, some switches may have made incorrect choices due to insufficient information. The
root switch always forwards frames out over all of its ports.

2. Compute the shortest path to the root. Each switch determines the cost of each possible path
from itself to the root. From these paths, it selects one with the smallest cost (shortest path). The
port connecting to that path becomes the root port of the switch. The cost of traversing a path is
the sum of the costs of the LAN segments on the path. Different technologies have different
default costs for LAN segments. A common approach is to assign to each segment the cost of 1
(i.e., one hop). All shortest paths form a spanning tree.

3. Determine any designated ports. All switches on a LAN segment collectively decide which
one among them has the shortest path to the root. The elected switch becomes the designated
switch that will be responsible for forwarding frames from this LAN segment toward the root
switch. The port connecting the designated switch to the given LAN segment becomes a
designated port of the switch. A switch may have no designated ports or may have more than one
designated port (because each switch is connected to several LAN segments).

4. Disable all other ports. Every switch blocks all of its active ports that do not qualify as a root
port or a designated port. In case there are ties, go to the next step.

5. Resolve the ties. It may happen that two or more ports on a single switch are attached to
shortest paths to the root or two or more switches on the same LAN segment have equal least-cost
paths to the root. Such ties are broken as follows:

5.a) Breaking ties for root ports. When multiple paths from a switch are shortest paths, the
chosen path uses the neighbor switch with the lower identifier. The root port is thus the one
connecting to the switch with the lowest identifier.

5.b) Breaking ties for designated ports. When more than one switch on a segment has a shortest
path to the root, the switch with the smaller identifier is chosen to forward messages to the root.
The port attaching that switch to the LAN segment is a designated port of that switch. A loser
switch sets the port to the given LAN segment as being blocked.

5.c) The final tiebreaker. In some cases, there may still be a tie, as when two switches are
connected by multiple cables. In this case, multiple ports on a single switch are candidates for
root port. The path that passes through the port on the neighbor switch that has the lowest port
priority is used.

Chapter 1 • Introduction to Computer Networking 103

The switches run the STP protocol iteratively and exchange configuration messages containing
this information:

(1) The identifier for the switch sending the message (includes the MAC address and a
configurable priority number);

(2) The identifier for what the sending switch believes to be the root switch;

(3) The distance (measured in hops) from the sending switch to the root switch.

Initially, each switch thinks it is the root, and so it sends a configuration message out on each of
its ports identifying itself as the root, with a distance to the root valued at 0. When a switch
receives a message on a particular port, the switch checks if this message is better than the best
configuration message previously recorded for this port. The message is considered “better” if:

• It identifies a root with a smaller identifier, or

• It identifies the same root but with a shorter distance (lower cost path), or

• It identifies the same root and distance, but the sending switch has a smaller identifier.

When a switch decides that it is not the root switch, it stops sending own configuration messages
and only forwards messages from other switches. Similarly, when a switch decides that it is not
the designated switch for a given LAN segment, it stops sending configuration messages over the
port attached to this segment. When the system stabilizes, only the root switch will be generating
configuration messages and all the other switches will be forwarding these messages only over
the ports for which they are the designated switch.

1.5.3 Wi-Fi (IEEE 802.11)

Problems related to this section: Problem 1.44 → Problem 1.45

IEEE 802.11, also known as Wi-Fi, …

Architecture and Basics

The basic building block of an IEEE 802.11 network is the basic service set (BSS), which is
simply a set of stations that communicate with one another. A BSS does not generally refer to a

Independent BSS
(or, IBSS) Infrastructure BSS

Access
point

Distribution system (e.g., Ethernet LAN)

Figure 1-68: IEEE 802.11 (Wi-Fi) independent and infrastructure basic service sets (BSSs).

Ivan Marsic • Rutgers University

104

particular area, due to the uncertainties of electromagnetic propagation. There are two types of
BSS, as shown in Figure 1-68. When all of the stations in the BSS are mobile stations and there is
no connection to a wired network, the BSS is called an independent BSS (or, IBSS). The IBSS is
the entire network and only those stations communicating with each other in the IBSS are part of
the LAN. This type of network is called an ad hoc network (see Chapter 6).

When all of the mobile stations in the BSS communicate with an access point (AP), the BSS is
called an infrastructure BSS (never called an IBSS!). This configuration is also known as
wireless local area network or W-LAN. The access point provides both the connection to the
wired LAN (wireless-to-wired bridging), if any, and the local relay function for all stations in its
BSS. Therefore, if one mobile station in the BSS must communicate with another mobile station,
the packet is sent first to the AP and then from the AP to the other mobile station. This causes
communications to consume more transmission capacity than in the case where the
communications are directly between the source and the destination (as in the IBSS). However, in
many cases the benefits provided by the AP outweigh the drawbacks. One of the benefits
provided by the AP is that the AP can assist the mobile stations in saving battery power. The
mobile stations can operate at a lower power, just to reach the AP, and not worry about how far
away is the destination host. Also, the AP can buffer (temporarily store) the packets for a mobile
station, if the station is currently in a power saving mode.

Extended service set (ESS) extends the range of mobility from a single infrastructure BSS
Figure 1-68(b) to an arbitrary range by interconnecting a set of infrastructure BSSs (Figure 1-69).
In ESS, multiple APs communicate among themselves to forward traffic from one BSS to another
and to facilitate the roaming of mobile stations between the BSSs. This is conceptually similar to
the cellular telephony network. The APs perform this communication via the distribution system,
such as an Ethernet-based wireline network. The stations in an ESS see the wireless medium as a
single link-layer connection. ESS is the highest-level abstraction supported by 802.11 networks.
Roaming between different ESSs is not supported by IEEE 802.11 and must be supported by a
higher-level protocol, e.g., Mobile IP (Section 8.3.4).

Wi-Fi supports dynamic data-rate adaptation to the current conditions of the wireless channel
(Figure 1-70). The goal is to select the rate that minimizes the errors due to the channel noise.
This behavior is not implemented in Ethernet, which operates over wire media, where channel

Distribution system (e.g., Ethernet LAN)

t = 1 t = 2

BSS1 BSS2 BSS3

AP3AP2AP1

Figure 1-69: IEEE 802.11 (Wi-Fi) extended service set (ESS) allows connecting multiple
access points to support long-range roaming.

Chapter 1 • Introduction to Computer Networking 105

conditions are stable and error rate is low. In Ethernet, the physical data rate is pre-configured and
does not change at runtime (compare to Figure 1-63).

Figure 1-71 shows the 802.11 frame format. The general MAC-layer format (Figure 1-71(a)) is
used for all data and control frames, but not all fields are used in all types of frames. There can be
up to four address fields in an 802.11 frame. When all four fields are present, the address types
include source, destination, transmitting station, and receiving station. The first two represent the
end nodes and the last two may be intermediary nodes. 802.11 uses the same MAC-48 address
format as Ethernet (Section 1.5.2). One of the fields could also be the BSS identifier, which is
used in the probe request and response frames, used when mobile stations scan an area for
existing 802.11 networks.

The Duration/Connection-ID field indicates the time (in microseconds) the channel will be
reserved for successful transmission of a data frame. The stations that receive this frame, but are
not intended receivers, use this information to defer their future transmissions until this
transmission is completed. The deferral period is called network allocation vector (NAV), and
we will see later in Figure 1-77 how it is used. In some control frames, this field contains a
network association, or connection identifier.

The 802.11 physical-layer frame (Figure 1-71(b)) is known as PLCP protocol data unit (PPDU),
where PLCP stands for “physical (PHY) layer convergence procedure.” The version shown in
Figure 1-71(b) is known as Long PPDU format. A preamble is a bit sequence that receivers
watch for to lock onto the rest of the frame transmission. There are two different preamble and
header formats defined for 802.11 physical-layer frames. The mandatory supported long
preamble and header, shown in Figure 1-71(b), is interoperable with the basic 1 Mbps and 2
Mbps data transmission rates. There is also an optional short preamble and header (not illustrated
here), known as Short PPDU format. This format is used at higher transmission rates to reduce
the control overhead and improve the network performance. (More discussion is provided in
Chapter 6.)

IEEE 802.11 MAC

1 Mbps PHY
(DBPSK)

2 Mbps PHY
(DQPSK)

5.5 Mbps PHY
(DBPSK/CCK)

11 Mbps PHY
(DQPSK/CCK)

1 Mbps PHY
(DBPSK)

2 Mbps PHY
(DQPSK)

5.5 Mbps PHY
(DBPSK/CCK)

11 Mbps PHY
(DQPSK/CCK)

802.11b Physical sublayer

Figure 1-70: Wi-Fi supports dynamic data-rate adaptation at the physical sublayer. This
figure shows the available rates for 802.11b.

Ivan Marsic • Rutgers University

106

Medium Access Control (MAC) Protocol

The medium access control (MAC) protocol for IEEE 802.11 is a CSMA/CA protocol. As
described earlier in Section 1.3.3, a CSMA/CA sender tries to avoid collision by introducing a
variable amount of delay before starting with transmission. This is known as the access deferral
state. The station sets a contention timer to a time interval randomly selected in the range [0,
CW−1], and counts down to zero while sensing the carrier. If the carrier is idle when the
countdown reaches zero, the station transmits.

Similar to an Ethernet adapter (Section 1.5.2), a Wi-Fi adapter needs time to decide that the
channel is idle. Again, this period is known as interframe space (IFS). However, unlike Ethernet,
the IFS delay is not fixed for all stations to 96-bit times. Wi-Fi has an additional use of the IFS
delay, so that it can differentiate stations of different priority. Each station must delay its
transmission according to the IFS period assigned to the station’s priority class. A station with a
higher priority is assigned a shorter interframe space and, conversely, lower priority stations are
assigned longer IFSs. The idea behind different IFSs is to create different priority levels for

bytes: 2 2 6 6 6 2 6 2 0 to 2312 4

DS = Distribution system
MF = More fragments
RT = Retry
PM = Power management

MD = More data
W = Wired equivalent privacy (WEP) bit
O = Order

FC D/I Address-1 Address-2 Address-3 Address-4SC DataQC FCS

FC = Frame control
D/I = Duration/Connection ID
SC = Sequence control
QC = QoS control
FCS = Frame check sequence

bits: 2 2 4 1 1 1 1 1 1 1 1

Protocol
version

Type Type To
DS

From
DS

MF RT PM MD W O
Protocol
version

Type Type To
DS

From
DS

MF RT PM MD W O

MAC header MSDU

Physical-layer preamble
144 bits

Physical-layer header
48 bits

MAC-layer frame (payload)
(variable)

Synchronization
128 bits

SFD
16 bits

Signal
8 bits

Service
8 bits

Length
16 bits

CRC
16 bits

Physical protocol data unit (PPDU)802.11 physical-layer frame:

Physical-layer preamble
144 bits

Physical-layer header
48 bits

MAC-layer frame (payload)
(variable)

Synchronization
128 bits

SFD
16 bits

Signal
8 bits

Service
8 bits

Length
16 bits

CRC
16 bits

Physical protocol data unit (PPDU)802.11 physical-layer frame:

(a)

(b)

SFD = start frame delimiter

Figure 1-71: IEEE 802.11 (Wi-Fi) frame formats. (a) Link-layer (or, MAC-layer) frame
format. (b) Physical-layer frame format (also known as Long PPDU format).

Chapter 1 • Introduction to Computer Networking 107

different types of traffic. Then, high-priority traffic can wait for shorter time after the medium has
become idle. If there is any high-priority traffic, it grabs the medium before lower-priority frames
have a chance to try.

Again, when a station wants to transmit data, it first senses whether the medium is busy. Two
rules apply here:

1. If the medium has been idle for longer than an IFS corresponding to its priority level,
transmission can begin immediately.

2. If the medium is busy, the station continuously senses the medium, waiting for it to
become idle. When the medium becomes idle, the station first waits for its assigned IFS,
and then enters the access deferral state. The station can transmit the packet if the
medium is idle after the contention timer expires.

To assist with interoperability between different data rates, the interframe space is a fixed amount
of time, independent of the physical layer bit rate. There are two basic intervals determined by the
physical layer (PHY): the short interframe space (SIFS), which is equal to the parameter β, and
the slot time, which is equal to 2×β. To be precise, the 802.11 slot time is the sum of the physical-
layer Rx-Tx turnaround time11, the clear channel assessment (CCA) interval, the air propagation
delay on the medium, and the link-layer processing delay.

The four different types of IFSs defined in 802.11 are (see Figure 1-72):

SIFS: Short interframe space is used for the highest priority transmissions, such as control frames,
or to separate transmissions belonging to a single dialog (e.g. Frame-fragment–ACK). This
value is a fixed value per PHY and is calculated in such a way that the transmitting station
will be able to switch back to receive mode and be capable of decoding the incoming
packet. For example, for the 802.11 FH PHY this value is set to 28 microseconds.

PIFS: PCF (or priority) interframe space is used by the PCF during contention-free operation.
The coordinator uses PIFS when issuing polls and the polled station may transmit after the

11 Rx-Tx turnaround time is the maximum time (in μs) that the physical layer requires to change from

receiving to transmitting the start of the first symbol. More information about the Rx-Tx turnaround time
is available in: “IEEE 802.11 Wireless Access Method and Physical Specification,” September 1993; doc:
IEEE P802.11-93/147: http://www.ieee802.org/11/Documents/DocumentArchives/1993_docs/1193147.doc

Busy Frame transmission

Contention
period

Backoff
slots

DIFS

PIFS

SIFS

Time

Defer access Select slot using binary exponential backoff

Figure 1-72: IEEE 802.11 interframe spacing relationships. Different length IFSs are used
by different priority stations.

Ivan Marsic • Rutgers University

108

SIFS has elapsed and preempt any contention-based traffic. PIFS is equal to SIFS plus one
slot time.

DIFS: DCF (or distributed) interframe space is the minimum medium idle time for asynchronous
frames contending for access. Stations may have immediate access to the medium if it has
been free for a period longer than the DIFS. DIFS is equal to SIFS plus two slot times.

EIFS: Extended interframe space (not illustrated in Figure 1-72) is much longer than any of the
other interframe spaces. It is used by any station that has received a frame containing errors
that it could not understand. This station cannot detect the duration information and set its
NAV for the Virtual Carrier Sense (defined later). EIFS ensures that the station is prevented
from colliding with a future packet belonging to the current dialog. In other words, EIFS
allows the ongoing exchanges to complete correctly before this station is allowed to
transmit.

The values of some important 802.11b system parameters are shown in Table 1-6. The values
shown are for the 1Mbps channel bit rate and some of them are different for other bit rates.

Table 1-6: IEEE 802.11b system parameters. (PHY preamble serves for the receiver to
distinguish silence from transmission periods and detect the beginning of a new packet.)

Parameter Value for 1 Mbps channel bit rate

Slot time 20 μsec
SIFS 10 μsec
DIFS 50 μsec (DIFS = SIFS + 2 × Slot time)
EIFS SIFS + PHY-preamble + PHY-header + ACK + DIFS = 364 μsec
CWmin 32 (minimum contention window size)
CWmax 1024 (maximum contention window size)
PHY-preamble 144 bits (144 μsec)
PHY-header 48 bits (48 μsec)
MAC data header 28 bytes = 224 bits
ACK 14 bytes + PHY-preamble + PHY-header = 304 bits (304 μsec)
RTS 20 bytes + PHY-preamble + PHY-header = 352 bits (352 μsec)
CTS 14 bytes + PHY-preamble + PHY-header = 304 bits (304 μsec)
MTU* Adjustable, up to 2304 bytes for frame body before encryption

DIFS

Receiver

Sender 4 3 2 1 0

Backoff
Busy

Busy

TimeData

S
IF

S

ACK

DIFS

Another station 9 8 7 6 5

Backoff Suspend countdown and defer access
Busy

DIFS

6 5 4 3

Resume
countdown
after deferral

Receive data

DIFS

Receiver

Sender 4 3 2 1 0

Backoff
BusyBusy

BusyBusy

TimeData

S
IF

S

ACK

DIFS

Another station 9 8 7 6 5

Backoff Suspend countdown and defer access
BusyBusy

DIFS

6 5 4 3

Resume
countdown
after deferral

Receive data

Figure 1-73: IEEE 802.11 basic transmission mode is a based on the stop-and-wait ARQ.
Notice the backoff slot countdown during the contention period.

Chapter 1 • Introduction to Computer Networking 109

(*) The Maximum Transmission Unit (MTU) size specifies the maximum size of a physical
packet created by a transmitting device. The reader may also encounter the number 2312
(as in Figure 1-71(a)), which is the largest WEP encrypted frame payload (also known as
MSDU, for MAC Service Data Unit). Also, 2346 is the largest frame possible with WEP
encryption and every MAC header field in use (including Address 4, see Figure 1-71(a)). In
practice, MSDU size seldom exceeds 1508 bytes because of the need to bridge with
Ethernet.

An example of a frame transmission from a sender to a receiver is shown in Figure 1-73. Notice
that even the units of the atomic transmission (data and acknowledgement) are separated by SIFS,
which is intended to give the transmitting station a short break so it will be able to switch back to
receive mode and be capable of decoding the incoming (in this case ACK) packet.

The state diagrams for 802.11 senders and receivers are shown in Figure 1-74. Notice that
sender’s state diagram is based on the CSMA/CA protocol shown in Figure 1-33, with the key
difference of introducing the interframe space.

Here is an example:

Example 1.6 Illustration of Timing Diagrams for IEEE 802.11

Consider a local area network (infrastructure BSS) using the IEEE 802.11 protocol shown in Figure
1-74. Show the timing diagrams for the following scenarios:

ACK error-free /

Busy /

Idle /

Busy /

Idle /

Busy /

backoff == 0 /

Timeout /

backoff > 0 /

retry > retrymax /

N
ew

 p
ac

ke
t /

retry ≤ retrymax /

Idle /

ACK in error /

Sense Send End

Increase CW
& Retry count

Wait for end of
transmission

Wait for
DIFS

Abort

Wait for
DIFS

Sense

Wait for
EIFS

1

1

1

Sense
Set

backoff

Countdown
backoff ← backoff − 1

(a)

ACK error-free /

Busy /

Idle /

Busy /

Idle /

Busy /

backoff == 0 /

Timeout /

backoff > 0 /

retry > retrymax /

N
ew

 p
ac

ke
t /

retry ≤ retrymax /

Idle /

ACK in error /

Sense Send End

Increase CW
& Retry count

Wait for end of
transmission

Wait for
DIFS

Abort

Wait for
DIFS

Sense

Wait for
EIFS

1

1

1

Sense
Set

backoff

Countdown
backoff ← backoff − 1

(a)

Receive
Send
ACK

EndWait for
SIFS

Wait for
EIFS

Packet in error /

Packet error-free /

(b)

Receive
Send
ACK

EndWait for
SIFS

Wait for
EIFS

Packet in error /

Packet error-free /

(b)

Figure 1-74: (a) Sender’s state diagram of basic packet transmission for 802.11 MAC
protocol. Compare to Figure 1-33. In “Set backoff,” the backoff counter is set randomly to a
number ∈ {0, …, CW−1}. (b) Receiver’s state diagram for 802.11 MAC protocol.

Ivan Marsic • Rutgers University

110

(a) A single station has two frames ready for transmission on an idle channel.

(b) A single station has one frame ready for transmission on a busy channel. The acknowledgement
for the frame is corrupted during the first transmission.

(c) A single station has one frame ready for transmission on a busy channel. The data frame is
corrupted during the first transmission.

The solutions are shown in Figure 1-75. Sender’s actions are shown above the time axis and receiver’s
actions are shown below the time axis. A crossed block represents a loss or erroneous reception of the
corresponding frame.

The timing of successful frame transmissions is shown in Figure 1-75(a). If the channel is idle upon the
packet arrival, the station transmits immediately, without backoff. However, it has to backoff for its
own second transmission.

Figure 1-75(b) shows the case where an ACK frame is received in error, i.e., received with an incorrect
frame check sequence (FCS). The transmitter re-contends for the medium to retransmit the frame after
an EIFS interval. This is also indicated in the state diagram in Figure 1-74.

On the other hand, if no ACK frame is received within a timeout interval, due possibly to an erroneous
reception at the receiver of the preceding data frame, as shown in Figure 1-75(c), the transmitter
contends again for the medium to retransmit the frame after an ACK timeout. (Notice that the ACK
timeout is much shorter than the EIFS interval; in fact, ACK_timeout = tSIFS + tACK + tslot. Check Table
1-6 for the values.)

Hidden Stations Problem

The hidden and exposed station problems are described earlier in Section 1.3.3. A common
solution is to induce the receiver to transmit a brief “warning signal” so that other potential
transmitters in its neighborhood are forced to defer their transmissions. IEEE 802.11 extends the
basic access method (Figure 1-73) with two more frames: request-to-send (RTS) and clear-to-
send (CTS) frames, which are very short frames exchanged before the data and ACK frames.

BackoffBackoffBackoffBackoff

BackoffBackoffBackoffBackoffBackoffBackoffBackoffBackoff

BackoffBackoffBackoffBackoff

Frame-1

DIFS

SIFS
ACK

Frame-2
DIFS

BackoffBackoffBackoffBackoff

SIFS
ACK

Busy Frame-1
DIFS

SIFS
ACK

Frame-1
EIFS

SIFS
ACK

Busy Frame-1
DIFS

Frame-1
ACK Timeout

SIFS
ACK

(a) Time

(b)

(c)

Packet arrival,
channel idle

No backoff

(retransmission)

(retransmission)

Figure 1-75: Timing diagrams. (a) Timing of successful frame transmissions under the
DCF. (b) Frame retransmission due to ACK failure. (c) Frame retransmission due to an
erroneous data frame reception.

Chapter 1 • Introduction to Computer Networking 111

(Frame lengths, including RTS and CTS durations, are shown in Table 1-6.) The process is shown
in Figure 1-76. The sender first sends the RTS frame to the receiver (Figure 1-76(a)). If the
transmission succeeds, the receiver responds by outputting another short frame (CTS). The CTS
frame is intended not only for the sender, but also for all other stations in the receiver’s range
(Figure 1-76(b)). All stations that receive a CTS frame know that this frame signals a
transmission in progress and must avoid transmitting for the duration of the upcoming (large) data
frame. Through this indirection, the sender performs “floor acquisition” so it can speak
unobstructed because all other stations will remain silent for the duration of transmission (Figure
1-76(c)). Notice also that the frame length is indicated in each frame, which is the Duration D/I
field of the frame header (Figure 1-71(a)).

The 4-way handshake of the RTS/CTS/DATA/ACK exchange of the 802.11 DCF protocol
(Figure 1-77) requires that the roles of sender and receiver be interchanged several times between
pairs of communicating nodes, so neighbors of both these nodes must remain silent during the
entire exchange. This is achieved by relying on the virtual carrier sense mechanism of 802.11,
i.e., by having the neighboring nodes set their network allocation vector (NAV) values from the
Duration D/I field specified in either the RTS or CTS frames they overhear (Figure 1-71(a)). By
using the NAV, the stations ensure that atomic operations are not interrupted. The NAV time
duration is carried in the frame headers on the RTS, CTS, data and ACK frames. (Notice that the
NAV vector is set only in the RTS/CTS access mode and not in the basic access mode shown in
Figure 1-73, because RTS/CTS perform channel reservation for the subsequent data frame.)

The additional RTS/CTS exchange shortens the vulnerable period from the entire data frame in
the basic method (Figure 1-73) down to the duration of the RTS/CTS exchange in the RTS/CTS
method (Figure 1-77). If a “covered station” transmits simultaneously with the sender, they will
collide within the RTS frame. If the hidden stations hear the CTS frame, they will not interfere
with the subsequent data frame transmission. In either case, the sender will detect collision by the

(a)

A
B

C

A
B

C

A
B

C

RTS(N-bytes)

CTS(N-bytes)

N-bytes Packet

Defer(N-bytes)

(b)

(c)

Figure 1-76: IEEE 802.11 protocol is augmented by RTS/CTS frames for hidden stations.

Ivan Marsic • Rutgers University

112

lack of the CTS frame. If a collision happens, it will last only a short period because RTS and
CTS frames are very short, unlike data frames, which can be very long. This RTS/CTS exchange
partially solves the hidden station problem but the exposed node problem remains unaddressed.
The hidden station problem is solved only partially, because if a hidden station starts with
transmission simultaneously with the CTS frame, the hidden station will not hear the CTS frame,
the sender will receive the CTS frame correctly and start with the data frame transmission, and
this will result in a collision at the receiver. (Of course, the probability of this event is very low.)

802.11 RTS/CTS protocol does not solve the exposed station problem (Figure 1-29(b)). Exposed
stations could maintain their NAV vectors to keep track of ongoing transmissions. However, if an
exposed station gets a packet to transmit while a transmission is in progress, it is allowed to
transmit for the remainder of the NAV, before the sender needs to receive the ACK. Tailoring the
frame to fit this interval and accompanied coordination is difficult and is not implemented as part
of 802.11.

Recent extensions in the evolution of the 802.11 standard are described in Chapter 6.

1.6 Quality of Service Overview

This text reviews basic results about quality of service (QoS) in networked systems, particularly
highlighting the wireless networks.

The recurring theme in this text is the delay and its statistical properties for a computing system.
Delay (also referred to as latency) is modeled differently at different abstraction levels, but the

RTS TimeDIFS

Receiver

Sender 4 3 2 1 0

Backoff

DIFS

Covered Station

Busy

Busy

Busy

8 7 6

Backoff

5 4

DIFS

Hidden Station

Busy
Backoff

S
IF

S

CTS

Access to medium deferred for NAV(CTS)

NAV (RTS)

NAV (CTS)

DataS
IF

S

Access to medium deferred for NAV(RTS)

S
IF

S

ACK

NAV (Data)

RTS TimeDIFS

Receiver

Sender 4 3 2 1 0

Backoff

DIFS

Covered Station

BusyBusy

BusyBusy

BusyBusy

8 7 6

Backoff

5 4

DIFS

Hidden Station

BusyBusy
Backoff

S
IF

S

CTS

Access to medium deferred for NAV(CTS)

NAV (RTS)

NAV (CTS)

DataS
IF

S

Access to medium deferred for NAV(RTS)

S
IF

S

ACK

NAV (Data)

Figure 1-77: The 802.11 protocol atomic unit exchange in RTS/CTS transmission mode
consists of four frames: RTS, CTS, Data, and ACK. (Compare to Figure 1-73.)

Chapter 1 • Introduction to Computer Networking 113

key issue remains the same: how to limit the delay so it meets task constraints. A complement of
delay is capacity, also referred to as bandwidth, which was covered in the previous volume.
Therein, we have seen that the system capacity is subject to physical (or economic) limitations.
Constraints on delay, on the other hand, are imposed subjectively by the task of the information
recipient—information often loses value for the recipient if not received within a certain deadline.

Processing and communication of information in a networked system are generally referred to as
servicing of information. The dual constraints of capacity and delay naturally call for
compromises on the quality of service. If the given capacity and delay specifications cannot
provide the full service to the customer (in our case information), a compromise in service quality
must be made and a sub-optimal service agreed to as a better alternative to unacceptable delays or
no service at all. In other words, if the receiver can admit certain degree of information loss, then
the latencies can be reduced to an acceptable range.

In order to achieve the optimal tradeoff, the players (source, intermediary, and destination) and
their parameters must be considered as shown in Figure 1-79. We first define information
qualities and then analyze how they get affected by the system processing.

Latency and information loss are tightly coupled and by adjusting one, we can control the other.
Thus, both enter the quality-of-service specification. If all information must be received to meet
the receiver’s requirements, then the loss must be dealt with within the system, and the user is
only aware of latencies.

Time is always an issue in information systems as is generally in life. However, there are
different time constraints, such as soft, hard, as well as their statistical properties.

We are interested in assessing the servicing parameters of the intermediate and controlling them
to achieve information delivery satisfactory for the receiver.

Because delay is inversely proportional to the packet loss, by adjusting one we can control the
other. Some systems are “black box”—they cannot be controlled, e.g., Wi-Fi, where we cannot
control the packet loss because the system parameters of the maximum number of retries
determine the delay. In this case, we can control the input traffic to obtain the desired output.

Source is usually some kind of computing or sensory device, such as microphone, camera, etc.
However, it may not be always possible to identify the actual traffic source. For example, it could
be within the organizational boundaries, concealed for security or privacy reasons.

Figure 1-79 is drawn as if the source and destination are individual computers and
(geographically) separated. The reality is not always so simple. Instead of computers, these may

NetworkNetwork

packetssignals

Figure 1-78: Conceptual model of multimedia information delivery over the network.

Ivan Marsic • Rutgers University

114

be people or organizations using multiple computers, or they could be networks of sensors and/or
actuators.

Users exchange information through computing applications. A distributed application at one end
accepts information and presents it at the other end. Therefore, it is common to talk about the
characteristics of information transfer of different applications. These characteristics describe the
traffic that the applications generate as well as the acceptable delays and information losses by
the intermediaries (network) in delivering that traffic. We call traffic the aggregate bitstreams
that can be observed at any cut-point in the system.

The information that applications generate can take many forms: text, audio, voice, graphics,
pictures, animations, and videos. Moreover, the information transfer may be one-way, two-way,
broadcast, or multipoint.

Traffic management is the set of policies and mechanisms that allow a network to satisfy
efficiently a diverse range of service requests. The two fundamental aspects of traffic
management, diversity in user requirements and efficiency in satisfying them, act at cross
purposes, creating a tension that has led to a rich set of mechanisms. Some of these mechanisms
include flow control and scheduling (Chapter 5).

QoS guarantees: hard and soft

Our primary concerns here are delay and loss requirements that applications impose on the
network. We should keep in mind that other requirements, such as reliability and security may be
important. When one or more links or intermediary nodes fail, the network may be unable to
provide a connection between source and destination until those failures are repaired. Reliability
refers to the frequency and duration of such failures. Some applications (e.g., control of electric
power plants, hospital life support systems, critical banking operations) demand extremely
reliable network operation. Typically, we want to be able to provide higher reliability between a
few designated source-destination pairs. Higher reliability is achieved by providing multiple
disjoint paths between the designated node pairs.

In this text we first concentrate on the parameters of the network players, traffic characteristics of
information sources, information needs of information sinks, and delay and loss introduced by the

Source DestinationIntermediary

Parameters:
• Delay constraints
• Information loss tolerance

Parameters:
• Servicing capacity
• List of servicing quality options

- Delay options
- Information loss options

Examples:
• Communication channel
• Computation server

Parameters:
• Source information rate
• Statistical characteristics

Figure 1-79: Key factors in quality of service assurance.

Chapter 1 • Introduction to Computer Networking 115

intermediaries. Then we review the techniques designed to mitigate the delay and loss to meet the
sinks information needs in the best possible way.

Performance Bounds

Network performance bounds can be expressed either deterministically or statistically. A
deterministic bound holds for every packet sent on a connection. A statistic bound is a
probabilistic bound on network performance. For example, a deterministic delay bound of 200 ms
means that every packet sent on a connection experiences an end-to-end, from sender to receiver,
delay smaller than 200 ms. On the other hand, a statistical bound of 200 ms with a parameter of
0.99 means that the probability that a packet is delayed by more than 200 ms is smaller than 0.01.

Quality of Service

Network operator can guarantee performance bounds for a connection only by reserving
sufficient network resources, either on-the-fly, during the connection-establishment phase, or in
advance.

There is more than one way to characterize quality-of-service (QoS). Generally, QoS is the ability
of a network element (e.g., an application, a host or a router) to provide some level of assurance
for consistent network data delivery. Some applications are more stringent about their QoS
requirements than other applications, and for this reason (among others), we have two basic types
of QoS available:

• Resource reservation (integrated services): network resources are apportioned according
to an application’s QoS request, and subject to bandwidth management policy.

• Prioritization (differentiated services): network traffic is classified and apportioned
network resources according to bandwidth management policy criteria. To enable QoS,
network elements give preferential treatment to classifications identified as having more
demanding requirements.

These types of QoS can be applied to individual traffic “flows” or to flow aggregates, where a
flow is identified by a source-destination pair. Hence, there are two other ways to characterize
types of QoS:

• Per Flow: A “flow” is defined as an individual, unidirectional, data stream between two
applications (sender and receiver), uniquely identified by a 5-tuple (transport protocol,
source address, source port number, destination address, and destination port number).

• Per Aggregate: An aggregate is simply two or more flows. Typically, the flows will have
something in common (e.g., any one or more of the 5-tuple parameters, a label or a
priority number, or perhaps some authentication information).

1.6.1 QoS Outlook

QoS is becoming more important with the growth of real-time and multimedia applications.
Unlike traditional network applications, such as email or Web browsing, where data transmission

Ivan Marsic • Rutgers University

116

process is much more transparent, in real-time communications, such as phone calls, delay and
loss problems are much more apparent to the users. IP networks are subject to much impairment,
including:

 * Packet loss due to network congestion or corruption of the data

 * Variation in the amount of delay of packet delivery, which can result in poor voice quality

 * Packets arriving out of sequence, which can result in discarded packets and cause more delay
and disruption

There has been a great amount of research on QoS in wireline networks, but very little of it ended
up being employed in actual products. Many researchers feel that there is higher chance that QoS
techniques will be actually employed in wireless networks. Here are some of the arguments:

Wireline Network vs. Wireless Network

• Deals with thousands of traffic flows, thus
not feasible to control

• Deals with tens of traffic flows (max
about 50), thus it is feasible to control

• Am I a bottleneck? • I am the bottleneck!

• Easy to add capacity • Hard to add capacity

• Scheduling interval ~ 1 μs • Scheduling interval ~ 1 ms, so a larger
period is available to make decision

As will be seen in Chapter 3, service quality is always defined relative to human users of the
network. As strange as it may sound, it is interesting to point out that the service providers may
not always want to have the best network performance. In other words, the two types of end users
(service providers vs. customers) may have conflicting objectives on network performance. For
example, recent research of consumer behavior [Liu, 2008] has shown that task interruptions
“clear the mind,” changing the way buyers make decisions. The buyers who were temporarily
interrupted were more likely to shift their focus away from “bottom-up” details such as price.
Instead, they concentrated anew on their overall goal of getting satisfaction from the purchased
product, even if that meant paying more. The uninterrupted buyers remained more price-
conscious. This seems to imply that those annoying pop-up advertisements on Web pages—or
even a Web page that loads slowly—might enhance a sale!

1.6.2 Network Neutrality vs. Tiered Services

Network neutrality (or, net neutrality or Internet neutrality) is the principle that Internet service
providers (ISPs) should not be allowed to block or degrade Internet traffic from their competitors
in order to speed up their own. There is a great political debate going on at present related to this
topic. On one hand, consumers’ rights groups and large Internet companies, such as Google and
eBay, have tried to get US Congress to pass laws restricting ISPs from blocking or slowing
Internet traffic. On the other hand, net neutrality opponents, such as major telecommunications
companies Verizon and AT&T, argue that in order to keep maintaining and improving network

Search the Web for net neutralitySearch the Web for net neutrality

Chapter 1 • Introduction to Computer Networking 117

performance, ISPs need to have the power to use tiered networks to discriminate in how quickly
they deliver Internet traffic. The fear is that net neutrality rules would relegate them to the status
of “dumb pipes” that are unable to effectively make money on value-added services.

Today many ISPs enforce a usage cap to prevent “bandwidth hogs” from monopolizing Internet
access. (Bandwidth hogs are usually heavy video users or users sharing files using peer-to-peer
applications.) Service providers also enforce congestion management techniques to assure fair
access during peak usage periods. Consumers currently do not have influence on these policies,
and can only “vote” by exploiting a competitive market and switching to another ISP that has a
larger usage cap or no usage cap at all. Consider, on the other hand, a business user who is willing
to pay a higher rate that guarantees a high-definition and steady video stream that does not pause
for buffering. Unfortunately, currently this is not possible, because regardless of the connection
speeds available, Internet access is still a best effort service. Some industry analysts speak about a
looming crisis as more Internet users send and receive bandwidth intensive content.

To discriminate against heavy video and file-sharing users, providers use what is known as deep
packet inspection. Deep packet inspection is the act of an intermediary network node of
examining the payload content of IP datagrams for some purpose. Normally, an intermediary
node (router or switch) examines only link or network-layer packet headers but not the network-
layer payload.

The Internet with its “best effort” service is not neutral in terms of its impact on applications that
have different requirements. It is more beneficial for elastic applications that are latency-
insensitive than for real-time applications that require low latency and low jitter, such as voice
and real-time video. Some proposed regulations on Internet access networks define net neutrality
as equal treatment among similar applications, rather than neutral transmissions regardless of
applications.

See further discussion about net neutrality in Section 9.4.

1.7 Summary and Bibliographical Notes

This chapter covers some basic aspects of computer networks and wireless communications.
Some topics are covered only briefly and many other important topics are left out. Practical
implementations of the Internet protocols will be described in Chapter 8. To learn more about the
basics of computer networking, the reader may also consult other networking books. Perhaps two
of the most regarded introductory networking books currently are [Peterson & Davie 2007] and
[Kurose & Ross 2010].

Section 1.1: Introduction

The end-to-end principle was formulated by Saltzer et al. [1984], who argued that reliable
systems tend to require end-to-end processing to operate correctly, in addition to any processing
in the intermediate system. They pointed out that most features in the lowest level of a

Ivan Marsic • Rutgers University

118

communications system present costs for all higher-layer clients, even if those clients do not need
the features, and are redundant if the clients have to reimplement the features on an end-to-end
basis.

Keshav [1997: Chapter 5] argued from first principles that there are good reasons to require at
least five layers and that no more are necessary. The layers that he identified are: physical, link,
network, transport, and application layers. He argued that the functions provided by the session
and presentation layers can be provided in the application with little extra work.

Early works on protocol implementation include [Clark, 1985; Hutchinson & Peterson, 1991;
Thekkath, et al., 1993]. Clark [1985] described the upcall architecture. Hutchinson and Peterson
[1991] described a threads-based approach to protocol implementation. [Thekkath, et al., 1993] is
a pionerring work on user-level protocol implementation.

RFC-2679 [Almes, et al., 1999(a)] defines a metric for one-way delay of packets across Internet
paths. RFC-2681 [Almes, et al., 1999(b)] defines a metric for round-trip delay of packets across
Internet paths and follows closely the corresponding metric for one-way delay described in RFC-
2679.

Section 1.2: Reliable Transmission via Redundancy

Section 1.3: Reliable Transmission by Retransmission

Automatic Repeat reQuest (ARQ) was invented by H. C. A. van Duuren during World Ward II to
provide reliable transmission of characters over radio [van Duuren, 2001]. A classic early paper
on ARQ and framing is [Gray, 1972]. RFC-3366 [Fairhurst & Wood, 2002] provides advice to
the designers for employing link-layer ARQ techniques. This document also describes issues with
supporting IP traffic over physical-layer channels where performance varies, and where link ARQ
is likely to be used.

Broadcast media require medium access coordination. The earliest medium access control (MAC)
protocol is called ALOHA. ALOHA was invented in the late 1960s by Norman Abramson and his
colleagues at the University of Hawaii. Their goal was to use low-cost commercial radio
equipment to connect computer users on Hawaiian Islands with a central time-sharing computer
on the main campus.

Another MAC protocol is called Carrier Sense Multiple Access (CSMA). This means that before
the sender sends a packet, it senses the medium to see if it is idle. If it is, the sender transmits the
packet. A variant of CSMA called CSMA/CD (for: Collision Detection) continues to sense the
carrier during the transmission to detect whether a collision will happen because some other
sender connected on the same medium is transmitting at the same time. If a collision is detected,
then the sender will wait for a random period of time before transmitting again.

Chapter 1 • Introduction to Computer Networking 119

Section 1.4: Routing and Addressing

IP version 4 along with the IPv4 datagram format was defined in RFC-791. Currently there is a
great effort by network administrators to move to the next generation IP version 6 (IPv6),
reviewed in Section 8.1.

Path MTU Discovery for IP version 4 is described in RFC-1191, and for IPv6 in RFC-1981.

Internet routing protocols are designed to rapidly detect failures of network elements (nodes or
links) and route data traffic around them. In addition to routing around failures, sophisticated
routing protocols take into account current traffic load and dynamically shed load away from
congested paths to less-loaded paths.

The original ARPAnet distance vector algorithm used queue length as metric of the link cost.
That worked well as long everyone had about the same line speed (56 Kbps was considered fast
at the time). With the emergence of orders-of-magnitude higher bandwidths, queues were either
empty or full (congestion). As a result, wild oscillations occurred and the metric was not
functioning anymore. This and other reasons caused led to the adoption of Link State Routing as
the new dynamic routing algorithm of the ARPAnet in 1979.

The first link-state routing concept was invented in 1978 by John M. McQuillan [McQuillan et
al., 1980] as a mechanism that would calculate routes more quickly when network conditions
changed, and thus lead to more stable routing.

When IPv4 was first created, the Internet was rather small, and the model for allocating address
blocks was based on a central coordinator: the Internet Assigned Numbers Authority
(http://iana.org/). Everyone who wanted address blocks would go straight the central authority. As
the Internet grew, this model became impractical. Today, IPv4’s classless addressing scheme
(CIDR) allows variable-length network IDs and hierarchical assignment of address blocks. Big
Internet Service Providers (ISPs) get large blocks from the central authority, then subdivide them,
and allocate them to their customers. In turn, each organization has the ability to subdivide further
their address allocation to suit their internal requirements.

In Section 1.4.4, it was commented that CIDR optimizes the common case. Optimizing the
common case is a widely adopted technique for system design. Check, for example, [Keshav,
1997, Section 6.3.5] for more details and examples. Keshav [1997] also describes several other
widely adopted techniques for system design.

The IANA (http://iana.org/) is responsible for the global coordination of the DNS Root (Section
8.4), IP addressing, Autonomous System numbering (RFC-1930, RFC-4893), and other Internet
protocol resources. It is operated by the Internet Corporation for Assigned Names and Numbers,
better known as ICANN.

In Section 1.4.5, we saw how the global Internet with many independent administrative entities
creates the need to reconcile economic forces with engineering solutions. A routing protocol
within a single administrative domain (or, Autonomous System) just needs to move packets as
efficiently as possible from the source to the destination. Unlike this, a routing protocol that spans
multiple administrative domains (or, Autonomous Systems) must allow them to implement their
economic preferences. In 1980s when NSFNet provided the backbone network (funded by the US
National Science Foundation), and the whole Internet was organized in a single tree structure
with the backbone at the root. The backbone routers exchanged routing advertisement over this

Ivan Marsic • Rutgers University

120

tree topology using a routing protocol called Exterior Gateway Protocol (EGP), described in
RFC-904. In the early 1990s, the Internet networking infrastructure opened up to competition in
the US, and a number of ISPs of different sizes emerged. The evolution of the Internet from a
singly-administered backbone to its current commercial structure made EGP obsolete, and it is
now replaced by BGP (Section 8.2.3). Bordering routers (called speaker nodes) implement both
intra-domain and inter-domain routing protocols. Inter-domain routing protocols are based on
path vector routing. Path vector routing is discussed in RFC-1322 (http://tools.ietf.org/html/rfc1322)

[Berg, 2008] introduces the issues about peering and transit in the global Internet. [Johari &
Tsitsiklis, 2004]. [He & Walrand, 2006] present a generic pricing model for Internet services
jointly offered by a group of providers and propose a fair revenue-sharing policy based on the
weighted proportional fairness criterion. [Shrimali & Kumar, 2006] develop game-theoretic
models for Internet Service Provider peering when ISPs charge each other for carrying traffic and
study the incentives under which rational ISPs will participate in this game. [Srinivas & Srikant,
2006] study economics of network pricing with multiple ISPs.

Section 1.5: Link-Layer Protocols and Technologies

IEEE 802.2 is the IEEE 802 standard defining Logical Link Control (LLC). The standard is
available online here: http://standards.ieee.org/getieee802/802.2.html. Both Ethernet (802.3) and
Wi-Fi (802.11) have different physical sublayers and MAC sublayers but converge on the same
LLC sublayer (i.e., 802.2), so they have the same interface to the network layer.

The IETF has defined a serial line protocol, the Point-to-Point Protocol (PPP), in RFC-1661
[Simpson, 1994] (see also RFC-1662 and RFC-1663). RFC-1700 and RFC-3232 define the 16-bit
protocol codes used by PPP in the Protocol field (Figure 1-56). PPP uses HDLC (bit-synchronous
or byte synchronous) framing. High-Level Data Link Control (HDLC) is a link-layer protocol
developed by the International Organization for Standardization (http://www.iso.org/). The current
standard for HDLC is ISO-13239, which replaces previous standards. The specification of PPP
adaptation for IPv4 is RFC-1332, and the IPv6 adaptation specification is RFC-5072. Current use
of the PPP protocol is in traditional serial lines, authentication exchanges in DSL networks using
PPP over Ethernet (PPPoE) [RFC-2516], and in the Digital Signaling Hierarchy (generally
referred to as Packet-on-SONET/SDH) using PPP over SONET/SDH [RFC-2615].

Ethernet was originally developed at Xerox’s Palo Alto Research Center (PARC) in 1973 to 1975
by Robert Metcalfe and David Boggs. The name “Ethernet” refers to the cable (the ether) and it
originates from the luminiferous ether, through which electromagnetic radiation was once thought
to propagate. Network hosts on an Ethernet network use a MAC protocol based on CSMA/CD to
coordinate their access to the broadcast medium. As a historic curiosity, in March 1974, Robert Z.
Bachrach wrote a memo to Metcalfe and Boggs and their management, stating that “technically
and conceptually there is nothing new in your proposal” and that “analysis would show that your
system would be a failure.” However, this simple technology pretty much blew away any
sophisticated technologies that competed with it over more than thirty years. (Check also Mr.
Bachrach’s response here:
http://www.reddit.com/comments/1xz13/in_1974_xerox_parc_engineers_invented_ethernet).

Digital Equipment Corporation (DEC), Intel, and Xerox published the Ethernet Version 1.0
standard in 1978 for a 10-Mbps version of Ethernet, called the DIX standard. In September

Chapter 1 • Introduction to Computer Networking 121

1980, the IEEE 802.3 working group released a draft standard 802.3 of the 10-Mbps version of
Ethernet, with some minor changes from the DIX standard. In 1982, DEC, Intel, and Xerox
published Ethernet Version 2.0 or Ethernet II. Meanwhile, the IEEE draft standard was
approved in 1983 and was subsequently published as an official standard in 1985 (ANSI/IEEE
Std 802.3-1985). Although there are some minor differences between the two technologies, the
terms Ethernet and 802.3 are generally used synonymously. Since then, a number of
supplements to the standard have been defined to take advantage of improvements in the
technologies and to support additional communication media and higher data rate capabilities,
plus several new optional medium access control features. The latest version of the 802.3
standard is available online at: http://standards.ieee.org/getieee802/802.3.html.

Ethernet’s collision detection does severely limit practical throughput on loaded, unswitched
networks. As a result, almost no one uses unswitched networks anymore, and full duplex Gigabit
Ethernet does not support unswitched operation. Basically, today’s modern, high speed Ethernet
connections are synchronized connections that can use the full bandwidth of the wire without
worrying about collisions.

The IEEE Std 802.11 is a wireless local area network specification. [Crow, et al., 1997]
discusses IEEE 802.11 wireless local area networks. In fact, 802.11 is a family of evolving
wireless LAN standards. The 802.11n specification is described in this book in Section 6.3.1. The
latest version of the 802.11 standard is available online at:
http://standards.ieee.org/getieee802/802.11.html.

Raj Jain, “Books on Quality of Service over IP,”
Online at: http://www.cse.ohio-state.edu/~jain/refs/ipq_book.htm

Useful information about QoS can be found here:

Leonardo Balliache, “Practical QoS,” Online at: http://www.opalsoft.net/qos/index.html

Ivan Marsic • Rutgers University

122

Problems

Note: Look for problem solutions on the back of this book, starting on page Error!

Problem 1.1

Suppose you wish to transmit a long message from a source to a destination over a network path
that crosses two routers. Assume that all communications are error free and no
acknowledgements are used. The propagation delay and the bit rate of the communication lines
are the same. Ignore all delays other than transmission and propagation delays.

(a) Given that the message consists of N packets, each L bits long, how long will it take to
transmit the entire message?

(b) If, instead, the message is sent as 2×N packets, each L/2 bits long, how long will it take to
transmit the entire message?

(c) Are the durations in (a) and (b) different? Will anything change if we use smaller or
larger packets? Explain why yes or why no.

Problem 1.2

Suppose host A has four packets to send to host B using Stop-and-Wait protocol. If the packets
are unnumbered (i.e., the packet header does not contain the sequence number), draw a time-
sequence diagram to show what packets arrive at the receiver and what ACKs are sent back to
host A if the ACK for packet 2 is lost.

Problem 1.3

Suppose two hosts, sender A and receiver B, communicate using Stop-and-Wait ARQ method.
Subsequent packets from A are alternately numbered with 0 or 1, which is known as the
alternating-bit protocol.

(a) Show that the receiver B will never be confused about the packet duplicates if and only if there
is a single path between the sender and the receiver.

(b) In case there are multiple, alternative paths between the sender and the receiver and
subsequent packets are numbered with 0 or 1, show step-by-step an example scenario where
receiver B is unable to distinguish between an original packet and its duplicates.

Problem 1.4

Assume that the network configuration shown in the figure below runs the Stop-and-Wait
protocol. The signal propagation speed for both links is 2 × 108 m/s. The length of the link from

Chapter 1 • Introduction to Computer Networking 123

the sender to the router is 100 m and from the router to the receiver is 10 km. Determine the
sender utilization.

10 Mbps 1 Mbps

Sender ReceiverRouter

Problem 1.5

Suppose two hosts are using Go-back-2 ARQ. Draw the time-sequence diagram for the
transmission of seven packets if packet 4 was received in error.

Problem 1.6

Consider a system using the Go-back-N protocol over a fiber link with the following parameters:
10 km length, 1 Gbps transmission rate, and 512 bytes packet length. (Propagation speed for fiber
≈ 2 × 108 m/s and assume error-free and full-duplex communication, i.e., link can transmit
simultaneously in both directions. Also, assume that the acknowledgment packet size is
negligible.) What value of N yields the maximum utilization of the sender?

Problem 1.7

Consider a system of two hosts using a sliding-window protocol sending data simultaneously in
both directions. Assume that the maximum frame sizes (MTUs) for both directions are equal and
the acknowledgements may be piggybacked on data packets, i.e., an acknowledgement is carried
in the header of a data frame instead of sending a separate frame for acknowledgment only.

(a) In case of a full-duplex link, what is the minimum value for the retransmission timer that
should be selected for this system?

(b) Can a different values of retransmission timer be selected if the link is half-duplex?

Problem 1.8

Suppose three hosts are connected as shown in the figure. Host A sends packets to host C and host
B serves merely as a relay. However, as indicated in the figure, they use different ARQ’s for
reliable communication (Go-back-N vs. Selective Repeat). Notice that B is not a router; it is a
regular host running both receiver (to receive packets from A) and sender (to forward A’s packets
to C) applications. B’s receiver immediately relays in-order packets to B’s sender.

A B C
Go-back-3 SR, N=4

Draw side-by-side the timing diagrams for A→B and B→C transmissions up to the time where
the first seven packets from A show up on C. Assume that the 2nd and 5th packets arrive in error to
host B on their first transmission, and the 5th packet arrives in error to host C on its first
transmission.

Discuss the merits of sending ACKs end-to-end, from destination C to source A, as opposed to
sending ACKs independently for each individual link.

Ivan Marsic • Rutgers University

124

Problem 1.9

Consider the network configuration as in Problem 1.8. However, this time around assume that the
protocols on the links are reverted, as indicated in the figure, so the first pair uses Selective
Repeat and the second uses Go-back-N, respectively.

 A B C
SR, N=4 Go-back-3

Draw again side-by-side the timing diagrams for A→B and B→C transmissions assuming the
same error pattern. That is, the 2nd and 5th packets arrive in error to host B on their first
transmission, and the 5th packet arrives in error to host C on its first transmission.

Problem 1.10

Assume the following system characteristics (see the figure below):

The link transmission speed is 1 Mbps; the physical distance between the hosts is 300 m; the link
is a copper wire with signal propagation speed of 2 × 108 m/s. The data packets to be sent by the
hosts are 2 Kbytes each, and the acknowledgement packets (to be sent separately from data
packets) are 10 bytes long. Each host has 100 packets to send to the other one. Assume that the
transmitters are somehow synchronized, so they never attempt to transmit simultaneously from
both endpoints of the link.

Each sender has a window of 5 packets. If at any time a sender reaches the limit of 5 packets
outstanding, it stops sending and waits for an acknowledgement. Because there is no packet loss
(as stated below), the timeout timer value is irrelevant. This is similar to a Go-back-N protocol,
with the following difference.

The hosts do not send the acknowledgements immediately upon a successful packet reception.
Rather, the acknowledgements are sent periodically, as follows. At the end of an 82 ms period,
the host examines whether any packets were successfully received during that period. If one or
more packets were received, a single (cumulative) acknowledgement packet is sent to
acknowledge all the packets received in this period. Otherwise, no acknowledgement is sent.

Consider the two scenarios depicted in the figures (a) and (b) below. The router in (b) is 150 m
away from either host, i.e., it is located in the middle. If the hosts in each configuration start
sending packets at the same time, which configuration will complete the exchange sooner? Show
the process.

Chapter 1 • Introduction to Computer Networking 125

Packets to
send to B

Packets to
send to A

Host A Host B Host A Host B

Router

(a) (b)

Assume no loss or errors on the communication links. The router buffer size is unlimited for all
practical purposes and the processing delay at the router approximately equals zero. Notice that
the router can simultaneously send and receive packets on different links.

Problem 1.11

Consider two hosts directly connected and communicating using Go-back-N ARQ in the presence
of channel errors. Assume that data packets are of the same size, the transmission delay tx per
packet, one-way propagation delay tp, and the probability of error for data packets equals pe.
Assume that ACK packets are effectively zero bytes and always transmitted error free.

(a) Find the expected delay per packet transmission. Assume that the duration of the timeout
tout is large enough so that the source receives ACK before the timer times out, when both
a packet and its ACK are transmitted error free.

(b) Assume that the sender operates at the maximum utilization and determine the expected
delay per packet transmission.

Note: This problem considers only the expected delay from the start of the first attempt at a
packet’s transmission until its successful transmission. It does not consider the waiting delay,
which is the time the packet arrives at the sender until the first attempt at the packet’s
transmission. The waiting delay will be considered later in Section 4.4.

Problem 1.12

Given a 64Kbps link with 1KB packets and RTT of 0.872 seconds:

(a) What is the maximum possible throughput, in packets per second (pps), on this link if a
Stop-and-Wait ARQ scheme is employed and all transmissions are error-free?

(b) Again assuming that S&W ARQ is used, what is the expected throughput (pps) if the
probability of error-free transmission is p=0.95?

(c) If instead a Go-back-N (GBN) sliding window ARQ protocol is deployed, what is the
average throughput (pps) assuming error-free transmission and fully utilized sender?

(d) For the GBN ARQ case, derive a lower bound estimate of the expected throughput (pps)
given the probability of error-free transmission p=0.95.

Ivan Marsic • Rutgers University

126

Problem 1.13

Assume a slotted ALOHA system with 10 stations, a channel with transmission rate of 1500 bps,
and the slot size of 83.33 ms. What is the maximum throughput achievable per station if packets
are arriving according to a Poisson process?

Problem 1.14

Consider a slotted ALOHA system with m stations and unitary slot length. Derive the following
probabilities:

(a) A new packet succeeds on the first transmission attempt

(b) A new packet suffers exactly K collisions and then a success

Problem 1.15

Consider a slotted ALOHA network with m mobile stations and packet arrivals modeled as a
Poisson process with rate λ. Solve the following:

(a) Assuming that this system operates with maximum efficiency, what are the fractions of
slots that, on average, go unused (idle), slots that are used for successful transmission,
and slots that experience packet collisions?

(b) Describe under what scenarios the system would operate with a less-than-maximum
efficiency. Under such scenarios, what are the fractions of idle, successful, and collision
slots?

(c) Given a steady arrival rate λ, would each non-maximum-efficiency operating point
remain stable? Explain why yes or why no.

Hint: Carefully examine Figure 1-28 and other figures related to ALOHA.

Problem 1.16

Problem 1.17

Suppose two stations are using nonpersistent CSMA with a modified version of the binary
exponential backoff algorithm, as follows. In the modified algorithm, each station will always
wait 0 or 1 time slots with equal probability, regardless of how many collisions have occurred.

(a) What is the probability that contention ends (i.e., one of the stations successfully
transmits) on the first round of retransmissions?

(b) What is the probability that contention ends on the second round of retransmissions (i.e.,
success occurs after one retransmission ends in collision)?

(c) What is the probability that contention ends on the third round of retransmissions?

(d) In general, how does this algorithm compare against the nonpersistent CSMA with the
normal binary exponential backoff algorithm in terms of performance under different
types of load?

Chapter 1 • Introduction to Computer Networking 127

Problem 1.18

A network using random access protocols has three stations on a bus with source-to-destination
propagation delay τ. Station A is located at one end of the bus, and stations B and C are together
at the other end of the bus. Frames arrive at the three stations are ready to be transmitted at
stations A, B, and C at the respective times tA = 0, tB = τ/2, and tC = 3τ/2. Frames require
transmission times of 4τ. In appropriate timing diagrams with time as the horizontal axis, show
the transmission activity of each of the three stations for (a) Pure ALOHA; (b) Non-persistent
CSMA; (c) CSMA/CD.
Note: In case of collisions, show only the first transmission attempt, not retransmissions.

Problem 1.19

Problem 1.20

Consider a local area network using the CSMA/CA protocol shown in Figure 1-33. Assume that
three stations have frames ready for transmission and they are waiting for the end of a previous
transmission. The stations choose the following backoff values for their first frame: STA1 = 5,
STA2 = 9, and STA3=2. For their second frame backoff values, they choose: STA1 = 7, STA2 =
1, and STA3=4. For the third frame, the backoff values are STA1 = 3, STA2 = 8, and STA3=1.
Show the timing diagram for the first 5 frames. Assume that all frames are of the same length.

Problem 1.21

Consider a CSMA/CA protocol that has a backoff window size equal 2 slots. If a station transmits
successfully, it remains in state 1. If the transmission results in collision, the station randomly
chooses its backoff state from the set {0, 1}. If it chooses 1, it counts down to 0 and transmits.
(See Figure 1-33 for details of the algorithm.) What is the probability that the station will be in a
particular backoff state?

Hint: Figure 1-80 shows an analogy with a playground slide. A kid is climbing the stairs and
upon reaching Platform-1 decides whether to enter the slide or to proceed climbing to Platform-2
by tossing a fair coin. If the kid enters the slide on Platform-1, he slides down directly through
Tube-1. If the kid enters the slide on Platform-2, he slides through Tube-2 first, and then
continues down through Tube-1. Think of this problem as the problem of determining the
probabilities that the kid will be found in Tube-1 or in Tube-2. For the sake of simplicity, we will
distort the reality and assume that climbing the stairs takes no time, so the kid is always found in
one of the tubes.

Problem 1.22

Consider a CSMA/CA protocol with two backoff stages. If a station previously was idle, or it just
completed a successful transmission, or it experienced two collisions in a row (i.e., it exceeded
the retransmission limit, equal 2), then it is in the first backoff stage. In the first stage, when a
new packet arrives, the station randomly chooses its backoff state from the set {0, 1}, counts
down to 0, and then transmits. If the transmission is successful, the station remains in the first
backoff stage and waits for another packet to send. If the transmission results in collision, the

Ivan Marsic • Rutgers University

128

station jumps to the second backoff stage. In the second stage, the station randomly chooses its
backoff state from the set {0, 1, 2, 3}, counts down to 0, and then retransmits the previously
collided packet. If the transmission is successful, the station goes to the first backoff stage and
waits for another packet to send. If the transmission results in collision, the station discards the
packet (because it reached the retransmission limit, equal 2), and then jumps to the first backoff
stage and waits for another packet to send.

Continuing with the playground-slide analogy of Problem 1.21, we now imagine an amusement
park with two slides, as shown in Figure 1-81. The kid starts in the circled marked “START.” It
first climbs Slide-1 and chooses whether to enter it at Platform-11 or Platform-12 with equal
probability, i.e., 0.5. Upon sliding down and exiting from Slide-1, the kid comes to two gates.
Gate-1 leads back to the starting point. Gate-2 leads to Slide-2, which consists of four tubes. The
kid decides with equal probability to enter the tube on one of the four platforms. That is, on
Platform-21, the kid enters the tube with probability 0.25 or continues climbing with probability
0.75. On Platform-22, the kid enters the tube with probability 1/3 or continues climbing with
probability 2/3. On Platform-23, the kid enters the tube with probability 0.5 or continues climbing
with probability 0.5. Upon sliding down and exiting from Slide-1, the kid always goes back to the
starting point.

Platform 1

Platform 2

Platform 1

Platform 2

Figure 1-80: A playground-slide analogy to help solve Problem 1.21.

Chapter 1 • Introduction to Computer Networking 129

Problem 1.23

Consider three wireless stations using the CSMA/CA protocol at the channel bit rate of 1 Mbps.
The stations are positioned as shown in the figure. Stations A and C are hidden from each other
and both have data to transmit to station B. Each station uses a timeout time for
acknowledgements equal to 334 μsec. The initial backoff window range is 32 slots and the
backoff slot duration equals 20 μsec. Assume that both A and C each have a packet of 44 bytes to
send to B.

Suppose that stations A and C just heard station B send an acknowledgement for a preceding
transmission. Let us denote the time when the acknowledgement transmission finished as t = 0.
Do the following:

(a) Assuming that station A selects the backoff countdown bA1 = 12 slots, determine the
vulnerable period for reception of the packet for A at receiver B.

Range of A’s
transmissions

A
B

C

Range of C’s
transmissions

Tube 11
Tube 12

Platform 11

Platform 12

Tube 11
Tube 12

Platform 11

Platform 12

Tube 21
Tube 22

Tube 23
Tube 24

Platform 21

Platform 22

Platform 23

Platform 24

Tube 21
Tube 22

Tube 23
Tube 24

Platform 21

Platform 22

Platform 23

Platform 24

Gate 1

Gate 2

Slide 2

Slide 1

Figure 1-81: An analogy of a playground with two slides to help solve Problem 1.22.

Ivan Marsic • Rutgers University

130

(b) Assuming that simultaneously station C selects the backoff countdown bC1 = 5 slots,
show the exact timing diagram for any packet transmissions from all three stations, until
either a successful transmission is acknowledged or a collision is detected.

(c) After a completion of the previous transmission (ended in step (b) either with success or
collision), assume that stations A and C again select their backoff timers (bA2 and bC2,
respectively) and try to transmit a 44-bytes packet each. Assume that A will start its
second transmission at tA2. Write the inequality for the range of values of the starting time
for C’s second transmission (tC2) in terms of the packet transmission delay (tx),
acknowledgement timeout time (tACK) and the backoff periods selected by A and C for
their first transmission (bA1 and bC1, respectively).

Problem 1.24

Kathleen is emailing a long letter to Joe. The letter size is 16 Kbytes. Assume that TCP is used
and the connection crosses 3 links as shown in the figure below. Assume link layer header is 40
bytes for all links, IP header is 20 bytes, and TCP header is 20 bytes.

(a) How many packets/datagrams are generated in Kathleen’s computer on the IP level?
Show the derivation of your result.

(b) How many fragments Joe receives on the IP level? Show the derivation.

(c) Show the first 4 and the last 5 IP fragments Joe receives and specify the values of all
relevant parameters (data length in bytes, ID, offset, flag) in each fragment header.
Fragment’s ordinal number should be specified. Assume initial ID = 672.

(d) What will happen if the very last fragment is lost on Link 3? How many IP datagrams
will be retransmitted by Kathleen’s computer? How many retransmitted fragments will
Joe receive? Specify the values of all relevant parameters (data length, ID, offset, flag) in
each fragment header.

Problem 1.25

Consider the network in the figure below, using link-state routing (the cost of all links is 1):

Kathleen Joe

R1 R2
Link 1 MTU
= 512 bytes

Link 2 MTU
= 1500 bytes

Link 3 MTU
= 256 bytes

C

BA F G

Chapter 1 • Introduction to Computer Networking 131

Suppose the following happens in sequence:

(a) The BF link fails

(b) New node H is connected to G

(c) New node D is connected to C

(d) New node E is connected to B

(e) A new link DA is added

(f) The failed BF link is restored

Show what link-state advertisements (LSAs) will flood back and forth for each step above.
Assume that (i) the initial LSA sequence number at all nodes is 1, (ii) no packets time out, (iii)
each node increments the sequence number in their LSA by 1 for each step, and (iv) both ends of
a link use the same sequence number in their LSA for that link, greater than any sequence number
either used before.

[You may simplify your answer for steps (b)-(f) by showing only the LSAs which change (not
only the sequence number) from the previous step.]

Problem 1.26

Problem 1.27

Consider the network in the figure below and assume that the distance vector algorithm is used
for routing. Show the distance vectors after the routing tables on all nodes are stabilized. Now

assume that the link AC with weight equal to 1 is broken. Show the distance vectors on all nodes
for up to five subsequent exchanges of distance vectors or until the routing tables become
stabilized, whichever comes first.

Problem 1.28

Consider the following network, using distance-vector routing:

A CB D

1 11

4

1
1

50

A

C

B

Ivan Marsic • Rutgers University

132

Suppose that, after the network stabilizes, link C–D goes down. Show the routing tables on the
nodes A, B, and C, for the subsequent five exchanges of the distance vectors. How do you expect
the tables to evolve for the future steps? State explicitly all the possible cases and explain your
answer.

Problem 1.29

Consider the network shown in the figure, using the distance vector routing algorithm. Assume
that all routers exchange their distance vectors periodically every 60 seconds regardless of any
changes. If a router discovers a link failure, it broadcasts its updated distance vector within 1
second of discovering the failure.

(a) Start with the initial state where the nodes know only the costs to their neighbors, and
show how the routing tables at all nodes will reach the stable state.

(b) Use the results from part (a) and show the forwarding table at node A. [Note: use the
notation AC to denote the output port in node A on the link to node C.]

(c) Suppose the link CD fails. Give a sequence of routing table updates that leads to a routing
loop between A, B, and C.

(d) Would a routing loop form in (c) if all nodes use the split-horizon routing technique?
Would it make a difference if they use split-horizon with poisoned reverse? Explain your
answer.

Problem 1.30

Problem 1.31

You are hired as a network administrator for the network of sub-networks shown in the figure.
Assume that the network will use the CIDR addressing scheme.

R1

R2

E F

A

B

C

D

A

B

C D3

5 1

1

Chapter 1 • Introduction to Computer Networking 133

(a) Assign meaningfully the IP addresses to all hosts on the network. Allocate the minimum
possible block of addresses for your network, assuming that no new hosts will be added
to the current configuration.

(b) Show how routing/forwarding tables at the routers should look after the network
stabilizes (do not show the process).

Problem 1.32

The following is a forwarding table of a router X using CIDR. Note that the last three entries
cover every address and thus serve in lieu of a default route.

Subnet Mask Next Hop
223.92.32.0 / 20 A
223.81.196.0 / 12 B
223.112.0.0 / 12 C
223.120.0.0 / 14 D
128.0.0.0 / 1 E
64.0.0.0 / 2 F
32.0.0.0 / 3 G

State to what next hop the packets with the following destination IP addresses will be delivered:

(a) 195.145.34.2

(b) 223.95.19.135

(c) 223.95.34.9

(d) 63.67.145.18

(e) 223.123.59.47

(f) 223.125.49.47

(Keep in mind that the default matches should be reported only if no other match is found.)

Problem 1.33

Suppose a router receives a set of packets and forwards them as follows:

(a) Packet with destination IP address 128.6.4.2, forwarded to the next hop A

(b) Packet with destination IP address 128.6.236.16, forwarded to the next hop B

(c) Packet with destination IP address 128.6.29.131, forwarded to the next hop C

(d) Packet with destination IP address 128.6.228.43, forwarded to the next hop D

Reconstruct only the part of the router’s forwarding table that you suspect is used for the above
packet forwarding. Use the CIDR notation and select the shortest network prefixes that will
produce unambiguous forwarding:

Network Prefix Subnet Mask Next Hop
…………………………… ……………….. …
…………………………… ……………….. …
…………………………… ……………….. …
…………………………… ……………….. …

X

A
B

C

D

E
F

G

Ivan Marsic • Rutgers University

134

Problem 1.34

Problem 1.35

Consider the internetwork of autonomous systems shown in Figure 1-49. Assume that all stub
ASs already advertised the prefixes of their networks so by now the internetwork topology is
known to all other ASs. (We assume that non-stub ASs do not advertise any destinations within
themselves—they advertise their presence only if they lay on a path to a stub-AS destination.)
Given the business interests of different ASs, and as illustrated in Figure 1-50 and Figure 1-51,
customers of different ISPs will not learn about all links between all ASs in the internetwork. For
example, customers of ISP ϕ will see the internetwork topology as shown in the figure below:

γ’s customers η’s customers ϕ’s customers

Noodle.comMacrospot.com

φ

ϕηγ

α

δ ε

Internetwork topology
as seen by

ϕ’s customers

β
χ

As explained in the description of Figure 1-50, ASη has no interest in carrying ASϕ’s transit
traffic, so it will not advertise that it has a path to ASδ. Therefore, ASϕ and its customers will not
learn about this path. For the same reason the connection between ASδ and ASα will not be
visible. Notice that ASϕ will learn about alternative paths from/to Macrospot.com or Noodle.com
through ASs χ and β, respectively, because multihomed ASs will advertise their network prefixes
to all directly connected ISPs.

Your task is to show the respective views of the internetwork topology for the customers of ASs γ
and η, and for the corporations Macrospot.com or Noodle.com. For each of these ASs, draw the
internetwork topology as they will see it and explain why some connections or ASs will not be
visible, if there are such.

Problem 1.36

Consider the internetwork of autonomous systems shown in the figure below. Autonomous
systems α and β are peers and they both buy transit from AS γ. Assume that all links cost 1 (one
hop) and every AS uses hot-potato routing to forward packets (destined for other ASs) towards
speaker nodes.

Chapter 1 • Introduction to Computer Networking 135

AS β
(Tier-3)

AS α
(Tier-3)

AS γ
(Tier-2)

Y

A
B

C
D

H

I

K
J

E

F

G

X

$

$

Regular router

Speaker router

(d) How many paths (in terms of autonomous systems, not individual routers) to customers

of AS β are available for use to reach customers of AS α?
(e) What path will traffic from host X to host Y normally take? List the autonomous systems

and within each autonomous system list the individual routers (hop-by-hop). How about
traffic from host Y to host X?

(f) Is it possible for all traffic from host X to host Y and vice versa to take the same path?
Explain why yes or why no, and if yes, how this can be achieved.

(g) Is it possible for traffic from host X to host Y and vice versa to take the same that includes
AS γ? Explain why yes or why no, and if yes, how this can be achieved.

Problem 1.37

Problem 1.38

Problem 1.39

Problem 1.40

PPP uses the Link Control Protocol (LCP) to establish, maintain, and terminate the physical
connection. During the link establishment phase, the configuration parameters are negotiated by
an exchange of LCP frames. Before information can be sent on a link, each of the two computers
that make up the connection must test the link and agree on a set of parameters under which the
link will operate. If the negotiation converges, the link is established and either the authentication
is performed or the network layer protocol can start sending data. If the endpoints fail to negotiate
a common configuration for the link, it is closed immediately. LCP is also responsible for
maintaining and terminating the connection.

Ivan Marsic • Rutgers University

136

Initiator Responder

Authentication and NCP configuration

Link Open:
Send and receive data

Configure-Request

Configure-Ack ||
Configure-Nak ||
Configure-Reject

Initiate link configurationInitiate link configuration

Finish link configurationFinish link configuration

Process linkProcess link
configuration requestconfiguration request

Terminate linkTerminate link

Receive close request,Receive close request,
Notify other deviceNotify other device

Terminate linkTerminate link

Terminate-Request

Terminate-Ack

The Configure-Request message is sent to request a link establishment and it contains the various
options requested. This request is responded with a Configure-Ack (“acknowledge”) if every
requested option is acceptable. A Configure-Nak (“negative acknowledge”) is sent if all the
requested options are recognizable but some of their requested values are not acceptable. This
message includes a copy of each configuration option that the Responder found unacceptable and
it suggests an acceptable negotiation.

A Configure-Reject is sent if any of the requested options were either unrecognizable or represent
unacceptable ways of using the link or are not subject to negotiation. This message includes the
objectionable options. Configure-Request frames are transmitted periodically until either a
Configure-Ack is received, or the number of frames sent exceeds the maximum allowed value.

A simplified format of an LCP frame is as follows (Figure 1-58):

Code Identifier Data

The Code field identifies the type of LCP frame, such as Configure-Request, Configure-Ack,
Terminate-Request, etc. The Identifier field carries an identifier that is used to match associated
requests and replies. When a frame is received with an invalid Identifier field, the frame is
silently discarded without affecting the protocol execution.

• For a Configure-Request frame, the Identifier field must be changed whenever the
contents of the Data field changes (Data carries the link configuration options), and
whenever a valid reply has been received for a previous request. For retransmissions, the
Identifier may remain unchanged.

• For a configuration response frame (Configure-Ack, Configure-Nak, or Configure-
Reject), the Identifier field is an exact copy of the Identifier field of the Configure-
Request that caused this response frame.

• For a Terminate-Request frame, the Identifier field must be changed whenever the
content of the Data field changes, and whenever a valid reply has been received for a
previous request. For retransmissions, the Identifier may remain unchanged.

Chapter 1 • Introduction to Computer Networking 137

• For a Terminate-Ack frame, on reception, the Identifier field of the Terminate-Request is
copied into the Identifier field of the Terminate-Ack frame.

During the link establishment phase, only LCP frames should be transmitted in the PPP frames.
Any non-LCP frames received during this phase must be silently discarded.

The LCP link termination frames are: Terminate-Request, which represents the start of the link
termination phase; and, Terminate-Ack, which acknowledges the receipt of a recognizable
Terminate-Request frame, and accepts the termination request. Under ideal conditions, the link
termination phase is signaled end-to-end using LCP link termination frames. However, the link
termination phase also can be caused by a loss of carrier or an immediate shutdown by the system
administrator.

Explain the following:
(a) Why are unique identifiers needed in LCP frames? Why a configuration response frame,

such as Configure-Ack, without the Identifier field is insufficient? Illustrate your
argument by drawing a time-diagram for a scenario where LCP link configuration would
fail if the Identifier field did not exist.

(b) Why is the “two-way handshake” using Terminate-Ack frame needed in the link
termination phase? Illustrate your argument by drawing a time-diagram of a scenario
where LCP link termination would fail if Terminate-Ack were not sent.

Problem 1.41

Problem 1.42

Consider the following Ethernet network where all the switches employ the spanning tree
protocol (STP) to remove the loops in the network topology. The numbers in parentheses
represent the switches’ identifiers.

Switch B
(ID = 342)

X Switch C
(ID = 719)

Switch A
(ID = 193)

Y

Ivan Marsic • Rutgers University

138

Start when the network is powered up and stop when the network stabilizes (i.e., only the root
switch remains generating configuration frames). Assume that all switches send configuration
messages in synchrony with each other (although in reality generally this is not the case). Do the
following:

(a) List all the configuration messages sent by all switches until the network stabilizes.
Recall that a configuration message carries source-ID, root-ID, root-distance.

(b) For each switch, indicate which ports will be selected as “root,” “designated,” or
“blocked” by the spanning tree protocol.

(c) How many iterations will take for the network to stabilize?
(d) After the network stabilizes, draw the path that a frame sent by station X will traverse to

reach station Y.

Problem 1.43

Problem 1.44

Consider a local area network using the CSMA/CA protocol shown in Figure 1-33. Assume that
three stations have frames ready for transmission and they are waiting for the end of a previous
transmission. The stations choose the following backoff values for their first frame: STA1 = 5,
STA2 = 9, and STA3=2. For their second frame backoff values, they choose: STA1 = 7, STA2 =
1, and STA3=4. For the third frame, the backoff values are STA1 = 3, STA2 = 8, and STA3=3.
Show the timing diagram for the first 5 frames. Assume that all frames are of the same length.

Note: Compare the solution with that of Problem 1.20.

Problem 1.45

Consider an independent BSS (IBSS) with two mobile STAs, A and B, where each station has a
single packet to send to the other one. Draw the precise time diagram for each station from the
start to the completion of the packet transmission. For each station, select different packet arrival
time and a reasonable number of backoff slots to count down before the station commences its
transmission so that no collisions occur during the entire session. (Check Table 1-6 for contention
window ranges.) Assume that both stations are using the basic transmission mode and only the
first data frame transmitted is received in error (due to channel noise, not collision).

Problem 1.46

139

Contents
2.1 Introduction

2.1.1 Reliable Byte Stream Service
2.1.2 Retransmission Timer
2.1.3 Flow Control

2.2 Congestion Control
2.2.1 TCP Tahoe
2.2.2 TCP Reno
2.2.3 TCP NewReno

2.3 Fairness
2.3.1 x
2.3.2 x
2.3.3 x
2.3.4 x

2.4 Recent TCP Versions
2.4.1 x
2.4.2
2.4.3

2.5 TCP over Wireless Links
2.5.1 x
2.5.2
2.5.3

2.6 x
2.5.1 x
2.5.2 x
2.5.3 x

2.8 Summary and Bibliographical Notes

Problems

Chapter 2
Transmission Control Protocol (TCP)

2.1 Introduction

Transmission Control Protocol (TCP) is usually not associated
with quality of service; but one could argue that TCP offers
QoS in terms of assured delivery and efficient use of
bandwidth, although it provides no delay guarantees. TCP is,
after all, mainly about efficiency and adaptation: how to deliver
data utilizing the maximum available (but fair) share of a
dynamically changing network capacity so to reduce the delay.
That is why our main focus here is only one aspect of TCP—
congestion avoidance and control. The interested reader should
consult additional sources for other aspects of TCP, e.g.,
[Stevens 1994; Peterson & Davie 2007; Kurose & Ross 2010].
We start quality-of-service review with TCP because it does
not assume any knowledge of or any cooperation from the
network. The network is essentially seen as a black box.

In Chapter 1 we have seen that pipelined
ARQ protocols, such as Go-back-N,
increase the utilization of network
resources by allowing multiple packets to be simultaneously in transit (or,
in flight) from sender to receiver. The “flight size” is controlled by a
parameter called window size which must be set according to the available
network resources. Remember that network is responsible for data from the

moment it accepts them at sender’s end until they are delivered at receiver’s end. The network is
storing the data for the “flight duration” and for this it must reserve resources, avoiding the
possibility of becoming overbooked. In case of two end hosts connected by a single link, the
optimal window size is easy to determine and remains static for the duration of session. However,
this task is much more complex in a general multi-hop network.

TCP (Transmission
Control Protocol)

Layer 2:

Network

Layer 1:

Link

Layer 3:

End-
to-End

Ivan Marsic • Rutgers University

140

2.1.1 Reliable Byte Stream Service

TCP provides a byte stream service, which means that a stream of 8-bit bytes is exchanged across
the TCP connection between the two applications. TCP does not automatically insert any
delimiters of the data records. An application using TCP might “write” to it several times only to
have the data compacted into a common segment and delivered as such to its peer. For example,
if the application on one end writes 20 bytes, followed by a write of 30 bytes, followed by a write
of 10 bytes, the application at the other end of the connection cannot tell what size the individual
writes were. The other end may read the 60 bytes in two reads of 30 bytes at a time. One end puts
a stream of bytes into TCP and the same, identical stream of bytes appears at the other end.

It is common to use the term “segment” for TCP packets. The TCP segments are encapsulated
into IP packets and sent to the destination (Figure 2-1).

Like any other data packet, the TCP segment consists of the header and the data payload (Figure
2-2). The header consists of a 20-byte mandatory part, plus a variable-size options field. Most of
regular TCP segments found on the Internet will have fixed 20-byte header and the options field
is rarely used. The description of the header fields is as follows.

Source port number and destination port number: These numbers identify the sending and
receiving applications on their respective hosts. A network application is rarely the sole
“inhabitant” of a host computer; usually, the host runs multiple applications (processes), such as a
web browser, email client, multimedia player, etc. Similar to an apartment building, where an
apartment number is needed in addition to the street address to identify the recipient uniquely, the
applications communicating over TCP are uniquely identified by their hosts’ IP addresses and the
applications’ port numbers.

Sequence number: The 32-bit sequence number field identifies the position of the first data byte
of this segment in the sender’s byte stream during data transfer (when SYN bit is not set).
Because TCP provides a byte-stream service, each byte of data has a sequence number.

Application

OSI Layer 4/5: TCP

OSI Layer 3: IP

From application: stream of bytes

Slice into
TCP segments

Packetize into
IP packets

TCP TCP
hdr payload

TCP TCP
hdr payload

TCP TCP
hdr payload

TCP TCP
hdr payload

IP
hdr

TCP TCP
hdr payload

IP
hdr
IP

hdr
TCP TCP
hdr payload

IP
hdr

TCP TCP
hdr payload

IP
hdr
IP
hdr

TCP TCP
hdr payload

NetworkNetwork

To application: stream of bytes

Unwrap TCP segments

Concatenate to the byte stream

Figure 2-1: TCP accepts a stream of bytes as input from the application, slices it into
segments, and passes to the IP layer as IP packets.

Chapter 2 • Transmission Control Protocol (TCP) 141

Acknowledgment number: The 32-bit acknowledgement number field identifies the sequence
number of the next data byte that the receiver expects to receive. This field is valid only if the
ACK bit is set; otherwise, it should be ignored by the recipient of this segment.

Header length: This field specifies the length of the TCP header in 32-bit words. This field is
also known as the Offset field, because it informs the segment receiver where the data begins
relative to the start of the segment. Regular header length is 20 bytes, so the default (and
minimum allowed) value of this field equals 5. In case the options field is used, the value can be
up to 42 − 1 = 15, which means that the options field may contain up to (15 − 5) × 4 = 40 bytes.

Unused: This field is reserved for future use and must be set to 0.

Flags: There are six bits allocated for the flags field, as follows:

URG: If this bit is set, the urgent data pointer field of the header is valid (described later).

ACK: When this bit is set, the acknowledgement number field of the header is valid and the
recipient of this segment should pay attention to the acknowledgement number.

PSH: If this bit is set, it requires the TCP receiver to pass the received data to the receiving
application immediately. Normally, this bit is not set and the TCP receiver may choose to
buffer the received segment until it accumulates more data in the receive buffer.

16-bit source port number 16-bit destination port number

32-bit sequence number

flags

options (if any)

TCP segment data (if any)

0 15 16 31

16-bit TCP checksum 16-bit urgent data pointer

16-bit advertised receive window size
4-bit

header
length

unused
(6 bits)

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

20
bytes

32-bit
acknowledgement number

T
C

P
 p

ay
lo

ad
T

C
P

 h
ea

de
r

Figure 2-2: TCP segment format.

Ivan Marsic • Rutgers University

142

RST: When set, this bit requires the TCP receiver to abort the connection because of some
abnormal condition. For example, the segment’s sender may have received a segment it did
not expect to receive and wants to abort the connection.

SYN: This bit requests a connection (discussed later).

FIN: When set, this bit informs the TCP receiver that the sender does not have any more data
to send. The sender can still receive data from the receiver until it receives a segment with the
FIN bit set from the other direction.

Receive window size: This field specifies the number of bytes the sender is currently willing to
accept. This field can be used to control the flow of data and congestion, as described later in
Sections 2.1.3 and 2.2, respectively.

Checksum: This field helps in detecting errors in the received segments.

Urgent data pointer: When the URG bit is set, the value of this field should be added to the
value of the sequence number field to obtain the location of the last byte of the “urgent data.” The
first byte of the urgent data is never explicitly defined. Because the TCP receiver passes data to
the application in sequence, any data in the receive buffer up to the byte pointed by the urgent-
data pointer may be considered urgent.

Options: The options field may be used to provide functions other than those covered by the
regular header. This field may be up to 40 bytes long and if its length is not a multiple of 32 bits,
extra padding bits should be added. The options field is used by the TCP sender and receiver at
the connection establishment time, to exchange some special parameters, as described later.

The pseudo code in Listing 2-1 summarizes the TCP sender side protocol. In reality, both TCP
sender and TCP receiver are implemented within the same TCP protocol module. Notice also that
the method send() is part of sender’s code, whereas the method handle() is part of
receiver’s code. However, to keep the discussion manageable, I decided to focus only on sender’s
side. See also Figure 2-3 for the explanation of the buffering parameters and Figure 2-8 for TCP
sender’s state diagram.

Listing 2-1: Pseudo code for RTO timer management in a TCP sender.

 1 public class TCPSender {

 2 // window size that controls the maximum number of outstanding segments
 2a // equation (2.3a) explains how EffectiveWindow is calculated
 3 private long effectiveWindow;

 4 // maximum segment size (MSS)
 5 private long MSS;

 6 // sequence number of the last byte sent thus far, initialized randomly
 7 private long lastByteSent;

 8 // sequence number of the last byte for which the acknowledgement
 8a // from the receiver arrived thus far, initialized randomly
 9 private long lastByteAcked;

Chapter 2 • Transmission Control Protocol (TCP) 143

10 // list of unacknowledged segments that may need to be retransmitted
11 private ArrayList unacknowledgedSegments = new ArrayList();

12 // network layer protocol that provides services to TCP protocol (normally, IP protocol)
13 private ProtocolNetworkLayer networkLayerProtocol;

14 // constructor
15 public TCPSender(ProtocolNetworkLayer networkLayerProtocol) {
16 this.networkLayerProtocol = networkLayerProtocol;

17 lastByteSent = initial sequence number;
18 lastByteAcked = initial sequence number;
19 }

20 // reliable byte stream service offered to an upper layer (or application)
20a // takes as input a long message ('data' input parameter) and transmits in segments
21 public void send(
21a byte[] data, String destinationAddr,
21b ProtocolLayer_iUP upperProtocol
21c) throws Exception {
22 // slice the application into segments of size MSS and send one-by-one
23 for (i = 0; i < (data.length % MSS); i++) {

24 // if the sender already used up the limit of outstanding packets, then wait
25 if (effectiveWindow - unacknowledgedSegments.size() > 0){
26 suspend this thread;
27 wait until some ACKs are received;
28 }

21 // create a new TCP segment with sequence number equal to LastByteSent;
21a // if (data.length < (i+1)*MSS), i.e., the remaining data slice is smaller than one MSS
21b // then use padding or Nagle's algorithm (described later)
22 current_data_pointer = data + i*MSS;
22 TCPSegment outgoingSegment =
23 new TCPSegment(
23a current_data_pointer, destinationAddr, upperProtocol
23b);

24 if (RTO timer not already running) { start the timer; }

25 unacknowledgedSegments.add(outgoingSegment);
26 lastByteSent += outgoingSegment.getLength();

27 // hand the packet down the stack to IP for transmission
27a // Note: outgoingSegment must be serialized to a byte-array as in Listing 1-1
28 networkLayerProtocol.send(// (omitted for clarity)
28a outgoingSegment, destinationAddr, this
28b);
29 }

30 // upcall method (called from the IP layer), when an acknowledgment is received
31 public void handle(byte[] acknowledgement) {

32 // acknowledgement carries the sequence number of

Ivan Marsic • Rutgers University

144

32a // the next byte expected by the TCP receiver
33 if (acknowledgement.nextByteExpected > lastByteAcked) {
34 remove the acknowledged segment from
34a the unacknowledgedSegments array;
35 lastByteAcked = acknowledgement.nextByteExpected;
36 if (lastByteAcked < lastByteSent) {
37 re-start the RTO timer;
38 } // i.e., there are segments not yet acknowledged
39 }
40 }

41 // this method is called when the RTO timer expires (timeout)
41a // this event signifies segment loss, and the oldest unacknowledged segment is retransmitted
42 public void RTOtimeout() {
43 retrieve the segment with sequence_number == LastByteAcked
43a from unacknowledgedSegments array and retransmit it;

43 double the TimeoutInterval;
44 start the timer;
45 }
46 }

The code description is as follows: … to be described … The reader should compare Listing 2-1
to Listing 1-1 in Section 1.1.4 for a generic protocol module.

The method handle(), which starts on Line 31, normally handles bidirectional traffic and
processes TCP segments that are received from the other end of the TCP connection. Recall also
that TCP acknowledgements are piggybacked on TCP segments (Figure 2-2).

Listing 2-1 provides only a basic skeleton of a TCP sender. The details will be completed in the
following sections as we learn more about different issues.

2.1.2 Retransmission Timer

Problems related to this section: Problem 2.1 → ??, Problem 2.13, and Problem 2.15

[Sending Application] [Receiving Application]

LastByteAcked LastByteSent

FlightSize
(Buffered in send buffer)

TCP
sender’s

byte stream

Sent &
acked

Allowed to
send

NextByteExpected LastByteRecvd

Buffered in RcvBuffer

TCP
receiver’s
byte stream

Delivered to
application

Gap in
recv’d data

Increasing
sequence num.

Increasing
sequence num.

Figure 2-3: Parameters for TCP send and receive buffers.

Chapter 2 • Transmission Control Protocol (TCP) 145

An important parameter for reliable transport over multihop networks is retransmission timer.
This timer triggers the retransmission of packets that are presumed lost. Obviously, it is very
important to set the right value for the timer. For, if the timeout time is too short, the packets will
be unnecessarily retransmitted thus wasting the network bandwidth. And, if the timeout time is
too long, the sender will unnecessarily wait when it should have already retransmitted thus
underutilizing and perhaps wasting the network bandwidth.

It is relatively easy to set the timeout timer for single-hop networks because the propagation time
remains effectively constant. However, in multihop networks queuing delays at intermediate
routers and propagation delays over alternate paths introduce significant uncertainties.

TCP has a special algorithm for dynamically updating the retransmission timeout (RTO) value.
The details are available in RFC-2988 [Paxson & Allman, 2000], and here is a summary. The
RTO timer value, denoted as TimeoutInterval, is initially set as 3 seconds. When the
retransmission timer expires (presumably because of a lost packet), the earliest unacknowledged
data segment is retransmitted and the next timeout interval is set to twice the previous value:

TimeoutInterval(t) = 2 × TimeoutInterval(t−1) (2.1)

This property of doubling the RTO on each timeout is known as exponential backoff.12 If a
segment’s acknowledgement is received before the retransmission timer expires, the TCP sender
measures the round-trip time (RTT) for this segment, denoted as SampleRTT. TCP only
measures SampleRTT for segments that have been transmitted once and not for segments that
have been retransmitted.

12 Recall the discussion from Section 1.3.3 above. In the TCP case, the sender assumes that concurrent TCP

senders are contending for the network resources (router buffers), thereby causing congestion and packet
loss. To reduce the congestion, the sender doubles the retransmission delay by doubling its RTO.

μ0

Measured RTT value

O
cc

u
rr

en
ce

 f
re

q
u

en
cy

o
f

m
ea

s
u

re
d

 R
T

T
 v

al
u

es

0 μ1

σ1

μ2

σ2

RTT distribution measured
during quiet periods

RTT distribution measured
during peak usage periods

0

TimeoutInterval

Cases for which the
RTO timer will expire
too early

σ

(a)
(b)

(c)

Measured RTT value

Figure 2-4: Distribution of measured round-trip times for a given sender-receiver pair.

Ivan Marsic • Rutgers University

146

Suppose you want to determine the statistical characteristics of round-trip time values for a given
sender-receiver pair. As illustrated in Figure 2-4(a), the histogram obtained by such measurement
can be approximated by a normal distribution13 N(μ, σ) with the mean value μ and the standard
deviation σ. If the measurement were performed during different times of the day, the obtained
distributions may look quite different, Figure 2-4(b). Therefore, the timeout interval should be
dynamically adapted to the observed network condition. The remaining decision is about setting
the TimeoutInterval. As illustrated in Figure 2-4(c), there will always be some cases for
which any finite TimeoutInterval is too short and the acknowledgement will arrive after the
timeout already expired. Setting TimeoutInterval = μ + 4σ will cover nearly 100 % of all
the cases. Therefore, for the subsequent data segments, the TimeoutInterval is set according
to the following equation:

TimeoutInterval(t) = EstimatedRTT(t) + 4 ⋅ DevRTT(t) (2.2)

where EstimatedRTT(t) is the currently estimated mean value of RTT:

EstimatedRTT(t) = (1−α) ⋅ EstimatedRTT(t − 1) + α ⋅ SampleRTT(t)

The initial value is set as EstimatedRTT(0) = SampleRTT(0) for the first RTT measurement.
This approach to computing the running average of a variable is called Exponential Weighted
Moving Average (EWMA). Similarly, the current standard deviation of RTT, DevRTT(t), is
estimated as:

DevRTT(t) = (1−β) ⋅ DevRTT(t − 1) + β ⋅ |SampleRTT(t) − EstimatedRTT(t − 1)|

The initial value is set as DevRTT(0) =
2

1
SampleRTT(0) for the first RTT measurement. The

recommended values of the control parameters α and β are α = 0.125 and β = 0.25. These values
were determined empirically.

In theory, it is simplest to maintain individual retransmission timer for each outstanding packet.
In practice, timer management involves considerable complexity, so most protocol
implementations maintain single timer per sender. RFC-2988 recommends maintaining single
retransmission timer per TCP sender, even if there are multiple transmitted-but-not-yet-
acknowledged segments. Of course, individual implementers may decide otherwise, but in this
text, we follow the single-timer recommendation for TCP.

TCP sends segments in bursts (or, groups of segments), every burst containing the number of
segments limited by the current window size. Recall from Section 1.3.2 that in all sliding window
protocols, the sender is allowed to have only up to the window-size outstanding amount of data
(yet to be acknowledged). The same holds for the TCP sender. Once the window-size worth of
segments is sent, the sender stops and waits for acknowledgements to arrive. For every arriving
ACK, the sender is allowed to send certain number of additional segments, as governed by the
rules described later. The retransmission timer management is included in the pseudo code in
Listing 2-1 (Section 2.1.1). The following summary extracts and details the key points of the
retransmission timer management from Listing 2-1:

13 In reality, multimodal RTT distributions (i.e., with several peaks) are observed. The interested reader can

find relevant links at this book’s website—follow the link “Related Online Resources,” then look under
the topic of “Network Measurement.”

Search the Web for RTT distribution measurementSearch the Web for RTT distribution measurement

Chapter 2 • Transmission Control Protocol (TCP) 147

 In method TCPSender.send(), Listing 2-1 // called by application layer above
 in Line 24:
 if (RTO timer not already running) {
 set the RTO timer to the current value
 as calculated in methods handle() and RTOtimeout();
 start the timer;
 }

In method TCPSender.handle(), Listing 2-1 // called by IP layer when ACK arrives
 in Lines 36 - 38:
 if ((lastByteAcked < lastByteSent) {
 calculate the new value of the RTO timer using Eq. (2.2);
 re-start the RTO timer;
 }

In method TCPSender.RTOtimeout(), Listing 2-1 // called when RTO timer timeout
 in Line 43:
 double the TimeoutInterval; // see Eq. (2.1)
 start the timer;

An important peculiarity to notice about TCP is as follows. When a window-size worth of
segments is sent, the timer is set for the first one, assuming that the timer is not already running
(Line 24 in Listing 2-1). For every acknowledged segment of the burst, the timer is restarted for
its subsequent segment in Line 37 in Listing 2-1. Thus, the actual timeout time for the segments
towards the end of a burst can run quite longer than for those near the beginning of the burst. An
example will be seen later in Section 2.2 in the solution of Example 2.1.

2.1.3 Flow Control

TCP receiver accepts out-of-order segments, but they are buffered and not delivered to the
application above the TCP layer before the gaps are filled. For this, the receiver allocates memory
space of the size RcvBuffer, which is typically set to 4096 bytes, although older versions of
TCP set it to 2048 bytes. The receive buffer is used to store in-order segments as well, because
the application may be busy with other tasks and does not fetch the incoming data immediately.
For the sake of simplicity, in the following discussion we will assume that in-order segments are
immediately fetched by the application, unless stated otherwise.

To avoid having its receive buffer overrun, the receiver continuously advertises the remaining
buffer space to the sender using a field in the TCP header; we call this variable RcvWindow. It is
dynamically changing to reflect the current occupancy state of the receiver’s buffer. The sender
should never have more than the current RcvWindow amount of data outstanding. This process is
called flow control. Figure 2-5 illustrates the difference between the flow control as opposed to
congestion control, which is described later in Section 2.2.

Figure 2-6 shows how an actual TCP session might look like. The notation 0:512(512) means
transmitted data bytes 1 through but not included 512, which is a total of 512 bytes. The first
action is to establish the session, which is done by the first three segments, which represent the
three-way handshake procedure. Here I briefly summarize the three-way handshake. The

Ivan Marsic • Rutgers University

148

interested reader should consult another source for more details, e.g., [Stevens 1994; Peterson &
Davie 2007; Kurose & Ross 2010].

The first three segments are special in that they do not contain data (i.e., they have only a header),
and the SYN flag in the header is set (Figure 2-2). In this example, the client offers RcvWindow =
2048 bytes, and the server offers RcvWindow = 4096 bytes. In our case, the client happens to be
the “sender,” but server or both client and server can simultaneously be senders and receivers.
They also exchange the size of the future segments, MSS (to be described later, Table 2-1), and
settle on the smaller one of 1024 and 512 bytes, i.e., 512 bytes. During the connection-
establishment phase, the client and the server will transition through different states, such as
LISTEN, SYN_SENT, and ESTABLISHED (marked in Figure 2-6 on the right-hand side). As
stated earlier, both sender and receiver instantiate their sequence numbers randomly. In Figure
2-6, the sender selects 122750000, while the receiver selects 2363371521. Hence, the sender
sends a zero-bytes segment
 122750000:122750000(0)

The receiver acknowledges it and sends its own initial sequence number by sending
 2363371521:2363371521(0); ack 122750000

Flow control Congestion control

Feedback:
“Receiver
overflowing”

Feedback:
“Not much
getting through”

Sender

Receiver

Sender

Receiver

Sender

Receiver

Sender

Receiver

Figure 2-5: Flow control compared to congestion control.

Chapter 2 • Transmission Control Protocol (TCP) 149

i.e., it sends zero data bytes and acknowledges zero data bytes received from the sender (the ACK
flag is set). To avoid further cluttering the diagram, I am using these sequence numbers only for
the first three segments. For the remaining segments, I simply assume that the sender starts with
the sequence number equal to zero. In Figure 2-6, the server sends no data to the client, so the
sender keeps acknowledging the first segment from the receiver and acknowledgements from

ClientClient ServerServer

#1

#2

CongWin = 1 MSS = 512 bytes
RcvWindow = 4096 bytes

CongWin = 1 + 1 = 2

CongWin = 2 +1+1 = 4

CongWin = 5 +1+1+1 = 8

#2

#6

#7

#10

#10

#10

(TCP Sender) (TCP Receiver)

#3

#4

#4

LISTEN
(passive open)

SYN_SENT
(active open)

SYN_RCVD

ESTABLISHED

ESTABLISHED

C
o

n
n

ectio
n

E
stab

lish
m

en
t

D
ata T

ran
sp

o
rt

(In
itial p

h
a

s
e: “S

lo
w

 S
tart”)

Gap in sequence!
(buffer 512 bytes)

Gap in sequence!
(buffer 1024 bytes)

#14

#10

#5

#6

#7

#8

#9

#11

#12

#13

#14

SYN 122750000:122750000(0)
win 2048, <mss 1024>

ack 2363371521, win 2048

1024:1536(512), ack 0, win 2048

1536:2048(512), ack 0, win 2048

ack 1536, win 4096

2560:3072(512)

ack 2048, win 3584

ack 3584, win 4096

4096:4608(512)

4608:5120(512), ack 0, win 2048

512:1024(512), ack 0, win 2048

ack 512, win 4096

SYN 2363371521:2363371521(0)

ack 122750000, win 4096, <mss 512>

2048:2560(512), ack 0, win 2048

3072:3584(512), ack 0, win 2048

0:512(512), ack 0, win 2048

3584:4098(512), ack 0, win 2048

5120:5632(512), ack 0, win 2048

ack 5632, win 4096

ack 2048, win 4096 #7

CongWin = 4 +1 = 5

CongWin = 8 +1+1+1+1 = 12

#7

2560:3072(512)

2048:2560(512), ack 0, win 2048

3072:3584(512), ack 0, win 2048

#7

#8

#9

ack 2048, win 4096 #7

ack 2048, win 3584 (duplicate)

detail:

detail

Time

ack 3584, win 3072
ack 3584, win 3584

#6

Figure 2-6: Initial part of the time line of an example TCP session. Time increases down the
page. See text for details. (The CongWin parameter on the left side of the figure will be
described later in Section 2.2.)

Ivan Marsic • Rutgers University

150

sender to receiver carry the value 0 for the sequence number (recall that the actual value of the
server’s sequence number is 2363371521).

After establishing the connection, the sender starts sending packets. Figure 2-6 illustrates how
TCP incrementally increases the number of outstanding segments. This procedure is called slow
start, and it will be described later. TCP assigns byte sequence numbers, but for simplicity we
usually show packet sequence numbers. Notice that the receiver is not obliged to acknowledge
individually every single in-order segment—it can use cumulative ACKs to acknowledge several
of them up to the most recent contiguously received data. Conversely, the receiver must
immediately generate (duplicate) ACK—dupACK—for every out-of-order segment, because
dupACKs help the sender detect segment loss (as described in Section 2.2).

Notice that receiver might send dupACKs even for successfully transmitted segments because of
random re-ordering of segments in the network. This is the case with segment #7 (detail at the
bottom of Figure 2-6), which arrives after segment #8. Thus, if a segment is delayed further than
three or more of its successors, the duplicate ACKs will trigger the sender to re-transmit the
delayed segment, and the receiver may eventually receive a duplicate of such a segment.

2.2 Congestion Control

TCP maneuvers to avoid congestion in the first place, and controls the damage if congestion
occurs. The key characteristic of TCP is that all the intelligence for congestion avoidance and
control is in the end hosts—no help is expected from the intermediary hosts.

A key problem addressed by the TCP protocol is to determine the optimal window size
dynamically in the presence of uncertainties and dynamic variations of available network
resources.

Early versions of TCP would start a connection with the sender injecting multiple segments into
the network, up to the window size advertised by the receiver. The problems would arise due to
intermediate router(s), which must queue the packets before forwarding them. If that router runs
out of memory space, large number of packets would be lost and had to be retransmitted.

Figure 2-7: Simple congestion-control scenario for TCP.

Chapter 2 • Transmission Control Protocol (TCP) 151

Jacobson [1988] showed how this naïve approach could reduce the throughput of a TCP
connection drastically.

The problem is illustrated in Figure 2-7, where the whole network is abstracted as a single
bottleneck router. It is easy for the receiver to know about its own available buffer space and
advertise the right window size to the sender (denoted by RcvWindow). The problem is with the
intermediate router(s), which serve data flows between many sources and receivers. Bookkeeping
and policing of fair use of router’s resources is a difficult task, because router must forward the
packets as quickly as possible, and it is practically impossible to dynamically determine the “right
window size” of the router’s memory allocated for each flow and advertise it back to the sender.

TCP approaches this problem by putting the entire burden of determining the right window size
of the bottleneck router onto the end hosts. Essentially, the sender dynamically probes the
network and adjusts the amount of data in flight to match the bottleneck resource. The algorithm
used by TCP sender can be summarized as follows:

1. Start with a small size of the sender window

2. Send a burst (size of the current sender window) of packets into the network

3. Wait for feedback about success rate (acknowledgements from the receiver end)

4. When feedback obtained:

a. If the success rate is greater than zero, increase the sender window size and go to
Step 2

b. If loss is detected, decrease the sender window size and go to Step 2

This simplified procedure will be elaborated as we present the details in the following text. It is
important to notice that TCP controls congestion in the sense that it first needs to cause
congestion, next to observe it though the feedback, and then to react by reducing the input. This
cycle is repeated in a never-ending loop. Section 2.4 describes other variants of TCP that try to
avoid congestion, instead of causing it (and then controlling it).

Table 2-1 shows the most important parameters (all the parameters are maintained in integer units
of bytes). Buffering parameters are shown in Figure 2-3. Figure 2-8 and Figure 2-9 summarize
the algorithms run at the sender and receiver. These are digested from RFC 2581 and RFC 2001
and the reader should check the details on TCP congestion control in [Allman et al. 1999; Stevens
1997]. [Stevens 1994] provides a detailed overview with traces of actual runs.

Table 2-1. TCP congestion control parameters (measured in integer number of bytes). Also
see Figure 2-3.

Variable Definition

MSS The size of the largest segment that the sender can transmit. This value can be
based on the maximum transmission unit (MTU) of the network, the path MTU
discovery algorithm, or other factors. The size does not include the TCP/IP
headers and options. [Note that RFC 2581 distinguishes sender maximum
segment size (SMSS) and receiver maximum segment size (RMSS).]

Ivan Marsic • Rutgers University

152

RcvWindow The size of the most recently advertised receiver window.

CongWindow Sender’s current estimate of the available buffer space in the bottleneck router.

LastByteAcked The highest sequence number currently acknowledged.

LastByteSent The sequence number of the last byte the sender sent.

FlightSize The amount of data that the sender has sent, but not yet had acknowledged.

EffectiveWindow The maximum amount of data that the sender is currently allowed to send. At
any given time, the sender must not send data with a sequence number higher
than the sum of the highest acknowledged sequence number and the minimum
of CongWindow and RcvWindow.

SSThresh The slow start threshold used by the sender to decide whether to employ the
slow-start or congestion-avoidance algorithm to control data transmission.

Notice that the sender must assure at all times that:

LastByteSent ≤ LastByteAcked + min {CongWindow, RcvWindow}

Therefore, the amount of unacknowledged data (denoted as FlightSize) should not exceed
this value at any time:

FlightSize = LastByteSent − LastByteAcked ≤ min {CongWindow, RcvWindow}

At any moment during a TCP session, the maximum amount of data the TCP sender is allowed to
send is (marked as “allowed to send” in Figure 2-3):

EffectiveWindow = min {CongWindow, RcvWindow} − FlightSize (2.3a)

Here we assume that the sender can only send MSS-size segments; the sender holds with
transmission until it collects at least an MSS worth of data. This is not always true, and the
application can request speedy transmission, thus generating small packets, so called tinygrams.
The application does this using the TCP_NODELAY socket option, which sets PSH flag (Figure
2-2). This is particularly the case with interactive applications, such as telnet or secure shell.
Nagle’s algorithm [Nagle 1984] constrains the sender to have unacknowledged at most one
segment smaller than one MSS. For simplicity, we assume that the effective window is always
rounded down to integer number of MSS-size segments:

EffectiveWindow = min {CongWindow, RcvWindow} − FlightSize (2.3b)

Figure 2-6 illustrates the TCP slow start phase. In slow start, CongWindow starts at one
segment and gets incremented by one segment every time an ACK is received. As it can be seen,
this opens the congestion window exponentially: send one segment, then two, four, eight and so
on.

