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Preface 

 

This book reviews modern computer networks with a particular focus on performance and quality 
of service. There is a need to look towards future, where wired and wireless/mobile networks will 
be mixed and where multimedia applications will play greater role. In reviewing these 
technologies, I put emphasis on underlying principles and core concepts, rather than 
meticulousness or completeness. 

Audience 

This book is designed for upper-division undergraduate and graduate courses in computer 
networking. It is intended primarily for learning, rather than reference. I also believe that the 
book’s focus on basic concepts should be appealing to practitioners interested in the “whys” 
behind the commonly encountered networking technologies. I assume that the readers will have 
basic knowledge of probability and statistics, which are reviewed in the Appendix. Most concepts 
do not require mathematical sophistication beyond a first undergraduate course. 

Most of us have a deep desire to understand logical cause-effect relationships in our world. 
However, some topics are either inherently difficult or poorly explained and they turn us off. I 
tried to write a computer networking book for the rest of us, one that has a light touch but is still 
substantial. I tried to present a serious material in a fun way so the reader may have fun and learn 
something nontrivial. I do not promise that it will be easy, but I hope it will be worth your effort. 

Approach and Organization 

In structuring the text, I faced the choice between logically grouping the topics vs. gradually 
identifying and addressing issues. The former creates a neater structure and the latter is more 
suitable for teaching new material. I compromised by opportunistically adopting both approaches. 
I tried to make every chapter self-contained, so that entire chapters can be skipped if necessary. 

Chapter 1 reviews essential networking technologies. It is condensed but more technical than 
many current networking books. I tried to give an engineering overview that is sufficiently 
detailed but not too long. This chapter serves as the basis for the rest of the book. 

Chapter 2 reviews the mechanisms for congestion control and avoidance in data networks. Most 
of these mechanisms are implemented in different variants of Transmission Control Protocol 
(TCP), which is the most popular Internet protocol. 

Chapter 3 reviews requirements and solutions for multimedia networking. 

Chapter 4 describes how network routers forward data packets. It also describes simple 
techniques for modeling queuing delays. 
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Chapter 5 describes router techniques for reducing or redistributing queuing delays across data 
packets. These include scheduling and policing the network traffic. 

Chapter 6 describes wireless networks, focusing on the network and link layers, rather than on 
physical layer issues. 

Chapter 7 describes network measurement techniques. 

Chapter 8 describes major protocols used in the Internet that I are either not essential or are 
specific implementations of generic protocols presented in earlier chapters. The most essential 
Internet protocols, such as TCP and IP are presented in earlier chapters. 

The Appendix provides a brief review of probability and statistics. 

Solved Problems 

This book puts great emphasis on problems for two reasons. First, I believe that specific problems 
are the best way to explain difficult concepts. Second, I wanted to keep the main text relatively 
short and focused on the main concepts; therefore, I use problems to illustrate less important or 
advanced topics. Every chapter (except for Chapter 9) is accompanied with a set of problems. 
Solutions for most of the problems can be found at the back of the text, starting on page 401. 

Additional information about team projects and online links to related topics can be found at the 
book website: http://www.ece.rutgers.edu/~marsic/books/QoS/. 
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Chapter 1 
Introduction to Computer Networks 

 

 

 

1.1 Introduction 
 

A network is a set of devices (often referred to as nodes) 
connected by communication links that are built using different 
physical media. A node can be a computer, telephone, or any 
other device capable of sending and receiving messages. The 
communication medium is the physical path by which message 
travels from sender to receiver. Example media include fiber-optic 
cable, copper wire, or air carrying radio waves. 

1.1.1 The Networking Problem 

 

Networking is about transmitting messages from senders to 
receivers (over a “communication channel”). Key issues we 
encounter include:  

• “Noise” damages (corrupts) the messages; we would like 
to be able to communicate reliably in the presence of 
noise 

• Establishing and maintaining physical communication 
lines is costly; we would like to be able to connect 
arbitrary senders and receivers while keeping the 
economic cost of network resources to a minimum 

• Time is always an issue in information systems as is generally in life; we would like to be 
able to provide expedited delivery particularly for messages that have short deadlines 



Ivan Marsic • Rutgers University 

 

2

Figure 1-1 illustrates what the customer usually cares about and what the network engineer can 
do about it. The visible network variables (“symptoms”), easily understood by a non-technical 
person include: 

Delivery: The network must deliver data to the correct destination(s). Data must be received only 
by the intended recipients and not by others. 

Correctness: Data must be delivered accurately, because distorted data is generally unusable. 

Timeliness: Data must be delivered before they need to be put to use; else, they would be useless. 

Fault tolerance and cost effectiveness are important characteristics of networks. For some of these 
parameters, the acceptable value is a matter of degree, judged subjectively. Our focus will be on 
network performance (objectively measurable characteristics) and quality of service 
(psychological determinants). 

Limited resources can become overbooked, resulting in message loss. A network should be able 
to deliver messages even if some links experience outages. 

The tunable parameters (or “knobs”) for a network include: network topology, communication 
protocols, architecture, components, and the physical medium (connection lines) over which the 
signal is transmitted. 

Network
Engineer

Network 
topology

Communication 
protocols

Network 
architecture

Components
Physical 
medium

Tunable network parameters:

Customer

Visible network properties:

Correctness Fault tolerance Timeliness CostDelivery

Figure 1-1: The customer cares about the visible network properties that can be controlled
by the adjusting the network parameters. 
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- Connection topology: completely connected graph compared to link sharing with multiplexing 
and demultiplexing. Paul Baran considered in 1964 theoretically best architecture for 
survivability of data networks (Figure 1-2). He considered only network graph topology and 
assigned no qualities to its nodes and links1. He found that the distributed-topology network 
which resembles a fisherman’s net, Figure 1-2(c), has the greatest resilience to element (node or 
link) failures. Figure 1-3 shows the actual topology of the entire Internet (in 1999). This topology 
evolved over several decades by incremental contributions from many independent organizations, 
without a “grand plan” to guide the overall design. In a sense, one could say that the Internet 
topology evolved in a “self-organizing” manner. Interestingly, it resembles more the 
decentralized-topology network with many hubs (Figure 1-2(b)), and to a lesser extent the 
distributed topology (Figure 1-2(c)). 

                                                      
1 When discussing computer networks, the term “host” is usually reserved for communication endpoints 

and “node” is used for intermediary computing nodes that relay messages on their way to the destination. 

Centralized DistributedDecentralized

Node

Link

(a) (b) (c)  

Figure 1-2: Different network topologies have different robustness characteristics relative to
the failures of network elements. 
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- Network architecture: what part of the network is a fixed infrastructure as opposed to being ad 
hoc built for a temporary need 

- Component characteristics: reliability and performance of individual hardware components 
(nodes and links). Faster and more reliable components are also more costly. When a network 
node (called switch or router) relays messages from a faster to a slower link, a congestion and a 
waiting-queue buildup may occur under a heavy traffic. In practice, all queues have limited 
capacity of their “waiting room,” so loss occurs when messages arrive at a full queue. 

- Performance metrics: success rate of transmitted packets (or, packet loss rate), average delay of 
packet delivery, and delay variability (also known as jitter) 

- Different applications (data/voice/multimedia) have different requirements: sensitive to loss vs. 
sensitive to delay/jitter 

There are some major problems faced by network engineers when building a large-scale network, 
such as the Internet that is now available worldwide. Some of these problems are non-technical: 

- Heterogeneity: Diverse software and hardware of network components need to coexist and 
interoperate. The diversity results from different user needs and their economic capabilities, as 

Figure 1-3. The map of the connections between the major Internet Service Providers
(ISPs). [From the Internet mapping project:  http://www.cheswick.com/ ] 
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well as because installed infrastructure tends to live long enough to become mixed with several 
new generations of technologies. 

- Autonomy: Different parts of the Internet are controlled by independent organizations. Even a 
sub-network controlled by the same multinational organization, such as IBM or Coca Cola, may 
cross many state borders. These independent organizations are generally in competition with each 
other and do not necessarily provide one another the most accurate information about their own 
networks. The implication is that the network engineer can effectively control only a small part of 
the global network. As for the rest, the engineer will be able to receive only limited information 
about the characteristics of others’ autonomous sub-networks. Any local solutions must be 
developed based on that limited information about the rest of the global network. 

- Scalability: Although a global network like the Internet consists of many autonomous domains, 
there is a need for standards that prevent the network from becoming fragmented into many non-
interoperable pieces (“islands”). Solutions are needed that will ensure smooth growth of the 
network as many new devices and autonomous domains are added. Again, information about 
available network resources is either impossible to obtain in real time, or may be proprietary to 
the domain operator. 

1.1.2 Communication Links 

There are many phenomena that affect the transmitted signal, some of which are illustrated in 
Figure 1-4. Although the effects of time constants and noise are exaggerated, they illustrate an 
important point. The input pulses must be well separated because too short pulses will be 
“smeared” together. This can be observed for the short-duration pulses at the right-hand side of 
the pulse train. Obviously, the receiver of the signal in the bottom row of Figure 1-4 will have 
great difficulty figuring out whether or not there were pulses in the transmitted signal. You can 
also see that longer pulses are better separated and easier to recognize in the distorted 
signal. The minimum tolerable separation depends on the physical characteristics of 
a transmission line (e.g., copper vs. optical fiber). If each pulse corresponds to a 

Voltage at transmitting end

Idealized voltage at receiving end

Line noise

Voltage at receiving end

Figure 1-4: Digital signal distortion in transmission due to noise and time constants
associated with physical lines. 
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single bit of information, then the minimum tolerable separation of pulses determines the 
maximum number of bits that can be transmitted over a particular transmission line. 

It is common to represent data transmissions on a timeline diagram as shown in Figure 1-5. This 
figure also illustrates delays associated with data transmission. Although information bits are not 
necessarily transmitted as rectangular pulses of voltage, all transmission lines are conceptually 
equivalent, as represented in Figure 1-6, because the transmission capacity for every line is 
expressed in bits/sec or bps. The time required to transmit a single bit on a given link is known as 
bit time. In this text, we will always visualize transmitted data as a train of digital pulses. The 
reader interested in physical methods of signal transmission should consult a communications-
engineering textbook, such as [Haykin, 2006]. 

T
im

e

Sender Receiver

Communication link
Physical setup:

Timeline diagram:

transm
ission

delay

propagation
delay

101101

101101

Start of transmission

End of reception

Electromagnetic wave propagation

Electromagnetic wave propagation

First drop of the fluid
enters the pipe

Fluid packet in transit

Last drop of the fluid
exits the pipe

Fluid flow analogy:

Figure 1-5: Timeline diagram for data transmission from sender to receiver. 
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A common characterization of noise on transmission lines is bit error rate (BER): the fraction of 
bits received in error relative to the total number of bits received in transmission. Given a packet 
n bits long and assuming that bit errors occur independently of each other, a simple 
approximation for the packet error rate is 

BERnn eBERPER ⋅−−≈−−= 1)1(1    (1.1) 

An important attribute of a communication link is how many bitstreams can be transmitted on it 
at the same time. If a link allows transmitting only a single bitstream at a time, then the nodes 
connected to the link must coordinate their transmissions to avoid different bitstreams corrupting 
each other (known as data collision). Such links are known as broadcast links or multiple-access 
links. Point-to-point links often support data transmissions in both directions simultaneously. This 
kind of a link is said to be full duplex. A point-to-point link that supports data flowing in only 
one direction at a time is called half duplex. In other words, the nodes on each end of this kind of 
a link can both transmit and receive, but not at the same time—they only can do it by taking 
turns. It is like a one-lane road with bidirectional traffic. We will assume that all point-to-point 
links are full duplex, unless stated otherwise. A full-duplex link can be implemented in two ways: 
either the link must contain two physically separate transmission paths, one for sending and one 
for receiving, or the capacity of the communication channel is divided between signals traveling 
in opposite directions. The latter is usually achieved by time division multiplexing (TDM) or 
frequency division multiplexing (FDM). 

01 1 1 0 0 1

01 11001
Time

Link 1:
1 Mbps

Link 2:
10 Mbps

100 ns

1 μs

Figure 1-6: Transmission link capacity determines the speed at which the link can transmit
data. In this example, each bit on Link 1 is 1 μs wide, while on Link 2 each bit is 100 ns
wide. Hence, Link 2 can transmit ten times more data than Link 1 in the same time interval. 
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Wireless Link 

Consider a simple case of a point source radiating electromagnetic waves in all directions (Figure 
1-7, left). The received signal strength decreases exponentially with the sender-receiver distance. 
As with any other communication medium, the wireless channel is subject to thermal noise, 
which distorts the signal randomly according to a Gaussian distribution of noise amplitudes. As 
the distance between a transmitter and receiver increases, the received signal strength decreases to 
levels close to the background noise floor. At a certain distance from the sender, the signal 
strengths will become so weak that the receiver will not be able to discern reliably signal from 
noise. This distance, known as transmission range, is decided arbitrarily, depending on what is 
considered acceptable bit error rate. For example, we can define the transmission range as the 
sender-receiver distance for which the packet error rate is less than 10 %. 

In addition to thermal noise, the received signal may be distorted by parallel transmissions from 
other sources (Figure 1-7, right). This phenomenon is known as interference. Because this 
normally happens only when both sources are trying to transmit data (unknowingly of each 
other’s parallel transmissions), this scenario is called packet collision. A key observation is that 
collisions occur at the receiver—the sender is not disturbed by concurrent transmissions, but 
receiver cannot correctly decode sender’s message if it is combined with an interfering signal. If 
the source and receiver nodes are far away from the interfering source, the interference effect at 
the receiver will be a slight increase in the error rate. If the increased error rate is negligible, the 
source and receiver will be able to carry out their communication despite the interference. Notice, 
however, that the interference of simultaneously transmitting sources never disappears—it only is 
reduced exponentially with an increasing mutual distance (Figure 1-8). The minimum distance 
(relative to the receiver) at which interferer’s effect can be considered negligible is called 
interference range. In Figure 1-8, node D is within the interference range of receiver B. Nodes C 
and E are outside the interference range. However, although outside the interference range 
defined for a single interferer, if nodes C and E are transmitting simultaneously their combined 
interference at B may be sufficiently high to cause as great or greater number of errors as a single 
interferer within the interference range. 

Figure 1-7: Wireless transmission. Left: single point source. Right: interference of two point
sources. 
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1.1.3 Packets and Statistical Multiplexing 

The communication channel essentially provides an abstraction of a continuous stream of 
symbols transmitted that are subject to a certain error probability. When interacting with another 
person, whether face-to-face or over the telephone, we think of units of communication in terms 
of conversational turns: first one person takes a turn and delivers their message, then the other 
person takes a turn, and so on. Messages could be thought of as units of communication 
exchanged by two (or more) interacting persons. We notice that there are benefits of slicing a 
long oration into a sequence of smaller units of discourse. This slicing into messages gives the 
other person chance to clarify a misunderstanding or give a targeted response to a specific item. 

In computer communication networks, messages are represented as strings of binary symbols (0 
or 1), known as bits. Generally, messages are of variable length and some of them may still be 
considered too long for practical network transmission. There are several reasons for imposing a 
limit on message length. One is that longer messages stand a higher chance of being corrupted by 
an error (see equation (1.1)). Another reason is to avoid the situation where a sending application 
seizes the link for itself by sending very long messages while other applications must wait for a 
long time. Therefore, messages are broken into shorter bit strings known as packets. These 
packets are then transmitted independently and reassembled into messages at the destination. This 
allows individual packets to opportunistically take alternate routes to the destination and 
interleave the network usage by multiple sources, thus avoiding inordinate waiting periods for 
some sources to transmit their information. 

Different network technologies impose different limits on the size of data blocks they can handle, 
which is known as the maximum transmission unit (MTU). For example, a regular Ethernet 
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Figure 1-8: Transmission range and interference range for wireless links. 
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frame uses a frame format that limits the size of the payload it sends to 1,500 bytes. Notice that 
the MTU value specifies the maximum payload size and does not include the header size of the 
header that is prepended to the payload of a packet. 

Statistical Multiplexing 

Link sharing using packet multiplexers 

Real-world systems are designed with sub-peak capacity for economic reasons. As a result, they 
experience congestion and delays during peak usage periods. Highways experience traffic 
slowdown during rush hours; restaurants or theaters experience crowds during weekend evenings; 
etc. Designing these systems to support peak usage without delays would not be economically 
feasible—most of the time they would be underutilized. Figure 1-10 

1.1.4 Communication Protocols 

A protocol is a set of rules agreed-upon by interacting entities, e.g., computing devices, that 
govern their communicative exchanges. It is hard to imagine accomplishing any task involving 
multiple entities without relying on a protocol. For example, one could codify the rules for how a 
customer (C) purchases goods from a merchant (M) as follows: 

1. C→M Request catalog of products 

2. C←M Respond catalog 

3. C→M Make selections 

4. C←M Deliver selections 

5. C→M Confirm delivery 

6. C←M Issue bill 

7. C→M Make payment 
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
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
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mail acceptance and delivery 
procedures (Postal Service’s

Mail Manual)

User-to-user interactions 
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Figure 1-9: Protocol layers for conventional mail transport. 
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8. C←M Issue confirmation 

The customer and merchant may be located remote from each other and using other entities to 
help accomplish the purchasing task, such as a bank for credit-card transactions, or a postal 
service for parcel delivery. 

 

An important characteristic of protocols is that the units of communication are data packets. 
Each data packet consists of a header that contains the packet guidance information to help guide 
the packet from its source to its destination, and the payload, which is the user information to be 
delivered to the destination address. In packet-switched networks, packets are transmitted at 
random times, and the receiver at the end of a communication link must have a means to 
distinguish an arriving packet from random noise on the line. For this purpose, each packet is 
preceded with a special sequence of bits that mark the start of the packet. This special bit pattern 
is usually called the preamble. Each receiver is continuously hunting for the preamble to catch 

City A

City C

City C

City A

City B

City B

(a)

(b)

City D

City D

Figure 1-10: An analogy illustrating dedicated lines (a) compared to statistical maultiplexing (b). 
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the arriving packet. If the preamble is corrupted by random noise, the packet will be lost (i.e., 
unnoticed by the receiver). 

 

Communication in computer networks is very complex. One effective means of dealing with 
complexity is known as modular design with separation of concerns. In this approach, the system 
is split into modules and each module is assigned separate tasks to do (“concerns”). Network 
designers usually adopt a restricted version of modular design, know as layered design. Each 
layer defines a collection of conceptually similar functions (or, services) distinct from those of 
the other layers. The restriction in layered design is that a module in a given layer provides 
services to the layer just above it and receives services from the layer just below it. The layering 
approach forbids the modules from using services from (or providing to) non-adjacent layers. 

Each layer of the layered architecture contains one or more software modules that offer services 
characteristic for this layer. Each module is called protocol. A protocol defines two application-
programming interfaces (APIs):  

1. Service interface to the protocols in the layer above this 
layer. The upper-layer protocols use this interface to “plug 
into” this layer and hand it data packets to send(). Each 
layer also defines a handle() callback operation 
through which the lower layer calls this layer to handle an 
incoming packet. 

2. Peer interface to the counterpart protocol on a remote 
machine. This interface defines the format and meaning of data packets exchanged 
between peer protocols to support communication. 

There are many advantages of layered design, primarily because it decomposes the problem of 
building a network into more manageable components. Each component can be developed 
independently and used interchangeably with any other component that complies with its service 
interface. However, there are some disadvantages, as well. For example, when a layer needs to 
make a decision about how to handle a data packet, it would be helpful to know what kind of 
information is inside the packet. Because of strict separation of concerns, particularly between the 
non-adjacent layers, this information is not available, so a more intelligent decision cannot be 
made. This is the reason why recently cross-layered designs are being adopted, particularly for 
wireless networks (see Chapter 6). 

Layer i

Layer i − 1

send() handle()
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Three-Layer Model 

In recent years, the three-layer model (Figure 1-11) has emerged as reference architecture of 
computer networking protocols. 

LAYER-1 – Link layer: is at the bottom of 
the protocol stack and implements a packet 
delivery service between nodes that are 
attached to the same physical link (or, physical 
medium). The physical link may be point-to-
point from one transmitter to a receiver, or it 
may be shared by a number of transmitters and receivers (known as “broadcast link,” Section 
1.3.3).  

There is the “physical layer,” which implements a digital transmission system that delivers bits. 
But, you would not know it because it is usually tightly coupled with the link layer by the link 
technology standard. Link and physical layers are usually standardized together and technology 
vendors package them together, as will be seen later in Section 1.5. 

Layered architecture Layer function

• IEEE 802.11 WiFi
• IEEE 802.3 Ethernet
• PPP (modems, T1)

• Internet Protocol (IP)

Examples

• Transmission Control
Protocol (TCP)

• Real-time Transport
Protocol (RTP)

Application specific connections

Source-to-destination routing

Packet exchange

2: Network

1: Link

3: End-to-End

Service interface between L2 & L3

Service interface between L1 & L2
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• IEEE 802.11 WiFi
• IEEE 802.3 Ethernet
• PPP (modems, T1)

• Internet Protocol (IP)
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• Real-time Transport
Protocol (RTP)

Application specific connections

Source-to-destination routing

Packet exchange

2: Network

1: Link

3: End-to-End

Service interface between L2 & L3

Service interface between L1 & L2

Figure 1-11: Three-layer reference architecture for communication protocol layering. 
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In wireless networks, physical communication is much more complex than in wired networks. 
Therefore, it may be justifiable to distinguish the physical and link layers, to keep both 
manageable. Because this book is mainly about protocols and not about physical communication, 
I will consider both together as a single, Link layer. 

The link layer is not concerned with bridging end hosts across (many) intermediate links; this is 
why we need the network layer. 

LAYER-2 – Network layer: provides 
concatenation of links to connect arbitrary end 
hosts. It will be elaborated in Section 1.4 
where we describe the most popular network 
layer protocol: the Internet Protocol (IP). 
However, host computers are not the 
endpoints of communication—application 
programs running on these hosts are the actual 
endpoints of communication! The network 
layer is not concerned with application requirements. It may provide a range of choices for an 
upper layer to select from. For example, the network layer may support “quality of service” 
through “service level agreements,” “resource reservation,” but it does not know which one of 
these choices is the best for a particular application program; this is why we need the end-to-end 
layer. 

LAYER-3 – End-to-end layer: 
this layer brings together 
(encapsulates) all communication-
specific features of an application 
program. Here is the first time that 
we are concerned with application 
requirements. 

The figure on the right is meant to 
illustrate that different applications need different type of connection for optimal performance. 
For example, manipulation-based applications (such as video games) require an equivalent of 
mechanical links to convey user’s action. Telephony applications need an equivalent of a 
telephone wire to carry user’s voice, etc. A most prominent example of an end-to-end protocol is 
TCP, described in Chapter 2. 

A fundamental design principle of network protocols and distributed systems in general is the 
end-to-end principle. The principle states that, whenever possible, communications protocol 
operations should occur at the end-points of a communications system, or as close as possible to 
the resource being controlled. According to the end-to-end principle, protocol features are only 
justified in the lower layers of a system if they are a performance optimization. 

Figure 1-12 shows the layers involved when a message is sent from an application running on one 
host to another running on a different host. The application on host A hands the message to the 
end-to-end layer, which passes it down the protocol stack on the same host machine. Every layer 
accepts the payload handed to it and processes it to add its characteristic information in the form 
of an additional header (Figure 1-13). The link layer transmits the message over the physical 
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medium. As the message travels from A to B, it may pass through many intermediate nodes, 
known as switches or routers. In every receiving node (including the intermediate ones), the 
message is received by the bottommost (or, link) layer and passed up through their protocol stack. 
Because intermediate nodes are not the final destination (or, end point), they do not have the 
complete protocol stack, but rather only the two bottommost layers: link and network layers (see 
Figure 1-12). 

Pseudo code of a generic protocol module in layer i is given in Listing 1-1. 

 

Listing 1-1: Pseudo code of a protocol module in layer i. 

// Definition of packet format for layer i. 
// Implementing the java.io.Externalizable interface makes possible to serialize  
// a Packet object to a byte stream (which becomes the payload for the lower-layer protocol). 
 1 public class PacketLayer_i implements java.io.Externalizable { 
 2     // packet header 
 3     private String sourceAddress; 
 4     private String receiverAddress; 
 5     private String packetID;  // this packet’s identifier 
 6     private String receivingProtocol; // upper layer protocol at receiver 
 
 7     // packet payload 

1:

2:

3:

1:

2:

:1

:2

:3

Physical communication Physical communication

End host A End host B

Intermediate
node (router)

Physical setup:Physical setup:

Protocol stack:Protocol stack:

Communication link

Communication link

Link

Network

Link

Network

Link

Network

End-to-End

Application

Link

Network

End-to-End

Application

Link

Network

End-to-End

Application

Link

Network

End-to-End

Application

Figure 1-12: Protocol layering in end hosts and intermediate nodes (switches or routers). 
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 8     private byte[] payload; 
 
 9     // constructor 
10     public PacketLayer_i( 
10a        byte[] data, String recvAddr, String upperProtocol 
10b    ) { 
11         payload = data; 
12         sourceAddress = address of my host computer; 
13         receiverAddress = recvAddr; 
14         packetID = generate unique identifier for this packet; 
15         receivingProtocol = upperProtocol; 
16     } 
 
17     public void writeExternal(ObjectOutput out) { 
18         // Packet implements java.io.Externalizable instead of java.io.Serializable 
18a        // to be able to control how the serialization stream is written, because 
18a        // it must follow the standard packet format for the given protocol. 
19     } 
20     public void readExternal(ObjectOutput out) { 
21         // reconstruct a Packet from the received bytestream 
22     } 
23 } 
 // Definition of a generic protocol module in layer i. 
 
 1 public class ProtocolLayer_i { 
 2     // maximum number of outstanding packets at sender (zero, if NOT a persistent sender) 
 3     public static final int N; // (N is also called the sliding window size 
 
 4     // lower layer protocol that provides services to this protocol 
 5     private ProtocolLayer_iDOWN lowerLayerProtocol; 
 
 6     // look-up table of upper layer protocols that use services of this protocol 
 7     private HashMap upperLayerProtocols; 
 
 8     // look-up table of next-receiver node addresses based on final destination addresses 
 8a    //     (this object is shared with the routing protocol, shown in Listing 1-2) 
 9     private HashMap forwardingTable; 
 
10     // list of unacknowledged packets that may need to be retransmitted 
10a    //    (maintained only for persistent senders that provide reliable transmission) 
11     private ArrayList unacknowledgedPackets = new ArrayList(); 
 
12     // constructor 
13     public ProtocolLayer_i( 
13a        ProtocolLayer_iDOWN lowerLayerProtocol 
13b    ) { 
14         this.lowerLayerProtocol = lowerLayerProtocol; 
15     } 
 
16     // sending service offered to the upper layer protocols, called in a top-layer thread 
17     public void send( 
17a        byte[] data, String destinationAddr, 
17b        ProtocolLayer_iUP upperProtocol 
17c    ) throws Exception { 
18         // if persistent sender and window of unacknowledged packets full, then do nothing 
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19         if ((N > 0) && (N - unacknowledgedPackets.size() <= 0)) ) { 
20            throw exception: admission refused by overbooked sender; 
21         } 
 
22         // create the packet to send 
23         PacketLayer_i outgoingPacket = 
23a           new PacketLayer_i(data, destinationAddr, upperProtocol);  
 
24         // serialize the packet object into a byte-stream (payload for lower-layer protocol) 
25         java.io.ByteArrayOutputStream bout = 
25a            new ByteArrayOutputStream(); 
26         java.io.ObjectOutputStream outstr = 
26a            new ObjectOutputStream(bout); 
27         outstr.writeObject(outgoingPacket); 
 
28         // look-up the receiving node of this packet based on the destination address 
28a        //     (requires synchronized access because the forwarding table is shared 
28b        //     with the routing protocol) 
29         synchronized (forwardingTable) { // critical region 
30             String recvAddr = forwardingTable.get(destinationAddr); 
31         } // end of the critical region 
 
32         // hand the packet as a byte-array down the protocol stack for transmission 
33         lowerLayerProtocol.send( 
33a             bout.toByteArray(), recvAddr, this 
33b        ); 
34     } 
 
34     // upcall method, called from the layer below this one, when data arrives 
35a    //     from a remote peer (executes in a bottom-layer thread!) 
36     public void handle(byte[] data) { 
 
37         // reconstruct a Packet object from the received data byte-stream 
38         ObjectInputStream instr = new ObjectInputStream( 
38a            new ByteArrayInputStream(data) 
38b        ); 
39         PacketLayer_i receivedFrame = 
40             (PacketLayer_i) instr.readObject(); 
 
41         // if this packet is addressed to me ... (on a broadcast medium) 
42         if (receivedFrame.getReceiverAddress() == my address) { 
43             // ...determine which upper layer protocol should handle this packet's payload 
44             synchronized (upperLayerProtocols) { // critical region 
45               ProtocolLayer_iUP upperProtocol = (ProtocolLayer_iUP) 
45a                  upperLayerProtocols.get( 
45b                      receivedFrame.getReceivingProtocol() 
45c                  ); 
46             } // end of the critical region 
 
47             // remove this protocol's header and 
47a            //    hand the payload over to the upper layer protocol 
48             upperProtocol.handle(receivedFrame.getPayload()); 
49         } 
50     } 
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51     public void setHandler( 
51a        String receivingProtocol, ProtocolLayer_iUP upperProtocol 
51b    ) { 
52         // add a <key, value> entry into the routing look-up table 
53         upperLayerProtocols.put(receivingProtocol, upperProtocol); 
54     } 
 
55     // Method called by the routing protocol (running in a different thread or process) 
56     public void setReceiver( 
56a        String destinationAddr, String receiverAddr 
56b    ) { 
57         // add a <key, value> entry into the forwarding look-up table 
58         synchronized (forwardingTable) { // critical region 
59             forwardingTable.put(destinationAddr, receiverAddr); 
60         } // end of the critical region 
61     } 
62 } 

 

Here I provide only a brief description of the above pseudocode. We will encounter and explain 
the details later in this chapter, as new concepts are introduced. The attribute upperProtocol 
is used to decide to which upper-layer protocol to deliver a received packet’s payload. This 
process is called protocol demultiplexing and allows the protocol at a lower-layer layer to serve 
different upper-layer protocols. 

To keep the pseudo code manageable, some functionality is not shown in Listing 1-1. For 
example, in case of a persistent sender in the method send() we should set the retransmission 
timer for the sent packet and store the packet in the unacknowledgedPackets list. Similarly, 
in the method handle() we should check what packet is acknowledged and remove the 
acknowledged packet(s) from the unacknowledgedPackets list. Also, the method send() 
is shown to check only the forwardingTable to determine the intermediary receiver 
(recvAddr) based on the final destination address. In addition, we will see that different 
protocol layers use different addresses for the same network node (Section 8.3.1). For this reason, 
it is necessary to perform address translation from the current-layer address (recvAddr) to the 
address of the lower layer before passing it as an argument in the send() call, in Line 33. (See 
Section 8.3 for more about address translation.) 
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The reader who carefully examined Listing 1-1 will have noticed that packets from higher layers 
become nested inside the packets of lower layers as they are passed down the protocol stack 
(Figure 1-13). The protocol at a lower layer is not aware of any structure in the data passed down 
from the upper layer, i.e., it does not know if the data can be partitioned to header and payload or 
where their boundary is—it simply considers the whole thing as an unstructured data payload. 

The generic protocol implementation in Listing 1-1 works for all protocols in the layer stack. 
However, each layer will require some layer-specific modifications. The protocol in Listing 1-1 
best represents a Network layer protocol for source-to-destination packet delivery. 

The Link layer is special because it is at the bottom of the protocol stack and cannot use services 
of any other layer. It runs the receiveBits() method in a continuous loop (perhaps in a 
separate thread or process) to hunt for arriving packets. This method in turn calls Link layer’s 
handle(), which in turn calls the upper-layer (Network) method handle(). Link layer’s 
send() method, instead of using a lower-layer service, itself does the sending by calling this 
layer’s own method sendBits(). 
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Figure 1-13: Packet nesting across the protocol stack: an entire packet of an upper layer
becomes the data payload of a lower layer. 
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An important feature of a link-layer protocol is data transparency, which means that it must 
carry any bit pattern in the data payload. An example of a special bit pattern is the packet 
preamble that helps the receiver to recognize the start of an arriving packet (mentioned at the start 
of this section). Data transparency means that the link layer must not forbid the upper-layer 
protocol from sending data containing special bit patterns. To implement data transparency, link-
layer protocol uses a technique known as bit stuffing (or, byte stuffing, depending on what the 
smallest units used to measure the payload is). Bit stuffing defines a special control escape bit 
pattern, call it ESC (Figure 1-14). The method sendBits()examines the payload received from 
the upper-layer protocol. If it encounters a special control sequence, say preamble (call it PRE), 
then it “stuffs” (adds) a control escape sequence ESC into the transmitted data stream, before PRE 
(resulting in ESC PRE), to indicate that the following PRE is not a preamble but is, in fact, actual 
data. Similarly, if the control escape pattern ESC itself appears as actual data, it too must be 
preceeded by an ESC. The method receiveBits() removes any control escape patterns that it 
finds in the received packet before delivering it to the upper-layer method handle() (Figure 
1-14). 

The pseudo code in Listing 1-1 is only meant to illustrate how one would write a protocol 
module. It is extremely simplified and certainly not optimized for performance. My main goal is 
to give the reader an idea about the issues involved in protocol design. We will customize the 
pseudo code from Listing 1-1 for different protocols, such as routing protocols in Listing 1-2, 
Section 1.4, and TCP sender in Listing 2-1, Section 2.1.1. 
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Figure 1-14: Bit stuffing to escape special control patterns in the frame data. 
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When Is a "Little in the Middle" OK? The Internet's End-to-End Principle Faces More Debate; by 
Gregory Goth -- http://ieeexplore.ieee.org/iel5/8968/28687/01285878.pdf?isnumber 

Why it’s time to let the OSI model die; by Steve Taylor and Jim Metzler, Network World, 
09/23/2008 -- http://www.networkworld.com/newsletters/frame/2008/092208wan1.html 

 

Open Systems Interconnection (OSI) Reference Model 

The OSI model has seven layers (Figure 1-15). The layer functionality is as follows: 

Layer 7 – Application: Its function is to provide application-specific services. Examples include 
call establishment and management for a telephony application (SIP protocol, Section 8.6.2), mail 
services for e-mail forwarding and storage (SMTP protocol), and directory services for looking 
up global information about various network objects and services (LDAP protocol). Notice that 
this layer is distinct from the application itself, which provides business logic and user interface. 

Layer 6 – Presentation: Its function is to “dress” the messages in a “standard” manner. It is 
sometimes called the syntax layer because it deals with the syntax and semantics of the 
information exchanged between the network nodes. This layer performs translation of data 
representations and formats to support interoperability between different encoding systems 
(ASCII vs. Unicode) or hardware architectures. It also performs encryption and decryption of 
sensitive information. Lastly, this layer also performs data compression to reduce the number of 
bits to be transmitted, which is particularly important for multimedia data (audio and video). 

Layer 5 – Session: Its function is to maintain a “conversation” across multiple related exchanges 
between two hosts (called session), to keep track of the progress of their communication. This 
layer establishes, manages, and terminates sessions. Example services include keeping track of 
whose turn it is to transmit (dialog control) and checkpointing long conversations to allow them 
to resume after a crash. 

Layer 4 – Transport: Its function is to provide reliable or expedient delivery of messages, or 
error recovery. 

Layer 3 – Network: Its function is to move packets from source to destination in an efficient 
manner (called routing), and to provide internetworking of different network types (a key service 
is address resolution across different networks or network layers). 

Layer 2 – Link: Its function is to organize bits into packets or frames, and to provide packet 
exchange between adjacent nodes. 

Layer 1 – Physical: Its function is to transmit bits over a physical medium, such as copper wire 
or air, and to provide mechanical and electrical specifications. 

Visit http://en.wikipedia.org/wiki/OSI_model for more details on the OSI Reference ArchitectureVisit http://en.wikipedia.org/wiki/OSI_model for more details on the OSI Reference Architecture
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The seven layers can be conceptually organized to three subgroups. First, layers 1, 2, and 3—
physical, link, and network—are the network support layers. They deal with the physical aspects 
of moving data from one device to another, such as electrical specifications, physical connections, 
physical addressing, etc. Second, layers 5, 6, and 7—session, presentation, and application—can 
be thought of as user support layers. They allow interoperability among unrelated software 
systems. Third, layer 4—the transport layer—ensures end-to-end reliable data transmission, while 
layer 2 may ensure reliable data transmission on a single link. 

When compared to the three-layer model (Figure 1-11), OSI layers 1, 2 correspond to layer 1, the 
Link layer, in the three-layer model. OSI layer 3 corresponds to layer 2, the Network layer, in the 
three-layer model. Finally, OSI layers 4, 5, 6, and 7 correspond to layer 3, the End-to-end layer, 
in the three-layer model. 

The OSI model serves mainly as a reference for thinking about protocol architecture issues. There 
are no actual protocol implementations that follow the OSI model. Because it is dated, I will 
mainly use the three-layer model in the rest of this text. 
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Figure 1-15: OSI reference architecture for communication protocol layering. 
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1.2 Reliable Transmission via Redundancy 
 

To counter the line noise, a common technique is to add redundancy or context to the message. 
For example, assume that the transmitted word is “information” and the received word is 
“inrtormation.” A human receiver would quickly figure out that the original message is 
“information,” because this is the closest meaningful word to the one that is received. Similarly, 
assume you are tossing a coin and want to transmit the sequence of outcomes (head/tail) to your 
friend. Instead of transmitting H or T, for every H you can transmit HHH and for every T you can 
transmit TTT. The advantage of sending two redundant letters is that if one of the original letters 
flip, say TTT is sent and TTH is received, the receiver can easily determine that the original 
message is TTT, which corresponds to “tail.” Of course, if two letters become flipped, 
catastrophically, so TTT turns to THH, then the receiver would erroneously infer that the original 
is “head.” We can make messages more robust to noise by adding greater redundancy. Therefore, 
instead of two redundant letters, we can have ten: for every H you could transmit 
HHHHHHHHHH and for every T you could transmit TTTTTTTTTT. The probability that the 
message will be corrupted by noise catastrophically becomes progressively lower with more 
redundancy. However, there is an associated penalty: the economic cost of transmitting the longer 
message grows higher because every communication line can transmit only a limited number of 
bits per unit of time. Finding the right tradeoff between robustness and cost requires the 
knowledge of the physical characteristics of the transmission line as well as the knowledge about 
the importance of the message to the receiver (and the sender). 

Example of adding redundancy to make messages more robust will be seen in Internet telephony 
(VoIP), where forward error correction (FEC) is used to counter the noise effects. 

If damage/loss can be detected, then an option is to request retransmission but, request + 
retransmission takes time  large response latency. FEC is better but incurs overhead. 

1.2.1 Error Detection and Correction by Channel Coding 

To bring the message home, here is a very simplified example for the above discussion. Notice 
that this oversimplifies many aspects of error coding to get down to the essence. Assume that you 
need to transmit 5 different messages, each message containing a single integer number between 
1 – 5. You are allowed to “encode” the messages by mapping each message to a number between 
1 – 100. Assume that the noise amplitude is distributed according to the normal distribution, as 
shown in [Figure X]. What are the best choices for the codebook? 

Note: this really represents a continuous case, not digital, because numbers are not binary and 
errors are not binary. But just for the sake of simplicity… 
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1.2.2 Interleaving 

Redundancy and error-correcting codes are useful when errors are randomly distributed. If errors 
are clustered, they are not effective. Consider the following example. Say you want to send the 
following message to a friend: “All science is either physics or stamp collecting.”2 A random 
noise in the communication channel may result in the following distorted message received by 
your friend: “All scidnce is eitjer physocs or statp colletting.” By simply using a spelling checker, 
your friend may easily recover the original message. One the other hand, if the errors were 
clustered, the received message may appear as: “All science is either checker or stamp 
collecting.” Obviously, it is impossible to guess the original message unless you already know 
what Rutherford said. 

This kind of clustered error is usually caused by a jamming source. It may not necessarily be a 
hostile adversary trying to prevent the communication, but it could be a passive narrow-band 
jamming source, such as microwave owen, which operates in the same frequency range as Wi-Fi 
wireless networking technology. 

To recover from such errors, one can use interleaving. Let us assume that instead of sending the 
original message as-is, you first scramble the letters and obtain the following message: 

Now you transmit the message “theme illicts scenic graphics since poorest Ally.” Again, the 
jamming source inflicts a cluster of errors, so the word “graphics” turns into “strictly,” and your 
friend receives the following message: “theme illicts scenic strictly since poorest Ally.” Your 
friend must know how to unscramble the message by applying an inverse mapping to obtain:  

Therefore, with interleaving, the receiver will obtain a message with errors randomly distributed, 
rather than missing a complete word. By applying a spelling checker, your friend will recover the 
original message. 

 

                                                      
2 Ernest Rutherford, in J. B. Birks, “Rutherford at Manchester,” 1962. 
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1.3 Reliable Transmission by 
Retransmission 

 

We introduced channel encoding as a method for dealing with errors (Section 1.2). But, encoding 
provides only probabilistic guarantees about the error rates—it can reduce the number errors to an 
arbitrarily small amount, but it cannot eliminate them. When error is detected that cannot be 
corrected, it may be remedied by repeated transmission. This is the task for Automatic Repeat 
Request (ARQ) protocols. In case retransmission fails, the sender should persist with repeated 
retransmissions until it succeeds or decides to give up. Of course, even ARQ retransmission is a 
probabilistic way of ensuring reliability and the sender should not persist infinitely with 
retransmissions. After all, the link to the receiver may be broken, or the receiver may be dead. 
There is no absolutely certain way to guarantee reliable transmission. 

Failed transmissions manifest themselves in two ways: 

• Packet error: Receiver receives the packet and discovers error via error control 

• Packet loss: Receiver never receives the packet (or fails to recognize it as such) 

If the former, the receiver can request retransmission. If the latter, the sender must detect the loss 
by the lack of response from the receiver within a given amount of time. 

Common requirements for a reliable protocol are that: (1) it delivers at most one copy of a given 
packet to the receiver; and, (2) all packets are delivered in the same order they are presented to 
the sender. “Good” protocol: 

• Delivers a single copy of every packet to the receiver application 

• Delivers the packets in the order they were presented to the sender 

A lost or damaged packet should be retransmitted. A persistent sender is a protocol participant 
that tries to ensure that at least one copy of each packet is delivered, by sending repeatedly until it 
receives an acknowledgment. To make retransmission possible, a copy is kept in the transmit 
buffer (temporary local storage) until it is successfully received by the receiver and the sender 
received the acknowledgement. Buffering generally uses the fastest memory chips and circuits 
and, therefore, the most expensive memory, which means that the buffering space is scarce. Disk 
storage is cheap but not practical for packet buffering because it provides relatively slow data 
access. 

During network transit, different packets can take different routes to the destination, and thus 
arrive in a different order than sent. The receiver may temporarily store (buffer) the out-of-order 
packets until the missing packets arrive. Different ARQ protocols are designed by making 
different choices for the following issues: 

• Where to buffer: at sender only, or both sender and receiver? 

• What is the maximum allowed number of outstanding packets, waiting to be 
acknowledged? 
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• How is a packet loss detected: a timer expires, or the receiver explicitly sends a “negative 
acknowledgement” (NAK)? (Assuming that the receiver is able to detect a damaged 
packet.) 

The sender utilization of an ARQ connection is defined as the fraction of time that the sender is 
busy sending data. 

The throughput of an ARQ connection is defined as the average rate of successful message 
delivery. 

The goodput of an ARQ connection is defined as the rate at which data are sent uniquely, i.e., this 
rate does not include error-free data that reach the receiver as duplicates. In other words, the 
goodput is the fraction of time that the receiver is receiving data that it has not received before. 

The transmissions of packets between a sender and a receiver are usually illustrated on a timeline 
as in Figure 1-16. There are several types of delay associated with packet transmissions. To 
illustrate, here is an analogy: you are in your office, plan to go home, and on your way home you 
will stop at the bank to deposit your paycheck. From the moment you start, you will get down to 
the garage (“transmission delay”), drive to the bank (“propagation delay”), wait in the line 
(“queuing delay”), get served at teller’s window (“processing delay” or “service delay”), and 
drive to home (additional “propagation delay”). 

The first delay type is transmission delay, which is the time that takes the sender to place the 
data bits of a packet onto the transmission medium. In other words, transmission delay is 
measured from when the first bit of a packet enters a link until the last bit of that same packet 
enters the link. This delay depends on the transmission rate R offered by the medium (in bits per 
second or bps), which determines how many bits (or pulses) can be generated per unit of time at 
the transmitter. It also depends on the length L of the packet (in bits). Hence, the transmission 
delay is: 
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Figure 1-16: Timeline diagram for reliable data transmission with acknowledgements. 
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Propagation delay is defined as the time elapsed between when a bit is sent at the sender and 
when it is received at the receiver. This delay depends on the distance d between the sender and 
the receiver and the velocity v of electromagnetic waves in the transmission medium, which is 
proportional to the speed of light in vacuum (c ≈ 3×108 m/s), v = c/n, where n is the index of 
refraction of the medium. Both in copper wire and glass fiber or optical fiber n ≈ 3/2, so v ≈ 2 × 
108 m/s. The index of refraction for dry air is approximately equal to 1. The propagation delay is: 

)m/s(

)m(
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v

d
t p ==     (1.3) 

Processing delay is the time needed for processing a received packet. At the sender side, the 
packet may be received from an upper-layer protocol or from the application. At the receiver side, 
the packet is received from the network or from a lower-layer protocol. Examples of processing 
include conversion of a stream of bytes to frames or packets (known as framing or packetization), 
data compression, encryption, relaying at routers, etc. Processing delays usually can be ignored 
when looking from an end-host’s viewpoint. However, processing delay is very critical for 
routers in the network core that need to relay a huge number of packets per unit of time, as will be 
seen later in Section 1.4.4. 

Another important parameter is the round-trip time (or RTT), which is the time a bit of 
information takes from departing until arriving back at the sender if it is immediately bounced 
back at the receiver. This time on a single transmission link is often assumed to equal RTT = 

Layer 1
(sender)

Layer 1
(receiver)

Layer 2
(sender)

Layer 2
(receiver)

Figure 1-17: Fluid flow analogy for delays in packet delivery between the protocol layers. 
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2 × tp. Determining the RTT is much more complex if the sender and receiver are connected over 
a network where multiple alternative paths exist, as will be seen later in Section 2.1.2. However, 
even on a single link, the notion of RTT is much more complex than just double the propagation 
delay. To better understand RTT, we need to consider what it is used for and how it is measured. 
RTT is most often used by sender to set up its retransmission timer in case a packet is lost. 
Obviously, network nodes do not send individual bits; they send packets. RTT is measured by 
recording the time when a packet is sent, reading out the time when the acknowledgement is 
received, and subtracting these two values: 

RTT = (time when the acknowledgement is received) − (time when the packet is sent) (1.4) 

To understand what contributes to RTT, we need to look at how packets travel through the 
network. First, acknowledgements may be piggybacked on data packets coming back for the 
receiver. Therefore, even if the transmission delay is not included at the sender side, receiver’s 
transmission delay does contribute to the RTT. (However, when an acknowledgement is 
piggybacked on a regular data packet from receiver to sender, the transmission time of this packet 
must be taken into account.) 

Second, we have to remember that network nodes use layered protocols (Section 1.1.4). 
Continuing with the fluid flow analogy from Figure 1-5, we illustrate in Figure 1-17 how delays 
are introduced between the protocol layers. The physical-layer (layer 1) receiver waits until the 
bucket is full (i.e., the whole packet is received) before it delivers it to the upper layer (layer 2). 

The delay components for a single link and a three-layer protocol are illustrated in Figure 1-18. 
Sender’s transmission delay will not be included in the measured RTT only if the sender operates 
at the link/physical layer. A sender operating at any higher layer (e.g., network or transport 
layers), cannot avoid having the transmission delay included in the measured RTT, because it 
cannot know when the packet transmission on the physical medium will actually start or end. 

Third, lower layers of sender’s protocol stack may incur significant processing delays. Suppose 
that the sender is at the transport layer and it measures the RTT to receive the acknowledgement 
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from the receiver, which is also at the transport layer. When a lower layer receives a packet from 
a higher layer, the lower layer may not forward the packet immediately, because it may be busy 
with sending some other packets. Also, if the lower layer uses error control, it will incur 
processing delay while calculating the checksum or some other type of error-control code. Later 
we will learn about other types of processing delays, such as time spent looking up forwarding 
tables in routers (Section 1.4), time spent dividing a long message into fragments and later 
reassembling it (Section 1.4.1), time spent compressing data, time spent encrypting and 
decrypting message contents, etc. 

Fourth, lower layers may implement their own reliable transmission service, which is transparent 
to the higher layer. An example are broadcast links (Section 1.3.3), which keep retransmitting lost 
packets until a retry-limit is reached. The question, then, is: what counts as the transmission delay 
for a packet sent by a higher layer and transmitted by a lower layer, which included several 
retransmissions? Should we count only the successful transmission (the last one), or the preceding 
unsuccessful transmissions, as well? 

In summary, the reader should be aware that RTT estimation is a complex issue even for a 
scenario of a single communication link connecting the sender and receiver. Although RTT is 
often approximated as double the propagation delay, this may be grossly inaccurate and the 
reader should examine the feasibility of this approximation individually for each scenario. 

Mechanisms needed for reliable transmission by retransmission: 

• Error detection for received packets, e.g., by checksum 

• Receiver feedback to the sender, via acknowledgement or negative acknowledgement 

• Retransmission of a failed packet, which requires storing the packet at the sender until the 
sender obtains a positive acknowledgement that the packet reached the receiver error-free 

• Sequence numbers, so the receiver can distinguish duplicate packets 

• Retransmission timer, if packet loss on the channel is possible (not only error corruption), 
so that the sender can detect the loss 

Several popular ARQ protocols are described next. 

1.3.1 Stop-and-Wait 

Problems related to this section: Problem 1.2 → Problem 1.4; also see Problem 1.12 

The simplest retransmission strategy is stop-and-wait. This protocol buffers only a single packet 
at the sender and does not deal with the next packet before ensuring that the current packet is 
correctly received (Figure 1-16). A packet loss is detected by the expiration of a timer, which is 
set when the packet is transmitted. 

When the sender receives a corrupted ACK/NAK, it could send back to the receiver a NAK 
(negative acknowledgement). For pragmatic reasons (to keep the sender software simple), 
receiver does nothing and the sender just re-sends the packet when its retransmission timer 
expires. 
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Assuming error-free communication, the utilization of a Stop-and-wait sender is determined as 
follows. The entire cycle to transport a single packet takes a total of (tx + 2 × tp) time. (We assume 
that the acknowledgement packets are tiny, so their transmission time is negligible.) Of this time, 
the sender is busy tx time. Therefore 
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Given a probability of packet transmission error pe, which can be computed using Eq. (1.1), we 
can determine how many times, on average, a packet will be (re-)transmitted until successfully 
received and acknowledged. This is known as the expected number of transmissions. Our 
simplifying assumption is that error occurrences in successively transmitted packets are 
independent events3. A successful transmission in one round requires error-free transmission of 
two packets: forward data and feedback acknowledgement. We again assume that these are 
independent events, so the joint probability of success is 
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The probability of a failed transmission in one round is pfail = 1 − psucc. Then, the number of 
attempts K needed to transmit successfully a packet is a geometric random variable. The 
probability that the first k attempts will fail and the (k+1)st attempt will succeed equals: 
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where k = 1, 2, 3, … . The round in which a packet is successfully transmitted is a random 
variable N, with the probability distribution function given by (1.7). Its expected value is 
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Therefore we obtain (recall that pfail = 1 − psucc): 
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We can also determine the average delay per packet as follows. Successful transmission of one 
packet takes a total of tsucc = tx + 2×tp, assuming that transmission time for acknowledgement 
packets can be ignored. A single failed packet transmission takes a total of tfail = tx + tout, where tout 
is retransmission timer’s countdown time. If a packet is successfully transmitted after k failed 

                                                      
3 This is valid only if we assume that thermal noise alone affects packet errors. However, the independence 

assumption will not be valid for temporary interference in the environment, such as a microwave oven 
interference on a wireless channel. 
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attempts, then its total transmission time equals: succfail
total

1 ttkTk +⋅=+ , where k = 0, 1, 2, … (see 

Figure 1-19). The total transmission time for a packet is a random variable total
1+kT , with the 

probability distribution function given by (1.7). Its expected value is 
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Following a derivation similar as for Eq. (1.8), we obtain 
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The expected sender utilization in case of a noisy link is 
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Here, we are considering the expected fraction of time the sender will be busy of the total 
expected time to transmit a packet successfully. That is, (tx ⋅ E{N}) includes both unsuccessful 
and successful (the last one) transmissions. 
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1.3.2 Sliding-Window Protocols 

Problems related to this section: Problem 1.5 → Problem 1.12 

Stop-and-wait is very simple but also very inefficient, because the sender spends most of the time 
idle waiting for the acknowledgement. We would like the sender to send as much as possible, 
short of causing path congestion or running out of the memory space for buffering copies of the 
outstanding packets. One type of ARQ protocols that offer higher efficiency than Stop-and-wait is 
the sliding window protocol. 

The sender window size N is a measure of the maximum number of outstanding (i.e., 
unacknowledged) packets in the network. Figure 1-20 shows the operation of sliding window 
protocols in case of no errors in communication. The receiver window size W gives the upper 
bound on the number of out-of-order packets that the receiver is willing to accept. In the case 
shown in Figure 1-20, both sender and receiver have the same window size. In general case it is 
required that N ≤ W. 

The sliding window sender should store in local memory (buffer) all outstanding packets for 
which the acknowledgement has not yet been received. Therefore, the send buffer size should be 
N packets large. The sent-but-unacknowledged packets are called “in-flight” packets or “in-
transit” packets. The sender must ensure that the number of in-flight packets is always ≤ N. 

The sliding window protocol is actually a family of protocols that have some characteristics in 
common and others different. Next, we review two popular types of sliding window protocols: 
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Go-back-N (GBN) and Selective Repeat (SR). The TCP protocol described in Chapter 2 is 
another example of a sliding window protocol. The key difference between GBN and SR is in the 
way they deal with communication errors. 

Go-back-N 
The key idea of the Go-back-N protocol is to have the receiver as simple as possible. This means 
that the receiver accepts only the next expected packet and immediately discards any packets 
received out-of-order. Hence, the receiver needs only to memorize what is the next expected 
packet (single variable), and does not need any memory to buffer the out-of-order packets. 

As with other sliding-window protocols, the Go-back-N sender should be able to buffer up to N 
outstanding packets. 

The operation of Go-back-N is illustrated in Figure 1-21. The sender sends sender-window-size 
(N = 3) packets and stops, waiting for acknowledgements to arrive. When Ack-0 arrives, 
acknowledging the first packet (Pkt-0), the sender slides its window by one and sends the next 
available packet (Pkt-3). The sender stops again and waits for the next acknowledgement. 

Because Pkt-1 is lost, it will never be acknowledged and its retransmission timer will expire. 
When a timeout occurs, the Go-back-N sender resends all packets that have been previously sent 
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Figure 1-21: Go-back-N protocol in operation under communication errors. 
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but have not yet been acknowledged, that is, all “in-flight” packets. This is where this protocol’s 
name comes from. Because the sender will usually have N in-flight packets, a timeout will cause 
it to go back by N and resend the N outstanding packets. The rationale for this behavior is that if 
the oldest outstanding packet is lost, then all the subsequent packets are lost as well, because the 
Go-back-N receiver automatically discards out-of-order packets. 

As mentioned, the receiver memorizes a single variable, which is the sequence number of the 
next expected packet. The Go-back-N receiver considers a packet correctly received if and only if 

1. The received packet is error-free 

2. The received packet arrived in-order, i.e., its sequence number equals next-expected-
sequence-number. 

In this example, Pkt-1 is lost, so Pkt-2 arrives out of order. Because the Go-back-N receiver 
discards any packets received out of order, Pkt-2 is automatically discarded. One salient feature 
of Go-back-N is that the receiver sends cumulative acknowledgements, where an 
acknowledgement with sequence number m indicates that all packets with a sequence number up 
to and including m have been correctly received at the receiver. The receiver sends 
acknowledgement even for incorrectly received packets, but in this case, the previously correctly 
received packet is being acknowledged. In Figure 1-21, the receipt of Pkt-2 generates a duplicate 
acknowledgement Ack-0. Notice also that when Ack-2 is lost, the sender takes Ack-3 to 
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Figure 1-22: Selective Repeat protocol in operation under communication errors. 
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acknowledge all previous packets, including Pkt-2. Hence, a lost acknowledgement does not need 
to be retransmitted as long as the acknowledgement acknowledging the following packet arrives 
before the retransmission timer expires. 

Selective Repeat (SR) 

The key idea of the Selective Repeat protocol is to avoid discarding packets that are received 
error-free and, therefore, to avoid unnecessary retransmissions. Go-back-N suffers from 
performance problems, because a single packet error can cause Go-back-N sender to retransmit a 
large number of packets, many of them unnecessarily. Figure 1-22 illustrates the operation of the 
Selective Repeat protocol. Unlike a Go-back-N sender which retransmits all outstanding packets 
when a retransmission timer times out, a Selective Repeat sender retransmits only a single 
packet—the oldest outstanding one. 

Unlike a Go-back-N receiver, a Selective Repeat receiver sends individual acknowledgements, 
where an acknowledgement with sequence number m indicates only that the packet with sequence 
number m has been correctly received. There is no requirement that packets are received in order. 
If a packet is received out of order but error-free, it will be buffered in the receiver’s memory 
until the in-order missing packets are received. 

Figure 1-23 illustrates the difference between the behaviors of GBN cumulative 
acknowledgements and SR individual acknowledgements. Notice that both protocols require the 
sender to acknowledge duplicate packets, which were received and acknowledged earlier. The 
reason for this requirement is that a duplicate packet usually indicates that the acknowledgement 
has been lost. Without an acknowledgement, the sender window would never move forward and 
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the communication would come to a halt. (Notice also that a packet can be retransmitted when its 
acknowledgement is delayed, so the timeout occurs before the acknowledgement arrives. In this 
case, the sender window would simply move forward.) Again, SR acknowledges only the last 
received (duplicate) packet, whereas GBN cumulatively acknowledges all the packets received up 
to and including the last one. In Figure 1-23(a), Ack-1 was lost, but when Ack-2 arrives it 
acknowledges all packets up to and including Pkt-2. This acknowledgement shifts the sender’s 
window forward by 2 and the sender advances uninterrupted. Unlike this, in Figure 1-23(b) the 
SR sender needs to retransmit Pkt-1 because it never receives Ack-1 before its timeout expired. 

 

In practice, a combination of selective-ACK and Go-back-N is used, as will be seen with TCP in 
Chapter 2. 

 
 

SIDEBAR 1.1: The Many Faces of Acknowledgements 
 

  

♦ The attentive reader may have noticed that acknowledgements are used for multiple 
purposes. For example, earlier we saw that a received ACK informs the sender that: (a) the 
corresponding data packet arrived at the receiver; (b) the sender may stop the retransmission-
timer countdown for the corresponding data packet; (c) the sender may discard the copy of the 
acknowledged packet and release the memory buffer space; and, (d) the sender may send 
another data packet. Notice that an acknowledgment usually only confirms that the data packet 
arrived error-free to the receiver, but it does not say anything about whether the receiver acted 
upon the received data and completed the required processing. This requires additional 
acknowledgement at the application level. Later, in Chapter 2, we will learn about some 
additional uses of acknowledgements in the TCP protocol. 

 

1.3.3 Broadcast Links 

Broadcast links allow connecting multiple network nodes via the same link. Hence, when one 
node transmits, all or most other nodes on the link can hear the transmission. If two or more 
nodes are transmitting simultaneously, their signals will interfere with each other (see Figure 1-7 
for interference on a wireless link). A receiver that receives the interference signal will not be 
able to decode either of the original signals; this is known as a collision. Therefore, the nodes 
should take turns transmitting their packets. However, this is easier said than done: when a node 
has a packet ready for transmission, it does not know whether any other nodes are also about to 
transmit. A key technical problem for broadcast links is coordination of transmissions, to 
control collisions. 

There are several techniques for transmission coordination on broadcast links. Collisions could be 
prevented by designing strictly timed transmissions; avoided by listening before speaking; or, 
detected after they happen and remedied by retransmission of corrupted information. An example 
of preventing collisions by design is TDMA (Time Division Multiple Access). It creates unique 
time slots and assigns a different time slot to each node. A node is allowed to transmit only within 
its assigned time slot. After all nodes are given opportunity to transmit, the cycle is repeated. The 
problem with this technique is that if some nodes do not have data ready for transmission, their 
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slot goes unused. Any other nodes that may wish to transmit are delayed and have to wait for 
their predetermined slot even though the link is currently idle. 

A popular class of protocols for broadcast links is random-access protocols, which are based on 
the Stop-and-Wait ARQ, with addition of the backoff delay mechanism. Backoff mechanism is a 
key mechanism for coordination of multiple senders on a broadcast link. Stop-and-wait has no 
reason to backoff because it assumes that the sender is not contending for the link against other 
senders and any loss is due to a transmission error. Conversely, a random-access protocol 
assumes that any packet loss is due to a collision of concurrent senders and it tries to prevent 
further collisions by introducing a random amount of delay (backoff) before attempting a re-
transmission. It is a way to provide stations with “polite behavior.” This method is commonly 
used when multiple concurrent senders are competing for the same resource; another example 
will be seen for the TCP protocol (Section 2.1.2). The sender usually doubles the range of backoff 
delays for every failed transmission, which is why this method is also known as binary 
exponential backoff. Increasing the backoff range increases the number of choices for the 
random delay. This, in turn, makes it less likely that several stations will select the same delay 
value and, therefore, reduces the probability of repeated collisions. It is like first deciding how 
long to wait by tossing a coin (two choices: heads or tails); if both make the same choice and 
again experience a collision, then they try by rolling a dice (six choices), etc.  

The reason for addressing reliability at the link layer is as follows. A wireless link is significantly 
more unreliable than a wired one. Noise, interference, and other propagation effects result in the 
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loss of a significant number of frames. Even with error-correction codes, a number of MAC 
frames may not successfully be received. This situation can be dealt with by reliability 
mechanisms at a higher layer, such as transport-layer protocol. However, timers used for 
retransmission at higher layers (which control paths comprising many links) are typically on the 
order of seconds (see TCP timers in Section 2.1.2). It is therefore more efficient to deal with 
errors at the link level and retransmit the corrupted packets. 

The time (in packet transmission units) required for all network nodes to detect a start of a new 
transmission or an idle channel after a transmission ends is an important parameter. Intuitively, 
the parameter β is the number of bits that a transmitting station can place on the medium before 
the station furthest away receives the first bit of the first packet. 

Recall that signal propagation time is tp = distance/velocity, as given earlier by Eq. (1.3). The 
transmission delay is tx = packet-length/bandwidth, as given by Eq. (1.2). The parameter β is 
calculated as 

Lv

Rd

t

t

x

p

⋅
⋅==β     (1.11) 

The velocity of electromagnetic waves in dry air equals v ≈ 3 × 108 m/s, and in copper or optical 
fiber it equals v ≈ 2 × 108 m/s. Therefore, propagation time is between 3.33 and 5 nanoseconds 
per meter (ns/m). Given a wireless local area network (W-LAN) where all stations are located 
within a 100 m diameter, the (maximum) propagation delay is tp ≈ 333 ns. If the bandwidth (or, 
data rate) of the same W-LAN is 1 Mbps, the transmission delay for a 1 Kbytes packet equals tx = 
8.192 ms. The relationship is illustrated in Figure 1-24(a). Recall from Figure 1-6 that on a 1 
Mbps link, 1 bit is 1 μs wide, so the leading edge of the first bit will reach the receiver long 
before the sender is done with the transmission of this bit. In other words, the propagation delay 
is practically negligible. On the other hand, the altitude of a geosynchronous satellite is 35,786 
km above the Earth surface, so the propagation delay is tp ≈ 119.3 ms. As shown in Figure 1-24, 
the respective β parameters for these networks are βLAN ≈ 0.00004 and βGSS ≈ 14.6. The time 
taken by the electronics for detection should also be added to the propagation time when 
computing β, but it is usually ignored as negligible. We will see later how parameter β plays an 
important role in network design. 

The ALOHA Protocol 

Problems related to this section: Problem 1.13 → Problem 1.15 

A simple protocol for broadcast media is called ALOHA. There are two versions of ALOHA: 
pure or plain ALOHA transmits packets as soon as they become ready, and slotted ALOHA which 
transmits packets only at regular intervals. The state diagram for the sender side of both variations 
of the protocol is shown in Figure 1-25. Plain ALOHA sends the packet immediately as it 
becomes ready, while slotted ALOHA has to wait for the start of the next time interval (or, slot). 
In other words, in slotted ALOHA, all transmissions are strictly clocked at regular time intervals. 
After transmission, the sender stops-and-waits for the acknowledgement. If the acknowledgement 
arrives, this is the end of the current cycle, and the sender expects the next packet to become 
available for sending. If the acknowledgement does not arrive, the sender assumes that this is 
because collision happened and it increases its backoff interval. The backoff interval is the 
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amount of time the sender waits to reduce the probability of collision with another sender that 
also has a packet ready for transmission. After waiting for backoff countdown, the sender repeats 
the cycle and retransmits the packet. As we know from the earlier discussion, the sender does not 
persist forever in resending the packet, and if it exceeds a given threshold, the sender gives up 
and aborts the retransmissions of this packet. 

ALOHA is a very simple protocol, almost identical to Stop-and-Wait ARQ, except for the 
backoff interval. ALOHA also does not initiate transmission of the next packet before ensuring 
that the current packet is correctly received. Let us first consider a pure ALOHA protocol. To 
derive its throughput, we make the following assumptions: 

• There are a total of m wireless nodes and each node generates new packets for 
transmission according to a Poisson process (see Appendix) with rate λ/m. 

• Each node can hold only a single packet at a time, and the packet is stored until the node 
receives a positive acknowledgement that the packet is successfully transmitted. While 
storing the packet, the node is said to be backlogged. 

• When a new packet is generated, what happens to it depends on whether or not the node 
is already backlogged. If the node it is backlogged, the newly generated packet is 
discarded; if the node is not backlogged, the newly generated packet is immediately 
transmitted (in pure ALOHA) and stored until acknowledgement is received. 

• A backlogged node can retransmit at any moment with a certain probability. 

• All packets have the same length. The time needed for packet transmission (transmission 
delay) is called slot length, and it is normalized to equal 1. 

• If only a single node transmits, the transmission is always successful (noiseless channel); 
if two or more nodes transmit simultaneously, there will be a collision and all collided 

START 
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Figure 1-25: The sender’s state diagram for ALOHA and Slotted ALOHA protocols. 
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packets will be lost; all nodes receive instantaneous feedback about the success or failure 
of the transmission. In other words, the acknowledgement is received immediately upon 
packet transmission, without any propagation delays. 

This system can be modeled as in Figure 1-26. For a reasonable throughput, we would expect 
0 < λ < 1 because the system can successfully carry at most one packet per slot, i.e., only one 
node can “talk” (or, transmit) at a time. Also, for the system to function, the departure rate of 
packets out from the system should equal the arrival rate in equilibrium. In equilibrium, on one 
hand, the departure rate cannot physically be greater than the arrival rate; on the other hand, if it 
is smaller than the arrival rate, all the nodes will eventually become backlogged. 

The following simplified derivation yields a reasonable approximation. In addition to the new 
packets, the backlogged nodes generate retransmissions of the packets that previously suffered 
collisions. If the retransmissions are sufficiently randomized, it is plausible to approximate the 
total number of transmission attempts per slot, retransmissions and new transmissions combined, 
as a Poisson random variable with some parameter G > λ. 

The probability of successful transmission (i.e., throughput S) is the probability of an arrival 
times the probability that the packet does not suffer collision; because these are independent 
events, the joint probability is the product of their probabilities. The probability of an arrival is 
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Figure 1-26: (a) ALOHA system representation. (b) Modeled as a feedback system. 
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Pa = τ ⋅ G, where τ = 1 is the slot duration and G is the total arrival rate on the channel  
(new and backlogged packets, combined). 

The packet will not suffer collision if no other senders have transmitted their packets during the 
so-called “vulnerable period” or “window of vulnerability.” We define receiver’s vulnerable 
period as the time during which other transmissions may cause collision with sender’s 
transmission. For pure ALOHA, the vulnerable period is two slots long [t − 1, t + 1), as illustrated 
in Figure 1-27. Any transmission that started within one packet-time before this transmission or 
during this transmission will overlap with this transmission and result in a collision. For slotted 
ALOHA, the vulnerable period lasts one slot [t, t + 1), assuming that all stations are synchronized 
and can start transmission only at slot intervals. From the Poisson distribution formula (see 
Appendix A), P0 = P{A(t + τ) − A(t) = 0}. With τ = 1 for slotted ALOHA, we have 

( ) { } G
a eGtAtAPGPPS −⋅==−+⋅⋅=⋅= 0)()1(10       (1.12) 

For pure ALOHA, τ = 2, so S = G⋅e−2G. In equilibrium, the arrival rate (system input), λ, to the 
system should be the same as the departure rate (system output), S = G⋅e−G. The reader should 
recall Figure 1-26(a), and this relationship is illustrated in Figure 1-28. 

We see that for slotted ALOHA, the maximum possible throughput of 1/e ≈ 0.368 occurs at G = 
1. This is reasonable, because if G < 1, too many idle slots are generated, and if G > 1, too many 
collisions are generated. At G = 1, the packet departure rate is one packet per packet time (or, per 
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Figure 1-28: Efficiency of the ALOHA MAC protocol. (In the case of Slotted ALOHA, the
packet time is equal to the slot time.) 
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slot), the fraction 1/e of which are newly arrived packets and 
e

1
1−  are the successfully 

retransmitted backlogged packets. 

Carrier Sense Multiple Access Protocols (CSMA) 

Problems related to this section: Problem 1.17 → ? 

The key problem with the ALOHA protocol is that it employs a very simple strategy for 
coordinating the transmissions: a node transmits a new packet as soon as it is created, and in case 
of collision, it retransmits with a retransmission probability. 

An improved coordination strategy is to have the nodes “listen before they talk.” That is, the 
sender listens to the channel before transmitting and transmits only if the channel is detected as 
idle. Listening to the channel is known as carrier sense, which is why this strategy has the name 
carrier sense multiple access (CSMA). 

The medium is decided idle if there are no transmissions for time duration the parameter β time 
units, because this is the propagation delay between the most distant stations in the network. The 
time taken by the electronics for detection should also be added to the propagation time when 
computing channel-sensing time, but it is usually ignored as negligible. 

The key issues with a listen-before-talk approach are: 

(1) When to listen and, in case the channel is found busy, whether to keep listening until it 
becomes idle or stop listening and try later 

(2) Whether to transmit immediately upon finding the channel idle or slightly delay the 
transmission 

Upon finding the channel busy, the node might listen persistently until the end of the ongoing 
transmission. Another option is to listen periodically. Once the channel becomes idle, the node 
might transmit immediately, but there is a danger that some other nodes also waited ready for 
transmission, which would lead to a collision. Another option is, once the channel becomes idle, 
to hold the transmission briefly for a random amount of time, and only if the channel remains 
idle, start transmitting the packet. This reduces the chance of a collision significantly, although it 
does not remove it, because both nodes might hold their transmissions for the same amount of 

Table 1-1: Characteristics of three basic CSMA protocols when the channel is sensed idle or 
busy. If a transmission was unsuccessful, all three protocols perform backoff and repeat. 

CSMA Protocol Sender’s listening-and-transmission rules 

Nonpersistent If medium is idle, transmit. 
If medium is busy, wait random amount of time and sense channel again. 

1-persistent If medium is idle, transmit (i.e., transmit with probability 1). 
If medium is busy, continue sensing until channel is idle; 
     then transmit immediately (i.e., transmit with probability 1). 

p-persistent If medium is idle, transmit with probability p. 
If medium is busy, continue sensing until channel is idle; 
     then transmit with probability p. 
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time. Several CSMA protocols that make different choices regarding the listening and 
transmission start are shown in Table 1-1. For each of the protocols in Table 1-1, when the sender 
discovers that a transmission was unsuccessful (by a retransmission timer timeout), the sender 
behaves the same way: it inserts a randomly distributed retransmission delay (backoff) and 
repeats the listening-and-transmission procedure. 

The efficiency of CSMA is better than that of ALOHA because of CSMA’s shorter vulnerable 
period: The stations will not initiate transmission if they sense a transmission already in progress. 
Notice that nonpersistent CSMA is less greedy than 1-persistent CSMA in the sense that, upon 
observing a busy channel, it does not continually sense it with intention of seizing it immediately 
upon detecting the end of the previous transmission (Table 1-1). Instead, nonpersistent CSMA 
waits for a random period and then repeats the procedure. Consequently, this protocol leads to 
better channel utilization but longer delays than 1-persistent CSMA. 

Wireless broadcast networks show some phenomena not present in wireline broadcast networks. 
The air medium is partitioned into broadcast regions, rather than being a single broadcast 
medium. This is simply due to the exponential propagation loss of the radio signal, as discussed 
earlier in Section 1.1.2. As a result, two interesting phenomena arise: (i) not all stations within a 
partition can necessarily hear each other; and, (ii) the broadcast regions can overlap. The former 
causes the hidden station problem and the latter causes the exposed station problem. 

Unlike the wireline broadcast medium, the transitivity of connectivity does not apply. In wireline 
broadcast networks, such as Ethernet, if station A can hear station B and station B can hear station 
C, then station A can hear station C. This is not always the case in wireless broadcast networks, as 
seen in Figure 1-29(a). In the hidden station problem, station C cannot hear station A’s 
transmissions and may mistakenly conclude that the medium is available. If C does start 
transmitting, it will interfere at B, wiping out the frame from A. Generally, a station X is 
considered to be hidden from another station Y in the same receiver’s area of coverage if the 
transmission coverages of the transceivers at X and Y do not overlap. A station that can sense the 
transmission from both the source and receiver nodes is called covered station. 

Different air partitions can support multiple simultaneous transmissions, which are successful as 
long as each receiver can hear at most one transmitter at a time. In the exposed station problem, 
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Figure 1-29: (a) Hidden station problem: C cannot hear A’s transmissions. (b) Exposed
station problem: C defers transmission to D because it hears B’s transmission. 
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station C defers transmission to D because it hears B’s transmission, as illustrated in Figure 
1-29(b). If C senses the medium, it will hear an ongoing transmission and falsely conclude that it 
may not send to D, when in fact such a transmission would cause bad reception only in the zone 
between B and C, where neither of the intended receivers is located. Thus, the carrier sense 
mechanism is insufficient to detect all transmissions on the wireless medium. 

Hidden and exposed station problems arise only for CSMA-type protocols. ALOHA, for instance, 
does not suffer from such problems because it does not perform channel sensing before 
transmission (i.e., it does not listen before talking). Under the hidden stations scenario, the 
performance of CSMA degenerates to that of ALOHA, because carrier-sensing mechanism 
essentially becomes useless. With exposed stations it becomes worse because carrier sensing 
prevents the exposed stations from transmission, where ALOHA would not mind the busy 
channel. 

CSMA/CD 

Problems related to this section: ? → ? 

Persistent and nonpersistent CSMA protocols are clearly an improvement over ALOHA because 
they ensure that no station begins to transmit when it senses the channel busy. Another 
improvement is for stations to abort their transmissions as soon as they detect a collision4. 
Quickly terminating damaged packets saves time and bandwidth. This protocol is known as 
CSMA with Collision Detection, or CSMA/CD, which is a variant of 1-persistent CSMA. It works 
as follows (Figure 1-30): 

                                                      
4 In networks with wired media, the station compares the signal that it places on the wire with the one 

observed on the wire to detect collision. If these signals are not the same, a collision has occurred. 
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1. Wait until the channel is idle. 

2. When the channel is idle, transmit immediately and sense the carrier during the 
transmission (or, “listen while talking”). 

3. If you detect collision, abort the ongoing packet transmission, double the backoff range, 
choose a random amount of backoff delay, wait for this amount of delay, and go to step 1. 

A given station can experience a collision during the initial part of its transmission (the collision 
window) before its transmitted signal has had time to propagate to all stations on the CSMA/CD 
medium. Once the collision window has passed, a transmitting station is said to have acquired the 
medium; subsequent collisions are avoided because all other stations can be assumed to have 
noticed the signal and to be deferring to it. The time to acquire the medium is thus based on the 
round-trip propagation time. If the station transmits the complete frame successfully and has 
additional data to transmit, it will again listen to the channel before attempting a transmission 
(Figure 1-30). 

The collision detection process is illustrated in Figure 1-31. At time t0 both stations are listening 
ready to transmit. The CSMA/CD protocol requires that the transmitter detect the collision before 
it has stopped transmitting its frame. Therefore, the transmission time of the smallest frame must 
be larger than one round-trip propagation time, i.e., 2β, where β is the propagation constant 
described in Figure 1-24. The station that detects collision must transmit a jam signal, which 
carries a special binary pattern to inform the other stations that a collision occurred. The jam 
pattern consists of 32 to 48 bits. The transmission of the jam pattern ensures that the collision 
lasts long enough to be detected by all stations on the network. 

Figure 1-30: The sender’s state diagram for CSMA/CD protocol. 
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It is important to realize that collision detection is an analog process. The station’s hardware must 
listen to the cable while it is transmitting. If what it reads back is different from what it is putting 
out, it knows that a collision is occurring. 

After k collisions, a random number of slot times is chosen from the backoff range [0, 2k − 1]. 
After the first collision, each sender might wait 0 or 1 slot times. After the second collision, the 
senders might wait 0, 1, 2, or 3 slot times, and so forth. As the number of retransmission attempts 
increases, the number of possibilities for the choice of delay increases. The backoff range is 
usually truncated, which means that after a certain number of increases, the retransmission 
timeout reaches a ceiling and the exponential growth stops. For example, if the ceiling is set at 
k=10, then the maximum delay is 1023 slot times. In addition, as shown in Figure 1-30, the 
number of attempted retransmissions is limited, so that after the maximum allowed number of 
retransmissions the sender gives up and aborts the retransmission of this frame. The sender resets 
its backoff parameters and retransmission counters at the end of a successful transmission or if 
the transmission is aborted. 

Notice that CSMA/CD achieves reliable transmission without acknowledgements. If the sender 
does not detect collision, this means that the sender has not detected any errors during the 
transmission. Therefore, it simply assumes that the receiver received the same signal (i.e., the 
frame was received error free), and there is no need for an acknowledgement. 

Here is an example: 

Example 1.1 Illustration of a Timing Diagram for CSMA/CD 

Consider a local area network of three stations using the CSMA/CD protocol shown in Figure 1-30. At 
the end of a previous transmission, station-1 and station-3 each have one frame to transmit, while 
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Figure 1-31: Collision detection by CSMA/CD stations. 
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station-2 has two frames. Assume that all frames are of the same length. After the first collision 
assume that the randomly selected backoff values are: STA1 = 1; STA2 = 0; STA3=0. Next, after the 
second collision, the backoff values are: STA1 = 1; STA2 = 0; STA3=2. Then, after the third collision, 
the backoff values are: STA1 = 3; STA2 = 1; STA3=3. Finally, after the fourth collision the backoff 
values are: STA1 = 6; (STA2 is done by now); STA3=2. Show the timing diagram and indicate the 
contention window (CW) sizes. 

The solution is shown in Figure 1-32. Initially, all three stations attempt transmission and there is a 
collision; they all detect the collision, abort their transmissions in progress, and send the jam signal. 
After this, all three stations set their contention window (CW) size to 2 and randomly choose their 
delay periods from the set {0, …, CW} = {0, 1}. As given in the problem statement, station-1 chooses 
its backoff delay as 1, while stations 2 and 3 booth choose their backoff delay as 0. This leads to the 
second collision. After the second backoff delay, station-2 succeeds in transmitting its first frame and 
resets its backoff parameters (including the contention window CW) to their default values. The other 
two stations keep the larger ranges of the contention window because they have not successfully 
transmitted their frames yet. This gives station-2 an advantage after the third collision. Because it 
chooses the backoff delay from a shorter range of values (CW=2), it is more likely to select a small 
value and, therefore, again succeed in transmitting another frame. 

 

To derive the performance of the CSMA/CD protocol, we will assume a network of m stations 
with heavy and constant load, where all stations are always ready to transmit. We make a 
simplifying assumption that there is a constant retransmission probability in each slot. If each 
station transmits during a contention slot with probability p, the probability A that some station 
will acquire the channel in that slot is 

( ) 11 −−⋅⋅= mppmA  

A is maximized when p = 1/m, with A → 1/e as m → ∞. Next, we calculate the average number of 
contention slots that a station wastes before it succeeds in transmitting a packet. The probability 
that the station will suffer collision (j − 1) times as succeed on the jth attempt (i.e., that the 
contention interval has exactly j slots in it) is A⋅(1 − A) j −1. Therefore, the average number of slots 
per contention is given as the expected value 
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Figure 1-32: Example of three CSMA/CD stations transmission with collision and backoff. 
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Because each slot is 2⋅β long, the mean contention interval, w, is 2⋅β /A. Assuming optimal p, the 
average number of contention slots is never more than e, so w is at most 2⋅β⋅e ≈ 5.4×β. If an 
average frame takes tx = L/R seconds to transmit, then the channel efficiency is 

LReARL

RL

/21

1

/2/

/
CSMA/CD ⋅⋅⋅+

=
⋅+

=
ββ

η   (1.13) 

where A is substituted with the optimal value 1/e. 

We will see in Section 1.5.2 how IEEE 802.3 LAN, known as Ethernet, uses CSMA/CD. 

CSMA/CA 

Problems related to this section: Problem 1.20 → Problem 1.23 

In wireless LANs, it is not practical to do collision detection because of two main reasons: 

1. Implementing a collision detection mechanism would require the implementation of a full 
duplex radio, capable of transmitting and receiving at once. Unlike wired LANs, where a 
transmitter can simultaneously monitor the medium for a collision, in wireless LANs the 
transmitter’s power overwhelms a collocated receiver. The dynamic range of the signals 
on the medium is very large. This is mainly result of the propagation loss, where the 
signal drops exponentially from its source (recall Figure 1-7!). Thus, a transmitting 
station cannot effectively distinguish incoming weak signals from noise and the effects of 
its own transmission. 

2. In a wireless environment, we cannot assume that all stations hear each other, which is 
the basic assumption of the collision detection scheme. Again, due to the propagation loss 
we have the following problem. The fact that the transmitting station senses the medium 
free does not necessarily mean that the medium is free around the receiver area. (This is 
the known as the hidden station problem, as described in Figure 1-29.) 

As a result, when a station transmits a frame, it has no idea whether the frame collided with 
another frame until it receives an acknowledgement from the receiver (or times out due to the 
lack of an acknowledgement). In this situation, collisions have a greater effect on performance 
than with CSMA/CD, where colliding frames can be quickly detected and aborted while the 
transmission is in progress. Thus, it makes sense to try to avoid collisions, if possible, and a 
popular scheme for this is CSMA/Collision Avoidance, or CSMA/CA. CSMA/CA is essentially 
p-persistence, with the twist that when the medium becomes idle, a station must wait for a time 
period to learn about the fate of the previous transmission before contending for the medium. 
Figure 1-33 shows sender’s state diagram. After a frame was transmitted, the maximum time until 
a station detects a collision is twice the propagation time of a signal between the stations that are 
farthest apart plus the detection time. Thus, the station needs at least 2×β to ensure that the station 
is always capable of determining if another station has accessed the medium at the start of the 
previous slot. The interval between frames (or, packets) needed for the carrier-sense mechanism 
to determine that the medium is idle and available for transmission is called a backoff slot. 
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When a station wants to transmit data, it first senses the medium whether it is busy. If the medium 
is busy, the station enters the access deferral state. The station continuously senses the medium, 
waiting for it to become idle. When the medium becomes idle, the station first sets a contention 
timer to a time interval randomly selected in the range [0, CW−1], where CW is a predefined 
contention window length. Notice that unlike CSMA/CD (Figure 1-30), CSMA/CA station 
performs carrier sensing after every slot counted down, i.e., it is listening during the contention 
window (Figure 1-33). In other words, during the backoff procedure, if the station senses the 
channel as idle for the duration of a backoff slot, the station decrements the counter by one. If the 
channel is sensed as busy, the station freezes the countdown and waits for the channel to become 
idle. The station can transmit the frame after it counts down to zero. 

After transmitting a frame, the station waits for the receiver to send an ACK. If no ACK is 
received, the frame is assumed lost to collision, and the source tries again, choosing a contention 
timer at random from an interval twice as long as the one before (binary exponential backoff). 
The decrementing counter of the timer guarantees that the station will transmit, unlike a 
p-persistent approach where for every slot the decision of whether or not to transmit is based on a 
fixed probability p or qr. Thus regardless of the timer value a station starts at, it always counts 
down to zero. If the station senses that another station has begun transmission while it was 
waiting for the expiration of the contention timer, it does not reset its timer, but merely freezes it, 

Figure 1-33: The sender’s state diagram for CSMA/CA protocol. 
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and restarts the countdown when the frame completes transmission. In this way, stations that 
happen to choose a longer timer value get higher priority in the next round of contention. 

As it can be seen, CSMA/CA deliberately introduces delay in transmission in order to avoid 
collision. Avoiding collisions increases the protocol efficiency in terms of the percentage of 
frames that get successfully transmitted (useful throughput). Notice that efficiency measures only 
the ratio of the successful transmission to the total number of transmissions. However, it does not 
specify the delays that result from the deferrals introduced to avoid the collisions. Error! 
Reference source not found. shows the qualitative relationship for the average packet delays, 
depending on the packet arrival rate. 

We will see in Section 1.5.3 how IEEE 802.11 wireless LAN, known as Wi-Fi, uses CSMA/CA. 

 

1.4 Routing and Addressing 
 

In general networks, arbitrary source-destination node pairs communicate via intermediary 
network nodes. These intermediary nodes are called switches or routers and their main purpose is 
to bring packets to their destinations. A good routing protocol will also do it in an efficient way, 
meaning via the shortest path or the path that is in some sense optimal. The data-carrying capacity 
of the resulting source-to-destination path directly depends on the efficiency of the routing 
protocol employed. 

Bridges, Switches, and Routers 

A packet switch is a network device with several incoming and outgoing links that forwards 
packets from incoming to outgoing links. Each attachment to a network is known as a network 
interface or network port. When a packet is received by a switch, the appropriate outgoing port 
is decided based on the packet’s guidance information (contained in the packet header). 

Two general approaches are used to interconnect multiple networks: bridges or routers. Bridges 
are simple networking devices that are used for interconnecting local area networks (LANs) that 
use identical protocols for the physical and link layers of their protocol stack. The terms “bridge” 
and “switch” are often used synonymously. Because bridged networks use the same protocols, the 
amount of processing required at the bridge is minimal. There are also more sophisticated 
bridges, which are capable of mapping from one link-layer format to another. More information 
on bridges and switches is available in Section 1.5.2. 

Routers are general-purpose packet switches that can interconnect arbitrary networks. A router 
has two important functions: (1) routing, which is the process of finding and maintaining optimal 
paths between source and destination nodes; and, (2) forwarding (or switching), which is the 
process of relaying incoming data packets along the routing path. A router is a switch that builds 
its forwarding table by routing algorithms. Routing often searches for the shortest path, which in 
abstract graphs is a graph distance between the nodes. Shortest path can be determined in 
different ways, such as: 
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• Knowing the graph topology, calculate the shortest path 

• Send “boomerang” probes on round trips to the destination along the different outgoing 
paths. Whichever returns back the first is the one that carries the information about the 
shortest path 

Figure 1-34 illustrates an analogy between a crossroads and a router. Similar to a road sign, the 
router maintains a forwarding table that directs the incoming packets to the appropriate exit 
interfaces, depending on their final destination. Of course, as the road signs on different road 
intersections list different information depending on intersection’s location relative to the 
roadmap, so the routing tables in different routers list different information depending on router’s 
location relative to the rest of the network. 

A router is a network device that interconnects two or more computer 
networks, where each network may be using a different link-layer protocol. 
The two major problems of delivering packets in networks from an 
arbitrary source to an arbitrary location are: 

• How to build the forwarding tables in all network nodes 

• How to do forwarding (efficiently) 

Usually, a requirement is that the path that a packet takes from a source to a destination should be 
in some sense optimal. There are different optimality metrics, such as quickest, cheapest, or most 
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secure delivery. Later, in Sections 1.4.2 and 1.4.3, we will learn about some algorithms for 
finding optimal paths, known as routing algorithms. 

Pseudo code of a routing protocol module is given in Listing 1-2. 

 

Listing 1-2: Pseudo code of a routing protocol module. 

 
 1 public class RoutingProtocol extends Thread { 
 2     // specifies how frequently this node advertises its routing info 
 3     public static final int ADVERTISING_PERIOD = 100; 
 
 4     // link layer protocol that provides services to this protocol 
 5     private ProtocolLinkLayer linkLayerProtocol; 
 
 6     // associative table of neighboring nodes 
 6a    //    (associates their addresses with this node's interface cards) 
 7     private HashMap neighbors; 
 
 8     // information received from other nodes 
 9     private HashMap othersRoutingInfo; 
 
10     // this node's routing table 
11     private HashMap myRoutingTable; 
 
12     // constructor 
13     public RoutingProtocol( 
13a        ProtocolLinkLayer linkLayerProtocol 
13b    ) { 
14         this.linkLayerProtocol = linkLayerProtocol; 
 
15         populate myRoutingTable with costs to my neighbors; 
16     } 
 
17     // thread method; runs in a continuous loop and sends routing-info advertisements 
17a    //     to all the neighbors of this node 
18     public void run() { 
19         while (true) { 
20             try { Thread.sleep(ADVERTISING_PERIOD); } 
21             catch (InterruptedException e) { 
22                 for (all neighbors) { 
23                     Boolean status = linkLayerProtocol.send(); 
24                     // If the link was down, update own routing & forwarding tables 
24a                    //     and send report to the neighbors 
25                     if (!status) { 
26                     } 
27                 } 
28             } 
29         } 
30     } 
 
31     // upcall method (called from the layer below this one, in a bottom-layer thread!) 
31a    //     the received packet contains an advertisement/report from a neighboring node 
32     public void handle(byte[] data) throws Exception { 
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33         // reconstruct the packet as in Listing 1-1 (Section 1.1.4) for a generic handle() 
33a        //     but there is no handover to an upper-layer protocol; 
34         // update my routing table based on the received report 
35         synchronized (routingTable) { // critical region 
36         } // end of the critical region 
 
37         // update the forwarding table of the peer forwarding protocol 
37a        //     (note that this protocol is running in a different thread!) 
38         call the method setReceiver() in Listing 1-1 
39     } 
40 } 

 

The code description is as follows: … to be described … 

As will be seen later, routing is not an easy task. Optimal routing requires a detailed and timely 
view of the network topology and link statuses. However, obtaining such information requires a 
great deal of periodic messaging between all nodes to notify each other about the network state in 
their local neighborhoods. This is viewed as overhead because it carries control information and 
reduces the resources available for carrying user information. The network engineer strives to 
reduce overhead. In addition, the finite speed of propagating the messages and processing delays 
in the nodes imply that the nodes always deal with an outdated view of the network state. 
Therefore, in real-world networks routing protocols always deal with a partial and outdated view 
of the network state. The lack of perfect knowledge of the network state can lead to a poor 
behavior of the protocol and/or degraded performance of the applications. 

Path MTU is the smallest maximum transmission unit of any link on the current path (also known 
as route) between two hosts. The concept of MTU is defined in Section 1.1.3. 

This section deals mainly with the control functions of routers that include building the routing 
tables. Later, in Section 4.1 we will consider how routers forward packets from incoming to 
outgoing links. This process consists of several steps and each step takes time, which introduces 
delays in packet delivery. Also, due to the limited size of the router memory, some incoming 
packets may need to be discarded for the lack of memory space. Section 4.1 describes methods to 
reduce forwarding delays and packet loss due to memory shortage. 

1.4.1 Networks, Internets, and the IP Protocol 

A network is a set of computers directly connected to each other, i.e., with no intermediaries. A 
network of networks is called internetwork. 
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Consider an example internetwork in Figure 1-35(a), which consists of five physical networks 
interconnected by two routers. The underlying network that a device uses to connect to other 
devices could be a LAN connection like Ethernet or Token Ring, a wireless LAN link such as 
802.11 (known as Wi-Fi) or Bluetooth, or a dialup, DSL, or a T-1 connection. Each physical 
network will generally use its own frame format, and each format has a limit on how much data 
can be sent in a single frame (link MTU, Section 1.1.3). 

Two types of network nodes are distinguished: hosts vs. routers. Each host usually has a single 
network attachment point, known as network interface, and therefore it cannot relay packets for 
other nodes. Even if a host has two or more network interfaces, such as node B in Figure 1-35(a), 
it is not intended to be used for transit traffic. Hosts usually do not participate in the routing 
algorithm. Unlike hosts, routers have the primary function of relaying transit traffic from other 
nodes. Each router has a minimum of two, but usually many more, network interfaces. In Figure 
1-35(a), both routers R1 and R2 have three network attachment points (interfaces) each. Each 
interface on every host and router must have a network address that is globally unique.5 A node 
with two or more network interfaces is said to be multihomed6 (or, multiconnected). Notice that 
multihomed hosts do not participate in routing or forwarding of transit traffic. Multihomed hosts 
act as any other end host, except they may use different interfaces for different destinations, 
depending on the destination distance. 

The whole idea behind a network layer protocol is to implement the concept of a “virtual 
network” where devices talk even though they are far away, connected using different physical 
network technologies. This means that the layers above the network layer do not need to worry 
about details, such as differences in packet formats or size limits of underlying link-layer 

                                                      
5 This is not necessarily true for interfaces that are behind NATs, as discussed later. 
6 Most notebook computers nowadays come with two or more network interfaces, such as Ethernet, Wi-Fi, 

Bluetooth, etc. However, the host becomes “multihomed” only if two or more interfaces are assigned 
unique network addresses and they are simultaneously active on their respective physical networks. 
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technologies. The network layer manages these issues seamlessly and presents a uniform 
interface to the higher layers. The most commonly used network layer protocol is the Internet 
Protocol (IP). The most commonly deployed version of IP is version 4 (IPv4). The next 
generation, IP version 6 (IPv6),7 is designed to address the shortcomings of IPv4 and currently 
there is a great effort in transitioning the Internet to IPv6. IPv6 is reviewed 
in Section 8.1. 

IP Header Format 

Data transmitted over an internet using IP is carried in packets called IP 
datagrams. Figure 1-36 shows the format of IP version 4 datagrams. Its 
fields are as follows:  

Version number: This field indicates version number, to allow evolution of the protocol. The 
value of this field for IPv4 datagrams is 4. 

Header length: This field specifies the length of the IP header in 32-bit words. Regular header 
length is 20 bytes, so the default value of this field equals 5, which is also the minimum allowed 

                                                      
7 IP version 5 designates the Stream Protocol (SP), a connection-oriented network-layer protocol. IPv5 was 

an experimental real-time stream protocol that was never widely used. 
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value. In case the options field is used, the value can be up to 42 − 1 = 15, which means that the 
options field may contain up to (15 − 5) × 4 = 40 bytes. 

Type of service: This field is used to specify the treatment of the datagram in its transmission 
through component networks. It was designed to carry information about the desired quality of 
service features, such as prioritized delivery. It was never widely used as originally defined, and 
its meaning has been subsequently redefined for use by a technique called Differentiated Services 
(DS), which will be described later in Section 3.3.5. 

Datagram length: Total datagram length, including both the header and data, in bytes. 

Identification: This is a sequence number that, together with the source address, destination 
address, and user protocol, is intended to identify a datagram uniquely. 

Flags: There are three flag bits, of which only two are currently defined. The first bit is reserved 
and currently unused. The DF (Don’t Fragment) bit prohibits fragmentation when set. This bit 
may be useful if it is known that the destination does not have the capability to reassemble 
fragments. However, if this bit is set and the datagram exceeds the MTU size of the next link, the 
datagram will be discarded. The MF (More Fragments) bit is used to indicate the fragmentation 
parameters. When this bit is set, it indicates that this datagram is a fragment of an original 
datagram and this is not its last fragment. 

Fragment offset: This field indicates the starting location of this fragment within the original 
datagram, measured in 8-byte (64-bit) units. This implies that the length of data carried by all 
fragments before the last one must be a multiple of 8 bytes. The reason for specifying the offset 
value in units of 8-byte chunks is that only 13 bits are allocated for the offset field, which makes 
possible to refer to 8,192 locations. On the other hand, the datagram length field of 16 bits allows 
for datagrams up to 65,536 bytes long. Therefore, to be able to specify any offset value within an 
arbitrary-size datagram, the offset units are in 65,536 ÷ 8,192 = 8-byte units. 

Time to live: The TTL field specifies how long a datagram is allowed to remain in the Internet, 
to catch packets that are stuck in routing loops. This field was originally set in seconds, and every 
router that relayed the datagram decreased the TTL value by one. In current practice, a more 
appropriate name for this field is hop limit counter and its default value is usually set to 64. 

User protocol: This field identifies the higher-level protocol to which the IP protocol at the 
destination will deliver the payload. In other words, this field identifies the type of the next 
header contained in the payload of this datagram (i.e., after the IP header). Example values are 6 
for TCP, 17 for UDP, and 1 for ICMP. A complete list is maintained at 
http://www.iana.org/assignments/protocol-numbers. 

Header checksum: This is an error-detecting code applied to the header only. Because some 
header fields may change during transit (e.g., TTL, fragmentation fields), this field is reverified 
and recomputed at each router. The checksum is formed by taking the ones complement of the 
16-bit ones-complement addition of all 16-bit words in the header. Before the computation, the 
checksum field is itself initialized to a value of zero. 

Source IP address: This address identifies the end host that originated the datagram. Described 
later in Section 1.4.4. 

Destination IP address: This address identifies the end host that is to receive the datagram. 



Chapter 1 • Introduction to Computer Networking 57

Options: This field encodes the options requested by the sending user. 

To send messages using the IP protocol, we encapsulate the data from a higher-layer (“user”) 
protocol into IP datagrams. These datagrams must then be sent down to the link-layer protocol, 
where they are further encapsulated into the frames of whatever technology is going to be used to 
physically convey them, either directly to their destination, or indirectly to the next intermediate 
step in their journey to their intended recipient. (The encapsulation process is illustrated in Figure 
1-13.) The link-layer protocol puts the entire IP datagram into the data portion (the payload) of its 
frame format, just as IP puts end-to-end layer messages, end-to-end headers and all, into its IP 
Data field. 

Naming and Addressing 

Names and addresses play an important role in all computer systems as well as any other 
symbolic systems. They are labels assigned to entities such as physical objects or abstract 
concepts, so those entities can be referred to in a symbolic language. Because computation is 
specified in and communication uses symbolic language, the importance of names should be 
clear. It is important to emphasize the importance of naming the network nodes, because if a node 
is not named, it does not exist! We simply cannot target a message to an unknown entity8. The 
main issues about naming include: 

• Names must be unique so that different entities are not confused with each other 

• Names must be bound to and resolved with the entities they refer to, to determine the 
object of computation or communication 

It is common in computing and communications to differentiate between names and addresses of 
objects. Technically, both are addresses (of different kind), but we distinguish them for easier 
usage. Names are usually human-understandable, therefore variable length (potentially rather 

                                                      
8 Many communication networks allow broadcasting messages to all or many nodes in the network. Hence, 

in principle the sender could send messages to nodes that it does not know of. However, this is not an 
efficient way to communicate and it is generally reserved for special purposes. 
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Figure 1-37: Dotted decimal notation for IP version 4 addresses. 
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long) and may not follow a strict format. Addresses are intended for machine use, and for 
efficiency reasons have fixed lengths and follow strict formatting rules. For example, you could 
name your computers: “My office computer for development-related work” and “My office 
computer for business correspondence.” The addresses of those computers could be: 128.6.236.10 
and 128.6.237.188, respectively. Figure 1-37 illustrates the relationship between the binary 
representation of an IP address, its dotted-decimal notation, and the associated name. One could 
say that “names” are application-layer addresses and “addresses” are network-layer addresses. 
Notice that in dotted-decimal notation the maximum decimal number is 255, which is the 
maximum number that can be represented with an 8-bit field. The mapping between the names 
and addresses is performed by the Domain Name System (DNS), described in Section 8.4. 

Distinguishing names and addresses is useful for another reason: this separation allows keeping 
the same name for a computer that needs to be labeled differently when it moves to a different 
physical place (see Mobile IP in Section 8.3.4). For example, the name of your friend may remain 
the same in your email address book when he or she moves to a different company and changes 
their email address. Of course, the name/address separation implies that there should be a 
mechanism for name-to-address binding and address-to-name resolution. 

