ILast updated: December 24, 2010|

CoM P}

NE['W®

Performance and Quality of Service

IVAN MARSIC

Department of Electrical and Computer Engineering

Rutgers University

RUTGERS

THE STATE UNIVERSITY
OF NEW JERSEY

Copyright © 2010 by Ivan Marsic. All rights reserved.

Preface

This book reviews modern computer networks with a particular focus on performance and quality
of service. There is a need to look towards future, where wired and wireless/mobile networks will
be mixed and where multimedia applications will play greater role. In reviewing these
technologies, I put emphasis on underlying principles and core concepts, rather than
meticulousness or completeness.

Audience

This book is designed for upper-division undergraduate and graduate courses in computer
networking. It is intended primarily for learning, rather than reference. I also believe that the
book’s focus on basic concepts should be appealing to practitioners interested in the “whys”
behind the commonly encountered networking technologies. I assume that the readers will have
basic knowledge of probability and statistics, which are reviewed in the Appendix. Most concepts
do not require mathematical sophistication beyond a first undergraduate course.

Most of us have a deep desire to understand logical cause-effect relationships in our world.
However, some topics are either inherently difficult or poorly explained and they turn us off. I
tried to write a computer networking book for the rest of us, one that has a light touch but is still
substantial. I tried to present a serious material in a fun way so the reader may have fun and learn
something nontrivial. I do not promise that it will be easy, but I hope it will be worth your effort.

Approach and Organization

In structuring the text, I faced the choice between logically grouping the topics vs. gradually
identifying and addressing issues. The former creates a neater structure and the latter is more
suitable for teaching new material. I compromised by opportunistically adopting both approaches.
I tried to make every chapter self-contained, so that entire chapters can be skipped if necessary.

Chapter 1 reviews essential networking technologies. It is condensed but more technical than
many current networking books. I tried to give an engineering overview that is sufficiently
detailed but not too long. This chapter serves as the basis for the rest of the book.

Chapter 2 reviews the mechanisms for congestion control and avoidance in data networks. Most
of these mechanisms are implemented in different variants of Transmission Control Protocol
(TCP), which is the most popular Internet protocol.

Chapter 3 reviews requirements and solutions for multimedia networking.

Chapter 4 describes how network routers forward data packets. It also describes simple
techniques for modeling queuing delays.

lvan Marsic e Rutgers University ii

Chapter 5 describes router techniques for reducing or redistributing queuing delays across data
packets. These include scheduling and policing the network traffic.

Chapter 6 describes wireless networks, focusing on the network and link layers, rather than on
physical layer issues.

Chapter 7 describes network measurement techniques.

Chapter 8 describes major protocols used in the Internet that I are either not essential or are
specific implementations of generic protocols presented in earlier chapters. The most essential
Internet protocols, such as TCP and IP are presented in earlier chapters.

The Appendix provides a brief review of probability and statistics.

Solved Problems

This book puts great emphasis on problems for two reasons. First, I believe that specific problems
are the best way to explain difficult concepts. Second, I wanted to keep the main text relatively
short and focused on the main concepts; therefore, I use problems to illustrate less important or
advanced topics. Every chapter (except for Chapter 9) is accompanied with a set of problems.
Solutions for most of the problems can be found at the back of the text, starting on page 401.

Additional information about team projects and online links to related topics can be found at the
book website: http://www.ece.rutgers.edu/~marsic/books/QoS/.

Contents at a Glance

PREFACE ...t s E R Rt h et e e R R R R R e R R R R R Rt nrens I
CONTENTSAT A GLANCEttt Il
TABLE OF CONTENTS ... s e s v
CHAPTER 1 INTRODUCTION TO COMPUTER NETWORKS ...t 1
CHAPTER 2 TRANSMISSION CONTROL PROTOCOL (TCP) ..o 139
CHAPTER 3 MULTIMEDIA AND REAL-TIME APPLICATIONS........cccoiiii 181
CHAPTER 4 SWITCHING AND QUEUING DELAY MODELS........ccooiieieee e 218
CHAPTERS MECHANISMSFOR QUALITY-OF-SERVICE.......ccoiiiirinereneeneeeene 256
CHAPTER 6 WIRELESSNETWORKS. ... 296
CHAPTER 7 NETWORK MONITORING......cootiiitiiieieesree s 331
CHAPTER 8 INTERNET PROTOCOLS......cooieieirirrcenie e 337
CHAPTER 9 TECHNOLOGIESAND FUTURE TRENDS..........coiiiiie e 376
PROGRAMMING ASSIGNMENTS... .ottt 393
SOLUTIONSTO SELECTED PROBLEMS........c.ooieee et 401
APPENDIX A: PROBABILITY REFRESHER ... 471
REFERENGCES. ...ttt s b bbbt e e b e e e er e nr et en e e e s 483
ACRONYMSAND ABBREVIATIONS......coo it 491
INDEX .o e 494

Table of Contents

PREFACE ...ttt ettt e e b e et e et e eae e e be e e be e be e besatesaeesheesheeabeenseeasesaeeabeebeenbeentesaeesreesreas I
CONTENTSAT A GLANCEttt ettt e et see e sreesseeneesneeeneesseesse e seensesnsesnaesneesseensennees Il
TABLE OF CONTENTS ...ttt sttt st sttt e s te e te et ea e s e sta e se e teenteeneesneesaeesaeenseenseeneenneenseanes v
CHAPTER 1 INTRODUCTION TO COMPUTER NETWORKS......coi it 1
1.1 INTRODUCTION ...ttt s 1
L.1.1 The NetWOTKING PrOBICHL................ccooovieiiiiieiiieiieciieciieie ettt 1

1.1.2 ComMURICALION LINKSoooueeiiiieiie ettt ettt ettt et e b e et e earaeenrs 5

1.1.3 Packets and Statistical MUItIPIEXING...............c.cccceviriiiiiiiiiiiiiieeeeee sttt 9

1.1.4 CommunicAtion PrOtOCOLScccccueiiiiiiiiieiiieieeieeie ettt 10

1.2 RELIABLE TRANSMISSION VIA REDUNDANCY ..c.uttiiiitiiieeiteeiteeieeeiteeieesbeeeieessbaeesseessneeenseeenne 23
1.2.1 Error Detection and Correction by Channel COdingccccoccrciuvirciioinoeioieoenenenenenes 23
L1.2.2 INEEFICAVING. ..ottt ebe et ettt ba b enees 24

1.3 RELIABLE TRANSMISSION BY RETRANSMISSIONc.uuttiiterieeriieeieeeiteeieeeteeeueesssaeesseesnneeenseesnne 25
L1.3.1 SOP-ANA-WAIE ..ottt ettt 29

1.3.2 SUding-Window PrOtOCOISc.ccoovumiieiiiaciieiieieeieeie ettt 32

1.3.3 BrOQACASE LINKSoocoveiiieeiiieeeeeie ettt ettt ettt ettt et e e baeeabe e eabeeennee e 36

1.4 ROUTING AND ADDRESSINGcuviuiiiiiiiiiiiieiieientisie sttt e st sae e ene s 50
1.4.1 Networks, Internets, and the IP ProtoColccccccovvueviiiiiciieiieiieiieieeieeeeeieeie e 53
1.4.2 Link StAt@ ROULINGcccooiiieiiie ittt ettt ettt e e 60

1.4.3 Distance Vector ROULING.c.ccccocuimiiiiiiiiiiiiiiiiiit ittt 64
1.4.4 IPv4 Address Structure and CIDR..................c.cccooieiuiiiieiiiieiiee et 69
1.4.5 Autonomous Systems and Path Vector ROULINGccccccoioiiiiiiiiieiieeieeee e 76

1.5 LINK-LAYER PROTOCOLS AND TECHNOLOGIESc..eortetierieienrenieenieeteeteeereeenesieesseeneennesnnenaee 86
1.5.1 PoOint-t0-Point PrOtOCOL (PPP)cc.ccooocuieiiiiiieiiieieiee ettt se s 88
1.5.2 Ethernet (IEEE 802.3)cooviiiiiiiiieieie ettt ve e sibeesaae e sibaesavae e 91
1.5.3 Wi-Fi (IEEE 802.11)......ccoooiiiiioiiiieeeeeeeeee ettt 103

1.6 QUALITY OF SERVICE OVERVIEWuiiiiiiiiiiiiiieeeiieeeesiteeeesiseseestreeessseeesssssesessssesesessseessssesesnnns 112
L.6.1 QOS QUEIOOK ...ttt ettt 115

1.6.2 Network Neutrality vS. Tiered SeFVICES.............cccocuicieeiiriiniininiiiitaieeeeteeeee s 116

1.7 SUMMARY AND BIBLIOGRAPHICAL NOTESccoceiiiiiiiiiiiiiniieieiteiieeeeeie st 117
PROBLEMS ...ttt sttt ettt sttt et sh ettt et b e sa e eb e eae oot et et st ebeeaeeas et ensennenaenen 122
CHAPTER 2 TRANSMISSION CONTROL PROTOCOL (TCP) wecvcveveeeeeeeeeseesie e seeseeseenens 139

Computer Networks e Contents v

2.1 INTRODUCTIONcoutiuiieiieetietiete et et et satestt e bt et et e e st e es e e st e st emteemseeseesnee st anseenseemeeeneesaeanseanneans 139
2.1.1 Reliable Byte Stream SerViCe............ccccuviviiiiiiiiiiiiiieieeieie sttt 140
2.1.2 RetranSmiSSION TIMETcc.ccoueeeueeiiiieeteestteeteestee st e st e siaeestbeesateestbeesaseesaseenaseessseensseenens 144
2.1.3 FLOW CORFOL ...ttt ettt et eae e sabe e enseeaaeen 147

2.2 CONGESTION CONTROL ..ottt sttt s ae s e st 150
2201 TOP TAROC. ...ttt s b e st e e s b e e s abeesabeeeaseessbeennseenens 157
2.2.2 TCOP REIO......occeeeeeeeeeeee ettt ettt e et e et e e st e e ts e e staeetbeesaaeetaeen 160
2.2.3 TOP NEWREHOc.evveeeeie et et e e e et e e et e e e eab e e e sasaaeeesasaeaes 163

23 FAIRNESS ...ttt sttt e ettt be st be st oot e saesaenes 170

24 RECENT TCP VERSIONS.....cutiitiitirtietteiteitetentente st st sttt et etetesaestesaesbe et eseensensentesaesueeueeneennensensen 171

25 TCP OVER WIRELESS LINKS ..ottt 171

2.6 SUMMARY AND BIBLIOGRAPHICAL NOTEScouteuieuieiiieiinieniieieeiteneeereeenesaesre s sre e eneennensenne e 172

PROBLEMS ...ttt ettt ettt sttt ettt st e e a bt e s bt e e ab e s ab e e sab e e sabeeeabeesabeeeateesnbeebee s 175

CHAPTER 3 MULTIMEDIA AND REAL-TIME APPLICATIONS........ccooeieeereereee e 181

3.1 APPLICATION REQUIREMENTS ...cotiiiiiiittieeieeeeeieiieeeeeeeeeeeeiaaeeeeeessesssseeeseessessanseesseessessnraneseeseeins 181
311 ADPPLICALION TYPES ...ttt ettt 182
3.1.2 Standards of Information QUALILYccccoceiiiiiiiiiiiiioiiiiieeeeee et 186
31,3 USEE MOUELS ...ttt e 188
314 Performance MEITICScccueoeiuiiieiiese ettt ettt ettt 191

3.2 SOURCE CHARACTERISTICS AND TRAFFIC MODELS........coocteiiiiiniieniieiieteereeeesieenieeneenesene e 193
3. 2.1 TrAIFIC DESCHIPIOFS ..ottt ettt eee e ane e 193
3.2.2 Self-Smilar TFAMFICcoooeiiieeee ettt 194

33 APPROACHES TO QUALITY=OF-SERVICEccceiitiieeiiiieeeiireeessireeeessseessssesessseesssssseesssssesssssesans 194
3.3.1 End-to-End Delayed PIayout.................ccccoooiiiiiiiaiiiiiieeeeee et 195
3.3.2 MulticASt ROULINGccoooiiiieiiee ettt ettt eeee e 199
3.3.3 Peer-t0-Peer ROULING.cccccccevcuiiiiiiiiiiiiiit ettt 207
3.3.4 Resource Reservation and Integrated ServiCes...............ccocoivoioirieniieniiaiieiieeiee e 208
3.3.5 Traffic Classes and Differentiated ServiCes..............ccccoouueoiiioiiieiiaiiaei et 210

34 ADAPTATION PARAMETERSocuiiiiiiiiiiiiiiiiiiie ittt s 212

3.5 QOS IN WIRELESS INETWORKScutteitteetreenieeetreesseestreesseesseeessesssseesssesssessssessssessssessssessssesssses 212

3.6 SUMMARY AND BIBLIOGRAPHICAL NOTESccueeuteteiiientenieniieieeeteneetesenteseessesmesreeneeneennensensenne 212

PROBLEMS ...ttt bbb s e 214

CHAPTER 4 SWITCHING AND QUEUING DELAY MODELS.......cccooiiiereeeeee e, 218

4.1 PACKET SWITCHING IN ROUTERS......ceutiuiititinientieienieeitetetete sttt sttt eteste st st saesne v eneennensennes 220
4.1.1 How Routers FOrward PACKELS.....................ccoeeuiiiiieiiiiieeeie e eeeeee e 220
4.1.2 ROUIEE AVCRIIECTUTEceee ettt ettt et et e et e e taeensaeensaeensee e 222
4.1.3 Forwarding Table LOOKUPccccooiiiiiiieiieiiee et 226
4.1.4 SWItching FabDric DESIGIccccocuiiioiiiiiiiiiiiieiet ettt 227
4.1.5 Where and Why QUeuing HAPPEIScccocieoiaiiiieiiee ettt 232

4.2 QUEUING MODELS......ceeittteititeitteeiteestteeteeesseesseeasseesseeaseesssesassessssssssseessesssseesssesssseesssesssseessses 236
B 2.1 LIHHIE S LAW ..ottt ettt ettt 239
4.2.2 M/ M/ T QUEUING SYSTEML.......c.eiiiiiiiieieeeee ettt ettt ettt e e ees 241
4.2.3 M/M/ 1/ M QUEUING SYSTEM. ..ottt ettt 244

424 M/ G/ 1 QUEUIIG SYSEEM......ceiiiiiiiiiieiieeeeeet ettt ettt 245

lvan Marsic e Rutgers University Vi

4.3 NETWORKS OF QUEUESutieitiiiiieeitieeteeesteeeteeesteeeseseseeasesessasssesasssssssesanssssssesssssssssessnssesssens 248
4.4 SUMMARY AND BIBLIOGRAPHICAL NOTEScectirieniieiieiierenreneenieenneereeeresaeesseenseesneesnessnennees 249
PROBLEMS ...ttt ettt ettt h e bt e bt ettt s et e s hte s bt e bt em bt ea e ea e e e bt e eb e e bt embeembesaeesaeenbeeneeenes 250
CHAPTER S MECHANISMSFOR QUALITY-OF-SERVICE......ccooiieerenese e 256
5.1 SCHEDULINGceutteuteettentteteeteesteeetesieesteesueentteaseeasestsesteenseesseessesesesaeesseenseenstensesusesseenseenseensesnnes 256
5.1.1 Scheduling DiSCIPIINESc.ccoociiiiiiiiiiiiiee ettt 257
5.1.2 FQIF QUEUIRGooeeeeeee ettt ettt ettt ettt a e a ettt ae et e e e e 259
5.1.3 Weighted Fair QUEUINGcccoociiiiiiieiiniii ettt sttt 269
52 POLICING ..ttt ettt ettt h e s bt e b e et et et e satesbe e bt e bt enteeaeesneenbeens 270
53 ACTIVE QUEUE MANAGEMENTcuutiitieiiteeeteesteesseesseesseesseessseessssessseessseessseessssassseessseessseees 271
5.3.1 Random Early Detection (RED)cccccccooiiiiiiiiiiiiiiieiieiseit ettt 272
5.3.2 Explicit Congestion NOtIficAtion (ECN)c.cccioiiiiieieeieee st 274
5.4 MULTIPROTOCOL LABEL SWITCHING (MPLS)oviiiiiiiieie et 274
5.4.1 MPLS Architecture and OPEratiOn................cccccociiiiriiieiiieienieneeie sttt 276
5.4.2 Label DisStribution PrOtOCOLSccccoooeeieeeieeeeeeeeeeeeee e 284
5.4.3 Traffic ENGIN@EFING.coeeiueeeeee ettt ettt ettt ebe ettt eene e 287
5.4.4 Virtual Private NCIWOTKScccccoociueeieie et 288
5.4.5 MPLS and QUAlity Of SEFVICEc..ccccuioieiiieii ettt 288
55 SUMMARY AND BIBLIOGRAPHICAL NOTESeeeutteiiietieitienieeieeeesetesteesteeteeneeeneesseesseenseensesneesneas 289
PROBLEMS ...ttt ettt st st ae et ettt e s e s aae b e e bt esae e bt sanesaeenaeenneeane 292
CHAPTER 6 WIRELESSNETWORKSot et 296
6.1 IMESH NETWORKSc.tteuteettetteteeteetesitesutesaeesseeneeeneeeseasseaseenseanseansesseesseesseaseenseeneeeneesseanseanseans 296
6.2 ROUTING PROTOCOLS FOR MESH NETWORKScoctieiiniieniieniieieereereneenieenseeseeneensesueenseenseens 297
6.2.1 Dynamic Source Routing (DSR) Protocolcccocovoiiviiiiiioiiiieiiet e 298
6.2.2 Ad Hoc On-Demand Distance-Vector (AODV) Protocolcccocouevvveviiencneniriannnennne. 300
6.3 MORE WIRELESS LINK-LAYER PROTOCOLScccuteiiiiiniiiniieniieieeieereneenieenie e enre e saeenaeeneens 301
6.3.1 IEEE 802. 111 (MIMO Wi-Fi)ccciioiiiaieeeee ettt 301
6.3.2 WIMAX (IEEE 802.16)cooouiouieiieieeeeeee ettt 327
6.3.3 ZigBee (IEEE 802.15.4).....cc.ocoiiiioiieieeeeeeeee ettt 327
0.3.4 BIUCIOOUN. ... 327
6.4 WI-FI QUALITY OF SERVICE ...ecuviiitieeiiieiieeeiteesteesteesveessseessseessseessseessseessssessseessssansseesssessssesnes 328
6.5 SUMMARY AND BIBLIOGRAPHICAL NOTEScectiriiniieniieiierenrenieenieenieenteeereeieesseenseenneeenesanenuees 329
PROBLEMS ...ttt ettt ettt et b e bt et e et e ot s hte s bt et e em bt ee et ea e e e bt e eb e e b e enae e et saeeseeenbeeneeenes 330
CHAPTER 7 NETWORK MONITORING......ocotitetieeeierie ettt nes 331
7.1 INTRODUCTIONcuiiiiiiiiiiteitete ettt ettt ettt et et sane st e b et eaneseeesueesueemneenneeas 331
7.2 AVAILABLE BANDWIDTH ESTIMATIONcoiuiiitiiiieiieiieettesteenteeie et site e see e et sieesaeenaeeneeens 332
7.2.1 Packet-Pair TECANIGUEc.cccooioeiiiiiiieeiee ettt 332
7.3 DYNAMIC ADAPTATION ...c..eeittiiienteeteeitenitenieenteentteateeteesteeteesteeenesasesanesueesaeenseensesmnesueesueenseenneens 333
7.3.1 Data Fidelity REAUCHION.............cccccoviiiiiieiieeiee ettt 334
7.3.2 Application Functionality AdQPIAtionccocceiiieiiiiiieiieeeee et 335
7.3.3 Computing Fidelity AdPIAtIONc.coccoeciioiiniiiiiiiiiiiiiieeeee et 335
7.4 SUMMARY AND BIBLIOGRAPHICAL NOTESeeutiriientientienieeieeitesitesieenteeteeieesieesteenieentesnsesseesnees 336

o 200) 235 23\ (SO 336

Computer Networks e Contents vii

CHAPTER 8 INTERNET PROTOGCOLS.... .ottt sttt s 337
8.1 INTERNET PROTOCOL VERSION 6 (IPVO)ocuviiiiiieiieiiceeeeeeee ettt 337
.11 IPVO AAAVESSES ..ottt et e e e 339
8.1.2 IPV6 EXtENSION HEAUETScc.oooeueeiiiiaiii ettt 342
8.1.3 Transitioning from IPV4 10 IPVO............cccccooiiiiiiiiiiiiiieieieeee ettt 345
8.2 ROUTING PROTOCOLS.....coiuiiiiiiitieiieitctctetete sttt st sttt s st nes 345
8.2.1 Routing Information Protocol (RIP).............cccccouoiiiiiiiiieiiee ettt 345
8.2.2 Open Shortest Path First (OSPE).........ccccccooiiimiiiiiiiiiiiiiiiieeeee ettt 347
8.2.3 Border Gateway Protocol (BGP)ccccuoiiiiiiiiiiieieeeeee ettt 351
8.2.4 Multicast ROULING PrOTOCOIScoccuoiiiiiiiiiieeiee ettt 362
8.3 ADDRESS TRANSLATION PROTOCOLScooiiiiiiiiiiiiiiiiiiciccc et 363
8.3.1 Address Resolution ProtoCol (ARP)ccouecueiiieicieiiiieeieesieesie s eseeesiaeesiaeesiaeeane s 363
8.3.2 Dynamic Host Configuration Protocol (DHCP)ccccccoioiioiioiiiiiiiee e 366
8.3.3 Network Address Translation (NAT)ccccccooiuiiviiioiioiniiintie sttt 366
8304 MODBILE IP ...ttt et enens 367
8.4 DOMAIN NAME SYSTEM (DINS) ...ttt ettt sttt e st e s ve e s e sbeesveesebeassseesanaesnsee e 369
8.5 NETWORK MANAGEMENT PROTOCOLS.......ccouiiiiiiiiiiiiiiiiicicie ettt 370
8.5.1 Internet Control Message Protocol (ICMP)cccccuoiiiimiiiiiiiiieeiee e 370
8.5.2 Simple Network Management Protocol (SNMP)ccccceioeiioiiiiiiiiiieiieeeeeeeee e 370
8.6 MULTIMEDIA APPLICATION PROTOCOLScciiiiiiiiiiiiiiiiiic i 372
8.6.1 Session DesScription ProtOCOL (SDP)............cccouueiiiiiieeiiiiiiieeieiesiee et e svae e sive s 372
8.6.2 Session INtiation PrOtOCOL (SIP)cccccoiiiieeiiiiiiieeiiieeieeeie e eeee s eite et esaaeesaae e 372
8.7 SUMMARY AND BIBLIOGRAPHICAL NOTEScc.ciiiiiiiiiiiiiiiiiiicececeeie e 373
PROBLEMS ...ttt sttt sttt sttt et b e sa e bt eae oot et bbbt e ae e sn s eaenaennes 375
CHAPTER 9 TECHNOLOGIESAND FUTURE TRENDS........cooii e 376
9.1 NETWORK TECHNOLOGIEScootiiiiiiiiiiiiiiiientiie sttt st s sae s 376
QL] MODILE Wi-Fl ..ottt ettt ettt eneas 376
9.1.2 Wireless BroAdbandccccoovueeeiiiiuiieiiiiiiiieeciie ettt 377
91,3 ETREINEL ...t ettt 378
9.1.4 ROULEES ANA SWIICHESoocvveiieeii ettt ettt sbeeeab e e snbaeennee e 379
9.2 MULTIMEDIA COMMUNICATIONSeoutiutintetinrentintenieestentetentensessesseeseessensensensensessesseemeeneensensensen 379
9.2.1 Internet Telephony and VOIP................cccocuiiiieoiioiiiiiniit ettt 379
9.2.2 Unified COMMURICATIONScccceeeeieeeeeee ettt ettt ettt seaee et eaeeneeneas 382
9.2.3 Wireless MUltimeEdiQ.ccc.occuveviueiiiiieiieiie ettt ettt et aaeeve e eseeease e 382
9.2.4 VidEOCONSEFENCING ...ttt 383
9.2.5 Augmented ReQlity.............ccccoooiiiiiiiiiiiiiee ettt 383
9.3 THE INTERNET OF THINGS ...ttt sttt ettt ettt sae sttt et saesbesae st sae v eaeeseensennens 384
9. 3.1 SHAFE GFI ...ttt ettt 384
9.3.2 TRE Web OF TRIRGS ...ttt ettt ettt be e eae e e 388
9.4 CLOUD COMPUTINGceutetintentieteeieeuteatentetesetetesateveeetentesessensesaestesueeneessensesensessensesreeueeneensensens 388
9.5 NETWORK NEUTRALITY VS. TIERED SERVICES.....cc.ccoiiiiiiiiiiiiniiiiiiieieie e 390
9.6 SUMMARY AND BIBLIOGRAPHICAL NOTESccuteutiuiiiiiiniinieniieieeiteieereeetesaesre s eneennenaense e 391

PROGRAMMING ASSIGNMENTS... .ottt 393

lvan Marsic e Rutgers University viii

SOLUTIONSTO SELECTED PROBLEMS......c.oiiiiiieeeeeeee et 401
APPENDIX A: PROBABILITY REFRESHER ..ot 471
REFERENGCES. ... e e e se e e sr bt es 483
ACRONYMSAND ABBREVIATIONS ...ttt 491

Chapter 1
Introduction to Computer Networks

Contents

1.1 Introduction

1.1.1 The Networking Problem
1.1.2 Communication Protocols

1 1.1.3 Packets and Statistical Multiplexing
1 . 1 I n t r O d u Ctl O n 1.1.4 Communication Links
1.2 Reliable Transmission via Redundancy

1.2.1 Error Detection and Correction by Channel
Coding
1.2.2 Interleaving

A network is a set of devices (often referred to as nodes)

connected by communication links that are built using different 123
physical media. A node can be a computer, telephone, or any 1.3 Reliable Transmission by Retransmission
other device capable of sending and receiving messages. The 1.3.1 Stop-and-Wait

S di is the phvsical h b hich 1.3.2 Sliding-Window Protocols
communication medium is the physical path by which message 133 Broadcast Links
travels from sender to receiver. Example media include fiber-optic 1.3.4 x
cable, copper wire, or air carrying radio waves. 1.4 Routing and Addressing

1.4.1 Networks, Internets, and the IP Protocol
1.4.2 Link State Routing

1.1.1 The Networking Problem 1.43 Distance Vector Routing

1.4.4 IPv4 Address Structure and CIDR
1.4.5 Autonomous Systems and Path Vector
Routing
1.5 Link-Layer Protocols and Technologies
1.5.1 Point-to-Point Protocol (PPP)

Networking is about transmitting messages from senders to

receivers (over a “communication channel”). Key issues we 152 Ethernet (IEEE 802.3)
encounter include: 1.5.3 Wi-Fi (IEEE 802.11)
N i an? . 1.6 Quality of Service Overview
e “Noise” damages (corrupts) the messages; we would like 1(521 y
. . . 0.1 X
to be able to communicate reliably in the presence of 152 x
noise 1.5.3 x

e, . . . 1.7 Summary and Bibliographical Notes
e [Establishing and maintaining physical communication ! y olograph!

lines is costly; we would like to be able to connect Problems

arbitrary senders and receivers while keeping the
economic cost of network resources to a minimum

Time is always an issue in information systems as is generally in life; we would like to be
able to provide expedited delivery particularly for messages that have short deadlines

lvan Marsic e Rutgers University 2

O Visible network properties:
Delivery Correctness Fault tolerance Timeliness Cost
Customer
O Tunable network parameters:
Network Communication Network Physical
. Components .
topology protocols architecture medium
Network
Engineer

Figure 1-1. The customer cares about the visible network properties that can be controlled
by the adjusting the network parameters.

Figure 1-1 illustrates what the customer usually cares about and what the network engineer can
do about it. The visible network variables (“symptoms™), easily understood by a non-technical
person include:

Delivery: The network must deliver data to the correct destination(s). Data must be received only
by the intended recipients and not by others.

Correctness: Data must be delivered accurately, because distorted data is generally unusable.
Timeliness: Data must be delivered before they need to be put to use; else, they would be useless.

Fault tolerance and cost effectiveness are important characteristics of networks. For some of these
parameters, the acceptable value is a matter of degree, judged subjectively. Our focus will be on
network performance (objectively measurable characteristics) and quality of service
(psychological determinants).

Limited resources can become overbooked, resulting in message loss. A network should be able
to deliver messages even if some links experience outages.

The tunable parameters (or “knobs™) for a network include: network topology, communication
protocols, architecture, components, and the physical medium (connection lines) over which the
signal is transmitted.

Chapter 1 e Introduction to Computer Networking 3

Centralized Decentralized Distributed
(a) (b) ()
Figure 1-2: Different network topologies have different robustness characteristicsrelativeto
the failures of network elements.

- Connection topology: completely connected graph compared to link sharing with multiplexing
and demultiplexing. Paul Baran considered in 1964 theoretically best architecture for
survivability of data networks (Figure 1-2). He considered only network graph topology and
assigned no qualities to its nodes and links'. He found that the distributed-topology network
which resembles a fisherman’s net, Figure 1-2(c), has the greatest resilience to element (node or
link) failures. Figure 1-3 shows the actual topology of the entire Internet (in 1999). This topology
evolved over several decades by incremental contributions from many independent organizations,
without a “grand plan” to guide the overall design. In a sense, one could say that the Internet
topology evolved in a “self-organizing” manner. Interestingly, it resembles more the
decentralized-topology network with many hubs (Figure 1-2(b)), and to a lesser extent the
distributed topology (Figure 1-2(c)).

' When discussing computer networks, the term “host” is usually reserved for communication endpoints
and “node” is used for intermediary computing nodes that relay messages on their way to the destination.

lvan Marsic e Rutgers University 4

A
verio.net }\‘Q/‘/t:;; -¥-

psi.net

=
ft.net — - &

bbnplanet.net

Burch/Cheswick map of the Intemet http:fiwrure . cheswick.comimapfindex.html
showing the major ISPs. Data collected 28 June 1939 A ew.net Copyright (C) 1999, Lucent Technologies

Figure 1-3. The map of the connections between the major Internet Service Providers
(ISPs). [From the Internet mapping project: http://www.cheswick.com/]

- Network architecture: what part of the network is a fixed infrastructure as opposed to being ad
hoc built for a temporary need

- Component characteristics: reliability and performance of individual hardware components
(nodes and links). Faster and more reliable components are also more costly. When a network
node (called switch or router) relays messages from a faster to a slower link, a congestion and a
waiting-queue buildup may occur under a heavy traffic. In practice, all queues have limited
capacity of their “waiting room,” so loss occurs when messages arrive at a full queue.

- Performance metrics: success rate of transmitted packets (or, packet loss rate), average delay of
packet delivery, and delay variability (also known as jitter)

- Different applications (data/voice/multimedia) have different requirements: sensitive to loss vs.
sensitive to delay/jitter

There are some major problems faced by network engineers when building a large-scale network,
such as the Internet that is now available worldwide. Some of these problems are non-technical:

- Heterogeneity: Diverse software and hardware of network components need to coexist and
interoperate. The diversity results from different user needs and their economic capabilities, as

Chapter 1 e Introduction to Computer Networking 5

Voltage at transmitting end

oy Yy Uyl

Idealized voltage at receiving end

%WW\WW

Voltage at receiving end

Figure 1-4: Digital signal distortion in transmission due to noise and time constants
associated with physical lines.

well as because installed infrastructure tends to live long enough to become mixed with several
new generations of technologies.

- Autonomy: Different parts of the Internet are controlled by independent organizations. Even a
sub-network controlled by the same multinational organization, such as IBM or Coca Cola, may
cross many state borders. These independent organizations are generally in competition with each
other and do not necessarily provide one another the most accurate information about their own
networks. The implication is that the network engineer can effectively control only a small part of
the global network. As for the rest, the engineer will be able to receive only limited information
about the characteristics of others’ autonomous sub-networks. Any local solutions must be
developed based on that limited information about the rest of the global network.

- Scalability: Although a global network like the Internet consists of many autonomous domains,
there is a need for standards that prevent the network from becoming fragmented into many non-
interoperable pieces (“islands”). Solutions are needed that will ensure smooth growth of the
network as many new devices and autonomous domains are added. Again, information about
available network resources is either impossible to obtain in real time, or may be proprietary to
the domain operator.

1.1.2 Communication Links

There are many phenomena that affect the transmitted signal, some of which are illustrated in
Figure 1-4. Although the effects of time constants and noise are exaggerated, they illustrate an
important point. The input pulses must be well separated because too short pulses will be
“smeared” together. This can be observed for the short-duration pulses at the right-hand side of
the pulse train. Obviously, the receiver of the signal in the bottom row of Figure 1-4 will have
great difficulty figuring out whether or not there were pulses in the transmitted signal. You can
also see that longer pulses are better separated and easier to recognize in the distorted
signal. The minimum tolerable separation depends on the physical characteristics of K
a transmission line (e.g., copper vs. optical fiber). If each pulse corresponds to a

|

lvan Marsic e Rutgers University 6

- Communication link
Physical setup: IR 2 TRt PR 2 TR AR

Sender Receiver
|

Timeline diagram:

| Start of transmission

awilL
TOTTOT
Aejop

uonebedoid

[

Kejop

uoissiwsuel
TOTTOT

End of reception

Fluid flow analogy:

First drop of the fluid
enters the pipe Last drop of the fluid

exits the pipe

L { 0 (

Fluid packet in transit

Figure 1-5: Timelinediagram for data transmission from sender to receiver.

single bit of information, then the minimum tolerable separation of pulses determines the
maximum number of bits that can be transmitted over a particular transmission line.

It is common to represent data transmissions on a timeline diagram as shown in Figure 1-5. This
figure also illustrates delays associated with data transmission. Although information bits are not
necessarily transmitted as rectangular pulses of voltage, all transmission lines are conceptually
equivalent, as represented in Figure 1-6, because the transmission capacity for every line is
expressed in bits/sec or bps. The time required to transmit a single bit on a given link is known as
bit time. In this text, we will always visualize transmitted data as a train of digital pulses. The
reader interested in physical methods of signal transmission should consult a communications-
engineering textbook, such as [Haykin, 2006].

Chapter 1 e Introduction to Computer Networking 7

1 0 1 1 0 0 1
Link 1: , \ ¥ ‘
1 Mb
ps 1us A
1011001 .
TIME —
Link 2:
10 Mbps

—»{ [+ 100ns

Figure 1-6: Transmission link capacity deter mines the speed at which the link can transmit
data. In this example, each bit on Link 1 is 1 us wide, while on Link 2 each bit is 100 ns
wide. Hence, Link 2 can transmit ten times more datathan Link 1in the sametimeinterval.

A common characterization of noise on transmission lines is bit error rate (BER): the fraction of
bits received in error relative to the total number of bits received in transmission. Given a packet
n bits long and assuming that bit errors occur independently of each other, a simple
approximation for the packet error rate is

PER=1-(1-BER)" =1—¢ "% (1.1)

An important attribute of a communication link is how many bitstreams can be transmitted on it
at the same time. If a link allows transmitting only a single bitstream at a time, then the nodes
connected to the link must coordinate their transmissions to avoid different bitstreams corrupting
each other (known as data collision). Such links are known as broadcast links or multiple-access
links. Point-to-point links often support data transmissions in both directions simultaneously. This
kind of a link is said to be full duplex. A point-to-point link that supports data flowing in only
one direction at a time is called half duplex. In other words, the nodes on each end of this kind of
a link can both transmit and receive, but not at the same time—they only can do it by taking
turns. It is like a one-lane road with bidirectional traffic. We will assume that all point-to-point
links are full duplex, unless stated otherwise. A full-duplex link can be implemented in two ways:
either the link must contain two physically separate transmission paths, one for sending and one
for receiving, or the capacity of the communication channel is divided between signals traveling
in opposite directions. The latter is usually achieved by time division multiplexing (TDM) or
frequency division multiplexing (FDM).

lvan Marsic e Rutgers University 8

@ () ()

Figure 1-7: Wirelesstransmission. Left: single point sour ce. Right: interference of two point
sour ces.

Wireless Link

Consider a simple case of a point source radiating electromagnetic waves in all directions (Figure
1-7, left). The received signal strength decreases exponentially with the sender-receiver distance.
As with any other communication medium, the wireless channel is subject to thermal noise,
which distorts the signal randomly according to a Gaussian distribution of noise amplitudes. As
the distance between a transmitter and receiver increases, the received signal strength decreases to
levels close to the background noise floor. At a certain distance from the sender, the signal
strengths will become so weak that the receiver will not be able to discern reliably signal from
noise. This distance, known as transmission range, is decided arbitrarily, depending on what is
considered acceptable bit error rate. For example, we can define the transmission range as the
sender-receiver distance for which the packet error rate is less than 10 %.

In addition to thermal noise, the received signal may be distorted by parallel transmissions from
other sources (Figure 1-7, right). This phenomenon is known as interference. Because this
normally happens only when both sources are trying to transmit data (unknowingly of each
other’s parallel transmissions), this scenario is called packet collision. A key observation is that
collisions occur at the receiver—the sender is not disturbed by concurrent transmissions, but
receiver cannot correctly decode sender’s message if it is combined with an interfering signal. If
the source and receiver nodes are far away from the interfering source, the interference effect at
the receiver will be a slight increase in the error rate. If the increased error rate is negligible, the
source and receiver will be able to carry out their communication despite the interference. Notice,
however, that the interference of simultaneously transmitting sources never disappears—it only is
reduced exponentially with an increasing mutual distance (Figure 1-8). The minimum distance
(relative to the receiver) at which interferer’s effect can be considered negligible is called
interference range. In Figure 1-8, node D is within the interference range of receiver B. Nodes C
and E are outside the interference range. However, although outside the interference range
defined for a single interferer, if nodes C and E are transmitting simultaneously their combined
interference at B may be sufficiently high to cause as great or greater number of errors as a single
interferer within the interference range.

Chapter 1

Transmitted
signal power

Introduction to Computer Networking

Interference

Transmission

Receiver

Threshold

/

Distance from sender

0

y

Threshold

N\

0

Distance from receiver

L4

Received signal
power from an
interfering source

Figure 1-8: Transmission range and interference range for wirelesslinks.

1.1.3 Packets and Statistical Multiplexing

The communication channel essentially provides an abstraction of a continuous stream of
symbols transmitted that are subject to a certain error probability. When interacting with another
person, whether face-to-face or over the telephone, we think of units of communication in terms
of conversational turns: first one person takes a turn and delivers their message, then the other
person takes a turn, and so on. Messages could be thought of as units of communication
exchanged by two (or more) interacting persons. We notice that there are benefits of slicing a
long oration into a sequence of smaller units of discourse. This slicing into messages gives the
other person chance to clarify a misunderstanding or give a targeted response to a specific item.

In computer communication networks, messages are represented as strings of binary symbols (0
or 1), known as bits. Generally, messages are of variable length and some of them may still be
considered too long for practical network transmission. There are several reasons for imposing a
limit on message length. One is that longer messages stand a higher chance of being corrupted by
an error (see equation (1.1)). Another reason is to avoid the situation where a sending application
seizes the link for itself by sending very long messages while other applications must wait for a
long time. Therefore, messages are broken into shorter bit strings known as packets. These
packets are then transmitted independently and reassembled into messages at the destination. This
allows individual packets to opportunistically take alternate routes to the destination and
interleave the network usage by multiple sources, thus avoiding inordinate waiting periods for
some sources to transmit their information.

Different network technologies impose different limits on the size of data blocks they can handle,
which is known as the maximum transmission unit (MTU). For example, a regular Ethernet

lvan Marsic e Rutgers University 10

O User-to-user interactions
obey social norms
Letter TS s nnmmm >
(Message) X .) *,
' Customer interaction obeys

:' Person A mail acceptance and delivery Person B
' procedures (Postal Service's

Fr
Mail Manual) ("V% ’

\

AY

4
R [P .
Letter in Postal-vehicle } \

envelope service-transportation N
(Packet) routes obey carrier-
, route maps and
| delivery timetables
Physical transport obeys
transportation and traffic rules

Figure 1-9: Protocol layersfor conventional mail transport.

frame uses a frame format that limits the size of the payload it sends to 1,500 bytes. Notice that
the MTU value specifies the maximum payload size and does not include the header size of the
header that is prepended to the payload of a packet.

Statistical Multiplexing
Link sharing using packet multiplexers

Real-world systems are designed with sub-peak capacity for economic reasons. As a result, they
experience congestion and delays during peak usage periods. Highways experience traffic
slowdown during rush hours; restaurants or theaters experience crowds during weekend evenings;
etc. Designing these systems to support peak usage without delays would not be economically
feasible—most of the time they would be underutilized. Figure 1-10

1.1.4 Communication Protocols

A protocol is a set of rules agreed-upon by interacting entities, e.g., computing devices, that
govern their communicative exchanges. It is hard to imagine accomplishing any task involving
multiple entities without relying on a protocol. For example, one could codify the rules for how a
customer (C) purchases goods from a merchant (M) as follows:

1. C>M Request catalog of products
. C&M Respond catalog

. C—M Make selections

. C—>M Confirm delivery

2
3
4. C<M Deliver selections
5
6. CM Issue bill

7

. C—>M Make payment

Chapter 1 e Introduction to Computer Networking 11

2 JET]

Figure 1-10: An analogy illustrating dedicated lines (a) compared to statistical maultiplexing (b).

8. C<~M Issue confirmation

The customer and merchant may be located remote from each other and using other entities to
help accomplish the purchasing task, such as a bank for credit-card transactions, or a postal
service for parcel delivery.

An important characteristic of protocols is that the units of communication are data packets.
Each data packet consists of a header that contains the packet guidance information to help guide
the packet from its source to its destination, and the payload, which is the user information to be
delivered to the destination address. In packet-switched networks, packets are transmitted at
random times, and the receiver at the end of a communication link must have a means to
distinguish an arriving packet from random noise on the line. For this purpose, each packet is
preceded with a special sequence of bits that mark the start of the packet. This special bit pattern
is usually called the preamble. Each receiver is continuously hunting for the preamble to catch

lvan Marsic e Rutgers University 12

the arriving packet. If the preamble is corrupted by random noise, the packet will be lost (i.e.,
unnoticed by the receiver).

Communication in computer networks is very complex. One effective means of dealing with
complexity is known as modular design with separation of concerns. In this approach, the system
is split into modules and each module is assigned separate tasks to do (“concerns”). Network
designers usually adopt a restricted version of modular design, know as layered design. Each
layer defines a collection of conceptually similar functions (or, services) distinct from those of
the other layers. The restriction in layered design is that a module in a given layer provides
services to the layer just above it and receives services from the layer just below it. The layering
approach forbids the modules from using services from (or providing to) non-adjacent layers.

Each layer of the layered architecture contains one or more software modules that offer services
characteristic for this layer. Each module is called protocol. A protocol defines two application-
programming interfaces (APIs):

1. Service interface to the protocols in the layer above this Layer i
layer. The upper-layer protocols use this interface to “plug
into” this layer and hand it data packets to send (). Each ‘
layer also defines a handle () callback operation send () handle ()
through which the lower layer calls this layer to handle an UU

incoming packet.
gp Layeri—1

2. Peer interface to the counterpart protocol on a remote
machine. This interface defines the format and meaning of data packets exchanged
between peer protocols to support communication.

There are many advantages of layered design, primarily because it decomposes the problem of
building a network into more manageable components. Each component can be developed
independently and used interchangeably with any other component that complies with its service
interface. However, there are some disadvantages, as well. For example, when a layer needs to
make a decision about how to handle a data packet, it would be helpful to know what kind of
information is inside the packet. Because of strict separation of concerns, particularly between the
non-adjacent layers, this information is not available, so a more intelligent decision cannot be
made. This is the reason why recently cross-layered designs are being adopted, particularly for
wireless networks (see Chapter 6).

Chapter 1 e Introduction to Computer Networking

Layered architecture

Uu Uu Uu
3: End-to-End

Layer function

Application specific connections

13

Examples

* Transmission Control
Protocol (TCP)

* Real-time Transport
Protocol (RTP)

Uu Uu Uu
2: Network

Ty | Al
LeREHING 7
AL
‘Service interface between L2 & L3
Source-to-destination routing
—_
)

* Internet Protocol (IP)

1: Link

JI-E %Serwce interface between L1 & L2
Uu Uu Uu g _

Packet exchange

* |IEEE 802.11 WiFi
» |EEE 802.3 Ethernet
* PPP (modems, T1)

Figure 1-11: Three-layer reference architecturefor communication protocol layering.

Three-Layer Model

In recent years, the three-layer model (Figure 1-11) has emerged as reference architecture of

computer networking protocols.

LAYER-1 — Link layer: is at the bottom of
the protocol stack and implements a packet
delivery service between nodes that are
attached to the same physical link (or, physical
medium). The physical link may be point-to-
point from one transmitter to a receiver, or it

may be shared by a number of transmitters and receivers (known as “broadcast link,” Section

1.3.3).

There is the “physical layer,” which implements a digital transmission system that delivers bits.
But, you would not know it because it is usually tightly coupled with the link layer by the link
technology standard. Link and physical layers are usually standardized together and technology
vendors package them together, as will be seen later in Section 1.5.

lvan Marsic e Rutgers University 14

In wireless networks, physical communication is much more complex than in wired networks.
Therefore, it may be justifiable to distinguish the physical and link layers, to keep both
manageable. Because this book is mainly about protocols and not about physical communication,
I will consider both together as a single, Link layer.

The link layer is not concerned with bridging end hosts across (many) intermediate links; this is
why we need the network layer.

LAYER-2 — Network layer: provides

concatenation of links to connect arbitrary end

hosts. It will be elaborated in Section 1.4 o
where we describe the most popular network

layer protocol: the Internet Protocol (IP).

However, host computers are not the =
endpoints of communication—application
programs running on these hosts are the actual
endpoints of communication! The network
layer is not concerned with application requirements. It may provide a range of choices for an
upper layer to select from. For example, the network layer may support “quality of service”
through “service level agreements,” “
these choices is the best for a particular application program; this is why we need the end-to-end
layer.

LAYER-3 — End-to-end layer:
this layer brings together
(encapsulates) all communication-
specific features of an application
program. Here is the first time that
we are concerned with application
requirements.

resource reservation,” but it does not know which one of

The figure on the right is meant to

illustrate that different applications need different type of connection for optimal performance.
For example, manipulation-based applications (such as video games) require an equivalent of
mechanical links to convey user’s action. Telephony applications need an equivalent of a
telephone wire to carry user’s voice, etc. A most prominent example of an end-to-end protocol is
TCP, described in Chapter 2.

A fundamental design principle of network protocols and distributed systems in general is the
end-to-end principle. The principle states that, whenever possible, communications protocol
operations should occur at the end-points of a communications system, or as close as possible to
the resource being controlled. According to the end-to-end principle, protocol features are only
justified in the lower layers of a system if they are a performance optimization.

Figure 1-12 shows the layers involved when a message is sent from an application running on one
host to another running on a different host. The application on host 4 hands the message to the
end-to-end layer, which passes it down the protocol stack on the same host machine. Every layer
accepts the payload handed to it and processes it to add its characteristic information in the form
of an additional header (Figure 1-13). The link layer transmits the message over the physical

Chapter 1 e Introduction to Computer Networking 15

Physical setup: Intermediate

node (router)
End host A 3} End host B
Communication link)

= % Communication link
|

§ Protocol stack:

Application Application
3:| End-to-End End-to-End |:3
2: Network 2: Network Network 2
1: Link 1: Link Link 1

Physical communication Physical communication

Figure 1-12: Protocol layering in end hosts and inter mediate nodes (switches or routers).

medium. As the message travels from A to B, it may pass through many intermediate nodes,
known as switches or routers. In every receiving node (including the intermediate ones), the
message is received by the bottommost (or, link) layer and passed up through their protocol stack.
Because intermediate nodes are not the final destination (or, end point), they do not have the
complete protocol stack, but rather only the two bottommost layers: link and network layers (see
Figure 1-12).

Pseudo code of a generic protocol module in layer i is given in Listing 1-1.

Listing 1-1: Pseudo code of a protocol modulein layer i.

// Definition of packet format for layer i.

// Implementing the java.io.Externalizable interface makes possible to serialize

// aPacket object to a byte stream (which becomes the payload for the lower-layer protocol).
1 public class PacketLayer i implements java.io.Externalizable {
2 // packet header

private String sourceAddress;

private String receiverAddress;

private String packetID; // this packet’s identifier

private String receivingProtocol; // upper layer protocol at receiver

o U1 W

7 // packet payload

Ivan Marsic

10
10a
10b
11
12
13
14
15
16

17
18
18a
18a
19
20
21
22
23 }

e Rutgers University

private byte[] payload;

// constructor
public PacketLayer i(

byte[] data, String recvAddr, String upperProtocol
) A

payload = data;

sourceAddress = address of my host computer;
receiverAddress = recvAddr;

packetID = generate unique identifier for this packet;
receivingProtocol = upperProtocol;

}

public void writeExternal (ObjectOutput out) {
// Packet implements java.io.Externalizable instead of java.io.Serializable
// to be able to control how the serialization stream is written, because
// it must follow the standard packet format for the given protocol.

}

public void readExternal (ObjectOutput out)
// reconstruct a Packet from the received bytestream
}

16

// Definition of a generic protocol module in layer i.

1 publ
2
3

10
10a
11

12
13
13a
13b
14
15

16
17
17a
17b
17c¢

ic class ProtocolLayer i
// maximum number of outstanding packets at sender (zero, if NOT a persistent sender)
public static final int N; // (Nis also called the sliding window size

// lower layer protocol that provides services to this protocol
private ProtocolLayer iDOWN lowerLayerProtocol;

// look-up table of upper layer protocols that use services of this protocol
private HashMap upperLayerProtocols;

// look-up table of next-receiver node addresses based on final destination addresses
// (this object is shared with the routing protocol, shown in Listing 1-2)
private HashMap forwardingTable;

// list of unacknowledged packets that may need to be retransmitted
// (maintained only for persistent senders that provide reliable transmission)
private ArrayList unacknowledgedPackets = new ArrayList();

// constructor
public ProtocolLayer 1(

ProtocolLayer iDOWN lowerLayerProtocol
)

}

// sending service offered to the upper layer protocols, called in a top-layer thread
public void send(

byte[] data, String destinationAddr,

ProtocolLayer iUP upperProtocol
) throws Exception {

// if persistent sender and window of unacknowledged packets full, then do nothing

this.lowerLayerProtocol = lowerLayerProtocol;

Chapter 1

19
20
21

22
23
23a

24
25
25a
26
26a
27

28
28a
28b
29
30
31

32
33
33a
33b
34

34
35a
36

37
38
38a
38b
39
40

41
42
43
44
45
45a
45b
45¢c
46

47
47a
48
49
50

}

//
//

Introduction to Computer Networking 17

if ((N > 0) && (N - unacknowledgedPackets.size() <= 0))) {
throw exception: admission refused by overbooked sender;
}

// create the packet to send
PacketLayer i outgoingPacket =
new PacketLayer i(data, destinationAddr, upperProtocol) ;

// serialize the packet object into a byte-stream (payload for lower-layer protocol)
java.io.ByteArrayOutputStream bout =

new ByteArrayOutputStream() ;
java.lo.0ObjectOutputStream outstr =

new ObjectOutputStream (bout) ;
outstr.writeObject (outgoingPacket) ;

// look-up the receiving node of this packet based on the destination address
// (requires synchronized access because the forwarding table is shared
// with the routing protocol)
synchronized (forwardingTable) { // critical region
String recvAddr = forwardingTable.get (destinationAddr) ;
} // end of the critical region

// hand the packet as a byte-array down the protocol stack for transmission
lowerLayerProtocol. send (

bout.toByteArray (), recvAddr, this
) §

upcall method, called from the layer below this one, when data arrives
from a remote peer (executes in a bottom-layer thread!)

public void handle (byte[] data) {

}

// reconstruct a Packet object from the received data byte-stream
ObjectInputStream instr = new ObjectInputStream(
new ByteArrayInputStream(data)
)i
PacketLayer i receivedFrame =
(PacketLayer 1) instr.readObject();

// if this packet is addressed to me ... (on a broadcast medium)
if (receivedFrame.getReceiverAddress() == my address) {
// ...determine which upper layer protocol should handle this packet's payload
synchronized (upperLayerProtocols) { // critical region
ProtocolLayer iUP upperProtocol = (ProtocolLayer 1iUP)
upperLayerProtocols.get (
receivedFrame.getReceivingProtocol ()
) 8
} // end of the critical region

// remove this protocol's header and

// hand the payload over to the upper layer protocol
upperProtocol .handle (receivedFrame.getPayload()) ;

lvan Marsic e Rutgers University 18

51 public void setHandler (

5la String receivingProtocol, ProtocolLayer iUP upperProtocol
51b) |

52 // add a <key, value> entry into the routing look-up table

53 upperLayerProtocols.put (receivingProtocol, upperProtocol) ;
54

55 // Method called by the routing protocol (running in a different thread or process)

56 public void setReceiver (

56a String destinationAddr, String receiverAddr

56b) |

57 // add a <key, value> entry into the forwarding look-up table

58 synchronized (forwardingTable) { // critical region

59 forwardingTable.put (destinationAddr, receiverAddr) ;
60 } // end of the critical region

61 }

62 }

Here I provide only a brief description of the above pseudocode. We will encounter and explain
the details later in this chapter, as new concepts are introduced. The attribute upperProtocol
is used to decide to which upper-layer protocol to deliver a received packet’s payload. This
process is called protocol demultiplexing and allows the protocol at a lower-layer layer to serve
different upper-layer protocols.

To keep the pseudo code manageable, some functionality is not shown in Listing 1-1. For
example, in case of a persistent sender in the method send () we should set the retransmission
timer for the sent packet and store the packet in the unacknowledgedPackets list. Similarly,
in the method handle () we should check what packet is acknowledged and remove the
acknowledged packet(s) from the unacknowledgedPackets list. Also, the method send ()
is shown to check only the forwardingTable to determine the intermediary receiver
(recvAddr) based on the final destination address. In addition, we will see that different
protocol layers use different addresses for the same network node (Section 8.3.1). For this reason,
it is necessary to perform address translation from the current-layer address (recvAddr) to the
address of the lower layer before passing it as an argument in the send () call, in Line 33. (See
Section 8.3 for more about address translation.)

Chapter 1 e Introduction to Computer Networking 19

Sender’s Aoplication dat Receiver’s
protocol stack ppiication data protocol stack

v t t

Layer-3
header

header

Application data

Layer-3 payload Layer-3 payload

‘ T
Layer-2) Layer-2)
header ‘ Layer-2 payload header | Layer-2 payload
Layer-1 . Layer-1 i .
header Layer-1 payload header Layer-1 payload

1 o 4 | 3

communication
010010110110001011100100101100000101101 f\/\/\A/ 010010110110001011100100101100000101101

v

Figure 1-13: Packet nesting across the protocol stack: an entire packet of an upper layer
becomesthe data payload of a lower layer.

The reader who carefully examined Listing 1-1 will have noticed that packets from higher layers
become nested inside the packets of lower layers as they are passed down the protocol stack
(Figure 1-13). The protocol at a lower layer is not aware of any structure in the data passed down
from the upper layer, i.e., it does not know if the data can be partitioned to header and payload or
where their boundary is—it simply considers the whole thing as an unstructured data payload.

The generic protocol implementation in Listing 1-1 works for all protocols in the layer stack.
However, each layer will require some layer-specific modifications. The protocol in Listing 1-1
best represents a Network layer protocol for source-to-destination packet delivery.

The Link layer is special because it is at the bottom of the protocol stack and cannot use services
of any other layer. It runs the receiveBits () method in a continuous loop (perhaps in a
separate thread or process) to hunt for arriving packets. This method in turn calls Link layer’s
handle (), which in turn calls the upper-layer (Network) method handle (). Link layer’s
send () method, instead of using a lower-layer service, itself does the sending by calling this
layer’s own method sendBits ().

lvan Marsic e Rutgers University 20

RECEIVER SENDER

“stuffing” removed send (11101011 01111110 10100101 e = =)

v

handle(11101011 01111110 10100101 ¢ = *)

li

Link receiveBits () Link sendBits ()
layer layer
Header Payload
AL N
4 4)

01111110 * **11101011 10111110 01111110 10100101 ® =

HJ _Y_/

Packet start pattern escape

tual dat
(preamble) actual da'a

that looks like
preamble
~
“stuffed” data

Figure 1-14: Bit stuffing to escape special control patternsin the frame data.

An important feature of a link-layer protocol is data transparency, which means that it must
carry any bit pattern in the data payload. An example of a special bit pattern is the packet
preamble that helps the receiver to recognize the start of an arriving packet (mentioned at the start
of this section). Data transparency means that the link layer must not forbid the upper-layer
protocol from sending data containing special bit patterns. To implement data transparency, link-
layer protocol uses a technique known as bit stuffing (or, byte stuffing, depending on what the
smallest units used to measure the payload is). Bit stuffing defines a special control escape bit
pattern, call it ESC (Figure 1-14). The method sendBits () examines the payload received from
the upper-layer protocol. If it encounters a special control sequence, say preamble (call it PRE),
then it “stuffs” (adds) a control escape sequence ESC into the transmitted data stream, before PRE
(resulting in ESC PRE), to indicate that the following PRE is not a preamble but is, in fact, actual
data. Similarly, if the control escape pattern ESC itself appears as actual data, it too must be
preceeded by an ESC. The method receiveBits () removes any control escape patterns that it
finds in the received packet before delivering it to the upper-layer method handle () (Figure
1-14).

The pseudo code in Listing 1-1 is only meant to illustrate how one would write a protocol
module. It is extremely simplified and certainly not optimized for performance. My main goal is
to give the reader an idea about the issues involved in protocol design. We will customize the
pseudo code from Listing 1-1 for different protocols, such as routing protocols in Listing 1-2,
Section 1.4, and TCP sender in Listing 2-1, Section 2.1.1.

Chapter 1 e Introduction to Computer Networking 21

When Is a "Little in the Middle" OK? The Internet's End-to-End Principle Faces More Debate; by
Gregory Goth -- http://ieeexplore.ieee.org/iel5/8968/28687/01285878.pdf?isnumber

Why it’s time to let the OSI model die; by Steve Taylor and Jim Metzler, Network World,
09/23/2008 -- http://www.networkworld.com/newsletters/frame/2008/092208wan1.html

Open Systems Interconnection (OSI) Reference Model
The OSI model has seven layers (Figure 1-15). The layer functionality is as follows:

Layer 7 — Application: Its function is to provide application-specific services. Examples include
call establishment and management for a telephony application (SIP protocol, Section 8.6.2), mail
services for e-mail forwarding and storage (SMTP protocol), and directory services for looking
up global information about various network objects and services (LDAP protocol). Notice that
this layer is distinct from the application itself, which provides business logic and user interface.

Layer 6 — Presentation: Its function is to “dress” the messages in a “standard” manner. It is
sometimes called the syntax layer because it deals with the syntax and semantics of the
information exchanged between the network nodes. This layer performs translation of data
representations and formats to support interoperability between different encoding systems
(ASCII vs. Unicode) or hardware architectures. It also performs encryption and decryption of
sensitive information. Lastly, this layer also performs data compression to reduce the number of
bits to be transmitted, which is particularly important for multimedia data (audio and video).

Layer 5 — Session: Its function is to maintain a “conversation” across multiple related exchanges
between two hosts (called session), to keep track of the progress of their communication. This
layer establishes, manages, and terminates sessions. Example services include keeping track of
whose turn it is to transmit (dialog control) and checkpointing long conversations to allow them
to resume after a crash.

Layer 4 — Transport: Its function is to provide reliable or expedient delivery of messages, or
erTor recovery.

Layer 3 — Network: Its function is to move packets from source to destination in an efficient
manner (called routing), and to provide internetworking of different network types (a key service
is address resolution across different networks or network layers).

Layer 2 — Link: Its function is to organize bits into packets or frames, and to provide packet
exchange between adjacent nodes.

Layer 1 — Physical: Its function is to transmit bits over a physical medium, such as copper wire
or air, and to provide mechanical and electrical specifications.

ﬂ\'(— Visit http://en.wikipedia.org/wiki/OSI model for more details on the OSI Reference Architecture

lvan Marsic e Rutgers University 22

W UU . Y * Application
7: Application services (SIP, FTP,
G_D G_D G_D HTTP, Telnet, ...)
Y Uu) Uu * Data translation (MIME)
6: Presentation * Encryption (SSL)
G_D G_D G_D » Compression
W W W Dial trol

. « Dialog contro
5: Session o

* Synchronization

Doy
&7
=B,

uu
) * Reliable (TCP)
. Transport « Real-time (RTP)

* Source-to-destination (IP)
3: Network » Routing
» Address resolution

o——-o0 o (] F AR * Wireless link (WiFi)
P 2: Link MAC « Wired link (Ethemet)
G’D G’D G‘D * Radio spectrum
/G‘/‘\))) w wu W « Infrared
') 1: Physical « Fiber
» Copper

Figure 1-15: OSI reference architecture for communication protocol layering.

The seven layers can be conceptually organized to three subgroups. First, layers 1, 2, and 3—
physical, link, and network—are the network support layers. They deal with the physical aspects
of moving data from one device to another, such as electrical specifications, physical connections,
physical addressing, etc. Second, layers 5, 6, and 7—session, presentation, and application—can
be thought of as user support layers. They allow interoperability among unrelated software
systems. Third, layer 4—the transport layer—ensures end-to-end reliable data transmission, while
layer 2 may ensure reliable data transmission on a single link.

When compared to the three-layer model (Figure 1-11), OSI layers 1, 2 correspond to layer 1, the
Link layer, in the three-layer model. OSI layer 3 corresponds to layer 2, the Network layer, in the
three-layer model. Finally, OSI layers 4, 5, 6, and 7 correspond to layer 3, the End-to-end layer,
in the three-layer model.

The OSI model serves mainly as a reference for thinking about protocol architecture issues. There
are no actual protocol implementations that follow the OSI model. Because it is dated, I will
mainly use the three-layer model in the rest of this text.

Chapter 1 e Introduction to Computer Networking 23

1.2 Reliable Transmission via Redundancy

To counter the line noise, a common technique is to add redundancy or context to the message.
For example, assume that the transmitted word is “information” and the received word is
“inrtormation.” A human receiver would quickly figure out that the original message is
“information,” because this is the closest meaningful word to the one that is received. Similarly,
assume you are tossing a coin and want to transmit the sequence of outcomes (head/tail) to your
friend. Instead of transmitting H or T, for every H you can transmit HHH and for every T you can
transmit TTT. The advantage of sending two redundant letters is that if one of the original letters
flip, say TTT is sent and TTH is received, the receiver can easily determine that the original
message is TTT, which corresponds to “tail.” Of course, if two letters become flipped,
catastrophically, so TTT turns to THH, then the receiver would erroneously infer that the original
is “head.” We can make messages more robust to noise by adding greater redundancy. Therefore,
instead of two redundant letters, we can have ten: for every H you could transmit
HHHHHHHHHH and for every T you could transmit TTTTTTTTTT. The probability that the
message will be corrupted by noise catastrophically becomes progressively lower with more
redundancy. However, there is an associated penalty: the economic cost of transmitting the longer
message grows higher because every communication line can transmit only a limited number of
bits per unit of time. Finding the right fradeoff between robustness and cost requires the
knowledge of the physical characteristics of the transmission line as well as the knowledge about
the importance of the message to the receiver (and the sender).

Example of adding redundancy to make messages more robust will be seen in Internet telephony
(VoIP), where forward error correction (FEC) is used to counter the noise effects.

If damage/loss can be detected, then an option is to request retransmission but, request +
retransmission takes time = large response latency. FEC is better but incurs overhead.

1.2.1 Error Detection and Correction by Channel Coding

To bring the message home, here is a very simplified example for the above discussion. Notice
that this oversimplifies many aspects of error coding to get down to the essence. Assume that you
need to transmit 5 different messages, each message containing a single integer number between
1 — 5. You are allowed to “encode” the messages by mapping each message to a number between
1 — 100. Assume that the noise amplitude is distributed according to the normal distribution, as
shown in [Figure X]. What are the best choices for the codebook?

Note: this really represents a continuous case, not digital, because numbers are not binary and
errors are not binary. But just for the sake of simplicity...

lvan Marsic e Rutgers University 24

1.2.2 Interleaving

Redundancy and error-correcting codes are useful when errors are randomly distributed. If errors
are clustered, they are not effective. Consider the following example. Say you want to send the
following message to a friend: “All science is either physics or stamp collecting.”” A random
noise in the communication channel may result in the following distorted message received by
your friend: “All scidnce is eitjer physocs or statp colletting.” By simply using a spelling checker,
your friend may easily recover the original message. One the other hand, if the errors were
clustered, the received message may appear as: “All science is either checker or stamp
collecting.” Obviously, it is impossible to guess the original message unless you already know
what Rutherford said.

This kind of clustered error is usually caused by a jamming source. It may not necessarily be a
hostile adversary trying to prevent the communication, but it could be a passive narrow-band
jamming source, such as microwave owen, which operates in the same frequency range as Wi-Fi
wireless networking technology.

To recover from such errors, one can use interleaving. Let us assume that instead of sending the
original message as-is, you first scramble the letters and obtain the following message:

Forward
interleaving:

ither physics or stamp collecting

detail

. . ‘ ‘-‘
t h e me il s S C Jenlc graphlcs SiNCe pooré€st All}'

Now you transmit the message “theme illicts scenic graphics since poorest Ally.” Again, the
jamming source inflicts a cluster of errors, so the word “graphics” turns into “strictly,” and your
friend receives the following message: “theme illicts scenic strictly since poorest Ally.” Your
friend must know how to unscramble the message by applying an inverse mapping to obtain:

Inverse
interleaving:

Therefore, with interleaving, the receiver will obtain a message with errors randomly distributed,
rather than missing a complete word. By applying a spelling checker, your friend will recover the
original message.

2 Ernest Rutherford, in J. B. Birks, “Rutherford at Manchester,” 1962.

Chapter 1 e Introduction to Computer Networking 25

1.3 Reliable Transmission by
Retransmission

We introduced channel encoding as a method for dealing with errors (Section 1.2). But, encoding
provides only probabilistic guarantees about the error rates—it can reduce the number errors to an
arbitrarily small amount, but it cannot eliminate them. When error is detected that cannot be
corrected, it may be remedied by repeated transmission. This is the task for Automatic Repeat
Request (ARQ) protocols. In case retransmission fails, the sender should persist with repeated
retransmissions until it succeeds or decides to give up. Of course, even ARQ retransmission is a
probabilistic way of ensuring reliability and the sender should not persist infinitely with
retransmissions. After all, the link to the receiver may be broken, or the receiver may be dead.
There is no absolutely certain way to guarantee reliable transmission.

Failed transmissions manifest themselves in two ways:
e Packet error: Receiver receives the packet and discovers error via error control
e Packet loss: Receiver never receives the packet (or fails to recognize it as such)

If the former, the receiver can request retransmission. If the latter, the sender must detect the loss
by the lack of response from the receiver within a given amount of time.

Common requirements for a reliable protocol are that: (1) it delivers at most one copy of a given
packet to the receiver; and, (2) all packets are delivered in the same order they are presented to
the sender. “Good” protocol:

¢ Delivers a single copy of every packet to the receiver application
¢ Delivers the packets in the order they were presented to the sender

A lost or damaged packet should be retransmitted. A persistent sender is a protocol participant
that tries to ensure that at least one copy of each packet is delivered, by sending repeatedly until it
receives an acknowledgment. To make retransmission possible, a copy is kept in the transmit
buffer (temporary local storage) until it is successfully received by the receiver and the sender
received the acknowledgement. Buffering generally uses the fastest memory chips and circuits
and, therefore, the most expensive memory, which means that the buffering space is scarce. Disk
storage is cheap but not practical for packet buffering because it provides relatively slow data
access.

During network transit, different packets can take different routes to the destination, and thus
arrive in a different order than sent. The receiver may temporarily store (buffer) the out-of-order
packets until the missing packets arrive. Different ARQ protocols are designed by making
different choices for the following issues:

e Where to buffer: at sender only, or both sender and receiver?

e What is the maximum allowed number of outstanding packets, waiting to be
acknowledged?

lvan Marsic e Rutgers University 26

Sender Receiver
| |
| [
qé l ! I
= transmissjgn""'{ Data i 4
delay . I I propagation
1 Tr [delay
¢ |
i !
i o SR

v

| 1

il |

F | |
| |
| |
I ——
| A
I I
! I processing
| |

l | | delay
processing I I
| |
delay T | Data |

| |
I I
| |
| |
: . :
| L4 |
|] |

Figure 1-16: Timeline diagram for reliable data transmission with acknowledgements.

e How is a packet loss detected: a timer expires, or the receiver explicitly sends a “negative
acknowledgement” (NAK)? (Assuming that the receiver is able to detect a damaged
packet.)

The sender utilization of an ARQ connection is defined as the fraction of time that the sender is
busy sending data.

The throughput of an ARQ connection is defined as the average rate of successful message
delivery.

The goodput of an ARQ connection is defined as the rate at which data are sent uniquely, i.e., this
rate does not include error-free data that reach the receiver as duplicates. In other words, the
goodput is the fraction of time that the receiver is receiving data that it has not received before.

The transmissions of packets between a sender and a receiver are usually illustrated on a timeline
as in Figure 1-16. There are several types of delay associated with packet transmissions. To
illustrate, here is an analogy: you are in your office, plan to go home, and on your way home you
will stop at the bank to deposit your paycheck. From the moment you start, you will get down to
the garage (“transmission delay”), drive to the bank (“propagation delay”), wait in the line
(“queuing delay™), get served at teller’s window (“processing delay” or “service delay”), and
drive to home (additional “propagation delay”).

The first delay type is transmission delay, which is the time that takes the sender to place the
data bits of a packet onto the transmission medium. In other words, transmission delay is
measured from when the first bit of a packet enters a link until the last bit of that same packet
enters the link. This delay depends on the transmission rate R offered by the medium (in bits per
second or bps), which determines how many bits (or pulses) can be generated per unit of time at
the transmitter. It also depends on the length L of the packet (in bits). Hence, the transmission
delay is:

_ packetlength L (bits)
bandwidth R (bits per second)

(1.2)

X

Chapter 1 e Introduction to Computer Networking 27

CAAAAAS CAAAAAS

Layer 2 Layer 2
(sender) (receiver)

Layer 1 »

(sender) (receiver)

Figure 1-17: Fluid flow analogy for delaysin packet delivery between the protocol layers.

Propagation delay is defined as the time elapsed between when a bit is sent at the sender and
when it is received at the receiver. This delay depends on the distance d between the sender and
the receiver and the velocity v of electromagnetic waves in the transmission medium, which is
proportional to the speed of light in vacuum (¢ = 3x10* m/s), v = ¢/n, where n is the index of
refraction of the medium. Both in copper wire and glass fiber or optical fiber n = 3/2, so v = 2 X
10® m/s. The index of refraction for dry air is approximately equal to 1. The propagation delay is:

_ distance _ d (m)

(1.3)

? " velocity v (m/s)
Processing delay is the time needed for processing a received packet. At the sender side, the
packet may be received from an upper-layer protocol or from the application. At the receiver side,
the packet is received from the network or from a lower-layer protocol. Examples of processing
include conversion of a stream of bytes to frames or packets (known as framing or packetization),
data compression, encryption, relaying at routers, etc. Processing delays usually can be ignored
when looking from an end-host’s viewpoint. However, processing delay is very critical for
routers in the network core that need to relay a huge number of packets per unit of time, as will be
seen later in Section 1.4.4.

Another important parameter is the round-trip time (or RTT), which is the time a bit of
information takes from departing until arriving back at the sender if it is immediately bounced
back at the receiver. This time on a single transmission link is often assumed to equal RTT =

lvan Marsic e Rutgers University 28

4 N

Sender Receiver

N a

Transport layer Processing delay within transport layers Transport layer
VN VN
Send H Receive Send B Receive
data ACK ACK data
v A 4
Network layer Processing delay within network layers Network layer
VN VN
Send H H Receive Send a H Receive
packet‘ L packet packet‘ L packet
Processing and transmission delays P

k Link+Phys layer within link/physical layers k Link+Phys layer

K Propagation delay (receiver — sender) D:Dj
CTITT] Propagation delay (sender — receiver)

Figure 1-18: Delay componentsthat contributeto round-trip time (RTT).

2 x t,. Determining the RTT is much more complex if the sender and receiver are connected over
a network where multiple alternative paths exist, as will be seen later in Section 2.1.2. However,
even on a single link, the notion of RTT is much more complex than just double the propagation
delay. To better understand RTT, we need to consider what it is used for and how it is measured.
RTT is most often used by sender to set up its retransmission timer in case a packet is lost.
Obviously, network nodes do not send individual bits; they send packets. RTT is measured by
recording the time when a packet is sent, reading out the time when the acknowledgement is
received, and subtracting these two values:

RTT = (time when the acknowledgement is received) — (time when the packet is sent) (1.4)

To understand what contributes to RTT, we need to look at how packets travel through the
network. First, acknowledgements may be piggybacked on data packets coming back for the
receiver. Therefore, even if the transmission delay is not included at the sender side, receiver’s
transmission delay does contribute to the RTT. (However, when an acknowledgement is
piggybacked on a regular data packet from receiver to sender, the transmission time of this packet
must be taken into account.)

Second, we have to remember that network nodes use layered protocols (Section 1.1.4).
Continuing with the fluid flow analogy from Figure 1-5, we illustrate in Figure 1-17 how delays
are introduced between the protocol layers. The physical-layer (layer 1) receiver waits until the
bucket is full (i.e., the whole packet is received) before it delivers it to the upper layer (layer 2).

The delay components for a single link and a three-layer protocol are illustrated in Figure 1-18.
Sender’s transmission delay will not be included in the measured RTT only if the sender operates
at the link/physical layer. A sender operating at any higher layer (e.g., network or transport
layers), cannot avoid having the transmission delay included in the measured RTT, because it
cannot know when the packet transmission on the physical medium will actually start or end.

Third, lower layers of sender’s protocol stack may incur significant processing delays. Suppose
that the sender is at the transport layer and it measures the RTT to receive the acknowledgement

Chapter 1 e Introduction to Computer Networking 29

from the receiver, which is also at the transport layer. When a lower layer receives a packet from
a higher layer, the lower layer may not forward the packet immediately, because it may be busy
with sending some other packets. Also, if the lower layer uses error control, it will incur
processing delay while calculating the checksum or some other type of error-control code. Later
we will learn about other types of processing delays, such as time spent looking up forwarding
tables in routers (Section 1.4), time spent dividing a long message into fragments and later
reassembling it (Section 1.4.1), time spent compressing data, time spent encrypting and
decrypting message contents, etc.

Fourth, lower layers may implement their own reliable transmission service, which is transparent
to the higher layer. An example are broadcast links (Section 1.3.3), which keep retransmitting lost
packets until a retry-limit is reached. The question, then, is: what counts as the transmission delay
for a packet sent by a higher layer and transmitted by a lower layer, which included several
retransmissions? Should we count only the successful transmission (the last one), or the preceding
unsuccessful transmissions, as well?

In summary, the reader should be aware that RTT estimation is a complex issue even for a
scenario of a single communication link connecting the sender and receiver. Although RTT is
often approximated as double the propagation delay, this may be grossly inaccurate and the
reader should examine the feasibility of this approximation individually for each scenario.

Mechanisms needed for reliable transmission by retransmission:
e Error detection for received packets, e.g., by checksum
e Receiver feedback to the sender, via acknowledgement or negative acknowledgement

e Retransmission of a failed packet, which requires storing the packet at the sender until the
sender obtains a positive acknowledgement that the packet reached the receiver error-free

e Sequence numbers, so the receiver can distinguish duplicate packets

e Retransmission timer, if packet loss on the channel is possible (not only error corruption),
so that the sender can detect the loss

Several popular ARQ protocols are described next.

1.3.1 Stop-and-Wait

Problems related to this section: Problem 1.2 — Problem 1.4; also see Problem 1.12

The simplest retransmission strategy is stop-and-wait. This protocol buffers only a single packet
at the sender and does not deal with the next packet before ensuring that the current packet is
correctly received (Figure 1-16). A packet loss is detected by the expiration of a timer, which is
set when the packet is transmitted.

When the sender receives a corrupted ACK/NAK, it could send back to the receiver a NAK
(negative acknowledgement). For pragmatic reasons (to keep the sender software simple),
receiver does nothing and the sender just re-sends the packet when its retransmission timer
expires.

lvan Marsic e Rutgers University 30

Assuming error-free communication, the utilization of a Stop-and-wait sender is determined as
follows. The entire cycle to transport a single packet takes a total of (¢, + 2 X t,) time. (We assume
that the acknowledgement packets are tiny, so their transmission time is negligible.) Of this time,
the sender is busy ¢, time. Therefore

t
U = —x— 1.5
sender tx +2. tp ()

Given a probability of packet transmission error p., which can be computed using Eq. (1.1), we
can determine how many times, on average, a packet will be (re-)transmitted until successfully
received and acknowledged. This is known as the expected number of transmissions. Our
simplifying assumption is that error occurrences in successively transmitted packets are
independent events’. A successful transmission in one round requires error-free transmission of
two packets: forward data and feedback acknowledgement. We again assume that these are
independent events, so the joint probability of success is

Prsce = 1= pPAA)- (1= p2%) (1.6)

The probability of a failed transmission in one round is pgy = 1 — paee. Then, the number of
attempts K needed to transmit successfully a packet is a geometric random variable. The
probability that the first k attempts will fail and the (k+1)* attempt will succeed equals:

k
Q(05k+1) - (Oj (l_psucc)k ’ p;ucc = pll:ail 'psucc (17)

where £k = 1, 2, 3, The round in which a packet is successfully transmitted is a random
variable N, with the probability distribution function given by (1.7). Its expected value is

E{N} = Z(k+l)Q(O7k+1) ZZ(k-l_l)'pgil 'psucc =psucc .(Zpgil +Zk'pgilj
k=0 k=0 k-0

k=0 —

Recall that the well-known summation formula for the geometric series is

Therefore we obtain (recall that pei = 1 — pyee):

1 p ai 1
E{N}=pg,.- +—l = (1.8)
1=pea (1 pfail) Piuce

We can also determine the average delay per packet as follows. Successful transmission of one
packet takes a total of f.. = t, + 2xt,, assuming that transmission time for acknowledgement
packets can be ignored. A single failed packet transmission takes a total of ¢ = t, + tou, Where #u
is retransmission timer’s countdown time. If a packet is successfully transmitted after £ failed

3 This is valid only if we assume that thermal noise alone affects packet errors. However, the independence
assumption will not be valid for temporary interference in the environment, such as a microwave oven
interference on a wireless channel.

Chapter 1 e Introduction to Computer Networking 31

Sender Receiver
v ! Packet i !

——t |
Send data > transmission | (error)

; . T
Set timer time ? |

I —
|
|
|

1st attempt
A

timeout

time
_ Timer expires __v | Packeti(retransmission)
Resend data (error)
Set new timer \X“‘ T

<22 Time

2nd attempt
AL

_ Packet i (retransmission)

(error)

k-th attempt
A

_ Timer expires

Packet i (retransmission)

=
= Resend data transmission |

o Set new timer time T |

k- RTT | ' M

% Receive ACK 7"4' : Received
X~ Reset timer | | error-free

Figure 1-19: Stop-and-Wait with errors. The transmission succeeds after k failed attempts.

where k=0, 1, 2, ... (see

Figure 1-19). The total transmission time for a packet is a random variable 7,°"', with the

attempts, then its total transmission time equals: 7% =k -, +1

succ ?

probability distribution function given by (1.7). Its expected value is

totaly __ k _ S k S k
E{T o } - (k ’ tfail + tsucc) pfail ’ psucc - psucc ’ (l‘succ z pfail + tfail z k ’ pfailj
k=0 k=0

k=0

Following a derivation similar as for Eq. (1.8), we obtain

ota tsucc p ail 4 ai p al
E{Tttl}:psucc' + ol & l2 :tsucc+ foil .tfail (19)
1- Prait (1 ~ Prail) Piuce

The expected sender utilization in case of a noisy link is

T e L e (1.10)
E{T o } Psucc tsucc + Dpait - tfail

Here, we are considering the expected fraction of time the sender will be busy of the total
expected time to transmit a packet successfully. That is, (¢, - E{N}) includes both unsuccessful
and successful (the last one) transmissions.

lvan Marsic e Rutgers University 32

Sender Sender Receiver Receiver
window N =4 window W =4

LINRIGJaste7HsH T |

(0] 1]2]3 [BHIE]A EHEH U

[©]
El
=
(]
=
T}
[y }
i
=i
i
2]
=y
xR
i

ol [2[5]+]51s [Bmimm
o]1]2]3]+ EIREEE EIllidig

Key:
Already ACK'd

Sent, not yet ACK'd
Allowed to send
NOT allowed to send

Key:
Received in-order & ACK'd

Expected, not yet received
Acceptable to receive
NOT acceptable

[
«©

Figure 1-20: Sliding window protocol in operation over an error-freelink.

1.3.2 Sliding-Window Protocols

Problems related to this section: Problem 1.5 — Problem 1.12

Stop-and-wait is very simple but also very inefficient, because the sender spends most of the time
idle waiting for the acknowledgement. We would like the sender to send as much as possible,
short of causing path congestion or running out of the memory space for buffering copies of the
outstanding packets. One type of ARQ protocols that offer higher efficiency than Stop-and-wait is
the sliding window protocol.

The sender window size N is a measure of the maximum number of outstanding (i.e.,
unacknowledged) packets in the network. Figure 1-20 shows the operation of sliding window
protocols in case of no errors in communication. The receiver window size W gives the upper
bound on the number of out-of-order packets that the receiver is willing to accept. In the case
shown in Figure 1-20, both sender and receiver have the same window size. In general case it is
required that N < W.

The sliding window sender should store in local memory (buffer) all outstanding packets for
which the acknowledgement has not yet been received. Therefore, the send buffer size should be
N packets large. The sent-but-unacknowledged packets are called “in-flight” packets or “in-
transit” packets. The sender must ensure that the number of in-flight packets is always < M.

The sliding window protocol is actually a family of protocols that have some characteristics in
common and others different. Next, we review two popular types of sliding window protocols:

Chapter 1 e Introduction to Computer Networking 33

Window N =3 Sender Receiver

01234567891011
012345678910

Next expected
seq.num.

012345678910

discard Pkt-2 x

1234567891011

|
|
|
| [234567891011
|

Timeout for Pkt-1

Pkt-3

discard Pkt-3 x
012345678910

[L23l4567891011

12345678910
2345678910

345678910
234567891011

456/7891011
45678910

]
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
I

- I

123l4567891011 |
|
|
|
I
|
|
|
|
I
|
|
I
|
|
|
|

4567891011 :
|

Figure 1-21: Go-back-N protocol in operation under communication errors.

Go-back-N (GBN) and Selective Repeat (SR). The TCP protocol described in Chapter 2 is
another example of a sliding window protocol. The key difference between GBN and SR is in the
way they deal with communication errors.

Go-back-N

The key idea of the Go-back-N protocol is to have the receiver as simple as possible. This means
that the receiver accepts only the next expected packet and immediately discards any packets
received out-of-order. Hence, the receiver needs only to memorize what is the next expected
packet (single variable), and does not need any memory to buffer the out-of-order packets.

As with other sliding-window protocols, the Go-back-N sender should be able to buffer up to N
outstanding packets.

The operation of Go-back-N is illustrated in Figure 1-21. The sender sends sender-window-size
(N = 3) packets and stops, waiting for acknowledgements to arrive. When Ack-0 arrives,
acknowledging the first packet (Pkt-0), the sender slides its window by one and sends the next
available packet (Pkt-3). The sender stops again and waits for the next acknowledgement.

Because Pkt-1 is lost, it will never be acknowledged and its retransmission timer will expire.
When a timeout occurs, the Go-back-N sender resends all packets that have been previously sent

lvan Marsic e Rutgers University 34

Sender window N =3 Sender Receiver window W =3

p12345678910
[]

012(34567891011

o 2345678910

o 23jas678910
buffer Pkt-2 —S >

1234567891011 Pkt-3

1234567891011

of23jas678910

|
|
|
|
I
|
I
|
I
|
I
|
I
|
I
|
Ack-3 |
I
|
I
|
I
|
|
|
I
|
I
|
I
|
I
|
I
|
I

Tin;out for Pkt-1
4567891011

Ack.1 012345678910

456|7891011

[456]7891011
[456]7891012

01234567|8910

012345[678910

Figure 1-22: Selective Repeat protocol in operation under communication errors.

but have not yet been acknowledged, that is, all “in-flight” packets. This is where this protocol’s
name comes from. Because the sender will usually have N in-flight packets, a timeout will cause
it to go back by N and resend the N outstanding packets. The rationale for this behavior is that if
the oldest outstanding packet is lost, then all the subsequent packets are lost as well, because the
Go-back-N receiver automatically discards out-of-order packets.