The only “feedback” TCP receives from the network is by having packets lost in transport. TCP
considers that these are solely lost to congestion, which, of course, is not necessarily true—
packets may be lost to channel noise or even to a broken link. A design is good as long as its
assumptions hold and TCP works fine over wired networks, because other types of loss are
uncommon therein. However, in wireless networks, this underlying assumption breaks and it
causes a great problem as will be seen later in Section 2.5.

Chapter 2 • Transmission Control Protocol (TCP) 153

As far as TCP is concerned, it does not matter when a packet loss happened (somewhere in the
network, on a router); what matters is when the loss is detected (at the TCP sender). Packet loss
happens in the network and the network is not expected to notify the TCP endpoints about the
loss—the endpoints have to detect loss indirectly and deal with it on their own. Packet loss is of
little concern to TCP receiver, except that it buffers out-of-order segments and waits for the gap
in sequence to be filled. TCP sender is the one mostly concerned about the loss and the one that
takes actions in response to detected loss. TCP sender detects loss via two types of events
(whichever occurs first):

1. Timeout timer expiration

dupACK received /
Count it & Send EfctWin of data

ACK received /
Send EfctWin (∗) of data
& Re-start RTO timer (†)

RTO timeout /
Re-send oldest outstanding segment

& Re-start RTO timer (‡)

Start /

Slow Start

RTO timeout /
Re-send oldest outstanding segment

& Re-start RTO timer (‡)

Fast retransmit
dupACK received & count ≥ 3 /

re-send oldest outstanding segment
& Re-start RTO timer (†)

ACK received /
Send EfctWin (∗) of data
& Re-start RTO timer (†)

Congestion Avoidance

dupACK received /
Count it & Send EfctWin (∗) of data

ACK received /
Send EfctWin (∗) of data
& Re-start RTO timer (†)

ACK received /
Send EfctWin (∗) of data
& Re-start RTO timer (†)

Fast retransmit
dupACK received & count ≥ 3 /

re-send oldest outstanding segment
& Re-start RTO timer (†)

dupACKs
count > 0

dupACKS
count ≡ 0

dupACKs
count > 0

dupACKS
count ≡ 0

ACK received & (CongWin > SSThresh) /
Send EfctWin (∗) of data
& Re-start RTO timer (†)

Reno Sender

Figure 2-8: TCP Reno sender state diagram. (∗) Effective window depends on CongWin,
which is computed differently in slow-start vs. congestion-avoidance. (†) RTO timer is
restarted if LastByteAcked < LastByteSent. (‡) RTO size doubles, SSThresh = CongWin/2.

In-order segment received /

500 msec elapsed /
Send ACK

In-order segment /
Send ACK

Buffering out-of-order segments
(LastByteRecvd > NextByteExpected)

Out-of-order segment /
Buffer it & Send dupACK

Out-of-order segment /
Buffer it & Send dupACK

In-order segment, completely fills gaps /
Send ACK

In-order segment,
partially fills gaps /

Send ACK

Start /

Immediate
acknowledging

Delayed
acknowledging

All segments received in-order
(NextByteExpected = LastByteRecvd + 1)

TCP Receiver

Figure 2-9: TCP receiver state diagram.

Ivan Marsic • Rutgers University

154

2. Reception of three14 duplicate ACKs (four identical ACKs without the arrival of any
other intervening packets)

Upon detecting the loss, TCP sender takes action to avoid further loss by reducing the amount of
data injected into the network. (TCP also performs fast retransmission of what appears to be the
lost segment, without waiting for a RTO timer to expire.) There are many versions of TCP, each
having different reaction to loss. The two most popular ones are TCP Tahoe and TCP Reno, of
which TCP Reno is more recent and currently prevalent in the Internet. Table 2-2 shows how they
detect and handle segment loss.

Table 2-2: How different TCP senders detect and deal with segment loss.

Event TCP Version TCP Sender’s Action

Timeout
Tahoe

Set CongWindow = 1×MSS
Reno

≥ 3×dup
ACKs

Tahoe Set CongWindow = 1×MSS

Reno Set CongWindow = max {½ FlightSize, 2×MSS} + 3×MSS

As seen in Table 2-2, different versions react differently to three dupACKs: the more recent
version of TCP, i.e., TCP Reno, reduces the congestion window size to a lesser degree than the
older version, i.e., TCP Tahoe. The reason is that researchers realized that three dupACKs
signalize lower degree of congestion than RTO timeout. If the RTO timer expires, this may signal
a “severe congestion” where nothing is getting through the network. Conversely, three dupACKs
imply that three packets got through, although out of order, so this signals a “mild congestion.”

The initial value of the slow start threshold SSThresh is commonly set to 65535 bytes = 64 KB.
When a TCP sender detects segment loss using the retransmission timer, the value of SSThresh
must be set to no more than the value given as:

SSThresh = max {½ FlightSize, 2×MSS} (2.4)

where FlightSize is the amount of outstanding data in the network (for which the sender has
not yet received an acknowledgement). The floor operation ⋅ rounds the first term down to the
next multiple of MSS. Notice that some networking books and even TCP implementations state
that, after a loss is detected, the slow start threshold is set as SSThresh = ½ CongWindow,
which according to RFC-2581 is incorrect.15

14 The reason for three dupACKs is as follows. Because TCP does not know whether a lost segment or just

a reordering of segments causes a dupACK, it waits for a small number of dupACKs to be received. It is
assumed that if there is just a reordering of the segments, there will be only one or two dupACKs before
the reordered segment is processed, which will then generate a fresh ACK. Such is the case with
segments #7 and #10 in Figure 2-6. If three or more dupACKs are received in a row, it is a strong
indication that a segment has been lost.

15 The formula SSThresh = ½ CongWindow is an older version for setting the slow-start threshold,
which appears in RFC-2001 as well as in [Stevens 1994]. I surmise that it was regularly used in TCP
Tahoe, but should not be used with TCP Reno.

Chapter 2 • Transmission Control Protocol (TCP) 155

10 Mbps

1 Mbps

6+1 packets

Sender Receiver

Congestion can occur when packets arrive on a big pipe (a fast LAN) and are sent out a smaller
pipe (a slower WAN). Congestion can also occur when multiple input streams arrive at a router
whose output capacity (transmission speed) is less than the sum of the input capacities. Here is an
example:

Example 2.1 Congestion Due to Mismatched Pipes with Limited Router Resources

Consider an FTP application that transmits a huge
file (e.g., 20 MBytes) from host A to B over the
two-hop path shown in the figure. The link
between the router and the receiver is called the
“bottleneck” link because it is much slower than
any other link on the sender-receiver path.
Assume that the router can always allocate the
buffer size of only six packets for our session and
in addition have one of our packets currently being transmitted. Packets are only dropped when the
buffer fills up. We will assume that there is no congestion or queuing on the path taken by ACKs.

Assume MSS = 1KB and a constant TimeoutInterval = 3×RTT = 3×1 sec. Draw the graphs for
the values of CongWindow (in KBytes) over time (in RTTs) for the first 20 RTTs if the sender’s TCP
congestion control uses the following:

(a) TCP Tahoe: Additive increase / multiplicative decrease and slow start and fast retransmit.

(b) TCP Reno: All the mechanisms in (a) plus fast recovery.

Assume a large RcvWindow (e.g., 64 KB) and error-free transmission on all the links. Assume also
that duplicate ACKs do not trigger growth of the CongWindow (i.e., only regular ACKs increase the
CongWindow size). Finally, to simplify the graphs, assume that all ACK arrivals occur exactly at unit
increments of RTT and that the associated CongWindow update occurs exactly at that time, too.

The solutions for (a) and (b) are shown in Figure 2-10 through Figure 2-15. The discussion of the
solutions is in the following text. Notice that, unlike Figure 2-6, the transmission rounds are “clocked”
and neatly aligned to the units of RTT. This idealization is only for the sake of illustration and the real
world would look more like Figure 2-6. [Note that this idealization would stand in a scenario with
propagation delays much longer than transmission delays.]

Ivan Marsic • Rutgers University

156

Let us first consider what happens at the router, as illustrated in Figure 2-11. The reader should
recall the illustration in Figure 1-17, which shows that packets are first completely received at the
link layer before they are passed up the protocol stack (to IP and on to TCP). The link speeds are
mismatched by a factor of 10 : 1, so the router will transmit only a single packet on the second
link while the sender already transmitted ten packets on the first link. Normally, this would only
cause delays at the router, but with limited router resources there is also a loss of packets. This is
detailed in Figure 2-11, where the three packets in excess of the router buffer capacity are
discarded (numbered #23, #24, and #25). Thereafter, until the queue slowly drains, the router has

SenderSender ReceiverReceiver

#1

#2,3

#4,5,6,7

#8,9, …,14,15

#16,17, …,22,
23,…,27,28,29

#15

CongWin = 1 MSS

CongWin = 1 + 1

CongWin = 2 +1+1

CongWin = 4 +1+1+1+1

CongWin = 8 +1+…+1

7

CongWin = 1

CongWin = 1 + 1

#2

#4

#15

#23

EfctWin = 14

EfctWin = 8

8 segments sent

14 segments sent

EfctWin = 0

#8

#15,15,…,15

#15

1 × RTT

2 × RTT

3 × RTT

4 × RTT

5 × RTT

6 × RTT

#30 (1 byte)

#237 × RTT

#31 (1 byte)

#238 × RTT

#32 (1 byte)

#239 × RTT

#23

#2410 × RTT

CongWin = 2′
EfctWin = 0

CongWin = 2′
EfctWin = 0

CongWin = 2′
EfctWin = 0

CongWin = 1

EfctWin = 1

CongWin = 1 + 1

EfctWin = 0

CongWin = 1 + 1

EfctWin = 0

1024 bytes
to application

2 KB
to appl

4 KB
to appl

7 KB
to appl

[1 segment lost]

(buffer 1KB)
[2 segments lost]

8 KB
to appl

1024 bytes
to application

Time [RTT]

Gap in sequence!
(buffer 7 KB)

[4 segments lost]

(buffer 1 byte)

(buffer 1 byte)

(buffer 1 byte)

7+1 × dupACKs

3 × dupACKs

seg 27

seg 15 (retransmission)

ack 15

ack 23

seg 1

ack 2

seg 30 (1 byte)

ack 23

dup ack 15

seg 31 (1 byte)

ack 23

seg 32 (1 byte)

ack 23

seg 23 (retransmission)

ack 24

seg 15

7 × dup ack 15

(loss)

EfctWin = 4

EfctWin = 2

EfctWin = 1

Figure 2-10: TCP Tahoe—partial timeline of segment and acknowledgement exchanges for
Example 2.1. Shown on the sender’s side are ordinal numbers of the sent segments and on the
receiver’s side are those of the ACKs (which indicate the next expected segment).

Chapter 2 • Transmission Control Protocol (TCP) 157

one buffer slot available for every ten new packets that arrive. More details about how routers
forward packets are available in Section 4.1.

It is instructive to observe how the retransmission timer is managed (Figure 2-12). Up to time =
4×RTT, the timer is always reset for the next burst of segments. However, at time = 4×RTT the
timer is set for the 15th segment, which was sent in the same burst as the 8th segment, and not for
the 16th segment because the acknowledgement for the 15th segment is still missing. The reader is
encouraged to inspect the timer management for all other segments in Figure 2-12.

2.2.1 TCP Tahoe

Problems related to this section: Problem 2.2 → Problem 2.7 and Problem 2.9 → Problem 2.12

TCP sender begins with a congestion window equal to one segment and incorporates the slow
start algorithm. In slow start the sender follows a simple rule: For every acknowledged segment,
increment the congestion window size by one MSS (unless the current congestion window size
exceeds the SSThresh threshold, as described later in this section). This procedure continues
until a segment loss is detected. Of course, a duplicate acknowledgement does not contribute to
increasing the congestion window size.

When the sender receives a dupACK, it does nothing but count it. If this counter reaches three or
more dupACKs, the sender decides, by inference, that a loss occurred. In response, it adjusts the
congestion window size and the slow-start threshold (SSThresh), and re-sends the oldest
unacknowledged segment. (The dupACK counter also should be reset to zero.) As shown in
Figure 2-12, the sender detects the loss first time at the fifth transmission round, i.e., at 5×RTT,

181920212227 181920212227

Sender

6 packets buffered:

171819202122 171819202122

Router Receiver

#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29

#16

#17

#18

Transmission time on link_2
equals 10 × (Tx time on link_1)

Segment #16
received

Segment #17
received

Segments
transmitted:

Time = 4 × RTT

T
im

e

Dropped
packets

LastB
yteA

cked
LastB

yteS
ent

#14
#15

#29
#30

F
ligh

tS
ize

LastB
yteR

ecvd
N

extB
yteE

xpected

#14
#15

Figure 2-11: Detail from Figure 2-10 starting at time = 4×RTT. Mismatched transmission
speeds result in packet loss at the bottleneck router.

Ivan Marsic • Rutgers University

158

by receiving eight duplicate ACKs. The congestion window size at this instance is equal to 15360
bytes or 15×MSS. After detecting a segment loss, the sender sharply reduces the congestion
window size in accordance with TCP’s multiplicative decrease behavior. As explained earlier
(Table 2-2), a Tahoe sender resets CongWin to one MSS and reduces SSThresh as given by
Eq. (2.4). Just before the moment the sender received eight dupACKs FlightSize equaled 15,
so the new value of SSThresh = 7.5×MSS is set.

Notice that in TCP Tahoe any additional dupACKs in excess of three do not matter—no new
packet can be transmitted while additional dupACKs after the first three are received. As will be
seen later, TCP Reno sender differs from TCP Tahoe sender in that it starts fast recovery based on
the additional dupACKs received after the first three.

Upon completion of multiplicative decrease, TCP carries out fast retransmit to quickly
retransmit the segment that is suspected lost, without waiting for the RTO timer timeout. Notice
that Figure 2-12 at time = 5×RTT shows EffectiveWindow = 1×MSS. Obviously, this is not
in accordance with Eq. (2.3b), because currently CongWin equals 1×MSS and FlightSize
equals 15×MSS. This simply means that the sender in fast retransmit ignores the
EffectiveWindow size and simply retransmits the segment that is suspected lost. The times
when three (or more dupACKs are received and fast retransmit is employed are highlighted with
circle in Figure 2-12.

Only after receiving a regular, non-duplicate ACK (most likely the ACK for the fast retransmitted
packet), the sender enters a new slow start cycle. After the 15th segment is retransmitted at time =
6×RTT, the receiver’s acknowledgement requests the 23rd segment thus cumulatively
acknowledging all the previous segments. The sender does not re-send #23 immediately because

1
2

4

8

15

1024
2048

4096

8192

16384

[MSS][bytes]

EffctWin

#1

#2
,3

#4
,5

,6
,7

#8
,9

, …
,1

4
,1

5

#1
6

,1
7

,
…

,2
2

,2
3

,…
,2

9

#1
5

#3
0

 (
1

 b
yt

e
)

#3
1

 (
1

 b
yt

e
)

#3
2

 (
1

 b
yt

e
)

#2
3

#3
3

 (
1

b
yt

e
)

#4
4

 (
1

b
yt

e
)

#4
3

 (
1

b
yt

e
)

#4
5

#2
8

#4
7

 (
1

b
yt

e
)

#4
6

 (
1

b
yt

e
)

#8
2

SSThresh

#2
9

#4
8

,4
9

#5
0

,5
1,

5
2

#5
3

,5
4

,5
5,

56

#5
7

,5
8,

5
9

,6
0,

61

#6
2

,6
3,

 …
,6

7

#6
8

,6
9,

 …
,7

4

#7
5

,7
6

,
…

,8
2

#8
3

,8
4

,
…

,8
8

0 1 2 3 4 5 6 7 8 9 10 2423 2625 2827 3029 31 32 33 34 35 36 37 38

S
eg

m
en

ts
 s

en
t

Time

[RTT]

65535

7.5×MSS

2×MSS

Timeout
Timer88

EffctWin

#8
9

,9
0

39

11
22

1515

#3
4

 (
1

b
yt

e
)

11

#4
2

 (
1

b
yt

e
)

22

#2
6

21

4848
5050

5353
5757

6262
6868

7575
8282

44

CongWin

2323
2424

2929
2828

FlightSize

Figure 2-12: TCP Tahoe sender—the evolution of the effective and congestion window sizes
for Example 2.1. The sizes are given on vertical axis (left) both in bytes and MSS units.

Chapter 2 • Transmission Control Protocol (TCP) 159

it still has no indication of loss. Although at time = 7×RTT the congestion window doubles to
2×MSS (because the sender is currently back in the slow start phase), there is so much data in
flight that EffectiveWindow = 0 and the sender is shut down. Notice also that for repetitive
slow starts, only ACKs for the segments sent after the loss was detected count. Cumulative ACKs
for segments before the loss was detected do not count towards increasing CongWin. That is
why, although at 6×RTT the acknowledgement for #23 cumulatively acknowledges packets 15–
22, CongWin grows only by 1×MSS although the sender is in slow start (because there are too
many outstanding segments).

However, even if EffectiveWindow = 0, TCP sender must send a 1-byte segment as
indicated in Figure 2-10 and Figure 2-12. This usually happens when the receiver end of the
connection advertises a window of RcvWindow = 0, and there is a persist timer (also called the
zero-window-probe timer) associated with sending these segments. The tiny, 1-byte segment is
treated by the receiver the same as any other segment. The sender keeps sending these tiny
segments until the effective window becomes non-zero or a loss is detected.

In our example, three duplicate ACKs are received by time = 9×RTT at which point the 23rd
segment is retransmitted. (Although TimeoutInterval = 3×RTT, we assume that ACKs are
processed first, and the RTO timer is simply restarted for the just-retransmitted segment, without
being declared as expired.) This continues until time = 29×RTT at which point the congestion
window exceeds SSThresh and congestion avoidance takes off. The sender is in the congestion
avoidance (also known as additive increase) phase when the current congestion window size is
greater than the slow start threshold (SSThresh). During congestion avoidance, each time an
ACK is received, the congestion window is increased as16:

)1(CongWin

MSS
MSS)1(CongWin)(CongWin

−
×+−=

t
tt [bytes] (2.5)

16 The formula remains the same for cumulative acknowledgements, which acknowledge more than a single

segment, but the reader should check further discussion in [Stevens 1994].

1
2

4

8

15
C

o
n

g
W

in
[M

S
S

]

0 1 2 3 4 5 6 7 8 9 10 2423 2625 2827 3029 31 32 33 34 35 36 37 38

Time

[RTT]3911 2221

Multiplicative decrease

Additive increase
(Congestion avoidance)

Fast retransmit

Slow start

Figure 2-13: TCP Tahoe sender—highlighted are the key mechanisms for congestion
avoidance and control; compare to Figure 2-12.

Ivan Marsic • Rutgers University

160

where CongWin(t−1) is the congestion window size before receiving the current ACK. The
parameter t is not necessarily an integer multiple of round-trip time. Rather, t is just a time step
that occurs whenever a new ACK is received and this can occur several times in a single RTT,
i.e., a transmission round. It is important to notice that the resulting CongWin is not rounded
down to the next integer value of MSS as in other equations. The congestion window can increase
by at most one segment each round-trip time (regardless of how many ACKs are received in that
RTT). This results in a linear increase.

Figure 2-13 summarizes the key congestion avoidance and control mechanisms. Notice that the
second slow-start phase, starting at 5×RTT, is immediately aborted due to the excessive amount
of unacknowledged data. Thereafter, the TCP sender enters a prolonged phase of dampened
activity until all the lost segments are retransmitted through “fast retransmits.”

It is interesting to notice that TCP Tahoe in this example needs 39×RTT in order to successfully
transfer 71 segments (not counting 17 one-byte segments to keep the connection alive, which
makes a total of 88 segments). Conversely, should the bottleneck bandwidth been known and
constant, Go-back-7 ARQ would need 11×RTT to transfer 77 segments (assuming error-free
transmission). In this example, bottleneck resource uncertainty and its dynamics introduce delay
greater than three times the minimum possible one.

2.2.2 TCP Reno

Problems related to this section: Problem 2.8 → Problem 2.13

TCP Tahoe and Reno senders differ in their reaction to three duplicate ACKs. As seen earlier,
Tahoe enters slow start; conversely, Reno enters fast recovery. This is illustrated in Figure 2-14,
derived from Example 2.1.

After the fast retransmit algorithm sends what appears to be the missing segment, the fast
recovery algorithm governs the transmission of new data until a non-duplicate ACK arrives. It is
recommended [Stevens 1994; Stevens 1997; Allman et al. 1999] that CongWindow be
incremented by one MSS for each additional duplicate ACK received over and above the first
three dupACKs. This artificially inflates the congestion window in order to reflect the additional
segment that has left the network. Because three dupACKs are received by the sender, this means
that three segments have left the network and arrived successfully, but out-of-order, at the
receiver. The fast recovery ends when either a retransmission timeout occurs or an ACK arrives
that acknowledges all of the data up to and including the data that was outstanding when the fast
recovery procedure began. After fast recovery is finished, the sender enters congestion avoidance.

As mentioned earlier in the discussion of Table 2-2, the reason for performing fast recovery rather
than slow start is that the receipt of the dupACKs not only indicates that a segment has been lost,
but also that segments are most likely leaving the network (although a massive segment
duplication by the network can invalidate this conclusion). In other words, as the receiver can
only generate a duplicate ACK when an error-free segment has arrived, that segment has left the
network and is in the receive buffer, so we know it is no longer consuming network resources.
Furthermore, because the ACK “clock” [Jac88] is preserved, the TCP sender can continue to
transmit new segments (although transmission must continue using a reduced CongWindow).

TCP Reno sender retransmits the lost segment and sets congestion window to:

Chapter 2 • Transmission Control Protocol (TCP) 161

CongWindow = max {½ FlightSize, 2×MSS} + 3×MSS (2.6)

where FlightSize is the amount of sent but unacknowledged data at the time of receiving the
third dupACK. Compare this equation to (2.4), for computing SSThresh. This artificially
“inflates” the congestion window by the number of segments (three) that have left the network
and which the receiver has buffered. In addition, for each additional dupACK received after the
third dupACK, increment CongWindow by MSS. This artificially inflates the congestion window
in order to reflect the additional segment that has left the network (the TCP receiver has buffered
it, waiting for the missing gap in the data to arrive).

As a result, in Figure 2-14 at 5×RTT when the sender receives 3+5 dupACKs, CongWindow
becomes equal to 1111132

15 ++++++ = 15.5 × MSS. The last five 1’s are due to 7+1−3 = 5

dupACKs received after the initial 3 ones. At 6×RTT the receiver requests the 23rd segment (thus
cumulatively acknowledging up to the 22nd). CongWindow grows slightly to 17.75, but because
there are 14 segments outstanding (#23 → #37), the effective window is shut up. The sender
arrives at standstill and thereafter behaves similar to the TCP Tahoe sender (Figure 2-12).

Notice that, although at time = 10×RTT three dupACKs indicate that three segments that have left
the network, these are only 1-byte segments, so it may be inappropriate to add 3×MSS as Eq. (2.6)
postulates. RFC 2581 does not mention this possibility, so we continue applying Eq. (2.6) and
because of this CongWindow converges to 6×MSS from above.

Figure 2-15 shows partial timeline at the time when the sender starts recovering. After receiving
the 29th segment, the receiver delivers it to the application along with the buffered segments #30

2424

1
2

4

8

15

1024
2048

4096

8192

16384

[MSS][bytes]

EffctWin

#1

#2
,3

#4
,5

,6
,7

#8
,9

,
…

,1
4,

15

#1
6,

17
,

…
,2

2,
23

,…
,2

9

#1
5,

30
,…

,3
5,

36
,3

7

#2
3

#3
8

(1
 b

yt
e

)

#2
4

#5
0

(1
 b

yt
e

)

#2
8

#7
4,

82
,8

3

SSThresh

#2
9

#5
3,

54
,5

5,
56

#3
6,

57

#5
8

#5
9

 (
1

by
te

)

#3
7

#6
0,

61
,

…
,6

6

#6
7,

68
,

…
,7

3,
74

#7
5,

76
,

…
,8

1

0 1 2 3 4 5 6 7 8 9 10 2120 2322 2524 2726 28 29 30 31 32 33 34 35

S
eg

m
en

ts
 s

en
t

Time

[RTT]

65535

#8
4,

85
,…

,9
0,

91
,…

,9
4

,9
5

36

11
22

11 19

#2
6

18

3636
3737

5959
6666

7373

44

2323

2929
2828

7+1 × dupACKs

88
1515

6 × dupACKs

#3
9

(1
 b

yt
e

)

#4
0

(1
 b

yt
e)

CongWin

EffctWin

#4
1

 (
1

by
te

)

3 × dupACKs
#4

7
(1

 b
yt

e)

#4
8

(1
 b

yt
e)

#4
9

(1
 b

yt
e)

#5
1

(1
 b

yt
e)

#5
2

(1
 b

yt
e)

FlightSize

4 × dupACKs

7 × dupACKs

Figure 2-14: TCP Reno sender—the evolution of the effective and congestion window sizes
for Example 2.1. The sizes are given on vertical axis (left) both in bytes and MSS units.

Ivan Marsic • Rutgers University

162

→ #35 (a total of seven segments). At time = 27×RTT, a cumulative ACK arrives requesting the
36th segment (because segments #36 and #37 are lost at 5×RTT). Because CongWindow >
6×MSS and FlightSize = 2×MSS, the sender sends four new segments and each of the four

makes the sender to send a dupACK. At 28×RTT, CongWindow becomes equal to 7132
6  =++

× MSS and FlightSize = 6×MSS (we are assuming that the size of the unacknowledged 1-
byte segments can be neglected).

Regarding the delay, TCP Reno in this example needs 37×RTT to successfully transfer 74
segments (not counting 16 one-byte segments to keep the connection alive, which makes a total
of 90 segments—segment #91 and the consecutive ones are lost). This is somewhat better that
TCP Tahoe and TCP Reno should better stabilize for a large number of segments.

CongWin =

CongWin =

CongWin =

CongWin =
EfctWin = 2

7168 bytes
to application
7168 bytes

to application

1024 bytes
to appl

1024 bytes
to appl

7.6  × MSS
EfctWin = 0

EfctWin = 1

EfctWin = 4
3.6 

13.6 +

CongWin =
EfctWin = 1

3.7 

CongWin =
EfctWin = 0

3.7 

CongWin =
EfctWin = 1

CongWin =
EfctWin = 7

6.7 

3.6132
7.6  =++

6.632
3.7  =+

SenderSender ReceiverReceiver

#52 (1 byte)

#2926 × RTT

#29

#3627 × RTT

#36,36,36,3628 × RTT

(buffer 1 byte)

Gap in sequence!
(buffer 4 KB)

4 × dupACKs

Time [RTT]

3 × dupACKs

#53,54,55,56

#36,57

#3729 × RTT

#58

#3730 × RTT

#59 (1 byte)

#37
31 × RTT

#37

#6032 × RTT

1024 + 16 + 6144
bytes to application

(buffer 1024 bytes)

(buffer 1 KB)

(buffer 1 byte)
3 × dupACKs

#37

#60,61, …,66

seg 52 (1 byte)

ack 29

seg 29

ack 36

ack 37

seg 58

ack 37

seg 59 (1 byte)

ack 37

seg 37

ack 60

seg 36

ack 37

ack 36

Figure 2-15: TCP Reno—partial timeline of segment and ACK exchanges for Example 2.1.
(The slow start phase is the same as for Tahoe sender, Figure 2-10.)

Chapter 2 • Transmission Control Protocol (TCP) 163

2.2.3 TCP NewReno

Problems related to this section: Problem 2.15 → ??

The so-called NewReno version of TCP introduces a further improvement on fast recovery,
which handles a case where two or more segments are lost within a single window. Same as the
ordinary TCP Reno, the NewReno begins the fast recovery procedure when three duplicate
ACKs are received, and ends it when either a retransmission timeout occurs or an ACK arrives
that acknowledges all of the data up to and including the data that was outstanding when the fast
recovery procedure began. After the presumably lost segment is retransmitted by fast retransmit,
if the corresponding ACK arrives, there are two possibilities:

(4) The ACK specifies the sequence number at the end of the current window, in which case
the retransmitted segment was the only segment lost from the current window. We call
this acknowledgement a full acknowledgment.

(5) The ACK specifies the sequence number higher than the lost segment, but lower than the
end of the window, in which case (at least) one more segment from the window has also
been lost. We call this acknowledgement a partial acknowledgment.

As with the ordinary Reno, for each additional dupACK received while in fast recovery,
NewReno increments CongWindow by MSS to reflect the additional segment that has left the
network. The concept of partial acknowledgements is illustrated in Figure 2-17. In this scenario,
the sender sends six segments, of which three are lost: segments #1, #3, and #5. The receiver
buffers the three segments that arrive out of order and send three duplicate acknowledgements.
Upon receiving the three dupACKs, the sender retransmits the oldest outstanding segment (#1)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

CongWindow

EffctWindow

FlightSize

SSThresh

Figure 2-16: TCP Tahoe congestion parameters for Example 2.1 over the first 100
transmission rounds. The overall sender utilization comes to only 25 %. The lightly shaded
background area shows the bottleneck router’s capacity, which, of course, is constant.

Ivan Marsic • Rutgers University

164

and waits. The receiver fills only the first gap and now sends acknowledgement asking for
segment #3. This is a partial acknowledgement, because it does not acknowledge all segments
that were outstanding at the time the loss was detected.

The key idea of TCP NewReno is, if the TCP sender receives a partial acknowledgment during
fast recovery, the sender should respond to the partial acknowledgment by inferring that the next
in-sequence packet has been lost, and retransmitting that packet. In other words, NewReno
proceeds to retransmit the second missing segment, without waiting for three dupACKs or RTO

LastByteAcked =
LastByteSent

#1#1

EffectiveWindow

#2#2 #3#3 #4#4 #5#5 #6#6

NextByteExpected =
LastByteRecvd + 1

LastByteRecvd

TCP Sender TCP Receiver

(loss)

(loss)

(loss)

LastByteAcked LastByteSent

FlightSize

#2#2 #4#4 #6#6

NextByteExpected

Ack#1 (duplicate)

Ack#1 (duplicate)

Ack#1 (duplicate)

Seg#1 (retransmission)

#2#2 #4#4 #6#6

NextByteExpected
LastByteRecvd

#1#1

LastByteRecvd

LOSS DETECTED
(3× dupACKs)

Ack#3 (partial)
LOSS DETECTED
(partial ACK) Seg#3 (retransmission)

Time

Receive bufferLastByteAcked =
LastByteSent

#1#1

EffectiveWindow

#2#2 #3#3 #4#4 #5#5 #6#6

NextByteExpected =
LastByteRecvd + 1

LastByteRecvd

TCP Sender TCP Receiver

(loss)

(loss)

(loss)

LastByteAcked LastByteSent

FlightSize

#2#2 #4#4 #6#6

NextByteExpected

Ack#1 (duplicate)

Ack#1 (duplicate)

Ack#1 (duplicate)

Seg#1 (retransmission)

#2#2 #4#4 #6#6

NextByteExpected
LastByteRecvd

#1#1

LastByteRecvd

LOSS DETECTED
(3× dupACKs)

Ack#3 (partial)
LOSS DETECTED
(partial ACK) Seg#3 (retransmission)

Time

Receive bufferReceive buffer

Figure 2-17: TCP NewReno partial acknowledgements.

Chapter 2 • Transmission Control Protocol (TCP) 165

timer expiration. This means that TCP NewReno adds “partial acknowledgment” to the list of
events in Table 2-2 by which the sender detects segment loss. The sender also deflates its
congestion window by the amount of new data acknowledged by the cumulative
acknowledgement, that is:

NewlyAcked = LastByteAcked(t) − LastByteAcked(t − 1)

CongWindow(t)′ = CongWindow(t − 1) − NewlyAcked (2.7a)

If (NewlyAcked ≥ MSS), then add back MSS bytes to the congestion window:

CongWindow(t) = CongWindow(t)′ + MSS (2.7b)

As with duplicate acknowledgement, this artificially inflates the congestion window in order to
reflect the additional segment that has left the network. This “partial window deflation” attempts
to ensure that, when fast recovery eventually ends, approximately SSThresh amount of data
will be outstanding in the network. Finally, the sender sends a new segment if permitted by the
new value of EffectiveWin.

When a full acknowledgement arrives, it acknowledges all the intermediate segments sent after
the original transmission of the lost segment until the loss is discovered (the sender received the
third duplicate ACK). This does not mean that there are no more outstanding data (i.e.,
FlightSize = 0), because the sender might have sent some new segments after it discovered
the loss (if its EffectiveWin permitted transmission of news segments). At this point, the
sender calculates its congestion window as:

CongWindow = SSThresh (2.8)

Recall that SSThresh is computed using Eq. (2.4), where FlightSize is the amount of data
outstanding when fast recovery was entered, not the current amount of data outstanding17. This
reduction of the congestion window size is termed deflating the window. At this point, the TCP
sender exits fast recovery and enters congestion avoidance.

An example of NewReno behavior is given below. Example 2.2 works over a similar network
configuration as the one in Example 2.1. Again, we have a high-speed link from the TCP sender
to the bottleneck router and a low-speed link from the router to the TCP receiver. However, there
are some differences in the assumptions. In Example 2.1, we assumed a very large RTT, so that
all packet transmission times are negligible compared to the RTT. We also assumed that
cumulative ACKs acknowledged all the segments sent in individual RTT-rounds (or, bursts).
Conversely, in Example 2.2, we will assume that the RTT is on the same order of magnitude as
the transmission time on the second link. In addition, each segment is acknowledged individually.
This results in a somewhat more complex, but also more accurate, analysis of the TCP behavior.

Example 2.2 Analysis of the Slow-Start Phase in TCP NewReno

Consider an application that is engaged in a lengthy file transfer using the TCP NewReno protocol
over the network shown in the figure.

17 RFC-3782 suggests an alternative option to set CongWindow = min{SSThresh, FlightSize +
MSS}, where FlightSize is the current amount of data outstanding. Check RFC 3782 for details.

Ivan Marsic • Rutgers University

166

Sender Receiver

Link 1 4+1 packets

txmit (Link 1) << txmit (Link 2)

tprop (Link 2) = 6 × txmit (Link 2)

Link 2

Router

tprop (Link 1) << tprop (Link 2)

The following assumptions
are made:

A1. Full duplex links connect
the router to each
endpoint host so that
simultaneous
transmissions are
possible in both
directions on each link.
The transmission rate of
Link-1 is much greater than that of Link-2. One-way propagation delay on Link-1 is also
negligible compared to the propagation delay of Link-2. Assume that all packet transmissions are
error free.

A2. The propagation delay on Link-2 (from the router to the receiver equals six times the transmission
delay for data packets on the same link. Also assume that the ACK packet size is negligible, i.e.,
their transmission delay is approximately zero.

A3. The router buffer can hold up to four packets plus one packet currently in transmission. The
packets that arrive to a full buffer are dropped. However, this does not apply to ACK packets, i.e.,
ACKs do not experience congestion or loss.

A4. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after receiving a data
segment.

A5. The receiver has set aside a large receive buffer for the received segments, so this will never be a
limiting factor for the sender’s window size.

Considering only the slow-start phase (until the first segment loss is detected), we would like to know
the following:

(a) The evolution of the parameters such as congestion window size, router buffer occupancy, and
how well the communication pipe is filled with packets.

(b) The ordinal packet numbers of all the packets that will be dropped at the router (due to the lack of
router memory space).

(c) The maximum congestion widow size that will be achieved after the first packet loss is detected
(but before the time t = 60).

(d) How many packets will be sent after the first packet loss is detected until the time t = 60? Explain
the reason for transmission of each of these packets.

The solution is shown in Figure 2-18 and discussed in the following text.

Figure 2-18 shows the evolution of four parameters over the first 20 time units of the slow-start
phase. The four parameters are: (i) congestion window size; (ii) slow start threshold; (iii) current
number of packets in the router, both in transmission or waiting for transmission; and (iv) current
number of packets in flight on Link-2, that is the packets that neither are in the router nor
acknowledged. Notice that the last parameter is not the same as the FlightSize defined at the
beginning of Section 2.2. FlightSize is maintained by the sender to know how many
segments are outstanding. Unlike this, the current number of packets in flight on Link-2 (bottom
chart in Figure 2-18) represents only the packets that were transmitted by the router, but for
which the ACK has not yet arrived at the TCP sender.

Chapter 2 • Transmission Control Protocol (TCP) 167

The gray boxes on the top line symbolize packet transmissions on the Link-2. This is because the
transmission delay on Link-1 is negligible, so any packet sent by the TCP sender immediately
ends up on the router.

Recall that during the slow start, the sender increments its congestion window size by one MSS
for each successfully received acknowledgement. We can see on the top of Figure 2-18 how the
acknowledgment for packet #1 arrives at t = 7 and the congestion window size rises to 2. The
sender sends two more segments (#2 and #3) and they immediately end up on the router. Notice
how packets that are sent back-to-back (in bursts) are separated by the packet transmission time
on Link-2. When the ACK arrives for #2, the sender is in slow start, so FlightSize = 2 − 1 =
1 and CongWin = 2 + 1 = 3. According to equation (2.3),

 EffectiveWin = CongWin − FlightSize = 3 − 1 = 2

In other words, during slow start, every time the sender receives a non-duplicate
acknowledgement for one segment, the sender can send two new segments. After sending

11 22 33 44 55 66 77 88 99 101011111212131314141515

Receiver

Sender/Router
10 200 30 40 50 60

16161717181920212224262830323436 42

pkt ack

3840 442323

Congestion window [segments]

Packets in flight on 2nd link

3 × dupACK

Packets in Router buffer

0

10

20

0

5

6

0

2525

Time [in packet transmission slots]

SSThresh = 65535 bytes

SSThresh = 11 MSS

Lost packets:
23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45 (12 total)

4646

CongWin

9
8

11
10
9

13
12
11
10

15
14
13
12
111

3
2 3

5
4

7
6
5

7
6 7

15
14
13
12

15
14
13

15
14

17
16
15

19
18
17
16

21
20
19
18
17

22
21
20
19
18

24
22
21
20
19

26
24
22
21
20

28
26
24
22
21

30
28
26
24
22

32
30
28
26
24

34
32
30
28
26

36
34
32
30
28

38
36
34
32
30

40
38
36
34
32

42
40
38
36
34

44
42
40
38
36

44
42
40
38

44
42
40

23
44
42

23
4423

46
2546

1 2
3
2

5
4

6
5
43 4

7
6
5
4

7
6
5

8
7
6

9
8
7

10
9
8

11
10
9
8

12
11
10
9
8

14
13
12
11
10
9

13
12
11
10
9
8

15
14
13
12
11
10

16
15
14
13
12
11

17
16
15
14
13
12

18
17
16
15
14
13

19
18
17
16
15
14

20
19
18
17
16
15

21
20
19
18
17
16

22
21
20
19
18
17

24
22
21
20
19
18

26
24
22
21
20
19

28
26
24
22
21
20

30
28
26
24
22
21

32
30
28
26
24
22

34
32
30
28
26
24

36
34
32
30
28
26

38
36
34
32
30
28

40
38
36
34
32
30

42
40
38
36
34
32

44
42
40
38
36
34

44
42
40
38
36

23
44
42
40
38

23
44
42
40

23
44
42

23
4423 25

46
25

Figure 2-18: Evolution of the key parameters for the TCP NewReno sender in Example 2.2.
(Continued in Figure 2-19.)

Ivan Marsic • Rutgers University

168

segments #4 and #5, we have: CongWin = 3, FlightSize = 3, and EffectiveWin = 0.
When the ACK for segment #3 arrives (delayed by tx(Link-2) after the first ACK, because the
segment #3 traveled back-to-back behind #2) we have: FlightSize = 3 − 1 = 2 and CongWin
= 3 + 1 = 4. Therefore,

 EffectiveWin = CongWin − FlightSize = 4 − 2 = 2

and the sender will send two new segments (#6 and #7). Now, we have CongWin = 4,
FlightSize = 4, and EffectiveWin = 0. The sender is waiting for an acknowledgement for
segment #4.

Notice that when an in the chart for the current number of packets in the router shows below the
curve the ordinal numbers of the packets. The bottommost packet is the one that is in
transmission during the current time slot. The packets above it are currently waiting for
transmission. For example, at time t = 7, packet #2 is currently in transmission and packet #3 is
waiting in the router memory. At t = 8, packet #2 is traversing Link-2 (shown under the bottom
curve) and packet #3 is in transmission on the router. The attentive reader might notice that the
packet numbers in the bottommost row of the router buffer curve are identical to the ones at the
top of Figure 2-18.

(a)

Because we are considering a single connection in slow start, packet arrivals on the router occur
in bursts of exactly two packets. This is because for every received acknowledgment,
FlightSize is reduced by 1 and CongWin is incremented by 1, which means that effectively
the sender can send two new packets. The sender sends two new packets and they immediately
end up on the router. Therefore, when a buffer overflow occurs, exactly one packet is dropped.
This is because at the beginning of the preceding time slot, the buffer would have been full and
the router would transmit one packet, therefore freeing up space for one new packet. When two
packets arrive, the first is stored and the second is dropped.

The first loss happens at time t = 31. In the previous time slot (t =30) the router had five packets
(#17, #18, #19, #20, and #21), of which packet #17 was transmitted by the router. At t = 31, the
acknowledgement for packet #11 will arrive and it will increment congestion window by one, to
the new value of 12×MSS. The sender sends packets #22 and #23 and they immediately arrive to
the router. The router just transmitted packet #17 and has space for only one new packet. Packet
#22 joins the tail of the waiting line and packet #23 is dropped.

The top row of Figure 2-18 shows white boxes for the transmission periods of the five packets
that the router will transmit after the loss of packet #23. Black boxes symbolize packets that are
sent out of order, for which the preceding packet was dropped at the router (due to the lack of
router memory space). There will be a total of 12 packets fro which the preceding packet was
lost, starting with packet #24 and ending with packet #44.

The TCP sender receives three duplicate acknowledgements (asking for packet #23) at time
t = 45. The reader should notice that packet #23 was lost at the router at time t = 31, but the
sender learned about the loss only at time t = 45 (by receiving three dupACKs)! When the sender
discovers the loss, it sets the congestion window size to one half of the number of segments in
flight, which is 23, plus 3 for three duplicate acknowledgements—remember equation (2.6) from
Section 2.2.2. The slow-start threshold is set to one-half of the number of segments in flight—

Chapter 2 • Transmission Control Protocol (TCP) 169

remember equation (2.4)—so SSThresh becomes equal to 11. In addition, because this is a TCP
Reno sender, the congestion window is incremented by one for each new duplicate
acknowledgement that is received after the first three.

Upon detecting loss at time t = 45, the TCP sender immediately retransmits segment #23, but the
packet joins the queue at the router behind packets #42 and #44, which arrived before #23. The
router is not aware that these are TCP packets, lest that some of them are retransmitted, so it does
not give preferential treatment to retransmitted packets. As seen in the top row of Figure 2-18, the
router will transmit packet #23 over Link-2 during the time slot t = 47. Therefore, generally it
takes longer than one RTT for the sender to receive the acknowledgment for a retransmitted
segment.

The acknowledgement for the retransmitted segment #23 arrives at time t = 54 and it asks for
segment #25 (because #24 was received correctly earlier). This is only a partial acknowledgment
because a full acknowledgement would acknowledge segment #45. Therefore, the TCP NewReno
sender immediately sends packet #25 without waiting for three duplicate acknowledgements. In
addition, the sender adjusts its congestion window size according to Eq. (2.7):

NewlyAcked = segment#24 − segment#22 = 2 MSS

Because (NewlyAcked ≥ MSS), the sender uses Eq. (2.7b):

CongWindow(54) = CongWindow(53) − NewlyAcked + MSS = 23 − 2 + 1 = 22 × MSS

Because the current FlightSize = 21 × MSS (segments #25 through #45 are
unacknowledged), one new segment can be sent. As a result, the sender transmits segment #46.

(b)

There will be a total of 12 packets lost during the considered period. The lost packets are (also
indicated in Figure 2-18): 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.

TCP NewReno Fast Recovery Phase

Continuing with Example 2.2, the TCP NewReno sender will enter the fast recovery phase when
it discovers the loss of packet #23 at time t = 45 (by receiving three dupACKs). The sender will
exit the fast recovery phase when it receives a full acknowledgement. The sender originally
transmits packet #23 at time t = 31 and it immediately arrives at the router where it is lost (Figure
2-18). From time t = 31 until the loss is discovered at time t = 45, the sender sends a total of 22
“intermediate segments” (segments #24, #25, …, #45). Therefore, the TCP sender will consider it
a “full acknowledgement” when it receives an acknowledgement for packet #45. At this point, the
sender will exit fast recovery and enter congestion avoidance. Notice that segment #46, and any
segments transmitted thereafter might still be outstanding.

Figure 2-19 shows the continuation of Figure 2-18 for the same Example 2.2. As seen, the sender
has not yet received a “full acknowledgement” until time t = 120 (packet #45 has not been
retransmitted); therefore, the sender is still in the fast recovery state.

Ivan Marsic • Rutgers University

170

2.3 Fairness

2727 29294949 3131 53535454 333356565757 585859596060

Receiver

Sender/Router
70 8060 90 100 110 120

3535 616162626363 646465656666 67676868 69697070 71717272 7474

pktack

7373 3939 7575 7676

Congestion window [segments]

Packets in flight on 2nd link

Packets in Router buffer

20

30

40

0

5

6

0

8282

Time [in packet transmission slots]

83838484

CongWin

56
33

58
5751

49
29

52
31

53
52

59
58

60
5960

61
35

62
61

63
62

64
63

65
64

66
6566

67
37

68
67

69
68

70
69

71
70

72
71

73
72

74
39
73

75
74
39

76
75
74

77
76
75

78
77
76

85
84
83
82

86
85
84
83

87
86
85
84

27
47
27

57
56
33
55

58
57
56
33

60
59
58
57
56
33

59
58
57
56
33

60
59
58
57
56

35
60
59
58
57

61
35
60
59
58

62
61
35
60
59

63
62
61
35
60

64
63
62
61
35

65
64
63
62
61
35

66
65
64
63
62
61

37
66
65
64
63
62

67
37
66
65
64
63

68
67
37
66
65
64

69
68
67
37
66
65

70
69
68
67
66
37

71
70
69
68
67
66

72
71
70
69
68
67

73
72
71
70
69
68

39
73
72
71
70
69

74
39
73
72
71
70

75
74
39
73
72
71

76
75
74
39
73
72

77
76
75
74
39
73

78
77
76
75
74
39

79
78
77
76
75
74

80
79
78
77
76
75

81
80
79
78
77
76

82
41
81
80
79
78

83
82
41
81
80
79

48
47
27

29
48

4747 4848

48
4748

47
27

50
49

51
50

49
29

50
49
29

51
50
49
29

31
51
50

5050 5151

54
53

55
5455

51
50
49

52
31
51

53
52
31

54
53
52
31

55
54
53
52
31

57
56

46
2546

5252

48
47

5555 3737

55
54
53
52

33
55
54
53

56
33
55
54

77777878 79798080 81814141 8585 86868787

79
78
77

80
79
78

81
80
79

82
41
81
80

83
82
41
81

84
83
82
41

88
87
86
85

89
88
87
86

90
89
88
87

41
81
80
79
78
77

84
83
82
41
81
80

85
84
83
82
41
81

86
85
84
83
82
41

SSThresh = 11 MSS

CW = 51

Figure 2-19: Evolution of the key parameters for the TCP NewReno sender in Example 2.2.
(Continued from Figure 2-18.)

Chapter 2 • Transmission Control Protocol (TCP) 171

2.4 Recent TCP Versions

Early TCP versions, Tahoe and Reno, perform relatively simple system observation and control.
The TCP Tahoe performance is illustrated in Figure 2-16 over the first 100 transmission rounds.
Although the obvious inefficiency (sender utilization is only 25 %) can be somewhat attributed to
the contrived scenario of Example 2.1, this is not far from reality. By comparison, a simple Stop-
and-Wait protocol would achieve the sender utilization of ?? %. Recent TCP versions introduce
sophisticated observation and control mechanisms to improve performance.

TCP Vegas [Brakmo & Peterson 1995] watches for the signs of incipient congestion—before
losses occur—and takes actions to avert it.

TCP Westwood [Mascolo et al. 2001] uses bandwidth estimates to compute the congestion
window and slow start threshold after a congestion episode.

FAST TCP [Jin et al. 2003] detects congestion by measuring packet delays.

2.5 TCP over Wireless Links

The TCP congestion control algorithms presented in Section 2.2 assume most packet losses are
caused by routers dropping packets due to traffic congestion. However, packets may be also
dropped if they are corrupted in their path to destination. In wired networks the fraction of packet
loss due to transmission errors is generally low (less than 1 percent). Communication over
wireless links is often characterized by sporadic high bit-error rates, and intermittent connectivity
due to handoffs. TCP performance in such networks suffers from significant throughput
degradation and very high interactive delays

Several factors affect TCP performance in mobile ad-hoc networks (MANETs):

• Wireless transmission errors

• Power saving operation

• Multi-hop routes on shared wireless medium (for instance, adjacent hops typically cannot
transmit simultaneously)

• Route failures due to mobility

Figure 2-20

Ivan Marsic • Rutgers University

172

2.6 Summary and Bibliographical Notes

The TCP service model provides a communication abstraction that is reliable, ordered, point-to-
point, duplex, byte-stream, and flow and congestion controlled. TCP’s notion of “duplex” is that
the same logical connection handles reliable data delivery in both directions. Unlike ARQ
protocols described in Section 1.3, which treat data packets as atomic units, TCP treats bytes as
the fundamental unit of reliability.

TCP sender uses the received cumulative acknowledgments to determine which packets have
reached the receiver, and provides reliability by retransmitting lost packets. The sender detects
the loss of a packet either by the arrival of several duplicate acknowledgments or the expiration of
the timeout timer due to the absence of an acknowledgment for the packet. To accurately set the
timeout interval, the sender maintains a running average of the estimated roundtrip delay and the

TCP layer:

TCP data segment
[1024 KB + 40 bytes headers]

TCP ACK segment
[0 KB + 40 bytes headers]

Link layer:

Link layer overhead: backoff delay, interframe spaces, link-layer control frames (RTS, CTS, ACK)

Figure 2-20: Due to significant wireless link-layer overhead, TCP data segments and TCP
acknowledgements (which are of greatly differing sizes) appear about the same size at the
link layer.

Chapter 2 • Transmission Control Protocol (TCP) 173

mean linear deviation from it. The timeout interval is calculated as the sum of the smoothed
round-trip delay plus four times its mean deviation. TCP reacts to packet losses by decreasing its
transmission (congestion) window size before retransmitting packets, initiating congestion control
or avoidance mechanisms (e.g., slow start), and backing off its retransmission timer (Karn’s
algorithm). These actions result in a reduction in the load on the intermediate links, thereby
controlling the congestion in the network.

[Stevens, 1994] provides the most comprehensive coverage of TCP in a single book. It appears
that this whole book is available online at http://www.uniar.ukrnet.net/books/tcp-ip_illustrated/.

[Comer, 2006] is also very good, although does not go in as much detail.

TCP described in 1974 by Vinton Cerf and Robert Kahn in IEEE Transactions on
Communication. Three-way handshake described by Raymond Tomlinson in SIGCOMM 1975.

TCP & IP initial standard in 1982 (RFC-793 & RFC-791). BSD Unix 4.2 released in 1983
supported TCP/IP. Van Jacobson’s algorithms for congestion avoidance and congestion control
published in 1988; most implemented in 4.3 BSD Tahoe.

In the original TCP specification (RFC-793), the retransmission timeout (RTO) was set as a
multiple of a running average of the RTT. For example, it might have been set as
TimeoutInterval = η × EstimatedRTT, with η set to a constant such as 2. However, this
simple choice failed to take into account that at high loads round trip variability becomes high,
leading to unnecessary retransmissions. The solution offered by Jacobson, see Eq. (2.2), factors in
both average and standard deviation.

The TCP Reno Fast Recovery algorithm was described in RFC 2581 and first implemented in the
1990 BSD Reno release.

In 1996, Janey Hoe [Hoe, 1996] proposed an enhancement to TCP Reno, which subsequently
became known as NewReno. The main idea here is for the TCP sender to remain in fast recovery
until all the losses in a window are recovered.

There have been other enhancements proposed to TCP over the past few years, such as TCP
Vegas congestion control method [Brakmo & Peterson, 1995], various optimizations for wireless
networks, optimizations for small windows (e.g., RFC-3042), etc.

RFC-3168, 3155, 3042, 2884, 2883, 2861, 2757, 2582 (NewReno)

The NewReno modification of TCP’s Fast Recovery algorithm is described in RFC-3782 [Floyd
et al. 2004].

TCP over wireless:

[Balakrishnan, et al., 1997], [Holland & Vaidya, 1999], [Fu, et al., 2005].

TCP has supported ongoing research since it was written. As a result, the End-to-End research
group has published a Roadmap for TCP Specification Documents [RFC-4614] which will guide
expectations in that area.

SSFnet.org, “TCP Regression Tests,” Online at: http://www.ssfnet.org/Exchange/tcp/tcpTestPage.html

Ivan Marsic • Rutgers University

174

The SSFnet.org tests show the behavior of SSF TCP Tahoe and Reno variants for different
networks, TCP parameter settings, and loss conditions.

NASA Jet Propulsion Laboratory (JPL) and Vinton Cerf recently jointly developed Disruption-
Tolerant Networking (DTN) protocol to transmit images to and from a spacecraft more than 20
million miles from Earth. DTN is intended for reliable data transmissions over a deep space
communications network, for which the TCP/IP protocol suite is unsuitable. An interplanetary
Internet needs to be strong enough to withstand delays, disruptions, and lost connections that
space can cause. For example, errors can happen when a spacecraft slips behind a planet, or when
solar storms or long communication delays occur. Even traveling at the speed of light,
communications sent between Mars and Earth take between three-and-a-half minutes to 20
minutes. Unlike TCP, DTN does not assume there will be a constant end-to-end connection. DTN
is designed so that if a destination path cannot be found, the data packets are not discarded but are
kept in a network node until it can safely communicate with another node. The interplanetary
Internet could allow for new types of complex space missions that involve multiple landed,
mobile, and orbiting spacecraft, as well as ensure reliable communications for astronauts on the
surface of the moon.

http://www.jpl.nasa.gov/news/news.cfm?release=2008-216

Chapter 2 • Transmission Control Protocol (TCP) 175

Problems

Problem 2.1

Consider the TCP procedure for estimating RTT with α = 0.125 and β = 0.25. Assume that the
TimeoutInterval is initially set as 3 seconds. Suppose that all measured RTT values equal 5
seconds, no segment loss, and the segment transmission time is negligible. The sender starts
sending at time zero.

(a) What values will TimeoutInterval be set to for the segments sent during the first 11
seconds?

(b) Assuming a TCP Tahoe sender, how many segments will the sender transmit (including
retransmissions) during the first 11 seconds?

(c) Repeat steps (a) and (b) but this time around assume that the sender picked the initial
TimeoutInterval as 5 seconds?

Show the work.

Problem 2.2

Consider two hosts connected by a local area network with a negligible round-trip time. Assume
that one is sending to the other a large amount of data using TCP with RcvBuffer = 20 Kbytes
and MSS = 1 Kbytes. Also assume error-free transmission, high-speed processors in the hosts,
and reasonable values for any other parameters that you might need.

(a) Draw the congestion window diagram during the slow-start (until the sender enters
congestion avoidance) for the network speed of 100 Mbps.

(b) How different the diagram becomes if the network speed is reduced to 10 Mbps?
1 Mbps?

(c) What will be the average throughput (amount of data transmitted per unit of time) once
the sender enters congestion avoidance?

Explain your answers.

Problem 2.3

Suppose that the hosts from Problem 2.2 are connected over a satellite link with RTT = 20 ms
(low earth orbit satellites are typically 850 km above the Earth surface). Draw the congestion
window diagram during the slow-start for the network speed of 100 Mbps. Explain any
similarities or differences compared to the one from Problem 2.2(a).

Problem 2.4

Ivan Marsic • Rutgers University

176

Consider the network shown in the figure. TCP senders at hosts A and B have 3.6 KB of data each
to send to their corresponding TCP receivers, both running at host C. Assume MTU = 512 bytes
for all the links and TimeoutInterval = 2×RTT = 2×1 sec. The router buffer size is 3
packets in addition to the packet currently being transmitted; should the router need to drop a
packet, it drops the last arrived from the host which currently sent more packets. Sender A runs
TCP Tahoe and sender B runs TCP Reno and assume that sender B starts transmission 2×RTTs
after sender A.

(a) Trace the evolution of the congestion window sizes on both senders until all segments are
successfully transmitted.

(b) What would change if TimeoutInterval is modified to 3×RTT = 3×1 sec?

Assume a large RcvWindow and error-free transmission on all the links. Finally, to simplify the
graphs, assume that all ACK arrivals occur exactly at unit increments of RTT and that the
associated CongWindow update occurs exactly at that time, too.

Problem 2.5

Consider a TCP Tahoe sender working on the network with RTT = 1 sec, MSS = 1 KB, and the
bottleneck link bandwidth equal to 128 Kbps. Ignore the initial slow-start phase and assume that
the sender exhibits periodic behavior where a segment loss is always detected in the congestion
avoidance phase via duplicate ACKs when the congestion window size reaches CongWindow =
16×MSS.

(a) What is the min/max range in which the window size oscillates?

(b) What will be the average rate at which this sender sends data?

(c) Determine the utilization of the bottleneck link if it only carries this single sender.

[Hint: When computing the average rate, draw the evolution of the congestion window. Assume
RcvWindow large enough not to matter.]

Problem 2.6

Specify precisely a system that exhibits the same behavior as in Problem 2.5:

• What is the buffer size at the bottleneck router?

• What is the minimum value of TimeoutInterval?

Sender A

Sender B

2 Receivers
at host C

10 Mbps

10 Mbps

1 Mbps

3+1 packets

Chapter 2 • Transmission Control Protocol (TCP) 177

Demonstrate the correctness of your answer by graphing the last two transmission rounds before
the segment loss is detected and five transmission rounds following the loss detection.

Problem 2.7

Consider two hosts communicating using the TCP-Tahoe protocol. Assume RTT = 1, MSS = 512
bytes, TimeoutInterval = 3×RTT, SSThresh = 3×MSS to start with, and RcvBuffer = 2
KB. Also, assume that the bottleneck router has available buffer size of 1 packet in addition to the
packet currently being transmitted.

(a) Starting with CongWindow = 1×MSS, determine the congestion window size when the
first packet loss will happen at the router (not yet detected at the sender).

(b) What will be the amount of unacknowledged data at the sender at the time the sender
detects the loss? What is the total number of segments acknowledged by that time?

Assume that no cumulative ACKs are sent, i.e., each segment is acknowledged individually.

Problem 2.8

Consider two hosts communicating by TCP-Reno protocol. Assume RTT = 1, MSS = 256 bytes,
TimeoutInterval = 3×RTT, RcvBuffer = 2 KB, and the sender has a very large file to
send. Start considering the system at the moment when it is in slow start state, CongWin =
8×MSS, SSThresh = 10×MSS and the sender just sent eight segments, each 1×MSS bytes long.
Assume that there were no lost segments before this transmission round and currently there are no
buffered segments at the receiver.
Assuming that, of the eight segments just sent, the fourth segment is lost, trace the evolution of
the congestion window sizes for the subsequent five transmission rounds. Assume that no more
segments are lost for all the considered rounds. For every step, indicate the transmitted segments
and write down the numeric value of CongWin (in bytes). To simplify the charts, assume that
ACK arrivals occur exactly at unit increments of RTT and that the associated CongWin update
occurs exactly at that time, too.

Problem 2.9

Consider the network configuration shown in the figure below. The mobile node connects to the
server using the TCP protocol to download a large file. Assume MSS = 1024 bytes, error-free
transmission, and sufficiently large storage spaces at the access point and the receiver.
Assume that the Assuming that the TCP receiver sends only cumulative acknowledgements.
Calculate how long time it takes to deliver the first 15 Kbytes of data from that moment the TCP
connection is established. In addition, draw the timing diagram of data and acknowledgement
transmissions. (You can exploit the fact that TCP sends cumulative acknowledgements.)

Wi-Fi
(802.11)
1 Mbps

Ethernet
(802.3)

10 Mbps

Mobile
Node

Access
Point

Server

Ivan Marsic • Rutgers University

178

(In case you need these, assume the distance between the mobile node and the access point equal
to 100 m, and the same from the access point to the server. Also, the speed of light in the air is
3 × 108 m/s, and in a copper wire is 2 × 108 m/s.)

Problem 2.10

Consider an application that is engaged in a lengthy file transfer using the TCP Tahoe protocol
over the following network.

 The following assumptions are made:
A1. Full duplex links connect the router to each endpoint host so that simultaneous

transmissions are possible in both directions on each link. The link transmission rates are
as indicated. One-way propagation delay on each link equals 10 ms. Assume that all
packet transmissions are error free.

A2. Each data segment sent by the sender is 1250 bytes long. You can ignore all header
overheads, so the transmission delay for data packets over a 100 Mbps link is exactly 0.1
ms and over 10 Mbps is exactly 1 ms. Also assume that the ACK packet size is
negligible, i.e., their transmission delay is approximately zero.

A3. The router buffer can hold up to nine packets plus one packet currently in transmission.
The packets that arrive to a full buffer are dropped. However, this does not apply to ACK
packets, i.e., ACKs do not experience congestion or loss.

A4. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after
receiving a data segment.

A5. The receiver has set aside a buffer of RcvBuffer = 64 Kbytes for the received segments.

Answer the following questions:
(a) What is the minimum possible time interval between receiving two consecutive ACKs at

the sender?
(b) Write down the transmission start times for the first 7 segments.
(c) Write down the congestion widow sizes for the first 6 transmission rounds, i.e., the first 6

RTTs. (Hint: Try to figure out the pattern of packet arrivals and departures on the router,
to understand how the queue of packets grows and when the buffer is fully occupied, so
the next packet is dropped.)

(d) In which round will the first packet be dropped at the router? What is the ordinal number
of the first dropped packet, starting with #1 for the first packet? Explain your answer.

(e) What is the congestion window size at the 11th transmission round?
(f) What is the long-term utilization of the TCP sender (ignore the initial period until it

stabilizes)?
(g) What is the long-term utilization of the link between the router and the receiver (again,

ignore the initial period until it stabilizes)?
(h) What will change if delayed ACKs are used to acknowledge cumulatively multiple

packets?
(i) Estimate the sender utilization under the delayed ACKs scenario.

Sender A Receiver B

100 Mbps

100 Mbps

9+1 packets

tprop = 10 ms tprop = 10 ms

10 Mbps

10 MbpsRouter

Chapter 2 • Transmission Control Protocol (TCP) 179

Problem 2.11

Consider a TCP Tahoe sender working with MSS = 1 KB, and the bottleneck link bandwidth
equal to 1 Mbps. Ignore the initial slow-start phase and assume that the network exhibits periodic
behavior where every tenth packet is lost. Consider three different scenarios where all parameters
remain the same except for the round-trip time, which changes as: RTT1 = 0.01 sec, RTT2 = 0.1
sec, and RTT3 = 1 sec.

What will be the average rate at which this sender sends data for the different scenarios? Provide
an explanation in case you observe any differences between the three scenarios.

Problem 2.12

Calculate the total time required for transferring a 1-MB file from a server to a client in the
following cases, assuming an RTT of 100 ms, a segment size of 1 KB, and an initial 2×RTT of
“handshaking” (initiated by the client) before data is sent. Assume error-free transmission.

(a) The bottleneck bandwidth is 1.5 Mbps, and data packets can be sent continuously (i.e.,
without waiting for ACKs)

(b) The bottleneck bandwidth is 1.5 Mbps, but Stop-and-wait ARQ is employed

(c) The bandwidth is infinite, meaning that we take transmission time to be zero, and
Go-back-20 is employed

(d) The bandwidth is infinite, and TCP Tahoe is employed

Problem 2.13

Consider a TCP Reno sender, which is in the middle of sending a large amount of data and
assume that you are observing it at time ti. Let ti, ti+1, ti+2, …, ti+7 denote times when the TCP
sender will send the subsequent 8 data segments, as governed by its congestion control algorithm.
The following assumptions are made:

A1. The TCP sender’s segment size equals MSS = 200 bytes. At time ti, the sender is in the
slow start phase and the congestion window size is already updated as CongWin(ti) =
400 bytes. There are currently no unacknowledged segments. The slow start threshold
SSThresh(ti) = 64 Kbytes and the receiver’s buffer size RcvWindow(ti) = 1000 bytes.

A2. The sender’s sequence number for the next segment that will be transmitted at time ti
equals 30. Assume that the sender transmits back-to-back all the segments that are
permitted by its current EffectiveWindow size (i.e., the segments are sent in
“bursts”). Assume that the segment transmission time is much smaller than the
propagation time, i.e., tx << tp and tp ≈ ½ RTT.

A3. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after
receiving a data segment. All in-order segments are immediately delivered to the
application and they never linger in the receive buffer.

A4. The estimated round-trip time at time ti −1 equals EstimatedRTT(ti −1) = 100
milliseconds, the standard deviation equals DevRTT(ti −1) = 10 milliseconds, and
SampleRTT(ti) = 106 ms.
Any subsequent transmissions will experience the following round-trip times (from the
moment a data segment is transmitted from the sender until the corresponding ACK is
received at the sender): RTT(ti) = 105 ms, RTT(ti+1) = 93 ms, RTT(ti+2) = 179 ms,

Ivan Marsic • Rutgers University

180

RTT(ti+3) = 182 ms, RTT(ti+4) = 165 ms, RTT(ti+5) = 193 ms, RTT(ti+6) = 154 ms, and
RTT(ti+7) = 171 ms.
Note: the above values RTT(t) are different from SampleRTT(t), which is the RTT value
measured at time t.

Starting at time ti, consider the subsequent 8 segment transmissions and do the following:
(a) Show the congestion window sizes CongWin(t) and the sequence numbers of the

segments transmitted from the sender at times t = ti, ti+1, ti+2, …, ti+7.
(b) Show the sequence numbers of the corresponding acknowledgements and indicate the

times when the ACKs will arrive. Also show the values of RcvWindow(t) as carried in
each acknowledgement packet.

(c) Show the values of EstimatedRTT(t) and DevRTT(t) as measured by the TCP
retransmission-timer management algorithm.

(d) Indicate the times when the TCP sender will set its retransmission timer, if any, as
dictated by the TCP algorithm and write down the values of TimeoutInterval(t).

Problem 2.14

Problem 2.15

TCP NewReno RTO Timeout Timer Calculation

Consider the evolution of TCP NewReno parameters shown in Figure 2-19 for Example 2.2.
Starting with time t = 89 when segment #35 is retransmitted, show the values of
TimeoutInterval(t), calculated using Eq. (2.2). Stop when the ACK for the retransmitted
#41 arrives, which will happen at t =120 and show the value of TimeoutInterval(120).
Assume that at time t = 88, EstimatedRTT(88) = 6, DevRTT(88) = 0.05, and the values of the
control parameters α = 0.125 and β = 0.25.

Follow the procedure for computing TimeoutInterval(t) explained in Section 2.1.2 (and
summarized in the pseudocode at the end of this section) as closely as possible. Explain how you
obtained every new value of TimeoutInterval(t).

181

Contents
3.1 Application Requirements

3.1.1 Application Types
3.1.2 Standards of Information Quality
3.1.3 User Models
3.1.4 Performance Metrics

3.2 Source Characteristics and Traffic Models
3.2.1 Traffic Descriptors
3.2.2 x
3.2.3 Self-Similar Traffic

3.3 Approaches to Quality-of-Service
3.3.1 End-to-End Delayed Playout
3.3.2 Multicast Routing
3.3.3 Peer-to-Peer Routing
3.3.4 Resource Reservation and Integrated

Services
3.3.5 Traffic Classes and

3.4 Adaptation Parameters
3.4.1 x
3.4.2
3.4.3

3.5 QoS in Wireless Networks
3.5.1
3.5.2
3.5.3

3.6 x
3.5.1 x
3.5.2 x
3.5.3 x

3.7 Summary and Bibliographical Notes

Problems

Chapter 3
Multimedia and Real-time

Applications

3.1 Application
Requirements

People needs determine the system requirements.

In some situations it is necessary to consider human users as
part of an end-to-end system, treating them as active
participants, rather than passive receivers of information. For
instance, people have thresholds of boredom, and finite
reaction times. A specification of user’s perceptions is thus
required, as it is the user that ultimately defines whether the
result has the right quality level.

A traffic model summarizes the expected “typical” behavior of
a source or an aggregate of sources. Of course, this is not
necessarily the ultimate source of the network traffic. The
model may consider an abstraction by “cutting” a network link
or a set of link at any point in the network and considering the
aggregate “upstream” system as the source(s).

Traffic models fall into two broad categories. Some models are
obtained by detailed traffic measurements of thousands or
millions of traffic flows crossing the physical link(s) over days or years. Others are chosen
because they are amenable to mathematical analysis. Unfortunately, only a few models are both
empirically obtained and mathematically tractable.

Two key traffic characteristics are:

• Message arrival rate

Ivan Marsic • Rutgers University

182

• Message servicing time

Message (packet) arrival rate specifies the average number of packets generated by a given source
per unit of time. Message servicing time specifies the average duration of servicing for messages
of a given source at a given server (intermediary). Within the network, packet-servicing time
comprises not much more than inspection for correct forwarding plus the transmission time,
which is directly proportional to the packet length.

In the following analysis, we will usually assume that the traffic source is infinite, because an
infinite source is easier to describe mathematically. For a finite source, the arrival rate is affected
by the number of messages already sent; indeed, if all messages are already sent, the arrival rate
drops to zero. If the source sends finite but large number of messages, we assume an infinite
source to simplify the analysis.

Traffic models commonly assume that packets arrive as a Poisson process, that is, the interarrival
time between calls is drawn from an exponential distribution.

Packet servicing times have traditionally been modeled as drawn from an exponential
distribution. That is, the probability that the servicing lasts longer than a given length x decreases
exponentially with x. However, recent studies have shown servicing times to be heavy-tailed.
Intuitively, this means that many packets are very long. More precisely, if Tp represents the
packet servicing time, and c(t) is defined to be a slowly varying function of t when t is large, the
probability that the packet is serviced longer than t is given by:

P(T > t) = c(t)⋅t−α as t→∞, 1 < α < 2

As Figure 3-xxx shows, a heavy-tailed distribution has a significantly higher probability mass at
large values of t than an exponential function.

3.1.1 Application Types

Multimedia application bandwidth requirements range from G.729 8Kbps speech codec and
H.263 64Kbps video codec to 19.2 Mbps for MPEG2, P, 4:2:0 (US standard) based
videoconferencing and 63Mbps SXGA 3D computer games [DuVal & Siep 2000]. In general, the
higher the speech sampling rate, the better the potential call quality (but at the expense of more
bandwidth being consumed). For example, G.711 encoding standard for audio provides excellent
quality. Data is delivered at 64 Kbps, and the codec imposes no compression delay. Technically,
G.711 delivers 8,000 bytes per second without compression so that full Nyquist-dictated samples
are provided.

Applications may also have periodic traffic for real-time applications, aperiodic traffic for web
browsing clients, aperiodic traffic with maximum response times for interactive devices like the
mouse and keyboard, and non-real time traffic for file transfers. Thus, we see that the range of
bandwidth and timeliness requirements for multimedia applications is large and diverse.

Table 3-1: Characteristics of traffic for some common sources/forms of information.

Source Traffic type Arrival rate/Service time Size or Rate

Voice CBR Deterministic/ Deterministic 64 Kbps

Chapter 3 • Multimedia and Real-time Applications 183

Video
CBR Deterministic/ Deterministic 64 Kbps, 1.5 Mbps

VBR Deterministic/Random Mean 6 Mbps, peak 24 Mbps

Text
ASCII Random/Random 2 KB/page

Fax Random/ Deterministic 50 KB/page

Picture

600 dots/in, 256
colors, 8.5 × 11 in

Random/ Deterministic 33.5 MB

70 dots/in, b/w,
8.5 × 11 in

Random/ Deterministic 0.5 MB

Table 3-1 presents some characteristics about the traffic generated by common forms of
information. Notice that the bit streams generated by a video signal can vary greatly depending on
the compression scheme used. When a page of text is encoded as a string of ASCII characters, it
produces a 2-Kbyte string; when that page is digitized into pixels and compressed as in facsimile,
it produces a 50-KB string. A high-quality digitization of color pictures (similar quality to a good
color laser printer) generates a 33.5-MB string; a low-quality digitization of a black-and-white
picture generates only a 0.5-MB string.

We classify all traffic into three types. A user application can generate a constant bit rate (CBR)
stream, a variable bit rate (VBR) stream, or a sequence of messages with different temporal
characteristics. We briefly describe each type of traffic, and then consider some examples.

Constant Bit Rate (CBR)

To transmit a voice signal, the telephone network equipment first converts it into a stream of bits
with constant rate of 64 Kbps. Some video-compression standards convert a video signal into a
bit stream with a constant bit rate (CBR). For instance, MPEG-1 is a standard for compressing
video into a constant bit rate stream. The rate of the compressed bit stream depends on the
parameters selected for the compression algorithm, such as the size of the video window, the
number of frames per second, and the number of quantization levels. MPEG-1 produces a poor
quality video at 1.15 Mbps and a good quality at 3 Mbps.

Voice signals have a rate that ranges from about 4 Kbps when heavily compressed and low
quality to 64 Kbps. Audio signals range in rate from 8 Kbps to about 1.3 Mbps for CD quality.

Variable Bit Rate (VBR)

Some signal-compression techniques convert a signal into a bit stream that has variable bit rate
(VBR). For instance, MPEG-2 is a family of standards for such variable bit rate compression of
video signals. The bit rate is larger when the scenes of the compressed movies are fast moving
than when they are slow moving. Direct Broadcast Satellite (DBS) uses MPEG-2 with an average
rate of 4 Mbps.

To specify the characteristics of a VBR stream, the network engineer specifies the average bit rate
and a statistical description of the fluctuations of that bit rate. More about such descriptions will
be said later.

Ivan Marsic • Rutgers University

184

Messages

Many user applications are implemented as processes that exchange messages over a network. An
example is Web browsing, where the user sends requests to a web server for Web pages with
embedded multimedia information and the server replies with the requested items. The message
traffic can have a wide range of characteristics. Some applications, such as email, generate
isolated messages. Other applications, such as distributed computation, generate long streams of
messages. The rate of messages can vary greatly across applications and devices.

To describe the traffic characteristics of a message-generating application, the network engineer
may specify the average traffic rate and a statistical description of the fluctuations of that rate, in
a way similar to the case of a VBR specification.

See definition of fidelity in:

B. Noble, “System support for mobile, adaptive applications,” IEEE Personal Communications,
7(1), pp.44-49, February 2000.

E. de Lara, R. Kumar, D. S. Wallach, and W. Zwaenepoel, “Collaboration and Multimedia
Authoring on Mobile Devices,” Proc. First Int’l Conf. Mobile Systems, Applications, and
Services (MobiSys 2003), San Francisco, CA, pp. 287-301, May 2003.

In any scenario where information is communicated, two key aspects of information are fidelity
and timeliness. Higher fidelity implies greater quantity of information, thus requiring more
resources. The system resources may be constrained, so it may not be possible to transmit, store,
and visualize at a particular fidelity. If memory and display are seen only as steps on
information’s way to a human consumer, then they are part of the communication channel. The
user could experience pieces of information at high fidelity, sequentially, one at a time, but this
requires time and, moreover, it requires the user to assemble in his or her mind the pieces of the
puzzle to experience the whole. Some information must be experienced within particular
temporal and or spatial (structural?) constraints to be meaningful. For example, it is probably
impossible to experience music one note at a time with considerable gaps in between. Or, a
picture cannot be experienced one pixel at a time. Therefore, the user has to trade fidelity for
temporal or spatial capacity of the communication channel.

Time (sec)
0.007

0.4

0

−0.4

Analog speech waveform Sampled signal Sampled & quantized signal

A
m

pl
itu

de

Figure 3-1: Analog speech signal sampling, and quantization to 4 bits.

Chapter 3 • Multimedia and Real-time Applications 185

Information loss may sometimes be tolerable; e.g., if messages contain voice or video data, most
of the time the receiver can tolerate some level of loss.

Shannon had to introduce fidelity in order to make problem tractable [Shannon & Weaver 1949].

Information can be characterized by fidelity ~ info content (entropy). The effect of a channel can
be characterized as deteriorating information’s fidelity and increasing the latency:

fidelityIN + latencyIN →()_____)→ fidelityOUT + latencyOUT

Wireless channels in particular suffer from limitations reviewed in Volume 2. Increasing the
channel capacity to reduce latency is usually not feasible—either it is not physically possible or it
is too costly.

Information qualities can be considered in many dimensions. We group them in two opposing
ones:

• Those that tend to increase the information content

• Delay and its statistical characteristics

The computing system has its limitations as well. If we assume finite buffer length, then in
addition to delay problem, there is a random loss problem. This further affects the fidelity.
Fidelity has different aspects, such as:

• Spatial (sampling frequency in space and quantization – see Brown&Ballard CV book)

• Temporal (sampling frequency in time)

• Structural (topologic, geometric, …)

Delay or latency may also be characterized with more parameters than just instantaneous value,
such as the amount of variability of delay, also called delay jitter. In real life both fidelity and
latency matter and there are thresholds for each, below which information becomes useless. The
system is forced to manipulate the fidelity in order to meet the latency constraints. A key question
is, how faithful should signal be in order to be quite satisfactory without being too costly? In
order arrive at a right tradeoff between the two, the system must know:

1. Current channel quality parameters, e.g., capacity, which affect fidelity and latency

2. User’s tolerances for fidelity and latency

The former determines what can be done, i.e., what fidelity/latency can be achieved with the
channel at hand, and the latter determines how to do it, i.e., what matters more or less to the user
at hand. Of course, both channel quality and user preferences change with time.

Example with telephone: sound quality is reduced to meet the delay constraints, as well as reduce
the costs.

Targeted reduction of information fidelity in a controlled manner helps meet the latency
constraints and averts random loss of information. Common techniques for reducing information
fidelity include:

• Lossless and lossy data compression

Ivan Marsic • Rutgers University

186

• Packet dropping (e.g., RED congestion-avoidance mechanism in TCP/IP)

• …?

The above presentation is a simplification in order to introduce the problem. Note that there are
many other relevant parameters, such as security, etc., that characterize the communicated
information and will be considered in detail later.

Organizational concerns:

• Local traffic that originates at or terminates on nodes within an organization (also called
autonomous system, AS)

• Transit traffic that passes through an AS

3.1.2 Standards of Information Quality

In text, the entropy per character depends on how many values the character can assume. Because
a continuous signal can assume an infinite number of different value at a sample point, we are led
to assume that a continuous signal must have an entropy of an infinite number of bits per sample.
This would be true if we required absolutely accurate reproduction of the continuous signal.
However, signals are transmitted to be heard, seen, or sensed. Only a certain degree of fidelity of
reproduction is required. Thus, in dealing with the samples which specify continuous signals,
Shannon introduces fidelity criterion. To reproduce the signal in a way meeting the fidelity
criterion requires only a finite number of binary digits per sample per second, and hence we say
that, within the accuracy imposed by a particular fidelity criterion, the entropy of a continuous
source has a particular value in bits per sample or bits per second.

Standards of information quality help perform ordering of information bits by importance (to the
user).

Man best handles information if encoded to his abilities. (Pierce, p.234)

In some cases, we can apply common sense in deciding user’s servicing quality needs. For
example, in applications such as voice and video, users are somewhat tolerable of information
loss, but very sensitive to delays. Conversely, in file transfer or electronic mail applications, the
users are expected to be intolerable to loss and tolerable to delays. Finally, there are applications
where both delay and loss can be aggravating to the user, such as in the case of interactive
graphics or interactive computing applications.

For video, expectations are low

For voice, ear is very sensitive to jitter and latencies, and loss/flicker

Voice communication requires a steady, predictable packet delivery rate in order to maintain
quality. Jitter, which is variation in packet delivery timing, is the most common culprit that
reduces call quality in Internet telephony systems. Jitter causes the audio stream to become

Chapter 3 • Multimedia and Real-time Applications 187

broken, uneven or irregular. As a result, the listener’s experience becomes unpleasant or
intolerable.

The end results of packet loss are similar to those of jitter but are typically more
severe when the rate of packet loss is high. Excessive latency can result in unnatural
conversation flow where there is a delay between words that one speaks versus words
that one hears. Latency can cause callers to talk over one another and can also result
in echoes on the line. Hence, jitter, packet loss and latency can have dramatic
consequences in maintaining normal and expected call quality.

Human users are not the only recipients of information. For example, network
management system exchanges signaling packets that may never reach human user.
These packets normally receive preferential treatment at the intermediaries (routers), and this is
particularly required during times of congestion or failure.

It is particularly important during periods of congestion that traffic flows with different
requirements be differentiated for servicing treatments. For example, a router might transmit
higher-priority packets ahead of lower-priority packets in the same queue. Or a router may
maintain different queues for different packet priorities and provide preferential treatment to the
higher priority queues.

User Studies

User studies uncover the degree of service degradation that the user is capable of tolerating
without significant impact on task-performance efficiency. A user may be willing to tolerate
inadequate QoS, but that does not assure that he or she will be able to perform the task
adequately.

Psychophysical and cognitive studies reveal population levels, not individual differences. Context
also plays a significant role in user’s performance.

The human senses seem to perceive the world in a roughly logarithmic way. The eye, for
example, cannot distinguish more than six degrees of brightness; but the actual range of physical
brightness covered by those six degrees is a factor of 2.5 × 2.5 × 2.5 × 2.5 × 2.5 × 2.5, or about
100. A scale of a hundred steps is too fine for human perception. The ear, too, perceives
approximately logarithmically. The physical intensity of sound, in terms of energy carried
through the air, varies by a factor of a trillion (1012) from the barely audible to the threshold of
pain; but because neither the ear nor the brain can cope with so immense a gamut, they convert
the unimaginable multiplicative factors into comprehensible additive scale. The ear, in other
words, relays the physical intensity of the sound as logarithmic ratios of loudness. Thus a normal
conversation may seem three times as loud as a whisper, whereas its measured intensity is
actually 1,000 or 103 times greater.

Fechner’s law in psychophysics stipulates that the magnitude of sensation—brightness, warmth,
weight, electrical shock, any sensation at all—is proportional to the logarithm of the intensity of
the stimulus, measured as a multiple of the smallest perceptible stimulus. Notice that this way the
stimulus is characterized by a pure number, instead of a number endowed with units, like seven
pounds, or five volts, or 20 degrees Celsius. By removing the dependence on specific units, we
have a general law that applies to stimuli of different kinds. Beginning in the 1950s, serious

Ivan Marsic • Rutgers University

188

departures from Fechner’s law began to be reported, and today it is regarded more as a historical
curiosity than as a rigorous rule. But even so, it remains important approximation …

Define j.n.d. (just noticeable difference)

For the voice or video application to be of an acceptable quality, the network must transmit the bit
stream with a short delay and corrupt at most a small fraction of the bits (i.e., the BER must be
small). The maximum acceptable BER is about 10−4 for audio and video transmission, in the
absence of compression. When an audio and video signal is compressed, however, an error in the
compressed signal will cause a sequence of errors in the uncompressed signal. Therefore the
tolerable BER is much less than 10−4 for transmission of compressed signals.

The end-to-end delay should be less than 200 ms for real-time video and voice conversations,
because people find larger delay uncomfortable. That delay can be a few seconds for non-real-
time interactive applications such as interactive video and information on demand. The delay is
not critical for non-interactive applications such as distribution of video or audio programs.

Typical acceptable values of delays are a few seconds for interactive services, and many seconds
for non-interactive services such as email. The acceptable fraction of messages that can be
corrupted ranges from 10−8 for data transmissions to much larger values for noncritical
applications such as junk mail distribution.

Among applications that exchange sequences of messages, we can distinguish those applications
that expect the messages to reach the destination in the correct order and those that do not care
about the order.

3.1.3 User Models

User Preferences

User Utility Functions

Example: Augmented Reality (AR)

{PROBLEM STATEMENT}

Inaccuracy and delays on the alignment of computer graphics and the real world are one of the
greatest constrains in registration for augmented reality. Even with current tracking techniques it
is still necessary to use software to minimize misalignments of virtual and real objects. Our
augmented reality application represents special characteristics that can be used to implement
better registration methods using an adaptive user interface and possibly predictive tracking.

Chapter 3 • Multimedia and Real-time Applications 189

{CONSTRAINS}

AR registration systems are constrained by perception issues in the human vision system.

An important parameter of continuous signals is the acceptable frame rate. For virtual reality
applications, it has been found that the acceptable frame rate is 20 frames per second (fps), with
periodical variations of up to 40% [Watson 97], and maximum delays of 10 milliseconds [Azuma,
1995]. The perception of misalignment by the human eye is also restrictive. Azuma found
experimentally that it is about 2-3 mm of error at the length of the arm (with an arm length of
about 70 cm) is acceptable [Azuma 95]. However, the human eye can detect even smaller
differences as of one minute of arc [Doenges 85]. Current commercially available head-mounted
displays used for AR cannot provide more than 800 by 600 pixels, this resolution makes
impossible to provide an accuracy one minute of arc.

{SOURCES OF ERROR}

Errors can be classified as static and dynamic. Static errors are intrinsic on the registration system
and are present even if there is no movement of the head or tracked features.

Most important static errors are optical distortions and mechanical misalignments on the HMD,
errors in the tracking devices (magnetic, differential, optical trackers), incorrect viewing
parameters as field of view, tracker-to-eye position and orientation. If vision is used to track, the
optical distortion of the camera also has to be added to the error model.

Dynamic errors are caused by delays on the registration system. If a network is used, dynamic
changes of throughput and latencies become an additional source of error.

{OUR AUGMENTED REALITY SYSTEM}

Although research projects have addressed some solutions for registrations involving predictive
tracking [Azuma 95] [Chai 99] we can extended the research because our system has special
characteristics (many of these approaches). It is necessary to have accurate registration most of its
usage however it is created for task where there is limited movement of the user, as in a repairing
task. Delays should be added to the model if processing is performed on a different machine. Also
there is the necessity of having a user interface that can adapt to registration changes or according
to the task being developed, for example removing or adding information only when necessary to
avoid occluding the view of the AR user.

{PROPOSED SOLUTION}

The proposed solution is based on two approaches: predictive registration and adaptive user
interfaces. Predictive registration allows saving processing time, or in case of a networked system
it can provide better registration in presence of latency and jitter. With predictive registration
delays as long as 80ms can be tolerated [Azuma 94]. A statistical model of Kalman filters and
extended Kalman filters can be used to optimize the response of the system when multiple
tracking inputs as video and inertial trackers are used [Chai 99].

Ivan Marsic • Rutgers University

190

Adaptive user interfaces can be used to improve the view of the augmented world. This approach
essentially takes information form the tracking system to determine how the graphics can be
gracefully degraded to match the real world. Estimation of the errors was used before to get and
approximated shape of the 3D objects being displayed [MacIntyre 00]. Also some user interface
techniques based on heuristics where used to switch different representations of the augmented
world [Höllerer 01]. The first technique has a strict model to get an approximated AR view but it
degrades the quality of the graphics, specially affecting 3D models. The second technique
degrades more gracefully but the heuristics used are not effective for all the AR systems. A
combination would be desirable.

{TRACKING PIPELINE}

This is a primary description of our current registration pipeline

Image Processing

[Frame capture] => [Image threshold] => [Subsampling] => [Features Finding] =>

[Image undistortion] => [3D Tracking information] => [Notify Display]

Video Display

[Get processed frame] => [Frame rendering in a buffer] => [3D graphics added to Buffer]

=> [Double buffering] => [Display]

These processes are executed by two separated threads for better performance and resource usage.

{REFERENCES}

[Watson 97]

Watson, B., Spaulding, V., Walker, N., Ribarsky W., “Evaluation of the effects of frame time
variation on VR task performance,” IEEE VRAIS'96, 1996, pp. 38-52.

http://www.cs.northwestern.edu/~watsonb/school/docs/vr97.pdf

[Azuma 95]

R. Azuma, “Predictive Tracking for Augmented Reality,” UNC Chapel Hill Dept. of Computer
Science Technical Report TR95-007 (February 1995), 262 pages.

http://www.cs.unc.edu/~azuma/dissertation.pdf

[Doenges 85]

Chapter 3 • Multimedia and Real-time Applications 191

P. K. Doenges, “Overview of Computer Image Generation in Visual Simulation,” SIGGRAPH
'85 Course Notes #14 on High Performance Image Generation Systems (San Francisco, CA, 22
July 1985).

(Not available on the web, cited in Azuma’s paper)

[Chai 99]

L. Chai, K. Nguyen, W. Hoff, and T. Vincent, “An adaptive estimator for registration in
augmented reality,” Proc. of 2nd IEEE/ACM Int'l Workshop on Augmented Reality, San
Franscisco, Oct. 20-21, 1999.

http://egweb.mines.edu/whoff/projects/augmented/iwar1999.pdf

[Azuma 94]

R. Azuma and G. Bishop, “Improving Static and Dynamic Registration in an Optical See-
Through HMD,” Proceedings of SIGGRAPH '94 (Orlando, FL, 24-29 July 1994), Computer
Graphics, Annual Conference Series, 1994, 197-204.

http://www.cs.unc.edu/~azuma/sig94paper.pdf

[MacIntyre 00]

B. MacIntyre, E. Coelho, S. Julier, “Estimating and Adapting to Registration Errors in
Augmented Reality Systems,” In IEEE Virtual Reality Conference 2002 (VR 2002), pp. 73-80,
Orlando, Florida, March 24-28, 2002.

http://www.cc.gatech.edu/people/home/machado/papers/vr2002.pdf

[Hollerer 01]

T. Höllerer, D. Hallaway, N. Tinna, S. Feiner, “Steps toward accommodating variable position
tracking accuracy in a mobile augmented reality system,” In Proc. 2nd Int. Workshop on
Artificial Intelligence in Mobile Systems (AIMS '01), pages 31-37, 2001.

http://monet.cs.columbia.edu/publications/hollerer-2001-aims.pdf

3.1.4 Performance Metrics

Delay (the average time needed for a packet to travel from source to destination), statistics of
delay (variation, jitter), packet loss (fraction of packets lost, or delivered so late that they are
considered lost) during transmission, packet error rate (fraction of packets delivered in error);

Bounded delay packet delivery ratio (BDPDR): Ratio of packets forwarded between a mobile
node and an access point that are successfully delivered within some pre-specified delay

Ivan Marsic • Rutgers University

192

constraint. The delay measurement starts at the time the packet is initially queued for
transmission (at the access point for downstream traffic or at the originating node for upstream
traffic) and ends when it is delivered successfully at either the mobile node destination
(downstream traffic) or AP (upstream traffic).

Quality of Service

QoS, Keshav p.154

Cite Ray Chauduhuri’s W-ATM paper {cited in Goodman}

Quality of Service (QoS)

Performance measures

Throughput

Latency

Real-time guarantees

Other factors

Reliability

Availability

Security

Synchronization of data streams

Etc.

A networking professional may be able to specify what quality-of-service metrics are needed, and
can specify latency, packet loss and other technical requirements. However, the consumer or
independent small-office-home-office (SOHO) user would more easily understand service
classifications such as “High-Definition Movie Tier” or an “Online Gamer Tier.” Few consumers
will be able to specify service-level agreements, but they may want to know if they are getting
better services when they pay for them, so a consumer-friendly reporting tool would be needed.
In addition, although enterprises are increasingly likely to buy or use a premise-based session
border controller to better manage IP traffic, service providers will need to come up with an
easier and less expensive alternative to classify consumer IP packets based on parameters such as
user profiles and service classes.

Chapter 3 • Multimedia and Real-time Applications 193

3.2 Source Characteristics and Traffic
Models

Different media sources have different traffic characteristics.

3.2.1 Traffic Descriptors

Some commonly used traffic descriptors include peak rate and average rate of a traffic source.

Average Rate

The average rate parameter specifies the average number of packets that a particular flow is
allowed to send per unit of time. A key issue here is to decide the interval of time over which the
average rate will be regulated. If the interval is longer, the flow can generate much greater
number of packets over a short period than if the interval is short. In other words, a shorter
averaging interval imposes greater constraints. For example, average of 100 packets per second is
different from an average of 6,000 packets per minute, because in the later can the flow is
allowed to generate all 6,000 over one 1-second interval and remain silent for the remaining 59
seconds.

Researchers have proposed two types of average rate definitions. Both […]

Burst size: this parameter constrains the total number of packets (the “burst” of packets) that can
be sent by a particular flow into the network over a short interval of time.

Peak Rate

The peak rate is the highest rate at which a source can generate data during a communication
session. Of course, the highest data rate from a source is constrained by the data rate of its
outgoing link. However, by this definition even a source that generates very few packets on a
100-Mbps Ethernet would be said to have a peak rate of 100 Mbps. Obviously, this definition
does not reflect the true traffic load generated by a source. Instead, we define the peak rate as the
maximum number of packets that a source can generate over a very short period of time. In the
above example, one may specify that a flow be constrained to an average rate of 6,000
packets/minute and a peak rate of 100 packets/second.

Primitive traffic characterization is given by the source entropy.

See also MobiCom’04, p. 174: flow characterization

Ivan Marsic • Rutgers University

194

For example, image transport is often modeled as a two state on-off process. While on, a source
transmits at a uniform rate. For more complex media sources such as variable bit rate (VBR)
video coding algorithms, more states are often used to model the video source. The state
transitions are often assumed Markovian, but it is well known that non-Markovian state
transitions could also be well represented by one with more Markovian states. Therefore, we shall
adopt a general Markovian structure, for which a deterministic traffic rate is assigned for each
state. This is the well-known Markovian fluid flow model [Anick et al. 1982], where larger
communication entities, such as an image or a video frame, is in a sense “fluidized” into a fairly
smooth flow of very small information entities called cells. Under this fluid assumption, let Xi(t)
be the rate of cell emission for a connection i at the time t, for which this rate is determined by the
state of the source at time t.

The most common modeling context is queuing, where traffic is offered to a queue or a network
of queues and various performance measures are calculated.

Simple traffic consists of single arrivals of discrete entities (packets, frames, etc.). It can be
mathematically described as a point process, consisting of a sequence of arrival instants T1, T2,
…, Tn, … measured from the origin 0; by convention, T0 = 0. There are two additional equivalent
descriptions of point processes: counting processes and interarrival time processes. A counting

process ∞
=0)}({ ttN is a continuous-time, non-negative integer-valued stochastic process, where

N(t) = max{n : Tn ≤ t} is the number of (traffic) arrivals in the interval (0, t]. An interarrival time

process is a non-negative random sequence ∞
=1}{ nnA , where An = Tn − Tn−1 is the length of the time

interval separating the n-th arrival from the previous one. The equivalence of these descriptions
follows from the equality of events:

{ } { }








<≤=<≤== 
+

==
+

1

11
1)(

n

k
k

n

k
knn AtATtTntN

because  == n

k kn AT
1

. Unless otherwise stated, we assume throughout that {An} is a stationary

sequence and that the common variance of the An is finite.

3.2.2 Self-Similar Traffic

3.3 Approaches to Quality-of-Service

This section reviews some end-to-ed mechanisms for providing quality-of-service (QoS), and
hints at mechanisms used in routers. Chapter 5 details the router-based QoS mechanisms.

Chapter 3 • Multimedia and Real-time Applications 195

3.3.1 End-to-End Delayed Playout

Problems related to this section: Problem 3.2 → Problem 3.5

Removing Jitter by Delayed Playout

Consider the example shown in Figure 3-2 where a source sends audio signal to a receiver for
playout. Let us assume that the source segments the speech stream every 20 milliseconds and
creates data packets. The source outputs the packets with a uniform spacing between them, but
they arrive at the receiver at irregular times due to random network delays.

Speech packetization at the intervals of 20 ms seems to be a good compromise. If the interval
were longer, flicker due to lost or late packets would be more noticeable; conversely, if the
interval were shorter, the packet-header overhead would be too high, with the header size
possibly exceeding the payload.

Playing out the speech packets as they arrive (with random delays) would create significant
distortions and impair the conversation. One way to deal with this is to buffer the packets at the
receiving host to smooth out the jitter. Packets are buffered for variable amounts of time in an
attempt to play out each speech segment with a constant amount of delay relative to the time
when it was pacektized and transmitted from the source. Let us introduce the following notation
(see Figure 3-2):

ti = the time when the ith packet departed its source

di = the amount of delay experienced by the ith packet while in transit

ri = the time when the ith packet is received by receiver (notice that ri = ti + di)

pi = the time when the ith packet is played at receiver

8 7 6 5 4 3 2 1

Packets departing sourceSource Receiver

Network

8 6 7 5 3 4 2 1

Packets arriving at receiver

Time when packet departed (ms)

P
ac

ke
t

n
u

m
b

er

1

0

2

3

5

4

6

7

8

20 40 60 80 100
120140

160

P
ac

ke
t

n
u

m
b

er

1

0

2

3

5

4

6

7

8

20 40 60 80 100
120140

160

Transit delay experienced (ms) Time when packet arrived (ms)

1

0

2

3

5

4

6

7

8

20 40 60 80 100
120

1

0

2

3

5

4

6

7

8

20 40 60 80 100
120

1

0

2

3

5

4

6

7

8

20 40 60 80 100120
140160180

200 220240
260

1

0

2

3

5

4

6

7

8

20 40 60 80 100120
140160180

200 220240
260

Figure 3-2: Packets depart with a uniform spacing, but they experience variable amount of
delay (jitter) and arrive at the receiver irregularly (packets #3 and #6 arrive out of order).

Ivan Marsic • Rutgers University

196

Let q denote the constant delay introduced to smoothen out the playout times. Then pi = ti + q.
The time difference between the ith packet’s playout time and the time it is received equals Δi = (ti
+ q) − ri. If Δi ≥ 0, the ith packet should be buffered for this duration before it is played out. If Δi <
0, the ith packet should be discarded because it arrived too late for playout. Figure 3-3 illustrates
jitter removal for the example given in Figure 3-2. In this case, the constant playout delay of q =
100 ms is selected. With this choice, the sixth packet does not arrive by its scheduled playout
time, and the receiver considers it lost.

We could try selecting a large q so that all packets will arrive by their scheduled playout time.
However, for applications such as Internet telephony, delays greater than 400 ms are not
acceptable because of human psychophysical constraints. Ideally, we would like keep the playout
delay less than 150 ms. Larger delays become annoying and it is difficult to maintain a
meaningful conversation. We know from the discussion in Section 2.1.2 that average end-to-end
network delays can change significantly during day or even during short periods. Therefore, the
best strategy is to adjust the playout delay adaptively, so that we select the minimum possible
delay for which the fraction of missed playouts is kept below a given threshold.

We can again use the approach described in Section 2.1.2 and estimate the average end-to-end
network delay using Exponential Weighted Moving Average (EWMA). Similar to Eq. (2.2), we

estimate the average network delay iδ̂ upon reception of the ith packet as

)(ˆ)1(ˆ
1 iiii tr −⋅+⋅−= − αδαδ

where α is a fixed constant, say, α = 0.001. We also estimate the average standard deviation iυ̂

of the delay as

||ˆ)1(ˆ 1 iiiii dtr −−⋅+⋅−= − αυαυ

Notice that the playout delay q is measured relative to packet’s departure time (Figure 3-3).
Therefore, we cannot adjust q for each packet individually, because this would still result in
distorted speech. An option is to set the playout delay constant for an interval of time, but the

P
ac

ke
t n

um
be

r

1

2

3

4

5

6

7

8

Time [ms]
0 20 40 60 80 10

0
12

0
14

0
16

0
18

0
20

0

Talk starts

First packet sent: t1 = 20

22
0

24
0

26
0

Packets
created
at source

Packets
arrived
at receiver

Missed
playout

q = 100 ms

Playout
schedule

r1 = 58 p1 = 120

Packet arrives at receiver

86753421

1 2 3 4 5 7 8

Packet removed from buffer
Time spent

in buffer

Missed
playout

Time

Packet arrives at receiver

86753421

1 2 3 4 5 7 8

Packet removed from buffer
Time spent

in buffer

Missed
playout

Time

Figure 3-3: Removing jitter at receiver by delaying the playout.

Chapter 3 • Multimedia and Real-time Applications 197

question is when this interval should start and how long it should last. It turns out that humans do
not notice if the periods of silence between the utterances are stretched or compressed. This fact
is used to adjust the playout delay adaptively: the playout delay q is adjusted only at the start of
an utterance (or, “talk spurt”) and it is maintained constant until the next period of silence. The

receiver maintains average delay iδ̂ and average standard deviation iυ̂ for each received packet.

During a period of silence, the receiver calculates the playout delay for the subsequent talk spurt
as follows. If packet k is the first packet of the next talk spurt, kth’s playout delay is computed as

kkk Kq υδ ˆˆ ⋅+= (3.1)

where K is a positive constant, for example we can set K = 4 following the same reasoning as in
Section 2.1.2 for Eq. (2.2). Then, the playout time of the kth packet and all the remaining packets
of the next spurt is computed as pi = ti + qk.

RTP

The Real-time Transport Protocol (RTP) provides the transport of real-time data packets. To
accommodate new real-time applications, the protocol specifies only the basics and it is
somewhat incomplete. Unlike conventional protocols, RTP can be tailored to specific application
needs through modifications and additions to headers. This allows the protocol to adapt easily to
new audio and video standards.

7-bit payload type 16-bit sequence number

32-bit timestamp

contributing source (CSRC) identifiers (if any)

data

0 15 16 31

32-bit synchronization source (SSRC) identifier

2-bit
ver.
num

12
bytes

P

32-bit extension header (if any)

7 8

X
4-bit

contrib.
src count

M

2 3 4

padding (if any)
8-bit pad count

(in bytes)

Figure 3-4: Real-time Transport Protocol (RTP) packet format.

Ivan Marsic • Rutgers University

198

RTP implements the end-to-end layer (or, transport-layer in the OSI model)
features needed to provide synchronization of multimedia data streams.
Figure 3-4 shows the header format used by RTP.

The first two bits indicate the RTP version.

The “padding” (P) bit is set when the packet contains a set of padding
octets that are not part of the payload. For example, RTP data might be padded to fill up a block
of a certain size as required by some encryption algorithms.

The extension bit (X) is used to indicate the presence of an extension header, which can be
defined for some application’s special needs. Such headers are rarely used, because a payload-
specific header can be defined as part of the payload format definition used by the application.

The 4-bit contributing-sources count represents the number of contributing source (CSRC)
identifiers, if any are included in the header.

The M bit allows significant events to be marked in the packet stream (that is, frame boundaries).

The 7-bit payload type specifies the format of the payload in the RTP packet. An RTP sender
emits a single RTP payload type at any given time. An RTP packet can contain portions of either
audio or video data streams. To differentiate between these streams, the sending application
includes a payload type identifier within the RTP header. The identifier indicates the specific
encoding scheme used to create the payload.

The sequence number is used by the receiver when removing jitter at the receiver, as described
earlier. It is used to restore the original packet order and detect packet loss. The sequence number
increments by one for each RTP data packet sent. The initial value of the sequence number is
randomly determined. This makes hacking attacks on encryption more difficult. A random
number is used even if the source device does not encrypt the RTP packet. The packets can flow
through a translator host or router that does provide encryption services.

The timestamp is used along with the sequence number to detect gaps in a packet sequence.
Timestamps are also used in RTP to synchronize packets from different sources. The timestamp
represents the sampling (creation) time of the first octet in each RTP data packet. It is derived
from a clock that increments monotonically and linearly. The resolution of the timer depends on
the desired synchronization accuracy required by the application. It is possible that several
consecutive RTP packets have the same timestamp. For example, this can occur when a single
video frame is transmitted in multiple RTP packets. Because the payloads of these packets were
logically generated at the same instant, their time stamps remain constant. The initial value of the
time stamp is random.

The synchronization source (SSRC) identifier is a randomly chosen identifier for an RTP host.
All packets from the same source contain the same SSRC identifier. Each device in the same RTP
session must have a unique SSRC identifier. This enables the receiver to group packets for
playback.

The contributing source (CSRC) identifiers field contains a list of the sources for the payload in
the current packet. This field is used when a mixer combines different streams of packets. The
information contained in this field allows the receiver to identify the original senders.

RTP (Real-time
Transport Protocol)

Layer 2:
Network

Layer 1:
Link

Layer 3:
End-
to-End

Chapter 3 • Multimedia and Real-time Applications 199

RTCP

The Real-Time Control Protocol (RTCP) monitors the quality of service provided to existing
RTP sessions. The primary function of RTCP is to provide feedback about the quality of the RTP
data distribution. This is comparable to the flow and congestion control functions provided by
other transport protocols, such as TCP. Feedback provided by each receiver is used to diagnose
stream-distribution faults. By sending feedback to all participants in a session, the device
observing problems can determine if the problem is local or remote. This also enables a managing
entity (that is, a network service provider) that is not a participant in the session to receive the
feedback information. The network provider can then act as a third-party monitor to diagnose
network problems.

3.3.2 Multicast Routing

Problems related to this section: Problem 3.7 → ??

When multiple receivers are required to get the same data at approximately the same time,
multicast routing is a more efficient way of delivering data than unicast. A unicast packet has a
single source IP address and a single destination IP address. Data are delivered to a single host. A
multicast packet has a single source IP, but it has a multicast destination IP address that will be
delivered to a group of receivers. (Recall the multicast address class D in Figure 1-45.) The
advantage is that multiple hosts can receive the same multicast stream (instead of several
individual streams), thereby saving network bandwidth. In general, the bandwidth saving with
multicast routing becomes more substantial as the number of destinations increases.

Unicast
(a)

Source
3 × 1.5 Mbps

2 ×
1.5 M

bps

Multicast
(b)

Source 1 × 1.5 Mbps
1 ×

1.5 M
bps

Figure 3-5: Unicast vs. multicast routing.

Ivan Marsic • Rutgers University

200

Figure 3-5 shows an example where three users are simultaneously watching the same video that
is streamed from the same video source. In Figure 3-5(a), all users receive their individual
streams via a unicast delivery. As illustrated, the source must send a total of 3 unicast streams,
each targeted to a different user. Obviously, this is a waste of bandwidth. If the compressed video
takes approximately 1.5 Mbps of bandwidth per stream, then the first link must support data rate
of at least 3 × 1.5 = 4.5 Mbps. Similarly, the lower link from the first router relays two streams
which consume 2 × 1.5 = 3 Mbps of bandwidth. If, on the other hand, the network supports
multicast routing as in Figure 3-5(b), the source sends only a single stream and all links would be
using 1.5 Mbps for this video. Of course, this kind of resource saving is possible only if multiple
users are downloading simultaneously the same video from the same source.