Two most important address types in contemporary networking are: 

• Link-layer address of a device, also known as medium access control (MAC) address, 
which is a physical address for a given network interface card (NIC), also known as 
network adaptor or line card. These addresses are standardized by the IEEE group in 
charge of a particular physical-layer communication standard, assigned to different 
vendors, and hardwired into the physical devices. 

• Network-layer address of a device, which is a logical address and can be changed by the 
end user. This address is commonly referred to as IP address, because IP is by far the 
most common network-layer protocol. Network-layer addresses are standardized by the 
Internet Engineering Task Force (http://www.ietf.org). 

Notice that a quite independent addressing scheme is used for telephone networks and it is 
governed by the International Telecommunications Union (http://www.itu.int). 

People designed postal addresses with a structure that facilitates human memorization and post-
service delivery of mail. So, a person’s address is structured hierarchically, with country name on 
top of the hierarchy, followed by the city name, postal code, and the street address. One may 
wonder whether there is anything to be gained from adopting a similar approach for network 
computer naming. After all, computers deal equally well with numbers and do not need 
mnemonic techniques to help with memorization and recall. It turns out that in very large 
networks, the address structure can assist with more efficient message routing to the destination. 
Section 1.4.4 describes how IPv4 addresses are structured to assist routing. 

Datagram Fragmentation and Reassembly 

Problems related to this section: Problem 1.24 

The Internet Protocol’s main responsibility is to deliver data between devices on different 
networks, i.e., across an internetwork. For this purpose, the IP layer encapsulates data received 
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from higher layers into IP datagrams for transmission. These datagrams are then passed down to 
the link layer where they are sent over physical network links. 

In Section 1.1.3, we saw that underlying network technology imposes the upper limit on the 
frame (packet) size, known as maximum transmission unit (MTU). As the datagram is forwarded 
along the source-destination path, each hop may use a different physical network, with a different 
maximum underlying frame size. If an IP datagram is larger than the MTU of the underlying 
network, it may be necessary to break up the datagram into several smaller datagrams. This 
process is called fragmentation. The fragment datagrams are then sent individually and 
reassembled at the destination into the original datagram. 

IP is designed to manage datagram size in a seamless manner. It matches the size of the IP 
datagram to the size of the underlying link-layer frame size, and performs fragmentation and 
reassembly so that the upper-layer protocols are not aware of this process. Here is an example: 

Example 1.2 Illustration of IP Datagram Fragmentation 

In the example scenario shown in Figure 1-38, an application on host A, say email client, needs to send 
a JPEG image to the receiver at host D. Assume that the sender uses the TCP protocol (described in 
Chapter 2), which in turn uses IP as its network-layer protocol. The first physical network is Ethernet 
(Section 1.5.2), which for illustration is configured to limit the size of the payload it sends to 1,200 
bytes. The second network uses a Point-to-Point protocol that limits the payload size 512 bytes and the 
third network is Wi-Fi (Section 1.5.3) with the payload limit equal to 1024 bytes. 

Figure 1-39 illustrates the process by which IP datagrams are fragmented by the source device and 
possibly routers along the path to the destination. As we will learn in Chapter 2, TCP learns from IP 
about the MTU of the first link and prepares the TCP packets to fit this limit, so the host’s IP layer 
does not need to perform any fragmentation. However, router B needs to break up the datagram into 
several smaller datagrams to fit the MTU of the point-to-point link. As shown in Figure 1-39, the IP 
layer at router B creates three smaller datagrams from the first datagram it receives from host A. 

The bottom row in Figure 1-39(b) shows the contents of the fragmentation-related fields of the 
datagram headers (the second row of the IP header shown in Figure 1-36). Recall that the length of 
data carried by all fragments before the last one must be a multiple of 8 bytes and the offset values are 
in units of 8-byte chunks. Because of this constraint, the size of the first two datagrams created by 
fragmentation on router B is 508 bytes (20 bytes for IP header + 488 bytes of IP payload). Although 
the MTU allows IP datagrams of 512 bytes, this would result in a payload size of 492, which is not a 
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Figure 1-38: Example scenario for IP datagram fragmentation. 
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multiple of 8 bytes. Notice also that the offset value of the second fragment is 61, which means that 
this fragment starts at 8 × 61 = 488 bytes in the original IP datagram from which this fragment is 
created. 

 

It is important to reemphasize that lower layer protocols do not distinguish any structure in the 
payload passed to them by an upper-layer protocol (Figure 1-13). Therefore, although in the 
example of Figure 1-39 the payload of IP datagrams contains both TCP header and user data, the 
IP does not distinguish any structure within the datagram payload. When the IP layer on Router B 
receives an IP datagram with IP header (20 bytes) + 1,180 bytes of payload, it removes the IP 
header and does not care what is in the payload. Router B’s IP layer splits the 1,180 bytes into 
three fragments, so that when it adds its own IP header in front of each payload fragment, none of 
the resulting IP datagrams will exceed 512 bytes in size. Router B then forwards the three 
datagrams to the next hop. 

1.4.2 Link State Routing 

Problems related to this section: Problem 1.25 → ? 

A key problem of routing algorithms is finding the shortest path between any two nodes, such 
that the sum of the costs of the links constituting the path is minimized. The two most popular 
algorithms used for this purpose are Dijkstra’s algorithm, used in link state routing, and Bellman-
Ford algorithm, used in distance vector routing. The link state routing is presented first, followed 
by the distance vector routing; Section 1.4.5 describes the path vector routing, which is similar to 
the distance vector routing. 
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Figure 1-39: IP datagram fragmentation at Router B of the network shown in Figure 1-38.
The fragments will be reassembled at the destination (Host D) in an exactly reverse process. 
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The key idea of the link state routing algorithm is to disseminate the information about local 
connectivity of each node to all other nodes in the network. Once all nodes gather the local 
information from all other nodes, each node knows the topology of the entire network and can 
independently compute the shortest path from itself to any other node in the network. This is done 
by iteratively identifying the closest node from the source node in the order of increasing path 
cost (Figure 1-40). At the kth step we have the set N′k(A) of k closest nodes to node A (“confirmed 
nodes”) as well as the shortest distance DX from each node X in N′k(A) to node A. Of all paths 
connecting some node not in N′k(A) (“unconfirmed nodes”) with node A, there is the shortest one 
that passes exclusively through nodes in N′k(A), because c(X, Y) ≥ 0. Therefore, the (k + 1)st 
closest node should be selected among those unconfirmed nodes that are neighbors of nodes in 
N′k(A). These nodes are marked as “tentative nodes” in Figure 1-40. 

When a router (network node A) is initialized, it determines the link cost on each of its network 
interfaces. For example, in Figure 1-40 the cost of the link connecting node A to node B is labeled 
as “7” units, that is c(A, B) = 7. The node then advertises this set of link costs to all other nodes in 
the network (not just its neighboring nodes). Each node receives the link costs of all nodes in the 
network and, therefore, each node has a representation of the entire network. To advertise the link 
costs, the node creates a packet, known as Link-State Advertisement (LSA) or Link-State Packet 
(LSP), which contains the following information: 

• The ID of the node that created the LSA 

• A list of directly connected neighbors of this node, with the link cost to each one 

• A sequence number for this packet 

• A time-to-live for this packet 
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Figure 1-40: Illustration of finding the shortest path using Dijkstra’s algorithm. 
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In the initial step, all nodes send their LSAs to all other nodes in the network using the 
mechanism called broadcasting. The shortest-path algorithm, which is described next, starts with 
the assumption that all nodes already exchanged their LSAs. The next step is to build a routing 
table, which is an intermediate step towards building a forwarding table. A routing table of a 
node (source) contains the paths and distances to all other nodes (destinations) in the network. A 
forwarding table of a node pairs different destination nodes with appropriate output interfaces of 
this node (recall Figure 1-34(b)). 

The link state routing algorithm works as follows. Let N denote the set of all nodes in a network. 
In Figure 1-41, N = {A, B, C, D}. The process can be summarized as an iterative execution of the 
following steps 

1. Check the LSAs of all nodes in the confirmed set N′ to update the tentative set (recall that 
tentative nodes are unconfirmed nodes that are neighbors of confirmed nodes) 

2. Move the tentative node with the shortest path to the confirmed set N′. 

3. Go to Step 1. 

The process stops when N′ = N. Here is an example: 

Example 1.3 Link State Routing Algorithm 

Consider the network in Figure 1-41(a) and assume that it uses the link state routing algorithm. 
Starting from the initial state for all nodes, show how node A finds the shortest paths to all other nodes 
in the network. The figure below shows how node A’s link-state advertisement (LSA) is broadcast 
through the network. 
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Figure 1-41: Example network used for illustrating the routing algorithms. 
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Assume that all nodes broadcast their LSAs and each node already received LSAs from all other nodes 
in the network before it starts the shortest path computation, as shown in this figure:  
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Table 1-2 shows the process of building a routing table at node A of the network shown in Figure 
1-41(a). Each node is represented with a triplet (Destination node ID, Path length, Next hop). The node 
x maintains two sets (recall Figure 1-40): Confirmed(x) set, denoted as N′, and Tentative(x) set. At 
the end, the routing table in node A contains these entries: {(A, 0, −), (C, 1, C), (B, 2, C), (D, 3, C)}. 
Every other node in the network runs the same algorithm to compute its own routing table. 

 

To account for failures of network elements, the nodes should repeat the whole procedure 
periodically. That is, each node periodically broadcasts its LSA to all other nodes and recomputes 

Table 1-2:  Steps for building a routing table at node A in Figure 1-41. Each node is 
represented with a triplet (Destination node ID, Path length, Next hop). 

Step Confirmed set N ′ Tentative set Comments 
0 (A, 0, −) ∅ Initially, A is the only member of Confirmed(A), 

so examine A’s LSA. 
1 (A, 0, −) (B, 10, B), 

(C, 1, C) 
A’s LSA says that B and C are reachable at costs 
10 and 1, respectively. Since these are currently 
the lowest known costs, put on Tentative(A) list. 

2 (A, 0, −), (C, 1, C) (B, 10, B) Move lowest-cost member (C) of Tentative(A) 
into Confirmed set. Next, examine LSA of 
newly confirmed member C. 

3 (A, 0, −), (C, 1, C) (B, 2, C), 
(D, 8, C) 

Cost to reach B through C is 1+1=2, so replace 
(B, 10, B). C’s LSA also says that D is reachable 
at cost 7+1=8. 

4 (A, 0, −), (C, 1, C), 
(B, 2, C) 

(D, 8, C) Move lowest-cost member (B) of Tentative(A) 
into Confirmed, then look at B’s LSA. 

5 (A, 0, −), (C, 1, C), 
(B, 2, C) 

(D, 3, C) Because D is reachable via B at cost 1+1+1=3, 
replace the Tentative(A) entry for D. 

6 (A, 0, −), (C, 1, C), 
(B, 2, C), (D, 3, C) 

∅ Move lowest-cost member (D) of Tentative(A) 
into Confirmed. END. 
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its routing table based on the received LSAs. 

Limitations: Routing Loops 

Link state routing needs large amount of resources to calculate routing tables. It also creates 
heavy traffic because of flooding the LSA packets from each node throughout the network. 

On the other hand, link state routing converges much faster to correct values after link failures 
than distance vector routing (described in Section 1.4.3), which suffers from the so-called 
counting-to-infinity problem. 

Before the nodes start their routing table computation (as in Table 1-2), they all must have 
received the same LSAs from all other nodes in the network. If not all of the nodes are working 
from exactly the same map, routing loops can form. A routing loop is a subset of network nodes 
configured so that data packets may wander aimlessly in the network, making no progress 
towards their destination, and causing traffic congestion for all other packets. In the simplest form 
of a routing loop, two neighboring nodes each think the other is the best next hop to a given 
destination. Any packet headed to that destination arriving at either node will loop between these 
two nodes. Routing loops involving more than two nodes are also possible. 

The reason for routing loops formation is simple: because each node computes its shortest-path 
tree and its routing table without interacting in any way with any other nodes, then if two nodes 
start with different maps, it is easy to have scenarios in which routing loops are created. 

The most popular practical implementation of link-state routing is Open Shortest Path First 
(OSPF) protocol, reviewed in Section 8.2.2. 

1.4.3 Distance Vector Routing 

Problems related to this section: Problem 1.27 → Problem 1.29 

The key idea of the distance vector routing algorithm is that each node assumes that its neighbors 
already know the shortest path to each destination node. The node then selects the neighbor for 
which the overall distance (from the source node to its neighbor, plus from the neighbor to the 
destination) is minimal. The process is repeated iteratively until all nodes settle to a stable 
solution. This algorithm is also known by the names of its inventors as Bellman-Ford algorithm. 
Figure 1-42 illustrates the process of finding the shortest path in a network using Bellman-Ford 
algorithm. The straight lines indicate single links connecting the neighboring nodes. The wiggly 
lines indicate the shortest paths between the two end nodes (other nodes along these paths are not 
shown). The bold line indicates the overall shortest path from source to destination. 

Next, we describe the distance vector routing algorithm. Let N denote the set of all nodes in a 
network. In Figure 1-41, N = {A, B, C, D}. The two types of quantities that this algorithm uses 
are: 
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(i) Link cost assigned to an individual link directly connecting a pair of nodes (routers). Link 
costs are given to the algorithm either by having the network operator manually enter the 
cost values or by having an independent program determine these costs. For example, in 
Figure 1-41 the cost of the link connecting the nodes A and B is labeled as “10” units, that 
is c(A, B) = 10. 

(ii) Node distance for an arbitrary pair of nodes, which represents the lowest sum of link 
costs for all links along all the possible paths between this node pair. The distance from 
node X to node Y is denoted as DX(Y). These will be computed by the routing algorithm. 

The distance vector of node X is the vector of distances from node X to all other nodes in the 
network, denoted as DV(X) = {DX(Y); Y ∈ N}. When determining the minimum-cost path (i.e., 
distance), it is important to keep in mind that we are not interested in how people would solve this 
problem. Rather, we wish to know how a group of computers can solve such a problem. 
Computers (routers) cannot rely on what we people see by looking at the network’s graphical 
representation; computers must work only with the information exchanged in messages. 

Let η(X) symbolize the set of neighboring nodes of node X. For example, in Figure 1-41 η(A) = 
{B, C} because B and C are the only nodes directly linked to node A. The distance vector routing 
algorithm runs at every node X and calculates the distance to every other node Y ∈ N, Y ≠ X, 
using the following formula: 

( ) { })(),(min
)(

YDVXcYD V
XV

X +=
∈η

   (1.14) 

To apply this formula, every node must receive the distance vector from all other nodes in the 
network. Every node maintains a table of distance vectors, which includes its own distance vector 
and distance vectors of its neighbors. Initially, the node assumes that the distance vectors of its 
neighbors are filled with infinite elements. Here is an example: 

Example 1.4 Distributed Distance Vector Routing Algorithm 

Consider the original network in Figure 1-41(a) and assume that it uses the distributed distance vector 
routing algorithm. Starting from the initial state for all nodes, show the first few steps until the routing 
algorithm reaches a stable state. 
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Figure 1-42: Illustration of finding the shortest path using Bellman-Ford algorithm. The
thick line (crossing Neighbor 1) represents the shortest path from Source to Destination. 



Ivan Marsic • Rutgers University 

 

66

For node A, the routing table initially looks as follows.  
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Notice that node A only keeps the distance vectors of its immediate neighbors, B and C, and not that of 
any other nodes, such as D. Initially, A may not even know that D exists. Next, each node sends its 
distance vector to its immediate neighbors and, as a result, A receives distance vectors from B and C. 
For the sake of simplicity, let us assume that at every node all distance vector packets arrive 
simultaneously. Of course, this is not the case in reality, but asynchronous arrivals of routing packets 
do not affect the algorithm operation. When a node receives an updated distance vector from its 
neighbor, the node overwrites the neighbor’s old distance vector in its routing table with the new one. 
As shown in the figure above, A overwrites the initial distance vectors for B and C. In addition, A re-
computes its own distance vector according to Eq. (1.14), as follows: 

{ } { } 211,010min)(),(),(),(min)( =++=++= BDCAcBDBAcBD CBA  

{ } { } 101,110min)(),(),(),(min)( =++=++= CDCAcCDBAcCD CBA  

{ } { } 871,110min)(),(),(),(min)( =++=++= DDCAcDDBAcDD CBA  

The new values for A’s distance vector are shown in the rightmost table in the above figure. 

Similar computations will take place on all other nodes and the whole process is illustrated in Figure 
1-43. The end result is as shown in Figure 1-43 as the second column entitled “After 1st exchange.” 
Because for every node the newly computed distance vector is different from the previous one, Figure 
1-43 shows that each node sends its new distance vector to its immediate neighbors. The cycle repeats 
for every node until there is no difference between the new and the previous distance vector. As shown 
in Figure 1-43, this happens after three exchanges. 

 

A distance-vector routing protocol requires that each router informs its neighbors of topology 
changes periodically and, in some cases, when a change is detected in the topology of a network 
(triggered updates). Routers can detect link failures by periodically testing their links with 
“heartbeat” or HELLO packets. However, if the router crashes, then it has no way of notifying 
neighbors of a change. Therefore, distance vector protocols must make some provision for timing 
out routes when periodic routing updates are missing for the last few update cycles. 
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Compared to link-state protocols, which require a router to inform all the other nodes in its 
network about topology changes, distance-vector routing protocols have less computational 
complexity and message overhead (because each node informs only its own neighbors). 

Limitations: Routing Loops and Counting-to-Infinity 

Distance vector routing works well if nodes and links are always up, but it suffers from several 
problems when links fail and become restored. The problems happen because the node does not 
reveal the information it used to compute its distance vector when it distributes the vector to the 
neighbors. As a result, remote routers do not have sufficient information to determine whether 
their choice of the next hop will cause routing loops to form. Although reports about lowering 
link costs (good news) are adopted quickly, reports about increased link costs (bad news) only 
spread in slow increments. This problem is known as the “counting-to-infinity 
problem.” 

Consider Scenario 2 in Figure 1-41(c) reproduced here in the figure on the right, 
where after the network stabilizes, the link BD fails. Before the failure, the distance 
vector of the node B will be as shown in the figure below. After B detects the link 
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Figure 1-43: Distance vector (DV) algorithm for the original network in Figure 1-41. 
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failure, it sets its own distance to D as ∞. (Notice that B cannot use old distance vectors it 
obtained earlier from its neighbors to recompute its new distance vector, because it does not know 
if they are valid anymore.) If B sends immediately its new distance vector to C,9 C would figure 
out that D is unreachable, because its previous best path led via B and now it became unavailable. 
However, it may happen that C just sent its periodic update (unchanged from before the link BD 
failure) to B and B receives it after discovering the failure of BD but before sending out its own 
update. Node B then recomputes its new distance to node D as 

{ } { } 321,310min)(),(),(),(min)( =++=++= DDCBcDDABcDD CAB  

and B choses C as the next hop to D. Because we humans can see the entire network topology, we 
know that C has the distance to D equal to 2 going via the link BC followed by the link CD. 
However, because C received from B only the numeric values of the distances, not the paths over 
which these distances are computed, C does not know that itself lays on B’s shortest path to D! 
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Given the above routing table, when B receives a data packet destined to D, it will forward the 
packet to C. However, C will return the packet back to B because for C, B is the next hop on the 
shortest path from C to D. The packet will bounce back and forth between these two nodes 
forever (or until their forwarding tables are changed). This phenomenon is called a routing loop, 
because packets may wander aimlessly in the network, making no progress towards their 
destination. 

Because B’s distance vector has changed, it reports its new distance vector to its neighbors A and 
C (triggered update). After receiving B’s new distance vector, C will determine that its new 
shortest path to D measures 4, via C. Now, because C’s distance vector changed, it reports its new 
distance vector to its neighbors, including B. The node B now recomputes its new distance vector 
and finds that the shortest path to D measures 5, via C. B and C keep reporting the changes until 
they realize that the shortest path to D is via C because C still has a functioning link to D with the 
cost equal to 7. This process of incremental convergence towards the correct distance is very slow 
compared to other route updates, causing the whole network not noticing a router or link outage 
for a long time, and was therefore named counting-to-infinity problem. 

A simple solution to the counting-to-infinity problem is known as hold-down timers. When a 
node detects a link failure, it reports to its neighboring nodes that an attached network has gone 
down. The neighbors immediately start their hold-down timers to ensure that this route will not be 
mistakenly reinstated by an advertisement received from another router that has not yet learned 

                                                      
9 Node B will also notify its neighbor A, but for the moment we ignore A because A’s path to D goes via C, 

and on, via B. Hence, A will not be directly affected by this situation. 
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about this route being unavailable. Until the timer elapses, the router ignores updates regarding 
this route. Router accepts and reinstates the invalid route if it receives a new update with a better 
metric than its own or the hold-down timer has expired. At that point, the network is marked as 
reachable again and the routing table is updated. Typically, the hold-down timer is greater than 
the total convergence time, providing time for accurate information to be learned, consolidated, 
and propagated through the network by all routers. 

Another solution to the counting-to-infinity problem is known as split-horizon routing. The key 
idea is that it is never useful to send information about a route back in the direction from which it 
came. Therefore, a router never advertises the cost of a destination to its neighbor N, if N is the 
next hop to that destination. The split-horizon rule helps prevent two-node routing loops. In the 
above example, without split horizons, C continues to inform B that it can get to D, but it does not 
say that the path goes through B itself. Because B does not have sufficient intelligence, it picks up 
C’s route as an alternative to its failed direct connection, causing a routing loop. Conversely, with 
split horizons, C never advertises the cost of reaching D to B, because B is C’s next hop to D. 
Although hold-downs should prevent counting-to-infinity and routing loops, split horizon 
provides extra algorithm stability. 

An improvement of split-horizon routing is known as split horizon with poisoned reverse. Here, 
the router advertises its full distance vector to all neighbors. However, if a neighbor is the next 
hop to a given destination, then the router replaces its actual distance value with an infinite cost 
(meaning “destination unreachable”). In a sense, a route is “poisoned” when a router marks a 
route as unreachable (infinite distance). Routers receiving this advertisement assume the 
destination network is unreachable, causing them to look for an alternative route or remove this 
destination from their routing tables. In the above example, C would always advertise the cost of 
reaching D to B as equal to ∞, because B is C’s next hop to D. 

In a single-path internetwork (chain-of-links configuration), split horizon with poisoned reverse 
has no benefit beyond split horizon. However, in a multipath internetwork, split horizon with 
poisoned reverse greatly reduces counting-to-infinity and routing loops. The idea is that increases 
in routing metrics generally indicate routing loops. Poisoned reverse updates are then sent to 
remove the route and place it in hold-down. Counting-to-infinity can still occur in a multipath 
internetwork because routes to networks can be learned from multiple sources. None of the above 
methods works well in general cases. The core problem is that when X tells Y that it has a path to 
somewhere, Y has no way of knowing whether it itself is on the path. 

The most popular practical implementation of link-state routing is Routing Information Protocol 
(RIP), reviewed in Section 8.2.1. 

1.4.4 IPv4 Address Structure and CIDR 

Problems related to this section: Problem 1.31 → Problem 1.33 

Section 1.4.1 briefly mentions that the structure of network addresses should be designet to assist 
with message routing along the path to the destination. This may not be obvious at first, so let us 
consider again the analogy between a router and a crossroads (Figure 1-34). Suppose you are 
driving from Philadelphia to Bloomfield, New Jersey (Figure 1-44). If the sign on the road 
intersection contained all small towns in all directions, you can imagine that it would be very 
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difficult to build and use such “forwarding tables.” The intersections would be congested by cars 
looking-up the long table and trying to figure out which way to exit out of the intersection. The 
problem is solved by listing only the major city names on the signs. Notice that in this case “New 
York” represents the entire region around the city, including all small towns in the region. That 
is, you do not need to pass through New York to reach Bloomfield, New Jersey. On your way, as 
you are approaching New York, at some point there will be another crossroads with a sign for 
Bloomfield. Therefore, hierarchical address structure gives a hint about the location that can be 
used to simplify routing. 

Large computer networks, such as the Internet, encounter a similar problem with building and 
using forwarding tables. The solution has been to divide the network address into two parts: a 
fixed-length “region” portion (in the most significant bits) and an “intra-region” address. These 
two parts combined represent the actual network address. In this model, forwarding is simple: 
The router first looks at the “region” part of the destination address; if it sees a packet with the 
destination address not in this router’s region, it does a lookup on the “region” portion of the 
address and forwards the packet onwards. Conversely, if the destination address is in this router’s 
region, it does a lookup on the “intra-region” portion and forwards the packet on. This structuring 
of network-layer addresses dramatically reduces the size of the forwarding tables. The data in the 
forwarding table for routes outside the router’s region is at most equal to the number of regions in 
the entire network, typically much smaller than the total number of possible addresses. 

The idea of hierarchical structuring can be extended to a multi-level hierarchy, starting with 
individual nodes at level 0 and covering increasingly larger regions at higher levels of the 
addressing hierarchy. In such a network, as a packet approaches its destination, it would be 
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Figure 1-44: Illustration of the problem with the forwarding-table size. Real world road
signs contain only a few destinations (lower right corner) to keep them manageable. 
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forwarded more and more precisely until it reaches the destination node. The key issues in 
designing such hierarchical structure for network addresses include: 

• Should the hierarchy be uniform, for example so that a region at level i+1 contains twice as 
many addresses as a region at level i. In other words, what is the best granularity for 
quantizing the address space at different levels, and should the hierarchy follow a regular or 
irregular pattern? 

• Should the hierarchy be statically defined or could it be dynamically adaptive? In other 
words, should every organization be placed at the same level regardless of how many 
network nodes it manages? If different-size organizations are assigned to different levels, 
what happens if an organization outgrows its original level or merges with another 
organization? Should organization’s hierarchy (number of levels and nodes per level) 
remain forever fixed once it is designed? 

The original solution for structuring IPv4 addresses (standardized with RFC-791 in 1981) decided 
to follow a uniform pattern for structuring the network addresses and opted for a statically 
defined hierarchy. IPv4 addresses were standardized to be 32-bits long, which gives a total of 232 
= 4,294,967,296 possible network addresses. At that time, the addresses were grouped into four 
classes, each class covering different number of addresses. In computer networks, “regions” 
correspond to sub-networks, or simply networks, within an internetwork (Section 1.4.1). 
Depending on the class, the first several bits correspond to the “network” identifier and the 
remaining bits to the “host” identifier (Figure 1-45). Class A addresses start with a binary “0” and 
have the next 7 bits for network number and the last 24 bits for host number. Class B addresses 
start with binary “10”, use the next 14 bits for network number, and the last 16 bits for host 
number (e.g., Rutgers has a Class B network, with addresses in dotted-decimal notation of the 
form 128.6.*). Class C addresses start with binary “110” and have the next 21 bits for network 
number, and the last 8 bits for host number. A special class of addresses is Class D, which are 
used for IP multicast (described in Section 3.3.2). They start with binary “1110” and use the next 
28 bits for the group address. Multicast routing is described later in Section 3.3.2. Addresses that 
start with binary “1111” are reserved for experiments. 
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The router-forwarding task in IPv4 is a bit more complicated than for an unstructured addressing 
scheme that requires an exact-match. For every received packet, the router examines its 
destination address and determines whether it belongs to the same region as this router’s 
addresses. If so, it looks for an exact match; otherwise, it performs a fixed-length lookup 
depending on the class. 

In the original design of IPv4, address space was partitioned in regions of three sizes: Class A 
networks had a large number of addresses, 224 = 16,777,216, Class B networks had 216 = 65,536 
addresses each, and Class C networks had only 28 = 128 addresses each. For example, the Rutgers 
University IP addresses belong to Class B because the network part starts with bits 10 (Figure 
1-37), so the network part of the address is: 10000000 00000110 or 128.6.* in dotted-
decimal notation. The address space has been managed by IETF and organizations requested and 
obtained a set of addresses belonging to a class. As the Internet grew, most organizations were 
assigned Class B addresses, because their networks were too large for a Class C address, but not 
large enough for a Class A address. Unfortunately, large part of the address space went unused. 
For example, if an organization had slightly more than 128 hosts and acquired a Class B address, 
almost 65,400 addresses went unused and could not be assigned to another organization. 

Figure 1-46 lists special IPv4 addresses. 

CIDR Scheme for Internet Protocol (IPv4) Addresses 

By 1991, it became clear that the 214 = 16,384 Class B addresses would soon run out and a 
different approach was needed. It was observed that addresses from the enormous Class C space 
were rarely allocated and the solution was proposed to assign new organizations contiguous 
subsets of Class C addresses instead of a single Class B address. This allowed for a refined 
granularity of address space assignment. In this way, the allocated set of Class C addresses could 
be much better matched to the organization needs than with whole Class B sets. This solution 
optimizes the common case. The common case is that most organizations require at most a few 
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thousand addresses, and this need could not be met with individual Class C sets, while an entire 
Class B represented a too coarse match to the need. A middle-road solution was needed. 

Routing protocols that work with aggregated Class C address sets are said to follow Classless 
Interdomain Routing or CIDR (pronounced “cider”). CIDR not only solved the problem of 
address shortages, but also by aggregating Class C sets into contiguous regions, it reduced the 
forwarding table sizes because routers aggregate routes based on IP prefixes in a classless 
manner. Instead of having a forwarding-table entry for every individual address, the router now 
keeps a single entry for a subset of addresses (see analogy in Figure 1-44). 

The CIDR-based addressing works as follows. An organization is assigned a region of the address 
space defined by two numbers, A and m. The assigned address region is denoted A/m. A is called 
the prefix and it is a 32-bit number (often written in dotted decimal notation) denoting the 
address space, while m is called the mask and it is a decimal number between 1 and 32. 
Therefore, when a network is assigned A/m, it means that it gets the 2(32 − m) addresses, all sharing 
the first m bits of A. For example, the network “192.206.0.0/21” corresponds to the 2(32 − 21) = 
2048 addresses in the range from 192.206.0.0 to 192.206.7.255. 

 
SIDEBAR 1.2: Hierarchy without Topological Aggregation 
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Figure 1-46: Special IP version 4 addresses. 
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♦ There are different ways to organize addresses hierarchically. Internet addresses are 
aggregated topologically, so that addresses in the same physical subnetwork share the same 
address prefix (or suffix). Another option is to partition the address space by manufacturers of 
networking equipment. The addresses are still globally unique, but not aggregated by proximity 
(i.e., network topology). An example is the Ethernet link-layer address, described in Section 
1.5.2. Each Ethernet attachment adaptor has assigned a globally unique address, which has two 
parts: a part representing the manufacturer’s code, and a part for the adaptor number. The 
manufacturer code is assigned by a global authority, and the adaptor number is assigned by the 
manufacturer. Obviously, each Ethernet adaptor on a given subnetwork may be from a 
different manufacturer, and noncontiguous subnetworks may have adaptors from the same 
manufacturer. However, this type of hierarchy is not suitable for routing purposes because it 
does not scale to networks with tens of millions of hosts, such as the Internet. Ethernet 
addresses cannot be aggregated in routing tables, and large-scale networks cannot use Ethernet 
addresses to identify destinations. Equally important, Ethernet addresses cannot be summarized 
and exchanged by the routers participating in the routing protocols. Therefore, topological 
aggregation of network addresses is the fundamental reason for the scalability of the Internet’s 
network layer. (See more discussion in Section 8.3.1.) 
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Suppose for the sake of illustration that you are administering your organization’s network as 
shown in Figure 1-35, reproduced here in Figure 1-47(a). Assume that you know that this 
network will remain fixed in size, and your task is to acquire a set of network addresses and 
assign them optimally to the hosts. Your first task is to determine how many addresses to request. 
As seen in Section 1.4.1, both routers R1 and R2 have 3 network interfaces each. Because your 
internetwork has a total of 13 interfaces (3 + 3 for routers, 2 for host B and 5 × 1 for other hosts), 
you need 13 unique IP addresses. However, you would like to structure your organization’s 
network hierarchically, so that each subnet is in its own address space, as shown in Figure 
1-47(b). Subnets 3 and 4 have only two interfaces each, so they need 2 addresses each. Their 
assignments will have the mask m = 31. You can group these two in a single set with m = 30. 
Subnets 1, 2, and 5 have three interfaces each, so you need at least 2 bits (4 addresses) for each 
and their masks will equal m = 30. Therefore, you need 4 × 4 addresses (of which three will be 
unused) and your address region will be of the form w.x.y.z/28, which gives you 2(32 − 28) = 24 = 16 
addresses. Let us assume that the actual address subspace assignment that you acquired is 

R1

R2

E F

A

B

C

D

Subnet-2

Subnet-1

Subnet-5
Subnet-4

Subnet-3

(a)

(b) (c)

R1

R2

A

B

C

D

E F

Subnets-3&4:
w.x.y.z+8/30

Organization’s address subspace:
w.x.y.z/28

Subnet-3:
w.x.y.z+8/31

Subnet-4:
w.x.y.z+10/31

Subnet-2:
w.x.y.z+4/30

Subnet-1:
w.x.y.z/30

Subnet-5:
w.x.y.z+12/30

Subnet-1:
204.6.96.176/30

Subnet-2:
204.6.96.180/30

Subnet-4:
204.6.96.186/31

Subnet-3:

204.6.96.184/31

Subnet-5:
204.6.96.188/30

204.6.94.184

204.6.94.177 20
4.

6.
94

.1
81

204.6.94.176

204.6.94.178

204.6.94.187

204.6.94.180

204.6.94.186

204.6.94.182

204.6.94.185

204.6.94.188
204.6.94.189

204.6.94.190

(b) (c)

R1

R2

A

B

C

D

E F

Subnets-3&4:
w.x.y.z+8/30

Organization’s address subspace:
w.x.y.z/28

Subnet-3:
w.x.y.z+8/31

Subnet-4:
w.x.y.z+10/31

Subnet-2:
w.x.y.z+4/30

Subnet-1:
w.x.y.z/30

Subnet-5:
w.x.y.z+12/30

Subnet-1:
204.6.96.176/30

Subnet-2:
204.6.96.180/30

Subnet-4:
204.6.96.186/31

Subnet-3:

204.6.96.184/31

Subnet-5:
204.6.96.188/30

204.6.94.184

204.6.94.177 20
4.

6.
94

.1
81

204.6.94.176

204.6.94.178

204.6.94.187

204.6.94.180

204.6.94.186

204.6.94.182

204.6.94.185

204.6.94.188
204.6.94.189

204.6.94.190

Figure 1-47: (a) Example internetwork with five physical networks reproduced from Figure
1-35 above. (b) Desired hierarchical address assignment under the CIDR scheme. (c)
Example of an actual address assignment. 
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204.6.94.176/28. Then you could assign the individual addresses to the network interfaces as 
shown in Table 1-3 as well as in Figure 1-47(c). 

1.4.5 Autonomous Systems and Path Vector Routing 

Problems related to this section: Problem 1.35 → ? 

Figure 1-35 presents a naïve view of the Internet, where many hosts are mutually 
connected via intermediary nodes (routers or switches) that live inside the “network 
cloud.” This would imply that the cloud is managed by a single administrative 
organization and all nodes cooperate to provide the best service to the consumers’ hosts. 

In reality the Internet is composed of many independent networks (or, “clouds”), each managed 
by a different organization driven by its own commercial or 
political interests. (The reader may also wish to refer to Figure 1-3 
to get a sense of complexity of the Internet.) Each individual 
administrative domain is known as an autonomous system (AS). 
Given their divergent commercial interests, these administrative 
domains are more likely to compete (for profits) than to 
collaborate in harmony with each other. 

Both distance vector and link state routing protocols have been used for interior routing (or, 
internal routing). That is, they have been used inside individual administrative domains or 
autonomous systems. However, both protocols become ineffective in large networks composed of 
many domains (autonomous systems). The scalability issues of both protocols were discussed 
earlier. In addition, they do not provide mechanisms for an administrative entity to represent its 
economic interests as part of the routing protocol. Economic interests can be described using 
logical rules that express the routing policies to reflect the economic interests. For this purpose, 
we need exterior routing (or, external routing) protocols for routing between different 
autonomous systems. 

We first review the challenges posed by interacting autonomous domains and then present the 
path vector routing algorithm that can be used to address some of those issues. 

Table 1-3: CIDR hierarchical address assignment for the internetwork in Figure 1-47. 

Subnet Subnet mask Network prefix Interface addresses

1 204.6.94.176/30 11001100 00000110 01011110 101100--

A:       204.6.94.176 
R1-1:  204.6.94.177 
B-1:    204.6.94.178 

2 204.6.94.180/30 11001100 00000110 01011110 101101--

C:       204.6.94.180 
R1-2:  204.6.94.181 
D:       204.6.94.182 

3 204.6.94.184/31 11001100 00000110 01011110 1011100-
R1-3:  204.6.94.184 
R2-1:  204.6.94.185 

4 204.6.94.186/31 11001100 00000110 01011110 1011101-
R2-2:  204.6.94.186 
B-2:    204.6.94.187 

5 204.6.94.188/30 11001100 00000110 01011110 101111--

R2-3:  204.6.94.188 
E:       204.6.94.189 
F:       204.6.94.190 
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Autonomous Systems: Peering Versus Transit 

An Autonomous System (AS) can independently decide whom to exchange traffic with on the 
Internet, and it is not dependent upon a third party for access. Networks of Internet Service 
Providers (ISPs), hosting providers, telecommunications companies, multinational corporations, 
schools, hospitals, and even individuals can be Autonomous Systems; all one needs is a unique 
Autonomous System Number (ASN) and a block of IP addresses. A central authority 
(http://iana.org/) assigns ASNs and assures their uniqueness. At the time of this writing (2010), the 
Internet consists of over 25,000 Autonomous Systems. Most organizations and individuals do not 
interconnect autonomously to other networks, but connect via an ISP. One could say that an end-
user is “buying transit” from their ISP. 

Figure 1-48 illustrates an example of several Autonomous Systems. In order to get traffic from 
one end-user to another end-user, ASs need to have an interconnection mechanism. These 
interconnections can be either direct between two networks or indirect via one or more 
intermediary networks that agree to transport the traffic. Most AS connections are indirect, since 
it is nearly impossible to interconnect directly with all networks on the globe. In order to make it 
from one end of the world to another, the traffic will often be transferred through several indirect 
interconnections to reach the end-user. The economic agreements that allow ASs to interconnect 
directly and indirectly are known as “peering” or “transit,” and they are the two mechanisms that 
underlie the interconnection of networks that form the Internet. 

A peering agreement (or, swap contract) is a voluntary interconnection of two or more 
autonomous systems for exchanging traffic between the customers of each AS. This is often done 
so that neither party pays the other for the exchanged traffic; rather, each derives revenue from its 
own customers. Therefore, it is also referred to as “settlement-free peering.” 

In a transit agreement (or, pay contract), one autonomous system agrees to carry the traffic that 
flows between another autonomous system and all other ASs. Since no network connects directly 
to all other networks, a network that provides transit will deliver some of the traffic indirectly via 
one or more other transit networks. A transit provider’s routers will announce to other networks 
that they can carry traffic to the network that has bought transit. The transit provider receives a 
“transit fee” for the service. 

The transit fee is based on a reservation made up-front for a certain speed of access (in Mbps) or 
the amount of bandwidth used. Traffic from (upstream) and to (downstream) the network is 
included in the transit fee; when one buys 10Mbps/month from a transit provider, this includes 10 
up and 10 down. The traffic can either be limited to the amount reserved, or the price can be 
calculated afterward (often leaving the top five percent out of the calculation to correct for 
aberrations). Going over a reservation may lead to a penalty. 

An economic agreement between ASs is implemented through (i) a physical interconnection of 
their networks, and (ii) an exchange of routing information through a common routing protocol. 
This section reviews the problems posed by autonomous administrative entities and requirements 
for a routing protocol between Autonomous Systems. Section 8.2.3 describes the protocol used in 
the current Internet, called Border Gateway Protocol (BGP), which meets these requirements. 

The Internet is intended to provide global reachability (or, end-to-end reachability), meaning that 
any Internet user can reach any other Internet user as if they were on the same network. To be 
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able to reach any other network on the Internet, Autonomous System operators work with each 
other in following ways: 

• Sell transit (or Internet access) service to that AS (“transit provider” sells transit service to 
a “transit customer”), 

• Peer directly with that AS, or with an AS who sells transit service to that AS, or 

• Pay another AS for transit service, where that “transit provider” must in turn also sell, peer, 
or pay for access. 

Therefore, any AS connected to the Internet must either pay another AS for transit, or peer with 
every other AS that also does not purchase transit. 

Consider the example in Figure 1-48. Tier-1 Internet Service Providers (ISPα and ISPβ) have 
global reachability information and can see all other networks and, because of this, their 
forwarding tables do not have default entries. They are said to be default-free. At present (2010) 
there are about 10 Tier-1 ISPs in the world. The different types of ASs (mainly by their size) lead 
to different business relationships between them. ISPs enter peering agreements mostly with other 
ISPs of the similar size (reciprocal agreements). Therefore, a Tier-1 ISP would form a peering 
agreement with other Tier-1 ISPs, and sell transit to lower tiers ISPs. Similarly, a Tier-2 (regional 
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Figure 1-48: An example collection of Autonomous Systems with physical interconnections.
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or countrywide) ISP would form a peering agreement with other Tier-2 ISPs, pay for transit 
service to a Tier-1 ISP, and sell transit to lower Tier-3 ISPs (local). As long as the traffic ratio of 
the concerned ASs is not highly asymmetrical (e.g., up to 4-to-1 is a commonly accepted ratio), 
there is usually no financial settlement for peering. 

Transit relationships are preferable because they generate revenue, whereas peering relationships 
usually do not. However, peering can offer reduced costs for transit services and save money for 
the peering parties. Other less tangible incentives (“mutual benefit”) include: 

• Increased redundancy (by reducing dependence on one or more transit providers) and 
improved performance (attempting to bypass potential bottlenecks with a “direct” path), 

• Increased capacity for extremely large amounts of traffic (distributing traffic across many 
networks) and ease of requesting for emergency aid (from friendly peers). 

Figure 1-49 shows reasonable business relationships between the ISPs in Figure 1-48. ISPφ 
cannot peer with another Tier-3 ISP because it has a single physical interconnection to a Tier-2 
ISPδ. An Autonomous System that has only a single connection to one other AS is called stub 
AS. The two large corporations at the top of Figure 1-49 each have connections to more than one 
other AS but they refuse to carry transit traffic; such an AS is called multihomed AS. ISPs 

ISP β
ISP α

ISP δ

γ’s customers

η’s customers

ϕ’s customers

Noodle.comMacrospot.com

ISP ε

ISP χ

ISP φ

ISP ϕ
ISP ηISP γ

Tier-1
Tier-1

Tier-2

Tier-2
Tier-2

Tier-3

Tier-3 Tier-3
Tier-3

$

$

$

$

$

$

$

$$

$
$

$

$

$

$
Transit
Peering

Key:

ISP β
ISP α

ISP δ

γ’s customers

η’s customers

ϕ’s customers

Noodle.comMacrospot.com

ISP ε

ISP χ

ISP φ

ISP ϕ
ISP ηISP γ

Tier-1
Tier-1

Tier-2

Tier-2
Tier-2

Tier-3

Tier-3 Tier-3
Tier-3

$

$

$

$

$

$

$

$$

$
$

$

$

$

$
Transit
Peering

Key:
$

Transit
Peering

Key:

Figure 1-49: Feasible business relationships for the example ASs in Figure 1-48. 
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usually have connections to more than one other AS and they are designed to carry both transit 
and local traffic; such an AS is called transit AS. 

When two providers form a peering link, the traffic flowing across that link incurs a cost on the 
network it enters. Such a cost may be felt at the time of network provisioning: in order to meet the 
negotiated quantity of traffic entering through a peering link, a provider may need to increase its 
network capacity. A network provider may also see a cost for entering traffic on a faster 
timescale; when the amount of incoming traffic increases, congestion on the network increases, 
and this leads to increased operating and network management costs. For this reason, each AS 
needs to decide carefully what kind of transit traffic it will support. 

Each AS is in one of three types of business relationships with the ASs to which is has a direct 
physical interconnection: transit provider, transit customer, or peer. To its paying customers, the 
AS wants to provide unlimited transit service. However, to its provider(s) and peers it probably 
wishes to provide a selective transit service. Figure 1-50 gives examples of how conflicting 
interests of different parties can be resolved. The guiding principle is that ASs will want to avoid 
highly asymmetrical relationships without reciprocity. In Figure 1-50(a), both ASη and ASϕ 
benefit from peering because it helps them to provide global reachability to their own customers. 
In Figure 1-50(b), ASγ and ASϕ benefit from using transit service of ASη (with whom both of 
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them are peers), but ASη may lose money in this arrangement (because of degraded service to its 
own customers) without gaining any benefit. Therefore, ASη will not carry transit traffic between 
its peers. An appropriate solution is presented in Figure 1-50(c), where ASγ and ASϕ use their 
transit providers (ASδ and ASε, respectively), to carry their mutual transit traffic. ASδ and ASε 
are peers and are happy to provide transit service to their transit customers (ASγ and ASϕ). 
Figure 1-50(d) shows a scenario where higher-tier ASδ uses its transit customer ASη to gain 
reachability of ASϕ. Again, ASη does not benefit from this arrangement, because it pays ASδ for 
transit and does not expect ASδ in return to use its transit service for free. The appropriate 
solution is shown in Figure 1-50(e) (which is essentially the same as Figure 1-50(c)). 

To implement these economic decisions and prevent unfavorable arrangements, ASs design and 
enforce routing policies. An AS that wants avoid providing transit between two neighboring ASs, 
simply does not advertise to either neighbor that the other can be reached via this AS. The 
neighbors will not be able to “see” each other via this AS, but via some other ASs. Routing 
policies for selective transit can be summarized as: 

• To its transit customers, the AS should make visible (or, reachable) all destinations that it 
knows of. That is, all routing advertisements received by this AS should be passed on to 
own transit customers; 

• To its peers, the AS should make visible only its own transit customers, but not its other 
peers or its transit provider(s), to avoid providing unrecompensed transit; 

• To its transit providers, the AS should make visible only its own transit customers, but 
not its peers or its other transit providers, to avoid providing unrecompensed transit. 

In the example in Figure 1-49, Tier-1 ISPs (ASα and ASβ) can see all the networks because they 
peer with one another and all other ASs buy transit from them. ASγ can see ASη and its 
customers directly, but not ASϕ through ASη. ASδ can see ASϕ through its peer ASε, but not via 
its transit customer ASη. Traffic from ASϕ to ASφ will go trough ASε (and its peer ASδ), but not 
through ASη. 

To illustrate how routers in these ASs implement the above economic policies, let us imagine 
example routers as in Figure 1-51. Suppose that a router in ASφ sends an update message 
advertising the destination prefix 128.34.10.0/24. The message includes the routing path 
vector describing how to reach the given destination. The path vector starts with a single AS 
number {ASφ}. A border router (router K) in ASδ receives this message and disseminates it to 
other routers in ASδ. Routers in ASδ prepend their own AS number to the message path vector to 
obtain {ASδ, ASφ} and redistribute the message to the adjacent ASs. Because ASη does not have 
economic incentive to advertise a path to ASφ to its peer ASϕ, it sends an update message with 
path vector containing only the information about ASη’s customers. On the other hand, ASε has 
economic incentive to advertise global reachability to its own transit customers. Therefore, 
routers in ASε prepend their own AS number to the routing path vector from ASδ to obtain {ASε, 
ASδ, ASφ} and redistribute the update message to ASϕ. Routers in ASϕ update their routing and 
forwarding tables based on the received path vector. Finally, when a router in ASϕ needs to send 
a data packet to a destination in the subnet 128.34.10.0/24 (in ASφ) it sends the packet first 
to the next hop on the path to ASφ, which is ASε. 
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Path Vector Routing 

Path vector routing is used for inter-domain or exterior routing (routing between different 
Autonomous Systems). The path vector algorithm is somewhat similar to the distance vector 
algorithm (Section 1.4.3). Each border (or edge) router in a given AS advertises the destinations it 
can reach to its neighboring routers (in different ASs). However, instead of advertising the 
networks in terms of a destination address and the distance to that destination, the networks are 
advertised as destination addresses with path descriptions to reach those destinations. A route is 
defined as a pairing between a destination and the attributes of the path to that destination, thus 
the name, path vector routing. The path vector contains a complete path as a sequence of ASs to 
reach the given destination. The path vector is carried in a special path attribute that records the 
sequence of ASs through which the reachability message has passed. The path that contains the 
smallest number of ASs becomes the preferred path to reach the destination. 

At predetermined times, each node advertises its own network address and a copy of its path 
vector down every attached link to its immediate neighbors. An example is shown in Figure 1-51, 
where a router in ASφ sends a scheduled update message. After a router receives path vectors 
from its neighbors, it performs path selection by merging the information received from its 
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Figure 1-51: Example of routers within the ASs in Figure 1-48. Also shown is how a routing
update message from ASφ propagates to ASϕ. 
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neighbors with that already in its existing path vector. The path selection is based on some kind of 
path metric, similar to distance vector routing algorithm (Section 1.4.3). Again, Eq. (1.14) is 
applied to compute the “shortest” path. Here is an example: 

Example 1.5 Path Vector Routing Algorithm 

Consider the network topology in Figure 1-41(a) (reproduced below) and assume that it uses the path 
vector routing algorithm. Instead of router addresses, the path vector works with Autonomous System 
Numbers (ASNs). Starting from the initial state for all nodes, show the first few steps until the routing 
algorithm reaches a stable state. 

The solution is similar to that for the distributed distance vector routing algorithm (Example 1.4). For 
AS α, the initial routing table is as in the leftmost table below. The notation d | χ, ξ, ζ symbolizes 
that the path from the AS under consideration to AS ζ is d units long, and χ and ξ are the ASs along 
the path to ζ. If the path metric simply counts the number of hops, then the path-vector packets do not 
need to carry the distance d, because it can be determined simply by counting the ASs along the path.  
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Again, AS α only keeps the path vectors of its immediate neighbors, β and γ, and not that of any other 
ASs, such as δ. Initially, α may not even know that δ exists. Next, each AS advertises its path vector to 
its immediate neighbors, and α receives their path vectors. When an AS receives an updated path 
vector from its neighbor, the AS overwrites the neighbor’s old path vector with the new one. In 
addition, A re-computes its own path vector according to Eq. (1.14), as follows: 

{ } { } 211,010min)(),(),(),(min)( =++=++= βγγαββαβ βα DcDcD   path: 2 | γ, β 

{ } { } 101,110min)(),(),(),(min)( =++=++= γγαγβαγ γβα DcDcD   path: 1 | γ 

{ } { } 871,110min)(),(),(),(min)( =++=++= δγαδβαδ γβα DcDcD   path: 8 | γ, δ 

The new values for α’s path vector are shown in the above table at the right. Notice that α’s new path 
to β is via γ and the corresponding table entry is 2 | γ, β. 

Similar computations will take place on all other nodes and the whole process is illustrated in [Figure 
XYZ]. The end result is as shown in [Figure XYZ] as column entitled “After 1st exchange.” Because 
for every node the path vector computed after the first exchange is different from the previous one, 
each node advertises its path new vector to its immediate neighbors. The cycle repeats for every node 
until there is no difference between the new and the previous path vector. As shown in [Figure XYZ], 
this happens after three exchanges. 
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To implement routing between Autonomous Systems, each Autonomous System must have one 
or more border routers that are connected to networks in two or more ASs (its own network and a 
neighboring AS network). Such a node is called a speaker node or gateway router. For 
example, in Figure 1-51 the speaker nodes in ASα are routers A, B, F, and G; in ASβ the speaker 
nodes are routers H and J; and in ASδ the speakers are routers K and N. A speaker node creates a 
routing table and advertises it to adjoining speaker nodes in the neighboring Autonomous 
Systems. The idea is the same as with distance vector routing, except that only speaker nodes in 
each Autonomous System can communicate with routers in other Autonomous Systems (i.e., 
speaker nodes in those ASs). The speaker node advertises the path, not the metric of the links, in 
its AS or other ASs. In other words, there are no weights attached to the links in a path vector, but 
there is an overall cost associated with each path. 

Integrating Inter-Domain and Intra-Domain Routing 

Administrative entities that manage different Autonomous Systems have different concerns for 
routing messages within their own Autonomous System as opposed to routing messages to other 
Autonomous Systems or providing transit service for them. Within an Autonomous System, the 
key concern is how to route data packets from the origin to the destination in the most efficient 
manner. For this purpose, intra-domain or interior routing protocols, such as those based on 
distance-vector routing (Section 1.4.3) or link-state routing (Section 1.4.2). These protocols are 
known as Interior Gateway Protocols (IGPs). Unlike this, the key concern of any given 
Autonomous System is how to route data packets from the origin to the destination in the manner 
that is most profitable for this AS. These protocols are known as Exterior Gateway Protocols10 
and are based on path-vector routing, described above. This duality in routing goals and solutions 
means that each border router (or, speaker node) will maintain two different routing tables: one 
obtained by the interior routing protocol and the other by the exterior routing protocol. 

A key problem is how the speaker node should integrate its dual routing tables into a meaningful 
forwarding table. The speaker that first receives path information about a destination in another 
AS simply adds a new entry into its forwarding table. However, the problem is how to exchange 
the routing information with all other routers within this AS and achieve a consistent picture of 
the Internet viewed by all of the routers within this ASs. The goal is that, for a given data packet, 
each router in this AS should make the same forwarding decision (as if each had access to the 
routing tables of all the speaker routers within this AS). Each speaker node must exchange its 
routing information with all other routers within its own AS (known as internal peering). This 
includes both other speakers in the same AS (if there are any), as well as the remaining non-
speaker routers. For example, in Figure 1-51 speaker K in ASδ needs to exchange routing 
information with speaker N (and vice versa), as well as with non-speaker routers L and M. Notice 
again that only speaker routers run both IGP and Exterior Gateway Protocol (and each maintains 
two routing tables); non-speaker routers run only IGP and maintain a single routing table. 

The forwarding table contains pairs destination, output-port for all possible destinations. The 
output port corresponds to the IP address of the next hop router to which the packet will be 
forwarded. Recall that each router performs the longest CIDR prefix match on each packet’s 

                                                      
10 In the literature, the acronym EGP is not used for a generic Exterior Gateway Protocol, because EGP 

refers to an actual protocol, described in RFC-904, now obsolete, that preceded BGP (Section 8.2.3). 
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destination IP address (Section 1.4.4). All forwarding tables must have a default entry for 
addresses that cannot be matched, and only routers in Tier-1 ISPs are default-free because they 
know prefixes to all networks in the global Internet. 

Consider again the scenario shown in Figure 1-51 where ASφ advertises the destination prefix 
128.34.10.0/24. If the AS has a single speaker node leading outside the AS, then it is easy 
to form the forwarding table. For example, in Figure 1-51 ASη has a single speaker router R that 
connects it to other ASs. If non-speaker router S in ASη receives a packet destined to ASφ, the 
packet will be forwarded along the shortest path (determined by the IGP protocol running in 
ASη) to the speaker S, which will then forward it to N in ASδ. Consider now a different situation 
where router B in ASα receives a packet destined to ASφ. B should clearly forward the packet to 
another speaker node, but which one? As seen in Figure 1-51, both A or F will learn about ASφ 
but via different routes. To solve the problem, when a speaker node learns about a destination 
outside its own AS, it must disseminate this information to all routers within its own AS. This 
dissemination is handled by the AS’s interior gateway protocol (IGP). 

When a router learns from an IGP advertisement about a destination outside its own AS, it needs 
to add the new destination into its forwarding table. This applies to both non-speaker routers and 
speaker routers that received this IGP advertisement from the fellow speaker router (within the 
same AS), which first received the advertisement via exterior gateway protocol from a different 
AS. One approach that is often employed in practice is known as hot-potato routing. In hot-
potato routing, the Autonomous System gets rid of the packet (the “hot potato”) as quickly as 
possible (more precisely, as inexpensively as possible). This is achieved by having the router send 
the packet to the speaker node that has the lowest router-to-speaker cost among all speakers with 
a path to the destination. Figure 1-52 summarizes the steps taken at a router for adding the new 
entry to its forwarding table. In Figure 1-51, when B receives a packet for ASφ it will send it to A 
or F based on the lowest cost within ASα only, rather than overall lowest cost to the destination. 

The most popular practical implementation of path vector routing is Border Gateway Protocol 
(BGP), currently in version 4 (BGP4). Section 8.2.3 describes how BGP4 meets the above 
requirements. 
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Figure 1-52: Integrating an external destination to a router’s forwarding table. 
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1.5 Link-Layer Protocols and Technologies 
 

In packet-switched networks, blocks of data bits (generally called packets) 
are exchanged between the communicating nodes. That is, the nodes send 
packets rather than continuous bit-streams. At the link layer, packets are 
called frames. The key function of the link layer is transferring frames from 
one node to an adjacent node over a communication link. This task is 
complex because there are a great variety of communication link types. The 
key characteristics of a link include data rate, duplexity (half or full 
duplex), and multiplicity of the medium (i.e., point-to-point or shared broadcast). The link-layer 
services include: 

• Framing is encapsulating a network-layer datagram into a link-layer frame by adding the header 
and the trailer. It is particularly challenging for a receiving node to recognize where an arriving 
frame begins and ends. For this purpose, special control bit-patterns are used to identify the start 
and end of a frame. On both endpoints of the link, receivers are continuously hunting for the start-
of-frame bit-pattern to synchronize on the start of the frame. Having special control codes, in 
turn, creates the problem of data transparency (the need to avoid confusion between control 
codes and data) and requires data stuffing (described earlier in Figure 1-14). 

• Medium access control (MAC) allows sharing a broadcast medium (Section 1.3.3) MAC 
addresses are used in frame headers to identify the sender and the receiver of the frame. MAC 
addresses are different from IP addresses and require a special mechanism for translation between 
different address types (Section 8.3.1). Point-to-point protocols do not need MAC. 

• Reliable delivery between adjacent nodes includes error detection and error recovery. The 
techniques for error recovery include forward error correction code (Section 1.2) and 
retransmission by ARQ protocols (Section 1.3). 

• Connection liveness is the ability to detect a link outage that makes impossible to transfer data 
over the link. For example, a wire could be cut, or a metal barrier could disrupt the wireless link. 
The link-layer protocol should signal this error condition to the network layer. 

• Flow control is pacing between adjacent sending and receiving nodes to avoid overflowing the 
receiving node with messages at a rate it cannot process. A link-layer receiver is expected to be 
able to receive frames at the full datarate of the underlying physical layer. However, a higher-
layer receiver may not be able receive packets at this full datarate. It is usually left up to the 
higher-layer receiver to throttle the higher-layer sender. (An example for the TCP protocol will be 
seen in Section 2.1.3.) Sometimes the link layer may also participate in flow control. A simple 
way of exerting backpressure on the upper-layer protocol is shown in Listing 1-1 (Section 1.1.4) 
at the start of the method send(), where an exception is thrown if the buffer for storing the 
unacknowledged packets is full. 

There are two types of communication links: (1) point-to-point link with one sender and one 
receiver on the link, and no medium access control (MAC) or explicit MAC addressing; and, (2) 

Layer 2:
Network

Layer 1:
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End-to-End

PPP, IEEE 802. ∗
(Ethernet, Wi-Fi, …)
PPP, IEEE 802. ∗
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broadcast link over a shared wire or air medium. Point-to-point link is easier to work with than a 
broadcast link because broadcast requires coordination of many stations for accessing the 
medium. The basics of medium access control are already described in Section Section 1.3.3 and 
more will be covered later in this section. 

Because broadcast links are so complex, it is common to subdivide the link layer of the protocol 
stack into three sublayers (Figure 1-53): logical-link-control (LLC) sublayer, medium access 
control (MAC) sublayer, and physical (PHY) sublayer. In the OSI reference model (Section 
1.1.4), Layer 2 is subdivided into two sublayers: LLC and MAC sublayer. The network layer may 
directly use the services of a MAC sublayer (Figure 1-53(b)), or it may interact with a logical-
link-control (LLC) sublayer (Figure 1-53(a)). We will see examples of both approaches later in 
this section. The IP protocol (Section 1.4.1) usually directly interacts with a MAC sublayer. 

IEEE specified the 802.2 standard for LLC, which is the common standard for all broadcast links 
specified by the IEEE Working Group 802, such as Ethernet (Section 1.5.2) and Wi-Fi (Section 
1.5.3) broadcast links. 802.2 LLC hides the differences between various kinds of IEEE 802 links 
by providing a single frame format and service interface to the network layer. 802.2 LLC also 
provides options for reliable delivery and flow control. Figure 1-54 shows the LLC packet format. 

Network layer / User

Link
layer

Logical link control
(LLC) sublayer

Medium access control
(MAC) sublayer

Physical
(PHY) sublayer

(a)

Network layer / User

Link
layer

Logical link control
(LLC) sublayer

Medium access control
(MAC) sublayer

Physical
(PHY) sublayer

(a)

Medium access control
(MAC) sublayer

Physical
(PHY) sublayer

Network layer / User

Link
layer

(b)

Medium access control
(MAC) sublayer

Physical
(PHY) sublayer

Network layer / User

Link
layer

(b)  

Figure 1-53: Sublayers of the link layer for broadcast communication links. 

LLC controlSSAP address

bytes:                  1                         1             1 or 2                                    variable

DSAP address Data

I/G DSAP value C/R SSAP value

bits:         1                      7                        1 7 

LLC address fields
DSAP = Destination service access point
SSAP = Source service access point

I/G = Individual/Group
C/R = Command/Response

Figure 1-54: Packet format for Logical Link Control (LLC) protocol. 
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The two address fields specify the destination and source users of LLC, where the “user” is 
usually an upper-layer protocol, such as IP (Figure 1-53). The LLC user addresses are referred to 
as “service access points” (SAPs), which is the OSI terminology for the user of a protocol layer. 
The DSAP address field identifies one or more destination users for which the LLC packet data is 
intended. This field corresponds to the receivingProtocol field in Listing 1-1. The SSAP 
address field identifies the upper-layer protocol that sent the data. 

Section 1.5.1 reviews a link-layer protocol for point-to-point links. Sections 1.5.2 and 1.5.3 
review link-layer protocol for broadcast links: Ethernet for wire broadcast links and Wi-Fi for 
wireless broadcast links. Within a single building, broadcast local-area networks such as Ethernet 
or Wi-Fi are commonly used for interconnection. However, most of the wide-area (long distance) 
network infrastructure is built up from point-to-point leased lines. 

1.5.1 Point-to-Point Protocol (PPP) 

Problems related to this section: Problem 1.40 

Figure 1-55 illustrates two typical scenarios where point-to-point links are used. The first is for 
telephone dialup access, where a customer’s PC calls up an Internet service provider’s (ISP) 
router and then acts as an Internet host. When connected at a distance, each endpoint needs to be 
fitted with a modem to convert analog communications signals into a digital data stream. Figure 
1-55 shows modems as external to emphasize their role, but nowadays computers have built-in 
modems. Another frequent scenario for point-to-point links is connecting two distant routers that 
belong to the same or different ISPs (right-hand side of Figure 1-55). Two most popular point-to-
point link-layer protocols are PPP (point-to-point protocol), which is byte-oriented, viewing each 
frame as a collection of bytes; and HDLC (high-level data link control), which is bit-oriented. 
PPP, although derived from HDLC, is simpler and includes only a subset of HDLC functionality. 

Modem

PPP
over dialup telephone line

Customer’s home

Modems Router

Internet provider’s premises

PPP over
fiber optic link

Router

PC

Figure 1-55: Point-to-point protocol (PPP) provides link-layer connectivity between a pair
of network nodes over many types of physical networks. 

Visit http://en.wikipedia.org/wiki/HDLC for more details on High-Level Data Link Control (HDLC)Visit http://en.wikipedia.org/wiki/HDLC for more details on High-Level Data Link Control (HDLC)
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(This book does not cover HDLC and the reader should check the bibliography in Section 1.7 for 
relevant references.) 

The format of a PPP frame is shown in Figure 1-56. The PPP frame always begins and ends with 
a special character (called “flag”). The Flag makes it possible for the receiver to recognize the 
boundaries of an arriving frame. Notice that the PPP frame header does not include any 
information about the frame length, so the receiver recognizes the end of the frame when it 
encounters the trailing Flag field. The second field (Address) normally contains all ones (the 
broadcast address of HDLC), which indicates that all stations should accept this frame. Because 
there are only two hosts attached to a PPP link, PPP uses the broadcast address to avoid having to 
assign link-layer addresses. The third field (Control) is set to a default value 00000011. This 
value indicates that PPP is run in connectionless mode, meaning that frame sequence numbers are 
not used and out-of-order delivery is acceptable. 

Because the Address and Control fields are always constant in the default configuration, the 
nodes can negotiate an option to omit these fields and reduce the overhead by 2 bytes per frame. 

The Protocol field is used for demultiplexing at the receiver: it identifies the upper-layer protocol 
(e.g., IP) that should receive the payload of this frame. The code for the IP protocol is 
hexadecimal 2116. The reader may wish to check Listing 1-1 (Section 1.1.4) and see how the 
method handle() calls upperProtocol.handle() to handle the received payload. 

The Payload field is variable length, up to some negotiated maximum; if not negotiated, the 
default length of 1500 bytes is used. After Payload comes the Checksum field, which is by default 
2 bytes, but can be negotiated to a 4-byte checksum. PPP checksum only detects errors, but has 
no error correction/recovery. 

Figure 1-57 summarizes the state diagram for PPP; the actual finite state machine of the PPP 
protocol is more complex and the interested reader should consult RFC-1661 [Simpson, 1994]. 
There are two key steps before the endpoints can start exchanging network-layer data packets: 

1. Establishing link connection: during this phase, the link-layer connection is set up. The 
link-layer peers must configure the PPP link (e.g., maximum frame length, 
authentication, whether to omit the Address and Control fields). PPP’s Link Control 
Protocol (LCP) is used for this purpose. 

2. Connecting to network-layer protocol: after the link has been established and options 
negotiated by the LCP, PPP must choose and configure one or more network-layer 
protocols that will operate over the link. PPP’s Network Control Protocol (NCP) is 
used for this purpose. Once the chosen network-layer protocol has been configured, 
datagrams can be sent over the link. 

bytes:               1               1                1               1 or 2         variable                 2 or 4               1

Flag Address Control Protocol Flag

01111110 11111111 00000011 01111110

Data payload Checksum

Figure 1-56: Point-to-point protocol (PPP) frame format. 
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If transition through these two states is successful, the connection goes to the Open state, where 
data transfer between the endpoints takes place. 

The Authenticating state (sub-state of Establishing Link Connection) is optional. The two 
endpoints may decide, during the Establishing sub-state, not to go through authentication. If they 
decide to proceed with authentication, they will exchange several PPP control frames. 

Listing 1-1 in Section 1.1.4 shows how application calls the protocols down the protocol stack 
when sending a packet. However, before send() can be called, lowerLayerProtocol must 
be initialized. Link-layer protocol is usually built-in in the firmware of the network interface card, 
and the initialization happens when the hardware is powered up or user runs a special application. 
Therefore, NCP in step 2 above establishes the connection between the link-layer PPP protocol 
and the higher-layer (e.g., IP) protocol that will use its services to transmit packets. 

LCP and NCP protocols send control messages encapsulated as the payload field in PPP frames 
(Figure 1-58). The receiving PPP endpoint delivers the messages to the receiving LCP or NCP 
module, which in turn configures the parameters of the PPP connection. 

Although PPP frames do not use link-layer addresses, PPP provides the capability for network-
layer address negotiation: endpoint can learn and/or configure each other’s network address. 

In summary, PPP has no error correction/recovery (only error detection), no flow control, and 
out-of-order delivery is acceptable. No specific protocol is defined for the physical layer in PPP. 

Carrier
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Failed /
/ Drop carrier

/ Exchange
TERMINATE packets
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Terminating
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Figure 1-57: State diagram for the point-to-point protocol (PPP). 
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1.5.2 Ethernet (IEEE 802.3) 

Problems related to this section: Problem 1.41 → Problem 1.43 

Ethernet is a network protocol for local area networks (LANs). The MAC protocol for Ethernet is 
based on the CSMA/CD protocol shown in Figure 1-30. The frame format for Ethernet is shown 
in Figure 1-59. The Ethernet was first standardized by DEC, Intel and Xerox, known as the DIX 
standard. (See Section 1.7 for an overview of Ethernet history.) When IEEE released the 802.3 
standard, it adopted a slightly different frame format, as shown in Figure 1-59(b). The Type field 
in a DIX frame represents the upper-layer protocol that is using Ethernet as its link layer. On the 
other hand, an 802.3 frame carries instead the frame Length. In 802.3 frame, the upper-layer 
protocol is specified in the LLC frame as DSAP address (also see Figure 1-54). Because the DIX 
standard was widely used by the time IEEE 802.3 was released, a compromise is reached as 
follows. If the Type/Length field contains a number ≤1500 than it represents the frame Length 
and the receiver should look for the upper-layer protocol in the contained LLC packet. If the 
Type/Length field contains a number >1500 than it identifies the upper-layer protocol, and the 
data field does not contain an LLC-formatted packet, but rather a network-layer packet (e.g., an 
IP datagram). All versions of Ethernet up to date use this frame format. 

The Ethernet link-layer address or MAC-48 address is a globally unique 6-byte (48-bit) string 
that comes wired into the electronics of the Ethernet attachment. An Ethernet address has two 
parts: a 3-byte manufacturer code, and a 3-byte adaptor number. IEEE acts as a global authority 
and assigns a unique manufacturer’s registered identification number, while each manufacturer 
gives an adaptor a unique number. Although intended to be a permanent and globally unique 
identification, it is possible to change the MAC address on most of today’s hardware, an action 
often referred to as MAC spoofing. 

When a frame arrives at an Ethernet attachment, the electronics compares the destination address 
with its own and discards the frame if the addresses differ, unless the address is a special 
“broadcast address” which signals that the frame is meant for all the nodes on this network. 

We know from Section 1.3.3 that for the CSMA/CD protocol, the transmission time of the 
smallest frame must be larger than one round-trip propagation time, i.e., 2β. This requirement 
limits the distance between two computers on an Ethernet LAN. The smallest frame is 64 bytes. 

Flag Address Control ProtocolProtocol PayloadPayload Checksum Flag

Code ID Length
Information for

the control operation

bytes:               1               1                        2                      variable

Value for LCP: C02116

Value for NCP: C02316

 

Figure 1-58: LCP or NCP packet encapsulated in a PPP frame. 
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This 64-byte value is derived from the original 2500-m maximum distance between Ethernet 
interfaces plus the transit time across up to four repeaters plus the time the electronics takes to 
detect the collision. The 64 bytes correspond to 51.2 μs over a 10 Mbps link, which is larger than 
the round-trip time across 2500 m (about 18 μs) plus the delays across repeaters and the 
electronics to detect the collision. 

Sensing the medium idle takes time, so there will necessarily be an idle period between 
transmissions of Ethernet frames. This period is known as the interframe space (IFS), interframe 

bytes:                   8                            6         6                2        0 to 1500      0 to 46   4

Preamble
Destination 

address
Source
address

Type Data Pad Checksum

MAC header

(a)

Link
layer

Network layer

LLC

MAC

PHY

Link
layer

Network layer

LLC

MAC

PHY

(b)

Link
layer

MAC

PHY

Network layer

Link
layer

MAC

PHY

Network layer

bytes:                  7              1             6          6               2        0 to 1500      0 to 46    4

Preamble
Destination 

address
Source
address

Leng
th

Data Pad Checksum
S 
O 
F

SOF = Start of Frame

MAC header

DSAP 
address

SSAP 
address

Control DataLLC packet:

Figure 1-59: Link-layer frame format for DIX standard Ethernet Version 2.0 (a) and for
IEEE standard 802.3 (b). LLC packet format is shown in Figure 1-54. 

Table 1-4: Parameter values for the Ethernet MAC protocol (CSMA/CD). 

Parameter 
Data rate 

Up to and including 
100 Mbps 

1 Gbps 10 Gbps 

Backoff slot time 512 bit times 4096 bit times not applicable 
Interpacket gap / IFS 96 bits 96 bits 96 bits 
Attempts limit 16 16 not applicable 
Backoff limit 10 10 not applicable 
Jam size 32 bits 32 bits not applicable 
Maximum frame size 1518 bytes 1518 bytes 1518 bytes 
Minimum frame size 512 bits (64 bytes) 512 bits (64 bytes) 512 bits (64 bytes) 
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gap, or interpacket gap. It is the spacing between two non-colliding frames, from start of idle after 
the last bit of the FCS field of the first frame to the first bit of the Preamble of the subsequent 
frame. In other words, if an Ethernet network adapter senses that there is no signal energy 
entering the adapter from the channel for IFS-bit times, it declares the channel idle and starts to 
transmit the frame. The minimum interframe space is 96-bit times (the time it takes to transmit 96 
bits of raw data on the medium), which is 9.6 μs for 10 Mbps Ethernet, 960 ns for 100 Mbps 
(fast) Ethernet, 96 ns for 1 Gbps (gigabit) Ethernet, and 9.6 ns for 10 Gbps (10 gigabit) Ethernet. 

The Ethernet specification for a bus-based design allows no more than 1,024 hosts and it can span 
only a geographic area of 2,500 m. Table 1-4 lists some important parameters of the Ethernet 
MAC protocol for different data rates of the physical sublayer. 

Evolution of Ethernet 

Ethernet has evolved over the past 35 years since it was invented. This evolution was shaped by 
physical characteristics of communication links, such as data rate, duplexity (half or full duplex), 
and multiplicity of the medium (i.e., point-to-point or shared broadcast). Ethernet operation is 
specified for data rates from 1 Mbps to 10 Gbps using a common MAC protocol (CSMA/CD). In 
1997, IEEE Std 802.3x specified full duplex operation. The CSMA/CD MAC protocol specifies 
shared medium (half duplex) operation where frame collisions can occur, as well as full duplex 
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Figure 1-60: Thin coaxial cable Ethernet represents a bus-based design. 
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operation that operates without collisions. Ethernet Physical Sublayer (PHY) is standardized for 
operation over coaxial, twisted-pair or fiber-optic cables. 

Ethernet was first standardized for operation over coaxial cables (Figure 1-60). A cable (ether) 
with multiple devices attached to it in parallel is called a multidrop cable. This is also known as 
bus-based design for Ethernet. The multidrop cable with all stations attached to it are called a 
collision domain. If two or more stations in a collision domain transmit simultaneouly, their 
frames will collide and will not be successfully received. First appeared the so-called Thick 
Ethernet (or, 10Base5) which used a thick coaxial cable with markings to show where 
transcievers can be screwed onto the cable (2.5 meters apart). The second cable type was Thin 
Ethernet (or, 10Base2), which used standard BNC connectors to form T-junctions on the 
carrier cable (Figure 1-60). Multidrop-cable Ethernets were followed by a star-patterned 
wiring, where all computers in the LAN have a cable running to a central hub and 
incident spokes (Figure 1-61). Historically, the first instance of this design is 10Base-T. 
The Ethernet version notation consists of three parts, as follows: 

Data rate 
(e.g., 10 Mbps, 10 Gbps) 

Baseband/Broadband 
transmission 

Wiring type (e.g., coaxial, 
twisted pair or fiber optic) 

For example, 10Base-T means 10 Mbps baseband transmission over unshielded twisted-pair cable 
(Category 5 UTP); 10GBase-X means 10 Gbps baseband over two pairs of twisted-pair cable. 

Computer

Ethernet hub / bridge / switch

Computer Computer

Network
port

Twisted pair
cable

Computer

Ethernet hub / bridge / switch

Computer Computer

Network
port

Twisted pair
cable

 

Figure 1-61: Bridged or switched Ethernet represents a star-based (hub-and-spokes) design.
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The star design in Figure 1-61 has many variations, depending on whether the central device 
operates at the physical layer (OSI Layer 1) or at the link layer (OSI Layer 2) and whether the 

File Server
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Ethernet Hub
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(c)

(b)
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Figure 1-62: Comparing bus-based multidrop-cable Ethernet (a), hub-based Ethernet (b)
and switch-based Ethernet (c). Dotted ovals indicate independent collision domains. 
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links are half duplex or full duplex. The central device was historically first called bridge. In the 
simplest version, the bridge is called hub or repeater and it operates at the physical layer in a 
half-duplex mode. A hub does not understand anything beyond bits, i.e., does not recognize 
frames or knows about device addresses. It simply switches bits that come in one network 
interface (or, port) to all other interfaces. The whole network forms a single collision domain, so 
conceptually this design is equivalent to a bus-based design. 

A more spohisticated bridge is known as a switch, but the term “bridge” is also often used 
synonymously. An Ethernet switch moves frames from input to output ports based on their Layer-
2 destination addresses (described above as MAC-48 addresses). In other words, unlike a hub 
which switches bits to all interfaces, a switch switches a frame exclusively to a port determined 
by the frame’s destination address. 

Figure 1-62 illustrates the difference between hubs and switches. Ethernet hubs (Figure 1-62(b)) 
are conceptually equivalent to the bus-based Ethernet (Figure 1-62(a)) because both designs form 
a single collision domain. Conversely, each network port of an Ethernet switch forms an 
independent collision domain (Figure 1-62(c)). With switch-based design, each cable has only 
two stations attached: on one end is a switch’s port and on the other end is a computer host. This 
is essentially a point-to-point link, but collisions are still possible between the endpoints and 
CSMA/CD must be employed. More detail on Ethernet switches is provided later in this section. 

Figure 1-63 summarizes the current family of Ethernet protocols. The figure also indicates 
whether the physical sublayer has the ability to perform full-duplex link transmission and 
reception, which is described next. 

Full-duplex Mode and Collision-free Ethernet 

Traditionally, Ethernet MAC sublayer implements the CSMA/CD algorithm, which creates a 
half-duplex link. In half-duplex mode, media access method is the means by which two or more 
stations share a common transmission medium (broadcast). To transmit, a station waits (defers) 
for a quiet period on the medium (that is, no other station is transmitting) and then sends the 
intended message in bit-serial form. If, after initiating a transmission, the message collides with 

10 Mbps PHY
IEEE Std 802.3-1985

802.3a, 802.3i, …

100 Mbps PHY
IEEE Std 802.3u

1000 Mbps PHY
IEEE Std 802.3z

10 Gbps PHY
IEEE Std 802.3ae

10Base2*, 10Base5*, 
10Base-F, 10Base-FB, 
10Base-FL, 10Base-FP, 
10Base-T

100Base-T, 100Base-T2, 
100Base-T4*, 100Base-TX, 
100Base-X, 100Base-BX10, 
100Base-FX, 100Base-LX10

1000Base-T, 1000Base-X, 
1000Base-BX10

10GBase-E, 10GBase-L, 
10GBase-R, 10GBase-S, 
10GBase-T, 10GBase-W, 
10GBase-X

(*) Not capable of operating in full duplex mode

IEEE 802.3 MAC
(CSMA/CD)

Figure 1-63: Ethernet standards family for IEEE Std 802.3-2008 (current). 
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that of another station, then each transmitting station intentionally transmits for an additional 
predefined period to ensure propagation of the collision throughout the system. The station 
remains silent for a random amount of time (backoff) before attempting to transmit again. 

Ethernet 802.3 standard provides for two modes of operation of the MAC sublayer: 

(a) In half-duplex mode, stations contend for the use of the physical medium, using the 
CSMA/CD algorithms specified. This is the traditional CSMA/CD contention-based 
operation. Bidirectional communication is accomplished by sequential exchange of 
frames, rather than simultaneous transmission in both directions. Half-duplex operation 
is possible on all supported media; it is required on those media that are incapable of 
supporting simultaneous transmission and reception without interference, such as 
10Base2 and 100Base-T4 (Figure 1-63). 

(b) The full-duplex mode of operation allows simultaneous communication between a pair 
of stations using point-to-point media (dedicated channel). Full-duplex operation does 
not require that transmitters defer, nor do they monitor or react to receive activity 
(“collision detection”), as there is no contention for a shared medium in this mode. Full-
duplex operation can be used when all of the following are true: 

1) The physical medium is capable of supporting simultaneous transmission and 
reception without interference (Figure 1-63). 

2) There are exactly two stations connected with a full duplex point-to-point link. 
Because there is no contention for use of a shared medium, the multiple access (i.e., 
CSMA/CD) algorithms are unnecessary. 

3) Both stations on the LAN are capable of, and have been configured to use, full 
duplex operation. 

The most common configuration envisioned for full-duplex operation consists of a central switch 
(or, bridge) with a dedicated LAN connecting each switch port to a single station. Ethernet hubs 
or repeaters are outside the scope of full duplex operation. By definition, an IEEE 802.3 LAN 
operating in full-duplex mode comprises exactly two stations, so full-duplex mode creates an 
Ethernet point-to-point link. 

An Ethernet device operates in either half or full duplex mode at any one time. A device is 
configured for one specific mode of operation (e.g. 1000Base-X Full Duplex). Auto-Negotiation 
is performed as part of the initial set-up of the link, and allows the PHYs at each end to advertise 
their capabilities (speed, PHY type, half or full duplex) and to automatically select the operating 
mode for communication on the link. The term “CSMA/CD MAC” is used synonymously with 
“802.3 MAC,” and may represent an instance of either a half duplex or full duplex mode device, 
although full-duplex devices do not implement the traditional CSMA/CD algorithm. In full-
duplex mode, stations do not implement the CSMA/CD algorithms traditionally used to arbitrate 
access to shared-media LANs. Full-duplex operation constitutes a proper subset of the MAC 
functionality required for half-duplex operation. 

 

The current Ethernet standard (IEEE Std 802.3-2008) 
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Ethernet Switches 

An Ethernet switch consists of a high-speed backplane and a number of plug-in line cards, 
typically 4 to 32 (Figure 1-64). Each line card contains one or more (e.g., eight) network ports or 
connectors. A twisted pair cable leads from each connector to a host computer. When a computer 
sends a frame, the frame first reaches an associated line card, which checks whether the frame is 
destined to a station connected to the same card. If so, the frame is copied to the given 
port/connector on this line card. If not, the frame is sent over the backplane to the destination 
computer’s line card. The backplane typically runs at data rates of many Gbps, using a 
proprietary protocol. More about switch design is available in Section 4.1. 

A hub or repeater transmits a frame on an output port while it is being received on an input port. 
This is known as cut-through switching. Unlike a hub/repeater, a switch or bridge first receives 
the entire frame then stores it, waiting for the network attached to the frame’s outgoing port to 
become idle. This is known as store-and-forward switching. With store-and-forward switching, it 
is possible for two stations on different ports of the switch to transmit simultaneously without a 
collision. We say that switch ports form independent collision domains (Figure 1-62). 

Backplane

Ethernet switch

To a host
computer

Network ports

Line cards

 

Figure 1-64: Ethernet switch architecture. 
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As already pointed out, switches switch packets based on their link-layer (or, MAC) addresses, 
i.e., switches operate at OSI Layer-2. They are also known as LAN switches. In Section 1.4 we 
also learned about another kind of switches: routers. Routers switch packets based their network-
layer addresses, i.e., switches operate at OSI Layer-3. Routers are more complex because they 
need to run routing protocols to discover the topology of the entire internetwork consisting of 
many networks. It is also said that LAN switches are transparent to the computers in the network. 
Unlike routers, where nodes know of the next-hop routers, LAN nodes are unaware of 
intermediate switches and their forwarding role. When a computer sends a frame, the frame is 
addressed to another computer, rather than addressing the frame to a switch. The frame will pass 
through a switch when going from one LAN segment to another without the switch identifying 
itself as the device that transmitted the frame to the next segment. Therefore, switches are 
transparent to each other, as well. Routers are described in Section 4.1. 

LAN switches perform two basic functions: frame forwarding and frame filtering. Frame 
forwarding helps move a frame toward its ultimate destination. A switch moves a frame from an 
input port to an output port based on frame’s MAC address by looking up the switching table. 
The switching table is similar to a router’s forwarding table. Consider a network in Figure 1-65. 
The switching table of the switch is shown in Table 1-5. The MAC addresses of stations A, B, and 
D are listed in the table. For example, if a frame arrives on Port-2 destined for MAC address 00-
01-03-1D-CC-F7 (station A), the switch outputs the frame on Port-1. If a frame arrives on Port-1 
destined for 49-BD-2F-54-1A-0F (station C), which is currently not listed in the switching table, 
the switch will output the frame to all other ports. In this example, Port-2 is the only other port. 

SwitchA

B

C

D

Port 2

Port 1

Network 1

Network 2

A3-B0-21-A1-60-35

MAC address:
00-01-03-1D-CC-F7

01-23-45-67-89-AB

49-BD-2F-54-1A-0F

 

Figure 1-65: Example Ethernet networks connected by an Ethernet switch. 

Table 1-5: The switching table for the example LAN in Figure 1-65. 

MAC address Network port Time last frame received 

00-01-03-1D-CC-F7 1 10:39 

01-23-45-67-89-AB 1 10:52 

A3-B0-21-A1-60-35 2 10:17 
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Frame filtering relates to discarding frames that are headed in a direction where they do not need 
to go. For example, if in Figure 1-65 a frame arrives on Port-2 with the destination address 00-01-
03-1D-CC-F7 (station A), then according to Table 1-5 this frame should be output on Port-1. On 
the other hand, assume that a frame arrives on Port-2 with the destination address A3-B0-21-A1-
60-35. The switch realizes that it is a station on a network segment attached on Port-2 sending a 
frame to another station on the same segment. In our case, it is station C sending a frame to 
station D. There is no need to forward this frame because all other stations on the same segment 
already received this frame, so the switch filters this frame and discards it. 

The switching table can be filled up manually, but this is a tedious and error-prone task for large 
number of stations. Instead, the switch performs backward learning of the switching table. 
Initially, the table is empty. When the switch receives a frame from a station for which it has no 
address in the table, the switch automatically creates a new entry. The entry records the MAC 
address in the frame’s Source address field (Figure 1-59), the network port on which the frame 
arrived, and the time of the arrival. If every station on all attached networks sends a frame, then 
every station will eventually be recorded in the table. The parameter called aging time 
determines how long the table entries are valid. If the switch does not receive a frame with a 
given address as its source address, the entry will be deleted from the table. For example, in Table 
1-5 a frame with source address A3-B0-21-A1-60-35 (station D Figure 1-59) arrived last time at 
10:17 on Port-2. Suppose that the aging time for this switch is 50 minutes. If no frame arrives 
with source address A3-B0-21-A1-60-35 arrives until 11:07, the switch will remove the entry for 
station D from the table. In this way, if a computer is unplugged or moved around the building 
and plugged in again somewhere else, the network can operate without manual intervention. 

Consider now the network in Figure 1-66. The two switches connect the two networks via two 
alternative paths, thus forming a loop (or, cycles) in the topology. This may happen by accidence, 
if the network administrator is not careful when upgrading the network, or it may be done 
purposefully to provide for alternate paths in case of switch failures (fault tolerance by 
redundancy). Let us assume that the switching tables of both switches are as in Table 1-5 and that 
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Figure 1-66: Example switched network with a loop formed by two switches. 
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station C sends a frame to another station (the destination to which C sends is irrelevant for this 
example). The frame will arrive on both switches on Port-2, and each switch will record in its 
switching table that C arrived on Port-2 (resides on Network 2) and enqueue the frame for 
forwarding on its Port-1 (Figure 1-67(a)). Let us say that Switch 1 is the first to seize the access to 
the medium and succeed in relaying the frame to Network 1. Because switches are transparent to 
each other, the frame will appear on Port-1 of Switch 2 exactly as if transmitted by station C. 
Switch 2 will record in its table that C arrived on Port-1 (as if C now resides on Network 1!) and 
enqueue the frame for forwarding on its Port-2 (Figure 1-67(b)). Next, suppose that Switch 2 
succeeds in transmitting its first received frame onto Network 1 (Figure 1-67(c)). Switch 1 will 
record that C moved to Port-1 and enqueue the frame on its Port-2. Figure 1-67(d) shows one 
more iteration, where Switch 2 transmits its second received frame onto Network 2, but this 
process continues to infinity. Notice also that during this process any frames from other stations 
heading to station C may be misdirected and eventually discarded. 

The solution to this problem is to remove the loops, which produces a tree from a general graph. 
A spanning tree of a graph is a subgraph of this graph that connects (spans) all the nodes, but 
contains no cycles. That is, a spanning tree keeps all the nodes of the original graph, but removes 
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Figure 1-67: Packet proliferation in the network with a loop in Figure 1-66. 
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some links. In terms of Ethernet networks, each LAN segment corresponds to a graph node, and 
each switch corresponds to a link in the graph. A spanning tree of a network can be derived 
automatically using the spanning tree protocol (STP), specified in the IEEE 802.1D standard. 

Each switch in the network sends a configuration message on all of its attached networks, which 
includes the MAC address of the switch. The switches use the Spanning Tree Protocol to compute 
the spanning tree, which has these five steps: 

1. Elect a root switch. The switches choose one switch as the root switch of the spanning tree. 
The choice is the switch with the smallest (lowest) identifier. Each switch has a unique identifier 
(its MAC address) and a configurable priority number; the switch ID contains both numbers. To 
compare two IDs, the priority is compared first. If two switches have equal priority, then their 
MAC addresses (48-bit binary numbers) are compared and the switch with the smaller address is 
chosen as the root switch. Of course, before configuration messages from all switches are 
received, some switches may have made incorrect choices due to insufficient information. The 
root switch always forwards frames out over all of its ports. 

2. Compute the shortest path to the root. Each switch determines the cost of each possible path 
from itself to the root. From these paths, it selects one with the smallest cost (shortest path). The 
port connecting to that path becomes the root port of the switch. The cost of traversing a path is 
the sum of the costs of the LAN segments on the path. Different technologies have different 
default costs for LAN segments. A common approach is to assign to each segment the cost of 1 
(i.e., one hop). All shortest paths form a spanning tree. 

3. Determine any designated ports. All switches on a LAN segment collectively decide which 
one among them has the shortest path to the root. The elected switch becomes the designated 
switch that will be responsible for forwarding frames from this LAN segment toward the root 
switch. The port connecting the designated switch to the given LAN segment becomes a 
designated port of the switch. A switch may have no designated ports or may have more than one 
designated port (because each switch is connected to several LAN segments). 

4. Disable all other ports. Every switch blocks all of its active ports that do not qualify as a root 
port or a designated port. In case there are ties, go to the next step. 

5. Resolve the ties. It may happen that two or more ports on a single switch are attached to 
shortest paths to the root or two or more switches on the same LAN segment have equal least-cost 
paths to the root. Such ties are broken as follows: 

5.a) Breaking ties for root ports. When multiple paths from a switch are shortest paths, the 
chosen path uses the neighbor switch with the lower identifier. The root port is thus the one 
connecting to the switch with the lowest identifier. 

5.b) Breaking ties for designated ports. When more than one switch on a segment has a shortest 
path to the root, the switch with the smaller identifier is chosen to forward messages to the root. 
The port attaching that switch to the LAN segment is a designated port of that switch. A loser 
switch sets the port to the given LAN segment as being blocked. 

5.c) The final tiebreaker. In some cases, there may still be a tie, as when two switches are 
connected by multiple cables. In this case, multiple ports on a single switch are candidates for 
root port. The path that passes through the port on the neighbor switch that has the lowest port 
priority is used. 
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The switches run the STP protocol iteratively and exchange configuration messages containing 
this information: 

(1) The identifier for the switch sending the message (includes the MAC address and a 
configurable priority number); 

(2) The identifier for what the sending switch believes to be the root switch; 

(3) The distance (measured in hops) from the sending switch to the root switch. 

Initially, each switch thinks it is the root, and so it sends a configuration message out on each of 
its ports identifying itself as the root, with a distance to the root valued at 0. When a switch 
receives a message on a particular port, the switch checks if this message is better than the best 
configuration message previously recorded for this port. The message is considered “better” if: 

• It identifies a root with a smaller identifier, or 

• It identifies the same root but with a shorter distance (lower cost path), or 

• It identifies the same root and distance, but the sending switch has a smaller identifier. 

When a switch decides that it is not the root switch, it stops sending own configuration messages 
and only forwards messages from other switches. Similarly, when a switch decides that it is not 
the designated switch for a given LAN segment, it stops sending configuration messages over the 
port attached to this segment. When the system stabilizes, only the root switch will be generating 
configuration messages and all the other switches will be forwarding these messages only over 
the ports for which they are the designated switch. 

1.5.3 Wi-Fi (IEEE 802.11) 

Problems related to this section: Problem 1.44 → Problem 1.45 

IEEE 802.11, also known as Wi-Fi, … 

Architecture and Basics 

The basic building block of an IEEE 802.11 network is the basic service set (BSS), which is 
simply a set of stations that communicate with one another. A BSS does not generally refer to a 

Independent BSS
(or, IBSS) Infrastructure BSS

Access
point

Distribution system (e.g., Ethernet LAN)

 

Figure 1-68: IEEE 802.11 (Wi-Fi) independent and infrastructure basic service sets (BSSs).
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particular area, due to the uncertainties of electromagnetic propagation. There are two types of 
BSS, as shown in Figure 1-68. When all of the stations in the BSS are mobile stations and there is 
no connection to a wired network, the BSS is called an independent BSS (or, IBSS). The IBSS is 
the entire network and only those stations communicating with each other in the IBSS are part of 
the LAN. This type of network is called an ad hoc network (see Chapter 6). 

When all of the mobile stations in the BSS communicate with an access point (AP), the BSS is 
called an infrastructure BSS (never called an IBSS!). This configuration is also known as 
wireless local area network or W-LAN. The access point provides both the connection to the 
wired LAN (wireless-to-wired bridging), if any, and the local relay function for all stations in its 
BSS. Therefore, if one mobile station in the BSS must communicate with another mobile station, 
the packet is sent first to the AP and then from the AP to the other mobile station. This causes 
communications to consume more transmission capacity than in the case where the 
communications are directly between the source and the destination (as in the IBSS). However, in 
many cases the benefits provided by the AP outweigh the drawbacks. One of the benefits 
provided by the AP is that the AP can assist the mobile stations in saving battery power. The 
mobile stations can operate at a lower power, just to reach the AP, and not worry about how far 
away is the destination host. Also, the AP can buffer (temporarily store) the packets for a mobile 
station, if the station is currently in a power saving mode. 

Extended service set (ESS) extends the range of mobility from a single infrastructure BSS 
Figure 1-68(b) to an arbitrary range by interconnecting a set of infrastructure BSSs (Figure 1-69). 
In ESS, multiple APs communicate among themselves to forward traffic from one BSS to another 
and to facilitate the roaming of mobile stations between the BSSs. This is conceptually similar to 
the cellular telephony network. The APs perform this communication via the distribution system, 
such as an Ethernet-based wireline network. The stations in an ESS see the wireless medium as a 
single link-layer connection. ESS is the highest-level abstraction supported by 802.11 networks. 
Roaming between different ESSs is not supported by IEEE 802.11 and must be supported by a 
higher-level protocol, e.g., Mobile IP (Section 8.3.4). 

Wi-Fi supports dynamic data-rate adaptation to the current conditions of the wireless channel 
(Figure 1-70). The goal is to select the rate that minimizes the errors due to the channel noise. 
This behavior is not implemented in Ethernet, which operates over wire media, where channel 

Distribution system (e.g., Ethernet LAN)

t = 1 t = 2

BSS1 BSS2 BSS3

AP3AP2AP1

 

Figure 1-69: IEEE 802.11 (Wi-Fi) extended service set (ESS) allows connecting multiple
access points to support long-range roaming. 
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conditions are stable and error rate is low. In Ethernet, the physical data rate is pre-configured and 
does not change at runtime (compare to Figure 1-63). 

Figure 1-71 shows the 802.11 frame format. The general MAC-layer format (Figure 1-71(a)) is 
used for all data and control frames, but not all fields are used in all types of frames. There can be 
up to four address fields in an 802.11 frame. When all four fields are present, the address types 
include source, destination, transmitting station, and receiving station. The first two represent the 
end nodes and the last two may be intermediary nodes. 802.11 uses the same MAC-48 address 
format as Ethernet (Section 1.5.2). One of the fields could also be the BSS identifier, which is 
used in the probe request and response frames, used when mobile stations scan an area for 
existing 802.11 networks. 

The Duration/Connection-ID field indicates the time (in microseconds) the channel will be 
reserved for successful transmission of a data frame. The stations that receive this frame, but are 
not intended receivers, use this information to defer their future transmissions until this 
transmission is completed. The deferral period is called network allocation vector (NAV), and 
we will see later in Figure 1-77 how it is used. In some control frames, this field contains a 
network association, or connection identifier. 

The 802.11 physical-layer frame (Figure 1-71(b)) is known as PLCP protocol data unit (PPDU), 
where PLCP stands for “physical (PHY) layer convergence procedure.” The version shown in 
Figure 1-71(b) is known as Long PPDU format. A preamble is a bit sequence that receivers 
watch for to lock onto the rest of the frame transmission. There are two different preamble and 
header formats defined for 802.11 physical-layer frames. The mandatory supported long 
preamble and header, shown in Figure 1-71(b), is interoperable with the basic 1 Mbps and 2 
Mbps data transmission rates. There is also an optional short preamble and header (not illustrated 
here), known as Short PPDU format. This format is used at higher transmission rates to reduce 
the control overhead and improve the network performance. (More discussion is provided in 
Chapter 6.) 

IEEE 802.11 MAC

1 Mbps PHY
(DBPSK)
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(DQPSK)

5.5 Mbps PHY
(DBPSK/CCK)

11 Mbps PHY
(DQPSK/CCK)
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2 Mbps PHY
(DQPSK)
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(DBPSK/CCK)
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(DQPSK/CCK)

802.11b Physical sublayer

 

Figure 1-70: Wi-Fi supports dynamic data-rate adaptation at the physical sublayer. This
figure shows the available rates for 802.11b. 
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Medium Access Control (MAC) Protocol 

The medium access control (MAC) protocol for IEEE 802.11 is a CSMA/CA protocol. As 
described earlier in Section 1.3.3, a CSMA/CA sender tries to avoid collision by introducing a 
variable amount of delay before starting with transmission. This is known as the access deferral 
state. The station sets a contention timer to a time interval randomly selected in the range [0, 
CW−1], and counts down to zero while sensing the carrier. If the carrier is idle when the 
countdown reaches zero, the station transmits. 

Similar to an Ethernet adapter (Section 1.5.2), a Wi-Fi adapter needs time to decide that the 
channel is idle. Again, this period is known as interframe space (IFS). However, unlike Ethernet, 
the IFS delay is not fixed for all stations to 96-bit times. Wi-Fi has an additional use of the IFS 
delay, so that it can differentiate stations of different priority. Each station must delay its 
transmission according to the IFS period assigned to the station’s priority class. A station with a 
higher priority is assigned a shorter interframe space and, conversely, lower priority stations are 
assigned longer IFSs. The idea behind different IFSs is to create different priority levels for 

bytes:       2      2             6                    6        6             2             6             2         0 to 2312                   4 
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MD = More data
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Figure 1-71: IEEE 802.11 (Wi-Fi) frame formats. (a) Link-layer (or, MAC-layer) frame
format. (b) Physical-layer frame format (also known as Long PPDU format). 
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different types of traffic. Then, high-priority traffic can wait for shorter time after the medium has 
become idle. If there is any high-priority traffic, it grabs the medium before lower-priority frames 
have a chance to try. 

Again, when a station wants to transmit data, it first senses whether the medium is busy. Two 
rules apply here: 

1. If the medium has been idle for longer than an IFS corresponding to its priority level, 
transmission can begin immediately. 

2. If the medium is busy, the station continuously senses the medium, waiting for it to 
become idle. When the medium becomes idle, the station first waits for its assigned IFS, 
and then enters the access deferral state. The station can transmit the packet if the 
medium is idle after the contention timer expires. 

To assist with interoperability between different data rates, the interframe space is a fixed amount 
of time, independent of the physical layer bit rate. There are two basic intervals determined by the 
physical layer (PHY): the short interframe space (SIFS), which is equal to the parameter β, and 
the slot time, which is equal to 2×β. To be precise, the 802.11 slot time is the sum of the physical-
layer Rx-Tx turnaround time11, the clear channel assessment (CCA) interval, the air propagation 
delay on the medium, and the link-layer processing delay. 

The four different types of IFSs defined in 802.11 are (see Figure 1-72): 

SIFS: Short interframe space is used for the highest priority transmissions, such as control frames, 
or to separate transmissions belonging to a single dialog (e.g. Frame-fragment–ACK). This 
value is a fixed value per PHY and is calculated in such a way that the transmitting station 
will be able to switch back to receive mode and be capable of decoding the incoming 
packet. For example, for the 802.11 FH PHY this value is set to 28 microseconds. 

PIFS: PCF (or priority) interframe space is used by the PCF during contention-free operation. 
The coordinator uses PIFS when issuing polls and the polled station may transmit after the 

                                                      
11 Rx-Tx turnaround time is the maximum time (in μs) that the physical layer requires to change from 

receiving to transmitting the start of the first symbol. More information about the Rx-Tx turnaround time 
is available in: “IEEE 802.11 Wireless Access Method and Physical Specification,” September 1993; doc: 
IEEE P802.11-93/147: http://www.ieee802.org/11/Documents/DocumentArchives/1993_docs/1193147.doc  
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Figure 1-72: IEEE 802.11 interframe spacing relationships. Different length IFSs are used
by different priority stations. 
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SIFS has elapsed and preempt any contention-based traffic. PIFS is equal to SIFS plus one 
slot time. 