As mentioned, the receiver memorizes a single variable, which is the sequence number of the
next expected packet. The Go-back-N receiver considers a packet correctly received if and only if

1. The received packet is error-free

2. The received packet arrived in-order, i.e., its sequence number equals next-expected-
sequence-number.

In this example, Pkt-1 is lost, so Pkt-2 arrives out of order. Because the Go-back-N receiver
discards any packets received out of order, Pkt-2 is automatically discarded. One salient feature
of Go-back-N is that the receiver sends cumulative acknowledgements, where an
acknowledgement with sequence number m indicates that all packets with a sequence number up
to and including m have been correctly received at the receiver. The receiver sends
acknowledgement even for incorrectly received packets, but in this case, the previously correctly
received packet is being acknowledged. In Figure 1-21, the receipt of Pkt-2 generates a duplicate
acknowledgement Ack-0. Notice also that when Ack-2 is lost, the sender takes Ack-3 to

Chapter 1 e Introduction to Computer Networking 35

Sender Receiver Sender Receiver
| | |
012[34567 |~gkt-0 01234567 01234567 |~gkto0 01234567
[
: m I\
12|34567 ' fo12/34567 InpKkt-2
p1d3ase 1234567 |3 56 o ofL23l4567
234567 ck

|
|
|
|
| |
| |
| |
| |
| l |
: ' :
|
| 34567 | (loss) Ack
- h | Ezeser 4es
| |
| | |
| [|
| |
: 4567 ITimeout for Pkt-l:
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

012|345|67

0123[456|7
57 INEKED Ack- A L> Ack-
1234567
Pkt-6 G

T~ 1234567

k2 a2 012 3f4se7

/ | discard
| duplicate Pkt-1
(a) Go-back-N (b) Selective Repeat

Figure 1-23. Comparison of Go-back-N and Selective-Repeat acknowledgments.

acknowledge all previous packets, including Pkt-2. Hence, a lost acknowledgement does not need
to be retransmitted as long as the acknowledgement acknowledging the following packet arrives
before the retransmission timer expires.

Selective Repeat (SR)

The key idea of the Selective Repeat protocol is to avoid discarding packets that are received
error-free and, therefore, to avoid unnecessary retransmissions. Go-back-N suffers from
performance problems, because a single packet error can cause Go-back-N sender to retransmit a
large number of packets, many of them unnecessarily. Figure 1-22 illustrates the operation of the
Selective Repeat protocol. Unlike a Go-back-N sender which retransmits all outstanding packets
when a retransmission timer times out, a Selective Repeat sender retransmits only a single
packet—the oldest outstanding one.

Unlike a Go-back-N receiver, a Selective Repeat receiver sends individual acknowledgements,
where an acknowledgement with sequence number m indicates only that the packet with sequence
number m has been correctly received. There is no requirement that packets are received in order.
If a packet is received out of order but error-free, it will be buffered in the receiver’s memory
until the in-order missing packets are received.

Figure 1-23 illustrates the difference between the behaviors of GBN cumulative
acknowledgements and SR individual acknowledgements. Notice that both protocols require the
sender to acknowledge duplicate packets, which were received and acknowledged earlier. The
reason for this requirement is that a duplicate packet usually indicates that the acknowledgement
has been lost. Without an acknowledgement, the sender window would never move forward and

lvan Marsic e Rutgers University 36

the communication would come to a halt. (Notice also that a packet can be retransmitted when its
acknowledgement is delayed, so the timeout occurs before the acknowledgement arrives. In this
case, the sender window would simply move forward.) Again, SR acknowledges only the last
received (duplicate) packet, whereas GBN cumulatively acknowledges all the packets received up
to and including the last one. In Figure 1-23(a), Ack-1 was lost, but when Ack-2 arrives it
acknowledges all packets up to and including Pkt-2. This acknowledgement shifts the sender’s
window forward by 2 and the sender advances uninterrupted. Unlike this, in Figure 1-23(b) the
SR sender needs to retransmit Pkt-1 because it never receives Ack-1 before its timeout expired.

In practice, a combination of selective-ACK and Go-back-N is used, as will be seen with TCP in
Chapter 2.

—— SIDEBAR 1.1: The Many Faces of Acknowledgements

¢ The attentive reader may have noticed that acknowledgements are used for multiple
purposes. For example, earlier we saw that a received ACK informs the sender that: (a) the
corresponding data packet arrived at the receiver; (b) the sender may stop the retransmission-
timer countdown for the corresponding data packet; (c) the sender may discard the copy of the
acknowledged packet and release the memory buffer space; and, (d) the sender may send
another data packet. Notice that an acknowledgment usually only confirms that the data packet
arrived error-free to the receiver, but it does not say anything about whether the receiver acted
upon the received data and completed the required processing. This requires additional
acknowledgement at the application level. Later, in Chapter 2, we will learn about some
additional uses of acknowledgements in the TCP protocol.

1.3.3 Broadcast Links

Broadcast links allow connecting multiple network nodes via the same link. Hence, when one
node transmits, all or most other nodes on the link can hear the transmission. If two or more
nodes are transmitting simultaneously, their signals will interfere with each other (see Figure 1-7
for interference on a wireless link). A receiver that receives the interference signal will not be
able to decode either of the original signals; this is known as a collision. Therefore, the nodes
should take turns transmitting their packets. However, this is easier said than done: when a node
has a packet ready for transmission, it does not know whether any other nodes are also about to
transmit. A key technical problem for broadcast links is coordination of transmissions, to
control collisions.

There are several techniques for transmission coordination on broadcast links. Collisions could be
prevented by designing strictly timed transmissions; avoided by listening before speaking; or,
detected after they happen and remedied by retransmission of corrupted information. An example
of preventing collisions by design is TDMA (Time Division Multiple Access). It creates unique
time slots and assigns a different time slot to each node. A node is allowed to transmit only within
its assigned time slot. After all nodes are given opportunity to transmit, the cycle is repeated. The
problem with this technique is that if some nodes do not have data ready for transmission, their

Chapter 1 e Introduction to Computer Networking 37

Sender Receiver Sender Receiver
| | | |
Packet transmission l l : Packet transmission
(a) E == o —x
| to
1

ropagation

p o
delay = 333 ns transmission

transmission delay = 8.192 ms

delay = 8.192 ms

/

propagation
delay =

(b)

|
| |
| |
| |
| |
| |
| |

A |
|

< Time

propagation constant = 0.00004

(local area network, diameter = 100m) propagation constant B ~ 14.6

(geosynchlronous satellite)

A

|

Figure 1-24: Propagation constant gfor different wireless networks.

slot goes unused. Any other nodes that may wish to transmit are delayed and have to wait for
their predetermined slot even though the link is currently idle.

A popular class of protocols for broadcast links is random-access protocols, which are based on
the Stop-and-Wait ARQ, with addition of the backoff delay mechanism. Backoff mechanism is a
key mechanism for coordination of multiple senders on a broadcast link. Stop-and-wait has no
reason to backoff because it assumes that the sender is not contending for the link against other
senders and any loss is due to a transmission error. Conversely, a random-access protocol
assumes that any packet loss is due to a collision of concurrent senders and it tries to prevent
further collisions by introducing a random amount of delay (backoff) before attempting a re-
transmission. It is a way to provide stations with “polite behavior.” This method is commonly
used when multiple concurrent senders are competing for the same resource; another example
will be seen for the TCP protocol (Section 2.1.2). The sender usually doubles the range of backoff
delays for every failed transmission, which is why this method is also known as binary
exponential backoff. Increasing the backoff range increases the number of choices for the
random delay. This, in turn, makes it less likely that several stations will select the same delay
value and, therefore, reduces the probability of repeated collisions. It is like first deciding how
long to wait by tossing a coin (two choices: heads or tails); if both make the same choice and
again experience a collision, then they try by rolling a dice (six choices), etc.

0;‘;0
d
N7
Coin Dice Roulette
two choices six choices 38 choices (American)
{0, 1} {1,2,3,4,5, 6} {0,00,1, 2,3, ..., 36}

The reason for addressing reliability at the link layer is as follows. A wireless link is significantly
more unreliable than a wired one. Noise, interference, and other propagation effects result in the

lvan Marsic e Rutgers University 38

loss of a significant number of frames. Even with error-correction codes, a number of MAC
frames may not successfully be received. This situation can be dealt with by reliability
mechanisms at a higher layer, such as transport-layer protocol. However, timers used for
retransmission at higher layers (which control paths comprising many links) are typically on the
order of seconds (see TCP timers in Section 2.1.2). It is therefore more efficient to deal with
errors at the link level and retransmit the corrupted packets.

The time (in packet transmission units) required for all network nodes to detect a start of a new
transmission or an idle channel after a transmission ends is an important parameter. Intuitively,
the parameter fis the number of bits that a transmitting station can place on the medium before
the station furthest away receives the first bit of the first packet.

Recall that signal propagation time is ¢, = distance/velocity, as given earlier by Eq. (1.3). The
transmission delay is #, = packet-length/bandwidth, as given by Eq. (1.2). The parameter f is
calculated as

ot
S

B=-L= R (1.11)

The velocity of electromagnetic waves in dry air equals v = 3 x 10® m/s, and in copper or optical
fiber it equals v = 2 x 10® m/s. Therefore, propagation time is between 3.33 and 5 nanoseconds
per meter (ns/m). Given a wireless local area network (W-LAN) where all stations are located
within a 100 m diameter, the (maximum) propagation delay is ¢, = 333 ns. If the bandwidth (or,
data rate) of the same W-LAN is 1 Mbps, the transmission delay for a 1 Kbytes packet equals ¢, =
8.192 ms. The relationship is illustrated in Figure 1-24(a). Recall from Figure 1-6 that on a 1
Mbps link, 1 bit is 1 us wide, so the leading edge of the first bit will reach the receiver long
before the sender is done with the transmission of this bit. In other words, the propagation delay
is practically negligible. On the other hand, the altitude of a geosynchronous satellite is 35,786
km above the Earth surface, so the propagation delay is #, = 119.3 ms. As shown in Figure 1-24,
the respective S parameters for these networks are fan = 0.00004 and fsss = 14.6. The time
taken by the electronics for detection should also be added to the propagation time when
computing /3, but it is usually ignored as negligible. We will see later how parameter J plays an
important role in network design.

The ALOHA Protocol

Problems related to this section: Problem 1.13 — Problem 1.15

A simple protocol for broadcast media is called ALOHA. There are two versions of ALOHA:
pure or plain ALOHA transmits packets as soon as they become ready, and slotted ALOHA which
transmits packets only at regular intervals. The state diagram for the sender side of both variations
of the protocol is shown in Figure 1-25. Plain ALOHA sends the packet immediately as it
becomes ready, while slotted ALOHA has to wait for the start of the next time interval (or, slot).
In other words, in slotted ALOHA, all transmissions are strictly clocked at regular time intervals.
After transmission, the sender stops-and-waits for the acknowledgement. If the acknowledgement
arrives, this is the end of the current cycle, and the sender expects the next packet to become
available for sending. If the acknowledgement does not arrive, the sender assumes that this is
because collision happened and it increases its backoff interval. The backoff interval is the

Chapter 1 e Introduction to Computer Networking 39

Attempts limit
exceeded

New packet

ENO
Figure 1-25: The sender’s state diagram for ALOHA and Slotted ALOHA protocols.

amount of time the sender waits to reduce the probability of collision with another sender that
also has a packet ready for transmission. After waiting for backoff countdown, the sender repeats
the cycle and retransmits the packet. As we know from the earlier discussion, the sender does not
persist forever in resending the packet, and if it exceeds a given threshold, the sender gives up
and aborts the retransmissions of this packet.

ALOHA is a very simple protocol, almost identical to Stop-and-Wait ARQ, except for the
backoff interval. ALOHA also does not initiate transmission of the next packet before ensuring
that the current packet is correctly received. Let us first consider a pure ALOHA protocol. To
derive its throughput, we make the following assumptions:

e There are a total of m wireless nodes and each node generates new packets for
transmission according to a Poisson process (see Appendix) with rate A/m.

e Each node can hold only a single packet at a time, and the packet is stored until the node
receives a positive acknowledgement that the packet is successfully transmitted. While
storing the packet, the node is said to be backlogged.

e When a new packet is generated, what happens to it depends on whether or not the node
is already backlogged. If the node it is backlogged, the newly generated packet is
discarded; if the node is not backlogged, the newly generated packet is immediately
transmitted (in pure ALOHA) and stored until acknowledgement is received.

e A backlogged node can retransmit at any moment with a certain probability.

e All packets have the same length. The time needed for packet transmission (transmission
delay) is called s/ot length, and it is normalized to equal 1.

e If only a single node transmits, the transmission is always successful (noiseless channel);
if two or more nodes transmit simultaneously, there will be a collision and all collided

lvan Marsic e Rutgers University 40

System Output = S Key:

P e e e E L LS D “Fresh” station
System . o
Receiver /\ ! “Backlogged” station

——
Transmission Attempts = G
IS

—

(a)

Userm

System Input =m % =1

A > Channel » S
(b) Fresh Combined, fresh and Successfully
packets retransmitted packets transmitted packets

Collided packets
(to be retransmitted)
Figure 1-26: (a) ALOHA system representation. (b) Modeled as a feedback system.

packets will be lost; all nodes receive instantaneous feedback about the success or failure
of the transmission. In other words, the acknowledgement is received immediately upon
packet transmission, without any propagation delays.

This system can be modeled as in Figure 1-26. For a reasonable throughput, we would expect
0 <A < 1 because the system can successfully carry at most one packet per slot, i.e., only one
node can “talk” (or, transmit) at a time. Also, for the system to function, the departure rate of
packets out from the system should equal the arrival rate in equilibrium. In equilibrium, on one
hand, the departure rate cannot physically be greater than the arrival rate; on the other hand, if it
is smaller than the arrival rate, all the nodes will eventually become backlogged.

The following simplified derivation yields a reasonable approximation. In addition to the new
packets, the backlogged nodes generate retransmissions of the packets that previously suffered
collisions. If the retransmissions are sufficiently randomized, it is plausible to approximate the
total number of transmission attempts per slot, retransmissions and new transmissions combined,
as a Poisson random variable with some parameter G > A.

The probability of successful transmission (i.e., throughput S) is the probability of an arrival
times the probability that the packet does not suffer collision; because these are independent
events, the joint probability is the product of their probabilities. The probability of an arrival is

Chapter 1 e Introduction to Computer Networking 41

Sender A Receiver Sender B
| propagation
l delay from A

transmission

delay
T

propagation .
delay from B T

receiver’'s
period

(for receiving data from A)

1
[
|
[
[
[
|
[
* | vulnerable
[
[
[
[
[
|
[

e—— Tlme

vulnerable period length = 2 x packet-time

Figure 1-27: Thereceiver’svulnerable period during which collisions are possible.

Equilibrium
Slotted ALOHA: S = Ge©

o
~
\

o
w
\

—Arrival rate 4

Pure ALOHA: S = Ge=26
>

o
=
|

i i \ \ —
0 0.5 1.0 15 2.0 3.0
G (transmission attempts per packet time)

S (throughput per packet time)
o
N
T

Figure 1-28: Efficiency of the ALOHA MAC protocol. (In the case of Slotted ALOHA, the
packet timeisequal tothe ot time.)

P,=7- G, where 7= 1 is the slot duration and G is the total arrival rate on the channel
(new and backlogged packets, combined).

The packet will not suffer collision if no other senders have transmitted their packets during the
so-called “vulnerable period” or “window of vulnerability.” We define receiver’s vulnerable
period as the time during which other transmissions may cause collision with sender’s
transmission. For pure ALOHA, the vulnerable period is two slots long [— 1, £ + 1), as illustrated
in Figure 1-27. Any transmission that started within one packet-time before this transmission or
during this transmission will overlap with this transmission and result in a collision. For slotted
ALOHA, the vulnerable period lasts one slot [¢, # + 1), assuming that all stations are synchronized
and can start transmission only at slot intervals. From the Poisson distribution formula (see
Appendix A), Py = P{A(t+ 1) — A(¥) = 0}. With 7=1 for slotted ALOHA, we have

S=P,-Py=(1-G)-Pld(t+1) - A(t)=0}=G - (1.12)

For pure ALOHA, 7=2,s50 5 = G-¢*“. In equilibrium, the arrival rate (system input), A, to the
system should be the same as the departure rate (system output), S = G-¢ . The reader should
recall Figure 1-26(a), and this relationship is illustrated in Figure 1-28.

We see that for slotted ALOHA, the maximum possible throughput of 1/e = 0.368 occurs at G =
1. This is reasonable, because if G < 1, too many idle slots are generated, and if G > 1, too many
collisions are generated. At G = 1, the packet departure rate is one packet per packet time (or, per

lvan Marsic e Rutgers University 42

Table 1-1: Characteristics of three basic CSM A protocols when the channel is sensed idle or
busy. If a transmission was unsuccessful, all three protocols perform backoff and repeat.

CSMA Protocol | Sender’slistening-and-transmission rules

Nonpersistent If medium is idle, transmit.
If medium is busy, wait random amount of time and sense channel again.
1-persistent If medium is idle, transmit (i.e., transmit with probability 1).

If medium is busy, continue sensing until channel is idle;

then transmit immediately (i.e., transmit with probability 1).
p-persistent If medium is idle, transmit with probability p.
If medium is busy, continue sensing until channel is idle;

then transmit with probability p.

slot), the fraction 1/e of which are newly arrived packets and 1—l are the successfully
e

retransmitted backlogged packets.

Carrier Sense Multiple Access Protocols (CSMA)
Problems related to this section: Problem 1.17 — ?

The key problem with the ALOHA protocol is that it employs a very simple strategy for
coordinating the transmissions: a node transmits a new packet as soon as it is created, and in case
of collision, it retransmits with a retransmission probability.

An improved coordination strategy is to have the nodes “listen before they talk.” That is, the
sender listens to the channel before transmitting and transmits only if the channel is detected as
idle. Listening to the channel is known as carrier sense, which is why this strategy has the name
carrier sense multiple access (CSMA).

The medium is decided idle if there are no transmissions for time duration the parameter 4 time
units, because this is the propagation delay between the most distant stations in the network. The
time taken by the electronics for detection should also be added to the propagation time when
computing channel-sensing time, but it is usually ignored as negligible.

The key issues with a listen-before-talk approach are:

(1) When to listen and, in case the channel is found busy, whether to keep listening until it
becomes idle or stop listening and try later

(2) Whether to transmit immediately upon finding the channel idle or slightly delay the
transmission

Upon finding the channel busy, the node might listen persistently until the end of the ongoing
transmission. Another option is to listen periodically. Once the channel becomes idle, the node
might transmit immediately, but there is a danger that some other nodes also waited ready for
transmission, which would lead to a collision. Another option is, once the channel becomes idle,
to hold the transmission briefly for a random amount of time, and only if the channel remains
idle, start transmitting the packet. This reduces the chance of a collision significantly, although it
does not remove it, because both nodes might hold their transmissions for the same amount of

Chapter 1 e Introduction to Computer Networking 43

Range of B's Range of C's

Range of A’s Range of C's o
transmissions transmission

transmissions transmissions

(2) (b)

Cis a“hidden station” to A Cis an “exposed station” to B

Figure 1-29: (a) Hidden station problem: C cannot hear A’'s transmissions. (b) Exposed
station problem: C deferstransmission to D because it hears B’ stransmission.

time. Several CSMA protocols that make different choices regarding the listening and
transmission start are shown in Table 1-1. For each of the protocols in Table 1-1, when the sender
discovers that a transmission was unsuccessful (by a retransmission timer timeout), the sender
behaves the same way: it inserts a randomly distributed retransmission delay (backoff) and
repeats the listening-and-transmission procedure.

The efficiency of CSMA is better than that of ALOHA because of CSMA’s shorter vulnerable
period: The stations will not initiate transmission if they sense a transmission already in progress.
Notice that nonpersistent CSMA is less greedy than 1-persistent CSMA in the sense that, upon
observing a busy channel, it does not continually sense it with intention of seizing it immediately
upon detecting the end of the previous transmission (Table 1-1). Instead, nonpersistent CSMA
waits for a random period and then repeats the procedure. Consequently, this protocol leads to
better channel utilization but longer delays than 1-persistent CSMA.

Wireless broadcast networks show some phenomena not present in wireline broadcast networks.
The air medium is partitioned into broadcast regions, rather than being a single broadcast
medium. This is simply due to the exponential propagation loss of the radio signal, as discussed
earlier in Section 1.1.2. As a result, two interesting phenomena arise: (7) not all stations within a
partition can necessarily hear each other; and, (if) the broadcast regions can overlap. The former
causes the hidden station problem and the latter causes the exposed station problem.

Unlike the wireline broadcast medium, the transitivity of connectivity does not apply. In wireline
broadcast networks, such as Ethernet, if station 4 can hear station B and station B can hear station
C, then station A can hear station C. This is not always the case in wireless broadcast networks, as
seen in Figure 1-29(a). In the hidden station problem, station C cannot hear station A’s
transmissions and may mistakenly conclude that the medium is available. If C does start
transmitting, it will interfere at B, wiping out the frame from A. Generally, a station X is
considered to be hidden from another station Y in the same receiver’s area of coverage if the
transmission coverages of the transceivers at X and Y do not overlap. A station that can sense the
transmission from both the source and receiver nodes is called covered station.

Different air partitions can support multiple simultaneous transmissions, which are successful as
long as each receiver can hear at most one transmitter at a time. In the exposed station problem,

Ivan Marsic e Rutgers University 44

station C defers transmission to D because it hears B’s transmission, as illustrated in Figure
1-29(b). If C senses the medium, it will hear an ongoing transmission and falsely conclude that it
may not send to D, when in fact such a transmission would cause bad reception only in the zone
between B and C, where neither of the intended receivers is located. Thus, the carrier sense
mechanism is insufficient to detect all transmissions on the wireless medium.

Hidden and exposed station problems arise only for CSMA-type protocols. ALOHA, for instance,
does not suffer from such problems because it does not perform channel sensing before
transmission (i.e., it does not listen before talking). Under the hidden stations scenario, the
performance of CSMA degenerates to that of ALOHA, because carrier-sensing mechanism
essentially becomes useless. With exposed stations it becomes worse because carrier sensing
prevents the exposed stations from transmission, where ALOHA would not mind the busy
channel.

CSMA/CD

Problems related to this section: ? — ?

Persistent and nonpersistent CSMA protocols are clearly an improvement over ALOHA because
they ensure that no station begins to transmit when it senses the channel busy. Another
improvement is for stations to abort their transmissions as soon as they detect a collision®.
Quickly terminating damaged packets saves time and bandwidth. This protocol is known as
CSMA with Collision Detection, or CSMA/CD, which is a variant of 1-persistent CSMA. It works
as follows (Figure 1-30):

* In networks with wired media, the station compares the signal that it places on the wire with the one
observed on the wire to detect collision. If these signals are not the same, a collision has occurred.

Chapter 1 e Introduction to Computer Networking 45

OK to retransmit

2
etransmission Q.
Limit Exceeded Qes,

€ Delay

Py [Range < 2%Range]

Figure 1-30: The sender’s state diagram for CSMA/CD protocol.

1. Wait until the channel is idle.

2. When the channel is idle, transmit immediately and sense the carrier during the
transmission (or, “listen while talking”).

3. If you detect collision, abort the ongoing packet transmission, double the backoff range,
choose a random amount of backoff delay, wait for this amount of delay, and go to step 1.

A given station can experience a collision during the initial part of its transmission (the collision
window) before its transmitted signal has had time to propagate to all stations on the CSMA/CD
medium. Once the collision window has passed, a transmitting station is said to have acquired the
medium; subsequent collisions are avoided because all other stations can be assumed to have
noticed the signal and to be deferring to it. The time to acquire the medium is thus based on the
round-trip propagation time. If the station transmits the complete frame successfully and has
additional data to transmit, it will again listen to the channel before attempting a transmission

(Figure 1-30).

The collision detection process is illustrated in Figure 1-31. At time t, both stations are listening
ready to transmit. The CSMA/CD protocol requires that the transmitter detect the collision before
it has stopped transmitting its frame. Therefore, the transmission time of the smallest frame must
be larger than one round-trip propagation time, i.e., 23, where f is the propagation constant
described in Figure 1-24. The station that detects collision must transmit a jam signal, which
carries a special binary pattern to inform the other stations that a collision occurred. The jam
pattern consists of 32 to 48 bits. The transmission of the jam pattern ensures that the collision
lasts long enough to be detected by all stations on the network.

lvan Marsic e Rutgers University 46

¢

STA1 @% STA 2 @%
En —] Both stations are listening B —]
tl * *
€ : : £
Time Megins transmission @%
[z —] [z =]
tz * —) *
€ : : £
STA2 begins
transmission
t3 (I I /)
G |
STA2 detects
@% collision and
5 —] q i —] transmits
t 4 ¢ | | jam signal
<
L
STAL1 detects -
collision before Igl%
ending transmission Igl % _}
* *
t5 1 1
e LI LR

Figure 1-31: Callision detection by CSMA/CD stations.

It is important to realize that collision detection is an analog process. The station’s hardware must
listen to the cable while it is transmitting. If what it reads back is different from what it is putting
out, it knows that a collision is occurring.

After k collisions, a random number of slot times is chosen from the backoff range [0, 25— 1].
After the first collision, each sender might wait 0 or 1 slot times. After the second collision, the
senders might wait 0, 1, 2, or 3 slot times, and so forth. As the number of retransmission attempts
increases, the number of possibilities for the choice of delay increases. The backoff range is
usually fruncated, which means that after a certain number of increases, the retransmission
timeout reaches a ceiling and the exponential growth stops. For example, if the ceiling is set at
k=10, then the maximum delay is 1023 slot times. In addition, as shown in Figure 1-30, the
number of attempted retransmissions is limited, so that after the maximum allowed number of
retransmissions the sender gives up and aborts the retransmission of this frame. The sender resets
its backoff parameters and retransmission counters at the end of a successful transmission or if
the transmission is aborted.

Notice that CSMA/CD achieves reliable transmission without acknowledgements. If the sender
does not detect collision, this means that the sender has not detected any errors during the
transmission. Therefore, it simply assumes that the receiver received the same signal (i.e., the
frame was received error free), and there is no need for an acknowledgement.

Here is an example:

Example 1.1 [llustration of a Timing Diagram for CSMA/CD

Consider a local area network of three stations using the CSMA/CD protocol shown in Figure 1-30. At
the end of a previous transmission, station-1 and station-3 each have one frame to transmit, while

Chapter 1 e Introduction to Computer Networking 47

Previous CWgry =2 CWgps, =4 CWgrp, =8 CWgrn, = 16 Time w—
frame >
r r r STAL, 1st frame
STA1 14
1lo 1‘0 32‘10 6543210
_2 _A _0 B _ — Key:
= = =Y CWgpa, =2 CWgra, =0 -
Nt Neh? NP STAZ Sthz Collision (abort
transmission)
STA2, 1st frame STA2, 2nd frame
STA2 0 0 1o I Jam signal
[l Backoff slot
CWerns =2 |CWgrpg =4 CWeras =8 CWgras = 16 CWera3=0
r r r STA3, 1st frame .
STA 3 >
0 2 ‘1 0 32 ‘1 0 210

Figure 1-32: Example of three CSMA/CD stations transmission with collision and backoff.

station-2 has two frames. Assume that all frames are of the same length. After the first collision
assume that the randomly selected backoff values are: STA1 = 1; STA2 = 0; STA3=0. Next, after the
second collision, the backoff values are: STA1 =1; STA2 = 0; STA3=2. Then, after the third collision,
the backoff values are: STA1 = 3; STA2 = 1; STA3=3. Finally, after the fourth collision the backoff
values are: STA1 = 6; (STA2 is done by now); STA3=2. Show the timing diagram and indicate the
contention window (CW) sizes.

The solution is shown in Figure 1-32. Initially, all three stations attempt transmission and there is a
collision; they all detect the collision, abort their transmissions in progress, and send the jam signal.
After this, all three stations set their contention window (CW) size to 2 and randomly choose their
delay periods from the set {0, ..., CW} = {0, 1}. As given in the problem statement, station-1 chooses
its backoff delay as 1, while stations 2 and 3 booth choose their backoff delay as 0. This leads to the
second collision. After the second backoff delay, station-2 succeeds in transmitting its first frame and
resets its backoff parameters (including the contention window CW) to their default values. The other
two stations keep the larger ranges of the contention window because they have not successfully
transmitted their frames yet. This gives station-2 an advantage after the third collision. Because it
chooses the backoff delay from a shorter range of values (CW=2), it is more likely to select a small
value and, therefore, again succeed in transmitting another frame.

To derive the performance of the CSMA/CD protocol, we will assume a network of m stations
with heavy and constant load, where all stations are always ready to transmit. We make a
simplifying assumption that there is a constant retransmission probability in each slot. If each
station transmits during a contention slot with probability p, the probability A that some station
will acquire the channel in that slot is

A=m-p-(1-p)"

A is maximized when p = 1/m, with 4 — 1/e as m — . Next, we calculate the average number of
contention slots that a station wastes before it succeeds in transmitting a packet. The probability
that the station will suffer collision (j — 1) times as succeed on the ;™ attempt (i.c., that the
contention interval has exactly ; slots in it) is A4-(1 — 4)” . Therefore, the average number of slots
per contention is given as the expected value

iA4-(1—A4YV ==
D j-A-(1=4)" ==

J=0

lvan Marsic e Rutgers University 48

Because each slot is 2- 4 long, the mean contention interval, w, is 2- 5 /4. Assuming optimal p, the
average number of contention slots is never more than e, so w is at most 2-fe = 5.4xf3. If an
average frame takes 7, = L/R seconds to transmit, then the channel efficiency is
n _ L/R _ 1
MV TIR+2-B/4 142-f-e-R/L

(1.13)

where 4 is substituted with the optimal value 1/e.

We will see in Section 1.5.2 how IEEE 802.3 LAN, known as Ethernet, uses CSMA/CD.

CSMA/CA

Problems related to this section: Problem 1.20 — Problem 1.23
In wireless LANS, it is not practical to do collision detection because of two main reasons:

1. Implementing a collision detection mechanism would require the implementation of a full
duplex radio, capable of transmitting and receiving at once. Unlike wired LANs, where a
transmitter can simultaneously monitor the medium for a collision, in wireless LANs the
transmitter’s power overwhelms a collocated receiver. The dynamic range of the signals
on the medium is very large. This is mainly result of the propagation loss, where the
signal drops exponentially from its source (recall Figure 1-7!). Thus, a transmitting
station cannot effectively distinguish incoming weak signals from noise and the effects of
its own transmission.

2. In a wireless environment, we cannot assume that all stations hear each other, which is
the basic assumption of the collision detection scheme. Again, due to the propagation loss
we have the following problem. The fact that the transmitting station senses the medium
free does not necessarily mean that the medium is free around the receiver area. (This is
the known as the hidden station problem, as described in Figure 1-29.)

As a result, when a station transmits a frame, it has no idea whether the frame collided with
another frame until it receives an acknowledgement from the receiver (or times out due to the
lack of an acknowledgement). In this situation, collisions have a greater effect on performance
than with CSMA/CD, where colliding frames can be quickly detected and aborted while the
transmission is in progress. Thus, it makes sense to try to avoid collisions, if possible, and a
popular scheme for this is CSMA/Collision Avoidance, or CSMA/CA. CSMA/CA is essentially
p-persistence, with the twist that when the medium becomes idle, a station must wait for a time
period to learn about the fate of the previous transmission before contending for the medium.
Figure 1-33 shows sender’s state diagram. After a frame was transmitted, the maximum time until
a station detects a collision is twice the propagation time of a signal between the stations that are
farthest apart plus the detection time. Thus, the station needs at least 2x/to ensure that the station
is always capable of determining if another station has accessed the medium at the start of the
previous slot. The interval between frames (or, packets) needed for the carrier-sense mechanism
to determine that the medium is idle and available for transmission is called a backoff slot.

Chapter 1 e Introduction to Computer Networking 49

Retransmission
Limit Exceeded
A4bo

-

O\
>

)
oge
p4
o
>
9]
P
\K\?N\
by
b

()
Se pelay
[Range < 2*Range |

Figure 1-33: The sender’s state diagram for CSM A/CA protocol.

When a station wants to transmit data, it first senses the medium whether it is busy. If the medium
is busy, the station enters the access deferral state. The station continuously senses the medium,
waiting for it to become idle. When the medium becomes idle, the station first sets a contention
timer to a time interval randomly selected in the range [0, CW—1], where CW is a predefined
contention window length. Notice that unlike CSMA/CD (Figure 1-30), CSMA/CA station
performs carrier sensing after every slot counted down, i.e., it is listening during the contention
window (Figure 1-33). In other words, during the backoff procedure, if the station senses the
channel as idle for the duration of a backoff slot, the station decrements the counter by one. If the
channel is sensed as busy, the station freezes the countdown and waits for the channel to become
idle. The station can transmit the frame after it counts down to zero.

After transmitting a frame, the station waits for the receiver to send an ACK. If no ACK is
received, the frame is assumed lost to collision, and the source tries again, choosing a contention
timer at random from an interval twice as long as the one before (binary exponential backoff).
The decrementing counter of the timer guarantees that the station will transmit, unlike a
p-persistent approach where for every slot the decision of whether or not to transmit is based on a
fixed probability p or g,. Thus regardless of the timer value a station starts at, it always counts
down to zero. If the station senses that another station has begun transmission while it was
waiting for the expiration of the contention timer, it does not reset its timer, but merely freezes it,

lvan Marsic e Rutgers University 50

and restarts the countdown when the frame completes transmission. In this way, stations that
happen to choose a longer timer value get higher priority in the next round of contention.

As it can be seen, CSMA/CA deliberately introduces delay in transmission in order to avoid
collision. Avoiding collisions increases the protocol efficiency in terms of the percentage of
frames that get successfully transmitted (useful throughput). Notice that efficiency measures only
the ratio of the successful transmission to the total number of transmissions. However, it does not
specify the delays that result from the deferrals introduced to avoid the collisions. Error!
Reference source not found. shows the qualitative relationship for the average packet delays,
depending on the packet arrival rate.

We will see in Section 1.5.3 how IEEE 802.11 wireless LAN, known as Wi-Fi, uses CSMA/CA.

1.4 Routing and Addressing

In general networks, arbitrary source-destination node pairs communicate via intermediary
network nodes. These intermediary nodes are called switches or routers and their main purpose is
to bring packets to their destinations. A good routing protocol will also do it in an efficient way,
meaning via the shortest path or the path that is in some sense optimal. The data-carrying capacity
of the resulting source-to-destination path directly depends on the efficiency of the routing
protocol employed.

Bridges, Switches, and Routers

A packet switch is a network device with several incoming and outgoing links that forwards
packets from incoming to outgoing links. Each attachment to a network is known as a network
interface or network port. When a packet is received by a switch, the appropriate outgoing port
is decided based on the packet’s guidance information (contained in the packet header).

Two general approaches are used to interconnect multiple networks: bridges or routers. Bridges
are simple networking devices that are used for interconnecting local area networks (LANSs) that
use identical protocols for the physical and link layers of their protocol stack. The terms “bridge”
and “switch” are often used synonymously. Because bridged networks use the same protocols, the
amount of processing required at the bridge is minimal. There are also more sophisticated
bridges, which are capable of mapping from one link-layer format to another. More information
on bridges and switches is available in Section 1.5.2.

Routers are general-purpose packet switches that can interconnect arbitrary networks. A router
has two important functions: (1) routing, which is the process of finding and maintaining optimal
paths between source and destination nodes; and, (2) forwarding (or switching), which is the
process of relaying incoming data packets along the routing path. A router is a switch that builds
its forwarding table by routing algorithms. Routing often searches for the shortest path, which in
abstract graphs is a graph distance between the nodes. Shortest path can be determined in
different ways, such as:

Chapter 1 e Introduction to Computer Networking

z

/

“Interface 2”

“Interface 3"

“Packets”

51

nf'_/“Forwarding table”

Forwarding table

(b) Destination Output Interface
ece.rutgers.edu Interface 3
cs.rutgers.edu Interface 2
—
R

Figure 1-34: A router can be thought of as a crossroads, with connecting points
corresponding to the router interfaces. When a car (packet) enters the intersection, it is

directed out by looking up the forwarding table.

e Knowing the graph topology, calculate the shortest path

e Send “boomerang” probes on round trips to the destination along the different outgoing
paths. Whichever returns back the first is the one that carries the information about the

shortest path

Figure 1-34 illustrates an analogy between a crossroads and a router. Similar to a road sign, the
router maintains a forwarding table that directs the incoming packets to the appropriate exit
interfaces, depending on their final destination. Of course, as the road signs on different road
intersections list different information depending on intersection’s location relative to the
roadmap, so the routing tables in different routers list different information depending on router’s

location relative to the rest of the network.

A router is a network device that interconnects two or more computer LS

networks, where each network may be using a different link-layer protocol.
The two major problems of delivering packets in networks from an |,pe 0.

arbitrary source to an arbitrary location are: Network
e How to build the forwarding tables in all network nodes Layer 1:
Link

e How to do forwarding (efficiently)

Routing Protocol
(OSPF, RIP, BGP, ...)

g]

Usually, a requirement is that the path that a packet takes from a source to a destination should be
in some sense optimal. There are different optimality metrics, such as quickest, cheapest, or most

lvan Marsic e Rutgers University 52

secure delivery. Later, in Sections 1.4.2 and 1.4.3, we will learn about some algorithms for
finding optimal paths, known as routing algorithms.

Pseudo code of a routing protocol module is given in Listing 1-2.

Listing 1-2: Pseudo code of a routing protocol module.

1 public class RoutingProtocol extends Thread {

2 // specifies how frequently this node advertises its routing info

3 public static final int ADVERTISING PERIOD = 100;

4 // link layer protocol that provides services to this protocol

5 private ProtocolLinkLayer linkLayerProtocol;

6 // associative table of neighboring nodes

6a // (associates their addresses with this node's interface cards)

7 private HashMap neighbors;

8 // information received from other nodes

9 private HashMap othersRoutingInfo;

10 // this node's routing table

11 private HashMap myRoutingTable;

12 // constructor

13 public RoutingProtocol (

13a ProtocolLinkLayer linkLayerProtocol

13b) |

14 this.linklLayerProtocol = linkLayerProtocol;

15 populate myRoutingTable with costs to my neighbors;
16

17 // thread method; runs in a continuous loop and sends routing-info advertisements
17a // to all the neighbors of this node

18 public void run() {

19 while (true) {

20 try { Thread.sleep (ADVERTISING PERIOD); }

21 catch (InterruptedException e)

22 for (all neighbors) {

23 Boolean status = linkLayerProtocol.send() ;
24 // If the link was down, update own routing & forwarding tables
24a // and send report to the neighbors

25 if (!status) {

26 }

27 }

28 }

29 }

30 }

31 // upcall method (called from the layer below this one, in a bottom-layer thread!)
31la // the received packet contains an advertisement/report from a neighboring node

32 public void handle (byte[] data) throws Exception (

Chapter 1 e Introduction to Computer Networking 53

33 // reconstruct the packet as in Listing 1-1 (Section 1.1.4) for a generic handle ()
33a // but there is no handover to an upper-layer protocol;

34 // update my routing table based on the received report

35 synchronized (routingTable) { // critical region

36 } // end of the critical region

37 // update the forwarding table of the peer forwarding protocol

37a // (note that this protocol is running in a different thread!)

38 call the method setReceiver() in Listing 1-1

39 }

40 }

The code description is as follows: ... to be described ...

As will be seen later, routing is not an easy task. Optimal routing requires a detailed and timely
view of the network topology and link statuses. However, obtaining such information requires a
great deal of periodic messaging between all nodes to notify each other about the network state in
their local neighborhoods. This is viewed as overhead because it carries control information and
reduces the resources available for carrying user information. The network engineer strives to
reduce overhead. In addition, the finite speed of propagating the messages and processing delays
in the nodes imply that the nodes always deal with an outdated view of the network state.
Therefore, in real-world networks routing protocols always deal with a partial and outdated view
of the network state. The lack of perfect knowledge of the network state can lead to a poor
behavior of the protocol and/or degraded performance of the applications.

Path MTU is the smallest maximum transmission unit of any link on the current path (also known
as route) between two hosts. The concept of MTU is defined in Section 1.1.3.

This section deals mainly with the control functions of routers that include building the routing
tables. Later, in Section 4.1 we will consider how routers forward packets from incoming to
outgoing links. This process consists of several steps and each step takes time, which introduces
delays in packet delivery. Also, due to the limited size of the router memory, some incoming
packets may need to be discarded for the lack of memory space. Section 4.1 describes methods to
reduce forwarding delays and packet loss due to memory shortage.

1.4.1 Networks, Internets, and the IP Protocol

A network is a set of computers directly connected to each other, i.e., with no intermediaries. A
network of networks is called internetwork.

lvan Marsic e Rutgers University 54

Network 1:

nBEE S Jult

% NetworkZ:D D

Wi-Fi

Interfaces on
Network 2

Interfaces on

Network 1
Network 3:

Point- to-point Interfaces on

Network 3

Interfaces on

Network 4: Network 4

Point-to-point Network 5: Ethernet

Interfaces on
E Network 5

(2) E (b)

Figure 1-35: Exampleinternetwork: (a) The physical networksinclude 2 Ether nets, 2 point-
to-point links, and 1 Wi-Fi network. (b) Topology of the internetwork and interfaces.

Consider an example internetwork in Figure 1-35(a), which consists of five physical networks
interconnected by two routers. The underlying network that a device uses to connect to other
devices could be a LAN connection like Ethernet or Token Ring, a wireless LAN link such as
802.11 (known as Wi-Fi) or Bluetooth, or a dialup, DSL, or a T-1 connection. Each physical
network will generally use its own frame format, and each format has a limit on how much data
can be sent in a single frame (link MTU, Section 1.1.3).

Two types of network nodes are distinguished: hosts vs. routers. Each host usually has a single
network attachment point, known as network interface, and therefore it cannot relay packets for
other nodes. Even if a host has two or more network interfaces, such as node B in Figure 1-35(a),
it is not intended to be used for transit traffic. Hosts usually do not participate in the routing
algorithm. Unlike hosts, routers have the primary function of relaying transit traffic from other
nodes. Each router has a minimum of two, but usually many more, network interfaces. In Figure
1-35(a), both routers R1 and R2 have three network attachment points (interfaces) each. Each
interface on every host and router must have a network address that is globally unique.” A node
with two or more network interfaces is said to be multihomed® (or, multiconnected). Notice that
multihomed hosts do rot participate in routing or forwarding of transit traffic. Multihomed hosts
act as any other end host, except they may use different interfaces for different destinations,
depending on the destination distance.

The whole idea behind a network layer protocol is to implement the concept of a “virtual
network™ where devices talk even though they are far away, connected using different physical
network technologies. This means that the layers above the network layer do not need to worry
about details, such as differences in packet formats or size limits of underlying link-layer

> This is not necessarily true for interfaces that are behind NATS, as discussed later.

® Most notebook computers nowadays come with two or more network interfaces, such as Ethernet, Wi-Fi,
Bluetooth, etc. However, the host becomes “multihomed” only if two or more interfaces are assigned
unique network addresses and they are simultaneously active on their respective physical networks.

Chapter 1 e Introduction to Computer Networking 55

0 7 8 15 16 31
. . A
4'b.'t 4-bit 8-bit type of service 16-bit datagram length
version | header (TOS) flags (in bytes)
number length — y
H DM
16-bit datagram identification g FlE 13-bit fragment offset
8-bit time to live . . 20
(TTL) 8-bit user protocol 16-bit header checksum bytes
32-bit source IP address
32-hit destination IP address
A 4
/ options (if any) /
/ data /

Figure 1-36: Theformat of | Pv4 datagrams.

technologies. The network layer manages these issues seamlessly and presents a uniform
interface to the higher layers. The most commonly used network layer protocol is the Infernet
Protocol (IP). The most commonly deployed version of IP is version 4 (IPv4). The next
generation, IP version 6 (IPv6),’ is designed to address the shortcomings of IPv4 and currently

there is a great effort in transitioning the Internet to IPv6. IPv6 is reviewed Lover 3 w w
. . ayer 3:
in Section 8.1. End-to-End
CH—
Layer 2:
IP Header Format Network | IP (Internet Protocol)
Data transmitted over an internet using IP is carried in packets called IP 7S 4

wr W

datagrams. Figure 1-36 shows the format of IP version 4 datagrams. Its Layerl:
fields are as follows: Link

Version number: This field indicates version number, to allow evolution of the protocol. The
value of this field for IPv4 datagrams is 4.

Header length: This field specifies the length of the IP header in 32-bit words. Regular header
length is 20 bytes, so the default value of this field equals 5, which is also the minimum allowed

1P version 5 designates the Stream Protocol (SP), a connection-oriented network-layer protocol. IPv5 was
an experimental real-time stream protocol that was never widely used.

lvan Marsic e Rutgers University 56

value. In case the options field is used, the value can be up to 4% — 1 = 15, which means that the
options field may contain up to (15 — 5) X 4 = 40 bytes.

Type of service: This field is used to specify the treatment of the datagram in its transmission
through component networks. It was designed to carry information about the desired quality of
service features, such as prioritized delivery. It was never widely used as originally defined, and
its meaning has been subsequently redefined for use by a technique called Differentiated Services
(DS), which will be described later in Section 3.3.5.

Datagram length: Total datagram length, including both the header and data, in bytes.

Identification: This is a sequence number that, together with the source address, destination
address, and user protocol, is intended to identify a datagram uniquely.

Flags: There are three flag bits, of which only two are currently defined. The first bit is reserved
and currently unused. The DF (Don’t Fragment) bit prohibits fragmentation when set. This bit
may be useful if it is known that the destination does not have the capability to reassemble
fragments. However, if this bit is set and the datagram exceeds the MTU size of the next link, the
datagram will be discarded. The MF (More Fragments) bit is used to indicate the fragmentation
parameters. When this bit is set, it indicates that this datagram is a fragment of an original
datagram and this is not its last fragment.

Fragment offset: This field indicates the starting location of this fragment within the original
datagram, measured in 8-byte (64-bit) units. This implies that the length of data carried by all
fragments before the last one must be a multiple of 8 bytes. The reason for specifying the offset
value in units of 8-byte chunks is that only 13 bits are allocated for the offset field, which makes
possible to refer to 8,192 locations. On the other hand, the datagram length field of 16 bits allows
for datagrams up to 65,536 bytes long. Therefore, to be able to specify any offset value within an
arbitrary-size datagram, the offset units are in 65,536 + 8,192 = 8-byte units.

Timeto live: The TTL field specifies how long a datagram is allowed to remain in the Internet,
to catch packets that are stuck in routing loops. This field was originally set in seconds, and every
router that relayed the datagram decreased the TTL value by one. In current practice, a more
appropriate name for this field is sop limit counter and its default value is usually set to 64.

User protocol: This field identifies the higher-level protocol to which the IP protocol at the
destination will deliver the payload. In other words, this field identifies the type of the next
header contained in the payload of this datagram (i.e., after the IP header). Example values are 6
for TCP, 17 for UDP, and 1 for ICMP. A complete list is maintained at
http://www.iana.org/assignments/protocol-numbers.

Header checksum: This is an error-detecting code applied to the header only. Because some
header fields may change during transit (e.g., TTL, fragmentation fields), this field is reverified
and recomputed at each router. The checksum is formed by taking the ones complement of the
16-bit ones-complement addition of all 16-bit words in the header. Before the computation, the
checksum field is itself initialized to a value of zero.

Source | P address: This address identifies the end host that originated the datagram. Described
later in Section 1.4.4.

Destination | P address. This address identifies the end host that is to receive the datagram.

Chapter 1 e Introduction to Computer Networking 57

32-bit IPv4 address (binary representation):

10000000 00000110 00011101 10000011

dotted demmalm \ / /

(network-layer address) 128 . 6 . 29 . 131

associated by
a lookup table
host name:

(application-layer address) ecCe . r‘u"'ger's . edu

Figure 1-37: Dotted decimal notation for | P version 4 addresses.

Options: This field encodes the options requested by the sending user.

To send messages using the IP protocol, we encapsulate the data from a higher-layer (“user”
protocol into IP datagrams. These datagrams must then be sent down to the link-layer protocol,
where they are further encapsulated into the frames of whatever technology is going to be used to
physically convey them, either directly to their destination, or indirectly to the next intermediate
step in their journey to their intended recipient. (The encapsulation process is illustrated in Figure
1-13.) The link-layer protocol puts the entire [P datagram into the data portion (the payload) of its
frame format, just as IP puts end-to-end layer messages, end-to-end headers and all, into its IP
Data field.

Naming and Addressing

Names and addresses play an important role in all computer systems as well as any other
symbolic systems. They are labels assigned to entities such as physical objects or abstract
concepts, so those entities can be referred to in a symbolic language. Because computation is
specified in and communication uses symbolic language, the importance of names should be
clear. It is important to emphasize the importance of naming the network nodes, because if a node
is not named, it does not exist! We simply cannot target a message to an unknown entity®. The
main issues about naming include:

e Names must be unigue so that different entities are not confused with each other

e Names must be bound to and resolved with the entities they refer to, to determine the
object of computation or communication

It is common in computing and communications to differentiate between names and addresses of
objects. Technically, both are addresses (of different kind), but we distinguish them for easier
usage. Names are usually human-understandable, therefore variable length (potentially rather

¥ Many communication networks allow broadcasting messages to all or many nodes in the network. Hence,
in principle the sender could send messages to nodes that it does not know of. However, this is not an
efficient way to communicate and it is generally reserved for special purposes.

Ivan Marsic e Rutgers University 58

long) and may not follow a strict format. Addresses are intended for machine use, and for
efficiency reasons have fixed lengths and follow strict formatting rules. For example, you could
name your computers: “My office computer for development-related work” and “My office
computer for business correspondence.” The addresses of those computers could be: 128.6.236.10
and 128.6.237.188, respectively. Figure 1-37 illustrates the relationship between the binary
representation of an IP address, its dotted-decimal notation, and the associated name. One could
say that “names” are application-layer addresses and “addresses” are network-layer addresses.
Notice that in dotted-decimal notation the maximum decimal number is 255, which is the
maximum number that can be represented with an 8-bit field. The mapping between the names
and addresses is performed by the Domain Name System (DNS), described in Section 8.4.

Distinguishing names and addresses is useful for another reason: this separation allows keeping
the same name for a computer that needs to be labeled differently when it moves to a different
physical place (see Mobile IP in Section 8.3.4). For example, the name of your friend may remain
the same in your email address book when he or she moves to a different company and changes
their email address. Of course, the name/address separation implies that there should be a
mechanism for name-to-address binding and address-to-name resolution.

Two most important address types in contemporary networking are:

e Link-layer address of a device, also known as medium access control (MAC) address,
which is a physical address for a given network interface card (NIC), also known as
network adaptor or line card. These addresses are standardized by the IEEE group in
charge of a particular physical-layer communication standard, assigned to different
vendors, and hardwired into the physical devices.

e Network-layer address of a device, which is a logical address and can be changed by the
end user. This address is commonly referred to as /P address, because IP is by far the
most common network-layer protocol. Network-layer addresses are standardized by the
Internet Engineering Task Force (http://www.ietf.org).

Notice that a quite independent addressing scheme is used for telephone networks and it is
governed by the International Telecommunications Union (http://www.itu.int).

People designed postal addresses with a structure that facilitates human memorization and post-
service delivery of mail. So, a person’s address is structured hierarchically, with country name on
top of the hierarchy, followed by the city name, postal code, and the street address. One may
wonder whether there is anything to be gained from adopting a similar approach for network
computer naming. After all, computers deal equally well with numbers and do not need
mnemonic techniques to help with memorization and recall. It turns out that in very large
networks, the address structure can assist with more efficient message routing to the destination.
Section 1.4.4 describes how [Pv4 addresses are structured to assist routing.

Datagram Fragmentation and Reassembly
Problems related to this section: Problem 1.24

The Internet Protocol’s main responsibility is to deliver data between devices on different
networks, i.e., across an internetwork. For this purpose, the IP layer encapsulates data received

Chapter 1 e Introduction to Computer Networking 59

Host D

 MTU = 1024 bytes
Router B

point-to-point

MTU = 512 bytes OUte" €

Ethernet

MTU = 1200 bytes
Figure 1-38: Example scenario for | P datagram fragmentation.

from higher layers into IP datagrams for transmission. These datagrams are then passed down to
the link layer where they are sent over physical network links.

In Section 1.1.3, we saw that underlying network technology imposes the upper limit on the
frame (packet) size, known as maximum transmission unit (MTU). As the datagram is forwarded
along the source-destination path, each hop may use a different physical network, with a different
maximum underlying frame size. If an IP datagram is larger than the MTU of the underlying
network, it may be necessary to break up the datagram into several smaller datagrams. This
process is called fragmentation. The fragment datagrams are then sent individually and
reassembled at the destination into the original datagram.

IP is designed to manage datagram size in a seamless manner. It matches the size of the IP
datagram to the size of the underlying link-layer frame size, and performs fragmentation and
reassembly so that the upper-layer protocols are not aware of this process. Here is an example:

Example 1.2 [llustration of | P Datagram Fragmentation

In the example scenario shown in Figure 1-38, an application on host 4, say email client, needs to send
a JPEG image to the receiver at host D. Assume that the sender uses the TCP protocol (described in
Chapter 2), which in turn uses IP as its network-layer protocol. The first physical network is Ethernet
(Section 1.5.2), which for illustration is configured to limit the size of the payload it sends to 1,200
bytes. The second network uses a Point-to-Point protocol that limits the payload size 512 bytes and the
third network is Wi-Fi (Section 1.5.3) with the payload limit equal to 1024 bytes.

Figure 1-39 illustrates the process by which IP datagrams are fragmented by the source device and
possibly routers along the path to the destination. As we will learn in Chapter 2, TCP learns from IP
about the MTU of the first link and prepares the TCP packets to fit this limit, so the host’s IP layer
does not need to perform any fragmentation. However, router B needs to break up the datagram into
several smaller datagrams to fit the MTU of the point-to-point link. As shown in Figure 1-39, the IP
layer at router B creates three smaller datagrams from the first datagram it receives from host 4.

The bottom row in Figure 1-39(b) shows the contents of the fragmentation-related fields of the
datagram headers (the second row of the IP header shown in Figure 1-36). Recall that the length of
data carried by all fragments before the last one must be a multiple of 8 bytes and the offset values are
in units of 8-byte chunks. Because of this constraint, the size of the first two datagrams created by
fragmentation on router B is 508 bytes (20 bytes for IP header + 488 bytes of IP payload). Although
the MTU allows IP datagrams of 512 bytes, this would result in a payload size of 492, which is not a

Ivan Marsic e

Rutgers University

60

JPEG image
1.5 Kbytes Host A \
1,536 bytes
AL
-
“ rf:aiir Image pixels‘ / \
Application, N Router B 1,200 bytes
{1,180 0 bytes ! \396 bytes™ =
TCP | i ! < \ P IP payload
ayer e N = N P header (1,.180 bytes) eoo
TCP TCP payload TCP | TCP payload layer 4 A i
header (1,160 bytes) header | (376 bytes) / \ VO \\
508 bytes \508 bytes }, 184 bytes
; N A \ AN
P \\ \\ s S S,
|ayer \ l,20(}\bytes \ P IP payload P IP payload 1P |IPpyld
4 header | (488 bytes) header | (488 bytes) header | 164 B
IP TCP TCP payload P
header | header (1,160 bytes) header MF-fIag =1 MF-fIag =1 MF-fIag =0
MF-flag =0 MF-flag = 0 Offset =0 Offset =61 Offset =122
Offset =0 Offset = ID 73592 ID = 73592 ID = 73592
ID =73592

ID = 735/

Headers of the fragment datagrams

Figure 1-39: | P datagram fragmentation at Router B of the network shown in Figure 1-38.
The fragmentswill be reassembled at the destination (Host D) in an exactly rever se process.

multiple of 8 bytes. Notice also that the offset value of the second fragment is 61, which means that
this fragment starts at 8 X 61 = 488 bytes in the original IP datagram from which this fragment is
created.

It is important to reemphasize that lower layer protocols do not distinguish any structure in the
payload passed to them by an upper-layer protocol (Figure 1-13). Therefore, although in the
example of Figure 1-39 the payload of IP datagrams contains both TCP header and user data, the
IP does not distinguish any structure within the datagram payload. When the IP layer on Router B
receives an [P datagram with IP header (20 bytes) + 1,180 bytes of payload, it removes the IP
header and does not care what is in the payload. Router B’s IP layer splits the 1,180 bytes into
three fragments, so that when it adds its own [P header in front of each payload fragment, none of
the resulting IP datagrams will exceed 512 bytes in size. Router B then forwards the three
datagrams to the next hop.

1.4.2 Link State Routing

Problems related to this section: Problem 1.25 — ?

A key problem of routing algorithms is finding the shortest path between any two nodes, such
that the sum of the costs of the links constituting the path is minimized. The two most popular
algorithms used for this purpose are Dijkstra’s algorithm, used in link state routing, and Bellman-
Ford algorithm, used in distance vector routing. The link state routing is presented first, followed
by the distance vector routing; Section 1.4.5 describes the path vector routing, which is similar to
the distance vector routing.

Chapter 1 e Introduction to Computer Networking 61

Unconfirmed
nodes N — NO'(A)

Set of confirmed
nodes Nj(A)

Tentative
nodes

Figure 1-40: lllustration of finding the shortest path using Dijkstra’s algorithm.

The key idea of the link state routing algorithm is to disseminate the information about local
connectivity of each node to all other nodes in the network. Once all nodes gather the local
information from all other nodes, each node knows the topology of the entire network and can
independently compute the shortest path from itself to any other node in the network. This is done
by iteratively identifying the closest node from the source node in the order of increasing path
cost (Figure 1-40). At the k™ step we have the set N %(4) of k closest nodes to node A (“confirmed
nodes™) as well as the shortest distance Dy from each node X in N%(4) to node A. Of all paths
connecting some node not in N %(4) (“unconfirmed nodes™) with node 4, there is the shortest one
that passes exclusively through nodes in N%(4), because c(X, Y) > 0. Therefore, the (k + 1)st
closest node should be selected among those unconfirmed nodes that are neighbors of nodes in
N %(4). These nodes are marked as “tentative nodes” in Figure 1-40.

When a router (network node A) is initialized, it determines the link cost on each of its network
interfaces. For example, in Figure 1-40 the cost of the link connecting node 4 to node B is labeled
as “7” units, that is c(4, B) = 7. The node then advertises this set of link costs to a// other nodes in
the network (not just its neighboring nodes). Each node receives the link costs of all nodes in the
network and, therefore, each node has a representation of the entire network. To advertise the link
costs, the node creates a packet, known as Link-State Advertisement (LSA) or Link-State Packet
(LSP), which contains the following information:

e The ID of the node that created the LSA
e A list of directly connected neighbors of this node, with the link cost to each one
e A sequence number for this packet

e A time-to-live for this packet

Ivan Marsic e Rutgers University 62

Scenario 1; Scenario 2: Scenario 3:
Original network Costc(C,D) « 1 Link BD outage Link BC outage

Figure 1-41: Example network used for illustrating the routing algorithms.

In the initial step, all nodes send their LSAs to all other nodes in the network using the
mechanism called broadcasting. The shortest-path algorithm, which is described next, starts with
the assumption that all nodes already exchanged their LSAs. The next step is to build a routing
table, which is an intermediate step towards building a forwarding table. A routing table of a
node (source) contains the paths and distances to all other nodes (destinations) in the network. A
forwarding table of a node pairs different destination nodes with appropriate output interfaces of
this node (recall Figure 1-34(b)).

The link state routing algorithm works as follows. Let N denote the set of all nodes in a network.
In Figure 1-41, N = {4, B, C, D}. The process can be summarized as an iterative execution of the
following steps

1. Check the LSAs of all nodes in the confirmed set N “to update the tentative set (recall that
tentative nodes are unconfirmed nodes that are neighbors of confirmed nodes)

2. Move the tentative node with the shortest path to the confirmed set N~
3. Goto Step 1.

The process stops when N “= N. Here is an example:

Example 1.3 Link State Routing Algorithm

Consider the network in Figure 1-41(a) and assume that it uses the link state routing algorithm.
Starting from the initial state for all nodes, show how node 4 finds the shortest paths to all other nodes
in the network. The figure below shows how node A’s link-state advertisement (LSA) is broadcast
through the network.

A’'s LSA
re-broadcast from B

A’s LSA
broadcast from node A

Node Seq.# [Neighbor| B

A’s LSA

e Cost |10 re-broadcast from C

Chapter 1 e Introduction to Computer Networking

63

Assume that all nodes broadcast their LSAs and each node already received LSAs from all other nodes
in the network before it starts the shortest path computation, as shown in this figure:

LSA from node A

LSA from node B

Node Seq# Neighbor| A | C | D

I

=B Cost

01]1

Node

=A - Cost 10

Seq# Neighbor| B

LSA from node D

Nloge Seq.# |Neighbor | B

=D - Cost 1

LSA from node C
Neighbor| A | B | D

=c| 1| cost |1 |17

Table 1-2 shows the process of building a routing table at node 4 of the network shown in Figure
1-41(a). Each node is represented with a triplet (Destination node ID, Path length, Next hop). The node
x maintains two sets (recall Figure 1-40): Confirmed(x) set, denoted as N and Tentative(x) set. At
the end, the routing table in node A4 contains these entries: {(4, 0, -), (C, 1, C), (B, 2, O), (D, 3, C)}.
Every other node in the network runs the same algorithm to compute its own routing table.

To account for failures of network elements, the nodes should repeat the whole procedure
periodically. That is, each node periodically broadcasts its LSA to all other nodes and recomputes

Table 1-2: Steps for building a routing table at node A in Figure 1-41. Each node is
represented with atriplet (Destination node 1D, Path length, Next hop).

Step | Confirmed set N’| Tentative set Comments
0 |(4,0,-) %} Initially, 4 is the only member of Confirmed(4),
so examine 4’s LSA.
1 4,0,-) (B, 10, B), A’s LSA says that B and C are reachable at costs
(G, 1,0) 10 and 1, respectively. Since these are currently
the lowest known costs, put on Tentative(4) list.
2 1(4,0,-),(C,1,0) | (B,10,B) Move lowest-cost member (C) of Tentative(4)
into Confirmed set. Next, examine LSA of
newly confirmed member C.
3 1(4,0,-),(C,1,0) | (B,2,0), Cost to reach B through Cis 1+1=2, so replace
(D, 8, C) (B, 10, B). C’s LSA also says that D is reachable
at cost 7+1=8.
4 1(4,0,-),(C, 1,0, (D,8,0) Move lowest-cost member (B) of Tentative(4)
(B,2,0) into Confirmed, then look at B’s LSA.
5 4,0,-),(C,1,0), (D,3,0) Because D is reachable via B at cost 1+1+1=3,
(B,2,0) replace the Tentative(4) entry for D.
6 |(4,0,-),(C1,0), O Move lowest-cost member (D) of Tentative(4)
(B,2,0),(D,3,0) into Confirmed. END.

Ivan Marsic e Rutgers University 64
its routing table based on the received LSAs.

Limitations: Routing Loops

Link state routing needs large amount of resources to calculate routing tables. It also creates
heavy traffic because of flooding the LSA packets from each node throughout the network.

On the other hand, link state routing converges much faster to correct values after link failures
than distance vector routing (described in Section 1.4.3), which suffers from the so-called
counting-to-infinity problem.

Before the nodes start their routing table computation (as in Table 1-2), they all must have
received the same LSAs from all other nodes in the network. If not all of the nodes are working
from exactly the same map, routing loops can form. A routing loop is a subset of network nodes
configured so that data packets may wander aimlessly in the network, making no progress
towards their destination, and causing traffic congestion for all other packets. In the simplest form
of a routing loop, two neighboring nodes each think the other is the best next hop to a given
destination. Any packet headed to that destination arriving at either node will loop between these
two nodes. Routing loops involving more than two nodes are also possible.

The reason for routing loops formation is simple: because each node computes its shortest-path
tree and its routing table without interacting in any way with any other nodes, then if two nodes
start with different maps, it is easy to have scenarios in which routing loops are created.

The most popular practical implementation of link-state routing is Open Shortest Path First
(OSPF) protocol, reviewed in Section 8.2.2.

1.4.3 Distance Vector Routing

Problems related to this section: Problem 1.27 — Problem 1.29

The key idea of the distance vector routing algorithm is that each node assumes that its neighbors
already know the shortest path to each destination node. The node then selects the neighbor for
which the overall distance (from the source node to its neighbor, plus from the neighbor to the
destination) is minimal. The process is repeated iteratively until all nodes settle to a stable
solution. This algorithm is also known by the names of its inventors as Bellman-Ford algorithm.
Figure 1-42 illustrates the process of finding the shortest path in a network using Bellman-Ford
algorithm. The straight lines indicate single links connecting the neighboring nodes. The wiggly
lines indicate the shortest paths between the two end nodes (other nodes along these paths are not
shown). The bold line indicates the overall shortest path from source to destination.

Next, we describe the distance vector routing algorithm. Let N denote the set of all nodes in a
network. In Figure 1-41, N = {4, B, C, D}. The two types of quantities that this algorithm uses
are:

Chapter 1 e Introduction to Computer Networking 65

shortest paths from each neighbor
to the destination node

19

shortest path (src — dest) =
Min{7+19,4+29,25+8}=
7+19=26

Figure 1-42: lllustration of finding the shortest path using Bellman-Ford algorithm. The
thick line (crossing Neighbor 1) representsthe shortest path from Sourceto Destination.

(1) Link cost assigned to an individual link directly connecting a pair of nodes (routers). Link
costs are given to the algorithm either by having the network operator manually enter the
cost values or by having an independent program determine these costs. For example, in
Figure 1-41 the cost of the link connecting the nodes 4 and B is labeled as “10” units, that
is c(4, B) = 10.

(il) Node distance for an arbitrary pair of nodes, which represents the lowest sum of link
costs for all links along all the possible paths between this node pair. The distance from
node X to node Y is denoted as Dy(Y). These will be computed by the routing algorithm.

The distance vector of node X is the vector of distances from node X to all other nodes in the
network, denoted as DV(X) = {Dx(Y); ¥ € N}. When determining the minimum-cost path (i.e.,
distance), it is important to keep in mind that we are not interested in how people would solve this
problem. Rather, we wish to know how a group of computers can solve such a problem.
Computers (routers) cannot rely on what we people see by looking at the network’s graphical
representation; computers must work only with the information exchanged in messages.

Let n(X) symbolize the set of neighboring nodes of node X. For example, in Figure 1-41 1(4) =
{B, C} because B and C are the only nodes directly linked to node A. The distance vector routing
algorithm runs at every node X and calculates the distance to every other node ¥ € N, ¥V # X,
using the following formula:

Dy (Y)= min {e(X,¥)+D, (N} (1.14)

To apply this formula, every node must receive the distance vector from all other nodes in the
network. Every node maintains a table of distance vectors, which includes its own distance vector
and distance vectors of its neighbors. Initially, the node assumes that the distance vectors of its
neighbors are filled with infinite elements. Here is an example:

Example 1.4 Distributed Distance Vector Routing Algorithm

Consider the original network in Figure 1-41(a) and assume that it uses the distributed distance vector
routing algorithm. Starting from the initial state for all nodes, show the first few steps until the routing
algorithm reaches a stable state.

Ivan Marsic e Rutgers University 66

For node A4, the routing table initially looks as follows.

Routing table at node A: Initial Routing table at node A: After 1st exchange
Distance to Received Distance Vectors Distance to
A B C A B C D A B C D
From B
A 0|10 1 10| O 1 1 A 0 2 1 8
S + —
From C I
C =3 =3) 1 1 0 7 C 1 1 0 7

Notice that node 4 only keeps the distance vectors of its immediate neighbors, B and C, and not that of
any other nodes, such as D. Initially, 4 may not even know that D exists. Next, each node sends its
distance vector to its immediate neighbors and, as a result, 4 receives distance vectors from B and C.
For the sake of simplicity, let us assume that at every node all distance vector packets arrive
simultaneously. Of course, this is not the case in reality, but asynchronous arrivals of routing packets
do not affect the algorithm operation. When a node receives an updated distance vector from its
neighbor, the node overwrites the neighbor’s old distance vector in its routing table with the new one.
As shown in the figure above, 4 overwrites the initial distance vectors for B and C. In addition, 4 re-
computes its own distance vector according to Eq. (1.14), as follows:

D ,(B) =min{c(4, B)+ Dy (B), ¢(4,C)+D.(B)}=min{l0+0, 1+1}=2

D ,(C) =min{c(4, B)+ Dy(C), ¢(4,C)+D(C)}=min{l0+1, 1+0}=1

D (D) =min{c(4, B)+ Dy (D), c(4,C)+ Dy (D)}=min{l0+1, 1+7}=8

The new values for 4’s distance vector are shown in the rightmost table in the above figure.

Similar computations will take place on all other nodes and the whole process is illustrated in Figure
1-43. The end result is as shown in Figure 1-43 as the second column entitled “After 1% exchange.”
Because for every node the newly computed distance vector is different from the previous one, Figure
1-43 shows that each node sends its new distance vector to its immediate neighbors. The cycle repeats
for every node until there is no difference between the new and the previous distance vector. As shown
in Figure 1-43, this happens after three exchanges.

A distance-vector routing protocol requires that each router informs its neighbors of topology
changes periodically and, in some cases, when a change is detected in the topology of a network
(triggered updates). Routers can detect link failures by periodically testing their links with
“heartbeat” or HELLO packets. However, if the router crashes, then it has no way of notifying
neighbors of a change. Therefore, distance vector protocols must make some provision for timing
out routes when periodic routing updates are missing for the last few update cycles.

Chapter 1 e Introduction to Computer Networking 67

Initial routing tables: After 1st exchange: After 2nd exchange: After 3rd exchange:

A Distance to Distance to Distance to Distance to
% < A B C A B C D A B C D A B C D
- O
o] Ajl0O 10 1 A0 2 1 8 A O 2 Al 0O 2 1 3
= IS € IS €
=
o ® OB| o o o SB[10 0 1 1 °SB| 2 0 1 SB| 2 0 1 1
4 [T LL [T LL

C| o© o o ﬂ cf 1 1 0 7 40 1 1 cf1 1 o0 2
| AV A | X

B Distance to Distance to Distance to \ Distance to
2 o A B C D A B C D A B C D A B C D
S
= o
23 Al © o o o Al 0 10 1 o Al 0O 2 1 8 Al 0O 2 1 3
= C
3 ® eB|(10 0 1 1 csBl(2 0 1 1 eB| 2 0 1 1 eBl 2 0 1 1
@x 2 S =) (=
L 0 o oo oo cil1 1 0 7 cl1 1 0 2 Lcl1 1 0 2
0 o oo oo D| o 1 7 0 D| 8 1 2 0 31 2 0
XA Xt 1}
C Distance to Distance to Distance to Distance to
g o A B C D A B C D A B C D A B C D
S
= QO
23 Al © o o o Al 0 10 1 o Al O 2 1 8 Al 0O 2 1 3
= C
3®| € © & G o c 0 0 1 1 = 2 0 1 1 €B| 2 0 1 1
@x 2 e 2 e
c|tr 1 o 7 L 1 1 0 2 L 1 1 0 2 Lcl1 1 0 2
o 1 7 0 8 1 2 0 f Dl 3 1 2 0
|AVAY T 7
D Distance to x Distance to ¥ Distance to Distance to
2 a B C D A B C D A B C D A B C D
S
= o
g’g B B| 10 0 1 1 B 2 0 1 1 B| 2 0 1 1
= C
s = € 1S IS 1S
RS OC| o o oo °sCc| 1 1 0 7 °C| 1 1 0 2 °SC| 1 1 o0 2
@ L L [T LL
D|I(1 7 o0 DIL8 1 2 0 D|I(3 1 2 o0 Dl 3 1 2 0

Figure 1-43: Distance vector (DV) algorithm for the original network in Figure 1-41.

Compared to link-state protocols, which require a router to inform all the other nodes in its
network about topology changes, distance-vector routing protocols have less computational
complexity and message overhead (because each node informs only its own neighbors).

Limitations: Routing Loops and Counting-to-Infinity

Distance vector routing works well if nodes and links are always up, but it suffers from several
problems when links fail and become restored. The problems happen because the node does not
reveal the information it used to compute its distance vector when it distributes the vector to the
neighbors. As a result, remote routers do not have sufficient information to determine whether
their choice of the next hop will cause routing loops to form. Although reports about lowering
link costs (good news) are adopted quickly, reports about increased link costs (bad news) only
spread in slow increments. This problem is known as the “counting-to-infinity
problem.”

Consider Scenario 2 in Figure 1-41(c) reproduced here in the figure on the right,
where after the network stabilizes, the link BD fails. Before the failure, the distance
vector of the node B will be as shown in the figure below. After B detects the link

Ivan Marsic e Rutgers University 68

failure, it sets its own distance to D as co. (Notice that B cannot use old distance vectors it
obtained earlier from its neighbors to recompute its new distance vector, because it does not know
if they are valid anymore.) If B sends immediately its new distance vector to C,” C would figure
out that D is unreachable, because its previous best path led via B and now it became unavailable.
However, it may happen that C just sent its periodic update (unchanged from before the link BD
failure) to B and B receives it after discovering the failure of BD but before sending out its own
update. Node B then recomputes its new distance to node D as

D, (D) =min{c(B, A)+ D (D), ¢(B,C)+ D.(D)}=min{l0+3, 1+2}=3

and B choses C as the next hop to D. Because we humans can see the entire network topology, we
know that C has the distance to D equal to 2 going via the link BC followed by the link CD.
However, because C received from B only the numeric values of the distances, not the paths over
which these distances are computed, C does not know that itself lays on B’s shortest path to D!

Routing table at node B before BD outage Routing table at node B after BD outage
Distance to Distance to
1. B detects BD outage
A B C D 2. Bsetsc(B, D) =< A B C D
Al o 2 1 3 3. B recomputes its Al o 2 1 3
distance vector

c B 2 0 1 1 4. B obtains 3 as the c B 2 0 1 3

o shortest distance o
L C 1 1 0 2 to D, via C L c 1 1 0 2
D 3 1 2 0 D 3 1 2 0

Given the above routing table, when B receives a data packet destined to D, it will forward the
packet to C. However, C will return the packet back to B because for C, B is the next hop on the
shortest path from C to D. The packet will bounce back and forth between these two nodes
forever (or until their forwarding tables are changed). This phenomenon is called a routing loop,
because packets may wander aimlessly in the network, making no progress towards their
destination.

Because B’s distance vector has changed, it reports its new distance vector to its neighbors 4 and
C (triggered update). After receiving B’s new distance vector, C will determine that its new
shortest path to D measures 4, via C. Now, because C’s distance vector changed, it reports its new
distance vector to its neighbors, including B. The node B now recomputes its new distance vector
and finds that the shortest path to D measures 5, via C. B and C keep reporting the changes until
they realize that the shortest path to D is via C because C still has a functioning link to D with the
cost equal to 7. This process of incremental convergence towards the correct distance is very slow
compared to other route updates, causing the whole network not noticing a router or link outage
for a long time, and was therefore named counting-to-infinity problem.

A simple solution to the counting-to-infinity problem is known as hold-down timers. When a
node detects a link failure, it reports to its neighboring nodes that an attached network has gone
down. The neighbors immediately start their hold-down timers to ensure that this route will not be
mistakenly reinstated by an advertisement received from another router that has not yet learned

? Node B will also notify its neighbor 4, but for the moment we ignore A because A’s path to D goes via C,
and on, via B. Hence, 4 will not be directly affected by this situation.

Chapter 1 e Introduction to Computer Networking 69

about this route being unavailable. Until the timer elapses, the router ignores updates regarding
this route. Router accepts and reinstates the invalid route if it receives a new update with a better
metric than its own or the hold-down timer has expired. At that point, the network is marked as
reachable again and the routing table is updated. Typically, the hold-down timer is greater than
the total convergence time, providing time for accurate information to be learned, consolidated,
and propagated through the network by all routers.

Another solution to the counting-to-infinity problem is known as split-horizon routing. The key
idea is that it is never useful to send information about a route back in the direction from which it
came. Therefore, a router never advertises the cost of a destination to its neighbor N, if N is the
next hop to that destination. The split-horizon rule helps prevent two-node routing loops. In the
above example, without split horizons, C continues to inform B that it can get to D, but it does not
say that the path goes through B itself. Because B does not have sufficient intelligence, it picks up
C’s route as an alternative to its failed direct connection, causing a routing loop. Conversely, with
split horizons, C never advertises the cost of reaching D to B, because B is C’s next hop to D.
Although hold-downs should prevent counting-to-infinity and routing loops, split horizon
provides extra algorithm stability.

An improvement of split-horizon routing is known as split horizon with poisoned rever se. Here,
the router advertises its full distance vector to all neighbors. However, if a neighbor is the next
hop to a given destination, then the router replaces its actual distance value with an infinite cost
(meaning “destination unreachable”). In a sense, a route is “poisoned” when a router marks a
route as unreachable (infinite distance). Routers receiving this advertisement assume the
destination network is unreachable, causing them to look for an alternative route or remove this
destination from their routing tables. In the above example, C would always advertise the cost of
reaching D to B as equal to oo, because B is C’s next hop to D.

In a single-path internetwork (chain-of-links configuration), split horizon with poisoned reverse
has no benefit beyond split horizon. However, in a multipath internetwork, split horizon with
poisoned reverse greatly reduces counting-to-infinity and routing loops. The idea is that increases
in routing metrics generally indicate routing loops. Poisoned reverse updates are then sent to
remove the route and place it in hold-down. Counting-to-infinity can still occur in a multipath
internetwork because routes to networks can be learned from multiple sources. None of the above
methods works well in general cases. The core problem is that when X tells Y that it has a path to
somewhere, Y has no way of knowing whether it itself is on the path.

The most popular practical implementation of link-state routing is Routing Information Protocol
(RIP), reviewed in Section 8.2.1.

1.4.4 IPv4 Address Structure and CIDR

Problems related to this section: Problem 1.31 — Problem 1.33

Section 1.4.1 briefly mentions that the structure of network addresses should be designet to assist
with message routing along the path to the destination. This may not be obvious at first, so let us
consider again the analogy between a router and a crossroads (Figure 1-34). Suppose you are
driving from Philadelphia to Bloomfield, New Jersey (Figure 1-44). If the sign on the road
intersection contained all small towns in all directions, you can imagine that it would be very

Ivan Marsic e Rutgers University 70

™

“NEWYORK 96 mi.
[T

“BLOOMFIELD oL mi.

NEWARK 85 mi.
Paterson
KEARNY i ©
o m. East Orange Bloomfield o1 e

Union
[ELIZABETH som. ou
[T K
A|PATERSON som: Elizabeth O)

o Linden O,

‘ UNION CITY 93 mi.

“ EAST ORANGE &5 mi.

LINDEN 8o mi.

e} New York
Bayonne

Allentown

Carteret

New Brunswick

(e]

™
“NEW YORK 96 mi.

ALLENTOWN g3

ATLANTIC oty i

<« compared to-»

Figure 1-44: Illustration of the problem with the forwarding-table size. Real world road
signs contain only a few destinations (lower right corner) to keep them manageable.

difficult to build and use such “forwarding tables.” The intersections would be congested by cars
looking-up the long table and trying to figure out which way to exit out of the intersection. The
problem is solved by listing only the major city names on the signs. Notice that in this case “New
York” represents the entire region around the city, including all small towns in the region. That
is, you do not need to pass through New York to reach Bloomfield, New Jersey. On your way, as
you are approaching New York, at some point there will be another crossroads with a sign for
Bloomfield. Therefore, hierarchical address structure gives a hint about the location that can be
used to simplify routing.

Large computer networks, such as the Internet, encounter a similar problem with building and
using forwarding tables. The solution has been to divide the network address into two parts: a
fixed-length “region” portion (in the most significant bits) and an “intra-region” address. These
two parts combined represent the actual network address. In this model, forwarding is simple:
The router first looks at the “region” part of the destination address; if it sees a packet with the
destination address not in this router’s region, it does a lookup on the “region” portion of the
address and forwards the packet onwards. Conversely, if the destination address is in this router’s
region, it does a lookup on the “intra-region” portion and forwards the packet on. This structuring
of network-layer addresses dramatically reduces the size of the forwarding tables. The data in the
forwarding table for routes outside the router’s region is at most equal to the number of regions in
the entire network, typically much smaller than the total number of possible addresses.

The idea of hierarchical structuring can be extended to a multi-level hierarchy, starting with
individual nodes at level 0 and covering increasingly larger regions at higher levels of the
addressing hierarchy. In such a network, as a packet approaches its destination, it would be

Chapter 1 e Introduction to Computer Networking 71

forwarded more and more precisely until it reaches the destination node. The key issues in
designing such hierarchical structure for network addresses include:

e Should the hierarchy be uniform, for example so that a region at level i+1 contains twice as
many addresses as a region at level i. In other words, what is the best granularity for
quantizing the address space at different levels, and should the hierarchy follow a regular or
irregular pattern?

e Should the hierarchy be statically defined or could it be dynamically adaptive? In other
words, should every organization be placed at the same level regardless of how many
network nodes it manages? If different-size organizations are assigned to different levels,
what happens if an organization outgrows its original level or merges with another
organization? Should organization’s hierarchy (number of levels and nodes per level)
remain forever fixed once it is designed?

The original solution for structuring IPv4 addresses (standardized with RFC-791 in 1981) decided
to follow a uniform pattern for structuring the network addresses and opted for a statically
defined hierarchy. IPv4 addresses were standardized to be 32-bits long, which gives a total of 2*2
=4,294,967,296 possible network addresses. At that time, the addresses were grouped into four
classes, each class covering different number of addresses. In computer networks, “regions”
correspond to sub-networks, or simply networks, within an internetwork (Section 1.4.1).
Depending on the class, the first several bits correspond to the “network” identifier and the
remaining bits to the “host” identifier (Figure 1-45). Class A addresses start with a binary “0” and
have the next 7 bits for network number and the last 24 bits for host number. Class B addresses
start with binary “10”, use the next 14 bits for network number, and the last 16 bits for host
number (e.g., Rutgers has a Class B network, with addresses in dotted-decimal notation of the
form 128. 6. *). Class C addresses start with binary “110” and have the next 21 bits for network
number, and the last 8 bits for host number. A special class of addresses is Class D, which are
used for IP multicast (described in Section 3.3.2). They start with binary “1110” and use the next
28 bits for the group address. Multicast routing is described later in Section 3.3.2. Addresses that
start with binary “1111” are reserved for experiments.

Ivan Marsic e Rutgers University 72

i n bits 1 (32 - n) bits |
IPv4 0 n
(a) Otld a?dress [class| Neworkpat | Host part |
structure
\ 8 bits 1 24 bits ‘
0 7 8 31
Class A |O‘ Network part ‘ Host part |
01 15 16 31
Class B | 1 ‘ 0 ‘ Network part Host part |
012 23 24 31
(b) Class C | 1 ‘ 1 ‘ 0 ‘ Network part Host part |
0123 31
Class D |1 ‘ 1 ‘ 1 ‘ 0‘ Multicast group part |
0123 31
Class E | 1 ‘ 1 ‘ 1 ‘ 1 ‘ Reserved for future use |

Figure 1-45: (a) Class-based structure of 1Pv4 addresses (deprecated). (b) The structure of
theindividual address classes.

The router-forwarding task in IPv4 is a bit more complicated than for an unstructured addressing
scheme that requires an exact-match. For every received packet, the router examines its
destination address and determines whether it belongs to the same region as this router’s
addresses. If so, it looks for an exact match; otherwise, it performs a fixed-length lookup
depending on the class.

In the original design of IPv4, address space was partitioned in regions of three sizes: Class A
networks had a large number of addresses, 2** = 16,777,216, Class B networks had 2'® = 65,536
addresses each, and Class C networks had only 2* = 128 addresses each. For example, the Rutgers
University IP addresses belong to Class B because the network part starts with bits 10 (Figure
1-37), so the network part of the address is: 10000000 00000110 or 128.6.* in dotted-
decimal notation. The address space has been managed by IETF and organizations requested and
obtained a set of addresses belonging to a class. As the Internet grew, most organizations were
assigned Class B addresses, because their networks were too large for a Class C address, but not
large enough for a Class A address. Unfortunately, large part of the address space went unused.
For example, if an organization had slightly more than 128 hosts and acquired a Class B address,
almost 65,400 addresses went unused and could not be assigned to another organization.

Figure 1-46 lists special IPv4 addresses.

CIDR Scheme for Internet Protocol (IPv4) Addresses

By 1991, it became clear that the 2% = 16,384 Class B addresses would soon run out and a
different approach was needed. It was observed that addresses from the enormous Class C space
were rarely allocated and the solution was proposed to assign new organizations contiguous
subsets of Class C addresses instead of a single Class B address. This allowed for a refined
granularity of address space assignment. In this way, the allocated set of Class C addresses could
be much better matched to the organization needs than with whole Class B sets. This solution
optimizes the common case. The common case is that most organizations require at most a few

Chapter 1 e Introduction to Computer Networking 73

0 31

This host | 00000000 00000000 00000000 00000000 |

0 (length depends on IP address class) 31

A host on this network | 000 ...000 Host identifier |

0 31

Broadcast on this network | 111111117 111111117 11111111 11111111 |

0 (length depends on IP address class) 31

Broadcast on a distant network | Network id ‘ 1 1111 |
0 78 31

Loopback within this network | 01111111 ‘ Anything |

(most commonly used: 127.0.0.1)

Figure 1-46: Special | P version 4 addresses.

thousand addresses, and this need could not be met with individual Class C sets, while an entire
Class B represented a too coarse match to the need. A middle-road solution was needed.

Routing protocols that work with aggregated Class C address sets are said to follow Classless
Interdomain Routing or CIDR (pronounced “cider”). CIDR not only solved the problem of
address shortages, but also by aggregating Class C sets into contiguous regions, it reduced the
forwarding table sizes because routers aggregate routes based on IP prefixes in a classless
manner. Instead of having a forwarding-table entry for every individual address, the router now
keeps a single entry for a subset of addresses (see analogy in Figure 1-44).