There are two key issues for multicast routing protocols:

1. Multicast Group Management: identifying which hosts are members of a multicast
group and supporting dynamic changes in the group membership; multiple sources and
multiple receivers may need to be supported

2. Multicast Route Establishment: setting up the (shortest path) route from each source to
each receiver

A multicast group relates a set of sources and receivers with each other, but conceptually exists
independently of them. Such group is identified by a unique IP multicast address of Class D
(Figure 1-45). It is created either when a source starts sending to the group address (even if no
receivers are present) or when a receiver expresses its interest in receiving packets from the group
(even if no sources are currently active).

To establish the multicasting routes, we start by superimposing all the shortest paths connecting
the source with all the receivers. The result will be a tree, i.e., it cannot be a graph with cycles. To
see why, consider a contrary possibility, illustrated in Figure 3-6, where the shortest paths from

Source

Receiver i

Router m Router n

Source

Receiver j

Router m Router n

Shortest path (Source → Receiver i)

Shortest path (Source → Receiver j)

Option (a)

Option (b)

Figure 3-6: The superimposed shortest paths must form a tree rooted in the source.

Chapter 3 • Multimedia and Real-time Applications 201

the source to two receivers i and j share two intermediary nodes (routers m and n), but not the
nodes between these two nodes. We know from Section 1.4 that the shortest path between two
intermediate points does not depend on where this path extends beyond the intermediate points.
In other words, it does not depend on the endpoints. Hence, if we superimpose all the shortest
paths from the source host to any destination, we will obtain a tree structure, for which the source
host is the root node. (Notice that alternative paths between m and n could be equally long, but
there should be a uniform policy to resolve the tied cases.) The next issue is, how the multicast-
capable routers should construct this tree.

Reverse Path Forwarding (RPF) Algorithm

We assume that all routers in the network are running a unicast routing algorithm (described in
Section 1.4) and maintain unicast routing tables independently of the multicast algorithm. Thus,
the routers know either the shortest unicast paths to all nodes in the network, or at least the next
hop on the shortest path to any other node in the network.

In reverse path forwarding (RPF) algorithm, when a router receives a packet, it forwards the
packet to all outgoing links (except the one on which it was received) only if the packet arrived
on the link that is on this router’s shortest unicast path back to the source. Otherwise, the router
simply discards the incoming packet without forwarding it on any of its outgoing links. (A tie
between two routers is broken by selecting the router with the smallest network address.)

A problem with RPF is that it essentially floods every router in the network, regardless of whether
it has hosts attached to it that are interested in receiving packets from the multicast group. To
avoid these unnecessary transmissions, we perform pruning: the router that no longer has
attached hosts interested in receiving multicast packets from a particular source informs the next-
hop router on the shortest path to the source that it is not interested.

Here is an example:

Example 3.1 Multicast Using Reverse Path Forwarding (RPF) Algorithm

Consider the network shown in Figure 3-7, in which radio broadcast source A distributes a radio
program to a multicast group Γ, whose members are all the shown hosts. Assume that all link costs are
equal to 1, including the Ethernet links, i.e., any two nodes that are separated by one hop.

(a) Draw the shortest path multicast tree for the group Γ.

(b) Assuming that the reverse path forwarding (RPF) algorithm is used, how many packets are
forwarded in the entire network per every packet sent by the source A? To avoid ambiguities,
describe how you counted the packets.

(c) Assuming that the RPF algorithm uses pruning to exclude the networks that do not have hosts that
are members of Γ, how many packets are forwarded in the entire network per every packet sent by
the source A?

The solutions for (a) and (b) are shown in Figure 3-8. The shortest path multicast tree is drawn by thick
lines in Figure 3-8(a). Router R3 is two hops from R2 (the root of the tree) both via R1 and via R4.
Router R1 is selected because it has a smaller address than R4. (Therefore, link R4–R3 is not part of
the tree!) Notice that router R6 is not connected to R3 (via the multihomed host E), because
multihomed hosts do not participate in routing or forwarding of transit traffic.

Ivan Marsic • Rutgers University

202

The root router R2 sends packets to routers R1, R4, and R5, which in turn forward them to all outgoing
links (except the one on which it was received) only if the packet arrived on the link that is on its own
shortest unicast path back to the source. Otherwise, the router simply discards the incoming packet
without forwarding it on any of its outgoing links. In Figure 3-8(b), R3 will receive the packets from
both R1 and R4, but it will forward only the one from R1 and discard the one from R4. The way we
count packets is how many packets leave the router, and the router has to forward a different packet on
each different outgoing link. Therefore, the number of forwarded packets in the entire network is 8 per
each sent packet. If we include the packets forwarded to end hosts, the total is 8 + 6 = 14 (shown in
Figure 3-8(b)).

As for part (c), routers R4 and R6 do not have any host for which either one is on the shortest path to
the source A. The shortest path for host E is via R3–R1–R2. Therefore, R4 and R6 should send a prune
message to R2 and R7, respectively, to be removed from the multicast tree. This reduces the number of
forwarded packets by 4, so the total number is 4 per each sent packet, or 4 + 6 = 10, if the end hosts are
counted.

What if a router is pruned earlier in the session, but later it discovers that some of its hosts wish to
receive packets from that multicast group? One option is that the router explicitly sends a graft
message to the next-hop router on the shortest path to the source. Another option is for the
source(s) and other downstream routers to flood packets periodically from the source in search for
receivers that may wish to join the group later in the session. This extended version of RPF is
called flood-and-prune approach to multicast-tree management.

A key property of RPF is that routing loops are automatically suppressed and each packet is
forwarded by a router exactly once. The basic assumption underlying RPF is that the shortest path
is symmetric in both directions. That is, the shortest path from the source to a given router
contains the same links as the shortest path from this router to the source. This assumption
requires that each link is symmetric (roughly, that each direction of the link has the same cost). If
links are not symmetric, then the router must compute the shortest path from the source to itself,
given the information from its unicast routing tables. Notice that this is possible only if a link-
state protocol (Section 1.4.2) is used as the unicast routing algorithm.

R1

R2

R3 R4

R6
R7

R5

B

C

D

A

G

FE

R1

R2

R3 R4

R6
R7

R5

B

C

D

A

G

FE

Figure 3-7: Example network used in the multicast Example 3.1.

Chapter 3 • Multimedia and Real-time Applications 203

Spanning Tree Algorithms

The reverse path forwarding algorithm, even with pruning, does not completely avoid
transmission of redundant multicast packets. Consider the network in Figure 3-9(a), which is
similar to Figure 3-7 but slightly more complex. The shortest-path multicast tree is shown in
Figure 3-9(b). Router R4 can be pruned because it does not have attached hosts that are interested
in multicast packets from the source A. (Router R5 is relaying packets for R6 and R7, so it stays.)
As seen, routers R3, R5, R6, R7, and R8 will receive either one or two redundant packets. Ideally,
every node should receive only a single copy of the multicast packet. This would be the case if
the nodes were connected only by the thick lines in Figure 3-9(b). The reason is that the thick
lines form a tree structure, so there are no multiple paths for the packet to reach the same node. A
tree that is obtained by removing alternative paths, while keeping connected the nodes that were
originally connected, is called a spanning tree. If a multicast packet were forwarded from the
root of the tree to all other nodes, every node would receive exactly one copy of the packet. If
links have associated costs and the total cost of the tree is the sum of its link costs, then the
spanning three with a minimum total cost is called a minimum spanning tree.

Therefore, an alternative to RPF is to construct a spanning tree and have each source send the
packets out on its incident link that belongs to the spanning tree. Any node that receives a
multicast packet then forwards it to all of its neighbors in the spanning tree (except the one from
where the packet came). Multicasting on a spanning tree requires a total of only N − 1 packet
transmissions per packet multicast, where N is the number of nodes. Notice that a single spanning
tree is sufficient for any number of sources. This is true because any node of a tree can serve as
its root. To convince yourself about this, take an arbitrary tree and select any of its nodes. Now
imagine that you pull this node up and the other nodes remain hanging from the selected node.
What you get is a tree rooted in the selected node.

R2

R3

R4

R1

R5 R6R7

(a)

(b)

The shortest path multicast tree

R2

R3

R4

R1

R5 R6R7

p1

p2

p3

p3′ p3″

p2′

p1′

p1″

D

E

F G

B

C

Packet will be forwarded

Packet not forwarded
beyond receiving router

Key:

Packet forwarded to end host

R2

R3

R4

R1

R5 R6R7

(a)

(b)

The shortest path multicast tree

R2

R3

R4

R1

R5 R6R7

p1

p2

p3

p3′ p3″

p2′

p1′

p1″

D

E

F G

B

C

Packet will be forwarded

Packet not forwarded
beyond receiving router

Key:

Packet forwarded to end host

Figure 3-8: The shortest path multicast tree for the example network in Figure 3-7.

Ivan Marsic • Rutgers University

204

The main complexity of the spanning-tree multicasting lies in the creation and maintenance of the
spanning tree, as sources and receivers dynamically join or leave the multicast group or the
network topology changes. (Notice that RPF does not have this problem, because it relies on
flooding.) One algorithm that builds and maintains the spanning-tree efficiently is known as core-
based trees (CBTs). With CBTs, the spanning tree is formed starting from a “core router” (also
known as a “rendezvous point” or a “center node”), which can be statically configured or
automatically selected. Other routers are added by growing “branches” of the tree, consisting of a
chain of routers, away from the core router out towards the routers directly adjoining the
multicast group members. The core router is also known as a “center” and CBT is sometimes
called center-based approach.

The tree building process starts when a host joins the multicast group. The host sends a join-
request packet addressed to the core router. The information about the core router is statically
configured. This join-request packet travels hop-by-hop towards the target core, forwarded using
unicast routing. The process stops when the packet either arrives at an intermediate router that
already belongs to the spanning tree or arrives at the destination (the core router). In either case,
the path that the join-request packet has followed defines the branch of the spanning tree between
the leaf node that originated the join-request and the core router. The node at which the message
terminated confirms the packet by sending a join-acknowledgement message. The join-
acknowledgement message travels the same route in the opposite direction the join-request
message traveled earlier.

BB CC DD

R3R3

R8R8
R1R1

R2R2

R5R5
R7R7

R6R6
R4R4

AA

GG

EE

Source

FF

BB CC DD

R3R3

R8R8
R1R1

R2R2

R5R5
R7R7

R6R6
R4R4

AA

GG

EE

Source

FF

(a)

(b)

The shortest path
multicast tree

R2

R3

R4

R1

R5

R6

R7

R8

Figure 3-9: Example network for multicast routing.

Chapter 3 • Multimedia and Real-time Applications 205

Figure 3-10 illustrates the process for the network in Figure 3-9(a), assuming that R1 is
configured as the core router. Suppose that the source A and receivers B, C, D, E, and F join
simultaneously. (Receiver G will join later.) Figure 3-10(a) shows how each router that has
attached a group member unicasts the join-request message to the next hop on the unicast path to
the group’s core. In Figure 3-10(b), the core R1 sends join-acknowledgement messages to R2 and
R3, and R4 relays R7’s join request. Notice that R3 does not forward the join request by R8. This
is because R3 already sent its own join request. Subsequent join requests received for the same
group are cached until this router has received a join acknowledgement for the previously sent
join, at which time any cached joins can also be acknowledged. This happens in Figure 3-10(c),
where after receiving a join acknowledgement, R3 in turn acknowledges R8’s join. We assume
that at this time receiver G decides to join the multicast group and R6 sends a join request on its
behalf. There are three shortest paths from R6 to R1: paths R6-R5-R2-R1, R6-R7-R4-R1, and R6-
R8-R3-R1; we assume that the tie was broken by the unicast routing algorithm and R6-R5-R2-R1
was selected. (The reader may notice that there were several other shortest-path ties, which again
we assume were broken by the unicast algorithm.) Figure 3-10(d) shows that the branch from the
core to R7 is established, and at the same time, the join request from R6 reaches R2. R2 will not
propagate R6’s join request because it is already on the spanning tree for the same group.
Therefore, R2 will respond with a join acknowledgement, which will travel opposite the join
request until it reaches R6 (not shown in Figure 3-10).

(a)

R2

R3

R4

R1

R5

R6

R7

R8

Core
B C

D

A

G

E

F

JO
IN

JOIN

JOIN

JOIN

R2

R3

R4

R1

R5

R6

R7

R8

Core
B C

D

A

G

E

F

ACK

JO
IN

ACK

ACK

ACK

R2

R3

R4

R1

R5

R6

R7

R8

Core
B C

D

A

G

E

F R2

R3

R4

R1

R5

R6

R7

R8

Core
B C

D

A

G

E

F

JO
IN

A
C

K

JOIN

(b)

(c)

(d)

(a)

R2

R3

R4

R1

R5

R6

R7

R8

Core
B C

D

A

G

E

F

JO
IN

JO
IN

JOINJOIN

JOIN
JOIN

JOIN
JOIN

R2

R3

R4

R1

R5

R6

R7

R8

Core
B C

D

A

G

E

F

ACK
ACK

JO
IN

JO
IN

ACKACK

ACK
ACK

ACK
ACK

R2

R3

R4

R1

R5

R6

R7

R8

Core
B C

D

A

G

E

F R2

R3

R4

R1

R5

R6

R7

R8

Core
B C

D

A

G

E

F

JO
IN

JO
IN

A
C

K
A

C
K

JOIN
JOIN

(b)

(c)

(d)

Figure 3-10: Forming the spanning tree by CBTs approach for the example in Figure 3-9.
Thick lines represent the spanning tree, as its branches are grown.

Ivan Marsic • Rutgers University

206

The resulting spanning tree is known as a group-shared multicast tree because any multicast
source in the multicast group G can use this tree. All routers that are part of the spanning tree
create a forwarding table entry for the shared tree, called ∗, G entry, where the wildcard ∗ stands
for “any source” (within the group G). The outgoing network port for this entry is the network
interface on which the Join message arrived during the spanning tree construction. All data
packets that arrive for group G are forwarded out to this port. Each source first sends its traffic to
the core router, which then multicasts it down the spanning tree. Consider the example in Figure
3-10 and assume that host E multicasts a message to the group. Host E constructs an IP packet
and uses the group G IP address (Figure 1-45). E sends the packet to a router on its local network
known as the designated router, in our case R8. R8 encapsulates the packet into a unicast IP
packet and sends it to the core R1 (Figure 3-11). When the packet reaches R1, the core removes
the unicast IP header and forwards it down the tree. As a pefromance optimization, packets
destined for the group do not need to reach the core before they are multicast. As soon as a packet
reaches the tree, it can be forwarded upstream toward the root, as well as downstream to all other
branches.

If any router or a link goes down, the downstream router that used this router as the next hop
towards the core will have to rejoin the spanning tree individually on behalf of each group present
on their outgoing interfaces. Further, during reconfiguring a new router as the core a situation can
occur where a leaf router finds that the next hop towards the new core is the router that is
downstream to it relative to the prior core. Such a situation is depicted in Figure 3-12. Here, after
reconfiguration, router R7 finds that in order to join the new core it has to send a join request
towards R5, which is downstream to it (i.e., R7 is still the next-hop router for R5 toward the old
core). To deal with this situation, R7 sends a “flush-tree” message downstream to teardown the
old tree, i.e., to break the spanning-tree branch from R7 to R5. The downstream routers then
perform explicit Rejoin if they have group members attached to them.

CBTs has several advantages over RPF’s flood-and-prune approach when the multicast group is
sparse (i.e., relatively few routers in the network have group members attached). First, routers
that are not members of the multicast group will never know of its existence, so we avoid the
overhead of flooding. Second, join and leave messages are explicit, so the hosts can join or leave
without waiting for the next flooded packet. Third, each router needs to store only one record per

R2

R3

R4

R1

R5

R6

R7

R8

Core

B
C D

A G

E

F

R2

R3

R4

R1

R5

R6

R7

R8

Core

B
C D

A G

E

F

R1R1 GGR1R1 GG

R1R1
GG

R1R1
GG

(a) (b)

R2

R3

R4

R1

R5

R6

R7

R8

Core

B
C D

A G

E

F

R2

R3

R4

R1

R5

R6

R7

R8

Core

B
C D

A G

E

F

GGGG

GGGG

GGGG

GGGG

GGGG

GGGG

Figure 3-11: Packet forwarding from source E to the multicast group G in Figure 3-10.

Chapter 3 • Multimedia and Real-time Applications 207

group (the interfaces on which to forward packets for that group). It does not need to store per-
source prune information or compute a shortest path tree explicitly.

However, CBTs has several issues of its own. All traffic for the group must pass through the core
router, which can become a bottleneck. A shared spanning tree is not the most efficient solution
for different sources, as discussed below. Additionally, there is a reliability issue: if the core
router goes down, every multicast group that goes through it also goes down. Other issues
include: unidirectional vs. bidirectional shared trees; core placement and selection; multiple
cores; and, dynamic cores.

A shared spanning tree based on a core router is not optimal for all sources. For example in
Figure 3-11, a packet from R8 will reach R7 in four hops (via the core R1), instead of two hops
(via R6). In general, the path from a source to receiver via the core might be significantly longer
than the shortest possible path. The degree of inefficiency depends on where the core and sources
are located relative to each other. If the core is in the “middle,” the inefficiency is reasonably
small. A possible optimization is to build a source-specific tree. Instead of sending a wildcard
Join message to join the group G, a receiver router sends a source-specific Join towards the
source. As this message follows the shortest path towards the source S, the routers along the way
create an S, G entry for this tree in their forwarding table. The resulting tree has the root at the
source S rather than the core router, which may not be part of the new source-specific tree at all.
However, the group-shared tree rooted in the core should remain untouched so that other nodes in
the group G may become sources at a later point.

Core-based tree approach to building and maintaining spanning trees is implemented in the
Internet multicast protocol called Protocol-Independent Multicast (PIM), in the variation called
Sparse Mode (PIM-SM). See Section 8.2.4 for more information.

3.3.3 Peer-to-Peer Routing

Skype, etc.

Teardown
Teardown msgmsg
Teardown
Teardown msgmsg

R2R2

R5R5
R7R7

R6R6
R4R4

OLD Core

R2R2

R5R5
R7R7

R6R6
R4R4

NEW Core

(a) (b)
Next hop

(to Core) = R7
Next hop

(to Core) = R7

Figure 3-12: Reconfiguration of a CBTs core router from (a) to (b) requires the spanning-
tree teardown and rebuilding a new spanning-tree.

Ivan Marsic • Rutgers University

208

3.3.4 Resource Reservation and Integrated Services

Integrated Services (IntServ) is an architecture that specifies the elements to guarantee quality-of-
service (QoS) on data networks. IntServ requires that every router in the system implements
IntServ, and every application that requires some kind of guarantees has to make an individual
reservation. Flow specifications (Flowspecs) describe what the reservation is for, while RSVP is
the underlying mechanism to signal it across the network.

There are two parts to a Flowspec:

(i) What does the traffic look like, specified in the Traffic SPECification or Tspec part.

(ii) What guarantees does it need, specified in the service Request SPECification or Rspec
part.

Tspecs include token bucket algorithm parameters (Section 5.2). The idea is that there is a token
bucket which slowly fills up with tokens, arriving at a constant rate. Every packet that is sent
requires a token, and if there are no tokens, then it cannot be sent. Thus, the rate at which tokens
arrive dictates the average rate of traffic flow, while the depth of the bucket dictates how “bursty”
the traffic is allowed to be.

Tspecs typically just specify the token rate and the bucket depth. For example, a video with a
refresh rate of 75 frames per second, with each frame taking 10 packets, might specify a token
rate of 750Hz, and a bucket depth of only 10. The bucket depth would be sufficient to
accommodate the “burst” associated with sending an entire frame all at once. On the other hand, a
conversation would need a lower token rate, but a much higher bucket depth. This is because
there are often pauses in conversations, so they can make do with fewer tokens by not sending the
gaps between words and sentences. However, this means the bucket depth needs to be increased
to compensate for the traffic being burstier.

Rspecs specify what requirements there are for the flow: it can be normal internet “best effort,” in
which case no reservation is needed. This setting is likely to be used for webpages, FTP, and
similar applications. The “controlled load” setting mirrors the performance of a lightly loaded
network: there may be occasional glitches when two people access the same resource by chance,
but generally both delay and drop rate are fairly constant at the desired rate. This setting is likely
to be used by soft QoS applications. The “guaranteed” setting gives an absolutely bounded
service, where the delay is promised to never go above a desired amount, and packets never
dropped, provided the traffic stays within the specification.

Resource Reservation Protocol (RSVP)

The RSVP protocol (Resource ReSerVation Protocol) is a transport layer protocol designed to
reserve resources across a network for an integrated services Internet. RSVP defines how
applications place reservations for network resources and how they can relinquish the reserved
resources once they are not need any more. It is used by a host to request specific qualities of
service from the network for particular application data streams or flows. RSVP is also used by
routers to deliver quality-of-service (QoS) requests to all nodes along the path(s) of the flows and
to establish and maintain state to provide the requested service. RSVP requests will generally
result in resources being reserved in each node along the data path.

Chapter 3 • Multimedia and Real-time Applications 209

RSVP is not used to transport application data but rather to control the network, similar to routing
protocols. A host uses RSVP to request a specific QoS from the network, on behalf of an
application data stream. RSVP carries the request through the network, visiting each node the
network uses to carry the stream. At each node, RSVP attempts to make a resource reservation for
the stream.

To make a resource reservation at a node, the RSVP daemon communicates with two local
decision modules, admission control and policy control. Admission control determines whether
the node has sufficient available resources to supply the requested QoS. Policy control determines
whether the user has administrative permission to make the reservation. If either check fails, the
RSVP program returns an error notification to the application process that originated the request.
If both checks succeed, the RSVP daemon sets parameters in a packet classifier and packet
scheduler to obtain the desired QoS. The packet classifier determines the QoS class for each
packet and the scheduler orders packet transmission to achieve the promised QoS for each stream.

The routers between the sender and listener have to decide if they can support the reservation
being requested, and, if they cannot, they send a reject message to let the listener know about it.
Otherwise, once they accept the reservation they have to carry the traffic.

The routers store the nature of the flow, and then police it. This is all done in soft state, so if
nothing is heard for a certain length of time, then the reader will time out and the reservation will
be cancelled. This solves the problem if either the sender or the receiver crash or are shut down
incorrectly without first canceling the reservation. The individual routers have an option to police
the traffic to ascertain that it conforms to the flowspecs.

Summary of the key aspects of the RSVP protocol:

1. Shortest-path multicast group/tree

 * Require a shortest-path multicast group/tree to have already been created.

 * Tree created by Dijkstra algorithm (Section 1.4.2) for link state routing protocols, or via
reverse path broadcast procedure, for distance vector routing protocols.

2. PATH message

 * Source sends a PATH message to group members with Tspec info

 * Tspec = Description of traffic flow requirements

3. Router inspection of PATH message

 * Each router receiving the PATH message inspects it and determines the reverse path to the
source.

 * Each router also may include a QoS advertisement, which is sent downstream so that the
receiving hosts of the PATH message might be able to more intelligently construct, or dynamically
adjust, their reservation request.

4. RESV message

 * Receiver sends RESV message “back up the tree” to the source.

 * RESV message contains the (Tspec, Rspec) info (the FlowSpec pair) and Filter spec.

 * Rspec = Description of service requested from the network (i.e., the receiver’s requirements)

Ivan Marsic • Rutgers University

210

 * Thus, the FlowSpec (Tspec, Rspec) specifies a desired QoS.

 * The Filter spec, together with a session specification, defines the set of data packets—the
“flow”—to receive the QoS defined by the FlowSpec.

5. Router inspection of RESV message

 * Each router inspects the (Tspec, Rspec) requirements and determines if the desired QoS can be
satisfied.

 * If yes, the router forwards the RESV message to the next node up the multicast tree towards the
source.

 * If no, the router sends a rejection message back to the receiving host.

6. RSVP session

 * If the RESV message makes its way up the multicast tree back to the source, the reservation
flow request has been approved by all routers in the flow path, and transmission of the application
data can begin.

 * PATH/RESV messages are sent by source/receiver every 30 seconds to maintain the reservation.

 * When a timeout occurs while routers await receipt of a RESV message, then the routers will
free the network resources that had been reserved for the RSVP session.

RSVP runs over IP, both IPv4 and IPv6. Among RSVP’s other features, it provides opaque
transport of traffic control and policy control messages, and provides transparent operation
through non-supporting regions.

Limitations of Integrated Services

IntServ specifies a fine-grained QoS system, which is often contrasted with DiffServ’s coarse-
grained control system (Section 3.3.5).

The problem with IntServ is that many states must be stored in each router. As a result, IntServ
works on a small-scale, but as you scale up to a system the size of the Internet, it is difficult to
keep track of all of the reservations. As a result, IntServ is not very popular.

One way to solve this problem is by using a multi-level approach, where per-microflow resource
reservation (i.e., resource reservation for individual users) is done in the edge network, while in
the core network resources are reserved for aggregate flows only. The routers that lie between
these different levels must adjust the amount of aggregate bandwidth reserved from the core
network so that the reservation requests for individual flows from the edge network can be better
satisfied. See RFC 3175.

3.3.5 Traffic Classes and Differentiated Services

DiffServ (Differentiated Services) is an IETF model for QoS provisioning. There are different
DiffServ proposals, and some simply divide traffic types into two classes. The rationale behind
this approach is that, given the complexities of the best effort traffic, it makes sense to add new
complexity in small increments.

Chapter 3 • Multimedia and Real-time Applications 211

Suppose that we have enhanced the best-effort service model by adding just one new class, which
we call “premium.”

Assuming that packets have been marked in some way, we need to specify the router behavior on
encountering a packet with different markings. This can be done in different ways and IETF is
standardizing a set of router behaviors to be applied to marked packets. These are called “per-hop
behaviors” (PHBs), a term indicating that they define the behavior of individual routers rather
than end-to-end services.

DiffServ mechanisms (Figure 3-13):

* Lies between the network layer and the link layer

* Traffic marked, metered, policed, and shaped at source

* Packets queued for preferential forwarding, based on:

 - Delay bounds marking

 - Throughput guarantees marking

* Queue for each class of traffic, varying parameters

* Weighted scheduling preferentially forwards packets to link layer

Link Layer Protocol

Network Layer Protocol (IP)

Based on Source-Address
and Destination-Address to
get corresponding Policy

Check if packet is out of
source’s declared profile

Discard bursts

Mark according to policy

Classify based on code point from
PHB Table to get the corresponding
physical and virtual queue

pre-marked or
unmarked packet

Meter

Marker

Classifier

Classifier

Scheduler

Class n queue

Class 1 queue

Random Early Detection (RED) Queues

Policer and Shaper

Figure 3-13: DiffServ architecture.

Ivan Marsic • Rutgers University

212

DiffServ Traffic Classes

One PHB is “expedited forwarding” (EF), which states that the packets marked as EF should be
forwarded by the router with minimal delay and loss. Of course, this is only possible if the arrival
rate of EF packets at the router is always less than the rate at which the router can forward EF
packets.

Another PHB is known as “assumed forwarding” (AF).

3.4 Adaptation Parameters

3.5 QoS in Wireless Networks

3.6 Summary and Bibliographical Notes

Latency, jitter and packet loss are the most common ills that plague real-time and multimedia
systems. The remedy is in the form of various quality-of-service (QoS) provisions. Chapter 4
analyzes store-and-forward and queuing congestion in switches and routers. Congestion can lead
to packets spacing unpredictably and thus resulting in jitter. The more hops a packet has to travel,
the worse the jitter. Latency due to distance (propagation delay) is due to the underlying physics
and nothing can be done to reduce propagation delay. However, devices that interconnect
networks (routers) impose latency that is often highly variable. Jitter is primarily caused by these
device-related latency variations. As a device becomes busier, packets must be queued. If those
packets happen to be real-time audio data, jitter is introduced into the audio stream and audio
quality declines.

Chapter 5 describes techniques for QoS provisioning.

The material presented in this chapter requires basic understanding of probability and random
processes. [Yates & Goodman 2004] provides an excellent introduction and [Papoulis & Pillai
2001] is a more advanced and comprehensive text.

Chapter 3 • Multimedia and Real-time Applications 213

For video, expectations are low

For voice, ear is very sensitive to jitter and latencies, and loss/flicker

QoS: [Wang, 2001]

 Multicast Routing

[Bertsekas & Gallagher, 1992] describe several algorithms for spanning-tree construction.
Ballardie, et al., [1993] introduced core based trees (CBT) algorithm for forming the delivery
tree—the collection of nodes and links that a multicast packet traverses. Also see RFC-2189.

[Gärtner, 2003] reviews several distributed algorithms for computing the spanning tree of a
network. He is particularly focusing on self-stabilizing algorithms that are guaranteed to recover
from an arbitrary perturbation of their local state in a finite number of execution steps. This
means that the variables of such algorithms do not need to be initialized properly.

 IntServ

RSVP by itself is rarely deployed in data networks as of this writing (Fall 2009), but the traffic
engineering extension of RSVP, called RSVP-TE [RFC 3209], is becoming accepted recently in
many QoS-oriented networks.

As an important research topic: show that multihop can or cannot support multiple streams of
voice.

RFC-2330 [Paxson, et al., 1998] defines a general framework for performance metrics being
developed by the IETF’s IP Performance Metrics effort, by the IP Performance Metrics (IPPM)
Working Group.

RFC-3393 [Demichelis & Chimento, 2002] defines one-way delay jitter across Internet paths.

RFC 2205: Resource ReSerVation Protocol (RSVP) -- Version 1 Functional

There was no notion of QoS in Ethernet until 1998 when IEEE published 802.1p as part of the
802.1D-1998 standard. 802.1p uses a three-bit field in the Ethernet frame header to denote an
eight-level priority. One possible service-to-value mapping is suggested by RFC-2815, which
describes Integrated Service (IntServ) mappings on IEEE 802 networks.

[Thomson, et al., 1997]

Ivan Marsic • Rutgers University

214

Problems

Problem 3.1

Problem 3.2

Consider an internet telephony session, where both hosts use pulse code modulation to encode
speech and sequence numbers to label their packets. Assume that the user at host A starts
speaking at time zero, the host sends a packet every 20 ms, and the packets arrive at host B in the
order shown in the table below. If B uses fixed playout delay of q = 210 ms, write down the
playout times of the packets.

Packet sequence number Arrival time ri [ms] Playout time pi [ms]
#1 195
#2 245
#3 270
#4 295
#6 300
#5 310
#7 340
#8 380
#9 385

#10 405

Problem 3.3

Consider an internet telephony session over a network where the observed propagation delays
vary between 50–200 ms. Assume that the session starts at time zero and both hosts use pulse
code modulation to encode speech, where voice packets of 160 bytes are sent every 20 ms. Also,
both hosts use a fixed playout delay of q = 150 ms.

(a) Write down the playout times of the packets received at one of the hosts as shown in the
table below.

(b) What size of memory buffer is required at the destination to hold the packets for which
the playout is delayed?

Packet sequence number Arrival time ri [ms] Playout time pi [ms]
#1 95
#2 145
#3 170
#4 135
#6 160
#5 275
#7 280

Chapter 3 • Multimedia and Real-time Applications 215

#8 220
#9 285

#10 305

Problem 3.4

Consider the same internet telephony session as in Problem 3.2, but this time the hosts use
adaptive playout delay. Assume that the first packet of a new talk spurt is labeled k, the current

estimate of the average delay is kδ̂ = 90 ms, the average deviation of the delay is kυ̂ = 15 ms,

and the constants α = 0.01 and K = 4.
The table below shows how the packets are received at the host B. Write down their playout
times, keeping in mind that the receiver must detect the start of a new talk spurt.

Packet
seq. #

Timestamp
ti [ms]

Arrival time
ri [ms]

Playout time
pi [ms]

Average delay iδ̂
[ms]

Average
deviation iυ̂

k 400 480
k+1 420 510
k+2 440 570
k+3 460 600
k+4 480 605
k+7 540 645
k+6 520 650
k+8 560 680
k+9 580 690

k+10 620 695
k+11 640 705

Problem 3.5

Consider an internet telephony session using adaptive playout delay, where voice packets of 160
bytes are sent every 20 ms. Consider one of the receivers during the conversation. Assume that at

the end of a previous talk spurt, the current estimate for the average delay is kδ̂ = 150 ms, the

average deviation of the delay is kυ̂ = 50 ms. Because of high delay and jitter, using the constant

K = 4 would produce noticeable playout delays affecting the perceived quality of conversation. If
the receiver decides to maintain the playout delay at 300 ms, what will be the percentage of
packets with missed playouts (approximate)? Explain your answer.

(Hint: Use the chart shown in the figure below to derive the answer.)

0

Playout delay

Packets that will miss
their scheduled
playout time

Time when packet
arrives at receiver

μ

σ

F
ra

ct
io

n
of

 p
ac

ke
ts

Ivan Marsic • Rutgers University

216

Problem 3.6

Consider the Internet telephony (VoIP) conferencing session shown in the figure. Assume that
each audio stream is using PCM encoding at 64 Kbps. The packet size is 200 bytes.

Determine the periods for transmitting RTCP packets for all senders and receivers in the session.

Problem 3.7

Consider the following network where router A needs to multicast a packet to all other routers in
the network. Assume that the cost of each link is 1 and that the routers are using the reverse path
forwarding (RPF) algorithm.

Do the following:
(e) Draw the shortest path multicast tree for the network.
(f) How many packets are forwarded in the entire network per every packet sent by the

source A?
(g) Assuming that RPF uses pruning and routers E and F do not have attached hosts that are

members of the multicast group, how many packets are forwarded in the entire network
per every packet sent by A?

For each item, show the work, not only the final result.

Internet

VoIP
Host A

VoIP
Host B

VoIP
Host C

RTCP

RTCP
RTCP

AA

BB

CC

DD

EE

FF

GG HH

Chapter 3 • Multimedia and Real-time Applications 217

Problem 3.8

218

Contents
4.1 Packet Switching in Routers

4.1.1 How Routers Forward Packets
4.1.2 Router Architecture
4.1.3 Forwarding Table Lookup
4.1.4 Switching Fabric Design
4.1.5 Where and Why Queuing Happens

4.2 Queuing Models
4.2.1 Little’s Law
4.2.2 M / M / 1 Queuing System
4.2.3 M / M / 1 / m Queuing System
4.2.4 M / G / 1 Queuing System
4.2.5
4.2.6

4.3 Networks of Queues
4.3.1 x
4.3.2 x
4.3.3 x
4.3.4 x

4.4 x
4.4.1 x
4.4.2
4.4.3

4.5 x
4.5.1
4.5.2
4.5.3

4.6 Summary and Bibliographical Notes

Problems

Chapter 4
Switching and Queuing Delay Models

A key problem that switches and routers must deal with are the
finite physical resources. Network nodes and links are never
provisioned to support the maximum traffic rates because that
is not economical. We all know that highway networks are not
designed to support the maximum possible vehicular traffic.
Because of economic reasons, highway networks are built to
support average traffic rates. Traffic congestion normally
occurs during the rush hours and later subsides. If congestion
lasts too long, it can cause a major disruption of
travel in the area. Although this is very unpleasant
for the travelers and can cause economic loss, it is
simply too expensive to provision road networks
to avoid such situations altogether.
Similar philosophy guides the
design of communication
networks.

Data packets need two types of services on their way from the
source to the final destination:

• Computation (or processing), which involves adding
guidance information (or headers) to packets and
looking up this information to deliver the packet to its
correct destination

• Communication (or transmission) of packets over communication links

Figure 4-1 compares the total time to delay a packet if the source and destination are connected
with a direct link vs. total time when an intermediate router relays packets. As seen, the router
introduces both processing and transmission delays.

Both services are offered by physical servers (processing units and communication links) which
have limited servicing capacity. When a packet arrives to a server that is already servicing
packets that arrived previously, then we have a problem of contention for the service. The new
packet is placed into a waiting line (or queue) to wait for its turn. The delay experienced while

Chapter 4 • Switching and Queuing Delay Models 219

waiting in line before being serviced is part of the total delay experienced by packets when
traveling from source to destination. Generally, packets in a networked system experience these
types of delays:

processing + transmission + propagation + queuing

The first three types of delays are described in Section 1.3. This chapter deals with the last kind of
delay, queuing delays. Queuing models are used as a prediction tool to estimate this waiting
time:

• Computation (queuing delays while waiting for processing)

• Communication (queuing delays while waiting for transmission)

This chapter studies what contributes to routing delays and presents simple analytical models of
router queuing delays. Chapter 5 describes techniques to reduce routing delays or redistribute
them in a desired manner over different types of data traffic.

T
im

e

Source Destination

transmission
time

propagation
time

Source DestinationRouter

detail

router
delay

(a) (b)

Figure 4-1: Delays in datagram packet switching (or, forwarding, or, routing). (a) Single
hop source-to-destination connection without intermediary nodes. (b) Intermediary nodes
introduce additionally processing and transmission delays.

Ivan Marsic • Rutgers University 220

4.1 Packet Switching in Routers

Section 1.4 introduced routers and mainly focused on the control functions of routers. This
section describes the datapath functions of routers. A key problem to deal with is the resource
limitation. If the router is too slow to move the incoming packets, the packets will experience
large delays and may need to be discarded if the router runs out of the memory space (known as
buffering space). When packets are discarded too frequently, the router is said to be congested.
The ability of a router to handle successfully the resource contention is a key aspect of its
performance.

Figure 4-2 illustrates key hardware and software components of a router. Section 4.1.1 describes
how these components function to forward data packets. Although network ports are
bidirectional, it is useful to logically separate input and output ports. Router implements only the
bottom two layers of the software protocol stack: link and network layer. Each network port has
an associated link-layer protocol, but the network-layer protocol is common for all ports. This
property will be explained later with Figure 4-4.

4.1.1 How Routers Forward Packets

Routers have two main functions:

1. Forwarding or switching packets (datapath functions) that pass through the router. One
could think of these functions as using maps to direct the packets to their destinations.
These operations are performed very frequently and are most often implemented in
special purpose hardware.

2. Maintaining routing tables (control functions) by exchanging network connectivity
information with neighboring routers, as well as system configuration and management.
One could think of these functions as surveying and cartography to build the maps that

Network port
(bidirectional)

Input port Output port

Network layer protocol

Link layer protocol
Switching

fabric

Output portInput port

Link layer protocol

Input port Output port

Network layer protocol

Link layer protocol
Switching

fabric

Output portInput port

Link layer protocol

Figure 4-2: Hardware and software components of a router.

Chapter 4 • Switching and Queuing Delay Models 221

are used for packet forwarding. These operations are performed relatively infrequently
and are invariably implemented in software.

When trying to improve the per-packet performance of a router, we focus on the datapath
functions because they must be fast. Routing table maintenance is described in Section 1.4. This
chapter focuses on the datapath functions of packet forwarding (or, switching).

The datapath architecture consists of three main units: (1) input ports where incoming packets are
received; (2) switching fabric that transfers packets from input to output ports; and, (3) output
ports that transmit packets to an outgoing communication link. Routers offer four key functions
to incoming data packets (illustrated in Figure 4-3):

1. A packet is received and stored in the local memory on the input port at
which the packet arrived.

2. The packet guidance information (destination address, stored in the packet

Link & Physical
Layers

Network Layer2
3

Receiving and storing packets1

2

3

4

Forwarding decision for packets

Moving packets from input to output port

Transmission of packets

Services offered to incoming packets:

1

4

Link & Physical
Layers

Network Layer2
3

Receiving and storing packets1

2

3

4

Forwarding decision for packets

Moving packets from input to output port

Transmission of packets

Services offered to incoming packets:

Receiving and storing packets1

2

3

4

Forwarding decision for packets

Moving packets from input to output port

Transmission of packets

Services offered to incoming packets:

1

4

Figure 4-3: How router forwards packets: illustrated are four key services offered to
incoming data packets.

1

Ivan Marsic • Rutgers University 222

header) is looked up and the forwarding
decision is made as to which output port
the packet should be transferred to.

3. The packet is transferred across the
switching fabric (also known as the
backplane) to the appropriate output port,
as decided in the preceding step.

4. The packet is transmitted on the output port over the outgoing
communication link.

4.1.2 Router Architecture

Figure 1-12 shows protocol layering in end systems and intermediate nodes (switches or routers).
Figure 4-4 shows the same layering from a network perspective. Each router runs an independent
layer-1 (Link layer) protocol for each communication line. A single network layer (layer-2) is
common for all link layers of the router.

The key architectural question in router design is about the implementation of the (shared)
network layer of the router’s protocol stack. The network layer binds together the link layers and
performs packets switching. Link layers are terminating different communication links at the
router and they essentially provide data input/output operations. They function independently of
one another and are implemented using separate hardware units.

3

22

44

Chapter 4 • Switching and Queuing Delay Models 223

The router’s network layer must deal simultaneously with many parallel data streams. To achieve
high performance, the network layer could be implemented in parallel hardware. The issues that
make the router’s network layer design of difficult include:

• Maintaining consistent forwarding tables: If the networking layer is distributed over
parallel hardware units, each unit must maintain its own copy of the forwarding table.
Because the forwarding table dynamically changes (as updated by the routing algorithm),
all copies must be maintained consistent.

• Achieving high-speed packet switching: Once a packet’s outgoing port is decided, the
packet must be moved as quickly as possible from the incoming to the outgoing port.

• Reducing queuing and blocking: If two or more packets cross each other’s way, the must
be ordered in series, where they move one-by-one while others are waiting for their turn.
The pathways inside the router should be designed to minimize chances for queuing and
blocking to occur.

Over the years, different architectures have been used for routers. Particular architectures have
been selected based on a number of factors, including cost, number of network ports, required
performance, and currently available technology. The detailed implementations of individual
commercial routers have generally remained proprietary, but in broad terms, all routers have
evolved in similar ways. The evolution in the architecture of routers is illustrated in Figure 4-5.

First-Generation Routers: Central CPU Processor. The original routers were built around a
conventional computer architecture, as shown in Figure 4-5(a): a shared central bus, with a
central CPU, memory, and peripheral Line Cards (or, Network Interface Cards). Each Line Card
performs the link-layer function, connecting the router to each of the communication links. The
central CPU performs the network-layer function. Packets arriving from a link are transferred
across the shared bus to the CPU, where a forwarding decision is made. The packet is then
transferred across the bus again to its outgoing Line Card, and onto the communication link.
Figure 4-6 highlights the datapath of first-generation routers.

L1L1

L1L1

End system

End system

Network

Router A

Router B

Router C

L2

L3

L3
L2

L2 L1L1

L1L1
L1L1

L1L1
L2

L1L1

L1L1

L1L1

L1L
1

L1L1

L1L1
L1L1

L1L1
L2

L3 = End-to-End Layer
L2 = Network Layer
L1 = Link Layer

Key:

L1L1

L1L1

End system

End system

Network

Router A

Router B

Router C

L2

L3

L3
L2

L2 L1L1

L1L1
L1L1

L1L1
L2

L1L1

L1L1
L1L1

L1L1
L2

L1L1

L1L1

L1L1

L1L
1

L1L1

L1L1
L1L1

L1L1
L2L1L1

L1L1
L1L1

L2

L3 = End-to-End Layer
L2 = Network Layer
L1 = Link Layer

Key:
L3 = End-to-End Layer
L2 = Network Layer
L1 = Link Layer

Key:

Figure 4-4: Distribution of protocol layers in routers and end systems.

Ivan Marsic • Rutgers University 224

Second-Generation Routers: Network Front-end (NFE) Processors. The main limitation of
the architecture in Figure 4-5(a) is that the central CPU must process every packet, ultimately
limiting the throughput of the system. To increase the system throughput, the architecture in
Figure 4-5(b) implements parallelism by placing a separate CPU at each interface. That is, the
link-layer is still implemented in individual Line Cards, but the network-layer function is
distributed across several dedicated CPUs, known as network front-end (NFE) processors. A
local forwarding decision is made in a NFE processor, and the packet is immediately forwarded
to its outgoing interface. The central CPU is needed to run the routing algorithm and for
centralized system management functions. It also computes the forwarding table and distributes it
to the NFE processors.

The architecture in Figure 4-5(b) has higher performance than a first-generation design because
the network-layer function is distributed over several NFE processors that run in parallel; and
because each packet need only traverse the bus once, thus increasing the system throughput.
Figure 4-7 highlights the datapath of second-generation routers. However, the performance is still
limited by two factors. First, forwarding decisions are made in software, and so are limited by the
speed of the NFE processor, which is a general purpose CPU. But general purpose CPUs are not
well suited to applications in which the data (packets) flow through the system; CPUs are better
suited to applications in which data is examined multiple times, thus allowing the efficient use of

CPULine Card
#1 Memory

CPULine Card
#2 Memory

CPULine Card
#2 Memory

CPULine Card
#3 Memory

CPULine Card
#3 Memory

CPU Line Card
#4Memory

CPU Line Card
#4Memory

CPU Line Card
#5Memory

CPU Line Card
#5Memory

CPU Line Card
#6Memory

CPU Line Card
#6Memory

Line Card
#1

CPU

Line Card
#2

Line Card
#3

Line Card
#4

Line Card
#5

Line Card
#6

Memory

CPU

MemoryNFE
Processor

NFE
Processor

(a) (b)

Fwd
Engine

Fwd
Engine

Line Card
#2

Fwd
Engine

Line Card
#1

Line Card
#3

Fwd
Engine

Line Card
#4

Fwd
Engine

Line Card
#5

Fwd
Engine

Line Card
#6

CPU

Memory

(c)

packets

packets

Figure 4-5: The basic architectures of packet-switching processors. (a) Central CPU
processor; (b) Parallel network-front-end processors; (c) Switching fabric. The curved line
indicates the packet path, from input to output port.

Chapter 4 • Switching and Queuing Delay Models 225

a cache. Carefully designed, special purpose ASICs can readily outperform a CPU when making
forwarding decisions, managing queues, and arbitrating access to the bus. Hence, CPUs are being
replaced increasingly by specialized ASICs. The second factor that limits the performance is the
use of a shared bus—only one packet may traverse the bus at a time between two Line Cards.
Performance can be increased if multiple packets can be transferred across the bus
simultaneously. This is the reason that a switch fabric is used in high-end routers.

Third-Generation Routers: Switching Fabric. By introducing a hardware-forwarding engine
and replacing the bus with an interconnection network, we reach the architecture shown in Figure
4-5(c). In an interconnection network, multiple Line Cards can communicate with each other
simultaneously greatly increasing the system throughput. Today, the highest performance routers
are designed according to this architecture.

Input Ports

The key functions of input ports are to receive packets and make the forwarding decision. This
spans both link and network layers of the protocol stack.

A network port is not the same as a Line Card. A Line Card supports the link-layer functionality
of a network port, which is receiving and transmitting packets. A Line Card may also support the
network-layer functionality, if the Network Front-End Processor is located on a Line Card as in

CPU

Memory

Line card Line card

System bus

Link layer

Network layer

packets

Input port

Output port

Forwarding & Routing
processor

CPU

Memory

Line card Line card

System bus

Link layer

Network layer

packets

Input port

Output port

Forwarding & Routing
processor

Figure 4-6: Packet datapath for switching via memory. Also shown in Figure 4-5(a).

NFE processor NFE processor CPU

Memory

Line card Line card

System bus

Link layer

Network layer

packets

Input port Output port Routing processor

NFE processor NFE processor CPU

Memory

Line card Line card

System bus

Link layer

Network layer

packets

Input port Output port Routing processor

Figure 4-7: Packet datapath for switching via bus. Also shown in Figure 4-5(b).

Visit http://en.wikipedia.org/wiki/ASIC for information about Application-Specific Integrated CircuitsVisit http://en.wikipedia.org/wiki/ASIC for information about Application-Specific Integrated Circuits

Ivan Marsic • Rutgers University 226

second-generation routers. However, it may not have any of the network-layer functionality,
which is the case in first-generation routers where all network-layer functionality is supported by
the central processor and memory.

Output Ports

The key function of output ports is to transmit packets on the outgoing communication links. If
packets are arriving at a greater rate than the output port is able to transmit, some packets will be
enqueued into waiting lines. The output port may also need to manage how different types of
packets are lined up for transmission. This is known as scheduling and several scheduling
techniques are described in Chapter 5. As with input ports, these functions span both link and
network layers of the protocol stack.

4.1.3 Forwarding Table Lookup

We know from Section 1.4.4 that routers use destination address prefixes to identify a contiguous
range of IP addresses in their routing messages. A destination prefix is a group of IP addresses
that may be treated similarly for packet forwarding purposes. Based on its routing table, the
router derives its forwarding table, also known as FIB (Forwarding Information Base), and uses it
for making forwarding decisions for data packets. Each entry in a forwarding table/FIB represents
a mapping from an IP address prefix (a range of addresses) to an outgoing link, with the property
that packets from any destination with that prefix may be sent along the corresponding link.
Forwarding table entries are called routes.

The algorithm used by the forwarding component of a router to make a forwarding decision on a
packet uses two sources of information: (1) the forwarding table or FIB, and (2) the packet
header. Although IP addresses are always the same length, IP prefixes are of variable length. The
IP destination lookup algorithm needs to find the longest prefix match—the longest prefix in the
FIB that matches the high-order bits in the IP address of the packet being forwarded. Longest
prefix match used to be computationally expensive. The advances that have been made in
longest-match algorithms in recent years have solved the problem of matching.

Packet forwarding decision depends on several parameters, depending on the routing function
that needs to be supported (Figure 4-8), such as unicast routing, multicast routing, or unicast

Routing
function

Forwarding
algorithm

Unicast routing

Longest prefix match
on destination address

Unicast routing
with Types of Service

Multicast routing

Longest prefix match
on destination address
+ exact match on Type

of Service

Longest match on
source address
+ exact match on
source address,

destination address,
and incoming interface

Figure 4-8: Forwarding algorithms for different routing functions.

Chapter 4 • Switching and Queuing Delay Models 227

routing with Types of Service. Therefore, in addition to the information that controls where a
packet is forwarded (next hop), an entry in the forwarding table may include the information
about what resources the packet may use, such as a particular outgoing queue that the packet
should be placed on (known as packet classification, to be described later). Forwarding of unicast
packets requires longest prefix match based on the network-layer destination address. Unicast
forwarding with Types of Service requires the longest match on the destination network-layer
address, plus the exact match (fixed-length match) on the Type of Service (TOS) bits carried in
the network-layer header (Figure 1-36). Forwarding of multicast packets requires longest match
on the source network-layer address, plus the exact match (fixed-length match) on both source
and destination addresses, where the destination address is the multicast group address.

For the purposes of multicast forwarding, some entries in the forwarding table/FIB may have
multiple subentries. In multicast, a packet that arrives on one network interface needs to be sent
out on multiple outgoing interfaces that are identified in subentries of a FIB record.

4.1.4 Switching Fabric Design

Problems related to this section: ?? → Problem 4.7

Switch Design Issues:

• Switch contention occurs when several packets are crossing each other’s path – switch cannot
support arbitrary set of transfers;

• Complex rearranging of the timetable for packet servicing (known as scheduling) is needed to
avoid switch contention;

• High clock/transfer rate needed for bus-based design (first- and second-generation routers);

• Packet queuing (or, buffering) to avoid packet loss is needed when the component that provides
service (generally known as “server”) is busy;

Example switch fabrics include:

• Bus (first- and second-generation routers)

• Crossbar

• Banyan network

Banyan networks and other interconnection networks were initially developed to connect
processors in a multiprocessor. They typically provide lower capacity than a complete crossbar.

Switching fabric may introduce different types of packet blocking. For example, if two or more
packets at different inputs want to cross the switching fabric simultaneously towards the same
output, then these packets experience output blocking. When one packet is heading for an idle
port, but in front of it (in the same waiting line/queue) is another packet headed for a different
output port that is currently busy, and the former packet must wait until the latter departs, then the
former packet experiences head-of-line blocking. Find more information about packet blocking in
Section 4.1.5.

Ivan Marsic • Rutgers University 228

Crossbar

The simplest switch fabric is a crossbar, which is a matrix of pathways that can be configured to
connect any input port to any output port. An N × N crossbar has N input buses, N output buses,
and N2 crosspoints, which are either ON or OFF. If the (i, j) crosspoint is on, the ith input port is
connected to the jth output port.

A crossbar needs a switching timetable, known as switching schedule, that tells it which inputs to
connect to which outputs at a given time. If packets arrive at fixed intervals then the schedule can
be computed in advance. However, in the general case, the switch has to compute the schedule
while it is operating.

If packets from all N inputs are all heading towards different outputs then crossbar is N times
faster than a bus-based (second-generation) switch. However, if two or more packets at different
inputs want to go to the same output, then crossbar suffers from “output blocking” and as a result,
it is not fully used. In the worst-case scenario, each output port must be able to accept packets
from all input ports at once. To avoid output blocking, each output port would need to have a
memory bandwidth equal to the total switch throughput, i.e., N × input port datarate. In reality,
sophisticated designs are used to address this issue with lower memory bandwidths.

Banyan Network

Banyan network is a so-called self-routing switch fabric, because each switching element
forwards the incoming packets based on the packet’s tag that represents the output port to which
this packets should go. The input port looks up the packet’s outgoing port in the forwarding table
based on packet’s destination, and tags the packet with a binary representation of the output port.
A Banyan switch fabric is organized in a hierarchy of switching elements. A switching element at
level i checks the ith bit of the tag; if the bit is 0, the packet is forwarded to the upper output, and
otherwise to the lower output. Therefore, the tag can be considered a self-routing header of the
packet, for routing the packet inside the switching fabric. The tag is removed at the output port
before the packet leaves the router.

Chapter 4 • Switching and Queuing Delay Models 229

The building block of a Banyan network is a 2 × 2 switch, i.e., a switch with two inputs and two
outputs. The upper input and output ports are labeled with 0 and the lower input and output ports
are labeled with 1. This switch moves packets based on a single-bit tag. For example, in Figure
4-9(a) a packet labeled with tag “1” arrives at input port 0 of a 2 × 2 switch. The switch directs
the packet to the lower output port (the output port 1). To create a 4 × 4 switch, we need four
2 × 2 switching elements placed in a grid as in Figure 4-9(b). First we take two 2 × 2 switches and
label them 0 and 1. Then we take another pair of 2 × 2 switches and place them before the first
two. When a packet enters a switching element in the first stage, it is sent to the 2 × 2 switch
labeled 0 if the first bit of the packet’s tag is 0. Otherwise, it is sent to the switch labeled 1. To
create an 8 × 8 switch, we need two 4 × 4 switches and four 2 × 2 switching elements placed in a
grid as in Figure 4-9(c). Again, we label the two 4 × 4 switches as 0 and 1. The four 2 × 2
switching elements are placed before the 4 × 4 switches, and they send the packets to the

00

01

10

11

00

01

10

11

0

1

0

1

Input port
tag

Output port
tag

1

Packet
with tag 1

(a) (b)

Input port
tag

Output port
tag

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

(c)

100

Packet
with tag 100

001

Packet
with tag 001

Input port
tag

Output port
tag

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

0

1

0

1

Input port
tag

Output port
tag

1

Packet
with tag 1

0

1

0

1

Input port
tag

Output port
tag

1

Packet
with tag 1

(a) (b)

Input port
tag

Output port
tag

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

(c)

100

Packet
with tag 100

001

Packet
with tag 001

Input port
tag

Output port
tag

Figure 4-9: Banyan switch fabric. (a) A Banyan switching element is a 2 × 2 switch that
moves packets either to output port 0 (upper port) or output port 1 (lower port), depending
on the packet’s tag. (b) A 4 × 4 Banyan network is composed from four 2 × 2 switching
elements. (c) An 8 × 8 Banyan network is composed from twelve 2 × 2 switching elements.

Ivan Marsic • Rutgers University 230

corresponding 4 × 4 switch based on the first bit of the packet’s tag. (Note that there are several
equivalent 8 × 8 Banyan switches, only one of which is shown in Figure 4-9(c).)

If two incoming packets on any 2 × 2 switching element want to go to the same output port of this
element, they collide and block at this element. For example, if two packets with tags “000” and
“010” arrived at the input ports “000” and “001” in Figure 4-9(c), then they will collide at the
first stage (in the upper-left corner 2 × 2 switching element), because they both need to go to the
same output of this switching element. The switching element discards both of the colliding
packets. Because packet loss is not desirable, we need to either prevent collisions or deal with
them when they happen. In either case, instead of loss, the packet experiences delay while waiting
for its turn to cross the switching fabric.

One option is to deal with collisions when they happen. This option requires a memory buffer for
storing packets within the switching element. One of the colliding packets is transferred to the
requested direction, while the other is stored in the buffer and sent in the subsequent cycle. This
design is called internal queuing in Section 4.1.5. In the worst-case of input-traffic pattern, the
internal buffer size must be large enough to hold several colliding packets.

Another option is to deal with collisions is to prevent them from happening. One way of
preventing collisions is to check whether a path is available before sending a packet from an input
port.

An alternative way of preventing collisions is by choosing the order in which packets appear at
the input of the switching fabric. Obviously, the router cannot choose the input port at which a
particular packet will arrive—packets arrive along the links depending on the upstream nodes that
transmitted them. What can be done is to insert an additional network (known as sorting network)
before a Banyan network, which rearranges the packets so that they are presented to the Banyan
network in the order that avoids collisions. This is what a Batcher network does.

Batcher-Banyan Network

A Batcher network is a hardware network that takes a list of numbers and sorts them in the
ascending order. Again, we assume that packets are tagged at the input ports at which they arrive.
A tag is a binary representation of the output port to which the packet needs to be moved. A
Batcher network sorts the packets that are currently at input ports into a non-decreasing order of
their tags.

Figure 4-10 shows several Batcher sorting networks. To get an intuition why this network will
correctly sort the inputs, consider Figure 4-10(b). The first four comparators will “sink” the
largest value to the bottom and “lift” the smallest value to the top. The final comparator simply
sorts out the middle two values.

Chapter 4 • Switching and Queuing Delay Models 231

A combined Batcher-Banyan network is collision-free only when there are no packets heading for
the same output port. Because there may be duplicates (tags with the same output port number) or
gaps in the sequence, an additional network or special control sequence is required. Figure 4-11
shows a trap network and a shuffle-exchange network (or, concentrator) which serve to remove
duplicates and gaps. In order to eliminate the packets for the same output, a trap network is
required at the output of the Batcher sorter. Because packets are sorted by the Batcher sorter, the
packets for the same output can be checked by comparison with neighboring packets. The trap
network performs this comparison, and selects only one packet per output. Duplicates are trapped
and dealt with separately.

One way to deal with the trapped duplicates is to store them and recirculate back to the entrance
of the Batcher network, so in the next cycle they can compete with incoming packets. This
requires that at least half the Batcher’s inputs be reserved for recirculated packets (to account for
the worst-case scenario).

7

5

3

4

L

H

3

5

4

7

L

H
4

5

L

H

L

H

L

H

5

3

7

4

7

5

3

4

L

H

3

5

4

7

L

H
4

5

L

H

L

H

L

H

5

3

7

4

(c)

9

5

6

4

3

2

1

7

Input
list

(a) (b)

5

3

3

5

Input
numbers

Output
numbers

Low

High

Comparator

5

3

3

5

Input
numbers

Output
numbers

Low

High

Comparator

1

2

3

4

5

6

7

9

Output
list5

4

9

6

2

1

3

7

4

1

5

2

6

3

9

7

4

2

5

3

6

7

4

3

5

7

Figure 4-10: Batcher network. (a) A comparator element output the smaller input value at
the upper output and the greater input value at the lower output. (b) A 4 × 4 Batcher
network is composed five comparators. (c) An 8 × 8 Batcher network is composed from
twelve comparators.

Ivan Marsic • Rutgers University 232

An alternative is to take the duplicates through multiple Banyan networks, where each packet that
wants to go to the same output port is presented to a separate Banyan network.

Even when duplicates are removed, unselected and eliminated packets (gaps in the input
sequence) generate empty inputs for the Banyan network. These gaps cause collisions in the
Banyan network even if all packets are heading to different outputs. For example, consider an
8 × 8 Batcher-Banyan network with four packets heading to outputs 0, 0, 0, and 1, respectively.
Although two of the three packets for the output 0 are trapped, the remaining two packets still
collide in the second stage of the Banyan. To solve this problem, a shuffle-exchange network (or,
concentrator) is required. In order to eliminate empty inputs, packets are shifted and the conflict
is avoided. Although the role of the concentrator is just shifting the packets and eliminating
empty inputs, the implementation is difficult because the number of packets that will be trapped
cannot be predicted. Usually, special control sequence is introduced, or a Batcher sorter is used
again as the concentrator.

4.1.5 Where and Why Queuing Happens

Problems related to this section: Problem 4.9 → ??

Queuing happens when customers are arriving at a rate that is higher than the server is able to
service. In routers, waiting lines (queues) may be formed for any of the three services shown in
illustrated in Figure 4-3, except for receiving packets at the input port. Packet queuing in routers
is also known as switch buffering. The router needs memory allow for buffering, i.e., storing
packets while they are waiting for service. By adopting different designs, the router architect can
control where the buffering will occur.

Batcher
sort
network

Trap
network

Shuffle
exchange
network

Banyan
network

Figure 4-11: Batcher-Banyan network. Internal blocking is avoided by sorting the inputs to
a Banyan network. A trap network and a shuffle-exchange network remove duplicates and
gaps.

Chapter 4 • Switching and Queuing Delay Models 233

Before considering how queuing occurs in packet switches, let us consider the analogy with
vehicular traffic, illustrated in Figure 4-12. The car in the lower left corner could go if it were not
for the car in front of it that wishes to make the left turn but cannot because of the cars arriving in
the parallel lane from the opposite direction. We say that the lower-left-corner car experiences
head-of-line (HOL) blocking. A queue of cars will be formed at an entrance to the road
intersection (or, “input port”) because the front car cannot cross the intersection area (or,
“switching fabric”).

Another cause for queuing occurs the access to the intersection area (or, “switching fabric”) has
to be serialized. In Figure 4-12, the cars crossing from upper left corner to lower right corner and
vice versa must wait for their turn because the intersection area is busy. Notice that we need an
“arbiter” to serialize the access to the intersection area, and STOP/GO signals in Figure 4-12
serve this purpose. The corresponding queuing occurs in a router when the switching fabric has
insufficient capacity to support incoming packet traffic. The queuing occurs at the input port and
it is known as input queuing (or, input buffering) or in the switch fabric (internal queuing).

Car experiencing
head-of-line
blocking

Car experiencing
head-of-line
blocking

Car experiencing
head-of-line
blocking

Figure 4-12: Illustration of forwarding issues by a road intersection analogy.

Ivan Marsic • Rutgers University 234

Yet another reason for queuing occurs when an outgoing road cannot support the incoming traffic
and the corresponding intersection exit becomes congested. In this case, even if an incoming car
does not experience head-of-line blocking and it has a GO signal, it still bust wait because the exit
is congested. The corresponding queuing occurs in a router when the outgoing communication
line has insufficient capacity to support incoming packet traffic. The queuing may occur at the
input port (input queuing), in the switch fabric (internal queuing), or at the output port (output
queuing).

Figure 4-13 summarizes the datapath delays in a router. Some of these delays may be negligible,
depending on the switch design. As already noted, queuing may also occur in the switch fabric
(internal queuing), which is not shown in Figure 4-13.

Input Queuing

In switches with pure input queuing (or, input buffering), packets are stored at the input ports and
released when they win access to both the switching fabric and the output line. An arbiter decides
the timetable for accessing the fabric depending on the status of the fabric and the output lines
(Figure 4-14). Because the packets leaving the input queues are guaranteed access to the fabric
and the output line, there is no need for an output queue.

The key advantage of input queuing is that links in the switching fabric (and the input queues
themselves) need to run at the speed of the input communication lines. For a router with N input
ports and N output ports, only the arbiter needs to run N times faster than the input lines.

Input port

First bit received

Last bit received

First bit transmitted

Last bit transmitted

Switch fabric traversal delay = ts

Output port

Switch fabric

Transmission delay = O
xtTransmission delay = O
xt

Forwarding decision delay = tf

Fwd decision
queuing delay

Fabric traversal
queuing delay

Transmission
queuing delay

Reception delay =
I
xtReception delay =
I
xt

Time

Figure 4-13: Components of delay in data packet forwarding.

Chapter 4 • Switching and Queuing Delay Models 235

The problem with input-queued routers is that if input queues are served in a first-come-first-
served (FCFS) order, then a head-of-line packet destined for a busy output blocks the packets in
the queue behind it. This is known as head-of-line (HOL) blocking. HOL blocking can be
prevented if packets are served according to a timetable different from FCFS. Scheduling
techniques that prevent HOL blocking are described in Chapter 5.

Output Queuing

In switches with pure output queuing (or, output buffering), packets are stored at the output ports.
Incoming packets immediately proceed through the switching fabric to their corresponding output
port. Because multiple packets may be simultaneously heading towards the same output port, the
switch must provide a switching-fabric speedup proportional to the number of input ports. In a
switch with N input ports, each output port must be able to store N packets in the time it takes a
single packet to arrive at an input port. This makes the hardware for the switching fabric and
output queues more expensive than in input queuing.

Notice that output queue do not suffer from head-of-line blocking—the transmitter can transmit
the packets in the packets according to any desired timetable. The output port may rearrange its
output queue to transmit packets according to a timetable different from their arrival order. We
will study scheduling disciplines in Chapter 5.

Internal Queuing

• Head of line blocking

• What amount of buffering is needed?

Input ports Output portsSwitch fabric

Arbiter

Figure 4-14: A router with input queuing. The arbiter releases a packet from an input
queues when a path through the switch fabric and the output line is available.

Ivan Marsic • Rutgers University 236

4.2 Queuing Models

Queuing introduces latency, and the potential for packet loss if a queue overflows. When traffic
patterns are bursty, the queuing-induced latency varies unpredictably from packet to packet,
manifesting itself as jitter (delay variability) in the affected traffic streams. Modeling queuing
processes is important for understanding the problem and designing the solutions.

General Server

A general service model is shown in Figure 4-15. Customers arrive in the system at a certain rate.
It is helpful if the arrival times happened to be random and independent of the previous arrivals,
because such systems can be well modeled. The server services customers in a certain order, the
simplest being their order of arrival, also called first-come-first-served (FCFS). Every physical
processing takes time, so a customer i takes a certain amount of time to service, the service time
denoted as Xi.

Most commonly used performance measures are: (1) the average number of customers in the
system; and, (2) average delay per customer. A successful method for calculating these
parameters is based on the use of a queuing model. Figure 4-16 shows a simple example of a
queuing model, where the system is represented by a single-server queue. The queuing time is the
time that a customer waits before it enters the service. Figure 4-17 illustrates queuing system
parameters on an example of a bank office with a single teller.

Why Queuing Happens?

Queuing occurs because of the server’s inability to process the customers at the rate at which they
are arriving. When a customer arrives at a busy server, it enters a waiting line (queue) and waits
on its turn for processing. The critical assumption here is the following:

System

Interarrival
time = A2 − A1

Input
sequence

Output
sequence

Service
time = X1

X2 X3

A3

Waiting
time = W3

Time
Arriving

customers
Departing
customers

in out

C1C1 C2C2

C1C1 C2C2

C3C3

C3C3

CiCi

CiCi

Xi

AiA1 A2

Server

Figure 4-15: General service delay model: customers are delayed in a system for their own
service time plus a possible waiting time. Customer 3 has to wait in line because a previous
customer is being serviced at customer 3’s arrival time.

Chapter 4 • Switching and Queuing Delay Models 237

Average arrival rate ≤ Maximum service rate

Otherwise, the queue length would grow unlimited and the system would become meaningless
because some customers would have to wait infinite amount of time to be serviced. A corollary of
this requirement is that queuing is an artifact of irregular customer arrival patterns, sometimes
being too many, sometimes very few. Customers arriving in groups create queues. Had they been
arriving “individually” (well spaced), allowing the server enough time to process the previous
one, there would be no queuing. The arrival pattern where the actual arrival rate is equal to the
average one would incur no queuing delays on any customer.

This is illustrated in Figure 4-18 where we consider a bank teller that can service five customers

per hour,
hour

customers
5=μ , on average. This means, serving one customer takes 12 minutes, on

average. Assume that for a stretch of time all arriving customers take 12 minutes to be served and
that three customers arrive as shown in the figure. Although the server capacity is greater than the
arrival rate, the second and third customers still need to wait in line before being served, because
their arrivals are too closely spaced. If the customers arrived spaced according to their departure
times at the same server, there would be no queuing delay for any customer. However, if this

System

Arriving packets Queued packets

Arrival rate
= λ packets per second

Departing
packets

SourceSource

Service rate
= μ packets per second

Serviced packet

Queue Server

Figure 4-16: Simple queuing system with a single server.

N
Customers in system

NQ

Customers in queue

Customer
in service

Server

Total delay of customer i = Waiting + Service time
Ti = Wi + Xi

Arrival rate λ

customers

unit of time

customers

unit of time

Service rate μ

customers

unit of time

customers

unit of time

Figure 4-17: Illustration of queuing system parameters.

Ivan Marsic • Rutgers University 238

sequence arrived at a server that can service only four customers per hour, again there would be
queuing delays. Thus, having a server with service rate greater than the arrival rate is no
guarantee that there will be no queuing delays. In summary, queuing results because packet
arrivals cannot be preplanned and provisioned for—it is too costly or physically impossible to
support peak arrival rates.

Note also that in the steady state, the average departure rate equals the average arrival rate. Server
utilization = (arrival rate / max. service rate)

Communication Channel

Queuing delay is the time it takes to transmit the packets that arrived earlier at the network
interface. Packet’s service time is its transmission time, which is equal to L/C, where L is the
packet length and C is the server capacity. In case of packet transmission, “server capacity” is the
outgoing channel capacity. The average queuing time is typically a few transmission times,
depending on the load of the network.

→()_____)→ delay ∝ capacity −1

Another parameter that affects delay is error rate—errors result in retransmissions, which
significantly influence the delay. Reliable vs. unreliable (if error correction is employed +
Gaussian channel)

We study what are the sources of delay and try to estimate its amount. In a communication
system, main delay contributors are (see Section 1.3):

• Processing (e.g., conversion of a stream of bytes to packets or packetization,
compression/fidelity reduction, encryption, switching at routers, etc.)

• Queuing, due to irregular packet arrivals, sometimes too many, sometimes just few

• Transmission, converting the digital information into analog signals that travel the
medium

• Propagation, signals can travel at most at the speed of light, which is finite

• Errors or loss in transmission or various other causes (e.g., insufficient buffer space in
routers, recall Figure 2-11 for TCP), resulting in retransmission

10
:0

0
10

:0
5

10
:1

3

11
:0

0

10
:0

9

Time

10
:0

0

10
:1

7

10
:4

1

11
:0

0

10
:2

9

Server

Arrival times sequence Departure times sequence

Time

C2C1

C3 C2C1 C3

Figure 4-18: Illustration of how queues are formed. The server can serve 5 customers per
hour and only 3 customers arrive during an hour period. Although the server capacity is
greater than the arrival rate, some customers may still need to wait before being served,
because their arrivals are too closely spaced.

Chapter 4 • Switching and Queuing Delay Models 239

Errors result in retransmission. For most links, error rates are negligible, but for multiaccess links,
particularly wireless links, they are significant.

Processing may also need to be considered to form a queue if this time is not negligible.

Give example of how delay and capacity are related, see Figure from Peterson & Davie, or from
[Jeremiah Hayes 1984].

Notation

Some of the symbols that will be used in this chapter are defined as follows (see also Figure
4-17):

A(t) Counting process that represents the total number of tasks/customers that arrived from 0 to
time t, i.e., A(0) = 0, and for s < t, A(t) − A(s) equals the number of arrivals in the time
interval (s, t]

λ Arrival rate, i.e., the average number of arrivals per unit of time, in steady state

N(t) Number of tasks/customers in the system at time t

N Average number of tasks/customers in the system (this includes the tasks in the queue and
the tasks currently in service) in steady state

NQ Average number of tasks/customers waiting in queue (but not currently in service) in
steady state

μ Service rate of the server (in customers per unit time) at which the server operates when
busy

Xi Service time of the ith arrival (depends on the particular server’s service rate μ and can be
different for different servers)

Ti Total time the ith arrival spends in the system (includes waiting in queue plus service time)

T Average delay per task/customer (includes the time waiting in queue and the service time)
in steady state

W Average queuing delay per task/customer (not including the service time) in steady state

ρ Rate of server capacity utilization (the fraction of time that the server is busy servicing a
task, as opposed to idly waiting)

4.2.1 Little’s Law

Imagine that you perform the following experiment. You are frequently visiting your local bank
office and you always do the following:

1. As you walk into the bank, you count how many customers are in the room, including
those waiting in the line and those currently being served. Let us denote the average
count as N. You join the queue as the last person; there is no one behind you.

Ivan Marsic • Rutgers University 240

2. You will be waiting W time, on average, and then it will take X time, on average, for you
to complete your job. The expected amount of time that has elapsed since you joined the
queue until you are ready to leave is T = W + X. During this time T new customers will
arrive at an arrival rate λ.

3. At the instant you are about to leave, you look over your shoulder at the customers who
have arrived after you. These are all new customers that have arrived while you were
waiting or being served. You will count, on average, λ ⋅ T customers in the system.

If you compare the average number of customers you counted at your arrival time (N) and the
average number of customers you counted at your departure time (λ ⋅ T), you will find that they
are equal. This is called Little’s Law and it relates the average number of tasks in the system, the
average arrival rate of new tasks, and the average delay per task:

Average number of tasks in the system = Arrival rate × Average delay per task

N = λ ⋅ T (4.1a)

I will not present a formal proof of this result, but the reader should glean some intuition from the
above experiment. For example, if customers arrive at the rate of 5 per minute and each spends 10
minutes in the system, Little’s Law tells us that there will be 50 customers in the system on
average.

The above observation experiment essentially states that the number of customers in the system,
on average, does not depend on the time when you observe it. A stochastic process is stationary
if all its statistical properties are invariant with respect to time.

Another version of Little’s Law is

NQ = λ ⋅ W (4.1b)

The argument is essentially the same, except that the customer looks over her shoulder as she
enters service, rather than when completing the service. A more formal discussion is available in
[Bertsekas & Gallagher, 1992].

Little’s Law applies to any system in equilibrium, as long as nothing inside the system is creating
new tasks or destroying them. Of course, to reach an equilibrium state we have to assume that the
traffic source generates infinite number of tasks.

Using Little’s Law, given any two variables, we can determine the third one. However, in
practice it is not easy to get values that represent well the system under consideration. The reader
should keep in mind that N, T, NQ, and W are random variables; that is, they are not constant but
have probability distributions. One way to obtain those probability distributions is to observe the
system over a long period of time and acquire different statistics, much like traffic observers
taking tally of people or cars passing through a certain public spot. Another option is to make
certain assumptions about the statistical properties of the system. In the following, we will take
the second approach, by making assumptions about statistics of customer arrivals and service
times. From these statistics, we will be able to determine the expected values of other parameters
needed to apply Little’s Law.

Kendall’s notation for queuing models specifies six factors:

Chapter 4 • Switching and Queuing Delay Models 241

Arrival Process / Service Proc. / Num. Servers / Max. Occupancy / User Population / Scheduling Discipline

1. Arrival Process (first symbol) indicates the statistical nature of the arrival process. The
letter M is used to denote pure random arrivals or pure random service times. It stands for
Markovian, a reference to the memoryless property of the exponential distribution of
interarrival times. In other words, the arrival process is a Poisson process. Commonly
used letters are:
M – for exponential distribution of interarrival times
G – for general independent distribution of interarrival times
D – for deterministic (constant) interarrival times

2. Service Process (second symbol) indicates the nature of the probability distribution of the
service times. For example, M, G, and D stand for exponential, general, and deterministic
distributions, respectively. In all cases, successive interarrival times and service times are
assumed to be statistically independent of each other.

3. Number of Servers (third symbol) specifies the number of servers in the system.

4. Maximum Occupancy (fourth symbol) is a number that specifies the waiting room
capacity. Excess customers are blocked and not allowed into the system.

5. User Population (fifth symbol) is a number that specifies the total customer population
(the “universe” of customers)

6. Scheduling Discipline (sixth symbol) indicates how the arriving customers are scheduled
for service. Scheduling discipline is also called Service Discipline or Queuing Discipline.
Commonly used service disciplines are the following:
FCFS – first-come-first-served, also called first-in-first-out (FIFO), where the first
customer that arrives in the system is the first customer to be served
LCFS – last-come-first served (like a popup stack)
FIRO – first-in-random-out

Service disciplines will be covered later in Chapter 5, where fair queuing (FQ) service discipline
will be introduced. Only the first three symbols are commonly used in specifying a queuing
model, although sometimes other symbols will be used in the rest of this chapter.

4.2.2 M / M / 1 Queuing System

Problems related to this section: Problem 4.16 → Problem 4.20

A correct notation for the system we consider is M/M/1/∞/∞/FCFS. This system can hold
unlimited (infinite) number of customers, i.e., it has an unlimited waiting room size or the
maximum queue length; the total customer population is unlimited; and, the customers are served
in the FCFS order. It is common to omit the last three items and simply use M/M/1.

Ivan Marsic • Rutgers University 242

Figure 4-19 illustrates an M/M/1 queuing system, for which the process A(t), total number of
customers that arrived from 0 to time t, has a Poisson distribution. A Poisson process is generally
considered a good model for the aggregate traffic of a large number of similar and independent
customers. Then, A(0) = 0, and for s < t, A(t) − A(s) equals the number of arrivals in the interval
(s, t). The intervals between two arrivals (interarrival times) for a Poisson process are independent
of each other and exponentially distributed with the parameter λ. If tn denotes the time of the nth
arrival, the interarrival intervals τn = tn+1 − tn have the probability distribution

{ } 0,1 ≥−=≤ ⋅− sesP s
n

λτ

It is important that we select the unit time period δ in Figure 4-19 small enough so that it is likely
that at most one customer will arrive during δ. In other words, δ should be so small that it is
unlikely that two or more customers will arrive during δ.

The process A(t) is a pure birth process because it monotonically increases by one at each arrival
event. So is the process B(t), the number of departures up until time t. The process N(t), the
number of customers in the system at time t, is a birth and death process because it sometimes
increases and at other times decreases. It increases by one at each arrival and decreases by one at
each completion of service. We say that N(t) represents the state of the system at time t. Notice
that the state of this particular system (a birth and death process) can either increases by one or
decreases by one—there are no other options. The intensity or rate at which the system state
increases is λ and the intensity at which the system state decreases is μ. This means that we can
represent the rate at which the system changes the state by the diagram in Figure 4-21.

Now suppose that the system has evolved to a steady-state condition. That means that the state of
the system is independent of the starting state. The sequence N(t) representing the number of
customers in the system at different times does not converge. This is a random process taking
unpredictable values. What does converge are the probabilities pn that at any time a certain
number of customers n will be observed in the system

Time

C
um

u
la

tiv
e

N
um

be
r

of
 a

rr
iv

a
ls

, A
(t

)
N

um
be

r
of

 d
ep

ar
tu

re
s,

 B
(t

)
A(t)

B(t)

N(t)

Time

N(t)

T1

T2

δ

Figure 4-19: Example of birth and death processes. Top: Arrival and departure processes;
Bottom: Number of customers in the system.

Chapter 4 • Switching and Queuing Delay Models 243

{ } n
t

pntNP ==
∞→

)(lim

Note that during any time interval, the total number of transitions from state n to n + 1 can differ
from the total number of transitions from n + 1 to n by at most 1. Thus asymptotically, the
frequency of transitions from n to n + 1 is equal to the frequency of transitions from n + 1 to n.
This is called the balance principle. As an intuition, each state of this system can be imagined as
a room, with doors connecting the adjacent rooms. If you keep walking from one room to the
adjacent one and back, you can cross at most once more in one direction than in the other. In
other words, the difference between how many times you went from n + 1 to n vs. from n to n + 1
at any time can be no more than one.

Given the stationary probabilities and the arrival and service rates, from our rate-equality
principle we have the following detailed balance equations

pn ⋅ λ = pn+1 ⋅ μ, n = 0, 1, 2, … (4.2)

These equations simply state that the rate at which the process leaves state n equals the rate at
which it enters that state. The ratio ρ = λ/μ is called the utilization factor of the queuing system,
which is the long-run proportion of the time the server is busy. With this, we can rewrite the
detailed balance equations as

pn+1 = ρ ⋅ pn = ρ ² ⋅ pn−1 = … = ρ n+1 ⋅ p0 (4.3)

If ρ < 1 (service rate exceeds arrival rate), the probabilities pn are all positive and add up to unity,
so

ρ
ρρ

−
=⋅=⋅== 

∞

=

∞

=

∞

= 1
1 0

0
0

0
0

0

p
ppp

n

n

n

n

n
n (4.4)

10

λ⋅δ

μ⋅δ

λ⋅δ

μ⋅δ

1 − λ⋅δ 1 − λ⋅δ − μ⋅δ 1 − λ⋅δ − μ⋅δ

n2 n−1 n+1

λ⋅δ

μ⋅δ

λ⋅δ

μ⋅δ

1 − λ⋅δ − μ⋅δ 1 − λ⋅δ − μ⋅δ 1 − λ⋅δ − μ⋅δ

Figure 4-21: Transition probability diagram for the number of customers in the system.

⏐ t(n → n+1) − t(n+1 → n)⏐≤ 1

t(n+1 → n)

Room n Room n + 1Room 0 Room n – 1

t(n → n+1)

Figure 4-20: Intuition behind the balance principle for a birth and death process.

Ivan Marsic • Rutgers University 244

by using the well-known summation formula for the geometric series (see the derivation of Eq.
(1.8) in Section 1.3.1). Combining equations (4.3) and (4.4), we obtain the probability of finding
n customers in the system

pn = P{N(t) = n} = ρ n ⋅ (1 − ρ), n = 0, 1, 2, … (4.5)

The average number of customers in the system in steady state is)}({lim tNEN
t ∞→

= . Because (4.5)

is the p.m.f. for a geometric random variable, meaning that N(t) has a geometric distribution,
checking a probability textbook for the expected value of geometric distribution quickly yields

λμ

λ
ρ

ρ
−

=
−

==
∞→ 1

)}({lim tNEN
t

 (4.6)

It turns out that for an M/M/1 system, by knowing only the arrival rate λ and service rate μ, we
can determine the average number of customers in the system. From this, Little’s Law (4.1a)
gives the average delay per customer (waiting time in queue plus service time) as

λμλ −

== 1N
T (4.7)

The average waiting time in the queue, W, is the average delay T less the average service time
1/μ, like so

λμ
ρ

μλμμ −
=−

−
=−= 111

TW

and by using the version (4.1b) of Little’s Law, we have)1(2 ρρλ −=⋅= WNQ .

4.2.3 M / M / 1 / m Queuing System

Problems related to this section: Problem 4.22 → Problem 4.23

Now consider the M/M/1/m system that is the same as M/M/1 except that the system can be
occupied by up to m customers, which implies a finite waiting room or maximum queue length.
The customers arriving when the queue is full are blocked and not allowed into the system. We

have pn = ρn ⋅ p0 for 0 ≤ n ≤ m; otherwise pn = 0. Using the relation 1
0

= =

m

n np we obtain

mnp mm

n

n
≤≤

−
−== +

=
0,

1

11
1

0

0 ρ
ρ

ρ

 From this, the steady-state occupancy probabilities are given by (cf. Eq. (4.5))

mnp
m

n

n ≤≤
−

−⋅= + 0,
1

)1(
1ρ
ρρ

 (4.8)

Assuming again that ρ < 1, the expected number of customers in the system is

 







∂
∂⋅

−
−⋅=⋅⋅⋅

−
−=⋅⋅

−
−=⋅== 

=
+

=

−
+

=
+

=

m

n

n
m

m

n

n
m

m

n

n
m

m

n
n nnpntNEN

0
1

0

1
1

0
1

0 1

)1(

1

1

1

1
)}({ ρ

ρρ
ρρρρ

ρ
ρρ

ρ
ρ

Chapter 4 • Switching and Queuing Delay Models 245

1

11

1 1

)1(

11

1

1

)1(
+

++

+ −
⋅+−

−
=








−

−
∂
∂⋅

−
−⋅= m

mm

m

m

ρ
ρ

ρ
ρ

ρ
ρ

ρρ
ρρ

 (4.9)

Thus, the expected number of customers in the system is always less than for the unlimited queue
length case, Eq. (4.6).

It is also of interest to know the probability of a customer arriving to a full waiting room, also
called blocking probability pB. Generally, the probability that a customer arrives when there are n
customers in the queue is (using Bayes’ formula)

)},(in arrivescustomer a{

})({})(|),(in arrivescustomer a{
)},(in arrivescustomer a|)({

δ
δδ

+
=⋅=+=+=

ttP

ntNPntNttP
ttntNP

 n
n p

p =
⋅

⋅⋅=
δλ

δλ)(

because of the memoryless assumption about the system. Thus, the blocking probability is the
probability that an arrival will find m customers in the system, which is (using Eq. (4.8))

1B
1

)1(
})({ +−

−⋅====
m

m

mpmtNPp
ρ

ρρ
 (4.10)

4.2.4 M / G / 1 Queuing System

We now consider a class of systems where arrival process is still memoryless with rate λ.
However, the service times have a general distribution—not necessarily exponential as in the
M/M/1 system—meaning that we do not know anything about the distribution of service times.
Suppose again that the customers are served in the order they arrive (FCFS) and that Xi is the
service time of the ith arrival. We assume that the random variables (X1, X2, …) are independent of
each other and of the arrival process, and identically distributed according to an unspecified
distribution function.

The class of M/G/1 systems is a superset of M/M/1 systems. The key difference is that in general
there may be an additional component of memory. In such a case, one cannot say as for M/M/1
that the future of the process depends only on the present length of the queue. To calculate the
average delay per customer, it is also necessary to account for the customer that has been in
service for some time. Similar to M/M/1, we could define the state of the system as the number of
customers in the system and use the so called moment generating functions to derive the system
parameters. Instead, a simpler method from [Bertsekas & Gallagher, 1992] is used.

Assume that upon arrival the ith customer finds Ni customers waiting in queue and one currently
in service. The time the ith customer will wait in the queue is given as

i

i

Nij
ji RXW

i

+= 
−

−=

1

 (4.11)

where Ri is the residual service time seen by the ith customer. By this we mean that if customer j
is currently being served when i arrives, Ri is the remaining time until customer j’s service is

Ivan Marsic • Rutgers University 246

completed. The residual time’s index is i (not j) because this time depends on i’s arrival time and
is not inherent to the served customer. If no customer is served at the time of i’s arrival, then Ri is
zero.

Example 4.1 Delay in a Bank Teller Service

An example pattern of customer arrivals to the bank from Figure 4-17 is shown in Figure 4-22.
Assume that nothing is known about the distribution of service times. In this case, customer k = 6 will
find customer 3 in service and customers 4 and 5 waiting in queue, i.e., N6 = 2. The residual service
time for 3 at the time of 6’s arrival is 5 min. Thus, customer 6 will experience the following queuing
delay:

() min40520156

5

4
6 =++=+=

=

RXW
j

j

This formula simply adds up all the times shown in Figure 4-22(b). Notice that the residual time
depends on the arrival time of customer i = 6 and not on how long the service time of customer
(i − Ni − 1) = 3 is.

The total time that 6 will spend in the system (the bank) is T6 = W6 + X6 = 40 + 25 = 65 min.

Time9:00 9:05 9:35 9:45 9:55 11:10 11:25 11:45

X1 = 30 X2 = 10 X3 = 75 X4 = 15 X5 = 20 X6 = 25

A1 = 9:05

A2 = 9:30

A3 = 9:55

A4 = 10:10

A5 = 10:45

A6 = 11:05

1 5432 6

Time9:00 9:05 9:35 9:45 9:55 11:10 11:25 11:45

X1 = 30 X2 = 10 X3 = 75 X4 = 15 X5 = 20 X6 = 25

A1 = 9:05

A2 = 9:30

A3 = 9:55

A4 = 10:10

A5 = 10:45

A6 = 11:05

1 5432 6

Customer 6
arrives at 11:05

Customer 3 in service;
Residual time = 5 min

Server

Customer 5
service time = 15 min

Customer 4
service time = 20 min

(a)

(b)

Customers 4 and 5
waiting in queue

Ni = 2

(c)

Time τR
es

id
u

al
 s

er
vi

ce
 t

im
e

r(
τ)

Service time for customer 3
X3 = 75 min

75

9:55 11:10

5

Customer 6
arrives at 11:05

Time τR
es

id
u

al
 s

er
vi

ce
 t

im
e

r(
τ)

Service time for customer 3
X3 = 75 min

75

9:55 11:10

5

Customer 6
arrives at 11:05

Figure 4-22: (a) Example of customer arrivals and service times; see Example 4.1 for
details. (b) Detail of the situation found by customer 6 at his/her arrival. (c) Residual service
time for customer 3 at the arrival of customer 6.

Chapter 4 • Switching and Queuing Delay Models 247

By taking expectations of Eq. (4.11) and using the independence of the random variables Ni and
Xi−1, Xi−2, …, Xi−Ni (which means that how many customers are found in the queue is independent
of what business they came for), we have

}{
1

}{}{}{}{}|{}{
1

iQiii

i

Nij
iji RENRENEXERENXEEWE

i

+⋅=+⋅=+












= 
−

−= μ
 (4.12)

Throughout this section all long-term average quantities should be viewed as limits when time or
customer index converges to infinity. We assume that these limits exist, which is true for most
systems of interest provided that the utilization ρ < 1.The second term in the above equation is the
mean residual time, { }i

t
RER

→∞
= lim , and it will be determined by a graphical argument. The

residual service time r(τ) can be plotted as in Figure 4-22(c). The general case is shown in Figure
4-23. Every time a new customer enters the service, the residual time equals that customer’s
service time. Then it decays linearly until the customer’s service is completed. The time average
of r(τ) in the interval [0, t] is

() 
=

=
)(

1

2

0
2

111 tM

i
i

t

X
t

dr
t

ττ

where M(t) is the number of service completions within [0, t]. Hence, we obtain

{ } () 2

)(

1

2
)(

1

2

0
2

1

)(
lim

)(
lim

2

11

)(

)(
lim

2

11
limlim X

tM

X

t

tM
X

ttM

tM
dr

t
RER

tM

i
i

ii

tM

i
i

i

t

i
i

i
⋅=





















⋅





=








⋅=










==


 =

→∞→∞
=

→∞→∞→∞
λττ

where 2X is the second moment of service time, computed as







⋅⋅

⋅
=




∞

∞

>

r.v. continuous is if)(

 r.v. discrete is if)(
}{ 0:

Xdxxxf

XXp
XE

-

n

pX

n
ii

n
i

Time τR
e

si
d

u
a

l s
e

rv
ic

e
 t

im
e

 r
(τ

)

X1

X1

X2 XM(t)
t

Time τR
e

si
d

u
a

l s
e

rv
ic

e
 t

im
e

 r
(τ

)

X1

X1

X2 XM(t)
t

Figure 4-23: Expected residual service time computation. The time average of r(τ) is
computed as the sum of areas of the isosceles triangles over the given period t.

Ivan Marsic • Rutgers University 248

By substituting this expression in the queue waiting time, Eq. (4.12), we obtain the so called
Pollaczek-Khinchin (P-K) formula

)1(2

2

ρ
λ

−⋅
⋅= X

W (4.13)

The P-K formula holds for any distribution of service times as long as the variance of the service
times is finite.

Example 4.2 Queuing Delays of an Go-Back-N ARQ

Consider a Go-Back-N ARQ such as described earlier in Section 1.3.2. Assume that packets arrive at
the sender according to a Poisson process with rate λ. Assume also that errors affect only the data
packets, from the sender to the receiver, and not the acknowledgment packets. What is the expected
queuing delay per packet in this system?

Notice that the expected service time per packet equals the expected delay per packet transmission,
which is determined in the solution of Problem 1.11 at the back of this text as follows

fail
fail

fail
succtotal 1

}{ t
p

p
tTEX ⋅

−
+==

The second moment of the service time, 2X , is determined similarly as:

Finally, Eq. (4.13) yields

)1(2)/1(2)1(2

222

X

XXX
W

⋅−
⋅=

−
⋅=

−
⋅=

λ
λ

μλ
λ

ρ
λ

4.3 Networks of Queues

Chapter 4 • Switching and Queuing Delay Models 249

4.4 Summary and Bibliographical Notes

Section 4.1 focuses on one function of routers—forwarding packets—but this is just one of its
many jobs. Section 1.4 describes another key function: building and maintaining the routing
tables. In addition, more and more applications, such as firewalls, VPN concentration, voice
gateways and video monitoring, are being implemented in routers. Cisco’s Integrated Services
Router (ISR), for example, even includes an optional application server blade for running various
Linux and open source packages.

[Keshav & Sharma, 1998]

Kumar, et al. [1998] provide a good overview of router architectures and mechanisms.

James Aweya, “IP router architectures: An overview”

The material presented in this chapter requires basic understanding of probability and random
processes. [Yates & Goodman, 2004] provides an excellent introduction and [Papoulis & Pillai,
2001] is a more advanced and comprehensive text.

[Bertsekas & Gallagher, 1992] provides a classic treatment of queuing delays in data networks.
Most of the material in Sections 4.2 and 4.3 is derived from this reference.

Ivan Marsic • Rutgers University 250

Problems

Problem 4.1

Problem 4.2

Problem 4.3

Consider a regular PC that is used as a router, i.e., this is first-generation router architecture. The
router has 4 network ports, each on its own line card. All four links have the same data rate of R
bits/sec. The system bus operates at a four times higher data rate, i.e., 4×R bps. Consider a
scenario where steady traffic is arriving on all four ports and all packets are of the same length L.

(a) What is the worst-case delay that a packet can experience in this router?
(b) Will there be any head-of-line or output blocking observed?

Problem 4.4

Problem 4.5

Consider a router X that uses Banyan switching fabric. The figure below shows the router’s
connectivity to the adjacent routers, as well as the forwarding table of router X.

Chapter 4 • Switching and Queuing Delay Models 251

Banyan fabric

0 4

1 5

2 6

3 7

A

B

C

D

E

F

G

Router X 223.92.32.0 / 20

223.81.196.0 / 12

223.112.0.0 / 12

223.120.0.0 / 14

128.0.0.0 / 1

64.0.0.0 / 2

32.0.0.0 / 3

Subnet Mask Next Hop

A

B

C

D

E

F

G

223.92.32.0 / 20

223.81.196.0 / 12

223.112.0.0 / 12

223.120.0.0 / 14

128.0.0.0 / 1

64.0.0.0 / 2

32.0.0.0 / 3

Subnet Mask Next Hop

A

B

C

D

E

F

G

Assume that the following packets arrived simultaneously on router X:

Packet arrived from Packet destination IP address

B 63.67.145.18

C 223.123.59.47

G 223.125.49.47

Draw and explain a diagram that shows how these packets will traverse the switching fabric.

Note: Check Problem 1.29 in Chapter 1 to see how the next hop for a packet is decided.

Problem 4.6

Problem 4.7

Using the switch icons shown below, sketch a simple 4×4 Batcher-Banyan network (without a
trap network and a shuffle-exchange network). Label the input ports and the output ports of the
fabric, from top to bottom, as 0, 1, 2 and 3.

Ivan Marsic • Rutgers University 252

2-by-2 crossbar switch

2-by-2 sorting element, larger value
switched “down” to the lower output

2-by-2 sorting element, larger value
switched “up” to the upper output

Suppose four packets are presented to the input ports of the Batcher-Banyan fabric that you
sketched. Suppose further that the incoming packets are heading to the following output ports:

 • Packet at input port 0 is heading to output port 1

 • Packet at input port 1 to output port 0

 • Packet at input 2 to output port 0

 • Packet at input port 3 to output port 2

Show on the diagram of the fabric the switching of these packets through the fabric from the
input ports to the output ports. Will any collisions and/or idle output lines occur?

Problem 4.8

Problem 4.9

Consider the router shown below where the data rates are the same for all the communication
lines. The switch fabric is a crossbar so that at most one packet at a time can be transferred to a
given output port, but different output ports can simultaneously receive packets from different
input ports. Assume that the fabric moves packets two times faster than the data rate of the
communication lines. Packets at each port are moved in a first-come-first-served (FCFS) order. If
two or more packets arrive simultaneously at different input ports and are heading towards the
same output port, their order of transfer is decided so that the lower index port wins (e.g., if ports
2 and 3 contend at the same time to the same output port, port 2 goes first). If a packet at a lower-
index input port arrives and goes to the same output port for which a packet at a higher-index port
is already waiting, then the higher-index port wins.

Input ports Output portsCrossbar switch

Chapter 4 • Switching and Queuing Delay Models 253

Consider the following traffic arrival pattern:

Input port 1: packet of length 2 received at time t = 0 heading to output port 2; packet of length 4
at time 4 to output 2

Input port 2: packet of length 8 at time 0 to output 2; packet of length 2 at time 2 to output 1

Input port 3: packet of length 8 at time 2 to output 2; packet of length 2 at time 4 to output 1

Draw the timing diagram for transfers of packets across the switching fabric. Will there be any
head-of-line or output blocking observed? Explain your answer.

Problem 4.10

Problem 4.11

Problem 4.12

Problem 4.13

[Little’s Law] Consider a system with a single server. The arrival and service times for the first
10 customers are as follows: (A1 = 0, X1 = 3); (2, 4); (3, 5); (4, 2); (6, 5); (7, 2); (10, 4); (11, 3);
(12, 5); and (A10 = 13, X10 = 3).

(a) Draw the arrivals as a birth-death process similar to Figure 4-19.
(b) What is the average number of customers in the system N and the average delay T per

customer in this system during the observed period? Assuming that the arrival rate is λ =
1 customer/unit-of-time, does the system satisfy the Little’s Law over the observed
period?

Problem 4.14

Problem 4.15

Problem 4.16

Consider a router that can process 1,000,000 packets per second. Assume that the load offered to
it is 950,000 packets per second. Also assume that the interarrival times and service durations are
exponentially distributed.

(a) How much time will a packet, on average, spend being queued before being serviced?
(b) Compare the waiting time to the time that an average packet would spend in the router if

no other packets arrived.
(c) How many packets, on average, can a packet expect to find in the router upon its arrival?

Ivan Marsic • Rutgers University 254

Problem 4.17

Consider an M/G/1 queue with the arrival and service rates λ and μ, respectively. What is the
probability that an arriving customer will find the server busy (i.e., serving another customer)?

Problem 4.18

Messages arrive at random to be sent across a communications link with a data rate of 9600 bps.
The link is 70% utilized, and the average message length is 1000 bytes. Determine the average
waiting time for exponentially distributed length messages and for constant-length messages.

Problem 4.19

A facility of m identical machines is sharing a single repairperson. The time to repair a failed
machine is exponentially distributed with mean 1/λ. A machine, once operational, fails after a
time that is exponentially distributed with mean 1/μ. All failure and repair times are independent.
What is the steady-state proportion of time where there is no operational machine?

Problem 4.20

Imagine that K users share a link (e.g., Ethernet or Wi-Fi) with throughput rate R bps (i.e., R
represents the actual number of file bits that can be transferred per second, after accounting for
overheads and retransmissions). User’s behavior is random and we model it as follows. Each user
requests a file and waits for it to arrive. After receiving the file, the user sleeps for a random time,
and then repeats the procedure. Each file has an exponential length, with mean A × R bits.
Sleeping times between a user’s subsequent requests are also exponentially distributed but with a
mean of B seconds. All these random variables are independent. Write a formula that estimates
the average time it takes a user to get a file since completion of his previous file transfer.

Problem 4.21

Problem 4.22

Consider a single queue with a constant service time of 4 seconds and a Poisson input with mean
rate of 0.20 items per second.

(a) Find the mean and standard deviation of queue size

(b) Find the mean and standard deviation of the time a customer spends in system.

Problem 4.23

Consider the Go-back-N protocol used for communication over a noisy link with the probability
of packet error equal to pe. Assume that the link is memoryless, i.e., the packet error events are
independent from transmission to transmission. Also assume that the following parameters are

Chapter 4 • Switching and Queuing Delay Models 255

given: the round-trip time (RTT), packet size L, and transmission rate R. What is the average
number of successfully transmitted packets per unit of time (also called throughput), assuming
that the sender always has a packet ready for transmission?
Hint: Recall that the average queuing delay per packet for the Go-back-N protocol is derived in
Example 4.2 (Section 4.2.4).

Problem 4.24

Problem 4.25

256

Contents
5.1 Scheduling

5.1.1 Scheduling Disciplines
5.1.2 Fair Queuing
5.1.3 Weighted Fair Queuing

5.2 Policing
5.2.1 x
5.2.2 x
5.2.3 x

5.3 Active Queue Management
5.3.1 Random Early Detection (RED)
5.3.2 Explicit Congestion Notification (ECN)
5.3.3 x
5.3.4 x

5.4 Multiprotocol Label Switching (MPLS)
5.4.1 MPLS Architecture and Operation
5.4.2 Label Distribution Protocols
5.4.3 Traffic Engineering
5.4.4 Virtual Private Networks
5.4.5 MPLS and Quality of Service

5.5 x
5.5.1
5.5.2
5.5.3

5.6 x
5.6.1
5.6.2
5.6.3

5.7 Summary and Bibliographical Notes

Problems

Chapter 5
Mechanisms for Quality-of-Service

This chapter reviews mechanisms used in network routers to
provide quality-of-service (QoS). Section 3.3 reviewed some
end-to-ed mechanisms for providing quality of service, and
hinted at mechanisms used in routers. This chapter details the
router-based QoS mechanisms.

End-to-end QoS is built from the concatenation of edge-to-edge
QoS from each network domain (or Autonomous System)
through which traffic passes, and ultimately depends on the
QoS characteristics of the individual hops along any given
route. Networking solutions for end-to-end QoS are usually
broken into three parts: per-hop QoS, traffic engineering, and
signaling/provisioning. This chapter starts with mechanisms
used to provide per-hop QoS, and describes traffic-engineering
solutions in Section 5.4.3. Signaling/provisioning was already
considered in Section 3.3.4 and will be considered further here.

The goal of per-hop QoS is to enable congestion-point routers
and switches to provide predictable differentiated loss, latency,
and jitter characteristics to traffic classes of interest to the
service provider or its customers.

5.1 Scheduling

The queuing models in Chapter 4 considered delays and blocking probabilities under the
assumption that tasks/packets are served on a first-come-first-served (FCFS) basis and that a task
is blocked if it arrives at a full queue (if the waiting room capacity is limited). The property of a
queue that decides the order of servicing of packets is called scheduling discipline (also called
service discipline or queuing discipline, see Section 4.2). The property of a queue that decides
which task is blocked from entering the system or which packet is dropped for a full queue is
called blocking policy or packet-discarding policy or drop policy. The simplest combination is

Chapter 5 • Mechanisms for Quality-of-Service 257

FCFS with tail drop, i.e., always service head of the line and, if necessary, drop the last arriving
packet and this is what we considered in Section 4.2.3.

Scheduling has direct impact on a packet’s queuing delay and hence on its total delay. Dropping
decides whether the packet will arrive to destination at all. FCFS does not make any distinction
between packets. A single FCFS queue cannot simultaneously support QoS-sensitive and QoS-
insensitive traffic. While a long queue is less likely to overflow during a traffic burst (thus
reducing packet loss probability), it potentially increases the queuing delay for non-dropped
packets. A short queue reduces this delay, but conversely increases the probability of packet loss
for bursty traffic.

Additional concerns may compel the network designer to consider making distinction between
packets and design more complex scheduling disciplines and dropping policies. Such concerns
include:

• Prioritization, where different tasks/packets can have assigned different priorities, so that
the delay time for certain packets is reduced (at the expense of other packets)

• Fairness, so that different flows (identified by source-destination pairs) are offered
equitable access to system resources

• Protection, so that misbehavior of some flows (by sending packets at a rate faster than
their fair share) should not affect the performance achieved by other flows

Prioritization and fairness are complementary, rather than mutually exclusive. Fairness ensures
that traffic flows of equal priority receive equitable service and that flows of lower priority are
not excluded from receiving any service because all of it is consumed by higher priority flows.
Fairness and protection are related so that ensuring fairness automatically provides protection,
because it limits a misbehaving flow to its fair share. However, the converse need not be true. For
example, if flows are policed at the entrance to the network, so that they are forced to confirm to
a predeclared traffic pattern, they are protected from each other, but their resource shares may not
be fair. Policing will be considered later in Section 5.2.

5.1.1 Scheduling Disciplines

We already mentioned that a single FCFS queue cannot simultaneously support QoS-sensitive
and QoS-insensitive traffic. The solution is to split traffic across multiple queues at each
congestion point, assigning different classes of traffic to queues sized for each class’s desired
loss, latency, and jitter characteristics. Access to the resource (e.g., outbound link) is mediated by
a scheduler, which empties each queue in proportion to its allocated resource share or priority.
Therefore, the system that wishes to make distinction between packets (QoS-enabled router or
switch) must (1) classify packets, (2) differentially queue packets per class, and (3) provide
controllable and predictable scheduling of packet transmissions from each class (queue) onto the
outbound link. This approach is often referred to as a classify, queue, and schedule (CQS)
architecture and it comprises two components (Figure 5-1):

1. Classifier—Forms different waiting lines for different packet types. The criteria for
sorting packets into different lines include: priority, source and/or destination network
address, application port number, etc.

Ivan Marsic • Rutgers University 258

2. Scheduler—Calls packets from waiting lines for service. Options for the rules of calling
the packets for service (scheduling discipline) include: (i) first serve all the
packets waiting in the high-priority line, if any; then go to the next lower
priority class, etc.; (ii) serve the lines in round-robin manner by serving one or
more packets from one line (but not necessarily all that are currently waiting),
then go to serve few from the next waiting line, etc., then repeat the cycle.

FCFS places indiscriminately all the arriving packets at the tail of a single queue. The
idea with prioritization is that the packets with highest priority, upon arrival to the
system, are placed at the head-of-the line, so they bypass waiting in the line. They may still need
to wait if there is another packet (perhaps even of a lower priority) currently being transmitted.
Non-preemptive scheduling is the discipline under which the ongoing transmission of lower-
priority packets is not interrupted upon the arrival of a higher-priority packet. Conversely,
preemptive scheduling is the discipline under which lower-priority packet is bumped out of
service (back into the waiting line or dropped from the system) if a higher-priority packet arrives
at the time a lower-priority packet is being transmitted.

Packet priority may be assigned simply based on the packet type, or it may be result of applying a
complex set of policies. For example, the policies may specify that a certain packet type of a
certain user type has high priority at a certain time of the day and low priority at other times.