DIFS: DCF (or distributed) interframe space is the minimum medium idle time for asynchronous 
frames contending for access. Stations may have immediate access to the medium if it has 
been free for a period longer than the DIFS. DIFS is equal to SIFS plus two slot times. 

EIFS: Extended interframe space (not illustrated in Figure 1-72) is much longer than any of the 
other interframe spaces. It is used by any station that has received a frame containing errors 
that it could not understand. This station cannot detect the duration information and set its 
NAV for the Virtual Carrier Sense (defined later). EIFS ensures that the station is prevented 
from colliding with a future packet belonging to the current dialog. In other words, EIFS 
allows the ongoing exchanges to complete correctly before this station is allowed to 
transmit. 

The values of some important 802.11b system parameters are shown in Table 1-6. The values 
shown are for the 1Mbps channel bit rate and some of them are different for other bit rates. 

Table 1-6: IEEE 802.11b system parameters. (PHY preamble serves for the receiver to 
distinguish silence from transmission periods and detect the beginning of a new packet.) 

Parameter  Value for 1 Mbps channel bit rate 

Slot time 20 μsec 
SIFS 10 μsec 
DIFS 50 μsec               (DIFS = SIFS + 2 × Slot time) 
EIFS SIFS + PHY-preamble + PHY-header + ACK + DIFS = 364 μsec 
CWmin 32               (minimum contention window size) 
CWmax 1024           (maximum contention window size) 
PHY-preamble 144 bits   (144 μsec) 
PHY-header 48 bits     (48 μsec) 
MAC data header 28 bytes = 224 bits 
ACK 14 bytes + PHY-preamble + PHY-header = 304 bits   (304 μsec) 
RTS 20 bytes + PHY-preamble + PHY-header = 352 bits   (352 μsec) 
CTS 14 bytes + PHY-preamble + PHY-header = 304 bits   (304 μsec) 
MTU* Adjustable, up to 2304 bytes for frame body before encryption 
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Figure 1-73: IEEE 802.11 basic transmission mode is a based on the stop-and-wait ARQ.
Notice the backoff slot countdown during the contention period. 
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(*) The Maximum Transmission Unit (MTU) size specifies the maximum size of a physical 
packet created by a transmitting device. The reader may also encounter the number 2312 
(as in Figure 1-71(a)), which is the largest WEP encrypted frame payload (also known as 
MSDU, for MAC Service Data Unit). Also, 2346 is the largest frame possible with WEP 
encryption and every MAC header field in use (including Address 4, see Figure 1-71(a)). In 
practice, MSDU size seldom exceeds 1508 bytes because of the need to bridge with 
Ethernet. 

An example of a frame transmission from a sender to a receiver is shown in Figure 1-73. Notice 
that even the units of the atomic transmission (data and acknowledgement) are separated by SIFS, 
which is intended to give the transmitting station a short break so it will be able to switch back to 
receive mode and be capable of decoding the incoming (in this case ACK) packet. 

The state diagrams for 802.11 senders and receivers are shown in Figure 1-74. Notice that 
sender’s state diagram is based on the CSMA/CA protocol shown in Figure 1-33, with the key 
difference of introducing the interframe space. 

Here is an example: 

Example 1.6 Illustration of Timing Diagrams for IEEE 802.11 

Consider a local area network (infrastructure BSS) using the IEEE 802.11 protocol shown in Figure 
1-74. Show the timing diagrams for the following scenarios: 

ACK error-free /

Busy /

Idle /

Busy /

Idle /

Busy /

backoff == 0 /

Timeout /

backoff > 0 /

retry > retrymax /

N
ew

 p
ac

ke
t /

retry ≤ retrymax /

Idle /

ACK in error /

Sense Send End

Increase CW 
& Retry count

Wait for end of 
transmission

Wait for 
DIFS

Abort

Wait for 
DIFS

Sense

Wait for 
EIFS

1

1

1

Sense
Set

backoff

Countdown
backoff  ← backoff − 1

(a)

ACK error-free /

Busy /

Idle /

Busy /

Idle /

Busy /

backoff == 0 /

Timeout /

backoff > 0 /

retry > retrymax /

N
ew

 p
ac

ke
t /

retry ≤ retrymax /

Idle /

ACK in error /

Sense Send End

Increase CW 
& Retry count

Wait for end of 
transmission

Wait for 
DIFS

Abort

Wait for 
DIFS

Sense

Wait for 
EIFS

1

1

1

Sense
Set

backoff

Countdown
backoff  ← backoff − 1

(a)

Receive
Send 
ACK

EndWait for 
SIFS

Wait for 
EIFS

Packet in error /

Packet error-free /

(b)

Receive
Send 
ACK

EndWait for 
SIFS

Wait for 
EIFS

Packet in error /

Packet error-free /

(b)

Figure 1-74: (a) Sender’s state diagram of basic packet transmission for 802.11 MAC
protocol. Compare to Figure 1-33. In “Set backoff,” the backoff counter is set randomly to a
number ∈ {0, …, CW−1}. (b) Receiver’s state diagram for 802.11 MAC protocol. 
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(a) A single station has two frames ready for transmission on an idle channel. 

(b) A single station has one frame ready for transmission on a busy channel. The acknowledgement 
for the frame is corrupted during the first transmission. 

(c) A single station has one frame ready for transmission on a busy channel. The data frame is 
corrupted during the first transmission. 

The solutions are shown in Figure 1-75. Sender’s actions are shown above the time axis and receiver’s 
actions are shown below the time axis. A crossed block represents a loss or erroneous reception of the 
corresponding frame. 

The timing of successful frame transmissions is shown in Figure 1-75(a). If the channel is idle upon the 
packet arrival, the station transmits immediately, without backoff. However, it has to backoff for its 
own second transmission. 

Figure 1-75(b) shows the case where an ACK frame is received in error, i.e., received with an incorrect 
frame check sequence (FCS). The transmitter re-contends for the medium to retransmit the frame after 
an EIFS interval. This is also indicated in the state diagram in Figure 1-74. 

On the other hand, if no ACK frame is received within a timeout interval, due possibly to an erroneous 
reception at the receiver of the preceding data frame, as shown in Figure 1-75(c), the transmitter 
contends again for the medium to retransmit the frame after an ACK timeout. (Notice that the ACK 
timeout is much shorter than the EIFS interval; in fact, ACK_timeout = tSIFS + tACK + tslot. Check Table 
1-6 for the values.)  

 

Hidden Stations Problem 

The hidden and exposed station problems are described earlier in Section 1.3.3. A common 
solution is to induce the receiver to transmit a brief “warning signal” so that other potential 
transmitters in its neighborhood are forced to defer their transmissions. IEEE 802.11 extends the 
basic access method (Figure 1-73) with two more frames: request-to-send (RTS) and clear-to-
send (CTS) frames, which are very short frames exchanged before the data and ACK frames. 
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Figure 1-75: Timing diagrams. (a) Timing of successful frame transmissions under the
DCF.  (b) Frame retransmission due to ACK failure. (c) Frame retransmission due to an
erroneous data frame reception. 
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(Frame lengths, including RTS and CTS durations, are shown in Table 1-6.) The process is shown 
in Figure 1-76. The sender first sends the RTS frame to the receiver (Figure 1-76(a)). If the 
transmission succeeds, the receiver responds by outputting another short frame (CTS). The CTS 
frame is intended not only for the sender, but also for all other stations in the receiver’s range 
(Figure 1-76(b)). All stations that receive a CTS frame know that this frame signals a 
transmission in progress and must avoid transmitting for the duration of the upcoming (large) data 
frame. Through this indirection, the sender performs “floor acquisition” so it can speak 
unobstructed because all other stations will remain silent for the duration of transmission (Figure 
1-76(c)). Notice also that the frame length is indicated in each frame, which is the Duration D/I 
field of the frame header (Figure 1-71(a)). 

The 4-way handshake of the RTS/CTS/DATA/ACK exchange of the 802.11 DCF protocol 
(Figure 1-77) requires that the roles of sender and receiver be interchanged several times between 
pairs of communicating nodes, so neighbors of both these nodes must remain silent during the 
entire exchange. This is achieved by relying on the virtual carrier sense mechanism of 802.11, 
i.e., by having the neighboring nodes set their network allocation vector (NAV) values from the 
Duration D/I field specified in either the RTS or CTS frames they overhear (Figure 1-71(a)). By 
using the NAV, the stations ensure that atomic operations are not interrupted. The NAV time 
duration is carried in the frame headers on the RTS, CTS, data and ACK frames. (Notice that the 
NAV vector is set only in the RTS/CTS access mode and not in the basic access mode shown in 
Figure 1-73, because RTS/CTS perform channel reservation for the subsequent data frame.) 

The additional RTS/CTS exchange shortens the vulnerable period from the entire data frame in 
the basic method (Figure 1-73) down to the duration of the RTS/CTS exchange in the RTS/CTS 
method (Figure 1-77). If a “covered station” transmits simultaneously with the sender, they will 
collide within the RTS frame. If the hidden stations hear the CTS frame, they will not interfere 
with the subsequent data frame transmission. In either case, the sender will detect collision by the 
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Figure 1-76: IEEE 802.11 protocol is augmented by RTS/CTS frames for hidden stations. 
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lack of the CTS frame. If a collision happens, it will last only a short period because RTS and 
CTS frames are very short, unlike data frames, which can be very long. This RTS/CTS exchange 
partially solves the hidden station problem but the exposed node problem remains unaddressed. 
The hidden station problem is solved only partially, because if a hidden station starts with 
transmission simultaneously with the CTS frame, the hidden station will not hear the CTS frame, 
the sender will receive the CTS frame correctly and start with the data frame transmission, and 
this will result in a collision at the receiver. (Of course, the probability of this event is very low.) 

802.11 RTS/CTS protocol does not solve the exposed station problem (Figure 1-29(b)). Exposed 
stations could maintain their NAV vectors to keep track of ongoing transmissions. However, if an 
exposed station gets a packet to transmit while a transmission is in progress, it is allowed to 
transmit for the remainder of the NAV, before the sender needs to receive the ACK. Tailoring the 
frame to fit this interval and accompanied coordination is difficult and is not implemented as part 
of 802.11. 

Recent extensions in the evolution of the 802.11 standard are described in Chapter 6. 

 

1.6 Quality of Service Overview 
 

This text reviews basic results about quality of service (QoS) in networked systems, particularly 
highlighting the wireless networks. 

The recurring theme in this text is the delay and its statistical properties for a computing system. 
Delay (also referred to as latency) is modeled differently at different abstraction levels, but the 
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key issue remains the same: how to limit the delay so it meets task constraints. A complement of 
delay is capacity, also referred to as bandwidth, which was covered in the previous volume. 
Therein, we have seen that the system capacity is subject to physical (or economic) limitations. 
Constraints on delay, on the other hand, are imposed subjectively by the task of the information 
recipient—information often loses value for the recipient if not received within a certain deadline. 

Processing and communication of information in a networked system are generally referred to as 
servicing of information. The dual constraints of capacity and delay naturally call for 
compromises on the quality of service. If the given capacity and delay specifications cannot 
provide the full service to the customer (in our case information), a compromise in service quality 
must be made and a sub-optimal service agreed to as a better alternative to unacceptable delays or 
no service at all. In other words, if the receiver can admit certain degree of information loss, then 
the latencies can be reduced to an acceptable range. 

In order to achieve the optimal tradeoff, the players (source, intermediary, and destination) and 
their parameters must be considered as shown in Figure 1-79. We first define information 
qualities and then analyze how they get affected by the system processing. 

 

Latency and information loss are tightly coupled and by adjusting one, we can control the other. 
Thus, both enter the quality-of-service specification. If all information must be received to meet 
the receiver’s requirements, then the loss must be dealt with within the system, and the user is 
only aware of latencies. 

Time is always an issue in information systems as is generally in life. However, there are 
different time constraints, such as soft, hard, as well as their statistical properties. 

We are interested in assessing the servicing parameters of the intermediate and controlling them 
to achieve information delivery satisfactory for the receiver. 

Because delay is inversely proportional to the packet loss, by adjusting one we can control the 
other. Some systems are “black box”—they cannot be controlled, e.g., Wi-Fi, where we cannot 
control the packet loss because the system parameters of the maximum number of retries 
determine the delay. In this case, we can control the input traffic to obtain the desired output. 

Source is usually some kind of computing or sensory device, such as microphone, camera, etc. 
However, it may not be always possible to identify the actual traffic source. For example, it could 
be within the organizational boundaries, concealed for security or privacy reasons. 

Figure 1-79 is drawn as if the source and destination are individual computers and 
(geographically) separated. The reality is not always so simple. Instead of computers, these may 

NetworkNetwork

packetssignals

Figure 1-78: Conceptual model of multimedia information delivery over the network. 
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be people or organizations using multiple computers, or they could be networks of sensors and/or 
actuators. 

Users exchange information through computing applications. A distributed application at one end 
accepts information and presents it at the other end. Therefore, it is common to talk about the 
characteristics of information transfer of different applications. These characteristics describe the 
traffic that the applications generate as well as the acceptable delays and information losses by 
the intermediaries (network) in delivering that traffic. We call traffic the aggregate bitstreams 
that can be observed at any cut-point in the system. 

The information that applications generate can take many forms: text, audio, voice, graphics, 
pictures, animations, and videos. Moreover, the information transfer may be one-way, two-way, 
broadcast, or multipoint. 

Traffic management is the set of policies and mechanisms that allow a network to satisfy 
efficiently a diverse range of service requests. The two fundamental aspects of traffic 
management, diversity in user requirements and efficiency in satisfying them, act at cross 
purposes, creating a tension that has led to a rich set of mechanisms. Some of these mechanisms 
include flow control and scheduling (Chapter 5). 

 

QoS guarantees: hard and soft 

Our primary concerns here are delay and loss requirements that applications impose on the 
network. We should keep in mind that other requirements, such as reliability and security may be 
important. When one or more links or intermediary nodes fail, the network may be unable to 
provide a connection between source and destination until those failures are repaired. Reliability 
refers to the frequency and duration of such failures. Some applications (e.g., control of electric 
power plants, hospital life support systems, critical banking operations) demand extremely 
reliable network operation. Typically, we want to be able to provide higher reliability between a 
few designated source-destination pairs. Higher reliability is achieved by providing multiple 
disjoint paths between the designated node pairs. 

In this text we first concentrate on the parameters of the network players, traffic characteristics of 
information sources, information needs of information sinks, and delay and loss introduced by the 

Source DestinationIntermediary

Parameters:
• Delay constraints
• Information loss tolerance

Parameters:
• Servicing capacity
• List of servicing quality options

- Delay options
- Information loss options

Examples:
• Communication channel
• Computation server

Parameters:
• Source information rate
• Statistical characteristics

Figure 1-79: Key factors in quality of service assurance. 
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intermediaries. Then we review the techniques designed to mitigate the delay and loss to meet the 
sinks information needs in the best possible way. 

Performance Bounds 

Network performance bounds can be expressed either deterministically or statistically. A 
deterministic bound holds for every packet sent on a connection. A statistic bound is a 
probabilistic bound on network performance. For example, a deterministic delay bound of 200 ms 
means that every packet sent on a connection experiences an end-to-end, from sender to receiver, 
delay smaller than 200 ms. On the other hand, a statistical bound of 200 ms with a parameter of 
0.99 means that the probability that a packet is delayed by more than 200 ms is smaller than 0.01. 

Quality of Service 

Network operator can guarantee performance bounds for a connection only by reserving 
sufficient network resources, either on-the-fly, during the connection-establishment phase, or in 
advance. 

There is more than one way to characterize quality-of-service (QoS). Generally, QoS is the ability 
of a network element (e.g., an application, a host or a router) to provide some level of assurance 
for consistent network data delivery. Some applications are more stringent about their QoS 
requirements than other applications, and for this reason (among others), we have two basic types 
of QoS available: 

• Resource reservation (integrated services): network resources are apportioned according 
to an application’s QoS request, and subject to bandwidth management policy. 

• Prioritization (differentiated services): network traffic is classified and apportioned 
network resources according to bandwidth management policy criteria. To enable QoS, 
network elements give preferential treatment to classifications identified as having more 
demanding requirements. 

These types of QoS can be applied to individual traffic “flows” or to flow aggregates, where a 
flow is identified by a source-destination pair. Hence, there are two other ways to characterize 
types of QoS: 

• Per Flow: A “flow” is defined as an individual, unidirectional, data stream between two 
applications (sender and receiver), uniquely identified by a 5-tuple (transport protocol, 
source address, source port number, destination address, and destination port number). 

• Per Aggregate: An aggregate is simply two or more flows. Typically, the flows will have 
something in common (e.g., any one or more of the 5-tuple parameters, a label or a 
priority number, or perhaps some authentication information). 

 

1.6.1 QoS Outlook 

QoS is becoming more important with the growth of real-time and multimedia applications. 
Unlike traditional network applications, such as email or Web browsing, where data transmission 
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process is much more transparent, in real-time communications, such as phone calls, delay and 
loss problems are much more apparent to the users. IP networks are subject to much impairment, 
including: 

    * Packet loss due to network congestion or corruption of the data 

    * Variation in the amount of delay of packet delivery, which can result in poor voice quality 

    * Packets arriving out of sequence, which can result in discarded packets and cause more delay 
and disruption 

There has been a great amount of research on QoS in wireline networks, but very little of it ended 
up being employed in actual products. Many researchers feel that there is higher chance that QoS 
techniques will be actually employed in wireless networks. Here are some of the arguments: 

 

Wireline Network vs. Wireless Network 

• Deals with thousands of traffic flows, thus 
not feasible to control 

• Deals with tens of traffic flows (max 
about 50), thus it is feasible to control 

• Am I a bottleneck? • I am the bottleneck! 

• Easy to add capacity • Hard to add capacity 

• Scheduling interval ~ 1 μs • Scheduling interval ~ 1 ms, so a larger 
period is available to make decision 

 

As will be seen in Chapter 3, service quality is always defined relative to human users of the 
network. As strange as it may sound, it is interesting to point out that the service providers may 
not always want to have the best network performance. In other words, the two types of end users 
(service providers vs. customers) may have conflicting objectives on network performance. For 
example, recent research of consumer behavior [Liu, 2008] has shown that task interruptions 
“clear the mind,” changing the way buyers make decisions. The buyers who were temporarily 
interrupted were more likely to shift their focus away from “bottom-up” details such as price. 
Instead, they concentrated anew on their overall goal of getting satisfaction from the purchased 
product, even if that meant paying more. The uninterrupted buyers remained more price-
conscious. This seems to imply that those annoying pop-up advertisements on Web pages—or 
even a Web page that loads slowly—might enhance a sale! 

1.6.2 Network Neutrality vs. Tiered Services 

Network neutrality (or, net neutrality or Internet neutrality) is the principle that Internet service 
providers (ISPs) should not be allowed to block or degrade Internet traffic from their competitors 
in order to speed up their own. There is a great political debate going on at present related to this 
topic. On one hand, consumers’ rights groups and large Internet companies, such as Google and 
eBay, have tried to get US Congress to pass laws restricting ISPs from blocking or slowing 
Internet traffic. On the other hand, net neutrality opponents, such as major telecommunications 
companies Verizon and AT&T, argue that in order to keep maintaining and improving network 

Search the Web for net neutralitySearch the Web for net neutrality
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performance, ISPs need to have the power to use tiered networks to discriminate in how quickly 
they deliver Internet traffic. The fear is that net neutrality rules would relegate them to the status 
of “dumb pipes” that are unable to effectively make money on value-added services. 

Today many ISPs enforce a usage cap to prevent “bandwidth hogs” from monopolizing Internet 
access. (Bandwidth hogs are usually heavy video users or users sharing files using peer-to-peer 
applications.) Service providers also enforce congestion management techniques to assure fair 
access during peak usage periods. Consumers currently do not have influence on these policies, 
and can only “vote” by exploiting a competitive market and switching to another ISP that has a 
larger usage cap or no usage cap at all. Consider, on the other hand, a business user who is willing 
to pay a higher rate that guarantees a high-definition and steady video stream that does not pause 
for buffering. Unfortunately, currently this is not possible, because regardless of the connection 
speeds available, Internet access is still a best effort service. Some industry analysts speak about a 
looming crisis as more Internet users send and receive bandwidth intensive content. 

To discriminate against heavy video and file-sharing users, providers use what is known as deep 
packet inspection. Deep packet inspection is the act of an intermediary network node of 
examining the payload content of IP datagrams for some purpose. Normally, an intermediary 
node (router or switch) examines only link or network-layer packet headers but not the network-
layer payload. 

The Internet with its “best effort” service is not neutral in terms of its impact on applications that 
have different requirements. It is more beneficial for elastic applications that are latency-
insensitive than for real-time applications that require low latency and low jitter, such as voice 
and real-time video. Some proposed regulations on Internet access networks define net neutrality 
as equal treatment among similar applications, rather than neutral transmissions regardless of 
applications. 

See further discussion about net neutrality in Section 9.4. 

 

1.7 Summary and Bibliographical Notes 
 

This chapter covers some basic aspects of computer networks and wireless communications. 
Some topics are covered only briefly and many other important topics are left out. Practical 
implementations of the Internet protocols will be described in Chapter 8. To learn more about the 
basics of computer networking, the reader may also consult other networking books. Perhaps two 
of the most regarded introductory networking books currently are [Peterson & Davie 2007] and 
[Kurose & Ross 2010]. 

Section 1.1: Introduction 

The end-to-end principle was formulated by Saltzer et al. [1984], who argued that reliable 
systems tend to require end-to-end processing to operate correctly, in addition to any processing 
in the intermediate system. They pointed out that most features in the lowest level of a 
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communications system present costs for all higher-layer clients, even if those clients do not need 
the features, and are redundant if the clients have to reimplement the features on an end-to-end 
basis. 

Keshav [1997: Chapter 5] argued from first principles that there are good reasons to require at 
least five layers and that no more are necessary. The layers that he identified are: physical, link, 
network, transport, and application layers. He argued that the functions provided by the session 
and presentation layers can be provided in the application with little extra work. 

Early works on protocol implementation include [Clark, 1985; Hutchinson & Peterson, 1991; 
Thekkath, et al., 1993]. Clark [1985] described the upcall architecture. Hutchinson and Peterson 
[1991] described a threads-based approach to protocol implementation. [Thekkath, et al., 1993] is 
a pionerring work on user-level protocol implementation. 

RFC-2679 [Almes, et al., 1999(a)] defines a metric for one-way delay of packets across Internet 
paths. RFC-2681 [Almes, et al., 1999(b)] defines a metric for round-trip delay of packets across 
Internet paths and follows closely the corresponding metric for one-way delay described in RFC-
2679. 

Section 1.2: Reliable Transmission via Redundancy 

 

Section 1.3: Reliable Transmission by Retransmission 

Automatic Repeat reQuest (ARQ) was invented by H. C. A. van Duuren during World Ward II to 
provide reliable transmission of characters over radio [van Duuren, 2001]. A classic early paper 
on ARQ and framing is [Gray, 1972]. RFC-3366 [Fairhurst & Wood, 2002] provides advice to 
the designers for employing link-layer ARQ techniques. This document also describes issues with 
supporting IP traffic over physical-layer channels where performance varies, and where link ARQ 
is likely to be used. 

Broadcast media require medium access coordination. The earliest medium access control (MAC) 
protocol is called ALOHA. ALOHA was invented in the late 1960s by Norman Abramson and his 
colleagues at the University of Hawaii. Their goal was to use low-cost commercial radio 
equipment to connect computer users on Hawaiian Islands with a central time-sharing computer 
on the main campus. 

Another MAC protocol is called Carrier Sense Multiple Access (CSMA). This means that before 
the sender sends a packet, it senses the medium to see if it is idle. If it is, the sender transmits the 
packet. A variant of CSMA called CSMA/CD (for: Collision Detection) continues to sense the 
carrier during the transmission to detect whether a collision will happen because some other 
sender connected on the same medium is transmitting at the same time. If a collision is detected, 
then the sender will wait for a random period of time before transmitting again. 
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Section 1.4: Routing and Addressing 

IP version 4 along with the IPv4 datagram format was defined in RFC-791. Currently there is a 
great effort by network administrators to move to the next generation IP version 6 (IPv6), 
reviewed in Section 8.1. 

Path MTU Discovery for IP version 4 is described in RFC-1191, and for IPv6 in RFC-1981. 

Internet routing protocols are designed to rapidly detect failures of network elements (nodes or 
links) and route data traffic around them. In addition to routing around failures, sophisticated 
routing protocols take into account current traffic load and dynamically shed load away from 
congested paths to less-loaded paths. 

The original ARPAnet distance vector algorithm used queue length as metric of the link cost. 
That worked well as long everyone had about the same line speed (56 Kbps was considered fast 
at the time). With the emergence of orders-of-magnitude higher bandwidths, queues were either 
empty or full (congestion). As a result, wild oscillations occurred and the metric was not 
functioning anymore. This and other reasons caused led to the adoption of Link State Routing as 
the new dynamic routing algorithm of the ARPAnet in 1979. 

The first link-state routing concept was invented in 1978 by John M. McQuillan [McQuillan et 
al., 1980] as a mechanism that would calculate routes more quickly when network conditions 
changed, and thus lead to more stable routing. 

When IPv4 was first created, the Internet was rather small, and the model for allocating address 
blocks was based on a central coordinator: the Internet Assigned Numbers Authority 
(http://iana.org/). Everyone who wanted address blocks would go straight the central authority. As 
the Internet grew, this model became impractical. Today, IPv4’s classless addressing scheme 
(CIDR) allows variable-length network IDs and hierarchical assignment of address blocks. Big 
Internet Service Providers (ISPs) get large blocks from the central authority, then subdivide them, 
and allocate them to their customers. In turn, each organization has the ability to subdivide further 
their address allocation to suit their internal requirements. 

In Section 1.4.4, it was commented that CIDR optimizes the common case. Optimizing the 
common case is a widely adopted technique for system design. Check, for example, [Keshav, 
1997, Section 6.3.5] for more details and examples. Keshav [1997] also describes several other 
widely adopted techniques for system design. 

The IANA (http://iana.org/) is responsible for the global coordination of the DNS Root (Section 
8.4), IP addressing, Autonomous System numbering (RFC-1930, RFC-4893), and other Internet 
protocol resources. It is operated by the Internet Corporation for Assigned Names and Numbers, 
better known as ICANN. 

In Section 1.4.5, we saw how the global Internet with many independent administrative entities 
creates the need to reconcile economic forces with engineering solutions. A routing protocol 
within a single administrative domain (or, Autonomous System) just needs to move packets as 
efficiently as possible from the source to the destination. Unlike this, a routing protocol that spans 
multiple administrative domains (or, Autonomous Systems) must allow them to implement their 
economic preferences. In 1980s when NSFNet provided the backbone network (funded by the US 
National Science Foundation), and the whole Internet was organized in a single tree structure 
with the backbone at the root. The backbone routers exchanged routing advertisement over this 
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tree topology using a routing protocol called Exterior Gateway Protocol (EGP), described in 
RFC-904. In the early 1990s, the Internet networking infrastructure opened up to competition in 
the US, and a number of ISPs of different sizes emerged. The evolution of the Internet from a 
singly-administered backbone to its current commercial structure made EGP obsolete, and it is 
now replaced by BGP (Section 8.2.3). Bordering routers (called speaker nodes) implement both 
intra-domain and inter-domain routing protocols. Inter-domain routing protocols are based on 
path vector routing. Path vector routing is discussed in RFC-1322 (http://tools.ietf.org/html/rfc1322) 

[Berg, 2008] introduces the issues about peering and transit in the global Internet. [Johari & 
Tsitsiklis, 2004]. [He & Walrand, 2006] present a generic pricing model for Internet services 
jointly offered by a group of providers and propose a fair revenue-sharing policy based on the 
weighted proportional fairness criterion. [Shrimali & Kumar, 2006] develop game-theoretic 
models for Internet Service Provider peering when ISPs charge each other for carrying traffic and 
study the incentives under which rational ISPs will participate in this game. [Srinivas & Srikant, 
2006] study economics of network pricing with multiple ISPs. 

Section 1.5: Link-Layer Protocols and Technologies 

IEEE 802.2 is the IEEE 802 standard defining Logical Link Control (LLC). The standard is 
available online here: http://standards.ieee.org/getieee802/802.2.html. Both Ethernet (802.3) and 
Wi-Fi (802.11) have different physical sublayers and MAC sublayers but converge on the same 
LLC sublayer (i.e., 802.2), so they have the same interface to the network layer. 

The IETF has defined a serial line protocol, the Point-to-Point Protocol (PPP), in RFC-1661 
[Simpson, 1994] (see also RFC-1662 and RFC-1663). RFC-1700 and RFC-3232 define the 16-bit 
protocol codes used by PPP in the Protocol field (Figure 1-56). PPP uses HDLC (bit-synchronous 
or byte synchronous) framing. High-Level Data Link Control (HDLC) is a link-layer protocol 
developed by the International Organization for Standardization (http://www.iso.org/). The current 
standard for HDLC is ISO-13239, which replaces previous standards. The specification of PPP 
adaptation for IPv4 is RFC-1332, and the IPv6 adaptation specification is RFC-5072. Current use 
of the PPP protocol is in traditional serial lines, authentication exchanges in DSL networks using 
PPP over Ethernet (PPPoE) [RFC-2516], and in the Digital Signaling Hierarchy (generally 
referred to as Packet-on-SONET/SDH) using PPP over SONET/SDH [RFC-2615]. 

Ethernet was originally developed at Xerox’s Palo Alto Research Center (PARC) in 1973 to 1975 
by Robert Metcalfe and David Boggs. The name “Ethernet” refers to the cable (the ether) and it 
originates from the luminiferous ether, through which electromagnetic radiation was once thought 
to propagate. Network hosts on an Ethernet network use a MAC protocol based on CSMA/CD to 
coordinate their access to the broadcast medium. As a historic curiosity, in March 1974, Robert Z. 
Bachrach wrote a memo to Metcalfe and Boggs and their management, stating that “technically 
and conceptually there is nothing new in your proposal” and that “analysis would show that your 
system would be a failure.” However, this simple technology pretty much blew away any 
sophisticated technologies that competed with it over more than thirty years. (Check also Mr. 
Bachrach’s response here:  
http://www.reddit.com/comments/1xz13/in_1974_xerox_parc_engineers_invented_ethernet). 

Digital Equipment Corporation (DEC), Intel, and Xerox published the Ethernet Version 1.0 
standard in 1978 for a 10-Mbps version of Ethernet, called the DIX standard. In September 
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1980, the IEEE 802.3 working group released a draft standard 802.3 of the 10-Mbps version of 
Ethernet, with some minor changes from the DIX standard. In 1982, DEC, Intel, and Xerox 
published Ethernet Version 2.0 or Ethernet II. Meanwhile, the IEEE draft standard was 
approved in 1983 and was subsequently published as an official standard in 1985 (ANSI/IEEE 
Std 802.3-1985). Although there are some minor differences between the two technologies, the 
terms Ethernet and 802.3 are generally used synonymously. Since then, a number of 
supplements to the standard have been defined to take advantage of improvements in the 
technologies and to support additional communication media and higher data rate capabilities, 
plus several new optional medium access control features. The latest version of the 802.3 
standard is available online at: http://standards.ieee.org/getieee802/802.3.html.  

Ethernet’s collision detection does severely limit practical throughput on loaded, unswitched 
networks. As a result, almost no one uses unswitched networks anymore, and full duplex Gigabit 
Ethernet does not support unswitched operation. Basically, today’s modern, high speed Ethernet 
connections are synchronized connections that can use the full bandwidth of the wire without 
worrying about collisions. 

The IEEE Std 802.11 is a wireless local area network specification. [Crow, et al., 1997] 
discusses IEEE 802.11 wireless local area networks. In fact, 802.11 is a family of evolving 
wireless LAN standards. The 802.11n specification is described in this book in Section 6.3.1. The 
latest version of the 802.11 standard is available online at:  
http://standards.ieee.org/getieee802/802.11.html.  

 

Raj Jain, “Books on Quality of Service over IP,”  
Online at: http://www.cse.ohio-state.edu/~jain/refs/ipq_book.htm  

Useful information about QoS can be found here: 

Leonardo Balliache, “Practical QoS,” Online at: http://www.opalsoft.net/qos/index.html  
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Problems 
 

Note: Look for problem solutions on the back of this book, starting on page Error! 

 

Problem 1.1 

Suppose you wish to transmit a long message from a source to a destination over a network path 
that crosses two routers. Assume that all communications are error free and no 
acknowledgements are used. The propagation delay and the bit rate of the communication lines 
are the same. Ignore all delays other than transmission and propagation delays. 

(a) Given that the message consists of N packets, each L bits long, how long will it take to 
transmit the entire message? 

(b) If, instead, the message is sent as 2×N packets, each L/2 bits long, how long will it take to 
transmit the entire message? 

(c) Are the durations in (a) and (b) different? Will anything change if we use smaller or 
larger packets? Explain why yes or why no. 

 

Problem 1.2 

Suppose host A has four packets to send to host B using Stop-and-Wait protocol. If the packets 
are unnumbered (i.e., the packet header does not contain the sequence number), draw a time-
sequence diagram to show what packets arrive at the receiver and what ACKs are sent back to 
host A if the ACK for packet 2 is lost. 

Problem 1.3 

Suppose two hosts, sender A and receiver B, communicate using Stop-and-Wait ARQ method. 
Subsequent packets from A are alternately numbered with 0 or 1, which is known as the 
alternating-bit protocol. 

(a) Show that the receiver B will never be confused about the packet duplicates if and only if there 
is a single path between the sender and the receiver. 

(b) In case there are multiple, alternative paths between the sender and the receiver and 
subsequent packets are numbered with 0 or 1, show step-by-step an example scenario where 
receiver B is unable to distinguish between an original packet and its duplicates. 

Problem 1.4 

Assume that the network configuration shown in the figure below runs the Stop-and-Wait 
protocol. The signal propagation speed for both links is 2 × 108 m/s. The length of the link from 
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the sender to the router is 100 m and from the router to the receiver is 10 km. Determine the 
sender utilization. 

10 Mbps 1 Mbps

Sender ReceiverRouter  

Problem 1.5 

Suppose two hosts are using Go-back-2 ARQ. Draw the time-sequence diagram for the 
transmission of seven packets if packet 4 was received in error. 

Problem 1.6 

Consider a system using the Go-back-N protocol over a fiber link with the following parameters: 
10 km length, 1 Gbps transmission rate, and 512 bytes packet length. (Propagation speed for fiber 
≈ 2 × 108 m/s and assume error-free and full-duplex communication, i.e., link can transmit 
simultaneously in both directions. Also, assume that the acknowledgment packet size is 
negligible.) What value of N yields the maximum utilization of the sender? 

Problem 1.7 

Consider a system of two hosts using a sliding-window protocol sending data simultaneously in 
both directions. Assume that the maximum frame sizes (MTUs) for both directions are equal and 
the acknowledgements may be piggybacked on data packets, i.e., an acknowledgement is carried 
in the header of a data frame instead of sending a separate frame for acknowledgment only. 

(a) In case of a full-duplex link, what is the minimum value for the retransmission timer that 
should be selected for this system? 

(b) Can a different values of retransmission timer be selected if the link is half-duplex? 

Problem 1.8 

Suppose three hosts are connected as shown in the figure. Host A sends packets to host C and host 
B serves merely as a relay. However, as indicated in the figure, they use different ARQ’s for 
reliable communication (Go-back-N vs. Selective Repeat). Notice that B is not a router; it is a 
regular host running both receiver (to receive packets from A) and sender (to forward A’s packets 
to C) applications. B’s receiver immediately relays in-order packets to B’s sender.  

   

A B C
Go-back-3 SR, N=4

 
Draw side-by-side the timing diagrams for A→B and B→C transmissions up to the time where 
the first seven packets from A show up on C. Assume that the 2nd and 5th packets arrive in error to 
host B on their first transmission, and the 5th packet arrives in error to host C on its first 
transmission. 

Discuss the merits of sending ACKs end-to-end, from destination C to source A, as opposed to 
sending ACKs independently for each individual link. 
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Problem 1.9 

Consider the network configuration as in Problem 1.8. However, this time around assume that the 
protocols on the links are reverted, as indicated in the figure, so the first pair uses Selective 
Repeat and the second uses Go-back-N, respectively. 

 A B C
SR, N=4 Go-back-3

 

Draw again side-by-side the timing diagrams for A→B and B→C transmissions assuming the 
same error pattern. That is, the 2nd and 5th packets arrive in error to host B on their first 
transmission, and the 5th packet arrives in error to host C on its first transmission. 

Problem 1.10 

Assume the following system characteristics (see the figure below): 

The link transmission speed is 1 Mbps; the physical distance between the hosts is 300 m; the link 
is a copper wire with signal propagation speed of 2 × 108 m/s. The data packets to be sent by the 
hosts are 2 Kbytes each, and the acknowledgement packets (to be sent separately from data 
packets) are 10 bytes long. Each host has 100 packets to send to the other one. Assume that the 
transmitters are somehow synchronized, so they never attempt to transmit simultaneously from 
both endpoints of the link. 

Each sender has a window of 5 packets. If at any time a sender reaches the limit of 5 packets 
outstanding, it stops sending and waits for an acknowledgement. Because there is no packet loss 
(as stated below), the timeout timer value is irrelevant. This is similar to a Go-back-N protocol, 
with the following difference. 

The hosts do not send the acknowledgements immediately upon a successful packet reception. 
Rather, the acknowledgements are sent periodically, as follows. At the end of an 82 ms period, 
the host examines whether any packets were successfully received during that period. If one or 
more packets were received, a single (cumulative) acknowledgement packet is sent to 
acknowledge all the packets received in this period. Otherwise, no acknowledgement is sent. 

Consider the two scenarios depicted in the figures (a) and (b) below. The router in (b) is 150 m 
away from either host, i.e., it is located in the middle. If the hosts in each configuration start 
sending packets at the same time, which configuration will complete the exchange sooner? Show 
the process. 
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Packets to
send to B

Packets to
send to A

Host A Host B Host A Host B

Router

(a) (b)  

Assume no loss or errors on the communication links. The router buffer size is unlimited for all 
practical purposes and the processing delay at the router approximately equals zero. Notice that 
the router can simultaneously send and receive packets on different links. 

Problem 1.11 

Consider two hosts directly connected and communicating using Go-back-N ARQ in the presence 
of channel errors. Assume that data packets are of the same size, the transmission delay tx per 
packet, one-way propagation delay tp, and the probability of error for data packets equals pe. 
Assume that ACK packets are effectively zero bytes and always transmitted error free. 

(a) Find the expected delay per packet transmission. Assume that the duration of the timeout 
tout is large enough so that the source receives ACK before the timer times out, when both 
a packet and its ACK are transmitted error free. 

(b) Assume that the sender operates at the maximum utilization and determine the expected 
delay per packet transmission. 

Note: This problem considers only the expected delay from the start of the first attempt at a 
packet’s transmission until its successful transmission. It does not consider the waiting delay, 
which is the time the packet arrives at the sender until the first attempt at the packet’s 
transmission. The waiting delay will be considered later in Section 4.4. 

Problem 1.12 

Given a 64Kbps link with 1KB packets and RTT of 0.872 seconds: 

(a) What is the maximum possible throughput, in packets per second (pps), on this link if a 
Stop-and-Wait ARQ scheme is employed and all transmissions are error-free? 

(b) Again assuming that S&W ARQ is used, what is the expected throughput (pps) if the 
probability of error-free transmission is p=0.95? 

(c) If instead a Go-back-N (GBN) sliding window ARQ protocol is deployed, what is the 
average throughput (pps) assuming error-free transmission and fully utilized sender? 

(d) For the GBN ARQ case, derive a lower bound estimate of the expected throughput (pps) 
given the probability of error-free transmission p=0.95. 
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Problem 1.13 

Assume a slotted ALOHA system with 10 stations, a channel with transmission rate of 1500 bps, 
and the slot size of 83.33 ms. What is the maximum throughput achievable per station if packets 
are arriving according to a Poisson process? 

Problem 1.14 

Consider a slotted ALOHA system with m stations and unitary slot length. Derive the following 
probabilities: 

(a) A new packet succeeds on the first transmission attempt 

(b) A new packet suffers exactly K collisions and then a success 

Problem 1.15 

Consider a slotted ALOHA network with m mobile stations and packet arrivals modeled as a 
Poisson process with rate λ. Solve the following: 

(a) Assuming that this system operates with maximum efficiency, what are the fractions of 
slots that, on average, go unused (idle), slots that are used for successful transmission, 
and slots that experience packet collisions? 

(b) Describe under what scenarios the system would operate with a less-than-maximum 
efficiency. Under such scenarios, what are the fractions of idle, successful, and collision 
slots? 

(c) Given a steady arrival rate λ, would each non-maximum-efficiency operating point 
remain stable? Explain why yes or why no. 

Hint: Carefully examine Figure 1-28 and other figures related to ALOHA. 

Problem 1.16 

 

Problem 1.17 

Suppose two stations are using nonpersistent CSMA with a modified version of the binary 
exponential backoff algorithm, as follows. In the modified algorithm, each station will always 
wait 0 or 1 time slots with equal probability, regardless of how many collisions have occurred. 

(a) What is the probability that contention ends (i.e., one of the stations successfully 
transmits) on the first round of retransmissions? 

(b) What is the probability that contention ends on the second round of retransmissions (i.e., 
success occurs after one retransmission ends in collision)? 

(c) What is the probability that contention ends on the third round of retransmissions? 

(d) In general, how does this algorithm compare against the nonpersistent CSMA with the 
normal binary exponential backoff algorithm in terms of performance under different 
types of load? 
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Problem 1.18 

A network using random access protocols has three stations on a bus with source-to-destination 
propagation delay τ. Station A is located at one end of the bus, and stations B and C are together 
at the other end of the bus. Frames arrive at the three stations are ready to be transmitted at 
stations A, B, and C at the respective times tA = 0, tB = τ/2, and tC = 3τ/2. Frames require 
transmission times of 4τ. In appropriate timing diagrams with time as the horizontal axis, show 
the transmission activity of each of the three stations for (a) Pure ALOHA; (b) Non-persistent 
CSMA; (c) CSMA/CD.  
Note: In case of collisions, show only the first transmission attempt, not retransmissions. 

Problem 1.19 

 

Problem 1.20 

Consider a local area network using the CSMA/CA protocol shown in Figure 1-33. Assume that 
three stations have frames ready for transmission and they are waiting for the end of a previous 
transmission. The stations choose the following backoff values for their first frame: STA1 = 5, 
STA2 = 9, and STA3=2. For their second frame backoff values, they choose: STA1 = 7, STA2 = 
1, and STA3=4. For the third frame, the backoff values are STA1 = 3, STA2 = 8, and STA3=1. 
Show the timing diagram for the first 5 frames. Assume that all frames are of the same length. 

Problem 1.21 

Consider a CSMA/CA protocol that has a backoff window size equal 2 slots. If a station transmits 
successfully, it remains in state 1. If the transmission results in collision, the station randomly 
chooses its backoff state from the set {0, 1}. If it chooses 1, it counts down to 0 and transmits. 
(See Figure 1-33 for details of the algorithm.) What is the probability that the station will be in a 
particular backoff state? 

Hint: Figure 1-80 shows an analogy with a playground slide. A kid is climbing the stairs and 
upon reaching Platform-1 decides whether to enter the slide or to proceed climbing to Platform-2 
by tossing a fair coin. If the kid enters the slide on Platform-1, he slides down directly through 
Tube-1. If the kid enters the slide on Platform-2, he slides through Tube-2 first, and then 
continues down through Tube-1. Think of this problem as the problem of determining the 
probabilities that the kid will be found in Tube-1 or in Tube-2. For the sake of simplicity, we will 
distort the reality and assume that climbing the stairs takes no time, so the kid is always found in 
one of the tubes. 

Problem 1.22 

Consider a CSMA/CA protocol with two backoff stages. If a station previously was idle, or it just 
completed a successful transmission, or it experienced two collisions in a row (i.e., it exceeded 
the retransmission limit, equal 2), then it is in the first backoff stage. In the first stage, when a 
new packet arrives, the station randomly chooses its backoff state from the set {0, 1}, counts 
down to 0, and then transmits. If the transmission is successful, the station remains in the first 
backoff stage and waits for another packet to send. If the transmission results in collision, the 
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station jumps to the second backoff stage. In the second stage, the station randomly chooses its 
backoff state from the set {0, 1, 2, 3}, counts down to 0, and then retransmits the previously 
collided packet. If the transmission is successful, the station goes to the first backoff stage and 
waits for another packet to send. If the transmission results in collision, the station discards the 
packet (because it reached the retransmission limit, equal 2), and then jumps to the first backoff 
stage and waits for another packet to send. 

Continuing with the playground-slide analogy of Problem 1.21, we now imagine an amusement 
park with two slides, as shown in Figure 1-81. The kid starts in the circled marked “START.” It 
first climbs Slide-1 and chooses whether to enter it at Platform-11 or Platform-12 with equal 
probability, i.e., 0.5. Upon sliding down and exiting from Slide-1, the kid comes to two gates. 
Gate-1 leads back to the starting point. Gate-2 leads to Slide-2, which consists of four tubes. The 
kid decides with equal probability to enter the tube on one of the four platforms. That is, on 
Platform-21, the kid enters the tube with probability 0.25 or continues climbing with probability 
0.75. On Platform-22, the kid enters the tube with probability 1/3 or continues climbing with 
probability 2/3. On Platform-23, the kid enters the tube with probability 0.5 or continues climbing 
with probability 0.5. Upon sliding down and exiting from Slide-1, the kid always goes back to the 
starting point. 

Platform 1

Platform 2

Platform 1

Platform 2

 

Figure 1-80: A playground-slide analogy to help solve Problem 1.21. 
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Problem 1.23 

Consider three wireless stations using the CSMA/CA protocol at the channel bit rate of 1 Mbps. 
The stations are positioned as shown in the figure. Stations A and C are hidden from each other 
and both have data to transmit to station B. Each station uses a timeout time for 
acknowledgements equal to 334 μsec. The initial backoff window range is 32 slots and the 
backoff slot duration equals 20 μsec. Assume that both A and C each have a packet of 44 bytes to 
send to B. 

Suppose that stations A and C just heard station B send an acknowledgement for a preceding 
transmission. Let us denote the time when the acknowledgement transmission finished as t = 0. 
Do the following: 

(a) Assuming that station A selects the backoff countdown bA1 = 12 slots, determine the 
vulnerable period for reception of the packet for A at receiver B. 

Range of A’s
transmissions

A
B

C

Range of C’s
transmissions

Tube 11
Tube 12

Platform 11

Platform 12

Tube 11
Tube 12

Platform 11

Platform 12

Tube 21
Tube 22

Tube 23
Tube 24

Platform 21

Platform 22

Platform 23

Platform 24

Tube 21
Tube 22

Tube 23
Tube 24

Platform 21

Platform 22

Platform 23

Platform 24

Gate 1

Gate 2

Slide 2

Slide 1

Figure 1-81: An analogy of a playground with two slides to help solve Problem 1.22. 



Ivan Marsic • Rutgers University 

 

130

(b) Assuming that simultaneously station C selects the backoff countdown bC1 = 5 slots, 
show the exact timing diagram for any packet transmissions from all three stations, until 
either a successful transmission is acknowledged or a collision is detected. 

(c) After a completion of the previous transmission (ended in step (b) either with success or 
collision), assume that stations A and C again select their backoff timers (bA2 and bC2, 
respectively) and try to transmit a 44-bytes packet each. Assume that A will start its 
second transmission at tA2. Write the inequality for the range of values of the starting time 
for C’s second transmission (tC2) in terms of the packet transmission delay (tx), 
acknowledgement timeout time (tACK) and the backoff periods selected by A and C for 
their first transmission (bA1 and bC1, respectively). 

 

Problem 1.24 

Kathleen is emailing a long letter to Joe. The letter size is 16 Kbytes. Assume that TCP is used 
and the connection crosses 3 links as shown in the figure below. Assume link layer header is 40 
bytes for all links, IP header is 20 bytes, and TCP header is 20 bytes. 

(a) How many packets/datagrams are generated in Kathleen’s computer on the IP level? 
Show the derivation of your result. 

(b) How many fragments Joe receives on the IP level? Show the derivation. 

(c) Show the first 4 and the last 5 IP fragments Joe receives and specify the values of all 
relevant parameters (data length in bytes, ID, offset, flag) in each fragment header. 
Fragment’s ordinal number should be specified. Assume initial ID = 672. 

(d) What will happen if the very last fragment is lost on Link 3? How many IP datagrams 
will be retransmitted by Kathleen’s computer? How many retransmitted fragments will 
Joe receive? Specify the values of all relevant parameters (data length, ID, offset, flag) in 
each fragment header. 

Problem 1.25 

Consider the network in the figure below, using link-state routing (the cost of all links is 1): 

Kathleen Joe

R1 R2
Link 1 MTU
= 512 bytes

Link 2 MTU
= 1500 bytes

Link 3 MTU
= 256 bytes

C

BA F G
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Suppose the following happens in sequence: 

(a) The BF link fails 

(b) New node H is connected to G 

(c) New node D is connected to C 

(d) New node E is connected to B 

(e) A new link DA is added 

(f) The failed BF link is restored 

Show what link-state advertisements (LSAs) will flood back and forth for each step above. 
Assume that (i) the initial LSA sequence number at all nodes is 1, (ii) no packets time out, (iii) 
each node increments the sequence number in their LSA by 1 for each step, and (iv) both ends of 
a link use the same sequence number in their LSA for that link, greater than any sequence number 
either used before. 

[You may simplify your answer for steps (b)-(f) by showing only the LSAs which change (not 
only the sequence number) from the previous step.] 

Problem 1.26 

 

Problem 1.27 

Consider the network in the figure below and assume that the distance vector algorithm is used 
for routing. Show the distance vectors after the routing tables on all nodes are stabilized. Now 

assume that the link AC  with weight equal to 1 is broken. Show the distance vectors on all nodes 
for up to five subsequent exchanges of distance vectors or until the routing tables become 
stabilized, whichever comes first. 

Problem 1.28 

Consider the following network, using distance-vector routing: 

 
A CB D 

1 11  

 

4

1
1

50

A

C

B



Ivan Marsic • Rutgers University 

 

132

Suppose that, after the network stabilizes, link C–D goes down. Show the routing tables on the 
nodes A, B, and C, for the subsequent five exchanges of the distance vectors. How do you expect 
the tables to evolve for the future steps? State explicitly all the possible cases and explain your 
answer. 

Problem 1.29 

Consider the network shown in the figure, using the distance vector routing algorithm. Assume 
that all routers exchange their distance vectors periodically every 60 seconds regardless of any 
changes. If a router discovers a link failure, it broadcasts its updated distance vector within 1 
second of discovering the failure. 

(a) Start with the initial state where the nodes know only the costs to their neighbors, and 
show how the routing tables at all nodes will reach the stable state. 

(b) Use the results from part (a) and show the forwarding table at node A. [Note: use the 
notation AC to denote the output port in node A on the link to node C.] 

(c) Suppose the link CD fails. Give a sequence of routing table updates that leads to a routing 
loop between A, B, and C. 

(d) Would a routing loop form in (c) if all nodes use the split-horizon routing technique? 
Would it make a difference if they use split-horizon with poisoned reverse? Explain your 
answer. 

Problem 1.30 

 

Problem 1.31 

You are hired as a network administrator for the network of sub-networks shown in the figure. 
Assume that the network will use the CIDR addressing scheme. 

R1

R2

E F

A

B

C

D

 

A

B

C D3

5 1

1
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(a) Assign meaningfully the IP addresses to all hosts on the network. Allocate the minimum 
possible block of addresses for your network, assuming that no new hosts will be added 
to the current configuration. 

(b) Show how routing/forwarding tables at the routers should look after the network 
stabilizes (do not show the process). 

Problem 1.32 

The following is a forwarding table of a router X using CIDR. Note that the last three entries 
cover every address and thus serve in lieu of a default route.  

Subnet Mask Next Hop
223.92.32.0 / 20  A 
223.81.196.0 / 12  B 
223.112.0.0 / 12  C 
223.120.0.0 / 14  D 
128.0.0.0 / 1  E 
64.0.0.0 / 2  F 
32.0.0.0 / 3  G 

State to what next hop the packets with the following destination IP addresses will be delivered: 

(a) 195.145.34.2 

(b) 223.95.19.135 

(c) 223.95.34.9 

(d) 63.67.145.18 

(e) 223.123.59.47 

(f) 223.125.49.47 

(Keep in mind that the default matches should be reported only if no other match is found.) 

Problem 1.33 

Suppose a router receives a set of packets and forwards them as follows: 

(a) Packet with destination IP address 128.6.4.2, forwarded to the next hop A  

(b) Packet with destination IP address 128.6.236.16, forwarded to the next hop B  

(c) Packet with destination IP address 128.6.29.131, forwarded to the next hop C  

(d) Packet with destination IP address 128.6.228.43, forwarded to the next hop D  

Reconstruct only the part of the router’s forwarding table that you suspect is used for the above 
packet forwarding. Use the CIDR notation and select the shortest network prefixes that will 
produce unambiguous forwarding: 

Network Prefix Subnet Mask Next Hop 
…………………………… ……………….. … 
…………………………… ……………….. … 
…………………………… ……………….. … 
…………………………… ……………….. … 

X

A
B

C

D

E
F

G
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Problem 1.34 

 

Problem 1.35 

Consider the internetwork of autonomous systems shown in Figure 1-49. Assume that all stub 
ASs already advertised the prefixes of their networks so by now the internetwork topology is 
known to all other ASs. (We assume that non-stub ASs do not advertise any destinations within 
themselves—they advertise their presence only if they lay on a path to a stub-AS destination.) 
Given the business interests of different ASs, and as illustrated in Figure 1-50 and Figure 1-51, 
customers of different ISPs will not learn about all links between all ASs in the internetwork. For 
example, customers of ISP ϕ will see the internetwork topology as shown in the figure below: 

γ’s customers η’s customers ϕ’s customers

Noodle.comMacrospot.com

φ

ϕηγ

α

δ ε

Internetwork topology
as seen by

ϕ’s customers

β
χ

 

As explained in the description of Figure 1-50, ASη has no interest in carrying ASϕ’s transit 
traffic, so it will not advertise that it has a path to ASδ. Therefore, ASϕ and its customers will not 
learn about this path. For the same reason the connection between ASδ and ASα will not be 
visible. Notice that ASϕ will learn about alternative paths from/to Macrospot.com or Noodle.com 
through ASs χ and β, respectively, because multihomed ASs will advertise their network prefixes 
to all directly connected ISPs. 

Your task is to show the respective views of the internetwork topology for the customers of ASs γ 
and η, and for the corporations Macrospot.com or Noodle.com. For each of these ASs, draw the 
internetwork topology as they will see it and explain why some connections or ASs will not be 
visible, if there are such. 

Problem 1.36 

Consider the internetwork of autonomous systems shown in the figure below. Autonomous 
systems α and β are peers and they both buy transit from AS γ. Assume that all links cost 1 (one 
hop) and every AS uses hot-potato routing to forward packets (destined for other ASs) towards 
speaker nodes. 
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AS β
(Tier-3)

AS α
(Tier-3)

AS γ
(Tier-2)

Y

A
B

C
D

H

I

K
J

E

F

G

X

$

$

Regular router

Speaker router

 
(d) How many paths (in terms of autonomous systems, not individual routers) to customers 

of AS β are available for use to reach customers of AS α? 
(e) What path will traffic from host X to host Y normally take? List the autonomous systems 

and within each autonomous system list the individual routers (hop-by-hop). How about 
traffic from host Y to host X? 

(f) Is it possible for all traffic from host X to host Y and vice versa to take the same path? 
Explain why yes or why no, and if yes, how this can be achieved. 

(g) Is it possible for traffic from host X to host Y and vice versa to take the same that includes 
AS γ? Explain why yes or why no, and if yes, how this can be achieved. 

Problem 1.37 

 

Problem 1.38 

 

Problem 1.39 

 

Problem 1.40 

PPP uses the Link Control Protocol (LCP) to establish, maintain, and terminate the physical 
connection. During the link establishment phase, the configuration parameters are negotiated by 
an exchange of LCP frames. Before information can be sent on a link, each of the two computers 
that make up the connection must test the link and agree on a set of parameters under which the 
link will operate. If the negotiation converges, the link is established and either the authentication 
is performed or the network layer protocol can start sending data. If the endpoints fail to negotiate 
a common configuration for the link, it is closed immediately. LCP is also responsible for 
maintaining and terminating the connection. 
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Initiator Responder

Authentication and NCP configuration

Link Open:
Send and receive data

Configure-Request

Configure-Ack ||
Configure-Nak ||
Configure-Reject

Initiate link configurationInitiate link configuration

Finish link configurationFinish link configuration

Process linkProcess link
configuration requestconfiguration request

Terminate linkTerminate link

Receive close request,Receive close request,
Notify other deviceNotify other device

Terminate linkTerminate link

Terminate-Request

Terminate-Ack

 

The Configure-Request message is sent to request a link establishment and it contains the various 
options requested. This request is responded with a Configure-Ack (“acknowledge”) if every 
requested option is acceptable. A Configure-Nak (“negative acknowledge”) is sent if all the 
requested options are recognizable but some of their requested values are not acceptable. This 
message includes a copy of each configuration option that the Responder found unacceptable and 
it suggests an acceptable negotiation. 

A Configure-Reject is sent if any of the requested options were either unrecognizable or represent 
unacceptable ways of using the link or are not subject to negotiation. This message includes the 
objectionable options. Configure-Request frames are transmitted periodically until either a 
Configure-Ack is received, or the number of frames sent exceeds the maximum allowed value. 

A simplified format of an LCP frame is as follows (Figure 1-58): 

Code Identifier Data
 

The Code field identifies the type of LCP frame, such as Configure-Request, Configure-Ack, 
Terminate-Request, etc.  The Identifier field carries an identifier that is used to match associated 
requests and replies. When a frame is received with an invalid Identifier field, the frame is 
silently discarded without affecting the protocol execution. 

• For a Configure-Request frame, the Identifier field must be changed whenever the 
contents of the Data field changes (Data carries the link configuration options), and 
whenever a valid reply has been received for a previous request. For retransmissions, the 
Identifier may remain unchanged. 

• For a configuration response frame (Configure-Ack, Configure-Nak, or Configure-
Reject), the Identifier field is an exact copy of the Identifier field of the Configure-
Request that caused this response frame. 

• For a Terminate-Request frame, the Identifier field must be changed whenever the 
content of the Data field changes, and whenever a valid reply has been received for a 
previous request. For retransmissions, the Identifier may remain unchanged. 
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• For a Terminate-Ack frame, on reception, the Identifier field of the Terminate-Request is 
copied into the Identifier field of the Terminate-Ack frame. 

During the link establishment phase, only LCP frames should be transmitted in the PPP frames. 
Any non-LCP frames received during this phase must be silently discarded. 

The LCP link termination frames are: Terminate-Request, which represents the start of the link 
termination phase; and, Terminate-Ack, which acknowledges the receipt of a recognizable 
Terminate-Request frame, and accepts the termination request. Under ideal conditions, the link 
termination phase is signaled end-to-end using LCP link termination frames. However, the link 
termination phase also can be caused by a loss of carrier or an immediate shutdown by the system 
administrator. 

Explain the following: 
(a) Why are unique identifiers needed in LCP frames? Why a configuration response frame, 

such as Configure-Ack, without the Identifier field is insufficient? Illustrate your 
argument by drawing a time-diagram for a scenario where LCP link configuration would 
fail if the Identifier field did not exist. 

(b) Why is the “two-way handshake” using Terminate-Ack frame needed in the link 
termination phase? Illustrate your argument by drawing a time-diagram of a scenario 
where LCP link termination would fail if Terminate-Ack were not sent. 

Problem 1.41 

 

Problem 1.42 

Consider the following Ethernet network where all the switches employ the spanning tree 
protocol (STP) to remove the loops in the network topology. The numbers in parentheses 
represent the switches’ identifiers. 

Switch B
(ID = 342)

X Switch C
(ID = 719)

Switch A
(ID = 193)

Y
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Start when the network is powered up and stop when the network stabilizes (i.e., only the root 
switch remains generating configuration frames). Assume that all switches send configuration 
messages in synchrony with each other (although in reality generally this is not the case). Do the 
following: 

(a) List all the configuration messages sent by all switches until the network stabilizes. 
Recall that a configuration message carries source-ID, root-ID, root-distance. 

(b) For each switch, indicate which ports will be selected as “root,” “designated,” or 
“blocked” by the spanning tree protocol. 

(c) How many iterations will take for the network to stabilize? 
(d) After the network stabilizes, draw the path that a frame sent by station X will traverse to 

reach station Y. 

Problem 1.43 

 

Problem 1.44 

Consider a local area network using the CSMA/CA protocol shown in Figure 1-33. Assume that 
three stations have frames ready for transmission and they are waiting for the end of a previous 
transmission. The stations choose the following backoff values for their first frame: STA1 = 5, 
STA2 = 9, and STA3=2. For their second frame backoff values, they choose: STA1 = 7, STA2 = 
1, and STA3=4. For the third frame, the backoff values are STA1 = 3, STA2 = 8, and STA3=3. 
Show the timing diagram for the first 5 frames. Assume that all frames are of the same length. 

Note: Compare the solution with that of Problem 1.20. 

Problem 1.45 

Consider an independent BSS (IBSS) with two mobile STAs, A and B, where each station has a 
single packet to send to the other one. Draw the precise time diagram for each station from the 
start to the completion of the packet transmission. For each station, select different packet arrival 
time and a reasonable number of backoff slots to count down before the station commences its 
transmission so that no collisions occur during the entire session. (Check Table 1-6 for contention 
window ranges.) Assume that both stations are using the basic transmission mode and only the 
first data frame transmitted is received in error (due to channel noise, not collision). 

Problem 1.46 

 



 

139 

Contents 
2.1 Introduction 

2.1.1 Reliable Byte Stream Service 
2.1.2 Retransmission Timer 
2.1.3 Flow Control 

2.2 Congestion Control 
2.2.1 TCP Tahoe 
2.2.2 TCP Reno 
2.2.3 TCP NewReno 

2.3 Fairness 
2.3.1 x 
2.3.2 x 
2.3.3 x 
2.3.4 x  

2.4 Recent TCP Versions  
2.4.1 x 
2.4.2  
2.4.3  

2.5 TCP over Wireless Links 
2.5.1 x 
2.5.2  
2.5.3  

2.6 x 
2.5.1 x 
2.5.2 x 
2.5.3 x 

2.8 Summary and Bibliographical Notes 

Problems 

 

Chapter 2 
Transmission Control Protocol (TCP) 

 

 

2.1 Introduction 
 

 

Transmission Control Protocol (TCP) is usually not associated 
with quality of service; but one could argue that TCP offers 
QoS in terms of assured delivery and efficient use of 
bandwidth, although it provides no delay guarantees. TCP is, 
after all, mainly about efficiency and adaptation: how to deliver 
data utilizing the maximum available (but fair) share of a 
dynamically changing network capacity so to reduce the delay. 
That is why our main focus here is only one aspect of TCP—
congestion avoidance and control. The interested reader should 
consult additional sources for other aspects of TCP, e.g., 
[Stevens 1994; Peterson & Davie 2007; Kurose & Ross 2010]. 
We start quality-of-service review with TCP because it does 
not assume any knowledge of or any cooperation from the 
network. The network is essentially seen as a black box. 

In Chapter 1 we have seen that pipelined 
ARQ protocols, such as Go-back-N, 
increase the utilization of network 
resources by allowing multiple packets to be simultaneously in transit (or, 
in flight) from sender to receiver. The “flight size” is controlled by a 
parameter called window size which must be set according to the available 
network resources. Remember that network is responsible for data from the 

moment it accepts them at sender’s end until they are delivered at receiver’s end. The network is 
storing the data for the “flight duration” and for this it must reserve resources, avoiding the 
possibility of becoming overbooked. In case of two end hosts connected by a single link, the 
optimal window size is easy to determine and remains static for the duration of session. However, 
this task is much more complex in a general multi-hop network. 

TCP (Transmission
Control Protocol)

Layer 2:

Network

Layer 1:

Link

Layer 3:

End-
to-End
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2.1.1 Reliable Byte Stream Service 

TCP provides a byte stream service, which means that a stream of 8-bit bytes is exchanged across 
the TCP connection between the two applications. TCP does not automatically insert any 
delimiters of the data records. An application using TCP might “write” to it several times only to 
have the data compacted into a common segment and delivered as such to its peer. For example, 
if the application on one end writes 20 bytes, followed by a write of 30 bytes, followed by a write 
of 10 bytes, the application at the other end of the connection cannot tell what size the individual 
writes were. The other end may read the 60 bytes in two reads of 30 bytes at a time. One end puts 
a stream of bytes into TCP and the same, identical stream of bytes appears at the other end. 

It is common to use the term “segment” for TCP packets. The TCP segments are encapsulated 
into IP packets and sent to the destination (Figure 2-1). 

Like any other data packet, the TCP segment consists of the header and the data payload (Figure 
2-2). The header consists of a 20-byte mandatory part, plus a variable-size options field. Most of 
regular TCP segments found on the Internet will have fixed 20-byte header and the options field 
is rarely used. The description of the header fields is as follows. 

Source port number and destination port number: These numbers identify the sending and 
receiving applications on their respective hosts. A network application is rarely the sole 
“inhabitant” of a host computer; usually, the host runs multiple applications (processes), such as a 
web browser, email client, multimedia player, etc. Similar to an apartment building, where an 
apartment number is needed in addition to the street address to identify the recipient uniquely, the 
applications communicating over TCP are uniquely identified by their hosts’ IP addresses and the 
applications’ port numbers. 

Sequence number: The 32-bit sequence number field identifies the position of the first data byte 
of this segment in the sender’s byte stream during data transfer (when SYN bit is not set). 
Because TCP provides a byte-stream service, each byte of data has a sequence number. 

Application

OSI Layer 4/5: TCP

OSI Layer 3: IP

From application: stream of bytes

Slice into 
TCP segments

Packetize into 
IP packets

TCP     TCP
hdr payload

TCP     TCP
hdr payload

TCP     TCP
hdr payload

TCP     TCP
hdr payload

IP
hdr

TCP      TCP
hdr payload

IP
hdr
IP

hdr
TCP      TCP
hdr payload

IP
hdr

TCP      TCP
hdr payload

IP
hdr
IP
hdr

TCP      TCP
hdr payload

NetworkNetwork

To application: stream of bytes

Unwrap TCP segments

Concatenate to the byte stream

Figure 2-1: TCP accepts a stream of bytes as input from the application, slices it into
segments, and passes to the IP layer as IP packets. 
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Acknowledgment number: The 32-bit acknowledgement number field identifies the sequence 
number of the next data byte that the receiver expects to receive. This field is valid only if the 
ACK bit is set; otherwise, it should be ignored by the recipient of this segment. 

Header length: This field specifies the length of the TCP header in 32-bit words. This field is 
also known as the Offset field, because it informs the segment receiver where the data begins 
relative to the start of the segment. Regular header length is 20 bytes, so the default (and 
minimum allowed) value of this field equals 5. In case the options field is used, the value can be 
up to 42 − 1 = 15, which means that the options field may contain up to (15 − 5) × 4 = 40 bytes. 

Unused: This field is reserved for future use and must be set to 0. 

Flags: There are six bits allocated for the flags field, as follows: 

URG: If this bit is set, the urgent data pointer field of the header is valid (described later). 

ACK: When this bit is set, the acknowledgement number field of the header is valid and the 
recipient of this segment should pay attention to the acknowledgement number. 

PSH: If this bit is set, it requires the TCP receiver to pass the received data to the receiving 
application immediately. Normally, this bit is not set and the TCP receiver may choose to 
buffer the received segment until it accumulates more data in the receive buffer. 

16-bit source port number 16-bit destination port number

32-bit sequence number

flags

options (if any)

TCP segment data (if any)

0 15 16 31

16-bit TCP checksum 16-bit urgent data pointer

16-bit advertised receive window size
4-bit

header
length

unused
(6 bits)
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Figure 2-2: TCP segment format. 
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RST: When set, this bit requires the TCP receiver to abort the connection because of some 
abnormal condition. For example, the segment’s sender may have received a segment it did 
not expect to receive and wants to abort the connection. 

SYN: This bit requests a connection (discussed later). 

FIN: When set, this bit informs the TCP receiver that the sender does not have any more data 
to send. The sender can still receive data from the receiver until it receives a segment with the 
FIN bit set from the other direction. 

Receive window size: This field specifies the number of bytes the sender is currently willing to 
accept. This field can be used to control the flow of data and congestion, as described later in 
Sections 2.1.3 and 2.2, respectively. 

Checksum: This field helps in detecting errors in the received segments. 

Urgent data pointer: When the URG bit is set, the value of this field should be added to the 
value of the sequence number field to obtain the location of the last byte of the “urgent data.” The 
first byte of the urgent data is never explicitly defined. Because the TCP receiver passes data to 
the application in sequence, any data in the receive buffer up to the byte pointed by the urgent-
data pointer may be considered urgent. 

Options: The options field may be used to provide functions other than those covered by the 
regular header. This field may be up to 40 bytes long and if its length is not a multiple of 32 bits, 
extra padding bits should be added. The options field is used by the TCP sender and receiver at 
the connection establishment time, to exchange some special parameters, as described later. 

The pseudo code in Listing 2-1 summarizes the TCP sender side protocol. In reality, both TCP 
sender and TCP receiver are implemented within the same TCP protocol module. Notice also that 
the method send() is part of sender’s code, whereas the method handle() is part of 
receiver’s code. However, to keep the discussion manageable, I decided to focus only on sender’s 
side. See also Figure 2-3 for the explanation of the buffering parameters and Figure 2-8 for TCP 
sender’s state diagram. 

 

Listing 2-1: Pseudo code for RTO timer management in a TCP sender. 

 
 1 public class TCPSender { 
 
 2     // window size that controls the maximum number of outstanding segments 
 2a    //     equation (2.3a) explains how EffectiveWindow is calculated 
 3     private long effectiveWindow; 
 
 4     // maximum segment size (MSS) 
 5     private long MSS; 
 
 6     // sequence number of the last byte sent thus far, initialized randomly 
 7     private long lastByteSent; 
 
 8     // sequence number of the last byte for which the acknowledgement  
 8a    //     from the receiver arrived thus far, initialized randomly 
 9     private long lastByteAcked; 
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10     // list of unacknowledged segments that may need to be retransmitted 
11     private ArrayList unacknowledgedSegments = new ArrayList(); 
 
12     // network layer protocol that provides services to TCP protocol (normally, IP protocol) 
13     private ProtocolNetworkLayer networkLayerProtocol; 
 
14     // constructor 
15     public TCPSender(ProtocolNetworkLayer networkLayerProtocol) { 
16         this.networkLayerProtocol = networkLayerProtocol; 
 
17         lastByteSent = initial sequence number; 
18         lastByteAcked = initial sequence number; 
19     } 
 
20     // reliable byte stream service offered to an upper layer (or application) 
20a    //     takes as input a long message ('data' input parameter) and transmits in segments 
21     public void send( 
21a        byte[] data, String destinationAddr, 
21b        ProtocolLayer_iUP upperProtocol 
21c    ) throws Exception { 
22         // slice the application into segments of size MSS and send one-by-one 
23         for (i = 0; i < (data.length % MSS); i++) { 
 
24           // if the sender already used up the limit of outstanding packets, then wait 
25           if (effectiveWindow - unacknowledgedSegments.size() > 0){ 
26            suspend this thread; 
27            wait until some ACKs are received; 
28         } 
 
21         // create a new TCP segment with sequence number equal to LastByteSent; 
21a        // if (data.length < (i+1)*MSS), i.e., the remaining data slice is smaller than one MSS 
21b        //    then use padding or Nagle's algorithm (described later) 
22         current_data_pointer = data + i*MSS; 
22         TCPSegment outgoingSegment = 
23             new TCPSegment( 
23a              current_data_pointer, destinationAddr, upperProtocol 
23b            ); 
 
24         if (RTO timer not already running) {  start the timer;  } 
 
25         unacknowledgedSegments.add(outgoingSegment); 
26         lastByteSent += outgoingSegment.getLength(); 
 
27         // hand the packet down the stack to IP for transmission 
27a        // Note: outgoingSegment must be serialized to a byte-array as in Listing 1-1 
28         networkLayerProtocol.send(              // (omitted for clarity) 
28a             outgoingSegment, destinationAddr, this 
28b        ); 
29     } 
 
30     // upcall method (called from the IP layer), when an acknowledgment is received 
31     public void handle(byte[] acknowledgement) { 
 
32         // acknowledgement carries the sequence number of 
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32a        //     the next byte expected by the TCP receiver 
33         if (acknowledgement.nextByteExpected > lastByteAcked) { 
34             remove the acknowledged segment from 
34a                the unacknowledgedSegments array; 
35             lastByteAcked = acknowledgement.nextByteExpected; 
36             if (lastByteAcked < lastByteSent) { 
37                 re-start the RTO timer; 
38             } // i.e., there are segments not yet acknowledged 
39         } 
40     } 
 
41     // this method is called when the RTO timer expires (timeout) 
41a    // this event signifies segment loss, and the oldest unacknowledged segment is retransmitted 
42     public void RTOtimeout() { 
43         retrieve the segment with sequence_number == LastByteAcked 
43a            from unacknowledgedSegments array and retransmit it; 
 
43         double the TimeoutInterval; 
44         start the timer; 
45     } 
46 } 

 

The code description is as follows: … to be described … The reader should compare Listing 2-1 
to Listing 1-1 in Section 1.1.4 for a generic protocol module. 

The method handle(), which starts on Line 31, normally handles bidirectional traffic and 
processes TCP segments that are received from the other end of the TCP connection. Recall also 
that TCP acknowledgements are piggybacked on TCP segments (Figure 2-2). 

Listing 2-1 provides only a basic skeleton of a TCP sender. The details will be completed in the 
following sections as we learn more about different issues. 

2.1.2 Retransmission Timer 

Problems related to this section: Problem 2.1 → ??, Problem 2.13, and Problem 2.15 

[ Sending Application ] [ Receiving Application ]

LastByteAcked LastByteSent

FlightSize
(Buffered in send buffer)

TCP
sender’s

byte stream

Sent &
acked

Allowed to
send

NextByteExpected LastByteRecvd

Buffered in RcvBuffer

TCP
receiver’s
byte stream

Delivered to
application

Gap in
recv’d data

Increasing
sequence num.

Increasing
sequence num.

Figure 2-3: Parameters for TCP send and receive buffers. 
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An important parameter for reliable transport over multihop networks is retransmission timer. 
This timer triggers the retransmission of packets that are presumed lost. Obviously, it is very 
important to set the right value for the timer. For, if the timeout time is too short, the packets will 
be unnecessarily retransmitted thus wasting the network bandwidth. And, if the timeout time is 
too long, the sender will unnecessarily wait when it should have already retransmitted thus 
underutilizing and perhaps wasting the network bandwidth. 

It is relatively easy to set the timeout timer for single-hop networks because the propagation time 
remains effectively constant. However, in multihop networks queuing delays at intermediate 
routers and propagation delays over alternate paths introduce significant uncertainties. 

TCP has a special algorithm for dynamically updating the retransmission timeout (RTO) value. 
The details are available in RFC-2988 [Paxson & Allman, 2000], and here is a summary. The 
RTO timer value, denoted as TimeoutInterval, is initially set as 3 seconds. When the 
retransmission timer expires (presumably because of a lost packet), the earliest unacknowledged 
data segment is retransmitted and the next timeout interval is set to twice the previous value: 

TimeoutInterval(t) = 2 × TimeoutInterval(t−1)        (2.1) 

This property of doubling the RTO on each timeout is known as exponential backoff.12 If a 
segment’s acknowledgement is received before the retransmission timer expires, the TCP sender 
measures the round-trip time (RTT) for this segment, denoted as SampleRTT. TCP only 
measures SampleRTT for segments that have been transmitted once and not for segments that 
have been retransmitted. 

                                                      
12 Recall the discussion from Section 1.3.3 above. In the TCP case, the sender assumes that concurrent TCP 

senders are contending for the network resources (router buffers), thereby causing congestion and packet 
loss. To reduce the congestion, the sender doubles the retransmission delay by doubling its RTO. 
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Figure 2-4: Distribution of measured round-trip times for a given sender-receiver pair. 
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Suppose you want to determine the statistical characteristics of round-trip time values for a given 
sender-receiver pair. As illustrated in Figure 2-4(a), the histogram obtained by such measurement 
can be approximated by a normal distribution13 N(μ, σ) with the mean value μ and the standard 
deviation σ. If the measurement were performed during different times of the day, the obtained 
distributions may look quite different, Figure 2-4(b). Therefore, the timeout interval should be 
dynamically adapted to the observed network condition. The remaining decision is about setting 
the TimeoutInterval. As illustrated in Figure 2-4(c), there will always be some cases for 
which any finite TimeoutInterval is too short and the acknowledgement will arrive after the 
timeout already expired. Setting TimeoutInterval = μ + 4σ will cover nearly 100 % of all 
the cases. Therefore, for the subsequent data segments, the TimeoutInterval is set according 
to the following equation:  

TimeoutInterval(t) = EstimatedRTT(t) + 4 ⋅ DevRTT(t)        (2.2) 

where EstimatedRTT(t) is the currently estimated mean value of RTT: 

EstimatedRTT(t) = (1−α) ⋅ EstimatedRTT(t − 1) + α ⋅ SampleRTT(t) 

The initial value is set as EstimatedRTT(0) = SampleRTT(0) for the first RTT measurement. 
This approach to computing the running average of a variable is called Exponential Weighted 
Moving Average (EWMA). Similarly, the current standard deviation of RTT, DevRTT(t), is 
estimated as: 

DevRTT(t) = (1−β) ⋅ DevRTT(t − 1) + β ⋅ |SampleRTT(t) − EstimatedRTT(t − 1)| 

The initial value is set as DevRTT(0) = 
2

1
SampleRTT(0) for the first RTT measurement. The 

recommended values of the control parameters α and β are α = 0.125 and β = 0.25. These values 
were determined empirically. 

In theory, it is simplest to maintain individual retransmission timer for each outstanding packet. 
In practice, timer management involves considerable complexity, so most protocol 
implementations maintain single timer per sender. RFC-2988 recommends maintaining single 
retransmission timer per TCP sender, even if there are multiple transmitted-but-not-yet-
acknowledged segments. Of course, individual implementers may decide otherwise, but in this 
text, we follow the single-timer recommendation for TCP. 

TCP sends segments in bursts (or, groups of segments), every burst containing the number of 
segments limited by the current window size. Recall from Section 1.3.2 that in all sliding window 
protocols, the sender is allowed to have only up to the window-size outstanding amount of data 
(yet to be acknowledged). The same holds for the TCP sender. Once the window-size worth of 
segments is sent, the sender stops and waits for acknowledgements to arrive. For every arriving 
ACK, the sender is allowed to send certain number of additional segments, as governed by the 
rules described later. The retransmission timer management is included in the pseudo code in 
Listing 2-1 (Section 2.1.1). The following summary extracts and details the key points of the 
retransmission timer management from Listing 2-1: 

                                                      
13 In reality, multimodal RTT distributions (i.e., with several peaks) are observed. The interested reader can 

find relevant links at this book’s website—follow the link “Related Online Resources,” then look under 
the topic of “Network Measurement.”  

Search the Web for RTT distribution measurementSearch the Web for RTT distribution measurement
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   In method TCPSender.send(), Listing 2-1 // called by application layer above 
    in Line 24: 
       if (RTO timer not already running) { 
           set the RTO timer to the current value 
               as calculated in methods handle() and RTOtimeout(); 
           start the timer; 
       } 
 
In method TCPSender.handle(), Listing 2-1 // called by IP layer when ACK arrives 
    in Lines 36 - 38: 
        if ((lastByteAcked < lastByteSent) { 
            calculate the new value of the RTO timer using Eq. (2.2); 
            re-start the RTO timer; 
        } 
 
In method TCPSender.RTOtimeout(), Listing 2-1 // called when RTO timer timeout 
    in Line 43: 
           double the TimeoutInterval; // see Eq. (2.1) 
           start the timer; 

 

An important peculiarity to notice about TCP is as follows. When a window-size worth of 
segments is sent, the timer is set for the first one, assuming that the timer is not already running 
(Line 24 in Listing 2-1). For every acknowledged segment of the burst, the timer is restarted for 
its subsequent segment in Line 37 in Listing 2-1. Thus, the actual timeout time for the segments 
towards the end of a burst can run quite longer than for those near the beginning of the burst. An 
example will be seen later in Section 2.2 in the solution of Example 2.1. 

2.1.3 Flow Control 

TCP receiver accepts out-of-order segments, but they are buffered and not delivered to the 
application above the TCP layer before the gaps are filled. For this, the receiver allocates memory 
space of the size RcvBuffer, which is typically set to 4096 bytes, although older versions of 
TCP set it to 2048 bytes. The receive buffer is used to store in-order segments as well, because 
the application may be busy with other tasks and does not fetch the incoming data immediately. 
For the sake of simplicity, in the following discussion we will assume that in-order segments are 
immediately fetched by the application, unless stated otherwise. 

To avoid having its receive buffer overrun, the receiver continuously advertises the remaining 
buffer space to the sender using a field in the TCP header; we call this variable RcvWindow. It is 
dynamically changing to reflect the current occupancy state of the receiver’s buffer. The sender 
should never have more than the current RcvWindow amount of data outstanding. This process is 
called flow control. Figure 2-5 illustrates the difference between the flow control as opposed to 
congestion control, which is described later in Section 2.2. 

Figure 2-6 shows how an actual TCP session might look like. The notation 0:512(512) means 
transmitted data bytes 1 through but not included 512, which is a total of 512 bytes. The first 
action is to establish the session, which is done by the first three segments, which represent the 
three-way handshake procedure. Here I briefly summarize the three-way handshake. The 
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interested reader should consult another source for more details, e.g., [Stevens 1994; Peterson & 
Davie 2007; Kurose & Ross 2010]. 

The first three segments are special in that they do not contain data (i.e., they have only a header), 
and the SYN flag in the header is set (Figure 2-2). In this example, the client offers RcvWindow = 
2048 bytes, and the server offers RcvWindow = 4096 bytes. In our case, the client happens to be 
the “sender,” but server or both client and server can simultaneously be senders and receivers. 
They also exchange the size of the future segments, MSS (to be described later, Table 2-1), and 
settle on the smaller one of 1024 and 512 bytes, i.e., 512 bytes. During the connection-
establishment phase, the client and the server will transition through different states, such as 
LISTEN, SYN_SENT, and ESTABLISHED (marked in Figure 2-6 on the right-hand side). As 
stated earlier, both sender and receiver instantiate their sequence numbers randomly. In Figure 
2-6, the sender selects 122750000, while the receiver selects 2363371521. Hence, the sender 
sends a zero-bytes segment 
    122750000:122750000(0) 

The receiver acknowledges it and sends its own initial sequence number by sending 
    2363371521:2363371521(0); ack 122750000 

Flow control Congestion control

Feedback:
“Receiver
overflowing”

Feedback:
“Not much
getting through”

Sender

Receiver

Sender

Receiver

Sender

Receiver

Sender

Receiver

Figure 2-5: Flow control compared to congestion control. 
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i.e., it sends zero data bytes and acknowledges zero data bytes received from the sender (the ACK 
flag is set). To avoid further cluttering the diagram, I am using these sequence numbers only for 
the first three segments. For the remaining segments, I simply assume that the sender starts with 
the sequence number equal to zero. In Figure 2-6, the server sends no data to the client, so the 
sender keeps acknowledging the first segment from the receiver and acknowledgements from 
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Figure 2-6: Initial part of the time line of an example TCP session. Time increases down the 
page. See text for details. (The CongWin parameter on the left side of the figure will be 
described later in Section 2.2.) 
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sender to receiver carry the value 0 for the sequence number (recall that the actual value of the 
server’s sequence number is 2363371521). 

After establishing the connection, the sender starts sending packets. Figure 2-6 illustrates how 
TCP incrementally increases the number of outstanding segments. This procedure is called slow 
start, and it will be described later. TCP assigns byte sequence numbers, but for simplicity we 
usually show packet sequence numbers. Notice that the receiver is not obliged to acknowledge 
individually every single in-order segment—it can use cumulative ACKs to acknowledge several 
of them up to the most recent contiguously received data. Conversely, the receiver must 
immediately generate (duplicate) ACK—dupACK—for every out-of-order segment, because 
dupACKs help the sender detect segment loss (as described in Section 2.2). 

Notice that receiver might send dupACKs even for successfully transmitted segments because of 
random re-ordering of segments in the network. This is the case with segment #7 (detail at the 
bottom of Figure 2-6), which arrives after segment #8. Thus, if a segment is delayed further than 
three or more of its successors, the duplicate ACKs will trigger the sender to re-transmit the 
delayed segment, and the receiver may eventually receive a duplicate of such a segment. 

 

2.2 Congestion Control 
 

TCP maneuvers to avoid congestion in the first place, and controls the damage if congestion 
occurs. The key characteristic of TCP is that all the intelligence for congestion avoidance and 
control is in the end hosts—no help is expected from the intermediary hosts. 

A key problem addressed by the TCP protocol is to determine the optimal window size 
dynamically in the presence of uncertainties and dynamic variations of available network 
resources. 

Early versions of TCP would start a connection with the sender injecting multiple segments into 
the network, up to the window size advertised by the receiver. The problems would arise due to 
intermediate router(s), which must queue the packets before forwarding them. If that router runs 
out of memory space, large number of packets would be lost and had to be retransmitted. 

 

Figure 2-7: Simple congestion-control scenario for TCP. 
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Jacobson [1988] showed how this naïve approach could reduce the throughput of a TCP 
connection drastically. 

The problem is illustrated in Figure 2-7, where the whole network is abstracted as a single 
bottleneck router. It is easy for the receiver to know about its own available buffer space and 
advertise the right window size to the sender (denoted by RcvWindow). The problem is with the 
intermediate router(s), which serve data flows between many sources and receivers. Bookkeeping 
and policing of fair use of router’s resources is a difficult task, because router must forward the 
packets as quickly as possible, and it is practically impossible to dynamically determine the “right 
window size” of the router’s memory allocated for each flow and advertise it back to the sender. 

TCP approaches this problem by putting the entire burden of determining the right window size 
of the bottleneck router onto the end hosts. Essentially, the sender dynamically probes the 
network and adjusts the amount of data in flight to match the bottleneck resource. The algorithm 
used by TCP sender can be summarized as follows: 

1. Start with a small size of the sender window 

2. Send a burst (size of the current sender window) of packets into the network 

3. Wait for feedback about success rate (acknowledgements from the receiver end) 

4. When feedback obtained: 

a. If the success rate is greater than zero, increase the sender window size and go to 
Step 2 

b. If loss is detected, decrease the sender window size and go to Step 2 

This simplified procedure will be elaborated as we present the details in the following text. It is 
important to notice that TCP controls congestion in the sense that it first needs to cause 
congestion, next to observe it though the feedback, and then to react by reducing the input. This 
cycle is repeated in a never-ending loop. Section 2.4 describes other variants of TCP that try to 
avoid congestion, instead of causing it (and then controlling it). 

Table 2-1 shows the most important parameters (all the parameters are maintained in integer units 
of bytes). Buffering parameters are shown in Figure 2-3. Figure 2-8 and Figure 2-9 summarize 
the algorithms run at the sender and receiver. These are digested from RFC 2581 and RFC 2001 
and the reader should check the details on TCP congestion control in [Allman et al. 1999; Stevens 
1997]. [Stevens 1994] provides a detailed overview with traces of actual runs. 

 
Table 2-1. TCP congestion control parameters (measured in integer number of bytes). Also 
see Figure 2-3. 

Variable Definition 

MSS The size of the largest segment that the sender can transmit. This value can be 
based on the maximum transmission unit (MTU) of the network, the path MTU 
discovery algorithm, or other factors. The size does not include the TCP/IP 
headers and options. [Note that RFC 2581 distinguishes sender maximum 
segment size (SMSS) and receiver maximum segment size (RMSS).] 
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RcvWindow The size of the most recently advertised receiver window. 

CongWindow Sender’s current estimate of the available buffer space in the bottleneck router. 

LastByteAcked The highest sequence number currently acknowledged. 

LastByteSent The sequence number of the last byte the sender sent. 

FlightSize The amount of data that the sender has sent, but not yet had acknowledged. 

EffectiveWindow The maximum amount of data that the sender is currently allowed to send. At 
any given time, the sender must not send data with a sequence number higher 
than the sum of the highest acknowledged sequence number and the minimum 
of CongWindow and RcvWindow. 

SSThresh The slow start threshold used by the sender to decide whether to employ the 
slow-start or congestion-avoidance algorithm to control data transmission. 

 

Notice that the sender must assure at all times that: 

LastByteSent ≤ LastByteAcked + min {CongWindow, RcvWindow} 

Therefore, the amount of unacknowledged data (denoted as FlightSize) should not exceed 
this value at any time: 

FlightSize = LastByteSent − LastByteAcked ≤ min {CongWindow, RcvWindow} 

At any moment during a TCP session, the maximum amount of data the TCP sender is allowed to 
send is (marked as “allowed to send” in Figure 2-3): 

EffectiveWindow = min {CongWindow, RcvWindow} − FlightSize (2.3a) 

Here we assume that the sender can only send MSS-size segments; the sender holds with 
transmission until it collects at least an MSS worth of data. This is not always true, and the 
application can request speedy transmission, thus generating small packets, so called tinygrams. 
The application does this using the TCP_NODELAY socket option, which sets PSH flag (Figure 
2-2). This is particularly the case with interactive applications, such as telnet or secure shell. 
Nagle’s algorithm [Nagle 1984] constrains the sender to have unacknowledged at most one 
segment smaller than one MSS. For simplicity, we assume that the effective window is always 
rounded down to integer number of MSS-size segments: 

EffectiveWindow = min {CongWindow, RcvWindow} − FlightSize (2.3b) 

Figure 2-6 illustrates the TCP slow start phase. In slow start, CongWindow starts at one 
segment and gets incremented by one segment every time an ACK is received. As it can be seen, 
this opens the congestion window exponentially: send one segment, then two, four, eight and so 
on. 

The only “feedback” TCP receives from the network is by having packets lost in transport. TCP 
considers that these are solely lost to congestion, which, of course, is not necessarily true—
packets may be lost to channel noise or even to a broken link. A design is good as long as its 
assumptions hold and TCP works fine over wired networks, because other types of loss are 
uncommon therein. However, in wireless networks, this underlying assumption breaks and it 
causes a great problem as will be seen later in Section 2.5. 
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As far as TCP is concerned, it does not matter when a packet loss happened (somewhere in the 
network, on a router); what matters is when the loss is detected (at the TCP sender). Packet loss 
happens in the network and the network is not expected to notify the TCP endpoints about the 
loss—the endpoints have to detect loss indirectly and deal with it on their own. Packet loss is of 
little concern to TCP receiver, except that it buffers out-of-order segments and waits for the gap 
in sequence to be filled. TCP sender is the one mostly concerned about the loss and the one that 
takes actions in response to detected loss. TCP sender detects loss via two types of events 
(whichever occurs first): 

1. Timeout timer expiration 

dupACK received /
Count it & Send EfctWin of data

ACK received /
Send EfctWin (∗) of data
& Re-start RTO timer (†)

RTO timeout /
Re-send oldest outstanding segment

& Re-start RTO timer (‡)

Start /

Slow Start

RTO timeout /
Re-send oldest outstanding segment

& Re-start RTO timer (‡)

Fast retransmit
dupACK received & count ≥ 3 /

re-send oldest outstanding segment
& Re-start RTO timer (†)

ACK received /
Send EfctWin (∗) of data
& Re-start RTO timer (†)

Congestion Avoidance
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ACK received & (CongWin > SSThresh) /
Send EfctWin (∗) of data
& Re-start RTO timer (†)

Reno Sender

Figure 2-8: TCP Reno sender state diagram. (∗) Effective window depends on CongWin, 
which is computed differently in slow-start vs. congestion-avoidance. (†) RTO timer is 
restarted if LastByteAcked < LastByteSent. (‡) RTO size doubles, SSThresh = CongWin/2. 
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Ivan Marsic • Rutgers University 

 

154

2. Reception of three14 duplicate ACKs (four identical ACKs without the arrival of any 
other intervening packets) 

Upon detecting the loss, TCP sender takes action to avoid further loss by reducing the amount of 
data injected into the network. (TCP also performs fast retransmission of what appears to be the 
lost segment, without waiting for a RTO timer to expire.) There are many versions of TCP, each 
having different reaction to loss. The two most popular ones are TCP Tahoe and TCP Reno, of 
which TCP Reno is more recent and currently prevalent in the Internet. Table 2-2 shows how they 
detect and handle segment loss. 

 
Table 2-2: How different TCP senders detect and deal with segment loss. 

Event TCP Version TCP Sender’s Action 

Timeout 
Tahoe 

Set CongWindow = 1×MSS  
Reno 

≥ 3×dup 
ACKs 

Tahoe Set CongWindow = 1×MSS  

Reno Set CongWindow = max {½ FlightSize, 2×MSS} + 3×MSS  
 

As seen in Table 2-2, different versions react differently to three dupACKs: the more recent 
version of TCP, i.e., TCP Reno, reduces the congestion window size to a lesser degree than the 
older version, i.e., TCP Tahoe. The reason is that researchers realized that three dupACKs 
signalize lower degree of congestion than RTO timeout. If the RTO timer expires, this may signal 
a “severe congestion” where nothing is getting through the network. Conversely, three dupACKs 
imply that three packets got through, although out of order, so this signals a “mild congestion.” 

The initial value of the slow start threshold SSThresh is commonly set to 65535 bytes = 64 KB. 
When a TCP sender detects segment loss using the retransmission timer, the value of SSThresh 
must be set to no more than the value given as: 

SSThresh = max {½ FlightSize, 2×MSS}   (2.4) 

where FlightSize is the amount of outstanding data in the network (for which the sender has 
not yet received an acknowledgement). The floor operation ⋅ rounds the first term down to the 
next multiple of MSS. Notice that some networking books and even TCP implementations state 
that, after a loss is detected, the slow start threshold is set as SSThresh = ½ CongWindow, 
which according to RFC-2581 is incorrect.15 

                                                      
14 The reason for three dupACKs is as follows. Because TCP does not know whether a lost segment or just 

a reordering of segments causes a dupACK, it waits for a small number of dupACKs to be received. It is 
assumed that if there is just a reordering of the segments, there will be only one or two dupACKs before 
the reordered segment is processed, which will then generate a fresh ACK. Such is the case with 
segments #7 and #10 in Figure 2-6. If three or more dupACKs are received in a row, it is a strong 
indication that a segment has been lost. 

15 The formula SSThresh = ½ CongWindow is an older version for setting the slow-start threshold, 
which appears in RFC-2001 as well as in [Stevens 1994]. I surmise that it was regularly used in TCP 
Tahoe, but should not be used with TCP Reno. 
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10 Mbps

1 Mbps

6+1 packets

Sender Receiver

Congestion can occur when packets arrive on a big pipe (a fast LAN) and are sent out a smaller 
pipe (a slower WAN). Congestion can also occur when multiple input streams arrive at a router 
whose output capacity (transmission speed) is less than the sum of the input capacities. Here is an 
example: 

 

Example 2.1 Congestion Due to Mismatched Pipes with Limited Router Resources 

Consider an FTP application that transmits a huge 
file (e.g., 20 MBytes) from host A to B over the 
two-hop path shown in the figure. The link 
between the router and the receiver is called the 
“bottleneck” link because it is much slower than 
any other link on the sender-receiver path. 
Assume that the router can always allocate the 
buffer size of only six packets for our session and 
in addition have one of our packets currently being transmitted. Packets are only dropped when the 
buffer fills up. We will assume that there is no congestion or queuing on the path taken by ACKs. 

Assume MSS = 1KB and a constant TimeoutInterval = 3×RTT = 3×1 sec. Draw the graphs for 
the values of CongWindow (in KBytes) over time (in RTTs) for the first 20 RTTs if the sender’s TCP 
congestion control uses the following: 

(a) TCP Tahoe: Additive increase / multiplicative decrease and slow start and fast retransmit. 

(b) TCP Reno: All the mechanisms in (a) plus fast recovery. 

Assume a large RcvWindow (e.g., 64 KB) and error-free transmission on all the links. Assume also 
that duplicate ACKs do not trigger growth of the CongWindow (i.e., only regular ACKs increase the 
CongWindow size). Finally, to simplify the graphs, assume that all ACK arrivals occur exactly at unit 
increments of RTT and that the associated CongWindow update occurs exactly at that time, too. 

The solutions for (a) and (b) are shown in Figure 2-10 through Figure 2-15. The discussion of the 
solutions is in the following text. Notice that, unlike Figure 2-6, the transmission rounds are “clocked” 
and neatly aligned to the units of RTT. This idealization is only for the sake of illustration and the real 
world would look more like Figure 2-6. [Note that this idealization would stand in a scenario with 
propagation delays much longer than transmission delays.] 
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Let us first consider what happens at the router, as illustrated in Figure 2-11. The reader should 
recall the illustration in Figure 1-17, which shows that packets are first completely received at the 
link layer before they are passed up the protocol stack (to IP and on to TCP). The link speeds are 
mismatched by a factor of 10 : 1, so the router will transmit only a single packet on the second 
link while the sender already transmitted ten packets on the first link. Normally, this would only 
cause delays at the router, but with limited router resources there is also a loss of packets. This is 
detailed in Figure 2-11, where the three packets in excess of the router buffer capacity are 
discarded (numbered #23, #24, and #25). Thereafter, until the queue slowly drains, the router has 
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Figure 2-10: TCP Tahoe—partial timeline of segment and acknowledgement exchanges for 
Example 2.1. Shown on the sender’s side are ordinal numbers of the sent segments and on the 
receiver’s side are those of the ACKs (which indicate the next expected segment). 
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one buffer slot available for every ten new packets that arrive. More details about how routers 
forward packets are available in Section 4.1. 

It is instructive to observe how the retransmission timer is managed (Figure 2-12). Up to time = 
4×RTT, the timer is always reset for the next burst of segments. However, at time = 4×RTT the 
timer is set for the 15th segment, which was sent in the same burst as the 8th segment, and not for 
the 16th segment because the acknowledgement for the 15th segment is still missing. The reader is 
encouraged to inspect the timer management for all other segments in Figure 2-12. 

2.2.1 TCP Tahoe 

Problems related to this section: Problem 2.2 → Problem 2.7 and Problem 2.9 → Problem 2.12 

TCP sender begins with a congestion window equal to one segment and incorporates the slow 
start algorithm. In slow start the sender follows a simple rule: For every acknowledged segment, 
increment the congestion window size by one MSS (unless the current congestion window size 
exceeds the SSThresh threshold, as described later in this section). This procedure continues 
until a segment loss is detected. Of course, a duplicate acknowledgement does not contribute to 
increasing the congestion window size. 

When the sender receives a dupACK, it does nothing but count it. If this counter reaches three or 
more dupACKs, the sender decides, by inference, that a loss occurred. In response, it adjusts the 
congestion window size and the slow-start threshold (SSThresh), and re-sends the oldest 
unacknowledged segment. (The dupACK counter also should be reset to zero.) As shown in 
Figure 2-12, the sender detects the loss first time at the fifth transmission round, i.e., at 5×RTT, 
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by receiving eight duplicate ACKs. The congestion window size at this instance is equal to 15360 
bytes or 15×MSS. After detecting a segment loss, the sender sharply reduces the congestion 
window size in accordance with TCP’s multiplicative decrease behavior. As explained earlier 
(Table 2-2), a Tahoe sender resets CongWin to one MSS and reduces SSThresh as given by 
Eq. (2.4). Just before the moment the sender received eight dupACKs FlightSize equaled 15, 
so the new value of SSThresh = 7.5×MSS is set. 

Notice that in TCP Tahoe any additional dupACKs in excess of three do not matter—no new 
packet can be transmitted while additional dupACKs after the first three are received. As will be 
seen later, TCP Reno sender differs from TCP Tahoe sender in that it starts fast recovery based on 
the additional dupACKs received after the first three. 

Upon completion of multiplicative decrease, TCP carries out fast retransmit to quickly 
retransmit the segment that is suspected lost, without waiting for the RTO timer timeout. Notice 
that Figure 2-12 at time = 5×RTT shows EffectiveWindow = 1×MSS. Obviously, this is not 
in accordance with Eq. (2.3b), because currently CongWin equals 1×MSS and FlightSize 
equals 15×MSS. This simply means that the sender in fast retransmit ignores the 
EffectiveWindow size and simply retransmits the segment that is suspected lost. The times 
when three (or more dupACKs are received and fast retransmit is employed are highlighted with 
circle in Figure 2-12. 