The CIDR-based addressing works as follows. An organization is assigned a region of the address
space defined by two numbers, 4 and m. The assigned address region is denoted A/m. A is called
the prefix and it is a 32-bit number (often written in dotted decimal notation) denoting the
address space, while m is called the mask and it is a decimal number between 1 and 32.
Therefore, when a network is assigned A/m, it means that it gets the 2°* ™ addresses, all sharing
the first m bits of A. For example, the network “192.206.0.0/21” corresponds to the 2¢? = 2" =
2048 addresses in the range from 192.206.0.0 to 192.206.7.255.

r—— SIDEBAR 1.2: Hierarchy without Topological Aggregation I

Ivan Marsic e Rutgers University 74

¢ There are different ways to organize addresses hierarchically. Internet addresses are
aggregated fopologically, so that addresses in the same physical subnetwork share the same
address prefix (or suffix). Another option is to partition the address space by manufacturers of
networking equipment. The addresses are still globally unique, but not aggregated by proximity
(i.e., network topology). An example is the Ethernet link-layer address, described in Section
1.5.2. Each Ethernet attachment adaptor has assigned a globally unique address, which has two
parts: a part representing the manufacturer’s code, and a part for the adaptor number. The
manufacturer code is assigned by a global authority, and the adaptor number is assigned by the
manufacturer. Obviously, each Ethernet adaptor on a given subnetwork may be from a
different manufacturer, and noncontiguous subnetworks may have adaptors from the same
manufacturer. However, this type of hierarchy is not suitable for routing purposes because it
does not scale to networks with tens of millions of hosts, such as the Internet. Ethernet
addresses cannot be aggregated in routing tables, and large-scale networks cannot use Ethernet
addresses to identify destinations. Equally important, Ethernet addresses cannot be summarized
and exchanged by the routers participating in the routing protocols. Therefore, topological
aggregation of network addresses is the fundamental reason for the scalability of the Internet’s
network layer. (See more discussion in Section 8.3.1.)

Chapter 1 e Introduction to Computer Networking 75

A %anet—l (((w C

i =]
R1 ((())) Subnet-2
B @
i —1 D
R2
Subnet-4
Subnet-5
(a) E F
Organization’s address subspace: Subnet-1: y
204.6.96.176/30
w.x.y.z/28 204.6.94.180
,_A__l Subnet-2:
204.6.96.180/30
204.6.94.177 @
Subnet-1: Subnet-2: Subnets-3&4: Subnet-5: 204.6.94.182

&Y

w.X.y.z/30 W.X.y.z+4/30 | | w.x.y.z+8/30 | |w.x.y.z+12/30

/\

Subnet-3: Subnet-4: 204.6.94.187
W.X.y.z+8/31 | |w.x.y.z+10/31
y y Subnet-4:

204.6.96.186/31 ’—‘204.6.94.189
Subnet-5:

(b) (C) 204.6.96.188/30

Figure 1-47: (a) Example inter network with five physical networks reproduced from Figure
1-35 above. (b) Desired hierarchical address assignment under the CIDR scheme. (c)
Example of an actual address assignment.

204.6.94.178

B

Suppose for the sake of illustration that you are administering your organization’s network as
shown in Figure 1-35, reproduced here in Figure 1-47(a). Assume that you know that this
network will remain fixed in size, and your task is to acquire a set of network addresses and
assign them optimally to the hosts. Your first task is to determine how many addresses to request.
As seen in Section 1.4.1, both routers R1 and R2 have 3 network interfaces each. Because your
internetwork has a total of 13 interfaces (3 + 3 for routers, 2 for host B and 5 x 1 for other hosts),
you need 13 unique IP addresses. However, you would like to structure your organization’s
network hierarchically, so that each subnet is in its own address space, as shown in Figure
1-47(b). Subnets 3 and 4 have only two interfaces each, so they need 2 addresses each. Their
assignments will have the mask m = 31. You can group these two in a single set with m = 30.
Subnets 1, 2, and 5 have three interfaces each, so you need at least 2 bits (4 addresses) for each
and their masks will equal m = 30. Therefore, you need 4 x 4 addresses (of which three will be
unused) and your address region will be of the form w.x.y.z/28, which gives you 2©2 7% =2* =16
addresses. Let us assume that the actual address subspace assignment that you acquired is

Ivan Marsic e Rutgers University 76

Table 1-3: CIDR hierarchical address assignment for the internetwork in Figure 1-47.

Subnet | Subnet mask Network prefix Interface addr esses
A: 204.6.94.176
1 204.6.94.176/30 | 11001100 00000110 01011110 101100-- | R1-1: 204.6.94.177
B-1: 204.6.94.178
C: 204.6.94.180
2 204.6.94.180/30 11001100 00000110 01011110 101101-- Rl_z: 204.6.94.181
D: 204.6.94.182
R1-3: 204.6.94.184

3 204.6.94.184/31 | 11001100 00000110 01011110 1011100-
R2-1: 204.6.94.185
R2-2: 204.6.94.186

4 204.6.94.186/31 | 11001100 00000110 01011110 1011101-
B-2: 204.6.94.187
R2-3: 204.6.94.188
5 204.6.94.188/30 | 11001100 00000110 01011110 101111-- | E: 204.6.94.189
F: 204.6.94.190

204.6.94.176/28. Then you could assign the individual addresses to the network interfaces as
shown in Table 1-3 as well as in Figure 1-47(c).

1.4.5 Autonomous Systems and Path Vector Routing

Problems related to this section: Problem 1.35 — ?

Figure 1-35 presents a naive view of the Internet, where many hosts are mutually
connected via intermediary nodes (routers or switches) that live inside the “network
cloud.” This would imply that the cloud is managed by a single administrative
organization and all nodes cooperate to provide the best service to the consumers’ hosts.

In reality the Internet is composed of many independent networks (or, “clouds”), each managed

by a different organization driven by its own commercial or

political interests. (The reader may also wish to refer to Figure 1-3

to get a sense of complexity of the Internet.) Each individual

administrative domain is known as an autonomous system (AS).

Given their divergent commercial interests, these administrative

domains are more likely to compete (for profits) than to

collaborate in harmony with each other.

Both distance vector and link state routing protocols have been used for interior routing (or,
internal routing). That is, they have been used inside individual administrative domains or
autonomous systems. However, both protocols become ineffective in large networks composed of
many domains (autonomous systems). The scalability issues of both protocols were discussed
earlier. In addition, they do not provide mechanisms for an administrative entity to represent its
economic interests as part of the routing protocol. Economic interests can be described using
logical rules that express the routing policies to reflect the economic interests. For this purpose,
we need exterior routing (or, external routing) protocols for routing between different
autonomous systems.

We first review the challenges posed by interacting autonomous domains and then present the
path vector routing algorithm that can be used to address some of those issues.

Chapter 1 e Introduction to Computer Networking 77

Autonomous Systems: Peering Versus Transit

An Autonomous System (AS) can independently decide whom to exchange traffic with on the
Internet, and it is not dependent upon a third party for access. Networks of Internet Service
Providers (ISPs), hosting providers, telecommunications companies, multinational corporations,
schools, hospitals, and even individuals can be Autonomous Systems; all one needs is a unique
Autonomous System Number (ASN) and a block of IP addresses. A central authority
(http://iana.org/) assigns ASNs and assures their uniqueness. At the time of this writing (2010), the
Internet consists of over 25,000 Autonomous Systems. Most organizations and individuals do not
interconnect autonomously to other networks, but connect via an ISP. One could say that an end-
user is “buying transit” from their ISP.

Figure 1-48 illustrates an example of several Autonomous Systems. In order to get traffic from
one end-user to another end-user, ASs need to have an interconnection mechanism. These
interconnections can be either direct between two networks or indirect via one or more
intermediary networks that agree to transport the traffic. Most AS connections are indirect, since
it is nearly impossible to interconnect directly with all networks on the globe. In order to make it
from one end of the world to another, the traffic will often be transferred through several indirect
interconnections to reach the end-user. The economic agreements that allow ASs to interconnect
directly and indirectly are known as “peering” or “transit,” and they are the two mechanisms that
underlie the interconnection of networks that form the Internet.

A peering agreement (or, swap contract) is a voluntary interconnection of two or more
autonomous systems for exchanging traffic between the customers of each AS. This is often done
so that neither party pays the other for the exchanged traffic; rather, each derives revenue from its
own customers. Therefore, it is also referred to as “settlement-free peering.”

In a transit agreement (or, pay contract), one autonomous system agrees to carry the traffic that
flows between another autonomous system and all other ASs. Since no network connects directly
to all other networks, a network that provides transit will deliver some of the traffic indirectly via
one or more other transit networks. A transit provider’s routers will announce to other networks
that they can carry traffic to the network that has bought transit. The transit provider receives a
“transit fee” for the service.

The transit fee is based on a reservation made up-front for a certain speed of access (in Mbps) or
the amount of bandwidth used. Traffic from (upstream) and to (downstream) the network is
included in the transit fee; when one buys 10Mbps/month from a transit provider, this includes 10
up and 10 down. The traffic can either be limited to the amount reserved, or the price can be
calculated afterward (often leaving the top five percent out of the calculation to correct for
aberrations). Going over a reservation may lead to a penalty.

An economic agreement between ASs is implemented through (i) a physical interconnection of
their networks, and (ii) an exchange of routing information through a common routing protocol.
This section reviews the problems posed by autonomous administrative entities and requirements
for a routing protocol between Autonomous Systems. Section 8.2.3 describes the protocol used in
the current Internet, called Border Gateway Protocol (BGP), which meets these requirements.

The Internet is intended to provide global reachability (or, end-to-end reachability), meaning that
any Internet user can reach any other Internet user as if they were on the same network. To be

Ivan Marsic e Rutgers University 78

Macrospot.com Noodle.com

%

=
o
o

14\
L\ 1
TR\
1\
L % W\
yy/
¥y

ier-2
Tier-1
ISP X Tier-1
ISP o
ISP B
Tier-3 -
Tier-2 -
ISP q) Tier-2
ISP o ISP ¢
Tier-3 Tier-3 Tier-3,
ISP y ISP 1 ISP ¢
DA SINES
= Qyg " ﬁ
A= Q0 |
Enag o p 000
Y's customers [Ry RIS IR

¢'s customers
n’'s customers

Figure 1-48: An example collection of Autonomous Systemswith physical inter connections.

able to reach any other network on the Internet, Autonomous System operators work with each
other in following ways:

e Sell transit (or Internet access) service to that AS (“transit provider” sells transit service to
a “transit customer”),

e Peer directly with that AS, or with an AS who sells transit service to that AS, or

e Pay another AS for transit service, where that “transit provider” must in turn also sell, peer,
or pay for access.

Therefore, any AS connected to the Internet must either pay another AS for transit, or peer with
every other AS that also does not purchase transit.

Consider the example in Figure 1-48. Tier-1 Internet Service Providers (ISPo and ISPP) have
global reachability information and can see all other networks and, because of this, their
forwarding tables do not have default entries. They are said to be default-free. At present (2010)
there are about 10 Tier-1 ISPs in the world. The different types of ASs (mainly by their size) lead
to different business relationships between them. ISPs enter peering agreements mostly with other
ISPs of the similar size (reciprocal agreements). Therefore, a Tier-1 ISP would form a peering
agreement with other Tier-1 ISPs, and sell transit to lower tiers ISPs. Similarly, a Tier-2 (regional

Chapter 1 e Introduction to Computer Networking 79

Macrospot.com Noodle.com Key:

$
—» Transit
msm1 Peering

Y's customers

¢'s customers
n’s customers

Figure 1-49: Feasible businessrelationshipsfor the example ASsin Figure 1-48.

or countrywide) ISP would form a peering agreement with other Tier-2 ISPs, pay for transit
service to a Tier-1 ISP, and sell transit to lower Tier-3 ISPs (local). As long as the traffic ratio of
the concerned ASs is not highly asymmetrical (e.g., up to 4-to-1 is a commonly accepted ratio),
there is usually no financial settlement for peering.

Transit relationships are preferable because they generate revenue, whereas peering relationships
usually do not. However, peering can offer reduced costs for transit services and save money for
the peering parties. Other less tangible incentives (“mutual benefit”) include:

e Increased redundancy (by reducing dependence on one or more transit providers) and
improved performance (attempting to bypass potential bottlenecks with a “direct” path),

e Increased capacity for extremely large amounts of traffic (distributing traffic across many
networks) and ease of requesting for emergency aid (from friendly peers).

Figure 1-49 shows reasonable business relationships between the ISPs in Figure 1-48. ISPo
cannot peer with another Tier-3 ISP because it has a single physical interconnection to a Tier-2
ISPS. An Autonomous System that has only a single connection to one other AS is called stub
AS. The two large corporations at the top of Figure 1-49 each have connections to more than one
other AS but they refuse to carry transit traffic; such an AS is called multihomed AS. ISPs

Ivan Marsic e Rutgers University 80

.=..=.=..
o) (st

(@)

(d) ()

Figure 1-50: Providing selective transit service to make or save money.

usually have connections to more than one other AS and they are designed to carry both transit
and local traffic; such an AS is called transit AS.

When two providers form a peering link, the traffic flowing across that link incurs a cost on the
network it enters. Such a cost may be felt at the time of network provisioning: in order to meet the
negotiated quantity of traffic entering through a peering link, a provider may need to increase its
network capacity. A network provider may also see a cost for entering traffic on a faster
timescale; when the amount of incoming traffic increases, congestion on the network increases,
and this leads to increased operating and network management costs. For this reason, each AS
needs to decide carefully what kind of transit traffic it will support.

Each AS is in one of three types of business relationships with the ASs to which is has a direct
physical interconnection: transit provider, transit customer, or peer. To its paying customers, the
AS wants to provide unlimited transit service. However, to its provider(s) and peers it probably
wishes to provide a selective transit service. Figure 1-50 gives examples of how conflicting
interests of different parties can be resolved. The guiding principle is that ASs will want to avoid
highly asymmetrical relationships without reciprocity. In Figure 1-50(a), both ASn and AS¢
benefit from peering because it helps them to provide global reachability to their own customers.
In Figure 1-50(b), ASy and AS¢ benefit from using transit service of ASn (with whom both of

Chapter 1 e Introduction to Computer Networking 81

them are peers), but ASm may lose money in this arrangement (because of degraded service to its
own customers) without gaining any benefit. Therefore, ASn will not carry transit traffic between
its peers. An appropriate solution is presented in Figure 1-50(c), where ASy and AS¢ use their
transit providers (ASS and ASe, respectively), to carry their mutual transit traffic. ASS and ASe
are peers and are happy to provide transit service to their transit customers (ASy and ASo).
Figure 1-50(d) shows a scenario where higher-tier ASJ uses its transit customer ASM to gain
reachability of AS@. Again, ASn does not benefit from this arrangement, because it pays ASo for
transit and does not expect ASJ in return to use its transit service for free. The appropriate
solution is shown in Figure 1-50(e) (which is essentially the same as Figure 1-50(c)).

To implement these economic decisions and prevent unfavorable arrangements, ASs design and
enforce routing policies. An AS that wants avoid providing transit between two neighboring ASs,
simply does not advertise to either neighbor that the other can be reached via this AS. The
neighbors will not be able to “see” each other via this AS, but via some other ASs. Routing
policies for selective transit can be summarized as:

e To its transit customers, the AS should make visible (or, reachable) all destinations that it
knows of. That is, all routing advertisements received by this AS should be passed on to
own transit customers;

e To its peers, the AS should make visible only its own transit customers, but not its other
peers or its transit provider(s), to avoid providing unrecompensed transit;

e To its transit providers, the AS should make visible only its own transit customers, but
not its peers or its other transit providers, to avoid providing unrecompensed transit.

In the example in Figure 1-49, Tier-1 ISPs (ASca and ASP) can see all the networks because they
peer with one another and all other ASs buy transit from them. ASy can see ASn and its
customers directly, but not AS@ through ASm. ASS can see ASo through its peer ASe, but not via
its transit customer AS1). Traffic from AS¢ to AS$ will go trough ASe (and its peer ASJ), but not
through ASn.

To illustrate how routers in these ASs implement the above economic policies, let us imagine
example routers as in Figure 1-51. Suppose that a router in AS¢ sends an update message
advertising the destination prefix 128.34.10.0/24. The message includes the routing path
vector describing how to reach the given destination. The path vector starts with a single AS
number {ASd}. A border router (router K) in ASO receives this message and disseminates it to
other routers in ASS. Routers in ASS prepend their own AS number to the message path vector to
obtain {ASJ, AS¢} and redistribute the message to the adjacent ASs. Because ASn does not have
economic incentive to advertise a path to AS¢ to its peer AS¢, it sends an update message with
path vector containing only the information about ASn’s customers. On the other hand, ASe has
economic incentive to advertise global reachability to its own transit customers. Therefore,
routers in ASe prepend their own AS number to the routing path vector from AS to obtain {ASe,
ASJ, AS0} and redistribute the update message to AS@. Routers in AS¢ update their routing and
forwarding tables based on the received path vector. Finally, when a router in AS¢ needs to send
a data packet to a destination in the subnet 128.34.10.0/24 (in AS¢) it sends the packet first
to the next hop on the path to AS¢, which is ASe.

Ivan Marsic e Rutgers University 82

Macrospot.com Noodle.com

XD,)

(7
%_‘
&

¥'s customers ¢'s customers
n’s customers
Figure 1-51. Example of routerswithin the ASsin Figure 1-48. Also shown ishow a routing
update message from AS propagatesto ASe.

Path Vector Routing

Path vector routing is used for inter-domain or exterior routing (routing between different
Autonomous Systems). The path vector algorithm is somewhat similar to the distance vector
algorithm (Section 1.4.3). Each border (or edge) router in a given AS advertises the destinations it
can reach to its neighboring routers (in different ASs). However, instead of advertising the
networks in terms of a destination address and the distance to that destination, the networks are
advertised as destination addresses with path descriptions to reach those destinations. A route is
defined as a pairing between a destination and the attributes of the path to that destination, thus
the name, path vector routing. The path vector contains a complete path as a sequence of ASs to
reach the given destination. The path vector is carried in a special path attribute that records the
sequence of ASs through which the reachability message has passed. The path that contains the
smallest number of ASs becomes the preferred path to reach the destination.

At predetermined times, each node advertises its own network address and a copy of its path
vector down every attached link to its immediate neighbors. An example is shown in Figure 1-51,
where a router in AS¢ sends a scheduled update message. After a router receives path vectors
from its neighbors, it performs path selection by merging the information received from its

Chapter 1 e Introduction to Computer Networking

83

neighbors with that already in its existing path vector. The path selection is based on some kind of
path metric, similar to distance vector routing algorithm (Section 1.4.3). Again, Eq. (1.14) is
applied to compute the “shortest” path. Here is an example:

Example 1.5 Path Vector Routing Algorithm

Consider the network topology in Figure 1-41(a) (reproduced below) and assume that it uses the path
vector routing algorithm. Instead of router addresses, the path vector works with Autonomous System
Numbers (ASNs). Starting from the initial state for all nodes, show the first few steps until the routing
algorithm reaches a stable state.

The solution is similar to that for the distributed distance vector routing algorithm (Example 1.4). For
AS 0, the initial routing table is as in the leftmost table below. The notation {d | %, &, {) symbolizes
that the path from the AS under consideration to AS { is d units long, and y and & are the ASs along
the path to . If the path metric simply counts the number of hops, then the path-vector packets do not
need to carry the distance d, because it can be determined simply by counting the ASs along the path.

Routing table at AS o Initial Received Path Vectors (1st exchange) 10 1
Path to » »
@« B v a | B v | 8
From 1 7
©loy KIO|B)| 1w (0] o)| OB | LIy [<L]d) ”

o
: -+
SB[(=) | el) | (=) « | B | v | o
From vy
I ESI RSV RSY AN (ARO[|TId
Path to
o B Y)
[r— 0 2|y, 1 8]v, 9
Routing table at node o.: After 1st exchange: — c o [Olo jeleb) a1 |€1v
S B [A0fe| OB | dlv | A1
Y| Qloy | LIB)y | Olw | (718

Again, AS o only keeps the path vectors of its immediate neighbors, B and v, and not that of any other
ASs, such as d. Initially, oo may not even know that § exists. Next, each AS advertises its path vector to
its immediate neighbors, and o receives their path vectors. When an AS receives an updated path
vector from its neighbor, the AS overwrites the neighbor’s old path vector with the new one. In
addition, 4 re-computes its own path vector according to Eq. (1.14), as follows:

D,(B)=min{c(at, B)+ Dy(B), (e, y)+ Dy(B)f=minfl0+0, 1+1}=2 = path: 2|7, B)
D, (y) =min{c(a, B)+ Dy(p), c(@,7)+D,(y)}=min{l0+1, 1+0}=1 = path: (1 |)
D,,(8) =minjc(er, B)+ Dy(3), c(a,¥)+D,()}=min{l0+1, 1+7}=8 = path: (8 | v, 8)

The new values for o’s path vector are shown in the above table at the right. Notice that a’s new path
to P is via y and the corresponding table entry is (2 | v, B).

Similar computations will take place on all other nodes and the whole process is illustrated in [Figure
XYZ]. The end result is as shown in [Figure XYZ] as column entitled “After 1* exchange.” Because
for every node the path vector computed after the first exchange is different from the previous one,
each node advertises its path new vector to its immediate neighbors. The cycle repeats for every node
until there is no difference between the new and the previous path vector. As shown in [Figure XYZ],
this happens after three exchanges.

Ivan Marsic e Rutgers University 84

To implement routing between Autonomous Systems, each Autonomous System must have one
or more border routers that are connected to networks in two or more ASs (its own network and a
neighboring AS network). Such a node is called a speaker node or gateway router. For
example, in Figure 1-51 the speaker nodes in ASa. are routers 4, B, F, and G; in ASP the speaker
nodes are routers H and J; and in ASJ the speakers are routers K and N. A speaker node creates a
routing table and advertises it to adjoining speaker nodes in the neighboring Autonomous
Systems. The idea is the same as with distance vector routing, except that only speaker nodes in
each Autonomous System can communicate with routers in other Autonomous Systems (i.e.,
speaker nodes in those ASs). The speaker node advertises the path, not the metric of the links, in
its AS or other ASs. In other words, there are no weights attached to the links in a path vector, but
there is an overall cost associated with each path.

Integrating Inter-Domain and Intra-Domain Routing

Administrative entities that manage different Autonomous Systems have different concerns for
routing messages within their own Autonomous System as opposed to routing messages to other
Autonomous Systems or providing transit service for them. Within an Autonomous System, the
key concern is how to route data packets from the origin to the destination in the most efficient
manner. For this purpose, intra-domain or interior routing protocols, such as those based on
distance-vector routing (Section 1.4.3) or link-state routing (Section 1.4.2). These protocols are
known as Interior Gateway Protocols (IGPs). Unlike this, the key concern of any given
Autonomous System is how to route data packets from the origin to the destination in the manner
that is most profitable for this AS. These protocols are known as Exterior Gateway Protocols'
and are based on path-vector routing, described above. This duality in routing goals and solutions
means that each border router (or, speaker node) will maintain two different routing tables: one
obtained by the interior routing protocol and the other by the exterior routing protocol.

A key problem is how the speaker node should integrate its dual routing tables into a meaningful
forwarding table. The speaker that first receives path information about a destination in another
AS simply adds a new entry into its forwarding table. However, the problem is how to exchange
the routing information with all other routers within this AS and achieve a consistent picture of
the Internet viewed by all of the routers within this ASs. The goal is that, for a given data packet,
each router in this AS should make the same forwarding decision (as if each had access to the
routing tables of all the speaker routers within this AS). Each speaker node must exchange its
routing information with all other routers within its own AS (known as internal peering). This
includes both other speakers in the same AS (if there are any), as well as the remaining non-
speaker routers. For example, in Figure 1-51 speaker K in ASJ needs to exchange routing
information with speaker N (and vice versa), as well as with non-speaker routers L and M. Notice
again that only speaker routers run both IGP and Exterior Gateway Protocol (and each maintains
two routing tables); non-speaker routers run only IGP and maintain a single routing table.

The forwarding table contains pairs (destination, output-port) for all possible destinations. The
output port corresponds to the IP address of the next hop router to which the packet will be
forwarded. Recall that each router performs the longest CIDR prefix match on each packet’s

' In the literature, the acronym EGP is not used for a generic Exterior Gateway Protocol, because EGP
refers to an actual protocol, described in RFC-904, now obsolete, that preceded BGP (Section 8.2.3).

Chapter 1 e Introduction to Computer Networking 85

Learn from IGP
protocol that
destination x external
to own AS is reachable

via multiple speakers.
Use info from IGP

routing tables to
determine least-cost

paths to each of the

speakers.
Hot-potato routing:
Choose the speaker
with the lowest least-

cost.

Determine the interface

O that leads to the
least-cost speaker.
Enter (x,0) in

forwarding table

Figure 1-52: Integrating an external destination to arouter’sforwarding table.

destination IP address (Section 1.4.4). All forwarding tables must have a default entry for
addresses that cannot be matched, and only routers in Tier-1 ISPs are default-free because they
know prefixes to all networks in the global Internet.

Consider again the scenario shown in Figure 1-51 where AS¢ advertises the destination prefix
128.34.10.0/24. If the AS has a single speaker node leading outside the AS, then it is easy
to form the forwarding table. For example, in Figure 1-51 ASn has a single speaker router R that
connects it to other ASs. If non-speaker router S in ASn receives a packet destined to ASo, the
packet will be forwarded along the shortest path (determined by the IGP protocol running in
ASM) to the speaker S, which will then forward it to N in ASd. Consider now a different situation
where router B in ASa receives a packet destined to AS¢. B should clearly forward the packet to
another speaker node, but which one? As seen in Figure 1-51, both 4 or F will learn about AS¢
but via different routes. To solve the problem, when a speaker node learns about a destination
outside its own AS, it must disseminate this information to all routers within its own AS. This
dissemination is handled by the AS’s interior gateway protocol (IGP).

When a router learns from an IGP advertisement about a destination outside its own AS, it needs
to add the new destination into its forwarding table. This applies to both non-speaker routers and
speaker routers that received this IGP advertisement from the fellow speaker router (within the
same AS), which first received the advertisement via exterior gateway protocol from a different
AS. One approach that is often employed in practice is known as hot-potato routing. In hot-
potato routing, the Autonomous System gets rid of the packet (the “hot potato™) as quickly as
possible (more precisely, as inexpensively as possible). This is achieved by having the router send
the packet to the speaker node that has the lowest router-to-speaker cost among all speakers with
a path to the destination. Figure 1-52 summarizes the steps taken at a router for adding the new
entry to its forwarding table. In Figure 1-51, when B receives a packet for AS¢ it will send it to 4
or F' based on the lowest cost within ASa. only, rather than overall lowest cost to the destination.

The most popular practical implementation of path vector routing is Border Gateway Protocol
(BGP), currently in version 4 (BGP4). Section 8.2.3 describes how BGP4 meets the above
requirements.

Ivan Marsic e Rutgers University 86

1.5 Link-Layer Protocols and Technologies

In packet-switched networks, blocks of data bits (generally called packets)
are exchanged between the communicating nodes. That is, the nodes send S~ B~
packets rather than continuous bit-streams. At the link layer, packets are
called frames. The key function of the link layer is transferring frames from K N

Layer 3:
End-to-End

Layer 2:
Network

one node to an adjacent node over a communication link. This task is PPP, IEEE 802. *
complex because there are a great variety of communication link types. The | (Ethernet, Wi-Fi, ...)

Layer 1:
Link

key characteristics of a link include data rate, duplexity (half or full
duplex), and multiplicity of the medium (i.e., point-to-point or shared broadcast). The link-layer
services include:

e Framing is encapsulating a network-layer datagram into a link-layer frame by adding the header
and the trailer. It is particularly challenging for a receiving node to recognize where an arriving
frame begins and ends. For this purpose, special control bit-patterns are used to identify the start
and end of a frame. On both endpoints of the link, receivers are continuously hunting for the start-
of-frame bit-pattern to synchronize on the start of the frame. Having special control codes, in
turn, creates the problem of data transparency (the need to avoid confusion between control
codes and data) and requires data stuffing (described earlier in Figure 1-14).

e Medium access control (MAC) allows sharing a broadcast medium (Section 1.3.3) MAC
addresses are used in frame headers to identify the sender and the receiver of the frame. MAC
addresses are different from [P addresses and require a special mechanism for translation between
different address types (Section 8.3.1). Point-to-point protocols do not need MAC.

e Reliable delivery between adjacent nodes includes error detection and error recovery. The
techniques for error recovery include forward error correction code (Section 1.2) and
retransmission by ARQ protocols (Section 1.3).

e Connection liveness is the ability to detect a link outage that makes impossible to transfer data
over the link. For example, a wire could be cut, or a metal barrier could disrupt the wireless link.
The link-layer protocol should signal this error condition to the network layer.

e Flow control is pacing between adjacent sending and receiving nodes to avoid overflowing the
receiving node with messages at a rate it cannot process. A link-layer receiver is expected to be
able to receive frames at the full datarate of the underlying physical layer. However, a higher-
layer receiver may not be able receive packets at this full datarate. It is usually left up to the
higher-layer receiver to throttle the higher-layer sender. (An example for the TCP protocol will be
seen in Section 2.1.3.) Sometimes the link layer may also participate in flow control. A simple
way of exerting backpressure on the upper-layer protocol is shown in Listing 1-1 (Section 1.1.4)
at the start of the method send (), where an exception is thrown if the buffer for storing the
unacknowledged packets is full.

There are two types of communication links: (1) point-to-point link with one sender and one
receiver on the link, and no medium access control (MAC) or explicit MAC addressing; and, (2)

Chapter 1 e Introduction to Computer Networking 87

Network layer / User |

) ()

U U

Logical link control
(LLC) sublayer Network layer / User |

(o fy o o

Uu UU Uu UU
Link Medium access control Medium access control
layer (MAC) sublayer (MAC) sublayer
61} 61} Link {rD @
U U layer W U
Physical Physical
(PHY) sublayer (PHY) sublayer

(a) (b)

Figure 1-53: Sublayersof thelink layer for broadcast communication links.
bytes: 1 1 lor2 varigble
Data I

DSAP = Destination service access point
LLC address fields SSAP = Source service access point

DSAP address | SSAP address LLC control

I/G DSAP value C/R SSAP value I/G = Individual/Group
C/R = Command/Response

bits: 1 7 1 7
Figure 1-54: Packet format for Logical Link Control (LLC) protaocol.

broadcast link over a shared wire or air medium. Point-to-point link is easier to work with than a
broadcast link because broadcast requires coordination of many stations for accessing the
medium. The basics of medium access control are already described in Section Section 1.3.3 and
more will be covered later in this section.

Because broadcast links are so complex, it is common to subdivide the link layer of the protocol
stack into three sublayers (Figure 1-53): logical-link-control (LLC) sublayer, medium access
control (MAC) sublayer, and physical (PHY) sublayer. In the OSI reference model (Section
1.1.4), Layer 2 is subdivided into two sublayers: LLC and MAC sublayer. The network layer may
directly use the services of a MAC sublayer (Figure 1-53(b)), or it may interact with a logical-
link-control (LLC) sublayer (Figure 1-53(a)). We will see examples of both approaches later in
this section. The IP protocol (Section 1.4.1) usually directly interacts with a MAC sublayer.

IEEE specified the 802.2 standard for LLC, which is the common standard for all broadcast links
specified by the IEEE Working Group 802, such as Ethernet (Section 1.5.2) and Wi-Fi (Section
1.5.3) broadcast links. 802.2 LLC hides the differences between various kinds of IEEE 802 links
by providing a single frame format and service interface to the network layer. 8§02.2 LLC also
provides options for reliable delivery and flow control. Figure 1-54 shows the LLC packet format.

Ivan Marsic e Rutgers University 88

Internet provider’'s premises

PPP over
.. fiber optic link
Customer’s home

PPP
over dialup telephone line

Modems Router

Figure 1-55: Point-to-point protocol (PPP) provides link-layer connectivity between a pair
of networ k nodes over many types of physical networks.

The two address fields specify the destination and source users of LLC, where the “user” is
usually an upper-layer protocol, such as IP (Figure 1-53). The LLC user addresses are referred to
as “service access points” (SAPs), which is the OSI terminology for the user of a protocol layer.
The DSAP address field identifies one or more destination users for which the LLC packet data is
intended. This field corresponds to the receivingProtocol field in Listing 1-1. The SSAP
address field identifies the upper-layer protocol that sent the data.

Section 1.5.1 reviews a link-layer protocol for point-to-point links. Sections 1.5.2 and 1.5.3
review link-layer protocol for broadcast links: Ethernet for wire broadcast links and Wi-Fi for
wireless broadcast links. Within a single building, broadcast local-area networks such as Ethernet
or Wi-Fi are commonly used for interconnection. However, most of the wide-area (long distance)
network infrastructure is built up from point-to-point leased lines.

1.5.1 Point-to-Point Protocol (PPP)

Problems related to this section: Problem 1.40

Figure 1-55 illustrates two typical scenarios where point-to-point links are used. The first is for
telephone dialup access, where a customer’s PC calls up an Internet service provider’s (ISP)
router and then acts as an Internet host. When connected at a distance, each endpoint needs to be
fitted with a modem to convert analog communications signals into a digital data stream. Figure
1-55 shows modems as external to emphasize their role, but nowadays computers have built-in
modems. Another frequent scenario for point-to-point links is connecting two distant routers that
belong to the same or different [SPs (right-hand side of Figure 1-55). Two most popular point-to-
point link-layer protocols are PPP (point-to-point protocol), which is byte-oriented, viewing each
frame as a collection of bytes; and HDL C (high-level data link control), which is bit-oriented.
PPP, although derived from HDLC, is simpler and includes only a subset of HDLC functionality.

ﬂ\'(— Visit http://en.wikipedia.org/wiki/HDLC for more details on High-Level Data Link Control (HDLC)

Chapter 1 e Introduction to Computer Networking 89

bytes: 1 1 1 lor2 variable 2o0r4 1
b))
T(
|01111110 11111111|00000011 01111110'
Flag Address Control Protocol Data payload Checksum Flag

Figure 1-56: Point-to-point protocol (PPP) frame format.

(This book does not cover HDLC and the reader should check the bibliography in Section 1.7 for
relevant references.)

The format of a PPP frame is shown in Figure 1-56. The PPP frame always begins and ends with
a special character (called “flag”). The Flag makes it possible for the receiver to recognize the
boundaries of an arriving frame. Notice that the PPP frame header does not include any
information about the frame length, so the receiver recognizes the end of the frame when it
encounters the trailing Flag field. The second field (Address) normally contains all ones (the
broadcast address of HDLC), which indicates that all stations should accept this frame. Because
there are only two hosts attached to a PPP link, PPP uses the broadcast address to avoid having to
assign link-layer addresses. The third field (Control) is set to a default value 00000011. This
value indicates that PPP is run in connectionless mode, meaning that frame sequence numbers are
not used and out-of-order delivery is acceptable.

Because the Address and Control fields are always constant in the default configuration, the
nodes can negotiate an option to omit these fields and reduce the overhead by 2 bytes per frame.

The Protocol field is used for demultiplexing at the receiver: it identifies the upper-layer protocol
(e.g., IP) that should receive the payload of this frame. The code for the IP protocol is
hexadecimal 21;5. The reader may wish to check Listing 1-1 (Section 1.1.4) and see how the
method handle () calls upperProtocol.handle () to handle the received payload.

The Payload field is variable length, up to some negotiated maximum; if not negotiated, the
default length of 1500 bytes is used. After Payload comes the Checksum field, which is by default
2 bytes, but can be negotiated to a 4-byte checksum. PPP checksum only detects errors, but has
no error correction/recovery.

Figure 1-57 summarizes the state diagram for PPP; the actual finite state machine of the PPP
protocol is more complex and the interested reader should consult RFC-1661 [Simpson, 1994].
There are two key steps before the endpoints can start exchanging network-layer data packets:

1. Establishing link connection: during this phase, the link-layer connection is set up. The
link-layer peers must configure the PPP link (e.g., maximum frame length,
authentication, whether to omit the Address and Control fields). PPP’s Link Control
Protocol (L CP) is used for this purpose.

2. Connecting to network-layer protocol: after the link has been established and options
negotiated by the LCP, PPP must choose and configure one or more network-layer
protocols that will operate over the link. PPP’s Network Control Protocol (NCP) is
used for this purpose. Once the chosen network-layer protocol has been configured,
datagrams can be sent over the link.

Ivan Marsic e Rutgers University 90

Carrier
detected /

| Exchange
TERMINATE packets

Start / Drop carrier

Failed /

Terminating

/ Establishing Link Connection \
Failed /

Done /
Drop carrier

Options agreed on /

Establishing

\ 4

.A

Completed /

Authenticating

Connecting to NCP configure /
Network-Layer

Protocol

Send & receive
frames

N
&

If transition through these two states is successful, the connection goes to the Open state, where
data transfer between the endpoints takes place.

Figure 1-57: State diagram for the point-to-point protocol (PPP).

The Authenticating state (sub-state of Establishing Link Connection) is optional. The two
endpoints may decide, during the Establishing sub-state, not to go through authentication. If they
decide to proceed with authentication, they will exchange several PPP control frames.

Listing 1-1 in Section 1.1.4 shows how application calls the protocols down the protocol stack
when sending a packet. However, before send () can be called, lowerLayerProtocol must
be initialized. Link-layer protocol is usually built-in in the firmware of the network interface card,
and the initialization happens when the hardware is powered up or user runs a special application.
Therefore, NCP in step 2 above establishes the connection between the link-layer PPP protocol
and the higher-layer (e.g., IP) protocol that will use its services to transmit packets.

LCP and NCP protocols send control messages encapsulated as the payload field in PPP frames
(Figure 1-58). The receiving PPP endpoint delivers the messages to the receiving LCP or NCP
module, which in turn configures the parameters of the PPP connection.

Although PPP frames do not use link-layer addresses, PPP provides the capability for network-
layer address negotiation: endpoint can learn and/or configure each other’s network address.

In summary, PPP has no error correction/recovery (only error detection), no flow control, and
out-of-order delivery is acceptable. No specific protocol is defined for the physical layer in PPP.

Chapter 1 e Introduction to Computer Networking 91

Value for LCP: C021,4
Value for NCP: C0234

1~
Address | Control Protocol Payload Checksum

)

Code D Length Information for_
the control operation
bytes: 1 1 2 variable

Figure 1-58: LCP or NCP packet encapsulated in a PPP frame.

1.5.2 Ethernet (IEEE 802.3)

Problems related to this section: Problem 1.41 — Problem 1.43

Ethernet is a network protocol for local area networks (LANs). The MAC protocol for Ethernet is
based on the CSMA/CD protocol shown in Figure 1-30. The frame format for Ethernet is shown
in Figure 1-59. The Ethernet was first standardized by DEC, Intel and Xerox, known as the DIX
standard. (See Section 1.7 for an overview of Ethernet history.) When IEEE released the 802.3
standard, it adopted a slightly different frame format, as shown in Figure 1-59(b). The Type field
in a DIX frame represents the upper-layer protocol that is using Ethernet as its link layer. On the
other hand, an 802.3 frame carries instead the frame Length. In 802.3 frame, the upper-layer
protocol is specified in the LLC frame as DSAP address (also see Figure 1-54). Because the DIX
standard was widely used by the time IEEE 802.3 was released, a compromise is reached as
follows. If the Type/Length field contains a number <1500 than it represents the frame Length
and the receiver should look for the upper-layer protocol in the contained LLC packet. If the
Type/Length field contains a number >1500 than it identifies the upper-layer protocol, and the
data field does not contain an LLC-formatted packet, but rather a network-layer packet (e.g., an
IP datagram). All versions of Ethernet up to date use this frame format.

The Ethernet link-layer address or MAC-48 address is a globally unique 6-byte (48-bit) string
that comes wired into the electronics of the Ethernet attachment. An Ethernet address has two
parts: a 3-byte manufacturer code, and a 3-byte adaptor number. IEEE acts as a global authority
and assigns a unique manufacturer’s registered identification number, while each manufacturer
gives an adaptor a unique number. Although intended to be a permanent and globally unique
identification, it is possible to change the MAC address on most of today’s hardware, an action
often referred to as MAC spoofing.

When a frame arrives at an Ethernet attachment, the electronics compares the destination address
with its own and discards the frame if the addresses differ, unless the address is a special
“broadcast address” which signals that the frame is meant for all the nodes on this network.

We know from Section 1.3.3 that for the CSMA/CD protocol, the transmission time of the
smallest frame must be larger than one round-trip propagation time, i.e., 2 This requirement
limits the distance between two computers on an Ethernet LAN. The smallest frame is 64 bytes.

Ivan Marsic e Rutgers University 92

\47 MAC header 4%

bytes: 8 6 6 2 0tojl§500 0 to 46 4
€8
Destination Source
Preamble address address Type Data Pad ChecksumI
(a)
| Network layer |
A—
MAC | Network layer |
7S Link ﬁ @
W i |ayer LLC
PHY - @? @L?
Link MAC
layer
PHY
«———— MAC header ———»|
bytes: 7 1 6 6 2 0to)1)500 0 to 46 4
S| Destination Source
(b) Preamble 9 address address

SOF = Start of Frame

02

DSAP
address

SSAP

address Control

LLC packet: Data I
Figure 1-59: Link-layer frame format for DIX standard Ethernet Version 2.0 (a) and for
| EEE standard 802.3 (b). LL C packet format isshown in Figure 1-54.

This 64-byte value is derived from the original 2500-m maximum distance between Ethernet
interfaces plus the transit time across up to four repeaters plus the time the electronics takes to
detect the collision. The 64 bytes correspond to 51.2 us over a 10 Mbps link, which is larger than
the round-trip time across 2500 m (about 18 us) plus the delays across repeaters and the
electronics to detect the collision.

Sensing the medium idle takes time, so there will necessarily be an idle period between
transmissions of Ethernet frames. This period is known as the inter frame space (IFS), interframe

Table 1-4: Parameter valuesfor the Ethernet MAC protocol (CSMA/CD).

Datarate
Parameter Ilj(?oti/[211:119(; including 1 Gbps 10 Gbps
Backoff slot time 512 bit times 4096 bit times not applicable
Interpacket gap / IFS | 96 bits 96 bits 96 bits
Attempts limit 16 16 not applicable
Backoff limit 10 10 not applicable
Jam size 32 bits 32 bits not applicable
Maximum frame size | 1518 bytes 1518 bytes 1518 bytes
Minimum frame size | 512 bits (64 bytes) 512 bits (64 bytes) 512 bits (64 bytes)

Chapter 1 e Introduction to Computer Networking 93

BNC connector

S5
A5
BNC
T-connector

/J\> :
) BNC
T-connector

Thin Ethernet
cable

Figure 1-60: Thin coaxial cable Ethernet represents a bus-based design.

gap, or interpacket gap. It is the spacing between two non-colliding frames, from start of idle after
the last bit of the FCS field of the first frame to the first bit of the Preamble of the subsequent
frame. In other words, if an Ethernet network adapter senses that there is no signal energy
entering the adapter from the channel for IFS-bit times, it declares the channel idle and starts to
transmit the frame. The minimum interframe space is 96-bit times (the time it takes to transmit 96
bits of raw data on the medium), which is 9.6 us for 10 Mbps Ethernet, 960 ns for 100 Mbps
(fast) Ethernet, 96 ns for 1 Gbps (gigabit) Ethernet, and 9.6 ns for 10 Gbps (10 gigabit) Ethernet.

The Ethernet specification for a bus-based design allows no more than 1,024 hosts and it can span
only a geographic area of 2,500 m. Table 1-4 lists some important parameters of the Ethernet
MAC protocol for different data rates of the physical sublayer.

Evolution of Ethernet

Ethernet has evolved over the past 35 years since it was invented. This evolution was shaped by
physical characteristics of communication links, such as data rate, duplexity (half or full duplex),
and multiplicity of the medium (i.e., point-to-point or shared broadcast). Ethernet operation is
specified for data rates from 1 Mbps to 10 Gbps using a common MAC protocol (CSMA/CD). In
1997, IEEE Std 802.3x specified full duplex operation. The CSMA/CD MAC protocol specifies
shared medium (half duplex) operation where frame collisions can occur, as well as full duplex

Ivan Marsic e Rutgers University 94

Computer Computer

Computer

Twisted pair
cable

Figure 1-61: Bridged or switched Ethernet represents a star-based (hub-and-spokes) design.

operation that operates without collisions. Ethernet Physical Sublayer (PHY) is standardized for
operation over coaxial, twisted-pair or fiber-optic cables.

Ethernet was first standardized for operation over coaxial cables (Figure 1-60). A cable (ether)
with multiple devices attached to it in parallel is called a multidrop cable. This is also known as
bus-based design for Ethernet. The multidrop cable with all stations attached to it are called a
collision domain. If two or more stations in a collision domain transmit simultaneouly, their
frames will collide and will not be successfully received. First appeared the so-called Thick
Ethernet (or, 10Base5) which used a thick coaxial cable with markings to show where
transcievers can be screwed onto the cable (2.5 meters apart). The second cable type was Thin
Ethernet (or, 10Base2), which used standard BNC connectors to form T-junctions on the
carrier cable (Figure 1-60). Multidrop-cable Ethernets were followed by a star-patterned
wiring, where all computers in the LAN have a cable running to a central hub and
incident spokes (Figure 1-61). Historically, the first instance of this design is 10Base-T.
The Ethernet version notation consists of three parts, as follows:

Data rate Baseband/Broadband Wiring type (e.g., coaxial,
(e.g., 10 Mbps, 10 Gbps) transmission twisted pair or fiber optic)

For example, 10Base-T means 10 Mbps baseband transmission over unshielded twisted-pair cable
(Category 5 UTP); 10GBase-X means 10 Gbps baseband over two pairs of twisted-pair cable.

Chapter 1 e Introduction to Computer Networking 95

E il Server

Printer

(a)

=S

(b) N

(c)

Figure 1-62: Comparing bus-based multidrop-cable Ethernet (a), hub-based Ethernet (b)
and switch-based Ethernet (c). Dotted ovalsindicate independent collision domains.

The star design in Figure 1-61 has many variations, depending on whether the central device
operates at the physical layer (OSI Layer 1) or at the link layer (OSI Layer 2) and whether the

Ivan Marsic e Rutgers University 96

uu Uu

IEEE 802.3 MAC
(CSMA/CD)

w w

IEEEOS'\t"dbESZP?':I%S 100 Mbps PHY 1000 Mbps PHY 10 Gbps PHY

802.3a, 802.3i, ... IEEE Std 802.3u IEEE Std 802.3z IEEE Std 802.3ae
10Base2*, 10Base5*, 100Base-T, 100Base-T2, 1000Base-T, 1000Base-X, 10GBase-E, 10GBase-L,
10Base-F, 10Base-FB, 100Base-T4*, 100Base-TX, 1000Base-BX10 10GBase-R, 10GBase-S,
10Base-FL, 10Base-FP, 100Base-X, 100Base-BX10, 10GBase-T, 10GBase-W,
10Base-T 100Base-FX, 100Base-LX10 10GBase-X

(*) Not capable of operating in full duplex mode

Figure 1-63: Ethernet standardsfamily for IEEE Std 802.3-2008 (current).

links are half duplex or full duplex. The central device was historically first called bridge. In the
simplest version, the bridge is called hub or repeater and it operates at the physical layer in a
half-duplex mode. A hub does not understand anything beyond bits, i.e., does not recognize
frames or knows about device addresses. It simply switches bits that come in one network
interface (or, port) to all other interfaces. The whole network forms a single collision domain, so
conceptually this design is equivalent to a bus-based design.

A more spohisticated bridge is known as a switch, but the term “bridge” is also often used
synonymously. An Ethernet switch moves frames from input to output ports based on their Layer-
2 destination addresses (described above as MAC-48 addresses). In other words, unlike a hub
which switches bits to all interfaces, a switch switches a frame exclusively to a port determined
by the frame’s destination address.

Figure 1-62 illustrates the difference between hubs and switches. Ethernet hubs (Figure 1-62(b))
are conceptually equivalent to the bus-based Ethernet (Figure 1-62(a)) because both designs form
a single collision domain. Conversely, each network port of an Ethernet switch forms an
independent collision domain (Figure 1-62(c)). With switch-based design, each cable has only
two stations attached: on one end is a switch’s port and on the other end is a computer host. This
is essentially a point-to-point link, but collisions are still possible between the endpoints and
CSMA/CD must be employed. More detail on Ethernet switches is provided later in this section.

Figure 1-63 summarizes the current family of Ethernet protocols. The figure also indicates
whether the physical sublayer has the ability to perform full-duplex link transmission and
reception, which is described next.

Full-duplex Mode and Collision-free Ethernet

Traditionally, Ethernet MAC sublayer implements the CSMA/CD algorithm, which creates a
half-duplex link. In half-duplex mode, media access method is the means by which two or more
stations share a common transmission medium (broadcast). To transmit, a station waits (defers)
for a quiet period on the medium (that is, no other station is transmitting) and then sends the
intended message in bit-serial form. If, after initiating a transmission, the message collides with

Chapter 1 e Introduction to Computer Networking 97

that of another station, then each transmitting station intentionally transmits for an additional
predefined period to ensure propagation of the collision throughout the system. The station
remains silent for a random amount of time (backoff) before attempting to transmit again.

Ethernet 802.3 standard provides for two modes of operation of the MAC sublayer:

(a) In half-duplex mode, stations contend for the use of the physical medium, using the
CSMA/CD algorithms specified. This is the traditional CSMA/CD contention-based
operation. Bidirectional communication is accomplished by sequential exchange of
frames, rather than simultaneous transmission in both directions. Half-duplex operation
is possible on all supported media; it is required on those media that are incapable of
supporting simultaneous transmission and reception without interference, such as
10Base2 and 100Base-T4 (Figure 1-63).

(b) The full-duplex mode of operation allows simultaneous communication between a pair
of stations using point-to-point media (dedicated channel). Full-duplex operation does
not require that transmitters defer, nor do they monitor or react to receive activity
(“collision detection™), as there is no contention for a shared medium in this mode. Full-
duplex operation can be used when al/ of the following are true:

1) The physical medium is capable of supporting simultaneous transmission and
reception without interference (Figure 1-63).

2) There are exactly two stations connected with a full duplex point-to-point link.
Because there is no contention for use of a shared medium, the multiple access (i.e.,
CSMA/CD) algorithms are unnecessary.

3) Both stations on the LAN are capable of, and have been configured to use, full
duplex operation.

The most common configuration envisioned for full-duplex operation consists of a central switch
(or, bridge) with a dedicated LAN connecting each switch port to a single station. Ethernet hubs
or repeaters are outside the scope of full duplex operation. By definition, an IEEE 802.3 LAN
operating in full-duplex mode comprises exactly two stations, so full-duplex mode creates an
Ethernet point-to-point link.

An Ethernet device operates in either half or full duplex mode at any one time. A device is
configured for one specific mode of operation (e.g. 1000Base-X Full Duplex). Auto-Negotiation
is performed as part of the initial set-up of the link, and allows the PHY's at each end to advertise
their capabilities (speed, PHY type, half or full duplex) and to automatically select the operating
mode for communication on the link. The term “CSMA/CD MAC” is used synonymously with
“802.3 MAC,” and may represent an instance of either a half duplex or full duplex mode device,
although full-duplex devices do not implement the traditional CSMA/CD algorithm. In full-
duplex mode, stations do not implement the CSMA/CD algorithms traditionally used to arbitrate
access to shared-media LANs. Full-duplex operation constitutes a proper subset of the MAC
functionality required for half-duplex operation.

The current Ethernet standard (IEEE Std 802.3-2008)

Ivan Marsic e Rutgers University 98

Ethernet switch

To a host
computer

Line cards

Backplane

Figure 1-64: Ethernet switch architecture.

Ethernet Switches

An Ethernet switch consists of a high-speed backplane and a number of plug-in line cards,
typically 4 to 32 (Figure 1-64). Each line card contains one or more (e.g., eight) network ports or
connectors. A twisted pair cable leads from each connector to a host computer. When a computer
sends a frame, the frame first reaches an associated line card, which checks whether the frame is
destined to a station connected to the same card. If so, the frame is copied to the given
port/connector on this line card. If not, the frame is sent over the backplane to the destination
computer’s line card. The backplane typically runs at data rates of many Gbps, using a
proprietary protocol. More about switch design is available in Section 4.1.

A hub or repeater transmits a frame on an output port while it is being received on an input port.
This is known as cut-through switching. Unlike a hub/repeater, a switch or bridge first receives
the entire frame then stores it, waiting for the network attached to the frame’s outgoing port to
become idle. This is known as store-and-forward switching. With store-and-forward switching, it
is possible for two stations on different ports of the switch to transmit simultaneously without a
collision. We say that switch ports form independent collision domains (Figure 1-62).

Chapter 1 e Introduction to Computer Networking 99

B

MAC address:
00-01-03-1D-CC-F7

01-23-45-67-89-AB
Port 1
A Switch D D
S

Network 1

-
an

S

o Port 2
A3-B0-21-A1-60-35
49-BD-2F-54-1A-0F
Network 2
C

Sl
AN,

Figure 1-65: Example Ethernet networ ks connected by an Ethernet switch.

As already pointed out, switches switch packets based on their link-layer (or, MAC) addresses,
i.e., switches operate at OSI Layer-2. They are also known as LAN switches. In Section 1.4 we
also learned about another kind of switches: routers. Routers switch packets based their network-
layer addresses, i.e., switches operate at OSI Layer-3. Routers are more complex because they
need to run routing protocols to discover the topology of the entire internetwork consisting of
many networks. It is also said that LAN switches are transparent to the computers in the network.
Unlike routers, where nodes know of the next-hop routers, LAN nodes are unaware of
intermediate switches and their forwarding role. When a computer sends a frame, the frame is
addressed to another computer, rather than addressing the frame to a switch. The frame will pass
through a switch when going from one LAN segment to another without the switch identifying
itself as the device that transmitted the frame to the next segment. Therefore, switches are
transparent to each other, as well. Routers are described in Section 4.1.

LAN switches perform two basic functions: frame forwarding and frame filtering. Frame
forwar ding helps move a frame toward its ultimate destination. A switch moves a frame from an
input port to an output port based on frame’s MAC address by looking up the switching table.
The switching table is similar to a router’s forwarding table. Consider a network in Figure 1-65.
The switching table of the switch is shown in Table 1-5. The MAC addresses of stations 4, B, and
D are listed in the table. For example, if a frame arrives on Port-2 destined for MAC address 00-
01-03-1D-CC-F7 (station A4), the switch outputs the frame on Port-1. If a frame arrives on Port-1
destined for 49-BD-2F-54-1A-0F (station C), which is currently not listed in the switching table,
the switch will output the frame to all other ports. In this example, Port-2 is the only other port.

Table 1-5: The switching table for the example LAN in Figure 1-65.

MAC address Network port Timelast framereceived
00-01-03-1D-CC-F7 1 10:39
01-23-45-67-89-AB 1 10:52

A3-B0-21-A1-60-35 2 10:17

Ivan Marsic e Rutgers University 100

B

o
S
T Network 1

Port 1 Port 1
A Switch 1 Switch 2
S
e N

Port 2 Port 2

Network 2 &
c D
JL
AN

Figure 1-66: Example switched network with a loop formed by two switches.

S
AR

Framefiltering relates to discarding frames that are headed in a direction where they do not need
to go. For example, if in Figure 1-65 a frame arrives on Port-2 with the destination address 00-01-
03-1D-CC-F7 (station A4), then according to Table 1-5 this frame should be output on Port-1. On
the other hand, assume that a frame arrives on Port-2 with the destination address A3-B0-21-A1-
60-35. The switch realizes that it is a station on a network segment attached on Port-2 sending a
frame to another station on the same segment. In our case, it is station C sending a frame to
station D. There is no need to forward this frame because all other stations on the same segment
already received this frame, so the switch filters this frame and discards it.

The switching table can be filled up manually, but this is a tedious and error-prone task for large
number of stations. Instead, the switch performs backward learning of the switching table.
Initially, the table is empty. When the switch receives a frame from a station for which it has no
address in the table, the switch automatically creates a new entry. The entry records the MAC
address in the frame’s Source address field (Figure 1-59), the network port on which the frame
arrived, and the time of the arrival. If every station on all attached networks sends a frame, then
every station will eventually be recorded in the table. The parameter called aging time
determines how long the table entries are valid. If the switch does not receive a frame with a
given address as its source address, the entry will be deleted from the table. For example, in Table
1-5 a frame with source address A3-B0-21-A1-60-35 (station D Figure 1-59) arrived last time at
10:17 on Port-2. Suppose that the aging time for this switch is 50 minutes. If no frame arrives
with source address A3-B0-21-A1-60-35 arrives until 11:07, the switch will remove the entry for
station D from the table. In this way, if a computer is unplugged or moved around the building
and plugged in again somewhere else, the network can operate without manual intervention.

Consider now the network in Figure 1-66. The two switches connect the two networks via two
alternative paths, thus forming a loop (or, cycles) in the topology. This may happen by accidence,
if the network administrator is not careful when upgrading the network, or it may be done
purposefully to provide for alternate paths in case of switch failures (fault tolerance by
redundancy). Let us assume that the switching tables of both switches are as in Table 1-5 and that

Chapter 1 e Introduction to Computer Networking 101

Network 1 Netw-1

Switch 1 TPON 1 Switch 2 | P1 S-1 P1 T\ fﬁ
]]
m m Id i i
Cc| P2 U Cc| P2 U Cc| P2 U C| P1 7
I I o

[1
Port 2 g K—J P2 P2 JL P2
I { I\H! 1 I I { T { I
Network 2] Netw-2

(a) (b)

Netw-1 Netw-1

51 PlT s2 8 s1 P s-2 P1
L]] | L]
P g
10| " e |
C| P1 _ C| P1] K) C P1 U
N Z N
P2 P2 ¥QJJL\ P2

Netw-2 Netw-2

(©) (d)

Figure 1-67: Packet proliferation in the network with aloop in Figure 1-66.

R

Y

station C sends a frame to another station (the destination to which C sends is irrelevant for this
example). The frame will arrive on both switches on Port-2, and each switch will record in its
switching table that C arrived on Port-2 (resides on Network 2) and enqueue the frame for
forwarding on its Port-1 (Figure 1-67(a)). Let us say that Switch 1 is the first to seize the access to
the medium and succeed in relaying the frame to Network 1. Because switches are transparent to
each other, the frame will appear on Port-1 of Switch 2 exactly as if transmitted by station C.
Switch 2 will record in its table that C arrived on Port-1 (as if C now resides on Network 1!) and
enqueue the frame for forwarding on its Port-2 (Figure 1-67(b)). Next, suppose that Switch 2
succeeds in transmitting its first received frame onto Network 1 (Figure 1-67(c)). Switch 1 will
record that C moved to Port-1 and enqueue the frame on its Port-2. Figure 1-67(d) shows one
more iteration, where Switch 2 transmits its second received frame onto Network 2, but this
process continues to infinity. Notice also that during this process any frames from other stations
heading to station C may be misdirected and eventually discarded.

The solution to this problem is to remove the loops, which produces a tree from a general graph.
A spanning tree of a graph is a subgraph of this graph that connects (spans) all the nodes, but
contains no cycles. That is, a spanning tree keeps all the nodes of the original graph, but removes

Ivan Marsic e Rutgers University 102

some links. In terms of Ethernet networks, each LAN segment corresponds to a graph node, and
each switch corresponds to a link in the graph. A spanning tree of a network can be derived
automatically using the spanning tree protocol (STP), specified in the IEEE 802.1D standard.

Each switch in the network sends a configuration message on all of its attached networks, which
includes the MAC address of the switch. The switches use the Spanning Tree Protocol to compute
the spanning tree, which has these five steps:

1. Elect a root switch. The switches choose one switch as the root switch of the spanning tree.
The choice is the switch with the smallest (lowest) identifier. Each switch has a unique identifier
(its MAC address) and a configurable priority number; the switch ID contains both numbers. To
compare two IDs, the priority is compared first. If two switches have equal priority, then their
MAC addresses (48-bit binary numbers) are compared and the switch with the smaller address is
chosen as the root switch. Of course, before configuration messages from all switches are
received, some switches may have made incorrect choices due to insufficient information. The
root switch always forwards frames out over all of its ports.

2. Compute the shortest path to theroot. Each switch determines the cost of each possible path
from itself to the root. From these paths, it selects one with the smallest cost (shortest path). The
port connecting to that path becomes the root port of the switch. The cost of traversing a path is
the sum of the costs of the LAN segments on the path. Different technologies have different
default costs for LAN segments. A common approach is to assign to each segment the cost of 1
(i.e., one hop). All shortest paths form a spanning tree.

3. Determine any designated ports. All switches on a LAN segment collectively decide which
one among them has the shortest path to the root. The elected switch becomes the designated
switch that will be responsible for forwarding frames from this LAN segment toward the root
switch. The port connecting the designated switch to the given LAN segment becomes a
designated port of the switch. A switch may have no designated ports or may have more than one
designated port (because each switch is connected to several LAN segments).

4. Disable all other ports. Every switch blocks all of its active ports that do not qualify as a root
port or a designated port. In case there are ties, go to the next step.

5. Resolve the ties. It may happen that two or more ports on a single switch are attached to
shortest paths to the root or two or more switches on the same LAN segment have equal least-cost
paths to the root. Such ties are broken as follows:

5.a) Breaking ties for root ports. When multiple paths from a switch are shortest paths, the
chosen path uses the neighbor switch with the lower identifier. The root port is thus the one
connecting to the switch with the lowest identifier.

5.b) Breaking ties for designated ports. When more than one switch on a segment has a shortest
path to the root, the switch with the smaller identifier is chosen to forward messages to the root.
The port attaching that switch to the LAN segment is a designated port of that switch. A loser
switch sets the port to the given LAN segment as being blocked.

5.¢) The final tiebreaker. In some cases, there may still be a tie, as when two switches are
connected by multiple cables. In this case, multiple ports on a single switch are candidates for
root port. The path that passes through the port on the neighbor switch that has the lowest port
priority is used.

Chapter 1 e Introduction to Computer Networking 103

Distribution system (e.g., Ethernet LAN)

Access
point

.
.
-
.
-
.
.
“
* .
.
-
L)
.
.
.
.
-

Independent BSS

(or, IBSS) Infrastructure BSS

Figure 1-68: |IEEE 802.11 (Wi-Fi) independent and infrastructure basic service sets (BSSs).

The switches run the STP protocol iteratively and exchange configuration messages containing
this information:

(1) The identifier for the switch sending the message (includes the MAC address and a
configurable priority number);

(2) The identifier for what the sending switch believes to be the root switch;
(3) The distance (measured in hops) from the sending switch to the root switch.

Initially, each switch thinks it is the root, and so it sends a configuration message out on each of
its ports identifying itself as the root, with a distance to the root valued at 0. When a switch
receives a message on a particular port, the switch checks if this message is better than the best
configuration message previously recorded for this port. The message is considered “better” if:

e [t identifies a root with a smaller identifier, or
e It identifies the same root but with a shorter distance (lower cost path), or
e It identifies the same root and distance, but the sending switch has a smaller identifier.

When a switch decides that it is not the root switch, it stops sending own configuration messages
and only forwards messages from other switches. Similarly, when a switch decides that it is not
the designated switch for a given LAN segment, it stops sending configuration messages over the
port attached to this segment. When the system stabilizes, only the root switch will be generating
configuration messages and all the other switches will be forwarding these messages only over
the ports for which they are the designated switch.

1.5.3 Wi-Fi (IEEE 802.11)

Problems related to this section: Problem 1.44 — Problem 1.45

IEEE 802.11, also known as Wi-Fi, ...

Architecture and Basics

The basic building block of an IEEE 802.11 network is the basic service set (BSS), which is
simply a set of stations that communicate with one another. A BSS does not generally refer to a

Ivan Marsic e Rutgers University 104

Distribution system (e.g., Ethernet LAN)

AP1 AP2 AP3

BSS1 BSS2 BSS3

Figure 1-69: IEEE 802.11 (Wi-Fi) extended service set (ESS) allows connecting multiple
access pointsto support long-range roaming.

particular area, due to the uncertainties of electromagnetic propagation. There are two types of
BSS, as shown in Figure 1-68. When all of the stations in the BSS are mobile stations and there is
no connection to a wired network, the BSS is called an independent BSS (or, IBSS). The IBSS is
the entire network and only those stations communicating with each other in the IBSS are part of
the LAN. This type of network is called an ad hoc network (see Chapter 6).

When all of the mobile stations in the BSS communicate with an access point (AP), the BSS is
called an infrastructure BSS (never called an IBSS!). This configuration is also known as
wireless local area network or W-LAN. The access point provides both the connection to the
wired LAN (wireless-to-wired bridging), if any, and the local relay function for all stations in its
BSS. Therefore, if one mobile station in the BSS must communicate with another mobile station,
the packet is sent first to the AP and then from the AP to the other mobile station. This causes
communications to consume more transmission capacity than in the case where the
communications are directly between the source and the destination (as in the IBSS). However, in
many cases the benefits provided by the AP outweigh the drawbacks. One of the benefits
provided by the AP is that the AP can assist the mobile stations in saving battery power. The
mobile stations can operate at a lower power, just to reach the AP, and not worry about how far
away is the destination host. Also, the AP can buffer (temporarily store) the packets for a mobile
station, if the station is currently in a power saving mode.

Extended service set (ESS) extends the range of mobility from a single infrastructure BSS
Figure 1-68(b) to an arbitrary range by interconnecting a set of infrastructure BSSs (Figure 1-69).
In ESS, multiple APs communicate among themselves to forward traffic from one BSS to another
and to facilitate the roaming of mobile stations between the BSSs. This is conceptually similar to
the cellular telephony network. The APs perform this communication via the distribution system,
such as an Ethernet-based wireline network. The stations in an ESS see the wireless medium as a
single link-layer connection. ESS is the highest-level abstraction supported by 802.11 networks.
Roaming between different ESSs is not supported by IEEE 802.11 and must be supported by a
higher-level protocol, e.g., Mobile IP (Section 8.3.4).

Wi-Fi supports dynamic data-rate adaptation to the current conditions of the wireless channel
(Figure 1-70). The goal is to select the rate that minimizes the errors due to the channel noise.
This behavior is not implemented in Ethernet, which operates over wire media, where channel

Chapter 1 e Introduction to Computer Networking 105

UU U

IEEE 802.11 MAC

i i

U-U 802.11b Physical sublayer U-U

1 Mbps PHY 2 Mbps PHY | | 5.5 Mbps PHY | | 11 Mbps PHY
(DBPSK) (DQPSK) (DBPSK/CCK) | | (DQPSK/CCK)

Figure 1-70: Wi-Fi supports dynamic data-rate adaptation at the physical sublayer. This
figure showsthe availableratesfor 802.11b.

conditions are stable and error rate is low. In Ethernet, the physical data rate is pre-configured and
does not change at runtime (compare to Figure 1-63).

Figure 1-71 shows the 802.11 frame format. The general MAC-layer format (Figure 1-71(a)) is
used for all data and control frames, but not all fields are used in all types of frames. There can be
up to four address fields in an 802.11 frame. When all four fields are present, the address types
include source, destination, transmitting station, and receiving station. The first two represent the
end nodes and the last two may be intermediary nodes. 802.11 uses the same MAC-48 address
format as Ethernet (Section 1.5.2). One of the fields could also be the BSS identifier, which is
used in the probe request and response frames, used when mobile stations scan an area for
existing 802.11 networks.

The Duration/Connection-ID field indicates the time (in microseconds) the channel will be
reserved for successful transmission of a data frame. The stations that receive this frame, but are
not intended receivers, use this information to defer their future transmissions until this
transmission is completed. The deferral period is called network allocation vector (NAV), and
we will see later in Figure 1-77 how it is used. In some control frames, this field contains a
network association, or connection identifier.

The 802.11 physical-layer frame (Figure 1-71(b)) is known as PLCP protocol data unit (PPDU),
where PLCP stands for “physical (PHY) layer convergence procedure.” The version shown in
Figure 1-71(b) is known as Long PPDU format. A preamble is a bit sequence that receivers
watch for to lock onto the rest of the frame transmission. There are two different preamble and
header formats defined for 802.11 physical-layer frames. The mandatory supported long
preamble and header, shown in Figure 1-71(b), is interoperable with the basic 1 Mbps and 2
Mbps data transmission rates. There is also an optional short preamble and header (not illustrated
here), known as Short PPDU format. This format is used at higher transmission rates to reduce
the control overhead and improve the network performance. (More discussion is provided in
Chapter 6.)

Ivan Marsic e Rutgers University 106

MAC header > MSDU —

A

bytes: 2 2 6 6 6 2 6 2 0 to 2312 4

Address-2 | Address-3 Data

Address-1 SC | Address-4 [QC

FC = Frame control
D/I = Duration/Connection ID
SC = Sequence control

(a) QC = QoS control

FCS = Frame check sequence

bits: 2 2 4 1 1 1 1 1 1 1 1
Protocol To |From
version Type Type bs | bs MF|RT |PM|MD| W | O

DS = Distribution system MD = More data

MF = More fragments W = Wired equivalent privacy (WEP) bit
RT = Retry O = Order

PM = Power management

(b)

802.11 physical-layer frame: ‘ Physical protocol data unit (PPDU) ‘

Physical-layer header
48 bits

MAC-layer frame (payload)
(variable)

Physical-layer preamble
144 bits

Synchronization SFD Signal | Service Length CRC

128 bits 16 bits 8bits | 8bits | 16 bits 16 bits SFD = start frame delimiter

Figure 1-71: IEEE 802.11 (Wi-Fi) frame formats. (a) Link-layer (or, MAC-layer) frame
format. (b) Physical-layer frame format (also known asLong PPDU format).

Medium Access Control (MAC) Protocol

The medium access control (MAC) protocol for IEEE 802.11 is a CSMA/CA protocol. As
described earlier in Section 1.3.3, a CSMA/CA sender tries to avoid collision by introducing a
variable amount of delay before starting with transmission. This is known as the access deferral
state. The station sets a contention timer to a time interval randomly selected in the range [0,
CW-1], and counts down to zero while sensing the carrier. If the carrier is idle when the
countdown reaches zero, the station transmits.

Similar to an Ethernet adapter (Section 1.5.2), a Wi-Fi adapter needs time to decide that the
channel is idle. Again, this period is known as interframe space (IFS). However, unlike Ethernet,
the IFS delay is not fixed for all stations to 96-bit times. Wi-Fi has an additional use of the IFS
delay, so that it can differentiate stations of different priority. Each station must delay its
transmission according to the IFS period assigned to the station’s priority class. A station with a
higher priority is assigned a shorter interframe space and, conversely, lower priority stations are
assigned longer IFSs. The idea behind different IFSs is to create different priority levels for

Chapter 1 e Introduction to Computer Networking 107

<+——DIFS —»|
«— PIFS —»] Contention
< SIFS —»| period

Busy Frame transmission

P
§> Backoff Time

slots

A 4

&

Defer access Select slot using binary exponential backoff

Figure 1-72: IEEE 802.11 interframe spacing relationships. Different length 1FSs are used
by different priority stations.

different types of traffic. Then, high-priority traffic can wait for shorter time after the medium has
become idle. If there is any high-priority traffic, it grabs the medium before lower-priority frames
have a chance to try.

Again, when a station wants to transmit data, it first senses whether the medium is busy. Two
rules apply here:

1. If the medium has been idle for longer than an IFS corresponding to its priority level,
transmission can begin immediately.

2. If the medium is busy, the station continuously senses the medium, waiting for it to
become idle. When the medium becomes idle, the station first waits for its assigned IFS,
and then enters the access deferral state. The station can transmit the packet if the
medium is idle after the contention timer expires.

To assist with interoperability between different data rates, the interframe space is a fixed amount
of time, independent of the physical layer bit rate. There are two basic intervals determined by the
physical layer (PHY): the short interframe space (SIFS), which is equal to the parameter £, and
the slot time, which is equal to 2x£. To be precise, the 802.11 slot time is the sum of the physical-
layer Rx-Tx turnaround time'', the clear channel assessment (CCA) interval, the air propagation
delay on the medium, and the link-layer processing delay.

The four different types of IFSs defined in 802.11 are (see Figure 1-72):

SIF'S: Short interframe space is used for the highest priority transmissions, such as control frames,
or to separate transmissions belonging to a single dialog (e.g. Frame-fragment—ACK). This
value is a fixed value per PHY and is calculated in such a way that the transmitting station
will be able to switch back to receive mode and be capable of decoding the incoming
packet. For example, for the 802.11 FH PHY this value is set to 28 microseconds.

PIFS: PCF (or priority) interframe space is used by the PCF during contention-free operation.
The coordinator uses PIFS when issuing polls and the polled station may transmit after the

" Rx-Tx turnaround time is the maximum time (in us) that the physical layer requires to change from
receiving to transmitting the start of the first symbol. More information about the Rx-Tx turnaround time
is available in: “IEEE 802.11 Wireless Access Method and Physical Specification,” September 1993; doc:
IEEE P802.11-93/147: http://Iwww.ieee802.org/11/Documents/DocumentArchives/1993 docs/1193147.doc

Ivan Marsic e Rutgers University 108

DIFS ,Backoff

Busy Data Time
Sender 4132110 k >
Y 2

Busy Receive data D0 Ack 5
Receiver Resume

countdown

DIFS Backoff_q§LiS£)end countdown and defer access DIFS ,after deferral

Busy \—— 7V /) e
Another station 98705 6543

Figure 1-73: |EEE 802.11 basic transmission mode is a based on the stop-and-wait ARQ.
Notice the backoff slot countdown during the contention period.

SIFS has elapsed and preempt any contention-based traffic. PIFS is equal to SIFS plus one
slot time.

DIFS: DCF (or distributed) interframe space is the minimum medium idle time for asynchronous
frames contending for access. Stations may have immediate access to the medium if it has
been free for a period longer than the DIFS. DIFS is equal to SIFS plus two slot times.

EIFS: Extended interframe space (not illustrated in Figure 1-72) is much longer than any of the
other interframe spaces. It is used by any station that has received a frame containing errors
that it could not understand. This station cannot detect the duration information and set its
NAV for the Virtual Carrier Sense (defined later). EIFS ensures that the station is prevented
from colliding with a future packet belonging to the current dialog. In other words, EIFS
allows the ongoing exchanges to complete correctly before this station is allowed to
transmit.

The values of some important 802.11b system parameters are shown in Table 1-6. The values
shown are for the 1Mbps channel bit rate and some of them are different for other bit rates.

Table 1-6: |[EEE 802.11b system parameters. (PHY preamble serves for the receiver to
distinguish silence from transmission periods and detect the beginning of a new packet.)

Parameter Valuefor 1 Mbpschannel bit rate

Slot time 20 usec

SIFS 10 usec

DIFS 50 usec (DIFS = SIFS + 2 x Slot time)

EIFS SIFS + PHY preamble + PHY header + ACK + DIFS = 364 usec
CW in 32 (minimum contention window size)

CW 1024 (maximum contention window size)

PHY preamble 144 bits (144 usec)

PHY header 48 bits (48 usec)

MAC data header | 28 bytes = 224 bits

ACK 14 bytes + PHY preamble + PHY header = 304 bits (304 usec)
RTS 20 bytes + PHY preamble + PHY header = 352 bits (352 usec)
CTS 14 bytes + PHY preamble + PHY header = 304 bits (304 usec)
MTU* Adjustable, up to 2304 bytes for frame body before encryption

Chapter 1 e Introduction to Computer Networking 109

Idle / Idle / ACK error-free / N
Send »_ End
>

New packet /

ACK in error /

Busy / Busy / @
Timeout /
Increase CW retry > retryma
& Retry count

retry < retry .,/

~
eV
—’

backoff == 0/
Set Wait for end of Idle / Countdown
backoff transmission backoff « backoff — 1
backoff >0/

Busy /

Packet error-free /: Wait for

SIFS

—»{_Receive

Packet in error /

(b)

Figure 1-74: (a) Sender’s state diagram of basic packet transmission for 802.11 MAC
protocol. Compareto Figure 1-33. In “ Set backoff,” the backoff counter is set randomly to a
number € {0, ..., CW-1}. (b) Receiver’s state diagram for 802.11 MAC protocol.

(*) The Maximum Transmission Unit (MTU) size specifies the maximum size of a physical
packet created by a transmitting device. The reader may also encounter the number 2312
(as in Figure 1-71(a)), which is the largest WEP encrypted frame payload (also known as
MSDU, for MAC Service Data Unit). Also, 2346 is the largest frame possible with WEP
encryption and every MAC header field in use (including Address 4, see Figure 1-71(a)). In

practice, MSDU size seldom exceeds 1508 bytes because of the need to bridge with
Ethernet.

An example of a frame transmission from a sender to a receiver is shown in Figure 1-73. Notice
that even the units of the atomic transmission (data and acknowledgement) are separated by SIFS,
which is intended to give the transmitting station a short break so it will be able to switch back to
receive mode and be capable of decoding the incoming (in this case ACK) packet.

The state diagrams for 802.11 senders and receivers are shown in Figure 1-74. Notice that

sender’s state diagram is based on the CSMA/CA protocol shown in Figure 1-33, with the key
difference of introducing the interframe space.

Here is an example:

Example 1.6 [llustration of Timing Diagramsfor |EEE 802.11

Consider a local area network (infrastructure BSS) using the IEEE 802.11 protocol shown in Figure
1-74. Show the timing diagrams for the following scenarios:

Ivan Marsic e Rutgers University 110

Packet arrival, = DIFS

, DIFS — ,
(a) channel idle ; Frame-1 ~—|//Backeir | Frame-2 Tlme‘
ACK ACK i’
No backoff SIFS SIFS
(retransmission)
DIFS | — EIFS | —
(b) Busy |‘—" Backoff | Frame-1 « S| //Backetf | Frame-1 -
—i K ACK
SIFS¥™"" SIFS

(retransmission)

DIFS e S 3 ACK Timeout ———
(C) Busy |/ / Backoff £ Fraie-1 & Backoff |/ Frame-1
[4)

v

ACK
SIFS

Figure 1-75: Timing diagrams. (a) Timing of successful frame transmissions under the
DCF. (b) Frame retransmission due to ACK failure. (c) Frame retransmission due to an
erroneous data frame reception.

(a) A single station has two frames ready for transmission on an idle channel.

(b) A single station has one frame ready for transmission on a busy channel. The acknowledgement
for the frame is corrupted during the first transmission.

(c) A single station has one frame ready for transmission on a busy channel. The data frame is
corrupted during the first transmission.

The solutions are shown in Figure 1-75. Sender’s actions are shown above the time axis and receiver’s
actions are shown below the time axis. A crossed block represents a loss or erroneous reception of the
corresponding frame.

The timing of successful frame transmissions is shown in Figure 1-75(a). If the channel is idle upon the
packet arrival, the station transmits immediately, without backoff. However, it has to backoff for its
own second transmission.

Figure 1-75(b) shows the case where an ACK frame is received in error, i.e., received with an incorrect
frame check sequence (FCS). The transmitter re-contends for the medium to retransmit the frame after
an EIFS interval. This is also indicated in the state diagram in Figure 1-74.

On the other hand, if no ACK frame is received within a timeout interval, due possibly to an erroneous
reception at the receiver of the preceding data frame, as shown in Figure 1-75(c), the transmitter
contends again for the medium to retransmit the frame after an ACK timeout. (Notice that the ACK
timeout is much shorter than the EIFS interval; in fact, ACK timeout = fgps + fack + for- Check Table
1-6 for the values.)

Hidden Stations Problem

The hidden and exposed station problems are described earlier in Section 1.3.3. A common
solution is to induce the receiver to transmit a brief “warning signal” so that other potential
transmitters in its neighborhood are forced to defer their transmissions. IEEE 802.11 extends the
basic access method (Figure 1-73) with two more frames: request-to-send (RTS) and clear-to-
send (CTS) frames, which are very short frames exchanged before the data and ACK frames.

Chapter 1 e Introduction to Computer Networking 111

(@)

i RTé "Il\'l—bytes)

' Defer(N-bytes)

Figure 1-76: | EEE 802.11 protocol isaugmented by RTS/CTS framesfor hidden stations.

(Frame lengths, including RTS and CTS durations, are shown in Table 1-6.) The process is shown
in Figure 1-76. The sender first sends the RTS frame to the receiver (Figure 1-76(a)). If the
transmission succeeds, the receiver responds by outputting another short frame (CTS). The CTS
frame is intended not only for the sender, but also for all other stations in the receiver’s range
(Figure 1-76(b)). All stations that receive a CTS frame know that this frame signals a
transmission in progress and must avoid transmitting for the duration of the upcoming (large) data
frame. Through this indirection, the sender performs “floor acquisition” so it can speak
unobstructed because all other stations will remain silent for the duration of transmission (Figure
1-76(c)). Notice also that the frame length is indicated in each frame, which is the Duration D/I
field of the frame header (Figure 1-71(a)).

The 4-way handshake of the RTS/CTS/DATA/ACK exchange of the 802.11 DCF protocol
(Figure 1-77) requires that the roles of sender and receiver be interchanged several times between
pairs of communicating nodes, so neighbors of both these nodes must remain silent during the
entire exchange. This is achieved by relying on the virtual carrier sense mechanism of 802.11,
i.e., by having the neighboring nodes set their network allocation vector (NAV) values from the
Duration D/I field specified in either the RTS or CTS frames they overhear (Figure 1-71(a)). By
using the NAV, the stations ensure that atomic operations are not interrupted. The NAV time
duration is carried in the frame headers on the RTS, CTS, data and ACK frames. (Notice that the
NAYV vector is set only in the RTS/CTS access mode and not in the basic access mode shown in
Figure 1-73, because RTS/CTS perform channel reservation for the subsequent data frame.)

The additional RTS/CTS exchange shortens the vulnerable period from the entire data frame in
the basic method (Figure 1-73) down to the duration of the RTS/CTS exchange in the RTS/CTS
method (Figure 1-77). If a “covered station” transmits simultaneously with the sender, they will
collide within the RTS frame. If the hidden stations hear the CTS frame, they will not interfere
with the subsequent data frame transmission. In either case, the sender will detect collision by the

Ivan Marsic e Rutgers University 112

%)
LL
DIES Backoff = .
BuSY p—] RTS 2 Data T'":
Sender 4327110 l l
0 0
w w
Busy 2, cTs T D) ack
- >
Receiver
4 NAV (Dataz
Y NAV (CTS)
—
DIES ,Backoff] NAV!RTS! :
Busy f¢——— >
Covered Station 87 65 - i ~
Access to medium deferred for NAV(RTS)
DIFS Backoff ;
Busy <—>V >
Hidden Station T N y

,
Access to medium deferred for NAV(CTS)

Figure 1-77: The 802.11 protocol atomic unit exchange in RTS/CTS transmission mode
consists of four frames: RTS, CTS, Data, and ACK. (Compareto Figure 1-73.)

lack of the CTS frame. If a collision happens, it will last only a short period because RTS and
CTS frames are very short, unlike data frames, which can be very long. This RTS/CTS exchange
partially solves the hidden station problem but the exposed node problem remains unaddressed.
The hidden station problem is solved only partially, because if a hidden station starts with
transmission simultaneously with the CTS frame, the hidden station will not hear the CTS frame,
the sender will receive the CTS frame correctly and start with the data frame transmission, and
this will result in a collision at the receiver. (Of course, the probability of this event is very low.)

802.11 RTS/CTS protocol does not solve the exposed station problem (Figure 1-29(b)). Exposed
stations could maintain their NAV vectors to keep track of ongoing transmissions. However, if an
exposed station gets a packet to transmit while a transmission is in progress, it is allowed to
transmit for the remainder of the NAV, before the sender needs to receive the ACK. Tailoring the
frame to fit this interval and accompanied coordination is difficult and is not implemented as part
of 802.11.

Recent extensions in the evolution of the 802.11 standard are described in Chapter 6.

1.6 Quality of Service Overview

This text reviews basic results about quality of service (QoS) in networked systems, particularly
highlighting the wireless networks.

The recurring theme in this text is the delay and its statistical properties for a computing system.
Delay (also referred to as latency) is modeled differently at different abstraction levels, but the

Chapter 1 e Introduction to Computer Networking 113

signals packets

Figure 1-78: Conceptual model of multimedia information delivery over the network.

key issue remains the same: how to limit the delay so it meets task constraints. A complement of
delay is capacity, also referred to as bandwidth, which was covered in the previous volume.
Therein, we have seen that the system capacity is subject to physical (or economic) limitations.
Constraints on delay, on the other hand, are imposed subjectively by the task of the information
recipient—information often loses value for the recipient if not received within a certain deadline.

Processing and communication of information in a networked system are generally referred to as
servicing of information. The dual constraints of capacity and delay naturally call for
compromises on the quality of service. If the given capacity and delay specifications cannot
provide the full service to the customer (in our case information), a compromise in service quality
must be made and a sub-optimal service agreed to as a better alternative to unacceptable delays or
no service at all. In other words, if the receiver can admit certain degree of information loss, then
the latencies can be reduced to an acceptable range.

In order to achieve the optimal tradeoff, the players (source, intermediary, and destination) and
their parameters must be considered as shown in Figure 1-79. We first define information
qualities and then analyze how they get affected by the system processing.

Latency and information loss are tightly coupled and by adjusting one, we can control the other.
Thus, both enter the quality-of-service specification. If all information must be received to meet
the receiver’s requirements, then the loss must be dealt with within the system, and the user is
only aware of latencies.

Time is always an issue in information systems as is generally in life. However, there are
different time constraints, such as soft, hard, as well as their statistical properties.

We are interested in assessing the servicing parameters of the intermediate and controlling them
to achieve information delivery satisfactory for the receiver.

Because delay is inversely proportional to the packet loss, by adjusting one we can control the
other. Some systems are “black box”—they cannot be controlled, e.g., Wi-Fi, where we cannot
control the packet loss because the system parameters of the maximum number of retries
determine the delay. In this case, we can control the input traffic to obtain the desired output.

Source is usually some kind of computing or sensory device, such as microphone, camera, etc.
However, it may not be always possible to identify the actual traffic source. For example, it could
be within the organizational boundaries, concealed for security or privacy reasons.