Although priority scheduler does provide different performance characteristics to different
classes, it still has shortcomings. For example, it does not deal with fairness and protection. An
aggressive or misbehaving high-priority source may take over the communication line and elbow
out all other sources. Not only the flows of the lower priority will suffer, but also the flows of the
same priority are not protected from misbehaving flows.

A round robin scheduler alternates the service among different flows or classes of packets. In the
simplest form of round robin scheduling the head of each queue is called, in turn, for service.
That is, a class-1 packet is transmitted, followed by a class-2 packet, and so on until a class-n
packet is transmitted. The whole round is repeated forever or until there are no more packets to

Classifier Scheduler

Transmitter
(Server)

Arriving packets

Class n queue

Class 1 queue (Waiting line)

Class 2 queue

Packet drop
when queue full

Scheduling
discipline

Figure 5-1: Components of a scheduler. Classifier sorts the arriving packets into different
waiting lines based on one or more criteria, such as priority or source identity. Scheduler
then places the packets into service based on the scheduling discipline. A single server
serves all waiting lines.

Chapter 5 • Mechanisms for Quality-of-Service 259

transmit. If a particular queue is empty, because no packets of such type arrived in the meantime,
the scheduler has two options:

1. Keep unused the portion of service or work allocated for that particular class and let the
server stay idle (non-work-conserving scheduler)

2. Let the packet from another queue, if any, use this service (work-conserving scheduler)

A work-conserving scheduler will never allow the link (server) to remain idle if there are packets
(of any class or flow) queued for transmission. When such scheduler looks for a packet of a given
class but finds none, it will immediately check the next class in the round robin sequence.

One way to achieve control of channel conditions (hence, performance bounds) is to employ time
division multiplexing (TDM) or frequency division multiplexing (FDM). TDM/FDM maintains a
separate channel for each traffic flow and never mixes packets from different flows, so they never
interfere with each other. TDM and FDM are non-work-conserving. Statistical multiplexing is
work-conserving and that is what we consider in the rest of this section.

5.1.2 Fair Queuing

Problems related to this section: Problem 5.2 → Problem 5.8

Suppose that a system, such as transmission link, has insufficient resource to satisfy the demands
of all users, each of whom has an equal right to the resource, but some essentially demand fewer
resources than others. How, then, should we divide the resource? A sharing technique widely
used in practice is called max-min fair share. Intuitively, a fair share first fulfils the demand of
users who need less than they are entitled to, and then evenly distributes unused resources among
the “big” users (Figure 5-2). Formally, we define max-min fair share allocation to be as follows:

• Resources are allocated in order of increasing demand

• No source obtains a resource share larger than its demand

• Sources with unsatisfied demands obtain an equal share of the resource

This formal definition corresponds to the following operational definition. Consider a set of
sources 1, ..., n that have resource demands r1, r2, ..., rn. Without loss of generality, order the
source demands so that r1 ≤ r2 ≤ … ≤ rn. Let the server have capacity C and all sources are
equally entitled to the resource, although they may need more or less than they are entitled to.
Then, we initially assign C/n of the resource to the source with the smallest demand, r1. This may
be more than what source 1 wants, perhaps, so we can continue the process. The process ends
when each source receives no more than what it asks for, and, if its demand was not satisfied, no
less than what any other source with a higher index (i.e., demand) received. We call such an
allocation a max-min fair allocation, because it maximizes the minimum share of a source whose
demand is not fully satisfied.

Ivan Marsic • Rutgers University 260

Example 5.1 Max-Min Fair Share

Consider the server in Figure 5-3 where packets are arriving from n = 4 sources of equal priority to be
transmitted over a wireless link. (Assume that the full link bandwidth is available and ignore the link-
layer overhead due to interfame spaces, backoff, collisions, etc.) The total required link capacity is:

8 × 2048 + 25 × 2048 + 50 × 512 + 40 × 1024 = 134,144 bytes/sec = 1,073,152 bits/sec

Appl. A Appl. B Appl. C Appl. D Total demand

but the available capacity of the link is C = 1 Mbps = 1,000,000 bits/sec. By the notion of fairness and
given that all sources are equally “important,” each source is entitled to C/n = ¼ of the total capacity =
250 Kbps. Some sources may not need this much and the surplus is equally divided among the sources
that need more than their fair share. The following table shows the max-min fair allocation procedure.

Sources Demands
[bps]

Balances
after 1st round

Allocation #2
[bps]

Balances after
2nd round

Allocation #3
(Final) [bps]

Final
balances

Application 1 131,072 bps +118,928 bps 131,072 0 131,072 bps 0

Application 2 409,600 bps −159,600 bps 332,064 −77,536 bps 336,448 bps −73,152 bps

Application 3 204,800 bps +45,200 bps 204,800 0 204,800 bps 0

Application 4 327,680 bps −77,680 bps 332,064 +4,384 bps 327,680 bps 0

After the first round in which each source receives ¼C, sources 1 and 3 have excess capacity, because
they are entitled to more than what they need. The surplus of C′ = 118,928 + 45,200 = 164,128 bps is
equally distributed between the sources in deficit, that is sources 2 and 4. After the second round of
allocations, source 4 has excess of C″ = 4,384 bps and this is allocated to the only remaining source in

desired: 1/8

desired: 1/3

desired:
2/3

P3

P2

P1

desired: 1/8

Fair share: 1/3 each

1. Satisfy customers who need less than their fair share
2. Split the remainder equally among the remaining customers

Return surplus:
1/3 − 1/8 = 5/24

New fair share
for P2 & P3:

1/3 + ½ (5/24) each

P1

P3

P2

received: 1/8

Final fair distribution:

received: 1/3

P1

P3

P2

received: 1/3 + 5/24

deficit: 1/8

received: 1/8

Fair share:
1/3 + ½ (5/24) each

1. Satisfy customers who need less than their fair share
2. Split the remainder equally among the remaining customers

Return surplus:
1/3 + ½ (5/24) − 1/3
= ½ (5/24)

Remainder of

1/3 + 2 × ½ (5/24)

goes to P2

P1

P3

P2

ba

c d
Figure 5-2: Illustration of max-min fair share algorithm; see text for details.

Chapter 5 • Mechanisms for Quality-of-Service 261

deficit, which is source 2. Finally, under the fair resource allocation, sources 1, 3, and 4 have fulfilled
their needs, but source 2 remains short of 73.152 Kbps.

Thus far, we have assumed that all sources are equally entitled to the resources. Sometimes, we
may want to assign some sources a greater share than others. In particular, we may want to
associate weights w1, w2, ..., wn with sources 1, 2, …, n, to reflect their relative entitlements to the
resource. We extend the concept of max-min fair share to include such weights by defining the
max-min weighted fair share allocation as follows:

• Resources are allocated in order of increasing demand, normalized by the weight

• No source obtains a resource share larger than its demand

• Sources with unsatisfied demands obtain resource shares in proportion to their weights

The following example illustrates the procedure.

Example 5.2 Weighted Max-Min Fair Share

Consider the same scenario as in Example 5.1, but now assume that the sources are weighted as
follows: w1 = 0.5, w2 = 2, w3 = 1.75, and w4 = 0.75. The first step is to normalize the weights so they
are all integers, which yields: 21 =′w , 82 =′w , 73 =′w , and 34 =′w . A source i is entitled to

⋅′
′jwiw 1

of the total capacity, which yields 2/20, 8/20, 7/20, and 3/20, for the respective four sources. The
following table shows the results of the weighted max-min fair allocation procedure.

Src Demands Allocation
#1 [bps]

Balances
after 1st round

Allocation
#2 [bps]

Balances after
2nd round

Allocation #3
(Final) [bps]

Final
balances

1 131,072 bps 100,000 −31,072 122,338 −8,734 bps 131,072 bps 0

2 409,600 bps 400,000 −9,600 489,354 +79,754 bps 409,600 bps 0

3 204,800 bps 350,000 +145,200 204,800 0 204,800 bps 0

4 327,680 bps 150,000 −177,680 183,508 −144,172 bps 254,528 bps −73,152 bps

This time around, source 3 in the first round is allocated more than it needs, while all other sources are
in deficit. The excess amount of C′ = 145,200 bps is distributed as follows. Source 1 receives

338,22200,145382
2 =⋅++ bps, source 2 receives 354,89200,145382

8 =⋅++ bps, and source 4 receives

Link capacity
= 1 Mbps

Wi-Fi transmitter
(Server)

Application 1

Application 2

Application 3

Application 4

8 packets per sec
L1 = 2048 bytes

40 pkts/s
L4 = 1 KB

25 pkts/s
L2 = 2 KB

50 pkts/s
L3 = 512 bytes

Link capacity
= 1 Mbps

Wi-Fi transmitter
(Server)

Application 1

Application 2

Application 3

Application 4

8 packets per sec
L1 = 2048 bytes

40 pkts/s
L4 = 1 KB

25 pkts/s
L2 = 2 KB

50 pkts/s
L3 = 512 bytes
50 pkts/s
L3 = 512 bytes

Figure 5-3: Example of a server (Wi-Fi transmitter) transmitting packets from four sources
(applications) over a wireless link; see text for details.

Ivan Marsic • Rutgers University 262

508,33200,145382
3 =⋅++ bps. Notice that in the denominators is always the sum of weights for the

currently considered sources. After the second round of allocations, source 2 has excess of C″ = 79,754
bps and this is distributed among sources 1 and 4. Source 1 receives 902,31754,7932

2 =⋅+ , which

along with 122,338 it already has yields more than it needs. The excess of C″′ = 23,168 is given to
source 4, which still remains short of 73.152 Kbps.

Min-max fair share (MMFS) defines the ideal fair distribution of a shared scarce resource. Given
the resource capacity C and n customers, under MMFS a customer i is guaranteed to obtain at
least Ci = C/n of the resource. If some customers need less than what they are entitled to, then
other customers can receive more than C/n. Under weighted MMFS (WMMFS), a customer i is

guaranteed to obtain at least Ci = C

w

w
n

j
j

i


=1

 of the resource.

However, MMFS does not specify how to achieve this in a dynamic system where the
demands for resource vary over time. To better understand the problem, consider the
airport check-in scenario illustrated in Figure 5-4. Assume there is a single window
(server) and both first-class and economy passengers are given the same weight. The
question is, in which order the waiting customers should be called for service so that
both queues obtain equitable access to the server resource? Based on the specified
service times (Figure 5-4), the reader may have an intuition that, in order to maintain
fairness on average, it is appropriate to call the first two economy-class passengers before the
first-class passenger and finally the last economy-class passenger. The rest of this section reviews
practical schemes that achieve just this and, therefore, guarantee (weighted) min-max fair share
resource allocation when averaged over a long run.

Generalized Processor Sharing (GPS)

Min-max fair share cannot be directly applied in network scenarios because packets are
transmitted as atomic units and they can be of different length, thus requiring different

First-class
passengers

?
Customer
in service

Server

Waiting lines (queues)

XE,1 = 2XE,2 = 5Service times: XE,3 = 3

Service time: XF,1 = 8

Economy-class
passengers

Classification

Figure 5-4: Dynamic fair-share problem: in what order should the currently waiting
customers be called in service?

Chapter 5 • Mechanisms for Quality-of-Service 263

transmission times. In Example 5.1, packets from sources 1 and 2 are twice longer than those
from source 4 and four times than from source 3. It is, therefore, difficult to keep track of whether
each source receives its fair share of the server capacity. To arrive at a practical technique, we
start by considering an idealized technique called Generalized Processor Sharing (GPS).

GPS maintains different waiting lines for packets belonging to different flows. There are two
restrictions that apply:

• A packet cannot jump its waiting line, i.e., scheduling within individual queues is FCFS

• Service is non-preemptive, meaning that an arriving packet never bumps out a packet that
is currently being transmitted (in service)

GPS works in a bit-by-bit round robin fashion, as illustrated in Figure 5-5(a). That is, the router
transmits a bit from queue 1 (if there is any), then a bit from queue 2, and so on, for all queues

GPS Transmitter
(imaginary)

Flow 1 queue

Flow 2 queue

Flow 3 queue

Bit-by-bit
round robin
service

Server

pkt A3,1
 →

pkt A2,2 | pkt A2,1 →

1s
t
bi

t f
ro

m
 p

kt
A

2,
1

1s
t
bi

t f
ro

m
 p

kt
A

3,
1

2n
d

bi
t f

ro
m

 p
kt

A
2,

1

2n
d

bi
t f

ro
m

 p
kt

A
3,

1

3r
d

bi
t f

ro
m

 p
kt

A
2,

1

1s
t
bi

t f
ro

m
 p

kt
A

2,
2

2n
d

bi
t f

ro
m

 p
kt

A
2,

2

packet
A2,1

packet
A2,2

FQ Transmitter
(real)

Flow 1 queue

Flow 2 queue

Flow 3 queue

Packet-by-packet
round robin
service

Server

pkt A3,1
 →

pkt A2,2 | pkt A2,1 →

(a)

(b)

3-bit packets

2-bit packets

packet
A3,1

1st round
2nd round

1st round

3rd round
4th round

5th round

2nd round3rd round

1
st ro

un
d

2
nd

ro
un

d

3
rd

ro
un

d

4
th ro

un
d

1
st ro

un
d

2
nd

ro
un

d

3
rd

ro
un

d

Figure 5-5: Imaginary bit-by-bit GPS (generalized processor sharing) (a) is used to derive
the schedule for actual FQ (fair queuing) scheduling (b) used in real routers.

Ivan Marsic • Rutgers University 264

that have packets ready for transmission. Let Ai,j denote the time that jth packet arrives from ith
flow at the server (transmitter). Let us, for the sake of illustration, consider the example with
packets only 2 or 3 bits long. Packets from flows 1 and 2 are 3 bits long, and from flow 3 are 2
bits long. At time zero, packet A2,1 arrives from flow 2 and packet A3,1 arrives from flow 3. Both
packets find no other packets in their respective waiting lines, so their transmission starts
immediately, one bit per round. Notice that one round of transmission now takes two time units,
because two flows must be served per round. Because the packet from flow 3 is shorter than that
from flow 2 (and their transmission started simultaneously), the transmission of packet A3,1 will
be finished sooner. After this moment, one round of transmission now takes one time unit,
because only one flow (flow 2) must be served per round.

The key idea of Fair Queuing (FQ) is to run imaginary GPS transmissions, as in Figure 5-5(a),
determined packet finish-round numbers under GPS, and then line up the packets for actual
transmission under FQ in the ascending order of their finish numbers, as in Figure 5-5(b). This
process will be elaborated in the rest of this section.

The GPS example from in Figure 5-5(a) is continued in Figure 5-6. At time t = 2 there is one
more arrival on flow 2: A2,2. Because in flow 2 A2,2 finds A2,1 in front of it, it must wait until the
transmission of A2,1 is completed. At time t = 7 there are two arrivals: A1,1 and A3,2. The
transmission of both packets starts immediately because currently they are the only packets in
their flows. (The bits should be transmitted atomically, a bit from each flow per unit of time as
shown in Figure 5-5(a), rather than continuously as shown in Figure 5-6, but because this is an
abstraction anyway, we leave it as is.)

As seen, a k-bit packet takes always k rounds to transmit, but the actual time duration can vary,
depending on the current number of active flows—the more flows served in a round, the longer
the round takes. (A flow is active if it has packets enqueued for transmission.) For example, in

Flow 1

Flow 2

Flow 3

Time

Round
number

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L1 = 3 bits

L2 = 3 bits

L3 = 2 bits

3 41 2

A1,1

A2,1

A2,2

A3,1

A3,2

86 75

Waiting

Ai,j Arrival

Service

Finish

Waiting

Ai,j Arrival

Service

Finish

Figure 5-6. Example of bit-by-bit GPS. The output link service rate is C = 1 bit/s.

Chapter 5 • Mechanisms for Quality-of-Service 265

Figure 5-6 it takes 4 s to transmit the first packet of flow 3, and 8 s for the second packet of the
same flow although both have equal length!

The piecewise linear relationship between the time and round number is illustrated in Figure 5-7
for the example from Figure 5-6. The slope of each linear segment is computed as one round
divided by the number of bits that need to be transmitted in one round. In other words, the slope
is inversely proportional to the current number of active flows. Looking back at Figure 5-5(a), we
see that in the beginning, the GPS transmitter needs to transmit two bits per round during the first
two rounds (bits from flows 2 and 3). Hence, the slope of the round-number curve is 1/2. At time
4, transmission of the packet from flow 3 is finished, so the slope rises to 1/1 because there
remains a single active flow. Similarly, at time 7 the slope falls to 1/3. In general, the function
R(t) increases at a rate

)(

)(

active tn

C

dt

tdR = (5.1)

where C is the transmission capacity of the output line. Obviously, if nactive(t) is constant then
R(t) = t ⋅ C / nactive, but this need not be the case because packets in different flows arrive
randomly. In general, the round number is determined in a piecewise manner

)()(

)(
)(

1active

1

1 active

1

tn

Ct

tn

Ctt
tR

i

j j

jj
i

⋅+
⋅−

=
=

− as will be seen later in Example 5.3. Each time R(t) reaches a

new integer value marks an instant at which all the queues have been given an equal number of
opportunities to transmit a bit (of course, an empty queue does not utilize its given opportunity).

GPS provides max-min fair resource allocation. Unfortunately, GPS cannot be implemented
because it is not feasible to interleave the bits from different flows. A practical solution is the fair
queuing mechanism that approximates this behavior on a packet-by-packet basis, which is
presented next.

10 2 3 4 5 6 7 8 9 10 11 12 13 14

Time t

R
o

u
n

d
 n

u
m

b
er

 R
(t)

1

2

3

4

5

6

7

8

F2(t)

F1(t)

F3(t)

Round
number

slo
pe

 =
 1

/1

slope = 1/2

slope = 1/3

slo
pe

 =
 1

/1

slope = 1/2

Figure 5-7. Piecewise linear relationship between round number and time for the example
from Figure 5-6. Also shown are finish numbers Fi(t) for the different flows.

Ivan Marsic • Rutgers University 266

Fair Queuing

Similar to GPS, a router using FQ maintains different waiting lines for packets belonging to
different flows at each output port. FQ determines when a given packet would finish being
transmitted if it were being sent using bit-by-bit round robin (GPS) and then uses this finishing
tag to rank order the packets for transmission.

The service round in which a packet Ai,j would finish service under GPS is called the packet’s
finish number, denoted Fi,j. For example, in Figure 5-5(a) and Figure 5-6 packet A3,1 has finish
number F3,1 = 2, packet A2,1 has finish number F2,1 = 3, and so on. Obviously, packet’s finish
number depends on the packet size and the current round number at the start of packet’s service.
It is important to recall that the finish number is, generally, different from the actual time at
which the packet is served. For example, packet A3,1 is serviced by t = 4, and A2,1 is serviced by
t = 5, because time is different from the round number (Figure 5-7).

Let Li,j denote the size (in bits) of packet Ai,j. Under bit-by-bit GPS it takes Li,j rounds of service to
transmit this packet. Let Fi,j denote the time when the transmitter finishes transmitting jth packet
from ith flow. Suppose that a packet arrives at time ta on a server which previously cycled through
R(ta) rounds. Under GPS, the packet would have to wait for service only if there are currently
packets from this flow either under service or enqueued for service or both—packets from other
flows would not affect the start of service for this packet. Therefore, the start round number for
servicing packet Ai,j is the highest of these two

• The current round R(ta) at the packet’s arrival time ta

• The finishing round of the last packet, if any, from the same flow

or in short, the start round number of the packet Ai,j is max{Fi,j−1, R(ta)}. The finish number of this
packet is computed as

{ } jiajiji LtRFF ,1,,)(,max += − (5.2)

Once assigned, the finish number remains constant and does not depend on future packet arrivals
and departures. FQ scheduler performs the following procedure every time a new packet arrives:

1. Calculate the finish number for the newly arrived packet using Eq. (5.2)

2. For all the packets currently waiting for service (in any queue), sort them in the
ascending order of their finish numbers

3. When the packet currently in transmission, if any, is finished, call the packet with the
smallest finish number in service

Note that the sorting in step 2 does not include the packet currently being transmitted, if any,
because FQ uses non-preemptive scheduling. Also, it is possible that a packet can be scheduled
ahead of a packet waiting in a different line because the former is shorter than the latter and its
finish number happens to be smaller than the finish number of the already waiting (longer)
packet. The fact that FQ uses non-preemptive scheduling makes it an approximation of the bit-by-
bit round robin GPS, rather than an exact simulation.

For example, Figure 5-7 also shows the curves for the finish numbers Fi(t) of the three flows from
Figure 5-6. At time 0, packets A2,1 and A3,1 arrive simultaneously, but because F3,1 is smaller than
F2,1, packet A3,1 goes into service first.

Chapter 5 • Mechanisms for Quality-of-Service 267

Example 5.3 Packet-by-Packet Fair Queuing

Consider the system from Figure 5-3 and Example 5.1 and assume for the sake of illustration that the
time is quantized to the units of the transmission time of the smallest packets. The smallest packets are
512 bytes from flow 3 and on a 1 Mbps link it takes 4.096 ms to transmit such a packet. For the sake of
illustration, assume that a packet arrives on flows 1 and 3 each at time zero, then a packet arrives on
flows 2 and 4 each at time 3, and packets arrive on flow 3 at times 6 and 12. Show the corresponding
packet-by-packet FQ scheduling.

The first step is to determine the round numbers for the arriving packets, given their arrival times. The
process is illustrated in Figure 5-8. The round numbers are shown also in the units of the smallest
packet’s number of bits, so these numbers must be multiplied by 4096 to obtain the actual round
number. Bit-by-bit GPS would transmit bits from two packets (A1,1 and A3,1) in the first round, so the
round takes two time units and the slope is 1/2. In the second round, only one packet is being
transmitted (A1,1), the round duration is one time unit and the slope is 1/1. The GPS server completes
two rounds by time 3, R(3) = 2, at which point two new packets arrive (A2,1 and A4,1). The next arrival
is at time 6 (the actual time is t1 = 24.576 ms) and the round number is determined as

12288819240948192
3

1000000)012288.0024576.0(
)(

)(

)(
)(2

3active

23
3 =+=+×−=+⋅−= tR

tn

Ctt
tR

which in our simplified units is R(6) = 3. The left side of each diagram in Figure 5-8 also shows how
the packet arrival times are mapped into the round number units. Figure 5-9 summarizes the process of
determining the round numbers for all the arriving packets.

The actual order of transmissions under packet-by-packet FQ is shown in Figure 5-10. At time 0 the
finish numbers are: F1,1 = 4 and F3,1 = 1, so packet A3,1 is transmitted first and packet A1,1 goes second.

F
lo

w
 1

:

F
lo

w
 2

:

F
lo

w
 3

:

F
lo

w
 4

: 0 1 2 3 4 5

0

1

2

3

4

1/2

1/1

P1,1, P3,1
Time t

R
ou

nd
nu

m
be

r
R

(t
)a

2 3 4 5 6 7 8 9 10 11

1/1

1/3

1/1

P2,1, P4,1
Time tF

lo
w

 1
:

F
lo

w
 2

:

F
lo

w
 3

:

F
lo

w
 4

:

1

2

3

4

5

6

R
ou

nd
nu

m
be

r
R

(t
)b

4,096 bytes@Flow3t = 12

4,096 bytes@Flow3t = 6

8,192 bytes@Flow4t = 3

16,384 bytes@Flow2t = 3

4,096 bytes@Flow3t = 0

16,384 bytes@Flow1t = 0

Packet sizeFlow IDArrival time

4,096 bytes@Flow3t = 12

4,096 bytes@Flow3t = 6

8,192 bytes@Flow4t = 3

16,384 bytes@Flow2t = 3

4,096 bytes@Flow3t = 0

16,384 bytes@Flow1t = 0

Packet sizeFlow IDArrival time

Figure 5-8: Determining the round numbers under bit-by-bit GPS for Example 5.3. (a)
Initial round numbers as determined at the arrival of packets P1,1 and P3,1. (b) Round
numbers recomputed at the arrival of packets P2,1 and P4,1. (Continued in Figure 5-9.)

Ivan Marsic • Rutgers University 268

At time 3 the finish numbers for the newly arrived packets are: F2,1 = max{0, R(3)} + L2,1 = 2 + 4 = 6
and F4,1 = max{0, R(3)} + L4,1 = 2 + 2 = 4, so F4,1 < F2,1. The ongoing transmission of packet A1,1 is not
preempted and will be completed at time 5, at which point packet A4,1 will enter the service. At time 6
the finish number for packet A3,2 is F3,2 = max{0, R(6)} + L3,2 = 3 + 1 = 4. The current finish numbers
are F3,2 < F2,1 so A3,2 enters the service at time 7, followed by A2,1 which enters the service at time 8.
Finally, at time 12 the finish number for the new packet A3,3 is F3,3 = max{0, R(12)} + L3,3 = 6 + 1 = 7
and it is transmitted at 12.

In summary, the order of arrivals is {A1,1, A3,1}, {A2,1, A4,1}, A3,2, A3,3 where simultaneously arriving
packets are delimited by curly braces. The order of transmissions under packet-by-packet FQ is: A3,1,
A1,1, A4,1, A3,2, A2,1, A3,3.

There is a problem with the above algorithm of fair queuing which the reader may have noticed
besides that computing the finish numbers is no fun at all! At the time of a packet’s arrival we
know only the current time, not the current round number. As suggested above, one could try
using the round number slope, Eq. (5.1), to compute the current round number from the current
time, but the problem with this approach is that the round number slope is not necessarily
constant. An FQ scheduler computes the current round number on every packet arrival, to assign
the finish number to the new packet. Because the computation is fairly complex, this poses a
major problem with implementing fair queuing in high-speed networks. Some techniques for
overcoming this problem have been proposed, and the interested reader should consult [Keshav
1997].

F
lo

w
 1

:

F
lo

w
 2

:

F
lo

w
 3

:

F
lo

w
 4

: 0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

1/2

1/1

1/3

1/4

1/1

13

P 1,
1
, P

3,
1

P 2,
1
, P

4,
1

P 3,
2

P 3,
3

R
ou

n
d

nu
m

be
r

R
(t

)
Time t

Figure 5-9: Determining the round numbers under bit-by-bit GPS for Example 5.3,
completed from Figure 5-8.

Chapter 5 • Mechanisms for Quality-of-Service 269

5.1.3 Weighted Fair Queuing

Now assume that weights w1, w2, ..., wn are associated with sources (flows) 1, 2, …, n, to reflect
their relative entitlements to transmission bandwidth. As before, a queue is maintained for each
source flow. Under weighted min-max fair share, flow i is guaranteed to obtain at least Ci =

C
w

w

j

i


 of the total bandwidth C. The bit-by-bit approximation of weighted fair queuing (WFQ)

would operate by allotting each queue a different number of bits per round. The number of bits
per round allotted to a queue should be proportional to its weight, so the queue with twice higher
weight should receive two times more bits/round.

Packet-by-packet WFQ can be generalized from bit-by-bit WFQ as follows. For a packet of
length Li,j (in bits) that arrives at ta the finish number under WFQ is computed as

()
i

ji
ajiji w

L
tRFF ,

1,,)(,max += − (5.3)

From the second term in the formula, we see that if a packet arrives on each of the flows i and k
and wi = 2⋅wk, then the finish number for a packet of flow i is calculated assuming a bit-by-bit
depletion rate that is twice that of a packet from flow k.

All queues are set to an equal maximum size, so the flows with the highest traffic load will suffer
packet discards more often, allowing lower-traffic ones a fair share of capacity. Hence, there is no
advantage of being greedy. A greedy flow finds that its queues become long, because its packets
in excess of fair share linger for extended periods of time in the queue. The result is increased
delays and/or lost packets, whereas other flows are unaffected by this behavior. In many cases
delayed packets can be considered lost because delay sensitive applications ignore late packets.

Flow 1

Flow 2

Flow 3

Time [ms]

L1 = 2 KB

L2 = 2 KB

L3 = 512 B

Flow 4

L4 = 1 KB

0 4.096 8.192 12.288 16.384 20.480 24.576 28.672 32.768 36.864 40.96 45.056 49.152 53.248

Waiting

Ai,j Arrival

Service

A1,1

A2,1

A3,1

A3,2

A4,1

A3,3A3,3

Figure 5-10: Time diagram of packet-by-packet FQ for Example 5.3.

Ivan Marsic • Rutgers University 270

The problem is created not only for the greedy source, but lost packets represent wasting network
resources upstream the point at which they are delayed or lost. Therefore, they should not be
allowed into the network at the first place. This is a task for policing.

5.2 Policing

So far, we saw how to distribute fairly the transmission bandwidth or other network resources
using WFQ scheduler. However, this does not guarantee delay bounds and low losses to traffic
flows. A packet-by-packet FQ scheduler guarantees a fair distribution of the resource, which
results in a certain average delay per flow. However, even an acceptable average delay may have
great variability for individual packets. This point is illustrated in Figure 5-11. Multimedia
applications are particularly sensitive to delay variability (known as “jitter”).

One idea is to regulate the number of packets that a particular flow can pass through the router
per unit of time by using the “leaky bucket” abstraction (Figure 5-12). Imagine that we install a
turnstile (ticket barrier) inside the router for monitoring the entry of packets into the service. To
pass the turnstile, each packet must drop a token into the slot and proceed. Tokens are dispensed
from a “leaky bucket” that can hold up to b tokens. If the bucket is currently empty, the packets
must wait for a token. If a packet arrives at a fully occupied waiting area, the packet is dropped.18

Each flow has a quota that is characterized by simple traffic descriptors (Section 3.2.1):

Peak rate: this parameter constrains the number of packets that a flow can send over a very short
period of time.

18 There are many variations of the leaky bucket algorithm and different books introduce this abstraction in

different way. In some variations, there are no tokens and the packets themselves arrive to the bucket and
drain through a hole in the bucket. Because this is an abstraction anyway, I present it here in a way that I
feel is the most intuitive. This does not affect the results of the algorithm.

Time

D
e

la
y

Average delay

Traffic pattern 1

Traffic pattern 2

Figure 5-11: Different traffic patterns yield the same average delay.

Chapter 5 • Mechanisms for Quality-of-Service 271

Average rate: this parameter specifies the average number of packets that a particular flow is
allowed to send over a time window. As discussed in Section 3.2.1, a key issue here is to decide
the interval of time over which the average rate will be regulated.

Burst size: this parameter constrains the total number of packets (the “burst” of packets) that can
be sent by a particular flow into the network over a short interval of time.

When a packet arriver at a router, it withdraws one token from the bucket before it is allowed to
proceed. If the bucket is empty, the packet must wait for a token to appear.

When the packets are all the same size, this algorithm can be used as described. However, when
variable-sized packets are being used, it is often better to allow a fixed number of bytes per token,
rather than just one packet.

5.3 Active Queue Management

Packet-dropping strategies deal with the case when there is not enough memory to buffer an
incoming packet. The simplest policy is to drop the arriving packet, known as drop-tail policy.

tokens generated
at rate r [tokens/sec]

bucket holds
up to b tokens

1 token dispensed
for each packet

token-operated
turnstile

b = bucket capacity

r tokens/sec

Token
waiting area

Token dispenser
(bucket)

Token
generator

Turnstile

arriving
packets

to network

b = bucket capacity

r tokens/sec

Token
waiting area

Token dispenser
(bucket)

Token
generator

Turnstile

arriving
packets

to network

(a) (b)
packet

Figure 5-12: Leaky bucket.

Ivan Marsic • Rutgers University 272

Active Queue Management (AQM) algorithms employ more sophisticated approaches. Routers
with AQM detect congestion before the queue overflows and notify the source that the congestion
is about to happen. One of the most widely studied and implemented AQM algorithms is the
Random Early Detection (RED) algorithm that uses implicit feedback by dropping packets. A
recent approach, called Explicit Congestion Notification (ECN) uses explicit feedback by marking
packets instead of dropping them.

5.3.1 Random Early Detection (RED)

A router that implements RED uses two threshold values to mark positions in the queue:
Thresholdmin and Thresholdmax. A simplified description of RED operation follows. When a new
packet arrives, its disposition is decided by these three rules:

1. If the queue currently contains fewer than Thresholdmin packets, the new packet is
enqueued.

2. If the queue contains between Thresholdmin and Thresholdmax packets, the new packet is
considered for enqueuing or dropping by generating a random number and evaluating its
value.

3. If the queue currently contains more than Thresholdmax packets, the new packet is
dropped.

where 0 ≤ Thresholdmin < Thresholdmax ≤ BufferSize, and the value 0 represents the head of the
queue. Therefore, instead of waiting until the queue overflows, RED starts randomly dropping
packets as congestion increases. The process is somewhat more complex, as described next.

We know that TCP often sends segments in bursts, depending on the congestion window size
(Section 2.2). A burst represents a spike in traffic intensity that may last only temporarily while
most of the time traffic is low-intensity. In other words, the queue may be most of the time
empty, and a temporary spike does not represent congestion. Therefore, should like avoid
dropping packets from a burst when queue length is greater than Thresholdmin. (Of course, packets
are always dropped if the queue capacity is exceeded.)

To better capture the notion of congestion and accommodate for bursty traffic, the router does not
consider the instantaneous length of the queue. Instead, the router considers the average length of
the queue when applying the three rules described above (Figure 5-13(a)). The average queue
length is computed continuously using Exponential Weighted Moving Average (EWMA). This is
the same method used by TCP for RTT estimation (Section 2.1.2) and by jitter buffer (Section
3.3.1). That is, at any time t when a new packet arrives and tries to join this queue, we compute

AverageQLen(t) = (1− γ) ⋅ AverageQLen(t−1) + γ ⋅ MeasuredQLen(t) (5.4)

where γ denotes a value between 0 and 1. If γ is small, the average stays close to long-term trend
and does not fluctuate for short bursts. This parameter should be determined empirically, and a
recommended value is γ = 0.002.

When the average queue length is between Thresholdmin and Thresholdmax, RED drops an arriving
packet with an increasing probability as the average queue length increases (Figure 5-13(b)). For
a given AverageQLen, we calculate the probability of packet drop as

Chapter 5 • Mechanisms for Quality-of-Service 273

)(

)(
)(

minmax

min
maxtemp ThresholdThreshold

ThresholdnAverageQLe
PnAverageQLeP

−
−×= (5.5)

Research has suggested that RED works best when the probability function transitions smoothly
at Thresholdmax, i.e., for Pmax = 1. In addition to the average queue length, the drop probability
also depends on the time elapsed since the last packet was dropped. Instead of actual time, the
algorithm uses a proxy in terms of the number of newly arriving packets (variable: count) that
have been queued (not dropped) while AverageQLen has been between the two thresholds.
Therefore, given an AverageQLen the actual probability of a packet being dropped is computed as

)(1

)(
)(

temp

temp

nAverageQLePcount

nAverageQLeP
nAverageQLeP

×−
= (5.6)

We can observe that P increases as count increases. This helps make packet drops more evenly
distributed and avoid bias against bursty traffic.

RED is intended to work primarily with TCP sources. RED is a queue management technique that
attempts to provide equitable access to an FCFS system. The source that transmits at the highest
rate will suffer from higher packet-dropping rate than others will. As a result, this source will
reduce its transmission rate more, which yields more uniform transmission rates across the
sources and more equitable access to the buffer resource. Under RED, TCP connections will
experience randomly dropped packets (rather than synchronously when the buffer becomes full).
Therefore, TCP senders will back off at different times. This behavior avoids the global
synchronization effect of all connections and maintains high throughput in the routers. Both
analysis and simulations shows that RED works as intended. It handles congestion, avoids the
synchronization that results from drop-tail policy, and allows short bursts without dropping
packets unnecessarily. It is also important that RED can control the queue length irrespective of
endpoint sender cooperation. The IETF now recommends that routers implement RED.

Router buffer
Packet
currently
in service

Head of
the queue

Random-drop
zone:

Packets subject to
being dropped ThresholdMin

(Drop start location)ThresholdMax

(a)

AverageQLen

(b)

ThresholdMin

ThresholdMax

0

1.0

PmaxPmax

Full

(drop)Ptemp(drop)Ptemp

Figure 5-13: (a) RED thresholds on a FCFS (or, FIFO) queue. (b) Packet drop probability
function for RED.

Ivan Marsic • Rutgers University 274

5.3.2 Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN) allows end-to-end notification of network congestion
without dropping packets. It requires support by the underlying network (i.e., routers). ECN is an
optional feature that is only used when both endpoints support it and have it activated.

We have seen that Random Early Detection (RED) mechanism drops packets when it senses
potential congestion (Section 5.3.1). Unlike RED, instead of dropping a packet, an ECN-aware
router may set a mark in the packet’s IP header in order to signal that congestion is about to
happen. The receiver of the packet is the first to learn about the potential congestion and echoes
the congestion indication to the sender. The receiver uses the next acknowledgement packet to
inform the sender about the impending congestion, which must react as if a packet was dropped,
i.e., by reducing its congestion window (Section 2.2).

ECN uses two bits in the IP header of packets from ECN-capable transports to allow routers to
record congestion, and uses two bits in the TCP header to allow the TCP sender and receiver to
communicate. The two bits in the IP header are taken from the 8-bit type of service (TOS) field
(Figure 1-36) and are called the Congestion Experienced (CE) codepoint. These are bits 6 and 7
(rightmost) of the TOS field, and a router can choose to set either bit to indicate congestion. The
reason for using two bits is to increase the robustness of the mechanism. The four different
codepoints are as follows:

00: Transport not ECN-capable - Non-ECT

10: ECN capable transport - ECT(0)

01: ECN capable transport - ECT(1)

11: Congestion encountered - CE

The two bits in the TCP header are taken from the 6-bit unused field (Figure 2-2).

ECN uses the same mechanism as RED (Section 5.3.1) to detect an impending congestion: it
monitors the average queue size.

5.4 Multiprotocol Label Switching (MPLS)

Problems related to this section: Problem 5.9 → ?

Multiprotocol Label Switching (MPLS) is essentially a mechanism for creating and using special
paths, known as “tunnels,” in IP networks. We know that IP forwards data packets on a packet-
by-packet basis, where each packet is forwarded independently of any other packet. It is said to
be connectionless packet forwarding. MPLS allows forwarding packets on a flow-by-flow basis,
so that all packets belonging to a given traffic flow are forwarded in the same manner and along
the same network path (or, tunnel). In this sense, MPLS supports connection-oriented packet
forwarding and the fixed forwarding paths (tunnels) represent “virtual circuits” in the network.

Chapter 5 • Mechanisms for Quality-of-Service 275

MPLS relies on IP addresses and IP routing protocols to set up the paths/tunnels. An MPLS-
enabled router is known as a Label Switching Router (LSR). A set of LSRs where each LSR is
reachable from any other LSR via some other LSRs in the same set is called an MPLS domain.
In other words, an MPLS domain is formed by a contiguous network. A label switching router
forwards packets by examining a short, fixed-length MPLS label (Figure 5-14). The label
represents a given traffic flow, and all the packets belonging to this flow should be forwarded
along the path/route/tunnel associated with this label. A traffic flow is called a Forwarding
Equivalence Class (FEC), also a Functional Equivalence Class, and this is a group of IP packets
that are forwarded in the same manner (i.e., along the same path, with the same forwarding
treatment). In other words, An FEC is a set of packet flows with common cross-core forwarding-
path requirements. A sequence of routers that form a path along which a given FEC flow is
forwarded forms a tunnel, which is known as a Label Switched Path (LSP). For example, one
such path is formed by routers B, C, and D in Figure 5-14. Each LSP tunnel is unidirectional
(one-way), starting with an ingress LSR, going through intermediate LSRs, if any, and ending
with an egress LSR. If data needs to travel in the opposite direction as well, which is usually true,
then a separate one-way tunnel must be built in the opposite direction. To summarize, an FEC is
uniquely associated with an LSP. Each pair of routers agrees on a label independently of other
router pairs along an LSP. Therefore, each label has local scope and different segments of an LSP
tunnel may be represented by different MPLS labels. Why this is so, will be explained later.

Egress LSR
MPLS domain

B

C

D

G

LSR = Label switching router
FEC = Forwarding equivalence class
LSP = Label switched path
LIFB = Label forwarding information base

MPLS label

Link-layer hdr

IP header

IP payload

LFIB H

F

E

Flow of IP
datagrams
(denoted

by FEC)

A

Figure 5-14: MPLS operation.

Ivan Marsic • Rutgers University 276

packets belonging
to the same FEC

LSP (Label Switched Path, tunnel)

segment 1

label = 5

segment 2

label = 17
segment 3

label = 6

(Forwarding Equivalence Class)

Why MPLS:

• Use switching instead of routing

• IP Traffic Engineering (TE): ability to specify routes based on resource constraints, rather than
on distance (shortest path) only (Section 5.4.3). MPLS adds the ability to forward packets over
arbitrary non-shortest paths, using constraint-based routing.

• Virtual Private Networks (VPNs, Section 5.4.4): Controllable tunneling mechanism emulates
high-speed “tunnels” between IP-only domains.

• Route protection and restoration

A key reason for initial MPLS development was the promise of ultra-fast packet forwarding:
Longest prefix match is (was) computationally expensive (Section 4.1.3); Label matching was
seen as much less computationally expensive. However, with the emergence of gigabit IP routers
capable of IP forwarding as fast as any MPLS-capable router performs label switching the speed
advantage has diminished (although not disappeared, because label switching still can be
implemented in a much simpler hardware). Currently, MPLS key strengths are seen in Traffic
Engineering and Virtual Private Networks—capabilities critical to network service providers who
need to better manage resources around their backbones or need to offer VPN services.

Notice that MPLS is a set of protocols (specified by IETF), rather than a single protocol. The key
protocols are Label Distribution Protocol and Link Management Protocol. Several existing IP
protocols are also adapted to work with MPLS.

5.4.1 MPLS Architecture and Operation

MPLS is located between the link-layer and network-layer protocols (Figure 5-15), so it is
referred to as a layer 2.5 protocol (in the OSI reference architecture, where Link is layer 2 and
Network is layer 3). MPLS can run over different link-layer technologies, such as Ethernet or
PPP (Section 1.5). The protocol-identifier field of the link-layer header should identify the
payload as an MPLS frame. For example, unique PPP code points (carried in the Protocol field,
Figure 1-56) identify the PPP frame’s contents as an MPLS frame. The value of the PPP Protocol
field for MPLS unicast is hexadecimal 0x0281. A similar encapsulation scheme is used when
transmitting over Ethernet, where the payload is identified as an MPLS frame with unique Ether-
Types (Figure 1-59(a)) or LLC frame’s DSAP addresses (Figure 1-59(b)). The value of Ether-
Type for MPLS unicast is hexadecimal 0x8847.

Different Forwarding Equivalence Classes (FECs) designate different classes of service or
service priorities. Each MPLS-capable router (label switching router, LSR) keeps a list of labels
that correspond to different FECs on each outgoing link. All packets belonging to the same FEC
have the same MPLS label value. However, not all packets that have the same label value belong

Chapter 5 • Mechanisms for Quality-of-Service 277

to the same FEC. This fact will become clear later, as we see that FEC is determined by the label
value and experimental bits (Exp) of the MPLS header. By default, packet’s FEC is determined
by its destination IP address. Other classification parameters include source IP address, IP
protocol type, TOS field of the IP header (Figure 1-36), and TCP/UDP port numbers. The
packet’s arrival port may also be considered a classification parameter. Multicast packets
belonging to a particular multicast group also form a separate FEC.

An edge-LSR terminates and/or originates LSPs (label switched paths) and performs both label-
based forwarding and conventional IP forwarding functions. The edge-LSR converts IP packets
into MPLS packets, and MPLS packets into IP packets. On ingress to an MPLS domain, an LSR
accepts unlabelled IP packets and creates an initial MPLS frame by pushing a shim header
between link-layer and network-layer headers (Figure 5-16). A special table in the ingress LSR,
known as Label Forwarding Information Base (LFIB), matches the FEC to the label. LFIB is
an MPLS equivalent for the forwarding table of the IP protocol. On egress, the edge LSR
terminates an LSP by popping the top MPLS stack entry, and forwarding the remaining packet
based on rules indicated by the popped label (e.g., that the payload represents an IPv4 packet and
should be processed according to IP forwarding rules).

Edge LSRs provide the interface between external networks and the internal label-switched paths,
and core/intermediate LSRs provide transit service in the middle of the network. An intermediate

Network/IP layer –
Forwarding
plane

Data plane

MPLS layer plane

MPLS domain

LSP 1

LSP 2

LSP 3

LSP = Label switched path
LSR = Label switching router

Link layer plane
(Network’s physical
topology)

LSR
Edge
LSR

LSR

Edge
LSR

Edge
LSR

A

B C

D

E
F

G

Network/IP layer –
Routing plane LSR

Edge
LSR

Edge
LSR

Edge
LSR

Control plane

Figure 5-15: Protocol layering of an MPLS network.

Ivan Marsic • Rutgers University 278

LSR examines incoming MPLS packets, looks up and follows the packet’s label instructions, and
then forwards the packet according to the instructions. In general, the LSR performs a label
swapping function.

Paths or routes are established between the edge LSRs via intermediate LSRs. These paths are
called Label Switched Paths (LSPs). The LSPs are designed for their traffic characteristics. The
traffic-handling capability of each path is calculated. These characteristics can include peak
traffic load, inter-packet variation, and dropped packet percentage calculation.

MPLS Labels

Figure 5-16(a) shows the MPLS label for frame-based packets (e.g., Ethernet, PPP). MPLS label
is also known as “shim” header. The meaning of the fields is as follows:

Label value: A number representing a forwarding equivalence class (FEC) on a given outgoing
link. The label has a local scope limited to a network link, which means that a link may support
up to one million (220 = 1,048,576) distinct labels.

Exp: experimental bits identify the class of service (or QoS).

Link-layer
header

MPLS
label

Network-layer
header

Payload

Label value Exp S TTL

bits: 20 3 1 8

Link layer

MPLS layer

Network layer

32 bits (4 bytes)

La
be

l
T

T
L

La
be

l
T

T
L

La
be

l
T

T
L

Link-layer
header

IP
header

IP
payload

Label stack

Top label
(S=0)

Bottom label
(S=1)

Intermediate label
(S=0)

(a)

(b)

Figure 5-16: (a) MPLS label (“shim” header) format and its relative placement in IP packets.
(b) The placement of the label stack; notice that the S bit is set only for the bottommost label.

Visit http://en.wikipedia.org/wiki/Optical_switch for information about optical switchesVisit http://en.wikipedia.org/wiki/Optical_switch for information about optical switches

Chapter 5 • Mechanisms for Quality-of-Service 279

Bottom-of-stack bit (S): value “1” indicates that this label header is the bottom label in the stack;
otherwise, it is set to zero. The stack is a collection of labels that represent a hierarchy of tunnels
created over a particular outgoing link. The stack can have unlimited depth, although it is rare to
see a stack of four or more labels.

TTL: time-to-live counter that has the same function as the TTL found in the IP header (Figure
1-36), which is to prevent packets from being stuck in a routing loop. The TTL counted is
decreased by 1 at each hop, and if the value reaches 0, the packet is discarded. Special processing
rules are used to support IP TTL semantics, as described below.

The label value at each hop is a local key representing the next-hop and QoS requirements for
packets belonging to each FEC. In conventional routing, a packet is assigned to an FEC at each
hop (i.e., forwarding table look-up, Section 4.1.3). Conversely, in MPLS it is only done once at
the ingress of the MPLS domain. At the ingress LSR, a packet is classified and assigned an
FEC/label. Packet forwarding in the MPLS domain is performed by swapping the label.

The label stack entries appear after the link-layer header and before the network-layer header
(Figure 5-16(b)). The label that was last pushed on the stack (newest) is called the top label, and
it is closest to the link-layer header. The label that was first pushed on the stack (oldest) is called
the bottom label, and it is closest to the network-layer header. The edge LSR that pops up the
bottommost label is left with a regular IP packet, which it passes up to the network layer and IP
forwarding is used to move the packet onwards.

Label Bindings, LIB, and LFIB

The ordinary IP control plane builds and maintains the routing table, also known as RIB (Routing
Information Base). Routing table is just built here, but forwarding decisions are made in the
forwarding or data plane (top of Figure 5-15). Forwarding decisions are made based on the
forwarding table, also known as FIB (Forwarding Information Base), which is derived from the
routing table. In case of MPLS, the equivalent data structures are LIB (label information base)
and LFIB (label forwarding information base). The prefixes-to-label bindings are built and stored
in the LIB, control plane, which is then used to create the LFIB data or forwarding plane. The
lookups are actually done in the LFIB, not the LIB (as for IP, in the FIB and not the RIB). Their
relationship is illustrated in Figure 5-17.

Label Forwarding Information Base (LFIB) is a data structure and way of managing
forwarding in which destinations and incoming labels are associated with outgoing
interfaces/ports and labels. The LFIB resides in the data plane and contains a local-label-to-next-
hop label mapping along with the outgoing port, which is used to forward labeled packets.

In summary, the routing table is built by the routing protocols in the IP control plane. Similarly,
LIB (label information base) is built by a label distribution protocol in the MPLS control plane.
LIB contains only labels, no routes (i.e., LSP tunnels). The IP forwarding table is derived in the
IP data plane from the routing table. Correspondingly, the MPLS LFIB is derived from LIB in the
MPLS data plane. LFIB contains bindings between labels and LSPs. A Labeled Packet is always
looked up in LFIB (not in LIB!) and an IP Packet is always looked up in forwarding table (not in
routing table!). However, the process is somewhat more complex for edge LSRs. On the ingress
LSR, the lookup is performed against the combined IP forwarding table and LFIB, as described in
the next section. In the core (intermediary LSRs), the lookup is performed only against the LFIB.

Ivan Marsic • Rutgers University 280

On the egress LSR, the lookup is performed against the IP forwarding table if there was only a
single label in the stack and this label was popped by the penultimate hop; otherwise, the LFIB is
looked up.

More precisely, table to lookup into is determined by the link-layer header Ether-Type or PPP
Protocol field. The protocol identifier in the link-layer header tells the router what type of packet
is coming in and therefore which table to look in:

• 0x0800 → IPv4: Lookup in the IP forwarding table

• 0x8847 → MPLS Unicast: Lookup in the MPLS LFIB (label forwarding information base)

• 0x8848 → MPLS Multicast: Lookup in the MPLS LFIB (label forwarding information base)

Next, we consider how MPLS routers (LSRs) build and utilize label-forwarding tables.

Forwarding Labeled Packets

Initially, all routers start with empty routing and forwarding tables and label-bindings. We
assume that regular IP routing protocols run first and build regular IP routing tables, or RIBs
(routing information bases). MPLS builds label-binding tables based on regular IP routing tables,
using label distribution protocols (described in Section 5.4.2). Label bindings can also be
configured manually, particularly for the purposes of Traffic Engineering, but this is a tedious and
error-prone task, so even here it is preferred to use label distribution protocols combined with
constraint-based routing protocols. To illustrate how MPLS-capable routers (LSRs) forward

Label information
base (LIB)

Routing table

F
ro

m

To

IP forwarding table

Destin. prefix Out port

Label forwarding information base (LFIB)

Dest. prefix In label Out label Out port

(from routing protocols)

(from peer LSRs)

(not used in MPLS,
except by edge LSRs)

LSR

Figure 5-17: Relationship of LIB (label information base) and LFIB (label forwarding
information base).

Chapter 5 • Mechanisms for Quality-of-Service 281

labeled packets, let us assume the simplest scenario where label bindings are derived from the
hop-by-hop information in IP routing tables.

Consider the example in Figure 5-18, which illustrates one of the tunnels from Figure 5-14. Here,
edge LSR B receives a packet with destination IP address 96.1.1.13. LSR B has the
corresponding network prefix 96.1.1/24 in its routing table, but does not have the label
binding in its LFIB (label forwarding information base). To obtain a label for this prefix, B uses a
label distribution protocol and sends a message downstream (to C and on to D) requesting a label
for prefix 96.1.1/24. When edge LSR D receives the request, it knows that itself is the egress
LSR of the new tunnel (LSP, label switched path). Therefore, D selects a label value not used for
any other LSP and sends a response message using the label distribution protocol. In our

In label Out label Out port

In label Out label Out port

LFIB(C)

Dest. Prefix Out label Out port

96.1.1.13

Edge
LSR

LSR Edge
LSR

A B D HC96.1.1.13

4 2 5 1 3

Label req.
96.1.1/24

Label req.
96.1.1/24

Edge
LSR

LSR Edge
LSR

A B D H

Network
96.1.1/24

Dest. Prefix Out label Out port

C96.1.1.13

LFIB(B) LFIB(D)

4 2 5 1 3

Edge
LSR

LSR Edge
LSR

A B D H

Network
96.1.1/24

Dest. Prefix Out label Out port

C96.1.1.13

LFIB(B) LFIB(D)

LFIB(C)

Port
4

Port
2 5 1 3

LIB binding:
96.1.1/24 ↔ 17

96.1.1/24

517

49

9

Pfx: 96.1.1/24
Label = 17

Pfx: 96.1.1/24
Label = 9

(a)

(b)

(c)

Dest. Prefix Out label Out port

179

Figure 5-18: LSP path setup. (a) Packet arrives from router A to B towards a host in H’s
network. (b) LSR B sends label request towards the destination. (c) LSR D is the edge
router, so it replies with label 17, then LSR C selects its own label as 9 and replies to B.

Ivan Marsic • Rutgers University 282

example, D selected the label value 17 and stored the label 17 binding for prefix 96.1.1/24 in
its LIB (label information base), not LFIB (label forwarding information base)! D’s LFIB remains
empty because LSR D does not use LFIB to forward packets from this tunnel. D is the egress of
the tunnel and to forward packets towards H (which is not an LSR and is not MPLS capable), D
will use conventional IP forwarding.

When C receives the label response from D, in general it will need to assign a different label for
the next segment of the same LSP tunnel, because it may be already using label 17 for another
LSP. Remember, routers are at crossroads of many different paths and these paths are established
at unpredictable times. In our example (Figure 5-18), C selects the label value 9 for the upstream
segment of LSP. Because C is an intermediate LSR, it does not store prefixes in its LFIB; C
might even not be IP-capable. Rather, C needs just the incoming and outgoing labels. The
incoming label value is 9 (will be received in MPLS packets from B) and the outgoing label value
is 17 (will be sent in MPLS packets to D). In other words, the intermediate LSR C performs label
swapping. Unlike intermediate LSRs, edge LSRs do not perform label swapping. Each edge LSR
must understand both IP and MPLS, and its LFIB (label forwarding information base) may have

In label Out label Out port

LFIB(C)

Edge
LSR

LSR Edge
LSR

A B D H

Network
96.1.1/24

Dest. Prefix Out label Out port

C

LFIB(B)

D’s IP Forwarding table

5 1 3

96.1.1/24

517

49

9

(a)

96.1.1.13 9 96.1.1.13 17

Edge
LSR

LSR Edge
LSR

A B D H

Network
96.1.1/24

C

3

Dest. Prefix Out label Out port

96.1.1/24 49

In label Out label Out port

5179

(b)

96.1.1.13 96.1.1.13

Destin. Prefix Out port

96.1.1/24 3

Port
4

Port
2

96.1.1.13

Figure 5-19: Forwarding labeled packets (continued from Figure 5-18). (a) Within MPLS
domain, data packet is forwarded based on its MPLS label. (b) Outside MPLS domain, data
packet is forwarded based on its destination IP address.

Chapter 5 • Mechanisms for Quality-of-Service 283

different format. Notice also that some LSRs may play both roles: edge and intermediate, for
different LSP tunnels.

Continuing with the example in Figure 5-18, the data packet has been sitting in LSR B while the
LSP setup process took place. Once liable bindings become available, B will forward all data
packets from this flow using label switching. An example for the first packet is shown in Figure
5-19. LSR B, as the ingress router of this LSP, inserts an MPLS label with value 9 (which it
obtained from C), and sends this packet on output port 4 towards C (Figure 5-19(a)). When C
receives the packet, it performs label swapping: For the given input label 9, C looks up its LFIB
and finds that the outgoing label is 17 (which it received from D), swaps the packet’s label to 17
and sends it on output port 5 towards D. When D receives the packet, it looks up the incoming
label (17) and recognizes that itself is the egress LSR for this LSP. Therefore, D strips off the
MPLS label and forwards the packet towards the next hop H using conventional IP forwarding
(Figure 5-19(b)).

Topology of LSPs

The design of PoPs (Points-of-Presence) for all backbone IP networks, including MPLS
networks, is constrained by the choice of access link type(s) to be supported for the customers of
the network and the choice of core link type(s) to be used in the backbone network. Based on PoP
designs, LSP (Label Switched Path) trees can be classified as these topology types (Figure 5-20):

• Unique ingress and egress LSR: In this case, a point-to-point path through the MPLS
domain is set up. An example is LSP-1 in Figure 5-20, from the ingress LSR H, through the
intermediate LSRs G and E towards the egress LSR F.

• Multiple ingress LSRs, unique egress LSR: In this case, LSP forms a multipoint-to-point
tree topology. This happens when traffic assigned to a single FEC arises from different sources.
An example is LSP-2 in Figure 5-20, where traffic assigned to a single FEC enters at three

Link layer plane
(Network’s physical
topology)

A

MPLS layer plane

LSP-1: H → G → E → F

B

C

D
E H

G J
I

F

LSP-1

LSP-2
MPLS domain

LSP-2: A →
B → C

D
E → G → J

Figure 5-20: LSP topologies (or Point-of-Presence/PoP designs). LSP-1: Unique ingress and
egress LSR. LSP-2: Multiple ingress LSRs, unique egress LSR.

Ivan Marsic • Rutgers University 284

different ingress LSRs: A, B, and D. The branches from A and B join at LSR C, then this branch
joins with D at E, and the final two hops through G to the egress LSR J are shared.

• Multicast: In this case, multicast traffic is carried over the MPLS domain from a single
ingress LSR to multiple egress LSRs. The multicast LSP is determined by the multicast tree
constructed by the multicast routing protocol (Section 3.3.2).

In principle, an ISP backbone network could configure a separate LSP to carry each class of
traffic (FEC) between each pair of edge LSRs. A more practical solution is to merge LSPs of the
same traffic class to obtain multipoint-to-point flows that are rooted at an egress LSR. An
example is LSP-2 in Figure 5-20. The LSRs serving each of these flows would be configured to
provide the desired levels of performance to each traffic class.

5.4.2 Label Distribution Protocols

Setup of LSPs (Label Switched Paths) is done by a process of label distribution. Label
distribution may be based on information obtained from conventional hop-by-hop routing
protocols, or it may use explicit routing over non-shortest paths. Label distribution protocol
dynamically establishes an LSP tree between all the edge LSRs for each identifiable FEC.
Requirements for a label distribution protocol include per-hop traffic differentiation capabilities,
the ability to route traffic over non-shortest paths, and the ability to dynamically signal (or
provision) QoS and path information across a network of routers or switches. There are many
similarities between conventional routing protocols and label distribution protocols for MPLS. A
key difference is the MPLS capability for explicit non-shortest-path routing.

The control plane of an LSR performs the following functions (Figure 5-21):

1. Create bindings between FECs and labels.

2. Inform the adjacent LSRs of the bindings it created (using a label distribution protocol).

3. Use information received from the adjacent LSRs to construct and maintain the
forwarding table (LFIB) used by the MPLS label switching.

Label Distribution

In general, label bindings between two LSRs can be distributed by either a downstream LSR or
an upstream LSR. MPLS architecture requires downstream label distribution: label-bindings must

Network-layer
routing protocols

(e.g., OSPF, BGP, PIM)

Procedures for binding
FECs to labels

Label-binding distribution
protocol

Maintenance of LFIB (label forwarding information base)

FEC-to-next-hop
mapping

FEC-to-label
mapping

Figure 5-21: The components of the control plane of an LSR perform LFIB construction.

Chapter 5 • Mechanisms for Quality-of-Service 285

be distributed in the direction from a downstream LSR to an upstream LSR. There are two
methods for downstream label distribution:

• On-demand Downstream Label Distribution: In this case, a downstream LSR distributes a
label binding in response to an explicit request from an upstream LSR (Figure 5-22(a)). An
upstream LSR A recognizes a downstream LSR B as its next-hop for an FEC and sends a request
to LSR B for a binding between the FEC and a label. If LSR B recognizes the FEC and has a next
hop for it, LSR B creates a binding and replies to LSR A. Both LSRs then have a common
understanding. This process is also illustrated in Figure 5-18.

• Unsolicited Downstream Label Distribution: In this case, a downstream LSR distributes a
label binding in response to an explicit request from an upstream LSR (Figure 5-22(b)). A
downstream LSR B discovers a “next hop” for a particular FEC, generates a label for this FEC,
and communicates the binding to an upstream LSR A. LSR A inserts the binding into its LIB
(label information base) and checks if it need to update the corresponding entry in its LFIB (label
forwarding information base). If LSR B is the next hop for the FEC, LSR A can use that label as
an outgoing label, knowing that its meaning is understood.

Each FEC is specified as a set of one or more FEC elements. Each FEC element identifies a set
of packets that may be mapped to the corresponding LSP. When an LSP is shared by multiple
FEC elements, the shared LSP is terminated at (or before) the node where the FEC elements can
no longer share the same path. Following are the currently defined types of FEC elements:

 1. Address Prefix. This element is an address prefix of any length from 0 to a full address,
inclusive.

 2. Host Address. This element is a full host address.

New element types may be added as needed.

Distribution Control

Independent LSP Control

LSR A
LSR B

Request for Binding

Label-to-FEC Binding

1

2

LSR A
LSR B

Label-to-FEC Binding

Unsolicited Downstream Label DistributionOn-demand Downstream Label Distribution

(a) (b)

Figure 5-22: Methods for MPLS downstream label distribution.

Ivan Marsic • Rutgers University 286

Each LSR makes independent decision on when to generate labels and communicate them to
upstream peers

Communicate label-FEC binding to peers once next-hop has been recognized

LSP is formed as incoming and outgoing labels are spliced together

Characteristics:

Labels can be exchanged with less delay

Does not depend on availability of egress node

Granularity may not be consistent across the nodes at the start

May require separate loop detection/mitigation method

Ordered LSP Control

Label-FEC binding is communicated to peers if:

 - LSR is the ‘egress’ LSR to particular FEC

 - label binding has been received from an upstream LSR

LSP formation ‘flows’ from egress to ingress

Characteristics:

Requires more delay before packets can be forwarded along the LSP

Depends on availability of egress node

Mechanism for consistent granularity and freedom from loops

Used for explicit routing and multicast

Both methods are supported in the standard and can be fully interoperable.

LDP: Label Distribution Protocol

Label Distribution Protocol (LDP) provides LSR discovery mechanisms to enable LSR peers to
find each other and establish communication. The LDP protocol is defined in RFC-5036. It
defines four types of messages:

• DISCOVERY: used to find neighboring LSRs. Each LSR announces and maintains its presence
in a network. LSRs indicate their presence by sending Hello messages periodically. Hello
messages are transmitted as UDP packets to the LDP port at the group multicast address for all
routers on the subnet.

• SESSION ADJACENCY: used to initialize, keep alive, and shutdown LDP sessions. If two LSRs
have discovered each other by means of the LDP Hello messages, they then establish sessions and
become LDP peers. For this purpose, routers use LDP initialization procedure over TCP

Chapter 5 • Mechanisms for Quality-of-Service 287

transport. After the initialization procedure is completed, the two routers are LDP peers and can
exchange Advertisement messages.

• LABEL ADVERTISEMENT: used for label-binding advertisements, request, withdrawal, and
release. This is the main purpose of LDP. Advertisement messages are used to maintain label
mappings for FECs (Figure 5-21). In general, an LSR requests a label mapping from an LDP peer
when it needs one, and advertises a label mapping to an LDP peer when it wants that peer to use
the advertised label.

• NOTIFICATION: used to distribute advisory information and to signal error information.

LDP depends on a routing protocol, such as OSPF (Section 8.2.2), to initially establish
reachability between the LSRs. The LDP runs over TCP for reliable delivery of messages, except
for discovery of LSR peers, which uses UDP and IP multicast. It is designed to be extensible,
using messages specified as TLVs (type, value, length) encoded objects.

The IP routing protocol can also be used to define the route for LSP tunnels (hop-by-hop routing).
Alternatively, traffic-engineering considerations can determine the explicit route of the LSP
(Section 5.4.3). Once a route is determined for an LSP, LDP is used to set up the LSP and assign
the labels. Because each LSP is unidirectional, label assignment propagates back from the egress
LSR to the originating point (ingress LSR), as illustrated in Figure 5-18.

RSVP-TE

RFC-3209

Explicit Routing

The exchange of PATH and RESV messages between any two LSRs establishes a label
association with specific forwarding requirements. The concatenation of these label associations
creates the desired edge-to-edge LSP.

5.4.3 Traffic Engineering

Service providers and enterprise operators face the challenge of providing acceptable service
levels, or QoS, to their customers and users while simultaneously running an efficient and reliable
network. Conventional IP routing aims to find and follow the shortest path between a packet’s
current location and its destination. This can lead to “hot spots” in the network—routers and links
on the intersection of shortest paths to many destinations subject to high traffic load. As the
average load on a router rises, packets experience increased loss rates, latency, and jitter. Two
solutions exist (and may be deployed in parallel): introducing faster routers and links, or
distributing (load balancing) the packet forwarding across alternate (potentially non-shortest-
path) routes. The latter solution is called Traffic Engineering (TE).

Constraint-based Routing

One type of constraint would be the ability to find a route (path) that has certain performance
characteristics, such as minimum available bandwidth. In this case, the constraint imposed on the
routing algorithm is that the computed path must have at least the specified amount of available

Ivan Marsic • Rutgers University 288

bandwidth on all links along the path. Different paths (defined by source-destination endpoints)
may have different demands for the minimum available bandwidth.

Another type of constraint would be administrative. For example, a network administrator may
want to exclude certain traffic from traversing certain links in the network, where such links
would be identified by a link attribute. In this case, the constraint imposed on the routing
algorithm is that the computed path must not traverse through any of the specified links. On the
other hand, the network administrator may want to require certain traffic to traverse only the
specified links. Similar to performance constraints, different paths may have different
administrative constraints.

Constraint-based routing cannot be supported by conventional IP routing protocols. The key
reason is that constraint-based routing requires route (path) calculation at the source router. This
requirement is because different sources may have different constraints for a path to the same
destination, and the constraints associated with a particular source router are known only to this
router, but not to any other router in the network. Unlike this, in conventional IP routing, a route
is computed in a distributed manner by every router in the network.

Constrained Shortest Path First (CSPF) is an enhanced version of the shortest-path first (SPF)
algorithm used in OSPF (Section 8.2.2). CSPF computes paths taking into account the
constraints. When computing paths for LSP tunnels, CSPF considers the physical topology of the
network, the attributes of the individual links between LSRs, and the attributes of existing LSPs.
CSPF attempts to satisfy the requirements for a new LSP while minimizing congestion by
balancing the network load.

5.4.4 Virtual Private Networks

Virtual private networks (VPNs) provide relative or absolute protection for a given traffic flow
from other traffic on any particular network segment. VPNs are also used to support tiered
services for traffic flows. In general, a VPN provides wide area connectivity to an organization
located in multiple sites. MPLS can provide connectivity among VPN sites through LSPs that are
dedicated to the given VPN. The LSPs can be used to exchange routing information between the
various VPN sites, transparently to other users of the MPLS network. This behavior gives the
appearance of a dedicated wide-area network.

Layer-2 VPNs, Layer-3 VPNs

It is possible to build VPNs using a pure IP solution. Although gigabit IP routers are capable of IP
forwarding as fast as any MPLS-capable router performs label switching, MPLS VPNs are
significantly more efficient than IP VPNs.

Chapter 5 • Mechanisms for Quality-of-Service 289

5.4.5 MPLS and Quality of Service

Route Protection and Restoration

- End-to-end protection

- Fast node and link reroute

MPLS Protection Types:

1+1: Backup LSP established in advance, resources dedicated, data simultaneously sent on both
primary and backup

Switchover performed only by egress LSR

Fastest, but most resource intensive

1:1 : Same as 1+1 with the difference that data is not sent on the backup

Requires failure notification to the ingress LSR to start transmitting on backup

Notification may be send to egress also

Resources in the backup may be used by other traffic

Low priority traffic (e.g., plain IP traffic), shared by other backup paths.

5.5 Summary and Bibliographical Notes

Section 5.1: Scheduling

If a server (router, switch, etc.) is handling multiple flows, there is a danger that aggressive flows
will grab too much of its capacity and starve all the other flows. Simple processing of packets in
the order of their arrival is not appropriate in such cases, if it is desired to provide equitable
access to transmission bandwidth. Scheduling algorithms have been devised to address such
issues. The best known is fair queuing (FQ) algorithm, originally proposed by [Nagle, 1987],
which has many known variations. A simple approach is to form separate waiting lines (queues)
for different flows and have the server scan the queues round robin, taking the first packet (head-
of-the-line) from each queue (unless a queue is empty). In this way, with n hosts competing for a
given transmission line, each host gets to send one out of every n packets. Aggressive behavior
does not pay off, because sending more packets will not improve this fraction.

A problem with the simple round robin is that it gives more bandwidth to hosts that send large
packets at the expense of the hosts that send small packets. Packet-by-packet FQ tackles this
problem by transmitting packets from different flows so that the packet completion times
approximate those of a bit-by-bit fair queuing system. Every time a packet arrives, its completion

Ivan Marsic • Rutgers University 290

time under bit-by-bit FQ is computed as its finish number. The next packet to be transmitted is
the one with the smallest finish number among all the packets waiting in the queues.

If it is desirable to assign different importance to different flows, e.g., to ensure that voice packets
receive priority treatment, then packet-by-packet weighted fair queuing (WFQ) is used. WFQ
plays a central role in QoS architectures and it is implemented in today’s router products [Cisco,
1999; Cisco, 2006]. Organizations that manage their own intranets can employ WFQ-capable
routers to provide QoS to their internal flows.

[Keshav, 1997] provides a comprehensive review of scheduling disciplines in data networks.

[Bhatti & Crowcroft, 2000] has a brief review of various packet scheduling algorithms

[Elhanany et al., 2001] reviews hardware techniques of packet forwarding through a router or
switch

Packet scheduling disciplines are also discussed in [Cisco, 1995]

One of the earliest publications mentioning the leaky bucket algorithm is [Turner, 1986].

Section 5.3: Active Queue Management

Random Early Detection (RED) keeps the overall throughput high while maintaining a small
average queue length, and tolerates transient congestion. When the average queue has exceeded a
certain threshold, RED routers drop packets at random so that TCP connections back off at
different times. This avoids the global synchronization effect of all connections. RED was
proposed by Floyd and Jacobson [1993]. Sally Floyd maintains a list of papers on RED here:
http://www.icir.org/floyd/red.html. Christiansen, et al., [2001] also provides an overview of various
versions of RED and additional references. Srikant [2004] presents an in-depth account on RED
techniques and their analysis.

Clark and Fang [1998] proposed an extension of RED to provide different levels of drop
precedence for two classes of traffic. Their algorithm is called RED with IN/OUT or RIO for
short. A device, located on the sourcing traffic side of a network boundary, serves a “policy
meter.” Packets are classified as being inside (IN) or outside (OUT), depending on whether they
conform to the service allocation profile of a given sender/user. RIO uses twin RED algorithms
for dropping packets, one for INs and one for OUTs. RIO chooses different parameters of RED
algorithms for IN and OUT packets, which may be lined up in the same or different queues.
When congestion sets in, RIO is able to preferentially drop OUT packets.

Explicit Congestion Notification (ECN) is described in RFC-3168. As expected, ECN reduces the
number of packets dropped by a TCP connection, which, in turn, reduces latency and especially
jitter, because packet retransmissions are avoided [RFC-2884]. This outcome is most dramatic
when the TCP connection sends occasional isolated segments, which is common for interactive
connections (such as remote logins) and transactional protocols (such as HTTP requests, the
conversational phase of SMTP, or SQL requests. Such a sender will receive ECN notification,
which it ignores because it sends only occasional isolated segments, but it benefits from the fact
that its segment was not dropped. The reason for this effect is that the sender can detect a loss of

Chapter 5 • Mechanisms for Quality-of-Service 291

an isolated segment only by an RTO timeout (which is relatively long), because there are no
subsequent segments to generate duplicate ACKs. Effects of ECN on bulk transports are less
clear because subsequent segments will soon generate duplicate ACKs and recent TCP versions
use fast recovery to resend dropped segments in a timely manner (Section 2.2).

Section 5.4: Multiprotocol Label Switching (MPLS)

MPLS provides the ability to forward packets over arbitrary non-shortest paths, and emulate high-
speed “tunnels” between IP-only (non-label-switched) domains. It offers a capability not
available to conventionally routed solutions: the forwarding packets over arbitrary, non-shortest
paths, which is particularly useful for managing network resources, known as “traffic
engineering.”

Label Distribution Protocol (LDP) is defined in RFC-3036 and is used to provide mechanisms for
MPLS routers to process and route labeled traffic across an MPLS network.

Davie and Rekhter [2000] offer a very readable account of MPLS fundamentals, which, although
dated, is still relevant to study because it explains well the basic concepts. A relatively recent and
comprehensive review of MPLS is available in [De Ghein, 2007].

[Ziegelmann, 2007] Constrained Shortest Path First (CSPF)

Ivan Marsic • Rutgers University 292

Problems

Problem 5.1

Problem 5.2

Eight hosts, labeled A, B, C, D, E, F, G, and H, share a transmission link the capacity of which is
85. Their respective bandwidth demands are 14, 7, 3, 3, 25, 8, 10, and 18, and their weights are 3,
4, 1, 0.4, 5, 0.6, 2, and 1. Calculate the max-min weighted fair share allocation for these hosts.
Show your work neatly, step by step.

Problem 5.3

Problem 5.4

Consider a packet-by-packet FQ scheduler that discerns three different classes of packets (forms
three queues). Suppose a 1-Kbyte packet of class 2 arrives upon the following situation. The
current round number equals 85000. There is a packet of class 3 currently in service and its finish
number is 106496. There are also two packets of class 1 waiting in queue 1 and their finish
numbers are F1,1 = 98304 and F1,2 = 114688.

Determine the finish number of the packet that just arrived. For all the packets under
consideration, write down the order of transmissions under packet-by-packet FQ. Show the
process.

Problem 5.5

Consider the following scenario for a packet-by-packet FQ scheduler and transmission rate equal
1 bit per unit of time. At time t=0 a packet of L1,1=100 bits arrives on flow 1 and a packet of
L3,1=60 bits arrives on flow 3. The subsequent arrivals are as follows: L1,2=120 and L3,2=190 at
t=100; L2,1=50 at t=200; L4,1=30 at t=250; L1,3=160 and L4,2=30 at t=300, L4,3=50 at 350, L2,2=150
and L3,3=100 at t=400; L1,4=140 at t=460; L3,4=60 and L4,4=50 at t=500; L3,5=200 at t=560;
L2,3=120 at t=600; L1,5=700 at t=700; L2,4=50 at t=800; and L2,5=60 at t=850. For every time new
packets arrive, write down the sorted finish numbers. What is the actual order of transmissions
under packet-by-packet FQ?

Problem 5.6

A transmitter works at a rate of 1 Mbps and distinguishes three types of packets: voice, data, and
video. Voice packets are assigned weight 3, data packets 1, and video packets 1.5. Assume that

Chapter 5 • Mechanisms for Quality-of-Service 293

initially arrive a voice packet of 200 bytes a data packet of 50 bytes and a video packet of 1000
bytes. Thereafter, voice packets of 200 bytes arrive every 20 ms and video packets every 40 ms.
A data packet of 500 bytes arrives at 20 ms, another one of 1000 bytes at 40 ms and a one of 50
bytes at 70 ms. Write down the sequence in which a packet-by-packet WFQ scheduler would
transmit the packets that arrive during the first 100 ms. Show the procedure.

Problem 5.7

Suppose a router has four input flows and one output link with the transmission rate of
1 byte/second. The router receives packets as listed in the table below. Assume the time starts at 0
and the “arrival time” is the time the packet arrives at the router. Write down the order and times
at which the packets will be transmitted under:

(a) Packet-by-packet fair queuing (FQ)
(b) Packet-by-packet weighted fair queuing (WFQ), where flows 2 and 4 are entitled to twice

the link capacity of flow 3, and flow 1 is entitled to twice the capacity of flow 2

Packet

Arrival time
[sec]

Packet size
[bytes]

Flow
ID

Departure order/
time under FQ

Departure order/
time under WFQ

1 0 100 1
2 0 60 3
3 100 120 1
4 100 190 3
5 200 50 2
6 250 30 4
7 300 30 4
8 300 60 1
9 650 50 3

10 650 30 4
11 710 60 1
12 710 30 4

Problem 5.8

[Priority + Fair Queuing] Consider a scheduler with three queues: one high priority queue and
two non-priority queues that should share the resource that remains after the priority queue is
served in a fair manner. The priority packets are scheduled to go first (lined up in their order of
arrival), regardless of whether there are packets in non-priority queues. The priority packets are
scheduled in a non-preemptive manner, which means that any packet currently being serviced
from a non-priority queue is allowed to finish.

Ivan Marsic • Rutgers University 294

Scheduler

Server

High priority queue

Non-priority queue 1

Scheduling
discipline: PRIORITY + FQ

Non-priority queue 2

Fair
queuing

Modify the formula for calculating the packet finish number.

Assume that the first several packets arrive at following times:

Priority queue: (arrival time A1,1 = 5, packet length L1,1 = 2); (A1,2 = 8, L1,2 = 2);

First non-priority queue: (A2,1 = 0, L2,1 = 6); (A2,2 = 7, L2,2 = 1);

Second non-priority queue: (A3,1 = 1, L3,1 = 2); (A3,2 = 7, L3,2 = 1);

Show the order in which these packets will leave the server and the departure times.

Problem 5.9

Consider the network in Figure 5-15 with the hosts attached as shown in the figure below. (As in
Figure 5-15, routers C, E, and F are MPLS-capable.) Assume that the network starts in the initial
state, where all IP routing tables are already built, but LFIBs (label forwarding information bases)
are empty. Now assume that three hosts start sending data, first host 96.1.1.7 sends a packet
to host 17.1.1.35, then host 17.3.1.24 sends a packet to 10.2.5.35, and finally
96.1.3.13 sends a packet to 17.3.1.24. Assume that all LSPs (label switched paths) will be
built based on the shortest paths found by the IP routing protocols and that the FECs (forwarding
equivalence classes) will be determined only based on the destination IP addresses.

96.1.3.13

A

C F G

Network
96.1.3/24

E

17.3.1.24

17.3.1.24

3

1

1 3

H

B

10.2.5.3510.2.5.35

1

2
4

Network
17.1.1/24

17.1.1.35

2

10.2.5.35

Network
10.2.5/24

Edge
LSR
Edge
LSR

Edge
LSR
Edge
LSR

Edge
LSR
Edge
LSR

Network 17.3.1/24

17.3.1.24
96.1.1.7

Network
96.1.1/24

17.1.1.3517.1.1.35

Chapter 5 • Mechanisms for Quality-of-Service 295

(a) Show step-by-step how LSPs will be built and what will be the entries of the LFIBs for
MPLS-capable routers.

(b) For every instance of packet forwarding, indicate whether an LFIB or an ordinary IP
forwarding table will be used to forward the packet. In case of LFIB-based forwarding,
show the packet’s MPLS label value.

(c) What is the minimum number of FECs and what is the minimum number of LSPs that
needs to be set up?

Problem 5.10

296

Contents
6.1 Mesh Networks

6.1.1 x
6.1.2 x
6.1.3 x

6.2 Routing Protocols for Mesh Networks
6.2.1 Dynamic Source Routing (DSR) Protocol
6.2.2 Ad Hoc On-Demand Distance-Vector

(AODV) Protocol
6.2.3 x

6.3 More Wireless Link-Layer Protocols
6.3.1 IEEE 802.11n (MIMO Wi-Fi)
6.3.2 WiMAX (IEEE 802.16)
6.3.3 ZigBee (IEEE 802.15.4)
6.3.4 Bluetooth

6.4 Wi-Fi Quality of Service
6.4.1 x
6.4.2
6.4.3

6.5
6.5.1 x
6.5.2 x

6.6 x
6.5.1 x
6.5.2 x
6.5.3 x

6.7 Summary and Bibliographical Notes

Problems

Chapter 6
Wireless Networks

This chapter reviews wireless networks. The focus is on the
network and link layers, and very little is mentioned about the
physical layer of wireless networks. In addition, there is a little
mention of infrastructure-based wireless networks and the
focus is on infrastructure-less wireless networks.

6.1 Mesh Networks

In a multihop wireless ad hoc network, mobile nodes cooperate
to form a network without the help of any infrastructure such as
access points or base stations. The mobile nodes, instead,
forward packets for each other, allowing nodes beyond direct
wireless transmission range of each other to communicate over
possibly multihop routes through a number of forwarding peer
mobile nodes. The mobility of the nodes and the fundamentally limited capacity of the wireless
channel, together with wireless transmission effects such as attenuation, multipath propagation,
and interference, combine to create significant challenges for network protocols operating in an
ad hoc network.

Figure 6-1

Chapter 6 • Wireless Networks 297

Figure 6-2

6.2 Routing Protocols for Mesh Networks

In wired networks with fixed infrastructure, a communication endpoint device, known as “host,”
does not normally participate in routing protocols. This role is reserved for intermediary
computing “nodes” that relay packets from a source host to a destination host. On the other hand,
in wireless mesh networks it is common that computing nodes assume both “host” and “node”

Figure 6-2: ------------- caption here -----------------.

CA
B

Figure 6-1: Example wireless mesh network: A communicates with C via B.

CA
B

Figure 6-3: Example mobile ad-hoc network: A communicates with C via B.

Ivan Marsic • Rutgers University 298

roles—all nodes may be communication endpoints and all nodes may relay packets for other
nodes. Therefore, in this chapter I use the terms “host” and “node” interchangeably.

Although there have been dozens of new routing protocols proposed for MANETs, the majority
of these protocols actually rely on fundamental techniques that have been studied rigorously in
the wired environment. However, each protocol typically employs a new heuristic to improve or
optimize a legacy protocol for the purposes of routing in the mobile wireless environment. In fact,
there are a few mechanisms that have received recent interest primarily because of their possible
application to MANETs. There are two main classes of routing protocols:

• Proactive

- Continuously update reachability information in the network

- When a route is needed, it is immediately available

- DSDV by Perkins and Bhagwat (SIGCOMM 94)

- Destination Sequenced Distance vector

• Reactive

- Routing discovery is initiated only when needed

- Route maintenance is needed to provide information about invalid routes

- DSR by Johnson and Maltz

- AODV by Perkins and Royer

• Hybrid

- Zone routing protocol (ZRP)

Centralized vs. localized solution:

Nodes in centralized solution need to know full network information to make decision; mobility
or changes in activity status (power control) cause huge communication overhead to maintain the
network information.

Nodes in localized algorithm require only local knowledge (direct neighbors, 2-hop neighbors) to
make decisions. Majority of published solutions are centralized, compared with other centralized
solutions.

Next, a brief survey of various mechanisms is given.

6.2.1 Dynamic Source Routing (DSR) Protocol

Source routing means that the sender must know in advance the complete sequence of hops to be
used as the route to the destination. DSR is an on-demand (or reactive) ad hoc network routing
protocol, i.e., it is activated only when the need arises rather than operating continuously in
background by sending periodic route updates. DSR divides the routing problem in two parts:
Route Discovery and Route Maintenance, both of which operate entirely on-demand. In Route
Discovery, a node actively searches through the network to find a route to an intended destination

Chapter 6 • Wireless Networks 299

node. While using a route to send packets to the destination, the sending node runs the Route
Maintenance process by which it determines if the route has broken, for example because two
nodes along the route have moved out of wireless transmission range of each other.

An example is illustrated in Figure 6-1, where host C needs to establish a communication session
with host H. A node that has a packet to send to a destination (C in our example) searches its
Route Cache for a route to that destination. If no cached route is found, node C initiates Route
Discovery by broadcasting a ROUTE REQUEST (RREQ) packet containing the destination node
address (known as the target of the Route Discovery), a list (initially empty) of nodes traversed
by this RREQ, and a request identifier from this source node. The request identifier, the address
of this source node (known as the initiator of the Route Discovery), and the destination address
together uniquely identify this Route Discovery attempt.

A node receiving a ROUTE REQUEST checks to see if it has previously forwarded a RREQ from
this Discovery by examining the IP Source Address, destination address, and request identifier.
For example, in Figure 6-4(b), nodes B, E, and D are the first to receive RREQ and they re-
broadcast it to their neighbors. If the recipient of RREQ has recently seen this identifier, or if its
own address is already present in the list in RREQ of nodes traversed by this RREQ, the node
silently drops the packet. Otherwise, it appends its address to the node list and re-broadcasts the
REQUEST. When a RREQ reaches the destination node, H in our example, this node returns a
ROUTE REPLY (RREP) to the initiator of the ROUTE REQUEST. If an intermediary node receives a
RREQ for a destination for which it caches the route in its Route Cache, it can send RREP back

(a)

(d)(c)

(b)

F
B

D

E G

H

K
J

I

LA

C

F
B

D

E G

H

K
J

I

LA

C

F

C

B

D

E G

H

K
J

I

LA

RREQ[C]

RREQ[C]

F

C

B

D

E G

H

K
J

I

LA

RREQ[C]

RREQ[C]

F

C

B

D

E G

H

K
J

I

LA

RREP[C, E, G, H]

RREQ[C, B, A, K]

F

C

B

D

E G

H

K
J

I

LA

RREP[C, E, G, H]

RREQ[C, B, A, K]

F

C

B

D

E G

H

K
J

I

LA

RREQ[C, E, G]

RREQ[C, B, A]

RREQ[C, B, A]

F

C

B

D

E G

H

K
J

I

LA

RREQ[C, E, G]

RREQ[C, B, A]

RREQ[C, B, A]

Figure 6-4: Route discovery in DSR: node C seeks to communicate to node H. Gray shaded
nodes already received RREQ. The path in bold in (c) indicates the route selected by H for
RREP. See text for details. (Note: the step where B and E broadcast RREQ is not shown.)

Ivan Marsic • Rutgers University 300

to the source without further propagating RREQ. The RREP contains a copy of the node list from
the RREQ, and can be delivered to the initiator node by reversing the node list, by using a route
back to the initiator from its own Route Cache, or “piggybacking” the RREP on a new ROUTE

REQUEST targeting the original initiator. This path is indicated with bold lines in Figure 6-4(d).
When the initiator of the request (node C) receives the ROUTE REPLY, it adds the newly acquired
route to its Route Cache for future use.

In Route Maintenance mode, an intermediary node forwarding a packet for a source attempts to
verify that the packet successfully reached the next hop in the route. A node can make this
confirmation using a hop-to-hop acknowledgement at the link layer (such as is provided in IEEE
802.11 protocol), a passive acknowledgement (i.e., listen for that node sending packet to its next
hop), or by explicitly requesting network- or higher-layer acknowledgement. Transmitting node
can also solicit ACK from next-hop node. A packet is possibly retransmitted if it is sent over an
unreliable MAC, although it should not be retransmitted if retransmission has already been
attempted at the MAC layer. If a packet is not acknowledged, the forwarding node assumes that
the next-hop destination is unreachable over this link, and sends a ROUTE ERROR to the source of
the packet, indicating the broken link. A node receiving a ROUTE ERROR removes that link from
its Route Cache.

In the basic version of DSR, every packet carries the entire route in the header of the packet, but
some recent enhancements to DSR use implicit source routing to avoid this overhead. Instead,
after the first packet containing a full source route has been sent along the route to the destination,
subsequent packets need only contain a flow identifier to represent the route, and nodes along the
route maintain flow state to remember the next hop to be used along this route based on the
address of the sender and the flow identifier; one flow identifier can designate the default flow for
this source and destination, in which case even the flow identifier is not represented in a packet.

A number of optimizations to the basic DSR protocol have been proposed [Perkins 2001, Chapter
5]. One example of such an optimization is packet salvaging. When a node forwarding a packet
fails to receive acknowledgement from the next-hop destination, as described above, in addition
to sending a ROUTE ERROR back to the source of the packet, the node may attempt to use an
alternate route to the destination, if it knows of one. Specifically, the node searches its Route
Cache for a route to the destination; if it finds one, then it salvages the packet by replacing the
existing source route for the packet with the new route from its Route Cache. To prevent the
possibility of infinite looping of a packet, each source route includes a salvage count, indicating
how many times the packet has been salvaged in this way. Packets with salvage count larger than
some predetermined value cannot be salvaged again.

In summary, DSR is able to adapt quickly to dynamic network topology but it has large overhead
in data packets. The protocol does not assume bidirectional links.

6.2.2 Ad Hoc On-Demand Distance-Vector (AODV)
Protocol

DSR includes source routes in packet headers and large headers can degrade performance,
particularly when data contents of a packet are small. AODV attempts to improve on DSR by
maintaining routing tables at the nodes, so that data packets do not have to contain routes. AODV

Chapter 6 • Wireless Networks 301

retains the desirable feature of DSR that routes are maintained only between nodes which need to
communicate.

ROUTE REQUEST packets are forwarded in a manner similar to DSR. When a node re-broadcasts a
ROUTE REQUEST, it sets up a reverse path pointing towards the source. AODV assumes
symmetric (bidirectional) links. When the intended destination receives a RREQ, it replies by
sending a ROUTE REPLY. RREP travels along the reverse path set-up when RREQ is forwarded.

An intermediate node (not the destination) may also send a RREP, provided that it knows a more
recent path than the one previously known to sender S. To determine whether the path known to
an intermediate node is more recent, destination sequence numbers are used. The likelihood that
an intermediate node will send a RREP when using AODV is not as high as in DSR. A new
RREQ by node S for a destination is assigned a higher destination sequence number. An
intermediate node, which knows a route but with a smaller sequence number, cannot send RREP.

A routing table entry maintaining a reverse path is purged after a timeout interval. Timeout
should be long enough to allow RREP to come back. A routing table entry maintaining a forward
path is purged if not used for an active_route_timeout interval. If no is data being sent using a
particular routing table entry, that entry will be deleted from the routing table (even if the route
may actually still be valid).

In summary, routes in AODV need not be included in the headers of data packets (unlike DSR,
where every data packet carries the source route). Nodes maintain routing tables containing
entries only for routes that are in active use. At most one next-hop per destination is maintained at
each node, whereas DSR may maintain several routes for a single destination. Lastly, unused
routes expire even if topology does not change.

6.3 More Wireless Link-Layer Protocols

Section 1.5.3 described Wi-Fi (IEEE 802.11). This section describes more wireless link-layer
protocols and technologies.

6.3.1 IEEE 802.11n (MIMO Wi-Fi)

IEEE 802.11n builds on previous 802.11 standards (Section 1.5.3) by adding mechanisms to
improve network throughput. 802.11n operates in the 2.4- and 5-GHz frequency bands. A key
improvement is in the radio communication technology, but 802.11n is much more than just a
new radio for 802.11. In addition to providing higher bit rates (as was done in 802.11a, b, and g),
802.11n significantly changed the frame format of 802.11. Specifically, 802.11n added multiple-
input multiple-output (MIMO, pronounced my-moh) and 40-MHz channels to the physical layer
(PHY), and frame aggregation to the MAC layer. It achieves a significant increase in the
maximum raw data rate over the two previous standards (802.11a and 802.11g), from 54 Mbps to
600 Mbps, improves reliability, and increases transmission distance. At 300 feet, 802.11g

Ivan Marsic • Rutgers University 302

performance drops to 1 Mbps; on the other hand, at the same distance 802.11n networks operate
at up to 70 Mbps, which is 70 times faster than 802.11g.

IEEE 802.11n-capable devices are also referred as High Throughput (HT) devices. An HT device
declares that it is an HT device by transmitting the HT Capabilities element. The device also uses
the HT Capabilities element to advertise which optional capabilities of the 802.11n standard it
implements. The HT Capabilities element is carried as part of some control frames that wireless
devices exchange during the connection setup or in periodical announcements. It is present in
these frames: Beacon, Association Request, Association Response, Reassociation Request,
Reassociation Response, Probe Request and Probe Response frames.

IEEE 802.11n standard modifies the frame formats used by 802.11n devices from those of
“legacy” 802.11 devices. When 802.11n devices are operating in pure high-throughput mode, this
is known as “greenfield mode,” because it lacks any constraints imposed by prior technologies.
This mode achieves the highest effective throughput offered by the 802.11n standard. To avoid
rendering the network useless due to massive interference and collisions, the standard describes
some mechanisms for backward compatibility with existing 802.11a/b/g deployments. These
mechanisms are reviewed at the end of this section.

Physical (PHY) Layer Enhancements

A key to the 802.11n speed increase is the use of multiple antennas to send and
receive more than one communication signals simultaneously, thus multiplying
total performance of the Wi-Fi signal. This is similar to having two FM radios
tuned to the same channel at the same time—the signal becomes louder and
clearer. As for a receiver side analogy, people hear better with both ears than if
one is shut. Multiple-input multiple-output (MIMO) is a technology that uses
multiple antennas to resolve coherently more information than possible using a
single antenna. Each 802.11n device has two radios: for transmitter and receiver.
Although previous 802.11 technologies commonly use one transmit and two receive antennas,
MIMO uses multiple independent transmit and receive antennas. This is reflected in the two,
three, or even more antennas found on some 802.11n access points or routers (Figure 6-5). The
network client cards on 802.11n mobile devices also have multiple antennas, although these are

ReceiverTransmitter

Reflecting surface

Reflecting surface

Figure 6-5: MIMO wireless devices with two transmitter and three receiver antennas.
Notice how multiple radio beams are reflected from objects in the environment to arrive at
the receiver antennas.

Chapter 6 • Wireless Networks 303

not that prominently visible. Each antenna can establish a separate (but simultaneous) connection
with the corresponding antenna on the other device.

MIMO technology takes advantage of what is normally the enemy of wireless networks:
multipath propagation. Multipath is the way radio frequency (RF) signals bounce off walls,
ceilings, and other surfaces and then arrive with different amounts of delay at the receiver. MIMO
is able to process and recombine these scattered and otherwise useless signals using sophisticated
signal-processing algorithms.

A MIMO transmitter divides a higher-rate data stream into multiple lower-rate streams. (802.11n
MIMO uses up to four streams.) Each of the unique lower-rate streams is then transmitted on the
same spectral channel, but through a different transmit antenna via a separate spatial path to a
corresponding receiver. The multiple transmitters and antennas use a process called transmit
beamforming (TxBF) to focus the output power in the direction of the receivers. TxBF steers an
outgoing signal stream toward the intended receiver by concentrating the transmitted radio energy
in the appropriate direction. This increases signal strength and data rates. On the receiving end,
multiple receivers and antennas reverse the process using receive combining.

The receiving end is where the most of the computation takes place. Each receiver receives a
separate data stream and, using sophisticated signal processing, recombines the data into the
original data stream. This technique is called Spatial Division Multiplexing (SDM). MIMO SDM
can significantly increase data throughput as the number of resolved spatial data streams is
increased. Spatial multiplexing combines multiple beams of data at the receiving end,
theoretically multiplying throughput—but also multiplying the chances of interference. This is
why the transmitter and the receiver must cooperate to mitigate interference by sending radio
energy only in the intended direction. The transmitter needs feedback information from the
receiver about the received signal so that the transmitter can tune each signal it sends. This
feedback is available only from 802.11n devices, not from 802.11a, b, or g devices. This feedback
is not immediate and is only valid for a short time. Any physical movement by the transmitter,
receiver, or elements in the environment will quickly invalidate the parameters used for
beamforming. The wavelength for a 2.4-GHz radio is only 120mm, and only 55mm for 5-GHz
radio. Therefore, a normal walking pace of 1 meter per second will rapidly move the receiver out
of the spot where the transmitter’s beamforming efforts are most effective. In addition, transmit
beamforming is useful only when transmitting to a single receiver. It is not possible to optimize
the phase of the transmitted signals when sending broadcast or multicast transmissions.

The advantage of this approach is that it can achieve great throughput on a single, standard, 20-
MHz channel while maintaining backward compatibility with legacy 801.11b/g devices. The net
impact is that the overall signal strength (that is, link budget) is improved by as much as 5 dBi
(dB isotropic). Although that may not sound significant, the improved link budget allows signals
to travel farther, or, alternatively, maintains a higher data rate at a given distance as compared
with a traditional 802.11g single transmitter/receiver product.

Each spatial stream requires a separate antenna at both the transmitter and the receiver. 802.11n
defines many “M × N” antenna configurations, ranging from “1 × 1” to “4 × 4.” This refers to the
number of transmit (M) and receive (N) antennas—for example, an access point with two transmit
and three receive antennas is a “2 × 3” MIMO device. In addition, MIMO technology requires a
separate radio frequency chain and analog-to-digital converter for each MIMO antenna. This
translates to higher implementation costs compared to non-MIMO systems.

Ivan Marsic • Rutgers University 304

Channel bonding. In addition to MIMO, the physical layer of 802.11n can use double-wide
channels that occupy 40 MHz of bandwidth. Legacy 802.11a, b, and g devices use 20-MHz-wide
channels to transmit data. 802.11n can bond two 20-MHz channels that are adjacent in the
frequency domain into one that is 40 MHz wide. That doubling of bandwidth results in a
theoretical doubling of information-carrying capacity (data transmission rate). Up to four data-
streams can be sent simultaneously using 20MHz or 40MHz channels. A theoretical maximum
data rate of 600 Mbps can be achieved using four double-width channels (40 MHz). Although the
initial intention of the 40MHz channel was for the 5 GHz band, because of the additional new
spectrum, 40MHz channels are permitted in the 2.4 GHz band. Due to the limited spectrum and
overlapping channels, 40MHz operation in 2.4 GHz requires special attention.

A 40-MHz channel is created by bonding two contiguous 20-MHz channels: a “primary” or
“control” 20-MHz channel and a “secondary” or “extension” 20-MHz channel (Figure 6-6).
Primary channel is the common channel of operation for all stations (including HT and non-HT)
that are members of the BSS (Basic Service Set, defined in Section 1.5.3). To preserve
interoperability with legacy clients, 802.11n access point transmits all control and management
frames in the primary channel. All 20-MHz clients (whether HT or legacy non-HT) only associate
to the primary channel, because the beacon frame is only transmitted on the primary channel. All
transmissions to and from clients must be on the primary 20 MHz channel. Hence, all 40-MHz
operation in 802.11n is termed “20/40 MHz.” Secondary channel is a 20-MHz channel
associated with a primary channel; it may be located in the frequency spectrum below or above
the primary channel. It is used only by HT stations for creating a 40-MHz channel. A station is
not required to react to control frames received on its secondary channel, even if it is capable of
decoding those frames. The secondary channel of one BSS may be used by an overlapping BSS
as its primary channel. If an access point detects an overlapping BSS whose primary channel is
the access point’s secondary channel, it switches to 20-MHz operation and may subsequently
move to a different channel or pair of channels.

Phased Coexistence Operation (PCO) is an option in which an 802.11n access point alternates
between using 20-MHz and 40-MHz channels. Before operating in the 40-MHz mode, the access

Frequency 40 MHz operation 20 MHz operation

Se
co

nd
ar

y
20

 M
H

z
ch

an
ne

l

Pr
im

ar
y

20
 M

H
z

ch
an

n
el

In both 20 MHz and In both 20 MHz and
40 MHz operation, 40 MHz operation,

all control and all control and
management management
frames are frames are

transmitted in transmitted in
primary channelprimary channel

Traffic inTraffic in
overlapping cellsoverlapping cells

in 20 MHz channelin 20 MHz channel
(including control frames)(including control frames)T

ra
ns

iti
on

 2
0

→
40

 M
H

z,
 s

ee
:

P
h

as
e

d
 C

o
ex

is
te

nc
e

O
p

er
a

tio
n

 (
P

C
O

) Traffic inTraffic in
this cellthis cell

in 20 MHz channelin 20 MHz channel
((HTHT--Mixed modeMixed mode

oror
NonNon--HT modeHT mode))Traffic inTraffic in

this cellthis cell
in 40 MHz channelin 40 MHz channel

((HT greenfield modeHT greenfield mode))

T
ra

ns
iti

on
 4

0
→

20
 M

H
z,

 s
ee

:
P

h
as

e
d

 C
o

ex
is

te
nc

e
O

p
er

a
tio

n
 (

P
C

O
)

Traffic inTraffic in
overlapping cellsoverlapping cells

in 20 MHz channelin 20 MHz channel
(including control frames)(including control frames)

20 MHz operation

Traffic inTraffic in
this cellthis cell

in 20 MHz channelin 20 MHz channel
((HTHT--Mixed modeMixed mode

oror
NonNon--HT modeHT mode))

Figure 6-6: 802.11n channel bonding and 20/40 MHz operation. (Phased Coexistence
Operation (PCO) is described later, in Figure 6-21.)

Chapter 6 • Wireless Networks 305

point explicitly reserves both adjacent 20-MHz channels. This mechanism is described later in
this section.

Based on the bandwidth used by devices in an 802.11n network, the operational modes can be
classified as follows:

• Legacy (non-HT) mode. The operation is similar to IEEE 802.11a/b/g. This mode uses the
primary 20-MHz channel for transmission.

• Duplicate legacy mode. In this mode, the devices use a 40-MHz channel bandwidth, but
the same data are transmitted in the primary and secondary halves of the 40-MHz
channel. This feature allows the station to send a control frame simultaneously on both
20-MHz channels, which improves efficiency. Examples are given later in this section.

• High-throughput (HT) mode. HT mode is available for both 20- and 40MHz channels. In
this mode, supporting one and two spatial streams is mandatory. A maximum of four
spatial streams is supported.

• HT duplicate mode. This mode uses the modulation and coding scheme (MCS) #32 that
provides the lowest transmission rate in a 40-MHz channel (6 Mbps), as well as longer
transmission range.

Ivan Marsic • Rutgers University 306

Figure 6-7 shows the physical-layer frame formats supported by 802.11n: the legacy format and
new formats. Two new formats, called HT formats, are defined for the PLCP (PHY Layer
Convergence Protocol): HT-mixed format and HT-greenfield format. There is also an MCS-32
frame format used for the HT duplicate mode. In addition to the HT formats, there is a non-HT
duplicate format, used in the duplicate legacy mode, which duplicates a 20-MHz non-HT (legacy)
frame in two 20-MHz halves of a 40-MHz channel.

The legacy Non-HT frame format (top row in Figure 6-7) is the 802.11a/g frame format and can
be decoded by legacy stations. (Notice that this “legacy” 802.11a/g frame format is different from
802.11b legacy format, shown in Figure 1-71(b). Both are “legacy” in the sense that they predate
802.11n.) The preamble uses short and long training symbols. This allows legacy receivers to
detect the transmission, acquire the carrier frequency, and synchronize timing. The physical-layer
header contains the legacy Signal field (L-SIG) which indicates the transmission data rate (Rate
subfield, in Mbps) and the payload length of the physical-layer frame (Length subfield, in bytes
in the range 1–4095), which is a MAC-layer frame.

The HT-mixed format (middle row in Figure 6-7) starts with a preamble compatible with the
legacy 802.11a/g. The legacy Short Training Field (L-STF), the legacy Long Training Field (L-
LTF) and the legacy Signal field (L-SIG) can be decoded by legacy 802.11a/g devices. The rest
of the HT-Mixed frame has a new format, and cannot be decoded by legacy 802.11a/g devices.

L-STF L-SIGL-LTF Data

8 μs 8 μs 4 μs

Service
16 bits

PSDU Tail
6 bits

Pad bits

Rate
4 bits

Length
12 bits

reserved
1 bit

Parity
1 bit

Tail
6 bits

Legacy physical-layer header

L-STF = Non-HT Short Training field
L-LTF = Non-HT Long Training field
L-SIG = Non-HT Signal field

HT-SIG = HT Signal field
HT-STF = HT Short Training field
HT-LTF = HT Long Training field

Non-HT physical-layer frame (PPDU)

HT-mixed format physical-layer frame

L-SIGL-LTFL-STF Data

8 μs 8 μs 4 μs

HT-STF HT-LTFHT-SIG HT-LTF HT-LTF HT-LTF

8 μs 4 μs

Data HT-LTFs
4 μs per LTF

Extension HT-LTFs
4 μs per LTF

HT-greenfield format physical-layer frame

HT-LTF1HT-GF-STF

8 μs 8 μs

HT-SIG

8 μs

DataHT-LTF HT-LTF HT-LTF HT-LTF

Data HT-LTFs
4 μs per LTF

Extension HT-LTFs
4 μs per LTF

Legacy preamble

Figure 6-7: 802.11n physical-layer frame formats. Compare to Figure 1-71(b).

Chapter 6 • Wireless Networks 307

The HT preambles are defined in HT-mixed format and in HT-greenfield format to carry the
information required to operate in a system with multiple transmit and multiple receive antennas.
The HT-SIG field contains the information about the modulation scheme used, channel,
bandwidth, length of payload, coding details, number of HT training sequences (HT-LTFs), and
tail bits for the encoder. The number of HT-LTFs is decided by the antenna configuration and use
of space-time block codes. HT training sequences are used by the receiver for estimating various
parameters of the wireless MIMO channel.

The HT-greenfield format (bottom row in Figure 6-7) is completely new, without any legacy-
compatible part. The preamble transmission time is reduced as compared to the mixed format.
Support for the HT Greenfield format is optional and the HT devices can transmit using both 20-
MHz and 40-MHz channels.

When an 802.11n access point is configured to operate in Mixed Mode (for example, 802.11b/g/n
mode), the access point sends and receives frames based on the type of a client device. By
default, the access point always selects the optimum rate for communicating with the client based
on wireless channel conditions.

MAC Layer Enhancement: Frame Aggregation

First, the reader may find it useful to review Figure 6-8 for the terminology that will be used in
the rest of this section. Figure 6-9 shows the 802.11n MAC frame format. Compared to the legacy
802.11 (Figure 1-71(a)), the change comprises the insertion of the High Throughput (HT) Control
field and the change in the length of the frame body. The maximum length of the frame body is
7955 bytes (or, octets) and the overall 802.11n frame length is 8 Kbytes.

Every frame transmitted by an 802.11 device has a significant amount of fixed overhead,
including physical layer header, MAC header, interframe spaces, and acknowledgment of
transmitted frames (Figure 6-11(a)). (The reader should also check Figure 2-20 and the discussion
in Section 2.5) At the highest of data rates, this overhead alone can be longer than the entire data
frame. In addition, contention for the channel and collisions also reduce the maximum effective
throughput of 802.11. 802.11n addresses these issues by making changes in the MAC layer to
improve on the inefficiencies imposed by this fixed overhead and by contention losses.