Only after receiving a regular, non-duplicate ACK (most likely the ACK for the fast retransmitted 
packet), the sender enters a new slow start cycle. After the 15th segment is retransmitted at time = 
6×RTT, the receiver’s acknowledgement requests the 23rd segment thus cumulatively 
acknowledging all the previous segments. The sender does not re-send #23 immediately because 
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it still has no indication of loss. Although at time = 7×RTT the congestion window doubles to 
2×MSS (because the sender is currently back in the slow start phase), there is so much data in 
flight that EffectiveWindow = 0 and the sender is shut down. Notice also that for repetitive 
slow starts, only ACKs for the segments sent after the loss was detected count. Cumulative ACKs 
for segments before the loss was detected do not count towards increasing CongWin. That is 
why, although at 6×RTT the acknowledgement for #23 cumulatively acknowledges packets 15–
22, CongWin grows only by 1×MSS although the sender is in slow start (because there are too 
many outstanding segments). 

However, even if EffectiveWindow = 0, TCP sender must send a 1-byte segment as 
indicated in Figure 2-10 and Figure 2-12. This usually happens when the receiver end of the 
connection advertises a window of RcvWindow = 0, and there is a persist timer (also called the 
zero-window-probe timer) associated with sending these segments. The tiny, 1-byte segment is 
treated by the receiver the same as any other segment. The sender keeps sending these tiny 
segments until the effective window becomes non-zero or a loss is detected. 

In our example, three duplicate ACKs are received by time = 9×RTT at which point the 23rd 
segment is retransmitted. (Although TimeoutInterval = 3×RTT, we assume that ACKs are 
processed first, and the RTO timer is simply restarted for the just-retransmitted segment, without 
being declared as expired.) This continues until time = 29×RTT at which point the congestion 
window exceeds SSThresh and congestion avoidance takes off. The sender is in the congestion 
avoidance (also known as additive increase) phase when the current congestion window size is 
greater than the slow start threshold (SSThresh). During congestion avoidance, each time an 
ACK is received, the congestion window is increased as16: 

)1(CongWin

MSS
MSS)1(CongWin)(CongWin

−
×+−=

t
tt   [bytes]    (2.5) 

                                                      
16 The formula remains the same for cumulative acknowledgements, which acknowledge more than a single 

segment, but the reader should check further discussion in [Stevens 1994]. 
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where CongWin(t−1) is the congestion window size before receiving the current ACK. The 
parameter t is not necessarily an integer multiple of round-trip time. Rather, t is just a time step 
that occurs whenever a new ACK is received and this can occur several times in a single RTT, 
i.e., a transmission round. It is important to notice that the resulting CongWin is not rounded 
down to the next integer value of MSS as in other equations. The congestion window can increase 
by at most one segment each round-trip time (regardless of how many ACKs are received in that 
RTT). This results in a linear increase. 

Figure 2-13 summarizes the key congestion avoidance and control mechanisms. Notice that the 
second slow-start phase, starting at 5×RTT, is immediately aborted due to the excessive amount 
of unacknowledged data. Thereafter, the TCP sender enters a prolonged phase of dampened 
activity until all the lost segments are retransmitted through “fast retransmits.” 

It is interesting to notice that TCP Tahoe in this example needs 39×RTT in order to successfully 
transfer 71 segments (not counting 17 one-byte segments to keep the connection alive, which 
makes a total of 88 segments). Conversely, should the bottleneck bandwidth been known and 
constant, Go-back-7 ARQ would need 11×RTT to transfer 77 segments (assuming error-free 
transmission). In this example, bottleneck resource uncertainty and its dynamics introduce delay 
greater than three times the minimum possible one. 

2.2.2 TCP Reno 

Problems related to this section: Problem 2.8 → Problem 2.13 

TCP Tahoe and Reno senders differ in their reaction to three duplicate ACKs. As seen earlier, 
Tahoe enters slow start; conversely, Reno enters fast recovery. This is illustrated in Figure 2-14, 
derived from Example 2.1. 

After the fast retransmit algorithm sends what appears to be the missing segment, the fast 
recovery algorithm governs the transmission of new data until a non-duplicate ACK arrives. It is 
recommended [Stevens 1994; Stevens 1997; Allman et al. 1999] that CongWindow be 
incremented by one MSS for each additional duplicate ACK received over and above the first 
three dupACKs. This artificially inflates the congestion window in order to reflect the additional 
segment that has left the network. Because three dupACKs are received by the sender, this means 
that three segments have left the network and arrived successfully, but out-of-order, at the 
receiver. The fast recovery ends when either a retransmission timeout occurs or an ACK arrives 
that acknowledges all of the data up to and including the data that was outstanding when the fast 
recovery procedure began. After fast recovery is finished, the sender enters congestion avoidance. 

As mentioned earlier in the discussion of Table 2-2, the reason for performing fast recovery rather 
than slow start is that the receipt of the dupACKs not only indicates that a segment has been lost, 
but also that segments are most likely leaving the network (although a massive segment 
duplication by the network can invalidate this conclusion). In other words, as the receiver can 
only generate a duplicate ACK when an error-free segment has arrived, that segment has left the 
network and is in the receive buffer, so we know it is no longer consuming network resources. 
Furthermore, because the ACK “clock” [Jac88] is preserved, the TCP sender can continue to 
transmit new segments (although transmission must continue using a reduced CongWindow). 

TCP Reno sender retransmits the lost segment and sets congestion window to: 
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CongWindow = max {½ FlightSize, 2×MSS} + 3×MSS  (2.6) 

where FlightSize is the amount of sent but unacknowledged data at the time of receiving the 
third dupACK. Compare this equation to (2.4), for computing SSThresh. This artificially 
“inflates” the congestion window by the number of segments (three) that have left the network 
and which the receiver has buffered. In addition, for each additional dupACK received after the 
third dupACK, increment CongWindow by MSS. This artificially inflates the congestion window 
in order to reflect the additional segment that has left the network (the TCP receiver has buffered 
it, waiting for the missing gap in the data to arrive). 

As a result, in Figure 2-14 at 5×RTT when the sender receives 3+5 dupACKs, CongWindow 
becomes equal to 1111132

15 ++++++  = 15.5 × MSS. The last five 1’s are due to 7+1−3 = 5 

dupACKs received after the initial 3 ones. At 6×RTT the receiver requests the 23rd segment (thus 
cumulatively acknowledging up to the 22nd). CongWindow grows slightly to 17.75, but because 
there are 14 segments outstanding (#23 → #37), the effective window is shut up. The sender 
arrives at standstill and thereafter behaves similar to the TCP Tahoe sender (Figure 2-12). 

Notice that, although at time = 10×RTT three dupACKs indicate that three segments that have left 
the network, these are only 1-byte segments, so it may be inappropriate to add 3×MSS as Eq. (2.6) 
postulates. RFC 2581 does not mention this possibility, so we continue applying Eq. (2.6) and 
because of this CongWindow converges to 6×MSS from above. 

Figure 2-15 shows partial timeline at the time when the sender starts recovering. After receiving 
the 29th segment, the receiver delivers it to the application along with the buffered segments #30 
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→ #35 (a total of seven segments). At time = 27×RTT, a cumulative ACK arrives requesting the 
36th segment (because segments #36 and #37 are lost at 5×RTT). Because CongWindow > 
6×MSS and FlightSize = 2×MSS, the sender sends four new segments and each of the four 

makes the sender to send a dupACK. At 28×RTT, CongWindow becomes equal to 7132
6  =++  

× MSS and FlightSize = 6×MSS (we are assuming that the size of the unacknowledged 1-
byte segments can be neglected). 

Regarding the delay, TCP Reno in this example needs 37×RTT to successfully transfer 74 
segments (not counting 16 one-byte segments to keep the connection alive, which makes a total 
of 90 segments—segment #91 and the consecutive ones are lost). This is somewhat better that 
TCP Tahoe and TCP Reno should better stabilize for a large number of segments. 
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Figure 2-15: TCP Reno—partial timeline of segment and ACK exchanges for Example 2.1.
(The slow start phase is the same as for Tahoe sender, Figure 2-10.) 
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2.2.3 TCP NewReno 

Problems related to this section: Problem 2.15 → ?? 

The so-called NewReno version of TCP introduces a further improvement on fast recovery, 
which handles a case where two or more segments are lost within a single window. Same as the 
ordinary TCP Reno, the NewReno begins the fast recovery procedure when three duplicate 
ACKs are received, and ends it when either a retransmission timeout occurs or an ACK arrives 
that acknowledges all of the data up to and including the data that was outstanding when the fast 
recovery procedure began. After the presumably lost segment is retransmitted by fast retransmit, 
if the corresponding ACK arrives, there are two possibilities: 

(4) The ACK specifies the sequence number at the end of the current window, in which case 
the retransmitted segment was the only segment lost from the current window. We call 
this acknowledgement a full acknowledgment. 

(5) The ACK specifies the sequence number higher than the lost segment, but lower than the 
end of the window, in which case (at least) one more segment from the window has also 
been lost. We call this acknowledgement a partial acknowledgment. 

As with the ordinary Reno, for each additional dupACK received while in fast recovery, 
NewReno increments CongWindow by MSS to reflect the additional segment that has left the 
network. The concept of partial acknowledgements is illustrated in Figure 2-17. In this scenario, 
the sender sends six segments, of which three are lost: segments #1, #3, and #5. The receiver 
buffers the three segments that arrive out of order and send three duplicate acknowledgements. 
Upon receiving the three dupACKs, the sender retransmits the oldest outstanding segment (#1) 
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Figure 2-16: TCP Tahoe congestion parameters for Example 2.1 over the first 100 
transmission rounds. The overall sender utilization comes to only 25 %. The lightly shaded 
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and waits. The receiver fills only the first gap and now sends acknowledgement asking for 
segment #3. This is a partial acknowledgement, because it does not acknowledge all segments 
that were outstanding at the time the loss was detected. 

The key idea of TCP NewReno is, if the TCP sender receives a partial acknowledgment during 
fast recovery, the sender should respond to the partial acknowledgment by inferring that the next 
in-sequence packet has been lost, and retransmitting that packet. In other words, NewReno 
proceeds to retransmit the second missing segment, without waiting for three dupACKs or RTO 
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Figure 2-17: TCP NewReno partial acknowledgements. 
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timer expiration. This means that TCP NewReno adds “partial acknowledgment” to the list of 
events in Table 2-2 by which the sender detects segment loss. The sender also deflates its 
congestion window by the amount of new data acknowledged by the cumulative 
acknowledgement, that is: 

NewlyAcked = LastByteAcked(t) − LastByteAcked(t − 1) 

CongWindow(t)′ = CongWindow(t − 1) − NewlyAcked  (2.7a) 

If (NewlyAcked ≥ MSS), then add back MSS bytes to the congestion window: 

CongWindow(t) = CongWindow(t)′ + MSS   (2.7b) 

As with duplicate acknowledgement, this artificially inflates the congestion window in order to 
reflect the additional segment that has left the network. This “partial window deflation” attempts 
to ensure that, when fast recovery eventually ends, approximately SSThresh amount of data 
will be outstanding in the network. Finally, the sender sends a new segment if permitted by the 
new value of EffectiveWin. 

When a full acknowledgement arrives, it acknowledges all the intermediate segments sent after 
the original transmission of the lost segment until the loss is discovered (the sender received the 
third duplicate ACK). This does not mean that there are no more outstanding data (i.e., 
FlightSize = 0), because the sender might have sent some new segments after it discovered 
the loss (if its EffectiveWin permitted transmission of news segments). At this point, the 
sender calculates its congestion window as: 

CongWindow = SSThresh   (2.8) 

Recall that SSThresh is computed using Eq. (2.4), where FlightSize is the amount of data 
outstanding when fast recovery was entered, not the current amount of data outstanding17. This 
reduction of the congestion window size is termed deflating the window. At this point, the TCP 
sender exits fast recovery and enters congestion avoidance. 

An example of NewReno behavior is given below. Example 2.2 works over a similar network 
configuration as the one in Example 2.1. Again, we have a high-speed link from the TCP sender 
to the bottleneck router and a low-speed link from the router to the TCP receiver. However, there 
are some differences in the assumptions. In Example 2.1, we assumed a very large RTT, so that 
all packet transmission times are negligible compared to the RTT. We also assumed that 
cumulative ACKs acknowledged all the segments sent in individual RTT-rounds (or, bursts). 
Conversely, in Example 2.2, we will assume that the RTT is on the same order of magnitude as 
the transmission time on the second link. In addition, each segment is acknowledged individually. 
This results in a somewhat more complex, but also more accurate, analysis of the TCP behavior. 

 

Example 2.2 Analysis of the Slow-Start Phase in TCP NewReno 

Consider an application that is engaged in a lengthy file transfer using the TCP NewReno protocol 
over the network shown in the figure. 

                                                      
17 RFC-3782 suggests an alternative option to set CongWindow = min{SSThresh, FlightSize + 
MSS}, where FlightSize is the current amount of data outstanding. Check RFC 3782 for details. 
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Sender Receiver

Link 1 4+1 packets

txmit (Link 1)  << txmit (Link 2)

tprop (Link 2) = 6 × txmit (Link 2)

Link 2

Router

tprop (Link 1)  << tprop (Link 2)

The following assumptions 
are made: 

A1. Full duplex links connect 
the router to each 
endpoint host so that 
simultaneous 
transmissions are 
possible in both 
directions on each link. 
The transmission rate of 
Link-1 is much greater than that of Link-2. One-way propagation delay on Link-1 is also 
negligible compared to the propagation delay of Link-2. Assume that all packet transmissions are 
error free. 

A2. The propagation delay on Link-2 (from the router to the receiver equals six times the transmission 
delay for data packets on the same link. Also assume that the ACK packet size is negligible, i.e., 
their transmission delay is approximately zero. 

A3. The router buffer can hold up to four packets plus one packet currently in transmission. The 
packets that arrive to a full buffer are dropped. However, this does not apply to ACK packets, i.e., 
ACKs do not experience congestion or loss. 

A4. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after receiving a data 
segment. 

A5. The receiver has set aside a large receive buffer for the received segments, so this will never be a 
limiting factor for the sender’s window size. 

Considering only the slow-start phase (until the first segment loss is detected), we would like to know 
the following: 

(a) The evolution of the parameters such as congestion window size, router buffer occupancy, and 
how well the communication pipe is filled with packets. 

(b) The ordinal packet numbers of all the packets that will be dropped at the router (due to the lack of 
router memory space). 

(c) The maximum congestion widow size that will be achieved after the first packet loss is detected 
(but before the time t = 60). 

(d) How many packets will be sent after the first packet loss is detected until the time t = 60? Explain 
the reason for transmission of each of these packets. 

The solution is shown in Figure 2-18 and discussed in the following text. 

 

Figure 2-18 shows the evolution of four parameters over the first 20 time units of the slow-start 
phase. The four parameters are: (i) congestion window size; (ii) slow start threshold; (iii) current 
number of packets in the router, both in transmission or waiting for transmission; and (iv) current 
number of packets in flight on Link-2, that is the packets that neither are in the router nor 
acknowledged. Notice that the last parameter is not the same as the FlightSize defined at the 
beginning of Section 2.2. FlightSize is maintained by the sender to know how many 
segments are outstanding. Unlike this, the current number of packets in flight on Link-2 (bottom 
chart in Figure 2-18) represents only the packets that were transmitted by the router, but for 
which the ACK has not yet arrived at the TCP sender. 
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The gray boxes on the top line symbolize packet transmissions on the Link-2. This is because the 
transmission delay on Link-1 is negligible, so any packet sent by the TCP sender immediately 
ends up on the router. 

Recall that during the slow start, the sender increments its congestion window size by one MSS 
for each successfully received acknowledgement. We can see on the top of Figure 2-18 how the 
acknowledgment for packet #1 arrives at t = 7 and the congestion window size rises to 2. The 
sender sends two more segments (#2 and #3) and they immediately end up on the router. Notice 
how packets that are sent back-to-back (in bursts) are separated by the packet transmission time 
on Link-2. When the ACK arrives for #2, the sender is in slow start, so FlightSize = 2 − 1 = 
1 and CongWin = 2 + 1 = 3. According to equation (2.3), 

        EffectiveWin = CongWin − FlightSize = 3 − 1 = 2 

In other words, during slow start, every time the sender receives a non-duplicate 
acknowledgement for one segment, the sender can send two new segments. After sending 
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Figure 2-18: Evolution of the key parameters for the TCP NewReno sender in Example 2.2. 
(Continued in Figure 2-19.) 
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segments #4 and #5, we have: CongWin = 3, FlightSize = 3, and EffectiveWin = 0. 
When the ACK for segment #3 arrives (delayed by tx(Link-2) after the first ACK, because the 
segment #3 traveled back-to-back behind #2) we have: FlightSize = 3 − 1 = 2 and CongWin 
= 3 + 1 = 4. Therefore, 

        EffectiveWin = CongWin − FlightSize = 4 − 2 = 2 

and the sender will send two new segments (#6 and #7). Now, we have CongWin = 4, 
FlightSize = 4, and EffectiveWin = 0. The sender is waiting for an acknowledgement for 
segment #4. 

Notice that when an in the chart for the current number of packets in the router shows below the 
curve the ordinal numbers of the packets. The bottommost packet is the one that is in 
transmission during the current time slot. The packets above it are currently waiting for 
transmission. For example, at time t = 7, packet #2 is currently in transmission and packet #3 is 
waiting in the router memory. At t = 8, packet #2 is traversing Link-2 (shown under the bottom 
curve) and packet #3 is in transmission on the router. The attentive reader might notice that the 
packet numbers in the bottommost row of the router buffer curve are identical to the ones at the 
top of Figure 2-18. 

(a) 

Because we are considering a single connection in slow start, packet arrivals on the router occur 
in bursts of exactly two packets. This is because for every received acknowledgment, 
FlightSize is reduced by 1 and CongWin is incremented by 1, which means that effectively 
the sender can send two new packets. The sender sends two new packets and they immediately 
end up on the router. Therefore, when a buffer overflow occurs, exactly one packet is dropped. 
This is because at the beginning of the preceding time slot, the buffer would have been full and 
the router would transmit one packet, therefore freeing up space for one new packet. When two 
packets arrive, the first is stored and the second is dropped. 

The first loss happens at time t = 31. In the previous time slot (t =30) the router had five packets 
(#17, #18, #19, #20, and #21), of which packet #17 was transmitted by the router. At t = 31, the 
acknowledgement for packet #11 will arrive and it will increment congestion window by one, to 
the new value of 12×MSS. The sender sends packets #22 and #23 and they immediately arrive to 
the router. The router just transmitted packet #17 and has space for only one new packet. Packet 
#22 joins the tail of the waiting line and packet #23 is dropped. 

The top row of Figure 2-18 shows white boxes for the transmission periods of the five packets 
that the router will transmit after the loss of packet #23. Black boxes symbolize packets that are 
sent out of order, for which the preceding packet was dropped at the router (due to the lack of 
router memory space). There will be a total of 12 packets fro which the preceding packet was 
lost, starting with packet #24 and ending with packet #44. 

The TCP sender receives three duplicate acknowledgements (asking for packet #23) at time 
t = 45. The reader should notice that packet #23 was lost at the router at time t = 31, but the 
sender learned about the loss only at time t = 45 (by receiving three dupACKs)! When the sender 
discovers the loss, it sets the congestion window size to one half of the number of segments in 
flight, which is 23, plus 3 for three duplicate acknowledgements—remember equation (2.6) from 
Section 2.2.2. The slow-start threshold is set to one-half of the number of segments in flight—
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remember equation (2.4)—so SSThresh becomes equal to 11. In addition, because this is a TCP 
Reno sender, the congestion window is incremented by one for each new duplicate 
acknowledgement that is received after the first three. 

Upon detecting loss at time t = 45, the TCP sender immediately retransmits segment #23, but the 
packet joins the queue at the router behind packets #42 and #44, which arrived before #23. The 
router is not aware that these are TCP packets, lest that some of them are retransmitted, so it does 
not give preferential treatment to retransmitted packets. As seen in the top row of Figure 2-18, the 
router will transmit packet #23 over Link-2 during the time slot t = 47. Therefore, generally it 
takes longer than one RTT for the sender to receive the acknowledgment for a retransmitted 
segment. 

The acknowledgement for the retransmitted segment #23 arrives at time t = 54 and it asks for 
segment #25 (because #24 was received correctly earlier). This is only a partial acknowledgment 
because a full acknowledgement would acknowledge segment #45. Therefore, the TCP NewReno 
sender immediately sends packet #25 without waiting for three duplicate acknowledgements. In 
addition, the sender adjusts its congestion window size according to Eq. (2.7): 

NewlyAcked = segment#24 − segment#22 = 2 MSS 

Because (NewlyAcked ≥ MSS), the sender uses Eq. (2.7b): 

CongWindow(54) = CongWindow(53) − NewlyAcked + MSS = 23 − 2 + 1 = 22 × MSS  

Because the current FlightSize = 21 × MSS (segments #25 through #45 are 
unacknowledged), one new segment can be sent. As a result, the sender transmits segment #46. 

(b) 

There will be a total of 12 packets lost during the considered period. The lost packets are (also 
indicated in Figure 2-18): 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45. 

TCP NewReno Fast Recovery Phase 

Continuing with Example 2.2, the TCP NewReno sender will enter the fast recovery phase when 
it discovers the loss of packet #23 at time t = 45 (by receiving three dupACKs). The sender will 
exit the fast recovery phase when it receives a full acknowledgement. The sender originally 
transmits packet #23 at time t = 31 and it immediately arrives at the router where it is lost (Figure 
2-18). From time t = 31 until the loss is discovered at time t = 45, the sender sends a total of 22 
“intermediate segments” (segments #24, #25, …, #45). Therefore, the TCP sender will consider it 
a “full acknowledgement” when it receives an acknowledgement for packet #45. At this point, the 
sender will exit fast recovery and enter congestion avoidance. Notice that segment #46, and any 
segments transmitted thereafter might still be outstanding. 

Figure 2-19 shows the continuation of Figure 2-18 for the same Example 2.2. As seen, the sender 
has not yet received a “full acknowledgement” until time t = 120 (packet #45 has not been 
retransmitted); therefore, the sender is still in the fast recovery state. 
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2.3 Fairness 
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Figure 2-19: Evolution of the key parameters for the TCP NewReno sender in Example 2.2. 
(Continued from Figure 2-18.) 
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2.4 Recent TCP Versions 
 

Early TCP versions, Tahoe and Reno, perform relatively simple system observation and control. 
The TCP Tahoe performance is illustrated in Figure 2-16 over the first 100 transmission rounds. 
Although the obvious inefficiency (sender utilization is only 25 %) can be somewhat attributed to 
the contrived scenario of Example 2.1, this is not far from reality. By comparison, a simple Stop-
and-Wait protocol would achieve the sender utilization of ?? %. Recent TCP versions introduce 
sophisticated observation and control mechanisms to improve performance. 

TCP Vegas [Brakmo & Peterson 1995] watches for the signs of incipient congestion—before 
losses occur—and takes actions to avert it. 

TCP Westwood [Mascolo et al. 2001] uses bandwidth estimates to compute the congestion 
window and slow start threshold after a congestion episode. 

FAST TCP [Jin et al. 2003] detects congestion by measuring packet delays. 

 

2.5 TCP over Wireless Links 
 

The TCP congestion control algorithms presented in Section 2.2 assume most packet losses are 
caused by routers dropping packets due to traffic congestion. However, packets may be also 
dropped if they are corrupted in their path to destination. In wired networks the fraction of packet 
loss due to transmission errors is generally low (less than 1 percent). Communication over 
wireless links is often characterized by sporadic high bit-error rates, and intermittent connectivity 
due to handoffs. TCP performance in such networks suffers from significant throughput 
degradation and very high interactive delays 

Several factors affect TCP performance in mobile ad-hoc networks (MANETs): 

• Wireless transmission errors 

• Power saving operation 

• Multi-hop routes on shared wireless medium (for instance, adjacent hops typically cannot 
transmit simultaneously) 

• Route failures due to mobility 

 

Figure 2-20 
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2.6 Summary and Bibliographical Notes 
 

The TCP service model provides a communication abstraction that is reliable, ordered, point-to-
point, duplex, byte-stream, and flow and congestion controlled. TCP’s notion of “duplex” is that 
the same logical connection handles reliable data delivery in both directions. Unlike ARQ 
protocols described in Section 1.3, which treat data packets as atomic units, TCP treats bytes as 
the fundamental unit of reliability. 

TCP sender uses the received cumulative acknowledgments to determine which packets have 
reached the receiver, and provides reliability by retransmitting lost packets. The sender detects 
the loss of a packet either by the arrival of several duplicate acknowledgments or the expiration of 
the timeout timer due to the absence of an acknowledgment for the packet. To accurately set the 
timeout interval, the sender maintains a running average of the estimated roundtrip delay and the 

TCP layer:

TCP data segment
[1024 KB + 40 bytes headers]

TCP ACK segment
[0 KB + 40 bytes headers]

Link layer:

Link layer overhead:   backoff delay, interframe spaces, link-layer control frames (RTS, CTS, ACK)

Figure 2-20: Due to significant wireless link-layer overhead, TCP data segments and TCP
acknowledgements (which are of greatly differing sizes) appear about the same size at the
link layer. 
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mean linear deviation from it. The timeout interval is calculated as the sum of the smoothed 
round-trip delay plus four times its mean deviation. TCP reacts to packet losses by decreasing its 
transmission (congestion) window size before retransmitting packets, initiating congestion control 
or avoidance mechanisms (e.g., slow start), and backing off its retransmission timer (Karn’s 
algorithm). These actions result in a reduction in the load on the intermediate links, thereby 
controlling the congestion in the network. 

 

[Stevens, 1994] provides the most comprehensive coverage of TCP in a single book. It appears 
that this whole book is available online at http://www.uniar.ukrnet.net/books/tcp-ip_illustrated/. 

[Comer, 2006] is also very good, although does not go in as much detail. 

TCP described in 1974 by Vinton Cerf and Robert Kahn in IEEE Transactions on 
Communication. Three-way handshake described by Raymond Tomlinson in SIGCOMM 1975.  

TCP & IP initial standard in 1982 (RFC-793 & RFC-791). BSD Unix 4.2 released in 1983 
supported TCP/IP. Van Jacobson’s algorithms for congestion avoidance and congestion control 
published in 1988; most implemented in 4.3 BSD Tahoe. 

In the original TCP specification (RFC-793), the retransmission timeout (RTO) was set as a 
multiple of a running average of the RTT. For example, it might have been set as 
TimeoutInterval = η × EstimatedRTT, with η set to a constant such as 2. However, this 
simple choice failed to take into account that at high loads round trip variability becomes high, 
leading to unnecessary retransmissions. The solution offered by Jacobson, see Eq. (2.2), factors in 
both average and standard deviation. 

The TCP Reno Fast Recovery algorithm was described in RFC 2581 and first implemented in the 
1990 BSD Reno release. 

In 1996, Janey Hoe [Hoe, 1996] proposed an enhancement to TCP Reno, which subsequently 
became known as NewReno. The main idea here is for the TCP sender to remain in fast recovery 
until all the losses in a window are recovered. 

There have been other enhancements proposed to TCP over the past few years, such as TCP 
Vegas congestion control method [Brakmo & Peterson, 1995], various optimizations for wireless 
networks, optimizations for small windows (e.g., RFC-3042), etc. 

RFC-3168, 3155, 3042, 2884, 2883, 2861, 2757, 2582 (NewReno) 

The NewReno modification of TCP’s Fast Recovery algorithm is described in RFC-3782 [Floyd 
et al. 2004]. 

TCP over wireless: 

[Balakrishnan, et al., 1997], [Holland & Vaidya, 1999], [Fu, et al., 2005]. 

 

TCP has supported ongoing research since it was written. As a result, the End-to-End research 
group has published a Roadmap for TCP Specification Documents [RFC-4614] which will guide 
expectations in that area. 

SSFnet.org, “TCP Regression Tests,” Online at: http://www.ssfnet.org/Exchange/tcp/tcpTestPage.html  
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The SSFnet.org tests show the behavior of SSF TCP Tahoe and Reno variants for different 
networks, TCP parameter settings, and loss conditions. 

NASA Jet Propulsion Laboratory (JPL) and Vinton Cerf recently jointly developed Disruption-
Tolerant Networking (DTN) protocol to transmit images to and from a spacecraft more than 20 
million miles from Earth. DTN is intended for reliable data transmissions over a deep space 
communications network, for which the TCP/IP protocol suite is unsuitable. An interplanetary 
Internet needs to be strong enough to withstand delays, disruptions, and lost connections that 
space can cause. For example, errors can happen when a spacecraft slips behind a planet, or when 
solar storms or long communication delays occur. Even traveling at the speed of light, 
communications sent between Mars and Earth take between three-and-a-half minutes to 20 
minutes. Unlike TCP, DTN does not assume there will be a constant end-to-end connection. DTN 
is designed so that if a destination path cannot be found, the data packets are not discarded but are 
kept in a network node until it can safely communicate with another node. The interplanetary 
Internet could allow for new types of complex space missions that involve multiple landed, 
mobile, and orbiting spacecraft, as well as ensure reliable communications for astronauts on the 
surface of the moon. 

http://www.jpl.nasa.gov/news/news.cfm?release=2008-216 
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Problems 
 

Problem 2.1 

Consider the TCP procedure for estimating RTT with α = 0.125 and β = 0.25. Assume that the 
TimeoutInterval is initially set as 3 seconds. Suppose that all measured RTT values equal 5 
seconds, no segment loss, and the segment transmission time is negligible. The sender starts 
sending at time zero. 

(a) What values will TimeoutInterval be set to for the segments sent during the first 11 
seconds? 

(b) Assuming a TCP Tahoe sender, how many segments will the sender transmit (including 
retransmissions) during the first 11 seconds? 

(c) Repeat steps (a) and (b) but this time around assume that the sender picked the initial 
TimeoutInterval as 5 seconds? 

Show the work. 

Problem 2.2 

Consider two hosts connected by a local area network with a negligible round-trip time. Assume 
that one is sending to the other a large amount of data using TCP with RcvBuffer = 20 Kbytes 
and MSS = 1 Kbytes. Also assume error-free transmission, high-speed processors in the hosts, 
and reasonable values for any other parameters that you might need. 

(a) Draw the congestion window diagram during the slow-start (until the sender enters 
congestion avoidance) for the network speed of 100 Mbps. 

(b) How different the diagram becomes if the network speed is reduced to 10 Mbps? 
1 Mbps? 

(c) What will be the average throughput (amount of data transmitted per unit of time) once 
the sender enters congestion avoidance? 

Explain your answers. 

Problem 2.3 

Suppose that the hosts from Problem 2.2 are connected over a satellite link with RTT = 20 ms 
(low earth orbit satellites are typically 850 km above the Earth surface). Draw the congestion 
window diagram during the slow-start for the network speed of 100 Mbps. Explain any 
similarities or differences compared to the one from Problem 2.2(a). 

Problem 2.4 
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Consider the network shown in the figure. TCP senders at hosts A and B have 3.6 KB of data each 
to send to their corresponding TCP receivers, both running at host C. Assume MTU = 512 bytes 
for all the links and TimeoutInterval = 2×RTT = 2×1 sec. The router buffer size is 3 
packets in addition to the packet currently being transmitted; should the router need to drop a 
packet, it drops the last arrived from the host which currently sent more packets. Sender A runs 
TCP Tahoe and sender B runs TCP Reno and assume that sender B starts transmission 2×RTTs 
after sender A. 

(a) Trace the evolution of the congestion window sizes on both senders until all segments are 
successfully transmitted. 

(b) What would change if TimeoutInterval is modified to 3×RTT = 3×1 sec? 

Assume a large RcvWindow and error-free transmission on all the links. Finally, to simplify the 
graphs, assume that all ACK arrivals occur exactly at unit increments of RTT and that the 
associated CongWindow update occurs exactly at that time, too. 

Problem 2.5 

Consider a TCP Tahoe sender working on the network with RTT = 1 sec, MSS = 1 KB, and the 
bottleneck link bandwidth equal to 128 Kbps. Ignore the initial slow-start phase and assume that 
the sender exhibits periodic behavior where a segment loss is always detected in the congestion 
avoidance phase via duplicate ACKs when the congestion window size reaches CongWindow = 
16×MSS. 

(a) What is the min/max range in which the window size oscillates? 

(b) What will be the average rate at which this sender sends data? 

(c) Determine the utilization of the bottleneck link if it only carries this single sender. 

[Hint: When computing the average rate, draw the evolution of the congestion window. Assume 
RcvWindow large enough not to matter.] 

Problem 2.6 

Specify precisely a system that exhibits the same behavior as in Problem 2.5: 

• What is the buffer size at the bottleneck router? 

• What is the minimum value of TimeoutInterval? 

Sender A

Sender B

2 Receivers
at host C

10 Mbps

10 Mbps

1 Mbps

3+1 packets
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Demonstrate the correctness of your answer by graphing the last two transmission rounds before 
the segment loss is detected and five transmission rounds following the loss detection. 

Problem 2.7 

Consider two hosts communicating using the TCP-Tahoe protocol. Assume RTT = 1, MSS = 512 
bytes, TimeoutInterval = 3×RTT, SSThresh = 3×MSS to start with, and RcvBuffer = 2 
KB. Also, assume that the bottleneck router has available buffer size of 1 packet in addition to the 
packet currently being transmitted. 

(a) Starting with CongWindow = 1×MSS, determine the congestion window size when the 
first packet loss will happen at the router (not yet detected at the sender). 

(b) What will be the amount of unacknowledged data at the sender at the time the sender 
detects the loss? What is the total number of segments acknowledged by that time? 

Assume that no cumulative ACKs are sent, i.e., each segment is acknowledged individually. 

Problem 2.8 

Consider two hosts communicating by TCP-Reno protocol. Assume RTT = 1, MSS = 256 bytes, 
TimeoutInterval = 3×RTT, RcvBuffer = 2 KB, and the sender has a very large file to 
send. Start considering the system at the moment when it is in slow start state, CongWin = 
8×MSS, SSThresh = 10×MSS and the sender just sent eight segments, each 1×MSS bytes long. 
Assume that there were no lost segments before this transmission round and currently there are no 
buffered segments at the receiver.  
Assuming that, of the eight segments just sent, the fourth segment is lost, trace the evolution of 
the congestion window sizes for the subsequent five transmission rounds. Assume that no more 
segments are lost for all the considered rounds. For every step, indicate the transmitted segments 
and write down the numeric value of CongWin (in bytes). To simplify the charts, assume that 
ACK arrivals occur exactly at unit increments of RTT and that the associated CongWin update 
occurs exactly at that time, too. 

Problem 2.9 

Consider the network configuration shown in the figure below. The mobile node connects to the 
server using the TCP protocol to download a large file. Assume MSS = 1024 bytes, error-free 
transmission, and sufficiently large storage spaces at the access point and the receiver. 
Assume that the Assuming that the TCP receiver sends only cumulative acknowledgements. 
Calculate how long time it takes to deliver the first 15 Kbytes of data from that moment the TCP 
connection is established. In addition, draw the timing diagram of data and acknowledgement 
transmissions. (You can exploit the fact that TCP sends cumulative acknowledgements.)  

Wi-Fi
(802.11)
1 Mbps

Ethernet
(802.3)

10 Mbps

Mobile 
Node

Access 
Point

Server
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(In case you need these, assume the distance between the mobile node and the access point equal 
to 100 m, and the same from the access point to the server. Also, the speed of light in the air is 
3 × 108 m/s, and in a copper wire is 2 × 108 m/s.) 

Problem 2.10 

Consider an application that is engaged in a lengthy file transfer using the TCP Tahoe protocol 
over the following network. 

 The following assumptions are made: 
A1. Full duplex links connect the router to each endpoint host so that simultaneous 

transmissions are possible in both directions on each link. The link transmission rates are 
as indicated. One-way propagation delay on each link equals 10 ms. Assume that all 
packet transmissions are error free. 

A2. Each data segment sent by the sender is 1250 bytes long. You can ignore all header 
overheads, so the transmission delay for data packets over a 100 Mbps link is exactly 0.1 
ms and over 10 Mbps is exactly 1 ms. Also assume that the ACK packet size is 
negligible, i.e., their transmission delay is approximately zero. 

A3. The router buffer can hold up to nine packets plus one packet currently in transmission. 
The packets that arrive to a full buffer are dropped. However, this does not apply to ACK 
packets, i.e., ACKs do not experience congestion or loss. 

A4. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after 
receiving a data segment. 

A5. The receiver has set aside a buffer of RcvBuffer = 64 Kbytes for the received segments. 

Answer the following questions: 
(a) What is the minimum possible time interval between receiving two consecutive ACKs at 

the sender? 
(b) Write down the transmission start times for the first 7 segments. 
(c) Write down the congestion widow sizes for the first 6 transmission rounds, i.e., the first 6 

RTTs. (Hint: Try to figure out the pattern of packet arrivals and departures on the router, 
to understand how the queue of packets grows and when the buffer is fully occupied, so 
the next packet is dropped.) 

(d) In which round will the first packet be dropped at the router? What is the ordinal number 
of the first dropped packet, starting with #1 for the first packet? Explain your answer. 

(e) What is the congestion window size at the 11th transmission round? 
(f) What is the long-term utilization of the TCP sender (ignore the initial period until it 

stabilizes)? 
(g) What is the long-term utilization of the link between the router and the receiver (again, 

ignore the initial period until it stabilizes)? 
(h) What will change if delayed ACKs are used to acknowledge cumulatively multiple 

packets? 
(i) Estimate the sender utilization under the delayed ACKs scenario. 

Sender A Receiver B

100 Mbps

100 Mbps

9+1 packets

tprop = 10 ms tprop = 10 ms

10 Mbps

10 MbpsRouter
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Problem 2.11 

Consider a TCP Tahoe sender working with MSS = 1 KB, and the bottleneck link bandwidth 
equal to 1 Mbps. Ignore the initial slow-start phase and assume that the network exhibits periodic 
behavior where every tenth packet is lost. Consider three different scenarios where all parameters 
remain the same except for the round-trip time, which changes as: RTT1 = 0.01 sec, RTT2 = 0.1 
sec, and RTT3 = 1 sec. 

What will be the average rate at which this sender sends data for the different scenarios? Provide 
an explanation in case you observe any differences between the three scenarios. 

Problem 2.12 

Calculate the total time required for transferring a 1-MB file from a server to a client in the 
following cases, assuming an RTT of 100 ms, a segment size of 1 KB, and an initial 2×RTT of 
“handshaking” (initiated by the client) before data is sent. Assume error-free transmission. 

(a) The bottleneck bandwidth is 1.5 Mbps, and data packets can be sent continuously (i.e., 
without waiting for ACKs) 

(b) The bottleneck bandwidth is 1.5 Mbps, but Stop-and-wait ARQ is employed 

(c) The bandwidth is infinite, meaning that we take transmission time to be zero, and 
Go-back-20 is employed 

(d) The bandwidth is infinite, and TCP Tahoe is employed 

Problem 2.13 

Consider a TCP Reno sender, which is in the middle of sending a large amount of data and 
assume that you are observing it at time ti. Let ti,  ti+1, ti+2, …, ti+7 denote times when the TCP 
sender will send the subsequent 8 data segments, as governed by its congestion control algorithm. 
The following assumptions are made: 

A1. The TCP sender’s segment size equals MSS = 200 bytes. At time ti, the sender is in the 
slow start phase and the congestion window size is already updated as CongWin(ti) = 
400 bytes. There are currently no unacknowledged segments. The slow start threshold 
SSThresh(ti) = 64 Kbytes and the receiver’s buffer size RcvWindow(ti) = 1000 bytes. 

A2. The sender’s sequence number for the next segment that will be transmitted at time ti 
equals 30. Assume that the sender transmits back-to-back all the segments that are 
permitted by its current EffectiveWindow size (i.e., the segments are sent in 
“bursts”). Assume that the segment transmission time is much smaller than the 
propagation time, i.e., tx << tp and tp ≈ ½ RTT. 

A3. The receiver does not use delayed ACKs, i.e., it sends an ACK immediately after 
receiving a data segment. All in-order segments are immediately delivered to the 
application and they never linger in the receive buffer. 

A4. The estimated round-trip time at time ti −1 equals EstimatedRTT(ti −1) = 100 
milliseconds, the standard deviation equals DevRTT(ti −1) = 10 milliseconds, and 
SampleRTT(ti) = 106 ms. 
Any subsequent transmissions will experience the following round-trip times (from the 
moment a data segment is transmitted from the sender until the corresponding ACK is 
received at the sender): RTT(ti) = 105 ms, RTT(ti+1) = 93 ms, RTT(ti+2) = 179 ms, 
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RTT(ti+3) = 182 ms, RTT(ti+4) = 165 ms, RTT(ti+5) = 193 ms, RTT(ti+6) = 154 ms, and 
RTT(ti+7) = 171 ms. 
Note: the above values RTT(t) are different from SampleRTT(t), which is the RTT value 
measured at time t. 

Starting at time ti, consider the subsequent 8 segment transmissions and do the following: 
(a) Show the congestion window sizes CongWin(t) and the sequence numbers of the 

segments transmitted from the sender at times t = ti,  ti+1, ti+2, …, ti+7. 
(b) Show the sequence numbers of the corresponding acknowledgements and indicate the 

times when the ACKs will arrive. Also show the values of RcvWindow(t) as carried in 
each acknowledgement packet. 

(c) Show the values of EstimatedRTT(t) and DevRTT(t) as measured by the TCP 
retransmission-timer management algorithm. 

(d) Indicate the times when the TCP sender will set its retransmission timer, if any, as 
dictated by the TCP algorithm and write down the values of TimeoutInterval(t). 

Problem 2.14 

 

Problem 2.15 

TCP NewReno RTO Timeout Timer Calculation 

Consider the evolution of TCP NewReno parameters shown in Figure 2-19 for Example 2.2. 
Starting with time t = 89 when segment #35 is retransmitted, show the values of 
TimeoutInterval(t), calculated using Eq. (2.2). Stop when the ACK for the retransmitted 
#41 arrives, which will happen at t =120 and show the value of TimeoutInterval(120). 
Assume that at time t = 88, EstimatedRTT(88) = 6, DevRTT(88) = 0.05, and the values of the 
control parameters α = 0.125 and β = 0.25. 

Follow the procedure for computing TimeoutInterval(t) explained in Section 2.1.2 (and 
summarized in the pseudocode at the end of this section) as closely as possible. Explain how you 
obtained every new value of TimeoutInterval(t). 
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Chapter 3 
Multimedia and Real-time 

Applications 

 

 

3.1 Application 
Requirements 

 

People needs determine the system requirements. 

In some situations it is necessary to consider human users as 
part of an end-to-end system, treating them as active 
participants, rather than passive receivers of information. For 
instance, people have thresholds of boredom, and finite 
reaction times. A specification of user’s perceptions is thus 
required, as it is the user that ultimately defines whether the 
result has the right quality level. 

 

A traffic model summarizes the expected “typical” behavior of 
a source or an aggregate of sources. Of course, this is not 
necessarily the ultimate source of the network traffic. The 
model may consider an abstraction by “cutting” a network link 
or a set of link at any point in the network and considering the 
aggregate “upstream” system as the source(s). 

Traffic models fall into two broad categories. Some models are 
obtained by detailed traffic measurements of thousands or 
millions of traffic flows crossing the physical link(s) over days or years. Others are chosen 
because they are amenable to mathematical analysis. Unfortunately, only a few models are both 
empirically obtained and mathematically tractable. 

Two key traffic characteristics are: 

• Message arrival rate 
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• Message servicing time 

Message (packet) arrival rate specifies the average number of packets generated by a given source 
per unit of time. Message servicing time specifies the average duration of servicing for messages 
of a given source at a given server (intermediary). Within the network, packet-servicing time 
comprises not much more than inspection for correct forwarding plus the transmission time, 
which is directly proportional to the packet length. 

In the following analysis, we will usually assume that the traffic source is infinite, because an 
infinite source is easier to describe mathematically. For a finite source, the arrival rate is affected 
by the number of messages already sent; indeed, if all messages are already sent, the arrival rate 
drops to zero. If the source sends finite but large number of messages, we assume an infinite 
source to simplify the analysis. 

Traffic models commonly assume that packets arrive as a Poisson process, that is, the interarrival 
time between calls is drawn from an exponential distribution. 

Packet servicing times have traditionally been modeled as drawn from an exponential 
distribution. That is, the probability that the servicing lasts longer than a given length x decreases 
exponentially with x. However, recent studies have shown servicing times to be heavy-tailed. 
Intuitively, this means that many packets are very long. More precisely, if Tp represents the 
packet servicing time, and c(t) is defined to be a slowly varying function of t when t is large, the 
probability that the packet is serviced longer than t is given by: 

P(T > t) = c(t)⋅t−α as t→∞, 1 < α < 2 

As Figure 3-xxx shows, a heavy-tailed distribution has a significantly higher probability mass at 
large values of t than an exponential function. 

3.1.1 Application Types 

Multimedia application bandwidth requirements range from G.729 8Kbps speech codec and 
H.263 64Kbps video codec to 19.2 Mbps for MPEG2, P, 4:2:0 (US standard) based 
videoconferencing and 63Mbps SXGA 3D computer games [DuVal & Siep 2000]. In general, the 
higher the speech sampling rate, the better the potential call quality (but at the expense of more 
bandwidth being consumed). For example, G.711 encoding standard for audio provides excellent 
quality. Data is delivered at 64 Kbps, and the codec imposes no compression delay. Technically, 
G.711 delivers 8,000 bytes per second without compression so that full Nyquist-dictated samples 
are provided. 

Applications may also have periodic traffic for real-time applications, aperiodic traffic for web 
browsing clients, aperiodic traffic with maximum response times for interactive devices like the 
mouse and keyboard, and non-real time traffic for file transfers. Thus, we see that the range of 
bandwidth and timeliness requirements for multimedia applications is large and diverse. 

 
Table 3-1: Characteristics of traffic for some common sources/forms of information. 

Source Traffic type Arrival rate/Service time Size or Rate 

Voice CBR Deterministic/ Deterministic 64 Kbps 
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Video 
CBR Deterministic/ Deterministic 64 Kbps, 1.5 Mbps 

VBR Deterministic/Random Mean 6 Mbps, peak 24 Mbps 

Text 
ASCII Random/Random 2 KB/page 

Fax Random/ Deterministic 50 KB/page 

Picture 

600 dots/in, 256 
colors, 8.5 × 11 in 

Random/ Deterministic 33.5 MB 

70 dots/in, b/w,  
8.5 × 11 in 

Random/ Deterministic 0.5 MB 

 

Table 3-1 presents  some characteristics about the traffic generated by common forms of 
information. Notice that the bit streams generated by a video signal can vary greatly depending on 
the compression scheme used. When a page of text is encoded as a string of ASCII characters, it 
produces a 2-Kbyte string; when that page is digitized into pixels and compressed as in facsimile, 
it produces a 50-KB string. A high-quality digitization of color pictures (similar quality to a good 
color laser printer) generates a 33.5-MB string; a low-quality digitization of a black-and-white 
picture generates only a 0.5-MB string. 

We classify all traffic into three types. A user application can generate a constant bit rate (CBR) 
stream, a variable bit rate (VBR) stream, or a sequence of messages with different temporal 
characteristics. We briefly describe each type of traffic, and then consider some examples. 

Constant Bit Rate (CBR) 

To transmit a voice signal, the telephone network equipment first converts it into a stream of bits 
with constant rate of 64 Kbps. Some video-compression standards convert a video signal into a 
bit stream with a constant bit rate (CBR). For instance, MPEG-1 is a standard for compressing 
video into a constant bit rate stream. The rate of the compressed bit stream depends on the 
parameters selected for the compression algorithm, such as the size of the video window, the 
number of frames per second, and the number of quantization levels. MPEG-1 produces a poor 
quality video at 1.15 Mbps and a good quality at 3 Mbps. 

Voice signals have a rate that ranges from about 4 Kbps when heavily compressed and low 
quality to 64 Kbps. Audio signals range in rate from 8 Kbps to about 1.3 Mbps for CD quality. 

Variable Bit Rate (VBR) 

Some signal-compression techniques convert a signal into a bit stream that has variable bit rate 
(VBR). For instance, MPEG-2 is a family of standards for such variable bit rate compression of 
video signals. The bit rate is larger when the scenes of the compressed movies are fast moving 
than when they are slow moving. Direct Broadcast Satellite (DBS) uses MPEG-2 with an average 
rate of 4 Mbps. 

To specify the characteristics of a VBR stream, the network engineer specifies the average bit rate 
and a statistical description of the fluctuations of that bit rate. More about such descriptions will 
be said later. 
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Messages 

Many user applications are implemented as processes that exchange messages over a network. An 
example is Web browsing, where the user sends requests to a web server for Web pages with 
embedded multimedia information and the server replies with the requested items. The message 
traffic can have a wide range of characteristics. Some applications, such as email, generate 
isolated messages. Other applications, such as distributed computation, generate long streams of 
messages. The rate of messages can vary greatly across applications and devices. 

To describe the traffic characteristics of a message-generating application, the network engineer 
may specify the average traffic rate and a statistical description of the fluctuations of that rate, in 
a way similar to the case of a VBR specification. 

 

See definition of fidelity in: 

B. Noble, “System support for mobile, adaptive applications,” IEEE Personal Communications, 
7(1), pp.44-49, February 2000. 

E. de Lara, R. Kumar, D. S. Wallach, and W. Zwaenepoel, “Collaboration and Multimedia 
Authoring on Mobile Devices,” Proc. First Int’l Conf. Mobile Systems, Applications, and 
Services (MobiSys 2003), San Francisco, CA, pp. 287-301, May 2003. 

 

In any scenario where information is communicated, two key aspects of information are fidelity 
and timeliness. Higher fidelity implies greater quantity of information, thus requiring more 
resources. The system resources may be constrained, so it may not be possible to transmit, store, 
and visualize at a particular fidelity. If memory and display are seen only as steps on 
information’s way to a human consumer, then they are part of the communication channel. The 
user could experience pieces of information at high fidelity, sequentially, one at a time, but this 
requires time and, moreover, it requires the user to assemble in his or her mind the pieces of the 
puzzle to experience the whole. Some information must be experienced within particular 
temporal and or spatial (structural?) constraints to be meaningful. For example, it is probably 
impossible to experience music one note at a time with considerable gaps in between. Or, a 
picture cannot be experienced one pixel at a time. Therefore, the user has to trade fidelity for 
temporal or spatial capacity of the communication channel. 
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Figure 3-1: Analog speech signal sampling, and quantization to 4 bits. 
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Information loss may sometimes be tolerable; e.g., if messages contain voice or video data, most 
of the time the receiver can tolerate some level of loss. 

Shannon had to introduce fidelity in order to make problem tractable [Shannon & Weaver 1949]. 

Information can be characterized by fidelity ~ info content (entropy). The effect of a channel can 
be characterized as deteriorating information’s fidelity and increasing the latency: 

fidelityIN + latencyIN →()_____)→ fidelityOUT + latencyOUT  

Wireless channels in particular suffer from limitations reviewed in Volume 2. Increasing the 
channel capacity to reduce latency is usually not feasible—either it is not physically possible or it 
is too costly. 

Information qualities can be considered in many dimensions. We group them in two opposing 
ones: 

• Those that tend to increase the information content 

• Delay and its statistical characteristics 

 

The computing system has its limitations as well. If we assume finite buffer length, then in 
addition to delay problem, there is a random loss problem. This further affects the fidelity. 
Fidelity has different aspects, such as: 

• Spatial (sampling frequency in space and quantization – see Brown&Ballard CV book) 

• Temporal (sampling frequency in time) 

• Structural (topologic, geometric, …) 

Delay or latency may also be characterized with more parameters than just instantaneous value, 
such as the amount of variability of delay, also called delay jitter. In real life both fidelity and 
latency matter and there are thresholds for each, below which information becomes useless. The 
system is forced to manipulate the fidelity in order to meet the latency constraints. A key question 
is, how faithful should signal be in order to be quite satisfactory without being too costly? In 
order arrive at a right tradeoff between the two, the system must know: 

1. Current channel quality parameters, e.g., capacity, which affect fidelity and latency 

2. User’s tolerances for fidelity and latency 

The former determines what can be done, i.e., what fidelity/latency can be achieved with the 
channel at hand, and the latter determines how to do it, i.e., what matters more or less to the user 
at hand. Of course, both channel quality and user preferences change with time. 

Example with telephone: sound quality is reduced to meet the delay constraints, as well as reduce 
the costs. 

Targeted reduction of information fidelity in a controlled manner helps meet the latency 
constraints and averts random loss of information. Common techniques for reducing information 
fidelity include: 

• Lossless and lossy data compression 
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• Packet dropping (e.g., RED congestion-avoidance mechanism in TCP/IP) 

• …? 

The above presentation is a simplification in order to introduce the problem. Note that there are 
many other relevant parameters, such as security, etc., that characterize the communicated 
information and will be considered in detail later. 

 

Organizational concerns: 

• Local traffic that originates at or terminates on nodes within an organization (also called 
autonomous system, AS) 

• Transit traffic that passes through an AS 

 

3.1.2 Standards of Information Quality 

In text, the entropy per character depends on how many values the character can assume. Because 
a continuous signal can assume an infinite number of different value at a sample point, we are led 
to assume that a continuous signal must have an entropy of an infinite number of bits per sample. 
This would be true if we required absolutely accurate reproduction of the continuous signal. 
However, signals are transmitted to be heard, seen, or sensed. Only a certain degree of fidelity of 
reproduction is required. Thus, in dealing with the samples which specify continuous signals, 
Shannon introduces fidelity criterion. To reproduce the signal in a way meeting the fidelity 
criterion requires only a finite number of binary digits per sample per second, and hence we say 
that, within the accuracy imposed by a particular fidelity criterion, the entropy of a continuous 
source has a particular value in bits per sample or bits per second. 

Standards of information quality help perform ordering of information bits by importance (to the 
user). 

 

Man best handles information if encoded to his abilities. (Pierce, p.234) 

In some cases, we can apply common sense in deciding user’s servicing quality needs. For 
example, in applications such as voice and video, users are somewhat tolerable of information 
loss, but very sensitive to delays. Conversely, in file transfer or electronic mail applications, the 
users are expected to be intolerable to loss and tolerable to delays. Finally, there are applications 
where both delay and loss can be aggravating to the user, such as in the case of interactive 
graphics or interactive computing applications. 

For video, expectations are low 

For voice, ear is very sensitive to jitter and latencies, and loss/flicker 

Voice communication requires a steady, predictable packet delivery rate in order to maintain 
quality. Jitter, which is variation in packet delivery timing, is the most common culprit that 
reduces call quality in Internet telephony systems. Jitter causes the audio stream to become 
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broken, uneven or irregular. As a result, the listener’s experience becomes unpleasant or 
intolerable. 

The end results of packet loss are similar to those of jitter but are typically more 
severe when the rate of packet loss is high. Excessive latency can result in unnatural 
conversation flow where there is a delay between words that one speaks versus words 
that one hears. Latency can cause callers to talk over one another and can also result 
in echoes on the line. Hence, jitter, packet loss and latency can have dramatic 
consequences in maintaining normal and expected call quality.  

Human users are not the only recipients of information. For example, network 
management system exchanges signaling packets that may never reach human user. 
These packets normally receive preferential treatment at the intermediaries (routers), and this is 
particularly required during times of congestion or failure. 

It is particularly important during periods of congestion that traffic flows with different 
requirements be differentiated for servicing treatments. For example, a router might transmit 
higher-priority packets ahead of lower-priority packets in the same queue. Or a router may 
maintain different queues for different packet priorities and provide preferential treatment to the 
higher priority queues. 

User Studies 

User studies uncover the degree of service degradation that the user is capable of tolerating 
without significant impact on task-performance efficiency. A user may be willing to tolerate 
inadequate QoS, but that does not assure that he or she will be able to perform the task 
adequately. 

Psychophysical and cognitive studies reveal population levels, not individual differences. Context 
also plays a significant role in user’s performance. 

The human senses seem to perceive the world in a roughly logarithmic way. The eye, for 
example, cannot distinguish more than six degrees of brightness; but the actual range of physical 
brightness covered by those six degrees is a factor of 2.5 × 2.5 × 2.5 × 2.5 × 2.5 × 2.5, or about 
100. A scale of a hundred steps is too fine for human perception. The ear, too, perceives 
approximately logarithmically. The physical intensity of sound, in terms of energy carried 
through the air, varies by a factor of a trillion (1012) from the barely audible to the threshold of 
pain; but because neither the ear nor the brain can cope with so immense a gamut, they convert 
the unimaginable multiplicative factors into comprehensible additive scale. The ear, in other 
words, relays the physical intensity of the sound as logarithmic ratios of loudness. Thus a normal 
conversation may seem three times as loud as a whisper, whereas its measured intensity is 
actually 1,000 or 103 times greater. 

Fechner’s law in psychophysics stipulates that the magnitude of sensation—brightness, warmth, 
weight, electrical shock, any sensation at all—is proportional to the logarithm of the intensity of 
the stimulus, measured as a multiple of the smallest perceptible stimulus. Notice that this way the 
stimulus is characterized by a pure number, instead of a number endowed with units, like seven 
pounds, or five volts, or 20 degrees Celsius. By removing the dependence on specific units, we 
have a general law that applies to stimuli of different kinds. Beginning in the 1950s, serious 
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departures from Fechner’s law began to be reported, and today it is regarded more as a historical 
curiosity than as a rigorous rule. But even so, it remains important approximation … 

Define j.n.d. (just noticeable difference) 

 

For the voice or video application to be of an acceptable quality, the network must transmit the bit 
stream with a short delay and corrupt at most a small fraction of the bits (i.e., the BER must be 
small). The maximum acceptable BER is about 10−4 for audio and video transmission, in the 
absence of compression. When an audio and video signal is compressed, however, an error in the 
compressed signal will cause a sequence of errors in the uncompressed signal. Therefore the 
tolerable BER is much less than 10−4 for transmission of compressed signals. 

The end-to-end delay should be less than 200 ms for real-time video and voice conversations, 
because people find larger delay uncomfortable. That delay can be a few seconds for non-real-
time interactive applications such as interactive video and information on demand. The delay is 
not critical for non-interactive applications such as distribution of video or audio programs. 

Typical acceptable values of delays are a few seconds for interactive services, and many seconds 
for non-interactive services such as email. The acceptable fraction of messages that can be 
corrupted ranges from 10−8 for data transmissions to much larger values for noncritical 
applications such as junk mail distribution. 

Among applications that exchange sequences of messages, we can distinguish those applications 
that expect the messages to reach the destination in the correct order and those that do not care 
about the order. 

 

3.1.3 User Models 

User Preferences 

 

User Utility Functions 

 

Example: Augmented Reality (AR) 

{PROBLEM STATEMENT} 

Inaccuracy and delays on the alignment of computer graphics and the real world are one of the 
greatest constrains in registration for augmented reality. Even with current tracking techniques it 
is still necessary to use software to minimize misalignments of virtual and real objects. Our 
augmented reality application represents special characteristics that can be used to implement 
better registration methods using an adaptive user interface and possibly predictive tracking. 
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{CONSTRAINS} 

AR registration systems are constrained by perception issues in the human vision system. 

An important parameter of continuous signals is the acceptable frame rate. For virtual reality 
applications, it has been found that the acceptable frame rate is 20 frames per second (fps), with 
periodical variations of up to 40% [Watson 97], and maximum delays of 10 milliseconds [Azuma, 
1995]. The perception of misalignment by the human eye is also restrictive. Azuma found 
experimentally that it is about 2-3 mm of error at the length of the arm (with an arm length of 
about 70 cm) is acceptable [Azuma 95]. However, the human eye can detect even smaller 
differences as of one minute of arc [Doenges 85]. Current commercially available head-mounted 
displays used for AR cannot provide more than 800 by 600 pixels, this resolution makes 
impossible to provide an accuracy one minute of arc. 

 

{SOURCES OF ERROR} 

Errors can be classified as static and dynamic. Static errors are intrinsic on the registration system 
and are present even if there is no movement of the head or tracked features. 

Most important static errors are optical distortions and mechanical misalignments on the HMD, 
errors in the tracking devices (magnetic, differential, optical trackers), incorrect viewing 
parameters as field of view, tracker-to-eye position and orientation. If vision is used to track, the 
optical distortion of the camera also has to be added to the error model. 

Dynamic errors are caused by delays on the registration system. If a network is used, dynamic 
changes of throughput and latencies become an additional source of error. 

 

{OUR AUGMENTED REALITY SYSTEM} 

Although research projects have addressed some solutions for registrations involving predictive 
tracking [Azuma 95] [Chai 99] we can extended the research because our system has special 
characteristics (many of these approaches). It is necessary to have accurate registration most of its 
usage however it is created for task where there is limited movement of the user, as in a repairing 
task. Delays should be added to the model if processing is performed on a different machine. Also 
there is the necessity of having a user interface that can adapt to registration changes or according 
to the task being developed, for example removing or adding information only when necessary to 
avoid occluding the view of the AR user. 

 

{PROPOSED SOLUTION} 

The proposed solution is based on two approaches: predictive registration and adaptive user 
interfaces. Predictive registration allows saving processing time, or in case of a networked system 
it can provide better registration in presence of latency and jitter. With predictive registration 
delays as long as 80ms can be tolerated [Azuma 94]. A statistical model of Kalman filters and 
extended Kalman filters can be used to optimize the response of the system when multiple 
tracking inputs as video and inertial trackers are used [Chai 99].  
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Adaptive user interfaces can be used to improve the view of the augmented world. This approach 
essentially takes information form the tracking system to determine how the graphics can be 
gracefully degraded to match the real world. Estimation of the errors was used before to get and 
approximated shape of the 3D objects being displayed [MacIntyre 00]. Also some user interface 
techniques based on heuristics where used to switch different representations of the augmented 
world [Höllerer 01]. The first technique has a strict model to get an approximated AR view but it 
degrades the quality of the graphics, specially affecting 3D models. The second technique 
degrades more gracefully but the heuristics used are not effective for all the AR systems. A 
combination would be desirable. 

 

{TRACKING PIPELINE} 

This is a primary description of our current registration pipeline 

 

Image Processing 

[Frame capture] => [Image threshold] => [Subsampling] => [Features Finding] =>  

[Image undistortion] => [3D Tracking information] => [Notify Display] 

 

Video Display 

[Get processed frame] => [Frame rendering in a buffer] => [3D graphics added to Buffer]  

=> [Double buffering] => [Display] 

 

These processes are executed by two separated threads for better performance and resource usage. 
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3.1.4 Performance Metrics 

Delay (the average time needed for a packet to travel from source to destination), statistics of 
delay (variation, jitter), packet loss (fraction of packets lost, or delivered so late that they are 
considered lost) during transmission, packet error rate (fraction of packets delivered in error);  

Bounded delay packet delivery ratio (BDPDR): Ratio of packets forwarded between a mobile 
node and an access point that are successfully delivered within some pre-specified delay 
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constraint. The delay measurement starts at the time the packet is initially queued for 
transmission (at the access point for downstream traffic or at the originating node for upstream 
traffic) and ends when it is delivered successfully at either the mobile node destination 
(downstream traffic) or AP (upstream traffic). 

 

Quality of Service 

QoS, Keshav p.154 

Cite Ray Chauduhuri’s W-ATM paper {cited in Goodman} 

 

Quality of Service (QoS) 

Performance measures 

Throughput 

Latency 

Real-time guarantees 

Other factors 

Reliability 

Availability 

Security 

Synchronization of data streams 

Etc. 

A networking professional may be able to specify what quality-of-service metrics are needed, and 
can specify latency, packet loss and other technical requirements. However, the consumer or 
independent small-office-home-office (SOHO) user would more easily understand service 
classifications such as “High-Definition Movie Tier” or an “Online Gamer Tier.” Few consumers 
will be able to specify service-level agreements, but they may want to know if they are getting 
better services when they pay for them, so a consumer-friendly reporting tool would be needed. 
In addition, although enterprises are increasingly likely to buy or use a premise-based session 
border controller to better manage IP traffic, service providers will need to come up with an 
easier and less expensive alternative to classify consumer IP packets based on parameters such as 
user profiles and service classes. 
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3.2 Source Characteristics and Traffic 
Models 

 

Different media sources have different traffic characteristics. 

3.2.1 Traffic Descriptors 

Some commonly used traffic descriptors include peak rate and average rate of a traffic source. 

Average Rate 

The average rate parameter specifies the average number of packets that a particular flow is 
allowed to send per unit of time. A key issue here is to decide the interval of time over which the 
average rate will be regulated. If the interval is longer, the flow can generate much greater 
number of packets over a short period than if the interval is short. In other words, a shorter 
averaging interval imposes greater constraints. For example, average of 100 packets per second is 
different from an average of 6,000 packets per minute, because in the later can the flow is 
allowed to generate all 6,000 over one 1-second interval and remain silent for the remaining 59 
seconds. 

Researchers have proposed two types of average rate definitions. Both [ … ] 

Burst size: this parameter constrains the total number of packets (the “burst” of packets) that can 
be sent by a particular flow into the network over a short interval of time. 

Peak Rate 

The peak rate is the highest rate at which a source can generate data during a communication 
session. Of course, the highest data rate from a source is constrained by the data rate of its 
outgoing link. However, by this definition even a source that generates very few packets on a 
100-Mbps Ethernet would be said to have a peak rate of 100 Mbps. Obviously, this definition 
does not reflect the true traffic load generated by a source. Instead, we define the peak rate as the 
maximum number of packets that a source can generate over a very short period of time. In the 
above example, one may specify that a flow be constrained to an average rate of 6,000 
packets/minute and a peak rate of 100 packets/second. 

 

 

------------------------------------------------------------- 

 

Primitive traffic characterization is given by the source entropy. 

See also MobiCom’04, p. 174: flow characterization 
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For example, image transport is often modeled as a two state on-off process. While on, a source 
transmits at a uniform rate. For more complex media sources such as variable bit rate (VBR) 
video coding algorithms, more states are often used to model the video source. The state 
transitions are often assumed Markovian, but it is well known that non-Markovian state 
transitions could also be well represented by one with more Markovian states. Therefore, we shall 
adopt a general Markovian structure, for which a deterministic traffic rate is assigned for each 
state. This is the well-known Markovian fluid flow model [Anick et al. 1982], where larger 
communication entities, such as an image or a video frame, is in a sense “fluidized” into a fairly 
smooth flow of very small information entities called cells. Under this fluid assumption, let Xi(t) 
be the rate of cell emission for a connection i at the time t, for which this rate is determined by the 
state of the source at time t. 

The most common modeling context is queuing, where traffic is offered to a queue or a network 
of queues and various performance measures are calculated. 

Simple traffic consists of single arrivals of discrete entities (packets, frames, etc.). It can be 
mathematically described as a point process, consisting of a sequence of arrival instants T1, T2, 
…, Tn, … measured from the origin 0; by convention, T0 = 0. There are two additional equivalent 
descriptions of point processes: counting processes and interarrival time processes. A counting 

process ∞
=0)}({ ttN  is a continuous-time, non-negative integer-valued stochastic process, where 

N(t) = max{n : Tn ≤ t} is the number of (traffic) arrivals in the interval (0, t]. An interarrival time 

process is a non-negative random sequence ∞
=1}{ nnA , where An = Tn − Tn−1 is the length of the time 

interval separating the n-th arrival from the previous one. The equivalence of these descriptions 
follows from the equality of events: 
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. Unless otherwise stated, we assume throughout that {An} is a stationary 

sequence and that the common variance of the An is finite. 

 

3.2.2 Self-Similar Traffic 

 

3.3 Approaches to Quality-of-Service 
 

This section reviews some end-to-ed mechanisms for providing quality-of-service (QoS), and 
hints at mechanisms used in routers. Chapter 5 details the router-based QoS mechanisms. 
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3.3.1 End-to-End Delayed Playout 

Problems related to this section: Problem 3.2 → Problem 3.5 

Removing Jitter by Delayed Playout 

Consider the example shown in Figure 3-2 where a source sends audio signal to a receiver for 
playout. Let us assume that the source segments the speech stream every 20 milliseconds and 
creates data packets. The source outputs the packets with a uniform spacing between them, but 
they arrive at the receiver at irregular times due to random network delays. 

Speech packetization at the intervals of 20 ms seems to be a good compromise. If the interval 
were longer, flicker due to lost or late packets would be more noticeable; conversely, if the 
interval were shorter, the packet-header overhead would be too high, with the header size 
possibly exceeding the payload. 

Playing out the speech packets as they arrive (with random delays) would create significant 
distortions and impair the conversation. One way to deal with this is to buffer the packets at the 
receiving host to smooth out the jitter. Packets are buffered for variable amounts of time in an 
attempt to play out each speech segment with a constant amount of delay relative to the time 
when it was pacektized and transmitted from the source. Let us introduce the following notation 
(see Figure 3-2): 

ti = the time when the ith packet departed its source 

di = the amount of delay experienced by the ith packet while in transit 

ri = the time when the ith packet is received by receiver (notice that ri = ti + di) 

pi = the time when the ith packet is played at receiver 
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Figure 3-2: Packets depart with a uniform spacing, but they experience variable amount of
delay (jitter) and arrive at the receiver irregularly (packets #3 and #6 arrive out of order). 
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Let q denote the constant delay introduced to smoothen out the playout times. Then pi = ti + q. 
The time difference between the ith packet’s playout time and the time it is received equals Δi = (ti 
+ q) −  ri. If Δi ≥ 0, the ith packet should be buffered for this duration before it is played out. If Δi < 
0, the ith packet should be discarded because it arrived too late for playout. Figure 3-3 illustrates 
jitter removal for the example given in Figure 3-2. In this case, the constant playout delay of q = 
100 ms is selected. With this choice, the sixth packet does not arrive by its scheduled playout 
time, and the receiver considers it lost. 

We could try selecting a large q so that all packets will arrive by their scheduled playout time. 
However, for applications such as Internet telephony, delays greater than 400 ms are not 
acceptable because of human psychophysical constraints. Ideally, we would like keep the playout 
delay less than 150 ms. Larger delays become annoying and it is difficult to maintain a 
meaningful conversation. We know from the discussion in Section 2.1.2 that average end-to-end 
network delays can change significantly during day or even during short periods. Therefore, the 
best strategy is to adjust the playout delay adaptively, so that we select the minimum possible 
delay for which the fraction of missed playouts is kept below a given threshold. 

We can again use the approach described in Section 2.1.2 and estimate the average end-to-end 
network delay using Exponential Weighted Moving Average (EWMA). Similar to Eq. (2.2), we 

estimate the average network delay iδ̂  upon reception of the ith packet as 

)(ˆ)1(ˆ
1 iiii tr −⋅+⋅−= − αδαδ  

where α is a fixed constant, say, α = 0.001. We also estimate the average standard deviation iυ̂  

of the delay as 

||ˆ)1(ˆ 1 iiiii dtr −−⋅+⋅−= − αυαυ  

Notice that the playout delay q is measured relative to packet’s departure time (Figure 3-3). 
Therefore, we cannot adjust q for each packet individually, because this would still result in 
distorted speech. An option is to set the playout delay constant for an interval of time, but the 
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Figure 3-3: Removing jitter at receiver by delaying the playout. 
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question is when this interval should start and how long it should last. It turns out that humans do 
not notice if the periods of silence between the utterances are stretched or compressed. This fact 
is used to adjust the playout delay adaptively: the playout delay q is adjusted only at the start of 
an utterance (or, “talk spurt”) and it is maintained constant until the next period of silence. The 

receiver maintains average delay iδ̂  and average standard deviation iυ̂  for each received packet. 

During a period of silence, the receiver calculates the playout delay for the subsequent talk spurt 
as follows. If packet k is the first packet of the next talk spurt, kth’s playout delay is computed as 

kkk Kq υδ ˆˆ ⋅+=      (3.1) 

where K is a positive constant, for example we can set K = 4 following the same reasoning as in 
Section 2.1.2 for Eq. (2.2). Then, the playout time of the kth packet and all the remaining packets 
of the next spurt is computed as pi = ti + qk. 

RTP 

The Real-time Transport Protocol (RTP) provides the transport of real-time data packets. To 
accommodate new real-time applications, the protocol specifies only the basics and it is 
somewhat incomplete. Unlike conventional protocols, RTP can be tailored to specific application 
needs through modifications and additions to headers. This allows the protocol to adapt easily to 
new audio and video standards. 
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Figure 3-4: Real-time Transport Protocol (RTP) packet format. 
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RTP implements the end-to-end layer (or, transport-layer in the OSI model) 
features needed to provide synchronization of multimedia data streams. 
Figure 3-4 shows the header format used by RTP. 

The first two bits indicate the RTP version. 

The “padding” (P) bit is set when the packet contains a set of padding 
octets that are not part of the payload. For example, RTP data might be padded to fill up a block 
of a certain size as required by some encryption algorithms. 

The extension bit (X) is used to indicate the presence of an extension header, which can be 
defined for some application’s special needs. Such headers are rarely used, because a payload-
specific header can be defined as part of the payload format definition used by the application. 

The 4-bit contributing-sources count represents the number of contributing source (CSRC) 
identifiers, if any are included in the header. 

The M bit allows significant events to be marked in the packet stream (that is, frame boundaries). 

The 7-bit payload type specifies the format of the payload in the RTP packet. An RTP sender 
emits a single RTP payload type at any given time. An RTP packet can contain portions of either 
audio or video data streams. To differentiate between these streams, the sending application 
includes a payload type identifier within the RTP header. The identifier indicates the specific 
encoding scheme used to create the payload. 

The sequence number is used by the receiver when removing jitter at the receiver, as described 
earlier. It is used to restore the original packet order and detect packet loss. The sequence number 
increments by one for each RTP data packet sent. The initial value of the sequence number is 
randomly determined. This makes hacking attacks on encryption more difficult. A random 
number is used even if the source device does not encrypt the RTP packet. The packets can flow 
through a translator host or router that does provide encryption services. 

The timestamp is used along with the sequence number to detect gaps in a packet sequence. 
Timestamps are also used in RTP to synchronize packets from different sources. The timestamp 
represents the sampling (creation) time of the first octet in each RTP data packet. It is derived 
from a clock that increments monotonically and linearly. The resolution of the timer depends on 
the desired synchronization accuracy required by the application. It is possible that several 
consecutive RTP packets have the same timestamp. For example, this can occur when a single 
video frame is transmitted in multiple RTP packets. Because the payloads of these packets were 
logically generated at the same instant, their time stamps remain constant. The initial value of the 
time stamp is random. 

The synchronization source (SSRC) identifier is a randomly chosen identifier for an RTP host. 
All packets from the same source contain the same SSRC identifier. Each device in the same RTP 
session must have a unique SSRC identifier. This enables the receiver to group packets for 
playback. 

The contributing source (CSRC) identifiers field contains a list of the sources for the payload in 
the current packet. This field is used when a mixer combines different streams of packets. The 
information contained in this field allows the receiver to identify the original senders. 

RTP (Real-time
Transport Protocol)

Layer 2:
Network

Layer 1:
Link

Layer 3:
End-
to-End
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RTCP 

The Real-Time Control Protocol (RTCP) monitors the quality of service provided to existing 
RTP sessions. The primary function of RTCP is to provide feedback about the quality of the RTP 
data distribution. This is comparable to the flow and congestion control functions provided by 
other transport protocols, such as TCP. Feedback provided by each receiver is used to diagnose 
stream-distribution faults. By sending feedback to all participants in a session, the device 
observing problems can determine if the problem is local or remote. This also enables a managing 
entity (that is, a network service provider) that is not a participant in the session to receive the 
feedback information. The network provider can then act as a third-party monitor to diagnose 
network problems. 

3.3.2 Multicast Routing 

Problems related to this section: Problem 3.7 → ?? 

When multiple receivers are required to get the same data at approximately the same time, 
multicast routing is a more efficient way of delivering data than unicast. A unicast packet has a 
single source IP address and a single destination IP address. Data are delivered to a single host. A 
multicast packet has a single source IP, but it has a multicast destination IP address that will be 
delivered to a group of receivers. (Recall the multicast address class D in Figure 1-45.) The 
advantage is that multiple hosts can receive the same multicast stream (instead of several 
individual streams), thereby saving network bandwidth. In general, the bandwidth saving with 
multicast routing becomes more substantial as the number of destinations increases. 

Unicast
(a)

Source
3 × 1.5 Mbps

2 ×
1.5 M

bps

Multicast
(b)

Source 1 × 1.5 Mbps
1 ×

1.5 M
bps

Figure 3-5: Unicast vs. multicast routing. 
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Figure 3-5 shows an example where three users are simultaneously watching the same video that 
is streamed from the same video source. In Figure 3-5(a), all users receive their individual 
streams via a unicast delivery. As illustrated, the source must send a total of 3 unicast streams, 
each targeted to a different user. Obviously, this is a waste of bandwidth. If the compressed video 
takes approximately 1.5 Mbps of bandwidth per stream, then the first link must support data rate 
of at least 3 × 1.5 = 4.5 Mbps. Similarly, the lower link from the first router relays two streams 
which consume 2 × 1.5 = 3 Mbps of bandwidth. If, on the other hand, the network supports 
multicast routing as in Figure 3-5(b), the source sends only a single stream and all links would be 
using 1.5 Mbps for this video. Of course, this kind of resource saving is possible only if multiple 
users are downloading simultaneously the same video from the same source. 

There are two key issues for multicast routing protocols: 

1. Multicast Group Management: identifying which hosts are members of a multicast 
group and supporting dynamic changes in the group membership; multiple sources and 
multiple receivers may need to be supported 

2. Multicast Route Establishment: setting up the (shortest path) route from each source to 
each receiver 

A multicast group relates a set of sources and receivers with each other, but conceptually exists 
independently of them. Such group is identified by a unique IP multicast address of Class D 
(Figure 1-45). It is created either when a source starts sending to the group address (even if no 
receivers are present) or when a receiver expresses its interest in receiving packets from the group 
(even if no sources are currently active). 

To establish the multicasting routes, we start by superimposing all the shortest paths connecting 
the source with all the receivers. The result will be a tree, i.e., it cannot be a graph with cycles. To 
see why, consider a contrary possibility, illustrated in Figure 3-6, where the shortest paths from 

Source

Receiver i

Router m Router n

Source

Receiver j

Router m Router n

Shortest path (Source → Receiver i)

Shortest path (Source → Receiver j)

Option (a)

Option (b)

 

Figure 3-6: The superimposed shortest paths must form a tree rooted in the source. 
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the source to two receivers i and j share two intermediary nodes (routers m and n), but not the 
nodes between these two nodes. We know from Section 1.4 that the shortest path between two 
intermediate points does not depend on where this path extends beyond the intermediate points. 
In other words, it does not depend on the endpoints. Hence, if we superimpose all the shortest 
paths from the source host to any destination, we will obtain a tree structure, for which the source 
host is the root node. (Notice that alternative paths between m and n could be equally long, but 
there should be a uniform policy to resolve the tied cases.) The next issue is, how the multicast-
capable routers should construct this tree. 

Reverse Path Forwarding (RPF) Algorithm 

We assume that all routers in the network are running a unicast routing algorithm (described in 
Section 1.4) and maintain unicast routing tables independently of the multicast algorithm. Thus, 
the routers know either the shortest unicast paths to all nodes in the network, or at least the next 
hop on the shortest path to any other node in the network. 

In reverse path forwarding (RPF) algorithm, when a router receives a packet, it forwards the 
packet to all outgoing links (except the one on which it was received) only if the packet arrived 
on the link that is on this router’s shortest unicast path back to the source. Otherwise, the router 
simply discards the incoming packet without forwarding it on any of its outgoing links. (A tie 
between two routers is broken by selecting the router with the smallest network address.) 

A problem with RPF is that it essentially floods every router in the network, regardless of whether 
it has hosts attached to it that are interested in receiving packets from the multicast group. To 
avoid these unnecessary transmissions, we perform pruning: the router that no longer has 
attached hosts interested in receiving multicast packets from a particular source informs the next-
hop router on the shortest path to the source that it is not interested. 

Here is an example: 

 

Example 3.1 Multicast Using Reverse Path Forwarding (RPF) Algorithm 

Consider the network shown in Figure 3-7, in which radio broadcast source A distributes a radio 
program to a multicast group Γ, whose members are all the shown hosts. Assume that all link costs are 
equal to 1, including the Ethernet links, i.e., any two nodes that are separated by one hop. 

(a) Draw the shortest path multicast tree for the group Γ. 

(b) Assuming that the reverse path forwarding (RPF) algorithm is used, how many packets are 
forwarded in the entire network per every packet sent by the source A? To avoid ambiguities, 
describe how you counted the packets. 

(c) Assuming that the RPF algorithm uses pruning to exclude the networks that do not have hosts that 
are members of Γ, how many packets are forwarded in the entire network per every packet sent by 
the source A? 

The solutions for (a) and (b) are shown in Figure 3-8. The shortest path multicast tree is drawn by thick 
lines in Figure 3-8(a). Router R3 is two hops from R2 (the root of the tree) both via R1 and via R4. 
Router R1 is selected because it has a smaller address than R4. (Therefore, link R4–R3 is not part of 
the tree!) Notice that router R6 is not connected to R3 (via the multihomed host E), because 
multihomed hosts do not participate in routing or forwarding of transit traffic. 
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The root router R2 sends packets to routers R1, R4, and R5, which in turn forward them to all outgoing 
links (except the one on which it was received) only if the packet arrived on the link that is on its own 
shortest unicast path back to the source. Otherwise, the router simply discards the incoming packet 
without forwarding it on any of its outgoing links. In Figure 3-8(b), R3 will receive the packets from 
both R1 and R4, but it will forward only the one from R1 and discard the one from R4. The way we 
count packets is how many packets leave the router, and the router has to forward a different packet on 
each different outgoing link. Therefore, the number of forwarded packets in the entire network is 8 per 
each sent packet. If we include the packets forwarded to end hosts, the total is 8 + 6 = 14 (shown in 
Figure 3-8(b)). 

As for part (c), routers R4 and R6 do not have any host for which either one is on the shortest path to 
the source A. The shortest path for host E is via R3–R1–R2. Therefore, R4 and R6 should send a prune 
message to R2 and R7, respectively, to be removed from the multicast tree. This reduces the number of 
forwarded packets by 4, so the total number is 4 per each sent packet, or 4 + 6 = 10, if the end hosts are 
counted. 

 

What if a router is pruned earlier in the session, but later it discovers that some of its hosts wish to 
receive packets from that multicast group? One option is that the router explicitly sends a graft 
message to the next-hop router on the shortest path to the source. Another option is for the 
source(s) and other downstream routers to flood packets periodically from the source in search for 
receivers that may wish to join the group later in the session. This extended version of RPF is 
called flood-and-prune approach to multicast-tree management. 

A key property of RPF is that routing loops are automatically suppressed and each packet is 
forwarded by a router exactly once. The basic assumption underlying RPF is that the shortest path 
is symmetric in both directions. That is, the shortest path from the source to a given router 
contains the same links as the shortest path from this router to the source. This assumption 
requires that each link is symmetric (roughly, that each direction of the link has the same cost). If 
links are not symmetric, then the router must compute the shortest path from the source to itself, 
given the information from its unicast routing tables. Notice that this is possible only if a link-
state protocol (Section 1.4.2) is used as the unicast routing algorithm. 
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Figure 3-7: Example network used in the multicast Example 3.1. 



Chapter 3 • Multimedia and Real-time Applications 203

Spanning Tree Algorithms 

The reverse path forwarding algorithm, even with pruning, does not completely avoid 
transmission of redundant multicast packets. Consider the network in Figure 3-9(a), which is 
similar to Figure 3-7 but slightly more complex. The shortest-path multicast tree is shown in 
Figure 3-9(b). Router R4 can be pruned because it does not have attached hosts that are interested 
in multicast packets from the source A. (Router R5 is relaying packets for R6 and R7, so it stays.) 
As seen, routers R3, R5, R6, R7, and R8 will receive either one or two redundant packets. Ideally, 
every node should receive only a single copy of the multicast packet. This would be the case if 
the nodes were connected only by the thick lines in Figure 3-9(b). The reason is that the thick 
lines form a tree structure, so there are no multiple paths for the packet to reach the same node. A 
tree that is obtained by removing alternative paths, while keeping connected the nodes that were 
originally connected, is called a spanning tree. If a multicast packet were forwarded from the 
root of the tree to all other nodes, every node would receive exactly one copy of the packet. If 
links have associated costs and the total cost of the tree is the sum of its link costs, then the 
spanning three with a minimum total cost is called a minimum spanning tree. 

Therefore, an alternative to RPF is to construct a spanning tree and have each source send the 
packets out on its incident link that belongs to the spanning tree. Any node that receives a 
multicast packet then forwards it to all of its neighbors in the spanning tree (except the one from 
where the packet came). Multicasting on a spanning tree requires a total of only N − 1 packet 
transmissions per packet multicast, where N is the number of nodes. Notice that a single spanning 
tree is sufficient for any number of sources. This is true because any node of a tree can serve as 
its root. To convince yourself about this, take an arbitrary tree and select any of its nodes. Now 
imagine that you pull this node up and the other nodes remain hanging from the selected node. 
What you get is a tree rooted in the selected node. 
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Figure 3-8: The shortest path multicast tree for the example network in Figure 3-7. 
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The main complexity of the spanning-tree multicasting lies in the creation and maintenance of the 
spanning tree, as sources and receivers dynamically join or leave the multicast group or the 
network topology changes. (Notice that RPF does not have this problem, because it relies on 
flooding.) One algorithm that builds and maintains the spanning-tree efficiently is known as core-
based trees (CBTs). With CBTs, the spanning tree is formed starting from a “core router” (also 
known as a “rendezvous point” or a “center node”), which can be statically configured or 
automatically selected. Other routers are added by growing “branches” of the tree, consisting of a 
chain of routers, away from the core router out towards the routers directly adjoining the 
multicast group members. The core router is also known as a “center” and CBT is sometimes 
called center-based approach. 

The tree building process starts when a host joins the multicast group. The host sends a join-
request packet addressed to the core router. The information about the core router is statically 
configured. This join-request packet travels hop-by-hop towards the target core, forwarded using 
unicast routing. The process stops when the packet either arrives at an intermediate router that 
already belongs to the spanning tree or arrives at the destination (the core router). In either case, 
the path that the join-request packet has followed defines the branch of the spanning tree between 
the leaf node that originated the join-request and the core router. The node at which the message 
terminated confirms the packet by sending a join-acknowledgement message. The join-
acknowledgement message travels the same route in the opposite direction the join-request 
message traveled earlier. 
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Figure 3-9: Example network for multicast routing. 
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Figure 3-10 illustrates the process for the network in Figure 3-9(a), assuming that R1 is 
configured as the core router. Suppose that the source A and receivers B, C, D, E, and F join 
simultaneously. (Receiver G will join later.) Figure 3-10(a) shows how each router that has 
attached a group member unicasts the join-request message to the next hop on the unicast path to 
the group’s core. In Figure 3-10(b), the core R1 sends join-acknowledgement messages to R2 and 
R3, and R4 relays R7’s join request. Notice that R3 does not forward the join request by R8. This 
is because R3 already sent its own join request. Subsequent join requests received for the same 
group are cached until this router has received a join acknowledgement for the previously sent 
join, at which time any cached joins can also be acknowledged. This happens in Figure 3-10(c), 
where after receiving a join acknowledgement, R3 in turn acknowledges R8’s join. We assume 
that at this time receiver G decides to join the multicast group and R6 sends a join request on its 
behalf. There are three shortest paths from R6 to R1: paths R6-R5-R2-R1, R6-R7-R4-R1, and R6-
R8-R3-R1; we assume that the tie was broken by the unicast routing algorithm and R6-R5-R2-R1 
was selected. (The reader may notice that there were several other shortest-path ties, which again 
we assume were broken by the unicast algorithm.) Figure 3-10(d) shows that the branch from the 
core to R7 is established, and at the same time, the join request from R6 reaches R2. R2 will not 
propagate R6’s join request because it is already on the spanning tree for the same group. 
Therefore, R2 will respond with a join acknowledgement, which will travel opposite the join 
request until it reaches R6 (not shown in Figure 3-10). 
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Figure 3-10: Forming the spanning tree by CBTs approach for the example in Figure 3-9.
Thick lines represent the spanning tree, as its branches are grown. 
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The resulting spanning tree is known as a group-shared multicast tree because any multicast 
source in the multicast group G can use this tree. All routers that are part of the spanning tree 
create a forwarding table entry for the shared tree, called ∗, G entry, where the wildcard ∗ stands 
for “any source” (within the group G). The outgoing network port for this entry is the network 
interface on which the Join message arrived during the spanning tree construction. All data 
packets that arrive for group G are forwarded out to this port. Each source first sends its traffic to 
the core router, which then multicasts it down the spanning tree. Consider the example in Figure 
3-10 and assume that host E multicasts a message to the group. Host E constructs an IP packet 
and uses the group G IP address (Figure 1-45). E sends the packet to a router on its local network 
known as the designated router, in our case R8. R8 encapsulates the packet into a unicast IP 
packet and sends it to the core R1 (Figure 3-11). When the packet reaches R1, the core removes 
the unicast IP header and forwards it down the tree. As a pefromance optimization, packets 
destined for the group do not need to reach the core before they are multicast. As soon as a packet 
reaches the tree, it can be forwarded upstream toward the root, as well as downstream to all other 
branches. 

If any router or a link goes down, the downstream router that used this router as the next hop 
towards the core will have to rejoin the spanning tree individually on behalf of each group present 
on their outgoing interfaces. Further, during reconfiguring a new router as the core a situation can 
occur where a leaf router finds that the next hop towards the new core is the router that is 
downstream to it relative to the prior core. Such a situation is depicted in Figure 3-12. Here, after 
reconfiguration, router R7 finds that in order to join the new core it has to send a join request 
towards R5, which is downstream to it (i.e., R7 is still the next-hop router for R5 toward the old 
core). To deal with this situation, R7 sends a “flush-tree” message downstream to teardown the 
old tree, i.e., to break the spanning-tree branch from R7 to R5. The downstream routers then 
perform explicit Rejoin if they have group members attached to them. 

CBTs has several advantages over RPF’s flood-and-prune approach when the multicast group is 
sparse (i.e., relatively few routers in the network have group members attached). First, routers 
that are not members of the multicast group will never know of its existence, so we avoid the 
overhead of flooding. Second, join and leave messages are explicit, so the hosts can join or leave 
without waiting for the next flooded packet. Third, each router needs to store only one record per 
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Figure 3-11: Packet forwarding from source E to the multicast group G in Figure 3-10. 
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group (the interfaces on which to forward packets for that group). It does not need to store per-
source prune information or compute a shortest path tree explicitly. 

However, CBTs has several issues of its own. All traffic for the group must pass through the core 
router, which can become a bottleneck. A shared spanning tree is not the most efficient solution 
for different sources, as discussed below. Additionally, there is a reliability issue: if the core 
router goes down, every multicast group that goes through it also goes down. Other issues 
include: unidirectional vs. bidirectional shared trees; core placement and selection; multiple 
cores; and, dynamic cores. 

A shared spanning tree based on a core router is not optimal for all sources. For example in 
Figure 3-11, a packet from R8 will reach R7 in four hops (via the core R1), instead of two hops 
(via R6). In general, the path from a source to receiver via the core might be significantly longer 
than the shortest possible path. The degree of inefficiency depends on where the core and sources 
are located relative to each other. If the core is in the “middle,” the inefficiency is reasonably 
small. A possible optimization is to build a source-specific tree. Instead of sending a wildcard 
Join message to join the group G, a receiver router sends a source-specific Join towards the 
source. As this message follows the shortest path towards the source S, the routers along the way 
create an S, G entry for this tree in their forwarding table. The resulting tree has the root at the 
source S rather than the core router, which may not be part of the new source-specific tree at all. 
However, the group-shared tree rooted in the core should remain untouched so that other nodes in 
the group G may become sources at a later point. 

Core-based tree approach to building and maintaining spanning trees is implemented in the 
Internet multicast protocol called Protocol-Independent Multicast (PIM), in the variation called 
Sparse Mode (PIM-SM). See Section 8.2.4 for more information. 

3.3.3 Peer-to-Peer Routing 

Skype, etc. 
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Figure 3-12: Reconfiguration of a CBTs core router from (a) to (b) requires the spanning-
tree teardown and rebuilding a new spanning-tree. 
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3.3.4 Resource Reservation and Integrated Services 

Integrated Services (IntServ) is an architecture that specifies the elements to guarantee quality-of-
service (QoS) on data networks. IntServ requires that every router in the system implements 
IntServ, and every application that requires some kind of guarantees has to make an individual 
reservation. Flow specifications (Flowspecs) describe what the reservation is for, while RSVP is 
the underlying mechanism to signal it across the network. 

There are two parts to a Flowspec: 

(i) What does the traffic look like, specified in the Traffic SPECification or Tspec part. 

(ii) What guarantees does it need, specified in the service Request SPECification or Rspec 
part. 

Tspecs include token bucket algorithm parameters (Section 5.2). The idea is that there is a token 
bucket which slowly fills up with tokens, arriving at a constant rate. Every packet that is sent 
requires a token, and if there are no tokens, then it cannot be sent. Thus, the rate at which tokens 
arrive dictates the average rate of traffic flow, while the depth of the bucket dictates how “bursty” 
the traffic is allowed to be. 

Tspecs typically just specify the token rate and the bucket depth. For example, a video with a 
refresh rate of 75 frames per second, with each frame taking 10 packets, might specify a token 
rate of 750Hz, and a bucket depth of only 10. The bucket depth would be sufficient to 
accommodate the “burst” associated with sending an entire frame all at once. On the other hand, a 
conversation would need a lower token rate, but a much higher bucket depth. This is because 
there are often pauses in conversations, so they can make do with fewer tokens by not sending the 
gaps between words and sentences. However, this means the bucket depth needs to be increased 
to compensate for the traffic being burstier. 

Rspecs specify what requirements there are for the flow: it can be normal internet “best effort,” in 
which case no reservation is needed. This setting is likely to be used for webpages, FTP, and 
similar applications. The “controlled load” setting mirrors the performance of a lightly loaded 
network: there may be occasional glitches when two people access the same resource by chance, 
but generally both delay and drop rate are fairly constant at the desired rate. This setting is likely 
to be used by soft QoS applications. The “guaranteed” setting gives an absolutely bounded 
service, where the delay is promised to never go above a desired amount, and packets never 
dropped, provided the traffic stays within the specification. 

Resource Reservation Protocol (RSVP) 

The RSVP protocol (Resource ReSerVation Protocol) is a transport layer protocol designed to 
reserve resources across a network for an integrated services Internet. RSVP defines how 
applications place reservations for network resources and how they can relinquish the reserved 
resources once they are not need any more. It is used by a host to request specific qualities of 
service from the network for particular application data streams or flows. RSVP is also used by 
routers to deliver quality-of-service (QoS) requests to all nodes along the path(s) of the flows and 
to establish and maintain state to provide the requested service. RSVP requests will generally 
result in resources being reserved in each node along the data path. 
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RSVP is not used to transport application data but rather to control the network, similar to routing 
protocols. A host uses RSVP to request a specific QoS from the network, on behalf of an 
application data stream. RSVP carries the request through the network, visiting each node the 
network uses to carry the stream. At each node, RSVP attempts to make a resource reservation for 
the stream. 

To make a resource reservation at a node, the RSVP daemon communicates with two local 
decision modules, admission control and policy control. Admission control determines whether 
the node has sufficient available resources to supply the requested QoS. Policy control determines 
whether the user has administrative permission to make the reservation. If either check fails, the 
RSVP program returns an error notification to the application process that originated the request. 
If both checks succeed, the RSVP daemon sets parameters in a packet classifier and packet 
scheduler to obtain the desired QoS. The packet classifier determines the QoS class for each 
packet and the scheduler orders packet transmission to achieve the promised QoS for each stream. 

The routers between the sender and listener have to decide if they can support the reservation 
being requested, and, if they cannot, they send a reject message to let the listener know about it. 
Otherwise, once they accept the reservation they have to carry the traffic. 

The routers store the nature of the flow, and then police it. This is all done in soft state, so if 
nothing is heard for a certain length of time, then the reader will time out and the reservation will 
be cancelled. This solves the problem if either the sender or the receiver crash or are shut down 
incorrectly without first canceling the reservation. The individual routers have an option to police 
the traffic to ascertain that it conforms to the flowspecs. 

Summary of the key aspects of the RSVP protocol: 

1. Shortest-path multicast group/tree 

  * Require a shortest-path multicast group/tree to have already been created. 

  * Tree created by Dijkstra algorithm (Section 1.4.2) for link state routing protocols, or via 
reverse path broadcast procedure, for distance vector routing protocols. 

2. PATH message 

  * Source sends a PATH message to group members with Tspec info 

  * Tspec = Description of traffic flow requirements 

3. Router inspection of PATH message 

  * Each router receiving the PATH message inspects it and determines the reverse path to the 
source. 

  * Each router also may include a QoS advertisement, which is sent downstream so that the 
receiving hosts of the PATH message might be able to more intelligently construct, or dynamically 
adjust, their reservation request. 

4. RESV message 

  * Receiver sends RESV message “back up the tree” to the source. 

  * RESV message contains the (Tspec, Rspec) info (the FlowSpec pair) and Filter spec. 

  * Rspec = Description of service requested from the network (i.e., the receiver’s requirements) 



Ivan Marsic • Rutgers University 

 

210

  * Thus, the FlowSpec (Tspec, Rspec) specifies a desired QoS. 

  * The Filter spec, together with a session specification, defines the set of data packets—the 
“flow”—to receive the QoS defined by the FlowSpec. 

5. Router inspection of RESV message 

  * Each router inspects the (Tspec, Rspec) requirements and determines if the desired QoS can be 
satisfied. 

  * If yes, the router forwards the RESV message to the next node up the multicast tree towards the 
source. 

  * If no, the router sends a rejection message back to the receiving host. 

6. RSVP session 

  * If the RESV message makes its way up the multicast tree back to the source, the reservation 
flow request has been approved by all routers in the flow path, and transmission of the application 
data can begin. 

  * PATH/RESV messages are sent by source/receiver every 30 seconds to maintain the reservation. 

  * When a timeout occurs while routers await receipt of a RESV message, then the routers will 
free the network resources that had been reserved for the RSVP session. 

RSVP runs over IP, both IPv4 and IPv6. Among RSVP’s other features, it provides opaque 
transport of traffic control and policy control messages, and provides transparent operation 
through non-supporting regions. 

Limitations of Integrated Services 

IntServ specifies a fine-grained QoS system, which is often contrasted with DiffServ’s coarse-
grained control system (Section 3.3.5). 

The problem with IntServ is that many states must be stored in each router. As a result, IntServ 
works on a small-scale, but as you scale up to a system the size of the Internet, it is difficult to 
keep track of all of the reservations. As a result, IntServ is not very popular. 

One way to solve this problem is by using a multi-level approach, where per-microflow resource 
reservation (i.e., resource reservation for individual users) is done in the edge network, while in 
the core network resources are reserved for aggregate flows only. The routers that lie between 
these different levels must adjust the amount of aggregate bandwidth reserved from the core 
network so that the reservation requests for individual flows from the edge network can be better 
satisfied. See RFC 3175. 

3.3.5 Traffic Classes and Differentiated Services 

DiffServ (Differentiated Services) is an IETF model for QoS provisioning. There are different 
DiffServ proposals, and some simply divide traffic types into two classes. The rationale behind 
this approach is that, given the complexities of the best effort traffic, it makes sense to add new 
complexity in small increments. 
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Suppose that we have enhanced the best-effort service model by adding just one new class, which 
we call “premium.” 

Assuming that packets have been marked in some way, we need to specify the router behavior on 
encountering a packet with different markings. This can be done in different ways and IETF is 
standardizing a set of router behaviors to be applied to marked packets. These are called “per-hop 
behaviors” (PHBs), a term indicating that they define the behavior of individual routers rather 
than end-to-end services. 

DiffServ mechanisms (Figure 3-13): 

* Lies between the network layer and the link layer 

* Traffic marked, metered, policed, and shaped at source 

* Packets queued for preferential forwarding, based on: 

   - Delay bounds marking 

   - Throughput guarantees marking 

* Queue for each class of traffic, varying parameters 

* Weighted scheduling preferentially forwards packets to link layer 

 

Link Layer Protocol

Network Layer Protocol (IP)

Based on Source-Address 
and Destination-Address to 
get corresponding Policy

Check if packet is out of 
source’s declared profile

Discard bursts
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Scheduler

Class n queue
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Random Early Detection (RED) Queues

Policer and Shaper

Figure 3-13: DiffServ architecture. 
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DiffServ Traffic Classes 

One PHB is “expedited forwarding” (EF), which states that the packets marked as EF should be 
forwarded by the router with minimal delay and loss. Of course, this is only possible if the arrival 
rate of EF packets at the router is always less than the rate at which the router can forward EF 
packets. 

Another PHB is known as “assumed forwarding” (AF). 