Figure 1-79 is drawn as if the source and destination are individual computers and
(geographically) separated. The reality is not always so simple. Instead of computers, these may

Ivan Marsic e Rutgers University 114

Examples:
» Communication channel

« Computation server

e

Source

Parameters: Parameters: Parameters:
« Source information rate * Servicing capacity « Delay constraints
« Statistical characteristics « List of servicing quality options « Information loss tolerance

- Delay options
- Information loss options

Figure 1-79: Key factorsin quality of service assurance.

be people or organizations using multiple computers, or they could be networks of sensors and/or
actuators.

Users exchange information through computing applications. A distributed application at one end
accepts information and presents it at the other end. Therefore, it is common to talk about the
characteristics of information transfer of different applications. These characteristics describe the
traffic that the applications generate as well as the acceptable delays and information losses by
the intermediaries (network) in delivering that traffic. We call traffic the aggregate bitstreams
that can be observed at any cut-point in the system.

The information that applications generate can take many forms: text, audio, voice, graphics,
pictures, animations, and videos. Moreover, the information transfer may be one-way, two-way,
broadcast, or multipoint.

Traffic management is the set of policies and mechanisms that allow a network to satisfy
efficiently a diverse range of service requests. The two fundamental aspects of traffic
management, diversity in user requirements and efficiency in satisfying them, act at cross
purposes, creating a tension that has led to a rich set of mechanisms. Some of these mechanisms
include flow control and scheduling (Chapter 5).

QoS guarantees: hard and soft

Our primary concerns here are delay and loss requirements that applications impose on the
network. We should keep in mind that other requirements, such as reliability and security may be
important. When one or more links or intermediary nodes fail, the network may be unable to
provide a connection between source and destination until those failures are repaired. Reliability
refers to the frequency and duration of such failures. Some applications (e.g., control of electric
power plants, hospital life support systems, critical banking operations) demand extremely
reliable network operation. Typically, we want to be able to provide higher reliability between a
few designated source-destination pairs. Higher reliability is achieved by providing multiple
disjoint paths between the designated node pairs.

In this text we first concentrate on the parameters of the network players, traffic characteristics of
information sources, information needs of information sinks, and delay and loss introduced by the

Chapter 1 e Introduction to Computer Networking 115

intermediaries. Then we review the techniques designed to mitigate the delay and loss to meet the
sinks information needs in the best possible way.

Performance Bounds

Network performance bounds can be expressed either deterministically or statistically. A
deterministic bound holds for every packet sent on a connection. A statistic bound is a
probabilistic bound on network performance. For example, a deterministic delay bound of 200 ms
means that every packet sent on a connection experiences an end-to-end, from sender to receiver,
delay smaller than 200 ms. On the other hand, a statistical bound of 200 ms with a parameter of
0.99 means that the probability that a packet is delayed by more than 200 ms is smaller than 0.01.

Quality of Service

Network operator can guarantee performance bounds for a connection only by reserving
sufficient network resources, either on-the-fly, during the connection-establishment phase, or in
advance.

There is more than one way to characterize quality-of-service (QoS). Generally, QoS is the ability
of a network element (e.g., an application, a host or a router) to provide some level of assurance
for consistent network data delivery. Some applications are more stringent about their QoS
requirements than other applications, and for this reason (among others), we have two basic types
of QoS available:

o Resourcereservation (integrated services): network resources are apportioned according
to an application’s QoS request, and subject to bandwidth management policy.

e Prioritization (differentiated services): network traffic is classified and apportioned
network resources according to bandwidth management policy criteria. To enable QoS,
network elements give preferential treatment to classifications identified as having more
demanding requirements.

These types of QoS can be applied to individual traffic “flows” or to flow aggregates, where a
flow is identified by a source-destination pair. Hence, there are two other ways to characterize
types of QoS:

o Per Flow: A “flow” is defined as an individual, unidirectional, data stream between two
applications (sender and receiver), uniquely identified by a 5-tuple (transport protocol,
source address, source port number, destination address, and destination port number).

e Per Aggregate: An aggregate is simply two or more flows. Typically, the flows will have
something in common (e.g., any one or more of the 5-tuple parameters, a label or a
priority number, or perhaps some authentication information).

1.6.1 QoS Outlook

QoS is becoming more important with the growth of real-time and multimedia applications.
Unlike traditional network applications, such as email or Web browsing, where data transmission

Ivan Marsic e Rutgers University 116

process is much more transparent, in real-time communications, such as phone calls, delay and
loss problems are much more apparent to the users. IP networks are subject to much impairment,
including:

* Packet loss due to network congestion or corruption of the data
* Variation in the amount of delay of packet delivery, which can result in poor voice quality

* Packets arriving out of sequence, which can result in discarded packets and cause more delay
and disruption

There has been a great amount of research on QoS in wireline networks, but very little of it ended
up being employed in actual products. Many researchers feel that there is higher chance that QoS
techniques will be actually employed in wireless networks. Here are some of the arguments:

Wireline Networ k VS. Wireless Networ k
e Deals with thousands of traffic flows, thus e Deals with fens of traffic flows (max
not feasible to control about 50), thus it is feasible to control
e Amlabottleneck? e [am the bottleneck!
e Easy to add capacity e Hard to add capacity
e Scheduling interval ~ 1 us e Scheduling interval ~ 1 ms, so a larger

period is available to make decision

As will be seen in Chapter 3, service quality is always defined relative to human users of the
network. As strange as it may sound, it is interesting to point out that the service providers may
not always want to have the best network performance. In other words, the two types of end users
(service providers vs. customers) may have conflicting objectives on network performance. For
example, recent research of consumer behavior [Liu, 2008] has shown that task interruptions
“clear the mind,” changing the way buyers make decisions. The buyers who were temporarily
interrupted were more likely to shift their focus away from “bottom-up” details such as price.
Instead, they concentrated anew on their overall goal of getting satisfaction from the purchased
product, even if that meant paying more. The uninterrupted buyers remained more price-
conscious. This seems to imply that those annoying pop-up advertisements on Web pages—or
even a Web page that loads slowly—might enhance a sale!

1.6.2 Network Neutrality vs. Tiered Services

Network neutrality (or, net neutrality or Internet neutrality) is the principle that Internet service
providers (ISPs) should not be allowed to block or degrade Internet traffic from their competitors
in order to speed up their own. There is a great political debate going on at present related to this
topic. On one hand, consumers’ rights groups and large Internet companies, such as Google and
eBay, have tried to get US Congress to pass laws restricting ISPs from blocking or slowing
Internet traffic. On the other hand, net neutrality opponents, such as major telecommunications
companies Verizon and AT&T, argue that in order to keep maintaining and improving network

ﬂ\lé Search the Web for net neutrality

Chapter 1 e Introduction to Computer Networking 117

performance, ISPs need to have the power to use tiered networks to discriminate in how quickly
they deliver Internet traffic. The fear is that net neutrality rules would relegate them to the status
of “dumb pipes” that are unable to effectively make money on value-added services.

Today many ISPs enforce a usage cap to prevent “bandwidth hogs” from monopolizing Internet
access. (Bandwidth hogs are usually heavy video users or users sharing files using peer-to-peer
applications.) Service providers also enforce congestion management techniques to assure fair
access during peak usage periods. Consumers currently do not have influence on these policies,
and can only “vote” by exploiting a competitive market and switching to another ISP that has a
larger usage cap or no usage cap at all. Consider, on the other hand, a business user who is willing
to pay a higher rate that guarantees a high-definition and steady video stream that does not pause
for buffering. Unfortunately, currently this is not possible, because regardless of the connection
speeds available, Internet access is still a best effort service. Some industry analysts speak about a
looming crisis as more Internet users send and receive bandwidth intensive content.

To discriminate against heavy video and file-sharing users, providers use what is known as deep
packet inspection. Deep packet inspection is the act of an intermediary network node of
examining the payload content of IP datagrams for some purpose. Normally, an intermediary
node (router or switch) examines only link or network-layer packet headers but not the network-
layer payload.

The Internet with its “best effort” service is not neutral in terms of its impact on applications that
have different requirements. It is more beneficial for elastic applications that are latency-
insensitive than for real-time applications that require low latency and low jitter, such as voice
and real-time video. Some proposed regulations on Internet access networks define net neutrality
as equal treatment among similar applications, rather than neutral transmissions regardless of
applications.

See further discussion about net neutrality in Section 9.4.

1.7 Summary and Bibliographical Notes

This chapter covers some basic aspects of computer networks and wireless communications.
Some topics are covered only briefly and many other important topics are left out. Practical
implementations of the Internet protocols will be described in Chapter 8. To learn more about the
basics of computer networking, the reader may also consult other networking books. Perhaps two
of the most regarded introductory networking books currently are [Peterson & Davie 2007] and
[Kurose & Ross 2010].

Section 1.1: Introduction

The end-to-end principle was formulated by Saltzer et al. [1984], who argued that reliable
systems tend to require end-to-end processing to operate correctly, in addition to any processing
in the intermediate system. They pointed out that most features in the lowest level of a

Ivan Marsic e Rutgers University 118

communications system present costs for all higher-layer clients, even if those clients do not need
the features, and are redundant if the clients have to reimplement the features on an end-to-end
basis.

Keshav [1997: Chapter 5] argued from first principles that there are good reasons to require at
least five layers and that no more are necessary. The layers that he identified are: physical, link,
network, transport, and application layers. He argued that the functions provided by the session
and presentation layers can be provided in the application with little extra work.

Early works on protocol implementation include [Clark, 1985; Hutchinson & Peterson, 1991;
Thekkath, et al., 1993]. Clark [1985] described the upcall architecture. Hutchinson and Peterson
[1991] described a threads-based approach to protocol implementation. [Thekkath, et al., 1993] is
a pionerring work on user-level protocol implementation.

RFC-2679 [Almes, et al., 1999(a)] defines a metric for one-way delay of packets across Internet
paths. RFC-2681 [Almes, et al., 1999(b)] defines a metric for round-trip delay of packets across
Internet paths and follows closely the corresponding metric for one-way delay described in RFC-
2679.

Section 1.2: Reliable Transmission via Redundancy

Section 1.3: Reliable Transmission by Retransmission

Automatic Repeat reQuest (ARQ) was invented by H. C. A. van Duuren during World Ward II to
provide reliable transmission of characters over radio [van Duuren, 2001]. A classic early paper
on ARQ and framing is [Gray, 1972]. RFC-3366 [Fairhurst & Wood, 2002] provides advice to
the designers for employing link-layer ARQ techniques. This document also describes issues with
supporting IP traffic over physical-layer channels where performance varies, and where link ARQ
is likely to be used.

Broadcast media require medium access coordination. The earliest medium access control (MAC)
protocol is called ALOHA. ALOHA was invented in the late 1960s by Norman Abramson and his
colleagues at the University of Hawaii. Their goal was to use low-cost commercial radio
equipment to connect computer users on Hawaiian Islands with a central time-sharing computer
on the main campus.

Another MAC protocol is called Carrier Sense Multiple Access (CSMA). This means that before
the sender sends a packet, it senses the medium to see if it is idle. If it is, the sender transmits the
packet. A variant of CSMA called CSMA/CD (for: Collision Detection) continues to sense the
carrier during the transmission to detect whether a collision will happen because some other
sender connected on the same medium is transmitting at the same time. If a collision is detected,
then the sender will wait for a random period of time before transmitting again.

Chapter 1 e Introduction to Computer Networking 119

Section 1.4: Routing and Addressing

IP version 4 along with the IPv4 datagram format was defined in RFC-791. Currently there is a
great effort by network administrators to move to the next generation IP version 6 (IPv6),
reviewed in Section 8.1.

Path MTU Discovery for IP version 4 is described in RFC-1191, and for IPv6 in RFC-1981.

Internet routing protocols are designed to rapidly detect failures of network elements (nodes or
links) and route data traffic around them. In addition to routing around failures, sophisticated
routing protocols take into account current traffic load and dynamically shed load away from
congested paths to less-loaded paths.

The original ARPAnet distance vector algorithm used queue length as metric of the link cost.
That worked well as long everyone had about the same line speed (56 Kbps was considered fast
at the time). With the emergence of orders-of-magnitude higher bandwidths, queues were either
empty or full (congestion). As a result, wild oscillations occurred and the metric was not
functioning anymore. This and other reasons caused led to the adoption of Link State Routing as
the new dynamic routing algorithm of the ARPAnet in 1979.

The first link-state routing concept was invented in 1978 by John M. McQuillan [McQuillan et
al., 1980] as a mechanism that would calculate routes more quickly when network conditions
changed, and thus lead to more stable routing.

When IPv4 was first created, the Internet was rather small, and the model for allocating address
blocks was based on a central coordinator: the Internet Assigned Numbers Authority
(http://iana.org/). Everyone who wanted address blocks would go straight the central authority. As
the Internet grew, this model became impractical. Today, IPv4’s classless addressing scheme
(CIDR) allows variable-length network IDs and hierarchical assignment of address blocks. Big
Internet Service Providers (ISPs) get large blocks from the central authority, then subdivide them,
and allocate them to their customers. In turn, each organization has the ability to subdivide further
their address allocation to suit their internal requirements.

In Section 1.4.4, it was commented that CIDR optimizes the common case. Optimizing the
common case is a widely adopted technique for system design. Check, for example, [Keshav,
1997, Section 6.3.5] for more details and examples. Keshav [1997] also describes several other
widely adopted techniques for system design.

The TANA (http://iana.org/) is responsible for the global coordination of the DNS Root (Section
8.4), IP addressing, Autonomous System numbering (RFC-1930, RFC-4893), and other Internet
protocol resources. It is operated by the Internet Corporation for Assigned Names and Numbers,
better known as ICANN.

In Section 1.4.5, we saw how the global Internet with many independent administrative entities
creates the need to reconcile economic forces with engineering solutions. A routing protocol
within a single administrative domain (or, Autonomous System) just needs to move packets as
efficiently as possible from the source to the destination. Unlike this, a routing protocol that spans
multiple administrative domains (or, Autonomous Systems) must allow them to implement their
economic preferences. In 1980s when NSFNet provided the backbone network (funded by the US
National Science Foundation), and the whole Internet was organized in a single tree structure
with the backbone at the root. The backbone routers exchanged routing advertisement over this

Ivan Marsic e Rutgers University 120

tree topology using a routing protocol called Exterior Gateway Protocol (EGP), described in
RFC-904. In the early 1990s, the Internet networking infrastructure opened up to competition in
the US, and a number of ISPs of different sizes emerged. The evolution of the Internet from a
singly-administered backbone to its current commercial structure made EGP obsolete, and it is
now replaced by BGP (Section 8.2.3). Bordering routers (called speaker nodes) implement both
intra-domain and inter-domain routing protocols. Inter-domain routing protocols are based on
path vector routing. Path vector routing is discussed in RFC-1322 (http://tools.ietf.org/html/rfc1322)

[Berg, 2008] introduces the issues about peering and transit in the global Internet. [Johari &
Tsitsiklis, 2004]. [He & Walrand, 2006] present a generic pricing model for Internet services
jointly offered by a group of providers and propose a fair revenue-sharing policy based on the
weighted proportional fairness criterion. [Shrimali & Kumar, 2006] develop game-theoretic
models for Internet Service Provider peering when ISPs charge each other for carrying traffic and
study the incentives under which rational ISPs will participate in this game. [Srinivas & Srikant,
2006] study economics of network pricing with multiple ISPs.

Section 1.5: Link-Layer Protocols and Technologies

IEEE 802.2 is the IEEE 802 standard defining Logical Link Control (LLC). The standard is
available online here: http:/standards.ieee.org/getieee802/802.2.html. Both Ethernet (802.3) and
Wi-Fi (802.11) have different physical sublayers and MAC sublayers but converge on the same
LLC sublayer (i.e., 802.2), so they have the same interface to the network layer.

The IETF has defined a serial line protocol, the Point-to-Point Protocol (PPP), in RFC-1661
[Simpson, 1994] (see also RFC-1662 and RFC-1663). RFC-1700 and RFC-3232 define the 16-bit
protocol codes used by PPP in the Protocol field (Figure 1-56). PPP uses HDLC (bit-synchronous
or byte synchronous) framing. High-Level Data Link Control (HDLC) is a link-layer protocol
developed by the International Organization for Standardization (http://www.iso.org/). The current
standard for HDLC is ISO-13239, which replaces previous standards. The specification of PPP
adaptation for IPv4 is RFC-1332, and the IPv6 adaptation specification is RFC-5072. Current use
of the PPP protocol is in traditional serial lines, authentication exchanges in DSL networks using
PPP over Ethernet (PPPoE) [RFC-2516], and in the Digital Signaling Hierarchy (generally
referred to as Packet-on-SONET/SDH) using PPP over SONET/SDH [RFC-2615].

Ethernet was originally developed at Xerox’s Palo Alto Research Center (PARC) in 1973 to 1975
by Robert Metcalfe and David Boggs. The name “Ethernet” refers to the cable (the ether) and it
originates from the luminiferous ether, through which electromagnetic radiation was once thought
to propagate. Network hosts on an Ethernet network use a MAC protocol based on CSMA/CD to
coordinate their access to the broadcast medium. As a historic curiosity, in March 1974, Robert Z.
Bachrach wrote a memo to Metcalfe and Boggs and their management, stating that “technically
and conceptually there is nothing new in your proposal” and that “analysis would show that your
system would be a failure.” However, this simple technology pretty much blew away any
sophisticated technologies that competed with it over more than thirty years. (Check also Mr.
Bachrach’s response here:

http://www.reddit.com/comments/1xz13/in 1974 xerox _parc_engineers invented ethernet).

Digital Equipment Corporation (DEC), Intel, and Xerox published the Ethernet Version 1.0
standard in 1978 for a 10-Mbps version of Ethernet, called the DIX standard. In September

Chapter 1 e Introduction to Computer Networking 121

1980, the IEEE 802.3 working group released a draft standard 802.3 of the 10-Mbps version of
Ethernet, with some minor changes from the DIX standard. In 1982, DEC, Intel, and Xerox
published Ethernet Version 2.0 or Ethernet Il. Meanwhile, the IEEE draft standard was
approved in 1983 and was subsequently published as an official standard in 1985 (ANSI/IEEE
Std 802.3-1985). Although there are some minor differences between the two technologies, the
terms Ethernet and 802.3 are generally used synonymously. Since then, a number of
supplements to the standard have been defined to take advantage of improvements in the
technologies and to support additional communication media and higher data rate capabilities,
plus several new optional medium access control features. The latest version of the 802.3
standard is available online at: http://standards.ieee.org/getieee802/802.3.html.

Ethernet’s collision detection does severely limit practical throughput on loaded, unswitched
networks. As a result, almost no one uses unswitched networks anymore, and full duplex Gigabit
Ethernet does not support unswitched operation. Basically, today’s modern, high speed Ethernet
connections are synchronized connections that can use the full bandwidth of the wire without
worrying about collisions.

The IEEE Std 802.11 is a wireless local area network specification. [Crow, et al., 1997]
discusses IEEE 802.11 wireless local area networks. In fact, 802.11 is a family of evolving
wireless LAN standards. The 802.11n specification is described in this book in Section 6.3.1. The
latest version of the 802.11 standard is available online at:
http://standards.ieee.org/getieee802/802.11.html.

Raj Jain, “Books on Quality of Service over IP,”
Online at: http://www.cse.ohio-state.edu/~jain/refs/ipq_book.htm

Useful information about QoS can be found here:

Leonardo Balliache, “Practical QoS,” Online at: http://www.opalsoft.net/qos/index.html

Ivan Marsic e Rutgers University 122

Problems

Note: Look for problem solutions on the back of this book, starting on page Error!

Problem 1.1

Suppose you wish to transmit a long message from a source to a destination over a network path
that crosses two routers. Assume that all communications are error free and no
acknowledgements are used. The propagation delay and the bit rate of the communication lines

are the same. Ignore all delays other than transmission and propagation delays.
(a) Given that the message consists of NV packets, each L bits long, how long will it take to
transmit the entire message?
(b) If, instead, the message is sent as 2xN packets, each L/2 bits long, how long will it take to
transmit the entire message?
(c) Are the durations in (a) and (b) different? Will anything change if we use smaller or
larger packets? Explain why yes or why no.

Problem 1.2

Suppose host 4 has four packets to send to host B using Stop-and-Wait protocol. If the packets
are unnumbered (i.e., the packet header does not contain the sequence number), draw a time-
sequence diagram to show what packets arrive at the receiver and what ACKs are sent back to
host 4 if the ACK for packet 2 is lost.

Problem 1.3

Suppose two hosts, sender 4 and receiver B, communicate using Stop-and-Wait ARQ method.
Subsequent packets from A4 are alternately numbered with O or 1, which is known as the
alternating-bit protocol.

(a) Show that the receiver B will never be confused about the packet duplicates if and only if there
is a single path between the sender and the receiver.

(b) In case there are multiple, alternative paths between the sender and the receiver and
subsequent packets are numbered with O or 1, show step-by-step an example scenario where
receiver B is unable to distinguish between an original packet and its duplicates.

Problem 1.4

Assume that the network configuration shown in the figure below runs the Stop-and-Wait
protocol. The signal propagation speed for both links is 2 x 10® m/s. The length of the link from

Chapter 1 e Introduction to Computer Networking 123

the sender to the router is 100 m and from the router to the receiver is 10 km. Determine the

sender utilization.
|] l%

= 10 Mbps 1 Mbps =
forrrrrrzery e B =]

Sender Router Receiver

Problem 1.5

Suppose two hosts are using Go-back-2 ARQ. Draw the time-sequence diagram for the
transmission of seven packets if packet 4 was received in error.

Problem 1.6

Consider a system using the Go-back-N protocol over a fiber link with the following parameters:
10 km length, 1 Gbps transmission rate, and 512 bytes packet length. (Propagation speed for fiber
~ 2 x 10° m/s and assume error-free and full-duplex communication, i.e., link can transmit
simultaneously in both directions. Also, assume that the acknowledgment packet size is
negligible.) What value of N yields the maximum utilization of the sender?

Problem 1.7

Consider a system of two hosts using a sliding-window protocol sending data simultaneously in
both directions. Assume that the maximum frame sizes (MTUs) for both directions are equal and
the acknowledgements may be piggybacked on data packets, i.e., an acknowledgement is carried
in the header of a data frame instead of sending a separate frame for acknowledgment only.

(a) In case of a full-duplex link, what is the minimum value for the retransmission timer that
should be selected for this system?

(b) Can a different values of retransmission timer be selected if the link is half-duplex?

Problem 1.8

Suppose three hosts are connected as shown in the figure. Host 4 sends packets to host C and host
B serves merely as a relay. However, as indicated in the figure, they use different ARQ’s for
reliable communication (Go-back-N vs. Selective Repeat). Notice that B is not a router; it is a
regular host running both receiver (to receive packets from 4) and sender (to forward 4’s packets
to C) applications. B’s receiver immediately relays in-order packets to B’s sender.

A B C

Go-back-3 SR, N=4 IEI%
———) ———
Draw side-by-side the timing diagrams for A—B and B—C transmissions up to the time where
the first seven packets from 4 show up on C. Assume that the 2™ and 5™ packets arrive in error to
host B on their first transmission, and the 5" packet arrives in error to host C on its first
transmission.

Discuss the merits of sending ACKs end-to-end, from destination C to source A, as opposed to
sending ACKSs independently for each individual link.

Ivan Marsic e Rutgers University 124

Problem 1.9

Consider the network configuration as in Problem 1.8. However, this time around assume that the
protocols on the links are reverted, as indicated in the figure, so the first pair uses Selective
Repeat and the second uses Go-back-N, respectively.

A C

SR, N=4 IEI% Go-back-3

Draw again side-by-side the timing diagrams for A—B and B—C transmissions assuming the
same error pattern. That is, the 2™ and 5™ packets arrive in error to host B on their first
transmission, and the 5™ packet arrives in error to host C on its first transmission.

Problem 1.10

Assume the following system characteristics (see the figure below):

The link transmission speed is 1 Mbps; the physical distance between the hosts is 300 m; the link
is a copper wire with signal propagation speed of 2 x 10° m/s. The data packets to be sent by the
hosts are 2 Kbytes each, and the acknowledgement packets (to be sent separately from data
packets) are 10 bytes long. Each host has 100 packets to send to the other one. Assume that the
transmitters are somehow synchronized, so they never attempt to transmit simultaneously from
both endpoints of the link.

Each sender has a window of 5 packets. If at any time a sender reaches the limit of 5 packets
outstanding, it stops sending and waits for an acknowledgement. Because there is no packet loss
(as stated below), the timeout timer value is irrelevant. This is similar to a Go-back-N protocol,
with the following difference.

The hosts do not send the acknowledgements immediately upon a successful packet reception.
Rather, the acknowledgements are sent periodically, as follows. At the end of an 82 ms period,
the host examines whether any packets were successfully received during that period. If one or
more packets were received, a single (cumulative) acknowledgement packet is sent to
acknowledge all the packets received in this period. Otherwise, no acknowledgement is sent.

Consider the two scenarios depicted in the figures (a) and (b) below. The router in (b) is 150 m
away from either host, i.e., it is located in the middle. If the hosts in each configuration start
sending packets at the same time, which configuration will complete the exchange sooner? Show
the process.

Chapter 1 e Introduction to Computer Networking 125

Packets to Packets to
send to B sendto A

;) ;) ;) Router 333 =]
N = N =
R} 5 S S 5
Host A Svonmmoerrrmorz? Host B Host A "'"""”"‘U\’"""”’"" Host B

(a) (b)

Assume no loss or errors on the communication links. The router buffer size is unlimited for all
practical purposes and the processing delay at the router approximately equals zero. Notice that
the router can simultaneously send and receive packets on different links.

Problem 1.11

Consider two hosts directly connected and communicating using Go-back-N ARQ in the presence
of channel errors. Assume that data packets are of the same size, the transmission delay ¢, per
packet, one-way propagation delay #,, and the probability of error for data packets equals p..
Assume that ACK packets are effectively zero bytes and always transmitted error free.

(a) Find the expected delay per packet transmission. Assume that the duration of the timeout
tou 18 large enough so that the source receives ACK before the timer times out, when both
a packet and its ACK are transmitted error free.

(b) Assume that the sender operates at the maximum utilization and determine the expected
delay per packet transmission.

Note: This problem considers only the expected delay from the start of the first attempt at a
packet’s transmission until its successful transmission. It does not consider the waiting delay,
which is the time the packet arrives at the sender until the first attempt at the packet’s
transmission. The waiting delay will be considered later in Section 4.4.

Problem 1.12
Given a 64Kbps link with 1KB packets and RTT of 0.872 seconds:

(a) What is the maximum possible throughput, in packets per second (pps), on this link if a
Stop-and-Wait ARQ scheme is employed and all transmissions are error-free?

(b) Again assuming that S&W ARQ is used, what is the expected throughput (pps) if the
probability of error-free transmission is p=0.95?

(c) If instead a Go-back-N (GBN) sliding window ARQ protocol is deployed, what is the
average throughput (pps) assuming error-free transmission and fully utilized sender?

(d) For the GBN ARQ case, derive a lower bound estimate of the expected throughput (pps)
given the probability of error-free transmission p=0.95.

Ivan Marsic e Rutgers University 126

Problem 1.13

Assume a slotted ALOHA system with 10 stations, a channel with transmission rate of 1500 bps,
and the slot size of 83.33 ms. What is the maximum throughput achievable per station if packets
are arriving according to a Poisson process?

Problem 1.14

Consider a slotted ALOHA system with m stations and unitary slot length. Derive the following
probabilities:

(a) A new packet succeeds on the first transmission attempt

(b) A new packet suffers exactly K collisions and then a success

Problem 1.15

Consider a slotted ALOHA network with m mobile stations and packet arrivals modeled as a
Poisson process with rate A. Solve the following:

(a) Assuming that this system operates with maximum efficiency, what are the fractions of
slots that, on average, go unused (idle), slots that are used for successful transmission,
and slots that experience packet collisions?

(b) Describe under what scenarios the system would operate with a less-than-maximum
efficiency. Under such scenarios, what are the fractions of idle, successful, and collision
slots?

(c) Given a steady arrival rate A, would each non-maximum-efficiency operating point
remain stable? Explain why yes or why no.

Hint: Carefully examine Figure 1-28 and other figures related to ALOHA.

Problem 1.16

Problem 1.17

Suppose two stations are using nonpersistent CSMA with a modified version of the binary
exponential backoff algorithm, as follows. In the modified algorithm, each station will always
wait 0 or 1 time slots with equal probability, regardless of how many collisions have occurred.

(a) What is the probability that contention ends (i.e., one of the stations successfully
transmits) on the first round of retransmissions?

(b) What is the probability that contention ends on the second round of retransmissions (i.e.,
success occurs after one retransmission ends in collision)?

(c) What is the probability that contention ends on the third round of retransmissions?

(d) In general, how does this algorithm compare against the nonpersistent CSMA with the
normal binary exponential backoff algorithm in terms of performance under different
types of load?

Chapter 1 e Introduction to Computer Networking 127

Problem 1.18

A network using random access protocols has three stations on a bus with source-to-destination
propagation delay 7. Station 4 is located at one end of the bus, and stations B and C are together
at the other end of the bus. Frames arrive at the three stations are ready to be transmitted at
stations 4, B, and C at the respective times z, = 0, t3 = 72, and ¢c = 37/2. Frames require
transmission times of 47. In appropriate timing diagrams with time as the horizontal axis, show
the transmission activity of each of the three stations for (a) Pure ALOHA; (b) Non-persistent
CSMA; (c) CSMA/CD.

Note: In case of collisions, show only the first transmission attempt, not retransmissions.

Problem 1.19

Problem 1.20

Consider a local area network using the CSMA/CA protocol shown in Figure 1-33. Assume that
three stations have frames ready for transmission and they are waiting for the end of a previous
transmission. The stations choose the following backoff values for their first frame: STA1 = 5,
STA2 =9, and STA3=2. For their second frame backoff values, they choose: STA1 =7, STA2 =
1, and STA3=4. For the third frame, the backoff values are STA1 = 3, STA2 = 8, and STA3=1.
Show the timing diagram for the first 5 frames. Assume that all frames are of the same length.

Problem 1.21

Consider a CSMA/CA protocol that has a backoff window size equal 2 slots. If a station transmits
successfully, it remains in state 1. If the transmission results in collision, the station randomly
chooses its backoff state from the set {0, 1}. If it chooses 1, it counts down to 0 and transmits.
(See Figure 1-33 for details of the algorithm.) What is the probability that the station will be in a
particular backoff state?

Hint: Figure 1-80 shows an analogy with a playground slide. A kid is climbing the stairs and
upon reaching Platform-1 decides whether to enter the slide or to proceed climbing to Platform-2
by tossing a fair coin. If the kid enters the slide on Platform-1, he slides down directly through
Tube-1. If the kid enters the slide on Platform-2, he slides through Tube-2 first, and then
continues down through Tube-1. Think of this problem as the problem of determining the
probabilities that the kid will be found in Tube-1 or in Tube-2. For the sake of simplicity, we will
distort the reality and assume that climbing the stairs takes no time, so the kid is always found in
one of the tubes.

Problem 1.22

Consider a CSMA/CA protocol with two backoff stages. If a station previously was idle, or it just
completed a successful transmission, or it experienced two collisions in a row (i.e., it exceeded
the retransmission limit, equal 2), then it is in the first backoff stage. In the first stage, when a
new packet arrives, the station randomly chooses its backoff state from the set {0, 1}, counts
down to 0, and then transmits. If the transmission is successful, the station remains in the first
backoff stage and waits for another packet to send. If the transmission results in collision, the

Ivan Marsic e Rutgers University 128

Platform 2

Figure 1-80: A playground-slide analogy to help solve Problem 1.21.

station jumps to the second backoff stage. In the second stage, the station randomly chooses its
backoff state from the set {0, 1, 2, 3}, counts down to 0, and then retransmits the previously
collided packet. If the transmission is successful, the station goes to the first backoff stage and
waits for another packet to send. If the transmission results in collision, the station discards the
packet (because it reached the retransmission limit, equal 2), and then jumps to the first backoff
stage and waits for another packet to send.

Continuing with the playground-slide analogy of Problem 1.21, we now imagine an amusement
park with two slides, as shown in Figure 1-81. The kid starts in the circled marked “START.” It
first climbs Slide-1 and chooses whether to enter it at Platform-11 or Platform-12 with equal
probability, i.e., 0.5. Upon sliding down and exiting from Slide-1, the kid comes to two gates.
Gate-1 leads back to the starting point. Gate-2 leads to Slide-2, which consists of four tubes. The
kid decides with equal probability to enter the tube on one of the four platforms. That is, on
Platform-21, the kid enters the tube with probability 0.25 or continues climbing with probability
0.75. On Platform-22, the kid enters the tube with probability 1/3 or continues climbing with
probability 2/3. On Platform-23, the kid enters the tube with probability 0.5 or continues climbing
with probability 0.5. Upon sliding down and exiting from Slide-1, the kid always goes back to the
starting point.

Chapter 1 e Introduction to Computer Networking 129

Platform 24
Slide 2

Platform 23

Platform 22 Slide 1

Platform 21

Platform 12

Figure 1-81: An analogy of a playground with two dlidesto help solve Problem 1.22.

Problem 1.23

Consider three wireless stations using the CSMA/CA protocol at the channel bit rate of 1 Mbps.
The stations are positioned as shown in the figure. Stations 4 and C are hidden from each other
and both have data to transmit to station B. Each station uses a timeout time for
acknowledgements equal to 334 usec. The initial backoff window range is 32 slots and the
backoff slot duration equals 20 usec. Assume that both 4 and C each have a packet of 44 bytes to
send to B.

Range of A’s Range of C’s

transmissions transmissions

Suppose that stations 4 and C just heard station B send an acknowledgement for a preceding
transmission. Let us denote the time when the acknowledgement transmission finished as ¢ = 0.
Do the following:
(a) Assuming that station 4 selects the backoff countdown b, = 12 slots, determine the
vulnerable period for reception of the packet for 4 at receiver B.

Ivan Marsic e Rutgers University 130

(b) Assuming that simultaneously station C selects the backoff countdown b = 5 slots,
show the exact timing diagram for any packet transmissions from all three stations, until
either a successful transmission is acknowledged or a collision is detected.

(c) After a completion of the previous transmission (ended in step (b) either with success or
collision), assume that stations 4 and C again select their backoff timers (b4, and b,
respectively) and try to transmit a 44-bytes packet each. Assume that 4 will start its
second transmission at z,. Write the inequality for the range of values of the starting time
for C’s second transmission (¢c») in terms of the packet transmission delay (z,),
acknowledgement timeout time (¢5cx) and the backoff periods selected by 4 and C for
their first transmission (b4, and b, respectively).

Problem 1.24

Kathleen is emailing a long letter to Joe. The letter size is 16 Kbytes. Assume that TCP is used
and the connection crosses 3 links as shown in the figure below. Assume link layer header is 40
bytes for all links, IP header is 20 bytes, and TCP header is 20 bytes.

Link 3 MTU
= 256 bytes

Link 2 MTU
= 1500 bytes
Kathleen Link 1 MTU

=512 bytes

Joe

(a) How many packets/datagrams are generated in Kathleen’s computer on the IP level?
Show the derivation of your result.

(b) How many fragments Joe receives on the IP level? Show the derivation.

(c) Show the first 4 and the last 5 IP fragments Joe receives and specify the values of all
relevant parameters (data length in bytes, ID, offset, flag) in each fragment header.
Fragment’s ordinal number should be specified. Assume initial ID = 672.

(d) What will happen if the very last fragment is lost on Link 3? How many IP datagrams
will be retransmitted by Kathleen’s computer? How many retransmitted fragments will
Joe receive? Specify the values of all relevant parameters (data length, ID, offset, flag) in
each fragment header.

Problem 1.25

Consider the network in the figure below, using link-state routing (the cost of all links is 1):

D H—@

Chapter 1 e Introduction to Computer Networking 131

Suppose the following happens in sequence:
(a) The BF link fails
(b) New node H is connected to G
(¢) New node D is connected to C
(d) New node E is connected to B
() A new link DA is added
(f) The failed BF link is restored

Show what link-state advertisements (LSAs) will flood back and forth for each step above.
Assume that (7) the initial LSA sequence number at all nodes is 1, (if) no packets time out, (iii)
each node increments the sequence number in their LSA by 1 for each step, and (iv) both ends of
a link use the same sequence number in their LSA for that link, greater than any sequence number
either used before.

[You may simplify your answer for steps (b)-(f) by showing only the LSAs which change (not
only the sequence number) from the previous step.]

Problem 1.26

Problem 1.27

Consider the network in the figure below and assume that the distance vector algorithm is used
for routing. Show the distance vectors affer the routing tables on all nodes are stabilized. Now
assume that the link 4C with weight equal to 1 is broken. Show the distance vectors on all nodes
for up to five subsequent exchanges of distance vectors or until the routing tables become
stabilized, whichever comes first.

50

Problem 1.28

Consider the following network, using distance-vector routing:

Ivan Marsic e Rutgers University 132

Suppose that, after the network stabilizes, link C—D goes down. Show the routing tables on the
nodes 4, B, and C, for the subsequent five exchanges of the distance vectors. How do you expect
the tables to evolve for the future steps? State explicitly all the possible cases and explain your
answer.

Problem 1.29

Consider the network shown in the figure, using the distance vector routing algorithm. Assume
that all routers exchange their distance vectors periodically every 60 seconds regardless of any
changes. If a router discovers a link failure, it broadcasts its updated distance vector within 1
second of discovering the failure.

1 D

(a) Start with the initial state where the nodes know only the costs to their neighbors, and
show how the routing tables at all nodes will reach the stable state.

(b) Use the results from part (a) and show the forwarding table at node 4. [Note: use the
notation AC to denote the output port in node 4 on the link to node C.]

(c) Suppose the link CD fails. Give a sequence of routing table updates that leads to a routing
loop between A4, B, and C.

(d) Would a routing loop form in (¢) if all nodes use the split-horizon routing technique?
Would it make a difference if they use split-horizon with poisoned reverse? Explain your
answer.

Problem 1.30

Problem 1.31

You are hired as a network administrator for the network of sub-networks shown in the figure.
Assume that the network will use the CIDR addressing scheme.

A
= |
J NS

w0 |

C

e

Chapter 1 e Introduction to Computer Networking 133

(a) Assign meaningfully the IP addresses to all hosts on the network. Allocate the minimum
possible block of addresses for your network, assuming that no new hosts will be added
to the current configuration.

(b) Show how routing/forwarding tables at the routers should look after the network
stabilizes (do not show the process).

Problem 1.32

The following is a forwarding table of a router X using CIDR. Note that the last three entries
cover every address and thus serve in lieu of a default route.
Subnet Mask | Next Hop S
223.92.32.0/20
223.81.196.0 /12
223.112.0.0 /12
223.120.0.0 / 14
128.0.0.0 /1
64.0.0.0/2
32.0.0.0/3

7

QMoo= >

State to what next hop the packets with the following destination IP addresses will be delivered:
(a) 195.145.34.2
(b) 223.95.19.135
(c) 223.95.34.9
(d) 63.67.145.18
(e) 223.123.59.47
(f) 223.125.49.47
(Keep in mind that the default matches should be reported only if no other match is found.)

Problem 1.33

Suppose a router receives a set of packets and forwards them as follows:
(a) Packet with destination IP address 128.6.4.2, forwarded to the next hop A
(b) Packet with destination IP address 128.6.236.16, forwarded to the next hop B
(c) Packet with destination IP address 128.6.29.131, forwarded to the next hop C
(d) Packet with destination IP address 128.6.228.43, forwarded to the next hop D

Reconstruct only the part of the router’s forwarding table that you suspect is used for the above
packet forwarding. Use the CIDR notation and select the shortest network prefixes that will
produce unambiguous forwarding;:

Network Prefix Subnet Mask | Next Hop

Ivan Marsic e Rutgers University 134

Problem 1.34

Problem 1.35

Consider the internetwork of autonomous systems shown in Figure 1-49. Assume that all stub
ASs already advertised the prefixes of their networks so by now the internetwork topology is
known to all other ASs. (We assume that non-stub ASs do not advertise any destinations within
themselves—they advertise their presence only if they lay on a path to a stub-AS destination.)
Given the business interests of different ASs, and as illustrated in Figure 1-50 and Figure 1-51,
customers of different ISPs will not learn about all links between all ASs in the internetwork. For
example, customers of ISP ¢ will see the internetwork topology as shown in the figure below:

Macrospot.com Noodle.com

Internetwork topology
as seen by
¢'s customers

Y's customers 1's customers ¢’'s customers

As explained in the description of Figure 1-50, ASn has no interest in carrying AS@’s transit
traffic, so it will not advertise that it has a path to AS9. Therefore, AS¢ and its customers will not
learn about this path. For the same reason the connection between ASS and ASo will not be
visible. Notice that AS¢@ will learn about alternative paths from/to Macrospot.com or Noodle.com
through ASs y and B, respectively, because multihomed ASs will advertise their network prefixes
to all directly connected ISPs.

Your task is to show the respective views of the internetwork topology for the customers of ASsy
and m, and for the corporations Macrospot.com or Noodle.com. For each of these ASs, draw the
internetwork topology as they will see it and explain why some connections or ASs will not be
visible, if there are such.

Problem 1.36

Consider the internetwork of autonomous systems shown in the figure below. Autonomous
systems ¢ and [are peers and they both buy transit from AS ¥ Assume that all links cost 1 (one
hop) and every AS uses hot-potato routing to forward packets (destined for other ASs) towards
speaker nodes.

Chapter 1 e Introduction to Computer Networking 135

X
AS o é

(Tier-3)

ASy
(Tier-2)

AS B Regular router

(Tier-3)
Speaker router

(d) How many paths (in terms of autonomous systems, not individual routers) to customers
of AS fare available for use to reach customers of AS o?

(e) What path will traffic from host X to host ¥ normally take? List the autonomous systems
and within each autonomous system list the individual routers (hop-by-hop). How about
traffic from host Y to host X?

(f) Is it possible for all traffic from host X to host Y and vice versa to take the same path?
Explain why yes or why no, and if yes, how this can be achieved.

(g) Is it possible for traffic from host X to host Y and vice versa to take the same that includes
AS 9? Explain why yes or why no, and if yes, how this can be achieved.

Problem 1.37

Problem 1.38

Problem 1.39

Problem 1.40

PPP uses the Link Control Protocol (LCP) to establish, maintain, and terminate the physical
connection. During the link establishment phase, the configuration parameters are negotiated by
an exchange of LCP frames. Before information can be sent on a link, each of the two computers
that make up the connection must test the link and agree on a set of parameters under which the
link will operate. If the negotiation converges, the link is established and either the authentication
is performed or the network layer protocol can start sending data. If the endpoints fail to negotiate
a common configuration for the link, it is closed immediately. LCP is also responsible for
maintaining and terminating the connection.

Ivan Marsic e Rutgers University 136

Initiator Responder

Initiate link configuration Configure-Request
9 a '> Process link
Configure-Ack || ===t configuration request

Finish link configuration [«=== Configure-Nak ||
Configure-Reject

Link Open:
Send and receive data

- Receive close request,
<+ Terminate-Request Notify other device
Terminate link

Terminate-Ack
-> Terminate link

The Configure-Request message is sent to request a link establishment and it contains the various
options requested. This request is responded with a Configure-Ack (“acknowledge™) if every
requested option is acceptable. A Configure-Nak (‘“negative acknowledge”) is sent if all the
requested options are recognizable but some of their requested values are not acceptable. This
message includes a copy of each configuration option that the Responder found unacceptable and
it suggests an acceptable negotiation.

A Configure-Reject is sent if any of the requested options were either unrecognizable or represent
unacceptable ways of using the link or are not subject to negotiation. This message includes the
objectionable options. Configure-Request frames are transmitted periodically until either a
Configure-Ack is received, or the number of frames sent exceeds the maximum allowed value.

A simplified format of an LCP frame is as follows (Figure 1-58):

Code Identifier Data

The Code field identifies the type of LCP frame, such as Configure-Request, Configure-Ack,
Terminate-Request, etc. The Identifier field carries an identifier that is used to match associated
requests and replies. When a frame is received with an invalid Identifier field, the frame is
silently discarded without affecting the protocol execution.

¢ For a Configure-Request frame, the Identifier field must be changed whenever the
contents of the Data field changes (Data carries the link configuration options), and
whenever a valid reply has been received for a previous request. For retransmissions, the
Identifier may remain unchanged.

e For a configuration response frame (Configure-Ack, Configure-Nak, or Configure-
Reject), the Identifier field is an exact copy of the Identifier field of the Configure-
Request that caused this response frame.

e For a Terminate-Request frame, the Identifier field must be changed whenever the
content of the Data field changes, and whenever a valid reply has been received for a
previous request. For retransmissions, the Identifier may remain unchanged.

Chapter 1 e Introduction to Computer Networking 137

e For a Terminate-Ack frame, on reception, the Identifier field of the Terminate-Request is
copied into the Identifier field of the Terminate-Ack frame.

During the link establishment phase, only LCP frames should be transmitted in the PPP frames.
Any non-LCP frames received during this phase must be silently discarded.

The LCP link termination frames are: Terminate-Request, which represents the start of the link
termination phase; and, Terminate-Ack, which acknowledges the receipt of a recognizable
Terminate-Request frame, and accepts the termination request. Under ideal conditions, the link
termination phase is signaled end-to-end using LCP link termination frames. However, the link
termination phase also can be caused by a loss of carrier or an immediate shutdown by the system
administrator.

Explain the following:

(a) Why are unique identifiers needed in LCP frames? Why a configuration response frame,
such as Configure-Ack, without the Identifier field is insufficient? Illustrate your
argument by drawing a time-diagram for a scenario where LCP link configuration would
fail if the Identifier field did not exist.

(b) Why is the “two-way handshake” using Terminate-Ack frame needed in the link
termination phase? Illustrate your argument by drawing a time-diagram of a scenario
where LCP link termination would fail if Terminate-Ack were not sent.

Problem 1.41

Problem 1.42

Consider the following Ethernet network where all the switches employ the spanning tree
protocol (STP) to remove the loops in the network topology. The numbers in parentheses
represent the switches’ identifiers.

Switch A
(ID = 193)

X Switch B Switch C
(ID = 342) %] (ID = 719)

7

Ivan Marsic e Rutgers University 138

Start when the network is powered up and stop when the network stabilizes (i.e., only the root
switch remains generating configuration frames). Assume that all switches send configuration
messages in synchrony with each other (although in reality generally this is not the case). Do the
following:
(a) List all the configuration messages sent by all switches until the network stabilizes.
Recall that a configuration message carries (source-1D, root-1D, root-distance).
(b) For each switch, indicate which ports will be selected as “root,” “designated,” or
“blocked” by the spanning tree protocol.
(c) How many iterations will take for the network to stabilize?
(d) After the network stabilizes, draw the path that a frame sent by station X will traverse to
reach station Y.

Problem 1.43

Problem 1.44

Consider a local area network using the CSMA/CA protocol shown in Figure 1-33. Assume that
three stations have frames ready for transmission and they are waiting for the end of a previous
transmission. The stations choose the following backoff values for their first frame: STA1 = 5,
STA2 =9, and STA3=2. For their second frame backoff values, they choose: STA1 =7, STA2 =
1, and STA3=4. For the third frame, the backoff values are STA1 = 3, STA2 = 8, and STA3=3.
Show the timing diagram for the first 5 frames. Assume that all frames are of the same length.

Note: Compare the solution with that of Problem 1.20.

Problem 1.45

Consider an independent BSS (IBSS) with two mobile STAs, 4 and B, where each station has a
single packet to send to the other one. Draw the precise time diagram for each station from the
start to the completion of the packet transmission. For each station, select different packet arrival
time and a reasonable number of backoff slots to count down before the station commences its
transmission so that no collisions occur during the entire session. (Check Table 1-6 for contention
window ranges.) Assume that both stations are using the basic transmission mode and only the
first data frame transmitted is received in error (due to channel noise, not collision).

Problem 1.46

Layer 3:
End-
to-End

Layer 2:
Network

Layer 1:
Link

Chapter 2

Transmission Control Protocol (TCP)

2.1 Introduction

Transmission Control Protocol (TCP) is usually not associated
with quality of service; but one could argue that TCP offers
QoS in terms of assured delivery and efficient use of
bandwidth, although it provides no delay guarantees. TCP is,
after all, mainly about efficiency and adaptation: how to deliver
data utilizing the maximum available (but fair) share of a
dynamically changing network capacity so to reduce the delay.
That is why our main focus here is only one aspect of TCP—
congestion avoidance and control. The interested reader should
consult additional sources for other aspects of TCP, e.g.,
[Stevens 1994; Peterson & Davie 2007; Kurose & Ross 2010].
We start quality-of-service review with TCP because it does
not assume any knowledge of or any cooperation from the
network. The network is essentially seen as a black box.

TCP (Transmission | In Chapter 1 we have seen that pipelined
Control Protocol) ARQ protocols, such as Go-back-N,

4 ® increase the utilization of network

wr wr

Contents

2.1 Introduction

2.1.1 Reliable Byte Stream Service
2.1.2 Retransmission Timer
2.1.3 Flow Control

2.2 Congestion Control

2.2.1 TCP Tahoe
2.2.2 TCP Reno
2.2.3 TCP NewReno

2.3 Fairness

23.1 x
232 x
233 x
234 x

2.4 Recent TCP Versions
24.1 x
2.4.2
2.4.3

2.5 TCP over Wireless Links
25.1 x
252
2.5.3

2.6 X

251 x
252 x
253 x

2.8 Summary and Bibliographical Notes

Problems

resources by allowing multiple packets to be simultaneously in transit (or,
N B B in flight) from sender to receiver. The “flight size” is controlled by a
parameter called window size which must be set according to the available
network resources. Remember that network is responsible for data from the

moment it accepts them at sender’s end until they are delivered at receiver’s end. The network is
storing the data for the “flight duration” and for this it must reserve resources, avoiding the
possibility of becoming overbooked. In case of two end hosts connected by a single link, the
optimal window size is easy to determine and remains static for the duration of session. However,

this task is much more complex in a general multi-hop network.

139

Ivan Marsic e Rutgers University 140

From application: stream of bytes To application: stream of bytes

Application 2 2
Slice into \ ~ NG s M
. \\ \\\ \\\
TCP segments “ e . Concatenate to the byte stream

TcP| TCP TCP| TCP
OSI Layer 4/5: TCP hdr | payload e hdr | payload
Packetize into | ™~ “\\ Unwrap TCP segments
IP packets — -
IP || TCcP| TCP IP || Tcp| TCP
OSl Layer 3: IP hdr | | hdr | payload >' * hdr | | hdr | payload

| S Network T

Figure 2-1: TCP accepts a stream of bytes as input from the application, dices it into
segments, and passesto the | P layer as|P packets.

2.1.1 Reliable Byte Stream Service

TCP provides a byte stream service, which means that a stream of 8-bit bytes is exchanged across
the TCP connection between the two applications. TCP does not automatically insert any
delimiters of the data records. An application using TCP might “write” to it several times only to
have the data compacted into a common segment and delivered as such to its peer. For example,
if the application on one end writes 20 bytes, followed by a write of 30 bytes, followed by a write
of 10 bytes, the application at the other end of the connection cannot tell what size the individual
writes were. The other end may read the 60 bytes in two reads of 30 bytes at a time. One end puts
a stream of bytes into TCP and the same, identical stream of bytes appears at the other end.

It is common to use the term “segment” for TCP packets. The TCP segments are encapsulated
into IP packets and sent to the destination (Figure 2-1).

Like any other data packet, the TCP segment consists of the header and the data payload (Figure
2-2). The header consists of a 20-byte mandatory part, plus a variable-size options field. Most of
regular TCP segments found on the Internet will have fixed 20-byte header and the options field
is rarely used. The description of the header fields is as follows.

Source port number and destination port number: These numbers identify the sending and
receiving applications on their respective hosts. A network application is rarely the sole
“inhabitant” of a host computer; usually, the host runs multiple applications (processes), such as a
web browser, email client, multimedia player, etc. Similar to an apartment building, where an
apartment number is needed in addition to the street address to identify the recipient uniquely, the
applications communicating over TCP are uniquely identified by their hosts’ IP addresses and the
applications’ port numbers.

Sequence number: The 32-bit sequence number field identifies the position of the first data byte
of this segment in the sender’s byte stream during data transfer (when SYN bit is not set).
Because TCP provides a byte-stream service, each byte of data has a sequence number.

Chapter 2 e Transmission Control Protocol (TCP) 141

0 15 16 31

16-bit source port number 16-bit destination port number

32-bit sequence number

5 32-hit 20
S flags acknowledgement number bytes
&<
o 4-bit unused A[PIR|[S|F
f;) header (6 bits) R|C|S|S|Y]| I 16-bit advertised receive window size
length G|K|H|T|[N|N
16-bit TCP checksum 16-bit urgent data pointer
/ options (if any) /
~
Lo e
@
i)
>
8 < / TCP segment data (if any) /
o
O
|_

-

Figure 2-2: TCP segment format.

Acknowledgment number: The 32-bit acknowledgement number field identifies the sequence
number of the next data byte that the receiver expects to receive. This field is valid only if the
ACK bit is set; otherwise, it should be ignored by the recipient of this segment.

Header length: This field specifies the length of the TCP header in 32-bit words. This field is
also known as the Offset field, because it informs the segment receiver where the data begins
relative to the start of the segment. Regular header length is 20 bytes, so the default (and
minimum allowed) value of this field equals 5. In case the options field is used, the value can be
up to 4* — 1 = 15, which means that the options field may contain up to (15 — 5) x 4 = 40 bytes.

Unused: This field is reserved for future use and must be set to 0.
Flags: There are six bits allocated for the flags field, as follows:
URG: If this bit is set, the urgent data pointer field of the header is valid (described later).

ACK: When this bit is set, the acknowledgement number field of the header is valid and the
recipient of this segment should pay attention to the acknowledgement number.

PSH: If this bit is set, it requires the TCP receiver to pass the received data to the receiving
application immediately. Normally, this bit is not set and the TCP receiver may choose to
buffer the received segment until it accumulates more data in the receive buffer.

Ivan Marsic e Rutgers University 142

RST: When set, this bit requires the TCP receiver to abort the connection because of some
abnormal condition. For example, the segment’s sender may have received a segment it did
not expect to receive and wants to abort the connection.

SYN: This bit requests a connection (discussed later).

FIN: When set, this bit informs the TCP receiver that the sender does not have any more data
to send. The sender can still receive data from the receiver until it receives a segment with the
FIN bit set from the other direction.

Receive window size: This field specifies the number of bytes the sender is currently willing to
accept. This field can be used to control the flow of data and congestion, as described later in
Sections 2.1.3 and 2.2, respectively.

Checksum: This field helps in detecting errors in the received segments.

Urgent data pointer: When the URG bit is set, the value of this field should be added to the
value of the sequence number field to obtain the location of the last byte of the “urgent data.” The
first byte of the urgent data is never explicitly defined. Because the TCP receiver passes data to
the application in sequence, any data in the receive buffer up to the byte pointed by the urgent-
data pointer may be considered urgent.

Options. The options field may be used to provide functions other than those covered by the
regular header. This field may be up to 40 bytes long and if its length is not a multiple of 32 bits,
extra padding bits should be added. The options field is used by the TCP sender and receiver at
the connection establishment time, to exchange some special parameters, as described later.

The pseudo code in Listing 2-1 summarizes the TCP sender side protocol. In reality, both TCP
sender and TCP receiver are implemented within the same TCP protocol module. Notice also that
the method send () is part of sender’s code, whereas the method handle () is part of
receiver’s code. However, to keep the discussion manageable, I decided to focus only on sender’s
side. See also Figure 2-3 for the explanation of the buffering parameters and Figure 2-8 for TCP
sender’s state diagram.

Listing 2-1: Pseudo code for RTO timer management in a TCP sender.
1 public class TCPSender {
2 // window size that controls the maximum number of outstanding segments
2a // equation (2.3a) explains how EffectiveWindow is calculated
3 private long effectiveWindow;
4 // maximum segment size (MSS)
5 private long MSS;
6 // sequence number of the last byte sent thus far, initialized randomly
7 private long lastByteSent;
8 // sequence number of the last byte for which the acknowledgement
8a // from the receiver arrived thus far, initialized randomly
9 private long lastByteAcked;

Chapter 2

10
11

12
13

14
15
16

17
18
19

20
20a
21
21a
21b
21lc
22
23

24
25
26
27
28

21
21la
21b
22
22
23
23a
23b

24

25
26

27
27a
28
28a
28b
29

30
31

32

e Transmission Control Protocol (TCP) 143

// list of unacknowledged segments that may need to be retransmitted
private ArrayList unacknowledgedSegments = new ArrayList () ;

// mnetwork layer protocol that provides services to TCP protocol (normally, IP protocol)
private ProtocolNetworkLayer networkLayerProtocol;

// constructor
public TCPSender (ProtocolNetworkLayer networkLayerProtocol) ({
this.networkLayerProtocol = networkLayerProtocol;

lastByteSent = initial sequence number;
lastByteAcked = initial sequence number;

}

// reliable byte stream service offered to an upper layer (or application)
// takes as input a long message ('data' input parameter) and transmits in segments
public void send(
byte[] data, String destinationAddr,
ProtocolLayer iUP upperProtocol
) throws Exception {
// slice the application into segments of size MSS and send one-by-one
for (i = 0; i < (data.length % MSS); i++) {

// if the sender already used up the limit of outstanding packets, then wait

if (effectiveWindow - unacknowledgedSegments.size() > 0)
suspend this thread;

wait until some ACKs are received;

}

// create a new TCP segment with sequence number equal to LastByteSent;
// if (data.length < (i+1)*MSS), i.e., the remaining data slice is smaller than one MSS
// then use padding or Nagle's algorithm (described later)
current data pointer = data + 1i*MSS;
TCPSegment outgoingSegment =
new TCPSegment (
current data pointer, destinationAddr, upperProtocol

) §
if (RTO timer not already running) { start the timer; |}

unacknowledgedSegments.add (outgoingSegment) ;
lastByteSent += outgoingSegment.getLength() ;

// hand the packet down the stack to IP for transmission
// Note: outgoingSegment must be serialized to a byte-array as in Listing 1-1
networkLayerProtocol.send (// (omitted for clarity)
outgoingSegment, destinationAddr, this
)i
}

// upcall method (called from the IP layer), when an acknowledgment is received
public void handle (byte[] acknowledgement)

// acknowledgement carries the sequence number of

LastByteAcked LastByteSent

f f f f

NextByteExpected LastByteRecvd

-
Buffered in RcvBuffer

-

Ivan Marsic e Rutgers University 144
[Sending Application] ! [Receiving Application]
1
2 i
\Y ’
'
Increasing i) < . Increasing
Sent & Allowed to - sequence num. ; Delivered to Gapin sequence num.
acked send — : application recv'd data —
el R— —— A ——— TCP
sender’'s - 8 E greceiver’s
byte stream ! byte stream
i
1
1
1
1
]
:

FlightSize
(Buffered in send buffer)

Figure 2-3: Parametersfor TCP send and receive buffers.

32a // the next byte expected by the TCP receiver

33 if (acknowledgement.nextByteExpected > lastByteAcked) {

34 remove the acknowledged segment from

34a the unacknowledgedSegments array;

35 lastByteAcked = acknowledgement.nextByteExpected;

36 if (lastByteAcked < lastByteSent) ({

37 re-start the RTO timer;

38 } // ie., there are segments not yet acknowledged

39 }

40 }

41 // this method is called when the RTO timer expires (timeout)

4la // this event signifies segment loss, and the oldest unacknowledged segment is retransmitted
42 public void RTOtimeout () {

43 retrieve the segment with sequence number == LastByteAcked
43a from unacknowledgedSegments array and retransmit it;
43 double the TimeoutInterval;

44 start the timer;

45 }

46 }

The code description is as follows: ... to be described ... The reader should compare Listing 2-1
to Listing 1-1 in Section 1.1.4 for a generic protocol module.

The method handle (), which starts on Line 31, normally handles bidirectional traffic and

processes TCP segments that are received from the other end of the TCP connection. Recall also
that TCP acknowledgements are piggybacked on TCP segments (Figure 2-2).

Listing 2-1 provides only a basic skeleton of a TCP sender. The details will be completed in the
following sections as we learn more about different issues.

2.1.2 Retransmission Timer

Problems related to this section: Problem 2.1 — ??, Problem 2.13, and Problem 2.15

Chapter 2 e Transmission Control Protocol (TCP) 145

>
»
>

RTT distribution measured
during quiet periods

(2)

RTT distribution measured
during peak usage periods

Occurrence frequency
of measured RTT values
~
a

7

v
v

o
=
o

My Ha
Measured RTT value

TimeoutInterval

v

Cases for which the
RTO timer will expire
too early

4

0 Measured RTT value

(©)

Figure 2-4: Distribution of measured round-trip timesfor a given sender-receiver pair.

An important parameter for reliable transport over multihop networks is retransmission timer.
This timer triggers the retransmission of packets that are presumed lost. Obviously, it is very
important to set the right value for the timer. For, if the timeout time is too short, the packets will
be unnecessarily retransmitted thus wasting the network bandwidth. And, if the timeout time is
too long, the sender will unnecessarily wait when it should have already retransmitted thus
underutilizing and perhaps wasting the network bandwidth.

It is relatively easy to set the timeout timer for single-hop networks because the propagation time
remains effectively constant. However, in multihop networks queuing delays at intermediate
routers and propagation delays over alternate paths introduce significant uncertainties.

TCP has a special algorithm for dynamically updating the retransmission timeout (RTO) value.
The details are available in RFC-2988 [Paxson & Allman, 2000], and here is a summary. The
RTO timer value, denoted as TimeoutInterval, is initially set as 3 seconds. When the
retransmission timer expires (presumably because of a lost packet), the earliest unacknowledged
data segment is retransmitted and the next timeout interval is set to twice the previous value:

TimeoutInterval(f)=2 X TimeoutInterval(+1) 2.1

This property of doubling the RTO on each timeout is known as exponential backoff." If a
segment’s acknowledgement is received before the retransmission timer expires, the TCP sender
measures the round-trip time (RTT) for this segment, denoted as SampleRTT. TCP only
measures SampleRTT for segments that have been transmitted once and not for segments that
have been retransmitted.

12 Recall the discussion from Section 1.3.3 above. In the TCP case, the sender assumes that concurrent TCP
senders are contending for the network resources (router buffers), thereby causing congestion and packet
loss. To reduce the congestion, the sender doubles the retransmission delay by doubling its RTO.

Ivan Marsic e Rutgers University 146

Suppose you want to determine the statistical characteristics of round-trip time values for a given
sender-receiver pair. As illustrated in Figure 2-4(a), the histogram obtained by such measurement
can be approximated by a normal distribution'® N(x, 6) with the mean value x and the standard
deviation o. If the measurement were performed during different times of the day, the obtained
distributions may look quite different, Figure 2-4(b). Therefore, the timeout interval should be
dynamically adapted to the observed network condition. The remaining decision is about setting
the TimeoutInterval. As illustrated in Figure 2-4(c), there will always be some cases for
which any finite Timeout Interval is too short and the acknowledgement will arrive after the
timeout already expired. Setting TimeoutInterval = u4 + 40 will cover nearly 100 % of all
the cases. Therefore, for the subsequent data segments, the TimeoutInterval is set according
to the following equation:

TimeoutInterval(f) =EstimatedRTT(f) +4 - DevRTT(¢) 2.2)
where Est imatedRTT(¢) is the currently estimated mean value of RTT:
EstimatedRTT(f) = (1-) - EstimatedRTT(t— 1)+ - SampleRTT(?)

The initial value is set as EstimatedRTT(0) = SampleRTT(0) for the first RTT measurement.
This approach to computing the running average of a variable is called Exponential Weighted
Moving Average (EWMA). Similarly, the current standard deviation of RTT, DevRTT(?), is
estimated as:

DevRTT(f) = (1-f) - DevRTT(t — 1) + B- |SampleRTT(f) - Est imatedRTT(¢ - 1)|

i . 1
The initial value is set as DevRTT(0) = 5 SampleRTT(0) for the first RTT measurement. The

recommended values of the control parameters & and fare o= 0.125 and f= 0.25. These values
were determined empirically.

In theory, it is simplest to maintain individual retransmission timer for each outstanding packet.
In practice, timer management involves considerable complexity, so most protocol
implementations maintain single timer per sender. RFC-2988 recommends maintaining single
retransmission timer per TCP sender, even if there are multiple transmitted-but-not-yet-
acknowledged segments. Of course, individual implementers may decide otherwise, but in this
text, we follow the single-timer recommendation for TCP.

TCP sends segments in bursts (or, groups of segments), every burst containing the number of
segments limited by the current window size. Recall from Section 1.3.2 that in all sliding window
protocols, the sender is allowed to have only up to the window-size outstanding amount of data
(yet to be acknowledged). The same holds for the TCP sender. Once the window-size worth of
segments is sent, the sender stops and waits for acknowledgements to arrive. For every arriving
ACK, the sender is allowed to send certain number of additional segments, as governed by the
rules described later. The retransmission timer management is included in the pseudo code in
Listing 2-1 (Section 2.1.1). The following summary extracts and details the key points of the
retransmission timer management from Listing 2-1:

" In reality, multimodal RTT distributions (i.e., with several peaks) are observed. The interested reader can
find relevant links at this book’s website—follow the link “Related Online Resources,” then look under
the topic of “Network Measurement.”

Zi(‘ Search the Web for RTT distribution measurement

Chapter 2 e Transmission Control Protocol (TCP) 147

In method TCPSender.send(), Listing 2-1 // called by application layer above
in Line 24:
if (RTO timer not already running) {
set the RTO timer to the current value
as calculated in methods handle() and RTOtimeout () ;
start the timer;

}

In method TCPSender.handle(), Listing 2-1 // called by IP layer when ACK arrives
in Lines 36 - 38:
if ((lastByteAcked < lastByteSent) {
calculate the new value of the RTO timer using Eg. (2.2);
re-start the RTO timer;

}

In method TCPSender.RTOtimeout (), Listing 2-1 // called when RTO timer timeout
in Line 43:
double the TimeoutInterval; // see Eq. (2.1)
start the timer;

An important peculiarity to notice about TCP is as follows. When a window-size worth of
segments is sent, the timer is set for the first one, assuming that the timer is not already running
(Line 24 in Listing 2-1). For every acknowledged segment of the burst, the timer is restarted for
its subsequent segment in Line 37 in Listing 2-1. Thus, the actual timeout time for the segments
towards the end of a burst can run quite longer than for those near the beginning of the burst. An
example will be seen later in Section 2.2 in the solution of Example 2.1.

2.1.3 Flow Control

TCP receiver accepts out-of-order segments, but they are buffered and not delivered to the
application above the TCP layer before the gaps are filled. For this, the receiver allocates memory
space of the size RevBuf fer, which is typically set to 4096 bytes, although older versions of
TCP set it to 2048 bytes. The receive buffer is used to store in-order segments as well, because
the application may be busy with other tasks and does not fetch the incoming data immediately.
For the sake of simplicity, in the following discussion we will assume that in-order segments are
immediately fetched by the application, unless stated otherwise.

To avoid having its receive buffer overrun, the receiver continuously advertises the remaining
buffer space to the sender using a field in the TCP header; we call this variable Rcviwindow. It is
dynamically changing to reflect the current occupancy state of the receiver’s buffer. The sender
should never have more than the current ReviWwindow amount of data outstanding. This process is
called flow control. Figure 2-5 illustrates the difference between the flow control as opposed to
congestion control, which is described later in Section 2.2.

Figure 2-6 shows how an actual TCP session might look like. The notation 0:512(512) means
transmitted data bytes 1 through but not included 512, which is a total of 512 bytes. The first
action is to establish the session, which is done by the first three segments, which represent the
three-way handshake procedure. Here I briefly summarize the three-way handshake. The

Ivan Marsic e Rutgers University 148

Flow control Congestion control

Feedback:

Feedback: “\ | Ii?ttinmliﬁ?o ,
“Receiver Q | r\\,l P g g ug
overflowing” 0 |

Q) [) Receiver

Receiver

Figure 2-5: Flow control compared to congestion control.

interested reader should consult another source for more details, e.g., [Stevens 1994; Peterson &
Davie 2007; Kurose & Ross 2010].

The first three segments are special in that they do not contain data (i.e., they have only a header),
and the SYN flag in the header is set (Figure 2-2). In this example, the client offers ReviWindow =
2048 bytes, and the server offers Reviwindow = 4096 bytes. In our case, the client happens to be
the “sender,” but server or both client and server can simultaneously be senders and receivers.
They also exchange the size of the future segments, MSS (to be described later, Table 2-1), and
settle on the smaller one of 1024 and 512 bytes, i.e., 512 bytes. During the connection-
establishment phase, the client and the server will transition through different states, such as
LISTEN, SYN_SENT, and ESTABLISHED (marked in Figure 2-6 on the right-hand side). As
stated earlier, both sender and receiver instantiate their sequence numbers randomly. In Figure
2-6, the sender selects 122750000, while the receiver selects 2363371521. Hence, the sender

sends a zero-bytes segment
122750000:122750000 (0)

The receiver acknowledges it and sends its own initial sequence number by sending
2363371521:2363371521(0); ack 122750000

Chapter 2 e Transmission Control Protocol (TCP)
(TCP Sender)
Time

149

(TCP Receiver)

Server

LISTEN

#1 SYN 122750000:122750000(0) (passive open) m
SYN_SENT Win 2048, <mss 10275 29
(active open) SYN 2363371521:2363371521(0) — #2 ‘!!’ E
177750000, win 4096, <mss 512> SYN_RCVD & o 3
ESTABLISHED #2 |——ack 2363371521, win 2048 g g'
|)
- / / ESTABLISHED/ -
CongWin =1 MSS = 512 bytes #3 [T0512(512), ack g win 204,
RcvWindow = 4096 bytes ' 8
—
< ack 512, win 4096 #4 I:‘
CongWin=1+1=2 #4 [T512:1024(512), ack 0, win 2045
#5 [=—1024:1536(512), ack 0, wi \
, win 2048 > v
‘_/ ack 1536, win 40%0 ?
Hmmmmmmm oo s
CongWin = 2 +1+1 = 4 #6_IF1536:2048(512). ack 0, win 2048 > © 9
#7 \2048:2560(512) ack o, i g iy
#8 waw 2048, win 4096 #7 o o
DGR T -——- ~—— 47 Gap in sequence! ~ 5)
in= = ! \« 2048, win 3584 (buffer 512 bytes) | =4
CongWin=4+1=5 #9 :’3@512)’ acko, wir(mg_ac g -_8
i Q —
#10 e~ ack 3584, win aoge— | #10 2
) —— =
4__3584.4098(5 =
G- i 12). ack g, ,,;
CongWin =5 +1+1+1 =8 4096:4608(512) e 2048
#12 [==—4608:5120(512), ack 0, win 2048—k 23584, Win 3584{ #10 Gap in sequence!
C| '
#13 5="5120:5632(512), ack 0, win 204gzack 3584, win 3072 #10 (buffer 1024 bytes
—
< il ack 5632, win 4096——— | #14
CongWin =8 +1+1+1+1 =12
detail:
(#7 —2048:2560(512 #e > \
), ack 0, win 2048
#8 [|==2560:3072(512) ack 2048, win 4096 ————————" #7
detail -
#7
. licate)
#9 —3072:3584(512), ack 0, Win 2048 /ack 2048, win 3584 (dupli
\. —|

Figure 2-6: Initial part of thetimeline of an example TCP session. Time increases down the
page. See text for details. (The CongWin parameter on the left side of the figure will be

described later in Section 2.2.)

i.e., it sends zero data bytes and acknowledges zero data bytes received from the sender (the ACK
flag is set). To avoid further cluttering the diagram, I am using these sequence numbers only for
the first three segments. For the remaining segments, I simply assume that the sender starts with
the sequence number equal to zero. In Figure 2-6, the server sends no data to the client, so the
sender keeps acknowledging the first segment from the receiver and acknowledgements from

Ivan Marsic e Rutgers University 150

1

Figure 2-7: Simple congestion-control scenario for TCP.

sender to receiver carry the value 0 for the sequence number (recall that the actual value of the
server’s sequence number is 2363371521).

After establishing the connection, the sender starts sending packets. Figure 2-6 illustrates how
TCP incrementally increases the number of outstanding segments. This procedure is called Slow
start, and it will be described later. TCP assigns byte sequence numbers, but for simplicity we
usually show packet sequence numbers. Notice that the receiver is not obliged to acknowledge
individually every single in-order segment—it can use cumulative ACKs to acknowledge several
of them up to the most recent contiguously received data. Conversely, the receiver must
immediately generate (duplicate) ACK—dupACK—for every out-of-order segment, because
dupACKs help the sender detect segment loss (as described in Section 2.2).

Notice that receiver might send dupACKs even for successfully transmitted segments because of
random re-ordering of segments in the network. This is the case with segment #7 (detail at the
bottom of Figure 2-6), which arrives after segment #8. Thus, if a segment is delayed further than
three or more of its successors, the duplicate ACKs will trigger the sender to re-transmit the
delayed segment, and the receiver may eventually receive a duplicate of such a segment.

2.2 Congestion Control

TCP maneuvers to avoid congestion in the first place, and controls the damage if congestion
occurs. The key characteristic of TCP is that all the intelligence for congestion avoidance and
control is in the end hosts—no help is expected from the intermediary hosts.

A key problem addressed by the TCP protocol is to determine the optimal window size
dynamically in the presence of uncertainties and dynamic variations of available network
resources.

Early versions of TCP would start a connection with the sender injecting multiple segments into
the network, up to the window size advertised by the receiver. The problems would arise due to
intermediate router(s), which must queue the packets before forwarding them. If that router runs
out of memory space, large number of packets would be lost and had to be retransmitted.

Chapter 2 e Transmission Control Protocol (TCP) 151

Jacobson [1988] showed how this naive approach could reduce the throughput of a TCP
connection drastically.

The problem is illustrated in Figure 2-7, where the whole network is abstracted as a single
bottleneck router. It is easy for the receiver to know about its own available buffer space and
advertise the right window size to the sender (denoted by ReviWindow). The problem is with the
intermediate router(s), which serve data flows between many sources and receivers. Bookkeeping
and policing of fair use of router’s resources is a difficult task, because router must forward the
packets as quickly as possible, and it is practically impossible to dynamically determine the “right
window size” of the router’s memory allocated for each flow and advertise it back to the sender.

TCP approaches this problem by putting the entire burden of determining the right window size
of the bottleneck router onto the end hosts. Essentially, the sender dynamically probes the
network and adjusts the amount of data in flight to match the bottleneck resource. The algorithm
used by TCP sender can be summarized as follows:

1. Start with a small size of the sender window

2. Send a burst (size of the current sender window) of packets into the network

3. Wait for feedback about success rate (acknowledgements from the receiver end)
4. When feedback obtained:

a. If the success rate is greater than zero, increase the sender window size and go to
Step 2

b. Ifloss is detected, decrease the sender window size and go to Step 2

This simplified procedure will be elaborated as we present the details in the following text. It is
important to notice that TCP controls congestion in the sense that it first needs to cause
congestion, next to observe it though the feedback, and then to react by reducing the input. This
cycle is repeated in a never-ending loop. Section 2.4 describes other variants of TCP that try to
avoid congestion, instead of causing it (and then controlling it).

Table 2-1 shows the most important parameters (all the parameters are maintained in integer units
of bytes). Buffering parameters are shown in Figure 2-3. Figure 2-8 and Figure 2-9 summarize
the algorithms run at the sender and receiver. These are digested from RFC 2581 and RFC 2001
and the reader should check the details on TCP congestion control in [Allman et al. 1999; Stevens
1997]. [Stevens 1994] provides a detailed overview with traces of actual runs.

Table 2-1. TCP congestion control parameters (measured in integer number of bytes). Also
see Figure 2-3.

Variable Definition

MSS The size of the largest segment that the sender can transmit. This value can be
based on the maximum transmission unit (MTU) of the network, the path MTU
discovery algorithm, or other factors. The size does not include the TCP/IP
headers and options. [Note that RFC 2581 distinguishes sender maximum
segment size (SMSS) and receiver maximum segment size (RMSS).]

Ivan Marsic e Rutgers University 152

RcvWindow The size of the most recently advertised receiver window.

CongWindow Sender’s current estimate of the available buffer space in the bottleneck router.
LastByteAcked The highest sequence number currently acknowledged.

LastByteSent The sequence number of the last byte the sender sent.

FlightSize The amount of data that the sender has sent, but not yet had acknowledged.

EffectiveWindow | The maximum amount of data that the sender is currently allowed to send. At
any given time, the sender must not send data with a sequence number higher
than the sum of the highest acknowledged sequence number and the minimum
of CongWindow and RcviWwindow.

SSThresh The slow start threshold used by the sender to decide whether to employ the
slow-start or congestion-avoidance algorithm to control data transmission.

Notice that the sender must assure at all times that:
LastByteSent < LastByteAcked + min {CongWindow, RcviWindow}

Therefore, the amount of unacknowledged data (denoted as F1ightSize) should not exceed
this value at any time:

FlightSize =LastByteSent —LastByteAcked < min {CongWindow, RcviWindow}

At any moment during a TCP session, the maximum amount of data the TCP sender is allowed to
send is (marked as “allowed to send” in Figure 2-3):

EffectiveWindow = min {CongWindow, RcviWindow} — FlightSize (2.32)

Here we assume that the sender can only send MSS-size segments; the sender holds with
transmission until it collects at least an MSS worth of data. This is not always true, and the
application can request speedy transmission, thus generating small packets, so called tinygrams.
The application does this using the TCP_ NODELAY socket option, which sets PSH flag (Figure
2-2). This is particularly the case with interactive applications, such as telnet or secure shell.
Nagle’s algorithm [Nagle 1984] constrains the sender to have unacknowledged at most one
segment smaller than one MSS. For simplicity, we assume that the effective window is always
rounded down to integer number of MSS-size segments:

Ef fectiveWindow =|min {CongWindow, RcvWindow} — F1 ightSize] (2.3b)

Figure 2-6 illustrates the TCP slow start phase. In slow start, CongWindow starts at one
segment and gets incremented by one segment every time an ACK is received. As it can be seen,
this opens the congestion window exponentially: send one segment, then two, four, eight and so
on.

The only “feedback™ TCP receives from the network is by having packets lost in transport. TCP
considers that these are solely lost to congestion, which, of course, is not necessarily true—
packets may be lost to channel noise or even to a broken link. A design is good as long as its
assumptions hold and TCP works fine over wired networks, because other types of loss are
uncommon therein. However, in wireless networks, this underlying assumption breaks and it
causes a great problem as will be seen later in Section 2.5.

Chapter 2 e Transmission Control Protocol (TCP) 153

Reno Sender Fast retransmit

ACK received & (CongWin > SSThresh) / dupACK received & count >3/
Send EfctWin (x) of data re-send oldest outstanding segment
® & Re-start RTO timer (1) & Re-start RTO timer (1)

Start / ‘(\ /
/ Slow Start / Congestion Avoidance \

Fast retransmit
dupACK received & count >3/
dupACK received / re-send oldest outstanding segment dupACK received /
Count it & Send EfctWin of data & Re-start RTO timer (1) Count it & Send EfctWin (*) of data

R

dupACKS dupACKs
count=0 count >0

dupACKS dupACKs

count=0 count >0

ACK received / ACK received /

ACK received / Send EfctWin (x) of data ACK received / Send EfctWin (=) of data
Send EfctWin () ofdata g Re-start RTO timer (t) Send EfctWin () of data g Re-start RTO timer (f)
& Re-start RTO timer (1) / & Re-start RTO timer (1) /
RTO timeout / RTO timeout /
Re-send oldest outstanding segment Re-send oldest outstanding segment
& Re-start RTO timer (%) & Re-start RTO timer (%)

Figure 2-8: TCP Reno sender state diagram. (*) Effective window depends on CongWin,
which is computed differently in sow-start vs. congestion-avoidance. (f) RTO timer is
restarted if LastByteAcked < LastByteSent. (3) RTO size doubles, SSThresh = CongWin/2.

/ All segments received in-order \ Out-of-order segment /
_ Buffer it & Send dupACK
(NextByteExpected = LastByteRecvd + 1) Out-of-order segment /

Buffer it & Send dupACK

In-order segment received /
Start /

Immediate Delayed
acknowledging acknowledging Buffering out-of-order segments

\ (LastByteRecvd > NextByteExpected)
In-order segment, completely fills gaps /

TCP Receiver Send ACK

In-order segment /
Send ACK

500 msec elapsed /
Send ACK

In-order segment,
partially fills gaps /
Send ACK

Figure 2-9: TCP receiver state diagram.

As far as TCP is concerned, it does not matter when a packet loss happened (somewhere in the
network, on a router); what matters is when the loss is detected (at the TCP sender). Packet loss
happens in the network and the network is not expected to notify the TCP endpoints about the
loss—the endpoints have to detect loss indirectly and deal with it on their own. Packet loss is of
little concern to TCP receiver, except that it buffers out-of-order segments and waits for the gap
in sequence to be filled. TCP sender is the one mostly concerned about the loss and the one that
takes actions in response to detected loss. TCP sender detects loss via two types of events
(whichever occurs first):

1. Timeout timer expiration

Ivan Marsic e Rutgers University 154

2. Reception of three' duplicate ACKs (four identical ACKs without the arrival of any
other intervening packets)

Upon detecting the loss, TCP sender takes action to avoid further loss by reducing the amount of
data injected into the network. (TCP also performs fast retransmission of what appears to be the
lost segment, without waiting for a RTO timer to expire.) There are many versions of TCP, each
having different reaction to loss. The two most popular ones are TCP Tahoe and TCP Reno, of
which TCP Reno is more recent and currently prevalent in the Internet. Table 2-2 shows how they
detect and handle segment loss.

Table 2-2: How different TCP sendersdetect and deal with segment loss.

Event TCPVesion TCP Sender’sAction

. Tahoe)
Timeout Set CongWindow = 1XMSS
Reno
> 3xdup Tahoe Set CongWindow = 1XMSS
ACKs Reno Set CongWindow = max {4 FlightSize, 2xMSS} + 3xMSS

As seen in Table 2-2, different versions react differently to three dupACKs: the more recent
version of TCP, i.e., TCP Reno, reduces the congestion window size to a lesser degree than the
older version, i.e., TCP Tahoe. The reason is that researchers realized that three dupACKs
signalize lower degree of congestion than RTO timeout. If the RTO timer expires, this may signal
a “severe congestion” where nothing is getting through the network. Conversely, three dupACKs
imply that three packets got through, although out of order, so this signals a “mild congestion.”

The initial value of the slow start threshold SSThresh is commonly set to 65535 bytes = 64 KB.
When a TCP sender detects segment loss using the retransmission timer, the value of SSThresh
must be set to no more than the value given as:

SSThresh =max {| %2 FlightSize], 2xMsS} (2.4)

where F1ightSize is the amount of outstanding data in the network (for which the sender has
not yet received an acknowledgement). The floor operation |-J rounds the first term down to the
next multiple of MSS. Notice that some networking books and even TCP implementations state
that, after a loss is detected, the slow start threshold is set as SSThresh = 2 CongWindow,
which according to RFC-2581 is incorrect."

' The reason for three dupACKs is as follows. Because TCP does not know whether a lost segment or just
a reordering of segments causes a dupACK, it waits for a small number of dupACKs to be received. It is
assumed that if there is just a reordering of the segments, there will be only one or two dupACKs before
the reordered segment is processed, which will then generate a fresh ACK. Such is the case with
segments #7 and #10 in Figure 2-6. If three or more dupACKs are received in a row, it is a strong
indication that a segment has been lost.

" The formula SSThresh = % CongWindow is an older version for setting the slow-start threshold,
which appears in RFC-2001 as well as in [Stevens 1994]. I surmise that it was regularly used in TCP
Tahoe, but should not be used with TCP Reno.

Chapter 2 e Transmission Control Protocol (TCP) 155

Congestion can occur when packets arrive on a big pipe (a fast LAN) and are sent out a smaller
pipe (a slower WAN). Congestion can also occur when multiple input streams arrive at a router
whose output capacity (transmission speed) is less than the sum of the input capacities. Here is an
example:

Example 2.1 Congestion Dueto Mismatched Pipeswith Limited Router Resour ces

Consider an FTP application that transmits a huge
file (e.g., 20 MBytes) from host A to B over the . 10 Mbps .

two-hop path shown in the figure. The link - 1 Mbps %
between the router and the receiver is called the @ —>
“bottleneck” link because it is much slower than Sender ﬁl

any other link on the sender-receiver path.

Assume that the router can always allocate the 6+1 packets

Receiver

buffer size of only six packets for our session and
in addition have one of our packets currently being transmitted. Packets are only dropped when the
buffer fills up. We will assume that there is no congestion or queuing on the path taken by ACKs.

Assume MSS = 1KB and a constant TimeoutInterval = 3xRTT = 3x1 sec. Draw the graphs for
the values of CongWindow (in KBytes) over time (in RTTs) for the first 20 RTTs if the sender’s TCP
congestion control uses the following:

(a) TCP Tahoe: Additive increase / multiplicative decrease and slow start and fast retransmit.
(b) TCP Reno: All the mechanisms in (a) plus fast recovery.

Assume a large Reviwindow (e.g., 64 KB) and error-free transmission on all the links. Assume also
that duplicate ACKs do not trigger growth of the CongWindow (i.e., only regular ACKs increase the
CongWindow size). Finally, to simplify the graphs, assume that all ACK arrivals occur exactly at unit
increments of RTT and that the associated CongWindow update occurs exactly at that time, too.

The solutions for (a) and (b) are shown in Figure 2-10 through Figure 2-15. The discussion of the
solutions is in the following text. Notice that, unlike Figure 2-6, the transmission rounds are “clocked”
and neatly aligned to the units of RTT. This idealization is only for the sake of illustration and the real
world would look more like Figure 2-6. [Note that this idealization would stand in a scenario with
propagation delays much longer than transmission delays.]