PHY PHY
headerheader

PHY PHY
preamblepreamble

MAC MAC
headerheader

PSDU = MPDU

PPDU

DataData FCSFCS

MSDU

Key:

PPDU = PLCP protocol data unitPPDU = PLCP protocol data unit
PSDU = PLCP service data unitPSDU = PLCP service data unit
MPDU = MAC protocol data unitMPDU = MAC protocol data unit
MSDU = MAC service data unitMSDU = MAC service data unit

PLCP = physical (PHY) layerPLCP = physical (PHY) layer
convergence procedureconvergence procedure

MAC = medium access controlMAC = medium access control

Key:

PPDU = PLCP protocol data unitPPDU = PLCP protocol data unit
PSDU = PLCP service data unitPSDU = PLCP service data unit
MPDU = MAC protocol data unitMPDU = MAC protocol data unit
MSDU = MAC service data unitMSDU = MAC service data unit

PLCP = physical (PHY) layerPLCP = physical (PHY) layer
convergence procedureconvergence procedure

MAC = medium access controlMAC = medium access control

Figure 6-8: Terminology review for the 802.11 frame structure. Compare to Figure 1-71.

Ivan Marsic • Rutgers University 308

To reduce the link-layer overhead, 802.11n employs the mechanism known as packet
aggregation, which is the process of joining multiple packets together into a single transmission
unit, in order to reduce the overhead associated with each transmission. It is equivalent to a group
of people riding a bus, rather than each individually riding a personal automobile (Figure 6-10).
Generally, packet aggregation is useful in situations where each transmission unit may have
significant overhead (preambles, headers, CRC, etc.) or where the expected packet size is small
compared to the maximum amount of information that can be transmitted. Because at link layer
packets are called frames, the mechanism is correspondingly called “frame aggregation.”

Frame aggregation is essentially putting the payloads of two or more frames together into a
single transmission. Frame aggregation is a feature of the IEEE 802.11e and 802.11n standards
that increases throughput by sending two or more data frames in a single transmission (Figure
6-11(b)). Because control information needs to be specified only once per frame, the ratio of
payload data to the total volume of data is higher, allowing higher throughput. In addition, the

Figure 6-10: Packet aggregation analogy.

bytes: 2 2 6 6 6 2 6 2 4 0 to 7955 4

FC D/I Address-1 Address-2 Address-3 Address-4SC QC Data FCS

MAC header MSDU

HT HT
ControlControl

bits: 16 2 2 2 2 1 5 1 1

Link Adaptation Control
Calibration

Position
Calibration
Sequence

Reserved
CSI/

Steering

NDP
Announ
cement

Reserved
AC

Constra
int

RDG/
More
PPDU

Link Adaptation Control
Calibration

Position
Calibration
Sequence

Reserved
CSI/

Steering

NDP
Announ
cement

Reserved
AC

Constra
int

RDG/
More
PPDU

HT = High Throughput

Figure 6-9: 802.11n link-layer frame format. Compare to Figure 1-71(a).

Chapter 6 • Wireless Networks 309

reduced number of frame transmissions significantly reduces the waiting time during the
CSMA/CA backoff procedure as well as the number of potential collisions. The maximum frame
size is also increased in 802.11n, to accommodate these large, aggregated frames. The maximum
frame size is increased from 4 KB to 64 KB. (64 KB frame size is achieved by sending multiple 8
KB frames in a burst, as explained later.)

There are several limitations of frame aggregation. First, all the frames that are aggregated into a
transmission must be sent to the same destination; that is, all the frames in the aggregated frame
must be addressed to the same mobile client or access point. Second, all the frames to be
aggregated have to be ready for transmission at the same time, potentially delaying some frames
while waiting for additional frames, in order to attempt to send a larger aggregate frame. Third,
the maximum frame size that can be successfully sent is affected by a factor called channel
coherence time. The time for frame transmission must be shorter than the channel coherence time.
Channel coherence time depends on how quickly the transmitter, receiver, and other objects in the
environment are moving. When the things are moving faster, the channel data rate is reduced, and
therefore the allowed maximum frame size becomes smaller.

Although frame aggregation can increase the throughput at the MAC layer under ideal channel
conditions, a larger aggregated frame will cause each station to wait longer before its next chance
for channel access. Thus, there is a tradeoff between throughput and delay (or, latency) for frame
aggregation at the MAC layer (as throughput increases, latency increase as well). Furthermore,
under error-prone channels, corrupting a large aggregated frame may waste a long period of
channel time and lead to a lower MAC efficiency.

The ability to send multiple frames without entering the backoff procedure and re-contending for
the channel first appeared in the IEEE 802.11e MAC. This mechanism reduces the contention and
backoff overhead and thus enhances the efficiency of channel utilization. The notion of transmit
opportunity (TXOP) is used to specify duration of channel occupation. During TXOP period of
time, the station that won channel access can transmit multiple consecutive data frames without
re-contending for the channel. If the station determines that it allocated too long TXOP and
currently does not have more data to transmit, it may explicitly signal an early completion of its
TXOP. This action, known as truncation of TXOP, prevents waste by allowing other stations to

TimePHY PHY
preamblepreamble

DIFS
Backoff

BusyBusyBusyBusy
PHY PHY

headerheader

Data payload
(0 to 2312 bytes)

FCSFCS

S
IF

SMAC MAC
headerheader

ACKACK
PHY PHY

preamblepreamble
PHY PHY

headerheader FCSFCS
MAC MAC

headerheader

Overhead

Overhead

PHY PHY
preamblepreamble

DIFS
BusyBusyBusyBusy

PHY PHY
headerheader

Aggregated data payload
(up to ~64 Kbytes)

FCSFCS
MAC MAC

headerheader

(a)

(b)

Figure 6-11: (a) Link-layer overhead in legacy IEEE 802.11. (b) 802.11n frame aggregation.

Ivan Marsic • Rutgers University 310

use the channel. Until the NAV has expired, even if the transmitting station has no data to send
and the channel is sensed as idle, other stations do not access the medium for the remaining
TXOP. The TXOP holder performs truncation of TXOP by transmitting a CF-End (Contention-
Free-End) frame, if the remaining TXOP duration is long enough to transmit this frame. CF-End
frame indicates that the medium is available. Stations that receive the CF-End frame reset their
NAV and can start contending for the medium without further delay.

The frame aggregation can be performed within different sub-layers of the link layer. The
802.11n standard defines two types of frame aggregation: MAC Service Data Unit (MSDU)
aggregation and MAC Protocol Data Unit (MPDU) aggregation. Both aggregation methods group
several data frames into one large frame and reduce the overhead to only a single radio preamble
for each frame transmission (Figure 6-11(b)). However, there are slight differences in the two
aggregation methods that result in differences in the efficiency gained (MSDU aggregation is
more efficient). These two methods are described here.

• MAC Service Data Units (MSDUs) Aggregation

MSDU aggregation exploits the fact that most mobile access points and most mobile client
protocol stacks use Ethernet as their “native” frame format (Figure 1-59). It collects Ethernet
frames to be transmitted to a single destination and wraps them in a single 802.11n frame. This is
efficient because Ethernet headers are much shorter than 802.11 headers (compare Figure 1-59
and Figure 1-71). For this reason, MSDU aggregation is more efficient than MPDU aggregation.

Chapter 6 • Wireless Networks 311

MSDU aggregation allows several MAC-level service data units (MSDUs) to be concatenated
into a single Aggregated MSDU (A-MSDU). Figure 6-12(a) shows the frame format for A-
MSDU. In MSDU aggregation, the aggregated payload frames share not just the same physical
(PHY) layer header, but also the same 802.11n MAC header. The resulting 802.11n frames can
be up to 8 Kbytes in size.

When the source is a mobile device, the aggregated frame is sent to the access point, where the
constituent Ethernet frames are forwarded to their ultimate destinations. When the source is an
access point, all of the constituent frames in the aggregated frame must be destined to a single
mobile client, because there is only a single destination in each mobile client.

With MSDU aggregation, the entire, aggregated frame is encrypted once using the security
association of the destination of the outer 802.11n frame wrapper. A restriction of MSDU
aggregation is that all of the constituent frames must be of the same quality-of-service (QoS)
level. For example, it is not permitted to mix voice frames with best-effort frames.

If no acknowledgement is received, the whole 802.11n frame must be retransmitted. That is, an
A-MSDU aggregate fails as a whole even if just one of the enclosed MSDUs contains bit errors.

• MAC Protocol Data Units (MPDUs) Aggregation

DIFS

A-MSDU = Aggregated Ethernet frames (= PSDU up to 8 KB)

Ethernet Ethernet
headerheader DataData

MSDU subframe = Ethernet frame:

PHY PHY
preamblepreamble

PHY PHY
headerheader

802.11n 802.11n
MAC MAC

headerheader
FCSFCSSubframeSubframe

11
SubframeSubframe

22
SubframeSubframe

NN

BusyBusyBusyBusy

A-MPDU = Aggregated 802.11n frames (= PSDU up to 64 KB)

802.11n 802.11n
MAC MAC

headerheader
DataData

PHY PHY
preamblepreamble

PHY PHY
headerheader

FCSFCS

SubframeSubframe 11DIFS

PaddingPadding

MPDU MPDU
DelimiterDelimiter PaddingPadding

SubframeSubframe 22R
IF

S
R

IF
S

R
IF

S
R

IF
S

SubframeSubframe NN

Block ACKBlock ACK

S
IF

S
S

IF
S

R
IF

S
R

IF
S

BusyBusyBusyBusy

(a) MSDU Aggregation

(b) MPDU Aggregation
RDG/More PPDU = RDG/More PPDU = 11

RDG/More PPDU = RDG/More PPDU = 00
A-MPDU subframe:

MPDU

ACKACK

S
IF

S
S

IF
S

TXOP duration

Figure 6-12: 802.11n Frame aggregation methods: (a) MAC Service Data Unit aggregation
(A-MSDU); (b) MAC Protocol Data Unit aggregation (A-MPDU).

Ivan Marsic • Rutgers University 312

MPDU aggregation also collects Ethernet frames to be transmitted to a single receiver, but it
converts them into 802.11n frames. Normally this is less efficient than MSDU aggregation, but it
may be more efficient in environments with high error rates, because of a mechanism called block
acknowledgement (described later). This mechanism allows each of the aggregated data frames to
be individually acknowledged or retransmitted if affected by an error.

MPDU aggregation scheme enables aggregation of several MAC-level protocol data units
(MPDUs) into a single PHY-layer protocol data unit (PPDU). Figure 6-12(b) shows the frame
format for an Aggregated MPDU (A-MPDU). A-MPDU consists of a number of MPDU
delimiters each followed by an MPDU. Except when it is the last A-MPDU subframe in an
A-MPDU, padding bytes are appended to make each A-MPDU subframe a multiple of 4 bytes in
length, which can facilitate subframe delineation at the receiver. A-MPDU allows bursting
802.11n frames up to 64 KB.

The purpose of the MPDU delimiter (4 bytes long) is to locate the MPDU subframes within the
A-MPDU such that the structure of the A-MPDU can usually be recovered when one or more
MPDU delimiters are received with errors. Subframes are sent as a burst (not a single unbroken
transmission). The subframes are separated on the air from one other by the Reduced Inter-Frame
Space (RIFS) interval of 2 μs duration (compared to SIFS interval which is 16 μs).19 Figure
6-12(b) also indicates that the sender uses the “RDG/More PPDU” bit of the HT Control field in
the MAC frame (Figure 6-9) to inform the receiver whether there are more subframes in the
current burst. If the “RDG/More PPDU” field is set to “1,” there will be one or more subframes to
follow the current subframe; otherwise, the bit value “0” indicates that this is the last subframe of
the burst.

Subframes of an A-MPDUs burst can be acknowledged individually with a single Block-
Acknowledgement (described in the next subsection). The MPDU structure can be recovered
even if one or more MPDU delimiters are received with errors. Unlike A-MSDU where the whole
aggregate needs to be retransmitted, only unacknowledged MPDU subframes need to be
retransmitted.

Summary of the characteristics for the two frame aggregation methods:

• MSDU aggregation is more efficient than MPDU aggregation, because the Ethernet header is
much shorter than the 802.11 header.

• MPDU structure can be recovered even if one or more MPDU subframes are received with
errors; conversely, an MSDU aggregate fails as a whole—even if just one of the enclosed
MSDUs contains bit errors the whole A-MSDU must be retransmitted.

• A-MPDU is performed in the software whereas A-MSDU is performed in the hardware.

19 RIFS is a means of reducing overhead and thereby increasing network efficiency. A transmitter can use

RIFS after a transmission when it does not expect to receive immediately any frames, which is the case
here. Note that RIFS intervals can only be used within a Greenfield HT network, with HT devices only
and no legacy devices.

Chapter 6 • Wireless Networks 313

MAC Layer Enhancement: Block Acknowledgement

Rather than sending an individual acknowledgement following each data frame, 802.11n
introduces the technique of confirming a burst of up to 64 frames with a single block
acknowledgement (Block ACK or BACK) frame. The Block ACK mechanism significantly
reduces overhead due to bursts of small frames. Block acknowledgment was initially defined in
IEEE 802.11e as an optional scheme to improve the MAC efficiency. The 802.11n standard made
the Block ACK mechanism mandatory to support by all the HT devices. The Block ACK contains
a bitmap to acknowledge selectively individual frames of a burst. This feature is comparable to
selective acknowledgements of TCP, known as TCP SACK (Chapter 2).

Figure 6-13 shows how the Block ACK capability is activated, used, and deactivated by sending
action frames. Action frames are used to request a station to take action on behalf of another. To
initiate a Block ACK session, the transmitter sends an Add-Block-Acknowledgment request
(addBA, also written as ADDBA). The addBA request indicates a starting frame sequence
number and a window size of frame sequence numbers that the receiver should expect as part of
the transmission. The receiver can choose to accept or reject the request and informs the
transmitter by an addBA response frame. If the receiver rejects the addBA request, the session
will continue with the legacy sequential transmit/acknowledgment exchanges. If the receiver

Transmitter Receiver

ACK

addBA Request

addBA Response

ACK

Block ACK
setup

Data MPDU

Block ACK

BlockAckReq (BAR)

Data and
Block ACK
transmission

Data MPDU

Data MPDU
repeated
multiple
times

ACK

delBA Request

Block ACK
teardown

Figure 6-13: Initiation, use, and termination of 802.11n block acknowledgements.

Ivan Marsic • Rutgers University 314

accepts the addBA request, the transmitter can send multiple frames without waiting for ACK
frames. The receiver silently accepts frames that have sequence numbers within the current
window. Only after the transmitter solicits a Block ACK by sending a Block ACK Request
(BlockAckReq or BAR), the receiver responds by a Block ACK response frame indicating the
sequence numbers successfully received. Frames that are received outside of the current window
are dropped. This cycle may be repeated many times. Finally, when the transmitter does not need
Block ACKs any longer, it terminates the BA session by sending a Delete-Block-
Acknowledgment request (delBA or DELBA).

The Block ACK carries ACKs for individual frames as bitmaps. The exact format depends on the
encoding. Figure 6-14(a) shows the format of Block ACK frames. The subfields of the Block
ACK Control field are as follows:

- The Block ACK Policy bit specifies whether the sender requires acknowledgement immediately
following BlockAckReq (bit value “0”), or acknowledgement can be delayed (bit value “1”).

- The values of the Multi-TID and Compressed Bitmap fields determine which of three possible
Block ACK frame variants is represented (Figure 6-15(a)). The Block ACK frame variants are
shown in Figure 6-14(b).

bytes: 2 2 6 6 2 variable 4

MAC header

Duration / ID Receiver Address Transmitter Addr. BA Control Block ACK InformationFrame Ctrl FCS

bits: 1 1 1 9 4

Block ACK
Policy

Multi TID
Compressed

Bitmap
Reserved TID_INFO

(a)

(b)

Block ACK
Starting Sequence Control

Block ACK Bitmap

bytes: 2 8

Block ACK
Starting Sequence Control

Block ACK Bitmap

bytes: 2 2 8

Per TID Info Block ACK Bitmap
Block ACK

Starting Sequence Control

• Basic Block ACK – 128 byte bitmap

• Compressed Block ACK
- mandatory 8-byte bitmap

- no support for fragmentation

• Multi-TID Block ACK (repeated for each TID)

bits: 4 12

Fragment
Number (0)

Starting Sequence Number

bytes: 2 128

Figure 6-14: (a) 802.11n block acknowledgement frame format. (b) Format of the Block
ACK Information field for the three variants of the Block ACK frame.

Chapter 6 • Wireless Networks 315

- The meaning of the TID_INFO subfield of the BA Control field depends on the Block ACK
frame variant type. For the first two variants (Basic Block ACK and Compressed Block ACK),
the TID_INFO subfield of the BA Control field contains the TID for which a Block ACK frame
is requested. The traffic identifier (TID) is assigned by upper-layer protocols to inform the MAC
protocol about the type of data that it is asked to transmit. This is important for MAC protocols
that support quality of service (QoS), such as 802.11e and 802.11n. Therefore, the first two BA
variants are capable of acknowledging only traffic of a single identifier type. A Block ACK frame
could be extended to include the bitmaps for multiple TIDs. This extended Block ACK frame
variant is called Multi-TID Block ACK (MTBA). More details are provided later.

Figure 6-14(b) shows the structure of the three variants of the Block ACK frame:

• Basic Block ACK variant. The Basic Block ACK variant is inherited from the IEEE 802.11e
standard. The BA Information field within the Basic Block ACK frame contains the Block ACK
Starting Sequence Control subfield and the Block ACK Bitmap, as shown in the top row of
Figure 6-14(b). The Starting Sequence Number subfield (12-bit unsigned integer) of the Block
ACK Starting Sequence Control field contains the sequence number of the first data frame
(MPDU) that this Block ACK is acknowledging. This is the same number as in the previously
received BlockAckReq frame to which this Block ACK is responding. When the transmitter
receives a Block ACK, based on this number it knows to which BlockAckReq it corresponds. The
Fragment Number subfield is always set to 0.

Before describing the BA Bitmap structure, it is necessary to mention the fragmentation
mechanism in 802.11. The process of partitioning a MAC-level frame (MPDU) prior to
transmission into smaller MAC-level frames is called fragmentation. Fragmentation creates
smaller frames to increase reliability, by increasing the probability of successful transmission in
cases where channel characteristics limit reception reliability for longer frames. The reader may
remember IP packet fragmentation (Section 1.4.1), which is done for different reasons, and where
the fragments are reassembled only at the final destination. Conversely, defragmentation in

Multi-TID
Compressed

Bitmap
Block ACK

frame variant

Basic
Block ACK

Multi-TID
Block ACK

Compressed
Block ACK

reserved

0

0

1

1

0

1

0

1

Multi-TID
Compressed

Bitmap
Block ACK

frame variant

Basic
Block ACK

Multi-TID
Block ACK

Compressed
Block ACK

reserved

0

0

1

1

0

1

0

1

(a) (b)

Frame fragments

A
ck

n
o

w
le

d
g

ed
 d

at
a

fr
am

es

0 1 2 3 4 5 … 13 14 15

0
1
2
3
4
5

.

.

.

61
62
63

Frame fragments

A
ck

n
o

w
le

d
g

ed
 d

at
a

fr
am

es

0 1 2 3 4 5 … 13 14 15

0
1
2
3
4
5

.

.

.

61
62
63

Figure 6-15: (a) 802.11n Block ACK frame variant encoding. (b) Block ACK Bitmap
subfield (128 bytes long = 64×16 bits) of a Basic Block ACK frame variant. Each bit
represents the received status (success/failure) of a frame fragment.

Ivan Marsic • Rutgers University 316

802.11 is accomplished at each immediate receiver. In the 802.11e and 802.11n standards, each
MAC frame can be partitioned into up to 16 fragments.

The 128-byte long Block ACK Bitmap subfield represents the received status of up to 64 frames.
In other words, the bitmap size is 64×16 bits (Figure 6-15(b)). That is, because each MAC-level
frame can be partitioned into up to 16 fragments, 16 bits (2 bytes) are allocated to acknowledge
each frame. Each bit of this bitmap represents the received status (success/failure) of a frame
fragment. Two bytes are equally allocated even if the frame is not actually fragmented or is
partitioned into less than 16 fragments. Suppose a frame has 11 fragments; then 11 bits are used,
and remaining 5 bits are not used. Even so, this frame will consume 16 bits in the bitmap. If the
frame is not fragmented, only one bit is used. Obviously, in cases with no fragmentation it is not
efficient to acknowledge each frame using 2 bytes when all is needed is one bit. The overhead
problem occurs also when the number of frames acknowledged by a Block ACK is small, because
the bitmap size is fixed to 128 bytes. Thus, using two bytes per acknowledged frame in the
bitmap results in an excessive overhead for Block ACK frames.

To overcome the potential overhead problem, 802.11n defines a modified Block ACK frame,
called Compressed Block ACK.

• Compressed Block ACK variant. This Block ACK frame variant uses a reduced bitmap of 8
bytes, as shown in the middle row of Figure 6-14(b). Fragmentation is not allowed when the
compressed Block ACK is used. Accordingly, a compressed Block ACK can acknowledge up to
64 non-fragmented frames. The bitmap size is reduced from 1024 (64×16) bits to 64 (64×1) bits.

The BA Information field within the Compressed Block ACK frame comprises the Block ACK
Starting Sequence Control field and the Block ACK bitmap. The Starting Sequence Number
subfield of the Block ACK Starting Sequence Control field is the sequence number of the first
MSDU or A-MSDU for which this Block ACK is sent. The Fragment Number subfield of the
Block ACK Starting Sequence Control field is set to 0.

The 8-byte Block ACK Bitmap within the Compressed Block ACK frame indicates the received
status of up to 64 MSDUs and A-MSDUs. Each bit that is set to 1 acknowledges the successful
reception of a single MSDU or A-MSDU in the order of sequence number, with the first bit of the
bitmap corresponding to the MSDU or A-MSDU with the sequence number that matches the
Starting Sequence Number field value.

Figure 6-16 shows an example using Compressed Block ACK frames. Here we assume that the
transmitter sends aggregate A-MPDUs with 32 subframes. Bitmap bit position n is set to 1 to
acknowledge the receipt of a frame with the sequence number equal to (Starting Sequence
Control + n). Bitmap bit position n is set to 0 if a frame with the sequence number (Starting
Sequence Control + n) has not been received. For unused fragment numbers of an aggregate
frame, the corresponding bits in the bitmap are set to 0. For example, the Block ACK bitmap of
the first Block ACK in Figure 6-16 contains [7F FF FF FF 00 00 00 00]. The first byte
corresponds to the first 8 frames, but read right to left (that is why 7F instead of F7). This means
that, relative to the Starting Sequence Number 146, the first four frames and sixth to eight
frames are successfully received. The fifth frame is lost (sequence number 150). The second byte
corresponds to the second 8 frames, also read right to left, and so on. The last 32 bits are all zero
because the A-MPDU contained 32 subframes. In the second transmission, the transmitter resends
frame #150 and additional 32 frames (starting with the sequence number 179 up to #211).

Chapter 6 • Wireless Networks 317

As seen, if a frame is not acknowledged, the sequence numbers can keep moving forward while
the sending station keeps retrying that frame. However, when the span between the sequence
number of the next frame to be sent and the retry frame becomes 64, the sending unit has to
decide what to do. It can stop aggregating while it keeps retrying the old frame, or it can simply
drop that frame.

• Multi-TID Block ACK variant. The TID_INFO subfield of the BA Control field of the
Multi-TID Block ACK frame contains the number of traffic identifiers (TIDs), less one, for which
information is reported in the BA Information field. For example, a value of 2 in the TID_INFO
field means that information for 3 TIDs is present.

The BA Information field within the Multi-TID Block ACK frame contains one or more
instances of the Per TID Info, Block ACK Starting Sequence Control field and the Block
ACK Bitmap, as shown in the bottom row of Figure 6-14(b).

The Starting Sequence Number subfield of the Block ACK Starting Sequence Control field
is the sequence number of the first MSDU or A-MSDU for which this Block ACK is sent. The
first instance of the Per TID Info, Block ACK Starting Sequence Control and Block ACK
Bitmap fields that is transmitted corresponds to the lowest TID value, with subsequent instances
following ordered by increasing values of the Per TID Info field. The 8-byte Block ACK bitmap
within the Multi-TID Block ACK frame functions the same way as for the Compressed Block
ACK frame variant.

Time

Block ACKBlock ACK
(Compressed)(Compressed)

MPDUMPDU
#147#147

MPDUMPDU
#148#148

MPDUMPDU
#178#178

BlockAckReqBlockAckReq
#146#146

MPDUMPDU
#149#149

MPDUMPDU
#150#150

A-MPDU

(lost frame)

Starting Sequence Number = 146
BA Bitmap (64 bits) =

11110111 11111111 11111111 11111111 00000000 00000000 00000000 00000000 =
7F FF FF FF 00 00 00 00

Time

Block ACKBlock ACK
(Compressed)(Compressed)

MPDUMPDU
#179#179

MPDUMPDU
#180#180

BlockAckReqBlockAckReq
#150#150

MPDUMPDU
#181#181

A-MPDU

Starting Sequence Number = 150
BA Bitmap (64 bits) =

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11110100 =
FF FF FF FF FF FF FF 4F

MPDUMPDU
#211#211

MPDUMPDU
#210#210

(lost frame)

MPDUMPDU
#146#146

MPDUMPDU
#150#150

(retransmitted
frame)

#179 #210

Figure 6-16: 802.11n Block ACK example using the Compressed Block ACK frame variant.

Ivan Marsic • Rutgers University 318

MAC Layer Enhancement: Reverse Direction (RD) Protocol

The 802.11n also specifies a bidirectional data transfer method, known as Reverse Direction
(RD) protocol. Conventional transmit opportunity (TXOP) operation described above and already
present in IEEE 802.11e allows efficient unidirectional transfer of data: the station holding the
TXOP can transmit multiple consecutive data frames without reentering backoff procedure. The
802.11n RD protocol provides more efficient bidirectional transfer of data between two 802.11
devices during a TXOP by eliminating the need for either device to contend for the channel. This
is achieved by piggybacking of data from the receiver on acknowledgements (ACK frame).

Reverse direction mechanism is useful in network services with bidirectional traffic, such as VoIP
and online gaming. It allows the transmission of feedback information from the receiver and may
enhance the performance of TCP, which requires bidirectional transmission (TCP data segments
in one direction and TCP ACK segments in the other). (See Section 2.5 for more discussion.) The
conventional TXOP operation only helps the forward direction transmission but not the reverse
direction transmission. For application with bidirectional traffic, their performance degrades due
to contention for the TXOP transmit opportunities. Reverse direction mechanism allows the
holder of TXOP to allocate the unused TXOP time to its receivers to enhance the channel
utilization and performance of reverse direction traffic flows.

Before the RD protocol, each unidirectional data transfer required the initiating station to contend
for the channel. If RTS/CTS is used, the legacy transmission sequence of RTS (Request To Send)
- CTS (Clear To Send) - DATA (Data frame) - ACK (Acknowledgement) allows the sender to
transmit only a single data frame in forward direction (Figure 6-17(a)). In the bidirectional data
transfer method (i.e., with the RD protocol), once the transmitting station has obtained a TXOP, it
may essentially grant permission to the other station to send information back during its TXOP.

Reverse data transmission requires that two roles be defined: RD initiator and RD responder. RD
initiator is the station that holds the TXOP and has the right to send Reverse Direction Grant
(RDG) to the RD responder. The RD initiator sends its permission to the RD responder using a
Reverse Direction Grant (RDG) in the “RDG/More PPDU” bit of the HT Control field in the
MAC frame (Figure 6-9). The RD initiator grants permission to the RD responder by setting this
bit to “1.” When the RD responder receives the data frame with “RDG/More PPDU” bit set to
“1,” it decides whether it will send to the RD initiator more frames immediately following the one
just received. It first sends an acknowledgement fro the received frame in which the “RDG/More
PPDU” bit is set to “1” if one or more data frames will follow the acknowledgement, or with the
bit set to “0” otherwise. For the bidirectional data transfer, the reverse DATAr frame can contain
a Block ACK to acknowledge the previous DATAf frame. The transmission sequence will then
become RTS-CTS-DATAf-DATAr-ACK (Figure 6-17(b)).

If the “RDG/More PPDU” bit in the acknowledgement frame is set to “1,” the RD initiator will
wait for the transmission from the RD responder, which will start with SIFS or Reduced Inter-
Frame Space (RIFS) interframe time after the RDG acknowledgement is sent. A transmitter can
use RIFS after a transmission when it does not expect to receive immediately any frames, which
is the case here. If there is still data to be sent from the RD responder, it can set “RDG/More
PPDU” bit in the data frame header to “1” to notify the initiator. The RD initiator still has the
right to accept or reject the request. To allocate the extended TXOP needed for additional reverse

Chapter 6 • Wireless Networks 319

frames, the initiator will set to “1” the “RDG/More PPDU” bit in the acknowledgement frame or
the next data frame. To reject the new RDG request, the initiator sets “RDG/More PPDU” to “0.”

Backward Compatibility

802.11n devices transmit a signal that cannot be decoded by devices built to an earlier standard.
To avoid rendering the network useless due to massive interference and collisions, 802.11n
devices must provide backwards compatibility. Compatibility with legacy 802.11 devices has
been a critical issue continuously faced throughout the evolution of 802.11. For example, 802.11g
provides a mechanism for operation with 802.11b devices. Similarly, 802.11n has a number of
mechanisms to provide backward compatibility with 802.11 a, b, and g devices. These
mechanisms ensure that the legacy stations are aware of 802.11n transmissions in the same area
and do not interfere with them. The cost for achieving this protection is the throughput
degradation for 802.11n.

Because the 802.11 MAC layer operation is based on carrier sense multiple access (CSMA/CA)
protocol, it is essential for the station that won access to the channel to inform other stations how
long it will transmit, to avoid being interrupted. The mechanism of announcing the duration of the
transmission is called protection mechanism, and different options have emerged in the
evolution of 802.11 wireless LANs. Before transmitting at a high data rate, the station must
attempt to update the network allocation vector (NAV) of non-HT stations that do not support the
high data rate, so that they can defer their transmission. (See Section 1.5.3 for the description of
NAV.) The duration information has to be transmitted at physical data-rates that are decodable by
the legacy stations (the pure 802.11n transmission is not).

RTS
TimeDIFS Backoff

BusyBusy S
IF

S

CTS

S
IF

S

S
IF

S

BACK

Data_fwd

RTS
DIFS Backoff

BusyBusy S
IF

S
CTS

S
IF

S

S
IF

S

BACKf

Data_fwd

DIFS

S
IF

S

BACKr

Data_rvs

DIFS

(a)

(b)

RD initiator

RD responder

Transmitter

Receiver

RDG/More PPDU = RDG/More PPDU = 11

RDG/More PPDU = RDG/More PPDU = 11

RDG/More PPDU = RDG/More PPDU = 00

TXOP duration

TXOP duration

Figure 6-17: 802.11n Reverse Direction (RD) protocol. (a) Unidirectional RTS/CTS access
scheme. (b) Bidirectional RTS/CTS access scheme. RD initiator invites RD responder to
send reverse traffic by setting the RPG/MorePPDU flag to “1.” RD responder sends zero or
more frames and sets RPG/MorePPDU to “0” in the last frame of the “RD response burst.”

Ivan Marsic • Rutgers University 320

Three different operating modes are defined for 802.11n devices (actually, four, but one is a kind
of sub-mode and omitted here for simplicity). The legacy Non-HT operating mode sends data
frames in the old 802.11a/g format (shown in the top row of Figure 6-7) so that legacy stations
can understand them. However, only 802.11a and g stations understand Non-HT mode format—
802.11b stations predate 802.11a/g and do not understand it. Non-HT mode is used by 802.11n
devices only to communicate with legacy 802.11 devices, rather than with other 8021.11n
devices. It cannot be used with 40-MHz channels (Figure 6-6). At the transmitter, only one
transmitting antenna is used in Non-HT mode. Receive diversity is exploited in this mode. An
802.11n device using Non-HT delivers no better performance than 802.11a/g. This mode gives
essentially no performance advantage over legacy networks, but offers full compatibility.

The legacy operating mode is a Non-HT (High Throughput) mode, whereas the Mixed and
Greenfield modes are HT modes. In Mixed operating mode, frames are transmitted with a
preamble compatible with the legacy 802.11a/g (middle row in Figure 6-7). The legacy Short
Training Field (L-STF), the legacy Long Training Field (L-LTF) and the legacy Signal field
(L-SIG) can be decoded by legacy 802.11a/g devices. The rest of the HT-Mixed frame has a new
format, and cannot be decoded by legacy 802.11a/g devices.

In Greenfield operating mode, high throughput frames are transmitted without any legacy-
compatible part (bottom row in Figure 6-7). In this mode, there is no provision to allow a legacy
device to understand the frame transmission. Receivers enabled in this mode should be able to
decode frames from the legacy mode, mixed mode, and the Greenfield mode transmitters. The
preamble is not compatible with legacy 802.11a/g devices and only 802.11n devices can
communicate when using the Greenfield format. Support for the Greenfield format is optional and
the HT devices can transmit using both 20-MHz and 40-MHz channels.

When a Greenfield device is transmitting, the legacy systems may detect the transmission, and
therefore avoid collision, by sensing the presence of a radio signal, using the carrier-sensing
mechanism in the physical layer. However, legacy devices cannot decode any part of an HT
Greenfield frame. Therefore, they cannot set their NAV and defer the transmission properly. They
must rely on continuous physical-layer carrier sensing to detect the busy/idle states of the
medium. In the worst case, HT Greenfield transmissions will appear as noise bursts to the legacy
devices (and vice versa).

The HT Mixed mode is mandatory to support and transmissions can occur in both 20-MHz and
40-MHz channels. Support for the HT Greenfield mode is optional; again, transmissions can
occur in both 20-MHz and 40-MHz channels (Figure 6-6). Support for Non-HT Legacy mode is
mandatory for 802.11n devices, and transmissions can occur only in 20-MHz channels.

An 802.11n access point (AP) starts in the Greenfield mode, assuming that all stations in the BSS
(Basic Service Set) will be 802.11n capable. If the access point detects a legacy (non-HT)
802.11a/b/g device (at the time when it associates to the access point or from transmissions in an
overlapping network), the access point switches to the mixed mode. 802.11n stations are
communicating mutually using the mixed mode, and with legacy stations using the non-HT
mode. When non-HT stations leave the BSS, the access point, after a preset time, will switch back
from the Mixed mode to the Greenfield mode. The same is true of when the access point ceases to
hear nearby non-HT stations; it will switch back to the Greenfield mode.

Chapter 6 • Wireless Networks 321

The following protection mechanisms (described later) are defined for 802.11n to work with
legacy stations:

• Transmit control frames such as RTS/CTS or CTS-to-self using a legacy data rate, before
the HT transmissions. For control frame transmissions, use 20-MHz non-HT frames or
40-MHz non-HT duplicate frames (Figure 6-6).

• L-SIG TXOP protection

• Transmit the first frame of a transmit opportunity (TXOP) period using the non-HT frame
that requires a response frame (acknowledgement), which is also sent as a non-HT frame
or non-HT duplicate frame. After this initial exchange, the remaining TXOP frames can
be transmitted using HT-Greenfield format and can be separated by RIFS (Reduced Inter
Frame Spacing).

• Using the HT-Mixed frame format, transmit a frame that requires a response. The
remaining TXOP may contain HT-Greenfield frames and/or RIFS sequences.

The first two protection schemes are extension of the protection mechanisms that have been
introduced in the migration from 802.11b to 802.11g. Use of control frames such as RTS/CTS or
CTS-to-self is a legacy compatibility mode. L-SIG TXOP protection is a mixed compatibility
mode (uses HT-mixed frame format) and is optional to implement. The last two schemes are
applicable only in the presence of TXOP, which is a feature that might be enabled only for certain
services, such as voice and video transmission.

In an 802.11n HT coverage cell that operates in 20/40-MHz channels, there may be legacy 802.11
devices (operating in the primary 20-MHz channel) along with the 40-MHz HT devices.
Furthermore, there may be an overlapping cell with legacy 802.11 devices operating in the
secondary channel of this cell. A protection mechanism must take into account both cases and
provide protection for the 40-MHz HT devices against interference from either source (i.e.,
legacy devices inside or outside this cell). Next, we review those protection mechanisms.

• Control Frames Protection: RTS/CTS Exchange, CTS-to-self, and Dual-CTS

We have already seen in Section 1.5.3 how RTS/CTS (Request-to-Send/Clear-to-Send) exchange
is used for protection of the current transmission. The RTS/CTS frames let nearby 802.11
devices—including those in different but physically overlapping networks—set their network
allocation vector (NAV) and defer their transmission. This mechanism is called “virtual carrier
sensing” because it operates at the MAC layer, unlike physical-layer carrier sensing.
Transmission of RTS/CTS frames helps avoid hidden station problem irrespective of transmission
rate and, hence, reduces the collision probability.

802.11g introduced another NAV-setting protection mechanism (also adopted in 802.11n), called
CTS-to-self mechanism. CTS-to-self allows a device to transmit a short CTS frame, addressed to
itself, that includes the NAV duration information for the neighboring legacy devices, which will
protect the high-rate transmission that will follow. The advantage of the CTS-to-self NAV
distribution mechanism is lower network overhead cost than with the RTS/CTS NAV distribution
mechanism—instead of transmitting two frames separated by a SIFS interval, only one frame is
transmitted. However, CTS-to-self is less robust against hidden nodes and collisions than
RTS/CTS. Stations employing NAV distribution should choose a mechanism that is appropriate

Ivan Marsic • Rutgers University 322

for the given network conditions. If errors occur when employing the CTS-to-self mechanism,
stations should switch to the more robust RTS/CTS mechanism.

HT protection requires 802.11n devices to announce their intent to transmit by sending legacy-
format control frames prior to HT data transmission (Figure 6-18(a)). The CTS-to-self frame must
be transmitted using one of the legacy data rates that a legacy device will be able to receive and
decode. Transmission rate of the control frames depends on the type of legacy device that is
associated in the BSS. If both 802.11b and 802.11g devices are associated, then 802.11b rates
(known as Clause 15 rates) are used to transmit protection frames because 802.11g stations can
decode such frames.

In Dual-CTS protection mode, the RTS receiver transmits two CTS frames, one in Non-HT
mode and another in HT mode, so the subsequent data frame is protected by a legacy CTS and an
HT CTS. The dual-CTS feature can be enabled or disabled by setting the Dual CTS Protection
subfield in beacon frames. Dual-CTS protection has two benefits. First, using the legacy
RTS/CTS or legacy CTS-to-self frames to reset NAV timers prevents interference with any
nearby 802.11a/b/g cells. Second, it resolves the hidden node problem within the 802.11n cell.

Figure 6-19 shows an example network with an 802.11n access point (AP) and two mobile
stations, one 802.11n (station A) and the other legacy 802.11g (station B). When traffic is
generated by station A, it first sends an RTS to the AP. The AP responds with two CTS frames,
one in HT and the other in legacy format. Station A is then free to transmit the data frame, while

(a) Legacy compatibility mode

(b) Mixed compatibility mode

(c) Greenfield mode

S
IF

S
S

IF
S

Blocking out non-HT stations with Network Allocation Vector (NAV)

Legacy Legacy 802.11802.11

MAC headerMAC header CTSCTS--toto--selfself

ACKACK

FCSFCS
802.11n802.11n

MAC headerMAC header DataData S
IF

S
S

IF
S

Legacy Legacy 802.11802.11

PHY headerPHY header

CTS-to-self frame (Non-HT format)

802.11n802.11n
PHY headerPHY header

Data frame (HT format)

Legacy Legacy 802.11802.11

PHY headerPHY header

ACKACK

Blocking out non-HT stations with spoofed duration value (L-SIG field)

FCSFCS
802.11n802.11n

MAC headerMAC header DataData S
IF

S
S

IF
S

FCSFCS
802.11n802.11n

MAC headerMAC header DataData S
IF

S
S

IF
S

ACKACK

802.11n802.11n
PHY headerPHY header

802.11n802.11n
PHY headerPHY header

(no protection)

Data frame (HT-mixed format)

Data frame (HT format)

Figure 6-18: 802.11n backwards compatibility modes. (a) Using control frames for NAV
distribution. (b) L-SIG TXOP protection. (c) Greenfield mode offers no protection.

Chapter 6 • Wireless Networks 323

other stations in the same and neighboring networks (e.g., station B) set their NAV correctly so
they do not transmit over the authorized frame, interfering with it. Later, when the AP has traffic
to send to station B, it uses dual CTS-to-self frames to perform the same function (Figure 6-19).

Dual-CTS makes the 802.11n network a good neighbor to overlapping or adjacent legacy 802.11
networks. It also solves the hidden-station problem where different clients in a cell may not be
able to hear each other’s transmissions, although, by definition they all can hear the AP and its
CTS frames. However, the use of control frames further reduces the data throughput of the
network. Although RTS/CTS frames are short (20 and 14 bytes, respectively), it takes more time
to transmit them at the legacy rate of 6 Mbps than it takes to transmit 500 bytes of data at 600
Mbps. Therefore, HT protection significantly reduces an 802.11n W-LAN’s overall throughput.

• L-SIG TXOP Protection

In Legacy Signal field Transmit Opportunity (L-SIG TXOP) protection mechanism, protection is
achieved by transmitting the frame-duration information in a legacy-formatted physical header,
and then transmitting the data at an 802.11n high rate (Figure 6-18(b)). Each frame is sent in an
HT-mixed frame format. A legacy device that receives and successfully decodes an HT-mixed
frame defers its own transmission based on the duration information present in the legacy Signal
(L-SIG) field (see Figure 6-7). Such legacy clients remain silent for the duration of the
forthcoming transmission. Following the legacy physical header, the 802.11n device sends the
remaining part of the frame using 802.11n HT rates and its multiple spatial streams. L-SIG TXOP
protection is also known as PHY layer spoofing.

The Rate and Length subfields of the L-SIG field (Figure 6-7) determine the duration of how
long non-HT stations should defer their transmission:

L-SIG Duration = (legacy Length / legacy Rate)

This value should be equal to the duration of the remaining HT part of the HT-mixed format
frame. The Rate parameter should be set to the value 6 Mbps. Non-HT stations are not able to

802.11n
(HT-Greenfield)

802.11g
(Legacy non-HT)

A
AP

B

AP

A

B

RTS (HT)RTS (HT)

CTS (HT)CTS (HT) CTS (L)CTS (L)

Data (HT)Data (HT)

CTS (HT)CTS (HT)

Time
CTS-to-self

sets NAV

sets NAV

CTS-to-self

CTS (L)CTS (L) Data (L)Data (L)

receives
data (L)

receives
data (HT)

S
IF

S

Figure 6-19: Example of 802.11n Dual-CTS protection (CTS-to-self).

Ivan Marsic • Rutgers University 324

receive any frame that starts throughout the L-SIG duration. Therefore, no frame may be
transmitted to a non-HT station during an L-SIG protected TXOP.

Figure 6-20 illustrates an example of how L-SIG Durations are set when using L-SIG TXOP
Protection. In this example, an L-SIG TXOP protected sequence starts with an RTS/CTS initial
handshake, which provides additional protection from hidden stations. Any initial frame
exchange may be used that is valid for the start of a TXOP. The term “L-SIG TXOP protected
sequence” includes these initial frames and any subsequent frames transmitted within the
protected L-SIG duration.

The TXOP holder should transmit a CF-End frame starting a SIFS period after the L-SIG TXOP
protected period (Figure 6-20). Because legacy stations are unable to distinguish a Mixed-mode
acknowledgement frame from other Mixed-mode frames, they may mistakenly infer that ACK
frame is lost. As a result, they would wait unnecessarily until the EIFS time elapses (see Figure
1-75(b)), which leads to potential unfairness or a “capture effect.” CF-End enables other stations
to avoid such undesirable effects. Note that this is not an instance of TXOP truncation (described
earlier), because here the CF-End frame is not transmitted to reset the NAV.

All HT-mixed mode frames contain the L-SIG field, so is not necessary to send special control
frames to announce the medium reservation duration explicitly. An 802.11n station must indicate
whether it supports L-SIG TXOP Protection in its L-SIG TXOP Protection Support capability
field in Association-Request and Probe-Response frames. The mixed mode can be used in a 40-
MHz channel, but to make it compatible with legacy clients, all broadcast and non-aggregated
control frames are sent on a legacy 20-MHz channel as defined in 802.11a/b/g, to be
interoperable with those clients (Figure 6-6). And, of course, all transmissions to and from legacy
clients must be within a legacy 20-MHz channel. L-SIG TXOP protection mechanism is not
applicable when 802.11b stations are present, because the Signal field (L-SIG) is encoded in
802.11g frame format that 802.11b devices do not understand. The double physical-layer header
(legacy plus 802.11n headers) adds overhead, reducing the throughput. However, it makes
possible for 802.11n stations to take advantage of HT features for the remaining part of the frame
transmission.

• Phased Coexistence Operation (PCO)

BACKBACK

L
e

ga
cy

L
eg

ac
y

pr
ea

m
bl

e
p

re
am

bl
e

RTSRTS DataData

LL -
- S

IG
S

IG

CTSCTS
L

e
ga

cy
Le

g
ac

y
p

re
am

bl
e

p
re

am
b

le

LL -
- S

IG
S

IG

L
e

ga
cy

Le
g

ac
y

p
re

am
bl

e
p

re
am

b
le

LL -
- S

IG
S

IG

L
e

ga
cy

Le
g

ac
y

p
re

am
bl

e
p

re
am

b
le

LL -
- S

IG
S

IG

CFCF--EndEnd

L-SIG duration

L-SIG duration

L-SIG duration

NAV duration

NAV duration

NAV duration

Figure 6-20: 802.11n L-SIG TXOP protection: Example of L-SIG duration setting.

Chapter 6 • Wireless Networks 325

Another mechanism for coexistence between 802.11n HT cells and nearby legacy 802.11a/b/g
cells is known as Phased Coexistence Operation (PCO). This is an optional mode of operation
that divides time into slices and alternates between 20-MHz and 40-MHz transmissions. The HT
access point designates time slices for 20-MHz transmissions in both primary and secondary 20-
MHz channels, and designates time slices for 40-MHz transmissions. This operation is depicted
in Figure 6-6 and now we describe the mechanism for transitioning between the phases. The
algorithm for deciding when to switch the phase is beyond the scope of the 802.11n standard.

The phased coexistence operation (PCO) of 802.11n is illustrated in Figure 6-21, where an
802.11n coverage cell (BSS-1) is overlapping a legacy 802.11 cell (BSS-2). Stations A and B are
associated with BSS-1 and station C is associated with BSS-2, but it can hear stations in BSS-1
and interfere with their transmissions. Only station A is capable of transmitting and receiving
frames in the 40-MHz channel. As explained earlier (Figure 6-6), a 40-MHz channel is formed by
bonding two contiguous 20-MHz channels, one designated as primary channel and the other as
secondary channel. In this example, BSS-2 happens to operate in what BSS-1 considers its own
secondary channel, i.e., the secondary channel of BSS-1 is the primary channel for BSS-2. In 20-
MHz phase, all stations contend for medium access in their respective primary channels. When
the 802.11n access point wishes to use a 40-MHz channel, it needs to reserve explicitly both
adjacent 20-MHz channels. The access point is coordinating the phased operation of the
associated stations with 20-MHz and 40-MHz bandwidth usage.

The bottom part of Figure 6-21 shows the MAC-protocol timing diagram for reservation and
usage of the 40-MHz channel. Transitions back and forth between 20-MHz and 40-MHz channels
start with the Beacon frame or Set-PCO-Phase frame. The 802.11n access point (AP)
accomplishes the reservation by setting the NAV timers of all stations with appropriate control
frames transmitted on the respective channels. The access point uses CTS-to-self frames to set the
NAV timers. As Figure 6-21 depicts, the AP transmits both CTS-to-self frames simultaneously
using the duplicate legacy mode (described earlier in this section). Although control frames are
transmitted only on the primary channel, the secondary channel of BSS-1 is the primary channel
of BSS-2, so station C will receive the second CTS-to-self and react to it. This feature improves
efficiency (but notice that it could not be exploited in Figure 6-19). When the NAV timer is set,
the station is blocked from transmission until the NAV timer expires. However, as seen in Figure
6-21 station A will also set its own NAV, which means that station A too will be blocked. This is
why the AP will transmit a CF-End frame in the HT-Greenfield format on the 40-MHz channel,
so that only station A will decode it and start contending for access to the 40-MHz channel. Recall
that CF-End truncates TXOP and clears the NAV timers of the clients that receive this frame.

To end the 40-MHz phase, the HT access point first sends a Set-PCO-Phase frame so station A
knows the 40-MHz phase is over. Next, to release the 40-MHz channel, the AP uses two CF-End
frames sent simultaneously on both 20-MHz channels using the duplicate legacy mode. This will
truncate the remaining TXOP for the legacy clients (stations B and C). Thereafter, all stations
may again contend for medium access on their respective 20-MHz primary channels.

Reservation of the 40-MHz channel may not happen smoothly, because traffic in BSS-2 may
continue for a long time after the access point transmitted the Beacon frame or Set-PCO-Phase
frame (see the initial part of the timing diagram in Figure 6-21). If the secondary channel
continues to be busy after the phase transition started, the stations in BSS-1 are not allowed to
transmit on the primary 20-MHz channel because their NAV timers are set. If waiting for

Ivan Marsic • Rutgers University 326

reservation of the secondary 20-MHz channel exceeds a given threshold, the access point may
decide to terminate the transition process and go back to the 20-MHz phase.

Phased coexistence operation (PCO) makes an 802.11n access point more tolerant of nearby
legacy APs operating on overlapping channels and might improve throughput in some situations.
However, once again, this option reduces throughput due to transmission of many control frames
(CTS-to-self and CF-End). In addition, switching back and forth between channels could
potentially increase delay jitter for data frames, and therefore PCO mode would not be
recommended for real-time multimedia traffic.

The cost of backwards compatibility features is additional overhead on every 802.11n
transmission. This reduces the benefits of all the 802.11n improvements, resulting in significantly
lower effective throughput by 802.11n devices in mixed environments. The HT-Mixed format
will most likely be the most commonly used frame format because it supports both HT and legacy
802.11a/g devices. The HT-Mixed format is also considered mandatory and transmissions can

S
ec

o
n

d
ar

y
20

 M
H

z
ch

a
nn

el

P
rim

a
ry

2
0

 M
H

z
ch

an
n

el

Traffic in Traffic in BSSBSS--11 in in
802.11g802.11g

20 MHz channel (20 MHz channel (NonNon--
HT or HTHT or HT--Mixed modeMixed mode))

Traffic in Traffic in BSSBSS--22
in 802.11gin 802.11g

20 MHz channel20 MHz channel

20 MHz phase

AP reserves
both 20-MHz
channels for

40 MHz phase

AP reserves
both 20-MHz
channels for

40 MHz phase

AP releases
the 20 MHz

channels

AP releases
the 20 MHz

channels

802.11n
(HT-Greenfield)

802.11g
(HT-Mixed)

802.11n
AP

CC

B

802.11g
(HT-Mixed)

A

Another
AP

802.11g802.11g
(Legacy)(Legacy)

BSS-1

BSS-2

Time

C
T

S
C

T
S

-- t
oto

-- s
el

f
se

lf

C
F

C
F

-- E
nd

E
nd

C
T

S
C

T
S

-- t
oto

-- s
el

f
se

lf

B
ea

co
n

B
ea

co
n

O
R

O
R

S
et

S
et

-- P
C

O
P

C
O

-- P
ha

se
P

ha
se

BusyBusy
(traffic in(traffic in
BSSBSS--22))

P
IF

S

C
F

C
F

-- E
n

d
E

n
d

APAP and and AA
exchange traffic exchange traffic

in 802.11nin 802.11n
40 MHz channel 40 MHz channel
((HT greenfield HT greenfield

modemode))
P

IF
S

S
e

t
S

et
-- P

C
O

P
C

O
-- P

h
a

se
P

h
as

e

C
F

C
F

-- E
nd

E
nd

(truncated)

(truncated)

NAV of station B (primary channel)

NAV of station C (secondary channel)

(truncated)NAV of sta. A
(40 MHz ch.)

NAV (A)

20 MHz
phase

Transition

40 MHz phase

Tr
an

si
tio

n

Figure 6-21: Example timing diagram for the (optional) 802.11n phased coexistence
operation (PCO).

Chapter 6 • Wireless Networks 327

occur in both 20-MHz and 40-MHz channels. It can be expected that protection mechanisms will
be in use in the 2.4-GHz band (802.11b and 802.11g) until nearly every legacy device has
disappeared. This is because there are too few channels available in that band to effectively
overlay pure 802.11n wireless LANs in the same areas as legacy 2.4-GHz W-LANs. Given the
larger number of channels available in the 5-GHz band in many countries, it is possible that two
completely separate W-LANs could be operating in the same area in the 5-GHz band, with
802.11a operating on one set of channels and 802.11n operating on a different, nonintersecting set
of channels. This would allow 802.11n to operate in pure high-throughput mode (HT-Greenfield
mode), achieving the highest effective throughput offered by the 802.11n standard.

6.3.2 WiMAX (IEEE 802.16)

The IEEE 802.16 standard is also known as WiMAX, which stands for Worldwide
Interoperability for Microwave Access. WiMAX, as approved in 2001, addressed frequencies
from 10 to 66 GHz, where extensive spectrum is available worldwide but at which the short
wavelengths introduce significant deployment challenges. A new effort will extend the air
interface support to lower frequencies in the 2–11 GHz band, including both licensed and license-
exempt spectra. Compared to the higher frequencies, such spectra offer the opportunity to reach
many more customers less expensively, although at generally lower data rates. This suggests that
such services will be oriented toward individual homes or small to medium-sized enterprises.

Medium Access Control (MAC) Protocol

The IEEE 802.16 MAC protocol was designed for point-to-multipoint broadband wireless access
applications. It addresses the need for very high bit rates, both uplink (to the Base Station) and
downlink (from the BS). Access and bandwidth allocation algorithms must accommodate
hundreds of terminals per channel, with terminals that may be shared by multiple end users.

6.3.3 ZigBee (IEEE 802.15.4)

ZigBee is a specification for a suite of high level communication protocols using small, low-
power digital radios based on the IEEE 802.15.4-2003 standard for wireless personal area
networks (WPANs), such as wireless headphones connecting with cell phones via short-range
radio. The technology defined by the ZigBee specification is intended to be simpler and less
expensive than other WPANs, such as Bluetooth (Section 6.3.4). ZigBee is targeted at radio
frequency (RF) applications that require a low data rate, long battery life, and secure networking.

6.3.4 Bluetooth

Ivan Marsic • Rutgers University 328

6.4 Wi-Fi Quality of Service

There is anecdotal evidence of W-LAN spectrum congestion; Unlicensed systems need to scale to
manage user “QoS.” Density of wireless devices will continue to increase; ~10x with home
gadgets; ~100x with sensors/pervasive computing

Decentralized scheduling

We assume that each message carries the data of a single data type. The messages at the producer
are ordered in priority-based queues. The priority of a data type is equal to its current utility,

)|(ji STU . Figure 6-22 shows the architecture at the producer node. Scheduler works in a round-

robin manner, but may have different strategies for sending the queued messages, called queuing
discipline. It may send all high priority messages first, or it may assign higher probability of
sending to the high-priority messages, but the low-priority messages still get non-zero probability
of being sent.

It is not clear whose rules for assigning the utilities should be used at producers: producer’s or
consumer’s. If only the consumer’s preferences are taken into the account, this resembles to the
filtering approach for controlling the incoming information, e.g., blocking unsolicited email
messages. One of the drawbacks of filtering is that does not balance the interests of senders and
recipients: filtering is recipient-centric and ignores the legitimate interests of the sender [Error!
Reference source not found.]. This needs to be investigated.

Producer T4 T5

Messages

T3 T1

High priority

Scheduler T2 T2 T5 T5

Medium priority

Low priority

T4 T4 T4 T4T1

Utility
Assessor

Message queuesLocation,
Battery,
Role,
Device,
…

State

Rules

Figure 6-22: Priority-based scheduling of the messages generated by a producer. Messages
are labeled by data types of the data they carry (T1, …, T5).

Chapter 6 • Wireless Networks 329

6.5 Summary and Bibliographical Notes

A collection of articles on mobile ad hoc networks, particularly the routing protocol aspect, is
available in [Perkins, 2001]. [Murthy & Manoj, 2004] provide a comprehensive overview of ad
hoc networks.

The major enhancement in IEEE 802.11e MAC protocol is providing Quality-of-Service (QoS),
which is lacking in the legacy IEEE 802.11 MAC protocol. In IEEE 802.11e, enhanced
distributed channel access (EDCA) is introduced to enhance legacy IEEE 802.11 DCF operation.
EDCA is a contention-based channel access mechanism. QoS support is provided with different
access categories (ACs). Four ACs are used in EDCA, each with an independent backoff
mechanism and contention parameters. The parameters of ACs are set differently to provide
differentiated QoS priorities for ACs.

The Block ACK has a potential to be more efficient than the regular ACK policy. However, the
Basic Block ACK frame (defined in IEEE 802.11e and adopted in 802.11n) includes a Block
ACK Bitmap of 128 bytes, and the efficiency of the Block ACK might be seriously compromised
when the number of frames acknowledged by a Block ACK is small or the frames are not
fragmented.

802.11n

The objective of IEEE 802.11n standard is to increase the throughput beyond 100 Mbps as well
as extending the effective range from previous 802.11a/b/g standards. Use of Multiple Input
Multiple Output (MIMO) technology along with OFDM (MIMO-OFDM) and doubling the
channel bandwidth from 20-MHz to 40-MHz helps increase the physical (PHY) rate up to 600
Mbps. The data rates supported in an 802.11n network range from 6.5 Mbps to 600 Mbps.
Support for 2 spatial streams is mandatory at the access point and up to 4 spatial streams can be
used. The PHY layer enhancements are not sufficient to achieve the desired MAC throughput of
more than 100 Mbps due to rate-independent overheads. To overcome this limitation, frame
aggregation at the MAC layer is used in 802.11n to improve the efficiency. In the aggregate
MSDU (A-MSDU) scheme, multiple MSDUs form a MPDU i.e., an 802.11n MAC-level frame
(A-MSDU) consists of multiple subframes (MSDUs), either from different sources or
destinations. The aggregate MPDU (A-MPDU) scheme can be used to aggregate multiple
MPDUs into a single PSDU. Both aggregation schemes have their pros and cons along with
associated implementation aspects. However, most product manufacturers support both features.

802.11b and 802.11g devices operate in the 2.4 GHz band and the 5 GHz band is used by 802.11a
devices. The 802.11n-based devices can operate in both bands and hence backward compatibility
with the respective legacy devices in the bands are an important feature of the standard. Most of
the benefits of 802.11n will only be realized when 802.11n-capable clients are used with similar
infrastructure, and even a few legacy (802.11a/b/g) clients in the cell will drastically reduce
overall performance compared to a uniform 802.11n network. For quite a long time, 802.11n will
need to operate in the presence of legacy 802.11a, b, and g devices. This mixed-mode operation
will continue until all the devices in an area have been upgraded or replaced with 802.11n

Ivan Marsic • Rutgers University 330

devices. However, sometimes protection mechanism is needed even in an 802.11n-only network
as the devices can have different capabilities. Hence, protection schemes are not only used for
coexistence with legacy devices but also for interoperability with various different operating
modes of 802.11n devices. Each protection mechanism has a different impact on the performance
and 802.11n devices will operate more slowly when working with legacy Wi-Fi devices.

802.11n and HT technology is so complex that an entire book dedicated to the topic would
probably not be able to cover fully every aspect of HT. Section 6.3.1 highlight only some of the
key features of 802.11n. MIMO technology is only briefly reviewed. 802.11n link adaptation and
receiver feedback information is not reviewed at all. Other issues that were not covered include
security, power management, and quality-of-service (QoS). The reader should consult other
sources for these topics.

Xiao and Rosdahl [2002; 2003] have shown that control overhead is a major reason for inefficient
MAC. The overhead is large either when the data rate is high or when the frame size is small.
Throughput in 802.11 has an upper bound even the data rate goes to infinity. [Xiao, 2005] …

Thornycroft [2009] offers a readable introduction to 802.11n. Perahia and Stacey [2008] provide
an in-depth review of 802.11n. The reader should consult the IEEE 802.11n standard for a more
technical walk-through of the newly introduced enhancements.

Wang and Wei [2009] investigated the performance of the IEEE 802.11n MAC layer
enhancements: frame aggregation, block acknowledgement, and reverse direction (RD) protocol.
They conclude that VoIP performance is effectively improved with 802.11n MAC enhancements.

Problems

331

Contents
7.1 Introduction

7.1.1 x
7.1.2 x
7.1.3 x

7.2 Available Bandwidth Estimation
7.2.1 Packet-Pair Technique
7.2.2 x
7.2.3

7.3 x
7.3.1 x
7.3.2 x
7.3.3 x
7.3.4 x

7.4 x
7.4.1 x
7.4.2
7.4.3

7.5 x
7.5.1
7.5.2
7.5.3

7.6 x
7.5.1 x
7.5.2 x
7.5.3 x

7.7 Summary and Bibliographical Notes

Problems

Chapter 7
Network Monitoring

7.1 Introduction

See: http://www.antd.nist.gov/

Wireless link of a mobile user does not provide guarantees.
Unlike wired case, where the link parameters are relatively
stable, stability cannot be guaranteed for a wireless link. Thus,
even if lower-level protocol layers are programmed to perform
as best possible, the application needs to know the link quality.
The “knowledge” in the wired case is provided through quality
guarantees, whereas here link quality knowledge is necessary
to adapt the behavior.

Adaptation to the dynamics of the wireless link bandwidth is a
frequently used approach to enhance the performance of
applications and protocols in wireless communication
environments [Katz 1994]. Also, for resource reservation in
such environments, it is crucial to have the knowledge of the
dynamics of the wireless link bandwidth to perform the
admission control.

Ivan Marsic • Rutgers University 332

7.2 Available Bandwidth Estimation

In general, an accurate available bandwidth estimation is essential in monitoring if the different
flows are living up to the required Quality-of-Service (QoS). For instance, streaming applications
could adapt their sending rate to improve the QoS depending on a real-time knowledge of the
end-to-end available bandwidth. Within a mobile-communications core network, the available
bandwidth could also be used as an input to take decisions concerning issues such as load control,
admission control, handover and routing. However, the scale of the different systems, the
different traffic characteristics and the diversity of network technologies make this
characterization of the end-to-end available bandwidth a challenging task.

One possible way to implement available bandwidth estimation would be to deploy special
software or hardware on each router of the network. However, the cost in time and money of new
equipment, maintenance of new nodes and software development makes this impractical.
Moreover, this wide-scale deployment of specialized routers, which are continuously reporting
bandwidth properties, might overwhelm the network. Another limitation is the lack of control
over hosts and routers across autonomous domains.

An alternative is to run software on end hosts, which is usually called active probing. In this
approach, the available bandwidth is inferred rather than directly measured. Ideally, a probing
scheme should provide an accurate estimate as quickly as possible, while keeping the increased
load on the network to the necessary minimum. There are several obstacles for measuring the
available bandwidth by active probing. First, the available bandwidth is a time-varying metric.
Second, the available bandwidth exhibits variability depending on the observing time-scale.
Third, in the current networks increasingly intelligent devices are being used for traffic
prioritization.

A narrow link (bottleneck) is a communication link with a small upper limit on the bandwidth.
Conversely, a tight link (overused) is a communication link with a small available bandwidth but
the overall bandwidth may be relatively large.

7.2.1 Packet-Pair Technique

A packet pair consists of two packets, usually of the same size, that are sent back-to-back via a
network path. Unlike the techniques mentioned in the previous section, packet-pair probing
directly gives a value for the capacity of the narrow link, with no additional information about the
capacities of other links on the path. They assume FIFO queuing model in network routers and
probe packets could be ICMP (Internet Control Message Protocol) packets. Packet-pair
techniques for bandwidth measurement are based on measuring the transmission delays that
packets suffer on their way from the source to the destination. The idea is to use inter-packet time
to estimate the characteristics of the bottleneck link. If two packets travel together so that they are
queued as a pair at the bottleneck link with no packet intervening between them, then their inter-
packet spacing is proportional to the time needed to transmit the second packet of the pair on the
bottleneck link (Error! Reference source not found.).

Chapter 7 • Network Monitoring 333

Recall that packet transmission delay is computed using Eq. (1.2) in Section 1.3 as tx = L/R,
where L is the packet length and R is the link transmission rate. Le us assume that the receiver
measures the difference of arrival times for a packet pair as Δ = t4 − t3. Then, the transmission rate
of the bottleneck link (i.e., link bandwidth), b, can be computed as:

b = L/Δ (6.1)

Note that the inter-packet spacing at the source must be sufficiently small so that:

t2 − t1 ≤ L/b = t4 − t3 (6.2)

The packet-pairs technique is useful for measuring the bottleneck capacity, i.e., the minimum
capacity along the path. The main advantage of this method is that it performs the measurement
of inter-arrival times between packets only at the end host. This fact avoids the problem of
asymmetric routing, ICMP dependency and link-layer effects of RTT-based Capacity Estimation
methods. On the other hand, this technique is very sensitive, not only to the probing packet size
and user time resolution, but also to the cross-traffic.

PathMon [Kiwior, et al., 2004]

7.3 Dynamic Adaptation

Holistic QoS, system level

Computation and communication delays

Combinatorial optimization

Router 1 Router 2Link 1
Link 2

Link 3

Send
packet

pair

Receive
packet

pair

t2 t1
t4 t3

t4 t3

Pkt-1
P1P2

Pkt-1Pkt-2Pkt-2Pkt-2

Figure 7-1: Packet-pair technique for bandwidth measurement. The packet spacing on the
bottleneck link (Link 2) will be preserved on downstream links (Link 3).

Ivan Marsic • Rutgers University 334

Adaptive Service Quality

It may be that only two options are offered to the customers by the server: to be or not to be
processed. In other words, quality of servicing is offered either in the fullest or no servicing at all.
But, it may be that the server offers different options for customers “in hurry.” In this case, we
can speak of different qualities of service—from no service whatsoever, through partial service,
to full service. The spectrum of offers may be discrete or continuous. Also, servicing options may
be explicitly known and advertised as such, so the customer simply chooses the option it can
afford. The other option is that servicing options are implicit, in which case they could be
specified by servicing time or cost, or in terms of complex circumstantial parameters. Generally,
we can say that the customer specifies the rules of selecting the quality of service in a given rule
specification language.

Associated with processing may be a cost of processing. Server is linked with a certain resource
and this resource is limited. Server capacity C expresses the number of customers the server can
serve per unit of time and it is limited by the resource availability.

Important aspects to consider:

• Rules for selecting QoS

• Pricing the cost of service

• Dealing with uneven/irregular customer arrivals

• Fairness of service

• Enforcing the policies/agreements/contracts

- Admission control

- Traffic shaping

7.3.1 Data Fidelity Reduction

Compression

Simplification

timeliness

fidelity

utility

Figure 7-2: Dimensions of data adaptation.

Chapter 7 • Network Monitoring 335

Abstraction

Conversion (different domains/modalities)

We consider the model shown in Figure 6-?? where there are multiple clients producing and/or
consuming dynamic content. Some shared content may originate or be cached locally while other
may originate from remote and change with time. The data that originates locally may need to be
distributed to other clients. The clients have local computing resources and share some global
resources, such as server(s) and network bandwidth, which support information exchange.
Although producers and consumers are interrelated, it is useful to start with a simpler model
where we consider them independently to better understand the issues before considering them
jointly. We first consider individual clients as data consumers that need to visualize the content
with the best possible quality and provide highest interactivity. We then consider clients as data
producers that need to update the consumers by effectively and efficiently employing global
resources.

We will develop a formal method for maximizing the utility of the shared content given the
limited, diverse, and variable resources. Figure 8-1 illustrates example dimensions of data
adaptation; other possible dimensions include modality (speech, text, image, etc.), security,
reliability, etc. The user specifies the rules R for computing the utilities of different data types that
may depend on contextual parameters. We define the state of the environment as a touple
containing the status of different environmental variables. For example, it could be defined as:
state = (time, location, battery energy, user’s role, task, computer type). The location may include
both the sender and the receiver location. Given a state Sj the utility of a data type Ti is
determined by applying the user-specified rules:)|()|(jiji STRSTU = . We also normalize the

utilities because it is easier for users to specify relative utilities, so in a given state Sj the utilities
of all data types are: 1)|(=

i
ji STU .

Our approach is to vary the fidelity and timeliness of data to maximize the sum of the utilities of
the data the user receives. Timeliness is controlled, for example, by the parameters such as update
frequency, latency and jitter. Fidelity is controlled by parameters such as the detail and accuracy
of data items and their structural relationships. Lower fidelity and/or timeliness correspond to a
lower demand for resources. Our method uses nonlinear programming to select those values for
fidelity and timeliness that maximize the total data utility, subject to the given resources. Note
that the user can also require fixed values for fidelity and/or timeliness, and seek an optimal
solution under such constraints.

7.3.2 Application Functionality Adaptation

7.3.3 Computing Fidelity Adaptation

Review CMU-Aura work

Ivan Marsic • Rutgers University 336

7.4 Summary and Bibliographical Notes

When deploying a real-time or multimedia application, you need to establish a thorough baseline
of current network activity on all segments that will host the application. You need to understand
the degree to which latency, jitter and packet loss affect your network before deploying a real-
time or multimedia application. You must understand current network load and behavior,
including any areas where latency is elevated or highly variable. In many networks, traffic loads
may vary substantially over time. As loads increase, inconsistent packet delivery rates are
probable. Thus, increasing loads form the foundation for excessive latency and jitter—which are
two of the most prevalent inhibitors for consistent application performance. When collecting
baseline metrics, remember that network behavior varies widely as various business activities
occur. Be sure to create a baseline that reflects all major phases and facets of your network’s
activities.

V. Firou, J. Le Boudec, D. Towsley, and Z. Zhang, "Theories and Models for Internet Quality of
Service," Proceedings of the IEEE, Special Issue on Internet Technology, August 2002.

Various forms of the packet-pair technique were studied by [Bolot, 1993], [Carter & Crovella,
1996], [Paxson, 1997a], and [Lai & Baker, 1999].

[Jain & Dovrolis, 2002] investigated how to deal with cross-traffic, using statistical methods

[Hu & Steenkiste, 2003], available bandwidth discovery: Initial Gap Increasing (IGI)
estimate both upper limit and background traffic and subtract both. Problem: presumes that the
bottleneck link is also the tight link

PathMon [Kiwior, et al., 2004]

Problems

337

Contents
8.1 Internet Protocol Version 6 (IPv6)

8.1.1 IPv6 Addresses
8.1.2 IPv6 Extension Headers
8.1.3 Transitioning from IPv4 to IPv6

8.2 Routing Protocols
8.2.1 Routing Information Protocol (RIP)
8.2.2 Open Shortest Path First (OSPF)
8.2.3 Border Gateway Protocol (BGP)
8.2.4 Multicast Routing Protocols

8.3 Address Translation Protocols
8.3.1 Address Resolution Protocol (ARP)
8.3.2 Dynamic Host Configuration Protocol

(DHCP)
8.3.3 Network Address Translation (NAT)
8.3.4 Mobile IP

8.4 Domain Name System (DNS)
8.4.1 x
8.4.2
8.4.3

8.5 Network Management Protocols
8.5.1 Internet Control Message Protocol (ICMP)
8.5.2 Simple Network Management Protocol

(SNMP)

8.6 Multimedia Application Protocols
8.6.1 Session Description Protocol (SDP)
8.6.2 Session Initiation Protocol (SIP)
8.6.3 x

8.7 Summary and Bibliographical Notes

P bl

Chapter 8
Internet Protocols

This chapter describes several important protocols that are used
in the current Internet. I feel that these protocols are not critical
for the rest of this text. However, the reader may feel
otherwise, so I included them for completeness. Also, a student
new to the field may wish to know about practical
implementations of the concepts and algorithms described in
the rest of this text.

Although this chapter is about the Internet protocols, the key
Internet protocols are not reviewed here. Because of their great
importance, IP and TCP are described early one, in Chapters 1
and 2, respectively.

8.1 Internet Protocol Version 6 (IPv6)

Internet Protocol version 4 (Sections 1.4.1 and 1.4.4) was first developed in
the 1970s and the main document that defines IPv4 functionality (RFC-
791) was published in 1981. Many things could not be envisioned at such
early stage of Internet development, especially shortage of address space
availability. Internet Protocol version 6 (IPv6) was developed primarily to

Layer 2:

Network

Layer 1:

Link

Layer 3:

End-to-End

IP (Internet Protocol)

Visit http://en.wikipedia.org/wiki/Internet_reference_model for more details on the Internet reference modelVisit http://en.wikipedia.org/wiki/Internet_reference_model for more details on the Internet reference model

Ivan Marsic • Rutgers University 338

address the rapidly shrinking supply of IPv4 addresses, but also to implement some novel features
based on the experience with IPv4.

Figure 8-1 shows the format of IP version 6 datagram headers. It is much simpler than the IPv4
header (Figure 1-36), but also double the size of a default IPv4 header, mainly because of longer
IP addresses in IPv6. The IPv6 header fields are as follows:

Version number: This field indicates version number, and the value of this field for IPv6
datagrams is 6.

Traffic class: The 8-bit Traffic Class field is available for use by originating nodes or forwarding
routers to identify and distinguish between different classes or priorities of IPv6 packets. This
filed is equivalent to IPv4 Type-of-Service (Figure 1-36), and it is intended to provide various
forms of “differentiated service” or DiffServ for IP packets (Section 3.3.5). Experiments are
currently underway to determine what sorts of traffic classifications are most useful for IP
packets.

Flow label: The 20-bit Flow Label field may be used by a source to label packets for which it
requests special handling by the IPv6 routers, such as non-default quality of service or “real-time”
service. This feature is still experimental and evolves as more experience is gained with IntServ
flow support in the Internet (Section 3.3.4). Hosts or routers that do not support the functions of
the Flow Label field are required to set the field to zero when originating a packet; pass the field
on unchanged when forwarding a packet; and ignore the field when receiving a packet.

0 11 12 313 4 15 16

20-bit flow label

16-bit payload length 8-bit hop limit

version
number

40
bytes

8-bit traffic class

next header

128-bit (16-byte) destination IP address

128-bit (16-byte) source IP address

Figure 8-1: The header format of IPv6 datagrams.

Chapter 8 • Internet Protocols 339

Payload length: This field tells how many bytes follow the 40-byte header in the IP datagram.
Unlike IPv4 Datagram Length, IPv6 Payload Length does not count the datagram header.

Next header: This 8-bit selector identifies the type of header immediately following the IPv6
header within the IPv6 datagram. Currently, there are six extension headers (optional), which may
follow the main IPv6 header. If a header is the last IP header, this field identifies the type of the
upper-layer protocol to pass the payload to at the destination, and uses the same values as the
IPv4 “User Protocol” field (Figure 1-36). See more about extension headers in Section 8.1.2.

Hop limit: This 8-bit unsigned integer specifies how long a datagram is allowed to remain in the
Internet, to catch packets that are stuck in routing loops. It is decremented by one by each node
that forwards the packet. The packet is discarded if Hop Limit is decremented to zero. It is
equivalent to the “Time-to-Live” (TTL) field in IPv4 datagrams.

Source IP address: This address identifies the end host that originated the datagram.

Destination IP address: This is the IP address of the intended recipient of the packet (possibly
not the ultimate recipient, if a Routing header is present, as described in the next section).

Notice that there are none of the fields related to packet fragmentation from IPv4 (Figure 1-36).
This is because IPv6 takes a different approach to fragmentation. To simplify the work of routers
and speed up their performance, IPv6 assumes that router do not perform any fragmentation. IPv6
requires that every link in the Internet have a maximum transmission unit (MTU) of 1280 bytes or
greater. On any link that cannot convey a 1280-byte packet in one piece, link-specific
fragmentation and reassembly must be provided at a protocol layer below IPv6.

Links that have a configurable MTU (for example, PPP links Section 1.5.1) must be configured to
have an MTU of at least 1280 bytes. It is strongly recommended that IPv6 nodes implement Path
MTU Discovery (described in RFC-1981), in order to dynamically discover and take advantage
of path MTUs greater than 1280 bytes. This rule makes fragmentation less likely to occur in the
first place. In addition, when a host sends an IPv6 packet that is too large, instead of fragmenting
it, the router that is unable to forward it drops the packet and sends back an error message. This
message tells the originating host to break up all future packets to that destination.

8.1.1 IPv6 Addresses

The IPv6 address space is 128-bits (2128) in size, which translates to the exact number of
340,282,366,920,938,463,463,374,607,431,768,211,456 addresses. That seems like enough for all
purposes that currently can be envisioned.

A new notation (hexadecimal colon notation) has been devised to writing 16-byte IPv6 addresses.
A 128-bit address is divided into eight sections, each two bytes long. It is written as eight groups
of four hexadecimal digits (total 32) with colons between the groups, like this:

2000:0000:0000:0000:0123:4567:89AB:CDEF

Some simplifications have been authorized for special cases. For example, if an address has a
large number if consecutive zeros, the zero fields can be omitted and replaced with a double
colon “::”.The above example address can be written compactly as 2000::123:4567:89AB:CDEF.
Notice that only leading or intermediary zeroes can be abbreviated, but not the trailing zeroes.

Ivan Marsic • Rutgers University 340

Also, this type of abbreviation is allowed only once per address; if there are two runs of zeroes,
only one of the can be abbreviated.

As with IPv4 CIDR scheme, the notation A/m designates a subset of IPv6 addresses (subnetwork)
where A is the prefix and the mask m specifies the number of bits that designate the subset,
beginning from left to right. For example, the notation: 2000:0BA0:01A0::/48 implies that the
part of the IPv6 address used to represent the subnetwork has 48 bits. Because each hexadecimal
digit has 4 bits, the prefix representing the subnetwork is formed by 48/4 = 12 digits, that is:
“2000:0BA0:01A0.” The remaining (128 − 48)/4 = 20 digits would be used to represent the
network interfaces inside the subnetwork.

Similar to CIDR in IPv4 (Section 1.4.4), IPv6 addresses are classless. However, the address space
is hierarchically subdivided depending on the leading bits of an address. A variable number of
leading bits specify the type prefix that defines the purpose of the IPv6 address. To avoid
ambiguity, the prefix codes are designed such that no code is identical to the first part of any
other code. The current assignment of prefixes is shown in Figure 8-2. Notice that two special
addresses (“unspecified address” and loopback address) are assigned out of the reserved
00000000-format prefix space. The address 0:0:0:0:0:0:0:0 is called the unspecified address. It
indicates the absence of an address, and must never be assigned to any node as a destination
address. However, it may be used by a host in the Source Address field of an IPv6 packet
initially, when the host wants to learn its own address. The unicast address 0:0:0:0:0:0:0:1 is
called the loopback address. It may be used by a node to send an IPv6 packet to itself. It may

11111111

Unspecified

Loopback within this network

Multicast addresses

Link-local use unicast

127

127

127

127

0

00000000 ... 00000000

0

1270

9 100

11111110 10

0

00000000 ... 00000001

7 8

Anything

Anything

Site-local use unicast 11111110 11 Anything
9 10

Everything elseGlobal unicast

1270

00000000Reserved

1270 7 8

Anything

IPv4 compatible address
(Node supports IPv6 & IPv4)

127

1270 95 96

0

00000000 ... 00000000

000000 ... 000000IPv4 mapped address
(Node does not support IPv6)

111...11

IPv4 Address

IPv4 Address

95 96

79 80

Figure 8-2: Selected address prefix assignments for IPv6, excerpted from RFC-2373.

Chapter 8 • Internet Protocols 341

never be assigned to any physical interface. It may be thought of as being associated with a
virtual interface (e.g., the loopback interface).

The IPv6 addresses with embedded IPv4 addresses are assigned out of the reserved 00000000-
format prefix space. There are two types of IPv6 addresses that contain an embedded IPv4
address (see bottom of Figure 8-2). One type are the so-called IPv4-compatible addresses. These
addresses are used by IPv6 routers and hosts that are directly connected to an IPv4 network and
use the “tunneling” approach to send packets over the intermediary IPv4 nodes (Section 8.1.3).
This address format consists of 96 bits of 0s followed by 32 bits of IPv4 address. Thus, and IPv4
address of 128.6.29.131 can be converted to an IPv4-compatible ::128.6.29.131. The other type is
so called IP-mapped addresses. These addresses are used to indicate IPv4 nodes that do not
support IPv6. The format of these addresses consist of 80 bits of 0s, followed by 16 bits of 1s, and
then by 32 bits of IPv4 address. An example would be written as ::FFFF:128.6.29.131.

IPv6 allows three types of addresses:

• Unicast: An identifier for a single network interface. A packet sent to a unicast address
should be delivered to the interface identified by that address.

• Anycast: A prefix identifier for a set of network interfaces. These typically belong to
different nodes, with addresses having the same subnet prefix. A packet sent to an
anycast address should be delivered to only one of the interfaces identified by that prefix.
The interface selected by the routing protocol is the “nearest” one, according to the
protocol’s distance metrics. For example, all the routers of a backbone network provider
could be assigned a single anycast address, which would then be used in the routing
header. One expected use of anycasting is “fuzzy routing,” which means sending a packet
through “one router of network X.” The anycast address will also be used to provide
enhanced routing support to mobile hosts.

• Multicast: An identifier for a set of network interfaces, typically belonging to different
nodes that may or may not share the same prefix. A packet sent to a multicast address
should be delivered to all the interfaces identified by that address.

There are no broadcast addresses in IPv6; their function is taken over by multicast addresses.

It is anticipated that unicast addressing will be used for the vast majority of traffic under IPv6,
just as is the case for older one, IPv4. It is for this reason that the largest of the assigned blocks of
the IPv6 address space is dedicated to unicast addressing. RFC-2374 assigned the Format Prefix
2000::/3 (a “001” in the first three bits of the address) to unicast addresses. However, RFC-3587
invalidated this restriction. Although currently only 2000::/3 is being delegated by the IANA,
implementations should not make any assumptions about 2000::/3 being special. In the future, the
IANA might be directed to delegate currently unassigned portions of the IPv6 address space for
the purpose of Global Unicast as well.

Figure 8-3(a) shows the general format for IPv6 global unicast addresses as defined in RFC-3587.
The Global Routing Prefix is a (typically hierarchically-structured) value assigned to a site (a
cluster of subnets or links), the Subnet ID is an identifier of a subnet within the site, and the
Interface ID identifies the network interfaces on a link. The global routing prefix is designed to
be structured hierarchically by the Regional Internet Registries (RIRs) and Internet Service

Ivan Marsic • Rutgers University 342

Providers (ISPs). The subnet-ID field is designed to be structured hierarchically by site
administrators.

RFC-3587 also requires that all unicast addresses, except those that start with binary value “000,”
have Interface IDs that are 64-bits long and to be constructed in Modified 64-bit Extended
Unique Identifier (EUI-64) format. The format of global unicast address in this case is shown in
Figure 8-3(b). This includes global unicast address under the 2000::/3 prefix (starting with binary
value “001”) that is currently being delegated by the IANA.

An IPv6 Address [RFC-4291] may be administratively assigned using DHCPv6 [RFC-3315] in a
manner similar to the way IPv4 addresses are, but may also be autoconfigured, facilitating
network management. Autoconfiguration procedures are defined in [RFC-4862] and [RFC-4941].
IPv6 neighbors identify each other’s addresses using either Neighbor Discovery (ND)
[RFC-4861] or SEcure Neighbor Discovery (SEND) [RFC-3971].

8.1.2 IPv6 Extension Headers

IPv6 header is relatively simple (compared to IPv4), because features that are rarely used or less
desirable are removed. However, some of these features occasionally are still needed, so IPv6 has
introduced the concept of an optional extension header. These headers can be supplied to provide
extra information, and are placed between the IPv6 header and the upper-layer header in a packet.
Extension headers allow the extension of the protocol if required by new technologies or
applications. Six kinds of extension headers are defined at present (Table 8-1). Each one is
optional, and if present, each is identified by the Next Header field of the preceding header. If
more than one is present, they must appear directly after the main header, and preferably in the

Table 8-1: IPv6 extension headers.

Extension header Description

Hop-by-hop options Miscellaneous information for routers.

Destination options Additional information for the destination node.

Routing Loose list of routers to visit (similar to IPv4 source routing).

Fragmentation Information about datagram fragmentation and reassembly.

Authentication Verification of the sender’s identity.

Encrypted security payload Information about the encrypted contents.

global routing prefix
IPv6 global unicast address

general format

1270 (n bits) (m bits) (128−n−m bits)

subnet ID interface ID

global routing prefix
IPv6 global unicast address

format for prefix not “000”

1270 (n bits) (64 bits)(64−n bits)

subnet ID interface ID

(b)

(a)

Figure 8-3: Format of IPv6 global unicast addresses.

Chapter 8 • Internet Protocols 343

order shown in Table 8-1. After the extension headers follows the upper-layer header (e.g., TCP
header), which is the header of the payload contained in this IPv6 datagram.

Figure 8-4 shows an example of an IPv6 datagram that includes an instance of each extension
header, except those related to security. Note that the main IPv6 header and each extension
header include a Next Header field. This field identifies the type of the immediately following
header. If the next header is an extension header, then this field contains the type identifier of that
header. Otherwise, this field contains the identifier of the upper-layer protocol to which the
datagram will be delivered. In the latter case, the same values are used as for the IPv4 Protocol
field. In the example in Figure 8-4, the upper-layer protocol is TCP and the payload carried by
this IPv6 datagram is a TCP segment.

With one exception, extension headers are not examined or processed by any node along a
packet’s delivery path, until the packet reaches the node (or, in the case of multicast, each of the
set of nodes) identified in the Destination Address field of the IPv6 header. There, regular
demultiplexing on the Next Header field of the IPv6 header invokes the module to process the
first extension header, or the upper-layer header if no extension header is present. The contents
and semantics of each extension header determine whether or not to proceed to the next header.
Therefore, extension headers must be processed strictly in the order they appear in the packet. A
receiver must not, for example, scan through a packet looking for a particular kind of extension
header and process that header prior to processing all preceding ones.

The exception referred to in the preceding paragraph is the Hop-by-Hop Options header, which
carries information that must be examined and processed by every node along a packet’s delivery
path, including the source and destination nodes. The Hop-by-Hop Options header, when present,

application data payload

IPv6 main header

Hop-by-hop
options header

Routing header

Fragment header

Destination
options header

TCP header

Mandatory
IPv6 header

Optional
extension

headers

IPv6 packet
payload

40 bytes

variable

variable

variable

8 bytes

20 bytes (default)

variable

= Next Header field

Figure 8-4: Example of IPv6 extension headers.

Ivan Marsic • Rutgers University 344

must immediately follow the main IPv6 header. Its presence is indicated by the value zero in the
Next Header field of the main IPv6 header.

Hop-by-Hop Options Header

The Hop-by-Hop Options header carries optional information for the routers that will be visited
by this IPv6 datagram. This header must be examined by every node along a packet’s delivery
path. The Hop-by-Hop Options header is identified by a Next Header value of 0 in the main IPv6
header, and has the following format (Figure 8-5(a)):

• Next Header (8 bits): Identifies the type of header immediately following the Hop-by-
Hop Options header. Uses the same values as the IPv4 Protocol field.

• Hdr Ext Len (8-bits): Length of the Hop-by-Hop Options header in 64-bit units, not
including the first 64 bits.

• Options: A variable-length field, of length containing one or more options, such that the
complete Hop-by-Hop Options header is long an integer multiple of 64-bits. Each option
is defined by three sub-fields: Option Type (8 bits), which identifies the option; Length (8
bits), which specifies the length of the Option Data field (in bytes); and Option Data,
which is a variable-length specification of the option.

If, as a result of processing a header, a node is required to proceed to the next header but the Next
Header value in the current header is unrecognized by the node, it should discard the packet and
send an ICMP Parameter Problem message to the source of the packet, with an ICMP Code value
of 1 (“unrecognized Next Header type encountered”) and the ICMP Pointer field containing the

0 15 16 317 8

Hdr ext len

One or more options

Reserved

0 15 16 317 8

(a) Hop-by-Hop Options header;
Destinations Options header

(b) Fragment header

Next headerNext header

Next headerNext header MRes

28 29

Fragment offset

Identification

0 15 16 31

Type-specific data

23 24

Segments left

(c) Generic Routing header

Next headerNext header

7 8

Hdr ext len Routing type

0 15 16 317 8

Hdr ext len

One or more options

Reserved

0 15 16 317 8

(a) Hop-by-Hop Options header;
Destinations Options header

(b) Fragment header

Next headerNext header

Next headerNext header MRes

28 29

Fragment offset

Identification

0 15 16 31

Type-specific data

23 24

Segments left

(c) Generic Routing header

Next headerNext header

7 8

Hdr ext len Routing type

0 7 8

Next headerNext header

Reserved

(d) Type 0 Routing header

Address[n]

15 16 3123 24

Segments leftHdr ext len 0

Address[1]

Address[2]

0 7 8

Next headerNext header

Reserved

(d) Type 0 Routing header

Address[n]

15 16 3123 24

Segments leftHdr ext len 0

Address[1]

Address[2]

Figure 8-5: Format of IPv6 extension headers.

Chapter 8 • Internet Protocols 345

offset of the unrecognized value within the original packet. The same action should be taken if a
node encounters a Next Header value of zero in any header other than an IPv6 header.

8.1.3 Transitioning from IPv4 to IPv6

There are two approaches for gradually introducing IPv6 in the public Internet, which is based on
IPv4:

• Dual-stack approach: IPv6 nodes also have a complete IPv4 implementation. Such a
node, referred to as and IPv6/IPv4 node in RFC-4213, has the ability to send and receive
both IPv4 and IPv6 datagrams.

• Tunneling approach: Any two IPv6 nodes that are connected via intermediary IPv4
routers (that are not IPv6-capable) create a “tunnel” between them. That is, the sending
node takes the entire IPv6 datagram (header and payload included) and puts it in the data
(payload) filed of an IPv4 datagram. This datagram is then addressed to the receiving
IPv6 node and sent to the first intermediary node in the tunnel.

8.2 Routing Protocols

This section reviews several currently most popular Internet routing
protocols.

8.2.1 Routing Information Protocol (RIP)

Routing Information Protocol (RIP) is a distance-vector routing protocol (Section 1.4.3),
described in RFC-1058. Similar to OSPF (described next in Section 8.2.2) RIP is also used
for routing within individual autonomous domains. Unlike OSPF, which scales to large
intranets, RIP is useful for small subnets because of its simplicity of implementation and
configuration, where its inadequacies are not prominent. RIP inadequacies include poor dealing
with link failures and lack of support for multiple metrics. In addition, unlike OSPF, RIP for IP
internetworks cannot be subdivided and no route summarization is done beyond the summarizing
for all subnets of a network identifier. As a result, RIP networks are “flat.”

The format of RIP version 2 route-advertisement packets is shown in Figure 8-6. The first four
bytes of a RIP message contain the RIP header. The Command field is used to specify the
purpose of this packet. For example, the possible values include: “1” which means a request for
the receiver node to send all or part of its routing table; and “2” which symbolizes a response
message containing all or part of the sender’s routing table. This message may be sent in response
to a request or poll, or it may be an update message generated by the sender.

Layer 2:

Network

Layer 1:

Link

Layer 3:

End-to-End

Routing Protocol
(OSPF, RIP, BGP, …)

Routing Protocol
(OSPF, RIP, BGP, …)

Ivan Marsic • Rutgers University 346

The Version field of the header specifies version number of the RIP protocol that the sender uses.
The value should be “2” for RIP messages that use authentication or carry information in any of
the newly defined fields (RIP version 2, defined in RFC-1723). The contents of the Unused field
(two bytes) shall be ignored. The Address Family Identifier filed indicates what type of address is
specified in the entries. The address family identifier for IPv4 is 4. The Route Tag field is an
attribute assigned to a route that must be preserved and readvertised with a route. The intended
use of the Route Tag is to provide a method of separating “internal” RIP routes (routes for
networks within the RIP routing domain) from “external” RIP routes, which may have been
imported from another routing protocol.

The remainder of a RIP message is composed of route entries. There may be between 1 and 25
route entries and each is 20 bytes long. The IP Address is the usual 4-byte IPv4 address. The
Subnet Mask field contains the subnet mask that is applied to the IP address to yield the non-host
portion of the address (recall Section 1.4.4). If this field is zero, then no subnet mask has been
included for this entry.

The Next Hop field identifies the immediate next hop IP address to which packets to the
destination (specified by the IP Address of this route entry) should be forwarded. Specifying a
value of 0.0.0.0 in this field indicates that routing should be via the originator of this RIP
advertisement packet. An address specified as a next hop must be directly reachable on the logical
subnet over which the advertisement is made. The purpose of the Next Hop field is to eliminate
packets being routed through extra hops in the system. This is particularly useful when RIP is not
being run on all of the routers on a network, but some other routing protocols are used, as well.
Note that Next Hop is an “advisory” field. That is, if the provided information is ignored, a
possibly sub-optimal, but still valid, route may be taken. If the received Next Hop is not directly
reachable, it should be treated as 0.0.0.0.

The Metric field of a route entry specifies the distance to the destination node identified by the IP
Address of this entry. RIP takes the simplest approach to link cost metrics, a hop-count metric

Total up to 25 route entries

0 15 16 317 8

version unused (must be zero)

address family identifier

distance metric

IPv4 address

route tag

command

next hop

subnet mask
16

bytes

8
bytesRIP header

RIP route entry

Total up to 25 route entries

0 15 16 317 8

version unused (must be zero)

address family identifier

distance metric

IPv4 address

route tag

command

next hop

subnet mask
16

bytes

8
bytesRIP header

RIP route entry

Figure 8-6: Routing Information Protocol (RIP) version 2 packet format for IPv4 addresses.

Chapter 8 • Internet Protocols 347

with all link costs being equal to 1. Valid distances are 1 through 15, with 16 defined as infinity.
This limits RIP to running on relatively small networks, with no paths longer than 15 hops.

RIP, like most distance vector routing protocols, announces its routes in an unsynchronized and
unacknowledged manner. Peer routers exchange distance vectors every 30 seconds, and a router
is declared dead if a peer does not hear from it for 180 s, which is the hold-down timer period.
RIP uses split horizon with poisoned reverse to tackle the counting-to-infinity problem.

Triggered updates allow a RIP router to announce changes in metric values almost immediately
rather than waiting for the next periodic announcement. The trigger is a change to a metric in an
entry in the routing table. For example, networks that become unavailable can be announced with
a hop count of 16 through a triggered update. Note that the update is sent almost immediately,
where a time interval to wait is typically specified on the router. If triggered updates were sent by
all routers immediately, each triggered update could cause a cascade of broadcast traffic across
the IP internetwork.

8.2.2 Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) is a link-state routing protocol (Section 1.4.2) that is currently
the preferred protocol for interior routing—routing within individual autonomous systems, i.e.,
internetworks controlled by a single organization, also known as intranets. Autonomous systems
(ASs) and inter-domain routing are described in Section 1.4.5.

The router broadcasts its link-state advertisements (LSAs) to all other routers in its autonomous
system, not just to its neighboring routers. A router broadcasts link-state advertisements whenever
there is a change in link status (e.g., outage or changed link cost). It also broadcasts a link’s state
periodically (at least once every 30 minutes), even if the link’s state has not changed. An OSPF
cost advertised in LSAs is a unitless metric that indicates the degree of preference for using a
link. The network administrator can configure the cost of individual links to represent delay, data
rate, monetary cost, or other factors.

Each router gathers the received LSAs into a database called the link state database (LSDB). By
synchronizing LSDBs between all neighboring routers, each router has each other router’s LSA in
its database. Therefore, every router has the same LSDB. From the LSDB, entries for the router’s
routing table are calculated using the algorithm described in Section 1.4.2 to determine the least-
cost path, the path with the lowest accumulated cost, to each network in the AS internetwork.

OSPF allows introducing additional level of hierarchy, in addition to autonomous systems. Each
AS that runs OSPF can be configured into areas, where each area behaves like an independent
network. Different areas exchange information via routers that belong to several areas, known as
area-border routers. Each OSPF area runs its own OSPF protocol, and each router in an area
broadcasts its LSAs only to routers within its area and each router’s LSDB includes only the state
of this area’s links. Exactly one OSPF area is configured to act as the backbone area that routes
traffic between the other areas within the same AS. There must be at least one area-border router
in each area, connecting the area to the backbone. Each area-border router maintains several
LSDBs, one for each area to which it belongs.

Ivan Marsic • Rutgers University 348

OSPF represents network topology as a directed graph. An example is shown in Figure 8-7,
where autonomous system ASα is running OSPF as its interior gateway protocol. The vertices of
the link-state database graph represent routers and networks. A graph edge connects two routers
when they are attached via a physical point-to-point link. An edge connecting a router to a
network indicates that the router has an interface on the network. Networks can be either transit
or stub networks. Transit network is capable of carrying data traffic that is originated and
destined externally to this network. A transit network is represented by a vertex having both
incoming and outgoing edges. A stub network’s vertex has only incoming edges. For example, in
Figure 8-7(b), N2 is a transit network and N1 is a stub network. The mapping is as follows:

AA
N1

N2

BB

CC

DD

H2

N3
ASβ

ASα

H1

N1

A

B

C

D

N3
N2

H2

(a)

(b)

1

2

1

1

5

3

1

8

6

7

4

1
2

1

5

7

1

3

6

8

1
4

AA
N1

N2

BB

CC

DD

H2

N3
ASβ

ASα

H1

N1

A

B

C

D

N3
N2

H2

(a)

(b)

1

2

1

1

5

3

1

8

6

7

4

1
2

1

5

7

1

3

6

8

1
4

Figure 8-7: (a) Example of an autonomous system running OSPF. (b) Directed graph
representation of the same AS. Notice that link costs may be asymmetric for both directions.

Chapter 8 • Internet Protocols 349

• Two routers connected by a point-to- point link are represented as two router vertices
directly connected by a pair of edges, one in each direction. For example, in Figure 8-7
the cost of the edge from router B to C is “1” and from C to B is “3.”

• When several routers are attached to a broadcast network (transit network), the graph
shows all routers bidirectionally connected to the network vertex. For example, in Figure
8-7 network N2 has routers A and B attached and therefore its edges in Figure 8-7(b) are
bidirectional.

• If a network has only one attached router (i.e., a stub network), the network appears on
the end of a stub connection in the graph. See, for example, network N1 in Figure 8-7.

• Hosts attached directly to routers appear on the graph as stub networks. See, for example,
network H2 in Figure 8-7. (Host H1 is not shown in the graph because it is not attached
directly to a router.)

• If a router is connected to other autonomous systems (so called “speaker node,” see
Section 1.4.5), then the cost to each network in the other AS must be obtained from an
exterior routing protocol, such as BGP (Section 8.2.3). Such a network is represented as a
stub. For example, in Figure 8-7 router D is a speaker node and it is connected to network
N3 in ASβ.

The cost of a link is associated with the output port of each router interface, so each end of the
link may see the link cost differently. As already noted, the link cost is configurable by the
network administrator. Arcs of the link-state database graph are labeled with the cost of the
corresponding router output interface, as seen in Figure 8-7. Arcs without labels have a cost of
zero. Arcs leading from transit networks to routers always have a cost of 0. See for example arcs
from N2 to routers A and B in Figure 8-7(b).

All OSPF messages begin with the same header (Figure 8-8). Current (as of 2010) Version of the
OSFP protocol is 2. There are five payload Types of OSPF packets, as follows: 1 = Hello; 2 =
Database Description; 3 = Link State Request; 4 = Link State Update; 5 = Link State
Acknowledgment. The packet Length is given in bytes and includes the standard OSPF header.
The Address identifies the source router of this packet. Area ID is a 32-bit number identifying the
OSPF routing area to which the source router of this packet belongs. All OSPF packets are
associated with a single area. Most travel a single hop only. Packets travelling over a virtual link
are labeled with the backbone Area ID of 0.0.0.0. The Checksum field represents the standard
IP checksum of the entire contents of the packet, starting with the OSPF packet header but
excluding the 64-bit Authentication field. This checksum is calculated as the 16-bit one’s
complement of the one’s complement sum of all the 16-bit words in the packet, excepting the
Authentication field. If the packet’s length is not an integral number of 16-bit words, the packet is
padded with a byte of zero before checksumming. Authentication Type identifies the
authentication scheme to be used for the packet. Finally, Authentication is a 64-bit field for use by
the authentication scheme.

Ivan Marsic • Rutgers University 350

Link State Update packets are OSPF packet type 4. These packets implement the flooding of
LSAs. Each Link State Update packet carries a collection of LSAs one hop further from their
origin. Several LSAs may be included in a single packet. The payload format for type-4 packets is
shown in Figure 8-9. There is one common LSA header for all LSA advertisement types, shown
in the top part of Figure 8-9. The LSA advertisement type is specified in the Type field, see the
top row in Figure 8-9.

As seen, these link-state advertisements (LSAa) are more complex than LSAs described in
Section 1.4.2 for a basic version of link state routing. The complexity derives from the more
complex link-state database graph representation for OSPF (Figure 8-7). For example, a router
running OSPF may generate link-state advertisements that advertise one or more networks that
are directly connected to this router. A router may also advertise a direct point-to- point link to
another router.

OSPF packet payload

0 15 16 317 8

type packet length

area ID

version

authentication

24
bytes

OSPF header

checksum authentication type

source router address (IPv4)

Figure 8-8: OSPF packet format for IPv4 addresses.

Chapter 8 • Internet Protocols 351

OSPF has fast convergence rate. It can detect and propagate topology changes faster than a
distance-vector routing protocol and it does not suffer from the counting-to-infinity problem
(described in Section 1.4.3). OSPF-calculated routes are always loop-free. With OSPF, an
autonomous system can be subdivided into contiguous groups of networks called areas. Routes
within areas can be summarized to minimize route table entries. Areas can be configured with a
default route summarizing all routes outside the AS or outside the area. As a result, OSPF can
scale to large and very large internetworks.

8.2.3 Border Gateway Protocol (BGP)

Section 1.4.5 presented the key challenges that arise due to independent administrative entities
that compete for profit to provide global Internet access. The key questions for an Autonomous
System (AS) can be summarized as follows:

• What routing information to advertise to other ASs; how to process the routing
information received from other ASs; and, what of the received information to
readvertise?

• How can an AS achieve a consistent picture of the Internet viewed by all of its routers, so
that for a given data packet each router would make the same forwarding decision (as if
each had access to the routing tables of all the border routers within this AS)?

0 15 16 317 8

LS age

LS sequence number

authentication

20
bytesLSA header

LS checksum length

link state ID

typeoptions

link ID

link data

link type num_TOS metric

optional TOS information

Link description
for LSA type = 1

(more link descriptions)

16
bytes

0 0 number of linksflags

Figure 8-9: OSPF packet payload format for Type=4 packets (Link State Update packets).
These packets carry one or more Link State Advertisements (LSAs). The bottom part shows
the format of link description for Type 1 LSAs (specified in the LSA header in the top row).

Ivan Marsic • Rutgers University 352

The inter-AS (or, external gateway routing protocol) routing protocol needs to decide whether to
forward routing advertisement packets (import/export policies) and whether to disseminate
reachability of neighboring ASs at the risk of having to carry their transit traffic unrecompensed.

Border Gateway Protocol (BGP) is an inter-Autonomous System routing protocol that addresses
the above requirements. BGP is extremely complex and many issues about its operation are still
not well understood. The main complexity of an external routing is not in the protocol for finding
routes. Rather, the complexity lies in how border gateways (or, “BGP speakers”) are configured
to implement the business preferences, and in how external routes are learned from other ASs are
disseminated internally within an AS. As will been seen later, there are two keys for this
capability: (1) provider’s filtering policies for processing and redistributing the received route
advertisements, which are kept confidential from other ASes; and, (2) BGP path attributes that
are included in route announcements and used when applying the local filtering policies.

BGP is a path-vector routing protocol (Section 1.4.5), where distance vectors are annotated not
only with the entire path used to compute each distance, but also with path attributes that describe
the advertised paths to destination prefixes. For example, the attributes include preference values
assigned to an advertised path by the routers through which this advertisement passed. Unlike,
distance-vector, path-vector routing converges quickly to correct paths and guarantees freedom
from loops. However, there is an issue of large routing tables needed for path-vector routing. We
will see later how BGP addresses this issue.

Routing Between and Within Autonomous Systems

In Section 1.4.5 we saw that the inter-AS routing protocol must exchange routing advertisements
between different domains, as well as disseminate the received information within its own AS.

BGP routers use TCP (Chapter 2) on a well-known port (179) to communicate with each other,
instead of layering the routing message directly over IP, as is done in other Internet routing
protocols. Interior Gateway Protocols (IGPs), such as RIP (Section 8.2.1) and OSPF (Section
8.2.2) rely on periodic updates that carry the entire routing tables of the sending routers
containing all active routes. Unlike this, BGP sends only incremental updates containing only
the routing entries that have changed since the last update (or transmission of all active routes).
TCP ensures reliable delivery and simplifies the error management in the routing protocol.
However, routing updates are subject to TCP congestion control, which can lead to complicated
network dynamics and performance problems. For example, routing updates might be delayed
waiting for TCP sender to time out.

BGP neighbors, or peers, are established by manual configuration between routers to create a
TCP session on port 179. Because TCP is a connection-oriented protocol with precisely identified
endpoints, each BGP router maintains a separate TCP session with each other BGP router to
which it is connected. There is typically one such BGP TCP connection for each link that directly
connects two speaker routers in different ASs. There are also TCP connections between the
speaker routers within the same AS (if there is more than one speaker within the AS), known as
internal peering. Unlike BGP speakers in different ASs that are typically directly connected at the
link layer, BGP speakers within the same AS are usually connected via non-speaker routers (i.e.,
at the network layer). For each TCP connection, the two routers at each end are called BGP peers
and the TCP connection over which BGP messages are sent is called a BGP session. A BGP

Chapter 8 • Internet Protocols 353

session that spans two ASs is called an external BGP (eBGP) session; a BGP session between
two routers within the same AS is called an internal BGP (iBGP) session. Recall from the
discussion in Section 1.4.5 that the purpose of iBGP sessions is to ensure that network
reachability information is consistent among the BGP speakers in the same AS. A BGP speaker
can easily decide whether to open eBGP or iBGP session by comparing the Autonomous System
Number (ASN) of the other router with its own. Figure 8-10 shows a detail from Figure 1-51 with
eBGP and iBGP sessions.