 

3.4 Adaptation Parameters 
 

 

 

3.5 QoS in Wireless Networks 
 

 

 

3.6 Summary and Bibliographical Notes 
 

Latency, jitter and packet loss are the most common ills that plague real-time and multimedia 
systems. The remedy is in the form of various quality-of-service (QoS) provisions. Chapter 4 
analyzes store-and-forward and queuing congestion in switches and routers. Congestion can lead 
to packets spacing unpredictably and thus resulting in jitter. The more hops a packet has to travel, 
the worse the jitter. Latency due to distance (propagation delay) is due to the underlying physics 
and nothing can be done to reduce propagation delay. However, devices that interconnect 
networks (routers) impose latency that is often highly variable. Jitter is primarily caused by these 
device-related latency variations. As a device becomes busier, packets must be queued. If those 
packets happen to be real-time audio data, jitter is introduced into the audio stream and audio 
quality declines. 

Chapter 5 describes techniques for QoS provisioning. 

 

The material presented in this chapter requires basic understanding of probability and random 
processes. [Yates & Goodman 2004] provides an excellent introduction and [Papoulis & Pillai 
2001] is a more advanced and comprehensive text. 
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For video, expectations are low 

For voice, ear is very sensitive to jitter and latencies, and loss/flicker 

QoS: [Wang, 2001] 

 

 Multicast Routing 

[Bertsekas & Gallagher, 1992] describe several algorithms for spanning-tree construction. 
Ballardie, et al., [1993] introduced core based trees (CBT) algorithm for forming the delivery 
tree—the collection of nodes and links that a multicast packet traverses. Also see RFC-2189. 

[Gärtner, 2003] reviews several distributed algorithms for computing the spanning tree of a 
network. He is particularly focusing on self-stabilizing algorithms that are guaranteed to recover 
from an arbitrary perturbation of their local state in a finite number of execution steps. This 
means that the variables of such algorithms do not need to be initialized properly. 

 IntServ 

RSVP by itself is rarely deployed in data networks as of this writing (Fall 2009), but the traffic 
engineering extension of RSVP, called RSVP-TE [RFC 3209], is becoming accepted recently in 
many QoS-oriented networks. 

As an important research topic: show that multihop can or cannot support multiple streams of 
voice. 

RFC-2330 [Paxson, et al., 1998] defines a general framework for performance metrics being 
developed by the IETF’s IP Performance Metrics effort, by the IP Performance Metrics (IPPM) 
Working Group. 

RFC-3393 [Demichelis & Chimento, 2002] defines one-way delay jitter across Internet paths. 

RFC 2205: Resource ReSerVation Protocol (RSVP) -- Version 1 Functional 

There was no notion of QoS in Ethernet until 1998 when IEEE published 802.1p as part of the 
802.1D-1998 standard. 802.1p uses a three-bit field in the Ethernet frame header to denote an 
eight-level priority. One possible service-to-value mapping is suggested by RFC-2815, which 
describes Integrated Service (IntServ) mappings on IEEE 802 networks. 

 

[Thomson, et al., 1997] 



Ivan Marsic • Rutgers University 

 

214

 

Problems 
 

Problem 3.1 

 

Problem 3.2 

Consider an internet telephony session, where both hosts use pulse code modulation to encode 
speech and sequence numbers to label their packets. Assume that the user at host A starts 
speaking at time zero, the host sends a packet every 20 ms, and the packets arrive at host B in the 
order shown in the table below. If B uses fixed playout delay of q = 210 ms, write down the 
playout times of the packets. 

Packet sequence number Arrival time ri [ms] Playout time pi [ms] 
#1 195  
#2 245  
#3 270  
#4 295  
#6 300  
#5 310  
#7 340  
#8 380  
#9 385  

#10 405  

Problem 3.3 

Consider an internet telephony session over a network where the observed propagation delays 
vary between 50–200 ms. Assume that the session starts at time zero and both hosts use pulse 
code modulation to encode speech, where voice packets of 160 bytes are sent every 20 ms. Also, 
both hosts use a fixed playout delay of q = 150 ms. 

(a) Write down the playout times of the packets received at one of the hosts as shown in the 
table below. 

(b) What size of memory buffer is required at the destination to hold the packets for which 
the playout is delayed? 

Packet sequence number Arrival time ri [ms] Playout time pi [ms] 
#1 95  
#2 145  
#3 170  
#4 135  
#6 160  
#5 275  
#7 280  
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#8 220  
#9 285  

#10 305  

Problem 3.4 

Consider the same internet telephony session as in Problem 3.2, but this time the hosts use 
adaptive playout delay. Assume that the first packet of a new talk spurt is labeled k, the current 

estimate of the average delay is kδ̂  = 90 ms, the average deviation of the delay is kυ̂  = 15 ms, 

and the constants α = 0.01 and K = 4.  
The table below shows how the packets are received at the host B. Write down their playout 
times, keeping in mind that the receiver must detect the start of a new talk spurt. 

Packet 
seq. # 

Timestamp 
ti [ms] 

Arrival time 
ri [ms] 

Playout time 
pi [ms] 

Average delay iδ̂  
[ms] 

Average 
deviation iυ̂  

k 400 480   
k+1 420 510   
k+2 440 570   
k+3 460 600   
k+4 480 605   
k+7 540 645   
k+6 520 650   
k+8 560 680   
k+9 580 690   

k+10 620 695   
k+11 640 705   

 

Problem 3.5 

Consider an internet telephony session using adaptive playout delay, where voice packets of 160 
bytes are sent every 20 ms. Consider one of the receivers during the conversation. Assume that at 

the end of a previous talk spurt, the current estimate for the average delay is kδ̂  = 150 ms, the 

average deviation of the delay is kυ̂  = 50 ms. Because of high delay and jitter, using the constant 

K = 4 would produce noticeable playout delays affecting the perceived quality of conversation. If 
the receiver decides to maintain the playout delay at 300 ms, what will be the percentage of 
packets with missed playouts (approximate)? Explain your answer. 

(Hint: Use the chart shown in the figure below to derive the answer.)  
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Problem 3.6 

Consider the Internet telephony (VoIP) conferencing session shown in the figure. Assume that 
each audio stream is using PCM encoding at 64 Kbps. The packet size is 200 bytes. 

Determine the periods for transmitting RTCP packets for all senders and receivers in the session. 

 

Problem 3.7 

Consider the following network where router A needs to multicast a packet to all other routers in 
the network. Assume that the cost of each link is 1 and that the routers are using the reverse path 
forwarding (RPF) algorithm. 

Do the following: 
(e) Draw the shortest path multicast tree for the network. 
(f) How many packets are forwarded in the entire network per every packet sent by the 

source A? 
(g) Assuming that RPF uses pruning and routers E and F do not have attached hosts that are 

members of the multicast group, how many packets are forwarded in the entire network 
per every packet sent by A? 

 

For each item, show the work, not only the final result. 
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Problem 3.8 

 

 



218 

Contents 
4.1 Packet Switching in Routers 

4.1.1 How Routers Forward Packets  
4.1.2 Router Architecture  
4.1.3 Forwarding Table Lookup  
4.1.4 Switching Fabric Design  
4.1.5 Where and Why Queuing Happens 

4.2 Queuing Models 
4.2.1 Little’s Law 
4.2.2 M / M / 1 Queuing System 
4.2.3 M / M / 1 / m Queuing System 
4.2.4 M / G / 1 Queuing System 
4.2.5  
4.2.6  

4.3 Networks of Queues  
4.3.1 x 
4.3.2 x 
4.3.3 x 
4.3.4 x  

4.4 x 
4.4.1 x 
4.4.2  
4.4.3  

4.5 x 
4.5.1  
4.5.2  
4.5.3  

4.6 Summary and Bibliographical Notes 

Problems 

 

Chapter 4 
Switching and Queuing Delay Models 

 

 

 

A key problem that switches and routers must deal with are the 
finite physical resources. Network nodes and links are never 
provisioned to support the maximum traffic rates because that 
is not economical. We all know that highway networks are not 
designed to support the maximum possible vehicular traffic. 
Because of economic reasons, highway networks are built to 
support average traffic rates. Traffic congestion normally 
occurs during the rush hours and later subsides. If congestion 
lasts too long, it can cause a major disruption of 
travel in the area. Although this is very unpleasant 
for the travelers and can cause economic loss, it is 
simply too expensive to provision road networks 
to avoid such situations altogether. 
Similar philosophy guides the 
design of communication 
networks. 

Data packets need two types of services on their way from the 
source to the final destination: 

• Computation (or processing), which involves adding 
guidance information (or headers) to packets and 
looking up this information to deliver the packet to its 
correct destination 

• Communication (or transmission) of packets over communication links 

Figure 4-1 compares the total time to delay a packet if the source and destination are connected 
with a direct link vs. total time when an intermediate router relays packets. As seen, the router 
introduces both processing and transmission delays. 

Both services are offered by physical servers (processing units and communication links) which 
have limited servicing capacity. When a packet arrives to a server that is already servicing 
packets that arrived previously, then we have a problem of contention for the service. The new 
packet is placed into a waiting line (or queue) to wait for its turn. The delay experienced while 
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waiting in line before being serviced is part of the total delay experienced by packets when 
traveling from source to destination. Generally, packets in a networked system experience these 
types of delays: 

processing + transmission + propagation + queuing 

The first three types of delays are described in Section 1.3. This chapter deals with the last kind of 
delay, queuing delays. Queuing models are used as a prediction tool to estimate this waiting 
time: 

• Computation (queuing delays while waiting for processing) 

• Communication (queuing delays while waiting for transmission) 

This chapter studies what contributes to routing delays and presents simple analytical models of 
router queuing delays. Chapter 5 describes techniques to reduce routing delays or redistribute 
them in a desired manner over different types of data traffic. 
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4.1 Packet Switching in Routers 
 

Section 1.4 introduced routers and mainly focused on the control functions of routers. This 
section describes the datapath functions of routers. A key problem to deal with is the resource 
limitation. If the router is too slow to move the incoming packets, the packets will experience 
large delays and may need to be discarded if the router runs out of the memory space (known as 
buffering space). When packets are discarded too frequently, the router is said to be congested. 
The ability of a router to handle successfully the resource contention is a key aspect of its 
performance. 

Figure 4-2 illustrates key hardware and software components of a router. Section 4.1.1 describes 
how these components function to forward data packets. Although network ports are 
bidirectional, it is useful to logically separate input and output ports. Router implements only the 
bottom two layers of the software protocol stack: link and network layer. Each network port has 
an associated link-layer protocol, but the network-layer protocol is common for all ports. This 
property will be explained later with Figure 4-4. 

4.1.1 How Routers Forward Packets 

Routers have two main functions: 

1. Forwarding or switching packets (datapath functions) that pass through the router. One 
could think of these functions as using maps to direct the packets to their destinations. 
These operations are performed very frequently and are most often implemented in 
special purpose hardware. 

2. Maintaining routing tables (control functions) by exchanging network connectivity 
information with neighboring routers, as well as system configuration and management. 
One could think of these functions as surveying and cartography to build the maps that 
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Link layer protocol
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Figure 4-2: Hardware and software components of a router. 
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are used for packet forwarding. These operations are performed relatively infrequently 
and are invariably implemented in software. 

When trying to improve the per-packet performance of a router, we focus on the datapath 
functions because they must be fast. Routing table maintenance is described in Section 1.4. This 
chapter focuses on the datapath functions of packet forwarding (or, switching). 

The datapath architecture consists of three main units: (1) input ports where incoming packets are 
received; (2) switching fabric that transfers packets from input to output ports; and, (3) output 
ports that transmit packets to an outgoing communication link. Routers offer four key functions 
to incoming data packets (illustrated in Figure 4-3): 

1. A packet is received and stored in the local memory on the input port at 
which the packet arrived. 

2. The packet guidance information (destination address, stored in the packet 
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header) is looked up and the forwarding 
decision is made as to which output port 
the packet should be transferred to. 

3. The packet is transferred across the 
switching fabric (also known as the 
backplane) to the appropriate output port, 
as decided in the preceding step. 

4. The packet is transmitted on the output port over the outgoing 
communication link.  

 

 

 

 

 

 

4.1.2 Router Architecture 

Figure 1-12 shows protocol layering in end systems and intermediate nodes (switches or routers). 
Figure 4-4 shows the same layering from a network perspective. Each router runs an independent 
layer-1 (Link layer) protocol for each communication line. A single network layer (layer-2) is 
common for all link layers of the router. 

The key architectural question in router design is about the implementation of the (shared) 
network layer of the router’s protocol stack. The network layer binds together the link layers and 
performs packets switching. Link layers are terminating different communication links at the 
router and they essentially provide data input/output operations. They function independently of 
one another and are implemented using separate hardware units. 
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The router’s network layer must deal simultaneously with many parallel data streams. To achieve 
high performance, the network layer could be implemented in parallel hardware. The issues that 
make the router’s network layer design of difficult include: 

• Maintaining consistent forwarding tables: If the networking layer is distributed over 
parallel hardware units, each unit must maintain its own copy of the forwarding table. 
Because the forwarding table dynamically changes (as updated by the routing algorithm), 
all copies must be maintained consistent. 

• Achieving high-speed packet switching: Once a packet’s outgoing port is decided, the 
packet must be moved as quickly as possible from the incoming to the outgoing port. 

• Reducing queuing and blocking: If two or more packets cross each other’s way, the must 
be ordered in series, where they move one-by-one while others are waiting for their turn. 
The pathways inside the router should be designed to minimize chances for queuing and 
blocking to occur. 

Over the years, different architectures have been used for routers. Particular architectures have 
been selected based on a number of factors, including cost, number of network ports, required 
performance, and currently available technology. The detailed implementations of individual 
commercial routers have generally remained proprietary, but in broad terms, all routers have 
evolved in similar ways. The evolution in the architecture of routers is illustrated in Figure 4-5. 

First-Generation Routers: Central CPU Processor. The original routers were built around a 
conventional computer architecture, as shown in Figure 4-5(a): a shared central bus, with a 
central CPU, memory, and peripheral Line Cards (or, Network Interface Cards). Each Line Card 
performs the link-layer function, connecting the router to each of the communication links. The 
central CPU performs the network-layer function. Packets arriving from a link are transferred 
across the shared bus to the CPU, where a forwarding decision is made. The packet is then 
transferred across the bus again to its outgoing Line Card, and onto the communication link. 
Figure 4-6 highlights the datapath of first-generation routers. 
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Second-Generation Routers: Network Front-end (NFE) Processors. The main limitation of 
the architecture in Figure 4-5(a) is that the central CPU must process every packet, ultimately 
limiting the throughput of the system. To increase the system throughput, the architecture in 
Figure 4-5(b) implements parallelism by placing a separate CPU at each interface. That is, the 
link-layer is still implemented in individual Line Cards, but the network-layer function is 
distributed across several dedicated CPUs, known as network front-end (NFE) processors. A 
local forwarding decision is made in a NFE processor, and the packet is immediately forwarded 
to its outgoing interface. The central CPU is needed to run the routing algorithm and for 
centralized system management functions. It also computes the forwarding table and distributes it 
to the NFE processors. 

The architecture in Figure 4-5(b) has higher performance than a first-generation design because 
the network-layer function is distributed over several NFE processors that run in parallel; and 
because each packet need only traverse the bus once, thus increasing the system throughput. 
Figure 4-7 highlights the datapath of second-generation routers. However, the performance is still 
limited by two factors. First, forwarding decisions are made in software, and so are limited by the 
speed of the NFE processor, which is a general purpose CPU. But general purpose CPUs are not 
well suited to applications in which the data (packets) flow through the system; CPUs are better 
suited to applications in which data is examined multiple times, thus allowing the efficient use of 
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a cache. Carefully designed, special purpose ASICs can readily outperform a CPU when making 
forwarding decisions, managing queues, and arbitrating access to the bus. Hence, CPUs are being 
replaced increasingly by specialized ASICs. The second factor that limits the performance is the 
use of a shared bus—only one packet may traverse the bus at a time between two Line Cards. 
Performance can be increased if multiple packets can be transferred across the bus 
simultaneously. This is the reason that a switch fabric is used in high-end routers. 

Third-Generation Routers: Switching Fabric. By introducing a hardware-forwarding engine 
and replacing the bus with an interconnection network, we reach the architecture shown in Figure 
4-5(c). In an interconnection network, multiple Line Cards can communicate with each other 
simultaneously greatly increasing the system throughput. Today, the highest performance routers 
are designed according to this architecture. 

Input Ports 

The key functions of input ports are to receive packets and make the forwarding decision. This 
spans both link and network layers of the protocol stack. 

A network port is not the same as a Line Card. A Line Card supports the link-layer functionality 
of a network port, which is receiving and transmitting packets. A Line Card may also support the 
network-layer functionality, if the Network Front-End Processor is located on a Line Card as in 
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Figure 4-6: Packet datapath for switching via memory. Also shown in Figure 4-5(a). 
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second-generation routers. However, it may not have any of the network-layer functionality, 
which is the case in first-generation routers where all network-layer functionality is supported by 
the central processor and memory. 

Output Ports 

The key function of output ports is to transmit packets on the outgoing communication links. If 
packets are arriving at a greater rate than the output port is able to transmit, some packets will be 
enqueued into waiting lines. The output port may also need to manage how different types of 
packets are lined up for transmission. This is known as scheduling and several scheduling 
techniques are described in Chapter 5. As with input ports, these functions span both link and 
network layers of the protocol stack. 

4.1.3 Forwarding Table Lookup 

We know from Section 1.4.4 that routers use destination address prefixes to identify a contiguous 
range of IP addresses in their routing messages. A destination prefix is a group of IP addresses 
that may be treated similarly for packet forwarding purposes. Based on its routing table, the 
router derives its forwarding table, also known as FIB (Forwarding Information Base), and uses it 
for making forwarding decisions for data packets. Each entry in a forwarding table/FIB represents 
a mapping from an IP address prefix (a range of addresses) to an outgoing link, with the property 
that packets from any destination with that prefix may be sent along the corresponding link. 
Forwarding table entries are called routes. 

The algorithm used by the forwarding component of a router to make a forwarding decision on a 
packet uses two sources of information: (1) the forwarding table or FIB, and (2) the packet 
header. Although IP addresses are always the same length, IP prefixes are of variable length. The 
IP destination lookup algorithm needs to find the longest prefix match—the longest prefix in the 
FIB that matches the high-order bits in the IP address of the packet being forwarded. Longest 
prefix match used to be computationally expensive. The advances that have been made in 
longest-match algorithms in recent years have solved the problem of matching. 

Packet forwarding decision depends on several parameters, depending on the routing function 
that needs to be supported (Figure 4-8), such as unicast routing, multicast routing, or unicast 
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routing with Types of Service. Therefore, in addition to the information that controls where a 
packet is forwarded (next hop), an entry in the forwarding table may include the information 
about what resources the packet may use, such as a particular outgoing queue that the packet 
should be placed on (known as packet classification, to be described later). Forwarding of unicast 
packets requires longest prefix match based on the network-layer destination address. Unicast 
forwarding with Types of Service requires the longest match on the destination network-layer 
address, plus the exact match (fixed-length match) on the Type of Service (TOS) bits carried in 
the network-layer header (Figure 1-36). Forwarding of multicast packets requires longest match 
on the source network-layer address, plus the exact match (fixed-length match) on both source 
and destination addresses, where the destination address is the multicast group address. 

For the purposes of multicast forwarding, some entries in the forwarding table/FIB may have 
multiple subentries. In multicast, a packet that arrives on one network interface needs to be sent 
out on multiple outgoing interfaces that are identified in subentries of a FIB record. 

4.1.4 Switching Fabric Design 

Problems related to this section: ?? → Problem 4.7 

Switch Design Issues: 

• Switch contention occurs when several packets are crossing each other’s path – switch cannot 
support arbitrary set of transfers; 

• Complex rearranging of the timetable for packet servicing (known as scheduling) is needed to 
avoid switch contention; 

• High clock/transfer rate needed for bus-based design (first- and second-generation routers); 

• Packet queuing (or, buffering) to avoid packet loss is needed when the component that provides 
service (generally known as “server”) is busy; 

Example switch fabrics include: 

• Bus (first- and second-generation routers) 

• Crossbar 

• Banyan network 

Banyan networks and other interconnection networks were initially developed to connect 
processors in a multiprocessor. They typically provide lower capacity than a complete crossbar. 

Switching fabric may introduce different types of packet blocking. For example, if two or more 
packets at different inputs want to cross the switching fabric simultaneously towards the same 
output, then these packets experience output blocking. When one packet is heading for an idle 
port, but in front of it (in the same waiting line/queue) is another packet headed for a different 
output port that is currently busy, and the former packet must wait until the latter departs, then the 
former packet experiences head-of-line blocking. Find more information about packet blocking in 
Section 4.1.5. 
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Crossbar 

The simplest switch fabric is a crossbar, which is a matrix of pathways that can be configured to 
connect any input port to any output port. An N × N crossbar has N input buses, N output buses, 
and N2 crosspoints, which are either ON or OFF. If the (i, j) crosspoint is on, the ith input port is 
connected to the jth output port. 

A crossbar needs a switching timetable, known as switching schedule, that tells it which inputs to 
connect to which outputs at a given time. If packets arrive at fixed intervals then the schedule can 
be computed in advance. However, in the general case, the switch has to compute the schedule 
while it is operating. 

If packets from all N inputs are all heading towards different outputs then crossbar is N times 
faster than a bus-based (second-generation) switch. However, if two or more packets at different 
inputs want to go to the same output, then crossbar suffers from “output blocking” and as a result, 
it is not fully used. In the worst-case scenario, each output port must be able to accept packets 
from all input ports at once. To avoid output blocking, each output port would need to have a 
memory bandwidth equal to the total switch throughput, i.e., N × input port datarate. In reality, 
sophisticated designs are used to address this issue with lower memory bandwidths. 

Banyan Network 

Banyan network is a so-called self-routing switch fabric, because each switching element 
forwards the incoming packets based on the packet’s tag that represents the output port to which 
this packets should go. The input port looks up the packet’s outgoing port in the forwarding table 
based on packet’s destination, and tags the packet with a binary representation of the output port. 
A Banyan switch fabric is organized in a hierarchy of switching elements. A switching element at 
level i checks the ith bit of the tag; if the bit is 0, the packet is forwarded to the upper output, and 
otherwise to the lower output. Therefore, the tag can be considered a self-routing header of the 
packet, for routing the packet inside the switching fabric. The tag is removed at the output port 
before the packet leaves the router. 
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The building block of a Banyan network is a 2 × 2 switch, i.e., a switch with two inputs and two 
outputs. The upper input and output ports are labeled with 0 and the lower input and output ports 
are labeled with 1. This switch moves packets based on a single-bit tag. For example, in Figure 
4-9(a) a packet labeled with tag “1” arrives at input port 0 of a 2 × 2 switch. The switch directs 
the packet to the lower output port (the output port 1). To create a 4 × 4 switch, we need four 
2 × 2 switching elements placed in a grid as in Figure 4-9(b). First we take two 2 × 2 switches and 
label them 0 and 1. Then we take another pair of 2 × 2 switches and place them before the first 
two. When a packet enters a switching element in the first stage, it is sent to the 2 × 2 switch 
labeled 0 if the first bit of the packet’s tag is 0. Otherwise, it is sent to the switch labeled 1. To 
create an 8 × 8 switch, we need two 4 × 4 switches and four 2 × 2 switching elements placed in a 
grid as in Figure 4-9(c). Again, we label the two 4 × 4 switches as 0 and 1. The four 2 × 2 
switching elements are placed before the 4 × 4 switches, and they send the packets to the 
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corresponding 4 × 4 switch based on the first bit of the packet’s tag. (Note that there are several 
equivalent 8 × 8 Banyan switches, only one of which is shown in Figure 4-9(c).) 

If two incoming packets on any 2 × 2 switching element want to go to the same output port of this 
element, they collide and block at this element. For example, if two packets with tags “000” and 
“010” arrived at the input ports “000” and “001” in Figure 4-9(c), then they will collide at the 
first stage (in the upper-left corner 2 × 2 switching element), because they both need to go to the 
same output of this switching element. The switching element discards both of the colliding 
packets. Because packet loss is not desirable, we need to either prevent collisions or deal with 
them when they happen. In either case, instead of loss, the packet experiences delay while waiting 
for its turn to cross the switching fabric. 

One option is to deal with collisions when they happen. This option requires a memory buffer for 
storing packets within the switching element. One of the colliding packets is transferred to the 
requested direction, while the other is stored in the buffer and sent in the subsequent cycle. This 
design is called internal queuing in Section 4.1.5. In the worst-case of input-traffic pattern, the 
internal buffer size must be large enough to hold several colliding packets. 

Another option is to deal with collisions is to prevent them from happening. One way of 
preventing collisions is to check whether a path is available before sending a packet from an input 
port. 

An alternative way of preventing collisions is by choosing the order in which packets appear at 
the input of the switching fabric. Obviously, the router cannot choose the input port at which a 
particular packet will arrive—packets arrive along the links depending on the upstream nodes that 
transmitted them. What can be done is to insert an additional network (known as sorting network) 
before a Banyan network, which rearranges the packets so that they are presented to the Banyan 
network in the order that avoids collisions. This is what a Batcher network does. 

Batcher-Banyan Network 

A Batcher network is a hardware network that takes a list of numbers and sorts them in the 
ascending order. Again, we assume that packets are tagged at the input ports at which they arrive. 
A tag is a binary representation of the output port to which the packet needs to be moved. A 
Batcher network sorts the packets that are currently at input ports into a non-decreasing order of 
their tags. 

Figure 4-10 shows several Batcher sorting networks. To get an intuition why this network will 
correctly sort the inputs, consider Figure 4-10(b). The first four comparators will “sink” the 
largest value to the bottom and “lift” the smallest value to the top. The final comparator simply 
sorts out the middle two values. 
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A combined Batcher-Banyan network is collision-free only when there are no packets heading for 
the same output port. Because there may be duplicates (tags with the same output port number) or 
gaps in the sequence, an additional network or special control sequence is required. Figure 4-11 
shows a trap network and a shuffle-exchange network (or, concentrator) which serve to remove 
duplicates and gaps. In order to eliminate the packets for the same output, a trap network is 
required at the output of the Batcher sorter. Because packets are sorted by the Batcher sorter, the 
packets for the same output can be checked by comparison with neighboring packets. The trap 
network performs this comparison, and selects only one packet per output. Duplicates are trapped 
and dealt with separately. 

One way to deal with the trapped duplicates is to store them and recirculate back to the entrance 
of the Batcher network, so in the next cycle they can compete with incoming packets. This 
requires that at least half the Batcher’s inputs be reserved for recirculated packets (to account for 
the worst-case scenario). 
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An alternative is to take the duplicates through multiple Banyan networks, where each packet that 
wants to go to the same output port is presented to a separate Banyan network. 

Even when duplicates are removed, unselected and eliminated packets (gaps in the input 
sequence) generate empty inputs for the Banyan network. These gaps cause collisions in the 
Banyan network even if all packets are heading to different outputs. For example, consider an 
8 × 8 Batcher-Banyan network with four packets heading to outputs 0, 0, 0, and 1, respectively. 
Although two of the three packets for the output 0 are trapped, the remaining two packets still 
collide in the second stage of the Banyan. To solve this problem, a shuffle-exchange network (or, 
concentrator) is required. In order to eliminate empty inputs, packets are shifted and the conflict 
is avoided. Although the role of the concentrator is just shifting the packets and eliminating 
empty inputs, the implementation is difficult because the number of packets that will be trapped 
cannot be predicted. Usually, special control sequence is introduced, or a Batcher sorter is used 
again as the concentrator. 

4.1.5 Where and Why Queuing Happens 

Problems related to this section: Problem 4.9 → ?? 

Queuing happens when customers are arriving at a rate that is higher than the server is able to 
service. In routers, waiting lines (queues) may be formed for any of the three services shown in 
illustrated in Figure 4-3, except for receiving packets at the input port. Packet queuing in routers 
is also known as switch buffering. The router needs memory allow for buffering, i.e., storing 
packets while they are waiting for service. By adopting different designs, the router architect can 
control where the buffering will occur. 

Batcher 
sort 
network

Trap 
network

Shuffle 
exchange 
network

Banyan 
network

 

Figure 4-11: Batcher-Banyan network. Internal blocking is avoided by sorting the inputs to
a Banyan network. A trap network and a shuffle-exchange network remove duplicates and
gaps. 
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Before considering how queuing occurs in packet switches, let us consider the analogy with 
vehicular traffic, illustrated in Figure 4-12. The car in the lower left corner could go if it were not 
for the car in front of it that wishes to make the left turn but cannot because of the cars arriving in 
the parallel lane from the opposite direction. We say that the lower-left-corner car experiences 
head-of-line (HOL) blocking. A queue of cars will be formed at an entrance to the road 
intersection (or, “input port”) because the front car cannot cross the intersection area (or, 
“switching fabric”). 

Another cause for queuing occurs the access to the intersection area (or, “switching fabric”) has 
to be serialized. In Figure 4-12, the cars crossing from upper left corner to lower right corner and 
vice versa must wait for their turn because the intersection area is busy. Notice that we need an 
“arbiter” to serialize the access to the intersection area, and STOP/GO signals in Figure 4-12 
serve this purpose. The corresponding queuing occurs in a router when the switching fabric has 
insufficient capacity to support incoming packet traffic. The queuing occurs at the input port and 
it is known as input queuing (or, input buffering) or in the switch fabric (internal queuing). 

Car experiencing
head-of-line
blocking

Car experiencing
head-of-line
blocking

Car experiencing
head-of-line
blocking

Figure 4-12: Illustration of forwarding issues by a road intersection analogy. 
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Yet another reason for queuing occurs when an outgoing road cannot support the incoming traffic 
and the corresponding intersection exit becomes congested. In this case, even if an incoming car 
does not experience head-of-line blocking and it has a GO signal, it still bust wait because the exit 
is congested. The corresponding queuing occurs in a router when the outgoing communication 
line has insufficient capacity to support incoming packet traffic. The queuing may occur at the 
input port (input queuing), in the switch fabric (internal queuing), or at the output port (output 
queuing). 

Figure 4-13 summarizes the datapath delays in a router. Some of these delays may be negligible, 
depending on the switch design. As already noted, queuing may also occur in the switch fabric 
(internal queuing), which is not shown in Figure 4-13. 

Input Queuing 

In switches with pure input queuing (or, input buffering), packets are stored at the input ports and 
released when they win access to both the switching fabric and the output line. An arbiter decides 
the timetable for accessing the fabric depending on the status of the fabric and the output lines 
(Figure 4-14). Because the packets leaving the input queues are guaranteed access to the fabric 
and the output line, there is no need for an output queue. 

The key advantage of input queuing is that links in the switching fabric (and the input queues 
themselves) need to run at the speed of the input communication lines. For a router with N input 
ports and N output ports, only the arbiter needs to run N times faster than the input lines. 

Input port

First bit received

Last bit received

First bit transmitted

Last bit transmitted

Switch fabric traversal delay = ts

Output port

Switch fabric

Transmission delay = O
xtTransmission delay = O
xt

Forwarding decision delay = tf

Fwd decision
queuing delay

Fabric traversal
queuing delay

Transmission
queuing delay

Reception delay = 
I
xtReception delay = 
I
xt

Time

Figure 4-13: Components of delay in data packet forwarding. 
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The problem with input-queued routers is that if input queues are served in a first-come-first-
served (FCFS) order, then a head-of-line packet destined for a busy output blocks the packets in 
the queue behind it. This is known as head-of-line (HOL) blocking. HOL blocking can be 
prevented if packets are served according to a timetable different from FCFS. Scheduling 
techniques that prevent HOL blocking are described in Chapter 5. 

Output Queuing 

In switches with pure output queuing (or, output buffering), packets are stored at the output ports. 
Incoming packets immediately proceed through the switching fabric to their corresponding output 
port. Because multiple packets may be simultaneously heading towards the same output port, the 
switch must provide a switching-fabric speedup proportional to the number of input ports. In a 
switch with N input ports, each output port must be able to store N packets in the time it takes a 
single packet to arrive at an input port. This makes the hardware for the switching fabric and 
output queues more expensive than in input queuing. 

Notice that output queue do not suffer from head-of-line blocking—the transmitter can transmit 
the packets in the packets according to any desired timetable. The output port may rearrange its 
output queue to transmit packets according to a timetable different from their arrival order. We 
will study scheduling disciplines in Chapter 5. 

Internal Queuing 

• Head of line blocking 

• What amount of buffering is needed? 

 

Input ports Output portsSwitch fabric

Arbiter

 

Figure 4-14: A router with input queuing. The arbiter releases a packet from an input
queues when a path through the switch fabric and the output line is available. 
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4.2 Queuing Models 
 

Queuing introduces latency, and the potential for packet loss if a queue overflows. When traffic 
patterns are bursty, the queuing-induced latency varies unpredictably from packet to packet, 
manifesting itself as jitter (delay variability) in the affected traffic streams. Modeling queuing 
processes is important for understanding the problem and designing the solutions. 

General Server 

A general service model is shown in Figure 4-15. Customers arrive in the system at a certain rate. 
It is helpful if the arrival times happened to be random and independent of the previous arrivals, 
because such systems can be well modeled. The server services customers in a certain order, the 
simplest being their order of arrival, also called first-come-first-served (FCFS). Every physical 
processing takes time, so a customer i takes a certain amount of time to service, the service time 
denoted as Xi. 

Most commonly used performance measures are: (1) the average number of customers in the 
system; and, (2) average delay per customer. A successful method for calculating these 
parameters is based on the use of a queuing model. Figure 4-16 shows a simple example of a 
queuing model, where the system is represented by a single-server queue. The queuing time is the 
time that a customer waits before it enters the service. Figure 4-17 illustrates queuing system 
parameters on an example of a bank office with a single teller. 

Why Queuing Happens? 

Queuing occurs because of the server’s inability to process the customers at the rate at which they 
are arriving. When a customer arrives at a busy server, it enters a waiting line (queue) and waits 
on its turn for processing. The critical assumption here is the following: 

System

Interarrival
time = A2 − A1

Input
sequence

Output
sequence

Service
time = X1

X2 X3

A3

Waiting
time = W3

Time
Arriving

customers
Departing
customers

in out

C1C1 C2C2

C1C1 C2C2

C3C3

C3C3

CiCi

CiCi

Xi

AiA1 A2

Server

Figure 4-15: General service delay model: customers are delayed in a system for their own
service time plus a possible waiting time. Customer 3 has to wait in line because a previous
customer is being serviced at customer 3’s arrival time. 
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Average arrival rate ≤ Maximum service rate 

Otherwise, the queue length would grow unlimited and the system would become meaningless 
because some customers would have to wait infinite amount of time to be serviced. A corollary of 
this requirement is that queuing is an artifact of irregular customer arrival patterns, sometimes 
being too many, sometimes very few. Customers arriving in groups create queues. Had they been 
arriving “individually” (well spaced), allowing the server enough time to process the previous 
one, there would be no queuing. The arrival pattern where the actual arrival rate is equal to the 
average one would incur no queuing delays on any customer. 

This is illustrated in Figure 4-18 where we consider a bank teller that can service five customers 

per hour, 
hour

customers
5=μ , on average. This means, serving one customer takes 12 minutes, on 

average. Assume that for a stretch of time all arriving customers take 12 minutes to be served and 
that three customers arrive as shown in the figure. Although the server capacity is greater than the 
arrival rate, the second and third customers still need to wait in line before being served, because 
their arrivals are too closely spaced. If the customers arrived spaced according to their departure 
times at the same server, there would be no queuing delay for any customer. However, if this 

System

Arriving packets Queued packets

Arrival rate
= λ packets per second

Departing
packets

SourceSource

Service rate
= μ packets per second

Serviced packet

Queue Server

Figure 4-16: Simple queuing system with a single server. 
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Figure 4-17: Illustration of queuing system parameters. 
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sequence arrived at a server that can service only four customers per hour, again there would be 
queuing delays. Thus, having a server with service rate greater than the arrival rate is no 
guarantee that there will be no queuing delays. In summary, queuing results because packet 
arrivals cannot be preplanned and provisioned for—it is too costly or physically impossible to 
support peak arrival rates. 

Note also that in the steady state, the average departure rate equals the average arrival rate. Server 
utilization = (arrival rate / max. service rate) 

Communication Channel 

Queuing delay is the time it takes to transmit the packets that arrived earlier at the network 
interface. Packet’s service time is its transmission time, which is equal to L/C, where L is the 
packet length and C is the server capacity. In case of packet transmission, “server capacity” is the 
outgoing channel capacity. The average queuing time is typically a few transmission times, 
depending on the load of the network. 

→()_____)→  delay ∝ capacity −1  

Another parameter that affects delay is error rate—errors result in retransmissions, which 
significantly influence the delay. Reliable vs. unreliable (if error correction is employed + 
Gaussian channel) 

We study what are the sources of delay and try to estimate its amount. In a communication 
system, main delay contributors are (see Section 1.3): 

• Processing (e.g., conversion of a stream of bytes to packets or packetization, 
compression/fidelity reduction, encryption, switching at routers, etc.) 

• Queuing, due to irregular packet arrivals, sometimes too many, sometimes just few 

• Transmission, converting the digital information into analog signals that travel the 
medium 

• Propagation, signals can travel at most at the speed of light, which is finite 

• Errors or loss in transmission or various other causes (e.g., insufficient buffer space in 
routers, recall Figure 2-11 for TCP), resulting in retransmission 
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Figure 4-18: Illustration of how queues are formed. The server can serve 5 customers per
hour and only 3 customers arrive during an hour period. Although the server capacity is
greater than the arrival rate, some customers may still need to wait before being served,
because their arrivals are too closely spaced. 
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Errors result in retransmission. For most links, error rates are negligible, but for multiaccess links, 
particularly wireless links, they are significant. 

Processing may also need to be considered to form a queue if this time is not negligible. 

 

Give example of how delay and capacity are related, see Figure from Peterson & Davie, or from 
[Jeremiah Hayes 1984]. 

 

Notation 

Some of the symbols that will be used in this chapter are defined as follows (see also Figure 
4-17): 

A(t) Counting process that represents the total number of tasks/customers that arrived from 0 to 
time t, i.e., A(0) = 0, and for s < t, A(t) − A(s) equals the number of arrivals in the time 
interval (s, t] 

λ  Arrival rate, i.e., the average number of arrivals per unit of time, in steady state 

N(t) Number of tasks/customers in the system at time t  

N  Average number of tasks/customers in the system (this includes the tasks in the queue and 
the tasks currently in service) in steady state 

NQ  Average number of tasks/customers waiting in queue (but not currently in service) in 
steady state 

μ Service rate of the server (in customers per unit time) at which the server operates when 
busy 

Xi  Service time of the ith arrival (depends on the particular server’s service rate μ and can be 
different for different servers) 

Ti  Total time the ith arrival spends in the system (includes waiting in queue plus service time) 

T  Average delay per task/customer (includes the time waiting in queue and the service time) 
in steady state 

W  Average queuing delay per task/customer (not including the service time) in steady state 

ρ  Rate of server capacity utilization (the fraction of time that the server is busy servicing a 
task, as opposed to idly waiting) 

4.2.1 Little’s Law 

Imagine that you perform the following experiment. You are frequently visiting your local bank 
office and you always do the following: 

1. As you walk into the bank, you count how many customers are in the room, including 
those waiting in the line and those currently being served. Let us denote the average 
count as N. You join the queue as the last person; there is no one behind you. 
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2. You will be waiting W time, on average, and then it will take X time, on average, for you 
to complete your job. The expected amount of time that has elapsed since you joined the 
queue until you are ready to leave is T = W + X. During this time T new customers will 
arrive at an arrival rate λ. 

3. At the instant you are about to leave, you look over your shoulder at the customers who 
have arrived after you. These are all new customers that have arrived while you were 
waiting or being served. You will count, on average, λ ⋅ T customers in the system. 

If you compare the average number of customers you counted at your arrival time (N) and the 
average number of customers you counted at your departure time (λ ⋅ T), you will find that they 
are equal. This is called Little’s Law and it relates the average number of tasks in the system, the 
average arrival rate of new tasks, and the average delay per task: 

Average number of tasks in the system = Arrival rate × Average delay per task 

N = λ ⋅ T      (4.1a) 

I will not present a formal proof of this result, but the reader should glean some intuition from the 
above experiment. For example, if customers arrive at the rate of 5 per minute and each spends 10 
minutes in the system, Little’s Law tells us that there will be 50 customers in the system on 
average. 

The above observation experiment essentially states that the number of customers in the system, 
on average, does not depend on the time when you observe it. A stochastic process is stationary 
if all its statistical properties are invariant with respect to time. 

Another version of Little’s Law is 

NQ = λ ⋅ W     (4.1b) 

The argument is essentially the same, except that the customer looks over her shoulder as she 
enters service, rather than when completing the service. A more formal discussion is available in 
[Bertsekas & Gallagher, 1992]. 

Little’s Law applies to any system in equilibrium, as long as nothing inside the system is creating 
new tasks or destroying them. Of course, to reach an equilibrium state we have to assume that the 
traffic source generates infinite number of tasks. 

Using Little’s Law, given any two variables, we can determine the third one. However, in 
practice it is not easy to get values that represent well the system under consideration. The reader 
should keep in mind that N, T, NQ, and W are random variables; that is, they are not constant but 
have probability distributions. One way to obtain those probability distributions is to observe the 
system over a long period of time and acquire different statistics, much like traffic observers 
taking tally of people or cars passing through a certain public spot. Another option is to make 
certain assumptions about the statistical properties of the system. In the following, we will take 
the second approach, by making assumptions about statistics of customer arrivals and service 
times. From these statistics, we will be able to determine the expected values of other parameters 
needed to apply Little’s Law. 

 

Kendall’s notation for queuing models specifies six factors: 
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Arrival Process / Service Proc. / Num. Servers / Max. Occupancy / User Population / Scheduling Discipline 

1. Arrival Process (first symbol) indicates the statistical nature of the arrival process. The 
letter M is used to denote pure random arrivals or pure random service times. It stands for 
Markovian, a reference to the memoryless property of the exponential distribution of 
interarrival times. In other words, the arrival process is a Poisson process. Commonly 
used letters are:  
M – for exponential distribution of interarrival times  
G – for general independent distribution of interarrival times  
D – for deterministic (constant) interarrival times 

2. Service Process (second symbol) indicates the nature of the probability distribution of the 
service times. For example, M, G, and D stand for exponential, general, and deterministic 
distributions, respectively. In all cases, successive interarrival times and service times are 
assumed to be statistically independent of each other. 

3. Number of Servers (third symbol) specifies the number of servers in the system. 

4. Maximum Occupancy (fourth symbol) is a number that specifies the waiting room 
capacity. Excess customers are blocked and not allowed into the system. 

5. User Population (fifth symbol) is a number that specifies the total customer population 
(the “universe” of customers) 

6. Scheduling Discipline (sixth symbol) indicates how the arriving customers are scheduled 
for service. Scheduling discipline is also called Service Discipline or Queuing Discipline. 
Commonly used service disciplines are the following:  
FCFS – first-come-first-served, also called first-in-first-out (FIFO), where the first 
customer that arrives in the system is the first customer to be served  
LCFS – last-come-first served (like a popup stack)  
FIRO – first-in-random-out 

Service disciplines will be covered later in Chapter 5, where fair queuing (FQ) service discipline 
will be introduced. Only the first three symbols are commonly used in specifying a queuing 
model, although sometimes other symbols will be used in the rest of this chapter. 

4.2.2 M / M / 1 Queuing System 

Problems related to this section: Problem 4.16 → Problem 4.20 

A correct notation for the system we consider is M/M/1/∞/∞/FCFS. This system can hold 
unlimited (infinite) number of customers, i.e., it has an unlimited waiting room size or the 
maximum queue length; the total customer population is unlimited; and, the customers are served 
in the FCFS order. It is common to omit the last three items and simply use M/M/1. 
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Figure 4-19 illustrates an M/M/1 queuing system, for which the process A(t), total number of 
customers that arrived from 0 to time t, has a Poisson distribution. A Poisson process is generally 
considered a good model for the aggregate traffic of a large number of similar and independent 
customers. Then, A(0) = 0, and for s < t, A(t) − A(s) equals the number of arrivals in the interval 
(s, t). The intervals between two arrivals (interarrival times) for a Poisson process are independent 
of each other and exponentially distributed with the parameter λ. If tn denotes the time of the nth 
arrival, the interarrival intervals τn = tn+1 − tn have the probability distribution 

{ } 0,1 ≥−=≤ ⋅− sesP s
n

λτ  

It is important that we select the unit time period δ in Figure 4-19 small enough so that it is likely 
that at most one customer will arrive during δ. In other words, δ should be so small that it is 
unlikely that two or more customers will arrive during δ.  

The process A(t) is a pure birth process because it monotonically increases by one at each arrival 
event. So is the process B(t), the number of departures up until time t. The process N(t), the 
number of customers in the system at time t, is a birth and death process because it sometimes 
increases and at other times decreases. It increases by one at each arrival and decreases by one at 
each completion of service. We say that N(t) represents the state of the system at time t. Notice 
that the state of this particular system (a birth and death process) can either increases by one or 
decreases by one—there are no other options. The intensity or rate at which the system state 
increases is λ and the intensity at which the system state decreases is μ. This means that we can 
represent the rate at which the system changes the state by the diagram in Figure 4-21. 

Now suppose that the system has evolved to a steady-state condition. That means that the state of 
the system is independent of the starting state. The sequence N(t) representing the number of 
customers in the system at different times does not converge. This is a random process taking 
unpredictable values. What does converge are the probabilities pn that at any time a certain 
number of customers n will be observed in the system 
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Figure 4-19: Example of birth and death processes. Top: Arrival and departure processes;
Bottom: Number of customers in the system. 
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Note that during any time interval, the total number of transitions from state n to n + 1 can differ 
from the total number of transitions from n + 1 to n by at most 1. Thus asymptotically, the 
frequency of transitions from n to n + 1 is equal to the frequency of transitions from n + 1 to n. 
This is called the balance principle. As an intuition, each state of this system can be imagined as 
a room, with doors connecting the adjacent rooms. If you keep walking from one room to the 
adjacent one and back, you can cross at most once more in one direction than in the other. In 
other words, the difference between how many times you went from n + 1 to n vs. from n to n + 1 
at any time can be no more than one. 

Given the stationary probabilities and the arrival and service rates, from our rate-equality 
principle we have the following detailed balance equations  

pn ⋅ λ = pn+1 ⋅ μ, n = 0, 1, 2, …   (4.2) 

These equations simply state that the rate at which the process leaves state n equals the rate at 
which it enters that state. The ratio ρ = λ/μ is called the utilization factor of the queuing system, 
which is the long-run proportion of the time the server is busy. With this, we can rewrite the 
detailed balance equations as 

pn+1 = ρ ⋅ pn = ρ ² ⋅ pn−1 = … = ρ n+1 ⋅ p0      (4.3) 

If ρ < 1 (service rate exceeds arrival rate), the probabilities pn are all positive and add up to unity, 
so 
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Figure 4-21: Transition probability diagram for the number of customers in the system. 
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Figure 4-20: Intuition behind the balance principle for a birth and death process. 
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by using the well-known summation formula for the geometric series (see the derivation of Eq. 
(1.8) in Section 1.3.1). Combining equations (4.3) and (4.4), we obtain the probability of finding 
n customers in the system 

pn = P{N(t) = n} = ρ n ⋅ (1 − ρ), n = 0, 1, 2, …  (4.5) 

The average number of customers in the system in steady state is )}({lim tNEN
t ∞→

= . Because (4.5) 

is the p.m.f. for a geometric random variable, meaning that N(t) has a geometric distribution, 
checking a probability textbook for the expected value of geometric distribution quickly yields 
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It turns out that for an M/M/1 system, by knowing only the arrival rate λ and service rate μ, we 
can determine the average number of customers in the system. From this, Little’s Law (4.1a) 
gives the average delay per customer (waiting time in queue plus service time) as 

 
λμλ −

== 1N
T     (4.7) 

The average waiting time in the queue, W, is the average delay T less the average service time 
1/μ, like so 
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and by using the version (4.1b) of Little’s Law, we have )1(2 ρρλ −=⋅= WNQ . 

4.2.3 M / M / 1 / m Queuing System 

Problems related to this section: Problem 4.22 → Problem 4.23 

Now consider the M/M/1/m system that is the same as M/M/1 except that the system can be 
occupied by up to m customers, which implies a finite waiting room or maximum queue length. 
The customers arriving when the queue is full are blocked and not allowed into the system. We 

have pn = ρn ⋅ p0 for 0 ≤ n ≤ m; otherwise pn = 0. Using the relation 1
0
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 From this, the steady-state occupancy probabilities are given by (cf. Eq. (4.5)) 
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Assuming again that ρ < 1, the expected number of customers in the system is 
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Thus, the expected number of customers in the system is always less than for the unlimited queue 
length case, Eq. (4.6). 

It is also of interest to know the probability of a customer arriving to a full waiting room, also 
called blocking probability pB. Generally, the probability that a customer arrives when there are n 
customers in the queue is (using Bayes’ formula) 
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because of the memoryless assumption about the system. Thus, the blocking probability is the 
probability that an arrival will find m customers in the system, which is (using Eq. (4.8)) 
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4.2.4 M / G / 1 Queuing System 

We now consider a class of systems where arrival process is still memoryless with rate λ. 
However, the service times have a general distribution—not necessarily exponential as in the 
M/M/1 system—meaning that we do not know anything about the distribution of service times. 
Suppose again that the customers are served in the order they arrive (FCFS) and that Xi is the 
service time of the ith arrival. We assume that the random variables (X1, X2, …) are independent of 
each other and of the arrival process, and identically distributed according to an unspecified 
distribution function. 

The class of M/G/1 systems is a superset of M/M/1 systems. The key difference is that in general 
there may be an additional component of memory. In such a case, one cannot say as for M/M/1 
that the future of the process depends only on the present length of the queue. To calculate the 
average delay per customer, it is also necessary to account for the customer that has been in 
service for some time. Similar to M/M/1, we could define the state of the system as the number of 
customers in the system and use the so called moment generating functions to derive the system 
parameters. Instead, a simpler method from [Bertsekas & Gallagher, 1992] is used. 

Assume that upon arrival the ith customer finds Ni customers waiting in queue and one currently 
in service. The time the ith customer will wait in the queue is given as 
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where Ri is the residual service time seen by the ith customer. By this we mean that if customer j 
is currently being served when i arrives, Ri is the remaining time until customer j’s service is 
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completed. The residual time’s index is i (not j) because this time depends on i’s arrival time and 
is not inherent to the served customer. If no customer is served at the time of i’s arrival, then Ri is 
zero. 

 

Example 4.1 Delay in a Bank Teller Service 

An example pattern of customer arrivals to the bank from Figure 4-17 is shown in Figure 4-22. 
Assume that nothing is known about the distribution of service times. In this case, customer k = 6 will 
find customer 3 in service and customers 4 and 5 waiting in queue, i.e., N6 = 2. The residual service 
time for 3 at the time of 6’s arrival is 5 min. Thus, customer 6 will experience the following queuing 
delay: 
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This formula simply adds up all the times shown in Figure 4-22(b). Notice that the residual time 
depends on the arrival time of customer i = 6 and not on how long the service time of customer 
(i − Ni − 1) = 3 is. 

The total time that 6 will spend in the system (the bank) is T6 = W6 + X6 = 40 + 25 = 65 min. 
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Figure 4-22: (a) Example of customer arrivals and service times; see Example 4.1 for
details. (b) Detail of the situation found by customer 6 at his/her arrival. (c) Residual service
time for customer 3 at the arrival of customer 6. 
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By taking expectations of Eq. (4.11) and using the independence of the random variables Ni and 
Xi−1, Xi−2, …, Xi−Ni (which means that how many customers are found in the queue is independent 
of what business they came for), we have 
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Throughout this section all long-term average quantities should be viewed as limits when time or 
customer index converges to infinity. We assume that these limits exist, which is true for most 
systems of interest provided that the utilization ρ < 1.The second term in the above equation is the 
mean residual time, { }i

t
RER

→∞
= lim , and it will be determined by a graphical argument. The 

residual service time r(τ) can be plotted as in Figure 4-22(c). The general case is shown in Figure 
4-23. Every time a new customer enters the service, the residual time equals that customer’s 
service time. Then it decays linearly until the customer’s service is completed. The time average 
of r(τ) in the interval [0, t] is 
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where M(t) is the number of service completions within [0, t]. Hence, we obtain 
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where 2X  is the second moment of service time, computed as 
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Figure 4-23: Expected residual service time computation. The time average of r(τ) is
computed as the sum of areas of the isosceles triangles over the given period t. 
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By substituting this expression in the queue waiting time, Eq. (4.12), we obtain the so called 
Pollaczek-Khinchin (P-K) formula 
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W     (4.13) 

The P-K formula holds for any distribution of service times as long as the variance of the service 
times is finite. 

 

Example 4.2 Queuing Delays of an Go-Back-N ARQ 

Consider a Go-Back-N ARQ such as described earlier in Section 1.3.2. Assume that packets arrive at 
the sender according to a Poisson process with rate λ. Assume also that errors affect only the data 
packets, from the sender to the receiver, and not the acknowledgment packets. What is the expected 
queuing delay per packet in this system? 

Notice that the expected service time per packet equals the expected delay per packet transmission, 
which is determined in the solution of Problem 1.11 at the back of this text as follows 
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The second moment of the service time, 2X , is determined similarly as: 

Finally, Eq. (4.13) yields 
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4.3 Networks of Queues 
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4.4 Summary and Bibliographical Notes 
 

 

Section 4.1 focuses on one function of routers—forwarding packets—but this is just one of its 
many jobs. Section 1.4 describes another key function: building and maintaining the routing 
tables. In addition, more and more applications, such as firewalls, VPN concentration, voice 
gateways and video monitoring, are being implemented in routers. Cisco’s Integrated Services 
Router (ISR), for example, even includes an optional application server blade for running various 
Linux and open source packages. 

[Keshav & Sharma, 1998] 

Kumar, et al. [1998] provide a good overview of router architectures and mechanisms. 

James Aweya, “IP router architectures: An overview” 

The material presented in this chapter requires basic understanding of probability and random 
processes. [Yates & Goodman, 2004] provides an excellent introduction and [Papoulis & Pillai, 
2001] is a more advanced and comprehensive text. 

 

[Bertsekas & Gallagher, 1992] provides a classic treatment of queuing delays in data networks. 
Most of the material in Sections 4.2 and 4.3 is derived from this reference. 
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Problems 
 

Problem 4.1 

 

Problem 4.2 

 

Problem 4.3 

Consider a regular PC that is used as a router, i.e., this is first-generation router architecture. The 
router has 4 network ports, each on its own line card. All four links have the same data rate of R 
bits/sec. The system bus operates at a four times higher data rate, i.e., 4×R bps. Consider a 
scenario where steady traffic is arriving on all four ports and all packets are of the same length L. 

(a) What is the worst-case delay that a packet can experience in this router? 
(b) Will there be any head-of-line or output blocking observed? 

Problem 4.4 

 

Problem 4.5 

Consider a router X that uses Banyan switching fabric. The figure below shows the router’s 
connectivity to the adjacent routers, as well as the forwarding table of router X. 
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Assume that the following packets arrived simultaneously on router X: 

Packet arrived from Packet destination IP address 

B 63.67.145.18 

C 223.123.59.47 

G 223.125.49.47 

Draw and explain a diagram that shows how these packets will traverse the switching fabric. 

Note: Check Problem 1.29 in Chapter 1 to see how the next hop for a packet is decided. 

Problem 4.6 

 

Problem 4.7 

Using the switch icons shown below, sketch a simple 4×4 Batcher-Banyan network (without a 
trap network and a shuffle-exchange network). Label the input ports and the output ports of the 
fabric, from top to bottom, as 0, 1, 2 and 3. 
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2-by-2 crossbar switch

2-by-2 sorting element, larger value 
switched “down” to the lower output

2-by-2 sorting element, larger value 
switched “up” to the upper output

 

Suppose four packets are presented to the input ports of the Batcher-Banyan fabric that you 
sketched. Suppose further that the incoming packets are heading to the following output ports: 

      • Packet at input port 0 is heading to output port 1 

      • Packet at input port 1 to output port 0 

      • Packet at input 2 to output port 0 

      • Packet at input port 3 to output port 2 

Show on the diagram of the fabric the switching of these packets through the fabric from the 
input ports to the output ports. Will any collisions and/or idle output lines occur? 

Problem 4.8 

 

Problem 4.9 

Consider the router shown below where the data rates are the same for all the communication 
lines. The switch fabric is a crossbar so that at most one packet at a time can be transferred to a 
given output port, but different output ports can simultaneously receive packets from different 
input ports. Assume that the fabric moves packets two times faster than the data rate of the 
communication lines. Packets at each port are moved in a first-come-first-served (FCFS) order. If 
two or more packets arrive simultaneously at different input ports and are heading towards the 
same output port, their order of transfer is decided so that the lower index port wins (e.g., if ports 
2 and 3 contend at the same time to the same output port, port 2 goes first). If a packet at a lower-
index input port arrives and goes to the same output port for which a packet at a higher-index port 
is already waiting, then the higher-index port wins. 

Input ports Output portsCrossbar switch
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Consider the following traffic arrival pattern: 

Input port 1: packet of length 2 received at time t = 0 heading to output port 2; packet of length 4 
at time 4 to output 2 

Input port 2: packet of length 8 at time 0 to output 2; packet of length 2 at time 2 to output 1 

Input port 3: packet of length 8 at time 2 to output 2; packet of length 2 at time 4 to output 1 

Draw the timing diagram for transfers of packets across the switching fabric. Will there be any 
head-of-line or output blocking observed? Explain your answer. 

Problem 4.10 

 

Problem 4.11 

 

Problem 4.12 

 

Problem 4.13 

[Little’s Law] Consider a system with a single server. The arrival and service times for the first 
10 customers are as follows: (A1 = 0, X1 = 3); (2, 4); (3, 5); (4, 2); (6, 5); (7, 2); (10, 4); (11, 3); 
(12, 5); and (A10 = 13, X10 = 3). 

(a) Draw the arrivals as a birth-death process similar to Figure 4-19. 
(b) What is the average number of customers in the system N and the average delay T per 

customer in this system during the observed period? Assuming that the arrival rate is λ = 
1 customer/unit-of-time, does the system satisfy the Little’s Law over the observed 
period? 

Problem 4.14 

 

Problem 4.15 

 

Problem 4.16 

Consider a router that can process 1,000,000 packets per second. Assume that the load offered to 
it is 950,000 packets per second. Also assume that the interarrival times and service durations are 
exponentially distributed. 

(a) How much time will a packet, on average, spend being queued before being serviced? 
(b) Compare the waiting time to the time that an average packet would spend in the router if 

no other packets arrived. 
(c) How many packets, on average, can a packet expect to find in the router upon its arrival? 
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Problem 4.17 

Consider an M/G/1 queue with the arrival and service rates λ and μ, respectively. What is the 
probability that an arriving customer will find the server busy (i.e., serving another customer)? 

Problem 4.18 

Messages arrive at random to be sent across a communications link with a data rate of 9600 bps. 
The link is 70% utilized, and the average message length is 1000 bytes. Determine the average 
waiting time for exponentially distributed length messages and for constant-length messages. 

Problem 4.19 

A facility of m identical machines is sharing a single repairperson. The time to repair a failed 
machine is exponentially distributed with mean 1/λ. A machine, once operational, fails after a 
time that is exponentially distributed with mean 1/μ. All failure and repair times are independent. 
What is the steady-state proportion of time where there is no operational machine? 

Problem 4.20 

Imagine that K users share a link (e.g., Ethernet or Wi-Fi) with throughput rate R bps (i.e., R 
represents the actual number of file bits that can be transferred per second, after accounting for 
overheads and retransmissions). User’s behavior is random and we model it as follows. Each user 
requests a file and waits for it to arrive. After receiving the file, the user sleeps for a random time, 
and then repeats the procedure. Each file has an exponential length, with mean A × R bits. 
Sleeping times between a user’s subsequent requests are also exponentially distributed but with a 
mean of B seconds. All these random variables are independent. Write a formula that estimates 
the average time it takes a user to get a file since completion of his previous file transfer. 

Problem 4.21 

 

Problem 4.22 

Consider a single queue with a constant service time of 4 seconds and a Poisson input with mean 
rate of 0.20 items per second. 

(a) Find the mean and standard deviation of queue size 

(b) Find the mean and standard deviation of the time a customer spends in system. 

 

Problem 4.23 

Consider the Go-back-N protocol used for communication over a noisy link with the probability 
of packet error equal to pe. Assume that the link is memoryless, i.e., the packet error events are 
independent from transmission to transmission. Also assume that the following parameters are 
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given: the round-trip time (RTT), packet size L, and transmission rate R. What is the average 
number of successfully transmitted packets per unit of time (also called throughput), assuming 
that the sender always has a packet ready for transmission?  
Hint: Recall that the average queuing delay per packet for the Go-back-N protocol is derived in 
Example 4.2 (Section 4.2.4). 

Problem 4.24 

 

Problem 4.25 

 

 



256 

Contents 
5.1 Scheduling 

5.1.1 Scheduling Disciplines 
5.1.2 Fair Queuing 
5.1.3 Weighted Fair Queuing 

5.2 Policing 
5.2.1 x 
5.2.2 x 
5.2.3 x 

5.3 Active Queue Management 
5.3.1 Random Early Detection (RED) 
5.3.2 Explicit Congestion Notification (ECN) 
5.3.3 x 
5.3.4 x  

5.4 Multiprotocol Label Switching (MPLS) 
5.4.1 MPLS Architecture and Operation 
5.4.2 Label Distribution Protocols 
5.4.3 Traffic Engineering 
5.4.4 Virtual Private Networks 
5.4.5 MPLS and Quality of Service 

5.5 x 
5.5.1  
5.5.2  
5.5.3  

5.6 x 
5.6.1  
5.6.2  
5.6.3  

5.7 Summary and Bibliographical Notes 

Problems 

 

Chapter 5 
Mechanisms for Quality-of-Service  

 

 

This chapter reviews mechanisms used in network routers to 
provide quality-of-service (QoS). Section 3.3 reviewed some 
end-to-ed mechanisms for providing quality of service, and 
hinted at mechanisms used in routers. This chapter details the 
router-based QoS mechanisms. 

End-to-end QoS is built from the concatenation of edge-to-edge 
QoS from each network domain (or Autonomous System) 
through which traffic passes, and ultimately depends on the 
QoS characteristics of the individual hops along any given 
route. Networking solutions for end-to-end QoS are usually 
broken into three parts: per-hop QoS, traffic engineering, and 
signaling/provisioning. This chapter starts with mechanisms 
used to provide per-hop QoS, and describes traffic-engineering 
solutions in Section 5.4.3. Signaling/provisioning was already 
considered in Section 3.3.4 and will be considered further here. 

The goal of per-hop QoS is to enable congestion-point routers 
and switches to provide predictable differentiated loss, latency, 
and jitter characteristics to traffic classes of interest to the 
service provider or its customers. 

 

5.1 Scheduling 
 

The queuing models in Chapter 4 considered delays and blocking probabilities under the 
assumption that tasks/packets are served on a first-come-first-served (FCFS) basis and that a task 
is blocked if it arrives at a full queue (if the waiting room capacity is limited). The property of a 
queue that decides the order of servicing of packets is called scheduling discipline (also called 
service discipline or queuing discipline, see Section 4.2). The property of a queue that decides 
which task is blocked from entering the system or which packet is dropped for a full queue is 
called blocking policy or packet-discarding policy or drop policy. The simplest combination is 
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FCFS with tail drop, i.e., always service head of the line and, if necessary, drop the last arriving 
packet and this is what we considered in Section 4.2.3. 

Scheduling has direct impact on a packet’s queuing delay and hence on its total delay. Dropping 
decides whether the packet will arrive to destination at all. FCFS does not make any distinction 
between packets. A single FCFS queue cannot simultaneously support QoS-sensitive and QoS-
insensitive traffic. While a long queue is less likely to overflow during a traffic burst (thus 
reducing packet loss probability), it potentially increases the queuing delay for non-dropped 
packets. A short queue reduces this delay, but conversely increases the probability of packet loss 
for bursty traffic. 

Additional concerns may compel the network designer to consider making distinction between 
packets and design more complex scheduling disciplines and dropping policies. Such concerns 
include: 

• Prioritization, where different tasks/packets can have assigned different priorities, so that 
the delay time for certain packets is reduced (at the expense of other packets) 

• Fairness, so that different flows (identified by source-destination pairs) are offered 
equitable access to system resources 

• Protection, so that misbehavior of some flows (by sending packets at a rate faster than 
their fair share) should not affect the performance achieved by other flows 

Prioritization and fairness are complementary, rather than mutually exclusive. Fairness ensures 
that traffic flows of equal priority receive equitable service and that flows of lower priority are 
not excluded from receiving any service because all of it is consumed by higher priority flows. 
Fairness and protection are related so that ensuring fairness automatically provides protection, 
because it limits a misbehaving flow to its fair share. However, the converse need not be true. For 
example, if flows are policed at the entrance to the network, so that they are forced to confirm to 
a predeclared traffic pattern, they are protected from each other, but their resource shares may not 
be fair. Policing will be considered later in Section 5.2. 

5.1.1 Scheduling Disciplines 

We already mentioned that a single FCFS queue cannot simultaneously support QoS-sensitive 
and QoS-insensitive traffic. The solution is to split traffic across multiple queues at each 
congestion point, assigning different classes of traffic to queues sized for each class’s desired 
loss, latency, and jitter characteristics. Access to the resource (e.g., outbound link) is mediated by 
a scheduler, which empties each queue in proportion to its allocated resource share or priority. 
Therefore, the system that wishes to make distinction between packets (QoS-enabled router or 
switch) must (1) classify packets, (2) differentially queue packets per class, and (3) provide 
controllable and predictable scheduling of packet transmissions from each class (queue) onto the 
outbound link. This approach is often referred to as a classify, queue, and schedule (CQS) 
architecture and it comprises two components (Figure 5-1): 

1. Classifier—Forms different waiting lines for different packet types. The criteria for 
sorting packets into different lines include: priority, source and/or destination network 
address, application port number, etc. 
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2. Scheduler—Calls packets from waiting lines for service. Options for the rules of calling 
the packets for service (scheduling discipline) include: (i) first serve all the 
packets waiting in the high-priority line, if any; then go to the next lower 
priority class, etc.; (ii) serve the lines in round-robin manner by serving one or 
more packets from one line (but not necessarily all that are currently waiting), 
then go to serve few from the next waiting line, etc., then repeat the cycle. 

FCFS places indiscriminately all the arriving packets at the tail of a single queue. The 
idea with prioritization is that the packets with highest priority, upon arrival to the 
system, are placed at the head-of-the line, so they bypass waiting in the line. They may still need 
to wait if there is another packet (perhaps even of a lower priority) currently being transmitted. 
Non-preemptive scheduling is the discipline under which the ongoing transmission of lower-
priority packets is not interrupted upon the arrival of a higher-priority packet. Conversely, 
preemptive scheduling is the discipline under which lower-priority packet is bumped out of 
service (back into the waiting line or dropped from the system) if a higher-priority packet arrives 
at the time a lower-priority packet is being transmitted. 

Packet priority may be assigned simply based on the packet type, or it may be result of applying a 
complex set of policies. For example, the policies may specify that a certain packet type of a 
certain user type has high priority at a certain time of the day and low priority at other times. 

Although priority scheduler does provide different performance characteristics to different 
classes, it still has shortcomings. For example, it does not deal with fairness and protection. An 
aggressive or misbehaving high-priority source may take over the communication line and elbow 
out all other sources. Not only the flows of the lower priority will suffer, but also the flows of the 
same priority are not protected from misbehaving flows. 

A round robin scheduler alternates the service among different flows or classes of packets. In the 
simplest form of round robin scheduling the head of each queue is called, in turn, for service. 
That is, a class-1 packet is transmitted, followed by a class-2 packet, and so on until a class-n 
packet is transmitted. The whole round is repeated forever or until there are no more packets to 

Classifier Scheduler

Transmitter
(Server)

Arriving packets

Class n queue

Class 1 queue (Waiting line)

Class 2 queue

Packet drop
when queue full

Scheduling
discipline

Figure 5-1: Components of a scheduler. Classifier sorts the arriving packets into different
waiting lines based on one or more criteria, such as priority or source identity. Scheduler
then places the packets into service based on the scheduling discipline. A single server
serves all waiting lines. 
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transmit. If a particular queue is empty, because no packets of such type arrived in the meantime, 
the scheduler has two options: 

1. Keep unused the portion of service or work allocated for that particular class and let the 
server stay idle  (non-work-conserving scheduler) 

2. Let the packet from another queue, if any, use this service  (work-conserving scheduler) 

A work-conserving scheduler will never allow the link (server) to remain idle if there are packets 
(of any class or flow) queued for transmission. When such scheduler looks for a packet of a given 
class but finds none, it will immediately check the next class in the round robin sequence. 

One way to achieve control of channel conditions (hence, performance bounds) is to employ time 
division multiplexing (TDM) or frequency division multiplexing (FDM). TDM/FDM maintains a 
separate channel for each traffic flow and never mixes packets from different flows, so they never 
interfere with each other. TDM and FDM are non-work-conserving. Statistical multiplexing is 
work-conserving and that is what we consider in the rest of this section. 

5.1.2 Fair Queuing 

Problems related to this section: Problem 5.2 → Problem 5.8 

Suppose that a system, such as transmission link, has insufficient resource to satisfy the demands 
of all users, each of whom has an equal right to the resource, but some essentially demand fewer 
resources than others. How, then, should we divide the resource? A sharing technique widely 
used in practice is called max-min fair share. Intuitively, a fair share first fulfils the demand of 
users who need less than they are entitled to, and then evenly distributes unused resources among 
the “big” users (Figure 5-2). Formally, we define max-min fair share allocation to be as follows: 

• Resources are allocated in order of increasing demand 

• No source obtains a resource share larger than its demand 

• Sources with unsatisfied demands obtain an equal share of the resource 

This formal definition corresponds to the following operational definition. Consider a set of 
sources 1, ..., n that have resource demands r1, r2, ..., rn. Without loss of generality, order the 
source demands so that r1 ≤ r2 ≤ … ≤ rn. Let the server have capacity C and all sources are 
equally entitled to the resource, although they may need more or less than they are entitled to. 
Then, we initially assign C/n of the resource to the source with the smallest demand, r1. This may 
be more than what source 1 wants, perhaps, so we can continue the process. The process ends 
when each source receives no more than what it asks for, and, if its demand was not satisfied, no 
less than what any other source with a higher index (i.e., demand) received. We call such an 
allocation a max-min fair allocation, because it maximizes the minimum share of a source whose 
demand is not fully satisfied. 
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Example 5.1 Max-Min Fair Share 

Consider the server in Figure 5-3 where packets are arriving from n = 4 sources of equal priority to be 
transmitted over a wireless link. (Assume that the full link bandwidth is available and ignore the link-
layer overhead due to interfame spaces, backoff, collisions, etc.) The total required link capacity is: 

8 × 2048 + 25 × 2048 + 50 × 512 + 40 × 1024 = 134,144 bytes/sec = 1,073,152 bits/sec

Appl. A  Appl. B  Appl. C  Appl. D  Total demand  

but the available capacity of the link is C = 1 Mbps = 1,000,000 bits/sec. By the notion of fairness and 
given that all sources are equally “important,” each source is entitled to C/n = ¼ of the total capacity = 
250 Kbps. Some sources may not need this much and the surplus is equally divided among the sources 
that need more than their fair share. The following table shows the max-min fair allocation procedure. 

Sources Demands 
[bps] 

Balances 
after 1st round

Allocation #2 
[bps] 

Balances after 
2nd round 

Allocation #3 
(Final) [bps] 

Final 
balances 

Application 1 131,072 bps +118,928 bps 131,072 0 131,072 bps 0 

Application 2 409,600 bps −159,600 bps 332,064 −77,536 bps 336,448 bps −73,152 bps

Application 3 204,800 bps +45,200 bps 204,800 0 204,800 bps 0 

Application 4 327,680 bps −77,680 bps 332,064 +4,384 bps 327,680 bps 0 

After the first round in which each source receives ¼C, sources 1 and 3 have excess capacity, because 
they are entitled to more than what they need. The surplus of C′ = 118,928 + 45,200 = 164,128 bps is 
equally distributed between the sources in deficit, that is sources 2 and 4. After the second round of 
allocations, source 4 has excess of C″ = 4,384 bps and this is allocated to the only remaining source in 

desired: 1/8

desired: 1/3

desired:
2/3

P3

P2

P1

desired: 1/8

Fair share: 1/3 each

1. Satisfy customers who need less than their fair share
2. Split the remainder equally among the remaining customers

Return surplus:
1/3 − 1/8 = 5/24

New fair share
for P2 & P3:
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P1

P3

P2

ba

c d
Figure 5-2: Illustration of max-min fair share algorithm; see text for details. 
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deficit, which is source 2. Finally, under the fair resource allocation, sources 1, 3, and 4 have fulfilled 
their needs, but source 2 remains short of 73.152 Kbps. 

 

Thus far, we have assumed that all sources are equally entitled to the resources. Sometimes, we 
may want to assign some sources a greater share than others. In particular, we may want to 
associate weights w1, w2, ..., wn with sources 1, 2, …, n, to reflect their relative entitlements to the 
resource. We extend the concept of max-min fair share to include such weights by defining the 
max-min weighted fair share allocation as follows: 

• Resources are allocated in order of increasing demand, normalized by the weight 

• No source obtains a resource share larger than its demand 

• Sources with unsatisfied demands obtain resource shares in proportion to their weights 

The following example illustrates the procedure. 

 

Example 5.2 Weighted Max-Min Fair Share 

Consider the same scenario as in Example 5.1, but now assume that the sources are weighted as 
follows: w1 = 0.5, w2 = 2, w3 = 1.75, and w4 = 0.75. The first step is to normalize the weights so they 
are all integers, which yields: 21 =′w , 82 =′w , 73 =′w , and 34 =′w . A source i is entitled to 

⋅′
′jwiw 1  

of the total capacity, which yields 2/20, 8/20, 7/20, and 3/20, for the respective four sources. The 
following table shows the results of the weighted max-min fair allocation procedure. 

Src Demands Allocation 
#1 [bps] 

Balances 
after 1st round

Allocation 
#2 [bps] 

Balances after 
2nd round 

Allocation #3 
(Final) [bps] 

Final 
balances 

1 131,072 bps 100,000 −31,072 122,338 −8,734 bps 131,072 bps 0 

2 409,600 bps 400,000 −9,600 489,354 +79,754 bps 409,600 bps 0 

3 204,800 bps 350,000 +145,200 204,800 0 204,800 bps 0 

4 327,680 bps 150,000 −177,680 183,508 −144,172 bps 254,528 bps −73,152 bps

This time around, source 3 in the first round is allocated more than it needs, while all other sources are 
in deficit. The excess amount of C′ = 145,200 bps is distributed as follows. Source 1 receives 

338,22200,145382
2 =⋅++  bps, source 2 receives 354,89200,145382

8 =⋅++  bps, and source 4 receives 

Link capacity
= 1 Mbps

Wi-Fi transmitter
(Server)

Application 1

Application 2

Application 3

Application 4

8 packets per sec
L1 = 2048 bytes

40 pkts/s
L4 = 1 KB

25 pkts/s
L2 = 2 KB 

50 pkts/s
L3 = 512 bytes

Link capacity
= 1 Mbps

Wi-Fi transmitter
(Server)

Application 1

Application 2

Application 3

Application 4

8 packets per sec
L1 = 2048 bytes

40 pkts/s
L4 = 1 KB

25 pkts/s
L2 = 2 KB 

50 pkts/s
L3 = 512 bytes
50 pkts/s
L3 = 512 bytes

 

Figure 5-3: Example of a server (Wi-Fi transmitter) transmitting packets from four sources
(applications) over a wireless link; see text for details. 
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508,33200,145382
3 =⋅++  bps. Notice that in the denominators is always the sum of weights for the 

currently considered sources. After the second round of allocations, source 2 has excess of C″ = 79,754 
bps and this is distributed among sources 1 and 4. Source 1 receives 902,31754,7932

2 =⋅+ , which 

along with 122,338 it already has yields more than it needs. The excess of C″′ = 23,168 is given to 
source 4, which still remains short of 73.152 Kbps. 

 

Min-max fair share (MMFS) defines the ideal fair distribution of a shared scarce resource. Given 
the resource capacity C and n customers, under MMFS a customer i is guaranteed to obtain at 
least Ci = C/n of the resource. If some customers need less than what they are entitled to, then 
other customers can receive more than C/n. Under weighted MMFS (WMMFS), a customer i is 

guaranteed to obtain at least Ci = C

w

w
n

j
j

i


=1

 of the resource. 

However, MMFS does not specify how to achieve this in a dynamic system where the 
demands for resource vary over time. To better understand the problem, consider the 
airport check-in scenario illustrated in Figure 5-4. Assume there is a single window 
(server) and both first-class and economy passengers are given the same weight. The 
question is, in which order the waiting customers should be called for service so that 
both queues obtain equitable access to the server resource? Based on the specified 
service times (Figure 5-4), the reader may have an intuition that, in order to maintain 
fairness on average, it is appropriate to call the first two economy-class passengers before the 
first-class passenger and finally the last economy-class passenger. The rest of this section reviews 
practical schemes that achieve just this and, therefore, guarantee (weighted) min-max fair share 
resource allocation when averaged over a long run.  

Generalized Processor Sharing (GPS) 

Min-max fair share cannot be directly applied in network scenarios because packets are 
transmitted as atomic units and they can be of different length, thus requiring different 

First-class
passengers

?
Customer
in service

Server

Waiting lines (queues)

XE,1 = 2XE,2 = 5Service times: XE,3 = 3

Service time: XF,1 = 8

Economy-class
passengers

Classification

 

Figure 5-4: Dynamic fair-share problem: in what order should the currently waiting
customers be called in service? 
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transmission times. In Example 5.1, packets from sources 1 and 2 are twice longer than those 
from source 4 and four times than from source 3. It is, therefore, difficult to keep track of whether 
each source receives its fair share of the server capacity. To arrive at a practical technique, we 
start by considering an idealized technique called Generalized Processor Sharing (GPS). 

GPS maintains different waiting lines for packets belonging to different flows. There are two 
restrictions that apply: 

• A packet cannot jump its waiting line, i.e., scheduling within individual queues is FCFS 

• Service is non-preemptive, meaning that an arriving packet never bumps out a packet that 
is currently being transmitted (in service) 

GPS works in a bit-by-bit round robin fashion, as illustrated in Figure 5-5(a). That is, the router 
transmits a bit from queue 1 (if there is any), then a bit from queue 2, and so on, for all queues 
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Figure 5-5: Imaginary bit-by-bit GPS (generalized processor sharing) (a) is used to derive
the schedule for actual FQ (fair queuing) scheduling (b) used in real routers. 
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that have packets ready for transmission. Let Ai,j denote the time that jth packet arrives from ith 
flow at the server (transmitter). Let us, for the sake of illustration, consider the example with 
packets only 2 or 3 bits long. Packets from flows 1 and 2 are 3 bits long, and from flow 3 are 2 
bits long. At time zero, packet A2,1 arrives from flow 2 and packet A3,1 arrives from flow 3. Both 
packets find no other packets in their respective waiting lines, so their transmission starts 
immediately, one bit per round. Notice that one round of transmission now takes two time units, 
because two flows must be served per round. Because the packet from flow 3 is shorter than that 
from flow 2 (and their transmission started simultaneously), the transmission of packet A3,1 will 
be finished sooner. After this moment, one round of transmission now takes one time unit, 
because only one flow (flow 2) must be served per round. 

The key idea of Fair Queuing (FQ) is to run imaginary GPS transmissions, as in Figure 5-5(a), 
determined packet finish-round numbers under GPS, and then line up the packets for actual 
transmission under FQ in the ascending order of their finish numbers, as in Figure 5-5(b). This 
process will be elaborated in the rest of this section. 

The GPS example from in Figure 5-5(a) is continued in Figure 5-6. At time t = 2 there is one 
more arrival on flow 2: A2,2. Because in flow 2 A2,2 finds A2,1 in front of it, it must wait until the 
transmission of A2,1 is completed. At time t = 7 there are two arrivals: A1,1 and A3,2. The 
transmission of both packets starts immediately because currently they are the only packets in 
their flows. (The bits should be transmitted atomically, a bit from each flow per unit of time as 
shown in Figure 5-5(a), rather than continuously as shown in Figure 5-6, but because this is an 
abstraction anyway, we leave it as is.) 

As seen, a k-bit packet takes always k rounds to transmit, but the actual time duration can vary, 
depending on the current number of active flows—the more flows served in a round, the longer 
the round takes. (A flow is active if it has packets enqueued for transmission.) For example, in 
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Figure 5-6. Example of bit-by-bit GPS. The output link service rate is C = 1 bit/s. 
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Figure 5-6 it takes 4 s to transmit the first packet of flow 3, and 8 s for the second packet of the 
same flow although both have equal length! 

The piecewise linear relationship between the time and round number is illustrated in Figure 5-7 
for the example from Figure 5-6. The slope of each linear segment is computed as one round 
divided by the number of bits that need to be transmitted in one round. In other words, the slope 
is inversely proportional to the current number of active flows. Looking back at Figure 5-5(a), we 
see that in the beginning, the GPS transmitter needs to transmit two bits per round during the first 
two rounds (bits from flows 2 and 3). Hence, the slope of the round-number curve is 1/2. At time 
4, transmission of the packet from flow 3 is finished, so the slope rises to 1/1 because there 
remains a single active flow. Similarly, at time 7 the slope falls to 1/3. In general, the function 
R(t) increases at a rate 

)(

)(
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C
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tdR =      (5.1) 

where C is the transmission capacity of the output line. Obviously, if nactive(t) is constant then 
R(t) = t ⋅ C / nactive, but this need not be the case because packets in different flows arrive 
randomly. In general, the round number is determined in a piecewise manner 
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−  as will be seen later in Example 5.3. Each time R(t) reaches a 

new integer value marks an instant at which all the queues have been given an equal number of 
opportunities to transmit a bit (of course, an empty queue does not utilize its given opportunity). 

GPS provides max-min fair resource allocation. Unfortunately, GPS cannot be implemented 
because it is not feasible to interleave the bits from different flows. A practical solution is the fair 
queuing mechanism that approximates this behavior on a packet-by-packet basis, which is 
presented next. 
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Figure 5-7. Piecewise linear relationship between round number and time for the example
from Figure 5-6. Also shown are finish numbers Fi(t) for the different flows. 
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Fair Queuing 

Similar to GPS, a router using FQ maintains different waiting lines for packets belonging to 
different flows at each output port. FQ determines when a given packet would finish being 
transmitted if it were being sent using bit-by-bit round robin (GPS) and then uses this finishing 
tag to rank order the packets for transmission. 

The service round in which a packet Ai,j would finish service under GPS is called the packet’s 
finish number, denoted Fi,j. For example, in Figure 5-5(a) and Figure 5-6 packet A3,1 has finish 
number F3,1 = 2, packet A2,1 has finish number F2,1 = 3, and so on. Obviously, packet’s finish 
number depends on the packet size and the current round number at the start of packet’s service. 
It is important to recall that the finish number is, generally, different from the actual time at 
which the packet is served. For example, packet A3,1 is serviced by t = 4, and A2,1 is serviced by 
t = 5, because time is different from the round number (Figure 5-7). 

Let Li,j denote the size (in bits) of packet Ai,j. Under bit-by-bit GPS it takes Li,j rounds of service to 
transmit this packet. Let Fi,j denote the time when the transmitter finishes transmitting jth packet 
from ith flow. Suppose that a packet arrives at time ta on a server which previously cycled through 
R(ta) rounds. Under GPS, the packet would have to wait for service only if there are currently 
packets from this flow either under service or enqueued for service or both—packets from other 
flows would not affect the start of service for this packet. Therefore, the start round number for 
servicing packet Ai,j is the highest of these two 

• The current round R(ta) at the packet’s arrival time ta  

• The finishing round of the last packet, if any, from the same flow 

or in short, the start round number of the packet Ai,j is max{Fi,j−1, R(ta)}. The finish number of this 
packet is computed as 

{ } jiajiji LtRFF ,1,, )(,max += −     (5.2) 

Once assigned, the finish number remains constant and does not depend on future packet arrivals 
and departures. FQ scheduler performs the following procedure every time a new packet arrives: 

1. Calculate the finish number for the newly arrived packet using Eq. (5.2) 

2. For all the packets currently waiting for service (in any queue), sort them in the 
ascending order of their finish numbers 

3. When the packet currently in transmission, if any, is finished, call the packet with the 
smallest finish number in service 

Note that the sorting in step 2 does not include the packet currently being transmitted, if any, 
because FQ uses non-preemptive scheduling. Also, it is possible that a packet can be scheduled 
ahead of a packet waiting in a different line because the former is shorter than the latter and its 
finish number happens to be smaller than the finish number of the already waiting (longer) 
packet. The fact that FQ uses non-preemptive scheduling makes it an approximation of the bit-by-
bit round robin GPS, rather than an exact simulation. 

For example, Figure 5-7 also shows the curves for the finish numbers Fi(t) of the three flows from 
Figure 5-6. At time 0, packets A2,1 and A3,1 arrive simultaneously, but because F3,1 is smaller than 
F2,1, packet A3,1 goes into service first. 
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Example 5.3 Packet-by-Packet Fair Queuing 

Consider the system from Figure 5-3 and Example 5.1 and assume for the sake of illustration that the 
time is quantized to the units of the transmission time of the smallest packets. The smallest packets are 
512 bytes from flow 3 and on a 1 Mbps link it takes 4.096 ms to transmit such a packet. For the sake of 
illustration, assume that a packet arrives on flows 1 and 3 each at time zero, then a packet arrives on 
flows 2 and 4 each at time 3, and packets arrive on flow 3 at times 6 and 12. Show the corresponding 
packet-by-packet FQ scheduling. 

The first step is to determine the round numbers for the arriving packets, given their arrival times. The 
process is illustrated in Figure 5-8. The round numbers are shown also in the units of the smallest 
packet’s number of bits, so these numbers must be multiplied by 4096 to obtain the actual round 
number. Bit-by-bit GPS would transmit bits from two packets (A1,1 and A3,1) in the first round, so the 
round takes two time units and the slope is 1/2. In the second round, only one packet is being 
transmitted (A1,1), the round duration is one time unit and the slope is 1/1. The GPS server completes 
two rounds by time 3, R(3) = 2, at which point two new packets arrive (A2,1 and A4,1). The next arrival 
is at time 6 (the actual time is t1 = 24.576 ms) and the round number is determined as 
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which in our simplified units is R(6) = 3. The left side of each diagram in Figure 5-8 also shows how 
the packet arrival times are mapped into the round number units. Figure 5-9 summarizes the process of 
determining the round numbers for all the arriving packets. 

The actual order of transmissions under packet-by-packet FQ is shown in Figure 5-10. At time 0 the 
finish numbers are: F1,1 = 4 and F3,1 = 1, so packet A3,1 is transmitted first and packet A1,1 goes second. 
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Figure 5-8: Determining the round numbers under bit-by-bit GPS for Example 5.3. (a)
Initial round numbers as determined at the arrival of packets P1,1 and P3,1. (b) Round
numbers recomputed at the arrival of packets P2,1 and P4,1. (Continued in Figure 5-9.) 
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At time 3 the finish numbers for the newly arrived packets are: F2,1 = max{0, R(3)} + L2,1 = 2 + 4 = 6 
and F4,1 = max{0, R(3)} + L4,1 = 2 + 2 = 4, so F4,1 < F2,1. The ongoing transmission of packet A1,1 is not 
preempted and will be completed at time 5, at which point packet A4,1 will enter the service. At time 6 
the finish number for packet A3,2 is F3,2 = max{0, R(6)} + L3,2 = 3 + 1 = 4. The current finish numbers 
are F3,2 < F2,1 so A3,2 enters the service at time 7, followed by A2,1 which enters the service at time 8. 
Finally, at time 12 the finish number for the new packet A3,3 is F3,3 = max{0, R(12)} + L3,3 = 6 + 1 = 7 
and it is transmitted at 12. 

In summary, the order of arrivals is {A1,1, A3,1}, {A2,1, A4,1}, A3,2, A3,3 where simultaneously arriving 
packets are delimited by curly braces. The order of transmissions under packet-by-packet FQ is: A3,1, 
A1,1, A4,1, A3,2, A2,1, A3,3. 

 

There is a problem with the above algorithm of fair queuing which the reader may have noticed 
besides that computing the finish numbers is no fun at all! At the time of a packet’s arrival we 
know only the current time, not the current round number. As suggested above, one could try 
using the round number slope, Eq. (5.1), to compute the current round number from the current 
time, but the problem with this approach is that the round number slope is not necessarily 
constant. An FQ scheduler computes the current round number on every packet arrival, to assign 
the finish number to the new packet. Because the computation is fairly complex, this poses a 
major problem with implementing fair queuing in high-speed networks. Some techniques for 
overcoming this problem have been proposed, and the interested reader should consult [Keshav 
1997]. 
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Figure 5-9: Determining the round numbers under bit-by-bit GPS for Example 5.3,
completed from Figure 5-8. 
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5.1.3 Weighted Fair Queuing 

Now assume that weights w1, w2, ..., wn are associated with sources (flows) 1, 2, …, n, to reflect 
their relative entitlements to transmission bandwidth. As before, a queue is maintained for each 
source flow. Under weighted min-max fair share, flow i is guaranteed to obtain at least Ci = 

C
w

w

j

i


 of the total bandwidth C. The bit-by-bit approximation of weighted fair queuing (WFQ) 

would operate by allotting each queue a different number of bits per round. The number of bits 
per round allotted to a queue should be proportional to its weight, so the queue with twice higher 
weight should receive two times more bits/round. 

Packet-by-packet WFQ can be generalized from bit-by-bit WFQ as follows. For a packet of 
length Li,j (in bits) that arrives at ta the finish number under WFQ is computed as 

( )
i

ji
ajiji w

L
tRFF ,

1,, )(,max += −     (5.3) 

From the second term in the formula, we see that if a packet arrives on each of the flows i and k 
and wi = 2⋅wk, then the finish number for a packet of flow i is calculated assuming a bit-by-bit 
depletion rate that is twice that of a packet from flow k. 

 

All queues are set to an equal maximum size, so the flows with the highest traffic load will suffer 
packet discards more often, allowing lower-traffic ones a fair share of capacity. Hence, there is no 
advantage of being greedy. A greedy flow finds that its queues become long, because its packets 
in excess of fair share linger for extended periods of time in the queue. The result is increased 
delays and/or lost packets, whereas other flows are unaffected by this behavior. In many cases 
delayed packets can be considered lost because delay sensitive applications ignore late packets. 
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Figure 5-10: Time diagram of packet-by-packet FQ for Example 5.3. 
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The problem is created not only for the greedy source, but lost packets represent wasting network 
resources upstream the point at which they are delayed or lost. Therefore, they should not be 
allowed into the network at the first place. This is a task for policing. 

 

5.2 Policing 
 

So far, we saw how to distribute fairly the transmission bandwidth or other network resources 
using WFQ scheduler. However, this does not guarantee delay bounds and low losses to traffic 
flows. A packet-by-packet FQ scheduler guarantees a fair distribution of the resource, which 
results in a certain average delay per flow. However, even an acceptable average delay may have 
great variability for individual packets. This point is illustrated in Figure 5-11. Multimedia 
applications are particularly sensitive to delay variability (known as “jitter”). 

One idea is to regulate the number of packets that a particular flow can pass through the router 
per unit of time by using the “leaky bucket” abstraction (Figure 5-12). Imagine that we install a 
turnstile (ticket barrier) inside the router for monitoring the entry of packets into the service. To 
pass the turnstile, each packet must drop a token into the slot and proceed. Tokens are dispensed 
from a “leaky bucket” that can hold up to b tokens. If the bucket is currently empty, the packets 
must wait for a token. If a packet arrives at a fully occupied waiting area, the packet is dropped.18 

Each flow has a quota that is characterized by simple traffic descriptors (Section 3.2.1): 

Peak rate: this parameter constrains the number of packets that a flow can send over a very short 
period of time. 

                                                      
18 There are many variations of the leaky bucket algorithm and different books introduce this abstraction in 

different way. In some variations, there are no tokens and the packets themselves arrive to the bucket and 
drain through a hole in the bucket. Because this is an abstraction anyway, I present it here in a way that I 
feel is the most intuitive. This does not affect the results of the algorithm. 
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Figure 5-11: Different traffic patterns yield the same average delay. 
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Average rate: this parameter specifies the average number of packets that a particular flow is 
allowed to send over a time window. As discussed in Section 3.2.1, a key issue here is to decide 
the interval of time over which the average rate will be regulated. 

Burst size: this parameter constrains the total number of packets (the “burst” of packets) that can 
be sent by a particular flow into the network over a short interval of time. 

When a packet arriver at a router, it withdraws one token from the bucket before it is allowed to 
proceed. If the bucket is empty, the packet must wait for a token to appear. 

When the packets are all the same size, this algorithm can be used as described. However, when 
variable-sized packets are being used, it is often better to allow a fixed number of bytes per token, 
rather than just one packet. 

 

 

5.3 Active Queue Management 
 

Packet-dropping strategies deal with the case when there is not enough memory to buffer an 
incoming packet. The simplest policy is to drop the arriving packet, known as drop-tail policy. 
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Figure 5-12: Leaky bucket. 
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Active Queue Management (AQM) algorithms employ more sophisticated approaches. Routers 
with AQM detect congestion before the queue overflows and notify the source that the congestion 
is about to happen. One of the most widely studied and implemented AQM algorithms is the 
Random Early Detection (RED) algorithm that uses implicit feedback by dropping packets. A 
recent approach, called Explicit Congestion Notification (ECN) uses explicit feedback by marking 
packets instead of dropping them. 

5.3.1 Random Early Detection (RED) 

A router that implements RED uses two threshold values to mark positions in the queue: 
Thresholdmin and Thresholdmax. A simplified description of RED operation follows. When a new 
packet arrives, its disposition is decided by these three rules: 

1. If the queue currently contains fewer than Thresholdmin packets, the new packet is 
enqueued. 

2. If the queue contains between Thresholdmin and Thresholdmax packets, the new packet is 
considered for enqueuing or dropping by generating a random number and evaluating its 
value. 

3. If the queue currently contains more than Thresholdmax packets, the new packet is 
dropped. 

where 0 ≤ Thresholdmin < Thresholdmax ≤ BufferSize, and the value 0 represents the head of the 
queue. Therefore, instead of waiting until the queue overflows, RED starts randomly dropping 
packets as congestion increases. The process is somewhat more complex, as described next. 

We know that TCP often sends segments in bursts, depending on the congestion window size 
(Section 2.2). A burst represents a spike in traffic intensity that may last only temporarily while 
most of the time traffic is low-intensity. In other words, the queue may be most of the time 
empty, and a temporary spike does not represent congestion. Therefore, should like avoid 
dropping packets from a burst when queue length is greater than Thresholdmin. (Of course, packets 
are always dropped if the queue capacity is exceeded.)  

To better capture the notion of congestion and accommodate for bursty traffic, the router does not 
consider the instantaneous length of the queue. Instead, the router considers the average length of 
the queue when applying the three rules described above (Figure 5-13(a)). The average queue 
length is computed continuously using Exponential Weighted Moving Average (EWMA). This is 
the same method used by TCP for RTT estimation (Section 2.1.2) and by jitter buffer (Section 
3.3.1). That is, at any time t when a new packet arrives and tries to join this queue, we compute 

AverageQLen(t) = (1− γ) ⋅ AverageQLen(t−1) + γ ⋅ MeasuredQLen(t)  (5.4) 

where γ denotes a value between 0 and 1. If γ is small, the average stays close to long-term trend 
and does not fluctuate for short bursts. This parameter should be determined empirically, and a 
recommended value is γ = 0.002. 

When the average queue length is between Thresholdmin and Thresholdmax, RED drops an arriving 
packet with an increasing probability as the average queue length increases (Figure 5-13(b)). For 
a given AverageQLen, we calculate the probability of packet drop as 
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Research has suggested that RED works best when the probability function transitions smoothly 
at Thresholdmax, i.e., for Pmax = 1. In addition to the average queue length, the drop probability 
also depends on the time elapsed since the last packet was dropped. Instead of actual time, the 
algorithm uses a proxy in terms of the number of newly arriving packets (variable: count) that 
have been queued (not dropped) while AverageQLen has been between the two thresholds. 
Therefore, given an AverageQLen the actual probability of a packet being dropped is computed as 

)(1

)(
)(

temp

temp

nAverageQLePcount

nAverageQLeP
nAverageQLeP

×−
=   (5.6) 

We can observe that P increases as count increases. This helps make packet drops more evenly 
distributed and avoid bias against bursty traffic. 

RED is intended to work primarily with TCP sources. RED is a queue management technique that 
attempts to provide equitable access to an FCFS system. The source that transmits at the highest 
rate will suffer from higher packet-dropping rate than others will. As a result, this source will 
reduce its transmission rate more, which yields more uniform transmission rates across the 
sources and more equitable access to the buffer resource. Under RED, TCP connections will 
experience randomly dropped packets (rather than synchronously when the buffer becomes full). 
Therefore, TCP senders will back off at different times. This behavior avoids the global 
synchronization effect of all connections and maintains high throughput in the routers. Both 
analysis and simulations shows that RED works as intended. It handles congestion, avoids the 
synchronization that results from drop-tail policy, and allows short bursts without dropping 
packets unnecessarily. It is also important that RED can control the queue length irrespective of 
endpoint sender cooperation. The IETF now recommends that routers implement RED. 
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Figure 5-13: (a) RED thresholds on a FCFS (or, FIFO) queue. (b) Packet drop probability 
function for RED. 
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5.3.2 Explicit Congestion Notification (ECN) 

Explicit Congestion Notification (ECN) allows end-to-end notification of network congestion 
without dropping packets. It requires support by the underlying network (i.e., routers). ECN is an 
optional feature that is only used when both endpoints support it and have it activated. 

We have seen that Random Early Detection (RED) mechanism drops packets when it senses 
potential congestion (Section 5.3.1). Unlike RED, instead of dropping a packet, an ECN-aware 
router may set a mark in the packet’s IP header in order to signal that congestion is about to 
happen. The receiver of the packet is the first to learn about the potential congestion and echoes 
the congestion indication to the sender. The receiver uses the next acknowledgement packet to 
inform the sender about the impending congestion, which must react as if a packet was dropped, 
i.e., by reducing its congestion window (Section 2.2). 

ECN uses two bits in the IP header of packets from ECN-capable transports to allow routers to 
record congestion, and uses two bits in the TCP header to allow the TCP sender and receiver to 
communicate. The two bits in the IP header are taken from the 8-bit type of service (TOS) field 
(Figure 1-36) and are called the Congestion Experienced (CE) codepoint. These are bits 6 and 7 
(rightmost) of the TOS field, and a router can choose to set either bit to indicate congestion. The 
reason for using two bits is to increase the robustness of the mechanism. The four different 
codepoints are as follows: 

00: Transport not ECN-capable - Non-ECT 

10: ECN capable transport - ECT(0) 

01: ECN capable transport - ECT(1) 

11: Congestion encountered - CE 

The two bits in the TCP header are taken from the 6-bit unused field (Figure 2-2). 

ECN uses the same mechanism as RED (Section 5.3.1) to detect an impending congestion: it 
monitors the average queue size. 

 

5.4 Multiprotocol Label Switching (MPLS) 
 

Problems related to this section: Problem 5.9 → ?  

Multiprotocol Label Switching (MPLS) is essentially a mechanism for creating and using special 
paths, known as “tunnels,” in IP networks. We know that IP forwards data packets on a packet-
by-packet basis, where each packet is forwarded independently of any other packet. It is said to 
be connectionless packet forwarding. MPLS allows forwarding packets on a flow-by-flow basis, 
so that all packets belonging to a given traffic flow are forwarded in the same manner and along 
the same network path (or, tunnel). In this sense, MPLS supports connection-oriented packet 
forwarding and the fixed forwarding paths (tunnels) represent “virtual circuits” in the network. 
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MPLS relies on IP addresses and IP routing protocols to set up the paths/tunnels. An MPLS-
enabled router is known as a Label Switching Router (LSR). A set of LSRs where each LSR is 
reachable from any other LSR via some other LSRs in the same set is called an MPLS domain. 
In other words, an MPLS domain is formed by a contiguous network. A label switching router 
forwards packets by examining a short, fixed-length MPLS label (Figure 5-14). The label 
represents a given traffic flow, and all the packets belonging to this flow should be forwarded 
along the path/route/tunnel associated with this label. A traffic flow is called a Forwarding 
Equivalence Class (FEC), also a Functional Equivalence Class, and this is a group of IP packets 
that are forwarded in the same manner (i.e., along the same path, with the same forwarding 
treatment). In other words, An FEC is a set of packet flows with common cross-core forwarding-
path requirements. A sequence of routers that form a path along which a given FEC flow is 
forwarded forms a tunnel, which is known as a Label Switched Path (LSP). For example, one 
such path is formed by routers B, C, and D in Figure 5-14. Each LSP tunnel is unidirectional 
(one-way), starting with an ingress LSR, going through intermediate LSRs, if any, and ending 
with an egress LSR. If data needs to travel in the opposite direction as well, which is usually true, 
then a separate one-way tunnel must be built in the opposite direction. To summarize, an FEC is 
uniquely associated with an LSP. Each pair of routers agrees on a label independently of other 
router pairs along an LSP. Therefore, each label has local scope and different segments of an LSP 
tunnel may be represented by different MPLS labels. Why this is so, will be explained later. 
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Figure 5-14: MPLS operation. 