Ivan Marsic e Rutgers University

CongWin =1 MSS

I #1
EfctWin =1 PO S
ILXRTT
CongWin=1+1 #2,3
EfctWin = 2 P —
(2 X RTTi
CongWin = 2 +1+1
EfctWin = 4 sl
{3 RTT:
CongWin = 4 +1+1+1+
EfctWin =8 #8,9, ...,14,15

8 segments sent

{4 RTTS
CongWin = 8 +1+...+1
. —— #16,17, ...,22,
EfctWin = 14 7 23,...,27,28,29
14 segments sent
CongWin =1

CongWin=1+1

#30 (1 byte)

EfctWin =0 o S—— .

i7xXRTT:
CongVYm =2 #31 (1 byte)
EfctWin =0 o — .

8 RTT:
CongWin = 2 #32 (1 byte)
EfctWin =0

) 3 X dupACKsi.....

Conngn =1 423
EfctWin =1

CongWin=1+1
EfctWin =0

Time [RTT]

Sendil

Eeiver

seg 1

l«——ack 2

156

[]
1024 bytes f

#2 to application

= dup ack Lo =—"—="+¢
l— —

,-.(_____: SE€Q 27w |

[«—dup ack 15

> 2 KB 1
—1 #4 to appl
45 t4 KB___f
_ o appl
——— 7KkB__f
seg 15* == ¥(loss) #15 to appl
|e——ack 15 [1 segment lost]
Gap in sequence!
——— (buffer 7 KB)
—— [4 segments lost]
| <p—

#15,15,...,15

#15 (buffer 1KB) i
[2 segments lost]

l«——ack 23

le—ack 23

seg 31 (1 byte)—>

|l «——3ack 23

Seg 32 (1 byte) mm—p|

|«—ack 23

Seg 23 (retransmission)) ——pm|

seg 15 (retransmission)—> 8 KB f
#23 to appl
Seg 30 (1 byte) =
#23 (buffer 1 byte) [

#23 (buffer 1 byte) [

#23 (buffer 1 byte) [l

1024 bytes 4

le——ack 24

#24 =15 application

Figure 2-10: TCP Tahoe—partial timeline of segment and acknowledgement exchanges for
Example 2.1. Shown on the sender’s side are ordinal number s of the sent segments and on the
receiver’sside arethose of the ACK s (which indicate the next expected segment).

Let us first consider what happens at the router, as illustrated in Figure 2-11. The reader should
recall the illustration in Figure 1-17, which shows that packets are first completely received at the
link layer before they are passed up the protocol stack (to IP and on to TCP). The link speeds are
mismatched by a factor of 10 : 1, so the router will transmit only a single packet on the second
link while the sender already transmitted ten packets on the first link. Normally, this would only
cause delays at the router, but with limited router resources there is also a loss of packets. This is
detailed in Figure 2-11, where the three packets in excess of the router buffer capacity are
discarded (numbered #23, #24, and #25). Thereafter, until the queue slowly drains, the router has

Chapter 2 e Transmission Control Protocol (TCP) 157

Sender Router Receiver
| 6 packets buffered: |

|
' i
— FEEERE i
transmitted: #17| | I 2
— #18| | [
3 [B
%'i [= Transmission time on link_2 : 2 i3
@ equals 10 x (Tx time on link_1)| é& IS
% E | ff +
2= V& | &
#16 : &
n -
& : Y
o
) g
& [I3
1
15 |
2 | |
g |8 I J !
i #17
17} | | I
o I~ ! f_\: L, Segment #16
- | | | received
- PR | |
| | |
| | |
_|
=! | | |
3 | | |
| | |
: : #18 |
| | |
| | | . Segment #17
1 I I \T’received

Figure 2-11: Detail from Figure 2-10 starting at time = 4xRTT. Mismatched transmission
speedsresult in packet loss at the bottleneck router.

one buffer slot available for every ten new packets that arrive. More details about how routers
forward packets are available in Section 4.1.

It is instructive to observe how the retransmission timer is managed (Figure 2-12). Up to time =
4xRTT, the timer is always reset for the next burst of segments. However, at time = 4xRTT the
timer is set for the 15™ segment, which was sent in the same burst as the 8" segment, and not for
the 16™ segment because the acknowledgement for the 15" segment is still missing. The reader is
encouraged to inspect the timer management for all other segments in Figure 2-12.

2.2.1 TCP Tahoe

Problems related to this section: Problem 2.2 — Problem 2.7 and Problem 2.9 — Problem 2.12

TCP sender begins with a congestion window equal to one segment and incorporates the slow
start algorithm. In slow start the sender follows a simple rule: For every acknowledged segment,
increment the congestion window size by one MSS (unless the current congestion window size
exceeds the SSThresh threshold, as described later in this section). This procedure continues
until a segment loss is detected. Of course, a duplicate acknowledgement does not contribute to
increasing the congestion window size.

When the sender receives a dupACK, it does nothing but count it. If this counter reaches three or
more dupACKs, the sender decides, by inference, that a loss occurred. In response, it adjusts the
congestion window size and the slow-start threshold (SSThresh), and re-sends the oldest
unacknowledged segment. (The dupACK counter also should be reset to zero.) As shown in
Figure 2-12, the sender detects the loss first time at the fifth transmission round, i.e., at SXRTT,

Ivan Marsic e Rutgers University 158

Time

EffctWin
65535 r———=
S V. ———-I"ISTrS|
[bytes] ~ [MSS] —_——— -
16384 15
8192) '— .““
4096 Y e R * ek L LLELLLLY \
% A 2XMSS
2048 2 ‘......q. _“_._.g
1024 1 z
123 4(5)6 7 8(9 (21}22 23 24(2@26 27 28(2@3 03132 33 34 35 36 37<38>39 [RTT]
c TN VLT Tl N TT D TTOONQANT NDONOQ
G| "PUOITTRESSEREER §2TedyeedEhnenaRasys
7)) n o : o o o o o o o o o o :?.tmm@ . : . g
@ I Tg g2z 22 ood 4o S YO ooy
E o9 333 33 99y gy ggggggs
g XN W E W o ¥R R xR £Q§§§§
: ~
(o)) * - Q
&) ~
o =
©
-
H*

Figure 2-12: TCP Tahoe sender—the evolution of the effective and congestion window sizes
for Example 2.1. The sizesare given on vertical axis (left) both in bytes and MSS units.

by receiving eight duplicate ACKs. The congestion window size at this instance is equal to 15360
bytes or 15xMSS. After detecting a segment loss, the sender sharply reduces the congestion
window size in accordance with TCP’s multiplicative decrease behavior. As explained earlier
(Table 2-2), a Tahoe sender resets CongWin to one MSS and reduces SSThresh as given by
Eq. (2.4). Just before the moment the sender received eight dupACKs F1ightSize equaled 15,
so the new value of SSThresh = 7.5XMSS is set.

Notice that in TCP Tahoe any additional dupACKs in excess of three do not matter—no new
packet can be transmitted while additional dupACKs after the first three are received. As will be
seen later, TCP Reno sender differs from TCP Tahoe sender in that it starts fast recovery based on
the additional dupACKs received after the first three.

Upon completion of multiplicative decrease, TCP carries out fast retransmit to quickly
retransmit the segment that is suspected lost, without waiting for the RTO timer timeout. Notice
that Figure 2-12 at time = SXRTT shows Ef fectiveWindow = 1xMSS. Obviously, this is not
in accordance with Eq. (2.3b), because currently CongWin equals 1xMSS and FlightSize
equals 15xMSS. This simply means that the sender in fast retransmit ignores the
EffectiveWindow size and simply retransmits the segment that is suspected lost. The times
when three (or more dupACKs are received and fast retransmit is employed are highlighted with
circle in Figure 2-12.

Only after receiving a regular, non-duplicate ACK (most likely the ACK for the fast retransmitted
packet), the sender enters a new slow start cycle. After the 15" segment is retransmitted at time =
6XRTT, the receiver’s acknowledgement requests the 23 segment thus cumulatively
acknowledging all the previous segments. The sender does not re-send #23 immediately because

Chapter 2 e Transmission Control Protocol (TCP) 159

15 [Multiplicative decrease

%
\
'!

Additive increase
(Congestion avoidance)

CongWin [MSS]

Time

\ i
0 1 2 3 4\5 6 7 8 9/10 11 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 [RTT]
Fast retransmit

Figure 2-13: TCP Tahoe sender—highlighted are the key mechanisms for congestion
avoidance and control; compareto Figure 2-12.

it still has no indication of loss. Although at time = 7XRTT the congestion window doubles to
2xMSS (because the sender is currently back in the slow start phase), there is so much data in
flight that Ef fectiveWindow = 0 and the sender is shut down. Notice also that for repetitive
slow starts, only ACKs for the segments sent after the loss was detected count. Cumulative ACKs
for segments before the loss was detected do not count towards increasing CongWin. That is
why, although at 6XRTT the acknowledgement for #23 cumulatively acknowledges packets 15—
22, CongWin grows only by 1xXMSS although the sender is in slow start (because there are too
many outstanding segments).

However, even if EffectiveWindow = 0, TCP sender must send a 1-byte segment as
indicated in Figure 2-10 and Figure 2-12. This usually happens when the receiver end of the
connection advertises a window of RcvWwindow = 0, and there is a persist timer (also called the
zero-window-probe timer) associated with sending these segments. The tiny, 1-byte segment is
treated by the receiver the same as any other segment. The sender keeps sending these tiny
segments until the effective window becomes non-zero or a loss is detected.

In our example, three duplicate ACKs are received by time = 9XRTT at which point the 23™
segment is retransmitted. (Although TimeoutInterval = 3xRTT, we assume that ACKs are
processed first, and the RTO timer is simply restarted for the just-retransmitted segment, without
being declared as expired.) This continues until time = 29xXRTT at which point the congestion
window exceeds SSThresh and congestion avoidance takes off. The sender is in the congestion
avoidance (also known as additive increase) phase when the current congestion window size is
greater than the slow start threshold (SSThresh). During congestion avoidance, each time an
ACK is received, the congestion window is increased as'®:

CongWin(¢) = CongWin(z —1) + MSSXM—SS [bytes] (2.5)
CongWin(z —1)

'® The formula remains the same for cumulative acknowledgements, which acknowledge more than a single
segment, but the reader should check further discussion in [Stevens 1994].

Ivan Marsic e Rutgers University 160

where CongWin(#-1) is the congestion window size before receiving the current ACK. The
parameter ¢ is not necessarily an integer multiple of round-trip time. Rather, ¢ is just a time step
that occurs whenever a new ACK is received and this can occur several times in a single RTT,
i.e., a transmission round. It is important to notice that the resulting CongWin is not rounded
down to the next integer value of MSS as in other equations. The congestion window can increase
by at most one segment each round-trip time (regardless of how many ACKs are received in that
RTT). This results in a linear increase.

Figure 2-13 summarizes the key congestion avoidance and control mechanisms. Notice that the
second slow-start phase, starting at SXRTT, is immediately aborted due to the excessive amount
of unacknowledged data. Thereafter, the TCP sender enters a prolonged phase of dampened
activity until all the lost segments are retransmitted through “fast retransmits.”

It is interesting to notice that TCP Tahoe in this example needs 39xRTT in order to successfully
transfer 71 segments (not counting 17 one-byte segments to keep the connection alive, which
makes a total of 88 segments). Conversely, should the bottleneck bandwidth been known and
constant, Go-back-7 ARQ would need 11xRTT to transfer 77 segments (assuming error-free
transmission). In this example, bottleneck resource uncertainty and its dynamics introduce delay
greater than three times the minimum possible one.

2.2.2 TCP Reno

Problems related to this section: Problem 2.8 — Problem 2.13

TCP Tahoe and Reno senders differ in their reaction to three duplicate ACKs. As seen earlier,
Tahoe enters slow start; conversely, Reno enters fast recovery. This is illustrated in Figure 2-14,
derived from Example 2.1.

After the fast retransmit algorithm sends what appears to be the missing segment, the fast
recovery algorithm governs the transmission of new data until a non-duplicate ACK arrives. It is
recommended [Stevens 1994; Stevens 1997; Allman et al. 1999] that CongWindow be
incremented by one MSS for each additional duplicate ACK received over and above the first
three dupACKs. This artificially inflates the congestion window in order to reflect the additional
segment that has left the network. Because three dupACKs are received by the sender, this means
that three segments have left the network and arrived successfully, but out-of-order, at the
receiver. The fast recovery ends when either a retransmission timeout occurs or an ACK arrives
that acknowledges all of the data up to and including the data that was outstanding when the fast
recovery procedure began. After fast recovery is finished, the sender enters congestion avoidance.

As mentioned earlier in the discussion of Table 2-2, the reason for performing fast recovery rather
than slow start is that the receipt of the dupACKs not only indicates that a segment has been lost,
but also that segments are most likely leaving the network (although a massive segment
duplication by the network can invalidate this conclusion). In other words, as the receiver can
only generate a duplicate ACK when an error-free segment has arrived, that segment has left the
network and is in the receive buffer, so we know it is no longer consuming network resources.
Furthermore, because the ACK “clock” [Jac88] is preserved, the TCP sender can continue to
transmit new segments (although transmission must continue using a reduced CongWindow).

TCP Reno sender retransmits the lost segment and sets congestion window to:

Chapter 2 e Transmission Control Protocol (TCP) 161

EffctWin ———
[bytes] [MSS] S— I r—s—l
TR ey
1 CongWing
16384 15 g o
15=> . S etves ==20=pD> ==66=> o
Y | =—28=>m> ==50= %
I O =3 &
eI eeedrenenneet . ==36= g
==23=p--> e veeseseseses -'.

O v oy g
B2 8 -

EnsEmEmEEy, A
'.---------...-' I
LI L}
PP aeseee

Time

g
4096 4 =N == o
2048 2 | Horeneeiirenes t""": <
1024 1 o -
ot ougu—) 8 . .t L3
0 12 3 4(5(6)7 8 9(10)11 (18)19 20 21(22)23 24 25(26)27(28 120 30(31)32 33 34(35)36 [RTT]
A MmO ~NOLON~NOOSTTTD Y T O T O T O O~ 0 © < < M 0
- Faqo-HddmNgaogae N2 20222l BBDOBI®HONDRI
: FQa NoIREESR U R YRR oRERRRET
e Y iowlocdl 2 ddd ddd % d 4 I8y
2 Foide | g0 | o Noo oda W0 o © I~k
S I | RRI|F FIF OReR 3 2 8895
® IS ¥* EOINGE (=3
S e o)
> 0 6 x dupACKs| |3 x dupACKs] 2 dupACKS) £ :
- It IJ)'
@ g 7xdupACKs| %
7+1 x dupACKs ?

Figure 2-14: TCP Reno sender—the evolution of the effective and congestion window sizes
for Example 2.1. The sizesare given on vertical axis (Ieft) both in bytesand MSS units.

CongWindow = max {|% FlightSizel 2xMSS} + 3xMSS (2.6)

where F1ightSize is the amount of sent but unacknowledged data at the time of receiving the
third dupACK. Compare this equation to (2.4), for computing SSThresh. This artificially
“inflates” the congestion window by the number of segments (three) that have left the network
and which the receiver has buffered. In addition, for each additional dupACK received affer the
third dupACK, increment CongWindow by MSS. This artificially inflates the congestion window
in order to reflect the additional segment that has left the network (the TCP receiver has buffered
it, waiting for the missing gap in the data to arrive).

As a result, in Figure 2-14 at 5XRTT when the sender receives 3+5 dupACKs, CongWindow
becomes equal to £ +3+1+1+1+1+1 = 15.5 x MSS. The last five 1’s are due to 7+1-3 = 5

dupACKs received after the initial 3 ones. At 6xRTT the receiver requests the 23" segment (thus
cumulatively acknowledging up to the 22™). CongWindow grows slightly to 17.75, but because
there are 14 segments outstanding (#23 — #37), the effective window is shut up. The sender
arrives at standstill and thereafter behaves similar to the TCP Tahoe sender (Figure 2-12).

Notice that, although at time = 10XRTT three dupACKs indicate that three segments that have left
the network, these are only 1-byte segments, so it may be inappropriate to add 3XMSS as Eq. (2.6)
postulates. RFC 2581 does not mention this possibility, so we continue applying Eq. (2.6) and
because of this CongWindow converges to 6xXMSS from above.

Figure 2-15 shows partial timeline at the time when the sender starts recovering. After receiving
the 29" segment, the receiver delivers it to the application along with the buffered segments #30

Ivan Marsic e Rutgers University

Senderl

162

Receiver |

~ °
I e
CongWin = 6.7x MSS #52 (1 byte) d
EfCWiN =0 b, 5e952 (1 byte)——| (buffer 1 byte)
126 X RTTi..[3 x dupACKs]... [e—ack 29
CongWin = (’77+3+1=6.3 #29 SeQ 29— >
EfctWin = 1 P — #36 7168 _byt“?‘s f
127 X RTT: | «——ack 36 to application
CongWin = 6.3
EfctWin = 4 #53,54,55,56 — ‘S Gap in sequence!
————
— ———— (buffer 4 KB)
. i28XRTT: [4xdupACKSl.. |+—ack36 #36,36,36,36
CongWin =6.3+1
EfctWin =2 #36,57 S€0 36 mm.| 1024 bytes A
.....................) #37 to appl
20 x RTT ———ack 37
_ . - ack 37 (buffer 1024 bytes)
CongWin=7.3 #58
EfctWin = 1 S€Q 58 =i
..................... #37 (buffer 1 KB)
30xRTT <«——ack 37
CongWin =7.3 #59 (1 byte)
o seg 59 (1 byte)m—p
EfctWin=0 ., , vie) #37 (buffer 1 byte)
‘ 31 xRTT: |3 x dupACKs]... |e—ack 37
CongWin = 22 +3 = 6.6 #37 1
vin : seq 37 . 1024 + 16 + 6144,
EfctWin =1 e bytes to application
) 132 < RTT: | «——ack 60 #60
CongWin =7.6
EfctWin =7 #60,61, ...,66 3
.
V Time [RTT] .

Figure 2-15: TCP Reno—partial timeline of segment and ACK exchanges for Example 2.1.
(Thedow start phaseisthe sameasfor Tahoe sender, Figure 2-10.)

— #35 (a total of seven segments). At time = 27XRTT, a cumulative ACK arrives requesting the
36™ segment (because segments #36 and #37 are lost at 5XRTT). Because CongWindow >
6xMSS and FlightSize = 2XxMSS, the sender sends four new segments and each of the four

makes the sender to send a dupACK. At 28XRTT, CongWindow becomes equal to %+ 3+1=7

X MSS and FlightSize = 6XMSS (we are assuming that the size of the unacknowledged 1-

byte segments can be neglected).

Regarding the delay, TCP Reno in this example needs 37xRTT to successfully transfer 74
segments (not counting 16 one-byte segments to keep the connection alive, which makes a total
of 90 segments—segment #91 and the consecutive ones are lost). This is somewhat better that
TCP Tahoe and TCP Reno should better stabilize for a large number of segments.

Chapter 2 e Transmission Control Protocol (TCP) 163

18000 -

16000 - —e— CongWindow
—s— EffctWindow

14000 —— FlightSize
——— SSThresh

12000 -

LALIT T LA L

S % 6 o g e @&”v@@”@“ S & E @A ALR YIRS P

Figure 2-16: TCP Tahoe congestion parameters for Example 2.1 over the first 100
transmission rounds. The overall sender utilization comes to only 25 %. The lightly shaded
background area showsthe bottleneck router’s capacity, which, of course, is constant.

2.2.3 TCP NewReno

Problems related to this section: Problem 2.15 — ??

The so-called NewReno version of TCP introduces a further improvement on fast recovery,
which handles a case where two or more segments are lost within a single window. Same as the
ordinary TCP Reno, the NewReno begins the fast recovery procedure when three duplicate
ACKSs are received, and ends it when either a retransmission timeout occurs or an ACK arrives
that acknowledges all of the data up to and including the data that was outstanding when the fast
recovery procedure began. After the presumably lost segment is retransmitted by fast retransmit,
if the corresponding ACK arrives, there are two possibilities:

(4) The ACK specifies the sequence number at the end of the current window, in which case
the retransmitted segment was the only segment lost from the current window. We call
this acknowledgement a full acknowledgment.

(5) The ACK specifies the sequence number higher than the lost segment, but lower than the
end of the window, in which case (at least) one more segment from the window has also
been lost. We call this acknowledgement a partial acknowledgment.

As with the ordinary Reno, for each additional dupACK received while in fast recovery,
NewReno increments CongWindow by MSS to reflect the additional segment that has left the
network. The concept of partial acknowledgements is illustrated in Figure 2-17. In this scenario,
the sender sends six segments, of which three are lost: segments #1, #3, and #5. The receiver
buffers the three segments that arrive out of order and send three duplicate acknowledgements.
Upon receiving the three dupACKs, the sender retransmits the oldest outstanding segment (#1)

Ivan Marsic e Rutgers University 164

TCP Sender TCP Receiver
EffectiveWindow NextByteExpected =
r A N LastByteRecvd + 1
-#1 #2 | #3 | #4 | #5 | #6 ! -)
T LastByteRecvd T -
LastByteAcked = Receive buffer
LastByteSent

Time

& 2 T
K

LastByteRecvd

<

FlightSize
A

LastByteAcked LastByteSentT

LOSS DETECTED

(3x dupACKs)
Seg#1 (retransmission)

A
T LastByteRecvd
LOSS DETECTED NextByteExpected

PAMELACH) s oramissin)

Figure 2-17: TCP NewReno partial acknowledgements.

Ack#3 (partial)

and waits. The receiver fills only the first gap and now sends acknowledgement asking for
segment #3. This is a partial acknowledgement, because it does not acknowledge all segments
that were outstanding at the time the loss was detected.

The key idea of TCP NewReno is, if the TCP sender receives a partial acknowledgment during
fast recovery, the sender should respond to the partial acknowledgment by inferring that the next
in-sequence packet has been lost, and retransmitting that packet. In other words, NewReno
proceeds to retransmit the second missing segment, without waiting for three dupACKs or RTO

Chapter 2 e Transmission Control Protocol (TCP) 165

timer expiration. This means that TCP NewReno adds “partial acknowledgment” to the list of
events in Table 2-2 by which the sender detects segment loss. The sender also deflates its
congestion window by the amount of new data acknowledged by the cumulative
acknowledgement, that is:

NewlyAcked = LastByteAcked(f) — LastByteAcked(t— 1)
CongWindow(f) = CongWindow(t — 1) — NewlyAcked (2.7a)
If (NewlyAcked > MSS), then add back MSS bytes to the congestion window:
CongWindow(f) = CongWindow(?)’ + MSS (2.7b)

As with duplicate acknowledgement, this artificially inflates the congestion window in order to
reflect the additional segment that has left the network. This “partial window deflation” attempts
to ensure that, when fast recovery eventually ends, approximately SSThresh amount of data
will be outstanding in the network. Finally, the sender sends a new segment if permitted by the
new value of Ef fectiveWin.

When a full acknowledgement arrives, it acknowledges all the intermediate segments sent after
the original transmission of the lost segment until the loss is discovered (the sender received the
third duplicate ACK). This does not mean that there are no more outstanding data (i.e.,
FlightSize = 0), because the sender might have sent some new segments after it discovered
the loss (if its Ef fectiveWin permitted transmission of news segments). At this point, the
sender calculates its congestion window as:

CongWindow = SSThresh (2.8)

Recall that SSThresh is computed using Eq. (2.4), where F1ightSize is the amount of data
outstanding when fast recovery was entered, not the current amount of data outstanding'’. This
reduction of the congestion window size is termed deflating the window. At this point, the TCP
sender exits fast recovery and enters congestion avoidance.

An example of NewReno behavior is given below. Example 2.2 works over a similar network
configuration as the one in Example 2.1. Again, we have a high-speed link from the TCP sender
to the bottleneck router and a low-speed link from the router to the TCP receiver. However, there
are some differences in the assumptions. In Example 2.1, we assumed a very large RTT, so that
all packet transmission times are negligible compared to the RTT. We also assumed that
cumulative ACKs acknowledged all the segments sent in individual RTT-rounds (or, bursts).
Conversely, in Example 2.2, we will assume that the RTT is on the same order of magnitude as
the transmission time on the second link. In addition, each segment is acknowledged individually.
This results in a somewhat more complex, but also more accurate, analysis of the TCP behavior.

Example 2.2 Analysis of the Slow-Start Phasein TCP NewReno

Consider an application that is engaged in a lengthy file transfer using the TCP NewReno protocol
over the network shown in the figure.

'7 RFC-3782 suggests an alternative option to set CongWindow = min{SSThresh, FlightSize +
MSS}, where FlightSize is the current amount of data outstanding. Check RFC 3782 for details.

Ivan Marsic e Rutgers University 166

The following assumptions
are made:

Al. Full duplex links connect

the router to each Send = ~ Recei
endpoint host so that ender Router eceiver
simultaneous . .

transmissions are tymie (LINK 1) <<ty (Link 2)

possible in both torop (LiNk 1) <<t (Link 2)

directions on each link.
The transmission rate of

torop (LiNK 2) = 6 Xty (Link 2)

Link-1 is much greater than that of Link-2. One-way propagation delay on Link-1 is also
negligible compared to the propagation delay of Link-2. Assume that all packet transmissions are
error free.

A2. The propagation delay on Link-2 (from the router to the receiver equals six times the transmission
delay for data packets on the same link. Also assume that the ACK packet size is negligible, i.e.,
their transmission delay is approximately zero.

A3. The router buffer can hold up to four packets plus one packet currently in transmission. The
packets that arrive to a full buffer are dropped. However, this does not apply to ACK packets, i.e.,
ACKs do not experience congestion or loss.

A4. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after receiving a data
segment.

AS. The receiver has set aside a large receive buffer for the received segments, so this will never be a
limiting factor for the sender’s window size.

Considering only the slow-start phase (until the first segment loss is detected), we would like to know
the following:

(a) The evolution of the parameters such as congestion window size, router buffer occupancy, and
how well the communication pipe is filled with packets.

(b) The ordinal packet numbers of all the packets that will be dropped at the router (due to the lack of
router memory space).

(¢) The maximum congestion widow size that will be achieved after the first packet loss is detected
(but before the time ¢ = 60).

(d) How many packets will be sent after the first packet loss is detected until the time # = 60? Explain
the reason for transmission of each of these packets.

The solution is shown in Figure 2-18 and discussed in the following text.

Figure 2-18 shows the evolution of four parameters over the first 20 time units of the slow-start
phase. The four parameters are: (i) congestion window size; (ii) slow start threshold; (iii) current
number of packets in the router, both in transmission or waiting for transmission; and (iv) current
number of packets in flight on Link-2, that is the packets that neither are in the router nor
acknowledged. Notice that the last parameter is not the same as the F1ightSize defined at the
beginning of Section 2.2. FlightSize is maintained by the sender to know how many
segments are outstanding. Unlike this, the current number of packets in flight on Link-2 (bottom
chart in Figure 2-18) represents only the packets that were transmitted by the router, but for
which the ACK has not yet arrived at the TCP sender.

Chapter 2

Sender/Router

Transmission Control Protocol (TCP)

—- Time [in packet transmission slots]

3 x dupACK

167

Receiver

Congestion window [segments]

SSThresh = 65535 bytes 2 M
20 I-'_
SSThresh =11 MSS
T R O L A S
10 I
pur
r
CongWin .
™ Lost packets:
l-l — 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,45 (12 total)
—— i i
0 — I I
Packets in Router buffer
ST T T T T RH T T T T _1222426283032343638
3141 19202122242628303234 36
7 11213141 718/19202122242628303234)
3 567 91011121314151617(18192021222426283032
OT| 23 4567 8 91011121314151617181920212224262830
Packets in flight on 29 link
6 31415[16171819202122242628303234363840424
2121314/151617181920212224262830323436384042442
7 111111213141516171819202122242628303234 3638404244
6 6 7 8/9101010101112/1314151617181920212224262830323436384042
3 555 678999 910111213141516171819202122242628303234 363840
0 22 34 444 5678888 9101112131415161718192021222426283032343638

Figure 2-18: Evolution of the key parameters for the TCP NewReno sender in Example 2.2.
(Continued in Figure 2-19.)

The gray boxes on the top line symbolize packet transmissions on the Link-2. This is because the
transmission delay on Link-1 is negligible, so any packet sent by the TCP sender immediately
ends up on the router.

Recall that during the slow start, the sender increments its congestion window size by one MSS
for each successfully received acknowledgement. We can see on the top of Figure 2-18 how the
acknowledgment for packet #1 arrives at ¢ = 7 and the congestion window size rises to 2. The
sender sends two more segments (#2 and #3) and they immediately end up on the router. Notice
how packets that are sent back-to-back (in bursts) are separated by the packet transmission time
on Link-2. When the ACK arrives for #2, the sender is in slow start, so FlightSize=2-1=
1 and CongWin =2 + 1 = 3. According to equation (2.3),

EffectiveWin =CongWin —FlightSize=3-1=2

In other words, during slow start, every time the sender receives a non-duplicate

acknowledgement for one segment, the sender can send two new segments. After sending

Ivan Marsic e Rutgers University 168

segments #4 and #5, we have: CongWin = 3, FlightSize = 3, and EffectiveWin = 0.
When the ACK for segment #3 arrives (delayed by #(Link-2) after the first ACK, because the
segment #3 traveled back-to-back behind #2) we have: FlightSize =3 — 1 =2 and CongWin
=3 + 1 =4. Therefore,

EffectiveWin =CongWin - FlightSize=4-2=2

and the sender will send two new segments (#6 and #7). Now, we have CongWin = 4,
FlightSize =4, and EffectiveWin = 0. The sender is waiting for an acknowledgement for
segment #4.

Notice that when an in the chart for the current number of packets in the router shows below the
curve the ordinal numbers of the packets. The bottommost packet is the one that is in
transmission during the current time slot. The packets above it are currently waiting for
transmission. For example, at time ¢ = 7, packet #2 is currently in transmission and packet #3 is
waiting in the router memory. At ¢ = §, packet #2 is traversing Link-2 (shown under the bottom
curve) and packet #3 is in transmission on the router. The attentive reader might notice that the
packet numbers in the bottommost row of the router buffer curve are identical to the ones at the
top of Figure 2-18.

(a)

Because we are considering a single connection in slow start, packet arrivals on the router occur
in bursts of exactly two packets. This is because for every received acknowledgment,
FlightSize is reduced by 1 and CongWin is incremented by 1, which means that effectively
the sender can send two new packets. The sender sends two new packets and they immediately
end up on the router. Therefore, when a buffer overflow occurs, exactly one packet is dropped.
This is because at the beginning of the preceding time slot, the buffer would have been full and
the router would transmit one packet, therefore freeing up space for one new packet. When two
packets arrive, the first is stored and the second is dropped.

The first loss happens at time ¢ = 31. In the previous time slot (z =30) the router had five packets
(#17, #18, #19, #20, and #21), of which packet #17 was transmitted by the router. At ¢ = 31, the
acknowledgement for packet #11 will arrive and it will increment congestion window by one, to
the new value of 12xMSS. The sender sends packets #22 and #23 and they immediately arrive to
the router. The router just transmitted packet #17 and has space for only one new packet. Packet
#22 joins the tail of the waiting line and packet #23 is dropped.

The top row of Figure 2-18 shows white boxes for the transmission periods of the five packets
that the router will transmit after the loss of packet #23. Black boxes symbolize packets that are
sent out of order, for which the preceding packet was dropped at the router (due to the lack of
router memory space). There will be a total of 12 packets fro which the preceding packet was
lost, starting with packet #24 and ending with packet #44.

The TCP sender receives three duplicate acknowledgements (asking for packet #23) at time
t =45. The reader should notice that packet #23 was lost at the router at time ¢ = 31, but the
sender learned about the loss only at time ¢ = 45 (by receiving three dupACKs)! When the sender
discovers the loss, it sets the congestion window size to one half of the number of segments in
flight, which is 23, plus 3 for three duplicate acknowledgements—remember equation (2.6) from
Section 2.2.2. The slow-start threshold is set to one-half of the number of segments in flight—

Chapter 2 e Transmission Control Protocol (TCP) 169

remember equation (2.4)—so SSThresh becomes equal to 11. In addition, because this is a TCP
Reno sender, the congestion window is incremented by one for each new duplicate
acknowledgement that is received after the first three.

Upon detecting loss at time ¢ = 45, the TCP sender immediately retransmits segment #23, but the
packet joins the queue at the router behind packets #42 and #44, which arrived before #23. The
router is not aware that these are TCP packets, lest that some of them are retransmitted, so it does
not give preferential treatment to retransmitted packets. As seen in the top row of Figure 2-18, the
router will transmit packet #23 over Link-2 during the time slot ¢t = 47. Therefore, generally it
takes longer than one RTT for the sender to receive the acknowledgment for a retransmitted
segment.

The acknowledgement for the retransmitted segment #23 arrives at time ¢ = 54 and it asks for
segment #25 (because #24 was received correctly earlier). This is only a partial acknowledgment
because a full acknowledgement would acknowledge segment #45. Therefore, the TCP NewReno
sender immediately sends packet #25 without waiting for three duplicate acknowledgements. In
addition, the sender adjusts its congestion window size according to Eq. (2.7):

NewlyAcked = segment#24 — segment#22 =2 MSS
Because (NewlyAcked > MSS), the sender uses Eq. (2.7b):
CongWindow(54) = CongWindow(53) — NewlyAcked + MSS =23 -2+ 1 =22 XMSS

Because the current FlightSize = 21 X MSS (segments #25 through #45 are
unacknowledged), one new segment can be sent. As a result, the sender transmits segment #46.

(b)

There will be a total of 12 packets lost during the considered period. The lost packets are (also
indicated in Figure 2-18): 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45.

TCP NewReno Fast Recovery Phase

Continuing with Example 2.2, the TCP NewReno sender will enter the fast recovery phase when
it discovers the loss of packet #23 at time ¢ = 45 (by receiving three dupACKs). The sender will
exit the fast recovery phase when it receives a full acknowledgement. The sender originally
transmits packet #23 at time ¢ = 31 and it immediately arrives at the router where it is lost (Figure
2-18). From time ¢ = 31 until the loss is discovered at time ¢ = 45, the sender sends a total of 22
“intermediate segments” (segments #24, #25, ..., #45). Therefore, the TCP sender will consider it
a “full acknowledgement” when it receives an acknowledgement for packet #45. At this point, the
sender will exit fast recovery and enter congestion avoidance. Notice that segment #46, and any
segments transmitted thereafter might still be outstanding.

Figure 2-19 shows the continuation of Figure 2-18 for the same Example 2.2. As seen, the sender
has not yet received a “full acknowledgement” until time ¢ = 120 (packet #45 has not been
retransmitted); therefore, the sender is still in the fast recovery state.

Ivan Marsic

Rutgers Universit

Sender/Router

y

E—- Time [in packet transmission slots]

170

Receiver //}
Congestion window [segments] Cw =51
40
30 rJ——
CongWin _u.l"_ SSThresh = 11 MSS
N
20
Packets in Router buffer
5 ___
|_1828384858687888990
4757677787980181418283848586878889
74 9505 253545 65758596 11626364656 7686970[7172733974757677787980814182838485868788
oLR27474 949505 15253545 3565758596 5616263646566376768697071727339747576777879808141828384858687,
Packets in flight on 29 link
6 56637676869707172733974757677/78798081418283848586)
5 95960[35616263646465663767/68697071727339747576/77787980814182838485
54 5533565758585859/60356162636364656637/67686970717273397475[76777879808141828384
8 513152535353 5455335657575758(59603561626263646566(37676869707172733974(75767778798081418283
4 747 4829494949 505131525252 5354553356565657(58596035616162636465/6666676869707172733974757677787980814182
02546272727 4748292929 495051313131 5253545533333356/57585960353561626364/6537666768697071727339747576777879808141]

Figure 2-19: Evolution of the key parameters for the TCP NewReno sender in Example 2.2.
(Continued from Figure 2-18.)

2.3 Fairness

Chapter 2 e Transmission Control Protocol (TCP) 171

2.4 Recent TCP Versions

Early TCP versions, Tahoe and Reno, perform relatively simple system observation and control.
The TCP Tahoe performance is illustrated in Figure 2-16 over the first 100 transmission rounds.
Although the obvious inefficiency (sender utilization is only 25 %) can be somewhat attributed to
the contrived scenario of Example 2.1, this is not far from reality. By comparison, a simple Stop-
and-Wait protocol would achieve the sender utilization of ?? %. Recent TCP versions introduce
sophisticated observation and control mechanisms to improve performance.

TCP Vegas [Brakmo & Peterson 1995] watches for the signs of incipient congestion—before
losses occur—and takes actions to avert it.

TCP Westwood [Mascolo et al. 2001] uses bandwidth estimates to compute the congestion
window and slow start threshold after a congestion episode.

FAST TCP [Jin et al. 2003] detects congestion by measuring packet delays.

2.5 TCP over Wireless Links

The TCP congestion control algorithms presented in Section 2.2 assume most packet losses are
caused by routers dropping packets due to traffic congestion. However, packets may be also
dropped if they are corrupted in their path to destination. In wired networks the fraction of packet
loss due to transmission errors is generally low (less than 1 percent). Communication over
wireless links is often characterized by sporadic high bit-error rates, and intermittent connectivity
due to handoffs. TCP performance in such networks suffers from significant throughput
degradation and very high interactive delays

Several factors affect TCP performance in mobile ad-hoc networks (MANETS):
e Wireless transmission errors
e Power saving operation

e Multi-hop routes on shared wireless medium (for instance, adjacent hops typically cannot
transmit simultaneously)

e Route failures due to mobility

Figure 2-20

Ivan Marsic e Rutgers University 172

TCP layer:

TCP data segment
[1024 KB + 40 bytes headers]

TCP ACK segment
[0 KB + 40 bytes headers]

Link layer:

Link layer overhead: backoff delay, interframe spaces, link-layer control frames (RTS, CTS, ACK)

Figure 2-20: Due to significant wireless link-layer overhead, TCP data segments and TCP
acknowledgements (which are of greatly differing sizes) appear about the same size at the
link layer.

2.6 Summary and Bibliographical Notes

The TCP service model provides a communication abstraction that is reliable, ordered, point-to-
point, duplex, byte-stream, and flow and congestion controlled. TCP’s notion of “duplex” is that
the same logical connection handles reliable data delivery in both directions. Unlike ARQ
protocols described in Section 1.3, which treat data packets as atomic units, TCP treats bytes as
the fundamental unit of reliability.

TCP sender uses the received cumulative acknowledgments to determine which packets have
reached the receiver, and provides reliability by retransmitting lost packets. The sender detects
the loss of a packet either by the arrival of several duplicate acknowledgments or the expiration of
the timeout timer due to the absence of an acknowledgment for the packet. To accurately set the
timeout interval, the sender maintains a running average of the estimated roundtrip delay and the

Chapter 2 e Transmission Control Protocol (TCP) 173

mean linear deviation from it. The timeout interval is calculated as the sum of the smoothed
round-trip delay plus four times its mean deviation. TCP reacts to packet losses by decreasing its
transmission (congestion) window size before retransmitting packets, initiating congestion control
or avoidance mechanisms (e.g., slow start), and backing off its retransmission timer (Karn’s
algorithm). These actions result in a reduction in the load on the intermediate links, thereby
controlling the congestion in the network.

[Stevens, 1994] provides the most comprehensive coverage of TCP in a single book. It appears
that this whole book is available online at http://www.uniar.ukrnet.net/books/tcp-ip_illustrated/.

[Comer, 2006] is also very good, although does not go in as much detail.

TCP described in 1974 by Vinton Cerf and Robert Kahn in IEEE Transactions on
Communication. Three-way handshake described by Raymond Tomlinson in SIGCOMM 1975.

TCP & IP initial standard in 1982 (RFC-793 & RFC-791). BSD Unix 4.2 released in 1983
supported TCP/IP. Van Jacobson’s algorithms for congestion avoidance and congestion control
published in 1988; most implemented in 4.3 BSD Tahoe.

In the original TCP specification (RFC-793), the retransmission timeout (RTO) was set as a
multiple of a running average of the RTT. For example, it might have been set as
TimeoutInterval = 7X EstimatedRTT, with 77 set to a constant such as 2. However, this
simple choice failed to take into account that at high loads round trip variability becomes high,
leading to unnecessary retransmissions. The solution offered by Jacobson, see Eq. (2.2), factors in
both average and standard deviation.

The TCP Reno Fast Recovery algorithm was described in RFC 2581 and first implemented in the
1990 BSD Reno release.

In 1996, Janey Hoe [Hoe, 1996] proposed an enhancement to TCP Reno, which subsequently
became known as NewReno. The main idea here is for the TCP sender to remain in fast recovery
until all the losses in a window are recovered.

There have been other enhancements proposed to TCP over the past few years, such as TCP
Vegas congestion control method [Brakmo & Peterson, 1995], various optimizations for wireless
networks, optimizations for small windows (e.g., RFC-3042), etc.

RFC-3168, 3155, 3042, 2884, 2883, 2861, 2757, 2582 (NewReno)

The NewReno modification of TCP’s Fast Recovery algorithm is described in RFC-3782 [Floyd
et al. 2004].

TCP over wireless:

[Balakrishnan, et al., 1997], [Holland & Vaidya, 1999], [Fu, et al., 2005].

TCP has supported ongoing research since it was written. As a result, the End-to-End research
group has published a Roadmap for TCP Specification Documents [RFC-4614] which will guide
expectations in that area.

SSFnet.org, “TCP Regression Tests,” Online at: http://www.ssfnet.org/Exchange/tcp/tcpTestPage.html

Ivan Marsic e Rutgers University 174

The SSFnet.org tests show the behavior of SSF TCP Tahoe and Reno variants for different
networks, TCP parameter settings, and loss conditions.

NASA Jet Propulsion Laboratory (JPL) and Vinton Cerf recently jointly developed Disruption-
Tolerant Networking (DTN) protocol to transmit images to and from a spacecraft more than 20
million miles from Earth. DTN is intended for reliable data transmissions over a deep space
communications network, for which the TCP/IP protocol suite is unsuitable. An interplanetary
Internet needs to be strong enough to withstand delays, disruptions, and lost connections that
space can cause. For example, errors can happen when a spacecraft slips behind a planet, or when
solar storms or long communication delays occur. Even traveling at the speed of light,
communications sent between Mars and Earth take between three-and-a-half minutes to 20
minutes. Unlike TCP, DTN does not assume there will be a constant end-to-end connection. DTN
is designed so that if a destination path cannot be found, the data packets are not discarded but are
kept in a network node until it can safely communicate with another node. The interplanetary
Internet could allow for new types of complex space missions that involve multiple landed,
mobile, and orbiting spacecraft, as well as ensure reliable communications for astronauts on the
surface of the moon.

http://www .jpl.nasa.gov/news/news.cfm?release=2008-216

Chapter 2 e Transmission Control Protocol (TCP) 175

Problems

Problem 2.1

Consider the TCP procedure for estimating RTT with = 0.125 and = 0.25. Assume that the
TimeoutInterval is initially set as 3 seconds. Suppose that all measured RTT values equal 5
seconds, no segment loss, and the segment transmission time is negligible. The sender starts
sending at time zero.
(a) What values will TimeoutInterval be set to for the segments sent during the first 11
seconds?
(b) Assuming a TCP Tahoe sender, how many segments will the sender transmit (including
retransmissions) during the first 11 seconds?
(c) Repeat steps (a) and (b) but this time around assume that the sender picked the initial
TimeoutInterval as 5 seconds?

Show the work.

Problem 2.2

Consider two hosts connected by a local area network with a negligible round-trip time. Assume
that one is sending to the other a large amount of data using TCP with RcvBuffer = 20 Kbytes
and MSS = 1 Kbytes. Also assume error-free transmission, high-speed processors in the hosts,
and reasonable values for any other parameters that you might need.

(a) Draw the congestion window diagram during the slow-start (until the sender enters
congestion avoidance) for the network speed of 100 Mbps.

(b) How different the diagram becomes if the network speed is reduced to 10 Mbps?
1 Mbps?

(c) What will be the average throughput (amount of data transmitted per unit of time) once
the sender enters congestion avoidance?

Explain your answers.

Problem 2.3

Suppose that the hosts from Problem 2.2 are connected over a satellite link with RTT = 20 ms
(low earth orbit satellites are typically 850 km above the Earth surface). Draw the congestion
window diagram during the slow-start for the network speed of 100 Mbps. Explain any
similarities or differences compared to the one from Problem 2.2(a).

Problem 2.4

Ivan Marsic e Rutgers University 176

Consider the network shown in the figure. TCP senders at hosts 4 and B have 3.6 KB of data each
to send to their corresponding TCP receivers, both running at host C. Assume MTU = 512 bytes
for all the links and TimeoutInterval = 2xRTT = 2x1 sec. The router buffer size is 3
packets in addition to the packet currently being transmitted; should the router need to drop a
packet, it drops the last arrived from the host which currently sent more packets. Sender 4 runs
TCP Tahoe and sender B runs TCP Reno and assume that sender B starts transmission 2xRTTs
after sender 4.

10 Mbps
Sender A

] 2 Receivers
10 Mbps m at host C

3+1 packets

Sender B

(a) Trace the evolution of the congestion window sizes on both senders until all segments are
successfully transmitted.

(b) What would change if Timeout Interval is modified to 3XRTT = 3x1 sec?

Assume a large RcviWindow and error-free transmission on all the links. Finally, to simplify the
graphs, assume that all ACK arrivals occur exactly at unit increments of RTT and that the
associated CongWindow update occurs exactly at that time, too.

Problem 2.5

Consider a TCP Tahoe sender working on the network with RTT = 1 sec, MSS = 1 KB, and the
bottleneck link bandwidth equal to 128 Kbps. Ignore the initial slow-start phase and assume that
the sender exhibits periodic behavior where a segment loss is always detected in the congestion
avoidance phase via duplicate ACKs when the congestion window size reaches CongWindow =
16XMSS.

(a) What is the min/max range in which the window size oscillates?
(b) What will be the average rate at which this sender sends data?
(c) Determine the utilization of the bottleneck link if it only carries this single sender.

[Hint: When computing the average rate, draw the evolution of the congestion window. Assume
RcvWindow large enough not to matter.]

Problem 2.6
Specify precisely a system that exhibits the same behavior as in Problem 2.5:
e What is the buffer size at the bottleneck router?

e What is the minimum value of TimeoutInterval?

Chapter 2 e Transmission Control Protocol (TCP) 177

Demonstrate the correctness of your answer by graphing the last two transmission rounds before
the segment loss is detected and five transmission rounds following the loss detection.

Problem 2.7

Consider two hosts communicating using the TCP-Tahoe protocol. Assume RTT = 1, MSS = 512
bytes, Timeout Interval = 3xRTT, SSThresh = 3xMSS to start with, and RevBuffer =2
KB. Also, assume that the bottleneck router has available buffer size of 1 packet in addition to the
packet currently being transmitted.

(a) Starting with CongWindow = 1XMSS, determine the congestion window size when the
first packet loss will happen at the router (not yet detected at the sender).

(b) What will be the amount of unacknowledged data at the sender at the time the sender
detects the loss? What is the total number of segments acknowledged by that time?

Assume that no cumulative ACKs are sent, i.e., each segment is acknowledged individually.

Problem 2.8

Consider two hosts communicating by TCP-Reno protocol. Assume RTT = 1, MSS = 256 bytes,
TimeoutInterval = 3XRTT, RevBuffer = 2 KB, and the sender has a very large file to
send. Start considering the system at the moment when it is in slow start state, CongWin =
8xMSS, SSThresh = 10xMSS and the sender just sent eight segments, each 1xXMSS bytes long.
Assume that there were no lost segments before this transmission round and currently there are no
buffered segments at the receiver.

Assuming that, of the eight segments just sent, the fourth segment is lost, trace the evolution of
the congestion window sizes for the subsequent five transmission rounds. Assume that no more
segments are lost for all the considered rounds. For every step, indicate the transmitted segments
and write down the numeric value of CongWin (in bytes). To simplify the charts, assume that
ACK arrivals occur exactly at unit increments of RTT and that the associated CongWin update
occurs exactly at that time, too.

Problem 2.9

Consider the network configuration shown in the figure below. The mobile node connects to the
server using the TCP protocol to download a large file. Assume MSS = 1024 bytes, error-free
transmission, and sufficiently large storage spaces at the access point and the receiver.
Assume that the Assuming that the TCP receiver sends only cumulative acknowledgements.
Calculate how long time it takes to deliver the first 15 Kbytes of data from that moment the TCP
connection is established. In addition, draw the timing diagram of data and acknowledgement
transmissions. (You can exploit the fact that TCP sends cumulative acknowledgements.)

Ethernet = =
(802.3) —
10 Mbps Server
o WA
[(802.11) [
1 Mbps
Mobile Access
Node

Point

Ivan Marsic e Rutgers University 178

(In case you need these, assume the distance between the mobile node and the access point equal
to 100 m, and the same from the access point to the server. Also, the speed of light in the air is
3 x 10® m/s, and in a copper wire is 2 X 10* m/s.)

Problem 2.10

Consider an application that is engaged in a lengthy file transfer using the TCP Tahoe protocol

over the following network.

D 100 Mbps 9+1 packets 10 Mbps

2
383 — | {33if = |

~ <
Sender A 100 Mbps Router 10 Mbps Receiver B
torop = 10 Ms torop = 10 Ms

prop prop

The following assumptions are made:

Al. Full duplex links connect the router to each endpoint host so that simultaneous
transmissions are possible in both directions on each link. The link transmission rates are
as indicated. One-way propagation delay on each link equals 10 ms. Assume that all
packet transmissions are error free.

A2.Each data segment sent by the sender is 1250 bytes long. You can ignore all header
overheads, so the transmission delay for data packets over a 100 Mbps link is exactly 0.1
ms and over 10 Mbps is exactly 1 ms. Also assume that the ACK packet size is
negligible, i.e., their transmission delay is approximately zero.

A3. The router buffer can hold up to nine packets plus one packet currently in transmission.
The packets that arrive to a full buffer are dropped. However, this does not apply to ACK
packets, i.e., ACKs do not experience congestion or loss.

A4. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after
receiving a data segment.

AS5. The receiver has set aside a buffer of RevBuffer = 64 Kbytes for the received segments.

Answer the following questions:

(a) What is the minimum possible time interval between receiving two consecutive ACKs at
the sender?

(b) Write down the transmission start times for the first 7 segments.

(c) Write down the congestion widow sizes for the first 6 transmission rounds, i.e., the first 6
RTTs. (Hint: Try to figure out the pattern of packet arrivals and departures on the router,
to understand how the queue of packets grows and when the buffer is fully occupied, so
the next packet is dropped.)

(d) In which round will the first packet be dropped at the router? What is the ordinal number
of the first dropped packet, starting with #1 for the first packet? Explain your answer.

(e) What is the congestion window size at the 11th transmission round?

(f) What is the long-term utilization of the TCP sender (ignore the initial period until it
stabilizes)?

(g) What is the long-term utilization of the link between the router and the receiver (again,
ignore the initial period until it stabilizes)?

(h) What will change if delayed ACKSs are used to acknowledge cumulatively multiple
packets?

(i) Estimate the sender utilization under the delayed ACKs scenario.

Chapter 2 e Transmission Control Protocol (TCP) 179

Problem 2.11

Consider a TCP Tahoe sender working with MSS = 1 KB, and the bottleneck link bandwidth
equal to 1 Mbps. Ignore the initial slow-start phase and assume that the network exhibits periodic
behavior where every tenth packet is lost. Consider three different scenarios where all parameters
remain the same except for the round-trip time, which changes as: RTT, = 0.01 sec, RTT, = 0.1
sec, and RTT; =1 sec.

What will be the average rate at which this sender sends data for the different scenarios? Provide
an explanation in case you observe any differences between the three scenarios.

Problem 2.12

Calculate the total time required for transferring a 1-MB file from a server to a client in the
following cases, assuming an RTT of 100 ms, a segment size of 1 KB, and an initial 2XRTT of
“handshaking” (initiated by the client) before data is sent. Assume error-free transmission.

(a) The bottleneck bandwidth is 1.5 Mbps, and data packets can be sent continuously (i.e.,
without waiting for ACKs)

(b) The bottleneck bandwidth is 1.5 Mbps, but Stop-and-wait ARQ is employed

(c) The bandwidth is infinite, meaning that we take transmission time to be zero, and
Go-back-20 is employed

(d) The bandwidth is infinite, and TCP Tahoe is employed

Problem 2.13
Consider a TCP Reno sender, which is in the middle of sending a large amount of data and
assume that you are observing it at time ¢. Let ¢, 1, t12, ..., ti7 denote times when the TCP

sender will send the subsequent 8 data segments, as governed by its congestion control algorithm.
The following assumptions are made:

A1l.The TCP sender’s segment size equals MSS = 200 bytes. At time ¢, the sender is in the
slow start phase and the congestion window size is already updated as CongWin(t) =
400 bytes. There are currently no unacknowledged segments. The slow start threshold
SSThresh(#;) = 64 Kbytes and the receiver’s buffer size ReviWwindow(¢) = 1000 bytes.

A2.The sender’s sequence number for the next segment that will be transmitted at time ¢;
equals 30. Assume that the sender transmits back-to-back all the segments that are
permitted by its current Ef fectiveWindow size (i.e., the segments are sent in
“bursts”). Assume that the segment transmission time is much smaller than the
propagation time, i.e., t, << t, and t, = /2 RTT.

A3. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after
receiving a data segment. All in-order segments are immediately delivered to the
application and they never linger in the receive buffer.

A4. The estimated round-trip time at time ¢;_; equals EstimatedRTT(¢;—;) = 100
milliseconds, the standard deviation equals DevRTT(#;_;) = 10 milliseconds, and
SampleRTT(#) = 106 ms.

Any subsequent transmissions will experience the following round-trip times (from the
moment a data segment is transmitted from the sender until the corresponding ACK is
received at the sender): RTT(#) = 105 ms, RTT(#;1) = 93 ms, RTT(¢2) = 179 ms,

Ivan Marsic e Rutgers University 180

RTT(t43) = 182 ms, RTT(f;14) = 165 ms, RTT(¢;5) = 193 ms, RTT(¢6) = 154 ms, and
RTT(t47) = 171 ms.

Note: the above values RTT(¢) are different from SampleRTT(¢), which is the RTT value
measured at time ¢.

Starting at time ¢;, consider the subsequent 8 segment transmissions and do the following:
(a) Show the congestion window sizes CongWin(¢) and the sequence numbers of the
segments transmitted from the sender at times ¢ = ¢, t1, tia, ..., ti7.
(b) Show the sequence numbers of the corresponding acknowledgements and indicate the
times when the ACKs will arrive. Also show the values of Reviwindow(f) as carried in

each acknowledgement packet.

(c) Show the values of Est imatedRTT(f) and DevRTT(¢) as measured by the TCP
retransmission-timer management algorithm.

(d) Indicate the times when the TCP sender will set its retransmission timer, if any, as
dictated by the TCP algorithm and write down the values of Timeout Interval(?).

Problem 2.14

Problem 2.15
TCP NewReno RTO Timeout Timer Calculation

Consider the evolution of TCP NewReno parameters shown in Figure 2-19 for Example 2.2.
Starting with time ¢ = 89 when segment #35 is retransmitted, show the wvalues of
TimeoutInterval(f), calculated using Eq. (2.2). Stop when the ACK for the retransmitted
#41 arrives, which will happen at r =120 and show the value of TimeoutInterval(120).
Assume that at time ¢ = 88, Est imatedRTT(88) = 6, DevRTT(88) = 0.05, and the values of the
control parameters a = 0.125 and § = 0.25.

Follow the procedure for computing TimeoutInterval(f) explained in Section 2.1.2 (and

summarized in the pseudocode at the end of this section) as closely as possible. Explain how you
obtained every new value of TimeoutInterval(?).

Chapter 3

Multimedia and Real-time
Applications

3.1 Application
Requirements

People needs determine the system requirements.

In some situations it is necessary to consider human users as
part of an end-to-end system, treating them as active
participants, rather than passive receivers of information. For
instance, people have thresholds of boredom, and finite
reaction times. A specification of user’s perceptions is thus
required, as it is the user that ultimately defines whether the
result has the right quality level.

A traffic model summarizes the expected “typical” behavior of
a source or an aggregate of sources. Of course, this is not
necessarily the ultimate source of the network traffic. The
model may consider an abstraction by “cutting” a network link
or a set of link at any point in the network and considering the
aggregate “upstream” system as the source(s).

Traffic models fall into two broad categories. Some models are
obtained by detailed traffic measurements of thousands or

Contents

3.1 Application Requirements

3.1.1 Application Types

3.1.2 Standards of Information Quality
3.1.3 User Models

3.1.4 Performance Metrics

3.2 Source Characteristics and Traffic Models

3.2.1 Traffic Descriptors
3.22 x
3.2.3 Self-Similar Traffic

3.3 Approaches to Quality-of-Service

3.3.1 End-to-End Delayed Playout

3.3.2 Multicast Routing

3.3.3 Peer-to-Peer Routing

3.3.4 Resource Reservation and Integrated
Services

3.3.5 Traffic Classes and

3.4 Adaptation Parameters
3.4.1 x
3.4.2
3.4.3

3.5 QoS in Wireless Networks
351
3.5.2
3.5.3

3.6x

351 x
352 x
3.5.3 x

3.7 Summary and Bibliographical Notes

Problems

millions of traffic flows crossing the physical link(s) over days or years. Others are chosen
because they are amenable to mathematical analysis. Unfortunately, only a few models are both

empirically obtained and mathematically tractable.
Two key traffic characteristics are:

e Message arrival rate

181

Ivan Marsic e Rutgers University 182

e Message servicing time

Message (packet) arrival rate specifies the average number of packets generated by a given source
per unit of time. Message servicing time specifies the average duration of servicing for messages
of a given source at a given server (intermediary). Within the network, packet-servicing time
comprises not much more than inspection for correct forwarding plus the transmission time,
which is directly proportional to the packet length.

In the following analysis, we will usually assume that the traffic source is infinite, because an
infinite source is easier to describe mathematically. For a finite source, the arrival rate is affected
by the number of messages already sent; indeed, if all messages are already sent, the arrival rate
drops to zero. If the source sends finite but large number of messages, we assume an infinite
source to simplify the analysis.

Traffic models commonly assume that packets arrive as a Poisson process, that is, the interarrival
time between calls is drawn from an exponential distribution.

Packet servicing times have traditionally been modeled as drawn from an exponential
distribution. That is, the probability that the servicing lasts longer than a given length x decreases
exponentially with x. However, recent studies have shown servicing times to be heavy-tailed.
Intuitively, this means that many packets are very long. More precisely, if 7, represents the
packet servicing time, and c(¢) is defined to be a slowly varying function of # when ¢ is large, the
probability that the packet is serviced longer than ¢ is given by:

P(T>f)=ct)t*ast—o, 1 <o<?2

As Figure 3-xxx shows, a heavy-tailed distribution has a significantly higher probability mass at
large values of ¢ than an exponential function.

3.1.1 Application Types

Multimedia application bandwidth requirements range from G.729 8Kbps speech codec and
H.263 64Kbps video codec to 19.2 Mbps for MPEG2, P, 4:2:0 (US standard) based
videoconferencing and 63Mbps SXGA 3D computer games [DuVal & Siep 2000]. In general, the
higher the speech sampling rate, the better the potential call quality (but at the expense of more
bandwidth being consumed). For example, G.711 encoding standard for audio provides excellent
quality. Data is delivered at 64 Kbps, and the codec imposes no compression delay. Technically,
G.711 delivers 8,000 bytes per second without compression so that full Nyquist-dictated samples
are provided.

Applications may also have periodic traffic for real-time applications, aperiodic traffic for web
browsing clients, aperiodic traffic with maximum response times for interactive devices like the
mouse and keyboard, and non-real time traffic for file transfers. Thus, we see that the range of
bandwidth and timeliness requirements for multimedia applications is large and diverse.

Table 3-1: Characteristics of traffic for some common sour ces/for ms of infor mation.

Source | Traffictype Arrival rate/Servicetime Sizeor Rate
Voice | CBR Deterministic/ Deterministic | 64 Kbps

Chapter 3 e Multimedia and Real-time Applications 183

vid CBR Deterministic/ Deterministic | 64 Kbps, 1.5 Mbps
ideo
VBR Deterministic/Random Mean 6 Mbps, peak 24 Mbps
Text ASCII Random/Random 2 KB/page
ex
Fax Random/ Deterministic 50 KB/page
600 dots/in, .256 Random/ Deterministic 33.5MB
) colors, 8.5%x 11 in
Picture ~0 dots/in. b/
O/, BIW, Random/ Deterministic 0.5 MB
8.5% 11 1in

Table 3-1 presents some characteristics about the traffic generated by common forms of
information. Notice that the bit streams generated by a video signal can vary greatly depending on
the compression scheme used. When a page of text is encoded as a string of ASCII characters, it
produces a 2-Kbyte string; when that page is digitized into pixels and compressed as in facsimile,
it produces a 50-KB string. A high-quality digitization of color pictures (similar quality to a good
color laser printer) generates a 33.5-MB string; a low-quality digitization of a black-and-white
picture generates only a 0.5-MB string.

We classify all traffic into three types. A user application can generate a constant bit rate (CBR)
stream, a variable bit rate (VBR) stream, or a sequence of messages with different temporal
characteristics. We briefly describe each type of traffic, and then consider some examples.

Constant Bit Rate (CBR)

To transmit a voice signal, the telephone network equipment first converts it into a stream of bits
with constant rate of 64 Kbps. Some video-compression standards convert a video signal into a
bit stream with a constant bit rate (CBR). For instance, MPEG-1 is a standard for compressing
video into a constant bit rate stream. The rate of the compressed bit stream depends on the
parameters selected for the compression algorithm, such as the size of the video window, the
number of frames per second, and the number of quantization levels. MPEG-1 produces a poor
quality video at 1.15 Mbps and a good quality at 3 Mbps.

Voice signals have a rate that ranges from about 4 Kbps when heavily compressed and low
quality to 64 Kbps. Audio signals range in rate from 8 Kbps to about 1.3 Mbps for CD quality.

Variable Bit Rate (VBR)

Some signal-compression techniques convert a signal into a bit stream that has variable bit rate
(VBR). For instance, MPEG-2 is a family of standards for such variable bit rate compression of
video signals. The bit rate is larger when the scenes of the compressed movies are fast moving
than when they are slow moving. Direct Broadcast Satellite (DBS) uses MPEG-2 with an average
rate of 4 Mbps.

To specify the characteristics of a VBR stream, the network engineer specifies the average bit rate
and a statistical description of the fluctuations of that bit rate. More about such descriptions will
be said later.

Ivan Marsic e Rutgers University 184

Analog speech waveform Sampled signal Sampled & quantized signal

0.4

) N R [HIER

Amplitude

-0.4

Figure 3-1: Analog speech signal sampling, and quantization to 4 bits.

Messages

Many user applications are implemented as processes that exchange messages over a network. An
example is Web browsing, where the user sends requests to a web server for Web pages with
embedded multimedia information and the server replies with the requested items. The message
traffic can have a wide range of characteristics. Some applications, such as email, generate
isolated messages. Other applications, such as distributed computation, generate long streams of
messages. The rate of messages can vary greatly across applications and devices.

To describe the traffic characteristics of a message-generating application, the network engineer
may specify the average traffic rate and a statistical description of the fluctuations of that rate, in
a way similar to the case of a VBR specification.

See definition of fidelity in:

B. Noble, “System support for mobile, adaptive applications,” IEEE Personal Communications,
7(1), pp.44-49, February 2000.

E. de Lara, R. Kumar, D. S. Wallach, and W. Zwaenepoel, “Collaboration and Multimedia
Authoring on Mobile Devices,” Proc. First Int’l Conf. Mobile Systems, Applications, and
Services (MobiSys 2003), San Francisco, CA, pp. 287-301, May 2003.

In any scenario where information is communicated, two key aspects of information are fidelity
and timeliness. Higher fidelity implies greater quantity of information, thus requiring more
resources. The system resources may be constrained, so it may not be possible to transmit, store,
and visualize at a particular fidelity. If memory and display are seen only as steps on
information’s way to a human consumer, then they are part of the communication channel. The
user could experience pieces of information at high fidelity, sequentially, one at a time, but this
requires time and, moreover, it requires the user to assemble in his or her mind the pieces of the
puzzle to experience the whole. Some information must be experienced within particular
temporal and or spatial (structural?) constraints to be meaningful. For example, it is probably
impossible to experience music one note at a time with considerable gaps in between. Or, a
picture cannot be experienced one pixel at a time. Therefore, the user has to trade fidelity for
temporal or spatial capacity of the communication channel.

Chapter 3 e Multimedia and Real-time Applications 185

Information loss may sometimes be tolerable; e.g., if messages contain voice or video data, most
of the time the receiver can tolerate some level of loss.

Shannon had to introduce fidelity in order to make problem tractable [Shannon & Weaver 1949].

Information can be characterized by fidelity ~ info content (entropy). The effect of a channel can
be characterized as deteriorating information’s fidelity and increasing the latency:

fidelityy + latency —())— fidelityour + latencyoyr

Wireless channels in particular suffer from limitations reviewed in Volume 2. Increasing the
channel capacity to reduce latency is usually not feasible—either it is not physically possible or it
is too costly.

Information qualities can be considered in many dimensions. We group them in two opposing
ones:

e Those that tend to increase the information content

e Delay and its statistical characteristics

The computing system has its limitations as well. If we assume finite buffer length, then in
addition to delay problem, there is a random loss problem. This further affects the fidelity.
Fidelity has different aspects, such as:

e Spatial (sampling frequency in space and quantization — see Brown&Ballard CV book)
e Temporal (sampling frequency in time)
e Structural (topologic, geometric, ...)

Delay or latency may also be characterized with more parameters than just instantaneous value,
such as the amount of variability of delay, also called delay jitter. In real life both fidelity and
latency matter and there are thresholds for each, below which information becomes useless. The
system is forced to manipulate the fidelity in order to meet the latency constraints. A key question
is, how faithful should signal be in order to be quite satisfactory without being too costly? In
order arrive at a right tradeoff between the two, the system must know:

1. Current channel quality parameters, e.g., capacity, which affect fidelity and latency
2. User’s tolerances for fidelity and latency

The former determines what can be done, i.e., what fidelity/latency can be achieved with the
channel at hand, and the latter determines Zow to do it, i.e., what matters more or less to the user
at hand. Of course, both channel quality and user preferences change with time.

Example with telephone: sound quality is reduced to meet the delay constraints, as well as reduce
the costs.

Targeted reduction of information fidelity in a controlled manner helps meet the latency
constraints and averts random loss of information. Common techniques for reducing information
fidelity include:

e Lossless and lossy data compression

Ivan Marsic e Rutgers University 186

e Packet dropping (e.g., RED congestion-avoidance mechanism in TCP/IP)

o .7

The above presentation is a simplification in order to introduce the problem. Note that there are
many other relevant parameters, such as security, etc., that characterize the communicated
information and will be considered in detail later.

Organizational concerns:

e Local traffic that originates at or terminates on nodes within an organization (also called
autonomous system, AS)

e Transit traffic that passes through an AS

3.1.2 Standards of Information Quality

In text, the entropy per character depends on how many values the character can assume. Because
a continuous signal can assume an infinite number of different value at a sample point, we are led
to assume that a continuous signal must have an entropy of an infinite number of bits per sample.
This would be true if we required absolutely accurate reproduction of the continuous signal.
However, signals are transmitted to be heard, seen, or sensed. Only a certain degree of fidelity of
reproduction is required. Thus, in dealing with the samples which specify continuous signals,
Shannon introduces fidelity criterion. To reproduce the signal in a way meeting the fidelity
criterion requires only a finite number of binary digits per sample per second, and hence we say
that, within the accuracy imposed by a particular fidelity criterion, the entropy of a continuous
source has a particular value in bits per sample or bits per second.

Standards of information quality help perform ordering of information bits by importance (to the
user).

Man best handles information if encoded to his abilities. (Pierce, p.234)

In some cases, we can apply common sense in deciding user’s servicing quality needs. For
example, in applications such as voice and video, users are somewhat tolerable of information
loss, but very sensitive to delays. Conversely, in file transfer or electronic mail applications, the
users are expected to be intolerable to loss and tolerable to delays. Finally, there are applications
where both delay and loss can be aggravating to the user, such as in the case of interactive
graphics or interactive computing applications.

For video, expectations are low
For voice, ear is very sensitive to jitter and latencies, and loss/flicker

Voice communication requires a steady, predictable packet delivery rate in order to maintain
quality. Jitter, which is variation in packet delivery timing, is the most common culprit that
reduces call quality in Internet telephony systems. Jitter causes the audio stream to become

Chapter 3 e Multimedia and Real-time Applications 187

broken, uneven or irregular. As a result, the listener’s experience becomes unpleasant or
intolerable.

The end results of packet loss are similar to those of jitter but are typically more
severe when the rate of packet loss is high. Excessive latency can result in unnatural
conversation flow where there is a delay between words that one speaks versus words
that one hears. Latency can cause callers to talk over one another and can also result
in echoes on the line. Hence, jitter, packet loss and latency can have dramatic
consequences in maintaining normal and expected call quality.

Human users are not the only recipients of information. For example, network
management system exchanges signaling packets that may never reach human user.
These packets normally receive preferential treatment at the intermediaries (routers), and this is
particularly required during times of congestion or failure.

It is particularly important during periods of congestion that traffic flows with different
requirements be differentiated for servicing treatments. For example, a router might transmit
higher-priority packets ahead of lower-priority packets in the same queue. Or a router may
maintain different queues for different packet priorities and provide preferential treatment to the
higher priority queues.

User Studies

User studies uncover the degree of service degradation that the user is capable of tolerating
without significant impact on task-performance efficiency. A user may be willing to tolerate
inadequate QoS, but that does not assure that he or she will be able to perform the task
adequately.

Psychophysical and cognitive studies reveal population levels, not individual differences. Context
also plays a significant role in user’s performance.

The human senses seem to perceive the world in a roughly logarithmic way. The eye, for
example, cannot distinguish more than six degrees of brightness; but the actual range of physical
brightness covered by those six degrees is a factor of 2.5 X 2.5 X 2.5 x 2.5 x 2.5 X 2.5, or about
100. A scale of a hundred steps is too fine for human perception. The ear, too, perceives
approximately logarithmically. The physical intensity of sound, in terms of energy carried
through the air, varies by a factor of a trillion (10'%) from the barely audible to the threshold of
pain; but because neither the ear nor the brain can cope with so immense a gamut, they convert
the unimaginable multiplicative factors into comprehensible additive scale. The ear, in other
words, relays the physical intensity of the sound as logarithmic ratios of loudness. Thus a normal
conversation may seem three times as loud as a whisper, whereas its measured intensity is
actually 1,000 or 10’ times greater.

Fechner’s law in psychophysics stipulates that the magnitude of sensation—brightness, warmth,
weight, electrical shock, any sensation at all—is proportional to the logarithm of the intensity of
the stimulus, measured as a multiple of the smallest perceptible stimulus. Notice that this way the
stimulus is characterized by a pure number, instead of a number endowed with units, like seven
pounds, or five volts, or 20 degrees Celsius. By removing the dependence on specific units, we
have a general law that applies to stimuli of different kinds. Beginning in the 1950s, serious

Ivan Marsic e Rutgers University 188

departures from Fechner’s law began to be reported, and today it is regarded more as a historical
curiosity than as a rigorous rule. But even so, it remains important approximation ...

Define j.n.d. (just noticeable difference)

For the voice or video application to be of an acceptable quality, the network must transmit the bit
stream with a short delay and corrupt at most a small fraction of the bits (i.e., the BER must be
small). The maximum acceptable BER is about 10~ for audio and video transmission, in the
absence of compression. When an audio and video signal is compressed, however, an error in the
compressed signal will cause a sequence of errors in the uncompressed signal. Therefore the
tolerable BER is much less than 10~ for transmission of compressed signals.

The end-to-end delay should be less than 200 ms for real-time video and voice conversations,
because people find larger delay uncomfortable. That delay can be a few seconds for non-real-
time interactive applications such as interactive video and information on demand. The delay is
not critical for non-interactive applications such as distribution of video or audio programs.

Typical acceptable values of delays are a few seconds for interactive services, and many seconds
for non-interactive services such as email. The acceptable fraction of messages that can be
corrupted ranges from 10 for data transmissions to much larger values for noncritical
applications such as junk mail distribution.

Among applications that exchange sequences of messages, we can distinguish those applications
that expect the messages to reach the destination in the correct order and those that do not care
about the order.

3.1.3 User Models

User Preferences

User Utility Functions

Example: Augmented Reality (AR)
{PROBLEM STATEMENT}

Inaccuracy and delays on the alignment of computer graphics and the real world are one of the
greatest constrains in registration for augmented reality. Even with current tracking techniques it
is still necessary to use software to minimize misalignments of virtual and real objects. Our
augmented reality application represents special characteristics that can be used to implement
better registration methods using an adaptive user interface and possibly predictive tracking.

Chapter 3 e Multimedia and Real-time Applications 189

{CONSTRAINS}
AR registration systems are constrained by perception issues in the human vision system.

An important parameter of continuous signals is the acceptable frame rate. For virtual reality
applications, it has been found that the acceptable frame rate is 20 frames per second (fps), with
periodical variations of up to 40% [Watson 97], and maximum delays of 10 milliseconds [Azuma,
1995]. The perception of misalignment by the human eye is also restrictive. Azuma found
experimentally that it is about 2-3 mm of error at the length of the arm (with an arm length of
about 70 cm) is acceptable [Azuma 95]. However, the human eye can detect even smaller
differences as of one minute of arc [Doenges 85]. Current commercially available head-mounted
displays used for AR cannot provide more than 800 by 600 pixels, this resolution makes
impossible to provide an accuracy one minute of arc.

{SOURCES OF ERROR}

Errors can be classified as static and dynamic. Static errors are intrinsic on the registration system
and are present even if there is no movement of the head or tracked features.

Most important static errors are optical distortions and mechanical misalignments on the HMD,
errors in the tracking devices (magnetic, differential, optical trackers), incorrect viewing
parameters as field of view, tracker-to-eye position and orientation. If vision is used to track, the
optical distortion of the camera also has to be added to the error model.

Dynamic errors are caused by delays on the registration system. If a network is used, dynamic
changes of throughput and latencies become an additional source of error.

{OUR AUGMENTED REALITY SYSTEM}

Although research projects have addressed some solutions for registrations involving predictive
tracking [Azuma 95] [Chai 99] we can extended the research because our system has special
characteristics (many of these approaches). It is necessary to have accurate registration most of its
usage however it is created for task where there is limited movement of the user, as in a repairing
task. Delays should be added to the model if processing is performed on a different machine. Also
there is the necessity of having a user interface that can adapt to registration changes or according
to the task being developed, for example removing or adding information only when necessary to
avoid occluding the view of the AR user.

{PROPOSED SOLUTION}

The proposed solution is based on two approaches: predictive registration and adaptive user
interfaces. Predictive registration allows saving processing time, or in case of a networked system
it can provide better registration in presence of latency and jitter. With predictive registration
delays as long as 80ms can be tolerated [Azuma 94]. A statistical model of Kalman filters and
extended Kalman filters can be used to optimize the response of the system when multiple
tracking inputs as video and inertial trackers are used [Chai 99].

Ivan Marsic e Rutgers University 190

Adaptive user interfaces can be used to improve the view of the augmented world. This approach
essentially takes information form the tracking system to determine how the graphics can be
gracefully degraded to match the real world. Estimation of the errors was used before to get and
approximated shape of the 3D objects being displayed [Maclntyre 00]. Also some user interface
techniques based on heuristics where used to switch different representations of the augmented
world [Hollerer 01]. The first technique has a strict model to get an approximated AR view but it
degrades the quality of the graphics, specially affecting 3D models. The second technique
degrades more gracefully but the heuristics used are not effective for all the AR systems. A
combination would be desirable.

{TRACKING PIPELINE}

This is a primary description of our current registration pipeline

Image Processing
[Frame capture] => [Image threshold] => [Subsampling] => [Features Finding] =>

[Image undistortion] => [3D Tracking information] => [Notify Display]

Video Display
[Get processed frame] => [Frame rendering in a buffer] => [3D graphics added to Buffer]
=> [Double buffering] => [Display]

These processes are executed by two separated threads for better performance and resource usage.

{REFERENCES}
[Watson 97]

Watson, B., Spaulding, V., Walker, N., Ribarsky W., “Evaluation of the effects of frame time
variation on VR task performance,” IEEE VRAIS'96, 1996, pp. 38-52.

http://www.cs.northwestern.edu/~watsonb/school/docs/vr97.pdf

[Azuma 95]

R. Azuma, “Predictive Tracking for Augmented Reality,” UNC Chapel Hill Dept. of Computer
Science Technical Report TR95-007 (February 1995), 262 pages.

http://www.cs.unc.edu/~azuma/dissertation.pdf

[Doenges 85]

Chapter 3 e Multimedia and Real-time Applications 191

P. K. Doenges, “Overview of Computer Image Generation in Visual Simulation,” SIGGRAPH
'85 Course Notes #14 on High Performance Image Generation Systems (San Francisco, CA, 22
July 1985).

(Not available on the web, cited in Azuma’s paper)

[Chai 99]

L. Chai, K. Nguyen, W. Hoff, and T. Vincent, “An adaptive estimator for registration in
augmented reality,” Proc. of 2nd IEEE/ACM Int'l Workshop on Augmented Reality, San
Franscisco, Oct. 20-21, 1999.

http://egweb.mines.edu/whoff/projects/augmented/iwar1999.pdf

[Azuma 94]

R. Azuma and G. Bishop, “Improving Static and Dynamic Registration in an Optical See-
Through HMD,” Proceedings of SIGGRAPH '94 (Orlando, FL, 24-29 July 1994), Computer
Graphics, Annual Conference Series, 1994, 197-204.

http://www.cs.unc.edu/~azuma/sig94paper.pdf

[Maclntyre 00]

B. Maclntyre, E. Coelho, S. Julier, “Estimating and Adapting to Registration Errors in
Augmented Reality Systems,” In IEEE Virtual Reality Conference 2002 (VR 2002), pp. 73-80,
Orlando, Florida, March 24-28, 2002.

http://www.cc.gatech.edu/people/home/machado/papers/vr2002.pdf

[Hollerer 01]

T. Hollerer, D. Hallaway, N. Tinna, S. Feiner, “Steps toward accommodating variable position
tracking accuracy in a mobile augmented reality system,” In Proc. 2nd Int. Workshop on
Artificial Intelligence in Mobile Systems (AIMS '01), pages 31-37, 2001.

http://monet.cs.columbia.edu/publications/hollerer-2001-aims.pdf

3.1.4 Performance Metrics

Delay (the average time needed for a packet to travel from source to destination), statistics of
delay (variation, jitter), packet loss (fraction of packets lost, or delivered so late that they are
considered lost) during transmission, packet error rate (fraction of packets delivered in error);

Bounded delay packet delivery ratio (BDPDR): Ratio of packets forwarded between a mobile
node and an access point that are successfully delivered within some pre-specified delay

Ivan Marsic e Rutgers University 192

constraint. The delay measurement starts at the time the packet is initially queued for
transmission (at the access point for downstream traffic or at the originating node for upstream
traffic) and ends when it is delivered successfully at either the mobile node destination
(downstream traffic) or AP (upstream traffic).

Quality of Service
QoS, Keshav p.154
Cite Ray Chauduhuri’s W-ATM paper {cited in Goodman}

Quality of Service (QoS)
Performance measures
Throughput

Latency

Real-time guarantees
Other factors

Reliability

Availability

Security
Synchronization of data streams
Etc.

A networking professional may be able to specify what quality-of-service metrics are needed, and
can specify latency, packet loss and other technical requirements. However, the consumer or
independent small-office-home-office (SOHO) user would more easily understand service
classifications such as “High-Definition Movie Tier” or an “Online Gamer Tier.” Few consumers
will be able to specify service-level agreements, but they may want to know if they are getting
better services when they pay for them, so a consumer-friendly reporting tool would be needed.
In addition, although enterprises are increasingly likely to buy or use a premise-based session
border controller to better manage IP traffic, service providers will need to come up with an
easier and less expensive alternative to classify consumer IP packets based on parameters such as
user profiles and service classes.

Chapter 3 e Multimedia and Real-time Applications 193

3.2 Source Characteristics and Traffic
Models

Different media sources have different traffic characteristics.

3.2.1 Traffic Descriptors

Some commonly used traffic descriptors include peak rate and average rate of a traffic source.

Average Rate

The average rate parameter specifies the average number of packets that a particular flow is
allowed to send per unit of time. A key issue here is to decide the interval of time over which the
average rate will be regulated. If the interval is longer, the flow can generate much greater
number of packets over a short period than if the interval is short. In other words, a shorter
averaging interval imposes greater constraints. For example, average of 100 packets per second is
different from an average of 6,000 packets per minute, because in the later can the flow is
allowed to generate all 6,000 over one 1-second interval and remain silent for the remaining 59
seconds.

Researchers have proposed two types of average rate definitions. Both [...]

Burst size: this parameter constrains the total number of packets (the “burst” of packets) that can
be sent by a particular flow into the network over a short interval of time.

Peak Rate

The peak rate is the highest rate at which a source can generate data during a communication
session. Of course, the highest data rate from a source is constrained by the data rate of its
outgoing link. However, by this definition even a source that generates very few packets on a
100-Mbps Ethernet would be said to have a peak rate of 100 Mbps. Obviously, this definition
does not reflect the true traffic load generated by a source. Instead, we define the peak rate as the
maximum number of packets that a source can generate over a very short period of time. In the
above example, one may specify that a flow be constrained to an average rate of 6,000
packets/minute and a peak rate of 100 packets/second.

Primitive traffic characterization is given by the source entropy.

See also MobiCom’04, p. 174: flow characterization

Ivan Marsic e Rutgers University 194

For example, image transport is often modeled as a two state on-off process. While on, a source
transmits at a uniform rate. For more complex media sources such as variable bit rate (VBR)
video coding algorithms, more states are often used to model the video source. The state
transitions are often assumed Markovian, but it is well known that non-Markovian state
transitions could also be well represented by one with more Markovian states. Therefore, we shall
adopt a general Markovian structure, for which a deterministic traffic rate is assigned for each
state. This is the well-known Markovian fluid flow model [Anick et al. 1982], where larger
communication entities, such as an image or a video frame, is in a sense “fluidized” into a fairly
smooth flow of very small information entities called cells. Under this fluid assumption, let Xi(¢)
be the rate of cell emission for a connection 7 at the time ¢, for which this rate is determined by the
state of the source at time ¢.

The most common modeling context is queuing, where traffic is offered to a queue or a network
of queues and various performance measures are calculated.

Simple traffic consists of single arrivals of discrete entities (packets, frames, etc.). It can be
mathematically described as a point process, consisting of a sequence of arrival instants 7y, 75,
.., T, ... measured from the origin 0; by convention, 7y = 0. There are two additional equivalent
descriptions of point processes: counting processes and interarrival time processes. A counting

process {N(t)},_, is a continuous-time, non-negative integer-valued stochastic process, where

N(f) = max{n : T, <t} is the number of (traffic) arrivals in the interval (0, ¢]. An interarrival time
where 4, = T, — T, is the length of the time

o

n=1>°

process is a non-negative random sequence {4, }

interval separating the n-th arrival from the previous one. The equivalence of these descriptions
follows from the equality of events:

n n+l
{N(t) = }’Z}Z{T;z <t< Tn+l}={ZAk st< ZAk}
k=1 k=1

because T, = Z::1Ak . Unless otherwise stated, we assume throughout that {4,} is a stationary

sequence and that the common variance of the 4,, is finite.

3.2.2 Self-Similar Traffic

3.3 Approaches to Quality-of-Service

This section reviews some end-to-ed mechanisms for providing quality-of-service (QoS), and
hints at mechanisms used in routers. Chapter 5 details the router-based QoS mechanisms.

Chapter 3 e Multimedia and Real-time Applications 195

> >
i)
@ = + <« BI[7(6][s][4] 3] 2] (1] === [8][6] =0)))
Source Packets departing source Packets arriving at receiver Receiver
8 ') 8§ — o 8 o
7 o 7 —o 7 o
g 6 — 6 T o 6 o
€ 5+——o 5 ——o 5)
=}
2, 4 | 4
2 3}— 30— wmmm o
E 2 —o 2 —o 2 ———o
1 +—o 1 +—o 1 +—o0
Attt
0 20 1O & & 4PN B0 0 720 10 & PP 0 79 80 &0 A0 OO0 70, 800
Time when packet departed (ms) Transit delay experienced (ms) Time when packet arrived (ms)

Figure 3-2: Packets depart with a uniform spacing, but they experience variable amount of
delay (jitter) and arrive at the receiver irregularly (packets#3 and #6 arrive out of order).

3.3.1 End-to-End Delayed Playout

Problems related to this section: Problem 3.2 — Problem 3.5

Removing Jitter by Delayed Playout

Consider the example shown in Figure 3-2 where a source sends audio signal to a receiver for
playout. Let us assume that the source segments the speech stream every 20 milliseconds and
creates data packets. The source outputs the packets with a uniform spacing between them, but
they arrive at the receiver at irregular times due to random network delays.

Speech packetization at the intervals of 20 ms seems to be a good compromise. If the interval
were longer, flicker due to lost or late packets would be more noticeable; conversely, if the
interval were shorter, the packet-header overhead would be too high, with the header size
possibly exceeding the payload.