As seen in Figure 8-10 for ASα, all iBGP peers must be fully connected to one another because
each TCP session connects only one pair of endpoints. Full mesh connectivity (where everyone
speaks to everyone directly) ensures that all the BGP routers in the same AS to exchange routing
information and ensure that network reachability information is consistent among them. Given n
BGP routers, the full mesh connectivity requires n/2 × (n − 1) iBGP sessions, which may be large
for a large n. In addition, each BGP router will run at least one eBGP session (routers F, N, and O
in Figure 8-10 run two each). Large number of sessions may degrade performance of routers, due
either to high memory or processing requirements. Methods such as confederations (RFC-5065)
and route reflectors (RFC-4456) help improve the scalability of iBGP sessions.

The BGP finite state machine (FSM) consists of six states (Figure 8-11): Idle, Connect, Active,
OpenSent, OpenConfirm, and Established. To start participating in a BGP session with another
router, a router first sets up a TCP connection on the BGP port 179 (states Connect and Active). If
successful, the routers next exchange OPEN messages (states OpenSent and OpenConfirm).
During the OPEN exchanges, BGP routers negotiate optional capabilities of the session, including
multiprotocol extensions and various recovery modes.

AS δ AS ε

LL

KK

NN

PP

OO QQ

MM

AS β

AS α

HH

JJ

II

AA

FF

BB

GG

DD

CC

EE

Link-layer connection

eBGP TCP session

Key:

iBGP TCP session

Link-layer connection

eBGP TCP session

Key:

iBGP TCP session

Figure 8-10: Example of eBGP and iBGP sessions.

Ivan Marsic • Rutgers University 354

After the OPEN is completed and a BGP session is running, the BGP speakers transition to the
Established state. They exchange UPDATE messages about destinations to which they offer
connectivity (routing tables to all active routes). All subsequent UPDATE messages incrementally
announce only routing entries that have changed since the last update. There are two kinds of
updates: reachability announcements, which are changes to existing routes or new routes, and
withdrawals of prefixes to which the speaker no longer offers connectivity (because of network
failure or policy change). Both positive and negative reachability information can be carried in
the same UPDATE message. In the protocol, the basic CIDR route description is called Network
Layer Reachability Information (NLRI). NLRI includes the destination prefix, prefix length, path
vector of the traversed autonomous systems and next hop in attributes, which can carry a wide
range of additional information that affects the import policy of the receiving router.

The exchanged routing tables are not necessarily the exact copies of their
actual routing tables, because each router first applies the logic rules that
implement its export policy. If a BGP speaker has a choice of several
different routes to a destination, it will choose the best one according to
its own local policies, and then that will be the route it advertises. Of
course, a BGP speaker is not obliged to advertise any route to a
destination, even if it knows one. For example, in Figure 1-51 ASη
refuses to provide transit service to its peers and does not readvertise the
destination in ASφ that it learned about from ASδ.

ManualStart OR
AutomaticStart /

ManualStop /

ConnectRetryTimer
expired / retry

DelayOpenTimer expires OR
DelayOpen attribute == FALSE /

ManualStop OR AutomaticStop OR
HoldTimer expired /

send NOTIFICATION cease

OPEN or msg recvd /
send KEEPALIVE msg

KEEPALIVE
msg recvd /

ManualStop OR AutomaticStop OR Error in msg detected OR
NOTIFICATION error recvd /

KEEPALIVE or
UPDATE msg recvd /

TcpConnectionFails /

Idle

Established

Setting up
TCP connection

{Connect, Active}

Opening
BGP session

{OpenSent, OpenConfirm}

Figure 8-11: Finite state machine of the BGP4 protocol (highly simplified).

NN

RR

SS

AS δ

AS ϕ

{A
S

{A
Sδδ, A

S
, A

Sφφ}}

{A
S

{A
Sδδ, A

S
, A

Sφφ}}

{{CustCustηη}}{{CustCustηη}}

AS η

Chapter 8 • Internet Protocols 355

Each router integrates the received information to its routing table according to its import policy
(or, acceptance policy). The rules defining the import policy are specified using attributes such as
LOCAL_PREF and WEIGHT. These attributes are locally exchanged by routers in an AS (using
iBGP), but are not disclosed to other ASs (using eBGP). A BGP speaker calculates the degree of
preference for each external route based on the locally-configured policy, and includes the degree
of preference when advertising a route to its internal peers. A receiving BGP speaker uses the
degree of preference learned via LOCAL_PREF in its decision process and favors the route with
the highest degree of preference. The rules for BGP route selection are summarized at the end of
this section in Table 8-3.

BGP Messages

All BGP messages begin with a fixed-size header, 19-bytes long, that identifies the message type
(Figure 8-12(a)). A description of the header fields is as follows:

Marker: This 16-byte field is included for backwards compatibility; it must be set to all ones,
unless when used for security purposes.

Length: This 2-byte unsigned integer indicates the total length of the message, including the
header, in bytes (or, octets). The value of the Length field must always be between 19 and 4096,
and may be further constrained, depending on the message type.

Type: This 1-byte unsigned integer indicates the type code of the message. BGP defines four type
codes: {1 = OPEN; 2 = UPDATE; 3 = NOTIFICATION; 4 = KEEPALIVE}.

The BGP message types are discussed next.

• OPEN Messages (Figure 8-12(b))

After a TCP connection is established, the first message sent by each side is an OPEN message
(Figure 8-12(b)). If the OPEN message is acceptable, a KEEPALIVE message confirming the
OPEN is sent back. A description of the message fields is as follows:

Version: Indicates the BGP protocol version number of the message; currently it is 4.

My Autonomous System: Indicates the Autonomous System number of the router that sent this
message.

Hold Time: Indicates the proposed interval between the successive KEEPALIVE messages (in
seconds). The receiving router calculates the value of the Hold Timer by using the smaller of its
configured Hold Time and the Hold Time received in this OPEN message. A Hold Time value of
zero indicates that KEEPALIVE messages will not be exchanged at all; otherwise, the minimum
value is three seconds.

BGP Identifier: Identifies the sending BGP router. The value of the BGP Identifier is determined
upon startup and is the same for every local interface and BGP peer.

Optional Parameters Length: Indicates the total length of the Optional Parameters field in
bytes. If the value of this field is zero, no Optional Parameters are present.

Optional Parameters: Contains a list of optional parameters, in which each parameter is
encoded in TLV format <Type, Length, Value>. Parameter Type is a 1-byte field that
unambiguously identifies individual parameters. Parameter Length is a 1-byte field that contains

Ivan Marsic • Rutgers University 356

the length of the Parameter Value field in bytes. Parameter Value is a variable length field that is
interpreted according to the value of the Parameter Type field.

The minimum length of an OPEN message is 29 bytes (including the message header).

• KEEPALIVE Messages (Figure 8-12(c))

BGP does not use any TCP-based, keep-alive mechanism to determine if peers are reachable.
Instead, KEEPALIVE messages are exchanged between peers at a rate that prevents the Hold
Timer from expiring. A recommended time between successive KEEPALIVE messages is one-
third of the Hold Time interval. KEEPALIVE messages must not be sent more frequently than
one per second. If the negotiated Hold Time interval is zero, then periodic KEEPALIVE
messages will not be sent.

A KEEPALIVE message (Figure 8-12(c)) consists of only the message header and has a total
length of 19 bytes.

(a) BGP header format

0 15 16 3123 24

MarkerMarker

LengthLength TypeType

0 7 8 15 16 3123 24

MarkerMarker

LengthLength Type: OPENType: OPEN VersionVersion

My autonomous systemMy autonomous system Hold timeHold time

BGP identifierBGP identifier

Optional parameters (variable)Optional parameters (variable)

Optional Optional paramsparams
lengthlength

(b) BGP OPEN message format

(c) BGP KEEPALIVE message format

0 15 16 3123 24

MarkerMarker

LengthLength
Type:Type:

KEEPALIVEKEEPALIVE

0 7 8 15 16 3123 24

MarkerMarker

LengthLength Error codeError code

Data (variable)Data (variable)
Error Error subcodesubcode

(d) BGP NOTIFICATION message format

Type:Type:
NOTIFICATIONNOTIFICATION

Figure 8-12: Format of BGP headers and messages, except for UPDATE (Figure 8-13).

Chapter 8 • Internet Protocols 357

• NOTIFICATION Messages (Figure 8-12(d))

A NOTIFICATION message is sent when an error condition is detected. The BGP connection is
closed immediately after it is sent. In addition to the fixed-size BGP header, the NOTIFICATION
message contains the following fields (Figure 8-12(d)): Error Code, Error Subcode, and Data of
variable length. The Error Code indicates the type of error condition, while the Error Subcode
provides more specific information about the nature of the reported error (Table 8-2). Each Error
Code may have one or more Error Subcodes associated with it. If no appropriate Error Subcode is
defined, then a zero (Unspecific) value is used for the Error Subcode field.

The variable-length Data field is used to diagnose the reason for the NOTIFICATION. The
minimum length of the NOTIFICATION message is 21 bytes (including message header).

• UPDATE Messages (Figure 8-13)

After the connection is established, BGP peers exchange routing information by using the
UPDATE messages. The information in the UPDATE messages is used by the path-vector routing
algorithm (Section 1.4.5) to construct a graph that describes the connectivity of the Autonomous
Systems. By applying logical rules, routing information loops and some other anomalies may be
detected and removed from inter-AS routing.

An UPDATE message is used to advertise feasible routes that share common path attributes to a
peer, and to withdraw multiple unfeasible routes from service. The UPDATE message always
includes the fixed-size BGP header, and other fields, some of which may not be present in every
UPDATE message (Figure 8-13(a)).

Withdrawn Routes Length indicates the total length of the Withdrawn Routes field in bytes. A
value of zero indicates that no routes are being withdrawn from service, and that the Withdrawn
Routes field is not present in this UPDATE message.

The Withdrawn Routes field contains a variable-length list of IP-address prefixes for the routes
that are being withdrawn from BGP routing tables. Each prefix is encoded as a 2-tuple of the
form <length, prefix>. The Length field indicates the length (in bits) of the prefix. A length of

Table 8-2: BGP NOTIFICATION message error codes and subcodes.

Code Description Subcodes (if present)
1 Message

header error
1 – Connection not synchronized 3 – Bad message type
2 – Bad message length

2 OPEN
message error

1 – Unsupported version number 4 – Unsupported optional parameter
2 – Bad peer AS 5 – Deprecated
3 – Bad BGP identifier 6 – Unacceptable Hold Time

3 UPDATE
message error

1 – Malformed attribute list 7 – Deprecated
2 – Unrecognized well-known attribute
3 – Missing well-known attribute 8 – Invalid NEXT_HOP attribute
4 – Attribute flags error 9 – Optional attribute error
5 – Attribute length error 10 – Invalid Network field
6 – Invalid ORIGIN attribute 11 – Malformed AS_PATH

4 Hold timer expired
5 Finite state machine error
6 Cease

Ivan Marsic • Rutgers University 358

zero indicates a prefix that matches all IP addresses. The Prefix field contains an IP-address
prefix, possibly followed by padding bits to make the field length a multiple of 8 bits.

Total Path Attribute Length indicates the total length of the Path Attributes field in bytes. A value
of zero indicates that neither the Network Layer Reachability Information field nor the Path
Attribute field is present in this UPDATE message.

A BGP router uses the Path Attributes and Network Layer Reachability Information (NLRI)
fields to advertise a route. The NLRI field contains a list of IP-address prefixes that can be
reached by this route. The NLRI is encoded as one or more 2-tuples of the form <length, prefix>.
This is the path-vector information used by the path-vector routing algorithm (Section 1.4.5).

A variable-length sequence of Path Attributes is present in every UPDATE message, except for an
UPDATE message that carries only the withdrawn routes. Each path attribute is a triple <type,
length, value> of variable length (Figure 8-13(b)).

Attribute Type field that consists of the Attribute Flags byte, followed by the Attribute Type Code
byte (Figure 8-13(c)). The high-order bit (bit 0) of Attribute Flags is the Optional bit. It defines
whether the attribute is optional (if set to 1) or well-known (if set to 0). The second bit is the
Transitive bit. It defines whether an optional attribute is transitive (if set to 1) or non-transitive (if
set to 0). For well-known attributes, the Transitive bit must be set to 1. The third bit is the Partial
bit that defines whether the information contained in the optional transitive attribute is partial (if
set to 1) or complete (if set to 0). For well-known attributes and for optional non-transitive
attributes, the Partial bit must be set to 0. The fourth bit of Attribute Flags is the Extended Length
bit. It defines whether the following Attribute Length field is one byte (if set to 0) or two bytes (if
set to 1). The lower-order four bits of Attribute Flags are unused. They are set to zero by the
sender, and ignored by the receiver.

The Attribute Type Code field contains the Attribute Type Code. Attribute Type Codes defined in
RFC-4271 are discussed next.

0 7 8 15 16 3123 24

MarkerMarker

LengthLength Type: Type: UPDATEUPDATE

Withdrawn routes (variable)Withdrawn routes (variable)

Withdrawn routes lengthWithdrawn routes length

Path attributes (variable)Path attributes (variable)

Total path attribute lengthTotal path attribute length

Network layer Network layer reachabilityreachability information (variable)information (variable)

(a) BGP UPDATE message format (c) Attribute type format

Attribute type (2 bytes)Attribute type (2 bytes) Attrib. length (1 or 2 bytes)Attrib. length (1 or 2 bytes)

Attribute value (variable)Attribute value (variable)

(b) Path attribute format

Attribute
type codeO T P E 0

Attribute flags

Optional
Transitive

Partial
Extended Length

Figure 8-13: Format of BGP UPDATE message.

Chapter 8 • Internet Protocols 359

BGP Path Attributes

This section discusses the path attributes of the UPDATE message (Figure 8-13). A BGP route
announcement (UPDATE message) has a set of attributes associated with each destination prefix.
Path attributes can be classified as: (1) well-known mandatory; (2) well-known discretionary; (3)
optional transitive; and, (4) optional non-transitive. A BGP router must recognize all well-known
attributes. Some of these attributes are mandatory and must be included in every UPDATE
message that contains Network Layer Reachability Information (NLRI). Others are discretionary
and may or may not be sent in a particular UPDATE message. Once a BGP peer has updated any
well-known attributes, it must pass these attributes to its peers in any updates it transmits.

In addition to well-known attributes, each path may contain one or more optional attributes. It is
not required or expected that all BGP implementations support all optional attributes. The
handling of an unrecognized optional attribute is determined by the value of the Transitive flag
(Figure 8-13(c)).

• ORIGIN (type code 1) is a well-known mandatory attribute. The ORIGIN attribute describes
how BGP at the origin AS came to know about destination addresses aggregated in a prefix. The
allowed values are: code 1 (IGP) means that the prefix was learned from an interior gateway
protocol (IGP); code 2 (EGP) means that the prefix was learned from an exterior gateway
protocol; and, code 3 (INCOMPLETE) represents another source, usually a manually configured
static route. The value of ORIGIN should not be changed by any other speaker.

• AS_PATH (type code 2) is a well-known mandatory attribute. This attribute lists the
autonomous systems through which this UPDATE message has traversed (in reverse order). This
list is called a path vector and hence BGP is a path vector protocol (Section 1.4.5). Every router
through the message passes prepends its own AS number (ASN) to AS_PATH and propagates the
UPDATE message on (subject to its route filtering rules). An example is shown in Figure 1-51 and
a detail in Figure 8-14. When a given BGP speaker advertises the route to an internal peer (over
iBGP), the advertising speaker does not modify the AS_PATH attribute.

BGP uses the AS_PATH attribute to detect a potential routing loop. When an external UPDATE
message is received (over eBGP), if the ASN of this BGP speaker is already contained in the path
vector, then the route should be rejected.

The speaker that modifies AS_PATH may prepend more than one instance of its own ASN in the
AS_PATH attribute. This is controlled via local configuration.

• NEXT_HOP (type code 3) is a well-known mandatory attribute. It defines the IP address of the
next-hop speaker to the destinations listed in the UPDATE message (in NLRI). As the UPDATE
message propagates across an AS boundary, the NEXT_HOP attribute is changed to the IP address
of the speaker from which this announcement was received (Figure 8-14). (The reader should
check RFC-4271 about detailed rules for modifying the NEXT_HOP attribute.)

Ivan Marsic • Rutgers University 360

When sending UPDATE to an internal peer, if the route is originated externally to this AS, the
BGP speaker should not modify the NEXT_HOP attribute unless it has been explicitly configured
to announce its own IP address as the NEXT_HOP. This is because UPDATE messages to internal
peers are sent by iBGP over the TCP connection, which runs on top of an IGP. On the other hand,
when announcing a route to a local destination within this AS, the BGP speaker should use as the
NEXT_HOP the IP address of the first router that announced the route.

As Figure 8-14 shows, all BGP speakers in an AS have the same BGP routing table (ASδ BGP
routing table is shown). The forwarding table is created based on the AS BGP routing table and
the IGP routing table (which is, naturally, different for each router).

The immediate next-hop address is determined by performing a recursive route lookup operation
for the IP address in the NEXT_HOP attribute, using the contents of the Routing Table, selecting
one entry if multiple entries of equal cost exist. The Routing Table entry that resolves the IP
address in the NEXT_HOP attribute will always specify the outbound interface. If the entry
specifies an attached subnet, but does not specify a next-hop address, then the address in the
NEXT_HOP attribute should be used as the immediate next-hop address. If the entry also specifies
the next-hop address, this address should be used as the immediate next-hop address for packet
forwarding.

• MULTI_EXIT_DISC (type code 4) is an optional non-transitive attribute that is intended to be
used on external (inter-AS) links to discriminate among multiple exit or entry points to the same
neighboring AS. To motivate the need for this attribute, consider the example in Figure 8-15
(extracted from Figure 1-51), where Autonomous Systems ASα and ASδ are linked at multiple
points. Suppose that router A in ASα receives a data packet from ASχ that is destined for ASη.
ASα would prefer to get rid of the packet in a hurry (“hot-potato” routing) and simply forward it

AS δ
AS φ

LL

KK
NN

AS ε

OO

MM

Subnet Prefix =
128.34.10.0/24

192.12.69.2

Prefix = 128.34/16

Prefix = 128.34/16

AS_PATH = {AS

AS_PATH = {ASφφ}}

NEXT_HOP = 192.12.69.2

NEXT_HOP = 192.12.69.2

UPDATE

192.12.69.1

Prefix = 128.34/16

Prefix = 128.34/16

AS_PATH = {

AS_PATH = {ASASδδ, , ASASφφ}}

NEXT_HOP = 192.12.62.1

NEXT_HOP = 192.12.62.1UPDATE

192.12.62.1

192.12.62.2

128.34.10.0/24 192.12.69.2

Prefix Next Hop

K’s forwarding table:

128.34.10.0/24 192.12.50.5

Prefix Next Hop

N’s forwarding table:

128.34.10.0/24 192.12.62.1

Prefix Next Hop

O’s forwarding table:

ASδ BGP routing table:

128.34.10.0/24 192.12.69.2

Prefix Next HopPath

{ASδφ}

K’s IGP routing table:

128.34.10.0/24 0

Destination Cost

KK’’ss BGPBGP

Next Hop

+ 

192.12.50.5

+
ASδ BGP routing table

N’s IGP routing table:

128.34.10.0/24 2

Destination Cost Next Hop

Router M

Router K 2 Router M

 

AS δ
AS φ

LL

KK
NN

AS ε

OO

MM

Subnet Prefix =
128.34.10.0/24

192.12.69.2

Prefix = 128.34/16

Prefix = 128.34/16

AS_PATH = {AS

AS_PATH = {ASφφ}}

NEXT_HOP = 192.12.69.2

NEXT_HOP = 192.12.69.2

UPDATE

Prefix = 128.34/16

Prefix = 128.34/16

AS_PATH = {AS

AS_PATH = {ASφφ}}

NEXT_HOP = 192.12.69.2

NEXT_HOP = 192.12.69.2

UPDATE

192.12.69.1

Prefix = 128.34/16

Prefix = 128.34/16

AS_PATH = {

AS_PATH = {ASASδδ, , ASASφφ}}

NEXT_HOP = 192.12.62.1

NEXT_HOP = 192.12.62.1UPDATE

Prefix = 128.34/16

Prefix = 128.34/16

AS_PATH = {

AS_PATH = {ASASδδ, , ASASφφ}}

NEXT_HOP = 192.12.62.1

NEXT_HOP = 192.12.62.1UPDATE

192.12.62.1

192.12.62.1

192.12.62.2

128.34.10.0/24 192.12.69.2

Prefix Next Hop

K’s forwarding table:

128.34.10.0/24 192.12.69.2

Prefix Next Hop

K’s forwarding table:

128.34.10.0/24 192.12.50.5

Prefix Next Hop

N’s forwarding table:

128.34.10.0/24 192.12.50.5

Prefix Next Hop

N’s forwarding table:

128.34.10.0/24 192.12.62.1

Prefix Next Hop

O’s forwarding table:

128.34.10.0/24 192.12.62.1

Prefix Next Hop

O’s forwarding table:

ASδ BGP routing table:

128.34.10.0/24 192.12.69.2

Prefix Next HopPath

{ASδφ}

ASδ BGP routing table:

128.34.10.0/24 192.12.69.2

Prefix Next HopPath

{ASδφ}

K’s IGP routing table:

128.34.10.0/24 0

Destination Cost

KK’’ss BGPBGP

Next Hop

K’s IGP routing table:

128.34.10.0/24 0

Destination Cost

KK’’ss BGPBGP

Next Hop

+ 

192.12.50.5

192.12.50.5

+
ASδ BGP routing table

N’s IGP routing table:

128.34.10.0/24 2

Destination Cost Next Hop

Router M

Router K 2 Router M

N’s IGP routing table:

128.34.10.0/24 2

Destination Cost Next Hop

Router M

Router K 2 Router M

 

Figure 8-14: Example of BGP UPDATE message propagation, originating from ASφ.

Chapter 8 • Internet Protocols 361

to router K in ASδ. However, ASδ would prefer to receive packets for ASη on the other point
(router N), because this is less expensive for ASδ—the packet would be immediately forwarded
by N to ASη instead of traversing ASδ’s interior routers. If there were no financial settlement
involved, ASα would simply implement its own preferences. However, because ASδ pays ASα
for transit service (Figure 1-49), ASα has to honor ASδ’s preferences. Earlier we described how a
BGP router uses the attribute LOCAL_PREF to integrate the received routing advertisement into
its routing table. However, because LOCAL_PREF expresses the local preferences, it is not useful
to express another AS’s preferences. For this purposed the MULTI_EXIT_DISCRIMINATOR
(MED) attribute is used.

The value of the MULTI_EXIT_DISC (MED) attribute is a four-byte integer, called a metric, and
the standard does not prescribe how to choose the MED metric. A common practice is to derive
the MED metric from the local IGP metric. All other factors being equal, the exit point with the
lower metric should be preferred. In Figure 8-15, router N advertises a prefix in ASη with MED =
100, but router K advertises the same prefix with MED = 300. Based on this, ASα should deliver
packets destined for ASη to router N. One the other hand, ASδ would prefer to receive destined
packets for ASγ or ASφ on router K, so it will choose opposite values of MED attribute when
advertising prefixes in ASγ or ASφ.

In peering relationships between ASs, (Section 1.4.5), the MED attribute is usually ignored. The
usage of the MED attribute becomes complicated when a third AS advertises the same route,
because the IGP metrics used by different ASs can be different. In such a case, comparing a MED
metric received from one AS with another MED metric received from another AS makes no sense.

There are three more path attributes (LOCAL_PREF, ATOMIC_AGGREGATE, and
AGGREGATOR), and the interested reader should check RFC-4271. Table 8-3 summarizes how a
BGP router that learned about more than route to a prefix selects one. The router will select the

AS β

AS α

AS δ

AS χ

AS ε
LL

KK
NN

HH

MM

AA

FF

BB

GG

DD

CC

EE

AS η

AS φ

AS γ

Pr
ef

ix=
 so

m
e

pr
ef

ix
in

AS

Pr
ef

ix=
 so

m
e

pr
ef

ix
in

AS
ηη

AS
_P

AT
H

=
{

AS
_P

AT
H

=
{A

SAS
δδ , ,

 A
SAS
ηη }}

M
E

D
 =

 3
00

M
E

D
 =

 3
00

U
P

D
A

TE

Pref
ix=

 so
me p

ref
ix

in
AS

Pref
ix=

 so
me p

ref
ix

in
ASηη

AS_P
ATH =

{

AS_P
ATH =

{ASASδδ, , A
SASηη}}

M
ED =

 1
00

M
ED =

 1
00UPDATE

AS β

AS α

AS δ

AS χ

AS ε
LL

KK
NN

HH

MM

AA

FF

BB

GG

DD

CC

EE

AS η

AS φ

AS γ

Pr
ef

ix=
 so

m
e

pr
ef

ix
in

AS

Pr
ef

ix=
 so

m
e

pr
ef

ix
in

AS
ηη

AS
_P

AT
H

=
{

AS
_P

AT
H

=
{A

SAS
δδ , ,

 A
SAS
ηη }}

M
E

D
 =

 3
00

M
E

D
 =

 3
00

U
P

D
A

TE
Pr

ef
ix=

 so
m

e
pr

ef
ix

in
AS

Pr
ef

ix=
 so

m
e

pr
ef

ix
in

AS
ηη

AS
_P

AT
H

=
{

AS
_P

AT
H

=
{A

SAS
δδ , ,

 A
SAS
ηη }}

M
E

D
 =

 3
00

M
E

D
 =

 3
00

U
P

D
A

TE

Pref
ix=

 so
me p

ref
ix

in
AS

Pref
ix=

 so
me p

ref
ix

in
ASηη

AS_P
ATH =

{

AS_P
ATH =

{ASASδδ, , A
SASηη}}

M
ED =

 1
00

M
ED =

 1
00UPDATE

Pref
ix=

 so
me p

ref
ix

in
AS

Pref
ix=

 so
me p

ref
ix

in
ASηη

AS_P
ATH =

{

AS_P
ATH =

{ASASδδ, , A
SASηη}}

M
ED =

 1
00

M
ED =

 1
00UPDATE

Figure 8-15: Example for BGP MULTI_EXIT_DISC (MED) attribute.

Ivan Marsic • Rutgers University 362

next hop along the first route that meets the criteria of the logical rule, starting with the highest
priority (1) and going down to the lowest priority (6).

8.2.4 Multicast Routing Protocols

Multicast Group Management

Internet Group Management Protocol (IGMP) is used by an end-system to declare membership in
particular multicast group to the nearest router(s). IGMP v3 (current) is defined by RFC-3376.

Version 1: Timed-out Leave (Joining Host send IGMP Report; Leaving Host does nothing;
Router periodically polls hosts on subnet using IGMP Query; Hosts respond to Query in a
randomized fashion)

Version 2: Fast, Explicit Leave (ADDS to Version 1: Group Specific Queries; Leave Group
Message; Host sends Leave Group message if it was the one to respond to most recent query;
Router receiving Leave Group message queries group.)

Version 3: Per-Source Join (ADDS to Version 2: Group-Source Specific Queries, Reports and
Leaves; Inclusion/Exclusion of sources)

Multicast Route Establishment

Protocol Independent Multicast (PIM), RFC-4601 defines Protocol Independent Multicast –
Sparse Mode (PIM-SM); RFC-3973 defines Protocol Independent Multicast – Dense Mode (PIM-
DM). PIM operates independently of the underlying unicast protocol, such as IS-IS or OSPF. It
supports applications that operate with fewer servers transmitting to multiple destinations (called
the dense mode) or numerous small workgroups operating in different multicast groups (called
the sparse mode).

Table 8-3: Priority of rules by which BGP speaker selects routes from multiple choices.

Priority Rule Comments

1 LOCAL_PREF E.g., LOCAL_PREF specifies the order of preference as
customer > peer > provider

If more than one route remains after this step, go to the next step.

2 AS_PATH Select shortest AS_PATH length (i.e., the list with the smallest
number of ASNs, not smallest number of hops or lowest delay!)

3 MED Select the route with the lowest MULTI_EXIT_DISC value, if
there is financial incentive involved.

4 IGP path Select the route for which the NEXT_HOP attribute, for which the
cost in the IGP routing table is lowest, i.e., use hot-potato routing.

5 eBGP > iBGP Select the route which is learned from eBGP over the one learned
by iBGP (i.e., prefer the route learned first hand)

6 Router ID Select the BGP router with the smallest IP address as the next hop.

Chapter 8 • Internet Protocols 363

Distance Vector Multicast Routing Protocol (DVMRP), defined in RFC-1075. DVMRP is an
enhancement of Reverse Path Forwarding (RPF, Section 3.3.2) that: Uses Distance Vector
routing packets for building tree; Prunes broadcast tree links that are not used (non-membership
reports); Allows for Broadcast links (LANs).

Multicast Forwarding in DVMRP: 1. check incoming interface: discard if not on shortest path to
source; 2. forward to all outgoing interfaces; 3. do not forward if interface has been pruned; 4.
prunes timeout every minute.

Source-Specific Multicast (SSM), defined in RFC-3569 and RFC-4607.

Multicast Open Shortest Path First (MOSPF); RFC-1584 defines multicast extensions to OSPF.

For independent Autonomous Systems, Border Gateway Multicast Protocol (BGMP) was
abandoned due to the lack of support within the Internet service provider community.
Multiprotocol Extensions for BGP4, defined in RFC-2858 defines the codes for Network Layer
Reachability Information (NLRI) that allow BGP to carry multicast information. This information
is used by other (i.e., multicast) protocols for multicast forwarding. Multicast Source Discovery
Protocol (MSDP) defined in RFC-3618, can be used to connect together rendezvous points in
different PIM sparse mode domains (see RFC-4611 for MSDP deployment scenarios).

Additional information: see RFC-3170 – “IP Multicast Applications: Challenges & Solutions”

An excellent overview of the current state of multicast routing in the Internet is RFC-5110
(January 2008).

8.3 Address Translation Protocols

8.3.1 Address Resolution Protocol (ARP)

In Chapter 1 we saw that different protocol layers use different addressing systems. The network-
layer Internet Protocol uses IPv4 or IPv6 addresses that are assigned by an Internet authority.
Link-layer protocols (Ethernet and Wi-Fi) use MAC addresses that are assigned by the hardware
manufacturer. One may wonder, why cannot we use a single addressing system, e.g., MAC
addresses that are assigned to all network interface cards? Computer hardware and software are
abstract so everything may seem possible to make. To understand better why we need two (or
more) addressing systems, let us look at real-world physical objects, such as vehicles. (See also
Sidebar 1.2 in Section 1.4.4.) As shown in Figure 8-16, every vehicle comes with a vehicle
identification number (VIN) that is assigned by the manufacturer and engraved at several
locations in the vehicle. Every vehicle also has a registration plate with a unique number. Both
numbers can be considered “addresses” of the car. So, why not to use the VIN number for the
registration plates, as well? Because VINs are assigned by the manufacturer and vehicles of the
same manufacturer are bought by customers all around the world, it is impossible to embed into

Ivan Marsic • Rutgers University 364

the address anything specific to a geographic locale or organization that owns cars. Having
registration plate number assigned by a local authority makes possible to have for location-
specific addresses. Therefore, we need both: the manufacturer needs to be able to distinguish their
different products and organizations need location-specific addresses.

A key benefit of location-specific network addresses is the ability to aggregate many addresses by
address prefixes, which reduces the amount of information carried in routing advertisements or
stored in the forwarding tables of routers.

Let us assume that a node has a packet for a certain destination. The network-layer protocol (IP)
at the node looks up the forwarding table and determines the IP address of the next-hop node.
Before calling the send() method of the link-layer protocol (see Listing 1-1 in Section 1.1.4),
the network-layer send() must translate the next-hop IP address to the link-layer address of the
next-hop node. Recall that Point-to-Point Protocol (PPP, Section 1.5.1) does not use link-layer
addresses because it operates over a point-to-point link directly connecting two nodes, one on
each end of the link. However, broadcast-based link-layer protocols, such as Ethernet (Section
1.5.2) or Wi-Fi (Section 1.5.3) must use link-layer addresses because many nodes are
simultaneously listening on the channel. Because broadcast-based link-layer protocols implement
Medium Access Control (MAC), these addresses are called MAC addresses. To send the packet
to the next-hop node, the node needs a mechanism to translate from a (network-layer) IP address
to a (link-layer) MAC address. This is the task of the Address Resolution Protocol.

Address Resolution Protocol (ARP) translates an IP address to a MAC address for a node that is
on the same broadcast local-area network (or, subnet). ARP cannot translate addresses for hosts
that are not on the same subnet; if such attempt is made, ARP returns an error. When a sender
wants a translation, it looks up an ARP table on its node, which contains mappings of network-
layer IP addresses to MAC addresses.

If the ARP table does not contain an entry for the given IP address, it broadcasts a query ARP
packet on the LAN (Figure 8-17). (The MAC broadcast address in hexadecimal notation is

1P3BP49K7JF1119661P3BP49K7JF111966

Vehicle identification number (VIN)

Registration plate

Figure 8-16: Why multiple addressing conventions are necessary.

Chapter 8 • Internet Protocols 365

FF-FF-FF-FF-FF-FF.) The node that owns the IP address replies with an ARP packet containing
the responder’s MAC address. The reply is sent to the querier’s MAC address, available from the
ARP request.

Figure 8-18 shows the ARP packet format for mapping IPv4 addresses to MAC addresses. In this
case, the ARP packet size is 28 bytes. ARP can be used for other kinds of mappings, with
different address sizes, as standardized by the IANA (http://iana.org/). The packet fields are:

• Hardware Type: specifies the link-layer protocol type. For example, the code for Ethernet is 1.

• Protocol Type: specifies the upper layer protocol for which the ARP request is intended. For
example, IPv4 is encoded as 0x0800.

• Hardware Length: length (in bytes) of a hardware address. Ethernet addresses size is 6 bytes (48
bits).

• Protocol Length: length (in bytes) of a logical address of the network-
layer protocol. IPv4 address size is 4 bytes (32 bits).

• Operation: specifies the operation what the sender is performing: 1 for
request, 2 for reply.

• Sender Hardware Address: hardware (MAC) address of the sender.

• Sender Protocol Address: upper-layer protocol address of the sender, e.g.
IP.

• Target Hardware Address: hardware (MAC) address of the intended receiver. This field is
ignored in request operations.

• Target Protocol Address: upper layer protocol address of the intended receiver.

The graphic on the right shows ARP as a link-layer protocol. This is somewhat controversial
because ARP uses another link-layer protocol for sending ARP packets, and ARP deals with
network-layer, IP addresses. The reason to classify ARP as a link-layer protocol is that it operates
over a single link connecting nodes on the same local-area network. Unlike network-layer
protocols, it does not span multiple hops and does not send packets across intermediate nodes.

Target

IP: 192.200.96.23
MAC: A3-B0-21-A1-60-35

IP: 192.200.96.22
MAC: 00-01-03-1D-CC-F7

Sender

IP: 192.200.96.21
MAC: 01-23-45-67-89-AB

IP: 192.200.96.20
MAC: 49-BD-2F-54-1A-0F

Sender MAC: 01Sender MAC: 01--2323--4545--6767--8989--ABAB
Sender IP: 192.200.96.21Sender IP: 192.200.96.21
Target IP: Target IP: 192.200.96.23192.200.96.23

ARP Request: to FF-FF-FF-FF-FF-FF

Sender MAC: 01Sender MAC: 01--2323--4545--6767--8989--ABAB
Sender IP: 192.200.96.21Sender IP: 192.200.96.21
Target IP: Target IP: 192.200.96.23192.200.96.23

ARP Request: to FF-FF-FF-FF-FF-FF

Sender MAC: Sender MAC: A3A3--B0B0--2121--A1A1--6060--3535
Sender IP: 192.200.96.23Sender IP: 192.200.96.23
Target MAC: 01Target MAC: 01--2323--4545--6767--8989--ABAB
Target IP: 192.200.96.21Target IP: 192.200.96.21

ARP Reply

Sender MAC: Sender MAC: A3A3--B0B0--2121--A1A1--6060--3535
Sender IP: 192.200.96.23Sender IP: 192.200.96.23
Target MAC: 01Target MAC: 01--2323--4545--6767--8989--ABAB
Target IP: 192.200.96.21Target IP: 192.200.96.21

ARP Reply

Figure 8-17: ARP request and response example.

Layer 2:

Network

Layer 1:

Link

Layer 3:

End-to-End

Address Resolution
Protocol (ARP)

Address Resolution
Protocol (ARP)

Ivan Marsic • Rutgers University 366

ARP solves the problem of determining which MAC address corresponds to a given IP address.
Sometimes the reverse problem has to be solved: Given a MAC address, determine the
corresponding IP address. An early solution was to use Reverse ARP (RARP) for this task. RARP
is now obsolete and it is replaced by Dynamic Host Configuration Protocol (DHCP), reviewed in
the next section.

In the next generation Internet Protocol, IPv6, ARP’s functionality is provided by the Neighbor
Discovery Protocol (NDP).

8.3.2 Dynamic Host Configuration Protocol (DHCP)

To send a packet on the Internet, a computer must have a network address (IP address). This
address is associated with the location of the computer, specifically with the network to which the
computer is attached (Section 1.4.4). Dynamic Host Configuration Protocol (DHCP) supports
automatic assignment of IP addresses to new hosts, known as plug-and-play. When a new
computer is attached to a local-area network, the computer broadcasts a DHCP message asking
“Router, give me a network address.” The router maintains a pool of free network addresses and
assigns one to this computer with a specified time-to-live (say one hour). The computer can then
start using the standard Internet applications. As the time-to-live becomes close to zero, the
computer asks the router for an extension, which is normally granted. If the user unplugs the
computer, there will be no message asking for extension, so the router will return this network
address to the pool of free addresses.

8.3.3 Network Address Translation (NAT)

Network Address Translation (NAT) is an Internet Engineering Task Force (IETF) standard used
to allow multiple computers on a private network (using private address ranges such as
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16) to share a single, globally routable IPv4 address.

0 15 16 317 8

Protocol addr len = 4

Protocol type = 0x0800Hardware type = 1

Target hardware address (6 bytes)

Sender hardware address (6 bytes)

Target protocol address

Hardware addr len = 6

Sender protocol address (last 2 bytes)

Sender protocol address (first 2 bytes)
28

bytes

Operation

Figure 8-18: ARP packet format for mapping IPv4 addresses into MAC addresses.

Chapter 8 • Internet Protocols 367

NATs are often deployed because public IPv4 addresses are becoming scarce. Companies often
use NAT devices to share a single public IPv4 address among dozens or hundreds of systems that
use private, often duplicated IPv4 addresses. These private IPv4 addresses cause problems if
inadvertently leaked across the public Internet by private IP-based networks.

The NAT router translates traffic coming into and leaving the private network. NAT allows a
single device, such as a router, to act as agent between the Internet (or, “public network”) and a
local (or, “private”) network. This means that only a single unique IP address is required to
represent an entire group of computers to anything outside their network.

NAT is an immediate but temporary solution to the IPv4 address exhaustion problem that will
eventually be rendered unnecessary with IPv6 deployment. However, the shortage of IP addresses
in IPv4 is only one reason to use NAT. Two other reasons are:

· Security

· Administration

Implementing dynamic NAT automatically creates a firewall between your internal network and
outside networks or the Internet. Dynamic NAT allows only connections that originate inside the
stub domain. Essentially, this means that a computer on an external network cannot connect to
your computer unless your computer has initiated the contact. NAT provides a simple packet
filtering function by forwarding only solicited traffic to private network hosts. Solicited traffic is
traffic that was requested by a private network host. For example, when a private host computer
accesses a Web page, the private host computer requests the page contents from the Web server.
The traffic for the Web page contests is solicited traffic. By default, a NAT does not forward
unsolicited traffic to private network hosts. Therefore, you can browse the Internet and connect to
a site, even download a file. However, somebody else cannot simply latch onto your IP address
and use it to connect to a port on your computer.

Static NAT, also called inbound mapping, allows connections initiated by external devices to
computers on the stub domain to take place in specific circumstances. For instance, you may wish
to map an inside global address to a specific inside local address that is assigned to your Web
server. Static NAT (inbound mapping) allows a computer on the stub domain to maintain a
specific address when communicating with devices outside the network.

8.3.4 Mobile IP

Mobility is the quality of being capable of movement or moving readily from place to place.
Wireless devices provide this kind of untethered freedom, but mobility means more than the lack
of a network cable. Many terms describe mobility, but this chapter uses the terms mobility and
roaming to describe the act of moving between access points.

Defining or characterizing the behavior of roaming stations involves two forms:

 * Seamless roaming

 * Nomadic roaming

Seamless roaming is best analogized to a cellular phone call. For example, suppose you are using
your cellular phone as you drive your car on the freeway. A typical global system for mobile

Ivan Marsic • Rutgers University 368

(GSM) communications or time-division multiple access (TDMA) cell provides a few miles of
coverage area, so it is safe to assume that you are roaming between cellular base stations as you
drive. Yet as you roam, you do not hear any degradation to the voice call (that is what the cellular
providers keep telling us). There is no noticeable period of network unavailability because of
roaming. This type of roaming is deemed seamless because the network application requires
constant network connectivity during the roaming process.

Nomadic roaming is different from seamless roaming. Nomadic roaming is best described as the
use of an 802.11-enabled laptop in an office environment. As an example, suppose a user of this
laptop has network connectivity while seated at his desk and maintains connectivity to a single
AP. When the user decides to roam, he undocks his laptop and walks over to a conference room.
Once in the conference room, he resumes his work. In the background, the 802.11 client has
roamed from the AP near the user's desk to an AP near the conference room. This type of
roaming is deemed nomadic because the user is not using network services when he roams, but
only when he reach his destination.

The Nomadic Mobility Problem

Internet hosts are widely known by their IP addresses. We also know that routers use the CIDR
scheme to aggregate sets of contiguous IP addresses and, therefore, simplify the task of routing
messages (Section 1.4.4). Imagine you are traveling and you need a means to allow your friends
to send you messages while you are away. If this is a short travel, your visiting address(es) will
not enter the “infrastructure” records, such as those of government agencies or public registries.
You could designate a care-of agent to whom the post office will deliver your mail, which you
will collect when returning back. However, if you want your mail forwarded to your visiting
location, you need to let the postal office know your visiting address, which may be difficult if
you do not know where you will be staying or will be staying at different locations only briefly
and unpredictably. One option is that you explicitly notify your care-of agent every time you
arrive at a visiting address. Notice that there is a built-in inefficiency when relying on a care-of
agent instead of the infrastructure registries, because every communication must first travel to
your home address (known to the infrastructure registries), and then be redirected by your care-of
agent to your visiting address. In the worst case, you may be located near the sender and far away
from home, so the mail needs to make an unnecessary trip to your home and back. We will see
that the Internet functions in a similar manner.

The Mobile IP Protocol

Mobile IP is a network-layer protocol (or Layer-3 protocol in the OSI architecture). We have
already seen in Section 1.5.3 how extended service set (ESS) specification supports mobility of
Wi-Fi hosts in IEEE 802.11 networks (Figure 1-69). ESS is a link-layer (or Layer-2 protocol in
the OSI architecture) mechanism for mobility support. Mobile IP allows location-independent
routing of datagrams to a mobile host that is identified by its home address. The home address
will not change no matter which visiting network the mobile terminal is connected to. When the
mobile terminal roams to a visiting network, the visiting network will assign a care-of address to
the mobile terminal. The information of this care-of address is sent back to the home agent (HA)
in the home network (Figure 8-19). The home agent keeps the association of the care-of address
and the mobile terminal’s home address. The IP tunnel may be built to connect the mobile

Chapter 8 • Internet Protocols 369

terminal and the home agent through the Internet cloud. For any packets received in the home
agent, the home agent will forward them to the mobile terminal through the tunnel. Mobile IP
provides an efficient mechanism for roaming within the Internet. Using Mobile IP, nodes may
keep its connection to the Internet without changing their home IP address. Therefore, the
location changing in the network is transparent to the correspondent node (CN). Node mobility is
realized without the need to propagate the changed location on the network.

8.4 Domain Name System (DNS)

To facilitate network management and operations, the Internet Community has defined the
Domain Name System (DNS). An application that wants to send a message to another application
on remote computer uses DNS to find the remote computer’s IP address given its name. A
domain refers to a subdivision of a wide area network. Names are hierarchical and a major
subdivision is the top-level domain, which is broken into organizational and geographic domains.
The geographic or country domains use two letters to identify a country and there are 225 country
domain labels. For example, .us stands for the United States, .ru stands for Russia, and .it stands
for Italy. A name like university.edu is found registered with a .edu registrar, and within
the associated network other names like mylab.department.university.edu can be
defined, with obvious hierarchy. Security extensions allow a registry to sign the records it
contains and in this way demonstrate their authenticity.

Correspondent node (CN)

Mobile node (MN)

Home Agent (HA)

1

2

3

4

Foreign Agent (FA)

Figure 8-19: Mobile IP.

Ivan Marsic • Rutgers University 370

Domain Name System is a kind of an address translation protocol (Section 8.3). As shown in
Figure 1-37, it translates from the computer name (application-layer address) to a network-layer
address. We consider it separately because of its importance and complexity. Unlike the protocols
described in Section 8.3, which translate addresses for nodes on the same subnet, DNS resolves
host names for hosts anywhere in the Internet.

8.5 Network Management Protocols

Network management tools allow network administrators to monitor network performance,
failures, security, and help with accounting management. A basic requirement is to support
isolating, diagnosing, and reporting problems to facilitate quick repair and recovery. More
advanced features include support for data analytics to predict potential problems, so the network
manager can take action before the problem occurs. A number of communication protocols exist
for gathering information from network devices. This section reviews some of them.

8.5.1 Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) provides a mechanism for communicating control
messages and error reports. Both routers and hosts use ICMP to transmit problem reports about
datagrams back to the datagram source. In addition, ICMP includes an echo request/reply that can
be used to determine if a destination is reachable and if so, is responding. ICMP specifies the
format of control messages and when routers should send them. ICMP messages are delivered by
IP, as the payload of IP datagrams.

8.5.2 Simple Network Management Protocol (SNMP)

SNMP is the protocol that provides the query language for gathering the information and for
sending it to the console. The current version is SNMPv3. In general, the SNMP management
system will discover the topology of the network automatically and will display it on the
management console in the form of a graph. From this display, the human network manager can
select a particular segment of the network to view its status in greater detail.

Each network device hosts a software agent that gathers information about the status of that
device into a Management Information Base (MIB) and sends it to the network management
system (NMS), as shown in Figure 8-20(a). SNMP defines seven message types for accessing
management information in a client-server relationship (Figure 8-20(b)). Here the NMS is the
client and the agent is the server. The message types are as follows:

Chapter 8 • Internet Protocols 371

• GetRequest: This is the most commonly used SNMP message and is sent from the manager
(NMS) to the agent to retrieve the value of a specific management variable. The manager must
send out one GetRequest for each value of a variable that needs to be retrieved.

• GetNextRequest: This message is used by an NMS for requesting the next variable in a list or
table of variables. It is used mostly to retrieve the values of entries in the MIB if the network
manager does not know how many variables there are in the MIB for a certain event.

• GetBulkRequest: (not in SNMPv1) This message is sent by an NMS to retrieve large blocks of
data, such as multiple rows in a table.

• Response: An agent sends this message to a manger/NMS in response to GetRequest or
GetNextRequest messages. It contains the value of the variable requested by the manager.

• SetRequest: The manager/NMS sends a SetRequest message to an agent to create, store, or
modify an information variable. The agent must reply using a Response message.

Managed device

MIBMIB

Network management system (NMS)

Messages

SNMP
manager
(client)

SNMP
manager
(client)

SNMP
agent

(server)

SNMP
agent

(server)

(a)

(b)

Network

Agent

Managed
objects

GetRequest

GetNextRequest

ResponseResponse

ResponseResponse

GetBulkRequest

SetRequest

ResponseResponse

ResponseResponse

TrapTrap

InformRequestInformRequestInformRequestInformRequest
NMS

Figure 8-20: (a) SNMP architecture. (b) SNMPv3 message types and their flows.

Ivan Marsic • Rutgers University 372

• Trap: An agent sends a Trap message to an NMS to report an event when a certain set of
circumstances arises. This is done autonomously, without any request from the manager. For
example, if the agent resides in a router that is rebooted, the agent informs the manager of this
event and reports the time of the rebooting.

• InformRequest: (not in SNMPv1, supports MoM architectures) This message is sent by an NMS
to notify another NMS of information in a MIB table that is remote to the receiving manager.

SNMPv2 and SNMPv3 enhanced the original version of SNMP (SNMPv1) with additional
message types for establishing multiple manager entities within a single network to support
distributed management. Distributed management means that NMSs and agents are spread out
across the internetwork. A hierarchical distributed arrangement can be used, whereby distributed
NMSs send data to more powerful central NMSs using a Manager-of-Managers (MoM)
architecture. A centralized system that manages distributed NMSs is sometimes called an
umbrella NMS. The advantages of distributed management include resilience to failures and the
ability to reduce network-management overhead by filtering data at distributed NMSs before
sending them to the central stations. On the downside, distributed management is complex and
hard to operate, and more susceptible to security breaches.

SNMP is an application-layer protocol and it operates over the user datagram protocol (UDP). As
a result, SNMP is a connectionless protocol. No continuous connections exist between a
management console and its agent so that each message between them is a separate transaction.

8.6 Multimedia Application Protocols

Multimedia application protocols include RTP and RTCP, which are described in Section 3.3.1.

8.6.1 Session Description Protocol (SDP)

Peer ends of a multimedia application use the Session Description Protocol (SDP), to offer and
accept (or not) codecs, decide the port number and IP address for where each endpoint wants to
receive their RTP packets (Section 3.3.1). SDP packets are transported by SIP.

8.6.2 Session Initiation Protocol (SIP)

The Session Initiation Protocol is an application-layer control (signaling) protocol for creating,
modifying and terminating multimedia sessions on the Internet, meant to be more scalable than
H.323. Multimedia sessions can be voice, video, instant messaging, shared data, and/or
subscriptions of events. SIP can run on top of TCP, UDP, SCTP, or TLS over TCP. SIP is
independent of the transport layer, and independent of the underlying IPv4/v6 version. In fact, the
transport protocol used can change as the SIP message traverses SIP entities from source to
destination. SIP itself does not choose whether a session is voice or video—the SDP does it.

Chapter 8 • Internet Protocols 373

8.7 Summary and Bibliographical Notes

The best source of information about the Internet protocols are Requests for Comments (RFCs)
published by the Internet Engineering Task Force (IETF), which can be found online at:
http://www.ietf.org/rfc.html. For a complete listing of all protocols in the IP stack, their standards
statuses, and reference to their RFC documents, see http://www.rfc-editor.org/rfcxx00.html, which is
updated daily.

Section 8.1: Internet Protocol Version 6 (IPv6)

The IETF solicited proposals for a next generation Internet Protocol (IPng) in July of 1992. A
number of proposals were received and by 1994 the design and development of a suite of
protocols and standards now known as Internet Protocol Version 6 (IPv6) was initiated. A major
milestone was reached in 1995 with the publication of RFC-1752 (“The Recommendation for the
IP Next Generation Protocol”). Overall specification of IPv6 is defined in RFC-2460 [Deering &
Hinden, 1998]. The address structure of IPv6 is defined in RFC-2373. The format of IPv6 global
unicast addresses is defined in RFC-3587 (obsoletes RFC-2374). Great deal of information about
IPv6 can be found at the IPv6.com webpage, at http://www.ipv6.com. Also [Huitema, 1998]

At the time of this writing (2010), IPv6 is not widely adopted. One of the greatest obstacles to
wider adoption of IPv6 is that it lacks backwards compatibility with IPv4. However, fewer than
10% of IPv4 addresses remain unallocated and industry experts predict the rest of the IPv4
address supply will run out in 2012. Therefore, it can be expected that the adoption rate will grow
rapidly. The IPv6 Forum (http://www.ipv6forum.com/) verifies protocol implementation and
validates interoperability of IPv6 products. The IPv6 Forum has a service called IPv6 Ready
Logo (http://www.ipv6ready.org/), which is a qualification program that assures devices they test are
IPv6 capable. Actual testing in the U.S. is performed by the IPv6 Testing Consortium at the
University of New Hampshire (http://www.iol.unh.edu/services/testing/ipv6/), which is a pioneer in
IPv6 testing.

Section 8.2: Routing Protocols

The Routing Information Protocol (RIP) was the initial routing protocol in the ARPAnet. RIP was
originally designed for Xerox PARC Universal Protocol (where it was called GWINFO) and used
in the Xerox Network Systems (XNS) protocol suite. RIP became associated with both UNIX and
TCP/IP in 1982 when the Berkeley Software Distribution (BSD) version of UNIX began shipping
with a RIP implementation referred to as routed (pronounced “route dee”). RIP, which is still a
very popular routing protocol in the Internet community, is formally defined in the XNS Internet
Transport Protocols publication (1981) and in RFC-1058 (1988). RIP version 2 (for IPv4) is
defined in RFC-1723. This document does not change the RIP protocol per se; rather, it provides
extensions to the message format that allows routers to share important additional information.

Open Shortest Path First (OSPF) is a link-state routing protocol defined in RFC-2328. OSPF was
designed to advertise the subnet mask with the network. OSPF supports variable-length subnet
masks (VLSM), disjointed subnets, and supernetting.

Ivan Marsic • Rutgers University 374

Border Gateway Protocol (BGP) was designed largely to handle the transition from a single
administrative entrity (NSFNet in the US in 1980s) to multiple backbone networks run by
competitive commercial entities. Border Gateway Protocol version 4 (BGP4) is defined in RFC-
4271 [Rekhter et al., 2006], which obsoletes RFC-1771. See also RFC-4274 and RFC-4276.
[Stewart, 1999] provides a concise overview of BGP4, although it does not include the latest
updates. BGP4 and CIDR (Section 1.4.4) have played a key role in enabling the Internet to scale
to its current size. Large ISPs use path aggregation in their BGP advertisements to other
Autonomous Systems. An ISP can use CIDR to aggregate the addresses of many customers into a
single advertisement, and thus reduce the amount of information required to provide routing to
customers.

IETF specified routing protocols that work with IPv6 include RIP for IPv6 [RFC-2080], IS-IS for
IPv6 [RFC-5308], OSPF for IPv6 [RFC-5340], and BGP-4 for IPv6 [RFC-2545].

Section 8.3: Address Translation Protocols

Address Resolution Protocol (ARP) is defined in RFC-826. Reverse Address Resolution Protocol
(RARP) is defined in RFC-903. Inverse Address Resolution Protocol (InARP) is defined in
RFC-2390. RARP is now obsolete (succeeded by DHCP), and InARP is primarily used in Frame
Relay and ATM networks. Neighbor Discovery (NDP) which is used for discovery of other nodes
on the link and determining their link layer addresses for IP version 6 (IPv6) is described in
RFC-4861.

Network Address Translation (NAT) is described in RFC-2663 [Srisuresh & Holdrege, 1999] and
RFC-3022 [Srisuresh & Egevang, 2001].

Section 8.4: Domain Name System (DNS)

The Domain Name System (DNS) is defined in RFC-1034 and RFC-1035.

Section 8.5: Network Management Protocols

The first version of Simple Network Management Protocol, SNMPv1, was defined by RFC-1067
in 1988. SNMPv2 was introduced in 1993 and updated in 1996. SNMPv1 and SNMPv2
supported monitoring network statistics, but had no security features. SNMPv3 is the current
standard version (see RFC-3411). SNMPv3 offers security features and is expected to displace
the earlier versions. SNMPv3 supports user authentication to prevent unauthorized users from
executing network management functions, and message encryption to prevent eavesdropping on
the messages exchanged between NMSs and managed devices. SNMP is supported by most
commercial network management systems (NMSs) and many networking devices, including
switches, routers, servers, and workstations.

The current version of management information base (MIB) for SNMP is defined in RFC-3418.

The statistics of RMON that should be collected are standardized in RFC-1757 and RFC-2021.

Chapter 8 • Internet Protocols 375

Section 8.6: Multimedia Application Protocols

The Session Initiation Protocol is defined in RFC-3261, RFC-3265, RFC-3853, RFC-4320,
RFC-4916, RFC-5393, and RFC-5621.

Problems

376

Contents
9.1 Network Technologies

9.1.1 Wireless Broadband
9.1.2 Ethernet
9.1.3 Routers

9.2 Multimedia Communications
9.2.1 Internet Telephony and VoIP
9.2.2 Unified Communications
9.2.3 Wireless Multimedia
9.2.4 Videoconferencing
9.2.5 Augmented Reality
9.2.6 x

9.3 The Internet of Things
9.3.1
9.3.2 Smart Grid
9.3.3 The Web of Things

9.4 Cloud Computing
9.4.1
9.4.2
9.4.3

9.5 Network Neutrality vs. Tiered Services
9.5.1 x
9.5.2 x
9.5.3 x

9.6 x
9.6.1
9.6.2
9.6.3

x

Chapter 9
Technologies and Future Trends

burst.com Technology-Burst vs. HTTP streaming

http://www.burst.com/new/technology/versus.htm

9.1 Network Technologies

The often mentioned virtues inherent to wireless networks are
in the low cost-to-solution and rapid deployment possibilities.
Already in many emerging markets, cellular phones are far
more prevalent than computers, driving many in networking
technology to consider non-traditional computing deployments
that leverage cellular technology instead of optical, cable, DSL
or other data circuits. Even in more mature markets, one has to
wonder what role smartphones can play in keeping people
connected to data sources, documents, and communications
media.

The evolution to away from cellular technology to an all IP-
based mobile connection also opens up completely new spheres
of functionality for roaming employees who need access to
network resources. The improved security of IP networking combined with the increased
bandwidth of LTE / 4G will allow users to work more efficiently and increase their productivity
even if equipped with nothing more than their mobile phone.

9.1.1 Mobile Wi-Fi

Microsoft’s ViFi project uses smarter networking to eliminate Internet outages during travel.

Chapter 9 • Technologies and Future Trends 377

Users are likely to see increasing discrepancy between peak (the marketing numbers) and realized
throughput. Lucent ORiNICO 802.11b outdoors, no obstruction—these are practically ideal
conditions!

Transmission rate % of coverage area

11 Mbps 8 %

5.5 Mbps

2 Mbps

1 Mbps 47 %

Thus, a low probability of having good link!!

One challenge in making shared Wi-Fi LANs deterministic, in part, has been in figuring out
whether a client is operating at a low throughput rate because it only has a small amount of data
to send or because it's encountering congestion and is out of bandwidth.

IEEE 802.11n (Section 6.3.1) offers tenfold throughput increase and extended range. Where will
it be used? In the traditional application: of wireless Internet delivery. But, 802.11n also offers
new opportunities for wireless applications:

 - Voice over IP (VoIP)

 - Professional and personal multimedia delivery

 - Wireless storage devices

9.1.2 Wireless Broadband

4G: WiMAX and LTE

WiMAX

“WiMAX 2” coming in 2011: 802.16m standard promises faster data rates, backward
compatibility with WiMAX.

LTE (Long Term Evolution)

Cellular Network Backhaul

Backhaul is the connection between infrastructure nodes, most commonly cell sites, and the rest
of the network, like a mobile switching center or similar elements. As is the case in enterprise
networks, 1.544 Mbps T1 and 2.048 Mbps E1 connections have dominated this space for many
years, because (a) they were easy, if not cheap, to get from wireline carriers, and (b) they are
well-suited to telephony because they are telephony. However, these data rates no longer appear
to be adequate for the carrier needs. Carriers have difficulty with offering data services of the

Ivan Marsic • Rutgers University 378

future in part because they lack the backhaul capacity necessary to offer the megabits of service
to their individual data users that are becoming feasible with EV-DO Rev A, WiMAX, HSPA,
and LTE. Backhaul has become a bottleneck, which will have to change if 3.5G/4G systems are
to have sustainable multi-megabit throughput.

Recently, some companies are offering high-capacity point-to-point wireless systems designed
for use in carrier networks as backhaul links. However, although the carriers sell wireless,
wireless is not regularly the solution of choice for backhaul. Proponents of wireless-for-backhaul
point that there are great regions of spectrum, including unlicensed spectrum around 5.8 GHz and
bands at 60 and 80 GHz, that are broadly available and that would work adequately in this
application.

9.1.3 Ethernet

Network technologies have come and gone, but the Ethernet switch has survived and continues to
evolve, currently making its move to 40 Gbps and 100 Gbps datarates and there is a talk of
Terabit Ethernet. Although 3.2Tbps and 6.4Tbps speeds were demonstrated in test environments
by Siemens/WorldCom and NEC/Nortel, respectively, starting in 2001, the first set of viable
solutions are just now taking shape.

Data centers drive Ethernet switch market in the near term. Today, the largest data centers contain
over 100,000 servers. Ideally, one would like to have the flexibility to run any application on any
server while minimizing the amount of required network configuration and state.

How to build a 100,000-port Ethernet switch:

R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat, “PortLand: A scalable fault-tolerant layer 2 data center network fabric,”
Proceedings of ACM SIGCOMM '09, Barcelona, Spain, August 2009.

[Mysore, et al., 2009] describe software that could make data center networks massively scalable.
Ttheir PortLand software will enable Layer 2 data center network fabrics scalable to 100,000
ports and beyond. The goal is to allow data center operators to manage their network as a single
fabric. They observe that data center networks are often managed as a single logical network
fabric with a known baseline topology and growth model. They leverage this observation in the
design and implementation of PortLand, a scalable, fault tolerant layer 2 routing and forwarding
protocol for data center environments. Key to this is the development of system for servers to find
one another without broadcasting their requests across an entire network. Under PortLand,
switches use what are called Pseudo MAC addresses and a directory service to locate servers they
need to connect, including new virtual servers. The researchers say this setup can eliminate much
of the manual labor required to build a Layer 3 network. The software will work with existing
hardware and routing protocols.

Also see: http://www.eurekalert.org/pub_releases/2009-08/uoc--css081709.php

The IEEE802.3at Power over Ethernet (PoE) standard

Chapter 9 • Technologies and Future Trends 379

9.1.4 Routers and Switches

Cisco is reportedly soon announcing a new carrier core router as a next-generation follow on to
the 6-year-old CRS-1, and a better competitor to Juniper’s T1600. Cisco MSC120 will bring
120G per slot to CRS-1, to better compete with Juniper T1600.

Juniper’s answer to Cisco in the data center: Stratus Project

Juniper’s Stratus Project is a year old and comprises six elements: a data center manager, storage,
compute, Layer 4-7 switching, appliances and networking. It is intended to be a flat, non-
blocking, lossless fabric supporting tens of thousands of Gigabit Ethernet ports, an order of
magnitude reduction in latency, no single point of failure, and with security tightly integrated and
virtualized. Stratus will be managed like a large JUNOS-based switch.

9.2 Multimedia Communications

One way to think about future developments is to consider the application needs for computing
and communication resources (Table 9-1).

Video is having a profound effect on the way we consume information. It is estimated that at the
time of this writing (2010) video represents approximately one-quarter of all consumer Internet
traffic. Thirteen hours of video are uploaded each minute on YouTube alone.

9.2.1 Internet Telephony and VoIP

Voice over IP (VoIP) is an umbrella term used for all forms of packetized voice, whether it is
Internet telephony, such as Skype.com, or Internet telephony services provided by cable
operators. Voice over IP is also used interchangeably with IP telephony, which is very much
enterprise focused. And, there the problems with service quality are very real.

IP telephony is really a LAN-based system and as an application inside the enterprise, it is going
to be a pervasive application. Voice over IP is growing in popularity because companies are
attracted to its potential for saving money on long distance and international calls. The evolution
from a LAN-based system to the broader context of the Internet is not straightforward. Integrating
the Voice over IP that may be on a LAN and the Voice over IP that is going to be Internet-based
is going to become a reality.

Traditional telephone services have typically gained a reputation of providing excellent voice

Table 9-1: The application hierarchy:

Data Type
Resource

Text Audio Video ?

Transmission Rate 10 bits/sec 10 Kbits/sec 10 Mbits/sec 10 Gbits/sec
Processing KIPS MIPS GIPS TIPS
Memory KB MB GB TB

Ivan Marsic • Rutgers University 380

quality and superior reliability. Consequently, users take for granted that their phone systems will
provide high quality with virtually no downtime. Yet many VoIP installations fail to meet these
expectations, primarily because organizations have not adequately evaluated their network
infrastructure to determine whether it can adequately support applications that are very sensitive
to latency, packet loss, jitter and other similar performance factors.

In fact, call quality and availability are expected to vary between services within certain
acceptable boundaries. Consumers make trade-offs based on price, accessibility, and mobility,
and it is important to understand that mix. If you were using a home telephony product from your
cable company, they would offer a different grade of service than a free service like Skype.
Consumers put up with a little call quality degradation for cheapness. As companies increasingly
adopt VoIP to replace the traditional PSTN, there are several major concerns:

Reliability Concerns

The traditional public switched telephone network (PSTN) provides very high reliability and
users have come to expect that when they pick up the phone, they get a dial tone. Computers sand
computer networks are still lacking this degree of reliability. This is particularly critical for
companies, because they depend on the phones to stay in contact with customers, partners, and
vendors, as well as within the company for employee communications. A phone outage can have
significant impact on company operations. In addition, the regular phone lines in buildings are
independent of electric lines, so phone work even during power outages. VoIP depends on both
electrical power and Internet service. Interruption of either means losing phone service. The
problem can be mitigated by having redundant Internet connections and power backup such as a
generator, but this adds to the cost.

Network Quality-of-Service

The reader knows by now that delays in transmission or dropped packets cause a disrupted phone
call, which the call participants will surely notice and complain about. To help prevent such
problems, the IP network must support quality-of-service (QoS) mechanisms that allow
administrators to give priority to VoIP packets. This means a VoIP network is more trouble to
manage than a data network, and it requires a higher level of expertise—or at least an additional
skill set—on the part of network administrators.

Although many switch and router vendors will advertise that their products can handle a certain
level of throughput, few talk about the volume of packets that can be processed during periods of
peak utilization. For example, even though a switch might be able to accommodate a full line rate
traffic stream when all packets are nearly maximum size, it may not be able to manage the same
aggregate throughput when the stream is composed of many more minimum-sized packets.
Because most Real-Time Protocol (RTP) audio packets are relatively small (just over 200 bytes
for G.711), a device’s ability to process packets of that size at full line rate must be assured.
Understanding how a device reacts to traffic streams characterized by many short bursts of many
packets is also important.

VoIP monitoring and management solutions are available that make it easier to optimize voice
services, but that adds to the cost of deployment. It also negates some of the cost savings that
motivate the move to VoIP in the first place.

Chapter 9 • Technologies and Future Trends 381

Other factors, such as external microphones and speakers, Internet connection speeds, and
operating systems, also can affect call quality and should be taken into account before writing off
a service provider’s performance as poor. In addition, the analog-to-digital conversion process
can affect VoIP call quality, causing users to experience unpleasant distortion or echo effects.
Another culprit is signal level problems, which can cause excessive background noise that
interferes with conversations. It does not tend to be as much of a service problem as it is an access
or device problem for the consumer.

Complexity and Confusion

The complexity and unfamiliar terrain of VoIP communications presents another big obstacle for
many companies. Network administrators experienced with running a data network may not
know much about how VoIP works, what equipment is necessary, or how to set up and maintain
that equipment.

In addition, VoIP terminology quickly gets confusing—media gateways, analog telephone
adapter (ATA), audio response unit (ARU), interactive voice response (IVR), etc. Company
managers and IT personnel hear about different VoIP protocols—H.323, SIP, IAX—and do not
understand the differences or know which one they need.

Already overworked IT staffs may not be eager to undertake the task of learning a completely
new specialty nor the added burden of ongoing maintenance of the components of a VoIP system.
They may not be sure how to integrate the VoIP network into the existing data network.

Of course, there are answers to these problems. Consultants with the requisite knowledge can
help set up a VoIP network, or companies can use hosted VoIP services to reduce both the
complication and the upfront expenses of buying VoIP servers. However, once again, this ups the
price tag of going to VoIP and eats into the cost savings that are one of VoIP’s main advantages.

Security

There is also an issue of securing IP telephony environments. The risk of intercepted calls and
eavesdropping are a concern. Although possible, it is difficult to tap traditional telephone lines.
Traditional phone communications travel over dedicated circuits controlled by one entity—the
phone company. But when VoIP packets go out there into the “Internet cloud,” they go through
numerous routers and servers at many different points. Potential types of threats:

• Toll Fraud: the use of corporate resources by inside or outside individuals for making
unauthorized toll calls.

• Denial of Service Attacks: attacks typically aimed at the data network and its components
that can have a severe impact on voice calling capabilities.

• Impersonation Exploits: where a caller changes call parameters, such as caller id, to make
the call look like it is originating from a different user. The caller id may be used to gain
a level of trust about the caller, who may then proceed to get private information that
might not have been otherwise given.

• Eavesdropping: the ability for a hacker to sniff packets relating to a voice call and replay
the packets to hear the conversation.

Encryption and other security mechanisms can make VoIP as secure as or even more secure than
PSTN. We should encrypt our voice inside the LAN, and the same applies to data and video in

Ivan Marsic • Rutgers University 382

the long run. Mixing data and voice (or, multimedia) raises another concern. It is not an IP
telephony or voice over IP issue; it is an IP issue, one should not be lulled into the suspicion that
IP or the layers above it are secure. We have already seen vulnerabilities against PBXs, against
handsets, so it is only a matter of time before we see execution against these vulnerabilities. ...
attacks at the server level or at massive denial-of-service attack at the desktop level ...

However, extra security mechanisms mean extra cost. Moreover, a simple perception that data
networks are inherently insecure may hold back VoIP adoption. Addressing all the above issues,
while keeping VoIP costs lower than the costs of traditional phone service, will be a challenge.

9.2.2 Unified Communications

Unified communications (UC) is an umbrella term for integrated, multi-media communications
controlled by an individual user for both business and social purposes. UC is supposed to offer
the benefits of seamless communication by integrating voice, data, video, and presence into a
single environment. UC refers to a real-time delivery of communications based on the preferred
method and location of the recipient. Its purpose is to optimize business processes and enhance
human communications by reducing latency, managing flows, and eliminating device and media
dependencies.

With an increasingly mobile workforce, businesses are rarely centralized in one location. Unified
communications facilitates this on-the-go, always-available style of communication. In addition,
unified communications technology can be tailored to each person’s specific job or to a particular
section of a company.

9.2.3 Wireless Multimedia

A study from Pew Internet & American Life Project predicts the mobile phone will be the
primary point of Internet access, while technologies such as touch-screen interfaces and voice
recognition will become more prevalent by the year 2020
(http://www.pewinternet.org/PPF/r/270/report_display.asp). The participants predict telephony will be
offered under a set of universal standards and protocols accepted by most operators
internationally, making for reasonably effortless movement from one part of the world to another.
At this point, the “bottom” three-quarters of the world’s population account for at least 50 percent
of all people with Internet access, up from 30 percent in 2005.

For the small-to-medium-size business (SMB) owner, the results of the survey suggest
international transactions and growth will be made easier by a more internationally flexible
mobile infrastructure, while the prevalence of the Web on mobile devices and smartphones,
which the survey predicts will have considerable computing power by 2020, will allow SMB
owners access to their business dealings nearly anytime and anywhere.

Video phones

Chapter 9 • Technologies and Future Trends 383

9.2.4 Videoconferencing

Videoconferencing systems have recently become popular for reasons including cutting down
travel expenses (economic), as well as “going green” (environmental). A recent study by Ferran
and Watts [2008] highlights the importance and diverse aspects of perceived “quality-of-service.”
The study surveyed 282 physicians who attended grand rounds (presentations on complex cases)
in person or by video. The video attendees were twice as likely to base their evaluation of the
meetings on the speaker rather than the content. They were also more likely to say the speaker
was hard to follow. The authors speculate that our brains gather data about people before turning
to what they say. In person, we do this quickly. However, speakers are harder to “read” on screen,
so we focus more on them.

Videoconferencing More Confusing for Decision-makers than Face-to-face Meetings:
http://www.sciencedaily.com/releases/2008/10/081028184748.htm

Study Finds Videoconferences Distort Decisions: http://www.wtop.com/?nid=108&sid=1506873

Immersive Videoconferencing

New “telepresence” video systems, which create the illusion of sitting in the same room—even
allowing eye contact between participants—may help solve the problem. Products in this
category include Cisco WebEx, Citrix GotoMeeting, Microsoft Office Live Meeting and IBM
Lotus Sametime Unyte—all of which let users conduct meetings via the Internet. However, some
of these systems cost up to $300,000.

9.2.5 Augmented Reality

Expert Discusses Importance Of Increasingly Accessible 3-D CAD Data.

http://www.industryweek.com/ReadArticle.aspx?ArticleID=17986

3-D CAD Data Grows More Accessible -- For manufacturers, that means less wasted time.

IndustryWeek (1/1, Jusko) reports, "3-D CAD is widely used in organizations’ product design
function. In fact 60% of respondents to a recent survey say they use it 81% to 100% of the time."
According to David Prawel, founder and president of Longview Advisors, "the potential
usefulness of 3-D CAD data is enormous in downstream functions." Prawel said that, "not only
would it help the machine operator to have a view of the part in 3-D, but the operators could add
more value to the process," as the operators "could see the part in front of them and make their
own course corrections and feed that information back to the designer." Prawel also predicted that
"use of 3-D data on the shop-floor will grow ... not 3-D CAD itself, but the use of 3-D
representations." He said that "the 'democratization' of 3-D CAD data is beginning to occur" by
"moving out of the CAD department and into greater use throughout the organization." Prawel
added, "The important thing is to get it to the people who need it in a language they understand."

Ivan Marsic • Rutgers University 384

9.3 The Internet of Things

The Internet of Things refers to a network of objects, such as household appliances. It is often a
self-configuring wireless network. The idea is that if cans, books, shoes, or parts of cars were
equipped with miniature identifying devices, our daily life would undergo a transformation. No
longer would supermarkets run out of stock or waste products because they will know exactly
what is being consumed at any specific location. If everyday objects, from yogurt to an airplane,
are equipped with radio identification (RFID) tags, they can be identified and managed by
computers in the same way humans can. The next generation of Internet Protocol (IPv6) has
sufficiently large address space to be able to identify any kind of object. RFID tag can contain
information on anything from retail prices to washing instructions to person’s medical records.

A movement is underway to add any imaginable physical object into the Internet of Things. In
Japan, for example, many cows have IP addresses embedded onto RFID chips implanted into
their skin, enabling farmers to track each animal through the entire production and distribution
process. This points to a future where pretty much everything is online. Put simply, the Internet of
Things in essence means building of a global infrastructure for RFID tags. You could think of it
as a wireless layer on top of the Internet where millions of things from razor blades to grocery
products to car tires are constantly being tracked and accounted for. It is a network where it is
possible for computers to identify any object anywhere in the world instantly.

* Emerging applications and interaction paradigms

 o using mobile phones and other mobile devices as gateways to services for citizens

 o integrating existing infrastructure in homes (digital picture frames, smart metering of
energy...)

 o embedding virtual services into physical artifacts

 o the electronic product code (EPC) network aims to replace the global barcode with a
universal system that can provide a unique number for every object in the world.

Of course, as with any technology, there is potential for misuse, such as privacy invasion. The
Internet of Things could be the ultimate surveillance tool.

9.3.1 Smart Grid

“Smart Grid” is the term used for modernization of the electricity grid that involves supporting
real-time, two-way digital communications between electric utilities and their increasingly
energy-conscious customers. It will provide electric utilities with real-time visibility and control
of the electricity used by customers. Having a Smart Grid is considered vital to the development
of renewable energy sources such as solar and wind as well as plug-in electric hybrid vehicles.
Smart Grid is expected to enable buildings with solar panels and windmills to inject power into
the grid. This means adding all kinds of information technology, such as sensors, digital meters
and a communications network akin to the Internet, to the dumb wires. Among other things, a
smart grid would be able to avoid outages, save energy and help other green undertakings, such as
electric cars and distributed generation.

Chapter 9 • Technologies and Future Trends 385

It is expected that the Smart Grid will enable integrating renewable energy and making more
efficient use of energy. The part of Smart Grid that most users would see is at the distribution
level, where a resident has a smart meter that is their building’s interface into the grid. With
Smart Grid, customer has the ability for a smart metering infrastructure to send near real-time
measurements of his or her energy usage. This infrastructure will also to be able to signal when
there are overload conditions on the grid and there needs to be some demand response to adjust
the load. Sensors on transmission lines and smart meters on customers’ premises tell the utility
where the fault is and smart switches then route power around it. That is similar to the Internet,
which redirects data packets around failed nodes or links.

On the other hand, bulk power generation plants at the heart of the grid need to have real-time
controls for supervisory control and data acquisition (SCADA) systems—computer systems
monitoring and controlling the process. These have very different communications requirements,
where reliability and security are key, and quality of service attributes such as latency are also
important. A relay needs to close in milliseconds, which is a very different requirement than
gathering electricity usage information from a resident every 15 minutes.

Electric grid already implements what is called “demand response,” where some big companies
have agreed to throttle back their consumption at times of peak demand. With a Smart Grid, all
consumers would be able to do the same. In a basic version, they would get real-time information
about their usage and could then turn off the tumble dryer or other energy-hungry appliances. If
prices also varied with a grid’s load, rising when demand was heavy, customers would cut back
their consumption during peak hours. That reduction would increase if smart meters could turn
appliances off automatically should rates rise above a certain point. With peak demand lower,
utilities would no longer have to hold as much expensive backup capacity.

More intelligence in the grid would also help integrate renewable sources of electricity, such as
solar panels or wind turbines. Currently, the problem is that their output is highly variable,
because it is tightly coupled with the weather conditions. A standard grid becomes hard to
manage if too many of renewable sources are connected to it; supply and demand on electricity-
transmission systems must always be in balance. A Smart Grid could turn on appliances should,
for instance, the wind blow more strongly. Added intelligence would also make it much easier to
cope with the demand from electric cars by making sure that not all of a neighborhood’s vehicles
are being charged at the same time.

Because there are great profits to be made, the Smart Grid market has attracted the attention of
every major networking vendor. Cisco expects that the underlying communications network will
be 100 or 1,000 times larger than the Internet. These vendors are pushing for Smart Grid to adopt
common network standards rather than special-purpose protocols.

A key characteristic of the electricity grid in the U.S. is that it is highly fragmented: 80% is
owned and operated by private companies, including about 3,100 electric utilities. This is really a
system of systems, which is highly complex, and therefore reliability is a great concern. It is also
well known that systems transmitting and distributing electricity are exceedingly wasteful and
vulnerable. Smart grids increase the connectivity, automation and coordination between these
suppliers, consumers and networks that perform either long distance transmission or local
distribution tasks.

Ivan Marsic • Rutgers University 386

The Smart Grid has to have a very robust communications infrastructure underlying it. Standards
are highly important because they provide a common set of network protocols that can run end-
to-end over a variety of underlying physical and link layer technologies. In terms of the protocol
stack, the functionality is at the application layer to support features such as consumer energy
management, electrical vehicles, etc. There is consensus that IP and the Internet standards will be
a protocol of choice in the Smart Grid.

However, some high-performance command and control applications could require special-
purpose network protocols. SCADA systems are different because the requirement is real-time
control of a critical asset (response times are in milliseconds), rather than routing data around a
network. Therefore, a specialized protocol historically has been used and may still have a role. On
the other hand, to support communications with the hundreds of millions of devices that will
interact with the Smart Grid (“smart appliances”), IP has great advantages in terms of ubiquity,
implementation and its ability to create interoperable infrastructure as a low cost.

An important requirement for the Smart Grid needs to account for the fact that the environments
are so varied. The electric grid in an urban area like New York City is very different from that in
a rural environment in Montana. These impose communications requirements, such as the ability
to use different physical and link layer technologies to move data around effectively. IP provides
that, as well as the ability to evolve and have an open architecture in which the industry can find
better ways to help customers manage energy.

It is believed that the Smart Grid will be one of the drivers for greater adoption of IPv6 (Section
8.1). Given that millions of appliances and devices need to be addressable, IPv6 is necessary
because the IPv4 address space is exhausted. The security issues about smart meters are very
important. The meters themselves are not consumer devices. They are part of the utility’s
infrastructure. There are about 150 million meters in the U.S. associated with buildings. One of
the functions of those meters is to connect and disconnect to a building so a utility does not have
to send maintenance crews. Of course, this presents a danger of having an architecture that that is
vulnerable to cyber criminals. A poorly designed system would allow a hacker to remotely
disconnect 150 million meters from the grid. This is why that needs to be a locked-down
architecture.

Another argument for IPv6 in the Smart Grid meter interface is that utilities will likely use
wireless networks to communicate with thousands of meters through a management gateway or
router. This requires a protocol where all these devices will be put in a subnet. Although this is
possible with IPv4, it is easy with IPv6.

Advanced Metering Infrastructure

Key tasks of the Smart Grid are evaluating congestion and grid stability, monitoring equipment
health, energy theft prevention, and control strategies support. To support these tasks, advanced
sensing and measurement infrastructure is at the heart of every smart grid. Technologies include:
advanced microprocessor meters (“smart meter”) and meter reading equipment, wide-area
monitoring systems, dynamic line rating (typically based on online readings by distributed
temperature sensing combined with real-time-thermal-rating (RTTR) systems), electromagnetic
signature measurement/analysis, time-of-use and real-time pricing tools, advanced switches and
cables, backscatter radio technology, and digital protective relays.

Chapter 9 • Technologies and Future Trends 387

Smart meters resemble smart-phones: they have a powerful chip and a display, and are connected
to a communications network. The main task of a metering system is to get information reliably
into and out of meters—for example, how much power is being used, when and at what price. In
Europe, this is mostly done by using power lines to communicate. However, in America this
would be too costly. The grid’s architecture does not allow it to be turned into a data network
easily. Using a public cellular network would also be hard. A meter cannot move to get better
reception, for instance. The best approach is to use wireless mesh networks (Section 6.1), in
which data are handed from one meter to the next. Such networks automatically reconfigure
themselves when new meters are added.

A key component will be the software that makes the Smart Grid work, and the applications that
run on it. Power system automation enables rapid diagnosis of and precise solutions to specific
grid disruptions or outages. These technologies rely on and contribute to each of the other four
key areas. Three technology categories for advanced control methods are: distributed intelligent
agents (control systems using artificial intelligence programming techniques), analytical tools
(software algorithms and high-speed computers), and operational applications (SCADA,
substation automation, demand response, etc).

Usage Data Management and Demand-Driven Rate Adjustment

A key technology that an electric utility needs will allow it to manage the usage data, combine the
data with other information, and set rates depending on demand. This will require large databases
for data repositories and data-mining software for detecting trends and usage patterns.
Information systems that reduce complexity so that operators and managers have tools to
effectively and efficiently operate a grid with an increasing number of variables. Technologies
include visualization techniques that reduce large quantities of data into easily understood visual
formats, software systems that provide multiple options when systems operator actions are
required, and simulators for operational training and “what-if” analysis.

Home Area Networks (HANs)

Home Area Network (HAN) covers all the smart-grid technology in the home, behind the meter.
HAN will include things such as wireless displays that show the household’s power consumption
at that instant, thermostats that are connected to the meter and smart appliances that can be
switched on and off remotely. The big question is how all these devices will be connected and
controlled. Will the HAN be dedicated to regulating electricity consumptions, for instance, or will
it also control home security or stream music through the rooms? Figure 9-1 illustrates a typical
smart home network environment.

One option is to have an integrated HAN that allows consumers to control almost everything in a
house that runs on electricity. This would include systems for secure home access used to keep
burglars out (cameras, sensors, etc.), as well as systems managing energy consumption.

Google and Microsoft have launched web-based services, called PowerMeter and Hohm
respectively, that allow households to track their power usage—and, at a future point, their
operators to sell more advertising.

ITU standard G.hn for home networks

Ivan Marsic • Rutgers University 388

9.3.2 The Web of Things

The Web of Things is a vision inspired from the Internet of Things where everyday devices and
objects are connected by fully integrating them to the World Wide Web. Unlike in the many
systems that exist for the Internet of Things, the Web of Things is about reusing the Web
standards to connect the quickly expanding eco-system of embedded computers built into
everyday smart objects. Widely adopted and well-understood standards (such as URI, HTTP,
RSS, etc.) are used to access the functionality of the smart objects.

Given a large body of data continuously collected by the networked devices, the idea has arisen
that the Web can learn inferentially from the data. The Web would eventually begin to
“understand” things without developers having to explicitly explain to it.

9.4 Cloud Computing

Cloud computing is the latest incarnation of an old idea that in
1960s was called “timesharing” with dumb terminals and
mainframe computers, and General Electric opened the first
commercial timesharing service in 1965. In 1990s was called
network computing with thin clients, and in 2000s has also
been called “utility computing,” or “grid computing.” Cloud computing can be loosely defined as
using minimal terminals to access computing resources provided as a service from outside the

HD TV

PC

Home gateway

Intrusion
detector

Fire
alarm

User remote
control (via

mobile phone)

Refrigerator Rice cooker

Airconditioner

Utility meter

Ethernet LAN

Entertainment
services provider

Police
station

Hospital

Landscaping
sprinkler

Figure 9-1: A typical smart home network environment.

Chapter 9 • Technologies and Future Trends 389

environment on a pay-per-use basis. One uses only what one needs, and pay for only what one
uses. One can access any of the resources that live in the “cloud” at any time, and from anywhere
across the Internet. One does not have to care about how things are being maintained behind the
scenes in the cloud. The cloud is responsible for being highly available and responsive to the
needs of the application. The name derives from the common depiction of a network as cloud in
network architecture diagrams.

The idea is that companies, instead of spending time and resources building their own
infrastructure to gain a competitive advantage, they would outsource these tasks to companies
that specialize in cloud computing infrastructure. The proprietary approach created large tracts of
unused computing capacity that took up space in big data centers and required large personnel to
maintain the servers. It also has had associated energy costs. The unused computing power
wasted away, with no way to push it out to other companies or users who might be willing to pay
for additional compute cycles. With cloud computing, excess computing capacity can be put to
use and be profitably sold to consumers. The reader might recall that similar themes emerged
when justifying statistical multiplexing in Section 1.1.3. This transformation of computing and IT
infrastructure into a utility, which is available to all, somewhat levels the playing field. It forces
competition based on ideas rather than computing resources.

Figure 9-2: Compute-intensive applications run in the pools of data-processing capacity, i.e., the
Computing Cloud at the Internet core.

At the Internet periphery: mostly document editing and management, visualization, browsing,
querying, …

As of early 2010, enterprises are not moving their data massively to the cloud. Many of the
current cloud services (Gmail, Google Docs, etc.) do not have much latency in the U.S. Network
bandwidth may be a concern, particularly in parts of the world where bandwidth is not fast or
cheap (e.g., if the customer incurs per-megabyte costs). As such, there are still good reasons to
keep data in a local data center (known as the “private cloud”), and there are more technologies
coming that will make this storage better and cheaper. There are many factors to consider, but
price is the one that everyone sees on the bottom line. Data storage is not cheap, but it is getting

InternetInternet

Computing
Cloud

Client

Client

p2p c/s

Mostly
Wireless,

Mobile

Mostly
Fixed

Figure 9-2: Current shift in the industry toward cloud computing and large-scale networks.

Ivan Marsic • Rutgers University 390

less expensive per megabyte over time. However, no matter how much the $/MB ratio drops, it
seems that we are seeing bigger and bigger data storage needs every day.

Security attacks on the cloud could cause major global outages. In principle, a single vulnerability
in any part of the various software elements on which a cloud provider bases its services could
compromise not just a single application but also the entire virtualized cloud service and all its
customers.

9.5 Network Neutrality vs. Tiered Services

Section 1.6.2 briefly reviewed the current debate on network neutrality that refers to efforts to
keep the Internet open, accessible and “neutral” to all users, application providers and network
carriers. In theory, this means, for example, that one carrier would not be allowed to discriminate
against an application written by a third party (such as Google Voice) by requiring its users to
rely on the carrier’s own proprietary voice applications. The public Internet is shared by both
businesses and consumers, smart public policy and management of consumer-centric Internet
access will profoundly affect business use of the Internet in the future. The U.S. Federal
Communications Commission (FCC) is currently (2010) considering rules that would prevent
carriers from favoring certain types of content or applications over others or from degrading
traffic of Internet companies that offer services similar to those of the carriers.

Who are the biggest players in the Net neutrality debate? On one side, neutrality proponents claim
that telecom companies seek to impose a tiered service model in order to control the pipeline and
thereby remove competition, create artificial scarcity, and compel subscribers to buy their
otherwise uncompetitive services. This bloc includes an array of citizen actions groups loosely
aligned with Google and other companies that want to offer new and different uses for the Web
but do not generally run networks carrying Internet data. Google communicates mainly on its
official blog, where it announced in February 2010 its experimental fiber network.

On the other side of the debate, a group of traditional cable, wireless and telecommunications
providers has taken an active role in the debate. Netcompetition.org has posted a list of its
members on its e-forum site. The group claims that the Internet is working just fine without any
Net neutrality rules.

Enterprises are willing to pay different rates for connectivity based on the quality-of-service
needed for business purposes. The cost-benefit model is especially relevant to mobile Internet
access because limited radio spectrum precludes unlimited wireless Internet access capacity, even
if service costs did not matter. It is also important to point out that not all networks that use IP are
part of the Internet. IPTV networks such as AT&T’s U-Verse service are isolated from the
Internet, and are therefore not subject to network neutrality agreements.

“Best effort” Internet service means that if everyone in the neighborhood streams a film video at
the same time, all the neighbors will suffer service interruptions. One option is to build sufficient
Internet access capacity for all users to stream uninterrupted video, but many consumers may find

Chapter 9 • Technologies and Future Trends 391

that the subscription rate increase needed to pay for such an upgrade is unaffordable. Another
option is to enforce policies ensuring that very heavy users do not crowd everyone else out.

The notion of a dichotomy between that network providers like AT&T and application/content
providers like Google assumes that the providers should be considered “dumb pipes” whose sole
job is to neutrally push traffic from content providers. This may leave the carriers without an
incentive to improve network services, and increase capacity and efficiency. The carrier/content-
provider dichotomy resonates with the protocol-layering model (Section 1.1.4), in that carriers are
assumed to provide layer-1 (link and physical layers) services, whereas content providers provide
application-layer services. End-to-end argument places emphasis on the endpoints to best manage
their specific needs and assumes that lower layers and intermediary nodes essentially provide
“dumb pipes” infrastructure.

It is instructive that in real-world vehicular traffic, congestion problems can be solved by
widening highways and building additional lanes. But, more often these problems are solved by
introducing policies, such as carpooling lanes, tiered pricing for different roads, and congestion
pricing.

There are several interpretations of the network neutrality principle, ranging from absolute non-
discrimination to different degrees of allowable discrimination, mainly for providing different
quality-of-service. Purist supporters of network neutrality state that lack of neutrality will involve
leveraging quality of service to extract remuneration from websites that want to avoid being
slowed down. They do not believe that carriers would invest to increase capacity and efficiency. I
believe that these arguments are hard to discuss without deep understanding of human
psychology and functioning of free markets.

A more technical argument, allegedly based on the end-to-end principle argues that net neutrality
means simply that all like Internet content must be treated alike and move at the same speed over
the network. Notice that this also requires a list of criteria based on which the content likeness can
be decided. Even the proponents of net neutrality admit that that the current Internet is not neutral
as, given the space of possible networking applications, the Internet’s best effort generally favors
file transfer and other non-time sensitive traffic over real-time communications.

Internet service providers and some networking technology companies argue that providers
should have the ability to offer preferential treatment in the form of a tiered services, for example
by giving businesses willing to pay an option to transfer their data packets faster than other
Internet traffic. The added revenue from such services could be used to pay for the building of
increased broadband access to more consumers. Opponents to net neutrality have also argued that
a net neutrality law would discourage providers from innovation and competition.

9.6 Summary and Bibliographical Notes

Smart Grid

IEC TC57 has created a family of international standards that can be used as part of the Smart
Grid. These standards include IEC61850 which is an architecture for substation automation, and

Ivan Marsic • Rutgers University 392

IEC 61970/61968—the Common Information Model (CIM). The CIM provides for common
semantics to be used for turning data into information. Online at: http://tc57.iec.ch/

Office of the National Coordinator for Smart Grid Interoperability, “NIST Framework and
Roadmap for Smart Grid Interoperability Standards,” Release 1.0 (Draft), National Institute of
Standards and Technology (NIST) Draft Publication, September 2009. Online at:
http://www.nist.gov/public_affairs/releases/smartgrid_interoperability.pdf

Former IETF Chair and Cisco Fellow Fred Baker has written a document that identifies the core
protocols in the IP suite that Smart Grid projects should consider using:

F. Baker, “Core Protocols in the Internet Protocol Suite,” Internet-Draft, October 23, 2009.
Online at: http://tools.ietf.org/html/draft-baker-ietf-core-04 (Expires: April 26, 2010)

A great deal of useful information on the Smart Grid can be found in the Wikipedia article:
http://en.wikipedia.org/wiki/Smart_grid

Cloud Computing

UC Berkeley – “Above the Clouds: A Berkeley View of Cloud Computing,” 2009. Online at:
http://berkeleyclouds.blogspot.com/

Published by the UC Berkeley Reliable Adaptive Distributed Systems Laboratory (a.k.a. RAD
Lab), this report is an excellent overview of the move to cloud computing. It identifies some key
trends, addresses the top obstacles to cloud use, and makes some excellent points about cloud
economics.

Network Neutrality

A great source of information on network neutrality is the Wikipedia article:
http://en.wikipedia.org/wiki/Net_neutrality.

393

Programming Assignments

The following assignments are designed to illustrate how a simple model can allow studying
individual aspects of a complex system. In this case, we study the congestion control in TCP.

The assignments are based on the reference example software available at this book’s web site
(given in Preface); follow the link “Team Projects.” This software implements a simple TCP
simulator for Example 2.1 (Section 2.2) in the Java programming language. Only the Tahoe
version of the TCP sender is implemented. This software is given only as a reference, to show
how to build a simple TCP simulator. You can take it as is and only modify or extend the parts
that are required for your programming assignments. Alternatively, you can write your own
software anew, using the programming language of your choosing. Instead of Java, you can use
C, C++, C#, Visual Basic, or another programming language.

The action sequence in Figure P-1 illustrates how the simulator works. It consists of four Java
objects, of which Simulator is the main class that orchestrates the work of others. It repeatedly
cycles around visiting in turn Sender, Router, and Receiver. Simulator passes two arrays to each
(segments and acknowledgements array) and gets them back after each object does its work.

Sender Router Receiver

Simulator

Anything
to send?

Returning EW
segments or NIL

Sender Router Receiver

Simulator

Anything
to relay? Returning

packets or NIL

Sender Router Receiver

Simulator

Accept
segments,

return ACKs

Returning ACKs
or duplic-ACKs

Sender Router Receiver

Simulator

Accept
ACKs, return

segments

Returning EW
segments or NIL

EW = EffectiveWindow

A B

C D

if EW ≥ 1
return EW
segments

if packets ≥
buffer size,
drop excess

return the rest

Check if pkts
in-order, store

if gaps

if EW ≥ 1
return EW
segments

1. 2.
3. 4.

5. 6. 1. 2.

Figure P-1: Action sequence illustrating how the Simulator object orchestrates the work of
other software objects (shown are only first four steps of a simulation).

Ivan Marsic • Rutgers University 394

ACKACK

ACKACK

RTT

Project Report Preparation

When you get your program working, run it and plot the relevant charts similar to those provided
for Example 2.1. Calculate the sender utilization, where applicable, and provide explanations and
comments on the system performance. Also, calculate the latency for transmitting a 1 MB file.

Each chart/table should have a caption and the results should be discussed. Explain any results
that you find non-obvious or surprising. Use manually drawn diagrams (using a graphics program
such as PowerPoint), similar to Figure 2-14 and Figure 2-15, where necessary to support your
arguments and explain the detailed behavior.

Assignment 1: TCP Reno

Implement the Reno version of the TCP sender which simulates Example 2.1. You can use the
Java classes from the TCP-Tahoe example, in which case you only need to extend from
TCPSender and implement TCPSenderReno, fashioned after the existing
TCPSenderTahoe. Alternatively, you can implement everything anew. Use RFC 2581 as the
primary reference, to be found here http://www.apps.ietf.org/rfc/rfc2581.html.

(a) Use the same network parameters as in Example 2.1.

(b) Modify the router to randomly drop up to one packet during every transmission round, as
follows. The router should draw a random number from a uniform distribution between 0
and bufferSize, which in our case equals to 7. Use this number as the index of the
segment to delete from the segments array. (Note that the given index may point to a
null element if the array is not filled up with segments, in which case do nothing.)

1. Compare the sender utilization for the TCP Reno sender with that of a Tahoe sender (given in
Figure 2-16). Explain any difference that you may observe.

2. Compare the sender utilization for case (b) with random dropping of packets at the router.

3. Show the detail of slow-start and additive increase phases diagrams. Compare them to Figure
2-14 and Figure 2-15. Explain any differences that you may find.

Include these findings in your project report, which should be prepared as described for all
projects at the beginning of this chapter.

Assignment 2: TCP Tahoe with Bandwidth Bottleneck

Consider the network configuration as in the reference example, but with the router buffer size set
to a large number, say 10,000 packets. Assume that RTT = 0.5 s and that at the end of every RTT
period the sender receives a cumulative ACK for all segments relayed by the router during that
period. Also, set RcvWindow = 1 MByte instead of the default value of 65535 bytes.

Due to the large router buffer size there will be no packet loss, but the bandwidth
mismatch between the router’s input and output lines still remains. Because of this, the
router may not manage to relay all the packets from the current round before the arrival of
the packets from the subsequent round. This behavior is illustrated in Figure P-2 (also see
the inset figure on the right, which illustrates how the pattern repeats for each RTT). The

Programming Assignments 395

remaining packets are carried over to the next round and accumulate in the router’s queue. As the
sender’s congestion window size grows, there will be a queue buildup at the router. There will be
no loss because of the large buffer size, but packets will experience delays. The packets carried
over from a previous round will be sent first, before the newly arrived packets. Thus, the delays
still may not trigger the RTO timer at the sender because the packets may clear out before the
timeout time expires.

The key code modifications are to the router code, which must be able to carry over the packets
that were not transmitted within one RTT. In addition, you need to modify
TCPSimulator.java to increase the size of the arrays segments and acks, because these
currently hold only up to 100 elements.

1. Determine the average queuing delay per packet once the system stabilizes. Explain why
buffer occupancy will never reach its total capacity. Are there any retransmissions (quantify,
how many) due to large delays, although packets are never lost. Use manually drawn
diagrams to support your arguments.

2. In addition to the regular charts, plot the two charts shown in the following figure:

The chart on the left should show the number of the packets that remain buffered in the router
at the end of each transmission round, which is why the time axis is shown in RTT units.
(Assume the original TimeoutInterval = 3×RTT = 3 sec.)

To generate the chart on the right, make the variable TimeoutInterval an input
parameter to your program. Then input different values of TimeoutInterval and
measure the corresponding utilization of the TCP sender. Of course, RTT remains constant at
1 sec. (Notice the logarithmic scale on the horizontal axis. Also, although it may appear

Router Receiver

ACKACK

RTT

RTT

N packets
transmitted
on Link-2
per RTT

 ← Link-2 (1 Mbps) →

N/2 packets
ack-ed from
previous round

+
N/2 packets
ack-ed from
this round
per RTT

Sender ← Link-1 →
(10 Mbps)

ACKACK

Figure P-2: This time diagram for Assignment 2 illustrates how the number of packets
transmitted in one round is limited by the bandwidth of Link-2.

Ivan Marsic • Rutgers University 396

Time

[in RTT units]0 1 2 3 4

Number of packets left unsent in the router
buffer at the end of each transmission round

TimeoutInterval

[seconds]0.1 1 10 100

TCP Sender utilization [%]

Assumption: RTT = 1 second

Figure P-3: Results charts for Assignment 2.

strange to set TimeoutInterval smaller than RTT, this illustrates the scenario where
RTT may be unknown, at least initially.) Provide explanation for any surprising observations
or anomalies.

A more ambitious team should consider the following problem. While a long queue is less likely
to overflow during a traffic burst (thus reducing packet loss probability), it potentially increases
the queuing delay for non-dropped packets. A short queue reduces this delay, but conversely
increases the probability of packet loss for bursty traffic. Experiment by adjusting the router
buffer size and study the tradeoff between packet loss and queuing delay.

Prepare the project report as described for all projects at the beginning of this chapter.

Assignment 3: TCP Tahoe with More Realistic Time Simulation
and Packet Reordering

In the reference example implementation, the packet sending times are clocked to the integer
multiples of RTT (see Figure 2-10). For example, Packets #2 and 3 are sent together at the time =
1 × RTT; packets #4, 5, 6, and 7 are sent together at the time = 2 × RTT; and so on. Obviously,
this does not reflect the reality, as illustrated in Figure 2-6. For example, in the current
implementation, duplicate ACKs are generated only because of packets dropped in the router,
never because packets are reordered. Your simulation will show what happens when packets are
reordered (rather than only dropped).

A simple way to implement this modification is explained next. The key change in your code
should be in the class Router.java, as follows. For every newly received packet, the router
assigns a random amount of delay (integer number ≥0). For every invocation of the method
Router.relay(), router decrements all delays by one and returns only the packets with the
delay equal zero. To maintain the record of delays for individual packets, we could modify
TCPSegment.java and add a new field (public int delay = 0;). This field will be
used only by Router.java and will be ignored by all other classes.

The method Router.relay() has an argument array packets_[] where the packets to be
relayed are received. This is also where the packets are returned that are let pass through the
router and onwards to TCP Receiver. Add a new array RouterBuffer[] to the Router, to
store the packets that are currently delayed, waiting for their delay counter to reach down to zero.
Make the size of this array an input argument to the simulation, to allow also for packets dropped
because of buffer overflow. Initialize RouterBuffer[] with a nil pointer. The method
Router.relay() should execute the following steps (remove the old code of this method):

Programming Assignments 397

• STEP 1: Iterate through the array RouterBuffer[] until you find a nil element (the end of
packets stored in the buffer). For each RouterBuffer[i], decrement the delay value of the
stored TCP segment by "1". Some of the delays may become zero after decremented. Leave them
as is, they will be handled in STEP 3 below.

• STEP 2: Append all non-nil elements from the argument array packets_[] at the end of
RouterBuffer[], after the existing packets in RouterBuffer[], if any. Set each
packets_[i] to nil after you move it to RouterBuffer[]. If during this process you run
out of space in RouterBuffer[], all remaining packets from packets_[] should be
dropped. For each packet moved to RouterBuffer[], generate an integer random number
with exponential distribution and a small mean value, say 0, 1 or 2. (Make it possible for the user
to enter the parameters of the exponential distribution from the command line, similarly to
entering the number of iterations to run the simulation). Set the delay field of
RouterBuffer[i] to the generated delay value. (The delay value must be integer ≥0.)

• STEP 3: Iterate through the array RouterBuffer[] until you find a nil element (the end of
the stored packets.) If RouterBuffer[i].delay equals zero (i.e., zero delay value), then
move the packet RouterBuffer[i] to the method argument array packets_[]. You will
need to shift the remaining elements of RouterBuffer[] to remove the gap. At the end of
RouterBuffer[] make sure to put nil pointers to indicate the of the stored packets. After this
step, there should be no element left in RouterBuffer[] with delay value equal zero.

• STEP 4: Return from the method Router.relay(). The argument array packets_[]
contains the packets that the router has let pass. This array should be passed on to the Receiver, as
is in the current simulator code.

Notice that if you run your simulation say for 100 iterations, there may at the end still remain
some packets in the router in RouterBuffer[]. You will need to flush the router buffer by
invoking Router.relay() with the argument array packets_[] having all elements set to
nil and then passing the returned array packets_[] to the TCP Receiver, until no packets
remain in RouterBuffer[].

Notice that, unlike Example 2.1 where a segment can arrive at the receiver out-of-sequence only
because a previous segment was dropped at the router, in your assignment an additional reason
for out-of-sequence segments is that different segments can experience different amounts of
delay. Each packet is assigned the delay value individually as generated by the random number
generator for each packet. So if, say, 3 packets arrive in the input argument array packets_[],
then it is possible that packet #1 gets delay 4, so it will have to sit inside the router buffer through
four invocations of method Router.relay(). On the other hand, packet #2 that arrived in the
same iteration could get assigned delay 0 and leave at the end of this method invocation, and
packet #3 could get assigned delay value 1 and leave in the next invocation, but still before packet
#1. Recall that for every out-of-order segment, the receiver reacts immediately and sends a
dupACK (see Figure 2-9). Your simulation will show what happens when packets are reordered.
By controlling the size of the RouterBuffer[] array, you may cause packets dropped because
of the router buffer overflow.

Print some statistics from your new router code for every iteration, such as how many packets are
currently left in RouterBuffer[] before the method Router.relay() is exited, the

Ivan Marsic • Rutgers University 398

Number of packets sent in
one round of ON interval

1 3 5

S
en

d
er

 u
ti

li
za

ti
o

n

7

UDP Sender

TCP Sender

2 4 6 8 9 10

Note: UDP sender ON period = 4 × RTT
OFF period = 4 × RTT

Length of ON/OFF interval [in RTT units]

ON =1
OFF=0

ON =2
OFF=1

ON =3
OFF=1

S
e

n
d

e
r

u
ti

liz
a

ti
o

n

ON =3
OFF=3

UDP Sender

TCP Sender

ON =1
OFF=1

ON =2
OFF=2

ON =3
OFF=2

ON =4
OFF=1

ON =4
OFF=2

ON =4
OFF=4

ON =4
OFF=3

ON =5
OFF=1

Note: UDP sender sends 5 packets in every
transmission round during an ON period

Figure P-4: Results charts for Assignment 4.

histogram of delay values for packets currently left in RouterBuffer[], and how many
packets are dropped because of the router buffer overflow.

Prepare the project report as described for all projects at the beginning of this chapter. Average
over multiple runs to obtain average sender utilization.

Assignment 4: TCP Tahoe with a Concurrent UDP Flow

In the reference example implementation, there is a single flow of packets, from the sender, via
the router, to the receiver. Your task is to add an additional, UDP flow of packets that competes
with the TCP flow for the router resources (i.e., the buffering memory space). Modify the router
Java class so that it can accept simultaneously input from a TCP sender and an UDP sender, and
it should correctly deliver the packets to the respective TCP receiver and UDP receiver. The UDP
sender should send packets in an ON-OFF manner. First, the UDP sender enters an ON period for
the first four RTT intervals and it sends five packets at every RTT interval. Then the UDP sender
enters an OFF period and becomes silent for four RTT intervals. This ON-OFF pattern of activity
should be repeated for the duration of the simulation. At the same time, the TCP Tahoe sender is
sending a very large file via the same router.

1. In addition to the TCP-related charts, plot also the charts showing the statistics of the packet
loss for the UDP flow.