Ivan Marsic • Rutgers University 276
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Why MPLS: 

• Use switching instead of routing  

• IP Traffic Engineering (TE): ability to specify routes based on resource constraints, rather than 
on distance (shortest path) only (Section 5.4.3). MPLS adds the ability to forward packets over 
arbitrary non-shortest paths, using constraint-based routing. 

• Virtual Private Networks (VPNs, Section 5.4.4): Controllable tunneling mechanism emulates 
high-speed “tunnels” between IP-only domains. 

• Route protection and restoration 

A key reason for initial MPLS development was the promise of ultra-fast packet forwarding: 
Longest prefix match is (was) computationally expensive (Section 4.1.3); Label matching was 
seen as much less computationally expensive. However, with the emergence of gigabit IP routers 
capable of IP forwarding as fast as any MPLS-capable router performs label switching the speed 
advantage has diminished (although not disappeared, because label switching still can be 
implemented in a much simpler hardware). Currently, MPLS key strengths are seen in Traffic 
Engineering and Virtual Private Networks—capabilities critical to network service providers who 
need to better manage resources around their backbones or need to offer VPN services. 

Notice that MPLS is a set of protocols (specified by IETF), rather than a single protocol. The key 
protocols are Label Distribution Protocol and Link Management Protocol. Several existing IP 
protocols are also adapted to work with MPLS. 

5.4.1 MPLS Architecture and Operation 

MPLS is located between the link-layer and network-layer protocols (Figure 5-15), so it is 
referred to as a layer 2.5 protocol (in the OSI reference architecture, where Link is layer 2 and 
Network is layer 3). MPLS can run over different link-layer technologies, such as Ethernet or 
PPP (Section 1.5). The protocol-identifier field of the link-layer header should identify the 
payload as an MPLS frame. For example, unique PPP code points (carried in the Protocol field, 
Figure 1-56) identify the PPP frame’s contents as an MPLS frame. The value of the PPP Protocol 
field for MPLS unicast is hexadecimal 0x0281. A similar encapsulation scheme is used when 
transmitting over Ethernet, where the payload is identified as an MPLS frame with unique Ether-
Types (Figure 1-59(a)) or LLC frame’s DSAP addresses (Figure 1-59(b)). The value of Ether-
Type for MPLS unicast is hexadecimal 0x8847. 

Different Forwarding Equivalence Classes (FECs) designate different classes of service or 
service priorities. Each MPLS-capable router (label switching router, LSR) keeps a list of labels 
that correspond to different FECs on each outgoing link. All packets belonging to the same FEC 
have the same MPLS label value. However, not all packets that have the same label value belong 
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to the same FEC. This fact will become clear later, as we see that FEC is determined by the label 
value and experimental bits (Exp) of the MPLS header. By default, packet’s FEC is determined 
by its destination IP address. Other classification parameters include source IP address, IP 
protocol type, TOS field of the IP header (Figure 1-36), and TCP/UDP port numbers. The 
packet’s arrival port may also be considered a classification parameter. Multicast packets 
belonging to a particular multicast group also form a separate FEC. 

An edge-LSR terminates and/or originates LSPs (label switched paths) and performs both label-
based forwarding and conventional IP forwarding functions. The edge-LSR converts IP packets 
into MPLS packets, and MPLS packets into IP packets. On ingress to an MPLS domain, an LSR 
accepts unlabelled IP packets and creates an initial MPLS frame by pushing a shim header 
between link-layer and network-layer headers (Figure 5-16). A special table in the ingress LSR, 
known as Label Forwarding Information Base (LFIB), matches the FEC to the label. LFIB is 
an MPLS equivalent for the forwarding table of the IP protocol. On egress, the edge LSR 
terminates an LSP by popping the top MPLS stack entry, and forwarding the remaining packet 
based on rules indicated by the popped label (e.g., that the payload represents an IPv4 packet and 
should be processed according to IP forwarding rules). 

Edge LSRs provide the interface between external networks and the internal label-switched paths, 
and core/intermediate LSRs provide transit service in the middle of the network. An intermediate 
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LSR examines incoming MPLS packets, looks up and follows the packet’s label instructions, and 
then forwards the packet according to the instructions. In general, the LSR performs a label 
swapping function. 

Paths or routes are established between the edge LSRs via intermediate LSRs. These paths are 
called Label Switched Paths (LSPs). The LSPs are designed for their traffic characteristics. The 
traffic-handling capability of each path is calculated. These characteristics can include peak 
traffic load, inter-packet variation, and dropped packet percentage calculation. 

MPLS Labels 

Figure 5-16(a) shows the MPLS label for frame-based packets (e.g., Ethernet, PPP). MPLS label 
is also known as “shim” header. The meaning of the fields is as follows: 

Label value: A number representing a forwarding equivalence class (FEC) on a given outgoing 
link. The label has a local scope limited to a network link, which means that a link may support 
up to one million (220 = 1,048,576) distinct labels. 

Exp: experimental bits identify the class of service (or QoS). 
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Figure 5-16: (a) MPLS label (“shim” header) format and its relative placement in IP packets. 
(b) The placement of the label stack; notice that the S bit is set only for the bottommost label. 
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Bottom-of-stack bit (S): value “1” indicates that this label header is the bottom label in the stack; 
otherwise, it is set to zero. The stack is a collection of labels that represent a hierarchy of tunnels 
created over a particular outgoing link. The stack can have unlimited depth, although it is rare to 
see a stack of four or more labels. 

TTL: time-to-live counter that has the same function as the TTL found in the IP header (Figure 
1-36), which is to prevent packets from being stuck in a routing loop. The TTL counted is 
decreased by 1 at each hop, and if the value reaches 0, the packet is discarded. Special processing 
rules are used to support IP TTL semantics, as described below. 

The label value at each hop is a local key representing the next-hop and QoS requirements for 
packets belonging to each FEC. In conventional routing, a packet is assigned to an FEC at each 
hop (i.e., forwarding table look-up, Section 4.1.3). Conversely, in MPLS it is only done once at 
the ingress of the MPLS domain. At the ingress LSR, a packet is classified and assigned an 
FEC/label. Packet forwarding in the MPLS domain is performed by swapping the label. 

The label stack entries appear after the link-layer header and before the network-layer header 
(Figure 5-16(b)). The label that was last pushed on the stack (newest) is called the top label, and 
it is closest to the link-layer header. The label that was first pushed on the stack (oldest) is called 
the bottom label, and it is closest to the network-layer header. The edge LSR that pops up the 
bottommost label is left with a regular IP packet, which it passes up to the network layer and IP 
forwarding is used to move the packet onwards. 

Label Bindings, LIB, and LFIB 

The ordinary IP control plane builds and maintains the routing table, also known as RIB (Routing 
Information Base). Routing table is just built here, but forwarding decisions are made in the 
forwarding or data plane (top of Figure 5-15). Forwarding decisions are made based on the 
forwarding table, also known as FIB (Forwarding Information Base), which is derived from the 
routing table. In case of MPLS, the equivalent data structures are LIB (label information base) 
and LFIB (label forwarding information base). The prefixes-to-label bindings are built and stored 
in the LIB, control plane, which is then used to create the LFIB data or forwarding plane. The 
lookups are actually done in the LFIB, not the LIB (as for IP, in the FIB and not the RIB). Their 
relationship is illustrated in Figure 5-17. 

Label Forwarding Information Base (LFIB) is a data structure and way of managing 
forwarding in which destinations and incoming labels are associated with outgoing 
interfaces/ports and labels. The LFIB resides in the data plane and contains a local-label-to-next-
hop label mapping along with the outgoing port, which is used to forward labeled packets. 

In summary, the routing table is built by the routing protocols in the IP control plane. Similarly, 
LIB (label information base) is built by a label distribution protocol in the MPLS control plane. 
LIB contains only labels, no routes (i.e., LSP tunnels). The IP forwarding table is derived in the 
IP data plane from the routing table. Correspondingly, the MPLS LFIB is derived from LIB in the 
MPLS data plane. LFIB contains bindings between labels and LSPs. A Labeled Packet is always 
looked up in LFIB (not in LIB!) and an IP Packet is always looked up in forwarding table (not in 
routing table!). However, the process is somewhat more complex for edge LSRs. On the ingress 
LSR, the lookup is performed against the combined IP forwarding table and LFIB, as described in 
the next section. In the core (intermediary LSRs), the lookup is performed only against the LFIB. 
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On the egress LSR, the lookup is performed against the IP forwarding table if there was only a 
single label in the stack and this label was popped by the penultimate hop; otherwise, the LFIB is 
looked up. 

More precisely, table to lookup into is determined by the link-layer header Ether-Type or PPP 
Protocol field. The protocol identifier in the link-layer header tells the router what type of packet 
is coming in and therefore which table to look in: 

• 0x0800 → IPv4:  Lookup in the IP forwarding table 

• 0x8847 → MPLS Unicast:  Lookup in the MPLS LFIB (label forwarding information base) 

• 0x8848 → MPLS Multicast:  Lookup in the MPLS LFIB (label forwarding information base) 

Next, we consider how MPLS routers (LSRs) build and utilize label-forwarding tables. 

Forwarding Labeled Packets 

Initially, all routers start with empty routing and forwarding tables and label-bindings. We 
assume that regular IP routing protocols run first and build regular IP routing tables, or RIBs 
(routing information bases). MPLS builds label-binding tables based on regular IP routing tables, 
using label distribution protocols (described in Section 5.4.2). Label bindings can also be 
configured manually, particularly for the purposes of Traffic Engineering, but this is a tedious and 
error-prone task, so even here it is preferred to use label distribution protocols combined with 
constraint-based routing protocols. To illustrate how MPLS-capable routers (LSRs) forward 
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labeled packets, let us assume the simplest scenario where label bindings are derived from the 
hop-by-hop information in IP routing tables. 

Consider the example in Figure 5-18, which illustrates one of the tunnels from Figure 5-14. Here, 
edge LSR B receives a packet with destination IP address 96.1.1.13. LSR B has the 
corresponding network prefix 96.1.1/24 in its routing table, but does not have the label 
binding in its LFIB (label forwarding information base). To obtain a label for this prefix, B uses a 
label distribution protocol and sends a message downstream (to C and on to D) requesting a label 
for prefix 96.1.1/24. When edge LSR D receives the request, it knows that itself is the egress 
LSR of the new tunnel (LSP, label switched path). Therefore, D selects a label value not used for 
any other LSP and sends a response message using the label distribution protocol. In our 
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Figure 5-18: LSP path setup. (a) Packet arrives from router A to B towards a host in H’s
network. (b) LSR B sends label request towards the destination. (c) LSR D is the edge
router, so it replies with label 17, then LSR C selects its own label as 9 and replies to B. 



Ivan Marsic • Rutgers University 282

example, D selected the label value 17 and stored the label 17 binding for prefix 96.1.1/24 in 
its LIB (label information base), not LFIB (label forwarding information base)! D’s LFIB remains 
empty because LSR D does not use LFIB to forward packets from this tunnel. D is the egress of 
the tunnel and to forward packets towards H (which is not an LSR and is not MPLS capable), D 
will use conventional IP forwarding. 

When C receives the label response from D, in general it will need to assign a different label for 
the next segment of the same LSP tunnel, because it may be already using label 17 for another 
LSP. Remember, routers are at crossroads of many different paths and these paths are established 
at unpredictable times. In our example (Figure 5-18), C selects the label value 9 for the upstream 
segment of LSP. Because C is an intermediate LSR, it does not store prefixes in its LFIB; C 
might even not be IP-capable. Rather, C needs just the incoming and outgoing labels. The 
incoming label value is 9 (will be received in MPLS packets from B) and the outgoing label value 
is 17 (will be sent in MPLS packets to D). In other words, the intermediate LSR C performs label 
swapping. Unlike intermediate LSRs, edge LSRs do not perform label swapping. Each edge LSR 
must understand both IP and MPLS, and its LFIB (label forwarding information base) may have 
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Figure 5-19: Forwarding labeled packets (continued from Figure 5-18). (a) Within MPLS
domain, data packet is forwarded based on its MPLS label. (b) Outside MPLS domain, data
packet is forwarded based on its destination IP address. 
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different format. Notice also that some LSRs may play both roles: edge and intermediate, for 
different LSP tunnels. 

Continuing with the example in Figure 5-18, the data packet has been sitting in LSR B while the 
LSP setup process took place. Once liable bindings become available, B will forward all data 
packets from this flow using label switching. An example for the first packet is shown in Figure 
5-19. LSR B, as the ingress router of this LSP, inserts an MPLS label with value 9 (which it 
obtained from C), and sends this packet on output port 4 towards C (Figure 5-19(a)). When C 
receives the packet, it performs label swapping: For the given input label 9, C looks up its LFIB 
and finds that the outgoing label is 17 (which it received from D), swaps the packet’s label to 17 
and sends it on output port 5 towards D. When D receives the packet, it looks up the incoming 
label (17) and recognizes that itself is the egress LSR for this LSP. Therefore, D strips off the 
MPLS label and forwards the packet towards the next hop H using conventional IP forwarding 
(Figure 5-19(b)). 

Topology of LSPs 

The design of PoPs (Points-of-Presence) for all backbone IP networks, including MPLS 
networks, is constrained by the choice of access link type(s) to be supported for the customers of 
the network and the choice of core link type(s) to be used in the backbone network. Based on PoP 
designs, LSP (Label Switched Path) trees can be classified as these topology types (Figure 5-20): 

• Unique ingress and egress LSR: In this case, a point-to-point path through the MPLS 
domain is set up. An example is LSP-1 in Figure 5-20, from the ingress LSR H, through the 
intermediate LSRs G and E towards the egress LSR F. 

• Multiple ingress LSRs, unique egress LSR: In this case, LSP forms a multipoint-to-point 
tree topology. This happens when traffic assigned to a single FEC arises from different sources. 
An example is LSP-2 in Figure 5-20, where traffic assigned to a single FEC enters at three 

Link layer plane
(Network’s physical
topology)

A

MPLS layer plane

LSP-1: H → G → E → F

B

C

D
E H

G J
I

F

LSP-1

LSP-2
MPLS domain

LSP-2: A →
B → C 

D 
E → G → J

Figure 5-20: LSP topologies (or Point-of-Presence/PoP designs). LSP-1: Unique ingress and
egress LSR. LSP-2: Multiple ingress LSRs, unique egress LSR. 
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different ingress LSRs: A, B, and D. The branches from A and B join at LSR C, then this branch 
joins with D at E, and the final two hops through G to the egress LSR J are shared. 

• Multicast: In this case, multicast traffic is carried over the MPLS domain from a single 
ingress LSR to multiple egress LSRs. The multicast LSP is determined by the multicast tree 
constructed by the multicast routing protocol (Section 3.3.2). 

In principle, an ISP backbone network could configure a separate LSP to carry each class of 
traffic (FEC) between each pair of edge LSRs. A more practical solution is to merge LSPs of the 
same traffic class to obtain multipoint-to-point flows that are rooted at an egress LSR. An 
example is LSP-2 in Figure 5-20. The LSRs serving each of these flows would be configured to 
provide the desired levels of performance to each traffic class. 

5.4.2 Label Distribution Protocols 

Setup of LSPs (Label Switched Paths) is done by a process of label distribution. Label 
distribution may be based on information obtained from conventional hop-by-hop routing 
protocols, or it may use explicit routing over non-shortest paths. Label distribution protocol 
dynamically establishes an LSP tree between all the edge LSRs for each identifiable FEC. 
Requirements for a label distribution protocol include per-hop traffic differentiation capabilities, 
the ability to route traffic over non-shortest paths, and the ability to dynamically signal (or 
provision) QoS and path information across a network of routers or switches. There are many 
similarities between conventional routing protocols and label distribution protocols for MPLS. A 
key difference is the MPLS capability for explicit non-shortest-path routing. 

The control plane of an LSR performs the following functions (Figure 5-21): 

1. Create bindings between FECs and labels. 

2. Inform the adjacent LSRs of the bindings it created (using a label distribution protocol). 

3. Use information received from the adjacent LSRs to construct and maintain the 
forwarding table (LFIB) used by the MPLS label switching. 

Label Distribution 

In general, label bindings between two LSRs can be distributed by either a downstream LSR or 
an upstream LSR. MPLS architecture requires downstream label distribution: label-bindings must 

Network-layer
routing protocols

(e.g., OSPF, BGP, PIM)

Procedures for binding 
FECs to labels

Label-binding distribution 
protocol

Maintenance of LFIB (label forwarding information base)

FEC-to-next-hop 
mapping

FEC-to-label
mapping

Figure 5-21: The components of the control plane of an LSR perform LFIB construction. 
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be distributed in the direction from a downstream LSR to an upstream LSR. There are two 
methods for downstream label distribution: 

• On-demand Downstream Label Distribution: In this case, a downstream LSR distributes a 
label binding in response to an explicit request from an upstream LSR (Figure 5-22(a)). An 
upstream LSR A recognizes a downstream LSR B as its next-hop for an FEC and sends a request 
to LSR B for a binding between the FEC and a label. If LSR B recognizes the FEC and has a next 
hop for it, LSR B creates a binding and replies to LSR A. Both LSRs then have a common 
understanding. This process is also illustrated in Figure 5-18. 

•  Unsolicited Downstream Label Distribution: In this case, a downstream LSR distributes a 
label binding in response to an explicit request from an upstream LSR (Figure 5-22(b)). A 
downstream LSR B discovers a “next hop” for a particular FEC, generates a label for this FEC, 
and communicates the binding to an upstream LSR A. LSR A inserts the binding into its LIB 
(label information base) and checks if it need to update the corresponding entry in its LFIB (label 
forwarding information base). If LSR B is the next hop for the FEC, LSR A can use that label as 
an outgoing label, knowing that its meaning is understood. 

Each FEC is specified as a set of one or more FEC elements.  Each FEC element identifies a set 
of packets that may be mapped to the corresponding LSP.  When an LSP is shared by multiple 
FEC elements, the shared LSP is terminated at (or before) the node where the FEC elements can 
no longer share the same path. Following are the currently defined types of FEC elements: 

      1. Address Prefix.  This element is an address prefix of any length from 0 to a full address, 
inclusive. 

      2. Host Address.  This element is a full host address. 

New element types may be added as needed. 

Distribution Control 

Independent LSP Control 

LSR A
LSR B

Request for Binding

Label-to-FEC Binding

1

2

LSR A
LSR B

Label-to-FEC Binding

Unsolicited Downstream Label DistributionOn-demand Downstream Label Distribution
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Figure 5-22: Methods for MPLS downstream label distribution. 
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Each LSR makes independent decision on when to generate labels and communicate them to 
upstream peers 

Communicate label-FEC binding to peers once next-hop has been recognized 

LSP is formed as incoming and outgoing labels are spliced together 

Characteristics: 

Labels can be exchanged with less delay 

Does not depend on availability of egress node 

Granularity may not be consistent across the nodes at the start 

May require separate loop detection/mitigation method 

 

Ordered LSP Control 

Label-FEC binding is communicated to peers if: 

   - LSR is the ‘egress’ LSR to particular FEC 

   - label binding has been received from an upstream LSR 

LSP formation ‘flows’ from egress to ingress 

 

Characteristics: 

Requires more delay before packets can be forwarded along the LSP 

Depends on availability of egress node 

Mechanism for consistent granularity and freedom from loops 

Used for explicit routing and multicast 

Both methods are supported in the standard and can be fully interoperable. 

 

LDP: Label Distribution Protocol 

Label Distribution Protocol (LDP) provides LSR discovery mechanisms to enable LSR peers to 
find each other and establish communication. The LDP protocol is defined in RFC-5036. It 
defines four types of messages: 

• DISCOVERY: used to find neighboring LSRs. Each LSR announces and maintains its presence 
in a network. LSRs indicate their presence by sending Hello messages periodically. Hello 
messages are transmitted as UDP packets to the LDP port at the group multicast address for all 
routers on the subnet. 

• SESSION ADJACENCY: used to initialize, keep alive, and shutdown LDP sessions. If two LSRs 
have discovered each other by means of the LDP Hello messages, they then establish sessions and 
become LDP peers. For this purpose, routers use LDP initialization procedure over TCP 
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transport. After the initialization procedure is completed, the two routers are LDP peers and can 
exchange Advertisement messages. 

• LABEL ADVERTISEMENT: used for label-binding advertisements, request, withdrawal, and 
release. This is the main purpose of LDP. Advertisement messages are used to maintain label 
mappings for FECs (Figure 5-21). In general, an LSR requests a label mapping from an LDP peer 
when it needs one, and advertises a label mapping to an LDP peer when it wants that peer to use 
the advertised label. 

• NOTIFICATION: used to distribute advisory information and to signal error information. 

LDP depends on a routing protocol, such as OSPF (Section 8.2.2), to initially establish 
reachability between the LSRs. The LDP runs over TCP for reliable delivery of messages, except 
for discovery of LSR peers, which uses UDP and IP multicast. It is designed to be extensible, 
using messages specified as TLVs (type, value, length) encoded objects. 

The IP routing protocol can also be used to define the route for LSP tunnels (hop-by-hop routing). 
Alternatively, traffic-engineering considerations can determine the explicit route of the LSP 
(Section 5.4.3). Once a route is determined for an LSP, LDP is used to set up the LSP and assign 
the labels. Because each LSP is unidirectional, label assignment propagates back from the egress 
LSR to the originating point (ingress LSR), as illustrated in Figure 5-18. 

RSVP-TE 

RFC-3209 

Explicit Routing 

The exchange of PATH and RESV messages between any two LSRs establishes a label 
association with specific forwarding requirements. The concatenation of these label associations 
creates the desired edge-to-edge LSP. 

5.4.3 Traffic Engineering 

Service providers and enterprise operators face the challenge of providing acceptable service 
levels, or QoS, to their customers and users while simultaneously running an efficient and reliable 
network. Conventional IP routing aims to find and follow the shortest path between a packet’s 
current location and its destination. This can lead to “hot spots” in the network—routers and links 
on the intersection of shortest paths to many destinations subject to high traffic load. As the 
average load on a router rises, packets experience increased loss rates, latency, and jitter. Two 
solutions exist (and may be deployed in parallel): introducing faster routers and links, or 
distributing (load balancing) the packet forwarding across alternate (potentially non-shortest-
path) routes. The latter solution is called Traffic Engineering (TE). 

Constraint-based Routing 

One type of constraint would be the ability to find a route (path) that has certain performance 
characteristics, such as minimum available bandwidth. In this case, the constraint imposed on the 
routing algorithm is that the computed path must have at least the specified amount of available 
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bandwidth on all links along the path. Different paths (defined by source-destination endpoints) 
may have different demands for the minimum available bandwidth. 

Another type of constraint would be administrative. For example, a network administrator may 
want to exclude certain traffic from traversing certain links in the network, where such links 
would be identified by a link attribute. In this case, the constraint imposed on the routing 
algorithm is that the computed path must not traverse through any of the specified links. On the 
other hand, the network administrator may want to require certain traffic to traverse only the 
specified links. Similar to performance constraints, different paths may have different 
administrative constraints. 

Constraint-based routing cannot be supported by conventional IP routing protocols. The key 
reason is that constraint-based routing requires route (path) calculation at the source router. This 
requirement is because different sources may have different constraints for a path to the same 
destination, and the constraints associated with a particular source router are known only to this 
router, but not to any other router in the network. Unlike this, in conventional IP routing, a route 
is computed in a distributed manner by every router in the network. 

Constrained Shortest Path First (CSPF) is an enhanced version of the shortest-path first (SPF) 
algorithm used in OSPF (Section 8.2.2). CSPF computes paths taking into account the 
constraints. When computing paths for LSP tunnels, CSPF considers the physical topology of the 
network, the attributes of the individual links between LSRs, and the attributes of existing LSPs. 
CSPF attempts to satisfy the requirements for a new LSP while minimizing congestion by 
balancing the network load. 

5.4.4 Virtual Private Networks 

Virtual private networks (VPNs) provide relative or absolute protection for a given traffic flow 
from other traffic on any particular network segment. VPNs are also used to support tiered 
services for traffic flows. In general, a VPN provides wide area connectivity to an organization 
located in multiple sites. MPLS can provide connectivity among VPN sites through LSPs that are 
dedicated to the given VPN. The LSPs can be used to exchange routing information between the 
various VPN sites, transparently to other users of the MPLS network. This behavior gives the 
appearance of a dedicated wide-area network. 

Layer-2 VPNs, Layer-3 VPNs 

It is possible to build VPNs using a pure IP solution. Although gigabit IP routers are capable of IP 
forwarding as fast as any MPLS-capable router performs label switching, MPLS VPNs are 
significantly more efficient than IP VPNs. 
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5.4.5 MPLS and Quality of Service 

Route Protection and Restoration 

-  End-to-end protection 

-  Fast node and link reroute 

MPLS Protection Types: 

1+1: Backup LSP established in advance, resources dedicated, data simultaneously sent on both 
primary and backup 

Switchover performed only by egress LSR 

Fastest, but most resource intensive 

1:1 : Same as 1+1 with the difference that data is not sent on the backup 

Requires failure notification to the ingress LSR to start transmitting on backup 

Notification may be send to egress also 

Resources in the backup may be used by other traffic 

Low priority traffic (e.g., plain IP traffic), shared by other backup paths. 

 

 

5.5 Summary and Bibliographical Notes 
 

Section 5.1: Scheduling 

If a server (router, switch, etc.) is handling multiple flows, there is a danger that aggressive flows 
will grab too much of its capacity and starve all the other flows. Simple processing of packets in 
the order of their arrival is not appropriate in such cases, if it is desired to provide equitable 
access to transmission bandwidth. Scheduling algorithms have been devised to address such 
issues. The best known is fair queuing (FQ) algorithm, originally proposed by [Nagle, 1987], 
which has many known variations. A simple approach is to form separate waiting lines (queues) 
for different flows and have the server scan the queues round robin, taking the first packet (head-
of-the-line) from each queue (unless a queue is empty). In this way, with n hosts competing for a 
given transmission line, each host gets to send one out of every n packets. Aggressive behavior 
does not pay off, because sending more packets will not improve this fraction. 

A problem with the simple round robin is that it gives more bandwidth to hosts that send large 
packets at the expense of the hosts that send small packets. Packet-by-packet FQ tackles this 
problem by transmitting packets from different flows so that the packet completion times 
approximate those of a bit-by-bit fair queuing system. Every time a packet arrives, its completion 
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time under bit-by-bit FQ is computed as its finish number. The next packet to be transmitted is 
the one with the smallest finish number among all the packets waiting in the queues. 

If it is desirable to assign different importance to different flows, e.g., to ensure that voice packets 
receive priority treatment, then packet-by-packet weighted fair queuing (WFQ) is used. WFQ 
plays a central role in QoS architectures and it is implemented in today’s router products [Cisco, 
1999; Cisco, 2006]. Organizations that manage their own intranets can employ WFQ-capable 
routers to provide QoS to their internal flows. 

 

[Keshav, 1997] provides a comprehensive review of scheduling disciplines in data networks. 

[Bhatti & Crowcroft, 2000] has a brief review of various packet scheduling algorithms 

[Elhanany et al., 2001] reviews hardware techniques of packet forwarding through a router or 
switch 

Packet scheduling disciplines are also discussed in [Cisco, 1995] 

 
One of the earliest publications mentioning the leaky bucket algorithm is [Turner, 1986]. 

Section 5.3: Active Queue Management 

Random Early Detection (RED) keeps the overall throughput high while maintaining a small 
average queue length, and tolerates transient congestion. When the average queue has exceeded a 
certain threshold, RED routers drop packets at random so that TCP connections back off at 
different times. This avoids the global synchronization effect of all connections. RED was 
proposed by Floyd and Jacobson [1993]. Sally Floyd maintains a list of papers on RED here: 
http://www.icir.org/floyd/red.html. Christiansen, et al., [2001] also provides an overview of various 
versions of RED and additional references. Srikant [2004] presents an in-depth account on RED 
techniques and their analysis. 

Clark and Fang [1998] proposed an extension of RED to provide different levels of drop 
precedence for two classes of traffic. Their algorithm is called RED with IN/OUT or RIO for 
short. A device, located on the sourcing traffic side of a network boundary, serves a “policy 
meter.” Packets are classified as being inside (IN) or outside (OUT), depending on whether they 
conform to the service allocation profile of a given sender/user. RIO uses twin RED algorithms 
for dropping packets, one for INs and one for OUTs. RIO chooses different parameters of RED 
algorithms for IN and OUT packets, which may be lined up in the same or different queues. 
When congestion sets in, RIO is able to preferentially drop OUT packets. 

Explicit Congestion Notification (ECN) is described in RFC-3168. As expected, ECN reduces the 
number of packets dropped by a TCP connection, which, in turn, reduces latency and especially 
jitter, because packet retransmissions are avoided [RFC-2884]. This outcome is most dramatic 
when the TCP connection sends occasional isolated segments, which is common for interactive 
connections (such as remote logins) and transactional protocols (such as HTTP requests, the 
conversational phase of SMTP, or SQL requests. Such a sender will receive ECN notification, 
which it ignores because it sends only occasional isolated segments, but it benefits from the fact 
that its segment was not dropped. The reason for this effect is that the sender can detect a loss of 
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an isolated segment only by an RTO timeout (which is relatively long), because there are no 
subsequent segments to generate duplicate ACKs. Effects of ECN on bulk transports are less 
clear because subsequent segments will soon generate duplicate ACKs and recent TCP versions 
use fast recovery to resend dropped segments in a timely manner (Section 2.2). 

Section 5.4: Multiprotocol Label Switching (MPLS) 

MPLS provides the ability to forward packets over arbitrary non-shortest paths, and emulate high-
speed “tunnels” between IP-only (non-label-switched) domains. It offers a capability not 
available to conventionally routed solutions: the forwarding packets over arbitrary, non-shortest 
paths, which is particularly useful for managing network resources, known as “traffic 
engineering.” 

Label Distribution Protocol (LDP) is defined in RFC-3036 and is used to provide mechanisms for 
MPLS routers to process and route labeled traffic across an MPLS network. 

Davie and Rekhter [2000] offer a very readable account of MPLS fundamentals, which, although 
dated, is still relevant to study because it explains well the basic concepts. A relatively recent and 
comprehensive review of MPLS is available in [De Ghein, 2007]. 

[Ziegelmann, 2007] Constrained Shortest Path First (CSPF) 
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Problems 
 

Problem 5.1 

 

Problem 5.2 

Eight hosts, labeled A, B, C, D, E, F, G, and H, share a transmission link the capacity of which is 
85. Their respective bandwidth demands are 14, 7, 3, 3, 25, 8, 10, and 18, and their weights are 3, 
4, 1, 0.4, 5, 0.6, 2, and 1. Calculate the max-min weighted fair share allocation for these hosts. 
Show your work neatly, step by step. 

Problem 5.3 

 

Problem 5.4 

Consider a packet-by-packet FQ scheduler that discerns three different classes of packets (forms 
three queues). Suppose a 1-Kbyte packet of class 2 arrives upon the following situation. The 
current round number equals 85000. There is a packet of class 3 currently in service and its finish 
number is 106496. There are also two packets of class 1 waiting in queue 1 and their finish 
numbers are F1,1 = 98304 and F1,2 = 114688. 

Determine the finish number of the packet that just arrived. For all the packets under 
consideration, write down the order of transmissions under packet-by-packet FQ. Show the 
process. 

Problem 5.5 

Consider the following scenario for a packet-by-packet FQ scheduler and transmission rate equal 
1 bit per unit of time. At time t=0 a packet of L1,1=100 bits arrives on flow 1 and a packet of 
L3,1=60 bits arrives on flow 3. The subsequent arrivals are as follows: L1,2=120 and L3,2=190 at 
t=100; L2,1=50 at t=200; L4,1=30 at t=250; L1,3=160 and L4,2=30 at t=300, L4,3=50 at 350, L2,2=150 
and L3,3=100 at t=400; L1,4=140 at t=460; L3,4=60 and L4,4=50 at t=500; L3,5=200 at t=560; 
L2,3=120 at t=600; L1,5=700 at t=700; L2,4=50 at t=800; and L2,5=60 at t=850. For every time new 
packets arrive, write down the sorted finish numbers. What is the actual order of transmissions 
under packet-by-packet FQ? 

Problem 5.6 

A transmitter works at a rate of 1 Mbps and distinguishes three types of packets: voice, data, and 
video. Voice packets are assigned weight 3, data packets 1, and video packets 1.5. Assume that 
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initially arrive a voice packet of 200 bytes a data packet of 50 bytes and a video packet of 1000 
bytes. Thereafter, voice packets of 200 bytes arrive every 20 ms and video packets every 40 ms. 
A data packet of 500 bytes arrives at 20 ms, another one of 1000 bytes at 40 ms and a one of 50 
bytes at 70 ms. Write down the sequence in which a packet-by-packet WFQ scheduler would 
transmit the packets that arrive during the first 100 ms. Show the procedure. 

Problem 5.7 

Suppose a router has four input flows and one output link with the transmission rate of 
1 byte/second. The router receives packets as listed in the table below. Assume the time starts at 0 
and the “arrival time” is the time the packet arrives at the router. Write down the order and times 
at which the packets will be transmitted under: 

(a) Packet-by-packet fair queuing (FQ) 
(b) Packet-by-packet weighted fair queuing (WFQ), where flows 2 and 4 are entitled to twice 

the link capacity of flow 3, and flow 1 is entitled to twice the capacity of flow 2 

 
Packet 
# 

Arrival time 
[sec] 

Packet size 
[bytes] 

Flow 
ID 

Departure order/ 
time under FQ 

Departure order/ 
time under WFQ 

1 0 100 1   
2 0 60 3   
3 100 120 1   
4 100 190 3   
5 200 50 2   
6 250 30 4   
7 300 30 4   
8 300 60 1   
9 650 50 3   

10 650 30 4   
11 710 60 1   
12 710 30 4   

 

Problem 5.8 

[ Priority + Fair Queuing ] Consider a scheduler with three queues: one high priority queue and 
two non-priority queues that should share the resource that remains after the priority queue is 
served in a fair manner. The priority packets are scheduled to go first (lined up in their order of 
arrival), regardless of whether there are packets in non-priority queues. The priority packets are 
scheduled in a non-preemptive manner, which means that any packet currently being serviced 
from a non-priority queue is allowed to finish. 
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Scheduler

Server

High priority queue

Non-priority queue 1

Scheduling
discipline: PRIORITY + FQ

Non-priority queue 2

Fair
queuing

 

Modify the formula for calculating the packet finish number. 

Assume that the first several packets arrive at following times: 

Priority queue: (arrival time A1,1 = 5, packet length L1,1 = 2); (A1,2 = 8, L1,2 = 2); 

First non-priority queue: (A2,1 = 0, L2,1 = 6); (A2,2 = 7, L2,2 = 1); 

Second non-priority queue: (A3,1 = 1, L3,1 = 2); (A3,2 = 7, L3,2 = 1); 

Show the order in which these packets will leave the server and the departure times. 

Problem 5.9 

Consider the network in Figure 5-15 with the hosts attached as shown in the figure below. (As in 
Figure 5-15, routers C, E, and F are MPLS-capable.) Assume that the network starts in the initial 
state, where all IP routing tables are already built, but LFIBs (label forwarding information bases) 
are empty. Now assume that three hosts start sending data, first host 96.1.1.7 sends a packet 
to host 17.1.1.35, then host 17.3.1.24 sends a packet to 10.2.5.35, and finally 
96.1.3.13 sends a packet to 17.3.1.24. Assume that all LSPs (label switched paths) will be 
built based on the shortest paths found by the IP routing protocols and that the FECs (forwarding 
equivalence classes) will be determined only based on the destination IP addresses. 
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(a) Show step-by-step how LSPs will be built and what will be the entries of the LFIBs for 
MPLS-capable routers. 

(b) For every instance of packet forwarding, indicate whether an LFIB or an ordinary IP 
forwarding table will be used to forward the packet. In case of LFIB-based forwarding, 
show the packet’s MPLS label value. 

(c) What is the minimum number of FECs and what is the minimum number of LSPs that 
needs to be set up? 

Problem 5.10 

 

 



296 

Contents 
6.1 Mesh Networks 

6.1.1 x 
6.1.2 x 
6.1.3 x 

6.2 Routing Protocols for Mesh Networks 
6.2.1 Dynamic Source Routing (DSR) Protocol 
6.2.2 Ad Hoc On-Demand Distance-Vector 

(AODV) Protocol 
6.2.3 x 

6.3 More Wireless Link-Layer Protocols 
6.3.1 IEEE 802.11n (MIMO Wi-Fi) 
6.3.2 WiMAX (IEEE 802.16) 
6.3.3 ZigBee (IEEE 802.15.4) 
6.3.4 Bluetooth 

6.4 Wi-Fi Quality of Service 
6.4.1 x 
6.4.2  
6.4.3  

6.5  
6.5.1 x  
6.5.2 x 

6.6 x 
6.5.1 x 
6.5.2 x 
6.5.3 x 

6.7 Summary and Bibliographical Notes 

Problems 

 

Chapter 6 
Wireless Networks 

 

 

This chapter reviews wireless networks. The focus is on the 
network and link layers, and very little is mentioned about the 
physical layer of wireless networks. In addition, there is a little 
mention of infrastructure-based wireless networks and the 
focus is on infrastructure-less wireless networks. 

 

 

 

 

 

6.1 Mesh Networks 
 

In a multihop wireless ad hoc network, mobile nodes cooperate 
to form a network without the help of any infrastructure such as 
access points or base stations. The mobile nodes, instead, 
forward packets for each other, allowing nodes beyond direct 
wireless transmission range of each other to communicate over 
possibly multihop routes through a number of forwarding peer 
mobile nodes. The mobility of the nodes and the fundamentally limited capacity of the wireless 
channel, together with wireless transmission effects such as attenuation, multipath propagation, 
and interference, combine to create significant challenges for network protocols operating in an 
ad hoc network. 

Figure 6-1 
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Figure 6-2  

 

6.2 Routing Protocols for Mesh Networks 
 

In wired networks with fixed infrastructure, a communication endpoint device, known as “host,” 
does not normally participate in routing protocols. This role is reserved for intermediary 
computing “nodes” that relay packets from a source host to a destination host. On the other hand, 
in wireless mesh networks it is common that computing nodes assume both “host” and “node” 

 

Figure 6-2: ------------- caption here -----------------. 

CA
B

 

Figure 6-1: Example wireless mesh network: A communicates with C via B. 

CA
B

 

Figure 6-3: Example mobile ad-hoc network: A communicates with C via B. 
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roles—all nodes may be communication endpoints and all nodes may relay packets for other 
nodes. Therefore, in this chapter I use the terms “host” and “node” interchangeably. 

 

Although there have been dozens of new routing protocols proposed for MANETs, the majority 
of these protocols actually rely on fundamental techniques that have been studied rigorously in 
the wired environment. However, each protocol typically employs a new heuristic to improve or 
optimize a legacy protocol for the purposes of routing in the mobile wireless environment. In fact, 
there are a few mechanisms that have received recent interest primarily because of their possible 
application to MANETs. There are two main classes of routing protocols: 

• Proactive 

- Continuously update reachability information in the network 

- When a route is needed, it is immediately available 

- DSDV by Perkins and Bhagwat (SIGCOMM 94) 

- Destination Sequenced Distance vector 

• Reactive 

- Routing discovery is initiated only when needed 

- Route maintenance is needed to provide information about invalid routes 

- DSR by Johnson and Maltz 

- AODV by Perkins and Royer 

• Hybrid 

- Zone routing protocol (ZRP) 

Centralized vs. localized solution: 

Nodes in centralized solution need to know full network information to make decision; mobility 
or changes in activity status (power control) cause huge communication overhead to maintain the 
network information. 

Nodes in localized algorithm require only local knowledge (direct neighbors, 2-hop neighbors) to 
make decisions. Majority of published solutions are centralized, compared with other centralized 
solutions. 

Next, a brief survey of various mechanisms is given. 

6.2.1 Dynamic Source Routing (DSR) Protocol 

Source routing means that the sender must know in advance the complete sequence of hops to be 
used as the route to the destination. DSR is an on-demand (or reactive) ad hoc network routing 
protocol, i.e., it is activated only when the need arises rather than operating continuously in 
background by sending periodic route updates. DSR divides the routing problem in two parts: 
Route Discovery and Route Maintenance, both of which operate entirely on-demand. In Route 
Discovery, a node actively searches through the network to find a route to an intended destination 
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node. While using a route to send packets to the destination, the sending node runs the Route 
Maintenance process by which it determines if the route has broken, for example because two 
nodes along the route have moved out of wireless transmission range of each other. 

An example is illustrated in Figure 6-1, where host C needs to establish a communication session 
with host H. A node that has a packet to send to a destination (C in our example) searches its 
Route Cache for a route to that destination. If no cached route is found, node C initiates Route 
Discovery by broadcasting a ROUTE REQUEST (RREQ) packet containing the destination node 
address (known as the target of the Route Discovery), a list (initially empty) of nodes traversed 
by this RREQ, and a request identifier from this source node. The request identifier, the address 
of this source node (known as the initiator of the Route Discovery), and the destination address 
together uniquely identify this Route Discovery attempt. 

A node receiving a ROUTE REQUEST checks to see if it has previously forwarded a RREQ from 
this Discovery by examining the IP Source Address, destination address, and request identifier. 
For example, in Figure 6-4(b), nodes B, E, and D are the first to receive RREQ and they re-
broadcast it to their neighbors. If the recipient of RREQ has recently seen this identifier, or if its 
own address is already present in the list in RREQ of nodes traversed by this RREQ, the node 
silently drops the packet. Otherwise, it appends its address to the node list and re-broadcasts the 
REQUEST. When a RREQ reaches the destination node, H in our example, this node returns a 
ROUTE REPLY (RREP) to the initiator of the ROUTE REQUEST. If an intermediary node receives a 
RREQ for a destination for which it caches the route in its Route Cache, it can send RREP back 
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Figure 6-4: Route discovery in DSR: node C seeks to communicate to node H. Gray shaded
nodes already received RREQ. The path in bold in (c) indicates the route selected by H for
RREP. See text for details. (Note: the step where B and E broadcast RREQ is not shown.) 



Ivan Marsic • Rutgers University 300

to the source without further propagating RREQ. The RREP contains a copy of the node list from 
the RREQ, and can be delivered to the initiator node by reversing the node list, by using a route 
back to the initiator from its own Route Cache, or “piggybacking” the RREP on a new ROUTE 

REQUEST targeting the original initiator. This path is indicated with bold lines in Figure 6-4(d). 
When the initiator of the request (node C) receives the ROUTE REPLY, it adds the newly acquired 
route to its Route Cache for future use. 

In Route Maintenance mode, an intermediary node forwarding a packet for a source attempts to 
verify that the packet successfully reached the next hop in the route. A node can make this 
confirmation using a hop-to-hop acknowledgement at the link layer (such as is provided in IEEE 
802.11 protocol), a passive acknowledgement (i.e., listen for that node sending packet to its next 
hop), or by explicitly requesting network- or higher-layer acknowledgement. Transmitting node 
can also solicit ACK from next-hop node. A packet is possibly retransmitted if it is sent over an 
unreliable MAC, although it should not be retransmitted if retransmission has already been 
attempted at the MAC layer. If a packet is not acknowledged, the forwarding node assumes that 
the next-hop destination is unreachable over this link, and sends a ROUTE ERROR to the source of 
the packet, indicating the broken link. A node receiving a ROUTE ERROR removes that link from 
its Route Cache. 

In the basic version of DSR, every packet carries the entire route in the header of the packet, but 
some recent enhancements to DSR use implicit source routing to avoid this overhead. Instead, 
after the first packet containing a full source route has been sent along the route to the destination, 
subsequent packets need only contain a flow identifier to represent the route, and nodes along the 
route maintain flow state to remember the next hop to be used along this route based on the 
address of the sender and the flow identifier; one flow identifier can designate the default flow for 
this source and destination, in which case even the flow identifier is not represented in a packet. 

A number of optimizations to the basic DSR protocol have been proposed [Perkins 2001, Chapter 
5]. One example of such an optimization is packet salvaging. When a node forwarding a packet 
fails to receive acknowledgement from the next-hop destination, as described above, in addition 
to sending a ROUTE ERROR back to the source of the packet, the node may attempt to use an 
alternate route to the destination, if it knows of one. Specifically, the node searches its Route 
Cache for a route to the destination; if it finds one, then it salvages the packet by replacing the 
existing source route for the packet with the new route from its Route Cache. To prevent the 
possibility of infinite looping of a packet, each source route includes a salvage count, indicating 
how many times the packet has been salvaged in this way. Packets with salvage count larger than 
some predetermined value cannot be salvaged again. 

In summary, DSR is able to adapt quickly to dynamic network topology but it has large overhead 
in data packets. The protocol does not assume bidirectional links. 

6.2.2 Ad Hoc On-Demand Distance-Vector (AODV) 
Protocol 

DSR includes source routes in packet headers and large headers can degrade performance, 
particularly when data contents of a packet are small. AODV attempts to improve on DSR by 
maintaining routing tables at the nodes, so that data packets do not have to contain routes. AODV 
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retains the desirable feature of DSR that routes are maintained only between nodes which need to 
communicate. 

ROUTE REQUEST packets are forwarded in a manner similar to DSR. When a node re-broadcasts a 
ROUTE REQUEST, it sets up a reverse path pointing towards the source. AODV assumes 
symmetric (bidirectional) links. When the intended destination receives a RREQ, it replies by 
sending a ROUTE REPLY. RREP travels along the reverse path set-up when RREQ is forwarded. 

An intermediate node (not the destination) may also send a RREP, provided that it knows a more 
recent path than the one previously known to sender S. To determine whether the path known to 
an intermediate node is more recent, destination sequence numbers are used. The likelihood that 
an intermediate node will send a RREP when using AODV is not as high as in DSR. A new 
RREQ by node S for a destination is assigned a higher destination sequence number. An 
intermediate node, which knows a route but with a smaller sequence number, cannot send RREP. 

A routing table entry maintaining a reverse path is purged after a timeout interval. Timeout 
should be long enough to allow RREP to come back. A routing table entry maintaining a forward 
path is purged if not used for an active_route_timeout interval. If no is data being sent using a 
particular routing table entry, that entry will be deleted from the routing table (even if the route 
may actually still be valid). 

In summary, routes in AODV need not be included in the headers of data packets (unlike DSR, 
where every data packet carries the source route). Nodes maintain routing tables containing 
entries only for routes that are in active use. At most one next-hop per destination is maintained at 
each node, whereas DSR may maintain several routes for a single destination. Lastly, unused 
routes expire even if topology does not change. 

 

6.3 More Wireless Link-Layer Protocols 
 

Section 1.5.3 described Wi-Fi (IEEE 802.11). This section describes more wireless link-layer 
protocols and technologies. 

6.3.1 IEEE 802.11n (MIMO Wi-Fi) 

IEEE 802.11n builds on previous 802.11 standards (Section 1.5.3) by adding mechanisms to 
improve network throughput. 802.11n operates in the 2.4- and 5-GHz frequency bands. A key 
improvement is in the radio communication technology, but 802.11n is much more than just a 
new radio for 802.11. In addition to providing higher bit rates (as was done in 802.11a, b, and g), 
802.11n significantly changed the frame format of 802.11. Specifically, 802.11n added multiple-
input multiple-output (MIMO, pronounced my-moh) and 40-MHz channels to the physical layer 
(PHY), and frame aggregation to the MAC layer. It achieves a significant increase in the 
maximum raw data rate over the two previous standards (802.11a and 802.11g), from 54 Mbps to 
600 Mbps, improves reliability, and increases transmission distance. At 300 feet, 802.11g 
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performance drops to 1 Mbps; on the other hand, at the same distance 802.11n networks operate 
at up to 70 Mbps, which is 70 times faster than 802.11g. 

IEEE 802.11n-capable devices are also referred as High Throughput (HT) devices. An HT device 
declares that it is an HT device by transmitting the HT Capabilities element. The device also uses 
the HT Capabilities element to advertise which optional capabilities of the 802.11n standard it 
implements. The HT Capabilities element is carried as part of some control frames that wireless 
devices exchange during the connection setup or in periodical announcements. It is present in 
these frames: Beacon, Association Request, Association Response, Reassociation Request, 
Reassociation Response, Probe Request and Probe Response frames. 

IEEE 802.11n standard modifies the frame formats used by 802.11n devices from those of 
“legacy” 802.11 devices. When 802.11n devices are operating in pure high-throughput mode, this 
is known as “greenfield mode,” because it lacks any constraints imposed by prior technologies. 
This mode achieves the highest effective throughput offered by the 802.11n standard. To avoid 
rendering the network useless due to massive interference and collisions, the standard describes 
some mechanisms for backward compatibility with existing 802.11a/b/g deployments. These 
mechanisms are reviewed at the end of this section. 

Physical (PHY) Layer Enhancements 

A key to the 802.11n speed increase is the use of multiple antennas to send and 
receive more than one communication signals simultaneously, thus multiplying 
total performance of the Wi-Fi signal. This is similar to having two FM radios 
tuned to the same channel at the same time—the signal becomes louder and 
clearer. As for a receiver side analogy, people hear better with both ears than if 
one is shut. Multiple-input multiple-output (MIMO) is a technology that uses 
multiple antennas to resolve coherently more information than possible using a 
single antenna. Each 802.11n device has two radios: for transmitter and receiver. 
Although previous 802.11 technologies commonly use one transmit and two receive antennas, 
MIMO uses multiple independent transmit and receive antennas. This is reflected in the two, 
three, or even more antennas found on some 802.11n access points or routers (Figure 6-5). The 
network client cards on 802.11n mobile devices also have multiple antennas, although these are 

ReceiverTransmitter

Reflecting surface

Reflecting surface  

Figure 6-5: MIMO wireless devices with two transmitter and three receiver antennas.
Notice how multiple radio beams are reflected from objects in the environment to arrive at
the receiver antennas. 
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not that prominently visible. Each antenna can establish a separate (but simultaneous) connection 
with the corresponding antenna on the other device. 

MIMO technology takes advantage of what is normally the enemy of wireless networks: 
multipath propagation. Multipath is the way radio frequency (RF) signals bounce off walls, 
ceilings, and other surfaces and then arrive with different amounts of delay at the receiver. MIMO 
is able to process and recombine these scattered and otherwise useless signals using sophisticated 
signal-processing algorithms. 

A MIMO transmitter divides a higher-rate data stream into multiple lower-rate streams. (802.11n 
MIMO uses up to four streams.) Each of the unique lower-rate streams is then transmitted on the 
same spectral channel, but through a different transmit antenna via a separate spatial path to a 
corresponding receiver. The multiple transmitters and antennas use a process called transmit 
beamforming (TxBF) to focus the output power in the direction of the receivers. TxBF steers an 
outgoing signal stream toward the intended receiver by concentrating the transmitted radio energy 
in the appropriate direction. This increases signal strength and data rates. On the receiving end, 
multiple receivers and antennas reverse the process using receive combining. 

The receiving end is where the most of the computation takes place. Each receiver receives a 
separate data stream and, using sophisticated signal processing, recombines the data into the 
original data stream. This technique is called Spatial Division Multiplexing (SDM). MIMO SDM 
can significantly increase data throughput as the number of resolved spatial data streams is 
increased. Spatial multiplexing combines multiple beams of data at the receiving end, 
theoretically multiplying throughput—but also multiplying the chances of interference. This is 
why the transmitter and the receiver must cooperate to mitigate interference by sending radio 
energy only in the intended direction. The transmitter needs feedback information from the 
receiver about the received signal so that the transmitter can tune each signal it sends. This 
feedback is available only from 802.11n devices, not from 802.11a, b, or g devices. This feedback 
is not immediate and is only valid for a short time. Any physical movement by the transmitter, 
receiver, or elements in the environment will quickly invalidate the parameters used for 
beamforming. The wavelength for a 2.4-GHz radio is only 120mm, and only 55mm for 5-GHz 
radio. Therefore, a normal walking pace of 1 meter per second will rapidly move the receiver out 
of the spot where the transmitter’s beamforming efforts are most effective. In addition, transmit 
beamforming is useful only when transmitting to a single receiver. It is not possible to optimize 
the phase of the transmitted signals when sending broadcast or multicast transmissions. 

The advantage of this approach is that it can achieve great throughput on a single, standard, 20-
MHz channel while maintaining backward compatibility with legacy 801.11b/g devices. The net 
impact is that the overall signal strength (that is, link budget) is improved by as much as 5 dBi 
(dB isotropic). Although that may not sound significant, the improved link budget allows signals 
to travel farther, or, alternatively, maintains a higher data rate at a given distance as compared 
with a traditional 802.11g single transmitter/receiver product. 

Each spatial stream requires a separate antenna at both the transmitter and the receiver. 802.11n 
defines many “M × N” antenna configurations, ranging from “1 × 1” to “4 × 4.” This refers to the 
number of transmit (M) and receive (N) antennas—for example, an access point with two transmit 
and three receive antennas is a “2 × 3” MIMO device. In addition, MIMO technology requires a 
separate radio frequency chain and analog-to-digital converter for each MIMO antenna. This 
translates to higher implementation costs compared to non-MIMO systems. 
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Channel bonding. In addition to MIMO, the physical layer of 802.11n can use double-wide 
channels that occupy 40 MHz of bandwidth. Legacy 802.11a, b, and g devices use 20-MHz-wide 
channels to transmit data. 802.11n can bond two 20-MHz channels that are adjacent in the 
frequency domain into one that is 40 MHz wide. That doubling of bandwidth results in a 
theoretical doubling of information-carrying capacity (data transmission rate). Up to four data-
streams can be sent simultaneously using 20MHz or 40MHz channels. A theoretical maximum 
data rate of 600 Mbps can be achieved using four double-width channels (40 MHz). Although the 
initial intention of the 40MHz channel was for the 5 GHz band, because of the additional new 
spectrum, 40MHz channels are permitted in the 2.4 GHz band. Due to the limited spectrum and 
overlapping channels, 40MHz operation in 2.4 GHz requires special attention. 

A 40-MHz channel is created by bonding two contiguous 20-MHz channels: a “primary” or 
“control” 20-MHz channel and a “secondary” or “extension” 20-MHz channel (Figure 6-6). 
Primary channel is the common channel of operation for all stations (including HT and non-HT) 
that are members of the BSS (Basic Service Set, defined in Section 1.5.3). To preserve 
interoperability with legacy clients, 802.11n access point transmits all control and management 
frames in the primary channel. All 20-MHz clients (whether HT or legacy non-HT) only associate 
to the primary channel, because the beacon frame is only transmitted on the primary channel. All 
transmissions to and from clients must be on the primary 20 MHz channel. Hence, all 40-MHz 
operation in 802.11n is termed “20/40 MHz.” Secondary channel is a 20-MHz channel 
associated with a primary channel; it may be located in the frequency spectrum below or above 
the primary channel. It is used only by HT stations for creating a 40-MHz channel. A station is 
not required to react to control frames received on its secondary channel, even if it is capable of 
decoding those frames. The secondary channel of one BSS may be used by an overlapping BSS 
as its primary channel. If an access point detects an overlapping BSS whose primary channel is 
the access point’s secondary channel, it switches to 20-MHz operation and may subsequently 
move to a different channel or pair of channels. 

Phased Coexistence Operation (PCO) is an option in which an 802.11n access point alternates 
between using 20-MHz and 40-MHz channels. Before operating in the 40-MHz mode, the access 
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Figure 6-6: 802.11n channel bonding and 20/40 MHz operation. (Phased Coexistence
Operation (PCO) is described later, in Figure 6-21.) 
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point explicitly reserves both adjacent 20-MHz channels. This mechanism is described later in 
this section. 

Based on the bandwidth used by devices in an 802.11n network, the operational modes can be 
classified as follows: 

• Legacy (non-HT) mode. The operation is similar to IEEE 802.11a/b/g. This mode uses the 
primary 20-MHz channel for transmission. 

• Duplicate legacy mode. In this mode, the devices use a 40-MHz channel bandwidth, but 
the same data are transmitted in the primary and secondary halves of the 40-MHz 
channel. This feature allows the station to send a control frame simultaneously on both 
20-MHz channels, which improves efficiency. Examples are given later in this section. 

• High-throughput (HT) mode. HT mode is available for both 20- and 40MHz channels. In 
this mode, supporting one and two spatial streams is mandatory. A maximum of four 
spatial streams is supported. 

• HT duplicate mode. This mode uses the modulation and coding scheme (MCS) #32 that 
provides the lowest transmission rate in a 40-MHz channel (6 Mbps), as well as longer 
transmission range. 
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Figure 6-7 shows the physical-layer frame formats supported by 802.11n: the legacy format and 
new formats. Two new formats, called HT formats, are defined for the PLCP (PHY Layer 
Convergence Protocol): HT-mixed format and HT-greenfield format. There is also an MCS-32 
frame format used for the HT duplicate mode. In addition to the HT formats, there is a non-HT 
duplicate format, used in the duplicate legacy mode, which duplicates a 20-MHz non-HT (legacy) 
frame in two 20-MHz halves of a 40-MHz channel. 

The legacy Non-HT frame format (top row in Figure 6-7) is the 802.11a/g frame format and can 
be decoded by legacy stations. (Notice that this “legacy” 802.11a/g frame format is different from 
802.11b legacy format, shown in Figure 1-71(b). Both are “legacy” in the sense that they predate 
802.11n.) The preamble uses short and long training symbols. This allows legacy receivers to 
detect the transmission, acquire the carrier frequency, and synchronize timing. The physical-layer 
header contains the legacy Signal field (L-SIG) which indicates the transmission data rate (Rate 
subfield, in Mbps) and the payload length of the physical-layer frame (Length subfield, in bytes 
in the range 1–4095), which is a MAC-layer frame. 

The HT-mixed format (middle row in Figure 6-7) starts with a preamble compatible with the 
legacy 802.11a/g. The legacy Short Training Field (L-STF), the legacy Long Training Field (L-
LTF) and the legacy Signal field (L-SIG) can be decoded by legacy 802.11a/g devices. The rest 
of the HT-Mixed frame has a new format, and cannot be decoded by legacy 802.11a/g devices. 
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Figure 6-7: 802.11n physical-layer frame formats. Compare to Figure 1-71(b). 
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The HT preambles are defined in HT-mixed format and in HT-greenfield format to carry the 
information required to operate in a system with multiple transmit and multiple receive antennas. 
The HT-SIG field contains the information about the modulation scheme used, channel, 
bandwidth, length of payload, coding details, number of HT training sequences (HT-LTFs), and 
tail bits for the encoder. The number of HT-LTFs is decided by the antenna configuration and use 
of space-time block codes. HT training sequences are used by the receiver for estimating various 
parameters of the wireless MIMO channel. 

The HT-greenfield format (bottom row in Figure 6-7) is completely new, without any legacy-
compatible part. The preamble transmission time is reduced as compared to the mixed format. 
Support for the HT Greenfield format is optional and the HT devices can transmit using both 20-
MHz and 40-MHz channels. 

When an 802.11n access point is configured to operate in Mixed Mode (for example, 802.11b/g/n 
mode), the access point sends and receives frames based on the type of a client device. By 
default, the access point always selects the optimum rate for communicating with the client based 
on wireless channel conditions. 

MAC Layer Enhancement: Frame Aggregation 

First, the reader may find it useful to review Figure 6-8 for the terminology that will be used in 
the rest of this section. Figure 6-9 shows the 802.11n MAC frame format. Compared to the legacy 
802.11 (Figure 1-71(a)), the change comprises the insertion of the High Throughput (HT) Control 
field and the change in the length of the frame body. The maximum length of the frame body is 
7955 bytes (or, octets) and the overall 802.11n frame length is 8 Kbytes. 

Every frame transmitted by an 802.11 device has a significant amount of fixed overhead, 
including physical layer header, MAC header, interframe spaces, and acknowledgment of 
transmitted frames (Figure 6-11(a)). (The reader should also check Figure 2-20 and the discussion 
in Section 2.5) At the highest of data rates, this overhead alone can be longer than the entire data 
frame. In addition, contention for the channel and collisions also reduce the maximum effective 
throughput of 802.11. 802.11n addresses these issues by making changes in the MAC layer to 
improve on the inefficiencies imposed by this fixed overhead and by contention losses. 
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Figure 6-8: Terminology review for the 802.11 frame structure. Compare to Figure 1-71. 
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To reduce the link-layer overhead, 802.11n employs the mechanism known as packet 
aggregation, which is the process of joining multiple packets together into a single transmission 
unit, in order to reduce the overhead associated with each transmission. It is equivalent to a group 
of people riding a bus, rather than each individually riding a personal automobile (Figure 6-10). 
Generally, packet aggregation is useful in situations where each transmission unit may have 
significant overhead (preambles, headers, CRC, etc.) or where the expected packet size is small 
compared to the maximum amount of information that can be transmitted. Because at link layer 
packets are called frames, the mechanism is correspondingly called “frame aggregation.” 

Frame aggregation is essentially putting the payloads of two or more frames together into a 
single transmission. Frame aggregation is a feature of the IEEE 802.11e and 802.11n standards 
that increases throughput by sending two or more data frames in a single transmission (Figure 
6-11(b)). Because control information needs to be specified only once per frame, the ratio of 
payload data to the total volume of data is higher, allowing higher throughput. In addition, the 

 

Figure 6-10: Packet aggregation analogy. 
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reduced number of frame transmissions significantly reduces the waiting time during the 
CSMA/CA backoff procedure as well as the number of potential collisions. The maximum frame 
size is also increased in 802.11n, to accommodate these large, aggregated frames. The maximum 
frame size is increased from 4 KB to 64 KB. (64 KB frame size is achieved by sending multiple 8 
KB frames in a burst, as explained later.) 

There are several limitations of frame aggregation. First, all the frames that are aggregated into a 
transmission must be sent to the same destination; that is, all the frames in the aggregated frame 
must be addressed to the same mobile client or access point. Second, all the frames to be 
aggregated have to be ready for transmission at the same time, potentially delaying some frames 
while waiting for additional frames, in order to attempt to send a larger aggregate frame. Third, 
the maximum frame size that can be successfully sent is affected by a factor called channel 
coherence time. The time for frame transmission must be shorter than the channel coherence time. 
Channel coherence time depends on how quickly the transmitter, receiver, and other objects in the 
environment are moving. When the things are moving faster, the channel data rate is reduced, and 
therefore the allowed maximum frame size becomes smaller. 

Although frame aggregation can increase the throughput at the MAC layer under ideal channel 
conditions, a larger aggregated frame will cause each station to wait longer before its next chance 
for channel access. Thus, there is a tradeoff between throughput and delay (or, latency) for frame 
aggregation at the MAC layer (as throughput increases, latency increase as well). Furthermore, 
under error-prone channels, corrupting a large aggregated frame may waste a long period of 
channel time and lead to a lower MAC efficiency. 

The ability to send multiple frames without entering the backoff procedure and re-contending for 
the channel first appeared in the IEEE 802.11e MAC. This mechanism reduces the contention and 
backoff overhead and thus enhances the efficiency of channel utilization. The notion of transmit 
opportunity (TXOP) is used to specify duration of channel occupation. During TXOP period of 
time, the station that won channel access can transmit multiple consecutive data frames without 
re-contending for the channel. If the station determines that it allocated too long TXOP and 
currently does not have more data to transmit, it may explicitly signal an early completion of its 
TXOP. This action, known as truncation of TXOP, prevents waste by allowing other stations to 
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use the channel. Until the NAV has expired, even if the transmitting station has no data to send 
and the channel is sensed as idle, other stations do not access the medium for the remaining 
TXOP. The TXOP holder performs truncation of TXOP by transmitting a CF-End (Contention-
Free-End) frame, if the remaining TXOP duration is long enough to transmit this frame. CF-End 
frame indicates that the medium is available. Stations that receive the CF-End frame reset their 
NAV and can start contending for the medium without further delay. 

The frame aggregation can be performed within different sub-layers of the link layer. The 
802.11n standard defines two types of frame aggregation: MAC Service Data Unit (MSDU) 
aggregation and MAC Protocol Data Unit (MPDU) aggregation. Both aggregation methods group 
several data frames into one large frame and reduce the overhead to only a single radio preamble 
for each frame transmission (Figure 6-11(b)). However, there are slight differences in the two 
aggregation methods that result in differences in the efficiency gained (MSDU aggregation is 
more efficient). These two methods are described here. 

• MAC Service Data Units (MSDUs) Aggregation 

MSDU aggregation exploits the fact that most mobile access points and most mobile client 
protocol stacks use Ethernet as their “native” frame format (Figure 1-59). It collects Ethernet 
frames to be transmitted to a single destination and wraps them in a single 802.11n frame. This is 
efficient because Ethernet headers are much shorter than 802.11 headers (compare Figure 1-59 
and Figure 1-71). For this reason, MSDU aggregation is more efficient than MPDU aggregation. 
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MSDU aggregation allows several MAC-level service data units (MSDUs) to be concatenated 
into a single Aggregated MSDU (A-MSDU). Figure 6-12(a) shows the frame format for A-
MSDU. In MSDU aggregation, the aggregated payload frames share not just the same physical 
(PHY) layer header, but also the same 802.11n MAC header. The resulting 802.11n frames can 
be up to 8 Kbytes in size. 

When the source is a mobile device, the aggregated frame is sent to the access point, where the 
constituent Ethernet frames are forwarded to their ultimate destinations. When the source is an 
access point, all of the constituent frames in the aggregated frame must be destined to a single 
mobile client, because there is only a single destination in each mobile client. 

With MSDU aggregation, the entire, aggregated frame is encrypted once using the security 
association of the destination of the outer 802.11n frame wrapper. A restriction of MSDU 
aggregation is that all of the constituent frames must be of the same quality-of-service (QoS) 
level. For example, it is not permitted to mix voice frames with best-effort frames. 

If no acknowledgement is received, the whole 802.11n frame must be retransmitted. That is, an 
A-MSDU aggregate fails as a whole even if just one of the enclosed MSDUs contains bit errors. 

• MAC Protocol Data Units (MPDUs) Aggregation 
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MPDU aggregation also collects Ethernet frames to be transmitted to a single receiver, but it 
converts them into 802.11n frames. Normally this is less efficient than MSDU aggregation, but it 
may be more efficient in environments with high error rates, because of a mechanism called block 
acknowledgement (described later). This mechanism allows each of the aggregated data frames to 
be individually acknowledged or retransmitted if affected by an error. 

MPDU aggregation scheme enables aggregation of several MAC-level protocol data units 
(MPDUs) into a single PHY-layer protocol data unit (PPDU). Figure 6-12(b) shows the frame 
format for an Aggregated MPDU (A-MPDU). A-MPDU consists of a number of MPDU 
delimiters each followed by an MPDU. Except when it is the last A-MPDU subframe in an 
A-MPDU, padding bytes are appended to make each A-MPDU subframe a multiple of 4 bytes in 
length, which can facilitate subframe delineation at the receiver. A-MPDU allows bursting 
802.11n frames up to 64 KB. 

The purpose of the MPDU delimiter (4 bytes long) is to locate the MPDU subframes within the 
A-MPDU such that the structure of the A-MPDU can usually be recovered when one or more 
MPDU delimiters are received with errors. Subframes are sent as a burst (not a single unbroken 
transmission). The subframes are separated on the air from one other by the Reduced Inter-Frame 
Space (RIFS) interval of 2 μs duration (compared to SIFS interval which is 16 μs).19 Figure 
6-12(b) also indicates that the sender uses the “RDG/More PPDU” bit of the HT Control field in 
the MAC frame (Figure 6-9) to inform the receiver whether there are more subframes in the 
current burst. If the “RDG/More PPDU” field is set to “1,” there will be one or more subframes to 
follow the current subframe; otherwise, the bit value “0” indicates that this is the last subframe of 
the burst. 

Subframes of an A-MPDUs burst can be acknowledged individually with a single Block-
Acknowledgement (described in the next subsection). The MPDU structure can be recovered 
even if one or more MPDU delimiters are received with errors. Unlike A-MSDU where the whole 
aggregate needs to be retransmitted, only unacknowledged MPDU subframes need to be 
retransmitted. 

 

Summary of the characteristics for the two frame aggregation methods: 

• MSDU aggregation is more efficient than MPDU aggregation, because the Ethernet header is 
much shorter than the 802.11 header. 

• MPDU structure can be recovered even if one or more MPDU subframes are received with 
errors; conversely, an MSDU aggregate fails as a whole—even if just one of the enclosed 
MSDUs contains bit errors the whole A-MSDU must be retransmitted. 

• A-MPDU is performed in the software whereas A-MSDU is performed in the hardware. 

                                                      
19 RIFS is a means of reducing overhead and thereby increasing network efficiency. A transmitter can use 

RIFS after a transmission when it does not expect to receive immediately any frames, which is the case 
here. Note that RIFS intervals can only be used within a Greenfield HT network, with HT devices only 
and no legacy devices. 
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MAC Layer Enhancement: Block Acknowledgement 

Rather than sending an individual acknowledgement following each data frame, 802.11n 
introduces the technique of confirming a burst of up to 64 frames with a single block 
acknowledgement (Block ACK or BACK) frame. The Block ACK mechanism significantly 
reduces overhead due to bursts of small frames. Block acknowledgment was initially defined in 
IEEE 802.11e as an optional scheme to improve the MAC efficiency. The 802.11n standard made 
the Block ACK mechanism mandatory to support by all the HT devices. The Block ACK contains 
a bitmap to acknowledge selectively individual frames of a burst. This feature is comparable to 
selective acknowledgements of TCP, known as TCP SACK (Chapter 2). 

Figure 6-13 shows how the Block ACK capability is activated, used, and deactivated by sending 
action frames. Action frames are used to request a station to take action on behalf of another. To 
initiate a Block ACK session, the transmitter sends an Add-Block-Acknowledgment request 
(addBA, also written as ADDBA). The addBA request indicates a starting frame sequence 
number and a window size of frame sequence numbers that the receiver should expect as part of 
the transmission. The receiver can choose to accept or reject the request and informs the 
transmitter by an addBA response frame. If the receiver rejects the addBA request, the session 
will continue with the legacy sequential transmit/acknowledgment exchanges. If the receiver 
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Figure 6-13: Initiation, use, and termination of 802.11n block acknowledgements. 
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accepts the addBA request, the transmitter can send multiple frames without waiting for ACK 
frames. The receiver silently accepts frames that have sequence numbers within the current 
window. Only after the transmitter solicits a Block ACK by sending a Block ACK Request 
(BlockAckReq or BAR), the receiver responds by a Block ACK response frame indicating the 
sequence numbers successfully received. Frames that are received outside of the current window 
are dropped. This cycle may be repeated many times. Finally, when the transmitter does not need 
Block ACKs any longer, it terminates the BA session by sending a Delete-Block-
Acknowledgment request (delBA or DELBA). 

The Block ACK carries ACKs for individual frames as bitmaps. The exact format depends on the 
encoding. Figure 6-14(a) shows the format of Block ACK frames. The subfields of the Block 
ACK Control field are as follows: 

- The Block ACK Policy bit specifies whether the sender requires acknowledgement immediately 
following BlockAckReq (bit value “0”), or acknowledgement can be delayed (bit value “1”). 

- The values of the Multi-TID and Compressed Bitmap fields determine which of three possible 
Block ACK frame variants is represented (Figure 6-15(a)). The Block ACK frame variants are 
shown in Figure 6-14(b). 
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- The meaning of the TID_INFO subfield of the BA Control field depends on the Block ACK 
frame variant type. For the first two variants (Basic Block ACK and Compressed Block ACK), 
the TID_INFO subfield of the BA Control field contains the TID for which a Block ACK frame 
is requested. The traffic identifier (TID) is assigned by upper-layer protocols to inform the MAC 
protocol about the type of data that it is asked to transmit. This is important for MAC protocols 
that support quality of service (QoS), such as 802.11e and 802.11n. Therefore, the first two BA 
variants are capable of acknowledging only traffic of a single identifier type. A Block ACK frame 
could be extended to include the bitmaps for multiple TIDs. This extended Block ACK frame 
variant is called Multi-TID Block ACK (MTBA). More details are provided later. 

Figure 6-14(b) shows the structure of the three variants of the Block ACK frame: 

• Basic Block ACK variant. The Basic Block ACK variant is inherited from the IEEE 802.11e 
standard. The BA Information field within the Basic Block ACK frame contains the Block ACK 
Starting Sequence Control subfield and the Block ACK Bitmap, as shown in the top row of 
Figure 6-14(b). The Starting Sequence Number subfield (12-bit unsigned integer) of the Block 
ACK Starting Sequence Control field contains the sequence number of the first data frame 
(MPDU) that this Block ACK is acknowledging. This is the same number as in the previously 
received BlockAckReq frame to which this Block ACK is responding. When the transmitter 
receives a Block ACK, based on this number it knows to which BlockAckReq it corresponds. The 
Fragment Number subfield is always set to 0. 

Before describing the BA Bitmap structure, it is necessary to mention the fragmentation 
mechanism in 802.11. The process of partitioning a MAC-level frame (MPDU) prior to 
transmission into smaller MAC-level frames is called fragmentation. Fragmentation creates 
smaller frames to increase reliability, by increasing the probability of successful transmission in 
cases where channel characteristics limit reception reliability for longer frames. The reader may 
remember IP packet fragmentation (Section 1.4.1), which is done for different reasons, and where 
the fragments are reassembled only at the final destination. Conversely, defragmentation in 
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Figure 6-15: (a) 802.11n Block ACK frame variant encoding. (b) Block ACK Bitmap
subfield (128 bytes long = 64×16 bits) of a Basic Block ACK frame variant. Each bit
represents the received status (success/failure) of a frame fragment. 
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802.11 is accomplished at each immediate receiver. In the 802.11e and 802.11n standards, each 
MAC frame can be partitioned into up to 16 fragments. 

The 128-byte long Block ACK Bitmap subfield represents the received status of up to 64 frames. 
In other words, the bitmap size is 64×16 bits (Figure 6-15(b)). That is, because each MAC-level 
frame can be partitioned into up to 16 fragments, 16 bits (2 bytes) are allocated to acknowledge 
each frame. Each bit of this bitmap represents the received status (success/failure) of a frame 
fragment. Two bytes are equally allocated even if the frame is not actually fragmented or is 
partitioned into less than 16 fragments. Suppose a frame has 11 fragments; then 11 bits are used, 
and remaining 5 bits are not used. Even so, this frame will consume 16 bits in the bitmap. If the 
frame is not fragmented, only one bit is used. Obviously, in cases with no fragmentation it is not 
efficient to acknowledge each frame using 2 bytes when all is needed is one bit. The overhead 
problem occurs also when the number of frames acknowledged by a Block ACK is small, because 
the bitmap size is fixed to 128 bytes. Thus, using two bytes per acknowledged frame in the 
bitmap results in an excessive overhead for Block ACK frames. 

To overcome the potential overhead problem, 802.11n defines a modified Block ACK frame, 
called Compressed Block ACK. 

• Compressed Block ACK variant. This Block ACK frame variant uses a reduced bitmap of 8 
bytes, as shown in the middle row of Figure 6-14(b). Fragmentation is not allowed when the 
compressed Block ACK is used. Accordingly, a compressed Block ACK can acknowledge up to 
64 non-fragmented frames. The bitmap size is reduced from 1024 (64×16) bits to 64 (64×1) bits. 

The BA Information field within the Compressed Block ACK frame comprises the Block ACK 
Starting Sequence Control field and the Block ACK bitmap. The Starting Sequence Number 
subfield of the Block ACK Starting Sequence Control field is the sequence number of the first 
MSDU or A-MSDU for which this Block ACK is sent. The Fragment Number subfield of the 
Block ACK Starting Sequence Control field is set to 0. 

The 8-byte Block ACK Bitmap within the Compressed Block ACK frame indicates the received 
status of up to 64 MSDUs and A-MSDUs. Each bit that is set to 1 acknowledges the successful 
reception of a single MSDU or A-MSDU in the order of sequence number, with the first bit of the 
bitmap corresponding to the MSDU or A-MSDU with the sequence number that matches the 
Starting Sequence Number field value. 

Figure 6-16 shows an example using Compressed Block ACK frames. Here we assume that the 
transmitter sends aggregate A-MPDUs with 32 subframes. Bitmap bit position n is set to 1 to 
acknowledge the receipt of a frame with the sequence number equal to (Starting Sequence 
Control + n). Bitmap bit position n is set to 0 if a frame with the sequence number (Starting 
Sequence Control + n) has not been received. For unused fragment numbers of an aggregate 
frame, the corresponding bits in the bitmap are set to 0. For example, the Block ACK bitmap of 
the first Block ACK in Figure 6-16 contains [7F FF FF FF 00 00 00 00]. The first byte 
corresponds to the first 8 frames, but read right to left (that is why 7F instead of F7). This means 
that, relative to the Starting Sequence Number 146, the first four frames and sixth to eight 
frames are successfully received. The fifth frame is lost (sequence number 150). The second byte 
corresponds to the second 8 frames, also read right to left, and so on. The last 32 bits are all zero 
because the A-MPDU contained 32 subframes. In the second transmission, the transmitter resends 
frame #150 and additional 32 frames (starting with the sequence number 179 up to #211). 
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As seen, if a frame is not acknowledged, the sequence numbers can keep moving forward while 
the sending station keeps retrying that frame. However, when the span between the sequence 
number of the next frame to be sent and the retry frame becomes 64, the sending unit has to 
decide what to do. It can stop aggregating while it keeps retrying the old frame, or it can simply 
drop that frame. 

• Multi-TID Block ACK variant. The TID_INFO subfield of the BA Control field of the 
Multi-TID Block ACK frame contains the number of traffic identifiers (TIDs), less one, for which 
information is reported in the BA Information field. For example, a value of 2 in the TID_INFO 
field means that information for 3 TIDs is present. 

The BA Information field within the Multi-TID Block ACK frame contains one or more 
instances of the Per TID Info, Block ACK Starting Sequence Control field and the Block 
ACK Bitmap, as shown in the bottom row of Figure 6-14(b). 

The Starting Sequence Number subfield of the Block ACK Starting Sequence Control field 
is the sequence number of the first MSDU or A-MSDU for which this Block ACK is sent. The 
first instance of the Per TID Info, Block ACK Starting Sequence Control and Block ACK 
Bitmap fields that is transmitted corresponds to the lowest TID value, with subsequent instances 
following ordered by increasing values of the Per TID Info field. The 8-byte Block ACK bitmap 
within the Multi-TID Block ACK frame functions the same way as for the Compressed Block 
ACK frame variant. 
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Figure 6-16: 802.11n Block ACK example using the Compressed Block ACK frame variant.
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MAC Layer Enhancement: Reverse Direction (RD) Protocol 

The 802.11n also specifies a bidirectional data transfer method, known as Reverse Direction 
(RD) protocol. Conventional transmit opportunity (TXOP) operation described above and already 
present in IEEE 802.11e allows efficient unidirectional transfer of data: the station holding the 
TXOP can transmit multiple consecutive data frames without reentering backoff procedure. The 
802.11n RD protocol provides more efficient bidirectional transfer of data between two 802.11 
devices during a TXOP by eliminating the need for either device to contend for the channel. This 
is achieved by piggybacking of data from the receiver on acknowledgements (ACK frame). 

Reverse direction mechanism is useful in network services with bidirectional traffic, such as VoIP 
and online gaming. It allows the transmission of feedback information from the receiver and may 
enhance the performance of TCP, which requires bidirectional transmission (TCP data segments 
in one direction and TCP ACK segments in the other). (See Section 2.5 for more discussion.) The 
conventional TXOP operation only helps the forward direction transmission but not the reverse 
direction transmission. For application with bidirectional traffic, their performance degrades due 
to contention for the TXOP transmit opportunities. Reverse direction mechanism allows the 
holder of TXOP to allocate the unused TXOP time to its receivers to enhance the channel 
utilization and performance of reverse direction traffic flows. 

Before the RD protocol, each unidirectional data transfer required the initiating station to contend 
for the channel. If RTS/CTS is used, the legacy transmission sequence of RTS (Request To Send) 
- CTS (Clear To Send) - DATA (Data frame) - ACK (Acknowledgement) allows the sender to 
transmit only a single data frame in forward direction (Figure 6-17(a)). In the bidirectional data 
transfer method (i.e., with the RD protocol), once the transmitting station has obtained a TXOP, it 
may essentially grant permission to the other station to send information back during its TXOP. 

Reverse data transmission requires that two roles be defined: RD initiator and RD responder. RD 
initiator is the station that holds the TXOP and has the right to send Reverse Direction Grant 
(RDG) to the RD responder. The RD initiator sends its permission to the RD responder using a 
Reverse Direction Grant (RDG) in the “RDG/More PPDU” bit of the HT Control field in the 
MAC frame (Figure 6-9). The RD initiator grants permission to the RD responder by setting this 
bit to “1.” When the RD responder receives the data frame with “RDG/More PPDU” bit set to 
“1,” it decides whether it will send to the RD initiator more frames immediately following the one 
just received. It first sends an acknowledgement fro the received frame in which the “RDG/More 
PPDU” bit is set to “1” if one or more data frames will follow the acknowledgement, or with the 
bit set to “0” otherwise. For the bidirectional data transfer, the reverse DATAr frame can contain 
a Block ACK to acknowledge the previous DATAf frame. The transmission sequence will then 
become RTS-CTS-DATAf-DATAr-ACK (Figure 6-17(b)). 

If the “RDG/More PPDU” bit in the acknowledgement frame is set to “1,” the RD initiator will 
wait for the transmission from the RD responder, which will start with SIFS or Reduced Inter-
Frame Space (RIFS) interframe time after the RDG acknowledgement is sent. A transmitter can 
use RIFS after a transmission when it does not expect to receive immediately any frames, which 
is the case here. If there is still data to be sent from the RD responder, it can set “RDG/More 
PPDU” bit in the data frame header to “1” to notify the initiator. The RD initiator still has the 
right to accept or reject the request. To allocate the extended TXOP needed for additional reverse 
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frames, the initiator will set to “1” the “RDG/More PPDU” bit in the acknowledgement frame or 
the next data frame. To reject the new RDG request, the initiator sets “RDG/More PPDU” to “0.” 

Backward Compatibility 

802.11n devices transmit a signal that cannot be decoded by devices built to an earlier standard. 
To avoid rendering the network useless due to massive interference and collisions, 802.11n 
devices must provide backwards compatibility. Compatibility with legacy 802.11 devices has 
been a critical issue continuously faced throughout the evolution of 802.11. For example, 802.11g 
provides a mechanism for operation with 802.11b devices. Similarly, 802.11n has a number of 
mechanisms to provide backward compatibility with 802.11 a, b, and g devices. These 
mechanisms ensure that the legacy stations are aware of 802.11n transmissions in the same area 
and do not interfere with them. The cost for achieving this protection is the throughput 
degradation for 802.11n. 

Because the 802.11 MAC layer operation is based on carrier sense multiple access (CSMA/CA) 
protocol, it is essential for the station that won access to the channel to inform other stations how 
long it will transmit, to avoid being interrupted. The mechanism of announcing the duration of the 
transmission is called protection mechanism, and different options have emerged in the 
evolution of 802.11 wireless LANs. Before transmitting at a high data rate, the station must 
attempt to update the network allocation vector (NAV) of non-HT stations that do not support the 
high data rate, so that they can defer their transmission. (See Section 1.5.3 for the description of 
NAV.) The duration information has to be transmitted at physical data-rates that are decodable by 
the legacy stations (the pure 802.11n transmission is not). 

RTS
TimeDIFS Backoff

BusyBusy S
IF

S

CTS

S
IF

S

S
IF

S

BACK

Data_fwd

RTS
DIFS Backoff

BusyBusy S
IF

S
CTS

S
IF

S

S
IF

S

BACKf

Data_fwd

DIFS

S
IF

S

BACKr

Data_rvs

DIFS

(a)

(b)

RD initiator

RD responder

Transmitter

Receiver

RDG/More PPDU = RDG/More PPDU = 11

RDG/More PPDU = RDG/More PPDU = 11

RDG/More PPDU = RDG/More PPDU = 00

TXOP duration

TXOP duration
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Three different operating modes are defined for 802.11n devices (actually, four, but one is a kind 
of sub-mode and omitted here for simplicity). The legacy Non-HT operating mode sends data 
frames in the old 802.11a/g format (shown in the top row of Figure 6-7) so that legacy stations 
can understand them. However, only 802.11a and g stations understand Non-HT mode format—
802.11b stations predate 802.11a/g and do not understand it. Non-HT mode is used by 802.11n 
devices only to communicate with legacy 802.11 devices, rather than with other 8021.11n 
devices. It cannot be used with 40-MHz channels (Figure 6-6). At the transmitter, only one 
transmitting antenna is used in Non-HT mode. Receive diversity is exploited in this mode. An 
802.11n device using Non-HT delivers no better performance than 802.11a/g. This mode gives 
essentially no performance advantage over legacy networks, but offers full compatibility. 

The legacy operating mode is a Non-HT (High Throughput) mode, whereas the Mixed and 
Greenfield modes are HT modes. In Mixed operating mode, frames are transmitted with a 
preamble compatible with the legacy 802.11a/g (middle row in Figure 6-7). The legacy Short 
Training Field (L-STF), the legacy Long Training Field (L-LTF) and the legacy Signal field 
(L-SIG) can be decoded by legacy 802.11a/g devices. The rest of the HT-Mixed frame has a new 
format, and cannot be decoded by legacy 802.11a/g devices. 

In Greenfield operating mode, high throughput frames are transmitted without any legacy-
compatible part (bottom row in Figure 6-7). In this mode, there is no provision to allow a legacy 
device to understand the frame transmission. Receivers enabled in this mode should be able to 
decode frames from the legacy mode, mixed mode, and the Greenfield mode transmitters. The 
preamble is not compatible with legacy 802.11a/g devices and only 802.11n devices can 
communicate when using the Greenfield format. Support for the Greenfield format is optional and 
the HT devices can transmit using both 20-MHz and 40-MHz channels. 

When a Greenfield device is transmitting, the legacy systems may detect the transmission, and 
therefore avoid collision, by sensing the presence of a radio signal, using the carrier-sensing 
mechanism in the physical layer. However, legacy devices cannot decode any part of an HT 
Greenfield frame. Therefore, they cannot set their NAV and defer the transmission properly. They 
must rely on continuous physical-layer carrier sensing to detect the busy/idle states of the 
medium. In the worst case, HT Greenfield transmissions will appear as noise bursts to the legacy 
devices (and vice versa). 

The HT Mixed mode is mandatory to support and transmissions can occur in both 20-MHz and 
40-MHz channels. Support for the HT Greenfield mode is optional; again, transmissions can 
occur in both 20-MHz and 40-MHz channels (Figure 6-6). Support for Non-HT Legacy mode is 
mandatory for 802.11n devices, and transmissions can occur only in 20-MHz channels. 

An 802.11n access point (AP) starts in the Greenfield mode, assuming that all stations in the BSS 
(Basic Service Set) will be 802.11n capable. If the access point detects a legacy (non-HT) 
802.11a/b/g device (at the time when it associates to the access point or from transmissions in an 
overlapping network), the access point switches to the mixed mode. 802.11n stations are 
communicating mutually using the mixed mode, and with legacy stations using the non-HT 
mode. When non-HT stations leave the BSS, the access point, after a preset time, will switch back 
from the Mixed mode to the Greenfield mode. The same is true of when the access point ceases to 
hear nearby non-HT stations; it will switch back to the Greenfield mode. 
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The following protection mechanisms (described later) are defined for 802.11n to work with 
legacy stations: 

• Transmit control frames such as RTS/CTS or CTS-to-self using a legacy data rate, before 
the HT transmissions. For control frame transmissions, use 20-MHz non-HT frames or 
40-MHz non-HT duplicate frames (Figure 6-6). 

• L-SIG TXOP protection 

• Transmit the first frame of a transmit opportunity (TXOP) period using the non-HT frame 
that requires a response frame (acknowledgement), which is also sent as a non-HT frame 
or non-HT duplicate frame. After this initial exchange, the remaining TXOP frames can 
be transmitted using HT-Greenfield format and can be separated by RIFS (Reduced Inter 
Frame Spacing). 

• Using the HT-Mixed frame format, transmit a frame that requires a response. The 
remaining TXOP may contain HT-Greenfield frames and/or RIFS sequences. 

The first two protection schemes are extension of the protection mechanisms that have been 
introduced in the migration from 802.11b to 802.11g. Use of control frames such as RTS/CTS or 
CTS-to-self is a legacy compatibility mode. L-SIG TXOP protection is a mixed compatibility 
mode (uses HT-mixed frame format) and is optional to implement. The last two schemes are 
applicable only in the presence of TXOP, which is a feature that might be enabled only for certain 
services, such as voice and video transmission. 

In an 802.11n HT coverage cell that operates in 20/40-MHz channels, there may be legacy 802.11 
devices (operating in the primary 20-MHz channel) along with the 40-MHz HT devices. 
Furthermore, there may be an overlapping cell with legacy 802.11 devices operating in the 
secondary channel of this cell. A protection mechanism must take into account both cases and 
provide protection for the 40-MHz HT devices against interference from either source (i.e., 
legacy devices inside or outside this cell). Next, we review those protection mechanisms. 

• Control Frames Protection: RTS/CTS Exchange, CTS-to-self, and Dual-CTS 

We have already seen in Section 1.5.3 how RTS/CTS (Request-to-Send/Clear-to-Send) exchange 
is used for protection of the current transmission. The RTS/CTS frames let nearby 802.11 
devices—including those in different but physically overlapping networks—set their network 
allocation vector (NAV) and defer their transmission. This mechanism is called “virtual carrier 
sensing” because it operates at the MAC layer, unlike physical-layer carrier sensing. 
Transmission of RTS/CTS frames helps avoid hidden station problem irrespective of transmission 
rate and, hence, reduces the collision probability. 

802.11g introduced another NAV-setting protection mechanism (also adopted in 802.11n), called 
CTS-to-self mechanism. CTS-to-self allows a device to transmit a short CTS frame, addressed to 
itself, that includes the NAV duration information for the neighboring legacy devices, which will 
protect the high-rate transmission that will follow. The advantage of the CTS-to-self NAV 
distribution mechanism is lower network overhead cost than with the RTS/CTS NAV distribution 
mechanism—instead of transmitting two frames separated by a SIFS interval, only one frame is 
transmitted. However, CTS-to-self is less robust against hidden nodes and collisions than 
RTS/CTS. Stations employing NAV distribution should choose a mechanism that is appropriate 
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for the given network conditions. If errors occur when employing the CTS-to-self mechanism, 
stations should switch to the more robust RTS/CTS mechanism. 

HT protection requires 802.11n devices to announce their intent to transmit by sending legacy-
format control frames prior to HT data transmission (Figure 6-18(a)). The CTS-to-self frame must 
be transmitted using one of the legacy data rates that a legacy device will be able to receive and 
decode. Transmission rate of the control frames depends on the type of legacy device that is 
associated in the BSS. If both 802.11b and 802.11g devices are associated, then 802.11b rates 
(known as Clause 15 rates) are used to transmit protection frames because 802.11g stations can 
decode such frames. 

In Dual-CTS protection mode, the RTS receiver transmits two CTS frames, one in Non-HT 
mode and another in HT mode, so the subsequent data frame is protected by a legacy CTS and an 
HT CTS. The dual-CTS feature can be enabled or disabled by setting the Dual CTS Protection 
subfield in beacon frames. Dual-CTS protection has two benefits. First, using the legacy 
RTS/CTS or legacy CTS-to-self frames to reset NAV timers prevents interference with any 
nearby 802.11a/b/g cells. Second, it resolves the hidden node problem within the 802.11n cell. 

Figure 6-19 shows an example network with an 802.11n access point (AP) and two mobile 
stations, one 802.11n (station A) and the other legacy 802.11g (station B). When traffic is 
generated by station A, it first sends an RTS to the AP. The AP responds with two CTS frames, 
one in HT and the other in legacy format. Station A is then free to transmit the data frame, while 
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other stations in the same and neighboring networks (e.g., station B) set their NAV correctly so 
they do not transmit over the authorized frame, interfering with it. Later, when the AP has traffic 
to send to station B, it uses dual CTS-to-self frames to perform the same function (Figure 6-19). 

Dual-CTS makes the 802.11n network a good neighbor to overlapping or adjacent legacy 802.11 
networks. It also solves the hidden-station problem where different clients in a cell may not be 
able to hear each other’s transmissions, although, by definition they all can hear the AP and its 
CTS frames. However, the use of control frames further reduces the data throughput of the 
network. Although RTS/CTS frames are short (20 and 14 bytes, respectively), it takes more time 
to transmit them at the legacy rate of 6 Mbps than it takes to transmit 500 bytes of data at 600 
Mbps. Therefore, HT protection significantly reduces an 802.11n W-LAN’s overall throughput. 

•  L-SIG TXOP Protection 

In Legacy Signal field Transmit Opportunity (L-SIG TXOP) protection mechanism, protection is 
achieved by transmitting the frame-duration information in a legacy-formatted physical header, 
and then transmitting the data at an 802.11n high rate (Figure 6-18(b)). Each frame is sent in an 
HT-mixed frame format. A legacy device that receives and successfully decodes an HT-mixed 
frame defers its own transmission based on the duration information present in the legacy Signal 
(L-SIG) field (see Figure 6-7). Such legacy clients remain silent for the duration of the 
forthcoming transmission. Following the legacy physical header, the 802.11n device sends the 
remaining part of the frame using 802.11n HT rates and its multiple spatial streams. L-SIG TXOP 
protection is also known as PHY layer spoofing. 

The Rate and Length subfields of the L-SIG field (Figure 6-7) determine the duration of how 
long non-HT stations should defer their transmission: 

L-SIG Duration = (legacy Length / legacy Rate) 

This value should be equal to the duration of the remaining HT part of the HT-mixed format 
frame. The Rate parameter should be set to the value 6 Mbps. Non-HT stations are not able to 
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receive any frame that starts throughout the L-SIG duration. Therefore, no frame may be 
transmitted to a non-HT station during an L-SIG protected TXOP. 

Figure 6-20 illustrates an example of how L-SIG Durations are set when using L-SIG TXOP 
Protection. In this example, an L-SIG TXOP protected sequence starts with an RTS/CTS initial 
handshake, which provides additional protection from hidden stations. Any initial frame 
exchange may be used that is valid for the start of a TXOP. The term “L-SIG TXOP protected 
sequence” includes these initial frames and any subsequent frames transmitted within the 
protected L-SIG duration. 

The TXOP holder should transmit a CF-End frame starting a SIFS period after the L-SIG TXOP 
protected period (Figure 6-20). Because legacy stations are unable to distinguish a Mixed-mode 
acknowledgement frame from other Mixed-mode frames, they may mistakenly infer that ACK 
frame is lost. As a result, they would wait unnecessarily until the EIFS time elapses (see Figure 
1-75(b)), which leads to potential unfairness or a “capture effect.” CF-End enables other stations 
to avoid such undesirable effects. Note that this is not an instance of TXOP truncation (described 
earlier), because here the CF-End frame is not transmitted to reset the NAV. 

All HT-mixed mode frames contain the L-SIG field, so is not necessary to send special control 
frames to announce the medium reservation duration explicitly. An 802.11n station must indicate 
whether it supports L-SIG TXOP Protection in its L-SIG TXOP Protection Support capability 
field in Association-Request and Probe-Response frames. The mixed mode can be used in a 40-
MHz channel, but to make it compatible with legacy clients, all broadcast and non-aggregated 
control frames are sent on a legacy 20-MHz channel as defined in 802.11a/b/g, to be 
interoperable with those clients (Figure 6-6). And, of course, all transmissions to and from legacy 
clients must be within a legacy 20-MHz channel. L-SIG TXOP protection mechanism is not 
applicable when 802.11b stations are present, because the Signal field (L-SIG) is encoded in 
802.11g frame format that 802.11b devices do not understand. The double physical-layer header 
(legacy plus 802.11n headers) adds overhead, reducing the throughput. However, it makes 
possible for 802.11n stations to take advantage of HT features for the remaining part of the frame 
transmission. 

• Phased Coexistence Operation (PCO) 
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Another mechanism for coexistence between 802.11n HT cells and nearby legacy 802.11a/b/g 
cells is known as Phased Coexistence Operation (PCO). This is an optional mode of operation 
that divides time into slices and alternates between 20-MHz and 40-MHz transmissions. The HT 
access point designates time slices for 20-MHz transmissions in both primary and secondary 20-
MHz channels, and designates time slices for 40-MHz transmissions. This operation is depicted 
in Figure 6-6 and now we describe the mechanism for transitioning between the phases. The 
algorithm for deciding when to switch the phase is beyond the scope of the 802.11n standard. 

The phased coexistence operation (PCO) of 802.11n is illustrated in Figure 6-21, where an 
802.11n coverage cell (BSS-1) is overlapping a legacy 802.11 cell (BSS-2). Stations A and B are 
associated with BSS-1 and station C is associated with BSS-2, but it can hear stations in BSS-1 
and interfere with their transmissions. Only station A is capable of transmitting and receiving 
frames in the 40-MHz channel. As explained earlier (Figure 6-6), a 40-MHz channel is formed by 
bonding two contiguous 20-MHz channels, one designated as primary channel and the other as 
secondary channel. In this example, BSS-2 happens to operate in what BSS-1 considers its own 
secondary channel, i.e., the secondary channel of BSS-1 is the primary channel for BSS-2. In 20-
MHz phase, all stations contend for medium access in their respective primary channels. When 
the 802.11n access point wishes to use a 40-MHz channel, it needs to reserve explicitly both 
adjacent 20-MHz channels. The access point is coordinating the phased operation of the 
associated stations with 20-MHz and 40-MHz bandwidth usage. 

The bottom part of Figure 6-21 shows the MAC-protocol timing diagram for reservation and 
usage of the 40-MHz channel. Transitions back and forth between 20-MHz and 40-MHz channels 
start with the Beacon frame or Set-PCO-Phase frame. The 802.11n access point (AP) 
accomplishes the reservation by setting the NAV timers of all stations with appropriate control 
frames transmitted on the respective channels. The access point uses CTS-to-self frames to set the 
NAV timers. As Figure 6-21 depicts, the AP transmits both CTS-to-self frames simultaneously 
using the duplicate legacy mode (described earlier in this section). Although control frames are 
transmitted only on the primary channel, the secondary channel of BSS-1 is the primary channel 
of BSS-2, so station C will receive the second CTS-to-self and react to it. This feature improves 
efficiency (but notice that it could not be exploited in Figure 6-19). When the NAV timer is set, 
the station is blocked from transmission until the NAV timer expires. However, as seen in Figure 
6-21 station A will also set its own NAV, which means that station A too will be blocked. This is 
why the AP will transmit a CF-End frame in the HT-Greenfield format on the 40-MHz channel, 
so that only station A will decode it and start contending for access to the 40-MHz channel. Recall 
that CF-End truncates TXOP and clears the NAV timers of the clients that receive this frame. 

To end the 40-MHz phase, the HT access point first sends a Set-PCO-Phase frame so station A 
knows the 40-MHz phase is over. Next, to release the 40-MHz channel, the AP uses two CF-End 
frames sent simultaneously on both 20-MHz channels using the duplicate legacy mode. This will 
truncate the remaining TXOP for the legacy clients (stations B and C). Thereafter, all stations 
may again contend for medium access on their respective 20-MHz primary channels. 

Reservation of the 40-MHz channel may not happen smoothly, because traffic in BSS-2 may 
continue for a long time after the access point transmitted the Beacon frame or Set-PCO-Phase 
frame (see the initial part of the timing diagram in Figure 6-21). If the secondary channel 
continues to be busy after the phase transition started, the stations in BSS-1 are not allowed to 
transmit on the primary 20-MHz channel because their NAV timers are set. If waiting for 
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reservation of the secondary 20-MHz channel exceeds a given threshold, the access point may 
decide to terminate the transition process and go back to the 20-MHz phase. 

Phased coexistence operation (PCO) makes an 802.11n access point more tolerant of nearby 
legacy APs operating on overlapping channels and might improve throughput in some situations. 
However, once again, this option reduces throughput due to transmission of many control frames 
(CTS-to-self and CF-End). In addition, switching back and forth between channels could 
potentially increase delay jitter for data frames, and therefore PCO mode would not be 
recommended for real-time multimedia traffic. 