Playing out the speech packets as they arrive (with random delays) would create significant
distortions and impair the conversation. One way to deal with this is to buffer the packets at the
receiving host to smooth out the jitter. Packets are buffered for variable amounts of time in an
attempt to play out each speech segment with a constant amount of delay relative to the time
when it was pacektized and transmitted from the source. Let us introduce the following notation
(see Figure 3-2):

t; = the time when the /™ packet departed its source
d; = the amount of delay experienced by the i packet while in transit
r; = the time when the /™ packet is received by receiver (notice that r; = t; + d;)

p; = the time when the i™ packet is played at receiver

Ivan Marsic e Rutgers University 196

Papkets Playout Packet arrives at receiver
arrived schedule
A at receiver \ / [o][8] o+
N\
8 N
QL) 7 O / .
o Time spent
g 6 cPrE::ai;g:js o in buffer Packet removed from buffer
c |
B s at source o \ RIGIEE e eee
‘:‘% Missed . \
a 47 playout Time Missed
3 o playout
2] | g=100ms
1‘7‘**’]

0 O 10 ©® & & & O © &
S ¢ PP P S
Talk starts \ r1—58 p, =120

First packet sent: t, = 20

Time [ms]

Figure 3-3: Removing jitter at receiver by delaying the playout.

Let g denote the constant delay introduced to smoothen out the playout times. Then p; = t; + g.
The time difference between the i™ packet’s playout time and the time it is received equals A; = (¢,
+q)— r. If A; >0, the i packet should be buffered for this duration before it is played out. If A; <
0, the ™ packet should be discarded because it arrived too late for playout. Figure 3-3 illustrates
jitter removal for the example given in Figure 3-2. In this case, the constant playout delay of ¢ =
100 ms is selected. With this choice, the sixth packet does not arrive by its scheduled playout
time, and the receiver considers it lost.

We could try selecting a large ¢ so that all packets will arrive by their scheduled playout time.
However, for applications such as Internet telephony, delays greater than 400 ms are not
acceptable because of human psychophysical constraints. Ideally, we would like keep the playout
delay less than 150 ms. Larger delays become annoying and it is difficult to maintain a
meaningful conversation. We know from the discussion in Section 2.1.2 that average end-to-end
network delays can change significantly during day or even during short periods. Therefore, the
best strategy is to adjust the playout delay adaptively, so that we select the minimum possible
delay for which the fraction of missed playouts is kept below a given threshold.

We can again use the approach described in Section 2.1.2 and estimate the average end-to-end
network delay using Exponential Weighted Moving Average (EWMA). Similar to Eq. (2.2), we
estimate the average network delay 5‘1 upon reception of the /™ packet as

b =(-a) b +a (1)
where « is a fixed constant, say, &= 0.001. We also estimate the average standard deviation 9,
of the delay as
U, =(1-a) O +o|r,—t;—d,; |

Notice that the playout delay ¢ is measured relative to packet’s departure time (Figure 3-3).
Therefore, we cannot adjust g for each packet individually, because this would still result in
distorted speech. An option is to set the playout delay constant for an interval of time, but the

Chapter 3 e Multimedia and Real-time Applications 197

0 234 78 15 16 31
2-bit 4-bit 1
ver. [P |X| contrib. |M|7-bit payload type 16-bit sequence number
num src count
oy 12
32-bit timestamp bytes

32-bit synchronization source (SSRC) identifier

/ contributing source (CSRC) identifiers (if any) [

/ 32-bit extension header (if any) /

/ data [

.) 8-bit pad count
{ padding (if any) (inpbyteS) {

Figure 3-4: Real-time Transport Protocol (RTP) packet format.

question is when this interval should start and how long it should last. It turns out that humans do
not notice if the periods of silence between the utterances are stretched or compressed. This fact
is used to adjust the playout delay adaptively: the playout delay ¢ is adjusted only at the start of
an utterance (or, “talk spurt”) and it is maintained constant until the next period of silence. The
receiver maintains average delay 5‘, and average standard deviation 0, for each received packet.

During a period of silence, the receiver calculates the playout delay for the subsequent talk spurt
as follows. If packet & is the first packet of the next talk spurt, £™’s playout delay is computed as

g, =0, +K-D, G.1)

where K is a positive constant, for example we can set K = 4 following the same reasoning as in
Section 2.1.2 for Eq. (2.2). Then, the playout time of the £ packet and all the remaining packets
of the next spurt is computed as p; = ¢; + g;.

RTP

The Real-time Transport Protocol (RTP) provides the transport of real-time data packets. To
accommodate new real-time applications, the protocol specifies only the basics and it is
somewhat incomplete. Unlike conventional protocols, RTP can be tailored to specific application
needs through modifications and additions to headers. This allows the protocol to adapt easily to
new audio and video standards.

Ivan Marsic e Rutgers University 198
Layer 3: N
End-

RTP implements the end-to-end layer (or, transport-layer in the OSI model) to-End

RTP (Real-time
Transport Protocol)

features needed to provide synchronization of multimedia data streams. Layer 2: ¥ ¥

Figure 3-4 shows the header format used by RTP. Netwo-rk

The first two bits indicate the RTP version. Layer 1: " N
Link

The “padding” (P) bit is set when the packet contains a set of padding
octets that are not part of the payload. For example, RTP data might be padded to fill up a block
of a certain size as required by some encryption algorithms.

The extension bit (X) is used to indicate the presence of an extension header, which can be
defined for some application’s special needs. Such headers are rarely used, because a payload-
specific header can be defined as part of the payload format definition used by the application.

The 4-bit contributing-sources count represents the number of contributing source (CSRC)
identifiers, if any are included in the header.

The M bit allows significant events to be marked in the packet stream (that is, frame boundaries).

The 7-bit payload type specifies the format of the payload in the RTP packet. An RTP sender
emits a single RTP payload type at any given time. An RTP packet can contain portions of either
audio or video data streams. To differentiate between these streams, the sending application
includes a payload type identifier within the RTP header. The identifier indicates the specific
encoding scheme used to create the payload.

The sequence number is used by the receiver when removing jitter at the receiver, as described
earlier. It is used to restore the original packet order and detect packet loss. The sequence number
increments by one for each RTP data packet sent. The initial value of the sequence number is
randomly determined. This makes hacking attacks on encryption more difficult. A random
number is used even if the source device does not encrypt the RTP packet. The packets can flow
through a translator host or router that does provide encryption services.

The timestamp is used along with the sequence number to detect gaps in a packet sequence.
Timestamps are also used in RTP to synchronize packets from different sources. The timestamp
represents the sampling (creation) time of the first octet in each RTP data packet. It is derived
from a clock that increments monotonically and linearly. The resolution of the timer depends on
the desired synchronization accuracy required by the application. It is possible that several
consecutive RTP packets have the same timestamp. For example, this can occur when a single
video frame is transmitted in multiple RTP packets. Because the payloads of these packets were
logically generated at the same instant, their time stamps remain constant. The initial value of the
time stamp is random.

The synchronization source (SSRC) identifier is a randomly chosen identifier for an RTP host.
All packets from the same source contain the same SSRC identifier. Each device in the same RTP
session must have a unique SSRC identifier. This enables the receiver to group packets for
playback.

The contributing source (CSRC) identifiers field contains a list of the sources for the payload in
the current packet. This field is used when a mixer combines different streams of packets. The
information contained in this field allows the receiver to identify the original senders.

Chapter 3 e Multimedia and Real-time Applications 199

(a) >

Unicast
Source

(b) "

Multicast

Source 1x1.5Mbps

Figure 3-5: Unicast vs. multicast routing.

RTCP

The Real-Time Control Protocol (RTCP) monitors the quality of service provided to existing
RTP sessions. The primary function of RTCP is to provide feedback about the quality of the RTP
data distribution. This is comparable to the flow and congestion control functions provided by
other transport protocols, such as TCP. Feedback provided by each receiver is used to diagnose
stream-distribution faults. By sending feedback to all participants in a session, the device
observing problems can determine if the problem is local or remote. This also enables a managing
entity (that is, a network service provider) that is not a participant in the session to receive the
feedback information. The network provider can then act as a third-party monitor to diagnose
network problems.

3.3.2 Multicast Routing

Problems related to this section: Problem 3.7 — ??

When multiple receivers are required to get the same data at approximately the same time,
multicast routing is a more efficient way of delivering data than unicast. A unicast packet has a
single source IP address and a single destination IP address. Data are delivered to a single host. A
multicast packet has a single source IP, but it has a multicast destination IP address that will be
delivered to a group of receivers. (Recall the multicast address class D in Figure 1-45.) The
advantage is that multiple hosts can receive the same multicast stream (instead of several
individual streams), thereby saving network bandwidth. In general, the bandwidth saving with
multicast routing becomes more substantial as the number of destinations increases.

Ivan Marsic e Rutgers University 200

Option (a)

Source

Option (b)

Router m Router n

Receiver j

Figure 3-6: The superimposed shortest paths must form atreerooted in the sour ce.

Figure 3-5 shows an example where three users are simultaneously watching the same video that
is streamed from the same video source. In Figure 3-5(a), all users receive their individual
streams via a unicast delivery. As illustrated, the source must send a total of 3 unicast streams,
each targeted to a different user. Obviously, this is a waste of bandwidth. If the compressed video
takes approximately 1.5 Mbps of bandwidth per stream, then the first link must support data rate
of at least 3 X 1.5 = 4.5 Mbps. Similarly, the lower link from the first router relays two streams
which consume 2 x 1.5 = 3 Mbps of bandwidth. If, on the other hand, the network supports
multicast routing as in Figure 3-5(b), the source sends only a single stream and all links would be
using 1.5 Mbps for this video. Of course, this kind of resource saving is possible only if multiple
users are downloading simultaneously the same video from the same source.

There are two key issues for multicast routing protocols:

1. Multicast Group Management: identifying which hosts are members of a multicast
group and supporting dynamic changes in the group membership; multiple sources and
multiple receivers may need to be supported

2. Multicast Route Establishment: setting up the (shortest path) route from each source to
each receiver

A multicast group relates a set of sources and receivers with each other, but conceptually exists
independently of them. Such group is identified by a unique IP multicast address of Class D
(Figure 1-45). It is created either when a source starts sending to the group address (even if no
receivers are present) or when a receiver expresses its interest in receiving packets from the group
(even if no sources are currently active).

To establish the multicasting routes, we start by superimposing all the shortest paths connecting
the source with all the receivers. The result will be a tree, i.e., it cannot be a graph with cycles. To
see why, consider a contrary possibility, illustrated in Figure 3-6, where the shortest paths from

Chapter 3 e Multimedia and Real-time Applications 201

the source to two receivers i and j share two intermediary nodes (routers m and n), but not the
nodes between these two nodes. We know from Section 1.4 that the shortest path between two
intermediate points does not depend on where this path extends beyond the intermediate points.
In other words, it does not depend on the endpoints. Hence, if we superimpose all the shortest
paths from the source host to any destination, we will obtain a tree structure, for which the source
host is the root node. (Notice that alternative paths between m and n could be equally long, but
there should be a uniform policy to resolve the tied cases.) The next issue is, how the multicast-
capable routers should construct this tree.

Reverse Path Forwarding (RPF) Algorithm

We assume that all routers in the network are running a unicast routing algorithm (described in
Section 1.4) and maintain unicast routing tables independently of the multicast algorithm. Thus,
the routers know either the shortest unicast paths to all nodes in the network, or at least the next
hop on the shortest path to any other node in the network.

In reverse path forwarding (RPF) algorithm, when a router receives a packet, it forwards the
packet to all outgoing links (except the one on which it was received) only if the packet arrived
on the link that is on this router’s shortest unicast path back to the source. Otherwise, the router
simply discards the incoming packet without forwarding it on any of its outgoing links. (A tie
between two routers is broken by selecting the router with the smallest network address.)

A problem with RPF is that it essentially floods every router in the network, regardless of whether
it has hosts attached to it that are interested in receiving packets from the multicast group. To
avoid these unnecessary transmissions, we perform pruning: the router that no longer has
attached hosts interested in receiving multicast packets from a particular source informs the next-
hop router on the shortest path to the source that it is not interested.

Here is an example:

Example 3.1 Multicast Using Rever se Path Forwarding (RPF) Algorithm

Consider the network shown in Figure 3-7, in which radio broadcast source A4 distributes a radio
program to a multicast group /, whose members are all the shown hosts. Assume that all link costs are
equal to 1, including the Ethernet links, i.e., any two nodes that are separated by one hop.

(a) Draw the shortest path multicast tree for the group 7

(b) Assuming that the reverse path forwarding (RPF) algorithm is used, how many packets are
forwarded in the entire network per every packet sent by the source 4? To avoid ambiguities,
describe how you counted the packets.

(¢) Assuming that the RPF algorithm uses pruning to exclude the networks that do not have hosts that
are members of 7, how many packets are forwarded in the entire network per every packet sent by
the source A?

The solutions for (a) and (b) are shown in Figure 3-8. The shortest path multicast tree is drawn by thick
lines in Figure 3-8(a). Router R3 is two hops from R2 (the root of the tree) both via R1 and via R4.
Router R1 is selected because it has a smaller address than R4. (Therefore, link R4—R3 is not part of
the tree!) Notice that router R6 is not connected to R3 (via the multihomed host E), because
multihomed hosts do not participate in routing or forwarding of transit traffic.

Ivan Marsic e Rutgers University 202

Figure 3-7: Example network used in the multicast Example 3.1.

The root router R2 sends packets to routers R1, R4, and RS, which in turn forward them to all outgoing
links (except the one on which it was received) only if the packet arrived on the link that is on its own
shortest unicast path back to the source. Otherwise, the router simply discards the incoming packet
without forwarding it on any of its outgoing links. In Figure 3-8(b), R3 will receive the packets from
both R1 and R4, but it will forward only the one from R1 and discard the one from R4. The way we
count packets is how many packets leave the router, and the router has to forward a different packet on
each different outgoing link. Therefore, the number of forwarded packets in the entire network is 8 per
each sent packet. If we include the packets forwarded to end hosts, the total is 8 + 6 = 14 (shown in
Figure 3-8(b)).

As for part (c), routers R4 and R6 do not have any host for which either one is on the shortest path to
the source A. The shortest path for host £ is via R3—-R1-R2. Therefore, R4 and R6 should send a prune
message to R2 and R7, respectively, to be removed from the multicast tree. This reduces the number of
forwarded packets by 4, so the total number is 4 per each sent packet, or 4 + 6 = 10, if the end hosts are
counted.

What if a router is pruned earlier in the session, but later it discovers that some of its hosts wish to
receive packets from that multicast group? One option is that the router explicitly sends a graft
message to the next-hop router on the shortest path to the source. Another option is for the
source(s) and other downstream routers to flood packets periodically from the source in search for
receivers that may wish to join the group later in the session. This extended version of RPF is
called flood-and-prune approach to multicast-tree management.

A key property of RPF is that routing loops are automatically suppressed and each packet is
forwarded by a router exactly once. The basic assumption underlying RPF is that the shortest path
is symmetric in both directions. That is, the shortest path from the source to a given router
contains the same links as the shortest path from this router to the source. This assumption
requires that each link is symmetric (roughly, that each direction of the link has the same cost). If
links are not symmetric, then the router must compute the shortest path from the source to itself,
given the information from its unicast routing tables. Notice that this is possible only if a link-
state protocol (Section 1.4.2) is used as the unicast routing algorithm.

Chapter 3 e Multimedia and Real-time Applications 203

Key:
=== Packet will be forwarded

N Packet not forwarded
beyond receiving router

—} Packet forwarded to end host

Figure 3-8: The shortest path multicast tree for the example network in Figure 3-7.

Spanning Tree Algorithms

The reverse path forwarding algorithm, even with pruning, does not completely avoid
transmission of redundant multicast packets. Consider the network in Figure 3-9(a), which is
similar to Figure 3-7 but slightly more complex. The shortest-path multicast tree is shown in
Figure 3-9(b). Router R4 can be pruned because it does not have attached hosts that are interested
in multicast packets from the source 4. (Router RS is relaying packets for R6 and R7, so it stays.)
As seen, routers R3, R5, R6, R7, and R8 will receive either one or two redundant packets. Ideally,
every node should receive only a single copy of the multicast packet. This would be the case if
the nodes were connected only by the thick lines in Figure 3-9(b). The reason is that the thick
lines form a tree structure, so there are no multiple paths for the packet to reach the same node. A
tree that is obtained by removing alternative paths, while keeping connected the nodes that were
originally connected, is called a spanning tree. If a multicast packet were forwarded from the
root of the tree to all other nodes, every node would receive exactly one copy of the packet. If
links have associated costs and the total cost of the tree is the sum of its link costs, then the
spanning three with a minimum total cost is called a minimum spanning tree.

Therefore, an alternative to RPF is to construct a spanning tree and have each source send the
packets out on its incident link that belongs to the spanning tree. Any node that receives a
multicast packet then forwards it to all of its neighbors in the spanning tree (except the one from
where the packet came). Multicasting on a spanning tree requires a total of only N — 1 packet
transmissions per packet multicast, where N is the number of nodes. Notice that a single spanning
tree is sufficient for any number of sources. This is true because any node of a tree can serve as
its root. To convince yourself about this, take an arbitrary tree and select any of its nodes. Now
imagine that you pull this node up and the other nodes remain hanging from the selected node.
What you get is a tree rooted in the selected node.

Ivan Marsic e Rutgers University 204

(2) v

Source

The shortest path
multicast tree

(b) 3 DO —

Figure 3-9: Example network for multicast routing.

The main complexity of the spanning-tree multicasting lies in the creation and maintenance of the
spanning tree, as sources and receivers dynamically join or leave the multicast group or the
network topology changes. (Notice that RPF does not have this problem, because it relies on
flooding.) One algorithm that builds and maintains the spanning-tree efficiently is known as core-
based trees (CBTs). With CBTs, the spanning tree is formed starting from a “core router” (also
known as a “rendezvous point” or a ‘“center node”), which can be statically configured or
automatically selected. Other routers are added by growing “branches” of the tree, consisting of a
chain of routers, away from the core router out towards the routers directly adjoining the
multicast group members. The core router is also known as a “center” and CBT is sometimes
called center-based approach.

The tree building process starts when a host joins the multicast group. The host sends a join-
request packet addressed to the core router. The information about the core router is statically
configured. This join-request packet travels hop-by-hop towards the target core, forwarded using
unicast routing. The process stops when the packet either arrives at an intermediate router that
already belongs to the spanning tree or arrives at the destination (the core router). In either case,
the path that the join-request packet has followed defines the branch of the spanning tree between
the leaf node that originated the join-request and the core router. The node at which the message
terminated confirms the packet by sending a join-acknowledgement message. The join-
acknowledgement message travels the same route in the opposite direction the join-request
message traveled earlier.

Chapter 3 e Multimedia and Real-time Applications 205

Figure 3-10: Forming the spanning tree by CBTs approach for the example in Figure 3-9.
Thick linesrepresent the spanning tree, asits branchesare grown.

Figure 3-10 illustrates the process for the network in Figure 3-9(a), assuming that R1 is
configured as the core router. Suppose that the source 4 and receivers B, C, D, E, and F join
simultaneously. (Receiver G will join later.) Figure 3-10(a) shows how each router that has
attached a group member unicasts the join-request message to the next hop on the unicast path to
the group’s core. In Figure 3-10(b), the core R1 sends join-acknowledgement messages to R2 and
R3, and R4 relays R7’s join request. Notice that R3 does not forward the join request by R8. This
is because R3 already sent its own join request. Subsequent join requests received for the same
group are cached until this router has received a join acknowledgement for the previously sent
join, at which time any cached joins can also be acknowledged. This happens in Figure 3-10(c),
where after receiving a join acknowledgement, R3 in turn acknowledges R8’s join. We assume
that at this time receiver G decides to join the multicast group and R6 sends a join request on its
behalf. There are three shortest paths from R6 to R1: paths R6-R5-R2-R1, R6-R7-R4-R1, and R6-
R8-R3-R1; we assume that the tie was broken by the unicast routing algorithm and R6-R5-R2-R1
was selected. (The reader may notice that there were several other shortest-path ties, which again
we assume were broken by the unicast algorithm.) Figure 3-10(d) shows that the branch from the
core to R7 is established, and at the same time, the join request from R6 reaches R2. R2 will not
propagate R6’s join request because it is already on the spanning tree for the same group.
Therefore, R2 will respond with a join acknowledgement, which will travel opposite the join
request until it reaches R6 (not shown in Figure 3-10).

Ivan Marsic e Rutgers University 206

Figure 3-11: Packet forwar ding from sour ce E to the multicast group G in Figure 3-10.

The resulting spanning tree is known as a group-shared multicast tree because any multicast
source in the multicast group G can use this tree. All routers that are part of the spanning tree
create a forwarding table entry for the shared tree, called (*, G) entry, where the wildcard * stands
for “any source” (within the group G). The outgoing network port for this entry is the network
interface on which the Join message arrived during the spanning tree construction. All data
packets that arrive for group G are forwarded out to this port. Each source first sends its traffic to
the core router, which then multicasts it down the spanning tree. Consider the example in Figure
3-10 and assume that host £ multicasts a message to the group. Host £ constructs an IP packet
and uses the group G IP address (Figure 1-45). E sends the packet to a router on its local network
known as the designated router, in our case R8. R8 encapsulates the packet into a unicast IP
packet and sends it to the core R1 (Figure 3-11). When the packet reaches R1, the core removes
the unicast IP header and forwards it down the tree. As a pefromance optimization, packets
destined for the group do not need to reach the core before they are multicast. As soon as a packet
reaches the tree, it can be forwarded upstream toward the root, as well as downstream to all other
branches.

If any router or a link goes down, the downstream router that used this router as the next hop
towards the core will have to rejoin the spanning tree individually on behalf of each group present
on their outgoing interfaces. Further, during reconfiguring a new router as the core a situation can
occur where a leaf router finds that the next hop towards the new core is the router that is
downstream to it relative to the prior core. Such a situation is depicted in Figure 3-12. Here, after
reconfiguration, router R7 finds that in order to join the new core it has to send a join request
towards RS, which is downstream to it (i.e., R7 is still the next-hop router for R5 toward the old
core). To deal with this situation, R7 sends a “flush-tree” message downstream to teardown the
old tree, i.e., to break the spanning-tree branch from R7 to R5. The downstream routers then
perform explicit Rejoin if they have group members attached to them.

CBTs has several advantages over RPF’s flood-and-prune approach when the multicast group is
sparse (i.e., relatively few routers in the network have group members attached). First, routers
that are not members of the multicast group will never know of its existence, so we avoid the
overhead of flooding. Second, join and leave messages are explicit, so the hosts can join or leave
without waiting for the next flooded packet. Third, each router needs to store only one record per

Chapter 3 e Multimedia and Real-time Applications 207

OLD Core

Next hop Next hop
(to Core) = R7 (a) (to Core) = R7 (b)

Figure 3-12: Reconfiguration of a CBTs core router from (a) to (b) requires the spanning-
tree teardown and rebuilding a new spanning-tree.

group (the interfaces on which to forward packets for that group). It does not need to store per-
source prune information or compute a shortest path tree explicitly.

However, CBTs has several issues of its own. All traffic for the group must pass through the core
router, which can become a bottleneck. A shared spanning tree is not the most efficient solution
for different sources, as discussed below. Additionally, there is a reliability issue: if the core
router goes down, every multicast group that goes through it also goes down. Other issues
include: unidirectional vs. bidirectional shared trees; core placement and selection; multiple
cores; and, dynamic cores.

A shared spanning tree based on a core router is not optimal for all sources. For example in
Figure 3-11, a packet from R8 will reach R7 in four hops (via the core R1), instead of two hops
(via R6). In general, the path from a source to receiver via the core might be significantly longer
than the shortest possible path. The degree of inefficiency depends on where the core and sources
are located relative to each other. If the core is in the “middle,” the inefficiency is reasonably
small. A possible optimization is to build a source-specific tree. Instead of sending a wildcard
Join message to join the group G, a receiver router sends a source-specific Join towards the
source. As this message follows the shortest path towards the source S, the routers along the way
create an (S, G) entry for this tree in their forwarding table. The resulting tree has the root at the
source S rather than the core router, which may not be part of the new source-specific tree at all.
However, the group-shared tree rooted in the core should remain untouched so that other nodes in
the group G may become sources at a later point.

Core-based tree approach to building and maintaining spanning trees is implemented in the
Internet multicast protocol called Protocol-Independent Multicast (PIM), in the variation called
Sparse Mode (PIM-SM). See Section 8.2.4 for more information.

3.3.3 Peer-to-Peer Routing

Skype, etc.

Ivan Marsic e Rutgers University 208

3.3.4 Resource Reservation and Integrated Services

Integrated Services (IntServ) is an architecture that specifies the elements to guarantee quality-of-
service (QoS) on data networks. IntServ requires that every router in the system implements
IntServ, and every application that requires some kind of guarantees has to make an individual
reservation. Flow specifications (Flowspecs) describe what the reservation is for, while RSVP is
the underlying mechanism to signal it across the network.

There are two parts to a Flowspec:
(i) What does the traffic look like, specified in the Traffic SPECification or Ty part.

(if) What guarantees does it need, specified in the service Request SPECification or Ry
part.

Tgpees include token bucket algorithm parameters (Section 5.2). The idea is that there is a token
bucket which slowly fills up with tokens, arriving at a constant rate. Every packet that is sent
requires a token, and if there are no tokens, then it cannot be sent. Thus, the rate at which tokens
arrive dictates the average rate of traffic flow, while the depth of the bucket dictates how “bursty”
the traffic is allowed to be.

Tspecs typically just specify the token rate and the bucket depth. For example, a video with a
refresh rate of 75 frames per second, with each frame taking 10 packets, might specify a token
rate of 750Hz, and a bucket depth of only 10. The bucket depth would be sufficient to
accommodate the “burst” associated with sending an entire frame all at once. On the other hand, a
conversation would need a lower token rate, but a much higher bucket depth. This is because
there are often pauses in conversations, so they can make do with fewer tokens by not sending the
gaps between words and sentences. However, this means the bucket depth needs to be increased
to compensate for the traffic being burstier.

Rypecs specify what requirements there are for the flow: it can be normal internet “best effort,” in
which case no reservation is needed. This setting is likely to be used for webpages, FTP, and
similar applications. The “controlled load” setting mirrors the performance of a lightly loaded
network: there may be occasional glitches when two people access the same resource by chance,
but generally both delay and drop rate are fairly constant at the desired rate. This setting is likely
to be used by soft QoS applications. The “guaranteed” setting gives an absolutely bounded
service, where the delay is promised to never go above a desired amount, and packets never
dropped, provided the traffic stays within the specification.

Resource Reservation Protocol (RSVP)

The RSVP protocol (Resource ReSerVation Protocol) is a transport layer protocol designed to
reserve resources across a network for an integrated services Internet. RSVP defines how
applications place reservations for network resources and how they can relinquish the reserved
resources once they are not need any more. It is used by a host to request specific qualities of
service from the network for particular application data streams or flows. RSVP is also used by
routers to deliver quality-of-service (QoS) requests to all nodes along the path(s) of the flows and
to establish and maintain state to provide the requested service. RSVP requests will generally
result in resources being reserved in each node along the data path.

Chapter 3 e Multimedia and Real-time Applications 209

RSVP is not used to transport application data but rather to control the network, similar to routing
protocols. A host uses RSVP to request a specific QoS from the network, on behalf of an
application data stream. RSVP carries the request through the network, visiting each node the
network uses to carry the stream. At each node, RSVP attempts to make a resource reservation for
the stream.

To make a resource reservation at a node, the RSVP daemon communicates with two local
decision modules, admission control and policy control. Admission control determines whether
the node has sufficient available resources to supply the requested QoS. Policy control determines
whether the user has administrative permission to make the reservation. If either check fails, the
RSVP program returns an error notification to the application process that originated the request.
If both checks succeed, the RSVP daemon sets parameters in a packet classifier and packet
scheduler to obtain the desired QoS. The packet classifier determines the QoS class for each
packet and the scheduler orders packet transmission to achieve the promised QoS for each stream.

The routers between the sender and listener have to decide if they can support the reservation
being requested, and, if they cannot, they send a reject message to let the listener know about it.
Otherwise, once they accept the reservation they have to carry the traffic.

The routers store the nature of the flow, and then police it. This is all done in soft state, so if
nothing is heard for a certain length of time, then the reader will time out and the reservation will
be cancelled. This solves the problem if either the sender or the receiver crash or are shut down
incorrectly without first canceling the reservation. The individual routers have an option to police
the traffic to ascertain that it conforms to the flowspecs.

Summary of the key aspects of the RSVP protocol:
1. Shortest-path multicast group/tree
* Require a shortest-path multicast group/tree to have already been created.

* Tree created by Dijkstra algorithm (Section 1.4.2) for link state routing protocols, or via
reverse path broadcast procedure, for distance vector routing protocols.

2. PATH message
* Source sends a PATH message to group members with Ty info
* Tepec = Description of traffic flow requirements

3. Router inspection of PATH message

* Each router receiving the PATH message inspects it and determines the reverse path to the
source.

* Fach router also may include a QoS advertisement, which is sent downstream so that the
receiving hosts of the PATH message might be able to more intelligently construct, or dynamically
adjust, their reservation request.

4. RESV message
* Receiver sends RESV message “back up the tree” to the source.
* RESV message contains the (Tgpec, Rypec) info (the FlowSpec pair) and Filter spec.

* Rypec = Description of service requested from the network (i.e., the receiver’s requirements)

Ivan Marsic e Rutgers University 210

* Thus, the FlowSpec (Tgpec, Ropec) specifies a desired QoS.

* The Filter spec, together with a session specification, defines the set of data packets—the
“flow”—to receive the QoS defined by the FlowSpec.

5. Router inspection of RESV message

* Each router inspects the (Tgpec, Rypec) requirements and determines if the desired QoS can be
satisfied.

* If yes, the router forwards the RESV message to the next node up the multicast tree towards the
source.

* If no, the router sends a rejection message back to the receiving host.
6. RSVP session

* If the RESV message makes its way up the multicast tree back to the source, the reservation
flow request has been approved by all routers in the flow path, and transmission of the application
data can begin.

* PATH/RESV messages are sent by source/receiver every 30 seconds to maintain the reservation.

* When a timeout occurs while routers await receipt of a RESV message, then the routers will
free the network resources that had been reserved for the RSVP session.

RSVP runs over IP, both IPv4 and IPv6. Among RSVP’s other features, it provides opaque
transport of traffic control and policy control messages, and provides transparent operation
through non-supporting regions.

Limitations of Integrated Services

IntServ specifies a fine-grained QoS system, which is often contrasted with DiffServ’s coarse-
grained control system (Section 3.3.5).

The problem with IntServ is that many states must be stored in each router. As a result, IntServ
works on a small-scale, but as you scale up to a system the size of the Internet, it is difficult to
keep track of all of the reservations. As a result, IntServ is not very popular.

One way to solve this problem is by using a multi-level approach, where per-microflow resource
reservation (i.e., resource reservation for individual users) is done in the edge network, while in
the core network resources are reserved for aggregate flows only. The routers that lie between
these different levels must adjust the amount of aggregate bandwidth reserved from the core
network so that the reservation requests for individual flows from the edge network can be better
satisfied. See RFC 3175.

3.3.5 Traffic Classes and Differentiated Services

DiffServ (Differentiated Services) is an IETF model for QoS provisioning. There are different
DiffServ proposals, and some simply divide traffic types into two classes. The rationale behind
this approach is that, given the complexities of the best effort traffic, it makes sense to add new
complexity in small increments.

Chapter 3 e Multimedia and Real-time Applications 211

Network Layer Protocol (IP)

pre-marked or
unmarked packet

Based on Source-Address
and Destination-Address to
get corresponding Policy

Check if packet is out of
source’s declared profile

Discard bursts | Policer and Shaper |

\ 4

Mark according to policy Marker

Classify based on code point from
PHB Table to get the corresponding
physical and virtual queue

Class n queue mﬁ

Random Early Detection (RED) Queues \ 4

Y

\

Link Layer Protocol

Figure 3-13: DiffServ architecture.

Suppose that we have enhanced the best-effort service model by adding just one new class, which
we call “premium.”

Assuming that packets have been marked in some way, we need to specify the router behavior on
encountering a packet with different markings. This can be done in different ways and IETF is
standardizing a set of router behaviors to be applied to marked packets. These are called “per-hop
behaviors” (PHBs), a term indicating that they define the behavior of individual routers rather
than end-to-end services.

DiffServ mechanisms (Figure 3-13):
* Lies between the network layer and the link layer
* Traffic marked, metered, policed, and shaped at source
* Packets queued for preferential forwarding, based on:
- Delay bounds marking
- Throughput guarantees marking
* Queue for each class of traffic, varying parameters

* Weighted scheduling preferentially forwards packets to link layer

Ivan Marsic e Rutgers University 212

DiffServ Traffic Classes

One PHB is “expedited forwarding” (EF), which states that the packets marked as EF should be
forwarded by the router with minimal delay and loss. Of course, this is only possible if the arrival
rate of EF packets at the router is always less than the rate at which the router can forward EF
packets.

Another PHB is known as “assumed forwarding” (AF).

3.4 Adaptation Parameters

3.5 QoS in Wireless Networks

3.6 Summary and Bibliographical Notes

Latency, jitter and packet loss are the most common ills that plague real-time and multimedia
systems. The remedy is in the form of various quality-of-service (QoS) provisions. Chapter 4
analyzes store-and-forward and queuing congestion in switches and routers. Congestion can lead
to packets spacing unpredictably and thus resulting in jitter. The more hops a packet has to travel,
the worse the jitter. Latency due to distance (propagation delay) is due to the underlying physics
and nothing can be done to reduce propagation delay. However, devices that interconnect
networks (routers) impose latency that is often highly variable. Jitter is primarily caused by these
device-related latency variations. As a device becomes busier, packets must be queued. If those
packets happen to be real-time audio data, jitter is introduced into the audio stream and audio
quality declines.

Chapter 5 describes techniques for QoS provisioning.

The material presented in this chapter requires basic understanding of probability and random
processes. [Yates & Goodman 2004] provides an excellent introduction and [Papoulis & Pillai
2001] is a more advanced and comprehensive text.

Chapter 3 e Multimedia and Real-time Applications 213

For video, expectations are low
For voice, ear is very sensitive to jitter and latencies, and loss/flicker

QoS: [Wang, 2001]

— Multicast Routing

[Bertsekas & Gallagher, 1992] describe several algorithms for spanning-tree construction.
Ballardie, et al., [1993] introduced core based trees (CBT) algorithm for forming the delivery
tree—the collection of nodes and links that a multicast packet traverses. Also see RFC-2189.

[Gértner, 2003] reviews several distributed algorithms for computing the spanning tree of a
network. He is particularly focusing on self-stabilizing algorithms that are guaranteed to recover
from an arbitrary perturbation of their local state in a finite number of execution steps. This
means that the variables of such algorithms do not need to be initialized properly.

- IntServ

RSVP by itself is rarely deployed in data networks as of this writing (Fall 2009), but the traffic
engineering extension of RSVP, called RSVP-TE [RFC 3209], is becoming accepted recently in
many QoS-oriented networks.

As an important research topic: show that multihop can or cannot support multiple streams of
voice.

RFC-2330 [Paxson, et al., 1998] defines a general framework for performance metrics being
developed by the IETF’s IP Performance Metrics effort, by the IP Performance Metrics (IPPM)
Working Group.

RFC-3393 [Demichelis & Chimento, 2002] defines one-way delay jitter across Internet paths.
RFC 2205: Resource ReSerVation Protocol (RSVP) -- Version 1 Functional

There was no notion of QoS in Ethernet until 1998 when IEEE published 802.1p as part of the
802.1D-1998 standard. 802.1p uses a three-bit field in the Ethernet frame header to denote an
eight-level priority. One possible service-to-value mapping is suggested by RFC-2815, which
describes Integrated Service (IntServ) mappings on IEEE 802 networks.

[Thomson, et al., 1997]

Ivan Marsic e Rutgers University 214

Problems

Problem 3.1

Problem 3.2

Consider an internet telephony session, where both hosts use pulse code modulation to encode
speech and sequence numbers to label their packets. Assume that the user at host 4 starts
speaking at time zero, the host sends a packet every 20 ms, and the packets arrive at host B in the
order shown in the table below. If B uses fixed playout delay of ¢ =210 ms, write down the
playout times of the packets.

Packet sequence number Arrival time 7; [ms] Playout time p; [ms]
#1 195
#2 245
#3 270
#4 295
#6 300
#5 310
#7 340
#8 380
#9 385
#10 405
Problem 3.3

Consider an internet telephony session over a network where the observed propagation delays
vary between 50-200 ms. Assume that the session starts at time zero and both hosts use pulse
code modulation to encode speech, where voice packets of 160 bytes are sent every 20 ms. Also,

both hosts use a fixed playout delay of ¢ = 150 ms.
(a) Write down the playout times of the packets received at one of the hosts as shown in the

table below.
(b) What size of memory buffer is required at the destination to hold the packets for which
the playout is delayed?
Packet sequence number Arrival time 7; [ms] Playout time p; [ms]

#1 95
#2 145
#3 170
#4 135
#6 160
#5 275
#7 280

Chapter 3 e Multimedia and Real-time Applications 215

#8 220
#9 285
#10 305

Problem 3.4

Consider the same internet telephony session as in Problem 3.2, but this time the hosts use
adaptive playout delay. Assume that the first packet of a new talk spurt is labeled &, the current
estimate of the average delay is 5‘k = 90 ms, the average deviation of the delay is 9, =15 ms,
and the constants o= 0.01 and K = 4.

The table below shows how the packets are received at the host B. Write down their playout
times, keeping in mind that the receiver must detect the start of a new talk spurt.

Packet | Timestamp | Arrival time | Playout time Average delay 5‘1 Average

seq. # t; [ms] r; [ms] pi [ms] [ms] deviation 9,
k 400 480

k+1 420 510

k+2 440 570

k+3 460 600

k+4 480 605

k+7 540 645

kt6 520 650

k+8 560 680

k+9 580 690

k+10 620 695

k+11 640 705

Problem 3.5

Consider an internet telephony session using adaptive playout delay, where voice packets of 160
bytes are sent every 20 ms. Consider one of the receivers during the conversation. Assume that at
the end of a previous talk spurt, the current estimate for the average delay is Sk = 150 ms, the
average deviation of the delay is O, = 50 ms. Because of high delay and jitter, using the constant
K =4 would produce noticeable playout delays affecting the perceived quality of conversation. If
the receiver decides to maintain the playout delay at 300 ms, what will be the percentage of
packets with missed playouts (approximate)? Explain your answer.

(Hint: Use the chart shown in the figure below to derive the answer.)

A
[%2)
2 Playout delay >
v
[&]
@
o
2 | © Packets that will miss
8 their scheduled
8 playout time
- ¥
0 u Time when packet

arrives at receiver

Ivan Marsic e Rutgers University 216

Problem 3.6

Consider the Internet telephony (VoIP) conferencing session shown in the figure. Assume that
each audio stream is using PCM encoding at 64 Kbps. The packet size is 200 bytes.

Determine the periods for transmitting RTCP packets for all senders and receivers in the session.

Problem 3.7

Consider the following network where router 4 needs to multicast a packet to all other routers in
the network. Assume that the cost of each link is 1 and that the routers are using the reverse path

forwarding (RPF) algorithm.

Do the following:
(e) Draw the shortest path multicast tree for the network.
(f) How many packets are forwarded in the entire network per every packet sent by the

source A?
(g) Assuming that RPF uses pruning and routers £ and F do not have attached hosts that are

members of the multicast group, how many packets are forwarded in the entire network
per every packet sent by 4?

For each item, show the work, not only the final result.

Chapter 3 e Multimedia and Real-time Applications 217

Problem 3.8

Chapter 4

Switching and Queuing Delay Models

A key problem that switches and routers must deal with are the
finite physical resources. Network nodes and links are never
provisioned to support the maximum traffic rates because that
is not economical. We all know that highway networks are not
designed to support the maximum possible vehicular traffic.
Because of economic reasons, highway networks are built to
support average traffic rates. Traffic congestion normally
occurs during the rush hours and later subsides. If congestion
lasts too long, it can cause a major disruption of
travel in the area. Although this is very unpleasant
for the travelers and can cause economic loss, it is
simply too expensive to provision road networks
to avoid such situations altogether.
Similar philosophy guides the
design of communication

networks.

Data packets need two types of services on their way from the
source to the final destination:

e Computation (or processing), which involves adding
guidance information (or headers) to packets and
looking up this information to deliver the packet to its
correct destination

Contents

4.1 Packet Switching in Routers

4.1.1 How Routers Forward Packets
4.1.2 Router Architecture

4.1.3 Forwarding Table Lookup

4.1.4 Switching Fabric Design

4.1.5 Where and Why Queuing Happens

4.2 Queuing Models

4.2.1 Little's Law

4.2.2 M/ M/ 1 Queuing System
4.2.3 M/ M/1/m Queuing System
4.2.4 M/ G/ 1 Queuing System
425

426

4.3 Networks of Queues

4.3.1 x
4.3.2
4.3.3
434

4.4 x

44.1 x
4.4.2
443

4.5 x

45.1
452
453

X X X

4.6 Summary and Bibliographical Notes

Problems

e Communication (or transmission) of packets over communication links

Figure 4-1 compares the total time to delay a packet if the source and destination are connected
with a direct link vs. total time when an intermediate router relays packets. As seen, the router

introduces both processing and transmission delays.

Both services are offered by physical servers (processing units and communication links) which
have limited servicing capacity. When a packet arrives to a server that is already servicing
packets that arrived previously, then we have a problem of contention for the service. The new
packet is placed into a waiting line (or queue) to wait for its turn. The delay experienced while

218

Chapter 4 e Switching and Queuing Delay Models 219

Source Destination Source Router Destination

v | [! [

|
transmission | I | |
time T# | | |
| | |
| i |
|
|
|
|
|
! A
| | router
| | delay
| I

(b)

propagation
time

y

E
-
T (@)

Figure 4-1: Delays in datagram packet switching (or, forwarding, or, routing). (a) Single
hop source-to-destination connection without intermediary nodes. (b) Intermediary nodes
introduce additionally processing and transmission delays.

waiting in line before being serviced is part of the total delay experienced by packets when
traveling from source to destination. Generally, packets in a networked system experience these
types of delays:

processing + transmission + propagation + queuing

The first three types of delays are described in Section 1.3. This chapter deals with the last kind of
delay, queuing delays. Queuing models are used as a prediction tool to estimate this waiting
time:

e Computation (queuing delays while waiting for processing)
¢ Communication (queuing delays while waiting for transmission)

This chapter studies what contributes to routing delays and presents simple analytical models of
router queuing delays. Chapter 5 describes techniques to reduce routing delays or redistribute
them in a desired manner over different types of data traffic.

lvan Marsic e Rutgers University 220

="

Input port Output port Input port Output port

Link Iayér protocol Link Iayér protocol
o |

Network port

(bidirectional) ! Switching

________ . fabric] e crcoal Looomooo

Figure 4-2: Hardwar e and softwar e components of a router.

4.1 Packet Switching in Routers

Section 1.4 introduced routers and mainly focused on the control functions of routers. This
section describes the datapath functions of routers. A key problem to deal with is the resource
limitation. If the router is too slow to move the incoming packets, the packets will experience
large delays and may need to be discarded if the router runs out of the memory space (known as
buffering space). When packets are discarded too frequently, the router is said to be congested.
The ability of a router to handle successfully the resource contention is a key aspect of its
performance.

Figure 4-2 illustrates key hardware and software components of a router. Section 4.1.1 describes
how these components function to forward data packets. Although network ports are
bidirectional, it is useful to logically separate input and output ports. Router implements only the
bottom two layers of the software protocol stack: link and network layer. Each network port has
an associated link-layer protocol, but the network-layer protocol is common for all ports. This
property will be explained later with Figure 4-4.

4.1.1 How Routers Forward Packets

Routers have two main functions:

1. Forwarding or switching packets (datapath functions) that pass through the router. One
could think of these functions as using maps to direct the packets to their destinations.
These operations are performed very frequently and are most often implemented in
special purpose hardware.

2. Maintaining routing tables (control functions) by exchanging network connectivity
information with neighboring routers, as well as system configuration and management.
One could think of these functions as surveying and cartography to build the maps that

Chapter 4 e Switching and Queuing Delay Models 221

gwitching Fabri,

\‘-\put P O/?,

Network Layer
@ d

d— .u_‘/ -

Link & Physical
Layers

S YIPN 2

@ Forwarding decision for packets

I | @ @ Moving packets from input to output port

@ Transmission of packets

———— Services offered to incoming packets: —,
I((-) @ @ Receiving and storing packets (%

Figure 4-3: How router forwards packets. illustrated are four key services offered to
incoming data packets.

are used for packet forwarding. These operations are performed relatively infrequently
and are invariably implemented in software.

When trying to improve the per-packet performance of a router, we focus on the datapath
functions because they must be fast. Routing table maintenance is described in Section 1.4. This
chapter focuses on the datapath functions of packet forwarding (or, switching).

The datapath architecture consists of three main units: (1) input ports where incoming packets are
received; (2) switching fabric that transfers packets from input to output ports; and, (3) output
ports that transmit packets to an outgoing communication link. Routers offer four key functions
to incoming data packets (illustrated in Figure 4-3):

1. A packet is received and stored in the local memory on the input port at “‘(-) @

which the packet arrived.
2. The packet guidance information (destination address, stored in the packet @

lvan Marsic e Rutgers University 222

header) is looked up and the forwarding
decision is made as to which output port
the packet should be transferred to.

3. The packet is transferred across the
switching fabric (also known as the

backplane) to the appropriate output port,
as decided in the preceding step.

4. The packet is transmitted on the output port over the outgoing

communication link. @

4.1.2 Router Architecture

Figure 1-12 shows protocol layering in end systems and intermediate nodes (switches or routers).
Figure 4-4 shows the same layering from a network perspective. Each router runs an independent
layer-1 (Link layer) protocol for each communication line. A single network layer (layer-2) is
common for all link layers of the router.

The key architectural question in router design is about the implementation of the (shared)
network layer of the router’s protocol stack. The network layer binds together the link layers and
performs packets switching. Link layers are terminating different communication links at the
router and they essentially provide data input/output operations. They function independently of
one another and are implemented using separate hardware units.

Chapter 4 e Switching and Queuing Delay Models 223

Ke
L3
L2
L1

<

End-to-End Layer
Network Layer
Link Layer

Network

End system

End system

Figure 4-4: Distribution of protocol layersin routersand end systems.

The router’s network layer must deal simultaneously with many parallel data streams. To achieve
high performance, the network layer could be implemented in parallel hardware. The issues that
make the router’s network layer design of difficult include:

e Maintaining consistent forwarding tables: If the networking layer is distributed over
parallel hardware units, each unit must maintain its own copy of the forwarding table.
Because the forwarding table dynamically changes (as updated by the routing algorithm),
all copies must be maintained consistent.

e Achieving high-speed packet switching: Once a packet’s outgoing port is decided, the
packet must be moved as quickly as possible from the incoming to the outgoing port.

¢ Reducing queuing and blocking: If two or more packets cross each other’s way, the must
be ordered in series, where they move one-by-one while others are waiting for their turn.
The pathways inside the router should be designed to minimize chances for queuing and
blocking to occur.

Over the years, different architectures have been used for routers. Particular architectures have
been selected based on a number of factors, including cost, number of network ports, required
performance, and currently available technology. The detailed implementations of individual
commercial routers have generally remained proprietary, but in broad terms, all routers have
evolved in similar ways. The evolution in the architecture of routers is illustrated in Figure 4-5.

First-Generation Routers: Central CPU Processor. The original routers were built around a
conventional computer architecture, as shown in Figure 4-5(a): a shared central bus, with a
central CPU, memory, and peripheral Line Cards (or, Network Interface Cards). Each Line Card
performs the link-layer function, connecting the router to each of the communication links. The
central CPU performs the network-layer function. Packets arriving from a link are transferred
across the shared bus to the CPU, where a forwarding decision is made. The packet is then
transferred across the bus again to its outgoing Line Card, and onto the communication link.
Figure 4-6 highlights the datapath of first-generation routers.

Ivan Marsic e Rutgers University 224
CPU CPU
packets Me@ory NFE Memory NFE
m % Processor Processor
Line Card ¢ : » ¢ > Line Card [Line card CPU | P | CPU Line Card
« #1 #4 hig #1 Memory 1> - i Memory #4 hig
Line Card ¢ ; Line Card Line Card CPU | o P | CPU Line Card
it #2 #5 % gt #2 Memory - v — -~ Memarv #5 E
Line Card ¢ N Line Card Line Card CPU | o P .| CPU Line Card
hid #3 #6 nidi g #3 Memory | b e | Memory #6 hig
(a) (b)
packets Memory
Line Card | | Fwd Fwd | [Line Card
Diel #1 Engine 14 I Engine #4 hig
LineCard [| Fwd "::i: Fwd | | Line Card
i #2 Engine Enaine #5 5
Line Card Fwd Fwd Line Card
i #3 Engine Engine #6 hig

(c)

Figure 4-5: The basic architectures of packet-switching processors. (a) Central CPU
processor; (b) Parallel network-front-end processors; (¢) Switching fabric. The curved line
indicates the packet path, from input to output port.

Second-Generation Routers: Network Front-end (NFE) Processors. The main limitation of
the architecture in Figure 4-5(a) is that the central CPU must process every packet, ultimately
limiting the throughput of the system. To increase the system throughput, the architecture in
Figure 4-5(b) implements parallelism by placing a separate CPU at each interface. That is, the
link-layer is still implemented in individual Line Cards, but the network-layer function is
distributed across several dedicated CPUs, known as network front-end (NFE) processors. A
local forwarding decision is made in a NFE processor, and the packet is immediately forwarded
to its outgoing interface. The central CPU is needed to run the routing algorithm and for
centralized system management functions. It also computes the forwarding table and distributes it
to the NFE processors.

The architecture in Figure 4-5(b) has higher performance than a first-generation design because
the network-layer function is distributed over several NFE processors that run in parallel; and
because each packet need only traverse the bus once, thus increasing the system throughput.
Figure 4-7 highlights the datapath of second-generation routers. However, the performance is still
limited by two factors. First, forwarding decisions are made in software, and so are limited by the
speed of the NFE processor, which is a general purpose CPU. But general purpose CPUs are not
well suited to applications in which the data (packets) flow through the system; CPUs are better
suited to applications in which data is examined multiple times, thus allowing the efficient use of

Chapter 4 e Switching and Queuing Delay Models 225

CPU Forwarding & Routing
processor

Input port

Network layer

Output port

Link layer
<> >
............................ >
Qi \
packets

System bus

Figure 4-6: Packet datapath for switching via memory. Also shown in Figure 4-5(a).

Input port Output port Routing processor
NFE processor I_:IFE processor CPU
Network Iayer é. ’E ek ’E Memory

Line card Line card

System bus

Figure 4-7: Packet datapath for switching via bus. Also shown in Figure 4-5(b).

a cache. Carefully designed, special purpose ASICs can readily outperform a CPU when making
forwarding decisions, managing queues, and arbitrating access to the bus. Hence, CPUs are being
replaced increasingly by specialized ASICs. The second factor that limits the performance is the
use of a shared bus—only one packet may traverse the bus at a time between two Line Cards.
Performance can be increased if multiple packets can be transferred across the bus
simultaneously. This is the reason that a switch fabric is used in high-end routers.

Third-Generation Routers: Switching Fabric. By introducing a hardware-forwarding engine
and replacing the bus with an interconnection network, we reach the architecture shown in Figure
4-5(c). In an interconnection network, multiple Line Cards can communicate with each other
simultaneously greatly increasing the system throughput. Today, the highest performance routers
are designed according to this architecture.

Input Ports

The key functions of input ports are to receive packets and make the forwarding decision. This
spans both link and network layers of the protocol stack.

A network port is not the same as a Line Card. A Line Card supports the link-layer functionality
of a network port, which is receiving and transmitting packets. A Line Card may also support the
network-layer functionality, if the Network Front-End Processor is located on a Line Card as in

ﬂ\'(— Visit http://en.wikipedia.org/wiki/ASIC for information about Application-Specific Integrated Circuits

lvan Marsic e Rutgers University 226

fF; ?]Létt'ig?] Unicast routing wi t# .?)'f;esst E)c;ust,lenrg\]/ice Multicast routing
Longest match on
Longest prefix match source address
Forwarding Longest prefix match on destination address + exact match on
algorithm on destination address + exact match on Type source address,
of Service destination address,
and incoming interface

Figure 4-8: Forwarding algorithmsfor different routing functions.

second-generation routers. However, it may not have any of the network-layer functionality,
which is the case in first-generation routers where all network-layer functionality is supported by
the central processor and memory.

Output Ports

The key function of output ports is to transmit packets on the outgoing communication links. If
packets are arriving at a greater rate than the output port is able to transmit, some packets will be
enqueued into waiting lines. The output port may also need to manage how different types of
packets are lined up for transmission. This is known as scheduling and several scheduling
techniques are described in Chapter 5. As with input ports, these functions span both link and
network layers of the protocol stack.

4.1.3 Forwarding Table Lookup

We know from Section 1.4.4 that routers use destination address prefixes to identify a contiguous
range of IP addresses in their routing messages. A destination prefix is a group of IP addresses
that may be treated similarly for packet forwarding purposes. Based on its routing table, the
router derives its forwarding table, also known as FIB (Forwarding Information Base), and uses it
for making forwarding decisions for data packets. Each entry in a forwarding table/FIB represents
a mapping from an IP address prefix (a range of addresses) to an outgoing link, with the property
that packets from any destination with that prefix may be sent along the corresponding link.
Forwarding table entries are called routes.

The algorithm used by the forwarding component of a router to make a forwarding decision on a
packet uses two sources of information: (1) the forwarding table or FIB, and (2) the packet
header. Although IP addresses are always the same length, IP prefixes are of variable length. The
IP destination lookup algorithm needs to find the longest prefix match—the longest prefix in the
FIB that matches the high-order bits in the IP address of the packet being forwarded. Longest
prefix match used to be computationally expensive. The advances that have been made in
longest-match algorithms in recent years have solved the problem of matching.

Packet forwarding decision depends on several parameters, depending on the routing function
that needs to be supported (Figure 4-8), such as unicast routing, multicast routing, or unicast

Chapter 4 e Switching and Queuing Delay Models 227

routing with Types of Service. Therefore, in addition to the information that controls where a
packet is forwarded (next hop), an entry in the forwarding table may include the information
about what resources the packet may use, such as a particular outgoing queue that the packet
should be placed on (known as packet classification, to be described later). Forwarding of unicast
packets requires longest prefix match based on the network-layer destination address. Unicast
forwarding with Types of Service requires the longest match on the destination network-layer
address, plus the exact match (fixed-length match) on the Type of Service (TOS) bits carried in
the network-layer header (Figure 1-36). Forwarding of multicast packets requires longest match
on the source network-layer address, plus the exact match (fixed-length match) on both source
and destination addresses, where the destination address is the multicast group address.

For the purposes of multicast forwarding, some entries in the forwarding table/FIB may have
multiple subentries. In multicast, a packet that arrives on one network interface needs to be sent
out on multiple outgoing interfaces that are identified in subentries of a FIB record.

4.1.4 Switching Fabric Design

Problems related to this section: ?? — Problem 4.7
Switch Design Issues:

» Switch contention occurs when several packets are crossing each other’s path — switch cannot
support arbitrary set of transfers;

» Complex rearranging of the timetable for packet servicing (known as scheduling) is needed to
avoid switch contention;

* High clock/transfer rate needed for bus-based design (first- and second-generation routers);

* Packet queuing (or, buffering) to avoid packet loss is needed when the component that provides
service (generally known as “server”) is busy;

Example switch fabrics include:

* Bus (first- and second-generation routers)
* Crossbar

* Banyan network

Banyan networks and other interconnection networks were initially developed to connect
processors in a multiprocessor. They typically provide lower capacity than a complete crossbar.

Switching fabric may introduce different types of packet blocking. For example, if two or more
packets at different inputs want to cross the switching fabric simultaneously towards the same
output, then these packets experience output blocking. When one packet is heading for an idle
port, but in front of it (in the same waiting line/queue) is another packet headed for a different
output port that is currently busy, and the former packet must wait until the latter departs, then the
former packet experiences head-of-line blocking. Find more information about packet blocking in
Section 4.1.5.

lvan Marsic e Rutgers University 228

Crossbar

The simplest switch fabric is a crossbar, which is a matrix of pathways that can be configured to
connect any input port to any output port. An N X N crossbar has N input buses, N output buses,
and N* crosspoints, which are either ON or OFF. If the (i, j) crosspoint is on, the i input port is
connected to the j™ output port.

A crossbar needs a switching timetable, known as switching schedule, that tells it which inputs to
connect to which outputs at a given time. If packets arrive at fixed intervals then the schedule can
be computed in advance. However, in the general case, the switch has to compute the schedule
while it is operating.

If packets from all N inputs are all heading towards different outputs then crossbar is N times
faster than a bus-based (second-generation) switch. However, if two or more packets at different
inputs want to go to the same output, then crossbar suffers from “output blocking” and as a result,
it is not fully used. In the worst-case scenario, each output port must be able to accept packets
from all input ports at once. To avoid output blocking, each output port would need to have a
memory bandwidth equal to the total switch throughput, i.e., N X input port datarate. In reality,
sophisticated designs are used to address this issue with lower memory bandwidths.

Banyan Network

Banyan network is a so-called self-routing switch fabric, because each switching element
forwards the incoming packets based on the packet’s tag that represents the output port to which
this packets should go. The input port looks up the packet’s outgoing port in the forwarding table
based on packet’s destination, and tags the packet with a binary representation of the output port.
A Banyan switch fabric is organized in a hierarchy of switching elements. A switching element at
level i checks the i bit of the tag; if the bit is 0, the packet is forwarded to the upper output, and
otherwise to the lower output. Therefore, the tag can be considered a self-routing header of the
packet, for routing the packet inside the switching fabric. The tag is removed at the output port
before the packet leaves the router.

Chapter 4 e Switching and Queuing Delay Models 229

Input port Output port
tag tag
00 o 0 00
Input port Output port
9 tag tag 01 O O 01
Packet 10 =0 1
with tag 1 10 o o 10
11 o 011
(a) (b)
Input port Output port
tag tag
000 O] —° 000
0010— KEXETREE T te] 001
Packet
with tag 100 ~@
‘. 010 =1, —0 010
oi1o— " * —o 011
()
100 ©— Le0*[TT0 100
101 ** — 101
Packet
with tag 001 ~g
110 o—.—.—.....'. EEEENE —0110
111 —© 111

Figure 4-9: Banyan switch fabric. (a) A Banyan switching element is a 2x 2 switch that
moves packets either to output port O (upper port) or output port 1 (lower port), depending
on the packet’s tag. (b) A 4x 4 Banyan network is composed from four 2x 2 switching
elements. (c) An 8 x 8 Banyan network is composed from twelve 2 x 2 switching elements.

The building block of a Banyan network is a 2 X 2 switch, i.e., a switch with two inputs and two
outputs. The upper input and output ports are labeled with 0 and the lower input and output ports
are labeled with 1. This switch moves packets based on a single-bit tag. For example, in Figure
4-9(a) a packet labeled with tag “1” arrives at input port 0 of a 2 X 2 switch. The switch directs
the packet to the lower output port (the output port 1). To create a 4 x 4 switch, we need four
2 X 2 switching elements placed in a grid as in Figure 4-9(b). First we take two 2 X 2 switches and
label them 0 and 1. Then we take another pair of 2 X 2 switches and place them before the first
two. When a packet enters a switching element in the first stage, it is sent to the 2 x 2 switch
labeled 0 if the first bit of the packet’s tag is 0. Otherwise, it is sent to the switch labeled 1. To
create an 8 X 8 switch, we need two 4 x 4 switches and four 2 X 2 switching elements placed in a
grid as in Figure 4-9(c). Again, we label the two 4 x4 switches as 0 and 1. The four 2 x 2
switching elements are placed before the 4 x4 switches, and they send the packets to the

lvan Marsic e Rutgers University 230

corresponding 4 x 4 switch based on the first bit of the packet’s tag. (Note that there are several
equivalent 8 X 8 Banyan switches, only one of which is shown in Figure 4-9(c).)

If two incoming packets on any 2 X 2 switching element want to go to the same output port of this
element, they collide and block at this element. For example, if two packets with tags “000” and
“010” arrived at the input ports “000” and “001” in Figure 4-9(c), then they will collide at the
first stage (in the upper-left corner 2 x 2 switching element), because they both need to go to the
same output of this switching element. The switching element discards both of the colliding
packets. Because packet loss is not desirable, we need to either prevent collisions or deal with
them when they happen. In either case, instead of loss, the packet experiences delay while waiting
for its turn to cross the switching fabric.

One option is to deal with collisions when they happen. This option requires a memory buffer for
storing packets within the switching element. One of the colliding packets is transferred to the
requested direction, while the other is stored in the buffer and sent in the subsequent cycle. This
design is called internal queuing in Section 4.1.5. In the worst-case of input-traffic pattern, the
internal buffer size must be large enough to hold several colliding packets.

Another option is to deal with collisions is to prevent them from happening. One way of
preventing collisions is to check whether a path is available before sending a packet from an input
port.

An alternative way of preventing collisions is by choosing the order in which packets appear at
the input of the switching fabric. Obviously, the router cannot choose the input port at which a
particular packet will arrive—packets arrive along the links depending on the upstream nodes that
transmitted them. What can be done is to insert an additional network (known as sorting network)
before a Banyan network, which rearranges the packets so that they are presented to the Banyan
network in the order that avoids collisions. This is what a Batcher network does.

Batcher-Banyan Network

A Batcher network is a hardware network that takes a list of numbers and sorts them in the
ascending order. Again, we assume that packets are tagged at the input ports at which they arrive.
A tag is a binary representation of the output port to which the packet needs to be moved. A
Batcher network sorts the packets that are currently at input ports into a non-decreasing order of
their tags.

Figure 4-10 shows several Batcher sorting networks. To get an intuition why this network will
correctly sort the inputs, consider Figure 4-10(b). The first four comparators will “sink” the
largest value to the bottom and “lift” the smallest value to the top. The final comparator simply
sorts out the middle two values.

Chapter 4 e Switching and Queuing Delay Models 231

5
Comparator .] L 03
Input Output 3
numbers numbers 50 H HI~G] L —o 4
5 O_l Low—o0 3
7 H——o05
3 0— V¥ High——o5 3 0— L L —/4_
4
4 o— H H o7
(a) (b)
Input Output
list 5 4 list
o— O
° 4 1 4 !
5 5 O 2
o > / \
o—] —o
6 6 > 3 3
49—
N _/— 4
3
(c)
T AL Y
20— 6
6 /
3 9 7
1 o— 7
7 7
7 O 9

Figure 4-10: Batcher network. (a) A comparator element output the smaller input value at
the upper output and the greater input value at the lower output. (b) A 4x 4 Batcher
network is composed five comparators. (c) An 8x 8 Batcher network is composed from
twelve comparators.

A combined Batcher-Banyan network is collision-free only when there are no packets heading for
the same output port. Because there may be duplicates (tags with the same output port number) or
gaps in the sequence, an additional network or special control sequence is required. Figure 4-11
shows a trap network and a shuffle-exchange network (or, concentrator) which serve to remove
duplicates and gaps. In order to eliminate the packets for the same output, a trap network is
required at the output of the Batcher sorter. Because packets are sorted by the Batcher sorter, the
packets for the same output can be checked by comparison with neighboring packets. The trap
network performs this comparison, and selects only one packet per output. Duplicates are trapped
and dealt with separately.

One way to deal with the trapped duplicates is to store them and recirculate back to the entrance
of the Batcher network, so in the next cycle they can compete with incoming packets. This
requires that at least half the Batcher’s inputs be reserved for recirculated packets (to account for
the worst-case scenario).

lvan Marsic e Rutgers University 232

—| Batcher Trap Shuffle Banyan [
— sort network exchange network F——
—1 network network —

Figure 4-11: Batcher-Banyan network. Internal blocking is avoided by sorting the inputsto
a Banyan network. A trap network and a shuffle-exchange network remove duplicates and

gaps.

An alternative is to take the duplicates through multiple Banyan networks, where each packet that
wants to go to the same output port is presented to a separate Banyan network.

Even when duplicates are removed, unselected and eliminated packets (gaps in the input
sequence) generate empty inputs for the Banyan network. These gaps cause collisions in the
Banyan network even if all packets are heading to different outputs. For example, consider an
8 x 8 Batcher-Banyan network with four packets heading to outputs 0, 0, 0, and 1, respectively.
Although two of the three packets for the output 0 are trapped, the remaining two packets still
collide in the second stage of the Banyan. To solve this problem, a shuffle-exchange network (or,
concentrator) is required. In order to eliminate empty inputs, packets are shifted and the conflict
is avoided. Although the role of the concentrator is just shifting the packets and eliminating
empty inputs, the implementation is difficult because the number of packets that will be trapped
cannot be predicted. Usually, special control sequence is introduced, or a Batcher sorter is used
again as the concentrator.

4.1.5 Where and Why Queuing Happens

Problems related to this section: Problem 4.9 — ??

Queuing happens when customers are arriving at a rate that is higher than the server is able to
service. In routers, waiting lines (queues) may be formed for any of the three services shown in
illustrated in Figure 4-3, except for receiving packets at the input port. Packet queuing in routers
is also known as switch buffering. The router needs memory allow for buffering, i.e., storing
packets while they are waiting for service. By adopting different designs, the router architect can
control where the buffering will occur.

Chapter 4 e Switching and Queuing Delay Models 233

Car experiencing
head-of-line
blocking

Figure 4-12: Illustration of forwarding issues by aroad inter section analogy.

Before considering how queuing occurs in packet switches, let us consider the analogy with
vehicular traffic, illustrated in Figure 4-12. The car in the lower left corner could go if it were not
for the car in front of it that wishes to make the left turn but cannot because of the cars arriving in
the parallel lane from the opposite direction. We say that the lower-left-corner car experiences
head-of-line (HOL) blocking. A queue of cars will be formed at an entrance to the road
intersection (or, “input port”) because the front car cannot cross the intersection area (or,
“switching fabric”).

Another cause for queuing occurs the access to the intersection area (or, “switching fabric) has
to be serialized. In Figure 4-12, the cars crossing from upper left corner to lower right corner and
vice versa must wait for their turn because the intersection area is busy. Notice that we need an
“arbiter” to serialize the access to the intersection area, and STOP/GO signals in Figure 4-12
serve this purpose. The corresponding queuing occurs in a router when the switching fabric has
insufficient capacity to support incoming packet traffic. The queuing occurs at the input port and
it is known as input queuing (or, input buffering) or in the switch fabric (internal queuing).

lvan Marsic e Rutgers University 234

y \ Time
- First bit received
<«

Reception delay = t>|(
< Fwd decision f Last bit received
Input port ; '
ueuing delay
q g y v i
D Forwarding decision delay = ;
A
Fabric traversal f
ueuing delay
q g y v i
Switch fabric Switch fabric traversal delay =
4 A
Transmission
queuing delay !
* First bit transmitted
Output port <
Transmission delay = t)?
Last bi itted
ast bit transmitte
- _ 74

Figure 4-13: Components of delay in data packet forwarding.

Yet another reason for queuing occurs when an outgoing road cannot support the incoming traffic
and the corresponding intersection exit becomes congested. In this case, even if an incoming car
does not experience head-of-line blocking and it has a GO signal, it still bust wait because the exit
is congested. The corresponding queuing occurs in a router when the outgoing communication
line has insufficient capacity to support incoming packet traffic. The queuing may occur at the
input port (input queuing), in the switch fabric (internal queuing), or at the output port (output
gueuing).

Figure 4-13 summarizes the datapath delays in a router. Some of these delays may be negligible,
depending on the switch design. As already noted, queuing may also occur in the switch fabric
(internal queuing), which is not shown in Figure 4-13.

Input Queuing

In switches with pure input queuing (or, input buffering), packets are stored at the input ports and
released when they win access to both the switching fabric and the output line. An arbiter decides
the timetable for accessing the fabric depending on the status of the fabric and the output lines
(Figure 4-14). Because the packets leaving the input queues are guaranteed access to the fabric
and the output line, there is no need for an output queue.

The key advantage of input queuing is that links in the switching fabric (and the input queues
themselves) need to run at the speed of the input communication lines. For a router with N input
ports and N output ports, only the arbiter needs to run N times faster than the input lines.

Chapter 4 e Switching and Queuing Delay Models 235

Input ports Switch fabric Output ports

]

]

]
1 '
1 1
\ ’
\ s

“ ’
\ ’
~ 3
~ e

Arbiter

Figure 4-14: A router with input queuing. The arbiter releases a packet from an input
queues when a path through the switch fabric and the output lineis available.

The problem with input-queued routers is that if input queues are served in a first-come-first-
served (FCFS) order, then a head-of-line packet destined for a busy output blocks the packets in
the queue behind it. This is known as head-of-line (HOL) blocking. HOL blocking can be
prevented if packets are served according to a timetable different from FCFS. Scheduling
techniques that prevent HOL blocking are described in Chapter 5.

Output Queuing

In switches with pure output queuing (or, output buffering), packets are stored at the output ports.
Incoming packets immediately proceed through the switching fabric to their corresponding output
port. Because multiple packets may be simultaneously heading towards the same output port, the
switch must provide a switching-fabric speedup proportional to the number of input ports. In a
switch with N input ports, each output port must be able to store N packets in the time it takes a
single packet to arrive at an input port. This makes the hardware for the switching fabric and
output queues more expensive than in input queuing.

Notice that output queue do not suffer from head-of-line blocking—the transmitter can transmit
the packets in the packets according to any desired timetable. The output port may rearrange its
output queue to transmit packets according to a timetable different from their arrival order. We
will study scheduling disciplines in Chapter 5.

Internal Queuing
* Head of line blocking

* What amount of buffering is needed?

lvan Marsic e Rutgers University 236

Interarrival
time=A, - A,
% Server —»‘ r_
i al ©l & - [5]-
Input Time
Arriving System Departing sequence N

customers | an . | customers A Al Ag A

ﬂ ﬂ ﬂ ﬂ % % Output e s
in out
e S

sequence
e e
Service X, Xs X

time = X;

_>Waiting

time = W,

Figure 4-15: General service delay model: customers are delayed in a system for their own
service time plus a possible waiting time. Customer 3 has to wait in line because a previous
customer isbeing serviced at customer 3'sarrival time.

4.2 Queuing Models

Queuing introduces latency, and the potential for packet loss if a queue overflows. When traffic
patterns are bursty, the queuing-induced latency varies unpredictably from packet to packet,
manifesting itself as jitter (delay variability) in the affected traffic streams. Modeling queuing
processes is important for understanding the problem and designing the solutions.

General Server

A general service model is shown in Figure 4-15. Customers arrive in the system at a certain rate.
It is helpful if the arrival times happened to be random and independent of the previous arrivals,
because such systems can be well modeled. The server services customers in a certain order, the
simplest being their order of arrival, also called first-come-first-served (FCFS). Every physical
processing takes time, so a customer i takes a certain amount of time to service, the service time
denoted as Xi.

Most commonly used performance measures are: (1) the average number of customers in the
system; and, (2) average delay per customer. A successful method for calculating these
parameters is based on the use of a queuing model. Figure 4-16 shows a simple example of a
queuing model, where the system is represented by a single-server queue. The queuing time is the
time that a customer waits before it enters the service. Figure 4-17 illustrates queuing system
parameters on an example of a bank office with a single teller.

Why Queuing Happens?

Queuing occurs because of the server’s inability to process the customers at the rate at which they
are arriving. When a customer arrives at a busy server, it enters a waiting line (queue) and waits
on its turn for processing. The critical assumption here is the following:

Chapter 4 e Switching and Queuing Delay Models 237

System
<— Queue —«— Server
|) Departing

Arriving packets Queued packets Serviced packet : packets
\\\\\\\\\
Source _m) eee I L
Arrlval rate Service rate
= A packets per second = u packets per second

Figure 4-16: Simple queuing system with a single server.

I s Total delay of customer i = Waiting + Service time

r T, =W, +X

f

/

Server
Service rate u

Arrival rate 4
customers
[customers} unlt of tlme
unit of time F— Customers in queue —>‘

Customer
in service

N
Li Customers in system ‘

Figure4-17: lllustration of queuing system parameters.

Average arrival rate < Maximum service rate

Otherwise, the queue length would grow unlimited and the system would become meaningless
because some customers would have to wait infinite amount of time to be serviced. A corollary of
this requirement is that queuing is an artifact of irregular customer arrival patterns, sometimes
being too many, sometimes very few. Customers arriving in groups create queues. Had they been
arriving “individually” (well spaced), allowing the server enough time to process the previous
one, there would be no queuing. The arrival pattern where the actual arrival rate is equal to the
average one would incur no queuing delays on any customer.

This is illustrated in Figure 4-18 where we consider a bank teller that can service five customers
customers . . .
per hour, y= Sh—, on average. This means, serving one customer takes 12 minutes, on
our
average. Assume that for a stretch of time all arriving customers take 12 minutes to be served and
that three customers arrive as shown in the figure. Although the server capacity is greater than the
arrival rate, the second and third customers still need to wait in line before being served, because
their arrivals are too closely spaced. If the customers arrived spaced according to their departure

times at the same server, there would be no queuing delay for any customer. However, if this

Ivan Marsic e Rutgers University 238

Arrival times sequence Departure times sequence
C
c, C, C, Cs
C, Server
©
v
: ‘ ‘ ‘ ‘ ‘ : : — 5 Y ‘ ,
Sy S s S Y ¥ S
SN _ 4 N S N S 5
Time — Time —

Figure 4-18: Illustration of how queues are formed. The server can serve 5 customers per
hour and only 3 customers arrive during an hour period. Although the server capacity is
greater than the arrival rate, some customers may still need to wait before being served,
becausetheir arrivals aretoo closely spaced.

sequence arrived at a server that can service only four customers per hour, again there would be
queuing delays. Thus, having a server with service rate greater than the arrival rate is no
guarantee that there will be no queuing delays. In summary, queuing results because packet
arrivals cannot be preplanned and provisioned for—it is too costly or physically impossible to
support peak arrival rates.

Note also that in the steady state, the average departure rate equals the average arrival rate. Server
utilization = (arrival rate / max. service rate)

Communication Channel

Queuing delay is the time it takes to transmit the packets that arrived earlier at the network
interface. Packet’s service time is its transmission time, which is equal to L/C, where L is the
packet length and C is the server capacity. In case of packet transmission, “server capacity” is the
outgoing channel capacity. The average queuing time is typically a few transmission times,
depending on the load of the network.

—())— delay o< capacity ™'

Another parameter that affects delay is error rate—errors result in retransmissions, which
significantly influence the delay. Reliable vs. unreliable (if error correction is employed +
Gaussian channel)

We study what are the sources of delay and try to estimate its amount. In a communication
system, main delay contributors are (see Section 1.3):

e Processing (e.g., conversion of a stream of bytes to packets or packetization,
compression/fidelity reduction, encryption, switching at routers, etc.)

¢ Queuing, due to irregular packet arrivals, sometimes too many, sometimes just few

e Transmission, converting the digital information into analog signals that travel the
medium

e Propagation, signals can travel at most at the speed of light, which is finite

e Errors or loss in transmission or various other causes (e.g., insufficient buffer space in
routers, recall Figure 2-11 for TCP), resulting in retransmission

Chapter 4 e Switching and Queuing Delay Models 239

Errors result in retransmission. For most links, error rates are negligible, but for multiaccess links,
particularly wireless links, they are significant.

Processing may also need to be considered to form a queue if this time is not negligible.

Give example of how delay and capacity are related, see Figure from Peterson & Davie, or from
[Jeremiah Hayes 1984].

Notation

Some of the symbols that will be used in this chapter are defined as follows (see also Figure
4-17):

A(t) Counting process that represents the total number of tasks/customers that arrived from 0 to
time t, i.e., A(0) = 0, and for s< t, A(t) — A(S) equals the number of arrivals in the time
interval (S, t]

A Arrival rate, i.e., the average number of arrivals per unit of time, in steady state
N(t) Number of tasks/customers in the system at time t

N Average number of tasks/customers in the system (this includes the tasks in the queue and
the tasks currently in service) in steady state

No Average number of tasks/customers waiting in queue (but not currently in service) in
steady state

y7i Service rate of the server (in customers per unit time) at which the server operates when
busy
X Service time of the i™ arrival (depends on the particular server’s service rate 4 and can be

different for different servers)
Ti Total time the i™ arrival spends in the system (includes waiting in queue plus service time)

T Average delay per task/customer (includes the time waiting in queue and the service time)
in steady state

W Average queuing delay per task/customer (not including the service time) in steady state

P Rate of server capacity utilization (the fraction of time that the server is busy servicing a
task, as opposed to idly waiting)

4.2.1 Little’s Law

Imagine that you perform the following experiment. You are frequently visiting your local bank
office and you always do the following:

1. As you walk into the bank, you count how many customers are in the room, including
those waiting in the line and those currently being served. Let us denote the average
count as N. You join the queue as the last person; there is no one behind you.

Ivan Marsic e Rutgers University 240

2. You will be waiting W time, on average, and then it will take X time, on average, for you
to complete your job. The expected amount of time that has elapsed since you joined the
queue until you are ready to leave is T = W + X. During this time T new customers will
arrive at an arrival rate A.

3. At the instant you are about to leave, you look over your shoulder at the customers who
have arrived after you. These are all new customers that have arrived while you were
waiting or being served. You will count, on average, A - T customers in the system.

If you compare the average number of customers you counted at your arrival time (N) and the
average number of customers you counted at your departure time (A - T), you will find that they
are equal. This is called Little's Law and it relates the average number of tasks in the system, the
average arrival rate of new tasks, and the average delay per task:

Average number of tasks in the system = Arrival rate X Average delay per task
N=A4-T (4.1a)

I will not present a formal proof of this result, but the reader should glean some intuition from the
above experiment. For example, if customers arrive at the rate of 5 per minute and each spends 10
minutes in the system, Little’s Law tells us that there will be 50 customers in the system on
average.

The above observation experiment essentially states that the number of customers in the system,
on average, does not depend on the time when you observe it. A stochastic process is stationary
if all its statistical properties are invariant with respect to time.

Another version of Little’s Law is
No=4-W (4.1b)

The argument is essentially the same, except that the customer looks over her shoulder as she
enters service, rather than when completing the service. A more formal discussion is available in
[Bertsekas & Gallagher, 1992].

Little’s Law applies to any system in equilibrium, as long as nothing inside the system is creating
new tasks or destroying them. Of course, to reach an equilibrium state we have to assume that the
traffic source generates infinite number of tasks.

Using Little’s Law, given any two variables, we can determine the third one. However, in
practice it is not easy to get values that represent well the system under consideration. The reader
should keep in mind that N, T, N, and W are random variables; that is, they are not constant but
have probability distributions. One way to obtain those probability distributions is to observe the
system over a long period of time and acquire different statistics, much like traffic observers
taking tally of people or cars passing through a certain public spot. Another option is to make
certain assumptions about the statistical properties of the system. In the following, we will take
the second approach, by making assumptions about statistics of customer arrivals and service
times. From these statistics, we will be able to determine the expected values of other parameters
needed to apply Little’s Law.

Kendall’s notation for queuing models specifies six factors:

Chapter 4 e Switching and Queuing Delay Models 241

Arrival Process / Service Proc. / Num. Servers / Max. Occupancy / User Population / Scheduling Discipline

1. Arrival Process (first symbol) indicates the statistical nature of the arrival process. The
letter M is used to denote pure random arrivals or pure random service times. It stands for
Markovian, a reference to the memoryless property of the exponential distribution of
interarrival times. In other words, the arrival process is a Poisson process. Commonly
used letters are:

M — for exponential distribution of interarrival times
G — for general independent distribution of interarrival times
D — for deterministic (constant) interarrival times

2. Service Process (second symbol) indicates the nature of the probability distribution of the
service times. For example, M, G, and D stand for exponential, general, and deterministic
distributions, respectively. In all cases, successive interarrival times and service times are
assumed to be statistically independent of each other.

3. Number of Servers (third symbol) specifies the number of servers in the system.

4. Maximum Occupancy (fourth symbol) is a number that specifies the waiting room
capacity. Excess customers are blocked and not allowed into the system.

5. User Population (fifth symbol) is a number that specifies the total customer population
(the “universe” of customers)

6. Scheduling Discipline (sixth symbol) indicates how the arriving customers are scheduled
for service. Scheduling discipline is also called Service Discipline or Queuing Discipline.
Commonly used service disciplines are the following:

FCFS — first-come-first-served, also called first-in-first-out (FIFO), where the first
customer that arrives in the system is the first customer to be served

LCFS- last-come-first served (like a popup stack)

FIRO — first-in-random-out

Service disciplines will be covered later in Chapter 5, where fair queuing (FQ) service discipline
will be introduced. Only the first three symbols are commonly used in specifying a queuing
model, although sometimes other symbols will be used in the rest of this chapter.

422 M/M/1Queuing System

Problems related to this section: Problem 4.16 — Problem 4.20

A correct notation for the system we consider is M/M/1/eo/oo/FCFS. This system can hold
unlimited (infinite) number of customers, i.e., it has an unlimited waiting room size or the
maximum queue length; the total customer population is unlimited; and, the customers are served
in the FCFS order. It is common to omit the last three items and simply use M/M/1.

Ivan Marsic e Rutgers University 242

Number of arrivals, A(t)
Number of departures, B(t)

Cumulative

Z
—~
—
=

NP Time

Figure 4-19: Example of birth and death processes. Top: Arrival and departure processes;
Bottom: Number of customersin the system.

Figure 4-19 illustrates an M/M/1 queuing system, for which the process A(t), total number of
customers that arrived from 0 to time t, has a Poisson distribution. A Poisson process is generally
considered a good model for the aggregate traffic of a large number of similar and independent
customers. Then, A(0) = 0, and for s < t, A(t) — A(S) equals the number of arrivals in the interval
(s,). The intervals between two arrivals (interarrival times) for a Poisson process are independent
of each other and exponentially distributed with the parameter A. If t, denotes the time of the n™
arrival, the interarrival intervals 7, = tn,; — t, have the probability distribution

P{r <sl=1-e*, s>0

It is important that we select the unit time period Jin Figure 4-19 small enough so that it is likely
that at most one customer will arrive during J. In other words, o should be so small that it is
unlikely that two or more customers will arrive during .

The process A(t) is a pure birth process because it monotonically increases by one at each arrival
event. So is the process B(t), the number of departures up until time t. The process N(t), the
number of customers in the system at time t, is a birth and death process because it sometimes
increases and at other times decreases. It increases by one at each arrival and decreases by one at
each completion of service. We say that N(t) represents the state of the system at time t. Notice
that the state of this particular system (a birth and death process) can either increases by one or
decreases by one—there are no other options. The intensity or rate at which the system state
increases is 4 and the intensity at which the system state decreases is 4 This means that we can
represent the rate at which the system changes the state by the diagram in Figure 4-21.

Now suppose that the system has evolved to a steady-state condition. That means that the state of
the system is independent of the starting state. The sequence N(t) representing the number of
customers in the system at different times does not converge. This is a random process taking
unpredictable values. What does converge are the probabilities p, that at any time a certain
number of customers N will be observed in the system

Chapter 4 e Switching and Queuing Delay Models 243

Room 0 & Roomn-1 Room n Roomn +1
v / v . |

t(n+1 —n)

1] M] t(n —n+1) ‘

l<1

| t t

(n—>n+l) ~ Yn+l —>n)

Figure 4-20: Intuition behind the balance principle for a birth and death process.

1-Ad 1-A8-ud 1-A3-pud 1-A8-pud 1-A8-pd 1-A8-pd

w9 w9 TR w9

Figure 4-21: Transition probability diagram for the number of customersin the system.

lim P{N(t) =n}= p,

Note that during any time interval, the total number of transitions from state nto n+ 1 can differ
from the total number of transitions from N + 1 to n by at most 1. Thus asymptotically, the
frequency of transitions from n to n + 1 is equal to the frequency of transitions from n+ 1 to n.
This is called the balance principle. As an intuition, each state of this system can be imagined as
a room, with doors connecting the adjacent rooms. If you keep walking from one room to the
adjacent one and back, you can cross at most once more in one direction than in the other. In
other words, the difference between how many times you went fromn+ 1 tonvs. fromnton+ 1
at any time can be no more than one.

Given the stationary probabilities and the arrival and service rates, from our rate-equality
principle we have the following detailed balance equations

pn'ﬂ/:pn_yl'ﬂ, nzo, 1,2,... (4.2)
These equations simply state that the rate at which the process leaves state n equals the rate at
which it enters that state. The ratio p = A/u is called the utilization factor of the queuing system,

which is the long-run proportion of the time the server is busy. With this, we can rewrite the
detailed balance equations as

pn+l:p’pn:pz’pn—lzu-:pnﬂ'pO (43)

If p < 1 (service rate exceeds arrival rate), the probabilities p, are all positive and add up to unity,
SO

1=3 P, =Y " py=py Y PN = (44)
n=0 n=0 n=0 P

lvan Marsic e Rutgers University 244

by using the well-known summation formula for the geometric series (see the derivation of Eq.
(1.8) in Section 1.3.1). Combining equations (4.3) and (4.4), we obtain the probability of finding
N customers in the system

po=P{NO=n}=p"- (1-p), n=0,1,2, ... (4.5)
The average number of customers in the system in steady state is N = tlirn E{N(t)} . Because (4.5)

is the p.m.f. for a geometric random variable, meaning that N(t) has a geometric distribution,
checking a probability textbook for the expected value of geometric distribution quickly yields

N = lim E{N(t)} =2 =4 (4.6)
to>ee l-p u-14

It turns out that for an M/M/1 system, by knowing only the arrival rate A and service rate u, we

can determine the average number of customers in the system. From this, Little’s Law (4.1a)

gives the average delay per customer (waiting time in queue plus service time) as

N__ T (4.7)
A u-Aa
The average waiting time in the queue, W, is the average delay T less the average service time

1/, like so

w=t-Lt-L _1__»

U ou-A 4 g2

and by using the version (4.1b) of Little’s Law, we have No=4-W = pz/(l -p).