2. How many iterations takes the TCP sender to complete the transmission of a 1 MByte file?
(Because randomness is involved, you will need to average over multiple runs.)

3. Perform the experiment of varying the UDP sender regime as shown in Figure P-4. In the
diagram on the left, the UDP sender keeps the ON/OFF period duration unchanged and varies
the number of packets sent per transmission round. In the diagram on the right in Figure P-4,
the UDP sender sends at a constant rate of 5 packets per transmission round, but varies the
length of ON/OFF intervals.

4. Based on these two experiments, can you speculate how increasing the load of the competing
UDP flow affects the TCP performance? Is the effect linear or non-linear? Can you explain
your observation?

Prepare the project report as described for all projects at the beginning of this chapter.

Programming Assignments 399

Relative delay of
transmission start

[in RTT units]0 1 2 3 4

S
en

d
er

 u
ti

liz
at

io
n

5 6 7

Sender 1

Sender 2

Assignment 5: Competing TCP Tahoe Senders

Suppose that you have a scenario where two TCP Tahoe senders send data segments via the same
router to their corresponding receivers. In case the total number of packets arriving from both
senders exceeds the router’s buffering capacity, the router should discard all the excess packets as
follows. Discard the packets that are the tail of a group of arrived packets. The number of packets
discarded from each flow should be (approximately) proportional to the total number of packets
that arrived from the respective flow. That is, if more packets arrive from one sender then
proportionally more of its packets will be discarded, and vice versa.

Assume that the second sender starts sending with a delay of three RTT periods after the first
sender. Plot the relevant charts for both TCP flows and explain any differences or similarities in
the corresponding charts for the two flows. Calculate the total utilization of the router’s output
line and compare it with the throughputs achieved by individual TCP sessions. Note: to test your
code, you should swap the start times of the two senders so that now the first sender starts
sending with a delay of three RTT periods after the second sender.

In addition to the above charts, perform the
experiment of varying the relative delay in
transmission start between the two senders. Plot the
utilization chart for the two senders as shown in the
figure. Are the utilization curves for the two
senders different? Provide an explanation for your
answer. Note: Remember that for fair comparison
you should increase the number of iterations by the
amount of delay for the delayed flow.

Prepare the project report as described for all projects at the beginning of this chapter.

Assignment 6: Random Loss and Early Congestion Notification

This assignment is intended to simulate Random Early Detection (RED), described in Section
5.3.1. The network configuration is the same as in Example 2.1 with the only difference being in
the router’s behavior. Because we are dealing with a very small buffer size (i.e., 6), the
granularity of TCP bursts is relatively high compared to the buffer size. As a result, it may not
make much difference if we worked with the average rather than instantaneous queue length. In
our simple approximation of RED, we will consider only the instantaneous queue length when
deciding about dropping a packet.

(a) First, assume that, in addition to discarding the packets that exceed the buffering
capacity, the router also discards packets randomly. For example, suppose that 14 packets
arrive at the router in a given transmission round. Then in addition to discarding all
packets in excess of 6+1=7 as in the reference example, the router also discards some of
the six packets in the buffer. (The packet currently in service is never considered for
being dropped.) For each packet currently in the buffer, the router draws a random
number from a normal distribution, with the mean equal to zero and adjustable standard
deviation. If the absolute value of the random number exceeds a given threshold, then the
corresponding packet is dropped. Otherwise, it is forwarded.

Ivan Marsic • Rutgers University 400

T
C

P
 S

en
d

er
 a

ve
ra

g
e

u
ti

liz
at

io
n

 [
%

]

Random drop threshold (σ)
Random drop zone start [% of buffer]

0
1

2
3

4
5

0
20

40
60

80
100

123456 0

Router buffer
Packet currently
being transmitted

Head of the queueRandom-drop zone:
Packets subject to

being dropped
Drop start location

(b) Second, assume that the router
considers for discarding only the
packets that are located within a
certain zone in the buffer. For
example, assume that the random-
drop zone starts at 2/3 of the total
buffer space and runs up to the end
of the buffer. Then perform the
above dropping procedure only on the packets that are located between 2/3 of the total
buffer space and the end of the buffer. (Packets that arrive at a full buffer are
automatically dropped!)

Your program should allow entering different values of parameters for running the simulation,
such as: variance of the normal distribution and the threshold for random dropping the packets in
(a); and, the start discarding location in (b).

1. In addition to the regular charts, plot the three-dimensional chart shown in the figure. (Use
MatLab or a similar tool to
draw the 3D graphics.)
Because the router drops
packets randomly, you should
repeat the experiment several
times (minimum 10) and plot
the average utilization of the
TCP sender.

2. Find the regions of maximum
and minimum utilization and
indicate the corresponding
points/regions on the chart.
Explain your findings: why
the system exhibits higher/
lower utilization with certain
parameters?

3. You should also present
different two-dimensional cross-sections of the 3D graph, if this can help illuminate your
discussion.

A more ambitious team should try implementing a more accurate approximation of RED (Section
5.3.1). Prepare the project report as described for all projects at the beginning of this chapter.

401

Solutions to Selected Problems

Problem 1.1 — Solution

Let tx denote the transmission time for a packet L bits long and let tp denote the propagation delay
on each link. Each packet crosses three links (Link-1: source to router1; Link-2: router1 to
router2; Link-3: router2 to destination).

11

11

11

22

22

22

NN

NN

NN

TimeSource

Router 1

Router 2

Destination

First bit received at: 3 × tp + 2 × tx
Last bit received at: 3 × tp + 3 × tx + (N−1) × tx

packets

(a)

The total transmission time equals: 3 × tp + 3 × tx + (N − 1) × tx = 3 × tp + (N + 2) × tx.

(b)

The transmission time is ½ tx, the propagation time remains the same, and there are twice more
packets, so the total transmission time equals:

3 × tp + (2×N + 2) × (tx/2) = 3 × tp + (N + 1) × tx.

(c)

The total delay is smaller in case (b) by tx because of greater parallelism in transmitting shorter
packets. If we use, for example, four times shorter packets (L/4), then the total transmission time
equals: 3 × tp + (N + 1/2) × tx.

On the other hand, if we use two times longer packets, i.e., N/2 packets each 2×L bits long, then
the total transmission time equals:

3 × tp + (N/2 + 2) × (2×tx) = 3 × tp + (N + 4) × tx.

which is longer by 2×tx then in case (a).

Ivan Marsic • Rutgers University 402

Problem 1.2 — Solution

Problem 1.3 — Solution

(a)

Having only a single path ensures that all packets will arrive in order, although some may be lost
or damaged due to the non-ideal channel. Assume that A sends a packet with SN = 1 to B and the
packet is lost. Because A will not receive ACK within the timeout time, it will retransmit the
packet using the same sequence number, SN = 1. Because B already received a packet with SN =
1 and it is expecting a packet with SN = 0, it concludes that this is a duplicate packet.

(b)

If there are several alternative paths, the packets can arrive out of order. There are many possible
cases where B receives duplicate packets and cannot distinguish them. Two scenarios are shown
below, where either the retransmitted packet or the original one gets delayed, e.g., by taking a
longer path. These counterexamples demonstrate that the alternating-bit protocol cannot work
over a general network.

Problem 1.4 — Solution

Problem 1.5 — Solution

Problem 1.6 — Solution

Recall that the utilization of a sender is defined as the fraction of time the sender is actually busy
sending bits into the channel. Because we assume errorless communication, the sender is
maximally used when it is sending without taking a break to wait for an acknowledgement. This
happens if the first packet of the window is acknowledged before the transmission of the last
packet in the window is completed. That is,

SN=0

Tout
pkt #1

pkt #1
(duplicate,
mistaken for pkt #3)

SN=0 (lost)

pkt #2ack1ack1

SN=1

Retransmit
SN=0

ack0

ack0ack0

SN=1

pkt #3

Tout

pkt #1
(duplicate,
mistaken for pkt #3)

pkt #1ack0ack0

ack1

SN=0

Retransmit
SN=0

pkt #2

SN=1

SN=0

pkt #3

(Scenario 1) (Scenario 2)

T
im

e

Sender A Receiver B Sender A Receiver B

Solutions to Selected Problems 403

(N − 1) × tx ≥ RTT = 2 × tp

where tx is the packet transmission delay and tp is the propagation delay.
The left side represents the transmission delay for the remaining (N − 1)
packets of the window, after the first packet is sent. Hence,

1
2

+






 ×
≥

x

p

t

t
N . The ceiling operation ⋅ ensures integer number of

packets.

In our case,  = 10 km, v ≈ 2 × 108 m/s, R = 1 Gbps, and L = 512 bytes.

Hence, the packet transmission delay is: s 4.096
sec)/bits(101

)bits(8512
9

μ=
×

×==
R

L
tx

The propagation delay is: s 05
s/m102

m10000
8

μ=
×

==
v

t p


Finally, N ≥ 24.41 + 1 = 26 packets.

Problem 1.7 — Solution

str. 284

Problem 1.8 — Solution

The solution is shown in the following figure. We are assuming that the retransmission timer is
set appropriately, so ack0 is received before the timeout time expires. Notice that host A simply
ignores the duplicate acknowledgements of packets 0 and 3, i.e., ack0 and ack3.

There is no need to send source-to-destination acknowledgements (from C to A) in this particular

example, because both AB and BC links are reliable and there are no alternative paths from A
to C but via B. The reader should convince themselves that should alternative routes exist, e.g.,
via another host D, then we would need source-to-destination acknowledgements in addition to
(or instead of) the acknowledgements on individual links.

#1
#2
#3

#N
ack #1

#N+1

#4

Sender Receiver

Ivan Marsic • Rutgers University 404

Problem 1.9 — Solution

The solution is shown in the following figure.

A B CSR, N=4 Go-back-3

T
im

e

(retransmission) ack3ack3

pkt0
pkt1
pkt2pkt2 pkt0pkt0

ack0ack0pkt4
Tout

pkt5pkt5
pkt6pkt6

ack1ack1 pkt1pkt1
pkt2pkt2
pkt3pkt3 ack1ack1

ack2ack2
ack3ack3

pkt4

Tout

pkt5pkt5
pkt6pkt6

pkt4

ack3ack3
pkt4pkt4

ack4ack4

Tout

(lost)

ack3ack3

(retransmission)

Retransmit pkt1

(retransmission)pkt2 & pkt3
buffered at
host B

Retransmit
pkt4, pkt5, pkt6

pkt3pkt3
ack0ack0

ack2ack2

pkt1pkt1

(lost)

Retransmit pkt4

ack4ack4
ack5ack5
ack6ack6 (lost)

pkt5pkt5
pkt6pkt6

ack6ack6
ack5ack5

(retransmission)

(retransmission)

ack0ack0
(retransmission)

ack0ack0

pkt0
pkt1
pkt2pkt2 pkt0pkt0ack0ack0

ack0ack0pkt3pkt3
Tout

pkt1pkt1
pkt2pkt2
pkt3pkt3 ack1ack1

ack2ack2
ack3ack3

pkt1pkt1
pkt2pkt2
pkt3pkt3 ack1ack1

ack2ack2
ack3ack3

pkt5pkt5
pkt6pkt6

pkt4

Tout

pkt5pkt5
pkt6pkt6

pkt4

A B C

ack6ack6
pkt4pkt4

ack4ack4

Go-back-3 SR, N=4

ack3ack3
ack3ack3

pkt4pkt4
pkt5pkt5
pkt6pkt6 ack4ack4

ack5ack5
ack6ack6

Tout

(lost)
T

im
e ack5ack5

(retransmission)

(retransmission)

(retransmission)

Retransmit
pkt1, pkt2, pkt3

Retransmit
pkt4, pkt5, pkt6

(retransmission)

pkt4 & pkt5
buffered

Retransmit
pkt4

(lost)

(lost)

Solutions to Selected Problems 405

Problem 1.10 — Solution

It is easy to get tricked into believing that the second, (b), configuration would offer better
performance, because the router can send in parallel in both directions. However, this is not true,
as will be seen below.

(a)

Propagation delay = 300 m / (2 × 108) = 1.5 × 10−6 s = 1.5 μs

Transmission delay per data packet = 2048×8 / 106 = 16.384 × 10−3 = 16.384 ms

Transmission delay per ACK = 108 / 106 = 0.08 × 10−3 = 0.08 ms

Transmission delay for N = 5 (window size) packets = 16.384×5 < 82

82 + 0.08 + 0.0015 × 2 = 82.083

Subtotal time for 100 packets in one direction = 100 × 82.083 / 5 = 1641.66 ms

Total time for two ways = 1641.66 × 2 = 3283.32 ms

(b)

If host A (or B) sends packets after host B (or A) finishes sending, then the situation is similar to
(a) and the total time is about 3283.32 ms.

If hosts A and B send a packet each simultaneously, the packets will be buffered in the router and
then forwarded. The time needed is roughly double (!), as shown in this figure.

81
 +

 0
.0

8
+

 0
.0

01
5

×
2

=
 8

1
.0

83

Host A Host A

0

1

ACK

Host A Router Host B

ACK

16
 ×

5
 ×

2
=

 1
6

0
m

s

(a) (b)

Ivan Marsic • Rutgers University 406

Problem 1.11 — Solution

Go-back-N ARQ.

Packet error probability = pe for data packets; ACKs error free. Successful receipt of a given
packet with the sequence number k requires successful receipt of all previous packets in the
sliding window. In the worst case, retransmission of frame k is always due to corruption of the

earliest frame appearing in its sliding window. So, () ()N
e

k

Nki
e ppp −=−= ∏

−=

11succ , where N is the

sliding window size. An upper bound estimate of E{n} can be obtained easily using Eq. (1.8) as

()N
epp

nE
−

==
1

11
}{

succ

. On average, however, retransmission of frame k will be due to an error

in frame (k−LAR)/2, where LAR denotes the sequence number of the Last Acknowledgement
Received.

(a)

Successful transmission of one packet takes a total of tsucc = tx + 2×tp

The probability of a failed transmission in one round is pfail = 1 − psucc = 1 − (1 − pe)
N

Every failed packet transmission takes a total of tfail = tx + tout

(assuming that the remaining N−1 packets in the window will be transmitted before the timeout
occurs for the first packet).

Then, using Eq. (1.9) the expected (average) total time per packet transmission is:

fail
fail

fail
succtotal 1

}{ t
p

p
tTE ⋅

−
+=

(b)

If the sender operates at the maximum utilization (see the solution of Problem 1.6), then the
sender waits for N−1 packet transmissions for an acknowledgement, tout = (N−1) ⋅ tx, before a
packet is retransmitted. Hence, the expected (average) time per packet transmission is:









−

⋅−+⋅+⋅=⋅
−

+=
fail

fail
fail

fail

fail
succtotal 1

)1(12
1

}{
p

p
Nttt

p

p
tTE xp

Problem 1.12 — Solution

(a)

Packet transmission delay equals = 1024 × 8 / 64000 = 0.128 sec; acknowledgement transmission
delay is assumed to be negligible. Therefore, the throughput SMAX = 1 packet per second (pps).

(b)

Solutions to Selected Problems 407

To evaluate E{S}, first determine how many times a given packet must be (re-)transmitted for
successful receipt, E{n}. According to Eq. (1.8), E{n} = 1/p ≅ 1.053. Then, the expected

throughput is { }
}{

MAX

nE

S
SE = = 0.95 pps.

(c)

The fully utilized sender sends 64Kbps, so SMAX =
81024

64000

×
 = 7.8125 pps.

(d)

Again, we first determine how many times a given packet must be (re-)transmitted for successful
receipt, E{n}. The sliding window size can be determined as N = 8 (see the solution for Problem
1.6). A lower bound estimate of E{S} can be obtained easily by recognizing that E{n} ≤ 1/p8 ≅
1.5 (see the solution for Problem 1.11). Then, SMAX×p8 ≅ (7.8125)×(0.6634) ≅ 5.183 pps
represents a non-trivial lower bound estimate of E{S}.

Problem 1.13 — Solution

The packet size equals to transmission rate times the slot duration, which is 1500 bps × 0.08333 s
= 125 bits. This wireless channel can transmit a maximum of 12 packets per second, assuming
that in each slot one packet is transmitted. (Recall that slotted ALOHA achieves maximum
throughput when G = 1 packet per slot). Of these, some will end up in collision and the effective
throughput will be equal to 0.368 × 12 = 4.416 packets per second. Because this is aggregated
over 10 stations, each station can effectively transmit 4.416 / 10 = 0.4416 packets per second, or
approximately 26 packets per minute, at best.

Problem 1.14 — Solution

(a) Given the channel transmission attempt rate G, the probability of success was derived in
Eq. (1.12) as e−G, which is the probability that no other station will transmit during the vulnerable
period.

(b) The probability of exactly K collisions and then a success is

(1 − e−G)k ⋅ e−G

which is derived in the same manner as Eq. (1.7) in Section 1.3.1.

Problem 1.15 — Solution

(a)

The solution is given in Figure 1-26(b): there will be G⋅P0 successfully transmitted packets, and
G⋅(1−P0) collided packets. Slotted ALOHA operates under maximum efficiency when G=1, that
is when on average one packet is transmitted per each slot. This means that, on average, there will
be no idle slots—every slot, on average, will be used for a transmission. Of those transmissions,
there will be on average λ = 1/e fresh packet arrivals as well as 1/e slots with successful
transmissions (some of the successful transmissions may be retransmissions of backlogged
packets), and there will be on average (1 − 1/e) slots with collisions.

Ivan Marsic • Rutgers University 408

(b)

A slotted ALOHA system would operate with a less-than-maximum efficiency if G≠1. When
G < 1 there are on average less than one transmission attempts per packet time, so we say that the
system is underloaded. Conversely, when G > 1 there are on average more than one transmission
attempts per packet time, so we say that the system is overloaded. In both cases, the arrival rate
will be λ < 1/e (see Figure 1-28).

The system would be underloaded when some stations do not have packets in some slots to
transmit or retransmit. As a result, there will be a non-zero fraction of idle slots. In the
underloaded case, there will be on average 1/e −λ > 0 idle slots, λ successful slots, and the
remaining ≤(1 − 1/e) slots with collisions.

The system would be overloaded if the arrival rate became temporarily λ > 1/e, i.e., greater than
the optimal value. This will result in many collisions and there will be many stations that become
backlogged, trying to retransmit previously collided packets. The backlogged stations will not
accept fresh packets, which effectively means that the arrival rate will drop to λ < 1/e. (Notice
that λ becomes small not because users are not generating new packets but because many stations
are backlogged and do not accept fresh packets). In the overloaded case, there will be on average
no idle slots, λ < 1/e successful slots, and the remaining >(1 − 1/e) slots with collisions.

(c)

Both the maximum-efficiency and underloaded cases are stable. In both cases for a steady arrival
rate λ, the system will remain in a stable condition.

The overloaded case is unstable: initially the arrival rate will be λ > 1/e, but then many stations
will become backlogged and will not accept new packet arrivals so λ will drop to λ < 1/e. These
backlogged stations will keep retransmitting their packets and eventually the backlogged packets
will clear. If after this clearing the arrival rate remains λ ≤ 1/e, then the system will remain
maximally efficient (λ = 1/e) or it will remain underloaded (λ < 1/e). Otherwise, it will again
become temporarily overloaded.

Problem 1.16 — Solution

Problem 1.17 — Solution

The stations will collide only if both select the same backoff value, i.e., either both select 0 or
both select 1. The “tree diagram” of possible outcomes is shown in the figure below. To obtain
the probabilities of different outcomes, we just need to multiply the probabilities along the path to
each outcome.

(a)

Probability of transmission p = ½, the success happens if either station transmits alone:

Solutions to Selected Problems 409

 Psuccess = () pp ⋅−⋅






 −121
1

2
= 2 × ½ × ½ = 0.5

(b)

The first transmission ends in collision if both stations transmit simultaneously

Pcollision = 1 − Psuccess = 0.5

Because the waiting times are selected independent of the number of previous collisions (i.e., the
successive events are independent of each other), the probability of contention ending on the
second round of retransmissions is

Pcollision × Psuccess = 0.5 × 0.5 = 0.25

(c)

Similarly, the probability of contention ending on the third round of retransmissions is

 Pcollision × Psuccess × Psuccess = 0.5 × 0.5 × 0.5 = 0.125

(d)

Regular nonpersistent CSMA with the normal binary exponential backoff algorithm works in
such a way that if the channel is busy, the station selects a random period to wait. When the
waiting period expires, it senses the channel. If idle, transmit; if busy, wait again for a random
period, selected from the same range. And so on until the channel becomes idle and transmission
occurs.

If the transmission is successful, the station goes back to wait for a new packet.

If the transmission ends in collision, double the range from which the waiting period is drawn
and repeat the above procedure.

Unlike the regular nonpersistent CSMA, in the modified nonpersistent CSMA there are only two
choices for waiting time. Therefore, half of the backlogged stations will choose one way and the
other half will choose the other way.

In conclusion, regular nonpersistent CSMA performs better than the modified one under heavy
loads and the modified algorithm performs better under light loads.

Select 1st
backoff

Select 2nd
backoff

Outcome

Collision, Success

Success

½

½

½

½

Collision, Collision, Success

Collision, Collision, Collision

½

½

(0, 1) or (1, 0)

(0, 0) or (1, 1)

(different values)

(both same)

(0, 1) or (1, 0)

(0, 0) or (1, 1)

Select 3rd
backoff

(0, 1) or (1, 0)

(0, 0) or (1, 1)

Ivan Marsic • Rutgers University 410

Problem 1.18 — Solution

The solution is shown in the figure below. Recall that nonpersistent CSMA operates so that if the
medium is idle, it transmits; and if the medium is busy, it waits a random amount of time and
senses the channel again. The medium is decided idle if there are no transmissions for time
duration β, which in our case equals τ. Therefore, although station B will find the medium idle at
the time its packet arrives, (τ/2), because of τ propagation delay, the medium will become busy
during the τ sensing time. The figure below shows the case where station C happens to sense the
channel idle before B so station C transmits first.

For CSMA/CD, the smallest frame size is twice the propagation time, i.e., 2τ, which is the
duration of the collision.

STA-A

STA-B

STA-C

0 τ/2 3τ/2

Collision TimeTime

STA-A

STA-B

STA-C

0 τ/2 3τ/2

STA-A

STA-B

STA-C

0 τ/2 3τ/2

Frame transmission time = 4τ

Pure ALOHA

Non-persistent CSMA

CSMA/CD

Col
lis

io
n

Ja
m

 s
ig

na
l

Sen
se

 c
ar

rie
r

id
le

 fo
r

β =
τ

= sense carrier for β time

Key:

= propagation delay (= β)

= sense carrier for β time

Key:

= propagation delay (= β)

Problem 1.19 — Solution

Problem 1.20 — Solution

The solution for the three stations using the CSMA/CA protocol is shown in the figure below.
The third station has the smallest initial backoff and transmits the first. The other two stations will
freeze their countdown when they sense the carrier as busy. After the first frame, STA3 randomly
chooses the backoff value equal to 4, and the other two stations resume their previous countdown.
STA1 reaches zero first and transmits, while STA2 and STA3 freeze their countdown waiting for
the carrier to become idle. STA3 transmits next its second frame and randomly chooses the

Solutions to Selected Problems 411

backoff value equal to 1, and the other two stations again resume their previous countdown.
STA2 finally transmits its first frame but STA3 simultaneously transmits its third frame and there
is a collision.

(Note: The reader may wish to compare this with Figure 1-32 which illustrates a similar scenario
for three stations using the CSMA/CD protocol, as well as with Problem 1.33 for IEEE 802.11.)

Problem 1.21 — Solution

The analogy with a slide (Figure 1-80) is shown again in the figure below. We define three
probabilities for a station to transition between the backoff states. P11 represents the probability
that the kid will enter the slide on Platform-1, therefore after sliding through Tube-1 he again
slides through Tube-1. P12 represents the probability that the kid will enter the slide on Platform-
2, therefore after sliding through Tube-1 he first slides through Tube-2. Finally, P21 represents the
probability that the kid will slide through Tube-1 after sliding through Tube-2, and this equals 1
because the kid has no choice. Below I will present three possible ways to solve this problem.

Tube 1 Tube 2

Pr(Tube2→Tube1)
= P21 = 1

Pr(T1→T1)
= P11 = 0.5

Pr(Tube1→Tube2)
= P12 = 0.5

Tube 1

Tube 2

Platform 1

Platform 2

Tube 1

Tube 2

Platform 1

Platform 2

Solution 1 (Statistical)

There are two events:

(a) The kid enters the slide on Platform-1 and slides through Tube-1

(b) The kid enters the slide on Platform-2 and slides through Tube-2, then through Tube-1

Because the probabilities of choosing Platform-1 or proceeding to Platform-2 are equal, these two
events will, statistically speaking, happen in a regular alternating sequence:

STA 1

STA 2

STA 3

Previous
frame

9 8 7 6 5 4 3 2 1 0

5 4 3 2 1 0

2 1 0

6 5 4 3 2 1 0

2 1 0

4 3 2 1 0 1 0

3 2 1 0

7 6 5 4 3 2 1 0

1 0

1 0

Collision

5 4 3 2 1 0

Remainder Backoff

STA1, 1st frame

STA3, 1st frame STA3, 2nd frame

STA2, 1st frame

STA3, 3rd frame

TimeTime

Ivan Marsic • Rutgers University 412

Tube-1 Tube-1 Tube-2Tube-1 Tube-2 Tube-1 Tube-1 Tube-2Tube-1 Tube-2 Tube-1 Tube-1 Tube-2Tube-1 Tube-2

Event (a) Event (b) Event (a) Event (b) Event (a) Event (b)

By simple observation we can see that the kid will be found two thirds of time in Tube-1 and one
third of time in Tube-2. Therefore, PT1 = 2/3 and PT2 = 1/3 and these correspond to the
distribution of steady-state probabilities of backoff states.

Solution 2 (Algebraic)

We introduce two variables, x1(k) and x2(k) to represent the probabilities that at time k the kid will
be in Tube-1 or Tube-2, respectively. Then we can write the probabilities that at time k + 1 the
kid will be in one of the tubes as:

)()()1(

)()()()()1(

12
1

1122

212
1

2211111

kxkxPkx

kxkxkxPkxPkx

=⋅=+
+=+⋅=+

Write the above equations using matrix notation:

)()(
0

1
)1(

2
1
2
1

kkk Χ⋅Α=Χ⋅







=+Χ

Find the eignevalues of the matrix A:

2
1

212
1

2
12

2
1

2
1

,10
1

−===−−=
−

−
=Ι⋅−Α λλλλ

λ
λ

λ

and eigenvectors of the matrix A:

[] 







==⋅








−

−
==

1

2
0

1

1
1 11

2
1

2
1

1 vvλλ

[] 







−

==⋅







−==

1

1
0

11
22

2
1

2
12

1
2 vvλλ

So,

[] 







−

==
11

12
21 vvS and 








−

=







=Λ








−

=−

2
1

2

1

3
2

3
1

3
1

3
1

1

0

01

0

0
,

λ
λ

S

Then we solve the backoff-state equation:

)0(
)(0

0)1(

11

12
)0()(

3
2

3
1

3
1

3
1

2
1

1 Χ⋅







−

⋅












−
⋅







−

=⋅Λ⋅=Χ⋅Α=Χ −
k

k
kk SSk

)0(
)()1()()1(

)()1()()1(

2
1

3
2

3
1

2
1

3
1

3
1

2
1

3
2

3
2

2
1

3
1

3
2

Χ⋅












−⋅+⋅−⋅−⋅
−⋅−⋅−⋅+⋅

= kkkk

kkkk

The steady state solution is obtained for k → ∞:

Solutions to Selected Problems 413









⋅







=Χ

)0(

)0(
)(

2

1

3
1

3
1

3
2

3
2

x

x
k

We obtain that regardless of the initial conditions x1(0) and x2(0), the backoff state probabilities
are x1(k) = 2/3 and x2(k) = 1/3.

Problem 1.22 — Solution

Problem 1.23 — Solution

(a)

The lower boundary for the vulnerable period for A’s transmission is any time before A’s start (at
tA) that overlaps with A’s transmission. This is equal to packet transmission time (tx), which for
data rate 1 Mbps and packet length of 44 bytes gives 352 μs or 18 backoff slots. To account for
the cases when A selects its backoff countdown bA < 18 slots, we can write the lower bound of the
vulnerable period as: max{tA − tx, 0}.

Similarly, the upper bound is the end of A’s packet transmission, which is at tA + tx. To account
for the limited size of the backoff contention window CW, we can write the lower bound of the
vulnerable period as: min{tA + tx, CW}.

Therefore, if A starts transmission at tA, then the vulnerable period for the reception of this packet
at the receiver B is [max{tA − tx, 0}, min{tA + tx, CW}]. In our specific example, the vulnerable
period is [max{12 × 20 μs − 352 μs, 0}, max{12 × 20 μs + 352 μs, 32 × 20 μs}] = [0, 592 μs].

(b)

The timing diagram is shown in the figure below.

Notice that for the first transmission, A and B will start their backoff countdown at the same time
(synchronized with each other). Conversely, for the second transmission, A and B will start their
backoff countdown at different times (desynchronized with each other).

Backoff
countdown

A

B

C

t = 0

ACK

Backoff
countdown Data, tx = 352 μs

Timeout, tACK = 334 μs

Collision

tA1 = 240 μs

tC1 = 100 μs tC2 = 866 μs

t = 786 μs

bA1 = 12 slots

bC1 =
5 slots

bA2 = 11 slots

bC2 =
4 slots

tA2 =
1146 μs

Ivan Marsic • Rutgers University 414

(c)

Problem 1.24 — Solution

(a)

At Kathleen’s computer, the TCP layer will slice the 16-Kbytes letter into payload segments of:

TCP segment size = 512 − 20(TCP hdr) − 20 (IP hdr) = 472 bytes

Total number of IP datagrams generated is: 16,384 ÷ 472 = 34 × 472 + 1 × 336 = 35 IP datagrams

Notice that the payload of the first 34 IP datagrams is: 20(TCP hdr) + 472(user data) = 492 bytes
and the last one has 356-bytes payload.

(b)

There will be no fragmentation on Link 2, but there will be on Link 3. The IP datagram size
allowed by MTU of Link 3 is 256, which means that the payload of each datagram is up to
256 − 20(IP hdr) = 236 bytes. Because the fragment offset is measured in 8-byte chunks, not in
bytes, the greatest number divisible by 8 without remainder is 232, which means that each of the
34 incoming datagrams will be split into 3 new fragments: 492 = 232 + 232 +28, and the last one
35th will be split into two fragments: 356 = 232 + 124.

Total number of fragments on Link 3 is: 34 × 3 + 1 × 2 = 104 datagrams, of which 69 have
payload of 232 bytes, 34 have payload of 28 bytes, and 1 has payload of 124 bytes (this is the last
one). The reader should recall that the IP layer does not distinguish any structure in its payload
data. Each original IP datagram sent by Kathleen’s computer contains a TCP header and user
data. The TCP header will be end up in the first fragment and there will be 212 bytes of user data,
and the remaining two fragments will contain only user data. Again, IP is not aware of the
payload structure and treats the whole payload in the same way.

(c)
First 4 packets that Joe receives Last 5 packets that Joe receives
#1: Length = 232, ID = 672, MF = 1, Offset = 0 #100: Length = 232, ID = 774, MF = 1, Offset = 0
#2: Length = 232, ID = 672, MF = 1, Offset = 29 #101: Length = 232, ID = 774, MF = 1, Offset = 29
#3: Length = 28, ID = 672, MF = 0, Offset = 58 #102: Length = 28, ID = 774, MF = 0, Offset = 58
#4: Length = 232, ID = 673, MF = 1, Offset = 0 #103: Length = 232, ID = 775, MF = 1, Offset = 0
 #104: Length = 124, ID = 775, MF = 0, Offset = 29

(d)

If the very last (104th) fragment is lost, Joe’s computer cannot reassemble the last (35th) IP
datagram that was sent by Kathleen’s computer. Therefore, the TCP sender will not receive an
acknowledgement for the last segment that it transmitted and, after the retransmission timer
expires, it will resend the last segment of 336 bytes of data + 20 bytes TCP header. The IP layer
will create a datagram with the payload of 356 bytes. So, Kathleen’s computer will retransmit
only 1 IP datagram. This datagram will be fragmented at Link 3 into 2 IP datagrams. So, Joe’s
computer will receive 2 IP datagrams. The relevant parameters for these 2 fragments are:

#105. Length = 232, ID = 776, MF = 1, Offset = 0
#106. Length = 124, ID = 776, MF = 0, Offset = 29

Solutions to Selected Problems 415

Notice that the ID of the retransmitted segment is different from the original, to avoid confusion
between the fragments of two different datagrams.

Problem 1.25 — Solution

After the steps (a) through (e), the network will look like:

The link-state advertisements flooded after the step (a) are as follows:
Node A: ___ Node B: ___ Node C: ___ Node F: ___ Node G:
Seq# Neighbor Cost Seq# Neighbor Cost Seq# Neighbor Cost Seq# Neighbor Cost Seq# Neighbor Cost

1
B

1
A 1

1
A 1

1
B ∞ 1 F 1

C C 1 B 1 G 1
 F ∞

[We assume that the sequence number starts at 1 in step (a), although a valid assumption would
also be that it is 1 before step (a).]

In the remaining steps, we show only those LSAs that are different from the previous step. (Note
that the sequence number changes in every step for all LSAs, including the ones not shown.)

Step (b):
Node G: ___ Node H:

Seq# Neighbor Cost Seq# Neighbor Cost

2
F 1 2 G 1
H 1

Step (c):
Node C: ___ Node D:

Seq# Neighbor Cost Seq# Neighbor Cost

3
A 1 3 C 1
B 1
D 1

Step (d):
Node B: ___ Node E:
Seq# Neighbor Cost Seq# Neighbor Cost

4
A 1 4 B 1
C 1
E 1

Step (e):
Node A: ___ Node D:
Seq# Neighbor Cost Seq# Neighbor Cost

5
B 1

5
A 1

C 1 C 1
D 1

Step (f):
Node B: ___ Node F:
Seq# Neighbor Cost Seq# Neighbor Cost

6

A 1
6

B 1
C 1 G 1
E 1
F 1

C

BA F G

D E

H

Ivan Marsic • Rutgers University 416

Problem 1.26 — Solution

Problem 1.27 — Solution

The tables of distance vectors at all nodes after the network stabilizes are shown in the leftmost

column of the figure below. Notice that, although, there are two alternative AC links, the nodes

select the best available, which is AC =1.

When the link AC with weight equal to 1 is broken, both A and C detect the new best cost AC
as 50.

1. A computes its new distance vector as
{ } { } 4150,04min)(),(),(),(min)(=++=++= BDCAcBDBAcBD CBA

{ } { } 514,050min)(),(),(),(min)(=++=++= CDBAcCDCAcCD BCA
Similarly, C computes its new distance vector as

{ } { } 321,050min)(),(),(),(min)(=++=++= ADBCcADACcAD BAC

{ } { } 1250,01min)(),(),(),(min)(=++=++= BDACcBDBCcBD ABC
Having a global view of the network, we can see that the new cost DC(A) via B is wrong.
Of course, C does not know this and therefore a routing loop is created.
Both B and C send their new distance vectors out, each to their own neighbors, as shown
in the second column in the figure (first exchange).

2. Upon receiving C’s distance vector, A is content with its current d.v. and makes no
changes. Ditto for node C.
B computes its new distance vector as

{ } { } 431,04min)(),(),(),(min)(=++=++= ADCBcADABcAD CAB

{ } { } 154,01min)(),(),(),(min)(=++=++= CDABcCDCBcCD ACB
B sends out its new distance vector to A and C (second exchange).

3. Upon receiving B’s distance vector, A does not make any changes so it remains silent.
Meanwhile, C updates its distance vector to the correct value for DC(A) and sends out its
new distance vector to A and B (third exchange).

4. A and B will update the C’s distance vector in their own tables, but will not make further
updates to their own distance vectors. There will be no further distance vector exchanges

related to the AC breakdown event.

Solutions to Selected Problems 417

Problem 1.28 — Solution

Problem 1.29 — Solution

(a)

The following figure shows how the routing tables are constructed until they stabilize.

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

1 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

1 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

1 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

1 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

1 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

1 1 0

A

B

C

A

B

C

F
ro

m

Distance to

A B C

0 4 5

2 0 1

1 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

2 0 1

1 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

2 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

2 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

4 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

4 0 1

3 1 0

A

B

C
F

ro
m

Distance to

A B C

0 4 5

2 0 1

3 1 0

A

B

C
F

ro
m

Distance to

A B C

0 4 5

2 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

1 1 0

A

B

C

F
ro

m

Distance to

A B C

0 2 1

2 0 1

1 1 0

Before AC=1 is broken:
After AC=1 is broken,

1st exchange:
2nd exchange:

A

B

C

F
ro

m

Distance to

A B C

0 4 5

4 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

4 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

4 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

4 0 1

3 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

4 0 1

5 1 0

A

B

C

F
ro

m

Distance to

A B C

0 4 5

4 0 1

5 1 0

3rd exchange:

R
ou

tin
g

ta
bl

e
at

 n
od

e
A

R
ou

tin
g

ta
bl

e
at

 n
od

e
B

R
ou

tin
g

ta
b

le
a

t n
od

e
 C

Ivan Marsic • Rutgers University 418

(b)

The forwarding table at node A after the routing tables stabilize is shown in the figure below.
Notice that the forwarding table at each node is kept separately from the node’s routing table.

(c)

See also solution of Problem 1.25.

First, consider the figure below. C updates its distance vector and thinks that the new shortest
distance to D is 4 (via B). It sends its updated distance vector to its neighbors (A and D) and they
update their distance vectors, as shown in the figure.

fr
om B ∞ ∞ ∞

A 0 5 3

C ∞ ∞ ∞

Node A routing table:

A B C

distance to

fr
om

A 0 4 3 4

B 5 0 1

C 3 1 0 1

A B C D

distance to

fr
om B 5 0 1

Node B table:

A B C

distance to

C ∞ ∞ ∞

A ∞ ∞ ∞

fr
om

A 0 5 3

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

B ∞ ∞ ∞ ∞
C 3 1 0 1

Node C table:

A B C D

distance to

A ∞ ∞ ∞ ∞

D ∞ ∞ ∞ ∞

fr
om

A 0 5 3

B 5 0 1

C 3 1 0 1

A B C D

distance to

D 1 0

fr
om

D 1 0

C ∞ ∞

Node D table:

C D

distance to

fr
om

C 3 1 0 1

D 4 2 1 0

A B C D

distance to
fr

om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

D 4 2 1 0

fr
om

C 3 1 0 1

D 4 2 1 0

A B C D

distance to

fr
om B ∞ ∞ ∞

A 0 5 3

C ∞ ∞ ∞

Node A routing table:

A B C

distance to

fr
om

A 0 4 3 4

B 5 0 1

C 3 1 0 1

A B C D

distance to

fr
om B 5 0 1

Node B table:

A B C

distance to

C ∞ ∞ ∞

A ∞ ∞ ∞

fr
om

A 0 5 3

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

B ∞ ∞ ∞ ∞
C 3 1 0 1

Node C table:

A B C D

distance to

A ∞ ∞ ∞ ∞

D ∞ ∞ ∞ ∞

fr
om

A 0 5 3

B 5 0 1

C 3 1 0 1

A B C D

distance to

D 1 0

fr
om

D 1 0

C ∞ ∞

Node D table:

C D

distance to

fr
om

C 3 1 0 1

D 4 2 1 0

A B C D

distance to
fr

om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

D 4 2 1 0

fr
om

C 3 1 0 1

D 4 2 1 0

A B C D

distance to

destination

A --

B AC

C AC

interface

D AC

Node A forwarding table:

Solutions to Selected Problems 419

A routing loop is formed because a packet sent from A to D would go to C and C would send it to
B (because C’s new shortest path to D is via B). B would return the packet to C because B’s
shortest path to D is still via C. This looping of the packet to D would continue forever.

(d)

If the nodes use split-horizon routing, then neither A nor B would advertise to C their distances to
D, because C is the next hop for both of them on their paths to D. Therefore, in principle D would
not think there is an alternative path to D.

Even in this case, it is possible that a routing loop forms. The key to a routing loop formation in
this case is the periodic updates that nodes running a distance vector protocol are transmitting.
Thus, the cycle shown below is due to the pathological case where B transmits its periodic report
some time in the interval after the link CD crashes, but before B receives update information
about the outage to D from node C.

Node A table:

Node B table:

Node C table:

Node D table:

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

D 4 2 1 0

fr
om

C 3 1 0 1

D 4 2 1 0

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 3

A B C D

distance to

fr
om D 0

D

distance to

Before link failure
After link failure
is detected

fr
om

A 0 4 3 6

B 4 0 1 2

C 3 1 0 3

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 4

C 3 1 0 3

A B C D

distance to

fr
om B 4 0 1 2

A 0 4 3 4

C 3 1 0 3

A B C D

distance to

C sends its new distance vector

fr
om D 0

D

distance to

Ivan Marsic • Rutgers University 420

Problem 1.30 — Solution

Problem 1.31 — Solution

(a)

Example IP address assignment is as shown:

Node A table:

Node B table:

Node C table:

Node D table:

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

D 4 2 1 0

fr
om

C 3 1 0 1

D 4 2 1 0

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 1

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 3

A B C D

distance to

fr
om D 0

D

distance to

Before link failure
After link failure
is detected

fr
om

A 0 4 3 4

B 4 0 1 2

C 3 1 0 ∞

A B C D

distance to

fr
om

A 0 4 3 4

B 4 0 1 4

C 3 1 0 ∞

A B C D

distance to

fr
om B 4 0 1 2

A 0 4 3 4

C 3 1 0 3

A B C D

distance to

B sends its periodic report
C sends its updated report

fr
om D 0

D

distance to

Solutions to Selected Problems 421

Subnet
223.1.1.12/30

Subnet
223.1.1.4/30

R1

R2

E F

A

B

C

D

223.1.1.9

223.1.1.1
223.1.1.5

223.1.1.2

223.1.1.3

223.1.1.6

223.1.1.7

223.1.1.13

223.1.1.14 223.1.1.15

Subnet
223.1.1.0/30

Subnet
223.1.1.8/30

223.1.1.10

(b)

Routing tables for routers R1 and R2 are:

Router R1 Destinat. IPaddr / Subnet Mask Next Hop Output Interface
223.1.1.2 (A) 223.1.1.2 (A) 223.1.1.1
223.1.1.3 (B) 223.1.1.3 (B) 223.1.1.1
223.1.1.6 (C) 223.1.1.6 (C) 223.1.1.5
223.1.1.7 (D) 223.1.1.7 (D) 223.1.1.5
223.1.1.12/30 223.1.1.10 223.1.1.9

Router R2 Destinat. IPaddr / Subnet Mask Next Hop Output Interface
223.1.1.14 (E) 223.1.1.14 (E) 223.1.1.13
223.1.1.15 (F) 223.1.1.15 (F) 223.1.1.13
223.1.1.0/30 223.1.1.9 223.1.1.10
223.1.1.4/30 223.1.1.9 223.1.1.10

Problem 1.32 — Solution

Recall that in CIDR the x most significant bits of an address of the form a.b.c.d/x constitute the
network portion of the IP address, which is referred to as prefix (or network prefix) of the
address. In our case the forwarding table entries are as follows:

Subnet mask Network prefix Next hop
223.92.32.0/20 11011111 01011100 00100000 00000000 A
223.81.196.0/12 11011111 01010001 11000100 00000000 B
223.112.0.0/12 11011111 01110000 00000000 00000000 C

Ivan Marsic • Rutgers University 422

128.6.224.0 / 19 128.6.224.0 / 19

128.6.232.0 / 21

128.6.224.0 / 21

223.120.0.0/14 11011111 01111000 00000000 00000000 D
128.0.0.0/1 10000000 00000000 00000000 00000000 E
64.0.0.0/2 01000000 00000000 00000000 00000000 F
32.0.0.0/3 00100000 00000000 00000000 00000000 G

Notice that the network prefix is shown in bold face, whereas the remaining 32−x bits of the
address are shown in gray color. When forwarding a packet, the router considers only the leading
x bits of the packet’s destination IP address, i.e., its network prefix.

 Packet destination IP address Longest prefix match Next hop

(a) 195.145.34.2 = 11000011 10010001 00100010 00000010 1 E

(b) 223.95.19.135 = 11011111 01011111 00010011 10000111 11011111 0101 B

(c) 223.95.34.9 = 11011111 01011111 00100010 00001001 11011111 0101 B

(d) 63.67.145.18 = 00111111 01000011 10010001 00010010 001 G

(e) 223.123.59.47 = 11011111 01111011 00111011 00101111 11011111 011110 D

(f) 223.125.49.47 = 11011111 01111101 00110001 00101111 11011111 0111 C

Problem 1.33 — Solution

The packet forwarding is given as follows:

 Destination IP address Binary representation Next hop

(a) 128.6.4.2 (cs.rutgers.edu) 10000000 00000110 00000100 00000010 A

(b) 128.6.236.16 (caip.rutgers.edu) 10000000 00000110 11101100 00010000 B

(c) 128.6.29.131 (ece.rutgers.edu) 10000000 00000110 00011101 10000011 C

(d) 128.6.228.43 (toolbox.rutgers.edu) 10000000 00000110 11100100 00001010 D

From this, we can reconstruct the forwarding table as:
Network Prefix Subnet Mask Next Hop

10000000 00000110 0000 128.6.0.0 / 20 A
10000000 00000110 11101 128.6.232.0 / 21 B
10000000 00000110 0001 128.6.16.0 / 20 C
10000000 00000110 111 128.6.224.0 / 19 D

Notice that in the last row we could have used the prefix “10000000 00000110 11100” and the
subnet mask “128.6.224.0 / 21.” However, it suffices to use only 19 most significant bits because
the router forwards to the longest possible match, as explained next.

If we calculate the range of address associated with the prefix
128.6.224.0/19 (last row in the above forwarding table), we
find the range as 128.6.224.0 to 128.6.255.254. The addresses
associated with 128.6.232.0/21 (second row) are 128.6.232.1 to
128.6.239.254. As seen, the latter set of addresses is a subset of
the former set, so one may think that the router will route all

Solutions to Selected Problems 423

addresses starting with 128.6.224.0/19 to the next hop D. This is not the case. When a packet
arrives with 128.6.228.43 in its header, the router will find that the longest match is
128.6.224.0/19 (last row in the above table). Hence, this packet will be forwarded to D.
Alternatively, when a packet arrives with 128.6.236.16 in its header, the router will find that there
are two matches in the forwarding table: 128.6.224.0/19 (last row) and 128.6.232.0/21 (second
row). Of these two, the latter is longer by two bits, so the router will not get confused and route
this packet to D. Rather, the router will correctly route the packet to B.

Problem 1.34 — Solution

Problem 1.35 — Solution

The observed topology of an internetwork of autonomous systems depends on the vantage point.
The view from ASϕ’s vantage point is shown in the problem statement. When solving the
problem for other stub ASs, it is key to keep in mind that ASs do not like to provide transit
without being paid. ASs will happily provide transit to their paying customers, or will provide
access of their customers to their peers, but will not provide free transit to their peers.

The solutions for the remaining vantage points are as follows:

γ’s customers

η’s customers

Noodle.comMacrospot.com

φ

ηγ

δ

α β
χ

γ’s customers

η’s customers

Noodle.comMacrospot.com

φ

ηγ

δ

α β
χ

ϕ

ε

ϕ’s customers

ϕ

ε

ϕ’s customers

Topology view from γ’s customersTopology view from η’s customers

Ivan Marsic • Rutgers University 424

γ’s customers η’s customers

Noodle.com

Macrospot.com

φ

ηγ

δ

α β
χ

γ’s customers η’s customers

Noodle.com

Macrospot.com

φ

ϕηγ

δ ε

α β
χ

ϕ’s customers

ϕ

ε

ϕ’s customers

Topology view from Macrospot.com Topology view from Noodle.com

Problem 1.36 — Solution

(a)
Recall that autonomous systems use path vector routing for inter-domain routing (Section 1.4.5).
ASα will receive three routes to ASβ, along router links CH, path: 1 | β; DK, path: 1 | β; and
DE, path: 2 | γ,β.

(b)
X→Y traffic will take link CH, because this is the shortest path when crossing ASα. Recall that
internally ASs use hot-potato routing, so when a packet from X arrives at router A, the shortest
path across ASα to ASβ is AC, then CH. Note that this strategy minimizes cost to the source of
the traffic (i.e., ASα) and is not optimal to other ASs along the path, such as ASβ.

By the same reasoning, Y→X traffic will take link KD. The resulting paths are
X→A→C→H→I→J→Y and Y→J→K→D→B→A→X. In both cases, hot-potato routing within
the given AS does not look at the overall path length, but only the path length within this AS.

(c) To have all X→Y traffic take link DK, the Exterior Gateway Protocol of ASα could simply be
configured with a routing policy that prefers link DK in all cases. The Exterior Gateway Protocol
of ASα then would simply not tell the Interior Gateway Protocol (IGP) of ASα that it is possible
to reach ASβ via the speaker C.

The only general solution, though, is for ASα to accept into its routing tables some of the internal
structure of ASβ, so that the IGP protocol of ASα, for example, knows where Y is relative to links
CH and DK. (In our example both alternative paths X→Y (or Y→X) are equally long, so both ASs
would need to break the tie in the same way.)

Of course, if one of the links CH or DK (or an attached speaker) goes down, then all X→Y traffic
and Y→X traffic will be forced to take the same path.

(d)
If ASα were configured with a routing policy to prefer AS paths through ASγ, or to avoid AS
paths involving links direct links to ASβ, then ASα might route to β via γ.

Solutions to Selected Problems 425

Problem 1.37 — Solution

Problem 1.38 — Solution

Problem 1.39 — Solution

Problem 1.40 — Solution

PPP and Link Control Protocol (LCP)

(a)

If packets are not identified with unique identifiers, then the following sequence may happen, due
to delayed acknowledgements from Responder. The delayed ACKs are falsely interpreted as
being ACKs for a subsequent disconnect and link configuration. This in turn causes a failure in
authentication.

Initiator Responder

Initiate link configurationInitiate link configuration

Finish link configurationFinish link configuration

Process linkProcess link
configuration requestconfiguration request

Timeout
RetransmitRetransmit

Timeout
RetransmitRetransmit

(discard)(discard)
ProcessProcess
authentication requestauthentication request

Receive close request,Receive close request,
Notify other deviceNotify other device

Initiate link configurationInitiate link configuration

Finish link configurationFinish link configuration

Configure-Request

CR

(CR)

CR

Configure-Ack

C-Ack

Authenticate

C-Ack

Authenticate-Ack
Terminate-Request

CR

Authenticate

Finish authenticationFinish authentication

Note: I was not able to find in the literature explicitly stated the rationale for unique identifiers in
LCP frames. This example is based on [Bertsekas & Gallagher, 1992], Section 2.7.2, Figure 2.44,
which is an example of initialization failure for the HDLC protocol. Because PPP is derived from
HDLC, I assume that its designers anticipated this problem. Another example is also from

Ivan Marsic • Rutgers University 426

[Bertsekas & Gallagher, 1992], Section 2.7.4, Figure 2.46, which happens in case of a sequence
of node failures.

(b)

If it is not necessary to acknowledge a Terminate-Request, then one side may terminate the link,
while the other side still considers the link open and keeps sending data.

(Link still OPEN)(Link still OPEN)

Receive close request,Receive close request,
Notify other deviceNotify other device

Terminate linkTerminate link

Terminate-Request

Data packet

(loss)

Problem 1.41 — Solution

Problem 1.42 — Solution

(a) and (b)

See the figure below for the configuration messages that are sent and how the ports are labeled.
The network converges to its spanning tree in just two iterations.

Switch B
(ID = 342)

Switch C
(ID = 719)

Switch A
(ID = 193)

Port-1 (designated): 193, 193, 0

Port-2 (designated): 193, 193, 0

P-1 (designated): 342, 342, 0 P-1 (designated): 719, 719, 0

P-2 (designated): 342, 342, 0 P-2 (designated): 719, 719, 0

B C

A
(root)

P-1 (designated): 193, 193, 0

P-2 (designated): 193, 193, 0

P-1 (root) P-1 (root)

P-2 (designated): 342, 193, 1 P-2 (blocked)

t = 0

t = 1

Network 1

Network 3

Network 2

Network 1

Network 3

Network 2

Solutions to Selected Problems 427

At t = 0:

Initially each switch selects itself as the “root switch” and for all the attached networks as the
“designated switch.”

Messages (each switch on both ports): Switch A: 193, 193, 0; Switch B: 342, 342, 0; Switch C:
719, 719, 0.

At t = 1:

Switch A selects itself as the “designated switch” for Network segments 1 and 2 because it has the
lowest ID on both segments. Both of its ports become “designated.”

Switch B selects A as the “designated switch” for Network 2 and selects itself as the “designated
switch” for Network 3, because these are the lowest ID on their respective network segments. Its
Port-1 becomes “root port” and Port-2 becomes “designated port.”

Switch C selects A as the “designated switch” for Network 2 and selects B as the “designated
switch” for Network 3, because they have the lowest ID on their respective network segments. Its
Port-1 becomes “root port” and its Port-2 becomes blocked.

Messages: Switch A: 193, 193, 0 on both ports; Switch B: 342, 193, 1 on Port-2; Switch C:
none.

At t = 2:

Messages: Switch A: 193, 193, 0 on both ports; Switch B: 342, 193, 1 on Port-2; Switch C:
none.

(c)
The network reached the stable state in two iterations. After this, only switch A (root) will
generate configuration messages and switch B will forward these messages only over its Port-2
for which it is the designated switch.

(d)
After the network stabilizes, a frame sent by station X to station Y will traverse the path shown in
the figure below. Notice that, unlike routing, in LAN switches the frame is not first transmitted to
the “next hop” and then relayed by that hop. That is, switch A does not “relay” a packet from host
X to host Y, although A is elected as the root of the spanning tree. This is because the spanning
tree protocol (STP) operates transparently to the backward learning algorithm, which learns the
switching tables based on the network topology configured by STP unknown to the backward
learning algorithm. In our example, only switch B will “relay” a packet from host X to host Y.

BX C

A

Y

Ivan Marsic • Rutgers University 428

A B

Problem 1.43 — Solution

Problem 1.44 — Solution

The solution for three stations using the 802.11 protocol is similar to that of Problem 1.18 and is
shown in the figure below. Again, the third station has the smallest initial backoff and transmits
the first. The other two stations will freeze their countdown when they sense the carrier as busy.
After the first frame STA3 randomly chooses the backoff value equal to 4, and the other two
stations resume their previous countdown. STA1 reaches zero first and transmits, while STA2
and STA3 freeze their countdown waiting for the carrier to become idle. Next, STA3 transmits its
second frame and randomly chooses the backoff value equal to 3, and the other two stations again
resume their previous countdown. STA2 finally transmits its first frame but STA3 simultaneously
transmits its third frame and there is a collision.

D
IF

S

STA3, Frame-1
CP

5 4 3 2 1 0

2 1 0

9 8 7 6 5 4 3 2 1 0

CP

3 2 1 0

7 6 5 4 3 2 1 0

4 3 2 1 0

D
IF

S

STA1, Frame-1

CP

1 0

D
IF

S

7 6 5 4 3 2 1 0

TimeTime

STA 1

STA 2

STA 3

Remainder Backoff

STA3, Frame-2
CP

D
IF

S

D
IF

S

Collision

STA2, 1st frame

STA3, 3rd frame

4 3 2 1 0

6 5 4 3 2 1 0

3 2 1 0

3 2 1 0

CP

Problem 1.45 — Solution

There is no access point, as this is an independent BSS
(IBSS). Remember that 802.11 stations cannot transmit and
receive simultaneously, so once a station starts receiving a
packet, it cannot contend for transmission until the next
transmission round.

The solution is shown in the figure below (check also Figure 1-75 in Example 1.6). We make
arbitrary assumption that packet arrives first at B and likewise that after the first transmission A
claims the channel before B. Notice that the durations of EIFS and ACK_Timeout are the same
(Table 1-6). Station B selects the backoff=6 and station A transmits the first, while station B
carries over its frozen counter and resumes the countdown from backoff=2.

Solutions to Selected Problems 429

DIFSStation A

Station B

DIFS Data

Remainder backoff = 2

2,1,0

Time

Data

S
IF

S

ACK

Packet
arrival

Packet arrival Example: backoff = 4

4,3,2,1,0

DataEIFS S
IF

S

ACKACK Timeout

Noise
Example: backoff = 6

6,5,4,3,…

Problem 1.46 — Solution

Problem 2.1 — Solution

(a)

Scenario 1: the initial value of TimeoutInterval is picked as 3 seconds.

At time 0, the first segment is transmitted and the initial value of TimeoutInterval is set as
3 s. The timer will expire before the ACK arrives, so the segment is retransmitted and this time
the RTO timer is set to twice the previous size, which is 6 s. The ACK for the initial transmission
arrives at 5 s, but the sender cannot distinguish whether this is for the first transmission or for the
retransmission. This does not matter, because the sender simply accepts the ACK, doubles the
congestion window size (it is in slow start) and sends the second and third segments. The RTO
timer is set at the time when the second segment is transmitted and the value is 6 s (unchanged).
At 8 s a duplicate ACK will arrive for the first segment and it will be ignored, with no action
taken. At 10 s, the ACKs will arrive for the second and third segments, the congestion window
doubles and the sender sends the next four segments. SampleRTT is measured for both the
second and third segments, but we assume that the sender sends the fourth segment immediately
upon receiving the ACK for the second. This is the first SampleRTT measurement so

 EstimatedRTT = SampleRTT = 5 s

 DevRTT = SampleRTT / 2 = 2.5 s

and the RTO timer is set to

 TimeoutInterval = EstimatedRTT + 4 ⋅ DevRTT = 15 s

After the second SampleRTT measurement (ACK for the third segment), the sender will have

 EstimatedRTT = (1−α) ⋅ EstimatedRTT + α ⋅ SampleRTT

= 0.875 × 5 + 0.125 × 5 = 5 s

 DevRTT = (1−β) ⋅ DevRTT + β ⋅ | SampleRTT − EstimatedRTT |

= 0.75 × 2.5 + 0.25 × 0 = 1.875 s

Ivan Marsic • Rutgers University 430

but the RTO timer is already set to 15 s and remains so while the fifth, sixth, and seventh
segments are transmitted. The following table summarizes the values that TimeoutInterval
is set to for the segments sent during the first 11 seconds:

Times when the RTO timer is set RTO timer values
t = 0 s (first segment is transmitted) TimeoutInterval = 3 s (initial guess)
t = 3 s (first segment is retransmitted) TimeoutInterval = 6 s (RTO doubling)
t = 10 s (fourth and subsequent segments) TimeoutInterval = 15 s (estimated value)

(b)

As shown in the above figure, the sender will transmit seven segments during the first 11 seconds
and there will be a single (unnecessary) retransmission.

(c)

Scenario 2: the initial value of TimeoutInterval is picked as 5 seconds.

This time the sender correctly guessed the actual RTT interval. Therefore, the ACK for the first
segment will arrive before the RTO timer expires. This is the first SampleRTT measurement
and, as above, EstimatedRTT = 5 s, DevRTT = 2.5 s. When the second segment is transmitted,
the RTO timer is set to TimeoutInterval = EstimatedRTT + 4 ⋅ DevRTT = 15 s.

After the second SampleRTT measurement (ACK for the second segment), the sender will have,
as above, EstimatedRTT = 5 s, DevRTT = 1.875 s.

When the fourth segment is transmitted, the RTO timer is set to

 TimeoutInterval = EstimatedRTT + 4 ⋅ DevRTT = 12.5 s

After the third SampleRTT measurement (ACK for the third segment), the sender will have

 EstimatedRTT = 0.875 × 5 + 0.125 × 5 = 5 s

 DevRTT = 0.75 × 1.875 + 0.25 × 0 = 1.40625 s

T
-o

u
t=

3

seg-0

Scenario 1: initial T-out = 3 s Scenario 2: initial T-out = 5 s

T
im

e

Sender Receiver

0

3

5

8
9

11

seg-0

seg-0 (retransmit)
ack-1

ack-1
seg-1

seg-2

seg-1
seg-2

duplicate

seg-1
seg-2

seg-5
seg-4

seg-6 seg-3
…

T
-o

u
t=

6
T

-o
u

t=
15

seg-3

T
-o

u
t=

5

seg-0

Sender Receiver

0

3

5

8
9

11

seg-0

ack-1

seg-1
seg-2

seg-1
seg-2

seg-1
seg-2

seg-5
seg-4

seg-6 seg-3
…

T
-o

u
t=

15

seg-3

T
-o

u
t=

12
.5

Solutions to Selected Problems 431

but the RTO timer is already set to 12.5 s and remains so while the fifth, sixth, and seventh
segments are transmitted. The following table summarizes the values that TimeoutInterval
is set to for the segments sent during the first 11 seconds:

Times when the RTO timer is set RTO timer values
t = 0 s (first segment is transmitted) TimeoutInterval = 3 s (initial guess)
t = 5 s (second segment is transmitted) TimeoutInterval = 15 s (estimated value)
t = 10 s (fourth and subsequent segments) TimeoutInterval = 12.5 s (estimated val.)

Problem 2.2 — Solution

The congestion window diagram is shown in the figure below.

1
4
8

16

32

RcvBuffer = 20 Kbytes

52

SSThresh = 64 Kbytes

72

1 2 3 4 5 6 7 8 9 Transmission round

C
on

ge
st

io
n

w
in

do
w

 s
iz

e

First, notice that because both hosts are fast and there is no packet loss, the receiver will never
buffer the received packets, so sender will always get notified that RcvWindow = 20 Kbytes,
which is the receive buffer size.

The congestion window at first grows exponentially. However, in transmission round #6 the
congestion window of 32 × MSS = 32 Kbytes exceeds RcvWindow = 20 Kbytes. At this point
the sender will send only min{CongWin, RcvWindow} = 20 segments and when these get
acknowledged, the congestion window grows to 52 × MSS, instead of 64 × MSS under the
exponential growth. Thereafter, the sender will keep sending only 20 segments and the
congestion window will keep growing by 20 × MSS.

Ivan Marsic • Rutgers University 432

It is very important to notice that the growth is not exponential after the congestion window
becomes 32 × MSS.

In transmission round #8 the congestion window grows to 72 × MSS, at which point it exceeds the
slow start threshold (initially set to 64 Kbytes), and the sender enters the congestion avoidance
state.

This diagram has the same shape under different network speeds, the only difference being that a
transmission round lasts longer, depending on the network speed.

Problem 2.3 — Solution

Problem 2.4 — Solution

Notice that sender A keeps a single RTO retransmission timer for all outstanding packets. Every
time a regular, non-duplicate ACK is received, the timer is reset if there remain outstanding
packets. Thus, although a timer is set for segments sent in round 3×RTT, including segment #7,
the timer is reset at time 4×RTT because packet #7 is unacknowledged. This is why the figure
below shows the start of the timer for segment #7 at time 4×RTT, rather than at 3×RTT.

At time 5×RTT, sender A has not yet detected the loss of #7 (neither the timer expired, nor three
dupACKs were received), so CongWin = 7×MSS (remains constant). There are two segments in
flight (segments #7 and #8), so at time = 5×RTT sender A could send up to

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{7, 64} − 2 = 5×MSS

but it has nothing left to send, A sends a 1-byte segment to keep the connection alive. Recall that
TCP guarantees reliable transmission, so although sender sent all data it cannot close the
connection until it receives acknowledgement that all segments successfully reached the receiver.
Ditto for sender B at time = 7×RTT.

Solutions to Selected Problems 433

The A’s timer times out at time = 6×RTT (before three dupACKs are received), and A re-sends
segment #7 and enters slow start. At 7×RTT the cumulative ACK for both segments #7 and #8 is
received by A and it, therefore, increases CongWin = 1 + 2 = 3×MSS, but there is nothing left to
send.

The Reno sender, B, behaves in the same way as the Tahoe sender because the loss is detected by
the expired RTO timer. Both types of senders enter slow start after timer expiration. (Recall that
the difference between the two types of senders is only in Reno implementing fast recovery,
which takes place after three dupACKs are received.)

Problem 2.5 — Solution

The range of congestion window sizes is [1, 16]. Because the loss is detected when
CongWindow = 16×MSS, SSThresh is set to 8×MSS. Thus, the congestion window sizes in
consecutive transmission rounds are: 1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, and 16 MSS (see the
figure below). This averages to 9.58×MSS per second (recall, a transmission round is RTT = 1

sec), and a mean utilization of
128

858.9 ×
[Kbps/Kbps] = 0.59875, or about 60%.

#8 #7

1
2

4

8

512
1024

2048

4096

[MSS][bytes]

T
ah

oe
 S

en
de

r
A

C
on

gW
in

1 2 3 4 5

#1
#2

,3
#4

,5
,6

,7 #8 #7

1
2

4

8

512
1024

2048

4096

1 2 3 4 5 6

Time

[RTT]

7

7

7

77 Timer timeout

(1
-b

yt
e

)

#1
#2

,3
#4

,5
,6

,7

44

9

7

(1
-b

yt
e

)

7
4

77
44

3

R
en

o
S

en
de

r
B

C
on

gW
in

6

8

Ivan Marsic • Rutgers University 434

1+1 packets

Sender Receiver

Problem 2.6 — Solution

The solution of Problem2.5 is an idealization that cannot occur in reality. A better approximation
is as follows. The event sequence develops as follows:

packet loss happens at a router (last transmitted segment), current CongWin = 16×MSS.

the sender receives 16-1=15 ACKs which is not enough to grow CongWin to 17

but it still sends 16 new segments, last one will be lost

the sender receives 15 dupACKs, loss detected at the sender

retransmit the oldest outstanding packet, CongWin ← 1

the sender receives cumulative ACK for 16 recent segments, except for the last one

CongWin ← 2, FlightSize = 1×MSS, send one new segment

the sender receives 2 dupACKs, FlightSize = 3×MSS, EffctWin = 0, sends one 1-byte
segment

the sender receives 3rd dupACK, retransmits the oldest outstanding packet, CW ← 1

the sender receives cumulative ACK for 4 recent segments (one of them was 1-byte),
FlightSize ← 0

CongWin ← 2, the sender resumes slow start

Problem 2.7 — Solution

MSS = 512 bytes

SSThresh = 3×MSS

RcvBuffer = 2 KB = 4×MSS

TimeoutInterval = 3×RTT

C
on

g
es

tio
n

w
in

d
ow

 s
iz

e

1

4

8

16

Transmission round1 2 3 4 5 6 7 8 9 10 11 12

Solutions to Selected Problems 435

At time = 3×RTT, after receiving the acknowledgement for the 2nd segment, the sender’s
congestion window size reaches SSThresh and the sender enters additive increase mode.

Therefore, the ACK for the 3rd segment is worth
3

1
1

CongWindow

MSS
MSS

1

×=×
t-

= 0.33 MSS.

CongWindow3×RTT = 3.33×MSS. Therefore, the sender sends 3 segments: 4th, 5th, and 6th. The
router receiver 3 segments but can hold only 1+1=2. It will start transmitting the 4th segment,
store the 5th segment in its buffer, and discard the 6th segment due to the lack of buffer space
(there is a waiting room for one packet only). The acknowledgements for the 4th and 5th segments

add 3.0
33.3

1
1 =× ×MSS and 28.0

63.3

1
1 =× ×MSS, respectively, so CongWindow4×RTT =

3.91×MSS. The effective window is smaller by one segment because the 6th segment is
outstanding:

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{3.91, 4} − 1 = 2×MSS

At time = 4×RTT the sender sends two segments, both of which successfully reach the receiver.
Acknowledgements for 7th and 8th segments are duplicate ACKs, but this makes only two
duplicates so far, so the loss of #6 is still not detected. Notice that at this time the receive buffer
stores two segments (RcvBuffer = 2 KB = 4 segments), so the receiver starts advertising
RcvWindow = 1 Kbytes = 2 segments.

The sender computes

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{3.91, 2} − 3 = 0

so it sends a 1-byte segment at time = 5×RTT.

At time = 6×RTT, the loss of the 6th segment is detected via three duplicate ACKs. Recall that the
sender in fast retransmit does not use the above formula to determine the current EffctWin—it
simply retransmits the segment that is suspected lost. That is why the above figure shows

#7
,8 #6

1
2

4

8

512
1024

2048

4096

[MSS][bytes]
C

on
gW

in

1 2 3 4 5
Time
[RTT]

(1
-b

yt
e

)

#1
#2

,3
#4

,5
,6

44

7

3.33
3.91

66

CongWin
EffctWin

SSThresh

6

Tim
er

 se
t f

or
 se

gm
en

t #
4

(a
nd

 #
5,

 #
6)

Tim
er

 re
se

t f
or

 se
gm

en
t #

6

Tim
er

 re
se

t f
or

 se
gm

en
t #

6

Ivan Marsic • Rutgers University 436

EffctWin = 2 at time = 6×RTT. The last EffctWin, at time = 7×RTT, equals 2×MSS but
there are no more data left to send.

Therefore, the answers are:

(a)

The first loss (segment #6 is lost in the router) happens at 3×RTT, so

CongWindow 3×RTT = 3.33×MSS.

(b)

The loss of the 6th segment is detected via three duplicate ACKs at time = 6×RTT.

At this time, not-yet-acknowledged segments are: 6th, 7th, and 8th, a total of three.

Problem 2.8 — Solution

In solving the problem, we should keep in mind that the receive buffer size is set relatively small
to 2Kbytes = 8×MSS.

In the transmission round i, the sender sent segments k, k+1, …, k+7, of which the segment k+3 is
lost. The receiver receives the four segments k+4, …, k+7, as out-of-order and buffers them and
sends back four duplicate acknowledgements. In addition, the receiver notifies the sender that the
new RcvWindow = 1 Kbytes = 4×MSS.

At i+1, the sender first receives three regular (non-duplicate!) acknowledgements for the first
three successfully transferred segments, so CongWin = 11×MSS. Then, four duplicate
acknowledgements will arrive while FlightSize = 5. After receiving the first three dupACKs,
Reno sender reduces the congestion window size by half, CongWin = 11 / 2 = 5×MSS.

The new value of SSThresh = CongWin / 2 + 3×MSS = 8×MSS.

Because Reno sender enters fast recovery, each dupACK received after the first three increment
the congestion window by one MSS. Therefore, CongWin = 6×MSS. The effective window is:

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{6, 4} − 5 = −1 (#)

Thus, the sender is allowed to send nothing but the oldest unacknowledged segment, k+3, which
is suspected lost.

There is an interesting observation to make here, as follows. Knowing that the receive buffer
holds the four out-of-order segments and it has four more slots free, it may seem inappropriate to
use the formula (#) above to determine the effective window size. After all, there are four free
slots in the receive buffer, so that should not be the limiting parameter! The sender’s current
knowledge of the network tells it that the congestion window size is 6×MSS so this should allow
sending more!? Read on.

The reason that the formula (#) is correct is that you and I know what receiver holds and where
the unaccounted segments are currently residing. But the sender does not know this! It only
knows that currently RcvWindow = 4×MSS and there are five segments somewhere in the

Solutions to Selected Problems 437

network. As far as the sender knows, they still may show up at the receiver. So, it must not send
anything else.

At i+2, the sender receives ACK asking for segment k+8, which means that all five outstanding
segments are acknowledged at once. Because the congestion window size is still below the
SSThresh, the sender increases CongWin by 5 to obtain CongWin = 11×MSS. Notice that by
now the receiver notifies the sender that the new RcvWindow = 2 Kbytes = 8×MSS, because all
the receive buffer space freed up.

The new effective window is:

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{11, 8} − 0 = 8×MSS

so the sender sends the next eight segments, k+8, …, k+15.

Next time the sender receives ACKs, it’s already in congestion avoidance state, so it increments
CongWin by 1 in every transmission round (per one RTT).

Notice that, although CongWin keeps increasing, the sender will keep sending only eight
segments per transmission round because of the receive buffer’s space limitation.

Some networking books give a simplified formula for computing the slow-start threshold size
after a loss is detected as SSThresh = CongWin / 2 = 5.5×MSS. Rounding CongWin down to
the next integer multiple of MSS is often not mentioned and neither is the property of fast

SSThresh
10

8

Transmission round

S
en

d
k,

 k
+

1,
 k

+
2,

 …
k+

7
lo

st
 s

eg
m

en
t:

k+
3

3
A

C
K

s
+

4
du

pA
C

K
s

re
-s

en
d

k+
3

4

CongWin

A
C

K
 k

+
9

re
ce

iv
ed

(5
se

gm
en

ts
 a

ck
ed

)
S

en
d

k+
8,

 k
+

9,
 …

k+
15

i i+1 i+2 i+3 i+4 i+5

12

A
ll

8
A

C
K

s
re

ce
iv

ed
bu

t,
 it

’s
 c

on
ge

st
io

n
av

oi
da

nc
e.

S
en

d
k+

8,
 k

+
16

,
…

k+
23

8

5

15

11

14

Ivan Marsic • Rutgers University 438

recovery to increment CongWin by one MSS for each dupACK received after the first three that
triggered the retransmission of segment k+3.

In this case, the sender in our example would immediately enter congestion avoidance, and the

corresponding diagram is as shown in the figure below.

Problem 2.9 — Solution

We can ignore the propagation times because they are negligible relative to the packet
transmission times (mainly due to short the distance between the transmitter and the receiver).
Also, the transmission times for the acknowledgements can be ignored. Because the transmission
just started, the sender is in the slow start state. Assuming that the receiver sends only cumulative
acknowledgements, the total time to transmit the first 15 segments of data is (see the figure):

4 × 0.8 + 15 × 8 = 123.2 ms.

SSThresh
10

8

Transmission round

S
en

d
k,

 k
+

1,
 k

+
2,

 …
k+

7
lo

st
 s

eg
m

en
t:

 k
+

3

4

CongWin

A
C

K
 k

+
9

re
ce

iv
ed

(5
se

gm
en

ts
 a

ck
ed

)
bu

t,
it’

s
co

ng
es

tio
n

av
oi

da
nc

e.
S

en
d

k+
9,

 k
+

10
,

…
k+

14
i i+1 i+2 i+3 i+4 i+5

A
ll

6
A

C
K

s
re

ce
iv

ed
bu

t,
it’

s
co

ng
es

tio
n

av
oi

da
nc

e.
S

en
d

k+
15

, k
+

16
,

…
k+

21

8

5.5
3

A
C

K
s

+
4

du
pA

C
K

s
re

-s
en

d
k+

3

6.5

9.5

Solutions to Selected Problems 439

 The timing diagram is as shown in the figure.

Problem 2.10 — Solution

(a)

During the slow start phase, an incoming acknowledgment will allow the sender to send two
segments. The acknowledgements to these two segments will be separated by 1 ms, as shown in
the figure below.

#1
Segments
transmitted:

#2
#3

#4
#5
#6
#7

#1

#2

#3

#4

#7

Server Access Point Mobile Node

#8

#8
#9

#10

Segment #1
received

Segment #2
received

Segment #3
received

Segment #7
received

Packet transmission time
on the Ethernet link = 0.8 ms

Packet transmission time
on the Wi-Fi link = 8 ms

ack #2

ack #4

ack #8T
im

e

Ivan Marsic • Rutgers University 440

 (b)

The start times for the transmissions of the first seven segments are as shown in the figure:

(c)

We can make the following observations:

o1. Except for the first round, packets always arrive in pairs at the router. The reason for this
was explained under item (a); that is, during the slow start phase, each acknowledgement
will allow the sender to send two segments back-to-back.

o2. The time gap between the packet pairs is 1 ms, because the time gap between the
acknowledgements (during slow start) is 1 ms. This gives enough time to the router to
transmit one packet before the arrival of the next pair.

T
im

e
T

im
e

Sender Router

Data i

ACK i

0.1 ms

1 ms

10 ms

10 ms

10 ms

ACK i − 1
Receiver

41.1 ms

10 ms

1 ms

ACK i + 1

Data i + 1

1 ms

T
im

e
T

im
e

Sender Router

Start 1 = 0 ms

Receiver

41.1 ms

1 ms

10 ms

10 ms

10 ms

1 ms

1 ms

Start 2 = 41.1 ms

Start 3 = 41.2 ms

Start 4 = 82.2 ms

Start 5 = 82.3 ms

Start 6 = 83.2 ms

0 × RTT, CW = 1

1 × RTT, CW = 2

2 × RTT, CW = 3

CW = 4

Start 7 = 83.3 ms 1 ms

1 ms

1 ms

1 ms

Data 1

ACK 1
10 ms

Data 2

ACK 2

ACK 3

Data 3

ACK 5

Data 4

ACK 4

ACK 6

Data 7

Data 6
Data 5

Solutions to Selected Problems 441

o3. We can think conceptually that from each pair, one packet is relayed by the router and the
other remains in the router’s buffer. (This is not true, because the router transmits packets
in the order of their arrival (FIFO), so it will first transmit any packets remaining from
previous pairs, but we can think this way conceptually.)

o4. Because router can hold 9+1=10 packets, the first loss will happen when ≥ 20 packets is
sent on one round. In 5th round, time = 5×RTT, the CongWin = 32, so this is when the
first loss will happen

o5. The packets sent in this round will find the following number of packets already at the
router (packet pairs are separated by ||):
0, 1 || 1, 2 || 2, 3 || 3, 4 || 4, 5 || 5, 6 || 6, 7 || 7, 8 || 8, 9 || 9, 10 || 9, 10 || 9, 10 || 9, 10

|| 9, 10 || 9, 10 || 9, 10 .

o6. Therefore, the 20th packet of this round will find 10 packets already at the router and this
packet will be lost. This is the 41st packet from the start of sending at time = 0.

o7. By the time the next pair arrives, the router will have transmitted one packet, so 21st
packet finds 9 packets already at the router, but its companion in the pair, 22nd packet
finds 10 packets and is lost

o8. This pattern repeats until the last, which is 32nd packet of this round.

o9. A total of 7 packets will be lost, starting with 20th, 22nd, 24th, …, and 32nd.

o10. At time, 6×RTT, the congestion window will grow up to 32 + 19 = 51

o11. After this ≥ 3 × dupACKs will be received and the sender will go into the multiplicative
decrease phase

Therefore, the congestion window sizes for the first 6×RTT are: 1, 2, 4, 8, 16, 31, 51.

(d)

As shown in (c), the first packet will be lost in the 5th round, and it is the 20th packet of this round.
Its ordinal number is #51, determined as follows:
1 + 2 + 4 + 8 + 16 = 31 (from previous four rounds) + 20 (from the 5th round) = 51

(e)

…

Problem 2.11 — Solution

Transmission delay for all three scenarios is:

ms 8.192
secondper bits 0000001

bits 8192

bandwidth

lengthpacket ===xt

In the first scenario (RTT1 = 0.01 sec), the round-trip time is about the same as transmission
delay. The sender can send up to one segment and start with a second one before it receives the
acknowledgement for the first segment. Conversely, in the third scenario (RTT3 = 1 sec), the
sender can send a burst of up to 122 segments before receiving the acknowledgement for the first
segment of this burst.

Ivan Marsic • Rutgers University 442

We ignore the initial slow-start phase and consider that the sender settled into a congestion-
avoidance state. Because the network exhibits periodic behavior where every tenth packet is lost,
we need to determine the sender’s cyclic behavior. The figure illustrates the solution and the
description follows below the figure.

Scenario 1 (RTT1 = 0.01 s)

Sender Receiver Sender Receiver
trans. delay
= 8.192 ms

RTT3 = 1 s

#14

#15, #16

#17, #18, #19

#20 (lost), #21, #22, #23

3 × dupACK #19

#25, #26

ack #23

(loss)

transmission
delay = 8.192 ms

RTT1 = 10 ms

#14#14

#15#15

#16#16

#17#17

#18#18

#19#19

#20#20

CW = 2

CW = 2.5

CW = 3

CW = 3.3

CW = 3.7

CW = 1

#21#21

#22#22

#23#23

#24#24 (#20 retransmission)(#20 retransmission)

#25#25

(dupACK)

(dupACK)

(dupACK)
CW = 1

CW = 2

CW = 4

CW = 4

(3 × dupACK) 3 × dupACK

ack #19
CW = 4

T
im

e
T

im
e

T
im

e
Scenario 3 (RTT3 = 1 s)

#24 (#20 retransmission)

To detect a lost 10th segment, the sender must have sent at least three more to receive three
duplicate acknowledgements. Let us assume the sender detects the loss (via 3 dupACKs) after it
has sent 13 segments. The 14th transmission will be retransmission of the 10th segment (the lost
one). The receiver fills the gap and cumulatively acknowledges up to the segment #13, requesting
the sender to send the next segment (#14). This table shows how the first scenario sender sends
segments and receives acknowledgements:

packet
number

10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th

segment
seq. num.

10
(×)

11 12 13 10 14 15 16 17 18
19
(×)

20 21 22 19 23

ACK _ 10 10 10 14 15 16 17 18 19 _ 19 19 19 23 24
CongWin 1 2 2.5 3 3.3 3.7 3.7 3.7 3.7 1 2 2.5

This cycle will repeat. The sender is sending segments back-to-back. The only overhead it
experiences is that every tenth packet is lost, which implies that during 10 transmission delays it
successfully sends 9 segments. Hence, the average data rate the sender achieves is: (9/10) × 1
Mbps = 900 Kbps.

Let us now consider the third scenario with RTT3 = 1 sec. Because the round-trip time is much
longer than transmission time and every 10th packet is lost, we can consider that burst
transmissions are clocked to RTT intervals.

RTT n−1 n n+1 n+2 n+3 n+4
packet
number

10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th

segment
seq. num.

10
(×)

11 12 13 10 14 15 16 17 18
19
(×)

20 21 22 19

ACK _ 10 10 10 14 15 16 17 18 19 _ 19 19 19 23
CongWin 1 2 2.5, 3 3.3, 3.7, 4 1 2

Solutions to Selected Problems 443

In this scenario, the cycle lasts 4×RTT and the sender successfully sends 9 segments of which 6
are acknowledged and 3 are buffered at the receiver and will be acknowledged in the next cycle.
Hence, the average data rate the sender achieves is:

Kbps 18.4 bps 184321000000
4

0.073728
Mbps1

RTT4

9
≈=×=×

×
× xt

Obviously, the sender in the third scenario achieves much lower rate than the one in the first
scenario. The reason for this is that the first-scenario sender receives feedback quickly and reacts
quickly. Conversely, the third-scenario sender receives feedback very slowly and accordingly
reacts slowly—it is simply unable to reach the potentially achievable rate.

Problem 2.12 — Solution

Object size, O = 1 MB = 220 bytes = 1048576 bytes = 8388608 bits

Segment size MSS = 1 KB, S = MSS × 8 bits = 8192 bits

Round-trip time RTT = 100 ms

Transmission rate, R = as given for each individual case (see below)

There are a total of L = 10242
2

2

1

1 10
10

20

===
KB

MB
 segments (packets) to transmit.

(a)

Bottleneck bandwidth, R = 1.5 Mbps, data sent continuously:

59.5
1500000

8388608

1500000

81048576

105.1

82
6

20

==×=
×

×=
R

O
 sec

latency = 2 × RTT + O / R = 200 × 10−3 + 5.59 sec = 5.79 sec

(b)

R = 1.5 Mbps, Stop-and-wait

latency = 2 × RTT + 10241.0
1500000

8192
2.0RTT ×






 ++=×






 + L

R

S
= 108.19 sec

(c)

R = ∞, Go-back-20

Because transmission time is assumed equal to zero, all 20 packets will be transmitted
instantaneously and then the sender waits for the ACK for all twenty. Thus, data will be sent in
chunks of 20 packets:

latency = 2 × RTT + RTT ×
20

L
= 0.2 + 5.12 = 5.22 sec

Ivan Marsic • Rutgers University 444

(d)

R = ∞, TCP Tahoe

Because the transmission is error-free and the bandwidth is infinite, there will be no loss, so the
congestion window will grow exponentially (slow start) until it reaches the slow start threshold
SSThresh = 65535 bytes = 64 × MSS, which is the default value. From there on it will grow
linearly (additive increase). Therefore, the sequence of congestion window sizes is as follows:

 Congestion window sizes:

1, 2, 4, 8, 16, 32, 64, 65, 66, 67, 68, 69, 70, ...

Slow start
-- total 7 bursts

Additive increase
-- total 13 bursts

Then, slow start phase consists of 7 bursts, which will transfer the first 127 packets. The additive
increase for the remaining 1024 − 127 = 897 packets consists of at most 897/64 ≈ 14 bursts.
Quick calculation gives the following answer:

Assume there will be thirteen bursts during the additive increase.

With a constant window of 64 × MSS, this gives 13 × 64 = 832.

On the other hand, additive increase adds 1 for each burst, so starting from 1 this gives

1+2+3+ … + 13 =
()
2

11313 +×
 = 91 packets.

Therefore, starting with the congestion window size of 64 × MSS, the sender can in 13 bursts
send up to a total of 832 + 91 = 923 packets, which is more than 832.

Finally, sender needs total of 7 + 13 = 20 bursts:

latency = 2 × RTT + 20 × RTT = 2.2 sec.

Problem 2.13 — Solution

It is easier to solve this problem if we represent the relevant parameters in a tabular form as in the
table below (see also the figure below).

First, we know that this is a TCP Reno sender, currently in the slow start phase, with
CongWin(ti) = 400 bytes. Given that MSS = 200 bytes, the sender sends a “burst” of two
segments back-to-back. According to Listing 2-1 (summarized on page 147), when sending a
segment, the sender needs to set the RTO timer if it is not already running. The RTO timer is not
running at ti because all previous segments were successfully acknowledged. So, using equation
(2.2), the sender obtains:

TimeoutInterval(ti) = EstimatedRTT(ti) + 4 ⋅ DevRTT(ti) = 100.8 + 4×9 = 136.8 ms

where EstimatedRTT(ti) and DevRTT(ti) are determined as follows (using default values for α
= 0.125 and β = 0.25):

Solutions to Selected Problems 445

EstimatedRTT(ti) = (1−α) ⋅ EstimatedRTT(ti−1) + α ⋅ SampleRTT(ti) =
0.875×100 + 0.125×106 = 100.8 ms

DevRTT(ti) = (1−β) ⋅ DevRTT(ti−1) + β ⋅ |SampleRTT(ti) − EstimatedRTT(ti−1)| =
0.75×10 + 0.25×|106 − 100| = 9 ms

The sender does not modify the RTO timer when sending the second segment, because the timer
is already running.

Notice that the top row of the table shows the times when each segment is transmitted. Although
the problem statement does not require determining these, we can easily determine them as
follows. We assume for simplicity that ti = 0 ms. Given that tx << tp and the propagation times are
in the range from 50 ms to 100 ms, we can assume for simplicity that the segment transmission
time equals tx = 1 ms. However, assuming any other small number for tx would not make a
difference for the problem solution.

The second segment is sent right after the first one, so ti+1 = ti + 1 = 1 ms. Notice that at ti+1 there
is no acknowledgement that arrived, so the sender does not calculate EstimatedRTT(ti+1) and
DevRTT(ti+1) and these entries are left empty in the table.

Time t [ms] ti
(=0 ms)

ti+1
(=1 ms)

ti+2
(=105)

ti+3
(=106)

ti+4
(=107)

ti+5
(=108)

ti+6
(=237.5)

ti+7
(=288)

ti+7+tx
(=289)

CongWin(t) 2×MSS 4×MSS 1×MSS 3×MSS
SSThresh(t) 64 KBytes 2×MSS
RTT(t) 105 93 179 182 165 193 154 171
SampRTT(t) 106 105
EstimRTT(t) 100.8 101.3
DevRTT(t) 9 7.8
TimeoutInt 136.8 ms 132.5 265
Transmiss’n
type

Burst #1 Burst #2
Re-
transmit

Burst #3

The sender then waits idle until an acknowledgement arrives for the two segments that it sent.

The ACK for the first segment (shown in the figure as ACK #3) will arrive at the time ti +
RTT(ti) = 0 + 105 = 105 ms.

The ACK for the second segment (shown in the figure as ACK #1 - duplicate) will arrive at time
ti+1 + RTT(ti+1) = 1 + 93 = 94 ms. This is earlier than the ACK for the first segment by 11 ms and
we assume that the second segment also arrived before the first one to the receiver. Because
segment #2 is out of order, the receiver will immediately send a duplicate ACK, asking again for
segment #1. The sender will do nothing when it receives the duplicate ACK. (Recall that the TCP
sender retransmits only when it receives ≥3×dupACKs, and it does not sample RTT for duplicate
ACKs.)

When the first segment arrives, the receiver will acknowledge both outstanding segments by
sending a cumulative ACK #3. When the sender receives ACK #3 at 105 ms, it will increment its
congestion window by 2×MSS and send four more segments at times ti+2, ti+3=ti+2+tx, ti+4=ti+3+tx,
and ti+5=ti+4+tx.

Ivan Marsic • Rutgers University 446

At the time of arrival of ACK #3, the sender measures the sample RTT. This time corresponds to
ti+2 and SampleRTT(ti+2) = RTT(ti) = 105 ms. The sender calculates EstimatedRTT(ti+2) and
DevRTT(ti+2) as shown in the table.

Because ACK #3 acknowledged all the outstanding segments and the RTO timer was reset, the
sender will calculate the new value TimeoutInterval(ti+2) = 132.5 ms and set the RTO timer
when it sends the third segment at ti+2 = 105 ms. Three more segments will be sent in this burst at
times ti+3=106 ms, ti+4=107 ms, and ti+5=108 ms.

Given that RTT(ti+4)=165 ms is the shortest for all the segments from the second burst, we will
again assume that segment #5 arrived out of order and the receiver will immediately send a
duplicate ACK (shown in the figure as ACK #3 - duplicate). The acknowledgements for the four
segments of the second burst will arrive at these times (see also the figure):

For segment #5 (ACK #3 - duplicate) arrives at: ti+4 + RTT(ti+4) = 107 + 165 = 272 ms.

For segment #3 (ACK #4) arrives at: ti+2 + RTT(ti+2) = 105 + 179 = 284 ms.

For segments #4 and #5 (ACK #6) arrives at: ti+3 + RTT(ti+3) = 106 + 182 = 288 ms.

For segment #6 (ACK #7) arrives at: ti+5 + RTT(ti+5) = 108 + 193 = 301 ms.

All of the above times are too late for the RTO timer, which will expire at time ti+6 =
ti+2 + TimeoutInterval(ti+2) = 105 + 132.5 = 237.5 ms. Notice that both TCP Tahoe and TCP
Reno behave the same on RTO timer expiration. They both enter slow start, so there will be no
difference in behavior and CongWin(ti+6) = 1×MSS = 200 bytes. Also, according to equation
(2.1), the timeout interval is set to twice the previous value, so TimeoutInterval(ti+6) =
2 × TimeoutInterval(ti+2) = 265 ms.

Sender Receiver

Seg#2

Seg#1

Ack#3

Ack#1 (duplicate)

Seg#4

Seg#5

Seg#6

Seg#3

Ack#4

Ack#6

Ack#7

Ack#3 (duplicate)

Seg#7

Seg#3
(retransmitted)

ti

ti+1

ti+2
ti+3
ti+4
ti+5

ti+6

ti+7

Timeout for Seg#3

ti ti+1 t i+2 t i+3 t i+4 t i+5 ti+6 ti+7

R
T

T
(t

)

136.8 ms 132.5 ms

265 ms

Time
Ack#7 (duplicate)

Ack#8

TimeoutInterval(t)

(b)(a)

1

1

1

Solutions to Selected Problems 447

Because of the expired RTO timer, the sender will retransmit the oldest outstanding segment at
time ti+6 = 237.5 ms. This segment is a copy of the third segment, but we count it as the seventh
transmission. Given that RTT(ti+6) = 154 ms, the corresponding acknowledgement will arrive at
the time ti+6 + RTT(ti+6) = 237.5 + 154 = 391.5 ms.

Meanwhile, the duplicate ACK #3 will arrive and the sender will ignore it. Next, the ACK for
segment #3 (shown in the figure as ACK #4) will arrive at time equal 284 ms. Notice that this is
the ACK for the original segment #3, not the retransmitted one. Although at this time segment #5
is already at the receiver, it is still out of order: there is a gap because segment #4 still did not
arrive, so the receiver is asking for #4. The sender thinks that the receiver is acknowledging the
retransmitted segment, so it increments CongWin to 2×MSS. There are still three outstanding
segments (#4, #5 and #6), so EffectiveWindow = CongWindow − FlightSize = 0 and
the sender remains quiet. Notice also that now CongWindow reached SSThresh, so the sender
enters congestion avoidance.

At the time equal 288 ms, ACK #6 arrives acknowledging segments #4 and #5. Because the
sender is in congestion avoidance and CongWin = 2×MSS, the two-segment ACK will count as
one by equation (2.5), so CongWin becomes 3×MSS. There is one more segment unaccounted
(#6), so FlightSize = 1 and EffectiveWindow = 2 and the sender transmits two segments
at times ti+7 and ti+7 + tx.

(a)
The table below shows the congestion window sizes CongWin(t) and the sequence numbers of
the segments transmitted from the sender. (Recall that the sender’s sequence number for the
segment that will be transmitted at ti equals 30 and MSS = 200 bytes.)

Time t [ms] ti
(=0 ms)

ti+1
(=1 ms)

ti+2
(=105)

ti+3
(=106)

ti+4
(=107)

ti+5
(=108)

ti+6
(=237.5)

ti+7
(=288)

ti+7+tx
(=289)

CongWin(t) 2×MSS 4×MSS 1×MSS 3×MSS
SeqNum(t) 30 230 430 630 830 1030 430 1230 1430

(b)
To determine the times when the ACKs will arrive, we simply add the corresponding RTT to the
time the segment departed, as was already done above for most of the segments. The table below
shows the times of ACK arrivals, the sequence numbers of the ACKs, and the values of
RcvWindow as carried in each ACK segment (recall that the receiver’s buffer size
RcvWindow(ti) = 1000 bytes and also see how the figure above indicates the receive buffer
occupancy).

Time t [ms] ti
(=0 ms)

ti+1
(=1 ms)

ti+2
(=105)

ti+3
(=106)

ti+4
(=107)

ti+5
(=108)

ti+6
(=237.5)

ti+7
(=288)

ti+7+tx
(=289)

ACK arrives 105 ms 94 ms 284 288 278 301 391.5 459
ACKSeqNo 430 30/dup 630 1030 430/dup 1230 1230/dup 1430
RcvWindow 1000 800 800 1000 800 1000 1000 1000

(c)
The values of EstimatedRTT(t) and DevRTT(t) are shown in the first table above. Recall that
the TCP retransmission-timer management algorithm measures SampleRTT for segments that
have been transmitted once and not for segments that have been retransmitted. It also ignores
dupACKs. An extract from the first table shows that EstimatedRTT(t) and DevRTT(t) are
calculated only at ti and ti+2:

Ivan Marsic • Rutgers University 448

Time t [ms] ti
(=0 ms)

ti+1
(=1 ms)

ti+2
(=105)

ti+3
(=106)

ti+4
(=107)

ti+5
(=108)

ti+6
(=237.5)

ti+7
(=288)

ti+7+tx
(=289)

RTT(t) 105 93 179 182 165 193 154 171
SampRTT(t) 106 105
EstimRTT(t) 100.8 101.3
DevRTT(t) 9 7.8

(d)
The TCP sender will set its retransmission timer three times during the considered interval, and
the values of TimeoutInterval(t) are as follows:

Time t [ms] ti
(=0 ms)

ti+1
(=1 ms)

ti+2
(=105)

ti+3
(=106)

ti+4
(=107)

ti+5
(=108)

ti+6
(=237.5)

ti+7
(=288)

ti+7+tx
(=289)

TimeoutInt 136.8 ms 132.5 265

Problem 2.14 — Solution

Problem 2.15 — Solution

During the specified period of time, the sender will receive only 5 acknowledgements for new
data. This will happen at times: at 89 for segment #33 (which was transmitted earlier, at time t =
82); at 96 for the retransmitted segment #35; at 104 for segment #37; at 113 for segment #39; and
at 120 for segment #41. Check the pseudocode at the end of Section 2.1.2 to see that all other
ACKs are ignored because they are acknowledging already acknowledged data (they are called
“duplicate ACKs”).

By examining Figure 2-19, we can see that the retransmitted segments #33, #35, and #37 arrive at
an idle router, so they will be transmitted first and their measured RTT values equal 6. However,
segment #39 will find segment #73 in front of it at the router, and segment #41 will find segments
#80 and #81 in front of it at the router. The measured values of SampleRTT(t) as read from
Figure 2-19 are:

SampleRTT(89) = 6; SampleRTT(96) = 6; SampleRTT(104) = 6; SampleRTT(113) = 7;
SampleRTT(120) = 8;

The calculation of TimeoutInterval(t) is straightforward using Eq. (2.2).

Problem 3.1 — Solution

Solutions to Selected Problems 449

Problem 3.2 — Solution

Notice that the first packet is sent at 20 ms, so its playout time is 20 + 210 = 230 ms. The playout
of all subsequent packets are spaced apart by 20 ms (unless a packet arrives too late and is
discarded).

Notice also that the packets are labeled by sequence numbers. Therefore, although packet #6
arrives before packet #5, it can be scheduled for playout in its correct order.

Packet sequence number Arrival time ri [ms] Playout time pi [ms]

#1 195 230
#2 245 250
#3 270 270
#4 295 discarded (>290)
#6 300 330
#5 310 310
#7 340 350
#8 380 discarded (>370)
#9 385 390

#10 405 410

The playout schedule is also illustrated in this figure:

Problem 3.3 — Solution

(a)
Packet sequence number Arrival time ri [ms] Playout time pi [ms]

P
a

ck
e

t
nu

m
be

r

1

2

3

4

5

6

7

8

9

10

Time [ms]
0 20 40 60 80 10

0
12

0
14

0
16

0
18

0
20

0

Talk starts

First packet sent: t1 = 20

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

Packets
generated
at host A

Packets
received
at host B

Missed
playouts

q = 210 ms

Playout
schedule

r1 = 195 p1 = 230

Ivan Marsic • Rutgers University 450

#1 95 170
#2 145 190
#3 170 210
#4 135 230
#6 160 250
#5 275 discarded (>270)
#7 280 290
#8 220 310
#9 285 330

#10 305 350

(b)

The minimum propagation delay given in the problem statement is 50 ms. Hence, the maximum a
packet can be delay for playout is 100 ms. Because the source generates a packet every 20 ms, the
maximum number of packets that can arrive during this period is 5. Therefore, the required size
of memory buffer at the destination is 6 × 160 bytes = 960 bytes. (The buffer should be able to
hold 6 packets, rather than 5, because I assume that the last arriving packet is first buffered and
then the earliest one is removed from the buffer and played out.)

Problem 3.4 — Solution

The length of time from when the first packet in this talk spurt is generated until it is played out
is:

 qk = kδ̂ + K ⋅ kυ̂ = 90 + 4 × 15 = 150 ms

The playout times for the packets including k+9th are obtained by adding this amount to their
timestamp, because they all belong to the same talk spurt. Notice that the k+5th packet is lost, but

this is not interpreted as the beginning of a new talk spurt. Also, when calculating 6
ˆ

+kδ we are

missing 5
ˆ

+kδ , but we just use 4
ˆ

+kδ in its stead.

The new talk spurt starts at k+10, because there is no gap in sequence numbers, but the difference
between the timestamps of subsequent packets is tk+10 − tk+9 = 40 ms > 20 ms, which indicates the
beginning of a new talk spurt. The length of time from when the first packet in this new talk spurt
is generated until it is played out is:

 qk+10 = 10
ˆ

+kδ + K ⋅ 10ˆ +kυ = 92.051 + 4 × 15.9777 = 155.9618 ms ≈ 156 ms

and this is reflected on the playout times of packets k+10 and k+11.

Packet
seq. #

Timestamp
ti [ms]

Arrival time
ri [ms]

Playout time
pi [ms]

Average delay iδ̂
[ms]

Average
deviation iυ̂

k 400 480 550 90 15
k+1 420 510 570 90 14.85
k+2 440 570 590 90.4 15.0975
k+3 460 600 610 90.896 15.4376
k+4 480 605 630 91.237 15.6209

Solutions to Selected Problems 451

k+7 540 645 690 91.375 15.6009
k+6 520 650 670 91.761 15.8273
k+8 560 680 710 92.043 15.9486
k+9 580 690 730 92.223 15.9669

k+10 620 695 776 92.051 15.9777
k+11 640 705 796 91.78 16.0857

Problem 3.5 — Solution

Given the playout delay, we can determine the constant K using Eq. (3.1) to find out which value
of K gives the playout delay of 300 ms. Then, we use the chart shown in Figure A-7 in Appendix
A to guess approximately what is the percentage of packets that will arrive to late to be played
out.

Problem 3.6 — Solution

Problem 3.7 — Solution

The solutions for (a) and (b) are shown in the figure below.

(c)
If the RPF uses pruning and routers E and F do not have attached hosts that are members of the
multicast group, then there will be 6 packets less forwarded in the entire network per every packet
sent by A, compared to the case (b).

Ivan Marsic • Rutgers University 452

Packet will be forwarded

Packet not forwarded
beyond receiving router

Key:

Packet will be forwarded

Packet not forwarded
beyond receiving router

Key:

A

B

C

D

E

F

G H(a) A

B

C

D

E

F

G H(a)
The shortest path multicast tree

(b) A

B

C

D

E

F

G H

p1

p2

p2′p1′

p2′

p1′

p1′′ p1′′

p1′′′

p2′′

p2′′

p1′′′

p1′′*

(b) A

B

C

D

E

F

G H

p1

p2

p2′p1′

p2′

p1′

p1′′ p1′′

p1′′′

p2′′

p2′′

p1′′′

p1′′*

(c) A

B

C

D

E

F

G H

p1

p2

p2′p1′

p1′

p1′′

p1′′′

Problem 4.1 — Solution

Problem 4.2 — Solution

Solutions to Selected Problems 453

Problem 4.3 — Solution

The architecture of a first-generation router is shown in Figure 4-5(a). As shown in Figure 4-6, in
this architecture every packet must cross the system bus two times on its way from the input port
to the output port. We assume that processing times in line cards and the CPU are negligible.

(a)

If packets arrive simultaneously on all four ports, it will take
R

L
T ××= 244 time units to move the

packets from their input ports to their output ports. During this time, two packets can arrive on
each input port. If packets continue arriving at the link data rate R, which is the peak rate, then
during each cycle two packets will arrive on an input port and only one will be moved to the
output port. The remaining packets will accumulate and the delay can grow arbitrarily high,
depending on how long the period of peak-rate arrivals lasts.

The figure below illustrates an example of peak rate behavior. We assume that packets will arrive
on all input ports simultaneously. However, to move the packet to the CPU, the input ports will
access the system bus randomly, without priority access. Similarly, CPU will randomly access the
system bus to move the packets to their output ports. As already stated, it takes T4 time units
move four incoming packets to their output ports, but at the same time up to 2 new packets can
arrive at each input port. As illustrated in the figure, there will be a queue buildup on each input
port. Notice also that there may be queue buildup on output ports, for example, if packets from
different input ports are heading to the same output port. Because of random access to the system
bus, even packets from the same port may need to queue, as illustrated for output port 3 in the
figure below at time t3.

Ivan Marsic • Rutgers University 454

75

Input
ports

System
bus

Output
ports

Input
ports

System
bus

Output
ports

1

2

3

4

t1

t2
Time

1

2

3

4

1

2

3

4

1

2

3

4

t3

1

2

3

4

(b)

Technically speaking, there is neither head-of-line blocking nor output blocking in this system.
Head-of-line blocking happens when one packet may be heading to an idle port, but in front of it
may be another packet headed for an output port that is currently busy, and the former packet
must wait until the one in front of it departs. This assumes that packets are not moved to their
output port until their output port becomes idle. However, in the first generation routers, both
input and output ports must be able to queue packets. (An input port must be able to queue a
newly arriving packet while some previously arrived packets are waiting for access to the system
bus, to be moved to the CPU for forwarding table lookup. The input port does not know where
the incoming packet is heading, so all incoming packets are queued in FCFS manner to wait for
access to the system bus and transfer to CPU.

CPU will examine the packet’s header and decide to which output port it goes. Once CPU decides
the output port, the packet is lined up in a FCFS queue, where the same queue is for all output
ports. However, the head-of-line packet is never waiting for its output port to become idle; rather,
it is waiting for the system bus access to get moved to its output port (regardless of whether this
output port is currently idle or busy).

Solutions to Selected Problems 455

Output blocking occurs if two or more packets (all from different input ports) are headed to the
same output port and the switching fabric is unable to move the simultaneously. The first
generation routers are based on system bus as their switching fabric, so packets are always moved
sequentially, one-by-one, and never simultaneously. Therefore, any delays that packet experience
at their input ports neither qualify neither as head-of-line blocking nor as output blocking.

This is not to say that there are no queuing delays in this system. Quite opposite, there will be a
major buildup of packets both at input and output queues during peak-arrival-rate periods, as
explained above in part (a).

Problem 4.4 — Solution

Problem 4.5 — Solution

Check Problem 1.32 — Solution to see that the next hop router for the arrived packets is as
follows:

Packet arrived from Packet destination IP address Next hop Output port

B 63.67.145.18 G 6 (tag: 110)

C 223.123.59.47 D 3 (tag: 011)

G 223.125.49.47 C 2 (tag: 010)

The packets will traverse the Banyan switch as shown in the figure below. The top part of the
figure shows how the router’s network ports are wired to the switching fabric. Every network port
is bidirectional and connected by a full-duplex link to another router.

Banyan fabric0 4

1

A E

Input ports Output ports

Banyan fabric0 4

1

A E

Input ports Output ports

Ivan Marsic • Rutgers University 456

(A→) 000

(B→) 001

(C→) 010

(D→) 011

(E→) 100

(F→) 101

(G→) 110

111

000 (→A)

001 (→B)

010 (→C)

011 (→D)

100 (→E)

101 (→F)

110 (→G)

111

(collision)

110

011

010

(A→) 000

(B→) 001

(C→) 010

(D→) 011

(E→) 100

(F→) 101

(G→) 110

111

000 (→A)

001 (→B)

010 (→C)

011 (→D)

100 (→E)

101 (→F)

110 (→G)

111

(collision)

110110

011011

010010

Notice that although all packets go to different output ports, there will be a collision in the second
stage of the Banyan fabric because packets from ports 2 and 6 are trying to go to the same output
of the second-stage 2×2 switching element.