 

The cost of backwards compatibility features is additional overhead on every 802.11n 
transmission. This reduces the benefits of all the 802.11n improvements, resulting in significantly 
lower effective throughput by 802.11n devices in mixed environments. The HT-Mixed format 
will most likely be the most commonly used frame format because it supports both HT and legacy 
802.11a/g devices. The HT-Mixed format is also considered mandatory and transmissions can 
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occur in both 20-MHz and 40-MHz channels. It can be expected that protection mechanisms will 
be in use in the 2.4-GHz band (802.11b and 802.11g) until nearly every legacy device has 
disappeared. This is because there are too few channels available in that band to effectively 
overlay pure 802.11n wireless LANs in the same areas as legacy 2.4-GHz W-LANs. Given the 
larger number of channels available in the 5-GHz band in many countries, it is possible that two 
completely separate W-LANs could be operating in the same area in the 5-GHz band, with 
802.11a operating on one set of channels and 802.11n operating on a different, nonintersecting set 
of channels. This would allow 802.11n to operate in pure high-throughput mode (HT-Greenfield 
mode), achieving the highest effective throughput offered by the 802.11n standard. 

6.3.2 WiMAX (IEEE 802.16) 

The IEEE 802.16 standard is also known as WiMAX, which stands for Worldwide 
Interoperability for Microwave Access. WiMAX, as approved in 2001, addressed frequencies 
from 10 to 66 GHz, where extensive spectrum is available worldwide but at which the short 
wavelengths introduce significant deployment challenges. A new effort will extend the air 
interface support to lower frequencies in the 2–11 GHz band, including both licensed and license-
exempt spectra. Compared to the higher frequencies, such spectra offer the opportunity to reach 
many more customers less expensively, although at generally lower data rates. This suggests that 
such services will be oriented toward individual homes or small to medium-sized enterprises. 

Medium Access Control (MAC) Protocol 

The IEEE 802.16 MAC protocol was designed for point-to-multipoint broadband wireless access 
applications. It addresses the need for very high bit rates, both uplink (to the Base Station) and 
downlink (from the BS). Access and bandwidth allocation algorithms must accommodate 
hundreds of terminals per channel, with terminals that may be shared by multiple end users. 

 

6.3.3 ZigBee (IEEE 802.15.4) 

ZigBee is a specification for a suite of high level communication protocols using small, low-
power digital radios based on the IEEE 802.15.4-2003 standard for wireless personal area 
networks (WPANs), such as wireless headphones connecting with cell phones via short-range 
radio. The technology defined by the ZigBee specification is intended to be simpler and less 
expensive than other WPANs, such as Bluetooth (Section 6.3.4). ZigBee is targeted at radio 
frequency (RF) applications that require a low data rate, long battery life, and secure networking. 

6.3.4 Bluetooth 
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6.4 Wi-Fi Quality of Service 
 

There is anecdotal evidence of W-LAN spectrum congestion; Unlicensed systems need to scale to 
manage user “QoS.” Density of wireless devices will continue to increase; ~10x with home 
gadgets; ~100x with sensors/pervasive computing 

 

Decentralized scheduling 

 

 

 

 

 

We assume that each message carries the data of a single data type. The messages at the producer 
are ordered in priority-based queues. The priority of a data type is equal to its current utility, 

)|( ji STU . Figure 6-22 shows the architecture at the producer node. Scheduler works in a round-

robin manner, but may have different strategies for sending the queued messages, called queuing 
discipline. It may send all high priority messages first, or it may assign higher probability of 
sending to the high-priority messages, but the low-priority messages still get non-zero probability 
of being sent. 

It is not clear whose rules for assigning the utilities should be used at producers: producer’s or 
consumer’s. If only the consumer’s preferences are taken into the account, this resembles to the 
filtering approach for controlling the incoming information, e.g., blocking unsolicited email 
messages. One of the drawbacks of filtering is that does not balance the interests of senders and 
recipients: filtering is recipient-centric and ignores the legitimate interests of the sender [Error! 
Reference source not found.]. This needs to be investigated. 
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Figure 6-22: Priority-based scheduling of the messages generated by a producer. Messages
are labeled by data types of the data they carry (T1, …, T5). 
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6.5 Summary and Bibliographical Notes 
 

A collection of articles on mobile ad hoc networks, particularly the routing protocol aspect, is 
available in [Perkins, 2001]. [Murthy & Manoj, 2004] provide a comprehensive overview of ad 
hoc networks. 

 

The major enhancement in IEEE 802.11e MAC protocol is providing Quality-of-Service (QoS), 
which is lacking in the legacy IEEE 802.11 MAC protocol. In IEEE 802.11e, enhanced 
distributed channel access (EDCA) is introduced to enhance legacy IEEE 802.11 DCF operation. 
EDCA is a contention-based channel access mechanism. QoS support is provided with different 
access categories (ACs). Four ACs are used in EDCA, each with an independent backoff 
mechanism and contention parameters. The parameters of ACs are set differently to provide 
differentiated QoS priorities for ACs. 

The Block ACK has a potential to be more efficient than the regular ACK policy. However, the 
Basic Block ACK frame (defined in IEEE 802.11e and adopted in 802.11n) includes a Block 
ACK Bitmap of 128 bytes, and the efficiency of the Block ACK might be seriously compromised 
when the number of frames acknowledged by a Block ACK is small or the frames are not 
fragmented. 

802.11n 

The objective of IEEE 802.11n standard is to increase the throughput beyond 100 Mbps as well 
as extending the effective range from previous 802.11a/b/g standards. Use of Multiple Input 
Multiple Output (MIMO) technology along with OFDM (MIMO-OFDM) and doubling the 
channel bandwidth from 20-MHz to 40-MHz helps increase the physical (PHY) rate up to 600 
Mbps. The data rates supported in an 802.11n network range from 6.5 Mbps to 600 Mbps. 
Support for 2 spatial streams is mandatory at the access point and up to 4 spatial streams can be 
used. The PHY layer enhancements are not sufficient to achieve the desired MAC throughput of 
more than 100 Mbps due to rate-independent overheads. To overcome this limitation, frame 
aggregation at the MAC layer is used in 802.11n to improve the efficiency. In the aggregate 
MSDU (A-MSDU) scheme, multiple MSDUs form a MPDU i.e., an 802.11n MAC-level frame 
(A-MSDU) consists of multiple subframes (MSDUs), either from different sources or 
destinations. The aggregate MPDU (A-MPDU) scheme can be used to aggregate multiple 
MPDUs into a single PSDU. Both aggregation schemes have their pros and cons along with 
associated implementation aspects. However, most product manufacturers support both features. 

802.11b and 802.11g devices operate in the 2.4 GHz band and the 5 GHz band is used by 802.11a 
devices. The 802.11n-based devices can operate in both bands and hence backward compatibility 
with the respective legacy devices in the bands are an important feature of the standard. Most of 
the benefits of 802.11n will only be realized when 802.11n-capable clients are used with similar 
infrastructure, and even a few legacy (802.11a/b/g) clients in the cell will drastically reduce 
overall performance compared to a uniform 802.11n network. For quite a long time, 802.11n will 
need to operate in the presence of legacy 802.11a, b, and g devices. This mixed-mode operation 
will continue until all the devices in an area have been upgraded or replaced with 802.11n 
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devices. However, sometimes protection mechanism is needed even in an 802.11n-only network 
as the devices can have different capabilities. Hence, protection schemes are not only used for 
coexistence with legacy devices but also for interoperability with various different operating 
modes of 802.11n devices. Each protection mechanism has a different impact on the performance 
and 802.11n devices will operate more slowly when working with legacy Wi-Fi devices. 

802.11n and HT technology is so complex that an entire book dedicated to the topic would 
probably not be able to cover fully every aspect of HT. Section 6.3.1 highlight only some of the 
key features of 802.11n. MIMO technology is only briefly reviewed. 802.11n link adaptation and 
receiver feedback information is not reviewed at all. Other issues that were not covered include 
security, power management, and quality-of-service (QoS). The reader should consult other 
sources for these topics. 

Xiao and Rosdahl [2002; 2003] have shown that control overhead is a major reason for inefficient 
MAC. The overhead is large either when the data rate is high or when the frame size is small. 
Throughput in 802.11 has an upper bound even the data rate goes to infinity. [Xiao, 2005] … 

Thornycroft [2009] offers a readable introduction to 802.11n. Perahia and Stacey [2008] provide 
an in-depth review of 802.11n. The reader should consult the IEEE 802.11n standard for a more 
technical walk-through of the newly introduced enhancements. 

Wang and Wei [2009] investigated the performance of the IEEE 802.11n MAC layer 
enhancements: frame aggregation, block acknowledgement, and reverse direction (RD) protocol. 
They conclude that VoIP performance is effectively improved with 802.11n MAC enhancements. 

 

 

Problems 
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Chapter 7 
Network Monitoring 

 

 

7.1 Introduction 
 

See: http://www.antd.nist.gov/ 

Wireless link of a mobile user does not provide guarantees. 
Unlike wired case, where the link parameters are relatively 
stable, stability cannot be guaranteed for a wireless link. Thus, 
even if lower-level protocol layers are programmed to perform 
as best possible, the application needs to know the link quality. 
The “knowledge” in the wired case is provided through quality 
guarantees, whereas here link quality knowledge is necessary 
to adapt the behavior. 

 

Adaptation to the dynamics of the wireless link bandwidth is a 
frequently used approach to enhance the performance of 
applications and protocols in wireless communication 
environments [Katz 1994]. Also, for resource reservation in 
such environments, it is crucial to have the knowledge of the 
dynamics of the wireless link bandwidth to perform the 
admission control. 
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7.2 Available Bandwidth Estimation 
 

In general, an accurate available bandwidth estimation is essential in monitoring if the different 
flows are living up to the required Quality-of-Service (QoS). For instance, streaming applications 
could adapt their sending rate to improve the QoS depending on a real-time knowledge of the 
end-to-end available bandwidth. Within a mobile-communications core network, the available 
bandwidth could also be used as an input to take decisions concerning issues such as load control, 
admission control, handover and routing. However, the scale of the different systems, the 
different traffic characteristics and the diversity of network technologies make this 
characterization of the end-to-end available bandwidth a challenging task. 

One possible way to implement available bandwidth estimation would be to deploy special 
software or hardware on each router of the network. However, the cost in time and money of new 
equipment, maintenance of new nodes and software development makes this impractical. 
Moreover, this wide-scale deployment of specialized routers, which are continuously reporting 
bandwidth properties, might overwhelm the network. Another limitation is the lack of control 
over hosts and routers across autonomous domains. 

An alternative is to run software on end hosts, which is usually called active probing. In this 
approach, the available bandwidth is inferred rather than directly measured. Ideally, a probing 
scheme should provide an accurate estimate as quickly as possible, while keeping the increased 
load on the network to the necessary minimum. There are several obstacles for measuring the 
available bandwidth by active probing. First, the available bandwidth is a time-varying metric. 
Second, the available bandwidth exhibits variability depending on the observing time-scale. 
Third, in the current networks increasingly intelligent devices are being used for traffic 
prioritization. 

A narrow link (bottleneck) is a communication link with a small upper limit on the bandwidth. 
Conversely, a tight link (overused) is a communication link with a small available bandwidth but 
the overall bandwidth may be relatively large. 

7.2.1 Packet-Pair Technique 

A packet pair consists of two packets, usually of the same size, that are sent back-to-back via a 
network path. Unlike the techniques mentioned in the previous section, packet-pair probing 
directly gives a value for the capacity of the narrow link, with no additional information about the 
capacities of other links on the path. They assume FIFO queuing model in network routers and 
probe packets could be ICMP (Internet Control Message Protocol) packets. Packet-pair 
techniques for bandwidth measurement are based on measuring the transmission delays that 
packets suffer on their way from the source to the destination. The idea is to use inter-packet time 
to estimate the characteristics of the bottleneck link. If two packets travel together so that they are 
queued as a pair at the bottleneck link with no packet intervening between them, then their inter-
packet spacing is proportional to the time needed to transmit the second packet of the pair on the 
bottleneck link (Error! Reference source not found.). 
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Recall that packet transmission delay is computed using Eq. (1.2) in Section 1.3 as tx = L/R, 
where L is the packet length and R is the link transmission rate. Le us assume that the receiver 
measures the difference of arrival times for a packet pair as Δ = t4 − t3. Then, the transmission rate 
of the bottleneck link (i.e., link bandwidth), b, can be computed as: 

b = L/Δ     (6.1) 

Note that the inter-packet spacing at the source must be sufficiently small so that: 

t2 − t1 ≤ L/b = t4 − t3    (6.2) 

The packet-pairs technique is useful for measuring the bottleneck capacity, i.e., the minimum 
capacity along the path. The main advantage of this method is that it performs the measurement 
of inter-arrival times between packets only at the end host. This fact avoids the problem of 
asymmetric routing, ICMP dependency and link-layer effects of RTT-based Capacity Estimation 
methods. On the other hand, this technique is very sensitive, not only to the probing packet size 
and user time resolution, but also to the cross-traffic. 

 

PathMon [Kiwior, et al., 2004] 

 

 

7.3 Dynamic Adaptation 
 

 

Holistic QoS, system level 
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Figure 7-1: Packet-pair technique for bandwidth measurement. The packet spacing on the
bottleneck link (Link 2) will be preserved on downstream links (Link 3). 
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Adaptive Service Quality 

It may be that only two options are offered to the customers by the server: to be or not to be 
processed. In other words, quality of servicing is offered either in the fullest or no servicing at all. 
But, it may be that the server offers different options for customers “in hurry.” In this case, we 
can speak of different qualities of service—from no service whatsoever, through partial service, 
to full service. The spectrum of offers may be discrete or continuous. Also, servicing options may 
be explicitly known and advertised as such, so the customer simply chooses the option it can 
afford. The other option is that servicing options are implicit, in which case they could be 
specified by servicing time or cost, or in terms of complex circumstantial parameters. Generally, 
we can say that the customer specifies the rules of selecting the quality of service in a given rule 
specification language. 

 

Associated with processing may be a cost of processing. Server is linked with a certain resource 
and this resource is limited. Server capacity C expresses the number of customers the server can 
serve per unit of time and it is limited by the resource availability. 

Important aspects to consider: 

• Rules for selecting QoS 

• Pricing the cost of service 

• Dealing with uneven/irregular customer arrivals 

• Fairness of service 

• Enforcing the policies/agreements/contracts 

- Admission control 

- Traffic shaping 

 

7.3.1 Data Fidelity Reduction 

Compression 

Simplification 

 

timeliness

fidelity

utility

 

Figure 7-2: Dimensions of data adaptation. 
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Abstraction 

Conversion (different domains/modalities) 

 

We consider the model shown in Figure 6-?? where there are multiple clients producing and/or 
consuming dynamic content. Some shared content may originate or be cached locally while other 
may originate from remote and change with time. The data that originates locally may need to be 
distributed to other clients. The clients have local computing resources and share some global 
resources, such as server(s) and network bandwidth, which support information exchange. 
Although producers and consumers are interrelated, it is useful to start with a simpler model 
where we consider them independently to better understand the issues before considering them 
jointly. We first consider individual clients as data consumers that need to visualize the content 
with the best possible quality and provide highest interactivity. We then consider clients as data 
producers that need to update the consumers by effectively and efficiently employing global 
resources. 

We will develop a formal method for maximizing the utility of the shared content given the 
limited, diverse, and variable resources. Figure 8-1 illustrates example dimensions of data 
adaptation; other possible dimensions include modality (speech, text, image, etc.), security, 
reliability, etc. The user specifies the rules R for computing the utilities of different data types that 
may depend on contextual parameters. We define the state of the environment as a touple 
containing the status of different environmental variables. For example, it could be defined as: 
state = (time, location, battery energy, user’s role, task, computer type). The location may include 
both the sender and the receiver location. Given a state Sj the utility of a data type Ti is 
determined by applying the user-specified rules: )|()|( jiji STRSTU = . We also normalize the 

utilities because it is easier for users to specify relative utilities, so in a given state Sj the utilities 
of all data types are: 1)|( =

i
ji STU . 

Our approach is to vary the fidelity and timeliness of data to maximize the sum of the utilities of 
the data the user receives. Timeliness is controlled, for example, by the parameters such as update 
frequency, latency and jitter. Fidelity is controlled by parameters such as the detail and accuracy 
of data items and their structural relationships. Lower fidelity and/or timeliness correspond to a 
lower demand for resources. Our method uses nonlinear programming to select those values for 
fidelity and timeliness that maximize the total data utility, subject to the given resources. Note 
that the user can also require fixed values for fidelity and/or timeliness, and seek an optimal 
solution under such constraints. 

7.3.2 Application Functionality Adaptation 

 

7.3.3 Computing Fidelity Adaptation 

Review CMU-Aura work 
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7.4 Summary and Bibliographical Notes 
 

When deploying a real-time or multimedia application, you need to establish a thorough baseline 
of current network activity on all segments that will host the application. You need to understand 
the degree to which latency, jitter and packet loss affect your network before deploying a real-
time or multimedia application. You must understand current network load and behavior, 
including any areas where latency is elevated or highly variable. In many networks, traffic loads 
may vary substantially over time. As loads increase, inconsistent packet delivery rates are 
probable. Thus, increasing loads form the foundation for excessive latency and jitter—which are 
two of the most prevalent inhibitors for consistent application performance. When collecting 
baseline metrics, remember that network behavior varies widely as various business activities 
occur. Be sure to create a baseline that reflects all major phases and facets of your network’s 
activities. 

 

V. Firou, J. Le Boudec, D. Towsley, and Z. Zhang, "Theories and Models for Internet Quality of 
Service," Proceedings of the IEEE, Special Issue on Internet Technology, August 2002. 

 

Various forms of the packet-pair technique were studied by [Bolot, 1993], [Carter & Crovella, 
1996], [Paxson, 1997a], and [Lai & Baker, 1999]. 

 

[Jain & Dovrolis, 2002] investigated how to deal with cross-traffic, using statistical methods 

[Hu & Steenkiste, 2003], available bandwidth discovery: Initial Gap Increasing (IGI)  
estimate both upper limit and background traffic and subtract both. Problem: presumes that the 
bottleneck link is also the tight link 

PathMon [Kiwior, et al., 2004] 

Problems 
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Chapter 8 
Internet Protocols 

 

 

This chapter describes several important protocols that are used 
in the current Internet. I feel that these protocols are not critical 
for the rest of this text. However, the reader may feel 
otherwise, so I included them for completeness. Also, a student 
new to the field may wish to know about practical 
implementations of the concepts and algorithms described in 
the rest of this text. 

Although this chapter is about the Internet protocols, the key 
Internet protocols are not reviewed here. Because of their great 
importance, IP and TCP are described early one, in Chapters 1 
and 2, respectively. 

 

 

 

 

 

 

 

8.1 Internet Protocol Version 6 (IPv6) 
 

Internet Protocol version 4 (Sections 1.4.1 and 1.4.4) was first developed in 
the 1970s and the main document that defines IPv4 functionality (RFC-
791) was published in 1981. Many things could not be envisioned at such 
early stage of Internet development, especially shortage of address space 
availability. Internet Protocol version 6 (IPv6) was developed primarily to 
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Visit http://en.wikipedia.org/wiki/Internet_reference_model for more details on the Internet reference modelVisit http://en.wikipedia.org/wiki/Internet_reference_model for more details on the Internet reference model
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address the rapidly shrinking supply of IPv4 addresses, but also to implement some novel features 
based on the experience with IPv4. 

Figure 8-1 shows the format of IP version 6 datagram headers. It is much simpler than the IPv4 
header (Figure 1-36), but also double the size of a default IPv4 header, mainly because of longer 
IP addresses in IPv6. The IPv6 header fields are as follows: 

Version number: This field indicates version number, and the value of this field for IPv6 
datagrams is 6. 

Traffic class: The 8-bit Traffic Class field is available for use by originating nodes or forwarding 
routers to identify and distinguish between different classes or priorities of IPv6 packets. This 
filed is equivalent to IPv4 Type-of-Service (Figure 1-36), and it is intended to provide various 
forms of “differentiated service” or DiffServ for IP packets (Section 3.3.5). Experiments are 
currently underway to determine what sorts of traffic classifications are most useful for IP 
packets. 

Flow label: The 20-bit Flow Label field may be used by a source to label packets for which it 
requests special handling by the IPv6 routers, such as non-default quality of service or “real-time” 
service. This feature is still experimental and evolves as more experience is gained with IntServ 
flow support in the Internet (Section 3.3.4). Hosts or routers that do not support the functions of 
the Flow Label field are required to set the field to zero when originating a packet; pass the field 
on unchanged when forwarding a packet; and ignore the field when receiving a packet. 

 

0 11 12 313 4 15 16

20-bit flow label

16-bit payload length 8-bit hop limit

version
number

40
bytes

8-bit traffic class

next header

128-bit (16-byte) destination IP address

128-bit (16-byte) source IP address

 

Figure 8-1: The header format of IPv6 datagrams. 
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Payload length: This field tells how many bytes follow the 40-byte header in the IP datagram. 
Unlike IPv4 Datagram Length, IPv6 Payload Length does not count the datagram header. 

Next header: This 8-bit selector identifies the type of header immediately following the IPv6 
header within the IPv6 datagram. Currently, there are six extension headers (optional), which may 
follow the main IPv6 header. If a header is the last IP header, this field identifies the type of the 
upper-layer protocol to pass the payload to at the destination, and uses the same values as the 
IPv4 “User Protocol” field (Figure 1-36). See more about extension headers in Section 8.1.2. 

Hop limit: This 8-bit unsigned integer specifies how long a datagram is allowed to remain in the 
Internet, to catch packets that are stuck in routing loops. It is decremented by one by each node 
that forwards the packet. The packet is discarded if Hop Limit is decremented to zero. It is 
equivalent to the “Time-to-Live” (TTL) field in IPv4 datagrams. 

Source IP address: This address identifies the end host that originated the datagram. 

Destination IP address: This is the IP address of the intended recipient of the packet (possibly 
not the ultimate recipient, if a Routing header is present, as described in the next section). 

Notice that there are none of the fields related to packet fragmentation from IPv4 (Figure 1-36). 
This is because IPv6 takes a different approach to fragmentation. To simplify the work of routers 
and speed up their performance, IPv6 assumes that router do not perform any fragmentation. IPv6 
requires that every link in the Internet have a maximum transmission unit (MTU) of 1280 bytes or 
greater. On any link that cannot convey a 1280-byte packet in one piece, link-specific 
fragmentation and reassembly must be provided at a protocol layer below IPv6. 

Links that have a configurable MTU (for example, PPP links Section 1.5.1) must be configured to 
have an MTU of at least 1280 bytes. It is strongly recommended that IPv6 nodes implement Path 
MTU Discovery (described in RFC-1981), in order to dynamically discover and take advantage 
of path MTUs greater than 1280 bytes. This rule makes fragmentation less likely to occur in the 
first place. In addition, when a host sends an IPv6 packet that is too large, instead of fragmenting 
it, the router that is unable to forward it drops the packet and sends back an error message. This 
message tells the originating host to break up all future packets to that destination. 

8.1.1 IPv6 Addresses 

The IPv6 address space is 128-bits (2128) in size, which translates to the exact number of 
340,282,366,920,938,463,463,374,607,431,768,211,456 addresses. That seems like enough for all 
purposes that currently can be envisioned. 

A new notation (hexadecimal colon notation) has been devised to writing 16-byte IPv6 addresses. 
A 128-bit address is divided into eight sections, each two bytes long. It is written as eight groups 
of four hexadecimal digits (total 32) with colons between the groups, like this: 

2000:0000:0000:0000:0123:4567:89AB:CDEF 

Some simplifications have been authorized for special cases. For example, if an address has a 
large number if consecutive zeros, the zero fields can be omitted and replaced with a double 
colon “::”.The above example address can be written compactly as 2000::123:4567:89AB:CDEF. 
Notice that only leading or intermediary zeroes can be abbreviated, but not the trailing zeroes. 
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Also, this type of abbreviation is allowed only once per address; if there are two runs of zeroes, 
only one of the can be abbreviated. 

As with IPv4 CIDR scheme, the notation A/m designates a subset of IPv6 addresses (subnetwork) 
where A is the prefix and the mask m specifies the number of bits that designate the subset, 
beginning from left to right. For example, the notation: 2000:0BA0:01A0::/48 implies that the 
part of the IPv6 address used to represent the subnetwork has 48 bits. Because each hexadecimal 
digit has 4 bits, the prefix representing the subnetwork is formed by 48/4 = 12 digits, that is: 
“2000:0BA0:01A0.” The remaining (128 − 48)/4 = 20 digits would be used to represent the 
network interfaces inside the subnetwork. 

Similar to CIDR in IPv4 (Section 1.4.4), IPv6 addresses are classless. However, the address space 
is hierarchically subdivided depending on the leading bits of an address. A variable number of 
leading bits specify the type prefix that defines the purpose of the IPv6 address. To avoid 
ambiguity, the prefix codes are designed such that no code is identical to the first part of any 
other code. The current assignment of prefixes is shown in Figure 8-2. Notice that two special 
addresses (“unspecified address” and loopback address) are assigned out of the reserved 
00000000-format prefix space. The address 0:0:0:0:0:0:0:0 is called the unspecified address. It 
indicates the absence of an address, and must never be assigned to any node as a destination 
address. However, it may be used by a host in the Source Address field of an IPv6 packet 
initially, when the host wants to learn its own address. The unicast address 0:0:0:0:0:0:0:1 is 
called the loopback address. It may be used by a node to send an IPv6 packet to itself. It may 
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Figure 8-2: Selected address prefix assignments for IPv6, excerpted from RFC-2373. 
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never be assigned to any physical interface. It may be thought of as being associated with a 
virtual interface (e.g., the loopback interface). 

The IPv6 addresses with embedded IPv4 addresses are assigned out of the reserved 00000000-
format prefix space. There are two types of IPv6 addresses that contain an embedded IPv4 
address (see bottom of Figure 8-2). One type are the so-called IPv4-compatible addresses. These 
addresses are used by IPv6 routers and hosts that are directly connected to an IPv4 network and 
use the “tunneling” approach to send packets over the intermediary IPv4 nodes (Section 8.1.3). 
This address format consists of 96 bits of 0s followed by 32 bits of IPv4 address. Thus, and IPv4 
address of 128.6.29.131 can be converted to an IPv4-compatible ::128.6.29.131. The other type is 
so called IP-mapped addresses. These addresses are used to indicate IPv4 nodes that do not 
support IPv6. The format of these addresses consist of 80 bits of 0s, followed by 16 bits of 1s, and 
then by 32 bits of IPv4 address. An example would be written as ::FFFF:128.6.29.131. 

IPv6 allows three types of addresses: 

• Unicast: An identifier for a single network interface. A packet sent to a unicast address 
should be delivered to the interface identified by that address. 

• Anycast: A prefix identifier for a set of network interfaces. These typically belong to 
different nodes, with addresses having the same subnet prefix. A packet sent to an 
anycast address should be delivered to only one of the interfaces identified by that prefix. 
The interface selected by the routing protocol is the “nearest” one, according to the 
protocol’s distance metrics. For example, all the routers of a backbone network provider 
could be assigned a single anycast address, which would then be used in the routing 
header. One expected use of anycasting is “fuzzy routing,” which means sending a packet 
through “one router of network X.” The anycast address will also be used to provide 
enhanced routing support to mobile hosts. 

• Multicast: An identifier for a set of network interfaces, typically belonging to different 
nodes that may or may not share the same prefix. A packet sent to a multicast address 
should be delivered to all the interfaces identified by that address. 

There are no broadcast addresses in IPv6; their function is taken over by multicast addresses. 

It is anticipated that unicast addressing will be used for the vast majority of traffic under IPv6, 
just as is the case for older one, IPv4. It is for this reason that the largest of the assigned blocks of 
the IPv6 address space is dedicated to unicast addressing. RFC-2374 assigned the Format Prefix 
2000::/3 (a “001” in the first three bits of the address) to unicast addresses. However, RFC-3587 
invalidated this restriction. Although currently only 2000::/3 is being delegated by the IANA, 
implementations should not make any assumptions about 2000::/3 being special. In the future, the 
IANA might be directed to delegate currently unassigned portions of the IPv6 address space for 
the purpose of Global Unicast as well. 

Figure 8-3(a) shows the general format for IPv6 global unicast addresses as defined in RFC-3587. 
The Global Routing Prefix is a (typically hierarchically-structured) value assigned to a site (a 
cluster of subnets or links), the Subnet ID is an identifier of a subnet within the site, and the 
Interface ID identifies the network interfaces on a link. The global routing prefix is designed to 
be structured hierarchically by the Regional Internet Registries (RIRs) and Internet Service 
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Providers (ISPs). The subnet-ID field is designed to be structured hierarchically by site 
administrators. 

RFC-3587 also requires that all unicast addresses, except those that start with binary value “000,” 
have Interface IDs that are 64-bits long and to be constructed in Modified 64-bit Extended 
Unique Identifier (EUI-64) format. The format of global unicast address in this case is shown in 
Figure 8-3(b). This includes global unicast address under the 2000::/3 prefix (starting with binary 
value “001”) that is currently being delegated by the IANA. 

An IPv6 Address [RFC-4291] may be administratively assigned using DHCPv6 [RFC-3315] in a 
manner similar to the way IPv4 addresses are, but may also be autoconfigured, facilitating 
network management. Autoconfiguration procedures are defined in [RFC-4862] and [RFC-4941]. 
IPv6 neighbors identify each other’s addresses using either Neighbor Discovery (ND) 
[RFC-4861] or SEcure Neighbor Discovery (SEND) [RFC-3971]. 

8.1.2 IPv6 Extension Headers 

IPv6 header is relatively simple (compared to IPv4), because features that are rarely used or less 
desirable are removed. However, some of these features occasionally are still needed, so IPv6 has 
introduced the concept of an optional extension header. These headers can be supplied to provide 
extra information, and are placed between the IPv6 header and the upper-layer header in a packet. 
Extension headers allow the extension of the protocol if required by new technologies or 
applications. Six kinds of extension headers are defined at present (Table 8-1). Each one is 
optional, and if present, each is identified by the Next Header field of the preceding header. If 
more than one is present, they must appear directly after the main header, and preferably in the 

Table 8-1: IPv6 extension headers. 

Extension header Description 

Hop-by-hop options Miscellaneous information for routers. 

Destination options Additional information for the destination node. 

Routing Loose list of routers to visit (similar to IPv4 source routing). 

Fragmentation Information about datagram fragmentation and reassembly. 

Authentication Verification of the sender’s identity. 

Encrypted security payload Information about the encrypted contents. 
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subnet ID interface ID

global routing prefix
IPv6 global unicast address
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subnet ID interface ID
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Figure 8-3: Format of IPv6 global unicast addresses. 
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order shown in Table 8-1. After the extension headers follows the upper-layer header (e.g., TCP 
header), which is the header of the payload contained in this IPv6 datagram. 

Figure 8-4 shows an example of an IPv6 datagram that includes an instance of each extension 
header, except those related to security. Note that the main IPv6 header and each extension 
header include a Next Header field. This field identifies the type of the immediately following 
header. If the next header is an extension header, then this field contains the type identifier of that 
header. Otherwise, this field contains the identifier of the upper-layer protocol to which the 
datagram will be delivered. In the latter case, the same values are used as for the IPv4 Protocol 
field. In the example in Figure 8-4, the upper-layer protocol is TCP and the payload carried by 
this IPv6 datagram is a TCP segment. 

With one exception, extension headers are not examined or processed by any node along a 
packet’s delivery path, until the packet reaches the node (or, in the case of multicast, each of the 
set of nodes) identified in the Destination Address field of the IPv6 header. There, regular 
demultiplexing on the Next Header field of the IPv6 header invokes the module to process the 
first extension header, or the upper-layer header if no extension header is present. The contents 
and semantics of each extension header determine whether or not to proceed to the next header. 
Therefore, extension headers must be processed strictly in the order they appear in the packet. A 
receiver must not, for example, scan through a packet looking for a particular kind of extension 
header and process that header prior to processing all preceding ones. 

The exception referred to in the preceding paragraph is the Hop-by-Hop Options header, which 
carries information that must be examined and processed by every node along a packet’s delivery 
path, including the source and destination nodes. The Hop-by-Hop Options header, when present, 
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Figure 8-4: Example of IPv6 extension headers. 
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must immediately follow the main IPv6 header. Its presence is indicated by the value zero in the 
Next Header field of the main IPv6 header. 

Hop-by-Hop Options Header 

The Hop-by-Hop Options header carries optional information for the routers that will be visited 
by this IPv6 datagram. This header must be examined by every node along a packet’s delivery 
path. The Hop-by-Hop Options header is identified by a Next Header value of 0 in the main IPv6 
header, and has the following format (Figure 8-5(a)): 

• Next Header (8 bits): Identifies the type of header immediately following the Hop-by-
Hop Options header. Uses the same values as the IPv4 Protocol field. 

• Hdr Ext Len (8-bits): Length of the Hop-by-Hop Options header in 64-bit units, not 
including the first 64 bits. 

• Options: A variable-length field, of length containing one or more options, such that the 
complete Hop-by-Hop Options header is long an integer multiple of 64-bits. Each option 
is defined by three sub-fields: Option Type (8 bits), which identifies the option; Length (8 
bits), which specifies the length of the Option Data field (in bytes); and Option Data, 
which is a variable-length specification of the option. 

If, as a result of processing a header, a node is required to proceed to the next header but the Next 
Header value in the current header is unrecognized by the node, it should discard the packet and 
send an ICMP Parameter Problem message to the source of the packet, with an ICMP Code value 
of 1 (“unrecognized Next Header type encountered”) and the ICMP Pointer field containing the 
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offset of the unrecognized value within the original packet. The same action should be taken if a 
node encounters a Next Header value of zero in any header other than an IPv6 header. 

8.1.3 Transitioning from IPv4 to IPv6 

There are two approaches for gradually introducing IPv6 in the public Internet, which is based on 
IPv4: 

• Dual-stack approach: IPv6 nodes also have a complete IPv4 implementation. Such a 
node, referred to as and IPv6/IPv4 node in RFC-4213, has the ability to send and receive 
both IPv4 and IPv6 datagrams. 

• Tunneling approach: Any two IPv6 nodes that are connected via intermediary IPv4 
routers (that are not IPv6-capable) create a “tunnel” between them. That is, the sending 
node takes the entire IPv6 datagram (header and payload included) and puts it in the data 
(payload) filed of an IPv4 datagram. This datagram is then addressed to the receiving 
IPv6 node and sent to the first intermediary node in the tunnel. 

 

8.2 Routing Protocols 
 

This section reviews several currently most popular Internet routing 
protocols. 

8.2.1 Routing Information Protocol (RIP) 

Routing Information Protocol (RIP) is a distance-vector routing protocol (Section 1.4.3), 
described in RFC-1058. Similar to OSPF (described next in Section 8.2.2) RIP is also used 
for routing within individual autonomous domains. Unlike OSPF, which scales to large 
intranets, RIP is useful for small subnets because of its simplicity of implementation and 
configuration, where its inadequacies are not prominent. RIP inadequacies include poor dealing 
with link failures and lack of support for multiple metrics. In addition, unlike OSPF, RIP for IP 
internetworks cannot be subdivided and no route summarization is done beyond the summarizing 
for all subnets of a network identifier. As a result, RIP networks are “flat.” 

The format of RIP version 2 route-advertisement packets is shown in Figure 8-6. The first four 
bytes of a RIP message contain the RIP header. The Command field is used to specify the 
purpose of this packet. For example, the possible values include: “1” which means a request for 
the receiver node to send all or part of its routing table; and “2” which symbolizes a response 
message containing all or part of the sender’s routing table. This message may be sent in response 
to a request or poll, or it may be an update message generated by the sender. 
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The Version field of the header specifies version number of the RIP protocol that the sender uses. 
The value should be “2” for RIP messages that use authentication or carry information in any of 
the newly defined fields (RIP version 2, defined in RFC-1723). The contents of the Unused field 
(two bytes) shall be ignored. The Address Family Identifier filed indicates what type of address is 
specified in the entries. The address family identifier for IPv4 is 4. The Route Tag field is an 
attribute assigned to a route that must be preserved and readvertised with a route. The intended 
use of the Route Tag is to provide a method of separating “internal” RIP routes (routes for 
networks within the RIP routing domain) from “external” RIP routes, which may have been 
imported from another routing protocol. 

The remainder of a RIP message is composed of route entries. There may be between 1 and 25 
route entries and each is 20 bytes long. The IP Address is the usual 4-byte IPv4 address. The 
Subnet Mask field contains the subnet mask that is applied to the IP address to yield the non-host 
portion of the address (recall Section 1.4.4). If this field is zero, then no subnet mask has been 
included for this entry. 

The Next Hop field identifies the immediate next hop IP address to which packets to the 
destination (specified by the IP Address of this route entry) should be forwarded. Specifying a 
value of 0.0.0.0 in this field indicates that routing should be via the originator of this RIP 
advertisement packet. An address specified as a next hop must be directly reachable on the logical 
subnet over which the advertisement is made. The purpose of the Next Hop field is to eliminate 
packets being routed through extra hops in the system. This is particularly useful when RIP is not 
being run on all of the routers on a network, but some other routing protocols are used, as well. 
Note that Next Hop is an “advisory” field. That is, if the provided information is ignored, a 
possibly sub-optimal, but still valid, route may be taken. If the received Next Hop is not directly 
reachable, it should be treated as 0.0.0.0. 

The Metric field of a route entry specifies the distance to the destination node identified by the IP 
Address of this entry. RIP takes the simplest approach to link cost metrics, a hop-count metric 
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with all link costs being equal to 1. Valid distances are 1 through 15, with 16 defined as infinity. 
This limits RIP to running on relatively small networks, with no paths longer than 15 hops. 

RIP, like most distance vector routing protocols, announces its routes in an unsynchronized and 
unacknowledged manner. Peer routers exchange distance vectors every 30 seconds, and a router 
is declared dead if a peer does not hear from it for 180 s, which is the hold-down timer period. 
RIP uses split horizon with poisoned reverse to tackle the counting-to-infinity problem. 

Triggered updates allow a RIP router to announce changes in metric values almost immediately 
rather than waiting for the next periodic announcement. The trigger is a change to a metric in an 
entry in the routing table. For example, networks that become unavailable can be announced with 
a hop count of 16 through a triggered update. Note that the update is sent almost immediately, 
where a time interval to wait is typically specified on the router. If triggered updates were sent by 
all routers immediately, each triggered update could cause a cascade of broadcast traffic across 
the IP internetwork. 

8.2.2 Open Shortest Path First (OSPF) 

Open Shortest Path First (OSPF) is a link-state routing protocol (Section 1.4.2) that is currently 
the preferred protocol for interior routing—routing within individual autonomous systems, i.e., 
internetworks controlled by a single organization, also known as intranets. Autonomous systems 
(ASs) and inter-domain routing are described in Section 1.4.5. 

The router broadcasts its link-state advertisements (LSAs) to all other routers in its autonomous 
system, not just to its neighboring routers. A router broadcasts link-state advertisements whenever 
there is a change in link status (e.g., outage or changed link cost). It also broadcasts a link’s state 
periodically (at least once every 30 minutes), even if the link’s state has not changed. An OSPF 
cost advertised in LSAs is a unitless metric that indicates the degree of preference for using a 
link. The network administrator can configure the cost of individual links to represent delay, data 
rate, monetary cost, or other factors. 

Each router gathers the received LSAs into a database called the link state database (LSDB). By 
synchronizing LSDBs between all neighboring routers, each router has each other router’s LSA in 
its database. Therefore, every router has the same LSDB. From the LSDB, entries for the router’s 
routing table are calculated using the algorithm described in Section 1.4.2 to determine the least-
cost path, the path with the lowest accumulated cost, to each network in the AS internetwork. 

OSPF allows introducing additional level of hierarchy, in addition to autonomous systems. Each 
AS that runs OSPF can be configured into areas, where each area behaves like an independent 
network. Different areas exchange information via routers that belong to several areas, known as 
area-border routers. Each OSPF area runs its own OSPF protocol, and each router in an area 
broadcasts its LSAs only to routers within its area and each router’s LSDB includes only the state 
of this area’s links. Exactly one OSPF area is configured to act as the backbone area that routes 
traffic between the other areas within the same AS. There must be at least one area-border router 
in each area, connecting the area to the backbone. Each area-border router maintains several 
LSDBs, one for each area to which it belongs. 
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OSPF represents network topology as a directed graph. An example is shown in Figure 8-7, 
where autonomous system ASα is running OSPF as its interior gateway protocol. The vertices of 
the link-state database graph represent routers and networks. A graph edge connects two routers 
when they are attached via a physical point-to-point link. An edge connecting a router to a 
network indicates that the router has an interface on the network. Networks can be either transit 
or stub networks. Transit network is capable of carrying data traffic that is originated and 
destined externally to this network. A transit network is represented by a vertex having both 
incoming and outgoing edges. A stub network’s vertex has only incoming edges. For example, in 
Figure 8-7(b), N2 is a transit network and N1 is a stub network. The mapping is as follows: 
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Figure 8-7: (a) Example of an autonomous system running OSPF. (b) Directed graph
representation of the same AS. Notice that link costs may be asymmetric for both directions.
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• Two routers connected by a point-to- point link are represented as two router vertices 
directly connected by a pair of edges, one in each direction. For example, in Figure 8-7 
the cost of the edge from router B to C is “1” and from C to B is “3.” 

• When several routers are attached to a broadcast network (transit network), the graph 
shows all routers bidirectionally connected to the network vertex. For example, in Figure 
8-7 network N2 has routers A and B attached and therefore its edges in Figure 8-7(b) are 
bidirectional. 

• If a network has only one attached router (i.e., a stub network), the network appears on 
the end of a stub connection in the graph. See, for example, network N1 in Figure 8-7. 

• Hosts attached directly to routers appear on the graph as stub networks. See, for example, 
network H2 in Figure 8-7. (Host H1 is not shown in the graph because it is not attached 
directly to a router.) 

• If a router is connected to other autonomous systems (so called “speaker node,” see 
Section 1.4.5), then the cost to each network in the other AS must be obtained from an 
exterior routing protocol, such as BGP (Section 8.2.3). Such a network is represented as a 
stub. For example, in Figure 8-7 router D is a speaker node and it is connected to network 
N3 in ASβ. 

The cost of a link is associated with the output port of each router interface, so each end of the 
link may see the link cost differently. As already noted, the link cost is configurable by the 
network administrator. Arcs of the link-state database graph are labeled with the cost of the 
corresponding router output interface, as seen in Figure 8-7. Arcs without labels have a cost of 
zero. Arcs leading from transit networks to routers always have a cost of 0. See for example arcs 
from N2 to routers A and B in Figure 8-7(b). 

All OSPF messages begin with the same header (Figure 8-8). Current (as of 2010) Version of the 
OSFP protocol is 2. There are five payload Types of OSPF packets, as follows: 1 = Hello; 2 = 
Database Description; 3 = Link State Request; 4 = Link State Update; 5 = Link State 
Acknowledgment. The packet Length is given in bytes and includes the standard OSPF header. 
The Address identifies the source router of this packet. Area ID is a 32-bit number identifying the 
OSPF routing area to which the source router of this packet belongs. All OSPF packets are 
associated with a single area. Most travel a single hop only. Packets travelling over a virtual link 
are labeled with the backbone Area ID of 0.0.0.0. The Checksum field represents the standard 
IP checksum of the entire contents of the packet, starting with the OSPF packet header but 
excluding the 64-bit Authentication field. This checksum is calculated as the 16-bit one’s 
complement of the one’s complement sum of all the 16-bit words in the packet, excepting the 
Authentication field. If the packet’s length is not an integral number of 16-bit words, the packet is 
padded with a byte of zero before checksumming. Authentication Type identifies the 
authentication scheme to be used for the packet. Finally, Authentication is a 64-bit field for use by 
the authentication scheme. 
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Link State Update packets are OSPF packet type 4. These packets implement the flooding of 
LSAs. Each Link State Update packet carries a collection of LSAs one hop further from their 
origin. Several LSAs may be included in a single packet. The payload format for type-4 packets is 
shown in Figure 8-9. There is one common LSA header for all LSA advertisement types, shown 
in the top part of Figure 8-9. The LSA advertisement type is specified in the Type field, see the 
top row in Figure 8-9. 

As seen, these link-state advertisements (LSAa) are more complex than LSAs described in 
Section 1.4.2 for a basic version of link state routing. The complexity derives from the more 
complex link-state database graph representation for OSPF (Figure 8-7). For example, a router 
running OSPF may generate link-state advertisements that advertise one or more networks that 
are directly connected to this router. A router may also advertise a direct point-to- point link to 
another router. 
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Figure 8-8: OSPF packet format for IPv4 addresses. 
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OSPF has fast convergence rate. It can detect and propagate topology changes faster than a 
distance-vector routing protocol and it does not suffer from the counting-to-infinity problem 
(described in Section 1.4.3). OSPF-calculated routes are always loop-free. With OSPF, an 
autonomous system can be subdivided into contiguous groups of networks called areas. Routes 
within areas can be summarized to minimize route table entries. Areas can be configured with a 
default route summarizing all routes outside the AS or outside the area. As a result, OSPF can 
scale to large and very large internetworks. 

8.2.3 Border Gateway Protocol (BGP) 

Section 1.4.5 presented the key challenges that arise due to independent administrative entities 
that compete for profit to provide global Internet access. The key questions for an Autonomous 
System (AS) can be summarized as follows: 

• What routing information to advertise to other ASs; how to process the routing 
information received from other ASs; and, what of the received information to 
readvertise? 

• How can an AS achieve a consistent picture of the Internet viewed by all of its routers, so 
that for a given data packet each router would make the same forwarding decision (as if 
each had access to the routing tables of all the border routers within this AS)? 

0 15 16 317 8

LS age

LS sequence number

authentication

20
bytesLSA header

LS checksum length

link state ID

typeoptions

link ID

link data

link type num_TOS metric

optional TOS information

Link description
for LSA type = 1

(more link descriptions)

16
bytes

0 0 number of linksflags
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The inter-AS (or, external gateway routing protocol) routing protocol needs to decide whether to 
forward routing advertisement packets (import/export policies) and whether to disseminate 
reachability of neighboring ASs at the risk of having to carry their transit traffic unrecompensed. 

Border Gateway Protocol (BGP) is an inter-Autonomous System routing protocol that addresses 
the above requirements. BGP is extremely complex and many issues about its operation are still 
not well understood. The main complexity of an external routing is not in the protocol for finding 
routes. Rather, the complexity lies in how border gateways (or, “BGP speakers”) are configured 
to implement the business preferences, and in how external routes are learned from other ASs are 
disseminated internally within an AS. As will been seen later, there are two keys for this 
capability: (1) provider’s filtering policies for processing and redistributing the received route 
advertisements, which are kept confidential from other ASes; and, (2) BGP path attributes that 
are included in route announcements and used when applying the local filtering policies. 

BGP is a path-vector routing protocol (Section 1.4.5), where distance vectors are annotated not 
only with the entire path used to compute each distance, but also with path attributes that describe 
the advertised paths to destination prefixes. For example, the attributes include preference values 
assigned to an advertised path by the routers through which this advertisement passed. Unlike, 
distance-vector, path-vector routing converges quickly to correct paths and guarantees freedom 
from loops. However, there is an issue of large routing tables needed for path-vector routing. We 
will see later how BGP addresses this issue. 

Routing Between and Within Autonomous Systems 

In Section 1.4.5 we saw that the inter-AS routing protocol must exchange routing advertisements 
between different domains, as well as disseminate the received information within its own AS. 

BGP routers use TCP (Chapter 2) on a well-known port (179) to communicate with each other, 
instead of layering the routing message directly over IP, as is done in other Internet routing 
protocols. Interior Gateway Protocols (IGPs), such as RIP (Section 8.2.1) and OSPF (Section 
8.2.2) rely on periodic updates that carry the entire routing tables of the sending routers 
containing all active routes. Unlike this, BGP sends only incremental updates containing only 
the routing entries that have changed since the last update (or transmission of all active routes). 
TCP ensures reliable delivery and simplifies the error management in the routing protocol. 
However, routing updates are subject to TCP congestion control, which can lead to complicated 
network dynamics and performance problems. For example, routing updates might be delayed 
waiting for TCP sender to time out. 

BGP neighbors, or peers, are established by manual configuration between routers to create a 
TCP session on port 179. Because TCP is a connection-oriented protocol with precisely identified 
endpoints, each BGP router maintains a separate TCP session with each other BGP router to 
which it is connected. There is typically one such BGP TCP connection for each link that directly 
connects two speaker routers in different ASs. There are also TCP connections between the 
speaker routers within the same AS (if there is more than one speaker within the AS), known as 
internal peering. Unlike BGP speakers in different ASs that are typically directly connected at the 
link layer, BGP speakers within the same AS are usually connected via non-speaker routers (i.e., 
at the network layer). For each TCP connection, the two routers at each end are called BGP peers 
and the TCP connection over which BGP messages are sent is called a BGP session. A BGP 
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session that spans two ASs is called an external BGP (eBGP) session; a BGP session between 
two routers within the same AS is called an internal BGP (iBGP) session. Recall from the 
discussion in Section 1.4.5 that the purpose of iBGP sessions is to ensure that network 
reachability information is consistent among the BGP speakers in the same AS. A BGP speaker 
can easily decide whether to open eBGP or iBGP session by comparing the Autonomous System 
Number (ASN) of the other router with its own. Figure 8-10 shows a detail from Figure 1-51 with 
eBGP and iBGP sessions. 

As seen in Figure 8-10 for ASα, all iBGP peers must be fully connected to one another because 
each TCP session connects only one pair of endpoints. Full mesh connectivity (where everyone 
speaks to everyone directly) ensures that all the BGP routers in the same AS to exchange routing 
information and ensure that network reachability information is consistent among them. Given n 
BGP routers, the full mesh connectivity requires n/2 × (n − 1) iBGP sessions, which may be large 
for a large n. In addition, each BGP router will run at least one eBGP session (routers F, N, and O 
in Figure 8-10 run two each). Large number of sessions may degrade performance of routers, due 
either to high memory or processing requirements. Methods such as confederations (RFC-5065) 
and route reflectors (RFC-4456) help improve the scalability of iBGP sessions. 

The BGP finite state machine (FSM) consists of six states (Figure 8-11): Idle, Connect, Active, 
OpenSent, OpenConfirm, and Established. To start participating in a BGP session with another 
router, a router first sets up a TCP connection on the BGP port 179 (states Connect and Active). If 
successful, the routers next exchange OPEN messages (states OpenSent and OpenConfirm). 
During the OPEN exchanges, BGP routers negotiate optional capabilities of the session, including 
multiprotocol extensions and various recovery modes. 
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Figure 8-10: Example of eBGP and iBGP sessions. 
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After the OPEN is completed and a BGP session is running, the BGP speakers transition to the 
Established state. They exchange UPDATE messages about destinations to which they offer 
connectivity (routing tables to all active routes). All subsequent UPDATE messages incrementally 
announce only routing entries that have changed since the last update. There are two kinds of 
updates: reachability announcements, which are changes to existing routes or new routes, and 
withdrawals of prefixes to which the speaker no longer offers connectivity (because of network 
failure or policy change). Both positive and negative reachability information can be carried in 
the same UPDATE message. In the protocol, the basic CIDR route description is called Network 
Layer Reachability Information (NLRI). NLRI includes the destination prefix, prefix length, path 
vector of the traversed autonomous systems and next hop in attributes, which can carry a wide 
range of additional information that affects the import policy of the receiving router. 

The exchanged routing tables are not necessarily the exact copies of their 
actual routing tables, because each router first applies the logic rules that 
implement its export policy. If a BGP speaker has a choice of several 
different routes to a destination, it will choose the best one according to 
its own local policies, and then that will be the route it advertises. Of 
course, a BGP speaker is not obliged to advertise any route to a 
destination, even if it knows one. For example, in Figure 1-51 ASη 
refuses to provide transit service to its peers and does not readvertise the 
destination in ASφ that it learned about from ASδ. 
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Each router integrates the received information to its routing table according to its import policy 
(or, acceptance policy). The rules defining the import policy are specified using attributes such as 
LOCAL_PREF and WEIGHT. These attributes are locally exchanged by routers in an AS (using 
iBGP), but are not disclosed to other ASs (using eBGP). A BGP speaker calculates the degree of 
preference for each external route based on the locally-configured policy, and includes the degree 
of preference when advertising a route to its internal peers. A receiving BGP speaker uses the 
degree of preference learned via LOCAL_PREF in its decision process and favors the route with 
the highest degree of preference. The rules for BGP route selection are summarized at the end of 
this section in Table 8-3. 

BGP Messages 

All BGP messages begin with a fixed-size header, 19-bytes long, that identifies the message type 
(Figure 8-12(a)). A description of the header fields is as follows: 

Marker: This 16-byte field is included for backwards compatibility; it must be set to all ones, 
unless when used for security purposes. 

Length: This 2-byte unsigned integer indicates the total length of the message, including the 
header, in bytes (or, octets). The value of the Length field must always be between 19 and 4096, 
and may be further constrained, depending on the message type. 

Type: This 1-byte unsigned integer indicates the type code of the message. BGP defines four type 
codes: {1 = OPEN; 2 = UPDATE; 3 = NOTIFICATION; 4 = KEEPALIVE}. 

The BGP message types are discussed next. 

• OPEN Messages (Figure 8-12(b)) 

After a TCP connection is established, the first message sent by each side is an OPEN message 
(Figure 8-12(b)). If the OPEN message is acceptable, a KEEPALIVE message confirming the 
OPEN is sent back. A description of the message fields is as follows: 

Version: Indicates the BGP protocol version number of the message; currently it is 4. 

My Autonomous System: Indicates the Autonomous System number of the router that sent this 
message. 

Hold Time: Indicates the proposed interval between the successive KEEPALIVE messages (in 
seconds). The receiving router calculates the value of the Hold Timer by using the smaller of its 
configured Hold Time and the Hold Time received in this OPEN message. A Hold Time value of 
zero indicates that KEEPALIVE messages will not be exchanged at all; otherwise, the minimum 
value is three seconds. 

BGP Identifier: Identifies the sending BGP router. The value of the BGP Identifier is determined 
upon startup and is the same for every local interface and BGP peer. 

Optional Parameters Length: Indicates the total length of the Optional Parameters field in 
bytes. If the value of this field is zero, no Optional Parameters are present. 

Optional Parameters: Contains a list of optional parameters, in which each parameter is 
encoded in TLV format <Type, Length, Value>. Parameter Type is a 1-byte field that 
unambiguously identifies individual parameters. Parameter Length is a 1-byte field that contains 
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the length of the Parameter Value field in bytes. Parameter Value is a variable length field that is 
interpreted according to the value of the Parameter Type field. 

The minimum length of an OPEN message is 29 bytes (including the message header). 

• KEEPALIVE Messages (Figure 8-12(c)) 

BGP does not use any TCP-based, keep-alive mechanism to determine if peers are reachable. 
Instead, KEEPALIVE messages are exchanged between peers at a rate that prevents the Hold 
Timer from expiring. A recommended time between successive KEEPALIVE messages is one-
third of the Hold Time interval. KEEPALIVE messages must not be sent more frequently than 
one per second. If the negotiated Hold Time interval is zero, then periodic KEEPALIVE 
messages will not be sent. 

A KEEPALIVE message (Figure 8-12(c)) consists of only the message header and has a total 
length of 19 bytes. 

(a) BGP header format

0 15 16 3123 24

MarkerMarker

LengthLength TypeType

0 7 8 15 16 3123 24

MarkerMarker

LengthLength Type: OPENType: OPEN VersionVersion

My autonomous systemMy autonomous system Hold timeHold time

BGP identifierBGP identifier

Optional parameters (variable)Optional parameters (variable)

Optional Optional paramsparams
lengthlength

(b) BGP OPEN message format

(c) BGP KEEPALIVE message format

0 15 16 3123 24

MarkerMarker

LengthLength
Type:Type:

KEEPALIVEKEEPALIVE

0 7 8 15 16 3123 24

MarkerMarker

LengthLength Error codeError code

Data (variable)Data (variable)
Error Error subcodesubcode

(d) BGP NOTIFICATION message format

Type:Type:
NOTIFICATIONNOTIFICATION

Figure 8-12: Format of BGP headers and messages, except for UPDATE (Figure 8-13). 
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• NOTIFICATION Messages (Figure 8-12(d)) 

A NOTIFICATION message is sent when an error condition is detected. The BGP connection is 
closed immediately after it is sent. In addition to the fixed-size BGP header, the NOTIFICATION 
message contains the following fields (Figure 8-12(d)): Error Code, Error Subcode, and Data of 
variable length. The Error Code indicates the type of error condition, while the Error Subcode 
provides more specific information about the nature of the reported error (Table 8-2). Each Error 
Code may have one or more Error Subcodes associated with it. If no appropriate Error Subcode is 
defined, then a zero (Unspecific) value is used for the Error Subcode field. 

The variable-length Data field is used to diagnose the reason for the NOTIFICATION. The 
minimum length of the NOTIFICATION message is 21 bytes (including message header). 

• UPDATE Messages (Figure 8-13) 

After the connection is established, BGP peers exchange routing information by using the 
UPDATE messages. The information in the UPDATE messages is used by the path-vector routing 
algorithm (Section 1.4.5) to construct a graph that describes the connectivity of the Autonomous 
Systems. By applying logical rules, routing information loops and some other anomalies may be 
detected and removed from inter-AS routing. 

An UPDATE message is used to advertise feasible routes that share common path attributes to a 
peer, and to withdraw multiple unfeasible routes from service. The UPDATE message always 
includes the fixed-size BGP header, and other fields, some of which may not be present in every 
UPDATE message (Figure 8-13(a)). 

Withdrawn Routes Length indicates the total length of the Withdrawn Routes field in bytes. A 
value of zero indicates that no routes are being withdrawn from service, and that the Withdrawn 
Routes field is not present in this UPDATE message. 

The Withdrawn Routes field contains a variable-length list of IP-address prefixes for the routes 
that are being withdrawn from BGP routing tables. Each prefix is encoded as a 2-tuple of the 
form <length, prefix>. The Length field indicates the length (in bits) of the prefix. A length of 

Table 8-2: BGP NOTIFICATION message error codes and subcodes. 

Code Description Subcodes (if present) 
1 Message 

header error 
1 – Connection not synchronized 3 – Bad message type 
2 – Bad message length  

2 OPEN 
message error 

1 – Unsupported version number 4 – Unsupported optional parameter 
2 – Bad peer AS 5 – Deprecated 
3 – Bad BGP identifier 6 – Unacceptable Hold Time 

3 UPDATE 
message error 

1 – Malformed attribute list 7 – Deprecated 
2 – Unrecognized well-known attribute 
3 – Missing well-known attribute 8 – Invalid NEXT_HOP attribute 
4 – Attribute flags error 9 – Optional attribute error 
5 – Attribute length error 10 – Invalid Network field 
6 – Invalid ORIGIN attribute 11 – Malformed AS_PATH 

4 Hold timer expired 
5 Finite state machine error 
6 Cease 
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zero indicates a prefix that matches all IP addresses. The Prefix field contains an IP-address 
prefix, possibly followed by padding bits to make the field length a multiple of 8 bits. 

Total Path Attribute Length indicates the total length of the Path Attributes field in bytes. A value 
of zero indicates that neither the Network Layer Reachability Information field nor the Path 
Attribute field is present in this UPDATE message. 

A BGP router uses the Path Attributes and Network Layer Reachability Information (NLRI) 
fields to advertise a route. The NLRI field contains a list of IP-address prefixes that can be 
reached by this route. The NLRI is encoded as one or more 2-tuples of the form <length, prefix>. 
This is the path-vector information used by the path-vector routing algorithm (Section 1.4.5). 

A variable-length sequence of Path Attributes is present in every UPDATE message, except for an 
UPDATE message that carries only the withdrawn routes. Each path attribute is a triple <type, 
length, value> of variable length (Figure 8-13(b)). 

Attribute Type field that consists of the Attribute Flags byte, followed by the Attribute Type Code 
byte (Figure 8-13(c)). The high-order bit (bit 0) of Attribute Flags is the Optional bit. It defines 
whether the attribute is optional (if set to 1) or well-known (if set to 0). The second bit is the 
Transitive bit. It defines whether an optional attribute is transitive (if set to 1) or non-transitive (if 
set to 0). For well-known attributes, the Transitive bit must be set to 1. The third bit is the Partial 
bit that defines whether the information contained in the optional transitive attribute is partial (if 
set to 1) or complete (if set to 0). For well-known attributes and for optional non-transitive 
attributes, the Partial bit must be set to 0. The fourth bit of Attribute Flags is the Extended Length 
bit. It defines whether the following Attribute Length field is one byte (if set to 0) or two bytes (if 
set to 1). The lower-order four bits of Attribute Flags are unused. They are set to zero by the 
sender, and ignored by the receiver. 

The Attribute Type Code field contains the Attribute Type Code. Attribute Type Codes defined in 
RFC-4271 are discussed next. 

0 7 8 15 16 3123 24

MarkerMarker

LengthLength Type: Type: UPDATEUPDATE

Withdrawn routes (variable)Withdrawn routes (variable)

Withdrawn routes lengthWithdrawn routes length

Path attributes (variable)Path attributes (variable)

Total path attribute lengthTotal path attribute length

Network layer Network layer reachabilityreachability information (variable)information (variable)

(a) BGP UPDATE message format (c) Attribute type format

Attribute type (2 bytes)Attribute type (2 bytes) Attrib. length (1 or 2 bytes)Attrib. length (1 or 2 bytes)

Attribute value (variable)Attribute value (variable)

(b) Path attribute format

Attribute
type codeO T P E 0

Attribute flags

Optional
Transitive

Partial
Extended Length

Figure 8-13: Format of BGP UPDATE message. 
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BGP Path Attributes 

This section discusses the path attributes of the UPDATE message (Figure 8-13). A BGP route 
announcement (UPDATE message) has a set of attributes associated with each destination prefix. 
Path attributes can be classified as: (1) well-known mandatory; (2) well-known discretionary; (3) 
optional transitive; and, (4) optional non-transitive. A BGP router must recognize all well-known 
attributes. Some of these attributes are mandatory and must be included in every UPDATE 
message that contains Network Layer Reachability Information (NLRI). Others are discretionary 
and may or may not be sent in a particular UPDATE message. Once a BGP peer has updated any 
well-known attributes, it must pass these attributes to its peers in any updates it transmits. 

In addition to well-known attributes, each path may contain one or more optional attributes. It is 
not required or expected that all BGP implementations support all optional attributes. The 
handling of an unrecognized optional attribute is determined by the value of the Transitive flag 
(Figure 8-13(c)). 

• ORIGIN (type code 1) is a well-known mandatory attribute. The ORIGIN attribute describes 
how BGP at the origin AS came to know about destination addresses aggregated in a prefix. The 
allowed values are: code 1 (IGP) means that the prefix was learned from an interior gateway 
protocol (IGP); code 2 (EGP) means that the prefix was learned from an exterior gateway 
protocol; and, code 3 (INCOMPLETE) represents another source, usually a manually configured 
static route. The value of ORIGIN should not be changed by any other speaker. 

• AS_PATH (type code 2) is a well-known mandatory attribute. This attribute lists the 
autonomous systems through which this UPDATE message has traversed (in reverse order). This 
list is called a path vector and hence BGP is a path vector protocol (Section 1.4.5). Every router 
through the message passes prepends its own AS number (ASN) to AS_PATH and propagates the 
UPDATE message on (subject to its route filtering rules). An example is shown in Figure 1-51 and 
a detail in Figure 8-14. When a given BGP speaker advertises the route to an internal peer (over 
iBGP), the advertising speaker does not modify the AS_PATH attribute. 

BGP uses the AS_PATH attribute to detect a potential routing loop. When an external UPDATE 
message is received (over eBGP), if the ASN of this BGP speaker is already contained in the path 
vector, then the route should be rejected. 

The speaker that modifies AS_PATH may prepend more than one instance of its own ASN in the 
AS_PATH attribute. This is controlled via local configuration. 

• NEXT_HOP (type code 3) is a well-known mandatory attribute. It defines the IP address of the 
next-hop speaker to the destinations listed in the UPDATE message (in NLRI). As the UPDATE 
message propagates across an AS boundary, the NEXT_HOP attribute is changed to the IP address 
of the speaker from which this announcement was received (Figure 8-14). (The reader should 
check RFC-4271 about detailed rules for modifying the NEXT_HOP attribute.) 



Ivan Marsic • Rutgers University 360

When sending UPDATE to an internal peer, if the route is originated externally to this AS, the 
BGP speaker should not modify the NEXT_HOP attribute unless it has been explicitly configured 
to announce its own IP address as the NEXT_HOP. This is because UPDATE messages to internal 
peers are sent by iBGP over the TCP connection, which runs on top of an IGP. On the other hand, 
when announcing a route to a local destination within this AS, the BGP speaker should use as the 
NEXT_HOP the IP address of the first router that announced the route. 

As Figure 8-14 shows, all BGP speakers in an AS have the same BGP routing table (ASδ BGP 
routing table is shown). The forwarding table is created based on the AS BGP routing table and 
the IGP routing table (which is, naturally, different for each router). 

The immediate next-hop address is determined by performing a recursive route lookup operation 
for the IP address in the NEXT_HOP attribute, using the contents of the Routing Table, selecting 
one entry if multiple entries of equal cost exist. The Routing Table entry that resolves the IP 
address in the NEXT_HOP attribute will always specify the outbound interface. If the entry 
specifies an attached subnet, but does not specify a next-hop address, then the address in the 
NEXT_HOP attribute should be used as the immediate next-hop address. If the entry also specifies 
the next-hop address, this address should be used as the immediate next-hop address for packet 
forwarding. 

• MULTI_EXIT_DISC (type code 4) is an optional non-transitive attribute that is intended to be 
used on external (inter-AS) links to discriminate among multiple exit or entry points to the same 
neighboring AS. To motivate the need for this attribute, consider the example in Figure 8-15 
(extracted from Figure 1-51), where Autonomous Systems ASα and ASδ are linked at multiple 
points. Suppose that router A in ASα receives a data packet from ASχ that is destined for ASη. 
ASα would prefer to get rid of the packet in a hurry (“hot-potato” routing) and simply forward it 
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Figure 8-14: Example of BGP UPDATE message propagation, originating from ASφ. 
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to router K in ASδ. However, ASδ would prefer to receive packets for ASη on the other point 
(router N), because this is less expensive for ASδ—the packet would be immediately forwarded 
by N to ASη instead of traversing ASδ’s interior routers. If there were no financial settlement 
involved, ASα would simply implement its own preferences. However, because ASδ pays ASα 
for transit service (Figure 1-49), ASα has to honor ASδ’s preferences. Earlier we described how a 
BGP router uses the attribute LOCAL_PREF to integrate the received routing advertisement into 
its routing table. However, because LOCAL_PREF expresses the local preferences, it is not useful 
to express another AS’s preferences. For this purposed the MULTI_EXIT_DISCRIMINATOR 
(MED) attribute is used. 

The value of the MULTI_EXIT_DISC (MED) attribute is a four-byte integer, called a metric, and 
the standard does not prescribe how to choose the MED metric. A common practice is to derive 
the MED metric from the local IGP metric. All other factors being equal, the exit point with the 
lower metric should be preferred. In Figure 8-15, router N advertises a prefix in ASη with MED = 
100, but router K advertises the same prefix with MED = 300. Based on this, ASα should deliver 
packets destined for ASη to router N. One the other hand, ASδ would prefer to receive destined 
packets for ASγ or ASφ on router K, so it will choose opposite values of MED attribute when 
advertising prefixes in ASγ or ASφ. 

In peering relationships between ASs, (Section 1.4.5), the MED attribute is usually ignored. The 
usage of the MED attribute becomes complicated when a third AS advertises the same route, 
because the IGP metrics used by different ASs can be different. In such a case, comparing a MED 
metric received from one AS with another MED metric received from another AS makes no sense. 

There are three more path attributes (LOCAL_PREF, ATOMIC_AGGREGATE, and 
AGGREGATOR), and the interested reader should check RFC-4271. Table 8-3 summarizes how a 
BGP router that learned about more than route to a prefix selects one. The router will select the 
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Figure 8-15: Example for BGP MULTI_EXIT_DISC (MED) attribute. 
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next hop along the first route that meets the criteria of the logical rule, starting with the highest 
priority (1) and going down to the lowest priority (6). 

8.2.4 Multicast Routing Protocols 

Multicast Group Management 

Internet Group Management Protocol (IGMP) is used by an end-system to declare membership in 
particular multicast group to the nearest router(s). IGMP v3 (current) is defined by RFC-3376. 

Version 1: Timed-out Leave (Joining Host send IGMP Report; Leaving Host does nothing; 
Router periodically polls hosts on subnet using IGMP Query; Hosts respond to Query in a 
randomized fashion) 

Version 2: Fast, Explicit Leave (ADDS to Version 1: Group Specific Queries; Leave Group 
Message; Host sends Leave Group message if it was the one to respond to most recent query; 
Router receiving Leave Group message queries group.) 

Version 3: Per-Source Join (ADDS to Version 2: Group-Source Specific Queries, Reports and 
Leaves; Inclusion/Exclusion of sources) 

Multicast Route Establishment 

Protocol Independent Multicast (PIM), RFC-4601 defines Protocol Independent Multicast – 
Sparse Mode (PIM-SM); RFC-3973 defines Protocol Independent Multicast – Dense Mode (PIM-
DM). PIM operates independently of the underlying unicast protocol, such as IS-IS or OSPF. It 
supports applications that operate with fewer servers transmitting to multiple destinations (called 
the dense mode) or numerous small workgroups operating in different multicast groups (called 
the sparse mode). 

 

Table 8-3: Priority of rules by which BGP speaker selects routes from multiple choices. 

Priority Rule Comments 

1 LOCAL_PREF E.g., LOCAL_PREF specifies the order of preference as 
customer > peer > provider 

If more than one route remains after this step, go to the next step. 

2 AS_PATH Select shortest AS_PATH length (i.e., the list with the smallest 
number of ASNs, not smallest number of hops or lowest delay!) 

3 MED Select the route with the lowest MULTI_EXIT_DISC value, if 
there is financial incentive involved. 

4 IGP path Select the route for which the NEXT_HOP attribute, for which the 
cost in the IGP routing table is lowest, i.e., use hot-potato routing. 

5 eBGP > iBGP Select the route which is learned from eBGP over the one learned 
by iBGP (i.e., prefer the route learned first hand) 

6 Router ID Select the BGP router with the smallest IP address as the next hop. 
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Distance Vector Multicast Routing Protocol (DVMRP), defined in RFC-1075. DVMRP is an 
enhancement of Reverse Path Forwarding (RPF, Section 3.3.2) that: Uses Distance Vector 
routing packets for building tree; Prunes broadcast tree links that are not used (non-membership 
reports); Allows for Broadcast links (LANs). 

Multicast Forwarding in DVMRP: 1. check incoming interface: discard if not on shortest path to 
source; 2. forward to all outgoing interfaces; 3. do not forward if interface has been pruned; 4. 
prunes timeout every minute. 

 

Source-Specific Multicast (SSM), defined in RFC-3569 and RFC-4607. 

Multicast Open Shortest Path First (MOSPF); RFC-1584 defines multicast extensions to OSPF. 

For independent Autonomous Systems, Border Gateway Multicast Protocol (BGMP) was 
abandoned due to the lack of support within the Internet service provider community. 
Multiprotocol Extensions for BGP4, defined in RFC-2858 defines the codes for Network Layer 
Reachability Information (NLRI) that allow BGP to carry multicast information. This information 
is used by other (i.e., multicast) protocols for multicast forwarding. Multicast Source Discovery 
Protocol (MSDP) defined in RFC-3618, can be used to connect together rendezvous points in 
different PIM sparse mode domains (see RFC-4611 for MSDP deployment scenarios). 

Additional information: see RFC-3170 – “IP Multicast Applications: Challenges & Solutions” 

An excellent overview of the current state of multicast routing in the Internet is RFC-5110 
(January 2008). 

 

8.3 Address Translation Protocols 
 

8.3.1 Address Resolution Protocol (ARP) 

In Chapter 1 we saw that different protocol layers use different addressing systems. The network-
layer Internet Protocol uses IPv4 or IPv6 addresses that are assigned by an Internet authority. 
Link-layer protocols (Ethernet and Wi-Fi) use MAC addresses that are assigned by the hardware 
manufacturer. One may wonder, why cannot we use a single addressing system, e.g., MAC 
addresses that are assigned to all network interface cards? Computer hardware and software are 
abstract so everything may seem possible to make. To understand better why we need two (or 
more) addressing systems, let us look at real-world physical objects, such as vehicles. (See also 
Sidebar 1.2 in Section 1.4.4.) As shown in Figure 8-16, every vehicle comes with a vehicle 
identification number (VIN) that is assigned by the manufacturer and engraved at several 
locations in the vehicle. Every vehicle also has a registration plate with a unique number. Both 
numbers can be considered “addresses” of the car. So, why not to use the VIN number for the 
registration plates, as well? Because VINs are assigned by the manufacturer and vehicles of the 
same manufacturer are bought by customers all around the world, it is impossible to embed into 
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the address anything specific to a geographic locale or organization that owns cars. Having 
registration plate number assigned by a local authority makes possible to have for location-
specific addresses. Therefore, we need both: the manufacturer needs to be able to distinguish their 
different products and organizations need location-specific addresses. 

A key benefit of location-specific network addresses is the ability to aggregate many addresses by 
address prefixes, which reduces the amount of information carried in routing advertisements or 
stored in the forwarding tables of routers. 

Let us assume that a node has a packet for a certain destination. The network-layer protocol (IP) 
at the node looks up the forwarding table and determines the IP address of the next-hop node. 
Before calling the send() method of the link-layer protocol (see Listing 1-1 in Section 1.1.4), 
the network-layer send() must translate the next-hop IP address to the link-layer address of the 
next-hop node. Recall that Point-to-Point Protocol (PPP, Section 1.5.1) does not use link-layer 
addresses because it operates over a point-to-point link directly connecting two nodes, one on 
each end of the link. However, broadcast-based link-layer protocols, such as Ethernet (Section 
1.5.2) or Wi-Fi (Section 1.5.3) must use link-layer addresses because many nodes are 
simultaneously listening on the channel. Because broadcast-based link-layer protocols implement 
Medium Access Control (MAC), these addresses are called MAC addresses. To send the packet 
to the next-hop node, the node needs a mechanism to translate from a (network-layer) IP address 
to a (link-layer) MAC address. This is the task of the Address Resolution Protocol. 

Address Resolution Protocol (ARP) translates an IP address to a MAC address for a node that is 
on the same broadcast local-area network (or, subnet). ARP cannot translate addresses for hosts 
that are not on the same subnet; if such attempt is made, ARP returns an error. When a sender 
wants a translation, it looks up an ARP table on its node, which contains mappings of network-
layer IP addresses to MAC addresses. 

If the ARP table does not contain an entry for the given IP address, it broadcasts a query ARP 
packet on the LAN (Figure 8-17). (The MAC broadcast address in hexadecimal notation is 

1P3BP49K7JF1119661P3BP49K7JF111966

Vehicle identification number (VIN)

Registration plate

 

Figure 8-16: Why multiple addressing conventions are necessary. 
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FF-FF-FF-FF-FF-FF.) The node that owns the IP address replies with an ARP packet containing 
the responder’s MAC address. The reply is sent to the querier’s MAC address, available from the 
ARP request. 

Figure 8-18 shows the ARP packet format for mapping IPv4 addresses to MAC addresses. In this 
case, the ARP packet size is 28 bytes. ARP can be used for other kinds of mappings, with 
different address sizes, as standardized by the IANA (http://iana.org/). The packet fields are: 

• Hardware Type: specifies the link-layer protocol type. For example, the code for Ethernet is 1. 

• Protocol Type: specifies the upper layer protocol for which the ARP request is intended. For 
example, IPv4 is encoded as 0x0800. 

• Hardware Length: length (in bytes) of a hardware address. Ethernet addresses size is 6 bytes (48 
bits). 

• Protocol Length: length (in bytes) of a logical address of the network-
layer protocol. IPv4 address size is 4 bytes (32 bits). 

• Operation: specifies the operation what the sender is performing: 1 for 
request, 2 for reply. 

• Sender Hardware Address: hardware (MAC) address of the sender. 

• Sender Protocol Address: upper-layer protocol address of the sender, e.g. 
IP. 

• Target Hardware Address: hardware (MAC) address of the intended receiver. This field is 
ignored in request operations. 

• Target Protocol Address: upper layer protocol address of the intended receiver. 

The graphic on the right shows ARP as a link-layer protocol. This is somewhat controversial 
because ARP uses another link-layer protocol for sending ARP packets, and ARP deals with 
network-layer, IP addresses. The reason to classify ARP as a link-layer protocol is that it operates 
over a single link connecting nodes on the same local-area network. Unlike network-layer 
protocols, it does not span multiple hops and does not send packets across intermediate nodes. 

Target

IP:     192.200.96.23
MAC: A3-B0-21-A1-60-35

IP:     192.200.96.22
MAC: 00-01-03-1D-CC-F7

Sender

IP:     192.200.96.21
MAC: 01-23-45-67-89-AB

IP:     192.200.96.20
MAC: 49-BD-2F-54-1A-0F

Sender MAC: 01Sender MAC: 01--2323--4545--6767--8989--ABAB
Sender IP: 192.200.96.21Sender IP: 192.200.96.21
Target IP: Target IP: 192.200.96.23192.200.96.23

ARP Request: to FF-FF-FF-FF-FF-FF

Sender MAC: 01Sender MAC: 01--2323--4545--6767--8989--ABAB
Sender IP: 192.200.96.21Sender IP: 192.200.96.21
Target IP: Target IP: 192.200.96.23192.200.96.23

ARP Request: to FF-FF-FF-FF-FF-FF

Sender MAC: Sender MAC: A3A3--B0B0--2121--A1A1--6060--3535
Sender IP: 192.200.96.23Sender IP: 192.200.96.23
Target MAC: 01Target MAC: 01--2323--4545--6767--8989--ABAB
Target IP: 192.200.96.21Target IP: 192.200.96.21

ARP Reply

Sender MAC: Sender MAC: A3A3--B0B0--2121--A1A1--6060--3535
Sender IP: 192.200.96.23Sender IP: 192.200.96.23
Target MAC: 01Target MAC: 01--2323--4545--6767--8989--ABAB
Target IP: 192.200.96.21Target IP: 192.200.96.21

ARP Reply

Figure 8-17: ARP request and response example. 
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ARP solves the problem of determining which MAC address corresponds to a given IP address. 
Sometimes the reverse problem has to be solved: Given a MAC address, determine the 
corresponding IP address. An early solution was to use Reverse ARP (RARP) for this task. RARP 
is now obsolete and it is replaced by Dynamic Host Configuration Protocol (DHCP), reviewed in 
the next section. 

In the next generation Internet Protocol, IPv6, ARP’s functionality is provided by the Neighbor 
Discovery Protocol (NDP). 

8.3.2 Dynamic Host Configuration Protocol (DHCP) 

To send a packet on the Internet, a computer must have a network address (IP address). This 
address is associated with the location of the computer, specifically with the network to which the 
computer is attached (Section 1.4.4). Dynamic Host Configuration Protocol (DHCP) supports 
automatic assignment of IP addresses to new hosts, known as plug-and-play. When a new 
computer is attached to a local-area network, the computer broadcasts a DHCP message asking 
“Router, give me a network address.” The router maintains a pool of free network addresses and 
assigns one to this computer with a specified time-to-live (say one hour). The computer can then 
start using the standard Internet applications. As the time-to-live becomes close to zero, the 
computer asks the router for an extension, which is normally granted. If the user unplugs the 
computer, there will be no message asking for extension, so the router will return this network 
address to the pool of free addresses. 

8.3.3 Network Address Translation (NAT) 

Network Address Translation (NAT) is an Internet Engineering Task Force (IETF) standard used 
to allow multiple computers on a private network (using private address ranges such as 
10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16) to share a single, globally routable IPv4 address. 

0 15 16 317 8

Protocol addr len = 4

Protocol type = 0x0800Hardware type = 1

Target hardware address (6 bytes)

Sender hardware address (6 bytes)

Target protocol address

Hardware addr len = 6

Sender protocol address (last 2 bytes)

Sender protocol address (first 2 bytes)
28

bytes

Operation

 

Figure 8-18: ARP packet format for mapping IPv4 addresses into MAC addresses. 
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NATs are often deployed because public IPv4 addresses are becoming scarce. Companies often 
use NAT devices to share a single public IPv4 address among dozens or hundreds of systems that 
use private, often duplicated IPv4 addresses. These private IPv4 addresses cause problems if 
inadvertently leaked across the public Internet by private IP-based networks. 

The NAT router translates traffic coming into and leaving the private network. NAT allows a 
single device, such as a router, to act as agent between the Internet (or, “public network”) and a 
local (or, “private”) network. This means that only a single unique IP address is required to 
represent an entire group of computers to anything outside their network. 

NAT is an immediate but temporary solution to the IPv4 address exhaustion problem that will 
eventually be rendered unnecessary with IPv6 deployment. However, the shortage of IP addresses 
in IPv4 is only one reason to use NAT. Two other reasons are: 

· Security 

· Administration 

Implementing dynamic NAT automatically creates a firewall between your internal network and 
outside networks or the Internet. Dynamic NAT allows only connections that originate inside the 
stub domain. Essentially, this means that a computer on an external network cannot connect to 
your computer unless your computer has initiated the contact. NAT provides a simple packet 
filtering function by forwarding only solicited traffic to private network hosts. Solicited traffic is 
traffic that was requested by a private network host. For example, when a private host computer 
accesses a Web page, the private host computer requests the page contents from the Web server. 
The traffic for the Web page contests is solicited traffic. By default, a NAT does not forward 
unsolicited traffic to private network hosts. Therefore, you can browse the Internet and connect to 
a site, even download a file. However, somebody else cannot simply latch onto your IP address 
and use it to connect to a port on your computer. 

Static NAT, also called inbound mapping, allows connections initiated by external devices to 
computers on the stub domain to take place in specific circumstances. For instance, you may wish 
to map an inside global address to a specific inside local address that is assigned to your Web 
server. Static NAT (inbound mapping) allows a computer on the stub domain to maintain a 
specific address when communicating with devices outside the network. 

8.3.4 Mobile IP 

Mobility is the quality of being capable of movement or moving readily from place to place. 
Wireless devices provide this kind of untethered freedom, but mobility means more than the lack 
of a network cable. Many terms describe mobility, but this chapter uses the terms mobility and 
roaming to describe the act of moving between access points. 

Defining or characterizing the behavior of roaming stations involves two forms: 

    * Seamless roaming 

    * Nomadic roaming 

Seamless roaming is best analogized to a cellular phone call. For example, suppose you are using 
your cellular phone as you drive your car on the freeway. A typical global system for mobile 
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(GSM) communications or time-division multiple access (TDMA) cell provides a few miles of 
coverage area, so it is safe to assume that you are roaming between cellular base stations as you 
drive. Yet as you roam, you do not hear any degradation to the voice call (that is what the cellular 
providers keep telling us). There is no noticeable period of network unavailability because of 
roaming. This type of roaming is deemed seamless because the network application requires 
constant network connectivity during the roaming process. 

Nomadic roaming is different from seamless roaming. Nomadic roaming is best described as the 
use of an 802.11-enabled laptop in an office environment. As an example, suppose a user of this 
laptop has network connectivity while seated at his desk and maintains connectivity to a single 
AP. When the user decides to roam, he undocks his laptop and walks over to a conference room. 
Once in the conference room, he resumes his work. In the background, the 802.11 client has 
roamed from the AP near the user's desk to an AP near the conference room. This type of 
roaming is deemed nomadic because the user is not using network services when he roams, but 
only when he reach his destination. 

The Nomadic Mobility Problem 

Internet hosts are widely known by their IP addresses. We also know that routers use the CIDR 
scheme to aggregate sets of contiguous IP addresses and, therefore, simplify the task of routing 
messages (Section 1.4.4). Imagine you are traveling and you need a means to allow your friends 
to send you messages while you are away. If this is a short travel, your visiting address(es) will 
not enter the “infrastructure” records, such as those of government agencies or public registries. 
You could designate a care-of agent to whom the post office will deliver your mail, which you 
will collect when returning back. However, if you want your mail forwarded to your visiting 
location, you need to let the postal office know your visiting address, which may be difficult if 
you do not know where you will be staying or will be staying at different locations only briefly 
and unpredictably. One option is that you explicitly notify your care-of agent every time you 
arrive at a visiting address. Notice that there is a built-in inefficiency when relying on a care-of 
agent instead of the infrastructure registries, because every communication must first travel to 
your home address (known to the infrastructure registries), and then be redirected by your care-of 
agent to your visiting address. In the worst case, you may be located near the sender and far away 
from home, so the mail needs to make an unnecessary trip to your home and back. We will see 
that the Internet functions in a similar manner. 

The Mobile IP Protocol 

Mobile IP is a network-layer protocol (or Layer-3 protocol in the OSI architecture). We have 
already seen in Section 1.5.3 how extended service set (ESS) specification supports mobility of 
Wi-Fi hosts in IEEE 802.11 networks (Figure 1-69). ESS is a link-layer (or Layer-2 protocol in 
the OSI architecture) mechanism for mobility support. Mobile IP allows location-independent 
routing of datagrams to a mobile host that is identified by its home address. The home address 
will not change no matter which visiting network the mobile terminal is connected to. When the 
mobile terminal roams to a visiting network, the visiting network will assign a care-of address to 
the mobile terminal. The information of this care-of address is sent back to the home agent (HA) 
in the home network (Figure 8-19). The home agent keeps the association of the care-of address 
and the mobile terminal’s home address. The IP tunnel may be built to connect the mobile 
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terminal and the home agent through the Internet cloud. For any packets received in the home 
agent, the home agent will forward them to the mobile terminal through the tunnel. Mobile IP 
provides an efficient mechanism for roaming within the Internet. Using Mobile IP, nodes may 
keep its connection to the Internet without changing their home IP address. Therefore, the 
location changing in the network is transparent to the correspondent node (CN). Node mobility is 
realized without the need to propagate the changed location on the network. 

 

8.4 Domain Name System (DNS) 
 

To facilitate network management and operations, the Internet Community has defined the 
Domain Name System (DNS). An application that wants to send a message to another application 
on remote computer uses DNS to find the remote computer’s IP address given its name. A 
domain refers to a subdivision of a wide area network. Names are hierarchical and a major 
subdivision is the top-level domain, which is broken into organizational and geographic domains. 
The geographic or country domains use two letters to identify a country and there are 225 country 
domain labels. For example, .us stands for the United States, .ru stands for Russia, and .it stands 
for Italy. A name like university.edu is found registered with a .edu registrar, and within 
the associated network other names like mylab.department.university.edu can be 
defined, with obvious hierarchy. Security extensions allow a registry to sign the records it 
contains and in this way demonstrate their authenticity. 

Correspondent node (CN)

Mobile node (MN)

Home Agent (HA)

1

2

3

4

Foreign Agent (FA)

Figure 8-19: Mobile IP. 
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Domain Name System is a kind of an address translation protocol (Section 8.3). As shown in 
Figure 1-37, it translates from the computer name (application-layer address) to a network-layer 
address. We consider it separately because of its importance and complexity. Unlike the protocols 
described in Section 8.3, which translate addresses for nodes on the same subnet, DNS resolves 
host names for hosts anywhere in the Internet. 

 

8.5 Network Management Protocols 
 

Network management tools allow network administrators to monitor network performance, 
failures, security, and help with accounting management. A basic requirement is to support 
isolating, diagnosing, and reporting problems to facilitate quick repair and recovery. More 
advanced features include support for data analytics to predict potential problems, so the network 
manager can take action before the problem occurs. A number of communication protocols exist 
for gathering information from network devices. This section reviews some of them. 

8.5.1 Internet Control Message Protocol (ICMP) 

Internet Control Message Protocol (ICMP) provides a mechanism for communicating control 
messages and error reports. Both routers and hosts use ICMP to transmit problem reports about 
datagrams back to the datagram source. In addition, ICMP includes an echo request/reply that can 
be used to determine if a destination is reachable and if so, is responding. ICMP specifies the 
format of control messages and when routers should send them. ICMP messages are delivered by 
IP, as the payload of IP datagrams. 

8.5.2 Simple Network Management Protocol (SNMP) 

SNMP is the protocol that provides the query language for gathering the information and for 
sending it to the console. The current version is SNMPv3. In general, the SNMP management 
system will discover the topology of the network automatically and will display it on the 
management console in the form of a graph. From this display, the human network manager can 
select a particular segment of the network to view its status in greater detail. 

Each network device hosts a software agent that gathers information about the status of that 
device into a Management Information Base (MIB) and sends it to the network management 
system (NMS), as shown in Figure 8-20(a). SNMP defines seven message types for accessing 
management information in a client-server relationship (Figure 8-20(b)). Here the NMS is the 
client and the agent is the server. The message types are as follows: 
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• GetRequest: This is the most commonly used SNMP message and is sent from the manager 
(NMS) to the agent to retrieve the value of a specific management variable. The manager must 
send out one GetRequest for each value of a variable that needs to be retrieved. 

• GetNextRequest: This message is used by an NMS for requesting the next variable in a list or 
table of variables. It is used mostly to retrieve the values of entries in the MIB if the network 
manager does not know how many variables there are in the MIB for a certain event. 

• GetBulkRequest: (not in SNMPv1) This message is sent by an NMS to retrieve large blocks of 
data, such as multiple rows in a table. 

• Response: An agent sends this message to a manger/NMS in response to GetRequest or 
GetNextRequest messages. It contains the value of the variable requested by the manager. 

• SetRequest: The manager/NMS sends a SetRequest message to an agent to create, store, or 
modify an information variable. The agent must reply using a Response message. 

Managed device

MIBMIB

Network management system (NMS)

Messages

SNMP 
manager 
(client)

SNMP 
manager 
(client)

SNMP 
agent 

(server)

SNMP 
agent 

(server)

(a)

(b)

Network

Agent

Managed
objects

GetRequest

GetNextRequest

ResponseResponse

ResponseResponse

GetBulkRequest

SetRequest

ResponseResponse

ResponseResponse

TrapTrap

InformRequestInformRequestInformRequestInformRequest
NMS

Figure 8-20: (a) SNMP architecture. (b) SNMPv3 message types and their flows. 
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• Trap: An agent sends a Trap message to an NMS to report an event when a certain set of 
circumstances arises. This is done autonomously, without any request from the manager. For 
example, if the agent resides in a router that is rebooted, the agent informs the manager of this 
event and reports the time of the rebooting. 

• InformRequest: (not in SNMPv1, supports MoM architectures) This message is sent by an NMS 
to notify another NMS of information in a MIB table that is remote to the receiving manager. 

SNMPv2 and SNMPv3 enhanced the original version of SNMP (SNMPv1) with additional 
message types for establishing multiple manager entities within a single network to support 
distributed management. Distributed management means that NMSs and agents are spread out 
across the internetwork. A hierarchical distributed arrangement can be used, whereby distributed 
NMSs send data to more powerful central NMSs using a Manager-of-Managers (MoM) 
architecture. A centralized system that manages distributed NMSs is sometimes called an 
umbrella NMS. The advantages of distributed management include resilience to failures and the 
ability to reduce network-management overhead by filtering data at distributed NMSs before 
sending them to the central stations. On the downside, distributed management is complex and 
hard to operate, and more susceptible to security breaches. 

SNMP is an application-layer protocol and it operates over the user datagram protocol (UDP). As 
a result, SNMP is a connectionless protocol. No continuous connections exist between a 
management console and its agent so that each message between them is a separate transaction. 

 

8.6 Multimedia Application Protocols 
 

Multimedia application protocols include RTP and RTCP, which are described in Section 3.3.1. 

8.6.1 Session Description Protocol (SDP) 

Peer ends of a multimedia application use the Session Description Protocol (SDP), to offer and 
accept (or not) codecs, decide the port number and IP address for where each endpoint wants to 
receive their RTP packets (Section 3.3.1). SDP packets are transported by SIP. 

8.6.2 Session Initiation Protocol (SIP) 

The Session Initiation Protocol is an application-layer control (signaling) protocol for creating, 
modifying and terminating multimedia sessions on the Internet, meant to be more scalable than 
H.323. Multimedia sessions can be voice, video, instant messaging, shared data, and/or 
subscriptions of events. SIP can run on top of TCP, UDP, SCTP, or TLS over TCP. SIP is 
independent of the transport layer, and independent of the underlying IPv4/v6 version. In fact, the 
transport protocol used can change as the SIP message traverses SIP entities from source to 
destination. SIP itself does not choose whether a session is voice or video—the SDP does it. 
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8.7 Summary and Bibliographical Notes 
 

The best source of information about the Internet protocols are Requests for Comments (RFCs) 
published by the Internet Engineering Task Force (IETF), which can be found online at: 
http://www.ietf.org/rfc.html. For a complete listing of all protocols in the IP stack, their standards 
statuses, and reference to their RFC documents, see http://www.rfc-editor.org/rfcxx00.html, which is 
updated daily. 

Section 8.1: Internet Protocol Version 6 (IPv6) 

The IETF solicited proposals for a next generation Internet Protocol (IPng) in July of 1992. A 
number of proposals were received and by 1994 the design and development of a suite of 
protocols and standards now known as Internet Protocol Version 6 (IPv6) was initiated. A major 
milestone was reached in 1995 with the publication of RFC-1752 (“The Recommendation for the 
IP Next Generation Protocol”). Overall specification of IPv6 is defined in RFC-2460 [Deering & 
Hinden, 1998]. The address structure of IPv6 is defined in RFC-2373. The format of IPv6 global 
unicast addresses is defined in RFC-3587 (obsoletes RFC-2374). Great deal of information about 
IPv6 can be found at the IPv6.com webpage, at http://www.ipv6.com. Also [Huitema, 1998] 

At the time of this writing (2010), IPv6 is not widely adopted. One of the greatest obstacles to 
wider adoption of IPv6 is that it lacks backwards compatibility with IPv4. However, fewer than 
10% of IPv4 addresses remain unallocated and industry experts predict the rest of the IPv4 
address supply will run out in 2012. Therefore, it can be expected that the adoption rate will grow 
rapidly. The IPv6 Forum (http://www.ipv6forum.com/) verifies protocol implementation and 
validates interoperability of IPv6 products. The IPv6 Forum has a service called IPv6 Ready 
Logo (http://www.ipv6ready.org/), which is a qualification program that assures devices they test are 
IPv6 capable. Actual testing in the U.S. is performed by the IPv6 Testing Consortium at the 
University of New Hampshire (http://www.iol.unh.edu/services/testing/ipv6/), which is a pioneer in 
IPv6 testing. 

Section 8.2: Routing Protocols 

The Routing Information Protocol (RIP) was the initial routing protocol in the ARPAnet. RIP was 
originally designed for Xerox PARC Universal Protocol (where it was called GWINFO) and used 
in the Xerox Network Systems (XNS) protocol suite. RIP became associated with both UNIX and 
TCP/IP in 1982 when the Berkeley Software Distribution (BSD) version of UNIX began shipping 
with a RIP implementation referred to as routed (pronounced “route dee”). RIP, which is still a 
very popular routing protocol in the Internet community, is formally defined in the XNS Internet 
Transport Protocols publication (1981) and in RFC-1058 (1988). RIP version 2 (for IPv4) is 
defined in RFC-1723. This document does not change the RIP protocol per se; rather, it provides 
extensions to the message format that allows routers to share important additional information. 

Open Shortest Path First (OSPF) is a link-state routing protocol defined in RFC-2328. OSPF was 
designed to advertise the subnet mask with the network. OSPF supports variable-length subnet 
masks (VLSM), disjointed subnets, and supernetting. 
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Border Gateway Protocol (BGP) was designed largely to handle the transition from a single 
administrative entrity (NSFNet in the US in 1980s) to multiple backbone networks run by 
competitive commercial entities. Border Gateway Protocol version 4 (BGP4) is defined in RFC-
4271 [Rekhter et al., 2006], which obsoletes RFC-1771. See also RFC-4274 and RFC-4276. 
[Stewart, 1999] provides a concise overview of BGP4, although it does not include the latest 
updates. BGP4 and CIDR (Section 1.4.4) have played a key role in enabling the Internet to scale 
to its current size. Large ISPs use path aggregation in their BGP advertisements to other 
Autonomous Systems. An ISP can use CIDR to aggregate the addresses of many customers into a 
single advertisement, and thus reduce the amount of information required to provide routing to 
customers. 

IETF specified routing protocols that work with IPv6 include RIP for IPv6 [RFC-2080], IS-IS for 
IPv6 [RFC-5308], OSPF for IPv6 [RFC-5340], and BGP-4 for IPv6 [RFC-2545]. 

Section 8.3: Address Translation Protocols 

Address Resolution Protocol (ARP) is defined in RFC-826. Reverse Address Resolution Protocol 
(RARP) is defined in RFC-903. Inverse Address Resolution Protocol (InARP) is defined in 
RFC-2390. RARP is now obsolete (succeeded by DHCP), and InARP is primarily used in Frame 
Relay and ATM networks. Neighbor Discovery (NDP) which is used for discovery of other nodes 
on the link and determining their link layer addresses for IP version 6 (IPv6) is described in 
RFC-4861. 

Network Address Translation (NAT) is described in RFC-2663 [Srisuresh & Holdrege, 1999] and 
RFC-3022 [Srisuresh & Egevang, 2001]. 

Section 8.4: Domain Name System (DNS) 

The Domain Name System (DNS) is defined in RFC-1034 and RFC-1035. 

Section 8.5: Network Management Protocols 

The first version of Simple Network Management Protocol, SNMPv1, was defined by RFC-1067 
in 1988. SNMPv2 was introduced in 1993 and updated in 1996. SNMPv1 and SNMPv2 
supported monitoring network statistics, but had no security features. SNMPv3 is the current 
standard version (see RFC-3411). SNMPv3 offers security features and is expected to displace 
the earlier versions. SNMPv3 supports user authentication to prevent unauthorized users from 
executing network management functions, and message encryption to prevent eavesdropping on 
the messages exchanged between NMSs and managed devices. SNMP is supported by most 
commercial network management systems (NMSs) and many networking devices, including 
switches, routers, servers, and workstations. 

The current version of management information base (MIB) for SNMP is defined in RFC-3418. 

The statistics of RMON that should be collected are standardized in RFC-1757 and RFC-2021. 
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Section 8.6: Multimedia Application Protocols 

The Session Initiation Protocol is defined in RFC-3261, RFC-3265, RFC-3853, RFC-4320, 
RFC-4916, RFC-5393, and RFC-5621. 

 

Problems 
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burst.com Technology-Burst vs. HTTP streaming 

http://www.burst.com/new/technology/versus.htm 

 

 

9.1 Network Technologies 
 

The often mentioned virtues inherent to wireless networks are 
in the low cost-to-solution and rapid deployment possibilities. 
Already in many emerging markets, cellular phones are far 
more prevalent than computers, driving many in networking 
technology to consider non-traditional computing deployments 
that leverage cellular technology instead of optical, cable, DSL 
or other data circuits. Even in more mature markets, one has to 
wonder what role smartphones can play in keeping people 
connected to data sources, documents, and communications 
media. 

The evolution to away from cellular technology to an all IP-
based mobile connection also opens up completely new spheres 
of functionality for roaming employees who need access to 
network resources. The improved security of IP networking combined with the increased 
bandwidth of LTE / 4G will allow users to work more efficiently and increase their productivity 
even if equipped with nothing more than their mobile phone. 

9.1.1 Mobile Wi-Fi 

Microsoft’s ViFi project uses smarter networking to eliminate Internet outages during travel. 



Chapter 9 • Technologies and Future Trends 377

Users are likely to see increasing discrepancy between peak (the marketing numbers) and realized 
throughput. Lucent ORiNICO 802.11b outdoors, no obstruction—these are practically ideal 
conditions! 

Transmission rate % of coverage area 

11 Mbps 8 % 

5.5 Mbps  

2 Mbps  

1 Mbps 47 % 

 

Thus, a low probability of having good link!! 

One challenge in making shared Wi-Fi LANs deterministic, in part, has been in figuring out 
whether a client is operating at a low throughput rate because it only has a small amount of data 
to send or because it's encountering congestion and is out of bandwidth. 

 

IEEE 802.11n (Section 6.3.1) offers tenfold throughput increase and extended range. Where will 
it be used? In the traditional application: of wireless Internet delivery. But, 802.11n also offers 
new opportunities for wireless applications:  

 - Voice over IP (VoIP) 

 - Professional and personal multimedia delivery 

 - Wireless storage devices 

9.1.2 Wireless Broadband 

4G: WiMAX and LTE 

WiMAX 

“WiMAX 2” coming in 2011: 802.16m standard promises faster data rates, backward 
compatibility with WiMAX. 