423 M/M/1/m Queuing System

Problems related to this section: Problem 4.22 — Problem 4.23

Now consider the M/M/1/m system that is the same as M/M/1 except that the system can be
occupied by up to m customers, which implies a finite waiting room or maximum queue length.
The customers arriving when the queue is full are blocked and not allowed into the system. We

have p, = 0" - po for 0 < n < m; otherwise p, = 0. Using the relation an=o p, =1 we obtain

1 1-
Py = = 'gﬂ, 0<n<m

m no1—
n:Op p

pn:&;f) 0<n<m (4.8)

Assuming again that p < 1, the expected number of customers in the system is

m

I Lo T WA IRy S

P n=0 1-p n

Chapter 4 e Switching and Queuing Delay Models 245

:p(l_p)i l_pmH — Y _(m+1)'pm+l (4.9)
1_pm+l ap l—p 1_p l_pm+1 :

Thus, the expected number of customers in the system is always less than for the unlimited queue
length case, Eq. (4.6).

It is also of interest to know the probability of a customer arriving to a full waiting room, also
called blocking probability ps. Generally, the probability that a customer arrives when there are n
customers in the queue is (using Bayes’ formula)

P{N(t) = n|a customer arrivesin (t,t + 5)} = P{a customer arrivesin(t,t + o) | N(t) = n} - P{N(t) = n}

P{a customer arrivesin(t,t + 0)}

z(/ié‘) Pn

1.0 = Pn

because of the memoryless assumption about the system. Thus, the blocking probability is the
probability that an arrival will find m customers in the system, which is (using Eq. (4.8))

Py = P{N(t) = m} = pm% (4.10)

424 M/ G/1Queuing System

We now consider a class of systems where arrival process is still memoryless with rate A.
However, the service times have a general distribution—not necessarily exponential as in the
M/M/1 system—meaning that we do not know anything about the distribution of service times.
Suppose again that the customers are served in the order they arrive (FCFS) and that X; is the
service time of the i arrival. We assume that the random variables (X, X,, ...) are independent of
each other and of the arrival process, and identically distributed according to an unspecified
distribution function.

The class of M/G/1 systems is a superset of M/M/1 systems. The key difference is that in general
there may be an additional component of memory. In such a case, one cannot say as for M/M/1
that the future of the process depends only on the present length of the queue. To calculate the
average delay per customer, it is also necessary to account for the customer that has been in
service for some time. Similar to M/M/1, we could define the state of the system as the number of
customers in the system and use the so called moment generating functions to derive the system
parameters. Instead, a simpler method from [Bertsekas & Gallagher, 1992] is used.

Assume that upon arrival the i™ customer finds N; customers waiting in queue and one currently
in service. The time the i™ customer will wait in the queue is given as

W = iXﬁR (4.11)
=N,

where R, is the residual service time seen by the i customer. By this we mean that if customer |
is currently being served when i arrives, R is the remaining time until customer j’s service is

lvan Marsic e Rutgers University 246

A,=9:30 A,=10:10 Ag=11:05
A, =9:05 A,=9:55 A,=10:45
X, =30 X, =10 X35 75 :X,=15 X,=20 Xs = 25
/—/% K : \ -f‘/\'\/ """""""""" R \}
(a) () (2)} { (3) r=l(a)=] @:]—@—»
9:00 9:05 9:35 945 9:55 11:10 1125 11:45 Time
W Customter 2 15 Customer 4
r service time = 15 min serv ce time = 20 min
(b) Customer 6
arrives at 11:05 Server
Customers 4 and 5 =
) Waltmg in queue
; Service time for customer 3 Customer 3 in service;
£ Xa=75min_ Residual time = 5 min
o 75777
9o
2
C)
() % Customer 6
= <amves at 11:05
S
o o ____S
14 5 | T|me>r

9:55 11:10

Figure 4-22: (a) Example of customer arrivals and service times;, see Example 4.1 for
details. (b) Detail of the situation found by customer 6 at hissher arrival. (c) Residual service
timefor customer 3 at thearrival of customer 6.

completed. The residual time’s index is i (not j) because this time depends on i’s arrival time and
is not inherent to the served customer. If no customer is served at the time of i’s arrival, then R, is
Zero.

Example 4.1 Delay in aBank Teller Service

An example pattern of customer arrivals to the bank from Figure 4-17 is shown in Figure 4-22.
Assume that nothing is known about the distribution of service times. In this case, customer k= 6 will
find customer 3 in service and customers 4 and 5 waiting in queue, i.e., Ng = 2. The residual service
time for 3 at the time of 6’s arrival is 5 min. Thus, customer 6 will experience the following queuing
delay:

5
W, :ij +R, =(15+20)+5=40min

This formula simply adds up all the times shown in Figure 4-22(b). Notice that the residual time
depends on the arrival time of customer i = 6 and not on how long the service time of customer
i-N-1)=3is.

The total time that 6 will spend in the system (the bank) is Ts = W + X5 =40 + 25 = 65 min.

Chapter 4 e Switching and Queuing Delay Models 247

Xl
I\[\ I\‘ -
-
Xl X2

-

Residual service time r(7)

—~—
t
X

Figure 4-23. Expected residual service time computation. The time average of r(z) is
computed asthe sum of areas of the isoscelestriangles over the given period t.

By taking expectations of Eq. (4.11) and using the independence of the random variables N; and
Xi-1, Xiz2, ..., Xi_ni (Which means that how many customers are found in the queue is independent
of what business they came for), we have

j=i-N,

E{Wi}=E{ XE{X; | Ni}}+ EiR}=E{X}-EINJ+E{R} = i-NQ+E{R} (4.12)

Throughout this section all long-term average quantities should be viewed as limits when time or
customer index converges to infinity. We assume that these limits exist, which is true for most
systems of interest provided that the utilization p < 1.The second term in the above equation is the
mean residual time, R:tli_>m E{R}, and it will be determined by a graphical argument. The

residual service time r(7) can be plotted as in Figure 4-22(c). The general case is shown in Figure
4-23. Every time a new customer enters the service, the residual time equals that customer’s
service time. Then it decays linearly until the customer’s service is completed. The time average
of r(7) in the interval [0, t] is

1 181,

—|r(z)dz==> =X,

(ke 35 %
where M(1) is the number of service completions within [0, t]. Hence, we obtain

X
t M (t) [_
R=1im E{R } = lim| 1.[r(r)dr zl_lim M® 1 Z X2 :lhm(wj.hm I :lg. X2
i—seo ol 1 2im=| M(1) t S 2=t) ioe M() | 2
where X2 is the second moment of service time, computed as
Z p - (X)" if X is discreter.v.

E{x n} — X : [:|Q>0
[f(x)-x"-dx if X iscontinuousr.v.

lvan Marsic e Rutgers University 248

By substituting this expression in the queue waiting time, Eq. (4.12), we obtain the so called
Pollaczek-Khinchin (P-K) formula
_ax?
2-1-p)

The P-K formula holds for any distribution of service times as long as the variance of the service
times is finite.

(4.13)

Example 4.2 Queuing Delays of an Go-Back-N ARQ

Consider a Go-Back-N ARQ such as described earlier in Section 1.3.2. Assume that packets arrive at
the sender according to a Poisson process with rate 4. Assume also that errors affect only the data
packets, from the sender to the receiver, and not the acknowledgment packets. What is the expected
queuing delay per packet in this system?

Notice that the expected service time per packet equals the expected delay per packet transmission,
which is determined in the solution of Problem 1.11 at the back of this text as follows

Prait

1- fail

)? = E{Ttotal} = tsucc +

" Lail

The second moment of the service time, F, is determined similarly as:
Finally, Eq. (4.13) yields
CAX2 X2 AX?
20-p) 2(0=A/p) 2(0-1-X)

4.3 Networks of Queues

Chapter 4 e Switching and Queuing Delay Models 249

4.4 Summary and Bibliographical Notes

Section 4.1 focuses on one function of routers—forwarding packets—but this is just one of its
many jobs. Section 1.4 describes another key function: building and maintaining the routing
tables. In addition, more and more applications, such as firewalls, VPN concentration, voice
gateways and video monitoring, are being implemented in routers. Cisco’s Integrated Services
Router (ISR), for example, even includes an optional application server blade for running various
Linux and open source packages.

[Keshav & Sharma, 1998]
Kumar, et al. [1998] provide a good overview of router architectures and mechanisms.
James Aweya, “IP router architectures: An overview”

The material presented in this chapter requires basic understanding of probability and random
processes. [Yates & Goodman, 2004] provides an excellent introduction and [Papoulis & Pillai,
2001] is a more advanced and comprehensive text.

[Bertsekas & Gallagher, 1992] provides a classic treatment of queuing delays in data networks.
Most of the material in Sections 4.2 and 4.3 is derived from this reference.

lvan Marsic e Rutgers University 250

Problems

Problem 4.1

Problem 4.2

Problem 4.3

Consider a regular PC that is used as a router, i.e., this is first-generation router architecture. The
router has 4 network ports, each on its own line card. All four links have the same data rate of R
bits/sec. The system bus operates at a four times higher data rate, i.e., 4xR bps. Consider a

scenario where steady traffic is arriving on all four ports and all packets are of the same length L.
(a) What is the worst-case delay that a packet can experience in this router?
(b) Will there be any head-of-line or output blocking observed?

Problem 4.4

Problem 4.5

Consider a router X that uses Banyan switching fabric. The figure below shows the router’s
connectivity to the adjacent routers, as well as the forwarding table of router X.

Chapter 4 e Switching and Queuing Delay Models 251

T

D &
n 7

Banyan fabric %
=

l

][]
o] o

=
— N
N

]
~]

% Subnet Mask |Next Hop
5 \Rw 223.92.32.0/ 20 A
223.81.196.0 / 12
223.112.0.0/ 12
223.120.0.0/ 14
128.0.0.0/1
64.0.0.0/2
32.0.0.0/3

<

O mMm{MmO|O |

Assume that the following packets arrived simultaneously on router X:
Packet arrived from Packet destination | P address

B 63.67.145.18
C 223.123.59.47
G 223.125.49.47

Draw and explain a diagram that shows how these packets will traverse the switching fabric.

Note: Check Problem 1.29 in Chapter 1 to see how the next hop for a packet is decided.

Problem 4.6

Problem 4.7

Using the switch icons shown below, sketch a simple 4x4 Batcher-Banyan network (without a
trap network and a shuffle-exchange network). Label the input ports and the output ports of the
fabric, from top to bottom, as 0, 1, 2 and 3.

lvan Marsic e Rutgers University 252

2-by-2 sorting element, larger value
switched “down” to the lower output

2-by-2 crossbar switch

2-by-2 sorting element, larger value
switched “up” to the upper output

Suppose four packets are presented to the input ports of the Batcher-Banyan fabric that you
sketched. Suppose further that the incoming packets are heading to the following output ports:

e Packet at input port 0 is heading to output port 1
e Packet at input port 1 to output port 0

¢ Packet at input 2 to output port 0

o Packet at input port 3 to output port 2

Show on the diagram of the fabric the switching of these packets through the fabric from the
input ports to the output ports. Will any collisions and/or idle output lines occur?

Problem 4.8

Problem 4.9

Consider the router shown below where the data rates are the same for all the communication
lines. The switch fabric is a crossbar so that at most one packet at a time can be transferred to a
given output port, but different output ports can simultaneously receive packets from different
input ports. Assume that the fabric moves packets two times faster than the data rate of the
communication lines. Packets at each port are moved in a first-come-first-served (FCFS) order. If
two or more packets arrive simultaneously at different input ports and are heading towards the
same output port, their order of transfer is decided so that the lower index port wins (e.g., if ports
2 and 3 contend at the same time to the same output port, port 2 goes first). If a packet at a lower-
index input port arrives and goes to the same output port for which a packet at a higher-index port
is already waiting, then the higher-index port wins.

Input ports Crossbar switch Output ports

Chapter 4 e Switching and Queuing Delay Models 253

Consider the following traffic arrival pattern:

Input port 1: packet of length 2 received at time t = 0 heading to output port 2; packet of length 4
at time 4 to output 2

Input port 2: packet of length 8 at time O to output 2; packet of length 2 at time 2 to output 1
Input port 3: packet of length 8 at time 2 to output 2; packet of length 2 at time 4 to output 1

Draw the timing diagram for transfers of packets across the switching fabric. Will there be any
head-of-line or output blocking observed? Explain your answer.

Problem 4.10

Problem 4.11

Problem 4.12

Problem 4.13

[Little’s Law] Consider a system with a single server. The arrival and service times for the first
10 customers are as follows: (A; = 0, X; = 3); (2, 4); (3, 5); (4,2); (6,5); (7,2); (10, 4); (11, 3);
(12, 5), and (Al() = 13, X]o = 3)
(a) Draw the arrivals as a birth-death process similar to Figure 4-19.
(b) What is the average number of customers in the system N and the average delay T per
customer in this system during the observed period? Assuming that the arrival rate is 4 =
1 customer/unit-of-time, does the system satisfy the Little’s Law over the observed
period?

Problem 4.14

Problem 4.15

Problem 4.16

Consider a router that can process 1,000,000 packets per second. Assume that the load offered to
it is 950,000 packets per second. Also assume that the interarrival times and service durations are
exponentially distributed.
(a) How much time will a packet, on average, spend being queued before being serviced?
(b) Compare the waiting time to the time that an average packet would spend in the router if
no other packets arrived.
(c) How many packets, on average, can a packet expect to find in the router upon its arrival?

lvan Marsic e Rutgers University 254

Problem 4.17

Consider an M/G/1 queue with the arrival and service rates A and g, respectively. What is the
probability that an arriving customer will find the server busy (i.e., serving another customer)?

Problem 4.18

Messages arrive at random to be sent across a communications link with a data rate of 9600 bps.
The link is 70% utilized, and the average message length is 1000 bytes. Determine the average
waiting time for exponentially distributed length messages and for constant-length messages.

Problem 4.19

A facility of m identical machines is sharing a single repairperson. The time to repair a failed
machine is exponentially distributed with mean 1/4. A machine, once operational, fails after a
time that is exponentially distributed with mean 1/4. All failure and repair times are independent.
What is the steady-state proportion of time where there is no operational machine?

Problem 4.20

Imagine that K users share a link (e.g., Ethernet or Wi-Fi) with throughput rate R bps (i.e., R
represents the actual number of file bits that can be transferred per second, after accounting for
overheads and retransmissions). User’s behavior is random and we model it as follows. Each user
requests a file and waits for it to arrive. After receiving the file, the user sleeps for a random time,
and then repeats the procedure. Each file has an exponential length, with mean A X R bits.
Sleeping times between a user’s subsequent requests are also exponentially distributed but with a
mean of B seconds. All these random variables are independent. Write a formula that estimates
the average time it takes a user to get a file since completion of his previous file transfer.

Problem 4.21

Problem 4.22

Consider a single queue with a constant service time of 4 seconds and a Poisson input with mean
rate of 0.20 items per second.

(a) Find the mean and standard deviation of queue size

(b) Find the mean and standard deviation of the time a customer spends in system.

Problem 4.23

Consider the Go-back-N protocol used for communication over a noisy link with the probability
of packet error equal to p.. Assume that the link is memoryless, i.e., the packet error events are
independent from transmission to transmission. Also assume that the following parameters are

Chapter 4 e Switching and Queuing Delay Models 255

given: the round-trip time (RTT), packet size L, and transmission rate R. What is the average
number of successfully transmitted packets per unit of time (also called throughput), assuming
that the sender always has a packet ready for transmission?

Hint: Recall that the average queuing delay per packet for the Go-back-N protocol is derived in
Example 4.2 (Section 4.2.4).

Problem 4.24

Problem 4.25

Chapter 5

Mechanisms for Quality-of-Service

This chapter reviews mechanisms used in network routers to
provide quality-of-service (QoS). Section 3.3 reviewed some
end-to-ed mechanisms for providing quality of service, and
hinted at mechanisms used in routers. This chapter details the
router-based QoS mechanisms.

End-to-end QoS is built from the concatenation of edge-to-edge
QoS from each network domain (or Autonomous System)
through which traffic passes, and ultimately depends on the
QoS characteristics of the individual hops along any given
route. Networking solutions for end-to-end QoS are usually
broken into three parts: per-hop QoS, traffic engineering, and
signaling/provisioning. This chapter starts with mechanisms
used to provide per-hop QoS, and describes traffic-engineering
solutions in Section 5.4.3. Signaling/provisioning was already
considered in Section 3.3.4 and will be considered further here.

The goal of per-hop QoS is to enable congestion-point routers
and switches to provide predictable differentiated loss, latency,
and jitter characteristics to traffic classes of interest to the
service provider or its customers.

5.1 Scheduling

Contents

5.1 Scheduling

5.1.1 Scheduling Disciplines
5.1.2 Fair Queuing
5.1.3 Weighted Fair Queuing

5.2 Policing

521 x
5.2.2 x
5.2.3 x

5.3 Active Queue Management

5.3.1 Random Early Detection (RED)

5.3.2 Explicit Congestion Notification (ECN)
5.3.3 x

5.3.4 x

5.4 Multiprotocol Label Switching (MPLS)

5.4.1 MPLS Architecture and Operation
5.4.2 Label Distribution Protocols

5.4.3 Traffic Engineering

5.4.4 Virtual Private Networks

5.4.5 MPLS and Quality of Service

55x

551
55.2
55.3

5.6 x

5.6.1
5.6.2
5.6.3

5.7 Summary and Bibliographical Notes

Problems

The queuing models in Chapter 4 considered delays and blocking probabilities under the
assumption that tasks/packets are served on a first-come-first-served (FCFS) basis and that a task
is blocked if it arrives at a full queue (if the waiting room capacity is limited). The property of a
queue that decides the order of servicing of packets is called scheduling discipline (also called
service discipline or queuing discipline, see Section 4.2). The property of a queue that decides
which task is blocked from entering the system or which packet is dropped for a full queue is
called blocking policy or packet-discarding policy or drop policy. The simplest combination is

256

Chapter 5 e Mechanisms for Quality-of-Service 257

FCFSwith tail drop, i.e., always service head of the line and, if necessary, drop the last arriving
packet and this is what we considered in Section 4.2.3.

Scheduling has direct impact on a packet’s queuing delay and hence on its total delay. Dropping
decides whether the packet will arrive to destination at all. FCFS does not make any distinction
between packets. A single FCFS queue cannot simultaneously support QoS-sensitive and QoS-
insensitive traffic. While a long queue is less likely to overflow during a traffic burst (thus
reducing packet loss probability), it potentially increases the queuing delay for non-dropped
packets. A short queue reduces this delay, but conversely increases the probability of packet loss
for bursty traffic.

Additional concerns may compel the network designer to consider making distinction between
packets and design more complex scheduling disciplines and dropping policies. Such concerns
include:

e Prioritization, where different tasks/packets can have assigned different priorities, so that
the delay time for certain packets is reduced (at the expense of other packets)

e Fairness, so that different flows (identified by source-destination pairs) are offered
equitable access to system resources

e Protection, so that misbehavior of some flows (by sending packets at a rate faster than
their fair share) should not affect the performance achieved by other flows

Prioritization and fairness are complementary, rather than mutually exclusive. Fairness ensures
that traffic flows of equal priority receive equitable service and that flows of lower priority are
not excluded from receiving any service because all of it is consumed by higher priority flows.
Fairness and protection are related so that ensuring fairness automatically provides protection,
because it limits a misbehaving flow to its fair share. However, the converse need not be true. For
example, if flows are policed at the entrance to the network, so that they are forced to confirm to
a predeclared traffic pattern, they are protected from each other, but their resource shares may not
be fair. Policing will be considered later in Section 5.2.

5.1.1 Scheduling Disciplines

We already mentioned that a single FCFS queue cannot simultaneously support QoS-sensitive
and QoS-insensitive traffic. The solution is to split traffic across multiple queues at each
congestion point, assigning different classes of traffic to queues sized for each class’s desired
loss, latency, and jitter characteristics. Access to the resource (e.g., outbound link) is mediated by
a scheduler, which empties each queue in proportion to its allocated resource share or priority.
Therefore, the system that wishes to make distinction between packets (QoS-enabled router or
switch) must (1) classify packets, (2) differentially queue packets per class, and (3) provide
controllable and predictable scheduling of packet transmissions from each class (queue) onto the
outbound link. This approach is often referred to as a classify, queue, and schedule (CQS)
architecture and it comprises two components (Figure 5-1):

1. Classifier—Forms different waiting lines for different packet types. The criteria for
sorting packets into different lines include: priority, source and/or destination network
address, application port number, etc.

lvan Marsic e Rutgers University 258

Class 1 queue (Waiting line)

m
Transmitter

Class 2 queue (Server)
Arriving packets —_—]

% =) eee ;% % @ =)
Class n queue

Scheduling
> m discipline
Packet drop —
when queue full

Figure 5-1: Components of a scheduler. Classifier sorts the arriving packets into different
waiting lines based on one or more criteria, such as priority or source identity. Scheduler
then places the packets into service based on the scheduling discipline. A single server
serves all waiting lines.

2. Scheduler—Calls packets from waiting lines for service. Options for the rules of calling
the packets for service (scheduling discipline) include: (i) first serve all the
packets waiting in the high-priority line, if any; then go to the next lower
priority class, etc.; (ii) serve the lines in round-robin manner by serving one or
more packets from one line (but not necessarily all that are currently waiting),
then go to serve few from the next waiting line, etc., then repeat the cycle.

FCFS places indiscriminately all the arriving packets at the tail of a single queue. The
idea with prioritization is that the packets with highest priority, upon arrival to the
system, are placed at the head-of-the line, so they bypass waiting in the line. They may still need
to wait if there is another packet (perhaps even of a lower priority) currently being transmitted.
Non-preemptive scheduling is the discipline under which the ongoing transmission of lower-
priority packets is not interrupted upon the arrival of a higher-priority packet. Conversely,
preemptive scheduling is the discipline under which lower-priority packet is bumped out of
service (back into the waiting line or dropped from the system) if a higher-priority packet arrives
at the time a lower-priority packet is being transmitted.

Packet priority may be assigned simply based on the packet type, or it may be result of applying a
complex set of policies. For example, the policies may specify that a certain packet type of a
certain user type has high priority at a certain time of the day and low priority at other times.

Although priority scheduler does provide different performance characteristics to different
classes, it still has shortcomings. For example, it does not deal with fairness and protection. An
aggressive or misbehaving high-priority source may take over the communication line and elbow
out all other sources. Not only the flows of the lower priority will suffer, but also the flows of the
same priority are not protected from misbehaving flows.

A round robin scheduler alternates the service among different flows or classes of packets. In the
simplest form of round robin scheduling the head of each queue is called, in turn, for service.
That is, a class-1 packet is transmitted, followed by a class-2 packet, and so on until a class-n
packet is transmitted. The whole round is repeated forever or until there are no more packets to

Chapter 5 e Mechanisms for Quality-of-Service 259

transmit. If a particular queue is empty, because no packets of such type arrived in the meantime,
the scheduler has two options:

1. Keep unused the portion of service or work allocated for that particular class and let the
server stay idle (non-work-conserving scheduler)

2. Let the packet from another queue, if any, use this service (work-conserving scheduler)

A work-conserving scheduler will never allow the link (server) to remain idle if there are packets
(of any class or flow) queued for transmission. When such scheduler looks for a packet of a given
class but finds none, it will immediately check the next class in the round robin sequence.

One way to achieve control of channel conditions (hence, performance bounds) is to employ time
division multiplexing (TDM) or frequency division multiplexing (FDM). TDM/FDM maintains a
separate channel for each traffic flow and never mixes packets from different flows, so they never
interfere with each other. TDM and FDM are non-work-conserving. Statistical multiplexing is
work-conserving and that is what we consider in the rest of this section.

5.1.2 Fair Queuing

Problems related to this section: Problem 5.2 — Problem 5.8

Suppose that a system, such as transmission link, has insufficient resource to satisfy the demands
of all users, each of whom has an equal right to the resource, but some essentially demand fewer
resources than others. How, then, should we divide the resource? A sharing technique widely
used in practice is called max-min fair share. Intuitively, a fair share first fulfils the demand of
users who need less than they are entitled to, and then evenly distributes unused resources among
the “big” users (Figure 5-2). Formally, we define max-min fair share allocation to be as follows:

e Resources are allocated in order of increasing demand
e No source obtains a resource share larger than its demand
e Sources with unsatisfied demands obtain an equal share of the resource

This formal definition corresponds to the following operational definition. Consider a set of
sources 1, ..., n that have resource demands ry, Iy, ..., I'h. Without loss of generality, order the
source demands so that r; < r, < ... < r,. Let the server have capacity C and all sources are
equally entitled to the resource, although they may need more or less than they are entitled to.
Then, we initially assign C/n of the resource to the source with the smallest demand, r;. This may
be more than what source 1 wants, perhaps, so we can continue the process. The process ends
when each source receives no more than what it asks for, and, if its demand was not satisfied, no
less than what any other source with a higher index (i.e., demand) received. We call such an
allocation a max-min fair allocation, because it maximizes the minimum share of a source whose
demand is not fully satisfied.

Ivan Marsic e

260

Rutgers University

1. Satisfy customers who need less than their fair share
2. Split the remainder equally among the remaining customers

Fair share: 1/3 each

Return surplus:

\ @ 1/3-1/8 = 5/24
@ i

New fair share
for P2 & P3:

1/3 + ¥ (5/24) each

1. Satisfy customers who need less than their fair share

2. Split the remainder equally among the remaining customers Final fair distribution:

Fair share:
1/3 + % (5/24) each

o

received: 1/8

)

5(

Return surplus: /
1/3 + Y (5/24) — 1/3
=1 (5/24) = J
7
—

Remainder of
1/3 +2 x ¥ (5/24)
goes to P2

received: 1/8

e

a4

..........

received: 1/3

=

P2

received: 1/3 + 5/24

—

deficit: 1/8

Figure 5-2: Illustration of max-min fair share algorithm; seetext for details.

Example 5.1

Max-Min Fair Share

Consider the server in Figure 5-3 where packets are arriving from n = 4 sources of equal priority to be
transmitted over a wireless link. (Assume that the full link bandwidth is available and ignore the link-
layer overhead due to interfame spaces, backoff, collisions, etc.) The total required link capacity is:

8x 2048 + 25x2048 + 50x512 + 40x 1024 = 134,144 bytes/sec = 1,073,152 bits/sec
Appl. A Appl. B Appl. C Appl. D

but the available capacity of the link is C =1 Mbps = 1,000,000 bits/sec. By the notion of fairness and
given that all sources are equally “important,” each source is entitled to C/n = % of the total capacity =
250 Kbps. Some sources may not need this much and the surplus is equally divided among the sources
that need more than their fair share. The following table shows the max-min fair allocation procedure.

Total demand

Sources Demands Balances | Allocation #2 | Balances after AII_ocation #3 Final
[bps] after 1st round [bps] 2nd round (Final) [bps] | balances
Application 1 | 131,072 bps | +118,928 bps 131,072 0 | 131,072 bps 0
Application 2 | 409,600 bps | —159,600 bps 332,064 | —77,536 bps | 336,448 bps | —73,152 bps
Application 3 | 204,800 bps | +45,200 bps 204,800 0 | 204,800 bps 0
Application 4 | 327,680 bps | —77,680 bps 332,064 +4,384 bps | 327,680 bps 0

After the first round in which each source receives %C, sources 1 and 3 have excess capacity, because
they are entitled to more than what they need. The surplus of C’ = 118,928 + 45,200 = 164,128 bps is
equally distributed between the sources in deficit, that is sources 2 and 4. After the second round of
allocations, source 4 has excess of C” = 4,384 bps and this is allocated to the only remaining source in

Chapter 5 e Mechanisms for Quality-of-Service 261

Application 1 .. 8 packets per sec
L, = 2048 bytes

......

Application 2 f--25 pkis/s E Link capacity
L,=2KB e =1 Mbps

..50 pkts/s
L, = 512 bytes

o

Application 3

| Wi-Fi transmitter
o (Server)
L++'40 pkts/s

L,=1KB

o

Application 4

Figure 5-3: Example of a server (Wi-Fi transmitter) transmitting packets from four sources
(applications) over awirelesslink; seetext for details.

deficit, which is source 2. Finally, under the fair resource allocation, sources 1, 3, and 4 have fulfilled
their needs, but source 2 remains short of 73.152 Kbps.

Thus far, we have assumed that all sources are equally entitled to the resources. Sometimes, we
may want to assign some sources a greater share than others. In particular, we may want to
associate weights wi, W, ..., W, with sources 1, 2, ..., n, to reflect their relative entitlements to the
resource. We extend the concept of max-min fair share to include such weights by defining the
max-min weighted fair share allocation as follows:

e Resources are allocated in order of increasing demand, normalized by the weight
e No source obtains a resource share larger than its demand
e Sources with unsatisfied demands obtain resource shares in proportion to their weights

The following example illustrates the procedure.

Example 5.2 Weighted Max-Min Fair Share

Consider the same scenario as in Example 5.1, but now assume that the sources are weighted as
follows: w; = 0.5, w, =2, wy = 1.75, and wy = 0.75. The first step is to normalize the weights so they

are all integers, which yields: w =2, W, =8, w, =7, and W, =3. A source i is entitled to w/ - ZIW
]

of the total capacity, which yields 2/20, 8/20, 7/20, and 3/20, for the respective four sources. The
following table shows the results of the weighted max-min fair allocation procedure.

sre | Demands Allocation Balances Allocation | Balances after Allpcation #3 Final
#1 [bps] | after 1stround | #2 [bps] 2nd round (Final) [bps] | balances
1 | 131,072 bps 100,000 -31,072 122,338 —8,734 bps | 131,072 bps 0
2 | 409,600 bps 400,000 —-9,600 489,354 | +79,754 bps | 409,600 bps 0
3 | 204,800 bps 350,000 +145,200 204,800 0 | 204,800 bps 0
4 | 327,680 bps 150,000 —177,680 183,508 | —144,172 bps | 254,528 bps | —73,152 bps

This time around, source 3 in the first round is allocated more than it needs, while all other sources are
in deficit. The excess amount of C' = 145,200 bps is distributed as follows. Source 1 receives
—2--145,200 = 22,338 bps, source 2 receives —5--145,200=89,354 bps, and source 4 receives

2+8+3 24+8+3

lvan Marsic e Rutgers University 262

‘_s\oq.’w Waiting lines (queues)
r Servicetimes: X, ;=3 Xg,=5 Xg,=2

' ¢recky,
/ E— Q
Economy-class _I'
passengers
2 ST
") e TR T T T
e . Server
Classification First-class ‘ Customer
in service

passenger

Service ime: X, =8

Figure 5-4: Dynamic fair-share problem: in what order should the currently waiting
customersbe called in service?
51 145,200 = 33,508 bps. Notice that in the denominators is always the sum of weights for the
currently considered sources. After the second round of allocations, source 2 has excess of C” = 79,754

bps and this is distributed among sources 1 and 4. Source 1 receives 2:-79,754 =31902, which

along with 122,338 it already has yields more than it needs. The excess of C” = 23,168 is given to
source 4, which still remains short of 73.152 Kbps.

Min-max fair share (MMFS) defines the ideal fair distribution of a shared scarce resource. Given
the resource capacity C and n customers, under MMFS a customer i is guaranteed to obtain at
least C; = C/n of the resource. If some customers need less than what they are entitled to, then
other customers can receive more than C/n. Under weighted MMFS (WMMFS), a customer i is

. W,
guaranteed to obtain at least C; = ——C of the resource. Q

n
ZWJ
=

However, MMFS does not specify how to achieve this in a dynamic system where the

demands for resource vary over time. To better understand the problem, consider the

airport check-in scenario illustrated in Figure 5-4. Assume there is a single window

(server) and both first-class and economy passengers are given the same weight. The

question is, in which order the waiting customers should be called for service so that

both queues obtain equitable access to the server resource? Based on the specified

service times (Figure 5-4), the reader may have an intuition that, in order to maintain

fairness on average, it is appropriate to call the first two economy-class passengers before the
first-class passenger and finally the last economy-class passenger. The rest of this section reviews
practical schemes that achieve just this and, therefore, guarantee (weighted) min-max fair share
resource allocation when averaged over a long run.

Generalized Processor Sharing (GPS)

Min-max fair share cannot be directly applied in network scenarios because packets are
transmitted as atomic units and they can be of different length, thus requiring different

Chapter 5 e Mechanisms for Quality-of-Service 263

GPS Transmitter
(imaginary)

1stbit from pkt A, ,
31d bit from pkt A, ;
2"d bit from pkt A;
2nd bit from pkt A,
1st bit from pkt A, ;
15t bit from pkt A, ;

Flow 2 queue

pkt A, , | pktA,; — .

24 bit from pkt A, ,

3-bit packets

N S

_ > & Q>
round robin & & S
NN > N
(a) ,L_b\\oa . service OSSN Qé\o 5
X 3 v Y
o“é
»C ©
Rloy, ; o
Lq, ¢ QO
eue 9\‘0\)(\

FQ Transmitter
(real) packet packet packet

A2,2 A2,l A3,l

Flow 2 queue

pktA,, | pktA,; — RN

Packet-by-packet W—/ \ﬁf/ \\WJ

round robin (\6 \}(\b 06
(b) service & O >
& & &S
> v Y

Figure 5-5: Imaginary bit-by-bit GPS (generalized processor sharing) (a) is used to derive
the schedule for actual FQ (fair queuing) scheduling (b) used in real routers.

transmission times. In Example 5.1, packets from sources 1 and 2 are twice longer than those
from source 4 and four times than from source 3. It is, therefore, difficult to keep track of whether
each source receives its fair share of the server capacity. To arrive at a practical technique, we
start by considering an idealized technique called Generalized Processor Sharing (GPS).

GPS maintains different waiting lines for packets belonging to different flows. There are two
restrictions that apply:
e A packet cannot jump its waiting line, i.e., scheduling within individual queues is FCFS
e Service is non-preemptive, meaning that an arriving packet never bumps out a packet that
is currently being transmitted (in service)

GPS works in a bit-by-bit round robin fashion, as illustrated in Figure 5-5(a). That is, the router
transmits a bit from queue 1 (if there is any), then a bit from queue 2, and so on, for all queues

lvan Marsic e Rutgers University 264

A
Cow 1 . /\
® ®

L, = 3 bits
L2 L L e i .
Ay [‘ A;@ Arival
A .. _____ — — Waiting
Flow 2 2.1 /\ \/ Senvi
. ervice
L, = 3 bits ®
® Finish

Flow 3 ,

L3=2bits.v

i >

Time 0o 1.2 3 4.5 .6 7 8 9 10 11 12 13 @ 14
AY
V.

Round W%ﬁ/ﬁwﬁ%ﬁ/ 7
2 4 6 8

number

Figure 5-6. Example of bit-by-bit GPS. The output link servicerateis C = 1 bit/s.

that have packets ready for transmission. Let A;; denote the time that j™ packet arrives from i®
flow at the server (transmitter). Let us, for the sake of illustration, consider the example with
packets only 2 or 3 bits long. Packets from flows 1 and 2 are 3 bits long, and from flow 3 are 2
bits long. At time zero, packet A, arrives from flow 2 and packet A;; arrives from flow 3. Both
packets find no other packets in their respective waiting lines, so their transmission starts
immediately, one bit per round. Notice that one round of transmission now takes two time units,
because two flows must be served per round. Because the packet from flow 3 is shorter than that
from flow 2 (and their transmission started simultaneously), the transmission of packet A;; will
be finished sooner. After this moment, one round of transmission now takes one time unit,
because only one flow (flow 2) must be served per round.

The key idea of Fair Queuing (FQ) is to run imaginary GPS transmissions, as in Figure 5-5(a),
determined packet finish-round numbers under GPS, and then line up the packets for actual
transmission under FQ in the ascending order of their finish numbers, as in Figure 5-5(b). This
process will be elaborated in the rest of this section.

The GPS example from in Figure 5-5(a) is continued in Figure 5-6. At time t = 2 there is one
more arrival on flow 2: Ay,. Because in flow 2 Ay, finds Ay in front of it, it must wait until the
transmission of Ay; is completed. At time t = 7 there are two arrivals: A;; and A;,. The
transmission of both packets starts immediately because currently they are the only packets in
their flows. (The bits should be transmitted atomically, a bit from each flow per unit of time as
shown in Figure 5-5(a), rather than continuously as shown in Figure 5-6, but because this is an
abstraction anyway, we leave it as is.)

As seen, a k-bit packet takes always K rounds to transmit, but the actual time duration can vary,
depending on the current number of active flows—the more flows served in a round, the longer
the round takes. (A flow is active if it has packets enqueued for transmission.) For example, in

Chapter 5 e Mechanisms for Quality-of-Service 265

87 5
& //:\\
7 - QQ;

Round number R(t)

-~
I
I
I
I
I
I
I
$

- A —— R0
5\096

Time t

Figure 5-7. Piecewise linear relationship between round number and time for the example
from Figure 5-6. Also shown arefinish numbers F;(t) for the different flows.

Figure 5-6 it takes 4 s to transmit the first packet of flow 3, and 8 s for the second packet of the
same flow although both have equal length!

The piecewise linear relationship between the time and round number is illustrated in Figure 5-7
for the example from Figure 5-6. The slope of each linear segment is computed as one round
divided by the number of bits that need to be transmitted in one round. In other words, the slope
is inversely proportional to the current number of active flows. Looking back at Figure 5-5(a), we
see that in the beginning, the GPS transmitter needs to transmit two bits per round during the first
two rounds (bits from flows 2 and 3). Hence, the slope of the round-number curve is 1/2. At time
4, transmission of the packet from flow 3 is finished, so the slope rises to 1/1 because there
remains a single active flow. Similarly, at time 7 the slope falls to 1/3. In general, the function
R(t) increases at a rate

dRt) C
dt nactive (t)

where C is the transmission capacity of the output line. Obviously, if N,ve(t) is constant then
R(t)=t - C / Nuve, but this need not be the case because packets in different flows arrive
randomly In general, the round number is determined in a piecewise manner
R(t,) = Z “4.0C. 4C

j=1 actlve(t) active(tl)
new integer value marks an instant at which all the queues have been given an equal number of
opportunities to transmit a bit (of course, an empty queue does not utilize its given opportunity).

(5.1)

as will be seen later in Example 5.3. Each time R(t) reaches a

GPS provides max-min fair resource allocation. Unfortunately, GPS cannot be implemented
because it is not feasible to interleave the bits from different flows. A practical solution is the fair
queuing mechanism that approximates this behavior on a packet-by-packet basis, which is
presented next.

lvan Marsic e Rutgers University 266

Fair Queuing

Similar to GPS, a router using FQ maintains different waiting lines for packets belonging to
different flows at each output port. FQ determines when a given packet would finish being
transmitted if it were being sent using bit-by-bit round robin (GPS) and then uses this finishing
tag to rank order the packets for transmission.

The service round in which a packet Ajj would finish service under GPS is called the packet’s
finish number, denoted F;;. For example, in Figure 5-5(a) and Figure 5-6 packet A;; has finish
number F;; = 2, packet Ay, has finish number F,; = 3, and so on. Obviously, packet’s finish
number depends on the packet size and the current round number at the start of packet’s service.
It is important to recall that the finish number is, generally, different from the actual time at
which the packet is served. For example, packet A;; is serviced by t = 4, and A, is serviced by
t =5, because time is different from the round number (Figure 5-7).

Let L;j denote the size (in bits) of packet A;;. Under bit-by-bit GPS it takes L;; rounds of service to
transmit this packet. Let F;; denote the time when the transmitter finishes transmitting j™ packet
from i flow. Suppose that a packet arrives at time t, on a server which previously cycled through
R(t,) rounds. Under GPS, the packet would have to wait for service only if there are currently
packets from this flow either under service or enqueued for service or both—packets from other
flows would not affect the start of service for this packet. Therefore, the start round number for
servicing packet A;j is the highest of these two

e The current round R(t,) at the packet’s arrival time t,
e The finishing round of the last packet, if any, from the same flow

or in short, the start round number of the packet A;j is max{F;j-, R(ta)}. The finish number of this
packet is computed as

Fij= maX{Fi,j—lr R(ta)}+ Li,j (5.2)

Once assigned, the finish number remains constant and does not depend on future packet arrivals
and departures. FQ scheduler performs the following procedure every time a new packet arrives:

1. Calculate the finish number for the newly arrived packet using Eq. (5.2)

2. For all the packets currently waiting for service (in any queue), sort them in the
ascending order of their finish numbers

3. When the packet currently in transmission, if any, is finished, call the packet with the
smallest finish number in service

Note that the sorting in step 2 does not include the packet currently being transmitted, if any,
because FQ uses non-preemptive scheduling. Also, it is possible that a packet can be scheduled
ahead of a packet waiting in a different line because the former is shorter than the latter and its
finish number happens to be smaller than the finish number of the already waiting (longer)
packet. The fact that FQ uses non-preemptive scheduling makes it an approximation of the bit-by-
bit round robin GPS, rather than an exact simulation.

For example, Figure 5-7 also shows the curves for the finish numbers Fi(t) of the three flows from
Figure 5-6. At time 0, packets Ay; and A;; arrive simultaneously, but because F;; is smaller than
F..1, packet A; | goes into service first.

Chapter 5 e Mechanisms for Quality-of-Service 267

4 Arrivaltime | FlowID Packet size

E’Z 3 t=0 @Flowl 16,384 bytes

© 32 t=0 @Flow3 4,096 bytes

85, | t=3 @Flow2 | 16,384 bytes

1 0 J — t=3 @Flow4 8,192 bytes

5 & & & 01 2 3 4 5 t=6 @Flow3 4,096 bytes

g8 8 3 8 A _— t=12 @Flow3 | 4,096 bytes
v w w uw p1 1.' P3 . Time t

. v

1 1 1 T 1 1

I
4 5 6 7 8 9 10 11

o

Round s
[e)]
|

number R(t)

— & & < 2 3
2 2 2 2 A —
o o o ° .
[[[[. i
Po1 Pay Time t

Figure 5-8: Determining the round numbers under bit-by-bit GPS for Example 5.3. (a)
Initial round numbers as determined at the arrival of packets P,; and P3;. (b) Round
number s recomputed at the arrival of packets P,; and P,;. (Continued in Figure 5-9.)

Example 5.3 Packet-by-Packet Fair Queuing

Consider the system from Figure 5-3 and Example 5.1 and assume for the sake of illustration that the
time is quantized to the units of the transmission time of the smallest packets. The smallest packets are
512 bytes from flow 3 and on a 1 Mbps link it takes 4.096 ms to transmit such a packet. For the sake of
illustration, assume that a packet arrives on flows 1 and 3 each at time zero, then a packet arrives on
flows 2 and 4 each at time 3, and packets arrive on flow 3 at times 6 and 12. Show the corresponding
packet-by-packet FQ scheduling.

The first step is to determine the round numbers for the arriving packets, given their arrival times. The
process is illustrated in Figure 5-8. The round numbers are shown also in the units of the smallest
packet’s number of bits, so these numbers must be multiplied by 4096 to obtain the actual round
number. Bit-by-bit GPS would transmit bits from two packets (A;; and A; ;) in the first round, so the
round takes two time units and the slope is 1/2. In the second round, only one packet is being
transmitted (A), the round duration is one time unit and the slope is 1/1. The GPS server completes
two rounds by time 3, R(3) = 2, at which point two new packets arrive (Ao and Ay). The next arrival
is at time 6 (the actual time is t; = 24.576 ms) and the round number is determined as

(t;-t,)-C +R(L,) = (0.024576 —0.012288) % 1000000
nactive (t3) 3
which in our simplified units is R(6) = 3. The left side of each diagram in Figure 5-8 also shows how

the packet arrival times are mapped into the round number units. Figure 5-9 summarizes the process of
determining the round numbers for all the arriving packets.

+8192 =4094 + 8192 =12288

Rt;) =

The actual order of transmissions under packet-by-packet FQ is shown in Figure 5-10. At time 0 the
finish numbers are: F;; = 4 and F5; = 1, so packet As; is transmitted first and packet A;; goes second.

lvan Marsic e Rutgers University 268

number R(t)
—

Round

[—
A
(o))

1/1
5 |
4 1/4
]
1 11 V A
___(_,_ 2
1 — 1/2 A .
1 A Time t
e I I T T T 1 | —
- & o % 0 1 2 3 4 5 6 7 8 9 10 11 12 13
2 = 2 2 A A A
3 3 & 3 T
L L L Lo
N N
Q"s* Qbﬁ
Q¥ QW e <

Figure 5-9: Determining the round numbers under bit-by-bit GPS for Example 5.3,
completed from Figure 5-8.

At time 3 the finish numbers for the newly arrived packets are: F,; = max{0, R3)} +L,; =2+4=56
and F4; =max{0, R3)} + Ls; =2 +2 =4, so Fy; <F,;. The ongoing transmission of packet A, ; is not
preempted and will be completed at time 5, at which point packet A, ; will enter the service. At time 6
the finish number for packet A;, is F3, = max {0, R(6)} + L;, =3 + 1 = 4. The current finish numbers
are F;, < F,; so As, enters the service at time 7, followed by A, ; which enters the service at time 8.
Finally, at time 12 the finish number for the new packet A;5 is F33 = max{0, R(12)} +L;;=6+1=7
and it is transmitted at 12.

In summary, the order of arrivals is {A1, As1}, {Ao1, Aui}, Asa, Ass where simultaneously arriving
packets are delimited by curly braces. The order of transmissions under packet-by-packet FQ is: As,
Al,b A4,19 A3,23 AZ,I: A3,3'

There is a problem with the above algorithm of fair queuing which the reader may have noticed
besides that computing the finish numbers is no fun at all! At the time of a packet’s arrival we
know only the current time, not the current round number. As suggested above, one could try
using the round number slope, Eq. (5.1), to compute the current round number from the current
time, but the problem with this approach is that the round number slope is not necessarily
constant. An FQ scheduler computes the current round number on every packet arrival, to assign
the finish number to the new packet. Because the computation is fairly complex, this poses a
major problem with implementing fair queuing in high-speed networks. Some techniques for
overcoming this problem have been proposed, and the interested reader should consult [Keshav
1997].

Chapter 5 e Mechanisms for Quality-of-Service 269

A ® Arrival

Flow 1 »
L, =2KB Asq ———— Waiting

o0 — Service
Flow 2
L,=2KB Az q

.. ___________________
A3,3
Flow 3 As, o=
L;=512B @ —— ———
3 A3.1

Flow 4
L,=1KB Agi
Time [ms] 0 4096 8.192 12288 16.384 20.480 24576 28.672 32.768 36.864 40.96 45056 49.152 53.248

Figure5-10: Time diagram of packet-by-packet FQ for Example 5.3.

5.1.3 Weighted Fair Queuing

Now assume that weights wy, W, ..., W, are associated with sources (flows) 1, 2, ..., n, to reflect
their relative entitlements to transmission bandwidth. As before, a queue is maintained for each
source flow. Under weighted min-max fair share, flow i is guaranteed to obtain at least C; =

———C of the total bandwidth C. The bit-by-bit approximation of weighted fair queuing (WFQ)
Ww.
i
would operate by allotting each queue a different number of bits per round. The number of bits
per round allotted to a queue should be proportional to its weight, so the queue with twice higher
weight should receive two times more bits/round.

Packet-by-packet WFQ can be generalized from bit-by-bit WFQ as follows. For a packet of
length L;; (in bits) that arrives at t, the finish number under WFQ is computed as

L,
F.j= maX(Fi,j—la R(ta))"'w’_ (5.3)

From the second term in the formula, we see that if a packet arrives on each of the flows i and k
and W, = 2-W, then the finish number for a packet of flow i is calculated assuming a bit-by-bit
depletion rate that is twice that of a packet from flow k.

All queues are set to an equal maximum size, so the flows with the highest traffic load will suffer
packet discards more often, allowing lower-traffic ones a fair share of capacity. Hence, there is no
advantage of being greedy. A greedy flow finds that its queues become long, because its packets
in excess of fair share linger for extended periods of time in the queue. The result is increased
delays and/or lost packets, whereas other flows are unaffected by this behavior. In many cases
delayed packets can be considered lost because delay sensitive applications ignore late packets.

lvan Marsic e Rutgers University 270

Traffic pattern 1

Average delay

i

AN DINDCNIN N + _______________________
I N U

Figure 5-11: Different traffic patternsyield the same average delay.

Delay S55———>>

The problem is created not only for the greedy source, but lost packets represent wasting network
resources upstream the point at which they are delayed or lost. Therefore, they should not be
allowed into the network at the first place. This is a task for policing.

5.2 Policing

So far, we saw how to distribute fairly the transmission bandwidth or other network resources
using WFQ scheduler. However, this does not guarantee delay bounds and low losses to traffic
flows. A packet-by-packet FQ scheduler guarantees a fair distribution of the resource, which
results in a certain average delay per flow. However, even an acceptable average delay may have
great variability for individual packets. This point is illustrated in Figure 5-11. Multimedia
applications are particularly sensitive to delay variability (known as “jitter”).

One idea is to regulate the number of packets that a particular flow can pass through the router
per unit of time by using the “leaky bucket” abstraction (Figure 5-12). Imagine that we install a
turnstile (ticket barrier) inside the router for monitoring the entry of packets into the service. To
pass the turnstile, each packet must drop a token into the slot and proceed. Tokens are dispensed
from a “leaky bucket” that can hold up to b tokens. If the bucket is currently empty, the packets
must wait for a token. If a packet arrives at a fully occupied waiting area, the packet is dropped.'®

Each flow has a quota that is characterized by simple traffic descriptors (Section 3.2.1):

Peak rate: this parameter constrains the number of packets that a flow can send over a very short
period of time.

'8 There are many variations of the leaky bucket algorithm and different books introduce this abstraction in
different way. In some variations, there are no tokens and the packets themselves arrive to the bucket and
drain through a hole in the bucket. Because this is an abstraction anyway, I present it here in a way that |
feel is the most intuitive. This does not affect the results of the algorithm.

Chapter 5 e Mechanisms for Quality-of-Service 271
tokens generated

at rate r [tokens/sec]

bucket holds
up to b tokens

1 token dispensed Token
for each packet generator

Token dispenser r tokens/sec

(bucket) v
b = bucket capacity

Token

waiting area = % o retwork
Qi < N

arriving \/

token-operated packets

turnstile Turnstile

(a) (b)
Figure5-12: Leaky bucket.

packet

Average rate: this parameter specifies the average number of packets that a particular flow is
allowed to send over a time window. As discussed in Section 3.2.1, a key issue here is to decide
the interval of time over which the average rate will be regulated.

Burst size: this parameter constrains the total number of packets (the “burst” of packets) that can
be sent by a particular flow into the network over a short interval of time.

When a packet arriver at a router, it withdraws one token from the bucket before it is allowed to
proceed. If the bucket is empty, the packet must wait for a token to appear.

When the packets are all the same size, this algorithm can be used as described. However, when
variable-sized packets are being used, it is often better to allow a fixed number of bytes per token,
rather than just one packet.

5.3 Active Queue Management

Packet-dropping strategies deal with the case when there is not enough memory to buffer an
incoming packet. The simplest policy is to drop the arriving packet, known as drop-tail policy.

lvan Marsic e Rutgers University 272

Active Queue Management (AQM) algorithms employ more sophisticated approaches. Routers
with AQM detect congestion before the queue overflows and notify the source that the congestion
is about to happen. One of the most widely studied and implemented AQM algorithms is the
Random Early Detection (RED) algorithm that uses implicit feedback by dropping packets. A
recent approach, called Explicit Congestion Notification (ECN) uses explicit feedback by marking
packets instead of dropping them.

5.3.1 Random Early Detection (RED)

A router that implements RED uses two threshold values to mark positions in the queue:
Thresholdin and Thresholdex. A simplified description of RED operation follows. When a new
packet arrives, its disposition is decided by these three rules:

1. If the queue currently contains fewer than Thresholdy, packets, the new packet is
enqueued.

2. If the queue contains between Threshold, and Thresholdx packets, the new packet is
considered for enqueuing or dropping by generating a random number and evaluating its
value.

3. If the queue currently contains more than Threshold.x packets, the new packet is
dropped.

where 0 < Threshold,i, < Threshold,., < BufferSize, and the value 0 represents the head of the
queue. Therefore, instead of waiting until the queue overflows, RED starts randomly dropping
packets as congestion increases. The process is somewhat more complex, as described next.

We know that TCP often sends segments in bursts, depending on the congestion window size
(Section 2.2). A burst represents a spike in traffic intensity that may last only temporarily while
most of the time traffic is low-intensity. In other words, the queue may be most of the time
empty, and a temporary spike does not represent congestion. Therefore, should like avoid
dropping packets from a burst when queue length is greater than Thresholdy,. (Of course, packets
are always dropped if the queue capacity is exceeded.)

To better capture the notion of congestion and accommodate for bursty traffic, the router does not
consider the instantaneous length of the queue. Instead, the router considers the average length of
the queue when applying the three rules described above (Figure 5-13(a)). The average queue
length is computed continuously using Exponential Weighted Moving Average (EWMA). This is
the same method used by TCP for RTT estimation (Section 2.1.2) and by jitter buffer (Section
3.3.1). That is, at any time t when a new packet arrives and tries to join this queue, we compute

AverageQLen(t) = (1- 7 - AverageQLen(t—1) + ¥ - MeasuredQLen(t) (5.4)

where ydenotes a value between 0 and 1. If yis small, the average stays close to long-term trend
and does not fluctuate for short bursts. This parameter should be determined empirically, and a
recommended value is = 0.002.

When the average queue length is between Thresholdy, and Thresholdy.y, RED drops an arriving
packet with an increasing probability as the average queue length increases (Figure 5-13(b)). For
a given AverageQLen, we calculate the probability of packet drop as

Chapter 5 e Mechanisms for Quality-of-Service 273

Packet

R..,(drop)
Router buffer currently te‘rr:p
in service
L] 10
n =
= = Pnax [~
L]
Head of
Random-drop the queue AverageQLen
zone. | ‘ R
Packets subject to
being dropped ThresholdMin 0 77)’@5‘ 7‘4/@8 Ry
ThresholdMax (Drop start location) /70/0,/” /70/%4
h &

(a) (b)

Figure 5-13: (a) RED thresholds on a FCFS (or, FIFO) queue. (b) Packet drop probability
function for RED.

P (AverageQLen—Threshold

min) (5 5)
™ (Threshold,,, —Threshold

min)

Py (AVerageQLen) =

Research has suggested that RED works best when the probability function transitions smoothly
at Thresholdyey, i.€., for Pn, = 1. In addition to the average queue length, the drop probability
also depends on the time elapsed since the last packet was dropped. Instead of actual time, the
algorithm uses a proxy in terms of the number of newly arriving packets (variable: count) that
have been queued (not dropped) while AverageQLen has been between the two thresholds.
Therefore, given an AverageQLen the actual probability of a packet being dropped is computed as

P.ory (AverageQLen)
(AverageQLen)

P(AverageQLen) = (5.6)

1—countx P

temp

We can observe that P increases as count increases. This helps make packet drops more evenly
distributed and avoid bias against bursty traffic.

RED is intended to work primarily with TCP sources. RED is a queue management technique that
attempts to provide equitable access to an FCFS system. The source that transmits at the highest
rate will suffer from higher packet-dropping rate than others will. As a result, this source will
reduce its transmission rate more, which yields more uniform transmission rates across the
sources and more equitable access to the buffer resource. Under RED, TCP connections will
experience randomly dropped packets (rather than synchronously when the buffer becomes full).
Therefore, TCP senders will back off at different times. This behavior avoids the global
synchronization effect of all connections and maintains high throughput in the routers. Both
analysis and simulations shows that RED works as intended. It handles congestion, avoids the
synchronization that results from drop-tail policy, and allows short bursts without dropping
packets unnecessarily. It is also important that RED can control the queue length irrespective of
endpoint sender cooperation. The IETF now recommends that routers implement RED.

lvan Marsic e Rutgers University 274

5.3.2 Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN) allows end-to-end notification of network congestion
without dropping packets. It requires support by the underlying network (i.e., routers). ECN is an
optional feature that is only used when both endpoints support it and have it activated.

We have seen that Random Early Detection (RED) mechanism drops packets when it senses
potential congestion (Section 5.3.1). Unlike RED, instead of dropping a packet, an ECN-aware
router may set a mark in the packet’s IP header in order to signal that congestion is about to
happen. The receiver of the packet is the first to learn about the potential congestion and echoes
the congestion indication to the sender. The receiver uses the next acknowledgement packet to
inform the sender about the impending congestion, which must react as if a packet was dropped,
i.e., by reducing its congestion window (Section 2.2).

ECN uses two bits in the IP header of packets from ECN-capable transports to allow routers to
record congestion, and uses two bits in the TCP header to allow the TCP sender and receiver to
communicate. The two bits in the IP header are taken from the 8-bit type of service (TOS) field
(Figure 1-36) and are called the Congestion Experienced (CE) codepoint. These are bits 6 and 7
(rightmost) of the TOS field, and a router can choose to set either bit to indicate congestion. The
reason for using two bits is to increase the robustness of the mechanism. The four different
codepoints are as follows:

00: Transport not ECN-capable - Non-ECT

10: ECN capable transport - ECT(0)

01: ECN capable transport - ECT(1)

11: Congestion encountered - CE

The two bits in the TCP header are taken from the 6-bit unused field (Figure 2-2).

ECN uses the same mechanism as RED (Section 5.3.1) to detect an impending congestion: it
monitors the average queue size.

5.4 Multiprotocol Label Switching (MPLS)

Problems related to this section: Problem 5.9 — ? Q

Multiprotocol Label Switching (MPLS) is essentially a mechanism for creating and using special
paths, known as “tunnels,” in IP networks. We know that IP forwards data packets on a packet-
by-packet basis, where each packet is forwarded independently of any other packet. It is said to
be connectionless packet forwarding. MPLS allows forwarding packets on a flow-by-flow basis,
so that all packets belonging to a given traffic flow are forwarded in the same manner and along
the same network path (or, tunnel). In this sense, MPLS supports connection-oriented packet
forwarding and the fixed forwarding paths (tunnels) represent “virtual circuits” in the network.

Chapter 5 e Mechanisms for Quality-of-Service 275

MPLS domain Egress LSR

Flow of IP
datagrams \ LSR
ngress
(denoted of% tunnel denoted by LSP

by FEC)

H MPLS label
Link-layer hdr

O IP header
LSR = Label switching router
1P payload FEC = Forwarding equivalence class
E LFIB LSP = Label switched path
LIFB = Label forwarding information base

Figure 5-14: MPL S operation.

MPLS relies on [P addresses and IP routing protocols to set up the paths/tunnels. An MPLS-
enabled router is known as a Label Switching Router (LSR). A set of LSRs where each LSR is
reachable from any other LSR via some other LSRs in the same set is called an MPL S domain.
In other words, an MPLS domain is formed by a contiguous network. A label switching router
forwards packets by examining a short, fixed-length MPLS label (Figure 5-14). The label
represents a given traffic flow, and all the packets belonging to this flow should be forwarded
along the path/route/tunnel associated with this label. A traffic flow is called a Forwarding
Equivalence Class (FEC), also a Functional Equivalence Class, and this is a group of TP packets
that are forwarded in the same manner (i.e., along the same path, with the same forwarding
treatment). In other words, An FEC is a set of packet flows with common cross-core forwarding-
path requirements. A sequence of routers that form a path along which a given FEC flow is
forwarded forms a tunnel, which is known as a Label Switched Path (L SP). For example, one
such path is formed by routers B, C, and D in Figure 5-14. Each LSP tunnel is unidirectional
(one-way), starting with an ingress LSR, going through intermediate LSRs, if any, and ending
with an egress LSR. If data needs to travel in the opposite direction as well, which is usually true,
then a separate one-way tunnel must be built in the opposite direction. To summarize, an FEC is
uniquely associated with an LSP. Each pair of routers agrees on a label independently of other
router pairs along an LSP. Therefore, each label has local scope and different segments of an LSP
tunnel may be represented by different MPLS labels. Why this is so, will be explained later.

lvan Marsic e Rutgers University 276

segment 2 segment 3
Segme"t ! label = Iabel
label =
//
packets belonging
to the same FEC s ’_@\
i) = b,!
(Forwarding Equivalence Class) LSP (Label Switched Path, tunnel)

Why MPLS:
e Use switching instead of routing

¢ [P Traffic Engineering (TE): ability to specify routes based on resource constraints, rather than
on distance (shortest path) only (Section 5.4.3). MPLS adds the ability to forward packets over
arbitrary non-shortest paths, using constraint-based routing.

e Virtual Private Networks (VPNs, Section 5.4.4): Controllable tunneling mechanism emulates
high-speed “tunnels” between IP-only domains.

e Route protection and restoration

A key reason for initial MPLS development was the promise of ultra-fast packet forwarding:
Longest prefix match is (was) computationally expensive (Section 4.1.3); Label matching was
seen as much less computationally expensive. However, with the emergence of gigabit IP routers
capable of IP forwarding as fast as any MPLS-capable router performs label switching the speed
advantage has diminished (although not disappeared, because label switching still can be
implemented in a much simpler hardware). Currently, MPLS key strengths are seen in Traffic
Engineering and Virtual Private Networks—capabilities critical to network service providers who
need to better manage resources around their backbones or need to offer VPN services.

Notice that MPLS is a set of protocols (specified by IETF), rather than a single protocol. The key
protocols are Label Distribution Protocol and Link Management Protocol. Several existing IP
protocols are also adapted to work with MPLS.

5.4.1 MPLS Architecture and Operation

MPLS is located between the link-layer and network-layer protocols (Figure 5-15), so it is
referred to as a layer 2.5 protocol (in the OSI reference architecture, where Link is layer 2 and
Network is layer 3). MPLS can run over different link-layer technologies, such as Ethernet or
PPP (Section 1.5). The protocol-identifier field of the link-layer header should identify the
payload as an MPLS frame. For example, unique PPP code points (carried in the Protocol field,
Figure 1-56) identify the PPP frame’s contents as an MPLS frame. The value of the PPP Protocol
field for MPLS unicast is hexadecimal 0x0281. A similar encapsulation scheme is used when
transmitting over Ethernet, where the payload is identified as an MPLS frame with unique Ether-
Types (Figure 1-59(a)) or LLC frame’s DSAP addresses (Figure 1-59(b)). The value of Ether-
Type for MPLS unicast is hexadecimal 0x8847.

Different Forwarding Equivalence Classes (FECs) designate different classes of service or
service priorities. Each MPLS-capable router (label switching router, LSR) keeps a list of labels
that correspond to different FECs on each outgoing link. All packets belonging to the same FEC
have the same MPLS label value. However, not all packets that have the same label value belong

Chapter 5 e Mechanisms for Quality-of-Service 277

Network/IP layer —
Routing plane

Network/IP layer —

Forwarding <= < >
plane = SIITTTTTIITTTo =
o
Data plane / = ‘: a t

(%

LSP = Label switched path
LSR = Label switching router

Link layer plane
(Network’s physical
topology)

Figure 5-15: Protocol layering of an MPL S networKk.

to the same FEC. This fact will become clear later, as we see that FEC is determined by the label
value and experimental bits (Exp) of the MPLS header. By default, packet’s FEC is determined
by its destination IP address. Other classification parameters include source IP address, IP
protocol type, TOS field of the IP header (Figure 1-36), and TCP/UDP port numbers. The
packet’s arrival port may also be considered a classification parameter. Multicast packets
belonging to a particular multicast group also form a separate FEC.

An edge-LSR terminates and/or originates LSPs (label switched paths) and performs both label-
based forwarding and conventional IP forwarding functions. The edge-LSR converts IP packets
into MPLS packets, and MPLS packets into IP packets. On ingress to an MPLS domain, an LSR
accepts unlabelled IP packets and creates an initial MPLS frame by pushing a shim header
between link-layer and network-layer headers (Figure 5-16). A special table in the ingress LSR,
known as Label Forwarding Information Base (L FIB), matches the FEC to the label. LFIB is
an MPLS equivalent for the forwarding table of the IP protocol. On egress, the edge LSR
terminates an LSP by popping the top MPLS stack entry, and forwarding the remaining packet
based on rules indicated by the popped label (e.g., that the payload represents an IPv4 packet and
should be processed according to IP forwarding rules).

Edge LSRs provide the interface between external networks and the internal label-switched paths,
and core/intermediate LSRs provide transit service in the middle of the network. An intermediate

lvan Marsic e Rutgers University 278

O
Payload I

Link-layer
header

Network-layer
header

Label value Exp |S TTL
w— W |
bits: 20 3 1 8 Network layer
« 32 bits (4 bytes) > &) %)
MPLS layer
(a) 5)
Intermediate label w w
(S=0) Link layer
Bottom label
Top label (s=1)

IP P
header payload

Link-layer

(b) header

Label | [[TTL

)

Label stack

Figure 5-16: (a) MPL S label (“shim” header) format and itsrelative placement in | P packets.
(b) The placement of the label stack; noticethat the Shit isset only for the bottommost label.

LSR examines incoming MPLS packets, looks up and follows the packet’s label instructions, and
then forwards the packet according to the instructions. In general, the LSR performs a label
swapping function.

Paths or routes are established between the edge LSRs via intermediate LSRs. These paths are
called Label Switched Paths (L SPs). The LSPs are designed for their traffic characteristics. The
traffic-handling capability of each path is calculated. These characteristics can include peak
traffic load, inter-packet variation, and dropped packet percentage calculation.

MPLS Labels

Figure 5-16(a) shows the MPLS label for frame-based packets (e.g., Ethernet, PPP). MPLS label
is also known as “shim” header. The meaning of the fields is as follows:

Label value: A number representing a forwarding equivalence class (FEC) on a given outgoing
link. The label has a local scope limited to a network link, which means that a link may support
up to one million (2* = 1,048,576) distinct labels.

Exp: experimental bits identify the class of service (or QoS).

ﬂ\'(— Visit http://en.wikipedia.org/wiki/Optical _switch for information about optical switches

Chapter 5 e Mechanisms for Quality-of-Service 279

Bottom-of-stack bit (S): value “1” indicates that this label header is the bottom label in the stack;
otherwise, it is set to zero. The stack is a collection of labels that represent a hierarchy of tunnels
created over a particular outgoing link. The stack can have unlimited depth, although it is rare to
see a stack of four or more labels.

TTL: time-to-live counter that has the same function as the TTL found in the IP header (Figure
1-36), which is to prevent packets from being stuck in a routing loop. The TTL counted is
decreased by 1 at each hop, and if the value reaches 0, the packet is discarded. Special processing
rules are used to support IP TTL semantics, as described below.

The label value at each hop is a local key representing the next-hop and QoS requirements for
packets belonging to each FEC. In conventional routing, a packet is assigned to an FEC at each
hop (i.e., forwarding table look-up, Section 4.1.3). Conversely, in MPLS it is only done once at
the ingress of the MPLS domain. At the ingress LSR, a packet is classified and assigned an
FEC/label. Packet forwarding in the MPLS domain is performed by swapping the label.

The label stack entries appear after the link-layer header and before the network-layer header
(Figure 5-16(b)). The label that was last pushed on the stack (newest) is called the top label, and
it is closest to the link-layer header. The label that was first pushed on the stack (oldest) is called
the bottom label, and it is closest to the network-layer header. The edge LSR that pops up the
bottommost label is left with a regular IP packet, which it passes up to the network layer and IP
forwarding is used to move the packet onwards.

Label Bindings, LIB, and LFIB

The ordinary IP control plane builds and maintains the routing table, also known as RIB (Routing
Information Base). Routing table is just built here, but forwarding decisions are made in the
forwarding or data plane (top of Figure 5-15). Forwarding decisions are made based on the
forwarding table, also known as FIB (Forwarding Information Base), which is derived from the
routing table. In case of MPLS, the equivalent data structures are LIB (label information base)
and LFIB (label forwarding information base). The prefixes-to-label bindings are built and stored
in the LIB, control plane, which is then used to create the LFIB data or forwarding plane. The
lookups are actually done in the LFIB, not the LIB (as for IP, in the FIB and not the RIB). Their
relationship is illustrated in Figure 5-17.

Label Forwarding Information Base (LFIB) is a data structure and way of managing
forwarding in which destinations and incoming labels are associated with outgoing
interfaces/ports and labels. The LFIB resides in the data plane and contains a local-label-to-next-
hop label mapping along with the outgoing port, which is used to forward labeled packets.

In summary, the routing table is built by the routing protocols in the IP control plane. Similarly,
LIB (label information base) is built by a label distribution protocol in the MPLS control plane.
LIB contains only labels, no routes (i.e., LSP tunnels). The IP forwarding table is derived in the
IP data plane from the routing table. Correspondingly, the MPLS LFIB is derived from LIB in the
MPLS data plane. LFIB contains bindings between labels and LSPs. A Labeled Packet is always
looked up in LFIB (not in LIB!) and an IP Packet is always looked up in forwarding table (not in
routing table!). However, the process is somewhat more complex for edge LSRs. On the ingress
LSR, the lookup is performed against the combined IP forwarding table and LFIB, as described in
the next section. In the core (intermediary LSRs), the lookup is performed only against the LFIB.

lvan Marsic e Rutgers University 280

= IP forwarding table
Destin. prefix | Out port
LSR

(not used in MPLS,
except by edge LSRs)

(from routing protocols) Routing table

\ To /

—

From

_— \ Label forwarding information base (LFIB)

\/
—

Label information
(from peer LSRs) base (LIB)

Dest. prefix | In label | Out label | Out port

Figure 5-17: Relationship of LIB (label information base) and LFIB (label forwarding
information base).

On the egress LSR, the lookup is performed against the IP forwarding table if there was only a
single label in the stack and this label was popped by the penultimate hop; otherwise, the LFIB is
looked up.

More precisely, table to lookup into is determined by the link-layer header Ether-Type or PPP
Protocol field. The protocol identifier in the link-layer header tells the router what type of packet
is coming in and therefore which table to look in:

e 0x0800 — IPv4: Lookup in the IP forwarding table
e (x8847 — MPLS Unicast: Lookup in the MPLS LFIB (label forwarding information base)
e (x8848 — MPLS Multicast: Lookup in the MPLS LFIB (label forwarding information base)

Next, we consider how MPLS routers (LSRs) build and utilize label-forwarding tables.

Forwarding Labeled Packets

Initially, all routers start with empty routing and forwarding tables and label-bindings. We
assume that regular IP routing protocols run first and build regular IP routing tables, or RIBs
(routing information bases). MPLS builds label-binding tables based on regular IP routing tables,
using label distribution protocols (described in Section 5.4.2). Label bindings can also be
configured manually, particularly for the purposes of Traffic Engineering, but this is a tedious and
error-prone task, so even here it is preferred to use label distribution protocols combined with
constraint-based routing protocols. To illustrate how MPLS-capable routers (LSRs) forward

Chapter 5 e Mechanisms for Quality-of-Service 281

Dest. Prefix | Out label |Out port Dest. Prefix | Out label |Out port
EE—— Network
96.1.1/24
LFIB(B) LFIB(D)
=) Port Port ME 5"
dge 4 2 5 1dge 3 @
_LSR_J (SR LSR N J
A [[es1r113p B C D H
N
In label | Out label | Out port @
[\

(a) LFIB(C)

() LSR

N
A - 96.11.13| B I Label req. C Label req. D
L96.1.l/24 96.1.1/24

¢

S 55—
H

Dest. Prefix | Out label |Out port Dest. Prefix | Out label |Out port
96.1.1/24 9 4
Network
. y 96.1.1/24
LFIB(B) LFIB(D)
% 9 S <>
S) £ 151 &
NES - NG - (LLsR .)
96.1.1.13 Pfx: 96.1.1/24 Pfx: 96.1.1/24 ==
A [Jes1113] B 961124 C @Peeliz p H

LIB binding:
In label | Out label | Out port 96.1.1/24 > 17
9 17 5

Figure 5-18: LSP path setup. (a) Packet arrives from router A to B towards a host in H's
network. (b) LSR B sends label request towards the destination. (c) LSR D is the edge
router, so it replieswith label 17, then LSR C selectsits own label as9 and repliesto B.

(© LFIB(C)

labeled packets, let us assume the simplest scenario where label bindings are derived from the
hop-by-hop information in IP routing tables.

Consider the example in Figure 5-18, which illustrates one of the tunnels from Figure 5-14. Here,
edge LSR B receives a packet with destination [P address 96.1.1.13. LSR B has the
corresponding network prefix 96.1.1/24 in its routing table, but does not have the label
binding in its LFIB (label forwarding information base). To obtain a label for this prefix, B uses a
label distribution protocol and sends a message downstream (to C and on to D) requesting a label
for prefix 96.1.1/24. When edge LSR D receives the request, it knows that itself is the egress
LSR of the new tunnel (LSP, label switched path). Therefore, D selects a label value not used for
any other LSP and sends a response message using the label distribution protocol. In our

lvan Marsic e Rutgers University 282

Dest. Prefix | Out label |Out port

96.1.1/24 9 4
~ S oh
96.1.1/24
LFIB(B)
<> Port Port r~s2= S
S2) 4 25 13 S
A B[Josri1z]op C | [osrr13[a7p D H
In label [Out label | Out port
9 17 5
LFIB(C
(a) ©)
D’s IP Forwarding table
Dest. Prefix | Out label |Out port Destin. Prefix | Out port
96.1.1/24 9 4 96.1.1/24 3
i
96.1.1/24
— & & & —
@ Edge LSR Edge 3 @
A B C D [_Jesr113p H

errTes] |

In label | Out label | Out port :
9 17 5
(b) 96.1.1.13 —/——

Figure 5-19: Forwarding labeled packets (continued from Figure 5-18). (a) Within MPLS
domain, data packet isforwarded based on its MPL Slabel. (b) Outside MPL S domain, data
packet isforwarded based on itsdestination | P address.

example, D selected the label value 17 and stored the label 17 binding for prefix 96.1.1/24 in
its LIB (label information base), not LFIB (label forwarding information base)! D’s LFIB remains
empty because LSR D does not use LFIB to forward packets from this tunnel. D is the egress of
the tunnel and to forward packets towards H (which is not an LSR and is not MPLS capable), D
will use conventional IP forwarding.

When C receives the label response from D, in general it will need to assign a different label for
the next segment of the same LSP tunnel, because it may be already using label 17 for another
LSP. Remember, routers are at crossroads of many different paths and these paths are established
at unpredictable times. In our example (Figure 5-18), C selects the label value 9 for the upstream
segment of LSP. Because C is an intermediate LSR, it does not store prefixes in its LFIB; C
might even not be IP-capable. Rather, C needs just the incoming and outgoing labels. The
incoming label value is 9 (will be received in MPLS packets from B) and the outgoing label value
is 17 (will be sent in MPLS packets to D). In other words, the intermediate LSR C performs label
swapping. Unlike intermediate LSRs, edge LSRs do not perform label swapping. Each edge LSR
must understand both IP and MPLS, and its LFIB (label forwarding information base) may have

Chapter 5 e Mechanisms for Quality-of-Service 283

B Cw LSP-1: H5>G—oE—F

MPLS layer plane

Link layer plane
(Network’s physical
topology)

Figure 5-20: L SP topologies (or Point-of-Presence/PoP designs). L SP-1: Unique ingress and
egressL SR. L SP-2: Multipleingress L SRs, unique egress L SR.

different format. Notice also that some LSRs may play both roles: edge and intermediate, for
different LSP tunnels.

Continuing with the example in Figure 5-18, the data packet has been sitting in LSR B while the
LSP setup process took place. Once liable bindings become available, B will forward all data
packets from this flow using label switching. An example for the first packet is shown in Figure
5-19. LSR B, as the ingress router of this LSP, inserts an MPLS label with value 9 (which it
obtained from C), and sends this packet on output port 4 towards C (Figure 5-19(a)). When C
receives the packet, it performs label swapping: For the given input label 9, C looks up its LFIB
and finds that the outgoing label is 17 (which it received from D), swaps the packet’s label to 17
and sends it on output port 5 towards D. When D receives the packet, it looks up the incoming
label (17) and recognizes that itself is the egress LSR for this LSP. Therefore, D strips off the
MPLS label and forwards the packet towards the next hop H using conventional IP forwarding
(Figure 5-19(b)).

Topology of LSPs

The design of PoPs (Points-of-Presence) for all backbone IP networks, including MPLS
networks, is constrained by the choice of access link type(s) to be supported for the customers of
the network and the choice of core link type(s) to be used in the backbone network. Based on PoP
designs, LSP (Label Switched Path) trees can be classified as these topology types (Figure 5-20):

e Unique ingress and egress LSR: In this case, a point-to-point path through the MPLS
domain is set up. An example is LSP-1 in Figure 5-20, from the ingress LSR H, through the
intermediate LSRs G and E towards the egress LSR F.

e Multiple ingress LSRs, unique egress LSR: In this case, LSP forms a multipoint-to-point
tree topology. This happens when traffic assigned to a single FEC arises from different sources.
An example is LSP-2 in Figure 5-20, where traffic assigned to a single FEC enters at three

lvan Marsic e Rutgers University 284

Ne_twork—layer Procedures for binding Label-binding distribution
routing protocols FECs to labels rotocol
(e.g., OSPF, BGP, PIM) P
FEC-to-next-hop r FEC-to-label
mapping mapping

Maintenance of LFIB (label forwarding information base)

Figure 5-21: The components of the control plane of an L SR perform LFIB construction.

different ingress LSRs: A, B, and D. The branches from A and B join at LSR C, then this branch
joins with D at E, and the final two hops through G to the egress LSR J are shared.

e Multicast: In this case, multicast traffic is carried over the MPLS domain from a single
ingress LSR to multiple egress LSRs. The multicast LSP is determined by the multicast tree
constructed by the multicast routing protocol (Section 3.3.2).

In principle, an ISP backbone network could configure a separate LSP to carry each class of
traffic (FEC) between each pair of edge LSRs. A more practical solution is to merge LSPs of the
same traffic class to obtain multipoint-to-point flows that are rooted at an egress LSR. An
example is LSP-2 in Figure 5-20. The LSRs serving each of these flows would be configured to
provide the desired levels of performance to each traffic class.

5.4.2 Label Distribution Protocols

Setup of LSPs (Label Switched Paths) is done by a process of label distribution. Label
distribution may be based on information obtained from conventional hop-by-hop routing
protocols, or it may use explicit routing over non-shortest paths. Label distribution protocol
dynamically establishes an LSP tree between all the edge LSRs for each identifiable FEC.
Requirements for a label distribution protocol include per-hop traffic differentiation capabilities,
the ability to route traffic over non-shortest paths, and the ability to dynamically signal (or
provision) QoS and path information across a network of routers or switches. There are many
similarities between conventional routing protocols and label distribution protocols for MPLS. A
key difference is the MPLS capability for explicit non-shortest-path routing.

The control plane of an LSR performs the following functions (Figure 5-21):
1. Create bindings between FECs and labels.
2. Inform the adjacent LSRs of the bindings it created (using a label distribution protocol).

3. Use information received from the adjacent LSRs to construct and maintain the
forwarding table (LFIB) used by the MPLS label switching.

Label Distribution

In general, label bindings between two LSRs can be distributed by either a downstream LSR or
an upstream LSR. MPLS architecture requires downstream label distribution: label-bindings must

Chapter 5 e Mechanisms for Quality-of-Service 285

On-demand Downstream Label Distribution Unsolicited Downstream Label Distribution

@ Request for Binding

Label-to-FEC Binding

Label-to-FEC Binding @

(a) (b)

Figure 5-22: Methods for MPL S downstream label distribution.

be distributed in the direction from a downstream LSR to an upstream LSR. There are two
methods for downstream label distribution:

e On-demand Downstream Label Distribution: In this case, a downstream LSR distributes a
label binding in response to an explicit request from an upstream LSR (Figure 5-22(a)). An
upstream LSR A recognizes a downstream LSR B as its next-hop for an FEC and sends a request
to LSR B for a binding between the FEC and a label. If LSR B recognizes the FEC and has a next
hop for it, LSR B creates a binding and replies to LSR A. Both LSRs then have a common
understanding. This process is also illustrated in Figure 5-18.

e Unsolicited Downstream Label Distribution: In this case, a downstream LSR distributes a
label binding in response to an explicit request from an upstream LSR (Figure 5-22(b)). A
downstream LSR B discovers a “next hop” for a particular FEC, generates a label for this FEC,
and communicates the binding to an upstream LSR A. LSR A inserts the binding into its LIB
(label information base) and checks if it need to update the corresponding entry in its LFIB (label
forwarding information base). If LSR B is the next hop for the FEC, LSR A can use that label as
an outgoing label, knowing that its meaning is understood.

Each FEC is specified as a set of one or more FEC elements. Each FEC element identifies a set
of packets that may be mapped to the corresponding LSP. When an LSP is shared by multiple
FEC elements, the shared LSP is terminated at (or before) the node where the FEC elements can
no longer share the same path. Following are the currently defined types of FEC elements:

1. Address Prefix. This element is an address prefix of any length from 0 to a full address,
inclusive.

2. Host Address. This element is a full host address.
New element types may be added as needed.
Distribution Control

Independent LSP Control

lvan Marsic e Rutgers University 286

Each LSR makes independent decision on when to generate labels and communicate them to
upstream peers

Communicate label-FEC binding to peers once next-hop has been recognized
LSP is formed as incoming and outgoing labels are spliced together
Characteristics:

Labels can be exchanged with less delay

Does not depend on availability of egress node

Granularity may not be consistent across the nodes at the start

May require separate loop detection/mitigation method

Ordered LSP Control
Label-FEC binding is communicated to peers if:
- LSR is the ‘egress’ LSR to particular FEC
- label binding has been received from an upstream LSR

LSP formation ‘flows’ from egress to ingress

Characteristics:

Requires more delay before packets can be forwarded along the LSP
Depends on availability of egress node

Mechanism for consistent granularity and freedom from loops

Used for explicit routing and multicast

Both methods are supported in the standard and can be fully interoperable.

LDP: Label Distribution Protocol

Label Distribution Protocol (LDP) provides LSR discovery mechanisms to enable LSR peers to
find each other and establish communication. The LDP protocol is defined in RFC-5036. It
defines four types of messages:

e DISCOVERY: used to find neighboring LSRs. Each LSR announces and maintains its presence
in a network. LSRs indicate their presence by sending Hello messages periodically. Hello
messages are transmitted as UDP packets to the LDP port at the group multicast address for all
routers on the subnet.

e SESSION ADJACENCY: used to initialize, keep alive, and shutdown LDP sessions. If two LSRs
have discovered each other by means of the LDP Hello messages, they then establish sessions and
become LDP peers. For this purpose, routers use LDP initialization procedure over TCP

Chapter 5 e Mechanisms for Quality-of-Service 287

transport. After the initialization procedure is completed, the two routers are LDP peers and can
exchange Advertisement messages.

e [ABEL ADVERTISEMENT: used for label-binding advertisements, request, withdrawal, and
release. This is the main purpose of LDP. Advertisement messages are used to maintain label
mappings for FECs (Figure 5-21). In general, an LSR requests a label mapping from an LDP peer
when it needs one, and advertises a label mapping to an LDP peer when it wants that peer to use
the advertised label.

e NOTIFICATION: used to distribute advisory information and to signal error information.

LDP depends on a routing protocol, such as OSPF (Section 8.2.2), to initially establish
reachability between the LSRs. The LDP runs over TCP for reliable delivery of messages, except
for discovery of LSR peers, which uses UDP and IP multicast. It is designed to be extensible,
using messages specified as TLVs (type, value, length) encoded objects.

The IP routing protocol can also be used to define the route for LSP tunnels (hop-by-hop routing).
Alternatively, traffic-engineering considerations can determine the explicit route of the LSP
(Section 5.4.3). Once a route is determined for an LSP, LDP is used to set up the LSP and assign
the labels. Because each LSP is unidirectional, label assignment propagates back from the egress
LSR to the originating point (ingress LSR), as illustrated in Figure 5-18.

RSVP-TE
RFC-3209
Explicit Routing

The exchange of PATH and RESV messages between any two LSRs establishes a label
association with specific forwarding requirements. The concatenation of these label associations
creates the desired edge-to-edge LSP.

5.4.3 Traffic Engineering

Service providers and enterprise operators face the challenge of providing acceptable service
levels, or QoS, to their customers and users while simultaneously running an efficient and reliable
network. Conventional IP routing aims to find and follow the shortest path between a packet’s
current location and its destination. This can lead to “hot spots” in the network—routers and links
on the intersection of shortest paths to many destinations subject to high traffic load. As the
average load on a router rises, packets experience increased loss rates, latency, and jitter. Two
solutions exist (and may be deployed in parallel): introducing faster routers and links, or
distributing (load balancing) the packet forwarding across alternate (potentially non-shortest-
path) routes. The latter solution is called Traffic Engineering (TE).

Constraint-based Routing

One type of constraint would be the ability to find a route (path) that has certain performance
characteristics, such as minimum available bandwidth. In this case, the constraint imposed on the
routing algorithm is that the computed path must have at least the specified amount of available

lvan Marsic e Rutgers University 288

bandwidth on all links along the path. Different paths (defined by source-destination endpoints)
may have different demands for the minimum available bandwidth.

Another type of constraint would be administrative. For example, a network administrator may
want to exclude certain traffic from traversing certain links in the network, where such links
would be identified by a link attribute. In this case, the constraint imposed on the routing
algorithm is that the computed path must not traverse through any of the specified links. On the
other hand, the network administrator may want to require certain traffic to traverse only the
specified links. Similar to performance constraints, different paths may have different
administrative constraints.

Constraint-based routing cannot be supported by conventional IP routing protocols. The key
reason is that constraint-based routing requires route (path) calculation at the source router. This
requirement is because different sources may have different constraints for a path to the same
destination, and the constraints associated with a particular source router are known only to this
router, but not to any other router in the network. Unlike this, in conventional IP routing, a route
is computed in a distributed manner by every router in the network.