Problem 4.6 — Solution

Problem 4.7 — Solution

Two alternative solutions for the Batcher-banyan fabric are shown:

0
1

2
3

0
1

2
3

1

0

0

2

0

1

2

0

0

2

0

1

0

0

1

2

0

1

0

2

0

2

idle
idle

0

idle

2

idle

collision

0
1

2
3

0
1

2
3

1

0

0

2

0

1

2

0

0

2

0

1

0

0

1

2

0

1

0

2

0

2

idle
idle

0

idle

2

idle

collision

0
1

2
3

0
1

2
3

1

0

0

2

1

0

0

2

1

0

2

0

2

1

0

0

2

0

1

0

0

2

idle

0

idle

2

idle

collision

id
le

0
1

2
3

0
1

2
3

1

0

0

2

1

0

0

2

1

0

2

0

2

1

0

0

2

0

1

0

0

2

idle

0

idle

2

idle

collision

id
le

(a)

(b)

Result: the packets at inputs I0 and (I1 or I2) are lost.

Solutions to Selected Problems 457

The reader may notice that the above 4 × 4 Batcher network looks different from that in Figure
4-10(b). This just means that the same sorting problem can be solved in different ways, with
different Batcher networks.

Problem 4.8 — Solution

Problem 4.9 — Solution

The figure below shows the components of the router datapath delay (compare to Figure 4-13).
We ignore the forwarding decision delay. Transmission delays as well as reception delays are the

same on all communication lines. Crossbar traversal delay equals xt2

1
.

reception time = transmission delay = tx

First bit received

Last bit received

First bit transmitted

Last bit transmitted

transmission delay = tx

Crossbar traversal delay = tx
1
2

Time

Crossbar traversal
queuing delay

Transmission
queuing delay

Input port

Output port

Crossbar

reception time = transmission delay = tx

First bit received

Last bit received

First bit transmitted

Last bit transmitted

transmission delay = tx

Crossbar traversal delay = tx
1
2

Time

Crossbar traversal
queuing delay

Transmission
queuing delay

Input port

Output port

Crossbar

The timing diagram of packet handling in the router is shown in the figure below.

Ivan Marsic • Rutgers University 458

Input port 1

Crossbar

Output port 2

Input port 2

Crossbar

Output port 2

Input port 2

Crossbar

Output port 1

Input port 3

Crossbar

Output port 1

 →2

 →2

 @2

 →2

 @2

 →2

 →1

 @1

 →1

 @1

Input 1

Crossbar

Output 2 @2

 @2

0 10 20 Time

Input port 3

Crossbar

Output port 2

Received, heading to output port i

Traversing crossbar

 →i

 @j Transmission at output port j

Key:

Waiting for service

In
p

ut
 p

or
t

1

In
p

ut
 p

or
t

2
P1,1

P1,2

P2,1

P2,2

P3,1

P3,2In
p

ut
 p

or
t

3

Input port 1

Crossbar

Output port 2

Input port 1

Crossbar

Output port 2

Input port 2

Crossbar

Output port 2

Input port 2

Crossbar

Output port 2

Input port 2

Crossbar

Output port 1

Input port 2

Crossbar

Output port 1

Input port 3

Crossbar

Output port 1

Input port 3

Crossbar

Output port 1

 →2

 →2

 @2

 →2

 @2

 →2

 →1

 @1

 →1

 @1

Input 1

Crossbar

Output 2

Input 1

Crossbar

Output 2 @2

 @2

0 10 20 Time

Input port 3

Crossbar

Output port 2

Input port 3

Crossbar

Output port 2

Received, heading to output port i

Traversing crossbar

 →i

 @j Transmission at output port j

Key:

Waiting for service

Received, heading to output port i

Traversing crossbar

 →i

 @j Transmission at output port j

Key:

Waiting for service

In
p

ut
 p

or
t

1

In
p

ut
 p

or
t

2
P1,1

P1,2

P2,1

P2,2

P3,1

P3,2In
p

ut
 p

or
t

3
In

p
ut

 p
or

t
3

Only the first packet on input port 1 (P1,1) will experience no waiting at all. All other packets will
experience some form of blocking. The second packet on input port 1 (P1,2) must wait before
traversing the crossbar because the first packet on input port 2 (P2,1) is currently traversing the
crossbar and then it must wait for P3,1 (although P3,1 is on a higher-index port, it arrived before
P1,2)—so P1,2 is experiencing output blocking. P2,1 is also experiencing output blocking because it
has to wait for P1,1 to traverse the crossbar. Finally, packet P3,1 is also experiencing output
blocking because it has to wait for P2,1 to traverse the crossbar.

Packets P2,2 and P3,2 are experiencing head-of-line blocking, because they could traverse the
crossbar if it were not for packets P2,1 and P3,1, respectively, which are if front of them in their
respective queue and are blocking their access to the crossbar.

Output blocking and head-of-line blocking both prevent crossbar traversal and therefore cause
queuing delay before crossbar traversal.

Notice also that packets P1,2 and P3,1 must wait at the output port for their turn for transmission.
This is indicated as transmission queuing delay in the first figure above.

Problem 4.10 — Solution

Problem 4.11 — Solution

Solutions to Selected Problems 459

Problem 4.12 — Solution

Problem 4.13 — Solution

The problem statement gives arrival times Ai and service times Xi. From these we need to
determine total delays Ti in the system for each customer. Notice that there is a single server, so if
a new customer arrives while one customer is served, the new customer should join the waiting
line. Figure 4-17 illustrates that the total delay for a customer consists of waiting plus service
time, i.e., Ti = Wi + Xi.

(a)

The following figure illustrates the arrivals A(t), delays Ti and departures B(t). The first customer
arrives at an idle server, so immediately goes into service, i.e., W1 = 0 and T1 = X1. The second
customer arrives at time t = 2 and finds the first customer in service, so has to wait one time unit,
W2 = 1 and T2 = W2 + X2. The length of the observed interval is 36 time units, until the last
customer that arrived during the observed interval (customer #10) departs.

Time

C
u

m
u

la
tiv

e
N

um
be

r
o

f
ar

riv
a

ls
,

A
(t

)
N

u
m

b
e

r
o

f d
ep

a
rt

u
re

s,
 B

(t
)

Time

N(t)

A(t)

B(t)

T1 = X1

T3=W3+X3

δ

N(t)

2
3

4

4

2
5

2
4

3
4

3

1

5
6

7
6

5
4

2
3

1

(b)

The lower chart indicates the current number of customers in the system, N(t). We can calculate
the average number N over the observed interval as follows

16.3
36

130

36

)71()67()53()48()35()27()15(==×+×+×+×+×+×+×=N customers

The average delay T per customer over the observed interval is

9.12
10

129

10

)320()416()314()411()212()58()28()54()41(3 ==++++++++++++++++++=T

Assuming that the arrival rate is λ = 1 customer/unit-of-time, the Little’s Law should yield N =

Ivan Marsic • Rutgers University 460

λ ⋅ T. However, over the observed interval we have 3.61 ≠ 1×12.9. Therefore, the system does not
satisfy the Little’s Law over the observed interval.

Problem 4.14 — Solution

Problem 4.15 — Solution

Problem 4.16 — Solution

(a)

This is an M/M/1 queue with the arrival rate λ = 950,000 packets/sec and service rate
μ = 1,000,000 packets/sec. The expected queue waiting time is:

() () sec1019
95000010000001000000

950000 6−×=
−×

=
−⋅

=
λμμ

λ
W

(b)

The time that an average packet would spend in the router if no other packets arrive during this

time equals its service time, which is sec101
1000000

11 6−×==
μ

(c)

By Little’s Law, the expected number of packets in the router is

packets 191020950000
1 6 =××=






 +⋅=⋅= −

μ
λλ WTN

Problem 4.17 — Solution

Problem 4.18 — Solution

Given

Data rate is 9600 bps  the average service time is 83.0
9600

81000

rate datalink

lengthpacket average1 =×==
μ

∴ μ = 1.2

Link is 70% utilized  the utilization rate is ρ = 0.7

For exponential message lengths: M/M/1 queue with μ = 1.2, ρ = 0.7, the average waiting time is

sec94.1
3.02.1

7.0

)1(
=

×
=

−⋅
=

ρμ
ρ

W .

Solutions to Selected Problems 461

For constant-length messages we have M/D/1 queue and the average waiting time is derived in

the solution of Problem 4.22(b) below as: sec97.0
3.02.12

7.0

)1(2
=

××
=

−⋅⋅
=

ρμ
ρ

W .

It is interesting to notice that constant-length messages have 50 % shorter expected queue waiting
time than the exponentially distributed length messages.

Problem 4.19 — Solution

The single repairperson is the server in this system and the customers are the machines. Define
the system state to be the number of operational machines. This gives a Markov chain, which is
the same as in an M/M/1/m queue with arrival rate μ and service rate λ. The required probability

is simply pm for such a queue. Because the sum of state probabilities is 1
0

=
=

m

i
ip , the fraction of

time the system spends in state m equals pm. From Eq. (4.8), we have the steady-state proportion

of time where there is no operational machine as
11

)1(
+−

−⋅=
m

m

mp
ρ

ρρ
.

Problem 4.20 — Solution

This can be modeled as an M/M/1/m system, because the there are a total of K users, and there
can be up to K tasks in the system if their file requests coincide. The average service time is

A
R

RA =×==
rate throughput

lengthpacket average1

μ
 and the service rate is μ = 1/A. The user places the

request, but may need to wait if there are already pending requests of other users. Let W denote
the waiting time once the request is placed but before the actual transmission starts, which is
unknown. Every user comes back, on average, after A+B+W seconds. Hence, the arrival rate is λ

=
WBA

K

++
.

From Little’s Law, given the average number N of customers in the system, the average waiting

delay per customer is A
N

ATW −=−=
λ

. The time T is from the moment the user places the

request until the file transfer is completed, which includes waiting after the users who placed their
request earlier but are not yet served, plus the time it takes to transfer the file (service time),
which on average equals A seconds. (Only one customer at a time can be served in this system.)

Then, λ =
AW

N

+
 =

WBA

K

++
 and from here:

NK

AKBAN
W

−
⋅−+⋅=)(

For an M/M/1/m system, the average number N of users requesting the files is:

1

1

1

)1(

1 +

+

−
⋅+−

−
=

K

KK
N

ρ
ρ

ρ
ρ

Ivan Marsic • Rutgers University 462

where ρ = λ /μ is the utilization rate. Finally, the average time it takes a user to get a file since
completion of his previous file transfer is A + B + W.

Problem 4.22 — Solution

This is an M/D/1 queue with deterministic service times. Recall that M/D/1 is a sub-case of
M/G/1. Given: Service rate, μ = 1/4 = 0.25 items/sec; arrival rate, λ = 0.2 items/sec.

(a)

Mean service time X = 4 sec.

2
2 1

μ
=X and () 16

12)1(2 2

222

=
−⋅⋅

=
−⋅

⋅=
μλμ

λ
ρ

λ X
NQ

The second moment of service time for the deterministic case is obtained as

{ } { } { }xExExE 2220 −=−= μ and from here, we have { } { }
2

222 1

μ
=== XxExE

(b)

The total time spent by a customer in the system, T, is T = W + X , where W is the waiting time in

the queue sec8
)1(2

=
−⋅⋅

=
ρμ

ρ
W so the total time T = 12 sec.

Problem 4.23 — Solution

Problem 4.24 — Solution

Problem 5.1 — Solution

Problem 5.2 — Solution

Solutions to Selected Problems 463

Problem 5.3 — Solution

Problem 5.4 — Solution

Recall that packet-by-packet FQ is non-preemptive, so the packet that is already in transmission
will be let to finish regardless of its finish number. Therefore, the packet of class 3 currently in
transmission can be ignored from further consideration. It is interesting to notice that the first
packet from flow 1 has a smaller finish number, so we can infer that it must have arrived after the
packet in flow 3 was already put in service.

The start round number for servicing the currently arrived packet equals the current round
number, because its own queue is empty. Hence, F2,1 = R(t) + L2,1 = 85000 + 1024×8 = 93192.

Therefore, the order of transmissions under FQ is: pkt2,1 < pkt1,1 < pkt1,2 ; that is, the newly arrived
packet goes first (after the one currently in service is finished).

Problem 5.5 — Solution

Problem 5.6 — Solution

F1,1 = L1,1/w1 = 200×8/3 = 533.3

F2,1 = L2,1/w2 = 50×8/1 = 400

F3,1 = L3,1/w3 = 1000×8/1.5 = 5333.3

F1,1 = 98304

Flow 1 Flow 2 Flow 3

F1,2 = 114688

F3,1 = 106496
(in transmission)

F1,1 = 98304

Flow 1 Flow 2 Flow 3

F1,2 = 114688

F3,1 = 106496
(in transmission)

BEFORE FLOW 2 PACKET ARRIVAL: AFTER SCHEDULING THE ARRIVED PACKET:

F2,1 = 93192
1

2
123

Ivan Marsic • Rutgers University 464

Data

Voice

Video

p1,1

p2,1

p3,1

p1,2 p1,3 p1,4
p1,5

p2,2 p2,3 p2,4

p3,2 p3,3

p1,6

0 4020 60 80 100

1. At time t = 0, P2,1 is served first; transmission time tx = 400/1M = 0.4ms;

2. At time 0.4ms, P1,1 is served; tx = 1600/1M = 1.6ms;

3. At time 2ms, P3,1 is served; tx = 8000/1M = 8ms;

4. At time 10ms, no packets in any queues

5. At time t = 20ms

R(t) = t×C/N = 20000/2=10000

F1,2 = max(F1,1, R(t)) + L1,2/w1 =10000 + 533.3 = 10533.3

F2,2 = 10000 + 500×8/1 = 14000

6. At time 20ms, P1,2 is served; tx = 1.6ms

7. At time 21.6ms, P2,2 is served; tx = 4000/1M = 4ms

8. At time t = 40ms

 R(t) = 40000/3 = 13333.3

 F1,3 = max(F1,2, R(t)) + L1,3/w1 = 13333.3 + 533.3 = 13866.6

 F2,3 = max(F2,2, R(t)) + L2,3/w2 = 14000 + 8000/1= 22000

 F3,2 = max(F3,1, R(t)) + L3,2/w2 = 5333.3 + 5333.3 = 10666.6

9. At time 40ms, P3,2 is served; tx = 8000/1M = 8ms

10. At time 48ms, P1,3 is served; tx = 1.6ms

11. At time 49.6, P2,3 is served; tx = 8ms

12. At time t = 60, P1,4 is served because there are no other queued packets, tx = 1.6ms

 R(t) = 60000

 F1,4 = max(F1,3, R(t)) + L1,4/w1 = 60000 + 533.3 = 60533.3

13. At time 70, P2,4 is served; tx = 0.4ms

14. At time t = 80

Solutions to Selected Problems 465

 R(t) = 80000/2 = 40000

 F1,5 = max(F1,4, R(t)) + L1,5/w1 = 60533.3 + 533.3 = 61066.6

 F3,3 = max(F3,2, R(t)) + L3,3/w3 = 40000 + 5333.3 = 45333.3

15. At time 80, P3,3 is served

16. P1,5

17 At last, P1,6

Problem 5.7 — Solution

(a) Packet-by-packet FQ

The following figure helps to determine the round numbers, based on bit-by-bit GPS. The packets
are grouped in two groups, as follows. Regardless of the scheduling discipline, all of the packets
that arrived by 300 s will be transmitted by 640 s. It is easy to check this by using a simple FIFO
scheduling. Therefore, the round number R(t) can be considered independently for the packets
that arrive up until 300 s vs. those that arrive thereafter. This is shown as Part A and B in the
above figure. (Resetting the round number is optional, only for the sake of simplicity.)

0 50
0

10
0

20
0

25
0

30
0

40
0

60
0

70
0

1/2

1/3

P
1

,1

P
3

,1

P 1,
1
, P

3,
1

P 1,
2
, P

3,
2

P 2,
1

P 4,
1

1/4

P
2,

1

P
4

,1

P 4,
2
, P

1,
3

1/3

1/2

1/1

0

100

200

300

65
0

70
0

80
0

1/2

P 3,
3
, P

4,
3

P 1,
4
, P

4,
4

0

100
P

3
,3

P
4

,3

Time t [s]

R
ou

nd
nu

m
be

r
R

(t
)

F
lo

w
 1

:

F
lo

w
 2

:

F
lo

w
 3

:

F
lo

w
 4

:

F
lo

w
 1

:

F
lo

w
 2

:

F
lo

w
 3

:

F
lo

w
 4

:

R(t)

Time t

P
1

,4

1/3 1/1

1/2
50Part A:

0 – 650 s

Part B:
650 – 850 s

The packet arrivals on different flows are illustrated on the left hand side of the figure, in the
round number units. Thus, e.g., packet P2,1 arrives at time t2,1 = 200 s or round number R(t2,1) =
100. The following table summarizes all the relevant computations for packet-by-packet FQ.

Arrival times & state Parameters Values under packet-by-packet FQ
t = 0: {P1,1, P3,1} arrive
server idle, q’s empty

Finish numbers R(0) = 0; F1,1 = L1,1 = 100; F3,1 = L3,1 = 60
Transmit periods Start/end(P3,1): 0→60 sec; Start/end(P1,1): 60→160 s

t = 100: {P1,2, P3,2}
P1,1 in transmission

Finish numbers R(t) = t⋅C/N = 100×1/2 = 50
F1,2 = max{F1,1, R(t)} + L1,2 = 100 + 120 = 220;

Ivan Marsic • Rutgers University 466

All queues empty F3,2 = max{0, R(t)} + L3,2 = 50 + 190 = 240
Transmit periods Start/end(P1,2): 160→280 s; Queued packets: P3,2

t = 200: {P2,1} arrives
P1,2 in transmission
P3,2 in queue

Finish numbers
R(t) = t⋅C/N = 200×1/2 = 100
F2,1 = max{0, R(t)} + L2,1 = 100 + 50 = 150
F3,2 = 240 (unchanged);

Transmit periods P1,2 ongoing; Queued packets: P2,1 < P3,2

t = 250: {P4,1} arrives
P1,2 in transmission
{P2,1, P3,2} in queues

Finish numbers

R(t) = (t−t′)⋅C/N + R(t′) = 50×1/3 + 100 = 116 2/3
F2,1 = 150 (unchanged);
F3,2 = 240 (unchanged);
F4,1 = max{0, R(t)} + L4,1 = 76.116  + 30 = 76.146 

Transmit periods Start/end(P4,1): 280→310 s; Queued pkts: P2,1 < P3,2

t = 300: {P4,2, P1,3}
P4,1 in transmission
{P2,1, P3,2} in queues

Finish numbers

R(t) = (t−t′)⋅C/N + R(t′) = 50×1/4 + 76.116  = 129 1/6

F1,3 = max{0, R(t)}+L1,3 = 61.129  + 60 = 61.189  ;
F2,1 = 150 (unchanged);
F3,2 = 240 (unchanged);

F4,2 = max{0, R(t)} + L4,2 = 61.129  + 30 = 61.159 

Transmit periods
P4,1 ongoing; Queued packets: P2,1 < P4,2 < P1,3 < P3,2
Start/end(P2,1): 310→360 s; s/e(P4,2): 360→390 s;
Start/end(P1,3): 390→450 s; s/e(P3,2): 450→640 s.

At t = 640 s, round number reset, R(t) = 0, because the system becomes idle.
t = 650: {P3,3, P4,3}
server idle, q’s empty

Finish numbers R(0) = 0; F3,3 = L3,3 = 50; F4,3 = L4,3 = 30
Transmit periods Start/end(P4,3): 650→680 sec; s/e(P3,3): 680→730 s.

t = 710: {P1,4, P4,4}
P3,3 in transmission
All queues empty

Finish numbers
R(t) = (t−t′)⋅C/N + R(t′) = 110×1/2 + 0 = 55
F1,4 = max{0, R(t)} + L1,4 = 55 + 60 = 115;
F4,4 = max{30, R(t)} + L4,4 = 55 + 30 = 85

Transmit periods
P3,3 ongoing; Queued packets: P4,4 < P1,4
Start/end(P4,4): 730→760 s; s/e(P1,4): 760→820 s.

(b) Packet-by-packet WFQ; Weights for flows 1-2-3-4 are 4:2:1:2

The round number computation, based on bit-by-bit GPS, remains the same as in the figure
above. The only difference is in the computation of finish numbers under packet-by-packet WFQ,
see Eq. (5.3), as summarized in the following table.

Packets P1,4 and P4,4 end up having the same finish number (70); the tie is broken by a random
drawing so that P1,4 is decided to be serviced first, ahead of P4,4.

Arrival times & state Parameters Values under packet-by-packet FQ
t = 0: {P1,1, P3,1} arrive
server idle, q’s empty

Finish numbers R(0) = 0; F1,1 = L1,1/w1 = 100/4 = 25; F3,1 = 60
Transmit periods Start/end(P1,1): 0→100 s; Start/end(P3,1): 100→160 s

t = 100: {P1,2, P3,2}
P3,1 in transmission
All queues empty

Finish numbers
R(t) = t⋅C/N = 100×1/2 = 50
F1,2 = max{F1,1, R(t)} + L1,2/w1 = 100 + 120/4 = 130;
F3,2 = max{0, R(t)} + L3,2/w3 = 50 + 190/1 = 240

Transmit periods Start/end(P1,2): 160→280 s; Queued packets: P3,2
t = 200: {P2,1} arrives
P1,2 in transmission
P3,2 in queue

Finish numbers
R(t) = t⋅C/N = 200×1/2 = 100
F2,1 = max{0, R(t)} + L2,1/w2 = 100 + 50/2 = 125
F3,2 = 240 (unchanged);

Solutions to Selected Problems 467

Transmit periods P1,2 ongoing; Queued packets: P2,1 < P3,2

t = 250: {P4,1} arrives
P1,2 in transmission
{P2,1, P3,2} in queues

Finish numbers

R(t) = (t−t′)⋅C/N + R(t′) = 50×1/3 + 100 = 116 2/3
F2,1 = 125 (unchanged);
F3,2 = 240 (unchanged);
F4,1 = max{0, R(t)} + L4,1/w4 = 76.116  +30/2 = 76.131 

Transmit periods Start/end(P2,1): 280→330 s; Queued pkts: P4,1 < P3,2

t = 300: {P4,2, P1,3}
P2,1 in transmission
{P3,2, P4,1} in queues

Finish numbers

R(t) = (t−t′)⋅C/N + R(t′) = 50×1/4 + 76.116  = 129 1/6

F1,3 = max{0, R(t)}+L1,3/w1 = 61.129  +60/4 = 61.144  ;
F3,2 = 240 (unchanged);
F4,1 = 76.131  (unchanged);
F4,2 = max{ 76.131  , R(t)} + L4,2/w4 = 76.146 

Transmit periods
P2,1 ongoing; Queued packets: P4,1 < P1,3 < P4,2 < P3,2
Start/end(P4,1): 330→360 s; s/e(P1,3): 360→420 s;
Start/end(P4,2): 420→450 s; s/e(P3,2): 450→640 s.

At t = 640 s, round number reset, R(t) = 0, because the system becomes idle.
t = 650: {P3,3, P4,3}
server idle, q’s empty

Finish numbers R(0) = 0; F3,3 = L3,3/w3 = 50; F4,3 = L4,3/w4 = 15
Transmit periods Start/end(P4,3): 650→680 sec; s/e(P3,3): 680→730 s.

t = 710: {P1,4, P4,4}
P3,3 in transmission
All queues empty

Finish numbers
R(t) = (t−t′)⋅C/N + R(t′) = 110×1/2 + 0 = 55
F1,4 = max{0, R(t)} + L1,4/w1 = 55 + 60/4 = 70;
F4,4 = max{30, R(t)} + L4,4/w4 = 55 + 30/2 = 70

Transmit periods
P3,3 ongoing; Queued pkts: P1,4 = P4,4 (tie  random)
Start/end(P1,4): 730→790 s; s/e(P4,4): 790→820 s.

Finally, the following table summarizes the order/time of departure:

Packet

Arrival time
[sec]

Packet size
[bytes]

Flow
ID

Departure order/
time under FQ

Departure order/
time under WFQ

1 0 100 1 #2 / 60 s #1 / 0 s
2 0 60 3 #1 / 0 s #2 / 100 s
3 100 120 1 #3 / 160 s #3 / 160 s
4 100 190 3 #8 / 450 s #8 / 450 s
5 200 50 2 #5 / 310 s #4 / 280 s
6 250 30 4 #4 / 280 s #5 / 330 s
7 300 30 4 #6 / 360 s #7 / 420 s
8 300 60 1 #7 / 390 s #6 / 360 s
9 650 50 3 #10 / 680 s #10 / 680 s

10 650 30 4 #9 / 650 s #9 / 650 s
11 710 60 1 #12 / 760 s #11 / 730 s (tie)
12 710 30 4 #11 / 730 s #11 / 790 s (tie)

Problem 5.8 — Solution

Let us assign the high-priority queue index 1, and the other two queues have indices 2 and 3. We
modify Eq. (5.2) as follows. For a high priority packet P1,j, the finish number is:

{ } jajj LtRFF ,11,1,1)(,max += − (5.2)′

Ivan Marsic • Rutgers University 468

If the priority packet is at the head of its own queue and no other packet is currently serviced,
then F1,j = R(ta) + L1,j. If a non-priority packet Pi,k, i ≠ 1, is currently in service, then we use its
finish number Fi,k to compute F1,j = Fi,k + L1,j, because a currently serviced packet is not
preempted.

For a non-priority packet Pi,j, i ≠ 1:

{ } 1;)(,,max ,1,last,1, ≠+= − iLtRFFF jiajiji (5.2)″

where F1,last symbolizes the finish number of the last packet currently in the priority queue.

Any time new packet arrives (whether to a priority or non-priority queue), we must recompute the
finish numbers and sort the packets in the ascending order of their finish numbers.

The order and departure times are as follows:

P2,1 at t = 0 (not preempted) | P1,1 at t = 6 | P1,2 at t = 8 | P3,1 at t = 10 | P3,2 at t = 12 | P2,2 at t = 13
(the tie between P2,2 and P3,2 is resolved by flipping a coin).

Problem 5.9 — Solution

(a)
The solution is shown in the figure blow. Notice that LSR C can decide that packets for
destination 17.1.1/24 and 17.3.1/24 belong to the same FEC (forwarding equivalence
class). The reason for this is that they traverse the same path across the MPLS domain (from LSR
F to LSR C) and neither one is assigned preferential treatment. Therefore, in this case there is no
reason to build more than a single LSP tunnel for the traffic from F to C.

Solutions to Selected Problems 469

Dest. Prefix Out label Out port

17.1.1/24 113

96.1.1.7

B

F

G

N
et

w
or

k
96

.1
.1

/2
4

C

2 3 1 3
LSR Edge

LSR

17.1.1.35

17
.1

.1
.3

5

N
et

w
or

k
17

.1
.1

/2
4

IP forwarding tableIP forwarding table

Dest. Prefix Out port

17.1.1/24 2

2 4

Dest. Prefix Out port

17.1.1/24 4
17.3.1/24 4

Label req.
17.1.1/24

LFIB(F)

Pfx: 17.1.1/24
Label = 13

1

2

Dest. Prefix Out label Out port

10.2.5/24 46

A H

N
et

w
or

k
10

.2
.5

/2
4

C

1 4 1 2
LSR Edge

LSR

N
et

w
or

k
17

.3
.1

/2
4

IP forwarding tableIP forwarding table

2

Dest. Prefix Out port

10.2.5/24 5

Label req.
10.2.5/24

LFIB(C)

Pfx: 10.2.5/24
Label = 6

1

2

E

5

17.3.1.24 10.2.5.35

10
.2

.5
.3

5

Dest. Prefix Out port

10.2.5/24 2
17.3.1/24 1

1

Dest. Prefix Out label Out port

17.1.1/24 113

A G

N
et

w
or

k
96

.1
.3

/2
4

C

1 3 1 3
LSR Edge

LSR

N
et

w
or

k
17

.3
.1

/2
4

IP forwarding tableIP forwarding table

2

Label req.
17.3.1/24

LFIB(F)

Pfx: 17.3.1/24
Label = 13

1

2

F

4

17.3.1.24

Dest. Prefix Out port

10.2.5/24 2
17.3.1/24 1

1

96.1.3.13

17
.3

.1
.2

4
Dest. Prefix Out port

17.1.1/24 4
17.3.1/24 4

17.3.1/24 113

(b)
Forwarding will work as illustrated in the figure below. LSR C uses its conventional IP
forwarding table to forward packets to destinations 17.1.1.35 (first packet) and 17.3.1.24
(3rd packet). Similarly, LSR E uses its IP forwarding table to forward packets to destination
10.2.5.35 (2nd packet).

Ivan Marsic • Rutgers University 470

10.2.5.35A E H

C

1 4 1 2
LSR Edge

LSR

IP forwarding tableIP forwarding table

5

Dest. Prefix Out port

10.2.5/24 5

10
.2

.5
.3

5

Dest. Prefix Out label Out port

10.2.5/24 46

2

17.3.1.24 10.2.5.35

10
.2

.5
.3

5

Dest. Prefix Out port

10.2.5/24 2
17.3.1/24 1

1

10.2.5.35 13

LFIB(C)

IP forwarding table

Dest. Prefix Out port

10.2.5/24 2

6

Dest. Prefix Out label Out port

17.1.1/24 113

17.3.1/24 113

13

96.1.3.13

F

GC

1 3 1 3
LSR Edge

LSR

17
.3

.1
.2

4

IP forwarding table

4

Dest. Prefix Out port

17.1.1/24 4
17.3.1/24 4

LFIB(F)

17.3.1.241317.3.1.24

17
.3

.1
.2

4 A

IP forwarding table

2

17.3.1.24

Dest. Prefix Out port

10.2.5/24 2
17.3.1/24 1

1

IP forwarding table

Dest. Prefix Out port

17.1.1/24 2
17.3.1/24 1

Dest. Prefix Out label Out port

17.1.1/24 113

17.3.1/24 113

13

96.1.1.7

B

F

GC

2 3 1 3
LSR Edge

LSR

17.1.1.35

17
.1

.1
.3

5

IP forwarding tableIP forwarding table

Dest. Prefix Out port

17.1.1/24 2

2 4

Dest. Prefix Out port

17.1.1/24 4
17.3.1/24 4

LFIB(F)

17.1.1.351317.1.1.35

17
.1

.1
.3

5

IP forwarding table

Dest. Prefix Out port

17.1.1/24 2
17.3.1/24 1

(c)
The minimum number of FECs is 2 and the minimum number of LSP tunnels that need to be set
up is accordingly 2: F→C and C→E.

471

Appendix A: Probability Refresher

Random Events and Their Probabilities

An experiment (or, observation) is a procedure that yields one of a given set of possible
outcomes. Outcome is a specific result of an experiment. The sample space S of the experiment
is the set of possible outcomes that can occur in an experiment. An event E is a collection of
outcomes, which is a subset of the sample space. For example, tossing a coin results in one of two
possible outcomes: heads (H) or tails (T). Tossing a coin twice results in one of four possible
outcomes: HH (two heads), HT (a head followed by a tail), TH, or TT (see Figure A-1(a)).
Similarly, tossing a coin three times results in one of eight possible outcomes: HHH, HHT, HTH,
HTT, THH, THT, TTH, or TTT. Consider the experiment of tossing a coin twice, where we can
define a number of possible events:

Event A: The event “two heads” consists of the single outcome A = {HH}. (This event is
equivalent to the event “no tails.”)

Event B: The event “exactly one head” consists of two outcomes B = {HT, TH}. (This event is
equivalent to the event “exactly one tail.”)

Event C: The event “at least one head” consists of three outcomes C = {HH, HT, TH}. (This
event is equivalent to the events “at most one tail” and “not two tails.”)

We also define a null event (“nothing happened”), which is symbolized by ∅. Given a sample
space S, the total number of events that can be defined is the set that contains all of the subsets of
S, including both ∅ and S itself. This set is called the power set of set S and is denoted (S), or

S, or 2S. In the example of tossing a coin twice, the power set of S contains 24 = 16 events,
including the null event ∅. The events consisting of a single outcome are: {HH}, {HT}, {TH},
{TT}. The events consisting of pairs of outcomes are:
{HH, HT}, {HH, TH}, {HH, TT}, {HT, TH}, {HT, TT}, {TH, TT}.

HH HT

TH TT

HH HT

TH TT

H T

H

T

First toss

Second toss

First toss

Second toss Outcome

HH

HT

TH

TT

H

T

T

H

½
½

½
½

½

½

H

T

(a) (b)

Figure A-1. (a) Possible outcomes of two coin tosses. (b) “Tree diagram” of possible
outcomes of two coin tosses.

Ivan Marsic • Rutgers University 472

The events consisting of triples of outcomes are:
{HH, HT, TH}, {HH, HT, TT}, {HH, TH, TT}, {HT, TH, TT}.

Finally, the event consisting of all four outcomes is: {HH, HT, TH,
TT}.

We say that an event is random when the result of an experiment is
not known before the experiment is performed. For example, a coin
toss is random because we do not know if it will land heads or tails.
If we knew how it would land, then the event would not be random
because its outcome would be predetermined. For a random event,
the best we can do is estimate the probability of the event.

One way to define the probability of a random event is as the relative
frequency of occurrence of an experiment’s outcome, when repeating
the experiment indefinitely. Consider a jar with five balls: four black
and one white (Figure A-2). Imagine that you reach into the jar and
retrieve a ball, examine its color, and put it back. If you repeat this experiment many times, then,
on average, four out of five times you will retrieve a black ball and one out of five times you will
retrieve the white ball. Therefore, the probability of an outcome could be defined as the frequency
of the outcome.

We would like to know not only the probability of individual outcomes, but also the probability
of events. Let us first consider the case when all outcomes are equally likely, and later we will
consider the general case. In the case of equally likely outcomes, the probability of an event is
equal to the number of outcomes in an event (cardinality of the event) divided by the number of

possible outcomes (cardinality of the sample space):
||

||
)(

S

E
Ep = . For example, tossing a fair

coin has two equally likely outcomes: heads and tails are equally likely on each toss and there is
no relationship between the outcomes of two successive tosses. When a coin is tossed twice, the
number of outcomes is four (Figure A-1(a)). The probabilities for the three events defined above
are:

Event A: The probability of the event “two heads,” A = {HH}, equals p(A) = 1/4.

Event B: The probability of the event “exactly one head,” B = {HT, TH}, equals p(B) = (1 + 1)/4
= 1/2.

Event C: The probability of the event “at least one head,” C = {HH, HT, TH}, equals p(C) =
(1 + 1 + 1)/4 = 3/4.

The Principles of Probability Theory

Given a sample space S with finite number of elements (or, outcomes), we assume that a
probability value p(x) is attached to each element x in S, with the following properties

1. 0 ≤ p(x) ≤ 1, for all x ∈ S

2. 1)(=
∈Sx

xp

Figure A-2. Jar with
black and white balls.

Appendix A • Probability Refresher 473

Given an event E, that is, a subset of S, the probability of E is defined as the sum of the
probabilities of the outcomes in the event E


∈

=
Ex

xpEp)()(

Therefore, the probability of the entire sample space is 1, and the probability of the null event is
0.

Events can also be combined. Given two events A and B, their intersection or conjunction is the
event that consists of all outcomes common to both events, and is denoted as {A and B} or
{A ∩ B}. For example, the event C defined above (“at least one head”) consists of three outcomes
C = {HH, HT, TH}. We can define another event, “at least one tail,” which also consists of three
outcomes D = {HT, TH, TT}. The conjunction of C and D (“at least one head and at least one
tail”) consists of the outcomes HT and TH. (Note that this event is equivalent to the event “one
head and one tail.”) Such an event is called a joint event (or, compound event) and the
probability of such and event is called a joint probability (or, compound probability).

Another type of event combination involves outcomes of either of two events. The union or
disjunction of two events consists of all the outcomes in either event, denoted as {A or B} or
{A ∪ B}. For example, consider again the event “at least one head,” C = {HH, HT, TH}, and the
event “at least one tail,” D = {HT, TH, TT}. The event “at least one head or at least one tail”
consists of {A or B} = {HH, HT, TH, TT}. This disjunction equals the entire sample space S,
because there must be at least one head or at least one tail in any coin-toss experiment.

An important property of random events is independence of one another. When two events are
independent, the occurrence of one of the events gives no information about the probability that
the other event occurs. One event does not influence another, or stated formally, the events E and
F are independent if and only if)()()(FpEpFandEp ⋅= .

To illustrate the above concepts, consider the following scenario of two containers with black and
white balls (Figure A-3). First you decide randomly from which container to draw a ball from,
and then you draw a ball from the selected vessel. To decide the vessel to draw from, you roll a
die. If the die comes up 1 or 2, you draw a ball from the jar; otherwise, you draw from the urn
(i.e., when the die comes up 3, 4, 5, or 6). Let us define the following events: VJ = {die roll
outcomes: 1, 2}, VU = {die roll outcomes: 3, 4, 4, 6}, BB = {black ball taken}, BW = {white ball
taken}.

A joint event can be defined as JB = {black ball taken from Jar}, which is a conjunction of
VJ ∩ BB. Another joint event is UW = {white ball taken from Urn}. One can notice that
VJ and BB are not independent, because the occurrence of one of the events gives useful
information about the probability that the other event occurs. That is, we know that the
probability of taking a black ball is high die comes up 1 or 2, because the fraction of black balls is
greater in the jar than in the urn.

Many any problems are concerned with a numerical value associated with the outcome of an
experiment. For example, we may be interested in the total number of packets that end up with
errors when 100 packets are transmitted. To study problems of this type we introduce the concept
of a random variable. A random variable is a function from the sample space of an experiment
to the set of real numbers. That is, a random variable assigns a real number to each possible

Ivan Marsic • Rutgers University 474

outcome. (It is worth repeating that a random variable is a function; it is not a variable, and it is
not random!)

In the example of Figure A-3, the identity of the vessel that will be chosen is a random variable,
which we shall denote by Y. This random variable can take one of two possible values, namely
jar or urn. Similarly, the color of the ball that will be drawn from the vessel is also a random
variable and will be denoted by X. It can take either of the values black or white.

Consider the matrix representation in Figure A-4. Suppose that we run N times the experiments in
Figure A-3 and record the outcomes in the matrix. Each cell of the matrix records the fraction of
the total number of samples that turned out in the specific way. For example, n11 records the
fraction of samples (out of the N total) where the selected vessel was jar and the color of the ball
taken from the vessel was black. The joint probability of the random variables X and Y is the
probability that X will take the value xi and at the same time Y will take the value yj, which is
written as p(X = xi, Y = yj). For example, in Figure A-4, X = black and Y = jar. In a general case

JarJar UrnUrn

EXPERIMENT 1:
Roll a die; if outcome
is 1 or 2, select Jar;
else, select Urn

EXPERIMENT 2:
Draw a ball from the
selected container

Figure A-3. Two experiments using a die, and a jar and urn with black and white balls.

n12

n22

y1 = Jar

y2 = Urn

x1 = Black x2 = White

n11

c2

n21

r1Random variable Y:
Identity of the vessel

that will be chosen

Random variable X: Color of the ball

Figure A-4. Matrix of probabilities of random variables from Figure A-3.

Appendix A • Probability Refresher 475

where variable X can take M different values, X = xi, i = 1, …, M, and variable Y can take L
different values, Y = yj, j = 1, …, L, we can write the joint probability as

()
N

n
yYxXp ij

ji === , (A.1)

(Of course, for this to hold, we are assuming that N → ∞.) Similarly, the probability that X takes
the value xi (e.g., the probability that the ball color is black) regardless of the value of Y is written
as p(X = xi) and is given by the fraction of the total number of points that fall in column i, so that

()
N

c
xXp i

i == (A.2)

The number of instances in column i in Figure A-4 is just the sum of the number of instances in

each cell of that column. Therefore, we have  == L

j iji nc
1

. If we plug this to equation (A.2) and

then use (A.1), we will obtain

()


==

= ======
L

j
ji

L

j

ij

L

j ij

i yYxXp
N

n

N

n
xXp

11

1 ,)((A.3)

This is known as the sum rule of probability. The probability p(X = xi) is sometimes called the
marginal probability, because it is obtained by marginalizing, or summing out, the other
variables (in this case Y).

Let us fix the value of the random variable X so that X = xi, and consider the fraction of such
instances for which Y = yj. In the example of Figure A-4, we could assume that X = white and
consider the fraction of instances for which Y = jar. This is written as p(Y = yj | X = xi) and is
called conditional probability of Y = yj given X = xi. It is obtained by finding the fraction of
those points in column i that fall in cell i,j and is given as

()
i

ij
ij c

n
xXyYp === | (A.4)

Starting with equation (A.1) and using equations (A.2) and (A.4), we can derive the following

()
())(|

,

iij

i

i

ijij
ji

xXpxXyYp

N

c

c

n

N

n
yYxXp

=⋅===

⋅====
 (A.5)

This relationship is known as the product rule of probability.

Statistics of Random Variables

If X is a discrete random variable, define SX = {x1, x2, … , xN} as the range of X. That is, the value
of X belongs to SX.

Probability mass function (PMF): PX(x) = P[X = x]

Properties of X with PX(x) and SX:

a) PX (x) ≥ 0 ∀ x

Ivan Marsic • Rutgers University 476

b) 1)(=
∈ XSx

X xP

c) Given B ⊂ SX, 
∈

=
Bx

X xPBP)(][

Define a and b as upper and lower bounds of X if X is a continuous random variable.

Cumulative distribution function (CDF): FX(x) = P[X ≤ x]

Probability density function (PDF):
dx

xdF
xfX

)(
)(=

Properties of X with PDF fX(x):

a) fX(x) ≥ 0 ∀ x

b) 
∞−

⋅=
x

XX duufxF)()(

c) 1)(=⋅
∞

∞−

dxxf X

Expected value:

The mean or first moment.

Continuous RV case:  ⋅⋅==
b

a

XX dxxfxXE)(][μ

Discrete RV case: 
=

⋅==
N

k
kXkX xPxXE

1

)(][μ

Variance:

Second moment minus first moment-squared: ()[] [] 222][XX XEXEXVar μμ −=−=

Continuous RV case: [] () ⋅⋅=
b

a

X dxxfxXE 22

Discrete RV case: [] ()
=

⋅=
N

k
kXk xPxXE

1

22

Standard Deviation:][XVarX =σ

Bayes’ Theorem

Consider the following scenario of two containers with black and white balls (Figure A-5). First
you decide randomly from which container to draw a ball, then you draw a ball from the selected
container, and finally you report the ball color to your friend. To decide the container to draw
from, you roll a die. If the die comes up 1 or 2, you draw a ball from the jar; otherwise, you draw

Appendix A • Probability Refresher 477

from the urn (i.e., when the die comes up 3, 4, 5, or 6). Your friend is sitting behind a curtain and
cannot observe which container the ball was drawn from. Your friend needs to answer a question
such as: “given that a black ball was drawn, is it more likely that the ball was drawn from the jar
or urn?”. In other words, given that a black ball was drawn, what is the probability that it came
from the jar?

On one hand, we know that the fraction of black balls is greater in the jar than in the urn. On the
other hand, we know that as the result of the roll of the die, it is twice as likely that you have
drawn the ball from the urn. How can we combine the evidence from our sample (black drawing
outcome) with our prior belief based on the roll of the die? To help answer this question, consider
again the representation in Figure A-4.

)(

)()|(
)|(

Xp

YpYXp
XYp

⋅= (A.7)

Suppose that an experiment can have only two possible outcomes. For example, when a coin is
flipped, the possible outcomes are heads and tails. Each performance of an experiment with two
possible outcomes is called a Bernoulli trial, after the Swiss mathematician James Bernoulli
(1654-1705). In general, a possible outcome of a Bernoulli trial is called a success or a failure. If
p is the probability of a success and q is the probability of a failure, it follows that p + q = 1.

JarJar UrnUrn

EXPERIMENT 1:
Roll a die; if outcome
is 1 or 2, select Jar;
else, select Urn

EXPERIMENT 2:
Draw a ball from the
selected container

Guess whether the
ball was drawn from

Jar or from Urn

Figure A-5. Two experiments use a die, and a jar and urn with black and white balls. The
person behind a curtain is trying to guess from which vessel a ball is drawn, given the color
of the ball.

Ivan Marsic • Rutgers University 478

Many problems can be solved by determining the probability of k successes when an experiment
consists of n mutually independent Bernoulli trials. (Bernoulli trials are mutually independent if
the conditional probability of success on any given trial is p, given any information whatsoever
about the outcomes of other trials.)

The probability of exactly k successes in n independent Bernoulli trials, with probability of

success p and probability of failure q = 1 − p, is knk qpknCpnkb −⋅⋅=),(),;(. When b(k; n, p) is

considered as a function of k, we call this function the binomial distribution.

Random Processes

A process is a naturally occurring or designed sequence of operations or events, possibly taking
up time, space, expertise or other resource, which produces some outcome. A process may be
identified by the changes it creates in the properties of one or more objects under its influence.

A function may be thought of as a computer program or mechanical device that takes the
characteristics of its input and produces output with its own characteristics. Every process may be
defined functionally and every process may be defined as one or more functions.

An example random process that will appear later in the text is Poisson process. It is usually
employed to model arrivals of people or physical events as occurring at random points in time.
Poisson process is a counting process for which the times between successive events are
independent and identically distributed (IID) exponential random variables. For a Poisson
process, the number of arrivals in any interval of length τ is Poisson distributed with a parameter
λ⋅τ. That is, for all t, τ > 0,

{ } ,...1,0,
!

)(
)()(===−+ − n

n
entAtAP

nλττ λτ (A.8)

The average number of arrivals within an interval of length τ is λτ (based on the mean of the
Poisson distribution). This implies that we can view the parameter λ as an arrival rate (average
number of arrivals per unit time). If X represents the time between two arrivals, then P(X > x),
that is, the probability that the interarrival time is longer than x, is given by e−x/λ. An interesting
property of this process is that it is memoryless: the fact that a certain time has elapsed since the
last arrival gives us no indication about how much longer we must wait before the next event
arrives. An example of the Poisson distribution is shown in Figure A-6.

Appendix A • Probability Refresher 479

This model is not entirely realistic for many types of sessions and there is a great amount of
literature which shows that it fails particularly at modeling the LAN traffic. However, such
simple models provide insight into major tradeoffs involved in network design, and these
tradeoffs are often obscured in more realistic and complex models.

Markov process is a random process with the property that the probabilities of occurrence of the
various possible outputs depend upon one or more of the preceding outputs.

Statistics Review

Proportions of Area Under the Normal Curve

Figure A-7 shows a coarse partition of areas under the normal curve N(μ,σ). Statistical tables are
often used to obtain finer partitioning, as shown in Table A-1. To use this table, it is necessary to
convert the raw magnitude to a so-called z-score. The z-score is a standard deviate that allows for
using the standard normal distribution N(0,1), the one which has a mean μ = 0.0, a standard
deviation σ = 1.0, and a total area under the curve equal to 1.0.

0

5
10
15
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arrivals per time unit (n)
p

e
rc

en
t

o
f

o
c

cu
rr

en
ce

s
(%

)

Figure A-6. The histogram of the number of arrivals per unit of time (τ = 1) for a Poisson
process with average arrival rate λ = 5.

0

34.13% 34.13%

−σ +σ +2σ +3σ +4σ−2σ−3σ−4σ

13.59% 13.59%

2.15%2.15%
0.13%0.13%

0.4

0.3

0.2

0.1

0.0

0

34.13% 34.13%

−σ +σ +2σ +3σ +4σ−2σ−3σ−4σ

13.59% 13.59%

2.15%2.15%
0.13%0.13%

0.4

0.3

0.2

0.1

0.0

Figure A-7. Areas between selected points under the normal curve.

Ivan Marsic • Rutgers University 480

The values in Table A-1 represent the proportion of area under the standard normal curve. The
table contains z-scores between 0.0 and 4.00 (i.e., four standard deviations, or 4×σ), with 0.01
increments. Because the normal distribution is symmetrical, the table represents z-scores ranging
between −4.00 and 4.00.

Figure A-8 illustrates how to read Table A-1. Suppose you want to know how big is the area
under the normal curve from the mean up to 1.5×σ, i.e., z = 1.50 and how much remains beyond.
First, we look up Column A and find z = 1.50. Second, we read the associated values in Columns
B and C, which represent the area between mean and z, and the area beyond z, respectively.

0

Area between mean and +z
(from Column B)

−1 1 2 3 4−2−3−4

z = 1.50
(in Column A)

43.32%

0.4

0.3

0.2

0.1

0.0

Area beyond +z
(from Column C)

6.68%6.68%

0

Area between mean and +z
(from Column B)

−1 1 2 3 4−2−3−4

z = 1.50
(in Column A)

43.32%

0.4

0.3

0.2

0.1

0.0

Area beyond +z
(from Column C)

6.68%6.68%

(A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

 (A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

 (A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

0.00 .0000 .5000 0.55 .2088 .2912 1.10 .3643 .1357
0.01 .0040 .4960 0.56 .2123 .2877 1.11 .3665 .1335
0.02 .0080 .4920 0.57 .2157 .2843 1.12 .3686 .1314

0.34 .1331 .3669 0.89 .3133 .1867 1.44 .4251 .0749
0.35 .1368 .3632 0.90 .3159 .1841 1.45 .4265 .0735
0.36 .1406 .3594 0.91 .3186 .1814 1.46 .4279 .0721
0.37 .1443 .3557 0.92 .3212 .1788 1.47 .4292 .0708
0.38 .1480 .3520 0.93 .3238 .1762 1.48 .4306 .0694
0.39 .1517 .3483 0.94 .3264 .1736 1.49 .4319 .0681
0.40 .1554 .3446 0.95 .3289 .1711 1.50 .4332 .0668
0.41 .1591 .3409 0.96 .3315 .1685 1.51 .4345 .0655
0.42 .1628 .3372 0.97 .3340 .1660 1.52 .4357 .0643
0.43 .1664 .3336 0.98 .3365 .1635 1.53 .4370 .0630
0.44 .1700 .3300 0.99 .3389 .1611 1.54 .4382 .0618
0.45 .1736 .3264 1.00 .3413 .1587 1.55 .4394 .0606
0.46 .1772 .3228 1.01 .3438 .1562 1.56 .4406 .0594
0.47 .1808 .3192 1.02 .3461 .1539 1.57 .4418 .0582
0.48 .1844 .3156 1.03 .3485 .1515 1.58 .4429 .0571
0.49 .1879 .3121 1.04 .3508 .1492 1.59 .4441 .0559
0.50 .1915 .3085 1.05 .3531 .1469 1.60 .4452 .0548
0.51 .1950 .3050 1.06 .3554 .1446 1.61 .4463 .0537
0.52 .1985 .3015 1.07 .3577 .1423 1.62 .4474 .0526
0.53 .2019 .2981 1.08 .3599 .1401 1.63 .4484 .0516
0.54 .2054 .2946 1.09 .3621 .1379 1.64 .4495 .0505

(A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

1.50 .4332 .0668

(A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

(A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

1.50 .4332 .06681.50 .4332 .0668

Figure A-8. Illustration of how to read Table A-1 on the next page.

Appendix A • Probability Refresher 481

Table A-1: Proportions of area under the normal curve. (continued below)

(A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

 (A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

 (A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

0.00 .0000 .5000 0.55 .2088 .2912 1.10 .3643 .1357
0.01 .0040 .4960 0.56 .2123 .2877 1.11 .3665 .1335
0.02 .0080 .4920 0.57 .2157 .2843 1.12 .3686 .1314
0.03 .0120 .4880 0.58 .2109 .2810 1.13 .3708 .1292
0.04 .0160 .4840 0.59 .2224 .2776 1.14 .3729 .1271
0.05 .0199 .4801 0.60 .2257 .2743 1.15 .3749 .1251
0.06 .0239 .4761 0.61 .2291 .2709 1.16 .3770 .1230
0.07 .0279 .4721 0.62 .2324 .2676 1.17 .3790 .1210
0.08 .0319 .4681 0.63 .2357 .2643 1.18 .3810 .1190
0.09 .0359 .4641 0.64 .2389 .2611 1.19 .3830 .1170
0.10 .0398 .4602 0.65 .2422 .2578 1.20 .3849 .1151
0.11 .0438 .4562 0.66 .2454 .2564 1.21 .3869 .1131
0.12 .0478 .4522 0.67 .2486 .2514 1.22 .3888 .1112
0.13 .0517 .4483 0.68 .2517 .2483 1.23 .3907 .1093
0.14 .0557 .4443 0.69 .2549 .2451 1.24 .3925 .1075
0.15 .0596 .4404 0.70 .2580 .2420 1.25 .3944 .1056
0.16 .0636 .4364 0.71 .2611 .2389 1.26 .3962 .1038
0.17 .0675 .4325 0.72 .2642 .2358 1.27 .3980 .1020
0.18 .0714 .4286 0.73 .2673 .2327 1.28 .3997 .1003
0.19 .0753 .4247 0.74 .2704 .2296 1.29 .4015 .0985
0.20 .0793 .4207 0.75 .2734 .2266 1.30 .4032 .0968
0.21 .0832 .4168 0.76 .2764 .2236 1.31 .4049 .0951
0.22 .0871 .4129 0.77 .2794 .2206 1.32 .4066 .0934
0.23 .0910 .4090 0.78 .2823 .2177 1.33 .4082 .0918
0.24 .0948 .4052 0.79 .2852 .2148 1.34 .4099 .0901
0.25 .0987 .4013 0.80 .2881 .2119 1.35 .4115 .0885
0.26 .1026 .3974 0.81 .2910 .2090 1.36 .4131 .0869
0.27 .1064 .3936 0.82 .2939 .2061 1.37 .4147 .0853
0.28 .1103 .3897 0.83 .2967 .2033 1.38 .4162 .0838
0.29 .1141 .3859 0.84 .2995 .2005 1.39 .4177 .0823
0.30 .1179 .3821 0.85 .3023 .1977 1.40 .4192 .0808
0.31 .1217 .3783 0.86 .3051 .1949 1.41 .4207 .0793
0.32 .1255 .3745 0.87 .3078 .1922 1.42 .4222 .0778
0.33 .1293 .3707 0.88 .3106 .1894 1.43 .4236 .0764
0.34 .1331 .3669 0.89 .3133 .1867 1.44 .4251 .0749
0.35 .1368 .3632 0.90 .3159 .1841 1.45 .4265 .0735
0.36 .1406 .3594 0.91 .3186 .1814 1.46 .4279 .0721
0.37 .1443 .3557 0.92 .3212 .1788 1.47 .4292 .0708
0.38 .1480 .3520 0.93 .3238 .1762 1.48 .4306 .0694
0.39 .1517 .3483 0.94 .3264 .1736 1.49 .4319 .0681
0.40 .1554 .3446 0.95 .3289 .1711 1.50 .4332 .0668
0.41 .1591 .3409 0.96 .3315 .1685 1.51 .4345 .0655
0.42 .1628 .3372 0.97 .3340 .1660 1.52 .4357 .0643
0.43 .1664 .3336 0.98 .3365 .1635 1.53 .4370 .0630
0.44 .1700 .3300 0.99 .3389 .1611 1.54 .4382 .0618
0.45 .1736 .3264 1.00 .3413 .1587 1.55 .4394 .0606
0.46 .1772 .3228 1.01 .3438 .1562 1.56 .4406 .0594
0.47 .1808 .3192 1.02 .3461 .1539 1.57 .4418 .0582
0.48 .1844 .3156 1.03 .3485 .1515 1.58 .4429 .0571
0.49 .1879 .3121 1.04 .3508 .1492 1.59 .4441 .0559
0.50 .1915 .3085 1.05 .3531 .1469 1.60 .4452 .0548
0.51 .1950 .3050 1.06 .3554 .1446 1.61 .4463 .0537
0.52 .1985 .3015 1.07 .3577 .1423 1.62 .4474 .0526
0.53 .2019 .2981 1.08 .3599 .1401 1.63 .4484 .0516
0.54 .2054 .2946 1.09 .3621 .1379 1.64 .4495 .0505

Ivan Marsic • Rutgers University 482

Table A-1 (continued)

(A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

 (A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

 (A)

z

(B)
area

between
mean and z

(C)
area

beyond
z

1.65 .4505 .0495 2.22 .4868 .0132 2.79 .4974 .0026
1.66 .4515 .0485 2.23 .4871 .0129 2.80 .4974 .0026
1.67 .4525 .0475 2.24 .4875 .0125 2.81 .4975 .0025
1.68 .4535 .0465 2.25 .4878 .0122 2.82 .4976 .0024
1.69 .4545 .0455 2.26 .4881 .0119 2.83 .4977 .0023
1.70 .4554 .0446 2.27 .4884 .0116 2.84 .4977 .0023
1.71 .4564 .0436 2.28 .4887 .0113 2.85 .4978 .0022
1.72 .4573 .0427 2.29 .4890 .0110 2.86 .4979 .0021
1.73 .4582 .0418 2.30 .4893 .0107 2.87 .4979 .0021
1.74 .4591 .0409 2.31 .4896 .0104 2.88 .4980 .0020
1.75 .4599 .0401 2.32 .4898 .0102 2.89 .4981 .0019
1.76 .4608 .0392 2.33 .4901 .0099 2.90 .4981 .0019
1.77 .4616 .0384 2.34 .4904 .0096 2.91 .4982 .0018
1.78 .4625 .0375 2.35 .4906 .0094 2.92 .4982 .0018
1.79 .4633 .0367 2.36 .4909 .0091 2.93 .4983 .0017
1.80 .4641 .0359 2.37 .4911 .0089 2.94 .4984 .0016
1.81 .4649 .0351 2.38 .4913 .0087 2.95 .4984 .0016
1.82 .4656 .0344 2.39 .4916 .0084 2.96 .4985 .0015
1.83 .4664 .0336 2.40 .4918 .0082 2.97 .4985 .0015
1.84 .4671 .0329 2.41 .4920 .0080 2.98 .4986 .0014
1.85 .4678 .0322 2.42 .4922 .0078 2.99 .4986 .0014
1.86 .4686 .0314 2.43 .4925 .0075 3.00 .4987 .0013
1.87 .4693 .0307 2.44 .4927 .0073 3.01 .4987 .0013
1.88 .4699 .0301 2.45 .4929 .0071 3.02 .4987 .0013
1.89 .4706 .0294 2.46 .4931 .0069 3.03 .4988 .0012
1.90 .4713 .0287 2.47 .4932 .0068 3.04 .4988 .0012
1.91 .4719 .0281 2.48 .4934 .0066 3.05 .4989 .0011
1.92 .4726 .0274 2.49 .4936 .0064 3.06 .4989 .0011
1.93 .4732 .0268 2.50 .4938 .0062 3.07 .4989 .0011
1.94 .4738 .0262 2.51 .4940 .0060 3.08 .4990 .0010
1.95 .4744 .0256 2.52 .4941 .0059 3.09 .4990 .0010
1.96 .4750 .0250 2.53 .4943 .0057 3.10 .4990 .0010
1.97 .4756 .0244 2.54 .4945 .0055 3.11 .4991 .0009
1.98 .4761 .0239 2.55 .4946 .0054 3.12 .4991 .0009
1.99 .4767 .0233 2.56 .4948 .0052 3.13 .4991 .0009
2.00 .4772 .0228 2.57 .4949 .0051 3.14 .4992 .0008
2.01 .4778 .0222 2.58 .4951 .0049 3.15 .4992 .0008
2.02 .4783 .0217 2.59 .4952 .0048 3.16 .4992 .0008
2.03 .4788 .0212 2.60 .4953 .0047 3.17 .4992 .0008
2.04 .4793 .0207 2.61 .4955 .0045 3.18 .4993 .0007
2.05 .4798 .0202 2.62 .4956 .0044 3.19 .4993 .0007
2.06 .4803 .0197 2.63 .4957 .0043 3.20 .4993 .0007
2.07 .4808 .0192 2.64 .4959 .0041 3.21 .4993 .0007
2.08 .4812 .0188 2.65 .4960 .0040 3.22 .4994 .0006
2.09 .4817 .0183 2.66 .4961 .0039 3.23 .4994 .0006
2.10 .4821 .0179 2.67 .4962 .0038 3.24 .4994 .0006
2.11 .4826 .0174 2.68 .4963 .0037 3.25 .4994 .0006
2.12 .4830 .0170 2.69 .4964 .0036 3.30 .4995 .0005
2.13 .4834 .0166 2.70 .4965 .0035 3.35 .4996 .0004
2.14 .4838 .0162 2.71 .4966 .0034 3.40 .4997 .0003
2.15 .4842 .0158 2.72 .4967 .0033 3.45 .4997 .0003
2.16 .4846 .0154 2.73 .4968 .0032 3.50 .4998 .0002
2.17 .4850 .0150 2.74 .4969 .0031 3.60 .4998 .0002
2.18 .4854 .0146 2.75 .4970 .0030 3.70 .4999 .0001
2.19 .4857 .0143 2.76 .4971 .0029 3.80 .4999 .0001
2.20 .4861 .0139 2.77 .4972 .0028 3.90 .49995 .00005
2.21 .4864 .0136 2.78 .4973 .0027 4.00 .49997 .00003

483

References

1. I. Aad and C. Castelluccia, “Differentiation mechanisms for IEEE 802.11,” Proceedings of the IEEE
Infocom 2001, April 2001.

2. M. Allman, V. Paxson, and W. R. Stevens, “TCP congestion control,” IETF Request for Comments
RFC-2581, April 1999. Online at: http://www.apps.ietf.org/rfc/rfc2581.html

3. G. Almes, S. Kalidindi, and M. Zekauskas, “A one-way delay metric for IPPM,” IETF Request for
Comments RFC-2679, September 1999 (a). Online at: http://www.apps.ietf.org/rfc/rfc2679.html

4. G. Almes, S. Kalidindi, and M. Zekauskas, “A round-trip delay metric for IPPM,” IETF Request for
Comments RFC-2681, September 1999 (b). Online at: http://www.apps.ietf.org/rfc/rfc2681.html

5. G. Anastasi and L. Lenzini, “QoS provided by the IEEE 802.11 wireless LAN to advanced data
applications: A simulation analysis,” ACM Wireless Networks, vol. 6, no. 2, pp. 99-108, 2000.

6. D. Andersen, D. Bansal, D. Curtis, S. Seshan, and H. Balakrishnan, “System support for bandwidth
management and content adaptation in Internet applications,” Proceedings of the USENIX OSDI
Conference, San Diego, CA, October 2000.

7. D. Anick, D. Mitra, and M. M. Sondhi, “Stochastic theory of data-handling system with multiple
sources,” Bell System Technical Journal, vol. 61, no. 8, pp. 1871-1894, 1982.

8. C. Aras, J. F. Kurose, D. Reeves, and H. Schulzrinne, “Real-time communication in packet-switched
networks,” Proceedings of the IEEE, vol. 82, no. 1, pp. 122-139, January 1994.

9. B. Badrinath, A. Fox, L. Kleinrock, G. Popek, P. Reiher, and M. Satyanarayanan, “A conceptual
framework for network and client adaptation,” Mobile Networks and Applications (MONET), ACM /
Kluwer Academic Publishers, vol. 5, pp. 221-231, 2000.

10. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A comparison of mechanisms for
improving TCP performance over wireless links,” IEEE/ACM Transactions on Networking, vol. 5, no.
6, pp.756-769, December 1997.

11. A. J. Ballardie, P. F. Francis, and J. Crowcroft, “Core based trees,” ACM SIGCOMM Computer
Communication Review, vol. 23, no. 4, pp. 85-95, August 1993.

12. P. Baran, “Introduction to Distributed Communications Network,” RAND Corporation, Memorandum
RM-3420-PR, August 1964. Online at: http://www.rand.org/publications/RM/baran.list.html

13. R. van der Berg, “How the 'Net works: An introduction to peering and transit,” Social Science
Electronic Publishing, Inc., September 2, 2008. Online at: http://ssrn.com/abstract=1443245

14. D. Bertsekas and R. Gallagher. Data Networks. 2nd edition, Prentice Hall, Upper Saddle River, NJ,
1992.

15. S. N. Bhatti and J. Crowcroft, “QoS-sensitive flows: Issues in IP packet handling,” IEEE Internet
Computing, vol. 4, no. 4, pp. 48-57, July 2000.

16. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated
services,” IETF Request for Comments RFC-2475, December 1998. Online at:
http://www.apps.ietf.org/rfc/rfc2475.html

Ivan Marsic • Rutgers University

484

17. M. S. Blumenthal and D. D. Clark, “Rethinking the design of the Internet: The end-to-end arguments
vs. the brave new world,” ACM Transactions on Internet Technology, vol. 1, no. 1, pp. 70-109, August
2001.

18. J. C. Bolot, “End-to-end packet delay and loss behavior in the Internet,” Proceedings of the ACM
SIGCOMM '93 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, 1993.

19. B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall,
C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang,
“Recommendations on queue management and congestion avoidance in the Internet,” IETF Request
for Comments RFC-2309, April 1998. Online at: http://www.apps.ietf.org/rfc/rfc2309.html

20. L. S. Brakmo and L. L. Peterson, “TCP Vegas: End-to-end congestion avoidance on a global internet,”
IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465-1480, October 1995.

21. L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and H. Zhang, “Endpoint Admission Control:
Architectural Issues and Performance,” Proceedings of the ACM SIGCOMM 2000 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications, 2000.

22. M. Buettner and D. Wetherall, “An empirical study of UHF RFID performance,” Proceedings of the
14th ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom 2008), pp.
223-234, San Francisco, CA, September 2008.

23. Z. Cao and E. Zegura, “Utility max-min: An application-oriented bandwidth allocation scheme,” Proc.
IEEE InfoCom, vol. 2, pp. 793-801, 1999.

24. R. L. Carter and M. E. Crovella, “Measuring bottleneck link speed in packet-switched networks,”
Technical Report TR-96-006, Department of Computer Science, Boston University, March 1996.
Online at: http://www.cs.bu.edu/faculty/crovella/papers.html

25. D. Chalmers and M. Sloman, “A survey of quality of service in mobile computing environments,”
IEEE Communications Surveys, vol. 2, no. 2, 1999.

26. H. S. Chhaya and S. Gupta, “Performance of asynchronous data transfer methods of IEEE 802.11
MAC protocol,” IEEE Personal Communications, vol. 3, no. 5, October 1996.

27. M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, “Tuning RED for Web traffic,” IEEE/ACM
Transactions on Networking, vol. 9, no. 3, pp. 249-264, June 2001.

28. Cisco Systems Inc., “Interface Queue Management,” Cisco white paper, posted August 1995. Online
at: http://www.cisco.com/warp/public/614/16.html

29. Cisco Systems Inc., “Performance Measurements of Advanced Queuing Techniques in the Cisco IOS,”
Cisco white paper, posted July 1999. Online at: http://www.cisco.com/warp/public/614/15.html

30. Cisco Systems Inc., “Advanced QoS Services for the Intelligent Internet,” Cisco white paper, posted
June 2006. Online at: http://www.cisco.com/warp/public/cc/pd/iosw/ioft/ioqo/tech/qos_wp.htm

31. D. D. Clark, “Design philosophy of the DARPA Internet protocols,” Proceedings of the ACM
SIGCOMM, pp. 106-114, Stanford, CA, August 1988.

32. D. D. Clark, “The structuring of systems using upcalls,” Proceedings of the 10th ACM Symposium on
Operating Systems, pp. 171-180, December 1985.

33. D. D. Clark and W. Fang, “Explicit allocation of best-effort packet delivery service,” IEEE/ACM
Transactions on Networking, vol. 6, no. 4, pp. 362-373, August 1998.

34. D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time applications in an integrated services
packet network: Architecture and mechanisms,” Proc. SIGCOMM '92, Baltimore, MD, August 1992.

35. D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a new generation of protocols,”
ACM SIGCOMM Computer Communications Review, vol. 20, no. 4, pp. 200-208, August 1990.

References 485

36. D. E. Comer, Internetworking With TCP/IP, Volume I: Principles, Protocols, and Architecture, 5th
Edition, Pearson Prentice Hall, Upper Saddle River, NJ, 2006.

37. B. P. Crow, I. Widjaja, L. G. Kim, and P. T. Sakai, “IEEE 802.11 wireless local area networks,” IEEE
Communications Magazine, vol. 35, no. 9, pp. 116-126, September 1997.

38. W. Dapeng and R. Negi, “Effective capacity: A wireless link model for support of quality of service,”
IEEE Transactions on Wireless Communications, vol. 2, no. 4, pp. 630-643, July 2003.

39. B. S. Davie and Y. Rekhter, MPLS: Technology and Applications, Morgan Kaufmann Publishers
(Academic Press), San Francisco, CA, 2000.

40. S. Deering and R. Hinden, “Internet Protocol, version 6 (IPv6) specification,” IETF Request for
Comments RFC-2460, December 1998. Online at: http://www.apps.ietf.org/rfc/rfc2460.html

41. L. De Ghein, MPLS Fundamentals: A Comprehensive Introduction to MPLS Theory and Practice,
Cisco Press, Indianapolis, IN, 2007.

42. C. Demichelis and P. Chimento, “IP packet delay variation metric for IP performance metrics (IPPM),”
IETF Request for Comments RFC-3393, November 2002. Online at:
http://www.apps.ietf.org/rfc/rfc3393.html

43. D-J. Deng and R-S. Chang, “A priority scheme for IEEE 802.11 DCF access method,” IEICE
Transactions on Communications, E82-B-(1), January 1999.

44. J. van Duuren, “Fault-free digital radio communication and Hendrik C. A. van Duuren,” Proceedings
of the IEEE, vol. 89, no. 10, pp. 1540-1542, October 2001.

45. M. DuVal and T. Siep, “High Rate WPAN for Video,” IEEE document: IEEE 802.15-00/029,
Submission date: 6 March 2000. Online at:
http://grouper.ieee.org/groups/802/15/pub/2000/Mar00/00029r0P802-15_CFA-Response-High-Rate-WPAN-for-
Video-r2.ppt

46. I. Elhanany, M. Kahane, and D. Sadot, “Packet scheduling in next-generation multiterabit networks,”
IEEE Computer, vol. 34, no. 4, pp. 104-106, April 2001.

47. G. Fairhurst and L. Wood, “Advice to link designers on link Automatic Repeat reQuest (ARQ),” IETF
Request for Comments RFC-3366, August 2002. Online at: http://www.apps.ietf.org/rfc/rfc3366.html

48. C. Ferran and S. Watts, “Videoconferencing in the field: A heuristic processing model,” Management
Science, vol. 54, no. 9, pp. 1565-1578, September 2008.

49. V. Firou, J. Le Boudec, D. Towsley, and Z. Zhang, “Theories and models for Internet quality of
service,” Proceedings of the IEEE (Special Issue on Internet Technology), August 2002.

50. S. Floyd, “Congestion control principles,” IETF Request for Comments RFC-2914, September 2000.
Online at: http://www.apps.ietf.org/rfc/rfc2914.html

51. S. Floyd, T. Henderson, and A. Gurtov, “The NewReno modification to TCP’s fast recovery
algorithm,” IETF Request for Comments RFC-3782, April 2004. Online at: http://www.rfc-
editor.org/rfc/rfc3782.txt

52. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM
Transactions on Networking, vol. 1, no. 4, pp. 397-413, August 1993.

53. Z. Fu, H. Luo, P. Zerfos, S. Lu, L. Zhang, and M. Gerla, “The impact of multihop wireless channel on
TCP performance,” IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp. 209-221, March 2005.

54. F. C. Gärtner, “A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms,” Swiss Federal
Institute of Technology (EPFL), Technical Report IC/2003/38, June 10, 2003. Online at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.3874

55. P. Goyal, S. S. Lam, and H. M. Vin, “Determining end-to-end delay bounds in heterogeneous
networks,” ACM Multimedia Systems, vol. 5, no. 3, pp. 157-163, 1997.
[An earlier version of this paper appeared in Proceedings of the Fifth International Workshop on

Ivan Marsic • Rutgers University

486

Network and Operating System Support for Digital Audio and Video (NOSSDAV '95), Durham, NH,
pp. 287-298, April 1995.]

56. J. P. Gray, “Line control procedures,” Proceedings of the IEEE, vol. 60, no. 11, pp. 1301-1312,
November 1972.

57. C. Greenhalgh, S. Benford, and G. Reynard, “A QoS architecture for collaborative virtual
environments,” Proceedings of the ACM Multimedia Conference, pp.121-130, 1999.

58. L. He and J. Walrand, “Pricing and revenue sharing strategies for Internet service providers,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 5, pp. 942-951, May 2006.

59. J. Hoe, “Improving the start-up behavior of a congestion control scheme for TCP,” Proceedings of the
ACM SIGCOMM 1996 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, August 1996.

60. G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc networks,” Proceedings
of the 5th ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom
1999), pp. 219-230, Seattle, WA, August 1999.

61. N. Hu and P. Steenkiste, “Evaluation and characterization of available bandwidth probing techniques,”
IEEE Journal on Selected Areas in Communications, August 2003.

62. C. Huitema, IPv6: The New Internet Protocol, 2nd Edition, Prentice-Hall, Inc., Upper Saddle River,
NJ, 1998.

63. N. C. Hutchinson and L. L. Peterson, “The x-kernel: An architecture for implementing network
protocols,” IEEE Transactions on Software Engineering, vol. 17, no. 1, pp. 64-76, January 1991.

64. D. S. Isenberg, “The dawn of the stupid network,” ACM netWorker, vol. 2, no. 1, pp. 24-31,
February/March 1998. Online at: http://www.isen.com/papers/Dawnstupid.html
An older version of this paper, “Rise of the stupid network,” is available online here:
http://www.rageboy.com/stupidnet.html

65. V. Jacobson, “Congestion avoidance and control,” ACM Computer Communication Review, vol. 18,
no. 4, pp. 314-329, August 1988. Online at: ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

66. M. Jain and C. Dovrolis, “Pathload: A measurement tool for end-to-end available bandwidth,”
Proceedings of the 3rd Passive and Active Measurements Workshop, Fort Collins, CO, March 2002.

67. R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. John Wiley & Sons, New York, NY, 1991.

68. C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. C. Doyle, W.
Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, and S. Singh, “FAST TCP: From Theory to
Experiments,” Submitted to IEEE Communications Magazine, April 1, 2003. Online at:
http://netlab.caltech.edu/FAST/publications.html

69. R. Johari and J. N. Tsitsiklis, “Routing and peering in a competitive Internet,” Proceedings of the 2004
IEEE Conference on Decision and Control, Bahamas, December 2004.
Extended version: MIT technical report LIDS-P-2570, January 2003. Online at:
http://citeseer.ist.psu.edu/572286.html

70. D. Kahneman, Attention and Effort. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973.

71. S. Kandula et al. “Walking the tightrope: Responsive yet stable traffic engineering,” Proceedings of
the ACM SIGCOMM 2005 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications.

72. V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly, “Distributed priority scheduling and
medium access in ad hoc networks,” Wireless Networks, vol. 8, no. 5, pp. 455-466, 2002.

References 487

73. D. Katabi, M. Handley, and C. Rohrs, “Congestion control for future high bandwidth-delay product
networks,” Proceedings of the ACM SIGCOMM 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, August 2002.

74. R. Katz, “Adaptation and mobility in wireless information systems,” IEEE Personal Communications,
vol. 1, no. 1, pp. 6-17, 1994.

75. S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the
Telephone Network. Addison-Wesley Publ. Co., Reading, MA, 1997.

76. D. Kiwior, J. Kingston, and A. Spratt, “PathMon, a methodology for determining available bandwidth
over an unknown network,” Proceedings of the 2004 IEEE/Sarnoff Symposium on Advances in Wired
and Wireless Communication, pp. 27-30, Princeton, NJ, April 2004.

77. S. Keshav and R. Sharma, “Issues and trends in router design,” IEEE Communications Magazine, vol.
36, no. 5, pp. 144-151, May 1998.

78. V. P. Kumar, T. V. Lakshman, and D. Stiliadis, “Beyond best effort: Router architectures for the
differentiated services of tomorrow’s Internet,” IEEE Communications Magazine, vol. 36, no. 5, pp.
152-164, May 1998.

79. J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach. 5th edition. Pearson
Education, Inc. (Addison-Wesley), Boston, MA, 2010.

80. K. Lai and M. Baker, “Measuring bandwidth,” Proceedings of the Conference on Computer
Communications (IEEE INFOCOM '99), pp. 235-245, New York, NY, March 1999.

81. K. Lai and M. Baker, “Measuring link bandwidths using a deterministic model of packet delay,”
Proceedings of the ACM SIGCOMM 2000 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Stockholm, Sweden, August 2000.

82. E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative System Performance:
Computer System Analysis Using Queuing Network Models, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1984. Online at: http://www.cs.washington.edu/homes/lazowska/qsp/

83. R. R.-F. Liao and A. T. Campbell, “A utility-based approach for quantitative adaptation in wireless
packet networks,” Wireless Networks, vol. 7, no. 5, pp. 541-557, 2001.

84. W. Liu, “Focusing on desirability: The effect of decision interruption and suspension on preferences,”
Journal of Consumer Research. (Forthcoming), December 2008. Online at:
http://www.anderson.ucla.edu/x15549.xml

85. Y. Mao and L. K. Saul, “Modeling distances in large-scale networks by matrix factorization,”
Proceedings of the Second Internet Measurement Conference (IMC-04), pp. 278-287, Sicily, Italy,
2004. Online at: https://wiki.planet-lab.org/bin/view/Planetlab/AnnotatedBibliography

86. S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP Westwood: Bandwidth
estimation for enhanced transport over wireless links,” Proceedings of the 7th ACM International
Conference on Mobile Computing and Networking (MobiCom 2001), Rome, Italy, pp. 287-296,
August 2001.

87. M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia distributed monitoring system: Design,
implementation, and experience,” Parallel Computing, vol. 30, no. 7, July 2004.

88. J. M. McQuillan, I. Richer, and E. C. Rosen, “The new routing algorithm for the ARPANet,” IEEE
IEEE Transactions on Communications, vol. 28, no. 5, pp. 711-719, 1980.

89. C. S. R. Murthy and B. S. Manoj, Ad Hoc Wireless Networks: Architectures and Protocols. Prentice
Hall PTR, Upper Saddle River, NJ, 2004.

90. J. Nagle, “Congestion control in IP/TCP internetworks,” IETF Request for Comments RFC-896,
January 1984. Online at: http://www.rfc-editor.org/rfc/rfc896.txt

Ivan Marsic • Rutgers University

488

91. J. Nagle, “On packet switches with infinite storage,” IEEE Transactions on Communications, vol. 35,
no. 4, pp. 435-438, April 1987.

92. K. Nahrstedt and J. M. Smith, “The QoS broker,” IEEE Multimedia, vol. 2, no. 1, pp. 53-67, 1995.

93. K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, “QoS-aware middleware for ubiquitous and
heterogeneous environments,” IEEE Communications Magazine, vol. 39, no. 11, pp. 140-148, 2001.

94. B. D. Noble and M. Satyanarayanan, “Experience with adaptive mobile applications in Odyssey,”
Mobile Networks and Applications (MONET) (ACM / Kluwer Academic Publishers), vol. 4, pp. 245–
254, 1999.

95. J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP Reno performance: A simple
model and its empirical validation,” IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp. 133-
145, April 2000.

96. J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP throughput: A simple model
and its empirical validation,” Proceedings of the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM '98), Vancouver, British
Columbia, Canada, pp. 303-314, August/September 1998.

97. V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, “Framework for IP performance metrics,” IETF
Request for Comments RFC-2330, May 1998. Online at: http://www.apps.ietf.org/rfc/rfc2330.html

98. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. 4th edition,
McGraw-Hill, New York, NY, 2001.

99. A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in
integrated services networks: The single-node case,” IEEE/ACM Transactions on Networking, vol. 1,
no. 3, pp. 344-357, June 1993.

100. A. K. Parekh and R. G. Gallagher, “A generalized processor sharing approach to flow control in
integrated services networks: The multiple node case,” IEEE/ACM Transactions on Networking, vol. 2,
no. 2, pp. 137-150, April 1994.

101. V. Paxson, “Measurements and Analysis of End-to-End Internet Dynamics,” Ph.D. Thesis, University
of California, Berkeley, April 1997. (a)

102. V. Paxson, “End-to-end routing behavior in the Internet,” IEEE/ACM Transactions on Networking,
vol. 5, no. 5, pp. 601-615, October 1997. (b)

103. V. Paxson, “Strategies for sound Internet measurement,” Proceedings of the ACM IMC, October 2004.

104. V. Paxson and M. Allman, “Computing TCP’s Retransmission Timer,” IETF Request for Comments
RFC-2988, November 2000. Online at: http://www.rfc-editor.org/rfc/rfc2988.txt

105. E. Perahia and R. Stacey, Next Generation Wireless LANs: Throughput, Robustness, and Reliability in
802.11n. Cambridge University Press, Cambridge, UK, 2008.

106. C. E. Perkins (Editor), Ad Hoc Networks. Addison-Wesley, Upper Saddle River, NJ, 2001.

107. L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach. 4th edition. Morgan
Kaufmann Publishers (Elsevier, Inc.), San Francisco, CA, 2007.

108. R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource allocation model for QoS
management,” Proceedings of the IEEE Real-Time Systems Symposium, pp.298-307, December 1997.

109. D. P. Reed, J. H. Saltzer, and D. D. Clark, “Comment on active networking and end-to-end
arguments,” IEEE Network, vol. 12, no. 3, pp. 69-71, May/June 1998.

110. Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” IETF Request for
Comments RFC-4271, January 2006. Online at: http://www.apps.ietf.org/rfc/rfc4271.html

111. J. H. Saltzer, D. P. Reed, D. D. Clark, “End-to-end arguments in system design,” ACM Transactions
on Computer Systems, vol. 2, no. 4, pp. 277-288, November 1984.

References 489

112. C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control via pricing in wireless
data networks,” IEEE Transactions on Communications, vol. 50, no. 2, pp. 291-303, February 2002.

113. A. Sears and J. A. Jacko, “Understanding the relationship between network quality of service and the
usability of distributed multimedia documents,” Human-Computer Interaction, vol. 15, pp. 43-68,
2000.

114. S. Shakkottai and R. Srikant, “Economics of network pricing with multiple ISPs,” IEEE/ACM
Transactions on Networking, vol. 14, no. 6, pp. 1233-1245, December 2006.

115. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. University of Illinois
Press, Urbana, IL, 1949.

116. S. Shenker, “Fundamental design issues for the future Internet,” IEEE Journal on Selected Areas in
Communications, vol. 13, no. 7, pp. 1176-1188, September 1995.

117. S. Shenker, “Making greed work in networks: A game-theoretic analysis of switch service disciplines,”
Proceedings of the ACM SIGCOMM 1994 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pp. 47-57, 1994.

118. S. Shenker, C. Partridge, and R. Guerin, “Specification of Guaranteed Quality of Service,” IETF
Request for Comments RFC-2212, September 1997. Online at: http://www.apps.ietf.org/rfc/rfc2212.html

119. G. Shrimali and S. Kumar, “Paid peering among Internet service providers,” Proceeding from the 2006
Workshop on Game Theory for Communications and Networks (GameNets '06), ACM International
Conference Proceeding Series, vol. 199, article no. 11, Pisa, Italy, October 2006.

120. W. Simpson, “The Point-to-Point Protocol (PPP),” IETF Request for Comments RFC-1661, July 1994.
Online at: http://www.apps.ietf.org/rfc/rfc1661.html

121. R. Srikant, The Mathematics of Internet Congestion Control. Birkhäuser, Boston, MA, 2004.

122. P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator (Traditional NAT),” IETF
Request for Comments RFC-3022, January 2001. Online at: http://www.apps.ietf.org/rfc/rfc3022.html

123. P. Srisuresh and M. Holdrege, “IP Network Address Translator (NAT) terminology and
considerations,” IETF Request for Comments RFC-2663, August 1999. Online at:
http://www.apps.ietf.org/rfc/rfc2663.html

124. W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley Publ. Co., Reading,
MA, 1994.

125. J. W. Stewart III, BGP: Inter-Domain Routing in the Internet. Addison-Wesley Publ. Co., Reading,
MA, 1999.

126. W. R. Stevens, “TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms,”
IETF Request for Comments RFC-2001, January 1997. Online at: http://www.apps.ietf.org/rfc/rfc2001.html

127. D. E. Taylor, “Survey and taxonomy of packet classification techniques,” ACM Computing Surveys,
vol. 37, no. 3, pp. 238-275, September 2005.

128. C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska, “Implementing network protocols at user
level,” Proceedings of the ACM SIGCOMM, San Francisco, CA, September 1993.

129. K. Thomson, G. J. Miller, and R. Wilder, “Wide-area traffic patterns and characteristics,” IEEE
Network, December 1997.

130. P. Thornycroft, “Designed for Speed: Network Infrastructure in an 802.11n World,” white paper,
Aruba Networks, Inc. 2009. Online at:
http://www.arubanetworks.com/pdf/technology/whitepapers/wp_Designed_Speed_802.11n.pdf

131. J. S. Turner, “New directions in communications (or which way to the information age?).” IEEE
Communications Magazine, vol. 24, no. 10, pp. 8-15, 1986.

Ivan Marsic • Rutgers University

490

132. C.-Y. Wang and H.-Y. Wei, “IEEE 802.11n MAC enhancement and performance evaluation,” ACM
Mobile Networks and Applications (MONET), vol. 14, no. 6, pp. 760-771, December 2009.

133. Z. Wang, Internet QoS: Architectures and Mechanisms for Quality of Service, Morgan Kaufmann
Publishers (Academic Press), San Francisco, CA, 2001.

134. S. Weinstein, “The mobile Internet: Wireless LAN vs. 3G cellular mobile,” IEEE Communications
Magazine, pp.26-28, February 2002.

135. A. Wolisz and F. H. P. Fitzek, “QoS support in wireless networks using simultaneous MAC packet
transmission (SMPT),” in ATS, April 1999.

136. Y. Xiao, “IEEE 802.11n: Enhancements for higher throughput in WLANs,” IEEE Wireless
Communications Magazine, vol. 12, no. 6, pp. 82-91, December 2005.

137. Y. Xiao and J. Rosdahl, “Performance analysis and enhancement for the current and future IEEE
802.11 MAC protocols,” ACM SIGMOBILE Mobile Computing and Communications Review (MC2R),
special issue on Wireless Home Networks, vol. 7, no. 2, pp. 6-19, April 2003.

138. Y. Xiao and J. Rosdahl, “Throughput and delay limits of IEEE 802.11,” IEEE Communications
Letters, vol. 6, no. 8, pp. 355-357, August 2002.

139. R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: A Friendly Introduction for
Electrical and Computer Engineers. 2nd edition, John Wiley & Sons, Inc., New York, NY, 2004.

140. Q. Zhang, W. Zhu, and Y.-Q. Zhang, “Resource allocation for multimedia streaming over the
Internet,” IEEE Transactions on Multimedia, vol. 3, no. 3, pp. 339-355, September 2001.

141. M. Ziegelmann, Constrained Shortest Paths and Related Problems: Constrained Network
Optimization, VDM Verlag Dr. Müller, Saarbrücken, Germany, 2007.

491

Acronyms and Abbreviations

3G — Third Generation (wireless networks)

4G — Fourth Generation (wireless networks)

ABR — Available Bit-Rate

ACK — Acknowledgement

ADDBA — Add Block Acknowledgment

AIMD — Additive Increase/Multiplicative Decrease

AODV — Ad Hoc On-Demand Distance-Vector

AQM — Active Queue Management

AP — Access Point

AF — Assumed Forwarding

API — Application Programming Interface

ARP — Address Resolution Protocol

ARQ — Automatic Repeat Request

ASCII — American Standard Code for Information
Interchange

ASIC — Application Specific Integrated Circuit

ASN — Autonomous System Number

ATM — Asynchronous Transfer Mode

AWGN — Additive White Gaussian Noise

BACK — Block Acknowledgment

BAN — Body Area Network

BDPDR — Bounded Delay Packet Delivery Ratio

BER — Bit Error Rate

BGP — Border Gateway Protocol

bps — bits per second

BS — Base Station

BSS — Basic Service Set

CBR — Constant Bit-Rate

CBT — Core Based Tree

CCA — Clear Channel Assessment

CDMA — Code Division Multiple Access

CDN — Content Distribution Network

CIDR — Classless Interdomain Routing

COA — Care-Of Address

CORBA — Common Object Request Broker
Architecture

CoS — Class of Service

CPU — Central Processing Unit

CQS — Classify, Queue, and Schedule

CRC — Cyclic Redundancy Check

CSMA — Carrier-Sense Multiple Access
CSMA/CA — CSMA / Collision Avoidance
CSMA/CD — CSMA / Collision Detection

CSPF — Constrained Shortest Path First

CTS — Clear To Send

DBS — Direct Broadcast Satellite

DCF — Distributed Coordination Function

DELBA — Delete Block Acknowledgment

DHCP — Dynamic Host Configuration Protocol

DiffServ — Differentiated Services (alternative: DS)

DIFS — DCF (or Distributed) Inter Frame Space

DNS — Domain Name System

DPI — Deep Packet Inspection

DSR — Dynamic Source Routing

DTN — Disruption-Tolerant Networking

dupACK — Duplicate Acknowledgement

DV — Distance Vector

DVMRP — Distance Vector Multicast Routing
Protocol

ECN — Explicit Congestion Notification

EF — Expedited Forwarding

EGP — Exterior Gateway Protocol

EIFS — Extended Inter Frame Space

ESS — Extended Service Set

EV-DO — EVolution – Data Optimized

EWMA — Exponential Weighted Moving Average

FCFS — First Come First Served

FDM — Frequency Division Multiplexing

FDMA — Frequency Division Multiple Access

FEC — Forward Error Correction;
also: Forwarding Equivalence Class (in MPLS)

FIB — Forwarding Information Base

FIFO — First In First Out

FIRO — First In Random Out

FPGA — Field-Programmable Gate Array

FQ — Fair Queuing

FSM — Finite State Machine

FTP — File Transfer Protocol

GBN — Go-Back-N

GPS — Generalized Processor Sharing

GUI — Graphical User Interface

Ivan Marsic • Rutgers University

492

HAA — Home Address Agent

HDLC — High-level Data Link Control

HOL — Head Of Line

HSPA — High Speed Packet Access

HT — High Throughput

HTML — HyperText Markup Language

HTTP — HyperText Transport Protocol

IANA — Internet Assigned Numbers Authority

IBSS — Independent Basic Service Set

ICANN — Internet Corporation for Assigned Names
and Numbers

ICMP — Internet Control Message Protocol

IEEE — Institute of Electrical and Electronics
Engineers

IETF — Internet Engineering Task Force

IFS — Inter Frame Spacing

IGP — Interior Gateway Protocol

IntServ — Integrated Services

IP — Internet Protocol
IPv4 — Internet Protocol version 4
IPv6 — Internet Protocol version 6

IPPM — IP Performance Metrics

ISO — International Standards Organization

ISP — Internet Service Provider

j.n.d. — just noticeable difference

Kbps — Kilo bits per second

LAN — Local Area Network

LCFS — Last Come First Served

LCP — Link Control Protocol

LFIB — Label Forwarding Information Base

LIB — Label Information Base

LLC — Logical Link Control

LS — Link State

LSA — Link State Advertisement

LSDB — Link State Database

L-SIG — Legacy Signal (non-high-throughput Signal
field of 802.11n physical-layer frame header)

LSP — Label Switched Path (in MPLS);
also: Link State Packet (in LS routing and OSPF)

LSR — Label Switching Router

LTE — Long Term Evolution (also known as 4G)

MAC — Medium Access Control

MANET — Mobile Ad-hoc Network

Mbps — Mega bits per second

MCS — Modulation and Coding Scheme

MIB — Management Information Base

MIMO — Multiple-Input Multiple-Output

MPDU — MAC Protocol Data Unit

MPEG — Moving Picture Experts Group

MPLS — MultiProtocol Label Switching

MSDU — MAC Service Data Unit

MSS — Maximum Segment Size

MTU — Maximum Transmission Unit

NAK — Negative Acknowledgement

NAT — Network Address Translation

NAV — Network Allocation Vector

NCP — Network Control Protocol

NDP — Neighbor Discovery Protocol

NFE — Network Front-End (Processor)

NIC — Network Interface Card

NLRI — Network Layer Reachability Information

NMS — Network Management System

OLSR — Optimized Link State Routing

OSI — Open Systems Interconnection

OSPF — Open Shortest Path First

P2P — Peer-to-Peer (some would say Pier-to-Pier )

PAN — Personal Area Network

PC — Personal Computer

PCM — Pulse Code Modulation

PCO — Phased Coexistence Operation

PDA — Personal Digital Assistant

PDU — Protocol Data Unit

pdf — probability distribution function

pmf — probability mass function

PER — Packet Error Rate

PHB — Per-Hop Behavior

PHY — Physical Layer

PIFS — PCF (or Priority) Inter Frame Space

PIM — Protocol Independent Multicast

PLCP — Physical Layer Convergence Procedure

PoP — Point-of-Presence

PPDU — PLCP Protocol Data Unit

PPP — Point-to-Point Protocol

PSDU — PLCP Service Data Unit

PSTN — Public Switched Telephone Network

PtMP — Point-to-Multipoint

PtP — Point-to-Point

QoE — Quality of Experience

QoS — Quality of Service

RED — Random Early Detection

RFC — Request For Comments

RFID — Radio Frequency Identification

RIB — Routing Information Base

RIFS — Reduced Inter Frame Space

RIP — Routing Information Protocol

RMON — Remote Monitoring

RPC — Remote Procedure Call

RPF — Reverse Path Forwarding

Acronyms and Abbreviations 493

RSSI — Receive(r) Signal Strength Index/Indication

RSVP — Resource ReSerVation Protocol

RTCP — Real-Time Control Protocol

RTO — Retransmission Time Out

RTP — Real-Time Protocol

RTS — Request To Send

RTSP — Real-Time Streaming Protocol

RTT — Round-Trip Time

SACK — Selective Acknowledgement

SDM — Spatial Division Multiplexing

SDP — Session Description Protocol

SFD — Start Frame Delimiter

SIFS — Short Inter Frame Space

SIP — Session Initiation Protocol

SLA — Service Level Agreement

SMTP — Simple Mail Transfer Protocol

SN — Sequence Number

SNMP — Simple Network Management Protocol

SNR — Signal-to-Noise Ratio

SONET — Synchronous Optical Network

SR — Selective Repeat

SSTresh — Slow-Start Threshold

STP — Spanning Tree Protocol

TC — Traffic Category

TCP — Transmission Control Protocol

TDM — Time Division Multiplexing

TDMA — Time Division Multiple Access

TE — Traffic Engineering

TID — Traffic Identifier

TS — Traffic Stream

TTL — Time To Live

TXOP — Transmit Opportunity

UBR — Unspecified Bit Rate

UDP — User Datagram Protocol

URL — Uniform Resource Locator

VBR — Variable Bit Rate

VLAN — Virtual Local Area Network

VLSI — Very Large Scale Integration

VoIP — Voice over IP

VoWiFi — Voice over Wi-Fi

VPN — Virtual Private Network

W3C — World Wide Web Consortium

WAN — Wide Area Network

WAP — Wireless Access Protocol

WEP — Wired Equivalent Privacy

WFQ — Weighted Fair Queuing

Wi-Fi — Wireless Fidelity (synonym for IEEE 802.11)

WiMAX — Worldwide Interoperability for Microwave
Access (synonym for IEEE 802.16)

W-LAN — Wireless Local Area Network

WWW — World Wide Web

ZigBee — See http://en.wikipedia.org/wiki/ZigBee for the
origins of this name

494

Index

Numbers
3G …

802.3 IEEE standard. See Ethernet

802.11 IEEE standard. See Wi-Fi

802.11n. See IEEE 802.11n

A
Access point …

Acknowledgement …

Action frame …

Active queue management …

Adaptive retransmission …

Adaptive video coding …

Additive increase …

Addressing

CIDR …

class-based …

hierarchical …

Address Resolution Protocol (ARP) …

Ad hoc network …

Admission control …

Advertised window …

Algorithm …

ALOHA protocol …

Alternating-bit protocol …

Anycast …

Application …

Area. See Open Shortest Path First

Area-border router …

Arithmetic average …

ARQ (Automatic Repeat Request) …

Autonomic computing …

Autonomous system (AS) …

depeering …

exchange point …

multihomed AS …

peering agreement …

routing …

stub AS …

transit agreement …

transit AS …

Autonomous system number (ASN) …

B
Backhaul …

Backbone network …

Backoff …

Balance principle …

Bandwidth …

Banyan network …

Basic service set …

independent BSS …

infrastructure BSS …

Bayes’ rule …

Bellman-Ford algorithm …

Best effort …

BGP. See Border Gateway Protocol

Binomial distribution …

Birth and death process …

Bit-by-bit round-robin …

Bit error rate (BER) …

Bit (or byte) stuffing …

Black box …

Block acknowledgement …

Blocking probability …

Border Gateway Protocol (BGP) …

confederation …

export policy …

exterior BGP (eBGP) …

import policy …

interior BGP (iBGP) …

internal peering …

message format …

path attribute …

route reflector …

speaker node …

Border router …

Bottleneck router …

Broadcast …

Index 495

link …

protocol …

BSS. See Basic service set

Buffer …

Burst size …

Bursty traffic …

Byte …

C
Callback operation …

Capacity …

Carrier sense …

Center-based tree …

Center node …

Channel …

Channel bonding …

Channel coding …

Channel coherence time …

Circuit switched network …

Classify, queue, and schedule (CQS) architecture …

Clear channel assessment (CCA) interval …

Compression, data …

Conditional probability …

Congestion avoidance …

Congestion control …

Congestion window …

Connectionless service …

Connection-oriented service …

Constraint-based routing …

Constrained Shortest Path First (CSPF) …

Contention period …

Core-based tree …

Correctness …

Countdown timer …

Counting-to-infinity problem …

Covered station …

Crossbar switch …

CTS-to-self …

Cumulative acknowledgement …

D
Datagram …

Data transparency …

Deep packet inspection …

Delay …

jitter …

playout. See Playout delay

processing …

propagation …

queuing …

transmission …

Demultiplexing …

Designated port …

Designated router …

Designated switch …

Destination IP address …

Differentiated services (DiffServ) …

Dijkstra’s algorithm …

Distance vector (DV) routing algorithm …

Distributed computing …

Dual CTS …

Duplex link. See Link

Duplicate acknowledgement …

E
Effective window …

Efficiency …

Embedded processor …

Emergent property, system …

Encryption …

End-to-end argument …

Error

control …

detection and correction …

recovery …

Error-correcting code …

Error-detecting code …

Event …

Event-driven application …

Ethernet …

address. See MAC-48 address

Expectation of a random variable …

Expert rule …

Explicit congestion notification (ECN) …

Explicit routing …

Exponential backoff. See Backoff

Exponential distribution …

Exponential Weighted Moving Average (EWMA) …

Exposed station problem …

Exterior BGP (eBGP). See Border Gateway Protocol

F
Fair queuing …

Fair resource allocation …

Fairness index …

Fast recovery …

Ivan Marsic • Rutgers University

496

Fast retransmission …

FCFS …

Fidelity …

Finite state machine (FSM) …

Firewall …

Flight size …

Flooding …

Flow …

control …

soft state …

specification. See Integrated services

Forward error correction (FEC) …

Forwarding …

Forwarding equivalence class (FEC) …

Forwarding information base (FIB). See Forwarding
table

Forwarding table …

Fragmentation …

Frame …

Frame aggregation …

Framing …

FDM (Frequency Division Multiplexing) …

FDMA (Frequency Division Multiple Access) …

G
Gateway router …

Gaussian distribution …

Go-back-N …

Goodput …

Group-shared multicast tree …

Guaranteed service …

H
H.323 …

Head-of-line (HOL) blocking …

HELLO packets …

Heuristics …

Hidden station problem …

High throughput (HT) devices (IEEE 802.11n) …

Hold-down timer …

Hot-potato routing …

HT Capabilities element …

Hub …

I
IEEE 802.3. See Ethernet

IEEE 802.11. See Wi-Fi

IEEE 802.11n …

Implementation …

Information theory …

Input device …

Integrated services (IntServ) …

flow specification …

RSVP. See Resource ReSerVation Protocol

request specification (Rspec)

traffic specification (Tspec)

Interarrival interval …

Interconnection fabric. See Switch fabric

Interface, software …

Interior BGP (iBGP). See Border Gateway Protocol

Interior gateway protocols (IGPs) …

Internet …

Internet Protocol (IP) …

IPv4 …

IPv6 …

Internet service provider …

IP telephony. See VoIP

J
Jitter. See Delay

Just noticeable difference (j.n.d.) …

K
Keep-alive feature …

Kendall’s notation …

Keyword …

L
Label forwarding information base (LFIB) …

Label information base (LIB) …

Label swapping …

Label switching router (LSR) …

edge …

intermediary …

Latency …

Layering …

architecture …

OSI …

Leaky bucket …

Line card. See Network interface card

Link …

full duplex …

half duplex …

layer …

wireless …

Link-state advertisement (LSA) …

Index 497

Link-state packet. See Link-state advertisement

Link-state (LS) routing algorithm …

Listen-before-talk …

Little’s formula …

Local area network …

Lockstep protocol. See Stop-and-wait

Longest prefix match …

Loopback address …

Loss detection …

L-SIG TXOP protection …

M
M/G/1 queue …

M/M/1 queue …

MAC-48 address …

MAC spoofing …

Markov chain …

Maximum transmission unit (MTU) …

Max-min fairness …

Mean value of a random variable …

Medium access control (MAC) …

Memoryless …

Message …

Messaging …

Metadata …

Metering …

Middleware …

Mobile network …

Modem …

Modular design …

MPLS …

domain …

forwarding labeled packets …

label …

label stack …

label swapping …

traffic engineering …

tunnel …

Multicast addressing …

Multicast group …

Multicast routing …

backbone …

core-based tree …

graft message …

group-shared multicast tree …

protocol independent …

pruning …

reverse-path forwarding (RPF) …

source-based multicast tree …

Multihomed host …

Multimedia application …

Multiple-input multiple-output (MIMO) …

Multiplicative decrease …

Multiprotocol label switching. See MPLS

N
Nagle’s algorithm …

Naming …

NAV. See Network allocation vector

Negative acknowledgement …

Network

layer …

local area network (LAN) …

wireless …

Network adaptor. See Network interface card

Network allocation vector (NAV) …

Network interface card …

Network programming …

Node …

Non-preemptive priority …

Non-work-conserving scheduler …

Normal distribution …

O
Object, software …

Object Request Broker (ORB). See Broker pattern

Octet …

Offered load …

OMG (Object Management Group) …

On-off source …

Open Shortest Path First (OSPF) …

area …

backbone area …

Operation …

Optical fiber …

Optimizing the common case …

OSI (Open Systems Interconnection) …

OSPF. See Open Shortest Path First

P
Packet …

Packet aggregation …

Packet error rate …

Packetization …

Packet-pair technique …

Packet switching …

Ivan Marsic • Rutgers University

498

Parameter β …

Path vector routing. See Routing

Payload …

Peak rate …

Performance …

Persistent CSMA …

Persistent sender …

Phased coexistence operation (PCO) …

Physical layer …

Piggyback …

Pipelined reliable transfer protocol. See Protocol

Playout delay …

Point-of-Presence (PoP) …

Poisoned reverse routing updates …

Poisson arrival process …

Poisson distribution …

Policing …

Pollaczek-Khinchin (P-K) formula …

Port …

Preamble …

Preemptive scheduling …

Presentation layer …

Prioritization …

Probability …

Process …

Processing delay. See Delay

Program …

Propagation constant. See Delay

Propagation delay. See Parameter β

Protection mechanism …

Protocol …

layering …

OSI reference model …

pipelined …

retransmission …

stack …

streaming …

transport layer …

Protocol identifier field …

Provider. See Internet service provider

Proxy …

Pulse code modulation (PCM) …

Q
Quality of service …

end-to-end …

hard guarantees…

soft guarantees …

Queue …

Queuing delay. See Delay

Queuing model ...

R
Radio transmission …

Random

event …

process …

variable …

Random access channel …

Random early detection (RED) …

Rate control scheme …

Reactive application. See Event-driven application

Receive buffer …

Receiving window …

Redundancy …

Regulation …

Rendezvous point …

Residual service time …

Resource reservation …

Resource ReSerVation Protocol (RSVP) …

Retransmission …

Retransmission timeout (RTO) …

Reverse path forwarding (RPF) algorithm …

RFID …

RIP. See Routing Information Protocol

Roaming …

Round-robin scheduling …

Round-trip time (RTT) …

Route …

Router …

Routing

constraint-based …

distance vector (DV) …

hot potato …

link state (LS) …

multicast …

path vector …

policy constraint …

protocol …

shortest path …

table. See Routing information base (RIB)

Routing information base (RIB) …

Routing Information Protocol (RIP) …

Rule-based expert system …

Rx-Tx turnaround time …

Index 499

S
Satellite …

Scheduling …

Segment …

Selective repeat …

Self-similar traffic …

Sensor …

Sequence number …

Server …

Server vacations …

Service …

best-effort …

model …

QoS-based …

Session layer …

Shortest path routing. See Routing

Signaling …

SIP (Session Initiation Protocol) …

Sliding-window protocol …

Slot …

Slotted ALOHA. See ALOHA protocol

Slow start …

Socket, network …

Source coding …

Source routing …

Source-specific multicast tree …

Spanning tree algorithm …

Speaker node …

Split-horizon routing …

State

flow …

soft …

State machine diagram …

Stationary process …

Statistical multiplexing …

Steady-state distribution …

Stop-and-wait …

Store-and-forward …

Streaming application …

Subnetwork …

Switch …

Switch fabric …

T
TCP

congestion control …

flow control …

Reno …

segment …

Tahoe …

Vegas …

Westwood …

TDM (Time Division Multiplexing) …

TDMA (Time Division Multiple Access) …

Telnet …

Three-way handshake …

Throughput …

Timeliness …

Timeout …

Timer …

Time to live (TTL) …

Token bucket …

Traffic descriptor …

average rate …

peak rate …

Traffic engineering …

Traffic management …

admission control …

model …

Transmission delay. See Delay

Transmission round …

Transmit opportunity (TXOP) …

Transport layer …

Triggered updates …

Tunneling …

Twisted pair …

U
UDP (User Datagram Protocol) …

Unicast …

Unified communications …

Uniform distribution …

Urgent data …

URL (Uniform Resource Locator) …

User …

Utilization of sender …

V
Variable bit-rate …

Variance of a random variable …

Video compression …

Videoconferencing …

Video-on-demand application …

Virtual private network (VPN) …

VoIP (Voice over IP) …

Vulnerable period …

Ivan Marsic • Rutgers University

500

W
Weighted-fair queuing …

Wi-Fi …

WiMAX …

Window …

congestion. See Congestion window

effective. See Effective window

flow control …

receiving. See Receiving window

size …

Window of vulnerability. See Vulnerable period

Wireless …

channel …

network …

Work-conserving scheduler …

Worldwide Interoperability for Microwave Access. See
WiMAX

X
xDSL …

Y

Z
ZigBee standard …

	v4-p1
	Pages from v4-p2.pdf