Constrained Shortest Path First (CSPF) is an enhanced version of the shortest-path first (SPF)
algorithm used in OSPF (Section 8.2.2). CSPF computes paths taking into account the
constraints. When computing paths for LSP tunnels, CSPF considers the physical topology of the
network, the attributes of the individual links between LSRs, and the attributes of existing LSPs.
CSPF attempts to satisfy the requirements for a new LSP while minimizing congestion by
balancing the network load.

5.4.4 Virtual Private Networks

Virtual private networks (VPNs) provide relative or absolute protection for a given traffic flow
from other traffic on any particular network segment. VPNs are also used to support tiered
services for traffic flows. In general, a VPN provides wide area connectivity to an organization
located in multiple sites. MPLS can provide connectivity among VPN sites through LSPs that are
dedicated to the given VPN. The LSPs can be used to exchange routing information between the
various VPN sites, transparently to other users of the MPLS network. This behavior gives the
appearance of a dedicated wide-area network.

Layer-2 VPNs, Layer-3 VPNs

It is possible to build VPNs using a pure IP solution. Although gigabit IP routers are capable of IP
forwarding as fast as any MPLS-capable router performs label switching, MPLS VPNs are
significantly more efficient than IP VPNs.

Chapter 5 e Mechanisms for Quality-of-Service 289

5.4.5 MPLS and Quality of Service

Route Protection and Restoration
- End-to-end protection

- Fast node and link reroute

MPLS Protection Types:

1+1: Backup LSP established in advance, resources dedicated, data simultaneously sent on both
primary and backup

Switchover performed only by egress LSR

Fastest, but most resource intensive

1:1 : Same as 1+1 with the difference that data is not sent on the backup
Requires failure notification to the ingress LSR to start transmitting on backup
Notification may be send to egress also

Resources in the backup may be used by other traffic

Low priority traffic (e.g., plain IP traffic), shared by other backup paths.

5.5 Summary and Bibliographical Notes

Section 5.1: Scheduling

If a server (router, switch, etc.) is handling multiple flows, there is a danger that aggressive flows
will grab too much of its capacity and starve all the other flows. Simple processing of packets in
the order of their arrival is not appropriate in such cases, if it is desired to provide equitable
access to transmission bandwidth. Scheduling algorithms have been devised to address such
issues. The best known is fair queuing (FQ) algorithm, originally proposed by [Nagle, 1987],
which has many known variations. A simple approach is to form separate waiting lines (queues)
for different flows and have the server scan the queues round robin, taking the first packet (head-
of-the-line) from each queue (unless a queue is empty). In this way, with n hosts competing for a
given transmission line, each host gets to send one out of every n packets. Aggressive behavior
does not pay off, because sending more packets will not improve this fraction.

A problem with the simple round robin is that it gives more bandwidth to hosts that send large
packets at the expense of the hosts that send small packets. Packet-by-packet FQ tackles this
problem by transmitting packets from different flows so that the packet completion times
approximate those of a bit-by-bit fair queuing system. Every time a packet arrives, its completion

lvan Marsic e Rutgers University 290

time under bit-by-bit FQ is computed as its finish number. The next packet to be transmitted is
the one with the smallest finish number among all the packets waiting in the queues.

If it is desirable to assign different importance to different flows, e.g., to ensure that voice packets
receive priority treatment, then packet-by-packet weighted fair queuing (WFQ) is used. WFQ
plays a central role in QoS architectures and it is implemented in today’s router products [Cisco,
1999; Cisco, 2006]. Organizations that manage their own intranets can employ WFQ-capable
routers to provide QoS to their internal flows.

[Keshav, 1997] provides a comprehensive review of scheduling disciplines in data networks.
[Bhatti & Crowcroft, 2000] has a brief review of various packet scheduling algorithms

[Elhanany et al., 2001] reviews hardware techniques of packet forwarding through a router or
switch

Packet scheduling disciplines are also discussed in [Cisco, 1995]

One of the earliest publications mentioning the leaky bucket algorithm is [Turner, 1986].

Section 5.3: Active Queue Management

Random Early Detection (RED) keeps the overall throughput high while maintaining a small
average queue length, and tolerates transient congestion. When the average queue has exceeded a
certain threshold, RED routers drop packets at random so that TCP connections back off at
different times. This avoids the global synchronization effect of all connections. RED was
proposed by Floyd and Jacobson [1993]. Sally Floyd maintains a list of papers on RED here:
http://www.icir.org/floyd/red.html. Christiansen, et al., [2001] also provides an overview of various
versions of RED and additional references. Srikant [2004] presents an in-depth account on RED
techniques and their analysis.

Clark and Fang [1998] proposed an extension of RED to provide different levels of drop
precedence for two classes of traffic. Their algorithm is called RED with IN/OUT or RIO for
short. A device, located on the sourcing traffic side of a network boundary, serves a “policy
meter.” Packets are classified as being inside (IN) or outside (OUT), depending on whether they
conform to the service allocation profile of a given sender/user. RIO uses twin RED algorithms
for dropping packets, one for INs and one for OUTs. RIO chooses different parameters of RED
algorithms for IN and OUT packets, which may be lined up in the same or different queues.
When congestion sets in, RIO is able to preferentially drop OUT packets.

Explicit Congestion Notification (ECN) is described in RFC-3168. As expected, ECN reduces the
number of packets dropped by a TCP connection, which, in turn, reduces latency and especially
jitter, because packet retransmissions are avoided [RFC-2884]. This outcome is most dramatic
when the TCP connection sends occasional isolated segments, which is common for interactive
connections (such as remote logins) and transactional protocols (such as HTTP requests, the
conversational phase of SMTP, or SQL requests. Such a sender will receive ECN notification,
which it ignores because it sends only occasional isolated segments, but it benefits from the fact
that its segment was not dropped. The reason for this effect is that the sender can detect a loss of

Chapter 5 e Mechanisms for Quality-of-Service 291

an isolated segment only by an RTO timeout (which is relatively long), because there are no
subsequent segments to generate duplicate ACKs. Effects of ECN on bulk transports are less
clear because subsequent segments will soon generate duplicate ACKs and recent TCP versions
use fast recovery to resend dropped segments in a timely manner (Section 2.2).

Section 5.4: Multiprotocol Label Switching (MPLS)

MPLS provides the ability to forward packets over arbitrary non-shortest paths, and emulate high-
speed “tunnels” between IP-only (non-label-switched) domains. It offers a capability not
available to conventionally routed solutions: the forwarding packets over arbitrary, non-shortest
paths, which is particularly useful for managing network resources, known as “traffic
engineering.”

Label Distribution Protocol (LDP) is defined in RFC-3036 and is used to provide mechanisms for
MPLS routers to process and route labeled traffic across an MPLS network.

Davie and Rekhter [2000] offer a very readable account of MPLS fundamentals, which, although
dated, is still relevant to study because it explains well the basic concepts. A relatively recent and
comprehensive review of MPLS is available in [De Ghein, 2007].

[Ziegelmann, 2007] Constrained Shortest Path First (CSPF)

lvan Marsic e Rutgers University 292

Problems

Problem 5.1

Problem 5.2

Eight hosts, labeled A, B, C, D, E, F, G, and H, share a transmission link the capacity of which is
85. Their respective bandwidth demands are 14, 7, 3, 3, 25, 8, 10, and 18, and their weights are 3,
4,1,04, 5, 0.6, 2, and 1. Calculate the max-min weighted fair share allocation for these hosts.
Show your work neatly, step by step.

Problem 5.3

Problem 5.4

Consider a packet-by-packet FQ scheduler that discerns three different classes of packets (forms
three queues). Suppose a 1-Kbyte packet of class 2 arrives upon the following situation. The
current round number equals 85000. There is a packet of class 3 currently in service and its finish
number is 106496. There are also two packets of class 1 waiting in queue 1 and their finish
numbers are F;; = 98304 and F,, = 114688.

Determine the finish number of the packet that just arrived. For all the packets under
consideration, write down the order of transmissions under packet-by-packet FQ. Show the
process.

Problem 5.5

Consider the following scenario for a packet-by-packet FQ scheduler and transmission rate equal
1 bit per unit of time. At time t=0 a packet of L, ;=100 bits arrives on flow 1 and a packet of
L;,=60 bits arrives on flow 3. The subsequent arrivals are as follows: L;,=120 and L;,=190 at
t=100; L,,=50 at t=200; L,,=30 at t=250; L, ;=160 and L4,=30 at t=300, L43=50 at 350, L,,=150
and L;3;=100 at t=400; L,,=140 at t=460; L;,=60 and L,,=50 at t=500; L;s=200 at t=560;
L,5=120 at t=600; L, s5=700 at t=700; L,4=50 at t=800; and L,s=60 at t=850. For every time new
packets arrive, write down the sorted finish numbers. What is the actual order of transmissions
under packet-by-packet FQ?

Problem 5.6

A transmitter works at a rate of 1 Mbps and distinguishes three types of packets: voice, data, and
video. Voice packets are assigned weight 3, data packets 1, and video packets 1.5. Assume that

Chapter 5 e Mechanisms for Quality-of-Service 293

initially arrive a voice packet of 200 bytes a data packet of 50 bytes and a video packet of 1000
bytes. Thereafter, voice packets of 200 bytes arrive every 20 ms and video packets every 40 ms.
A data packet of 500 bytes arrives at 20 ms, another one of 1000 bytes at 40 ms and a one of 50
bytes at 70 ms. Write down the sequence in which a packet-by-packet WFQ scheduler would
transmit the packets that arrive during the first 100 ms. Show the procedure.

Problem 5.7

Suppose a router has four input flows and one output link with the transmission rate of
1 byte/second. The router receives packets as listed in the table below. Assume the time starts at 0
and the “arrival time” is the time the packet arrives at the router. Write down the order and times
at which the packets will be transmitted under:
(a) Packet-by-packet fair queuing (FQ)
(b) Packet-by-packet weighted fair queuing (WFQ), where flows 2 and 4 are entitled to twice
the link capacity of flow 3, and flow 1 is entitled to twice the capacity of flow 2

Packet | Arrival time | Packetsize | Flow | Departure order/ Departure order/
[sec] [bytes] ID time under FQ time under WFQ
110 100 1
210 60 3
31100 120 1
41100 190 3
51200 50 2
6| 250 30 4
7 | 300 30 4
8 1300 60 1
91650 50 3
10 | 650 30 4
11710 60 1
12 | 710 30 4
Problem 5.8

[Priority + Fair Queuing] Consider a scheduler with three queues: one high priority queue and
two non-priority queues that should share the resource that remains after the priority queue is
served in a fair manner. The priority packets are scheduled to go first (lined up in their order of
arrival), regardless of whether there are packets in non-priority queues. The priority packets are
scheduled in a non-preemptive manner, which means that any packet currently being serviced
from a non-priority queue is allowed to finish.

lvan Marsic e Rutgers University 294

High priority queue %
Server
Non-priority queue 1 @ Q}
Fair
queuing
Non-priority queue 2 m Scheduling
discipline: PRIORITY + FQ

Modify the formula for calculating the packet finish number.

Assume that the first several packets arrive at following times:
Priority queue: (arrival time A, ; = 5, packet length L, ; =2); (A2 =8, L1, =2);
First non-priority queue: (A1 =0, Ly; =6); (A2 =7, Lan=1);
Second non-priority queue: (As; =1, L3 =2); (A =7, Lsp=1);

Show the order in which these packets will leave the server and the departure times.

Problem 5.9

Consider the network in Figure 5-15 with the hosts attached as shown in the figure below. (As in
Figure 5-15, routers C, E, and F are MPLS-capable.) Assume that the network starts in the initial
state, where all IP routing tables are already built, but LFIBs (label forwarding information bases)
are empty. Now assume that three hosts start sending data, first host 96.1.1.7 sends a packet
to host 17.1.1.35, then host 17.3.1.24 sends a packet to 10.2.5.35, and finally
96.1.3.13 sends apacketto 17.3.1.24. Assume that all LSPs (label switched paths) will be
built based on the shortest paths found by the IP routing protocols and that the FECs (forwarding
equivalence classes) will be determined only based on the destination IP addresses.

o255]

Network 17.3.1/24 Network
96.1.1/24 @
HHE e
N\

17.3.1.24
6.1.1.7

©

G

B Network
17.1.1/24

96.1.3.13
g G 10.2.5.35

Network Network
17.1.1.35 I'Q%

10.2.5/24 96.1.3/24

Chapter 5 e Mechanisms for Quality-of-Service 295

(a) Show step-by-step how LSPs will be built and what will be the entries of the LFIBs for
MPLS-capable routers.

(b) For every instance of packet forwarding, indicate whether an LFIB or an ordinary IP
forwarding table will be used to forward the packet. In case of LFIB-based forwarding,
show the packet’s MPLS label value.

(¢) What is the minimum number of FECs and what is the minimum number of LSPs that
needs to be set up?

Problem 5.10

Chapter 6

Wireless Networks

This chapter reviews wireless networks. The focus is on the
network and link layers, and very little is mentioned about the
physical layer of wireless networks. In addition, there is a little
mention of infrastructure-based wireless networks and the
focus is on infrastructure-less wireless networks.

6.1 Mesh Networks

In a multihop wireless ad hoc network, mobile nodes cooperate
to form a network without the help of any infrastructure such as
access points or base stations. The mobile nodes, instead,
forward packets for each other, allowing nodes beyond direct
wireless transmission range of each other to communicate over
possibly multihop routes through a number of forwarding peer

Contents

6.1 Mesh Networks

6.1.1 x
6.1.2 x
6.1.3 x

6.2 Routing Protocols for Mesh Networks

6.2.1 Dynamic Source Routing (DSR) Protocol

6.2.2 Ad Hoc On-Demand Distance-Vector
(AODV) Protocol

6.2.3 x

6.3 More Wireless Link-Layer Protocols
6.3.1 |EEE 802.11n (MIMO Wi-Fi)
6.3.2 WIMAX (IEEE 802.16)

6.3.3 ZigBee (IEEE 802.15.4)
6.3.4 Bluetooth

6.4 Wi-Fi Quality of Service
6.4.1 x
6.4.2
6.4.3

6.5
6.5.1 x
6.5.2 x

6.6 X

6.5.1 x
6.5.2 x
6.5.3 x

6.7 Summary and Bibliographical Notes

Problems

mobile nodes. The mobility of the nodes and the fundamentally limited capacity of the wireless
channel, together with wireless transmission effects such as attenuation, multipath propagation,
and interference, combine to create significant challenges for network protocols operating in an

ad hoc network.

Figure 6-1

296

Chapter 6 e Wireless Networks 297

0‘ g
0‘ Q
=

Figure 6-2

6.2 Routing Protocols for Mesh Networks

In wired networks with fixed infrastructure, a communication endpoint device, known as “host,”
does not normally participate in routing protocols. This role is reserved for intermediary
computing “nodes” that relay packets from a source host to a destination host. On the other hand,
in wireless mesh networks it is common that computing nodes assume both “host” and “node”

2
=

Figure 6-3: Example mobile ad-hoc network: A communicates with C via B.

lvan Marsic e Rutgers University 298

roles—all nodes may be communication endpoints and all nodes may relay packets for other
nodes. Therefore, in this chapter I use the terms “host” and “node” interchangeably.

Although there have been dozens of new routing protocols proposed for MANETS, the majority
of these protocols actually rely on fundamental techniques that have been studied rigorously in
the wired environment. However, each protocol typically employs a new heuristic to improve or
optimize a legacy protocol for the purposes of routing in the mobile wireless environment. In fact,
there are a few mechanisms that have received recent interest primarily because of their possible
application to MANETS. There are two main classes of routing protocols:

e Proactive
- Continuously update reachability information in the network
- When a route is needed, it is immediately available
- DSDV by Perkins and Bhagwat (SIGCOMM 94)
- Destination Sequenced Distance vector

e Reactive
- Routing discovery is initiated only when needed
- Route maintenance is needed to provide information about invalid routes
- DSR by Johnson and Maltz
- AODV by Perkins and Royer

e Hybrid
- Zone routing protocol (ZRP)

Centralized vs. localized solution:

Nodes in centralized solution need to know full network information to make decision; mobility
or changes in activity status (power control) cause huge communication overhead to maintain the
network information.

Nodes in localized algorithm require only local knowledge (direct neighbors, 2-hop neighbors) to
make decisions. Majority of published solutions are centralized, compared with other centralized
solutions.

Next, a brief survey of various mechanisms is given.

6.2.1 Dynamic Source Routing (DSR) Protocol

Source routing means that the sender must know in advance the complete sequence of hops to be
used as the route to the destination. DSR is an on-demand (or reactive) ad hoc network routing
protocol, i.e., it is activated only when the need arises rather than operating continuously in
background by sending periodic route updates. DSR divides the routing problem in two parts:
Route Discovery and Route Maintenance, both of which operate entirely on-demand. In Route
Discovery, a node actively searches through the network to find a route to an intended destination

Chapter 6 e Wireless Networks 299

(©) (d)

Figure 6-4: Route discovery in DSR: node C seeks to communicate to node H. Gray shaded
nodes already received RREQ. The path in bold in (¢) indicates the route selected by H for
RREP. Seetext for details. (Note: the step where B and E broadcast RREQ isnot shown.)

node. While using a route to send packets to the destination, the sending node runs the Route
Maintenance process by which it determines if the route has broken, for example because two
nodes along the route have moved out of wireless transmission range of each other.

An example is illustrated in Figure 6-1, where host C needs to establish a communication session
with host H. A node that has a packet to send to a destination (C in our example) searches its
Route Cache for a route to that destination. If no cached route is found, node C initiates Route
Discovery by broadcasting a ROUTE REQUEST (RREQ) packet containing the destination node
address (known as the target of the Route Discovery), a list (initially empty) of nodes traversed
by this RREQ, and a request identifier from this source node. The request identifier, the address
of this source node (known as the initiator of the Route Discovery), and the destination address
together uniquely identify this Route Discovery attempt.

A node receiving a ROUTE REQUEST checks to see if it has previously forwarded a RREQ from
this Discovery by examining the IP Source Address, destination address, and request identifier.
For example, in Figure 6-4(b), nodes B, E, and D are the first to receive RREQ and they re-
broadcast it to their neighbors. If the recipient of RREQ has recently seen this identifier, or if its
own address is already present in the list in RREQ of nodes traversed by this RREQ, the node
silently drops the packet. Otherwise, it appends its address to the node list and re-broadcasts the
REQUEST. When a RREQ reaches the destination node, H in our example, this node returns a
ROUTE REPLY (RREP) to the initiator of the ROUTE REQUEST. If an intermediary node receives a
RREQ for a destination for which it caches the route in its Route Cache, it can send RREP back

lvan Marsic e Rutgers University 300

to the source without further propagating RREQ. The RREP contains a copy of the node list from
the RREQ, and can be delivered to the initiator node by reversing the node list, by using a route
back to the initiator from its own Route Cache, or “piggybacking” the RREP on a new ROUTE
REQUEST targeting the original initiator. This path is indicated with bold lines in Figure 6-4(d).
When the initiator of the request (node C) receives the ROUTE REPLY, it adds the newly acquired
route to its Route Cache for future use.

In Route Maintenance mode, an intermediary node forwarding a packet for a source attempts to
verify that the packet successfully reached the next hop in the route. A node can make this
confirmation using a hop-to-hop acknowledgement at the link layer (such as is provided in IEEE
802.11 protocol), a passive acknowledgement (i.e., listen for that node sending packet to its next
hop), or by explicitly requesting network- or higher-layer acknowledgement. Transmitting node
can also solicit ACK from next-hop node. A packet is possibly retransmitted if it is sent over an
unreliable MAC, although it should not be retransmitted if retransmission has already been
attempted at the MAC layer. If a packet is not acknowledged, the forwarding node assumes that
the next-hop destination is unreachable over this link, and sends a ROUTE ERROR to the source of
the packet, indicating the broken link. A node receiving a ROUTE ERROR removes that link from
its Route Cache.

In the basic version of DSR, every packet carries the entire route in the header of the packet, but
some recent enhancements to DSR use implicit source routing to avoid this overhead. Instead,
after the first packet containing a full source route has been sent along the route to the destination,
subsequent packets need only contain a flow identifier to represent the route, and nodes along the
route maintain flow state to remember the next hop to be used along this route based on the
address of the sender and the flow identifier; one flow identifier can designate the default flow for
this source and destination, in which case even the flow identifier is not represented in a packet.

A number of optimizations to the basic DSR protocol have been proposed [Perkins 2001, Chapter
5]. One example of such an optimization is packet salvaging. When a node forwarding a packet
fails to receive acknowledgement from the next-hop destination, as described above, in addition
to sending a ROUTE ERROR back to the source of the packet, the node may attempt to use an
alternate route to the destination, if it knows of one. Specifically, the node searches its Route
Cache for a route to the destination; if it finds one, then it salvages the packet by replacing the
existing source route for the packet with the new route from its Route Cache. To prevent the
possibility of infinite looping of a packet, each source route includes a salvage count, indicating
how many times the packet has been salvaged in this way. Packets with salvage count larger than
some predetermined value cannot be salvaged again.

In summary, DSR is able to adapt quickly to dynamic network topology but it has large overhead
in data packets. The protocol does not assume bidirectional links.

6.2.2 Ad Hoc On-Demand Distance-Vector (AODV)
Protocol
DSR includes source routes in packet headers and large headers can degrade performance,

particularly when data contents of a packet are small. AODV attempts to improve on DSR by
maintaining routing tables at the nodes, so that data packets do hot have to contain routes. AODV

Chapter 6 e Wireless Networks 301

retains the desirable feature of DSR that routes are maintained only between nodes which need to
communicate.

ROUTE REQUEST packets are forwarded in a manner similar to DSR. When a node re-broadcasts a
ROUTE REQUEST, it sets up a reverse path pointing towards the source. AODV assumes
symmetric (bidirectional) links. When the intended destination receives a RREQ, it replies by
sending a ROUTE REPLY. RREP travels along the reverse path set-up when RREQ is forwarded.

An intermediate node (not the destination) may also send a RREP, provided that it knows a more
recent path than the one previously known to sender S. To determine whether the path known to
an intermediate node is more recent, destination sequence numbers are used. The likelihood that
an intermediate node will send a RREP when using AODV is not as high as in DSR. A new
RREQ by node S for a destination is assigned a higher destination sequence number. An
intermediate node, which knows a route but with a smaller sequence number, cannot send RREP.

A routing table entry maintaining a reverse path is purged after a timeout interval. Timeout
should be long enough to allow RREP to come back. A routing table entry maintaining a forward
path is purged if not used for an active route timeout interval. If no is data being sent using a
particular routing table entry, that entry will be deleted from the routing table (even if the route
may actually still be valid).

In summary, routes in AODV need not be included in the headers of data packets (unlike DSR,
where every data packet carries the source route). Nodes maintain routing tables containing
entries only for routes that are in active use. At most one next-hop per destination is maintained at
each node, whereas DSR may maintain several routes for a single destination. Lastly, unused
routes expire even if topology does not change.

6.3 More Wireless Link-Layer Protocols

Section 1.5.3 described Wi-Fi (IEEE 802.11). This section describes more wireless link-layer
protocols and technologies.

6.3.1 IEEE 802.11n (MIMO Wi-Fi)

IEEE 802.11n builds on previous 802.11 standards (Section 1.5.3) by adding mechanisms to
improve network throughput. 802.11n operates in the 2.4- and 5-GHz frequency bands. A key
improvement is in the radio communication technology, but 802.11n is much more than just a
new radio for 802.11. In addition to providing higher bit rates (as was done in 802.11a, b, and g),
802.11n significantly changed the frame format of 802.11. Specifically, 802.11n added multiple-
input multiple-output (MIMO, pronounced my-moh) and 40-MHz channels to the physical layer
(PHY), and frame aggregation to the MAC layer. It achieves a significant increase in the
maximum raw data rate over the two previous standards (802.11a and 802.11g), from 54 Mbps to
600 Mbps, improves reliability, and increases transmission distance. At 300 feet, 802.11g

lvan Marsic e Rutgers University 302

Reflecting surface
T T 7 77077

Receiver

Transmitter

Reflecting surface

Figure 6-5: MIMO wireless devices with two transmitter and three receiver antennas.
Notice how multiple radio beams ar e reflected from objectsin the environment to arrive at
thereceiver antennas.

performance drops to 1 Mbps; on the other hand, at the same distance 802.11n networks operate
at up to 70 Mbps, which is 70 times faster than 802.11g.

IEEE 802.11n-capable devices are also referred as High Throughput (HT) devices. An HT device
declares that it is an HT device by transmitting the HT Capabilities element. The device also uses
the HT Capabilities element to advertise which optional capabilities of the 802.11n standard it
implements. The HT Capabilities element is carried as part of some control frames that wireless
devices exchange during the connection setup or in periodical announcements. It is present in
these frames: Beacon, Association Request, Association Response, Reassociation Request,
Reassociation Response, Probe Request and Probe Response frames.

IEEE 802.11n standard modifies the frame formats used by 802.11n devices from those of
“legacy” 802.11 devices. When 802.11n devices are operating in pure high-throughput mode, this
is known as “greenfield mode,” because it lacks any constraints imposed by prior technologies.
This mode achieves the highest effective throughput offered by the 802.11n standard. To avoid
rendering the network useless due to massive interference and collisions, the standard describes
some mechanisms for backward compatibility with existing 802.11a/b/g deployments. These
mechanisms are reviewed at the end of this section.

Physical (PHY) Layer Enhancements

A key to the 802.11n speed increase is the use of multiple antennas to send and
receive more than one communication signals simultaneously, thus multiplying
total performance of the Wi-Fi signal. This is similar to having two FM radios
tuned to the same channel at the same time—the signal becomes louder and
clearer. As for a receiver side analogy, people hear better with both ears than if
one is shut. Multiple-input multiple-output (MIMO) is a technology that uses
multiple antennas to resolve coherently more information than possible using a
single antenna. Each 802.11n device has two radios: for transmitter and receiver.
Although previous 802.11 technologies commonly use one transmit and two receive antennas,
MIMO uses multiple independent transmit and receive antennas. This is reflected in the two,
three, or even more antennas found on some 802.11n access points or routers (Figure 6-5). The
network client cards on 802.11n mobile devices also have multiple antennas, although these are

Chapter 6 e Wireless Networks 303

not that prominently visible. Each antenna can establish a separate (but simultaneous) connection
with the corresponding antenna on the other device.

MIMO technology takes advantage of what is normally the enemy of wireless networks:
multipath propagation. Multipath is the way radio frequency (RF) signals bounce off walls,
ceilings, and other surfaces and then arrive with different amounts of delay at the receiver. MIMO
is able to process and recombine these scattered and otherwise useless signals using sophisticated
signal-processing algorithms.

A MIMO transmitter divides a higher-rate data stream into multiple lower-rate streams. (802.11n
MIMO uses up to four streams.) Each of the unique lower-rate streams is then transmitted on the
same spectral channel, but through a different transmit antenna via a separate spatial path to a
corresponding receiver. The multiple transmitters and antennas use a process called transmit
beamforming (TxBF) to focus the output power in the direction of the receivers. TxBF steers an
outgoing signal stream toward the intended receiver by concentrating the transmitted radio energy
in the appropriate direction. This increases signal strength and data rates. On the receiving end,
multiple receivers and antennas reverse the process using receive combining.

The receiving end is where the most of the computation takes place. Each receiver receives a
separate data stream and, using sophisticated signal processing, recombines the data into the
original data stream. This technique is called Spatial Division Multiplexing (SDM). MIMO SDM
can significantly increase data throughput as the number of resolved spatial data streams is
increased. Spatial multiplexing combines multiple beams of data at the receiving end,
theoretically multiplying throughput—but also multiplying the chances of interference. This is
why the transmitter and the receiver must cooperate to mitigate interference by sending radio
energy only in the intended direction. The transmitter needs feedback information from the
receiver about the received signal so that the transmitter can tune each signal it sends. This
feedback is available only from 802.11n devices, not from 802.11a, b, or g devices. This feedback
is not immediate and is only valid for a short time. Any physical movement by the transmitter,
receiver, or elements in the environment will quickly invalidate the parameters used for
beamforming. The wavelength for a 2.4-GHz radio is only 120mm, and only 55mm for 5-GHz
radio. Therefore, a normal walking pace of 1 meter per second will rapidly move the receiver out
of the spot where the transmitter’s beamforming efforts are most effective. In addition, transmit
beamforming is useful only when transmitting to a single receiver. It is not possible to optimize
the phase of the transmitted signals when sending broadcast or multicast transmissions.

The advantage of this approach is that it can achieve great throughput on a single, standard, 20-
MHz channel while maintaining backward compatibility with legacy 801.11b/g devices. The net
impact is that the overall signal strength (that is, link budget) is improved by as much as 5 dBi
(dB isotropic). Although that may not sound significant, the improved link budget allows signals
to travel farther, or, alternatively, maintains a higher data rate at a given distance as compared
with a traditional 802.11g single transmitter/receiver product.

Each spatial stream requires a separate antenna at both the transmitter and the receiver. 802.11n
defines many “M X N” antenna configurations, ranging from “1 X 1” to “4 x 4.” This refers to the
number of transmit (M) and receive (N) antennas—for example, an access point with two transmit
and three receive antennas is a “2 x 3” MIMO device. In addition, MIMO technology requires a
separate radio frequency chain and analog-to-digital converter for each MIMO antenna. This
translates to higher implementation costs compared to non-MIMO systems.

lvan Marsic e Rutgers University 304

A . . .

Frequency 20 MHz operation 40 MHz operation 20 MHz operation

In both 20 MHz and

40 MHz operation, Traffic in Traffic in
>N all control and this cell this cell
g g s management in 20 MHz channel in 20 MHz channel
So S g (HT-Mixed mode (HT-Mixed mode
aNG frames are T -

transmitted in Non-HT mode) Traffic in Non-HT mode)
primary channel this cell

in 40 MHz channel
(HT greenfield mode)

Traffic in
overlapping cells
in 20 MHz channel
including control frames)

Traffic in
overlapping cells
in 20 MHz channel
(including control frames)

Transition 40 — 20 MHz, see:
Phased Coexistence Operation (PCO)

Transition 20 — 40 MHz, see:
Phased Coexistencle Operation (PCO)

Secondary
20 MHz
channel

Figure 6-6: 802.11n channel bonding and 20/40 MHz operation. (Phased Coexistence
Operation (PCO) isdescribed later, in Figure 6-21.)

Channel bonding. In addition to MIMO, the physical layer of 802.11n can use double-wide
channels that occupy 40 MHz of bandwidth. Legacy 802.11a, b, and g devices use 20-MHz-wide
channels to transmit data. 802.11n can bond two 20-MHz channels that are adjacent in the
frequency domain into one that is 40 MHz wide. That doubling of bandwidth results in a
theoretical doubling of information-carrying capacity (data transmission rate). Up to four data-
streams can be sent simultaneously using 20MHz or 40MHz channels. A theoretical maximum
data rate of 600 Mbps can be achieved using four double-width channels (40 MHz). Although the
initial intention of the 40MHz channel was for the 5 GHz band, because of the additional new
spectrum, 40MHz channels are permitted in the 2.4 GHz band. Due to the limited spectrum and
overlapping channels, 40MHz operation in 2.4 GHz requires special attention.

A 40-MHz channel is created by bonding two contiguous 20-MHz channels: a “primary” or
“control” 20-MHz channel and a “secondary” or “extension” 20-MHz channel (Figure 6-6).
Primary channel is the common channel of operation for all stations (including HT and non-HT)
that are members of the BSS (Basic Service Set, defined in Section 1.5.3). To preserve
interoperability with legacy clients, 802.11n access point transmits all control and management
frames in the primary channel. All 20-MHz clients (whether HT or legacy non-HT) only associate
to the primary channel, because the beacon frame is only transmitted on the primary channel. All
transmissions to and from clients must be on the primary 20 MHz channel. Hence, all 40-MHz
operation in 802.11n is termed “20/40 MHz.” Secondary channed is a 20-MHz channel
associated with a primary channel; it may be located in the frequency spectrum below or above
the primary channel. It is used only by HT stations for creating a 40-MHz channel. A station is
not required to react to control frames received on its secondary channel, even if it is capable of
decoding those frames. The secondary channel of one BSS may be used by an overlapping BSS
as its primary channel. If an access point detects an overlapping BSS whose primary channel is
the access point’s secondary channel, it switches to 20-MHz operation and may subsequently
move to a different channel or pair of channels.

Phased Coexistence Operation (PCO) is an option in which an 802.11n access point alternates
between using 20-MHz and 40-MHz channels. Before operating in the 40-MHz mode, the access

Chapter 6 e Wireless Networks 305

point explicitly reserves both adjacent 20-MHz channels. This mechanism is described later in
this section.

Based on the bandwidth used by devices in an 802.11n network, the operational modes can be
classified as follows:

e Legacy (non-HT) mode. The operation is similar to IEEE 802.11a/b/g. This mode uses the
primary 20-MHz channel for transmission.

e Duplicate legacy mode. In this mode, the devices use a 40-MHz channel bandwidth, but
the same data are transmitted in the primary and secondary halves of the 40-MHz
channel. This feature allows the station to send a control frame simultaneously on both
20-MHz channels, which improves efficiency. Examples are given later in this section.

e High-throughput (HT) mode. HT mode is available for both 20- and 40MHz channels. In
this mode, supporting one and two spatial streams is mandatory. A maximum of four
spatial streams is supported.

e HT duplicate mode. This mode uses the modulation and coding scheme (MCS) #32 that
provides the lowest transmission rate in a 40-MHz channel (6 Mbps), as well as longer
transmission range.

lvan Marsic e Rutgers University 306

Non-HT physical-layer frame (PPDU)
L-STF = Non-HT Short Training field
8us 8us 4us L-LTF = Non-HT Long Training field
L-STE L-LTE L-SIG = Non-HT Signal field

«— Legacy preamble

Service Tail .
16 bits PSDU 6 bits | - 2d bits
Rate reserved Length Parity Tail
4 bits 1 bit 12 bits 1 bit 6 bits
}4 Legacy physical-layer header >

HT-SIG = HT Signal field
HT-STF = HT Short Training field
HT-LTF = HT Long Training field

HT-mixed format physical-layer frame Data HT-LTFs Extension HT-LTFs
4 us per LTF 4 us per LTF
8 us 8 us 4 us 8 us 4us = s A
L-STF L-LTF L-SIG | HT-SIG [HT-STF|HT-LTF|e®ee® [HT-LTF|HT-LTF|e®e® e |[HT-LTF Data I
HT-greenfield format physical-layer frame ~ DataHT-LTFs Extension HT-LTFs
4 us per LTF 4 ps per LTF
8 us 8 us 8 us = s = N

HT-GF-STF | HT-LTF1 HT-SIG |HT-LTF|e e e |HT-LTF|HT-LTF|® e |HT-LTF Data

Figure 6-7: 802.11n physical-layer frame formats. Compareto Figure 1-71(b).

Figure 6-7 shows the physical-layer frame formats supported by 802.11n: the legacy format and
new formats. Two new formats, called HT formats, are defined for the PLCP (PHY Layer
Convergence Protocol): HT-mixed format and HT-greenfield format. There is also an MCS-32
frame format used for the HT duplicate mode. In addition to the HT formats, there is a non-HT
duplicate format, used in the duplicate legacy mode, which duplicates a 20-MHz non-HT (legacy)
frame in two 20-MHz halves of a 40-MHz channel.

The legacy Non-HT frame format (top row in Figure 6-7) is the 802.11a/g frame format and can
be decoded by legacy stations. (Notice that this “legacy” 802.11a/g frame format is different from
802.11b legacy format, shown in Figure 1-71(b). Both are “legacy” in the sense that they predate
802.11n.) The preamble uses short and long training symbols. This allows legacy receivers to
detect the transmission, acquire the carrier frequency, and synchronize timing. The physical-layer
header contains the legacy Signal field (L-SIG) which indicates the transmission data rate (Rate
subfield, in Mbps) and the payload length of the physical-layer frame (Length subfield, in bytes
in the range 1-4095), which is a MAC-layer frame.

The HT-mixed format (middle row in Figure 6-7) starts with a preamble compatible with the
legacy 802.11a/g. The legacy Short Training Field (L-STF), the legacy Long Training Field (L-
LTF) and the legacy Signal field (L-SIG) can be decoded by legacy 802.11a/g devices. The rest
of the HT-Mixed frame has a new format, and cannot be decoded by legacy 802.11a/g devices.

Chapter 6 e Wireless Networks 307

PPDU | —Key:

q PPDU = PLCP protocol data unit

PSDU = MPDU PSDU = PLCP service data unit

l« > MPDU = MAC protocol data unit

‘ MSDU ‘ MSDU = MAC service data unit

i PLCP = physical (PHY) layer
PHY | PHY MAC Data ECS convergence procedure
preamble i header header MAC = medium access control

Figure 6-8: Terminology review for the 802.11 frame structure. Compareto Figure 1-71.

The HT preambles are defined in HT-mixed format and in HT-greenfield format to carry the
information required to operate in a system with multiple transmit and multiple receive antennas.
The HT-SIG field contains the information about the modulation scheme used, channel,
bandwidth, length of payload, coding details, number of HT training sequences (HT-LTFs), and
tail bits for the encoder. The number of HT-LTFs is decided by the antenna configuration and use
of space-time block codes. HT training sequences are used by the receiver for estimating various
parameters of the wireless MIMO channel.

The HT-greenfield format (bottom row in Figure 6-7) is completely new, without any legacy-
compatible part. The preamble transmission time is reduced as compared to the mixed format.
Support for the HT Greenfield format is optional and the HT devices can transmit using both 20-
MHz and 40-MHz channels.

When an 802.11n access point is configured to operate in Mixed Mode (for example, 802.11b/g/n
mode), the access point sends and receives frames based on the type of a client device. By
default, the access point always selects the optimum rate for communicating with the client based
on wireless channel conditions.

MAC Layer Enhancement: Frame Aggregation

First, the reader may find it useful to review Figure 6-8 for the terminology that will be used in
the rest of this section. Figure 6-9 shows the 802.11n MAC frame format. Compared to the legacy
802.11 (Figure 1-71(a)), the change comprises the insertion of the High Throughput (HT) Control
field and the change in the length of the frame body. The maximum length of the frame body is
7955 bytes (or, octets) and the overall 802.11n frame length is 8 Kbytes.

Every frame transmitted by an 802.11 device has a significant amount of fixed overhead,
including physical layer header, MAC header, interframe spaces, and acknowledgment of
transmitted frames (Figure 6-11(a)). (The reader should also check Figure 2-20 and the discussion
in Section 2.5) At the highest of data rates, this overhead alone can be longer than the entire data
frame. In addition, contention for the channel and collisions also reduce the maximum effective
throughput of 802.11. 802.11n addresses these issues by making changes in the MAC layer to
improve on the inefficiencies imposed by this fixed overhead and by contention losses.

lvan Marsic e Rutgers University 308

A&

MAC header »le MSDU ——|

bytes: 2 2 6 6 6 2 6 2 4 0 to 7955 4

Data

Address-1 | Address-2 | Address-3 | SC| Address-4 | QC

Control

HT = High Throughput

bits: 16 2 2 2 2 1 5 1 1
. . " . NDP AC RDG/
Link Adaptation Control Callb_ra_\tlon Calibration Reserved CSV Announ Reserved Constra| More
Position Sequence Steering .
cement int PPDU

Figure 6-9: 802.11n link-layer frame format. Compareto Figure 1-71(a).

Figure 6-10: Packet aggregation analogy.

To reduce the link-layer overhead, 802.11n employs the mechanism known as packet
aggregation, which is the process of joining multiple packets together into a single transmission
unit, in order to reduce the overhead associated with each transmission. It is equivalent to a group
of people riding a bus, rather than each individually riding a personal automobile (Figure 6-10).
Generally, packet aggregation is useful in situations where each transmission unit may have
significant overhead (preambles, headers, CRC, etc.) or where the expected packet size is small
compared to the maximum amount of information that can be transmitted. Because at link layer
packets are called frames, the mechanism is correspondingly called “frame aggregation.”

Frame aggregation is essentially putting the payloads of two or more frames together into a
single transmission. Frame aggregation is a feature of the IEEE 802.11e and 802.11n standards
that increases throughput by sending two or more data frames in a single transmission (Figure
6-11(b)). Because control information needs to be specified only once per frame, the ratio of
payload data to the total volume of data is higher, allowing higher throughput. In addition, the

Chapter 6 e Wireless Networks 309

Data payload

Backoff (0 to 2312 bytes)
DIFS .
5 > PHY | PHY | MAC s |2 Time
usy preamble | header | header])
le»| PHY PHY [MAC
preamble | header | header HAEix FeE
4— Overhead —»

(a)

‘ ¢—— Overhead —V‘

Aggregated data payload
(up to ~64 Kbytes)

DIFS V PHY PHY MAC Fcs

Sy preamble | header | header

(b) -

Figure 6-11: (a) Link-layer overhead in legacy | EEE 802.11. (b) 802.11n frame aggr egation.

reduced number of frame transmissions significantly reduces the waiting time during the
CSMA/CA backoff procedure as well as the number of potential collisions. The maximum frame
size is also increased in 802.11n, to accommodate these large, aggregated frames. The maximum
frame size is increased from 4 KB to 64 KB. (64 KB frame size is achieved by sending multiple 8
KB frames in a burst, as explained later.)

There are several limitations of frame aggregation. First, all the frames that are aggregated into a
transmission must be sent to the same destination; that is, all the frames in the aggregated frame
must be addressed to the same mobile client or access point. Second, all the frames to be
aggregated have to be ready for transmission at the same time, potentially delaying some frames
while waiting for additional frames, in order to attempt to send a larger aggregate frame. Third,
the maximum frame size that can be successfully sent is affected by a factor called channel
coherence time. The time for frame transmission must be shorter than the channel coherence time.
Channel coherence time depends on how quickly the transmitter, receiver, and other objects in the
environment are moving. When the things are moving faster, the channel data rate is reduced, and
therefore the allowed maximum frame size becomes smaller.

Although frame aggregation can increase the throughput at the MAC layer under ideal channel
conditions, a larger aggregated frame will cause each station to wait longer before its next chance
for channel access. Thus, there is a tradeoff between throughput and delay (or, latency) for frame
aggregation at the MAC layer (as throughput increases, latency increase as well). Furthermore,
under error-prone channels, corrupting a large aggregated frame may waste a long period of
channel time and lead to a lower MAC efficiency.

The ability to send multiple frames without entering the backoff procedure and re-contending for
the channel first appeared in the IEEE 802.11e MAC. This mechanism reduces the contention and
backoff overhead and thus enhances the efficiency of channel utilization. The notion of transmit
opportunity (TXOP) is used to specify duration of channel occupation. During TXOP period of
time, the station that won channel access can transmit multiple consecutive data frames without
re-contending for the channel. If the station determines that it allocated too long TXOP and
currently does not have more data to transmit, it may explicitly signal an early completion of its
TXOP. This action, known as truncation of TXOP, prevents waste by allowing other stations to

lvan Marsic e Rutgers University 310

use the channel. Until the NAV has expired, even if the transmitting station has no data to send
and the channel is sensed as idle, other stations do not access the medium for the remaining
TXOP. The TXOP holder performs truncation of TXOP by transmitting a CF-End (Contention-
Free-End) frame, if the remaining TXOP duration is long enough to transmit this frame. CF-End
frame indicates that the medium is available. Stations that receive the CF-End frame reset their
NAYV and can start contending for the medium without further delay.

The frame aggregation can be performed within different sub-layers of the link layer. The
802.11n standard defines two types of frame aggregation: MAC Service Data Unit (MSDU)
aggregation and MAC Protocol Data Unit (MPDU) aggregation. Both aggregation methods group
several data frames into one large frame and reduce the overhead to only a single radio preamble
for each frame transmission (Figure 6-11(b)). However, there are slight differences in the two
aggregation methods that result in differences in the efficiency gained (MSDU aggregation is
more efficient). These two methods are described here.

e MAC Service Data Units (M SDUs) Aggr egation

MSDU aggregation exploits the fact that most mobile access points and most mobile client
protocol stacks use Ethernet as their “native” frame format (Figure 1-59). It collects Ethernet
frames to be transmitted to a single destination and wraps them in a single 802.11n frame. This is
efficient because Ethernet headers are much shorter than 802.11 headers (compare Figure 1-59
and Figure 1-71). For this reason, MSDU aggregation is more efficient than MPDU aggregation.

Chapter 6 e Wireless Networks 311

A-MSDU = Aggregated Ethernet frames (= PSDU up to 8 KB)
r N

Subframe[Subframe} Subframi

802.11n
PHY | PHY <
Busy| DIFS V mac [P0 i M Fes

preamble | header

% SIFs

ACK

MSDU subframe = Ethernet frame:

Ethernet

header

Padding

(a) MSDU Aggregation

TXOP duration

A-MPDU = Aggregated 802.11n frames (= PSDU up to 64 KB)

N
e)

Busy DIFS V PHY Subframe N

preamble

MPDU Block ACK

A-MPDU subframe: 802.11
MPDU 5 RDG/More PPDU =0

Delimiter

"\ RDG/More PPDU = 1 i
RDG/More PPDU =1 (b) MPDU Aggregation

Figure 6-12: 802.11n Frame aggregation methods: (a) MAC Service Data Unit aggregation
(A-MSDU); (b) MAC Protocol Data Unit aggregation (A-MPDU).

MSDU aggregation allows several MAC-level service data units (MSDUs) to be concatenated
into a single Aggregated MSDU (A-MSDU). Figure 6-12(a) shows the frame format for A-
MSDU. In MSDU aggregation, the aggregated payload frames share not just the same physical
(PHY) layer header, but also the same 802.11n MAC header. The resulting 802.11n frames can
be up to 8 Kbytes in size.

When the source is a mobile device, the aggregated frame is sent to the access point, where the
constituent Ethernet frames are forwarded to their ultimate destinations. When the source is an
access point, all of the constituent frames in the aggregated frame must be destined to a single
mobile client, because there is only a single destination in each mobile client.

With MSDU aggregation, the entire, aggregated frame is encrypted once using the security
association of the destination of the outer 802.11n frame wrapper. A restriction of MSDU
aggregation is that all of the constituent frames must be of the same quality-of-service (QoS)
level. For example, it is not permitted to mix voice frames with best-effort frames.

If no acknowledgement is received, the whole 802.11n frame must be retransmitted. That is, an
A-MSDU aggregate fails as a whole even if just one of the enclosed MSDUs contains bit errors.

e MAC Protocol Data Units (MPDUs) Aggregation

lvan Marsic e Rutgers University 312

MPDU aggregation also collects Ethernet frames to be transmitted to a single receiver, but it
converts them into 802.11n frames. Normally this is less efficient than MSDU aggregation, but it
may be more efficient in environments with high error rates, because of a mechanism called block
acknowledgement (described later). This mechanism allows each of the aggregated data frames to
be individually acknowledged or retransmitted if affected by an error.

MPDU aggregation scheme enables aggregation of several MAC-level protocol data units
(MPDUs) into a single PHY-layer protocol data unit (PPDU). Figure 6-12(b) shows the frame
format for an Aggregated MPDU (A-MPDU). A-MPDU consists of a number of MPDU
delimiters each followed by an MPDU. Except when it is the last A-MPDU subframe in an
A-MPDU, padding bytes are appended to make each A-MPDU subframe a multiple of 4 bytes in
length, which can facilitate subframe delineation at the receiver. A-MPDU allows bursting
802.11n frames up to 64 KB.

The purpose of the MPDU delimiter (4 bytes long) is to locate the MPDU subframes within the
A-MPDU such that the structure of the A-MPDU can usually be recovered when one or more
MPDU delimiters are received with errors. Subframes are sent as a burst (not a single unbroken
transmission). The subframes are separated on the air from one other by the Reduced Inter-Frame
Space (RIFS) interval of 2 ps duration (compared to SIFS interval which is 16 ps)." Figure
6-12(b) also indicates that the sender uses the “RDG/More PPDU” bit of the HT Control field in
the MAC frame (Figure 6-9) to inform the receiver whether there are more subframes in the
current burst. If the “RDG/More PPDU” field is set to ““1,” there will be one or more subframes to
follow the current subframe; otherwise, the bit value “0” indicates that this is the last subframe of
the burst.

Subframes of an A-MPDUs burst can be acknowledged individually with a single Block-
Acknowledgement (described in the next subsection). The MPDU structure can be recovered
even if one or more MPDU delimiters are received with errors. Unlike A-MSDU where the whole
aggregate needs to be retransmitted, only unacknowledged MPDU subframes need to be
retransmitted.

Summary of the characteristics for the two frame aggregation methods:

e MSDU aggregation is more efficient than MPDU aggregation, because the Ethernet header is
much shorter than the 802.11 header.

e MPDU structure can be recovered even if one or more MPDU subframes are received with
errors; conversely, an MSDU aggregate fails as a whole—even if just one of the enclosed
MSDUs contains bit errors the whole A-MSDU must be retransmitted.

e A-MPDU is performed in the software whereas A-MSDU is performed in the hardware.

! RIFS is a means of reducing overhead and thereby increasing network efficiency. A transmitter can use
RIFS after a transmission when it does not expect to receive immediately any frames, which is the case
here. Note that RIFS intervals can only be used within a Greenfield HT network, with HT devices only
and no legacy devices.

Chapter 6 e Wireless Networks 313

Transmitter Receiver
-7 -

(| L)

addBA Request

 »

| |
| |
: ACK :
Block ACK [4 — |
| addBA Response |
setup | 4 ' |
| |
| |
| |
| |
| |

ACK

 »

&MPDU

Data MPDU

(

|

I

|

I

|

Data and :
Block ACK |
transmission :
|

|

I

|

I

|

|

N

|

I

|

I

|

|

I repeated
: > multiple
:

I

|

I

|

|

Data MPDU

BlockAckReq (BAR) times

Block ACK

T

delBA Request

|
|
|
Block ACK : »
|
|
|
1

-

7

J

teardown ACK

.

Figure 6-13: Initiation, use, and termination of 802.11n block acknowledgements.

. J/

MAC Layer Enhancement: Block Acknowledgement

Rather than sending an individual acknowledgement following each data frame, 802.11n
introduces the technique of confirming a burst of up to 64 frames with a single block
acknowledgement (Block ACK or BACK) frame. The Block ACK mechanism significantly
reduces overhead due to bursts of small frames. Block acknowledgment was initially defined in
IEEE 802.11¢ as an optional scheme to improve the MAC efficiency. The 802.11n standard made
the Block ACK mechanism mandatory to support by all the HT devices. The Block ACK contains
a bitmap to acknowledge selectively individual frames of a burst. This feature is comparable to
selective acknowledgements of TCP, known as TCP SACK (Chapter 2).

Figure 6-13 shows how the Block ACK capability is activated, used, and deactivated by sending
action frames. Action frames are used to request a station to take action on behalf of another. To
initiate a Block ACK session, the transmitter sends an Add-Block-Acknowledgment request
(addBA, also written as ADDBA). The addBA request indicates a starting frame sequence
number and a window size of frame sequence numbers that the receiver should expect as part of
the transmission. The receiver can choose to accept or reject the request and informs the
transmitter by an addBA response frame. If the receiver rejects the addBA request, the session
will continue with the legacy sequential transmit/acknowledgment exchanges. If the receiver

Ivan Marsic e Rutgers University 314

R MAC header
bytes: 2 2 6 6 2 variable 4

v

Frame Ctrl |Duration / ID [Receiver Address | Transmitter Addr. [BA Control | Block ACK Information FCS

(a)

bits: 1 1 1 9 4
Block ACK |y i ip | COmPressed Reserved TID_INFO
Policy Bitmap -
bits: 4 12

Fragment _
Number (0) Starting Sequence Number I

bytes: 128

Block ACK

Starting Sequence Control Block ACK Bitmap

e Basic Block ACK — 128 byte bitmap

bytes: 2 8
(b) Block ACK) e Compressed Block ACK
Starting Sequence Control Block ACK Bitmap - mandatory 8-byte bitmap
- no support for fragmentation
bytes: 2 2 8
Per TID Info Block ACK Block ACK Bitmap

Starting Sequence Control
o Multi-TID Block ACK (repeated for each TID)

Figure 6-14: (a) 802.11n block acknowledgement frame format. (b) Format of the Block
ACK Information field for thethreevariants of the Block ACK frame.

accepts the addBA request, the transmitter can send multiple frames without waiting for ACK
frames. The receiver silently accepts frames that have sequence numbers within the current
window. Only after the transmitter solicits a Block ACK by sending a Block ACK Regquest
(BlockAckReq or BAR), the receiver responds by a Block ACK response frame indicating the
sequence numbers successfully received. Frames that are received outside of the current window
are dropped. This cycle may be repeated many times. Finally, when the transmitter does not need
Block ACKs any longer, it terminates the BA session by sending a Delete-Block-
Acknowledgment request (deIBA or DELBA).

The Block ACK carries ACKs for individual frames as bitmaps. The exact format depends on the
encoding. Figure 6-14(a) shows the format of Block ACK frames. The subfields of the Block
ACK Control field are as follows:

- The Block ACK Palicy bit specifies whether the sender requires acknowledgement immediately
following BlockAckReq (bit value “0”), or acknowledgement can be delayed (bit value “17).

- The values of the Multi-TID and Compressed Bitmap fields determine which of three possible
Block ACK frame variants is represented (Figure 6-15(a)). The Block ACK frame variants are
shown in Figure 6-14(b).

Chapter 6 e Wireless Networks 315

Frame fragments

01 2 345 13 14 15
0
1
3 2
§ 3
Multi-TID Com‘pressed Block AQK S
Bitmap frame variant c 4
0 0 Basic g >
Block ACK °
S
Compressed o
0 ! Block ACK 2
2
)
1 0 reserved %
< 61
1 1 Multi-TID 62
Block ACK 63
(a) (b)

Figure 6-15: (a) 802.11n Block ACK frame variant encoding. (b) Block ACK Bitmap
subfield (128 bytes long = 64x16 bits) of a Basic Block ACK frame variant. Each bit
representsthereceived status (success/failure) of a frame fragment.

- The meaning of the TID_INFO subfield of the BA Control field depends on the Block ACK
frame variant type. For the first two variants (Basic Block ACK and Compressed Block ACK),
the TID_INFO subfield of the BA Control field contains the TID for which a Block ACK frame
is requested. The traffic identifier (TID) is assigned by upper-layer protocols to inform the MAC
protocol about the type of data that it is asked to transmit. This is important for MAC protocols
that support quality of service (QoS), such as 802.11e and 802.11n. Therefore, the first two BA
variants are capable of acknowledging only traffic of a single identifier type. A Block ACK frame
could be extended to include the bitmaps for multiple TIDs. This extended Block ACK frame
variant is called Multi-TID Block ACK (MTBA). More details are provided later.

Figure 6-14(b) shows the structure of the three variants of the Block ACK frame:

e BasicBlock ACK variant. The Basic Block ACK variant is inherited from the IEEE 802.11¢
standard. The BA Information field within the Basic Block ACK frame contains the Block ACK
Starting Sequence Control subfield and the Block ACK Bitmap, as shown in the top row of
Figure 6-14(b). The Starting Sequence Number subfield (12-bit unsigned integer) of the Block
ACK Starting Sequence Control field contains the sequence number of the first data frame
(MPDU) that this Block ACK is acknowledging. This is the same number as in the previously
received BlockAckReq frame to which this Block ACK is responding. When the transmitter
receives a Block ACK, based on this number it knows to which BlockAckReq it corresponds. The
Fragment Number subfield is always set to 0.

Before describing the BA Bitmap structure, it is necessary to mention the fragmentation
mechanism in 802.11. The process of partitioning a MAC-level frame (MPDU) prior to
transmission into smaller MAC-level frames is called fragmentation. Fragmentation creates
smaller frames to increase reliability, by increasing the probability of successful transmission in
cases where channel characteristics limit reception reliability for longer frames. The reader may
remember [P packet fragmentation (Section 1.4.1), which is done for different reasons, and where
the fragments are reassembled only at the final destination. Conversely, defragmentation in

Ivan Marsic e Rutgers University 316

802.11 is accomplished at each immediate receiver. In the 802.11e and 802.11n standards, each
MAC frame can be partitioned into up to 16 fragments.

The 128-byte long Block ACK Bitmap subfield represents the received status of up to 64 frames.
In other words, the bitmap size is 64x16 bits (Figure 6-15(b)). That is, because each MAC-level
frame can be partitioned into up to 16 fragments, 16 bits (2 bytes) are allocated to acknowledge
each frame. Each bit of this bitmap represents the received status (success/failure) of a frame
fragment. Two bytes are equally allocated even if the frame is not actually fragmented or is
partitioned into less than 16 fragments. Suppose a frame has 11 fragments; then 11 bits are used,
and remaining 5 bits are not used. Even so, this frame will consume 16 bits in the bitmap. If the
frame is not fragmented, only one bit is used. Obviously, in cases with no fragmentation it is not
efficient to acknowledge each frame using 2 bytes when all is needed is one bit. The overhead
problem occurs also when the number of frames acknowledged by a Block ACK is small, because
the bitmap size is fixed to 128 bytes. Thus, using two bytes per acknowledged frame in the
bitmap results in an excessive overhead for Block ACK frames.

To overcome the potential overhead problem, 802.11n defines a modified Block ACK frame,
called Compressed Block ACK.

e Compressed Block ACK variant. This Block ACK frame variant uses a reduced bitmap of 8
bytes, as shown in the middle row of Figure 6-14(b). Fragmentation is not allowed when the
compressed Block ACK is used. Accordingly, a compressed Block ACK can acknowledge up to
64 non-fragmented frames. The bitmap size is reduced from 1024 (64x16) bits to 64 (64x1) bits.

The BA Information field within the Compressed Block ACK frame comprises the Block ACK
Starting Sequence Control field and the Block ACK bitmap. The Starting Sequence Number
subfield of the Block ACK Starting Sequence Control field is the sequence number of the first
MSDU or A-MSDU for which this Block ACK is sent. The Fragment Number subfield of the
Block ACK Starting Sequence Control field is set to 0.

The 8-byte Block ACK Bitmap within the Compressed Block ACK frame indicates the received
status of up to 64 MSDUs and A-MSDUs. Each bit that is set to 1 acknowledges the successful
reception of a single MSDU or A-MSDU in the order of sequence number, with the first bit of the
bitmap corresponding to the MSDU or A-MSDU with the sequence number that matches the
Starting Sequence Number field value.

Figure 6-16 shows an example using Compressed Block ACK frames. Here we assume that the
transmitter sends aggregate A-MPDUs with 32 subframes. Bitmap bit position n is set to 1 to
acknowledge the receipt of a frame with the sequence number equal to (Starting Sequence
Control + n). Bitmap bit position n is set to 0 if a frame with the sequence number (Starting
Sequence Control + n) has not been received. For unused fragment numbers of an aggregate
frame, the corresponding bits in the bitmap are set to 0. For example, the Block ACK bitmap of
the first Block ACK in Figure 6-16 contains [7F FF FF FF 00 00 00 00]. The first byte
corresponds to the first 8 frames, but read right to left (that is why 7F instead of F7). This means
that, relative to the Starting Sequence Number 146, the first four frames and sixth to eight
frames are successfully received. The fifth frame is lost (sequence number 150). The second byte
corresponds to the second 8 frames, also read right to left, and so on. The last 32 bits are all zero
because the A-MPDU contained 32 subframes. In the second transmission, the transmitter resends
frame #150 and additional 32 frames (starting with the sequence number 179 up to #211).

Chapter 6 e Wireless Networks 317

A-MPDU
A
/ N
S :
mPou || mPou || mPDU || MPDU |1 mPDU |, , MPDU | |BlockAckReq Time
#146 #147 #148 #149 |1 #150 1 #178 #4146

(lost frame) Block ACK
(Compressed)

Starting Sequence Number = 146
BA Bitmap (64 bits) =
11110111 11111111 11111111 11111111 00000000 00000000 00000000 00000000 =
7F FF FF FF 00 00 00 00

A-MPDU
N
e B
roTTTTEA i
MPDU MPDU MPDU MPDU ceo e ! MPDU | MPDU BlockAckReq Time
#150 #179 #180 #181 ! #210 ! #211 #150
(retransmitted (lost frame) Block ACK
frame) (Compressed)
Starting Sequence Number = 150 #179 #210

BA Bitmap (64 bits) =
11111111 11111111 111111111111712221 12222222 22222222 12222222 12110100 =
FF FF FF FF FF FF FF 4F

Figure 6-16: 802.11n Block ACK example using the Compressed Block ACK frame variant.

As seen, if a frame is not acknowledged, the sequence numbers can keep moving forward while
the sending station keeps retrying that frame. However, when the span between the sequence
number of the next frame to be sent and the retry frame becomes 64, the sending unit has to
decide what to do. It can stop aggregating while it keeps retrying the old frame, or it can simply
drop that frame.

e Multi-TID Block ACK variant. The TID_INFO subfield of the BA Control field of the
Multi-TID Block ACK frame contains the number of traffic identifiers (TIDs), less one, for which
information is reported in the BA Information field. For example, a value of 2 in the TID_INFO
field means that information for 3 TIDs is present.

The BA Information field within the Multi-TID Block ACK frame contains one or more
instances of the Per TID Info, Block ACK Starting Sequence Control field and the Block
ACK Bitmap, as shown in the bottom row of Figure 6-14(b).

The Starting Sequence Number subfield of the Block ACK Starting Sequence Control field
is the sequence number of the first MSDU or A-MSDU for which this Block ACK is sent. The
first instance of the Per TID Info, Block ACK Starting Sequence Control and Block ACK
Bitmap fields that is transmitted corresponds to the lowest TID value, with subsequent instances
following ordered by increasing values of the Per TID Info field. The 8-byte Block ACK bitmap
within the Multi-TID Block ACK frame functions the same way as for the Compressed Block
ACK frame variant.

Ivan Marsic e Rutgers University 318

MAC Layer Enhancement: Reverse Direction (RD) Protocol

The 802.11n also specifies a bidirectional data transfer method, known as Reverse Direction
(RD) protocol. Conventional transmit opportunity (TXOP) operation described above and already
present in IEEE 802.11e allows efficient unidirectional transfer of data: the station holding the
TXOP can transmit multiple consecutive data frames without reentering backoff procedure. The
802.11n RD protocol provides more efficient bidirectional transfer of data between two 802.11
devices during a TXOP by eliminating the need for either device to contend for the channel. This
is achieved by piggybacking of data from the receiver on acknowledgements (ACK frame).

Reverse direction mechanism is useful in network services with bidirectional traffic, such as VoIP
and online gaming. It allows the transmission of feedback information from the receiver and may
enhance the performance of TCP, which requires bidirectional transmission (TCP data segments
in one direction and TCP ACK segments in the other). (See Section 2.5 for more discussion.) The
conventional TXOP operation only helps the forward direction transmission but not the reverse
direction transmission. For application with bidirectional traffic, their performance degrades due
to contention for the TXOP transmit opportunities. Reverse direction mechanism allows the
holder of TXOP to allocate the unused TXOP time to its receivers to enhance the channel
utilization and performance of reverse direction traffic flows.

Before the RD protocol, each unidirectional data transfer required the initiating station to contend
for the channel. If RTS/CTS is used, the legacy transmission sequence of RTS (Request To Send)
- CTS (Clear To Send) - DATA (Data frame) - ACK (Acknowledgement) allows the sender to
transmit only a single data frame in forward direction (Figure 6-17(a)). In the bidirectional data
transfer method (i.e., with the RD protocol), once the transmitting station has obtained a TXOP, it
may essentially grant permission to the other station to send information back during its TXOP.

Reverse data transmission requires that two roles be defined: RD initiator and RD responder. RD
initiator is the station that holds the TXOP and has the right to send Reverse Direction Grant
(RDG) to the RD responder. The RD initiator sends its permission to the RD responder using a
Reverse Direction Grant (RDG) in the “RDG/More PPDU” bit of the HT Control field in the
MAC frame (Figure 6-9). The RD initiator grants permission to the RD responder by setting this
bit to “1.” When the RD responder receives the data frame with “RDG/More PPDU” bit set to
“1,” it decides whether it will send to the RD initiator more frames immediately following the one
just received. It first sends an acknowledgement fro the received frame in which the “RDG/More
PPDU” bit is set to “1” if one or more data frames will follow the acknowledgement, or with the
bit set to “0” otherwise. For the bidirectional data transfer, the reverse DATAr frame can contain
a Block ACK to acknowledge the previous DATAT frame. The transmission sequence will then
become RTS-CTS-DATAf-DATAr-ACK (Figure 6-17(b)).

If the “RDG/More PPDU” bit in the acknowledgement frame is set to “1,” the RD initiator will
wait for the transmission from the RD responder, which will start with SIFS or Reduced Inter-
Frame Soace (RIFS) interframe time after the RDG acknowledgement is sent. A transmitter can
use RIFS after a transmission when it does not expect to receive immediately any frames, which
is the case here. If there is still data to be sent from the RD responder, it can set “RDG/More
PPDU” bit in the data frame header to “1” to notify the initiator. The RD initiator still has the
right to accept or reject the request. To allocate the extended TXOP needed for additional reverse

Chapter 6 e Wireless Networks 319

TXOP duration

A
v

Data_fwd

IFS

SIFS
J—S‘
SIFS

. Backoff: '
Transmitter “gusy ‘D”:S,V 7 RTS

Receiver

DIFS Time
>

JRESS | BACK

(a)

TXOP duration

A
v

RDG/More PPDU = 1

e

Data_fwd

IFS

SIFS
J—S‘
SIFS

Backoff;

RD initiator my 7 RTS |

RD responder

Data_rvs
(b) RDG/More PPDU = 1 \RDG/More PPDU =0

Figure 6-17: 802.11n Reverse Direction (RD) protocol. (a) Unidirectional RTS/CTS access
scheme. (b) Bidirectional RTS/CTS access scheme. RD initiator invites RD responder to
send rever se traffic by setting the RPG/MorePPDU flag to “1.” RD responder sends zero or
mor e frames and sets RPG/MorePPDU to “ 0" in thelast frame of the* RD response burst.”

(%)
L
) DIFS
> BACKr
— >

JRESS | BACK |

frames, the initiator will set to “1” the “RDG/More PPDU” bit in the acknowledgement frame or
the next data frame. To reject the new RDG request, the initiator sets “RDG/More PPDU” to “0.”

Backward Compatibility

802.11n devices transmit a signal that cannot be decoded by devices built to an earlier standard.
To avoid rendering the network useless due to massive interference and collisions, 802.11n
devices must provide backwards compatibility. Compatibility with legacy 802.11 devices has
been a critical issue continuously faced throughout the evolution of 802.11. For example, 802.11g
provides a mechanism for operation with 802.11b devices. Similarly, 802.11n has a number of
mechanisms to provide backward compatibility with 802.11 a, b, and g devices. These
mechanisms ensure that the legacy stations are aware of 802.11n transmissions in the same area
and do not interfere with them. The cost for achieving this protection is the throughput
degradation for 802.11n.

Because the 802.11 MAC layer operation is based on carrier sense multiple access (CSMA/CA)
protocol, it is essential for the station that won access to the channel to inform other stations how
long it will transmit, to avoid being interrupted. The mechanism of announcing the duration of the
transmission is called protection mechanism, and different options have emerged in the
evolution of 802.11 wireless LANs. Before transmitting at a high data rate, the station must
attempt to update the network allocation vector (NAV) of non-HT stations that do not support the
high data rate, so that they can defer their transmission. (See Section 1.5.3 for the description of
NAV.) The duration information has to be transmitted at physical data-rates that are decodable by
the legacy stations (the pure 802.11n transmission is not).

Ivan Marsic e Rutgers University 320

Three different operating modes are defined for 802.11n devices (actually, four, but one is a kind
of sub-mode and omitted here for simplicity). The legacy Non-HT operating mode sends data
frames in the old 802.11a/g format (shown in the top row of Figure 6-7) so that legacy stations
can understand them. However, only 802.11a and g stations understand Non-HT mode format—
802.11b stations predate 802.11a/g and do not understand it. Non-HT mode is used by 802.11n
devices only to communicate with legacy 802.11 devices, rather than with other 8021.11n
devices. It cannot be used with 40-MHz channels (Figure 6-6). At the transmitter, only one
transmitting antenna is used in Non-HT mode. Receive diversity is exploited in this mode. An
802.11n device using Non-HT delivers no better performance than 802.11a/g. This mode gives
essentially no performance advantage over legacy networks, but offers full compatibility.

The legacy operating mode is a Non-HT (High Throughput) mode, whereas the Mixed and
Greenfield modes are HT modes. In Mixed operating mode, frames are transmitted with a
preamble compatible with the legacy 802.11a/g (middle row in Figure 6-7). The legacy Short
Training Field (L-STF), the legacy Long Training Field (L-LTF) and the legacy Signal field
(L-SIG) can be decoded by legacy 802.11a/g devices. The rest of the HT-Mixed frame has a new
format, and cannot be decoded by legacy 802.11a/g devices.

In Greenfield operating mode, high throughput frames are transmitted without any legacy-
compatible part (bottom row in Figure 6-7). In this mode, there is no provision to allow a legacy
device to understand the frame transmission. Receivers enabled in this mode should be able to
decode frames from the legacy mode, mixed mode, and the Greenfield mode transmitters. The
preamble is not compatible with legacy 802.11a/g devices and only 802.11n devices can
communicate when using the Greenfield format. Support for the Greenfield format is optional and
the HT devices can transmit using both 20-MHz and 40-MHz channels.

When a Greenfield device is transmitting, the legacy systems may detect the transmission, and
therefore avoid collision, by sensing the presence of a radio signal, using the carrier-sensing
mechanism in the physical layer. However, legacy devices cannot decode any part of an HT
Greenfield frame. Therefore, they cannot set their NAV and defer the transmission properly. They
must rely on continuous physical-layer carrier sensing to detect the busy/idle states of the
medium. In the worst case, HT Greenfield transmissions will appear as noise bursts to the legacy
devices (and vice versa).

The HT Mixed mode is mandatory to support and transmissions can occur in both 20-MHz and
40-MHz channels. Support for the HT Greenfield mode is optional; again, transmissions can
occur in both 20-MHz and 40-MHz channels (Figure 6-6). Support for Non-HT Legacy mode is
mandatory for 802.11n devices, and transmissions can occur only in 20-MHz channels.

An 802.11n access point (AP) starts in the Greenfield mode, assuming that all stations in the BSS
(Basic Service Set) will be 802.11n capable. If the access point detects a legacy (non-HT)
802.11a/b/g device (at the time when it associates to the access point or from transmissions in an
overlapping network), the access point switches to the mixed mode. 802.11n stations are
communicating mutually using the mixed mode, and with legacy stations using the non-HT
mode. When non-HT stations leave the BSS, the access point, after a preset time, will switch back
from the Mixed mode to the Greenfield mode. The same is true of when the access point ceases to
hear nearby non-HT stations; it will switch back to the Greenfield mode.

Chapter 6 e Wireless Networks 321

The following protection mechanisms (described later) are defined for 802.11n to work with
legacy stations:

e Transmit control frames such as RTS/CTS or CTS-to-self using a legacy data rate, before
the HT transmissions. For control frame transmissions, use 20-MHz non-HT frames or
40-MHz non-HT duplicate frames (Figure 6-6).

e L-SIG TXOP protection

e Transmit the first frame of a transmit opportunity (TXOP) period using the non-HT frame
that requires a response frame (acknowledgement), which is also sent as a non-HT frame
or non-HT duplicate frame. After this initial exchange, the remaining TXOP frames can
be transmitted using HT-Greenfield format and can be separated by RIFS (Reduced Inter
Frame Spacing).

e Using the HT-Mixed frame format, transmit a frame that requires a response. The
remaining TXOP may contain HT-Greenfield frames and/or RIFS sequences.

The first two protection schemes are extension of the protection mechanisms that have been
introduced in the migration from 802.11b to 802.11g. Use of control frames such as RTS/CTS or
CTS-to-self is a legacy compatibility mode. L-SIG TXOP protection is a mixed compatibility
mode (uses HT-mixed frame format) and is optional to implement. The last two schemes are
applicable only in the presence of TXOP, which is a feature that might be enabled only for certain
services, such as voice and video transmission.

In an 802.11n HT coverage cell that operates in 20/40-MHz channels, there may be legacy 802.11
devices (operating in the primary 20-MHz channel) along with the 40-MHz HT devices.
Furthermore, there may be an overlapping cell with legacy 802.11 devices operating in the
secondary channel of this cell. A protection mechanism must take into account both cases and
provide protection for the 40-MHz HT devices against interference from either source (i.e.,
legacy devices inside or outside this cell). Next, we review those protection mechanisms.

e Control FramesProtection: RTS/CTS Exchange, CTSto-self, and Dual-CTS

We have already seen in Section 1.5.3 how RTS/CTS (Request-to-Send/Clear-to-Send) exchange
is used for protection of the current transmission. The RTS/CTS frames let nearby 802.11
devices—including those in different but physically overlapping networks—set their network
allocation vector (NAV) and defer their transmission. This mechanism is called “virtual carrier
sensing” because it operates at the MAC layer, unlike physical-layer carrier sensing.
Transmission of RTS/CTS frames helps avoid hidden station problem irrespective of transmission
rate and, hence, reduces the collision probability.

802.11g introduced another NAV-setting protection mechanism (also adopted in 802.11n), called
CTSto-self mechanism. CTS-to-self allows a device to transmit a short CTS frame, addressed to
itself, that includes the NAV duration information for the neighboring legacy devices, which will
protect the high-rate transmission that will follow. The advantage of the CTS-to-self NAV
distribution mechanism is lower network overhead cost than with the RTS/CTS NAYV distribution
mechanism—instead of transmitting two frames separated by a SIFS interval, only one frame is
transmitted. However, CTS-to-self is less robust against hidden nodes and collisions than
RTS/CTS. Stations employing NAV distribution should choose a mechanism that is appropriate

Ivan Marsic e Rutgers University 322

CTS-to-self frame (Non-HT format) Data frame (HT format)
A N

4 N
2 2

Legacy 802.11|Legacy 802.11 L | 802.11n 802.11n @

PHY header | MAC header CTS-to-self le» PHY header [MAC header Dt pCS
(a) Legacy compatibility mode HE
Blocking out non-HT stations with Network Allocation Vector (NAV)

Data frame (HT-mixed format)

4 A
2
Legacy 802.11 802.11n 802.11n Data FCS]
PHY header | PHY header | MAC header [»|
(b) Mixed compatibility mode el
Blocking out non-HT stations with spoofed duration value (L-SIG field)

Data frame (HT format)

A
p
2
802.11n 802.11n =
PHY header | MAC header 2 e
(c) Greenfield mode . ACK
(no protection)

Figure 6-18: 802.11n backwards compatibility modes. (a) Using control frames for NAV
distribution. (b) L-SIG TXOP protection. (c) Greenfield mode offers no protection.

for the given network conditions. If errors occur when employing the CTS-to-self mechanism,
stations should switch to the more robust RTS/CTS mechanism.

HT protection requires 802.11n devices to announce their intent to transmit by sending legacy-
format control frames prior to HT data transmission (Figure 6-18(a)). The CTS-to-self frame must
be transmitted using one of the legacy data rates that a legacy device will be able to receive and
decode. Transmission rate of the control frames depends on the type of legacy device that is
associated in the BSS. If both 802.11b and 802.11g devices are associated, then 802.11b rates
(known as Clause 15 rates) are used to transmit protection frames because 802.11g stations can
decode such frames.

In Dual-CTS protection mode, the RTS receiver transmits two CTS frames, one in Non-HT
mode and another in HT mode, so the subsequent data frame is protected by a legacy CTS and an
HT CTS. The dual-CTS feature can be enabled or disabled by setting the Dual CTS Protection
subfield in beacon frames. Dual-CTS protection has two benefits. First, using the legacy
RTS/CTS or legacy CTS-to-self frames to reset NAV timers prevents interference with any
nearby 802.11a/b/g cells. Second, it resolves the hidden node problem within the 802.11n cell.

Figure 6-19 shows an example network with an 802.11n access point (AP) and two mobile
stations, one 802.11n (station A) and the other legacy 802.11g (station B). When traffic is
generated by station A, it first sends an RTS to the AP. The AP responds with two CTS frames,
one in HT and the other in legacy format. Station A is then free to transmit the data frame, while

Chapter 6 e Wireless Networks 323

802.11g
(Legacy non-HT)

-
7 802.11n
(HT-Greenfield)

AP

" .
(",—", CTS-to-self CTS-to-self Time
receives

A P CTS (HT)| | CTS (L) data (HT) CTS (HT)| | CTS (L) Data (L)

RN
sets NAV
A RTS (HT) Data (HT) | ey J|
| B :
| receives
B | NAY daa (L)

Figure 6-19: Example of 802.11n Dual-CTS protection (CT Sto-self).

other stations in the same and neighboring networks (e.g., station B) set their NAV correctly so
they do not transmit over the authorized frame, interfering with it. Later, when the AP has traffic
to send to station B, it uses dual CTS-to-self frames to perform the same function (Figure 6-19).

Dual-CTS makes the 802.11n network a good neighbor to overlapping or adjacent legacy 802.11
networks. It also solves the hidden-station problem where different clients in a cell may not be
able to hear each other’s transmissions, although, by definition they all can hear the AP and its
CTS frames. However, the use of control frames further reduces the data throughput of the
network. Although RTS/CTS frames are short (20 and 14 bytes, respectively), it takes more time
to transmit them at the legacy rate of 6 Mbps than it takes to transmit 500 bytes of data at 600
Mbps. Therefore, HT protection significantly reduces an 802.11n W-LAN’s overall throughput.

e L-SIG TXOP Protection

In Legacy Sgnal field Transmit Opportunity (L-SIG TXOP) protection mechanism, protection is
achieved by transmitting the frame-duration information in a legacy-formatted physical header,
and then transmitting the data at an 802.11n high rate (Figure 6-18(b)). Each frame is sent in an
HT-mixed frame format. A legacy device that receives and successfully decodes an HT-mixed
frame defers its own transmission based on the duration information present in the legacy Signal
(L-SIG) field (see Figure 6-7). Such legacy clients remain silent for the duration of the
forthcoming transmission. Following the legacy physical header, the 802.11n device sends the
remaining part of the frame using 802.11n HT rates and its multiple spatial streams. L-SIG TXOP
protection is also known as PHY layer spoofing.

The Rate and Length subfields of the L-SIG field (Figure 6-7) determine the duration of how
long non-HT stations should defer their transmission:

L-SIG Duration = (legacy Length / legacy Rate)

This value should be equal to the duration of the remaining HT part of the HT-mixed format
frame. The Rate parameter should be set to the value 6 Mbps. Non-HT stations are not able to

Ivan Marsic e Rutgers University 324

NAV duration »>

NAV duration »

'— NAV duration —|

RTS

Legacy
preamble
L-SIG
Legacy
preamble
L-SIG

1 1
1 1
Data i CF-End E
1 1
1 1

CTS BACK

Legacy
preamble
L-SIG
Legacy
preamble
L-SIG

—— L-SIG duration —»

L-SIG duration ———

L-SIG duration >

Figure 6-20: 802.11n L-SIG TXOP protection: Example of L-SIG duration setting.

receive any frame that starts throughout the L-SIG duration. Therefore, no frame may be
transmitted to a non-HT station during an L-SIG protected TXOP.

Figure 6-20 illustrates an example of how L-SIG Durations are set when using L-SIG TXOP
Protection. In this example, an L-SIG TXOP protected sequence starts with an RTS/CTS initial
handshake, which provides additional protection from hidden stations. Any initial frame
exchange may be used that is valid for the start of a TXOP. The term “L-SIG TXOP protected
sequence” includes these initial frames and any subsequent frames transmitted within the
protected L-SIG duration.

The TXOP holder should transmit a CF-End frame starting a SIFS period after the L-SIG TXOP
protected period (Figure 6-20). Because legacy stations are unable to distinguish a Mixed-mode
acknowledgement frame from other Mixed-mode frames, they may mistakenly infer that ACK
frame is lost. As a result, they would wait unnecessarily until the EIFS time elapses (see Figure
1-75(b)), which leads to potential unfairness or a “capture effect.” CF-End enables other stations
to avoid such undesirable effects. Note that this is not an instance of TXOP truncation (described
earlier), because here the CF-End frame is not transmitted to reset the NAV.

All HT-mixed mode frames contain the L-SIG field, so is not necessary to send special control
frames to announce the medium reservation duration explicitly. An 802.11n station must indicate
whether it supports L-SIG TXOP Protection in its L-SIG TXOP Protection Support capability
field in Association-Request and Probe-Response frames. The mixed mode can be used in a 40-
MHz channel, but to make it compatible with legacy clients, all broadcast and non-aggregated
control frames are sent on a legacy 20-MHz channel as defined in 802.11a/b/g, to be
interoperable with those clients (Figure 6-6). And, of course, all transmissions to and from legacy
clients must be within a legacy 20-MHz channel. L-SIG TXOP protection mechanism is not
applicable when 802.11b stations are present, because the Signal field (L-SIG) is encoded in
802.11g frame format that 802.11b devices do not understand. The double physical-layer header
(legacy plus 802.11n headers) adds overhead, reducing the throughput. However, it makes
possible for 802.11n stations to take advantage of HT features for the remaining part of the frame
transmission.

e Phased Coexistence Operation (PCO)

Chapter 6 e Wireless Networks 325

Another mechanism for coexistence between 802.11n HT cells and nearby legacy 802.11a/b/g
cells is known as Phased Coexistence Operation (PCO). This is an optional mode of operation
that divides time into slices and alternates between 20-MHz and 40-MHz transmissions. The HT
access point designates time slices for 20-MHz transmissions in both primary and secondary 20-
MHz channels, and designates time slices for 40-MHz transmissions. This operation is depicted
in Figure 6-6 and now we describe the mechanism for transitioning between the phases. The
algorithm for deciding when to switch the phase is beyond the scope of the 802.11n standard.

The phased coexistence operation (PCO) of 802.11n is illustrated in Figure 6-21, where an
802.11n coverage cell (BSS-1) is overlapping a legacy 802.11 cell (BSS-2). Stations A and B are
associated with BSS-1 and station C is associated with BSS-2, but it can hear stations in BSS-1
and interfere with their transmissions. Only station A is capable of transmitting and receiving
frames in the 40-MHz channel. As explained earlier (Figure 6-6), a 40-MHz channel is formed by
bonding two contiguous 20-MHz channels, one designated as primary channel and the other as
secondary channel. In this example, BSS-2 happens to operate in what BSS-1 considers its own
secondary channel, i.e., the secondary channel of BSS-1 is the primary channel for BSS-2. In 20-
MHz phase, all stations contend for medium access in their respective primary channels. When
the 802.11n access point wishes to use a 40-MHz channel, it needs to reserve explicitly both
adjacent 20-MHz channels. The access point is coordinating the phased operation of the
associated stations with 20-MHz and 40-MHz bandwidth usage.

The bottom part of Figure 6-21 shows the MAC-protocol timing diagram for reservation and
usage of the 40-MHz channel. Transitions back and forth between 20-MHz and 40-MHz channels
start with the Beacon frame or Set-PCO-Phase frame. The 802.11n access point (AP)
accomplishes the reservation by setting the NAV timers of all stations with appropriate control
frames transmitted on the respective channels. The access point uses CTS-to-self frames to set the
NAYV timers. As Figure 6-21 depicts, the AP transmits both CTS-to-self frames simultaneously
using the duplicate legacy mode (described earlier in this section). Although control frames are
transmitted only on the primary channel, the secondary channel of BSS-1 is the primary channel
of BSS-2, so station C will receive the second CTS-to-self and react to it. This feature improves
efficiency (but notice that it could not be exploited in Figure 6-19). When the NAV timer is set,
the station is blocked from transmission until the NAV timer expires. However, as seen in Figure
6-21 station A will also set its own NAV, which means that station A too will be blocked. This is
why the AP will transmit a CF-End frame in the HT-Greenfield format on the 40-MHz channel,
so that only station A will decode it and start contending for access to the 40-MHz channel. Recall
that CF-End truncates TXOP and clears the NAV timers of the clients that receive this frame.

To end the 40-MHz phase, the HT access point first sends a Set-PCO-Phase frame so station A
knows the 40-MHz phase is over. Next, to release the 40-MHz channel, the AP uses two CF-End
frames sent simultaneously on both 20-MHz channels using the duplicate legacy mode. This will
truncate the remaining TXOP for the legacy clients (stations B and C). Thereafter, all stations
may again contend for medium access on their respective 20-MHz primary channels.

Reservation of the 40-MHz channel may not happen smoothly, because traffic in BSS-2 may
continue for a long time after the access point transmitted the Beacon frame or Set-PCO-Phase
frame (see the initial part of the timing diagram in Figure 6-21). If the secondary channel
continues to be busy after the phase transition started, the stations in BSS-1 are not allowed to
transmit on the primary 20-MHz channel because their NAV timers are set. If waiting for

Ivan Marsic e Rutgers University 326

BSS-1
802.11g
802.11n 5
/_ SR Piiiagy’ - D/
N\ d 2 “
7'\

N\

802.11g %

A P (HT-Mixed) 3

802.11g ™[/
(Legacy) ! \‘ ’
A

Another
—= B AP

BSS-2

AP releases
the 20 MHz
channels

AP reserves
both 20-MHz
channels for

20 MHz 40 MHz phase
phase 40 MHz phase ;\\é‘ 20 MHz phase
——————b| 5N
Transition ,§°’
N
- % _____ = Na —_
N = = 4= K] = Traffic in BSS-1in
552 Sagd e AP and A . & 802.11g
£25 E ° g |U_) exchanzr:e traffic g % 20 MHz channel (Non-
- ° = HT or HT-Mixed mod
T O g1] in 802.11n 15 of ixed mode)
o i = o 40 MHz channel 3]
8yT Busy ol @ (HT greenfield ol 3 2 Traffic in BSS-2
S5 ¢ (wrafficin | L 2 mode) Lo ﬁ in 802.11g
3R% BSS-2) 2 8 20 MHz channel
) h X N