 

LTE (Long Term Evolution) 

 

Cellular Network Backhaul 

Backhaul is the connection between infrastructure nodes, most commonly cell sites, and the rest 
of the network, like a mobile switching center or similar elements. As is the case in enterprise 
networks, 1.544 Mbps T1 and 2.048 Mbps E1 connections have dominated this space for many 
years, because (a) they were easy, if not cheap, to get from wireline carriers, and (b) they are 
well-suited to telephony because they are telephony. However, these data rates no longer appear 
to be adequate for the carrier needs. Carriers have difficulty with offering data services of the 
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future in part because they lack the backhaul capacity necessary to offer the megabits of service 
to their individual data users that are becoming feasible with EV-DO Rev A, WiMAX, HSPA, 
and LTE. Backhaul has become a bottleneck, which will have to change if 3.5G/4G systems are 
to have sustainable multi-megabit throughput. 

Recently, some companies are offering high-capacity point-to-point wireless systems designed 
for use in carrier networks as backhaul links. However, although the carriers sell wireless, 
wireless is not regularly the solution of choice for backhaul. Proponents of wireless-for-backhaul 
point that there are great regions of spectrum, including unlicensed spectrum around 5.8 GHz and 
bands at 60 and 80 GHz, that are broadly available and that would work adequately in this 
application. 

9.1.3 Ethernet 

Network technologies have come and gone, but the Ethernet switch has survived and continues to 
evolve, currently making its move to 40 Gbps and 100 Gbps datarates and there is a talk of 
Terabit Ethernet. Although 3.2Tbps and 6.4Tbps speeds were demonstrated in test environments 
by Siemens/WorldCom and NEC/Nortel, respectively, starting in 2001, the first set of viable 
solutions are just now taking shape. 

Data centers drive Ethernet switch market in the near term. Today, the largest data centers contain 
over 100,000 servers. Ideally, one would like to have the flexibility to run any application on any 
server while minimizing the amount of required network configuration and state. 

How to build a 100,000-port Ethernet switch: 

R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, 
and A. Vahdat, “PortLand: A scalable fault-tolerant layer 2 data center network fabric,” 
Proceedings of ACM SIGCOMM '09, Barcelona, Spain, August 2009. 

[Mysore, et al., 2009] describe software that could make data center networks massively scalable. 
Ttheir PortLand software will enable Layer 2 data center network fabrics scalable to 100,000 
ports and beyond. The goal is to allow data center operators to manage their network as a single 
fabric. They observe that data center networks are often managed as a single logical network 
fabric with a known baseline topology and growth model. They leverage this observation in the 
design and implementation of PortLand, a scalable, fault tolerant layer 2 routing and forwarding 
protocol for data center environments. Key to this is the development of system for servers to find 
one another without broadcasting their requests across an entire network. Under PortLand, 
switches use what are called Pseudo MAC addresses and a directory service to locate servers they 
need to connect, including new virtual servers. The researchers say this setup can eliminate much 
of the manual labor required to build a Layer 3 network. The software will work with existing 
hardware and routing protocols. 

Also see: http://www.eurekalert.org/pub_releases/2009-08/uoc--css081709.php 

 

The IEEE802.3at Power over Ethernet (PoE) standard 
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9.1.4 Routers and Switches 

Cisco is reportedly soon announcing a new carrier core router as a next-generation follow on to 
the 6-year-old CRS-1, and a better competitor to Juniper’s T1600. Cisco MSC120 will bring 
120G per slot to CRS-1, to better compete with Juniper T1600. 

Juniper’s answer to Cisco in the data center: Stratus Project 

Juniper’s Stratus Project is a year old and comprises six elements: a data center manager, storage, 
compute, Layer 4-7 switching, appliances and networking. It is intended to be a flat, non-
blocking, lossless fabric supporting tens of thousands of Gigabit Ethernet ports, an order of 
magnitude reduction in latency, no single point of failure, and with security tightly integrated and 
virtualized. Stratus will be managed like a large JUNOS-based switch. 

 

9.2 Multimedia Communications 
 

One way to think about future developments is to consider the application needs for computing 
and communication resources (Table 9-1). 

Video is having a profound effect on the way we consume information. It is estimated that at the 
time of this writing (2010) video represents approximately one-quarter of all consumer Internet 
traffic. Thirteen hours of video are uploaded each minute on YouTube alone. 

9.2.1 Internet Telephony and VoIP 

Voice over IP (VoIP) is an umbrella term used for all forms of packetized voice, whether it is 
Internet telephony, such as Skype.com, or Internet telephony services provided by cable 
operators. Voice over IP is also used interchangeably with IP telephony, which is very much 
enterprise focused. And, there the problems with service quality are very real. 

IP telephony is really a LAN-based system and as an application inside the enterprise, it is going 
to be a pervasive application. Voice over IP is growing in popularity because companies are 
attracted to its potential for saving money on long distance and international calls. The evolution 
from a LAN-based system to the broader context of the Internet is not straightforward. Integrating 
the Voice over IP that may be on a LAN and the Voice over IP that is going to be Internet-based 
is going to become a reality. 

Traditional telephone services have typically gained a reputation of providing excellent voice 

Table 9-1: The application hierarchy: 

Data Type 
Resource 

Text Audio Video ? 

Transmission Rate 10 bits/sec 10 Kbits/sec 10 Mbits/sec 10 Gbits/sec 
Processing KIPS MIPS GIPS TIPS 
Memory KB MB GB TB 
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quality and superior reliability. Consequently, users take for granted that their phone systems will 
provide high quality with virtually no downtime. Yet many VoIP installations fail to meet these 
expectations, primarily because organizations have not adequately evaluated their network 
infrastructure to determine whether it can adequately support applications that are very sensitive 
to latency, packet loss, jitter and other similar performance factors. 

In fact, call quality and availability are expected to vary between services within certain 
acceptable boundaries. Consumers make trade-offs based on price, accessibility, and mobility, 
and it is important to understand that mix. If you were using a home telephony product from your 
cable company, they would offer a different grade of service than a free service like Skype. 
Consumers put up with a little call quality degradation for cheapness. As companies increasingly 
adopt VoIP to replace the traditional PSTN, there are several major concerns: 

Reliability Concerns 

The traditional public switched telephone network (PSTN) provides very high reliability and 
users have come to expect that when they pick up the phone, they get a dial tone. Computers sand 
computer networks are still lacking this degree of reliability. This is particularly critical for 
companies, because they depend on the phones to stay in contact with customers, partners, and 
vendors, as well as within the company for employee communications. A phone outage can have 
significant impact on company operations. In addition, the regular phone lines in buildings are 
independent of electric lines, so phone work even during power outages. VoIP depends on both 
electrical power and Internet service. Interruption of either means losing phone service. The 
problem can be mitigated by having redundant Internet connections and power backup such as a 
generator, but this adds to the cost. 

Network Quality-of-Service 

The reader knows by now that delays in transmission or dropped packets cause a disrupted phone 
call, which the call participants will surely notice and complain about. To help prevent such 
problems, the IP network must support quality-of-service (QoS) mechanisms that allow 
administrators to give priority to VoIP packets. This means a VoIP network is more trouble to 
manage than a data network, and it requires a higher level of expertise—or at least an additional 
skill set—on the part of network administrators. 

Although many switch and router vendors will advertise that their products can handle a certain 
level of throughput, few talk about the volume of packets that can be processed during periods of 
peak utilization. For example, even though a switch might be able to accommodate a full line rate 
traffic stream when all packets are nearly maximum size, it may not be able to manage the same 
aggregate throughput when the stream is composed of many more minimum-sized packets. 
Because most Real-Time Protocol (RTP) audio packets are relatively small (just over 200 bytes 
for G.711), a device’s ability to process packets of that size at full line rate must be assured. 
Understanding how a device reacts to traffic streams characterized by many short bursts of many 
packets is also important. 

VoIP monitoring and management solutions are available that make it easier to optimize voice 
services, but that adds to the cost of deployment. It also negates some of the cost savings that 
motivate the move to VoIP in the first place. 
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Other factors, such as external microphones and speakers, Internet connection speeds, and 
operating systems, also can affect call quality and should be taken into account before writing off 
a service provider’s performance as poor. In addition, the analog-to-digital conversion process 
can affect VoIP call quality, causing users to experience unpleasant distortion or echo effects. 
Another culprit is signal level problems, which can cause excessive background noise that 
interferes with conversations. It does not tend to be as much of a service problem as it is an access 
or device problem for the consumer. 

Complexity and Confusion 

The complexity and unfamiliar terrain of VoIP communications presents another big obstacle for 
many companies. Network administrators experienced with running a data network may not 
know much about how VoIP works, what equipment is necessary, or how to set up and maintain 
that equipment. 

In addition, VoIP terminology quickly gets confusing—media gateways, analog telephone 
adapter (ATA), audio response unit (ARU), interactive voice response (IVR), etc. Company 
managers and IT personnel hear about different VoIP protocols—H.323, SIP, IAX—and do not 
understand the differences or know which one they need. 

Already overworked IT staffs may not be eager to undertake the task of learning a completely 
new specialty nor the added burden of ongoing maintenance of the components of a VoIP system. 
They may not be sure how to integrate the VoIP network into the existing data network. 

Of course, there are answers to these problems. Consultants with the requisite knowledge can 
help set up a VoIP network, or companies can use hosted VoIP services to reduce both the 
complication and the upfront expenses of buying VoIP servers. However, once again, this ups the 
price tag of going to VoIP and eats into the cost savings that are one of VoIP’s main advantages. 

Security 

There is also an issue of securing IP telephony environments. The risk of intercepted calls and 
eavesdropping are a concern. Although possible, it is difficult to tap traditional telephone lines. 
Traditional phone communications travel over dedicated circuits controlled by one entity—the 
phone company. But when VoIP packets go out there into the “Internet cloud,” they go through 
numerous routers and servers at many different points. Potential types of threats: 

• Toll Fraud: the use of corporate resources by inside or outside individuals for making 
unauthorized toll calls. 

• Denial of Service Attacks: attacks typically aimed at the data network and its components 
that can have a severe impact on voice calling capabilities. 

• Impersonation Exploits: where a caller changes call parameters, such as caller id, to make 
the call look like it is originating from a different user. The caller id may be used to gain 
a level of trust about the caller, who may then proceed to get private information that 
might not have been otherwise given. 

• Eavesdropping: the ability for a hacker to sniff packets relating to a voice call and replay 
the packets to hear the conversation. 

Encryption and other security mechanisms can make VoIP as secure as or even more secure than 
PSTN. We should encrypt our voice inside the LAN, and the same applies to data and video in 
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the long run. Mixing data and voice (or, multimedia) raises another concern. It is not an IP 
telephony or voice over IP issue; it is an IP issue, one should not be lulled into the suspicion that 
IP or the layers above it are secure. We have already seen vulnerabilities against PBXs, against 
handsets, so it is only a matter of time before we see execution against these vulnerabilities. ... 
attacks at the server level or at massive denial-of-service attack at the desktop level ... 

However, extra security mechanisms mean extra cost. Moreover, a simple perception that data 
networks are inherently insecure may hold back VoIP adoption. Addressing all the above issues, 
while keeping VoIP costs lower than the costs of traditional phone service, will be a challenge. 

9.2.2 Unified Communications 

Unified communications (UC) is an umbrella term for integrated, multi-media communications 
controlled by an individual user for both business and social purposes. UC is supposed to offer 
the benefits of seamless communication by integrating voice, data, video, and presence into a 
single environment. UC refers to a real-time delivery of communications based on the preferred 
method and location of the recipient. Its purpose is to optimize business processes and enhance 
human communications by reducing latency, managing flows, and eliminating device and media 
dependencies. 

With an increasingly mobile workforce, businesses are rarely centralized in one location. Unified 
communications facilitates this on-the-go, always-available style of communication. In addition, 
unified communications technology can be tailored to each person’s specific job or to a particular 
section of a company. 

 

9.2.3 Wireless Multimedia 

A study from Pew Internet & American Life Project predicts the mobile phone will be the 
primary point of Internet access, while technologies such as touch-screen interfaces and voice 
recognition will become more prevalent by the year 2020 
(http://www.pewinternet.org/PPF/r/270/report_display.asp). The participants predict telephony will be 
offered under a set of universal standards and protocols accepted by most operators 
internationally, making for reasonably effortless movement from one part of the world to another. 
At this point, the “bottom” three-quarters of the world’s population account for at least 50 percent 
of all people with Internet access, up from 30 percent in 2005. 

For the small-to-medium-size business (SMB) owner, the results of the survey suggest 
international transactions and growth will be made easier by a more internationally flexible 
mobile infrastructure, while the prevalence of the Web on mobile devices and smartphones, 
which the survey predicts will have considerable computing power by 2020, will allow SMB 
owners access to their business dealings nearly anytime and anywhere. 

Video phones 
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9.2.4 Videoconferencing 

Videoconferencing systems have recently become popular for reasons including cutting down 
travel expenses (economic), as well as “going green” (environmental). A recent study by Ferran 
and Watts [2008] highlights the importance and diverse aspects of perceived “quality-of-service.” 
The study surveyed 282 physicians who attended grand rounds (presentations on complex cases) 
in person or by video. The video attendees were twice as likely to base their evaluation of the 
meetings on the speaker rather than the content. They were also more likely to say the speaker 
was hard to follow. The authors speculate that our brains gather data about people before turning 
to what they say. In person, we do this quickly. However, speakers are harder to “read” on screen, 
so we focus more on them. 

Videoconferencing More Confusing for Decision-makers than Face-to-face Meetings: 
http://www.sciencedaily.com/releases/2008/10/081028184748.htm 

Study Finds Videoconferences Distort Decisions: http://www.wtop.com/?nid=108&sid=1506873 

 

Immersive Videoconferencing 

New “telepresence” video systems, which create the illusion of sitting in the same room—even 
allowing eye contact between participants—may help solve the problem. Products in this 
category include Cisco WebEx, Citrix GotoMeeting, Microsoft Office Live Meeting and IBM 
Lotus Sametime Unyte—all of which let users conduct meetings via the Internet. However, some 
of these systems cost up to $300,000. 

9.2.5 Augmented Reality 

 

Expert Discusses Importance Of Increasingly Accessible 3-D CAD Data. 

http://www.industryweek.com/ReadArticle.aspx?ArticleID=17986 

3-D CAD Data Grows More Accessible -- For manufacturers, that means less wasted time. 

IndustryWeek (1/1, Jusko) reports, "3-D CAD is widely used in organizations’ product design 
function. In fact 60% of respondents to a recent survey say they use it 81% to 100% of the time." 
According to David Prawel, founder and president of Longview Advisors, "the potential 
usefulness of 3-D CAD data is enormous in downstream functions." Prawel said that, "not only 
would it help the machine operator to have a view of the part in 3-D, but the operators could add 
more value to the process," as the operators "could see the part in front of them and make their 
own course corrections and feed that information back to the designer." Prawel also predicted that 
"use of 3-D data on the shop-floor will grow ... not 3-D CAD itself, but the use of 3-D 
representations." He said that "the 'democratization' of 3-D CAD data is beginning to occur" by 
"moving out of the CAD department and into greater use throughout the organization." Prawel 
added, "The important thing is to get it to the people who need it in a language they understand." 

 



Ivan Marsic • Rutgers University 384

9.3 The Internet of Things 
 

The Internet of Things refers to a network of objects, such as household appliances. It is often a 
self-configuring wireless network. The idea is that if cans, books, shoes, or parts of cars were 
equipped with miniature identifying devices, our daily life would undergo a transformation. No 
longer would supermarkets run out of stock or waste products because they will know exactly 
what is being consumed at any specific location. If everyday objects, from yogurt to an airplane, 
are equipped with radio identification (RFID) tags, they can be identified and managed by 
computers in the same way humans can. The next generation of Internet Protocol (IPv6) has 
sufficiently large address space to be able to identify any kind of object. RFID tag can contain 
information on anything from retail prices to washing instructions to person’s medical records. 

A movement is underway to add any imaginable physical object into the Internet of Things. In 
Japan, for example, many cows have IP addresses embedded onto RFID chips implanted into 
their skin, enabling farmers to track each animal through the entire production and distribution 
process. This points to a future where pretty much everything is online. Put simply, the Internet of 
Things in essence means building of a global infrastructure for RFID tags. You could think of it 
as a wireless layer on top of the Internet where millions of things from razor blades to grocery 
products to car tires are constantly being tracked and accounted for. It is a network where it is 
possible for computers to identify any object anywhere in the world instantly. 

* Emerging applications and interaction paradigms 

          o using mobile phones and other mobile devices as gateways to services for citizens 

          o integrating existing infrastructure in homes (digital picture frames, smart metering of 
energy...) 

          o embedding virtual services into physical artifacts 

          o the electronic product code (EPC) network aims to replace the global barcode with a 
universal system that can provide a unique number for every object in the world. 

Of course, as with any technology, there is potential for misuse, such as privacy invasion. The 
Internet of Things could be the ultimate surveillance tool. 

9.3.1 Smart Grid 

“Smart Grid” is the term used for modernization of the electricity grid that involves supporting 
real-time, two-way digital communications between electric utilities and their increasingly 
energy-conscious customers. It will provide electric utilities with real-time visibility and control 
of the electricity used by customers. Having a Smart Grid is considered vital to the development 
of renewable energy sources such as solar and wind as well as plug-in electric hybrid vehicles. 
Smart Grid is expected to enable buildings with solar panels and windmills to inject power into 
the grid. This means adding all kinds of information technology, such as sensors, digital meters 
and a communications network akin to the Internet, to the dumb wires. Among other things, a 
smart grid would be able to avoid outages, save energy and help other green undertakings, such as 
electric cars and distributed generation. 
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It is expected that the Smart Grid will enable integrating renewable energy and making more 
efficient use of energy. The part of Smart Grid that most users would see is at the distribution 
level, where a resident has a smart meter that is their building’s interface into the grid. With 
Smart Grid, customer has the ability for a smart metering infrastructure to send near real-time 
measurements of his or her energy usage. This infrastructure will also to be able to signal when 
there are overload conditions on the grid and there needs to be some demand response to adjust 
the load. Sensors on transmission lines and smart meters on customers’ premises tell the utility 
where the fault is and smart switches then route power around it. That is similar to the Internet, 
which redirects data packets around failed nodes or links. 

On the other hand, bulk power generation plants at the heart of the grid need to have real-time 
controls for supervisory control and data acquisition (SCADA) systems—computer systems 
monitoring and controlling the process. These have very different communications requirements, 
where reliability and security are key, and quality of service attributes such as latency are also 
important. A relay needs to close in milliseconds, which is a very different requirement than 
gathering electricity usage information from a resident every 15 minutes. 

Electric grid already implements what is called “demand response,” where some big companies 
have agreed to throttle back their consumption at times of peak demand. With a Smart Grid, all 
consumers would be able to do the same. In a basic version, they would get real-time information 
about their usage and could then turn off the tumble dryer or other energy-hungry appliances. If 
prices also varied with a grid’s load, rising when demand was heavy, customers would cut back 
their consumption during peak hours. That reduction would increase if smart meters could turn 
appliances off automatically should rates rise above a certain point. With peak demand lower, 
utilities would no longer have to hold as much expensive backup capacity. 

More intelligence in the grid would also help integrate renewable sources of electricity, such as 
solar panels or wind turbines. Currently, the problem is that their output is highly variable, 
because it is tightly coupled with the weather conditions. A standard grid becomes hard to 
manage if too many of renewable sources are connected to it; supply and demand on electricity-
transmission systems must always be in balance. A Smart Grid could turn on appliances should, 
for instance, the wind blow more strongly. Added intelligence would also make it much easier to 
cope with the demand from electric cars by making sure that not all of a neighborhood’s vehicles 
are being charged at the same time. 

Because there are great profits to be made, the Smart Grid market has attracted the attention of 
every major networking vendor. Cisco expects that the underlying communications network will 
be 100 or 1,000 times larger than the Internet. These vendors are pushing for Smart Grid to adopt 
common network standards rather than special-purpose protocols. 

A key characteristic of the electricity grid in the U.S. is that it is highly fragmented: 80% is 
owned and operated by private companies, including about 3,100 electric utilities. This is really a 
system of systems, which is highly complex, and therefore reliability is a great concern. It is also 
well known that systems transmitting and distributing electricity are exceedingly wasteful and 
vulnerable. Smart grids increase the connectivity, automation and coordination between these 
suppliers, consumers and networks that perform either long distance transmission or local 
distribution tasks. 
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The Smart Grid has to have a very robust communications infrastructure underlying it. Standards 
are highly important because they provide a common set of network protocols that can run end-
to-end over a variety of underlying physical and link layer technologies. In terms of the protocol 
stack, the functionality is at the application layer to support features such as consumer energy 
management, electrical vehicles, etc. There is consensus that IP and the Internet standards will be 
a protocol of choice in the Smart Grid. 

However, some high-performance command and control applications could require special-
purpose network protocols. SCADA systems are different because the requirement is real-time 
control of a critical asset (response times are in milliseconds), rather than routing data around a 
network. Therefore, a specialized protocol historically has been used and may still have a role. On 
the other hand, to support communications with the hundreds of millions of devices that will 
interact with the Smart Grid (“smart appliances”), IP has great advantages in terms of ubiquity, 
implementation and its ability to create interoperable infrastructure as a low cost. 

An important requirement for the Smart Grid needs to account for the fact that the environments 
are so varied. The electric grid in an urban area like New York City is very different from that in 
a rural environment in Montana. These impose communications requirements, such as the ability 
to use different physical and link layer technologies to move data around effectively. IP provides 
that, as well as the ability to evolve and have an open architecture in which the industry can find 
better ways to help customers manage energy. 

It is believed that the Smart Grid will be one of the drivers for greater adoption of IPv6 (Section 
8.1). Given that millions of appliances and devices need to be addressable, IPv6 is necessary 
because the IPv4 address space is exhausted. The security issues about smart meters are very 
important. The meters themselves are not consumer devices. They are part of the utility’s 
infrastructure. There are about 150 million meters in the U.S. associated with buildings. One of 
the functions of those meters is to connect and disconnect to a building so a utility does not have 
to send maintenance crews. Of course, this presents a danger of having an architecture that that is 
vulnerable to cyber criminals. A poorly designed system would allow a hacker to remotely 
disconnect 150 million meters from the grid. This is why that needs to be a locked-down 
architecture. 

Another argument for IPv6 in the Smart Grid meter interface is that utilities will likely use 
wireless networks to communicate with thousands of meters through a management gateway or 
router. This requires a protocol where all these devices will be put in a subnet. Although this is 
possible with IPv4, it is easy with IPv6. 

Advanced Metering Infrastructure 

Key tasks of the Smart Grid are evaluating congestion and grid stability, monitoring equipment 
health, energy theft prevention, and control strategies support. To support these tasks, advanced 
sensing and measurement infrastructure is at the heart of every smart grid. Technologies include: 
advanced microprocessor meters (“smart meter”) and meter reading equipment, wide-area 
monitoring systems, dynamic line rating (typically based on online readings by distributed 
temperature sensing combined with real-time-thermal-rating (RTTR) systems), electromagnetic 
signature measurement/analysis, time-of-use and real-time pricing tools, advanced switches and 
cables, backscatter radio technology, and digital protective relays. 
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Smart meters resemble smart-phones: they have a powerful chip and a display, and are connected 
to a communications network. The main task of a metering system is to get information reliably 
into and out of meters—for example, how much power is being used, when and at what price. In 
Europe, this is mostly done by using power lines to communicate. However, in America this 
would be too costly. The grid’s architecture does not allow it to be turned into a data network 
easily. Using a public cellular network would also be hard. A meter cannot move to get better 
reception, for instance. The best approach is to use wireless mesh networks (Section 6.1), in 
which data are handed from one meter to the next. Such networks automatically reconfigure 
themselves when new meters are added. 

A key component will be the software that makes the Smart Grid work, and the applications that 
run on it. Power system automation enables rapid diagnosis of and precise solutions to specific 
grid disruptions or outages. These technologies rely on and contribute to each of the other four 
key areas. Three technology categories for advanced control methods are: distributed intelligent 
agents (control systems using artificial intelligence programming techniques), analytical tools 
(software algorithms and high-speed computers), and operational applications (SCADA, 
substation automation, demand response, etc). 

Usage Data Management and Demand-Driven Rate Adjustment 

A key technology that an electric utility needs will allow it to manage the usage data, combine the 
data with other information, and set rates depending on demand. This will require large databases 
for data repositories and data-mining software for detecting trends and usage patterns. 
Information systems that reduce complexity so that operators and managers have tools to 
effectively and efficiently operate a grid with an increasing number of variables. Technologies 
include visualization techniques that reduce large quantities of data into easily understood visual 
formats, software systems that provide multiple options when systems operator actions are 
required, and simulators for operational training and “what-if” analysis. 

Home Area Networks (HANs) 

Home Area Network (HAN) covers all the smart-grid technology in the home, behind the meter. 
HAN will include things such as wireless displays that show the household’s power consumption 
at that instant, thermostats that are connected to the meter and smart appliances that can be 
switched on and off remotely. The big question is how all these devices will be connected and 
controlled. Will the HAN be dedicated to regulating electricity consumptions, for instance, or will 
it also control home security or stream music through the rooms? Figure 9-1 illustrates a typical 
smart home network environment. 

One option is to have an integrated HAN that allows consumers to control almost everything in a 
house that runs on electricity. This would include systems for secure home access used to keep 
burglars out (cameras, sensors, etc.), as well as systems managing energy consumption. 

Google and Microsoft have launched web-based services, called PowerMeter and Hohm 
respectively, that allow households to track their power usage—and, at a future point, their 
operators to sell more advertising. 

ITU standard G.hn for home networks 
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9.3.2 The Web of Things 

The Web of Things is a vision inspired from the Internet of Things where everyday devices and 
objects are connected by fully integrating them to the World Wide Web. Unlike in the many 
systems that exist for the Internet of Things, the Web of Things is about reusing the Web 
standards to connect the quickly expanding eco-system of embedded computers built into 
everyday smart objects. Widely adopted and well-understood standards (such as URI, HTTP, 
RSS, etc.) are used to access the functionality of the smart objects. 

Given a large body of data continuously collected by the networked devices, the idea has arisen 
that the Web can learn inferentially from the data. The Web would eventually begin to 
“understand” things without developers having to explicitly explain to it. 

 

9.4 Cloud Computing 
 

Cloud computing is the latest incarnation of an old idea that in 
1960s was called “timesharing” with dumb terminals and 
mainframe computers, and General Electric opened the first 
commercial timesharing service in 1965. In 1990s was called 
network computing with thin clients, and in 2000s has also 
been called “utility computing,” or “grid computing.” Cloud computing can be loosely defined as 
using minimal terminals to access computing resources provided as a service from outside the 
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Figure 9-1: A typical smart home network environment. 
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environment on a pay-per-use basis. One uses only what one needs, and pay for only what one 
uses. One can access any of the resources that live in the “cloud” at any time, and from anywhere 
across the Internet. One does not have to care about how things are being maintained behind the 
scenes in the cloud. The cloud is responsible for being highly available and responsive to the 
needs of the application. The name derives from the common depiction of a network as cloud in 
network architecture diagrams. 

The idea is that companies, instead of spending time and resources building their own 
infrastructure to gain a competitive advantage, they would outsource these tasks to companies 
that specialize in cloud computing infrastructure. The proprietary approach created large tracts of 
unused computing capacity that took up space in big data centers and required large personnel to 
maintain the servers. It also has had associated energy costs. The unused computing power 
wasted away, with no way to push it out to other companies or users who might be willing to pay 
for additional compute cycles. With cloud computing, excess computing capacity can be put to 
use and be profitably sold to consumers. The reader might recall that similar themes emerged 
when justifying statistical multiplexing in Section 1.1.3. This transformation of computing and IT 
infrastructure into a utility, which is available to all, somewhat levels the playing field. It forces 
competition based on ideas rather than computing resources.  

Figure 9-2: Compute-intensive applications run in the pools of data-processing capacity, i.e., the 
Computing Cloud at the Internet core. 

At the Internet periphery: mostly document editing and management, visualization, browsing, 
querying, … 

 

As of early 2010, enterprises are not moving their data massively to the cloud. Many of the 
current cloud services (Gmail, Google Docs, etc.) do not have much latency in the U.S. Network 
bandwidth may be a concern, particularly in parts of the world where bandwidth is not fast or 
cheap (e.g., if the customer incurs per-megabyte costs). As such, there are still good reasons to 
keep data in a local data center (known as the “private cloud”), and there are more technologies 
coming that will make this storage better and cheaper. There are many factors to consider, but 
price is the one that everyone sees on the bottom line. Data storage is not cheap, but it is getting 
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Figure 9-2: Current shift in the industry toward cloud computing and large-scale networks.
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less expensive per megabyte over time. However, no matter how much the $/MB ratio drops, it 
seems that we are seeing bigger and bigger data storage needs every day. 

Security attacks on the cloud could cause major global outages. In principle, a single vulnerability 
in any part of the various software elements on which a cloud provider bases its services could 
compromise not just a single application but also the entire virtualized cloud service and all its 
customers. 

 

9.5 Network Neutrality vs. Tiered Services 
 

Section 1.6.2 briefly reviewed the current debate on network neutrality that refers to efforts to 
keep the Internet open, accessible and “neutral” to all users, application providers and network 
carriers. In theory, this means, for example, that one carrier would not be allowed to discriminate 
against an application written by a third party (such as Google Voice) by requiring its users to 
rely on the carrier’s own proprietary voice applications. The public Internet is shared by both 
businesses and consumers, smart public policy and management of consumer-centric Internet 
access will profoundly affect business use of the Internet in the future. The U.S. Federal 
Communications Commission (FCC) is currently (2010) considering rules that would prevent 
carriers from favoring certain types of content or applications over others or from degrading 
traffic of Internet companies that offer services similar to those of the carriers. 

Who are the biggest players in the Net neutrality debate? On one side, neutrality proponents claim 
that telecom companies seek to impose a tiered service model in order to control the pipeline and 
thereby remove competition, create artificial scarcity, and compel subscribers to buy their 
otherwise uncompetitive services. This bloc includes an array of citizen actions groups loosely 
aligned with Google and other companies that want to offer new and different uses for the Web 
but do not generally run networks carrying Internet data. Google communicates mainly on its 
official blog, where it announced in February 2010 its experimental fiber network. 

On the other side of the debate, a group of traditional cable, wireless and telecommunications 
providers has taken an active role in the debate. Netcompetition.org has posted a list of its 
members on its e-forum site. The group claims that the Internet is working just fine without any 
Net neutrality rules. 

Enterprises are willing to pay different rates for connectivity based on the quality-of-service 
needed for business purposes. The cost-benefit model is especially relevant to mobile Internet 
access because limited radio spectrum precludes unlimited wireless Internet access capacity, even 
if service costs did not matter. It is also important to point out that not all networks that use IP are 
part of the Internet. IPTV networks such as AT&T’s U-Verse service are isolated from the 
Internet, and are therefore not subject to network neutrality agreements. 

“Best effort” Internet service means that if everyone in the neighborhood streams a film video at 
the same time, all the neighbors will suffer service interruptions. One option is to build sufficient 
Internet access capacity for all users to stream uninterrupted video, but many consumers may find 
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that the subscription rate increase needed to pay for such an upgrade is unaffordable. Another 
option is to enforce policies ensuring that very heavy users do not crowd everyone else out. 

The notion of a dichotomy between that network providers like AT&T and application/content 
providers like Google assumes that the providers should be considered “dumb pipes” whose sole 
job is to neutrally push traffic from content providers. This may leave the carriers without an 
incentive to improve network services, and increase capacity and efficiency. The carrier/content-
provider dichotomy resonates with the protocol-layering model (Section 1.1.4), in that carriers are 
assumed to provide layer-1 (link and physical layers) services, whereas content providers provide 
application-layer services. End-to-end argument places emphasis on the endpoints to best manage 
their specific needs and assumes that lower layers and intermediary nodes essentially provide 
“dumb pipes” infrastructure. 

It is instructive that in real-world vehicular traffic, congestion problems can be solved by 
widening highways and building additional lanes. But, more often these problems are solved by 
introducing policies, such as carpooling lanes, tiered pricing for different roads, and congestion 
pricing. 

There are several interpretations of the network neutrality principle, ranging from absolute non-
discrimination to different degrees of allowable discrimination, mainly for providing different 
quality-of-service. Purist supporters of network neutrality state that lack of neutrality will involve 
leveraging quality of service to extract remuneration from websites that want to avoid being 
slowed down. They do not believe that carriers would invest to increase capacity and efficiency. I 
believe that these arguments are hard to discuss without deep understanding of human 
psychology and functioning of free markets. 

A more technical argument, allegedly based on the end-to-end principle argues that net neutrality 
means simply that all like Internet content must be treated alike and move at the same speed over 
the network. Notice that this also requires a list of criteria based on which the content likeness can 
be decided. Even the proponents of net neutrality admit that that the current Internet is not neutral 
as, given the space of possible networking applications, the Internet’s best effort generally favors 
file transfer and other non-time sensitive traffic over real-time communications. 

Internet service providers and some networking technology companies argue that providers 
should have the ability to offer preferential treatment in the form of a tiered services, for example 
by giving businesses willing to pay an option to transfer their data packets faster than other 
Internet traffic. The added revenue from such services could be used to pay for the building of 
increased broadband access to more consumers. Opponents to net neutrality have also argued that 
a net neutrality law would discourage providers from innovation and competition. 

9.6 Summary and Bibliographical Notes 
 

Smart Grid 

IEC TC57 has created a family of international standards that can be used as part of the Smart 
Grid. These standards include IEC61850 which is an architecture for substation automation, and 
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IEC 61970/61968—the Common Information Model (CIM). The CIM provides for common 
semantics to be used for turning data into information. Online at: http://tc57.iec.ch/  

Office of the National Coordinator for Smart Grid Interoperability, “NIST Framework and 
Roadmap for Smart Grid Interoperability Standards,” Release 1.0 (Draft), National Institute of 
Standards and Technology (NIST) Draft Publication, September 2009. Online at: 
http://www.nist.gov/public_affairs/releases/smartgrid_interoperability.pdf 

Former IETF Chair and Cisco Fellow Fred Baker has written a document that identifies the core 
protocols in the IP suite that Smart Grid projects should consider using: 

F. Baker, “Core Protocols in the Internet Protocol Suite,” Internet-Draft, October 23, 2009. 
Online at: http://tools.ietf.org/html/draft-baker-ietf-core-04 (Expires: April 26, 2010) 

A great deal of useful information on the Smart Grid can be found in the Wikipedia article: 
http://en.wikipedia.org/wiki/Smart_grid  

 

Cloud Computing 

UC Berkeley – “Above the Clouds: A Berkeley View of Cloud Computing,” 2009. Online at: 
http://berkeleyclouds.blogspot.com/  

Published by the UC Berkeley Reliable Adaptive Distributed Systems Laboratory (a.k.a. RAD 
Lab), this report is an excellent overview of the move to cloud computing. It identifies some key 
trends, addresses the top obstacles to cloud use, and makes some excellent points about cloud 
economics. 

 

Network Neutrality 

A great source of information on network neutrality is the Wikipedia article: 
http://en.wikipedia.org/wiki/Net_neutrality. 
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Programming Assignments 

 

 

The following assignments are designed to illustrate how a simple model can allow studying 
individual aspects of a complex system. In this case, we study the congestion control in TCP. 

The assignments are based on the reference example software available at this book’s web site 
(given in Preface); follow the link “Team Projects.” This software implements a simple TCP 
simulator for Example 2.1 (Section 2.2) in the Java programming language. Only the Tahoe 
version of the TCP sender is implemented. This software is given only as a reference, to show 
how to build a simple TCP simulator. You can take it as is and only modify or extend the parts 
that are required for your programming assignments. Alternatively, you can write your own 
software anew, using the programming language of your choosing. Instead of Java, you can use 
C, C++, C#, Visual Basic, or another programming language. 

The action sequence in Figure P-1 illustrates how the simulator works. It consists of four Java 
objects, of which Simulator is the main class that orchestrates the work of others. It repeatedly 
cycles around visiting in turn Sender, Router, and Receiver. Simulator passes two arrays to each 
(segments and acknowledgements array) and gets them back after each object does its work. 
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Figure P-1: Action sequence illustrating how the Simulator object orchestrates the work of
other software objects (shown are only first four steps of a simulation). 
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ACKACK

ACKACK

RTT

Project Report Preparation 

When you get your program working, run it and plot the relevant charts similar to those provided 
for Example 2.1. Calculate the sender utilization, where applicable, and provide explanations and 
comments on the system performance. Also, calculate the latency for transmitting a 1 MB file. 

Each chart/table should have a caption and the results should be discussed. Explain any results 
that you find non-obvious or surprising. Use manually drawn diagrams (using a graphics program 
such as PowerPoint), similar to Figure 2-14 and Figure 2-15, where necessary to support your 
arguments and explain the detailed behavior. 

 

Assignment 1: TCP Reno 

Implement the Reno version of the TCP sender which simulates Example 2.1. You can use the 
Java classes from the TCP-Tahoe example, in which case you only need to extend from 
TCPSender and implement TCPSenderReno, fashioned after the existing 
TCPSenderTahoe. Alternatively, you can implement everything anew. Use RFC 2581 as the 
primary reference, to be found here http://www.apps.ietf.org/rfc/rfc2581.html. 

(a) Use the same network parameters as in Example 2.1. 

(b) Modify the router to randomly drop up to one packet during every transmission round, as 
follows. The router should draw a random number from a uniform distribution between 0 
and bufferSize, which in our case equals to 7. Use this number as the index of the 
segment to delete from the segments array. (Note that the given index may point to a 
null element if the array is not filled up with segments, in which case do nothing.) 

1. Compare the sender utilization for the TCP Reno sender with that of a Tahoe sender (given in 
Figure 2-16). Explain any difference that you may observe. 

2. Compare the sender utilization for case (b) with random dropping of packets at the router. 

3. Show the detail of slow-start and additive increase phases diagrams. Compare them to Figure 
2-14 and Figure 2-15. Explain any differences that you may find. 

Include these findings in your project report, which should be prepared as described for all 
projects at the beginning of this chapter. 

Assignment 2: TCP Tahoe with Bandwidth Bottleneck 

Consider the network configuration as in the reference example, but with the router buffer size set 
to a large number, say 10,000 packets. Assume that RTT = 0.5 s and that at the end of every RTT 
period the sender receives a cumulative ACK for all segments relayed by the router during that 
period. Also, set RcvWindow = 1 MByte instead of the default value of 65535 bytes.  

Due to the large router buffer size there will be no packet loss, but the bandwidth 
mismatch between the router’s input and output lines still remains. Because of this, the 
router may not manage to relay all the packets from the current round before the arrival of 
the packets from the subsequent round. This behavior is illustrated in Figure P-2 (also see 
the inset figure on the right, which illustrates how the pattern repeats for each RTT). The 
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remaining packets are carried over to the next round and accumulate in the router’s queue. As the 
sender’s congestion window size grows, there will be a queue buildup at the router. There will be 
no loss because of the large buffer size, but packets will experience delays. The packets carried 
over from a previous round will be sent first, before the newly arrived packets. Thus, the delays 
still may not trigger the RTO timer at the sender because the packets may clear out before the 
timeout time expires. 

The key code modifications are to the router code, which must be able to carry over the packets 
that were not transmitted within one RTT. In addition, you need to modify 
TCPSimulator.java to increase the size of the arrays segments and acks, because these 
currently hold only up to 100 elements. 

1. Determine the average queuing delay per packet once the system stabilizes. Explain why 
buffer occupancy will never reach its total capacity. Are there any retransmissions (quantify, 
how many) due to large delays, although packets are never lost. Use manually drawn 
diagrams to support your arguments. 

2. In addition to the regular charts, plot the two charts shown in the following figure: 

The chart on the left should show the number of the packets that remain buffered in the router 
at the end of each transmission round, which is why the time axis is shown in RTT units. 
(Assume the original TimeoutInterval = 3×RTT = 3 sec.) 

To generate the chart on the right, make the variable TimeoutInterval an input 
parameter to your program. Then input different values of TimeoutInterval and 
measure the corresponding utilization of the TCP sender. Of course, RTT remains constant at 
1 sec. (Notice the logarithmic scale on the horizontal axis. Also, although it may appear 
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Figure P-2: This time diagram for Assignment 2 illustrates how the number of packets
transmitted in one round is limited by the bandwidth of Link-2. 
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Figure P-3: Results charts for Assignment 2. 

strange to set TimeoutInterval smaller than RTT, this illustrates the scenario where 
RTT may be unknown, at least initially.) Provide explanation for any surprising observations 
or anomalies. 

A more ambitious team should consider the following problem. While a long queue is less likely 
to overflow during a traffic burst (thus reducing packet loss probability), it potentially increases 
the queuing delay for non-dropped packets. A short queue reduces this delay, but conversely 
increases the probability of packet loss for bursty traffic. Experiment by adjusting the router 
buffer size and study the tradeoff between packet loss and queuing delay. 

Prepare the project report as described for all projects at the beginning of this chapter. 

Assignment 3: TCP Tahoe with More Realistic Time Simulation 
and Packet Reordering 

In the reference example implementation, the packet sending times are clocked to the integer 
multiples of RTT (see Figure 2-10). For example, Packets #2 and 3 are sent together at the time = 
1 × RTT; packets #4, 5, 6, and 7 are sent together at the time = 2 × RTT; and so on. Obviously, 
this does not reflect the reality, as illustrated in Figure 2-6. For example, in the current 
implementation, duplicate ACKs are generated only because of packets dropped in the router, 
never because packets are reordered. Your simulation will show what happens when packets are 
reordered (rather than only dropped). 

A simple way to implement this modification is explained next. The key change in your code 
should be in the class Router.java, as follows. For every newly received packet, the router 
assigns a random amount of delay (integer number ≥0). For every invocation of the method 
Router.relay(), router decrements all delays by one and returns only the packets with the 
delay equal zero. To maintain the record of delays for individual packets, we could modify 
TCPSegment.java and add a new field ( public int delay = 0; ). This field will be 
used only by Router.java and will be ignored by all other classes. 

The method Router.relay() has an argument array packets_[] where the packets to be 
relayed are received. This is also where the packets are returned that are let pass through the 
router and onwards to TCP Receiver. Add a new array RouterBuffer[] to the Router, to 
store the packets that are currently delayed, waiting for their delay counter to reach down to zero. 
Make the size of this array an input argument to the simulation, to allow also for packets dropped 
because of buffer overflow. Initialize RouterBuffer[] with a nil pointer. The method 
Router.relay() should execute the following steps (remove the old code of this method): 
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• STEP 1: Iterate through the array RouterBuffer[] until you find a nil element (the end of 
packets stored in the buffer). For each RouterBuffer[i], decrement the delay value of the 
stored TCP segment by "1". Some of the delays may become zero after decremented. Leave them 
as is, they will be handled in STEP 3 below. 

• STEP 2: Append all non-nil elements from the argument array packets_[] at the end of 
RouterBuffer[], after the existing packets in RouterBuffer[], if any. Set each 
packets_[i] to nil after you move it to RouterBuffer[]. If during this process you run 
out of space in RouterBuffer[], all remaining packets from packets_[] should be 
dropped. For each packet moved to RouterBuffer[], generate an integer random number 
with exponential distribution and a small mean value, say 0, 1 or 2. (Make it possible for the user 
to enter the parameters of the exponential distribution from the command line, similarly to 
entering the number of iterations to run the simulation). Set the delay field of 
RouterBuffer[i] to the generated delay value. (The delay value must be integer ≥0.) 

• STEP 3: Iterate through the array RouterBuffer[] until you find a nil element (the end of 
the stored packets.) If RouterBuffer[i].delay equals zero (i.e., zero delay value), then 
move the packet RouterBuffer[i] to the method argument array packets_[]. You will 
need to shift the remaining elements of RouterBuffer[] to remove the gap. At the end of 
RouterBuffer[] make sure to put nil pointers to indicate the of the stored packets. After this 
step, there should be no element left in RouterBuffer[] with delay value equal zero. 

• STEP 4: Return from the method Router.relay(). The argument array packets_[] 
contains the packets that the router has let pass. This array should be passed on to the Receiver, as 
is in the current simulator code. 

Notice that if you run your simulation say for 100 iterations, there may at the end still remain 
some packets in the router in RouterBuffer[]. You will need to flush the router buffer by 
invoking Router.relay() with the argument array packets_[] having all elements set to 
nil and then passing the returned array packets_[] to the TCP Receiver, until no packets 
remain in RouterBuffer[]. 

Notice that, unlike Example 2.1 where a segment can arrive at the receiver out-of-sequence only 
because a previous segment was dropped at the router, in your assignment an additional reason 
for out-of-sequence segments is that different segments can experience different amounts of 
delay. Each packet is assigned the delay value individually as generated by the random number 
generator for each packet. So if, say, 3 packets arrive in the input argument array packets_[], 
then it is possible that packet #1 gets delay 4, so it will have to sit inside the router buffer through 
four invocations of method Router.relay(). On the other hand, packet #2 that arrived in the 
same iteration could get assigned delay 0 and leave at the end of this method invocation, and 
packet #3 could get assigned delay value 1 and leave in the next invocation, but still before packet 
#1. Recall that for every out-of-order segment, the receiver reacts immediately and sends a 
dupACK (see Figure 2-9). Your simulation will show what happens when packets are reordered. 
By controlling the size of the RouterBuffer[] array, you may cause packets dropped because 
of the router buffer overflow. 

Print some statistics from your new router code for every iteration, such as how many packets are 
currently left in RouterBuffer[] before the method Router.relay() is exited, the 
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Figure P-4: Results charts for Assignment 4. 

histogram of delay values for packets currently left in RouterBuffer[], and how many 
packets are dropped because of the router buffer overflow. 

Prepare the project report as described for all projects at the beginning of this chapter. Average 
over multiple runs to obtain average sender utilization. 

Assignment 4: TCP Tahoe with a Concurrent UDP Flow 

In the reference example implementation, there is a single flow of packets, from the sender, via 
the router, to the receiver. Your task is to add an additional, UDP flow of packets that competes 
with the TCP flow for the router resources (i.e., the buffering memory space). Modify the router 
Java class so that it can accept simultaneously input from a TCP sender and an UDP sender, and 
it should correctly deliver the packets to the respective TCP receiver and UDP receiver. The UDP 
sender should send packets in an ON-OFF manner. First, the UDP sender enters an ON period for 
the first four RTT intervals and it sends five packets at every RTT interval. Then the UDP sender 
enters an OFF period and becomes silent for four RTT intervals. This ON-OFF pattern of activity 
should be repeated for the duration of the simulation. At the same time, the TCP Tahoe sender is 
sending a very large file via the same router. 

1. In addition to the TCP-related charts, plot also the charts showing the statistics of the packet 
loss for the UDP flow. 

2. How many iterations takes the TCP sender to complete the transmission of a 1 MByte file? 
(Because randomness is involved, you will need to average over multiple runs.)  

3. Perform the experiment of varying the UDP sender regime as shown in Figure P-4. In the 
diagram on the left, the UDP sender keeps the ON/OFF period duration unchanged and varies 
the number of packets sent per transmission round. In the diagram on the right in Figure P-4, 
the UDP sender sends at a constant rate of 5 packets per transmission round, but varies the 
length of ON/OFF intervals. 

4. Based on these two experiments, can you speculate how increasing the load of the competing 
UDP flow affects the TCP performance? Is the effect linear or non-linear? Can you explain 
your observation? 

Prepare the project report as described for all projects at the beginning of this chapter. 



Programming Assignments 399

Relative delay of
transmission start

[in RTT units]0 1 2 3 4

S
en

d
er

 u
ti

liz
at

io
n

5 6 7

Sender 1

Sender 2

Assignment 5: Competing TCP Tahoe Senders 

Suppose that you have a scenario where two TCP Tahoe senders send data segments via the same 
router to their corresponding receivers. In case the total number of packets arriving from both 
senders exceeds the router’s buffering capacity, the router should discard all the excess packets as 
follows. Discard the packets that are the tail of a group of arrived packets. The number of packets 
discarded from each flow should be (approximately) proportional to the total number of packets 
that arrived from the respective flow. That is, if more packets arrive from one sender then 
proportionally more of its packets will be discarded, and vice versa. 

Assume that the second sender starts sending with a delay of three RTT periods after the first 
sender. Plot the relevant charts for both TCP flows and explain any differences or similarities in 
the corresponding charts for the two flows. Calculate the total utilization of the router’s output 
line and compare it with the throughputs achieved by individual TCP sessions. Note: to test your 
code, you should swap the start times of the two senders so that now the first sender starts 
sending with a delay of three RTT periods after the second sender. 

In addition to the above charts, perform the 
experiment of varying the relative delay in 
transmission start between the two senders. Plot the 
utilization chart for the two senders as shown in the 
figure. Are the utilization curves for the two 
senders different? Provide an explanation for your 
answer. Note: Remember that for fair comparison 
you should increase the number of iterations by the 
amount of delay for the delayed flow. 

Prepare the project report as described for all projects at the beginning of this chapter. 

Assignment 6: Random Loss and Early Congestion Notification 

This assignment is intended to simulate Random Early Detection (RED), described in Section 
5.3.1. The network configuration is the same as in Example 2.1 with the only difference being in 
the router’s behavior. Because we are dealing with a very small buffer size (i.e., 6), the 
granularity of TCP bursts is relatively high compared to the buffer size. As a result, it may not 
make much difference if we worked with the average rather than instantaneous queue length. In 
our simple approximation of RED, we will consider only the instantaneous queue length when 
deciding about dropping a packet. 

(a) First, assume that, in addition to discarding the packets that exceed the buffering 
capacity, the router also discards packets randomly. For example, suppose that 14 packets 
arrive at the router in a given transmission round. Then in addition to discarding all 
packets in excess of 6+1=7 as in the reference example, the router also discards some of 
the six packets in the buffer. (The packet currently in service is never considered for 
being dropped.) For each packet currently in the buffer, the router draws a random 
number from a normal distribution, with the mean equal to zero and adjustable standard 
deviation. If the absolute value of the random number exceeds a given threshold, then the 
corresponding packet is dropped. Otherwise, it is forwarded. 
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(b) Second, assume that the router 
considers for discarding only the 
packets that are located within a 
certain zone in the buffer. For 
example, assume that the random-
drop zone starts at 2/3 of the total 
buffer space and runs up to the end 
of the buffer. Then perform the 
above dropping procedure only on the packets that are located between 2/3 of the total 
buffer space and the end of the buffer. (Packets that arrive at a full buffer are 
automatically dropped!) 

Your program should allow entering different values of parameters for running the simulation, 
such as: variance of the normal distribution and the threshold for random dropping the packets in 
(a); and, the start discarding location in (b). 

1. In addition to the regular charts, plot the three-dimensional chart shown in the figure. (Use 
MatLab or a similar tool to 
draw the 3D graphics.) 
Because the router drops 
packets randomly, you should 
repeat the experiment several 
times (minimum 10) and plot 
the average utilization of the 
TCP sender. 

2. Find the regions of maximum 
and minimum utilization and 
indicate the corresponding 
points/regions on the chart. 
Explain your findings: why 
the system exhibits higher/ 
lower utilization with certain 
parameters? 

3. You should also present 
different two-dimensional cross-sections of the 3D graph, if this can help illuminate your 
discussion. 

A more ambitious team should try implementing a more accurate approximation of RED (Section 
5.3.1). Prepare the project report as described for all projects at the beginning of this chapter. 
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Solutions to Selected Problems 

 

Problem 1.1 — Solution 

Let tx denote the transmission time for a packet L bits long and let tp denote the propagation delay 
on each link. Each packet crosses three links (Link-1: source to router1; Link-2: router1 to 
router2; Link-3: router2 to destination). 

11

11

11

22

22

22

NN

NN

NN

TimeSource

Router 1

Router 2

Destination

First bit received at:  3 × tp + 2 × tx
Last bit received at:  3 × tp + 3 × tx + (N−1) × tx

packets

 

(a) 

The total transmission time equals: 3 × tp + 3 × tx + (N − 1) × tx = 3 × tp + (N + 2) × tx. 

(b) 

The transmission time is ½ tx, the propagation time remains the same, and there are twice more 
packets, so the total transmission time equals: 

3 × tp + (2×N + 2) × (tx/2) = 3 × tp + (N + 1) × tx. 

(c) 

The total delay is smaller in case (b) by tx because of greater parallelism in transmitting shorter 
packets. If we use, for example, four times shorter packets (L/4), then the total transmission time 
equals: 3 × tp + (N + 1/2) × tx. 

On the other hand, if we use two times longer packets, i.e., N/2 packets each 2×L bits long, then 
the total transmission time equals: 

3 × tp + (N/2 + 2) × (2×tx) = 3 × tp + (N + 4) × tx. 

which is longer by 2×tx then in case (a). 
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Problem 1.2 — Solution 

 

Problem 1.3 — Solution 

(a) 

Having only a single path ensures that all packets will arrive in order, although some may be lost 
or damaged due to the non-ideal channel. Assume that A sends a packet with SN = 1 to B and the 
packet is lost. Because A will not receive ACK within the timeout time, it will retransmit the 
packet using the same sequence number, SN = 1. Because B already received a packet with SN = 
1 and it is expecting a packet with SN = 0, it concludes that this is a duplicate packet. 

(b) 

If there are several alternative paths, the packets can arrive out of order. There are many possible 
cases where B receives duplicate packets and cannot distinguish them. Two scenarios are shown 
below, where either the retransmitted packet or the original one gets delayed, e.g., by taking a 
longer path. These counterexamples demonstrate that the alternating-bit protocol cannot work 
over a general network. 

 

Problem 1.4 — Solution 

 

Problem 1.5 — Solution 

 

Problem 1.6 — Solution 

Recall that the utilization of a sender is defined as the fraction of time the sender is actually busy 
sending bits into the channel. Because we assume errorless communication, the sender is 
maximally used when it is sending without taking a break to wait for an acknowledgement. This 
happens if the first packet of the window is acknowledged before the transmission of the last 
packet in the window is completed. That is,  
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(N − 1) × tx ≥ RTT = 2 × tp  

where tx is the packet transmission delay and tp is the propagation delay. 
The left side represents the transmission delay for the remaining (N − 1) 
packets of the window, after the first packet is sent. Hence, 

1
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In our case,   = 10 km, v ≈ 2 × 108 m/s, R = 1 Gbps, and L = 512 bytes. 
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Finally, N ≥ 24.41 + 1 = 26 packets. 

 

Problem 1.7 — Solution 

str. 284 

Problem 1.8 — Solution 

The solution is shown in the following figure. We are assuming that the retransmission timer is 
set appropriately, so ack0 is received before the timeout time expires. Notice that host A simply 
ignores the duplicate acknowledgements of packets 0 and 3, i.e., ack0 and ack3. 

There is no need to send source-to-destination acknowledgements (from C to A) in this particular 

example, because both AB  and BC  links are reliable and there are no alternative paths from A 
to C but via B. The reader should convince themselves that should alternative routes exist, e.g., 
via another host D, then we would need source-to-destination acknowledgements in addition to 
(or instead of) the acknowledgements on individual links. 
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Problem 1.9 — Solution 

The solution is shown in the following figure. 
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Problem 1.10 — Solution 

It is easy to get tricked into believing that the second, (b), configuration would offer better 
performance, because the router can send in parallel in both directions. However, this is not true, 
as will be seen below. 

(a) 

Propagation delay = 300 m / (2 × 108) = 1.5 × 10−6 s = 1.5 μs 

Transmission delay per data packet = 2048×8 / 106 = 16.384 × 10−3 = 16.384 ms 

Transmission delay per ACK = 108 / 106 = 0.08 × 10−3 = 0.08 ms 

Transmission delay for N = 5 (window size) packets = 16.384×5 < 82 

82 + 0.08 + 0.0015 × 2 = 82.083 

Subtotal time for 100 packets in one direction = 100 × 82.083 / 5 = 1641.66 ms 

Total time for two ways = 1641.66 × 2 = 3283.32 ms 

 

(b) 

If host A (or B) sends packets after host B (or A) finishes sending, then the situation is similar to 
(a) and the total time is about 3283.32 ms. 

If hosts A and B send a packet each simultaneously, the packets will be buffered in the router and 
then forwarded. The time needed is roughly double (!), as shown in this figure. 
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Problem 1.11 — Solution 

Go-back-N ARQ. 

Packet error probability = pe for data packets; ACKs error free. Successful receipt of a given 
packet with the sequence number k requires successful receipt of all previous packets in the 
sliding window. In the worst case, retransmission of frame k is always due to corruption of the 

earliest frame appearing in its sliding window. So, ( ) ( )N
e

k

Nki
e ppp −=−= ∏

−=

11succ , where N is the 

sliding window size. An upper bound estimate of E{n} can be obtained easily using Eq. (1.8) as 
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epp

nE
−

==
1

11
}{

succ

. On average, however, retransmission of frame k will be due to an error 

in frame (k−LAR)/2, where LAR denotes the sequence number of the Last Acknowledgement 
Received. 

(a) 

Successful transmission of one packet takes a total of  tsucc = tx + 2×tp  

The probability of a failed transmission in one round is  pfail = 1 − psucc = 1 − (1 − pe)
N  

Every failed packet transmission takes a total of   tfail = tx + tout  

(assuming that the remaining N−1 packets in the window will be transmitted before the timeout 
occurs for the first packet). 

Then, using Eq. (1.9) the expected (average) total time per packet transmission is: 
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(b) 

If the sender operates at the maximum utilization (see the solution of Problem 1.6), then the 
sender waits for N−1 packet transmissions for an acknowledgement, tout = (N−1) ⋅ tx, before a 
packet is retransmitted. Hence, the expected (average) time per packet transmission is: 
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Problem 1.12 — Solution 

(a) 

Packet transmission delay equals = 1024 × 8 / 64000 = 0.128 sec; acknowledgement transmission 
delay is assumed to be negligible. Therefore, the throughput SMAX = 1 packet per second (pps). 

(b) 
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To evaluate E{S}, first determine how many times a given packet must be (re-)transmitted for 
successful receipt, E{n}. According to Eq. (1.8), E{n} = 1/p ≅ 1.053. Then, the expected 

throughput is { }
}{

MAX

nE

S
SE =  = 0.95 pps. 

(c) 

The fully utilized sender sends 64Kbps, so SMAX = 
81024

64000

×
 = 7.8125 pps. 

(d) 

Again, we first determine how many times a given packet must be (re-)transmitted for successful 
receipt, E{n}. The sliding window size can be determined as N = 8 (see the solution for Problem 
1.6). A lower bound estimate of E{S} can be obtained easily by recognizing that E{n} ≤ 1/p8 ≅ 
1.5 (see the solution for Problem 1.11). Then, SMAX×p8 ≅ (7.8125)×(0.6634) ≅ 5.183 pps 
represents a non-trivial lower bound estimate of E{S}. 

Problem 1.13 — Solution 

The packet size equals to transmission rate times the slot duration, which is 1500 bps × 0.08333 s 
= 125 bits. This wireless channel can transmit a maximum of 12 packets per second, assuming 
that in each slot one packet is transmitted. (Recall that slotted ALOHA achieves maximum 
throughput when G = 1 packet per slot). Of these, some will end up in collision and the effective 
throughput will be equal to 0.368 × 12 = 4.416 packets per second. Because this is aggregated 
over 10 stations, each station can effectively transmit 4.416 / 10 = 0.4416 packets per second, or 
approximately 26 packets per minute, at best. 

Problem 1.14 — Solution 

(a) Given the channel transmission attempt rate G, the probability of success was derived in 
Eq. (1.12) as e−G, which is the probability that no other station will transmit during the vulnerable 
period. 

(b) The probability of exactly K collisions and then a success is 

(1 − e−G)k ⋅ e−G  

which is derived in the same manner as Eq. (1.7) in Section 1.3.1. 

Problem 1.15 — Solution 

(a) 

The solution is given in Figure 1-26(b): there will be G⋅P0 successfully transmitted packets, and 
G⋅(1−P0) collided packets. Slotted ALOHA operates under maximum efficiency when G=1, that 
is when on average one packet is transmitted per each slot. This means that, on average, there will 
be no idle slots—every slot, on average, will be used for a transmission. Of those transmissions, 
there will be on average λ = 1/e fresh packet arrivals as well as 1/e slots with successful 
transmissions (some of the successful transmissions may be retransmissions of backlogged 
packets), and there will be on average (1 − 1/e) slots with collisions. 
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(b) 

A slotted ALOHA system would operate with a less-than-maximum efficiency if G≠1. When 
G < 1 there are on average less than one transmission attempts per packet time, so we say that the 
system is underloaded. Conversely, when G > 1 there are on average more than one transmission 
attempts per packet time, so we say that the system is overloaded. In both cases, the arrival rate 
will be λ < 1/e (see Figure 1-28). 

The system would be underloaded when some stations do not have packets in some slots to 
transmit or retransmit. As a result, there will be a non-zero fraction of idle slots. In the 
underloaded case, there will be on average 1/e −λ > 0 idle slots, λ successful slots, and the 
remaining ≤(1 − 1/e) slots with collisions. 

The system would be overloaded if the arrival rate became temporarily λ > 1/e, i.e., greater than 
the optimal value. This will result in many collisions and there will be many stations that become 
backlogged, trying to retransmit previously collided packets. The backlogged stations will not 
accept fresh packets, which effectively means that the arrival rate will drop to λ < 1/e. (Notice 
that λ becomes small not because users are not generating new packets but because many stations 
are backlogged and do not accept fresh packets). In the overloaded case, there will be on average 
no idle slots, λ < 1/e successful slots, and the remaining >(1 − 1/e) slots with collisions. 

(c) 

Both the maximum-efficiency and underloaded cases are stable. In both cases for a steady arrival 
rate λ, the system will remain in a stable condition. 

The overloaded case is unstable: initially the arrival rate will be λ > 1/e, but then many stations 
will become backlogged and will not accept new packet arrivals so λ will drop to λ < 1/e. These 
backlogged stations will keep retransmitting their packets and eventually the backlogged packets 
will clear. If after this clearing the arrival rate remains λ ≤ 1/e, then the system will remain 
maximally efficient (λ = 1/e) or it will remain underloaded (λ < 1/e). Otherwise, it will again 
become temporarily overloaded. 

Problem 1.16 — Solution 

 

Problem 1.17 — Solution 

The stations will collide only if both select the same backoff value, i.e., either both select 0 or 
both select 1. The “tree diagram” of possible outcomes is shown in the figure below. To obtain 
the probabilities of different outcomes, we just need to multiply the probabilities along the path to 
each outcome. 

(a) 

Probability of transmission p = ½, the success happens if either station transmits alone: 
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 Psuccess = ( ) pp ⋅−⋅






 −121
1

2
= 2 × ½ × ½ = 0.5 

(b) 

The first transmission ends in collision if both stations transmit simultaneously 

Pcollision = 1 − Psuccess = 0.5 

Because the waiting times are selected independent of the number of previous collisions (i.e., the 
successive events are independent of each other), the probability of contention ending on the 
second round of retransmissions is 

Pcollision × Psuccess = 0.5 × 0.5 = 0.25 

(c) 

Similarly, the probability of contention ending on the third round of retransmissions is 

 Pcollision × Psuccess × Psuccess = 0.5 × 0.5 × 0.5 = 0.125 

(d) 

Regular nonpersistent CSMA with the normal binary exponential backoff algorithm works in 
such a way that if the channel is busy, the station selects a random period to wait. When the 
waiting period expires, it senses the channel. If idle, transmit; if busy, wait again for a random 
period, selected from the same range. And so on until the channel becomes idle and transmission 
occurs. 

If the transmission is successful, the station goes back to wait for a new packet. 

If the transmission ends in collision, double the range from which the waiting period is drawn 
and repeat the above procedure. 

Unlike the regular nonpersistent CSMA, in the modified nonpersistent CSMA there are only two 
choices for waiting time. Therefore, half of the backlogged stations will choose one way and the 
other half will choose the other way. 

In conclusion, regular nonpersistent CSMA performs better than the modified one under heavy 
loads and the modified algorithm performs better under light loads. 

Select 1st
backoff

Select 2nd
backoff

Outcome

Collision, Success

Success

½

½

½

½

Collision, Collision, Success

Collision, Collision, Collision

½

½

(0, 1) or (1, 0)

(0, 0) or (1, 1)

(different values)

(both same)

(0, 1) or (1, 0)

(0, 0) or (1, 1)

Select 3rd
backoff

(0, 1) or (1, 0)

(0, 0) or (1, 1)
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Problem 1.18 — Solution 

The solution is shown in the figure below. Recall that nonpersistent CSMA operates so that if the 
medium is idle, it transmits; and if the medium is busy, it waits a random amount of time and 
senses the channel again. The medium is decided idle if there are no transmissions for time 
duration β, which in our case equals τ. Therefore, although station B will find the medium idle at 
the time its packet arrives, (τ/2), because of τ propagation delay, the medium will become busy 
during the τ sensing time. The figure below shows the case where station C happens to sense the 
channel idle before B so station C transmits first. 

For CSMA/CD, the smallest frame size is twice the propagation time, i.e., 2τ, which is the 
duration of the collision.  

STA-A

STA-B

STA-C

0 τ/2 3τ/2

Collision TimeTime

STA-A

STA-B

STA-C

0 τ/2 3τ/2

STA-A

STA-B

STA-C

0 τ/2 3τ/2

Frame transmission time = 4τ

Pure ALOHA

Non-persistent CSMA

CSMA/CD

Col
lis

io
n

Ja
m

 s
ig

na
l

Sen
se
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ar

rie
r 

id
le

 fo
r  

β = 
τ

= sense carrier for β time

Key:

= propagation delay (= β)

= sense carrier for β time

Key:

= propagation delay (= β)

 

Problem 1.19 — Solution 

 

Problem 1.20 — Solution 

The solution for the three stations using the CSMA/CA protocol is shown in the figure below. 
The third station has the smallest initial backoff and transmits the first. The other two stations will 
freeze their countdown when they sense the carrier as busy. After the first frame, STA3 randomly 
chooses the backoff value equal to 4, and the other two stations resume their previous countdown. 
STA1 reaches zero first and transmits, while STA2 and STA3 freeze their countdown waiting for 
the carrier to become idle. STA3 transmits next its second frame and randomly chooses the 
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backoff value equal to 1, and the other two stations again resume their previous countdown. 
STA2 finally transmits its first frame but STA3 simultaneously transmits its third frame and there 
is a collision. 

(Note: The reader may wish to compare this with Figure 1-32 which illustrates a similar scenario 
for three stations using the CSMA/CD protocol, as well as with Problem 1.33 for IEEE 802.11.) 

 

Problem 1.21 — Solution 

The analogy with a slide (Figure 1-80) is shown again in the figure below. We define three 
probabilities for a station to transition between the backoff states. P11 represents the probability 
that the kid will enter the slide on Platform-1, therefore after sliding through Tube-1 he again 
slides through Tube-1. P12 represents the probability that the kid will enter the slide on Platform-
2, therefore after sliding through Tube-1 he first slides through Tube-2. Finally, P21 represents the 
probability that the kid will slide through Tube-1 after sliding through Tube-2, and this equals 1 
because the kid has no choice. Below I will present three possible ways to solve this problem. 

Tube 1 Tube 2

Pr(Tube2→Tube1)
= P21 = 1

Pr(T1→T1)
= P11 = 0.5

Pr(Tube1→Tube2)
= P12 = 0.5

Tube 1

Tube 2

Platform 1

Platform 2

Tube 1

Tube 2

Platform 1

Platform 2

 

Solution 1 (Statistical) 

There are two events: 

(a) The kid enters the slide on Platform-1 and slides through Tube-1 

(b) The kid enters the slide on Platform-2 and slides through Tube-2, then through Tube-1 

Because the probabilities of choosing Platform-1 or proceeding to Platform-2 are equal, these two 
events will, statistically speaking, happen in a regular alternating sequence: 

STA 1

STA 2

STA 3

Previous
frame

9 8 7 6 5 4 3 2 1 0

5 4 3 2 1 0

2 1 0

6 5 4 3 2 1 0

2 1 0

4 3 2 1 0 1 0

3 2 1 0

7 6 5 4 3 2 1 0

1 0

1 0

Collision

5 4 3 2 1 0

Remainder Backoff

STA1, 1st frame

STA3, 1st frame STA3, 2nd frame

STA2, 1st frame

STA3, 3rd frame

TimeTime
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Tube-1 Tube-1 Tube-2Tube-1 Tube-2 Tube-1 Tube-1 Tube-2Tube-1 Tube-2 Tube-1 Tube-1 Tube-2Tube-1 Tube-2

Event (a) Event (b) Event (a) Event (b) Event (a) Event (b)

 

By simple observation we can see that the kid will be found two thirds of time in Tube-1 and one 
third of time in Tube-2. Therefore, PT1 = 2/3 and PT2 = 1/3 and these correspond to the 
distribution of steady-state probabilities of backoff states. 

 

Solution 2 (Algebraic) 

We introduce two variables, x1(k) and x2(k) to represent the probabilities that at time k the kid will 
be in Tube-1 or Tube-2, respectively. Then we can write the probabilities that at time k + 1 the 
kid will be in one of the tubes as: 
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Write the above equations using matrix notation: 
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Then we solve the backoff-state equation: 
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The steady state solution is obtained for k → ∞: 
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We obtain that regardless of the initial conditions x1(0) and x2(0), the backoff state probabilities 
are x1(k) = 2/3 and x2(k) = 1/3. 

Problem 1.22 — Solution 

 

Problem 1.23 — Solution 

(a) 

The lower boundary for the vulnerable period for A’s transmission is any time before A’s start (at 
tA) that overlaps with A’s transmission. This is equal to packet transmission time (tx), which for 
data rate 1 Mbps and packet length of 44 bytes gives 352 μs or 18 backoff slots. To account for 
the cases when A selects its backoff countdown bA < 18 slots, we can write the lower bound of the 
vulnerable period as: max{tA − tx, 0}. 

Similarly, the upper bound is the end of A’s packet transmission, which is at tA + tx. To account 
for the limited size of the backoff contention window CW, we can write the lower bound of the 
vulnerable period as: min{tA + tx, CW}. 

Therefore, if A starts transmission at tA, then the vulnerable period for the reception of this packet 
at the receiver B is [max{tA − tx, 0}, min{tA + tx, CW}]. In our specific example, the vulnerable 
period is [max{12 × 20 μs − 352 μs, 0}, max{12 × 20 μs + 352 μs, 32 × 20 μs}] = [0, 592 μs]. 

 

(b) 

The timing diagram is shown in the figure below. 

Notice that for the first transmission, A and B will start their backoff countdown at the same time 
(synchronized with each other). Conversely, for the second transmission, A and B will start their 
backoff countdown at different times (desynchronized with each other). 

Backoff
countdown

A

B

C

t = 0

ACK

Backoff
countdown Data, tx = 352 μs

Timeout, tACK = 334 μs

Collision

tA1 = 240 μs

tC1 = 100 μs tC2 = 866 μs

t = 786 μs

bA1 = 12 slots

bC1 =
5 slots

bA2 = 11 slots

bC2 =
4 slots

tA2 =
1146 μs
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(c) 

Problem 1.24 — Solution 

(a) 

At Kathleen’s computer, the TCP layer will slice the 16-Kbytes letter into payload segments of: 

TCP segment size = 512 − 20(TCP hdr) − 20 (IP hdr) = 472 bytes 

Total number of IP datagrams generated is: 16,384 ÷ 472 = 34 × 472 + 1 × 336 = 35 IP datagrams 

Notice that the payload of the first 34 IP datagrams is: 20(TCP hdr) + 472(user data) = 492 bytes 
and the last one has 356-bytes payload. 

(b) 

There will be no fragmentation on Link 2, but there will be on Link 3. The IP datagram size 
allowed by MTU of Link 3 is 256, which means that the payload of each datagram is up to 
256 − 20(IP hdr) = 236 bytes. Because the fragment offset is measured in 8-byte chunks, not in 
bytes, the greatest number divisible by 8 without remainder is 232, which means that each of the 
34 incoming datagrams will be split into 3 new fragments: 492 = 232 + 232 +28, and the last one 
35th will be split into two fragments: 356 = 232 + 124. 

Total number of fragments on Link 3 is: 34 × 3 + 1 × 2 = 104 datagrams, of which 69 have 
payload of 232 bytes, 34 have payload of 28 bytes, and 1 has payload of 124 bytes (this is the last 
one). The reader should recall that the IP layer does not distinguish any structure in its payload 
data. Each original IP datagram sent by Kathleen’s computer contains a TCP header and user 
data. The TCP header will be end up in the first fragment and there will be 212 bytes of user data, 
and the remaining two fragments will contain only user data. Again, IP is not aware of the 
payload structure and treats the whole payload in the same way. 

(c) 
First 4 packets that Joe receives Last 5 packets that Joe receives 
#1:   Length = 232, ID = 672, MF = 1, Offset = 0 #100:   Length = 232, ID = 774, MF = 1, Offset = 0 
#2:   Length = 232, ID = 672, MF = 1, Offset = 29 #101:   Length = 232, ID = 774, MF = 1, Offset = 29 
#3:   Length = 28, ID = 672, MF = 0, Offset = 58 #102:   Length = 28, ID = 774, MF = 0, Offset = 58 
#4:   Length = 232, ID = 673, MF = 1, Offset = 0 #103:   Length = 232, ID = 775, MF = 1, Offset = 0 
 #104:   Length = 124, ID = 775, MF = 0, Offset = 29 

(d) 

If the very last (104th) fragment is lost, Joe’s computer cannot reassemble the last (35th) IP 
datagram that was sent by Kathleen’s computer. Therefore, the TCP sender will not receive an 
acknowledgement for the last segment that it transmitted and, after the retransmission timer 
expires, it will resend the last segment of 336 bytes of data + 20 bytes TCP header. The IP layer 
will create a datagram with the payload of 356 bytes. So, Kathleen’s computer will retransmit 
only 1 IP datagram. This datagram will be fragmented at Link 3 into 2 IP datagrams. So, Joe’s 
computer will receive 2 IP datagrams. The relevant parameters for these 2 fragments are: 

#105.     Length = 232, ID = 776, MF = 1, Offset = 0  
#106.     Length = 124, ID = 776, MF = 0, Offset = 29 
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Notice that the ID of the retransmitted segment is different from the original, to avoid confusion 
between the fragments of two different datagrams. 

Problem 1.25 — Solution 

After the steps (a) through (e), the network will look like: 

The link-state advertisements flooded after the step (a) are as follows: 
Node A: ___ Node B: ___ Node C: ___ Node F: ___ Node G: 
Seq# Neighbor Cost  Seq# Neighbor Cost  Seq# Neighbor Cost  Seq# Neighbor Cost  Seq# Neighbor Cost

1 
B   

1 
A 1  

1 
A 1  

1 
B ∞  1 F 1 

C   C 1  B 1  G 1   
  F ∞      

[We assume that the sequence number starts at 1 in step (a), although a valid assumption would 
also be that it is 1 before step (a).] 

In the remaining steps, we show only those LSAs that are different from the previous step. (Note 
that the sequence number changes in every step for all LSAs, including the ones not shown.) 

Step (b): 
Node G:   ___ Node H:   

Seq# Neighbor Cost  Seq# Neighbor Cost

2 
F 1  2 G 1 
H 1     

Step (c): 
Node C:   ___ Node D:   

Seq# Neighbor Cost  Seq# Neighbor Cost

3 
A 1  3 C 1 
B 1     
D 1     

Step (d): 
Node B: ___ Node E: 
Seq# Neighbor Cost  Seq# Neighbor Cost

4 
A 1  4 B 1 
C 1     
E 1     

Step (e): 
Node A: ___ Node D: 
Seq# Neighbor Cost  Seq# Neighbor Cost

5 
B 1  

5 
A 1 

C 1  C 1 
D 1     

Step (f): 
Node B: ___ Node F: 
Seq# Neighbor Cost  Seq# Neighbor Cost

6 

A 1  
6 

B 1 
C 1  G 1 
E 1   
F 1  

 

C

BA F G

D E

H
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Problem 1.26 — Solution 

 

Problem 1.27 — Solution 

The tables of distance vectors at all nodes after the network stabilizes are shown in the leftmost 

column of the figure below. Notice that, although, there are two alternative AC  links, the nodes 

select the best available, which is AC =1. 

When the link AC  with weight equal to 1 is broken, both A and C detect the new best cost AC  
as 50. 

1. A computes its new distance vector as 
{ } { } 4150,04min)(),(),(),(min)( =++=++= BDCAcBDBAcBD CBA  

{ } { } 514,050min)(),(),(),(min)( =++=++= CDBAcCDCAcCD BCA  
Similarly, C computes its new distance vector as 

{ } { } 321,050min)(),(),(),(min)( =++=++= ADBCcADACcAD BAC  

{ } { } 1250,01min)(),(),(),(min)( =++=++= BDACcBDBCcBD ABC  
Having a global view of the network, we can see that the new cost DC(A) via B is wrong. 
Of course, C does not know this and therefore a routing loop is created. 
Both B and C send their new distance vectors out, each to their own neighbors, as shown 
in the second column in the figure (first exchange). 

2. Upon receiving C’s distance vector, A is content with its current d.v. and makes no 
changes. Ditto for node C.  
B computes its new distance vector as 

{ } { } 431,04min)(),(),(),(min)( =++=++= ADCBcADABcAD CAB  

{ } { } 154,01min)(),(),(),(min)( =++=++= CDABcCDCBcCD ACB  
B sends out its new distance vector to A and C (second exchange). 

3. Upon receiving B’s distance vector, A does not make any changes so it remains silent. 
Meanwhile, C updates its distance vector to the correct value for DC(A) and sends out its 
new distance vector to A and B (third exchange). 

4. A and B will update the C’s distance vector in their own tables, but will not make further 
updates to their own distance vectors. There will be no further distance vector exchanges 

related to the AC  breakdown event. 
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Problem 1.28 — Solution 

 

 

 

Problem 1.29 — Solution 

(a) 

The following figure shows how the routing tables are constructed until they stabilize. 
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(b) 

The forwarding table at node A after the routing tables stabilize is shown in the figure below. 
Notice that the forwarding table at each node is kept separately from the node’s routing table. 

 

(c) 

See also solution of Problem 1.25. 

First, consider the figure below. C updates its distance vector and thinks that the new shortest 
distance to D is 4 (via B). It sends its updated distance vector to its neighbors (A and D) and they 
update their distance vectors, as shown in the figure. 
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distance to

C    ∞ ∞ ∞

A    ∞ ∞ ∞

fr
om

A    0   5   3

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

B    ∞ ∞ ∞ ∞
C    3   1   0   1

Node C table:

A   B   C   D

distance to

A    ∞ ∞ ∞ ∞

D    ∞ ∞ ∞ ∞

fr
om

A    0   5   3

B    5   0   1

C    3   1   0   1

A   B   C   D

distance to

D              1   0

fr
om

D    1   0

C    ∞ ∞

Node D table:

C   D

distance to

fr
om

C    3   1   0   1

D    4   2   1   0

A   B   C   D

distance to
fr

om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

D    4   2   1   0

fr
om

C    3   1   0   1

D    4   2   1   0

A   B   C   D

distance to

destination

A            --

B            AC

C            AC

interface

D            AC

Node A forwarding table:
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A routing loop is formed because a packet sent from A to D would go to C and C would send it to 
B (because C’s new shortest path to D is via B). B would return the packet to C because B’s 
shortest path to D is still via C. This looping of the packet to D would continue forever. 

 

(d) 

If the nodes use split-horizon routing, then neither A nor B would advertise to C their distances to 
D, because C is the next hop for both of them on their paths to D. Therefore, in principle D would 
not think there is an alternative path to D. 

Even in this case, it is possible that a routing loop forms. The key to a routing loop formation in 
this case is the periodic updates that nodes running a distance vector protocol are transmitting. 
Thus, the cycle shown below is due to the pathological case where B transmits its periodic report 
some time in the interval after the link CD crashes, but before B receives update information 
about the outage to D from node C. 

Node A table:

Node B table:

Node C table:

Node D table:

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

D    4   2   1   0

fr
om

C    3   1   0   1

D    4   2   1   0

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   3

A   B   C   D

distance to

fr
om D    0

D

distance to

Before link failure
After link failure
is detected

fr
om

A    0   4   3   6

B    4   0   1   2

C    3   1   0   3

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   4

C    3   1   0   3

A   B   C   D

distance to

fr
om B    4   0   1   2

A    0   4   3   4

C    3   1   0   3

A   B   C   D

distance to

C sends its new distance vector

fr
om D    0

D

distance to
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Problem 1.30 — Solution 

 

Problem 1.31 — Solution 

(a) 

Example IP address assignment is as shown: 

Node A table:

Node B table:

Node C table:

Node D table:

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

D    4   2   1   0

fr
om

C    3   1   0   1

D    4   2   1   0

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   1

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0   3

A   B   C   D

distance to

fr
om D    0

D

distance to

Before link failure
After link failure
is detected

fr
om

A    0   4   3   4

B    4   0   1   2

C    3   1   0  ∞

A   B   C   D

distance to

fr
om

A    0   4   3   4

B    4   0   1   4

C    3   1   0  ∞

A   B   C   D

distance to

fr
om B    4   0   1   2

A    0   4   3   4

C    3   1   0   3

A   B   C   D

distance to

B sends its periodic report
C sends its updated report

fr
om D    0

D

distance to
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Subnet
223.1.1.12/30

Subnet
223.1.1.4/30

R1

R2

E F

A

B

C

D

223.1.1.9

223.1.1.1
223.1.1.5

223.1.1.2

223.1.1.3

223.1.1.6

223.1.1.7

223.1.1.13

223.1.1.14 223.1.1.15

Subnet
223.1.1.0/30

Subnet
223.1.1.8/30

223.1.1.10

 

(b) 

Routing tables for routers R1 and R2 are: 

Router R1 Destinat. IPaddr / Subnet Mask Next Hop Output Interface 
223.1.1.2   (A) 223.1.1.2   (A) 223.1.1.1 
223.1.1.3   (B) 223.1.1.3   (B) 223.1.1.1 
223.1.1.6   (C) 223.1.1.6   (C) 223.1.1.5 
223.1.1.7   (D) 223.1.1.7   (D) 223.1.1.5 
223.1.1.12/30 223.1.1.10 223.1.1.9 

 

Router R2 Destinat. IPaddr / Subnet Mask Next Hop Output Interface 
223.1.1.14   (E) 223.1.1.14  (E) 223.1.1.13 
223.1.1.15   (F) 223.1.1.15  (F) 223.1.1.13 
223.1.1.0/30 223.1.1.9 223.1.1.10 
223.1.1.4/30 223.1.1.9 223.1.1.10 

 

Problem 1.32 — Solution 

Recall that in CIDR the x most significant bits of an address of the form a.b.c.d/x constitute the 
network portion of the IP address, which is referred to as prefix (or network prefix) of the 
address. In our case the forwarding table entries are as follows: 

Subnet mask Network prefix Next hop 
223.92.32.0/20 11011111 01011100 00100000 00000000 A 
223.81.196.0/12 11011111 01010001 11000100 00000000 B 
223.112.0.0/12 11011111 01110000 00000000 00000000 C 
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128.6.224.0 / 19 128.6.224.0 / 19 

128.6.232.0 / 21 

128.6.224.0 / 21 

223.120.0.0/14 11011111 01111000 00000000 00000000 D 
128.0.0.0/1 10000000 00000000 00000000 00000000 E 
64.0.0.0/2 01000000 00000000 00000000 00000000 F 
32.0.0.0/3 00100000 00000000 00000000 00000000 G 

Notice that the network prefix is shown in bold face, whereas the remaining 32−x bits of the 
address are shown in gray color. When forwarding a packet, the router considers only the leading 
x bits of the packet’s destination IP address, i.e., its network prefix. 

 Packet destination IP address Longest prefix match Next hop 

(a) 195.145.34.2 = 11000011 10010001 00100010 00000010 1 E 

(b) 223.95.19.135 = 11011111 01011111 00010011 10000111 11011111 0101 B 

(c) 223.95.34.9 = 11011111 01011111 00100010 00001001 11011111 0101 B 

(d) 63.67.145.18 = 00111111 01000011 10010001 00010010 001 G 

(e) 223.123.59.47 = 11011111 01111011 00111011 00101111 11011111 011110 D 

(f) 223.125.49.47 = 11011111 01111101 00110001 00101111 11011111 0111 C 

 

Problem 1.33 — Solution 

The packet forwarding is given as follows: 

 Destination IP address  Binary representation Next hop

(a) 128.6.4.2 (cs.rutgers.edu) 10000000 00000110 00000100 00000010 A 

(b) 128.6.236.16 (caip.rutgers.edu) 10000000 00000110 11101100 00010000 B 

(c) 128.6.29.131 (ece.rutgers.edu) 10000000 00000110 00011101 10000011 C 

(d) 128.6.228.43 (toolbox.rutgers.edu) 10000000 00000110 11100100 00001010 D 

From this, we can reconstruct the forwarding table as: 
Network Prefix Subnet Mask Next Hop 

10000000 00000110 0000 128.6.0.0 / 20 A 
10000000 00000110 11101 128.6.232.0 / 21 B 
10000000 00000110 0001 128.6.16.0 / 20  C 
10000000 00000110 111 128.6.224.0 / 19 D 

Notice that in the last row we could have used the prefix “10000000 00000110 11100” and the 
subnet mask “128.6.224.0 / 21.” However, it suffices to use only 19 most significant bits because 
the router forwards to the longest possible match, as explained next. 

If we calculate the range of address associated with the prefix 
128.6.224.0/19 (last row in the above forwarding table), we 
find the range as 128.6.224.0 to 128.6.255.254. The addresses 
associated with 128.6.232.0/21 (second row) are 128.6.232.1 to 
128.6.239.254. As seen, the latter set of addresses is a subset of 
the former set, so one may think that the router will route all 
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addresses starting with 128.6.224.0/19 to the next hop D. This is not the case. When a packet 
arrives with 128.6.228.43 in its header, the router will find that the longest match is 
128.6.224.0/19 (last row in the above table). Hence, this packet will be forwarded to D. 
Alternatively, when a packet arrives with 128.6.236.16 in its header, the router will find that there 
are two matches in the forwarding table: 128.6.224.0/19 (last row) and 128.6.232.0/21 (second 
row). Of these two, the latter is longer by two bits, so the router will not get confused and route 
this packet to D. Rather, the router will correctly route the packet to B.  

Problem 1.34 — Solution 

 

Problem 1.35 — Solution 

The observed topology of an internetwork of autonomous systems depends on the vantage point. 
The view from ASϕ’s vantage point is shown in the problem statement. When solving the 
problem for other stub ASs, it is key to keep in mind that ASs do not like to provide transit 
without being paid. ASs will happily provide transit to their paying customers, or will provide 
access of their customers to their peers, but will not provide free transit to their peers. 

The solutions for the remaining vantage points are as follows: 

γ’s customers

η’s customers

Noodle.comMacrospot.com

φ

ηγ

δ

α β
χ

γ’s customers

η’s customers

Noodle.comMacrospot.com

φ

ηγ

δ

α β
χ

ϕ

ε

ϕ’s customers

ϕ

ε

ϕ’s customers

Topology view from γ’s customersTopology view from η’s customers
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γ’s customers η’s customers

Noodle.com

Macrospot.com

φ

ηγ

δ

α β
χ

γ’s customers η’s customers

Noodle.com

Macrospot.com

φ

ϕηγ

δ ε

α β
χ

ϕ’s customers

ϕ

ε

ϕ’s customers

Topology view from Macrospot.com Topology view from Noodle.com

 

 

Problem 1.36 — Solution 

(a) 
Recall that autonomous systems use path vector routing for inter-domain routing (Section 1.4.5). 
ASα will receive three routes to ASβ, along router links CH, path: 1 | β; DK, path: 1 | β; and 
DE, path: 2 | γ,β. 

(b) 
X→Y traffic will take link CH, because this is the shortest path when crossing ASα. Recall that 
internally ASs use hot-potato routing, so when a packet from X arrives at router A, the shortest 
path across ASα to ASβ is AC, then CH. Note that this strategy minimizes cost to the source of 
the traffic (i.e., ASα) and is not optimal to other ASs along the path, such as ASβ. 

By the same reasoning, Y→X traffic will take link KD. The resulting paths are 
X→A→C→H→I→J→Y and Y→J→K→D→B→A→X. In both cases, hot-potato routing within 
the given AS does not look at the overall path length, but only the path length within this AS. 

(c) To have all X→Y traffic take link DK, the Exterior Gateway Protocol of ASα could simply be 
configured with a routing policy that prefers link DK in all cases. The Exterior Gateway Protocol 
of ASα then would simply not tell the Interior Gateway Protocol (IGP) of ASα that it is possible 
to reach ASβ via the speaker C. 

The only general solution, though, is for ASα to accept into its routing tables some of the internal 
structure of ASβ, so that the IGP protocol of ASα, for example, knows where Y is relative to links 
CH and DK. (In our example both alternative paths X→Y (or Y→X) are equally long, so both ASs 
would need to break the tie in the same way.) 

Of course, if one of the links CH or DK (or an attached speaker) goes down, then all X→Y traffic 
and Y→X traffic will be forced to take the same path. 

(d) 
If ASα were configured with a routing policy to prefer AS paths through ASγ, or to avoid AS 
paths involving links direct links to ASβ, then ASα might route to β via γ. 
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Problem 1.37 — Solution 

 

Problem 1.38 — Solution 

 

Problem 1.39 — Solution 

 

Problem 1.40 — Solution 

PPP and Link Control Protocol (LCP) 

(a) 

If packets are not identified with unique identifiers, then the following sequence may happen, due 
to delayed acknowledgements from Responder. The delayed ACKs are falsely interpreted as 
being ACKs for a subsequent disconnect and link configuration. This in turn causes a failure in 
authentication. 

Initiator Responder

Initiate link configurationInitiate link configuration

Finish link configurationFinish link configuration

Process linkProcess link
configuration requestconfiguration request

Timeout
RetransmitRetransmit

Timeout
RetransmitRetransmit

(discard)(discard)
ProcessProcess
authentication requestauthentication request

Receive close request,Receive close request,
Notify other deviceNotify other device

Initiate link configurationInitiate link configuration

Finish link configurationFinish link configuration

Configure-Request

CR

(CR)

CR

Configure-Ack

C-Ack

Authenticate

C-Ack

Authenticate-Ack
Terminate-Request

CR

Authenticate

Finish authenticationFinish authentication
 

Note: I was not able to find in the literature explicitly stated the rationale for unique identifiers in 
LCP frames. This example is based on [Bertsekas & Gallagher, 1992], Section 2.7.2, Figure 2.44, 
which is an example of initialization failure for the HDLC protocol. Because PPP is derived from 
HDLC, I assume that its designers anticipated this problem. Another example is also from 
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[Bertsekas & Gallagher, 1992], Section 2.7.4, Figure 2.46, which happens in case of a sequence 
of node failures. 

(b) 

If it is not necessary to acknowledge a Terminate-Request, then one side may terminate the link, 
while the other side still considers the link open and keeps sending data. 

(Link still OPEN)(Link still OPEN)

Receive close request,Receive close request,
Notify other deviceNotify other device

Terminate linkTerminate link

Terminate-Request

Data packet

(loss)

 

 

Problem 1.41 — Solution 

 

Problem 1.42 — Solution 

(a) and (b) 

See the figure below for the configuration messages that are sent and how the ports are labeled. 
The network converges to its spanning tree in just two iterations. 

Switch B
(ID = 342)

Switch C
(ID = 719)

Switch A
(ID = 193)

Port-1 (designated): 193, 193, 0

Port-2 (designated): 193, 193, 0

P-1 (designated): 342, 342, 0 P-1 (designated): 719, 719, 0

P-2 (designated): 342, 342, 0 P-2 (designated): 719, 719, 0

B C

A
(root)

P-1 (designated): 193, 193, 0

P-2 (designated): 193, 193, 0

P-1 (root) P-1 (root)

P-2 (designated): 342, 193, 1 P-2 (blocked)

t = 0

t = 1

Network 1

Network 3

Network 2

Network 1

Network 3

Network 2
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At t = 0: 

Initially each switch selects itself as the “root switch” and for all the attached networks as the 
“designated switch.” 

Messages (each switch on both ports): Switch A: 193, 193, 0; Switch B: 342, 342, 0; Switch C: 
719, 719, 0.  

At t = 1: 

Switch A selects itself as the “designated switch” for Network segments 1 and 2 because it has the 
lowest ID on both segments. Both of its ports become “designated.” 

Switch B selects A as the “designated switch” for Network 2 and selects itself as the “designated 
switch” for Network 3, because these are the lowest ID on their respective network segments. Its 
Port-1 becomes “root port” and Port-2 becomes “designated port.” 

Switch C selects A as the “designated switch” for Network 2 and selects B as the “designated 
switch” for Network 3, because they have the lowest ID on their respective network segments. Its 
Port-1 becomes “root port” and its Port-2 becomes blocked. 

Messages: Switch A: 193, 193, 0 on both ports; Switch B: 342, 193, 1 on Port-2; Switch C: 
none. 

At t = 2: 

Messages: Switch A: 193, 193, 0 on both ports; Switch B: 342, 193, 1 on Port-2; Switch C: 
none. 

(c) 
The network reached the stable state in two iterations. After this, only switch A (root) will 
generate configuration messages and switch B will forward these messages only over its Port-2 
for which it is the designated switch. 

(d) 
After the network stabilizes, a frame sent by station X to station Y will traverse the path shown in 
the figure below. Notice that, unlike routing, in LAN switches the frame is not first transmitted to 
the “next hop” and then relayed by that hop. That is, switch A does not “relay” a packet from host 
X to host Y, although A is elected as the root of the spanning tree. This is because the spanning 
tree protocol (STP) operates transparently to the backward learning algorithm, which learns the 
switching tables based on the network topology configured by STP unknown to the backward 
learning algorithm. In our example, only switch B will “relay” a packet from host X to host Y. 

BX C

A

Y  
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A B

 

Problem 1.43 — Solution 

 

Problem 1.44 — Solution 

The solution for three stations using the 802.11 protocol is similar to that of Problem 1.18 and is 
shown in the figure below. Again, the third station has the smallest initial backoff and transmits 
the first. The other two stations will freeze their countdown when they sense the carrier as busy. 
After the first frame STA3 randomly chooses the backoff value equal to 4, and the other two 
stations resume their previous countdown. STA1 reaches zero first and transmits, while STA2 
and STA3 freeze their countdown waiting for the carrier to become idle. Next, STA3 transmits its 
second frame and randomly chooses the backoff value equal to 3, and the other two stations again 
resume their previous countdown. STA2 finally transmits its first frame but STA3 simultaneously 
transmits its third frame and there is a collision.  

D
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S

STA3, Frame-1
CP
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2 1 0
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4 3 2 1 0

D
IF

S
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CP
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D
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S
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TimeTime

STA 1
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STA 3

Remainder Backoff

STA3, Frame-2
CP

D
IF

S

D
IF

S

Collision

STA2, 1st frame

STA3, 3rd frame

4 3 2 1 0
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3 2 1 0
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Problem 1.45 — Solution 

There is no access point, as this is an independent BSS 
(IBSS). Remember that 802.11 stations cannot transmit and 
receive simultaneously, so once a station starts receiving a 
packet, it cannot contend for transmission until the next 
transmission round. 

The solution is shown in the figure below (check also Figure 1-75 in Example 1.6). We make 
arbitrary assumption that packet arrives first at B and likewise that after the first transmission A 
claims the channel before B. Notice that the durations of EIFS and ACK_Timeout are the same 
(Table 1-6). Station B selects the backoff=6 and station A transmits the first, while station B 
carries over its frozen counter and resumes the countdown from backoff=2. 
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DIFSStation A

Station B

DIFS Data

Remainder backoff = 2

2,1,0

Time

Data

S
IF

S

ACK

Packet
arrival

Packet arrival Example: backoff = 4

4,3,2,1,0

DataEIFS S
IF

S

ACKACK Timeout

Noise
Example: backoff = 6

6,5,4,3,…
 

Problem 1.46 — Solution 

 

 

 

Problem 2.1 — Solution 

(a) 

Scenario 1: the initial value of TimeoutInterval is picked as 3 seconds. 

At time 0, the first segment is transmitted and the initial value of TimeoutInterval is set as 
3 s. The timer will expire before the ACK arrives, so the segment is retransmitted and this time 
the RTO timer is set to twice the previous size, which is 6 s. The ACK for the initial transmission 
arrives at 5 s, but the sender cannot distinguish whether this is for the first transmission or for the 
retransmission. This does not matter, because the sender simply accepts the ACK, doubles the 
congestion window size (it is in slow start) and sends the second and third segments. The RTO 
timer is set at the time when the second segment is transmitted and the value is 6 s (unchanged). 
At 8 s a duplicate ACK will arrive for the first segment and it will be ignored, with no action 
taken. At 10 s, the ACKs will arrive for the second and third segments, the congestion window 
doubles and the sender sends the next four segments. SampleRTT is measured for both the 
second and third segments, but we assume that the sender sends the fourth segment immediately 
upon receiving the ACK for the second. This is the first SampleRTT measurement so 

 EstimatedRTT = SampleRTT = 5 s 

 DevRTT = SampleRTT / 2 = 2.5 s 

and the RTO timer is set to 

  TimeoutInterval = EstimatedRTT + 4 ⋅ DevRTT = 15 s 

After the second SampleRTT measurement (ACK for the third segment), the sender will have 

 EstimatedRTT = (1−α) ⋅ EstimatedRTT + α ⋅ SampleRTT  

= 0.875 × 5 + 0.125 × 5 = 5 s 

 DevRTT = (1−β) ⋅ DevRTT + β ⋅ | SampleRTT − EstimatedRTT | 

= 0.75 × 2.5 + 0.25 × 0 = 1.875 s 
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but the RTO timer is already set to 15 s and remains so while the fifth, sixth, and seventh 
segments are transmitted. The following table summarizes the values that TimeoutInterval 
is set to for the segments sent during the first 11 seconds: 

Times when the RTO timer is set RTO timer values 
t = 0 s (first segment is transmitted) TimeoutInterval = 3 s  (initial guess) 
t = 3 s (first segment is retransmitted) TimeoutInterval = 6 s  (RTO doubling) 
t = 10 s (fourth and subsequent segments) TimeoutInterval = 15 s  (estimated value) 

 

(b) 

As shown in the above figure, the sender will transmit seven segments during the first 11 seconds 
and there will be a single (unnecessary) retransmission. 

(c) 

Scenario 2: the initial value of TimeoutInterval is picked as 5 seconds. 

This time the sender correctly guessed the actual RTT interval. Therefore, the ACK for the first 
segment will arrive before the RTO timer expires. This is the first SampleRTT measurement 
and, as above, EstimatedRTT = 5 s, DevRTT = 2.5 s. When the second segment is transmitted, 
the RTO timer is set to TimeoutInterval = EstimatedRTT + 4 ⋅ DevRTT = 15 s. 

After the second SampleRTT measurement (ACK for the second segment), the sender will have, 
as above, EstimatedRTT = 5 s, DevRTT = 1.875 s. 

When the fourth segment is transmitted, the RTO timer is set to 

 TimeoutInterval = EstimatedRTT + 4 ⋅ DevRTT = 12.5 s 

After the third SampleRTT measurement (ACK for the third segment), the sender will have 

 EstimatedRTT = 0.875 × 5 + 0.125 × 5 = 5 s 

 DevRTT = 0.75 × 1.875 + 0.25 × 0 = 1.40625 s 
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but the RTO timer is already set to 12.5 s and remains so while the fifth, sixth, and seventh 
segments are transmitted. The following table summarizes the values that TimeoutInterval 
is set to for the segments sent during the first 11 seconds: 

Times when the RTO timer is set RTO timer values 
t = 0 s (first segment is transmitted) TimeoutInterval = 3 s  (initial guess) 
t = 5 s (second segment is transmitted) TimeoutInterval = 15 s  (estimated value) 
t = 10 s (fourth and subsequent segments) TimeoutInterval = 12.5 s  (estimated val.) 

 

Problem 2.2 — Solution 

The congestion window diagram is shown in the figure below. 

1
4
8

16

32

RcvBuffer = 20 Kbytes

52

SSThresh = 64 Kbytes

72

1 2 3 4 5 6 7 8 9 Transmission round

C
on

ge
st

io
n 

w
in

do
w

 s
iz

e

 

First, notice that because both hosts are fast and there is no packet loss, the receiver will never 
buffer the received packets, so sender will always get notified that RcvWindow = 20 Kbytes, 
which is the receive buffer size. 

The congestion window at first grows exponentially. However, in transmission round #6 the 
congestion window of 32 × MSS = 32 Kbytes exceeds RcvWindow = 20 Kbytes. At this point 
the sender will send only min{CongWin, RcvWindow} = 20 segments and when these get 
acknowledged, the congestion window grows to 52 × MSS, instead of 64 × MSS under the 
exponential growth. Thereafter, the sender will keep sending only 20 segments and the 
congestion window will keep growing by 20 × MSS. 
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It is very important to notice that the growth is not exponential after the congestion window 
becomes 32 × MSS. 

In transmission round #8 the congestion window grows to 72 × MSS, at which point it exceeds the 
slow start threshold (initially set to 64 Kbytes), and the sender enters the congestion avoidance 
state. 

This diagram has the same shape under different network speeds, the only difference being that a 
transmission round lasts longer, depending on the network speed. 

Problem 2.3 — Solution 

 

Problem 2.4 — Solution 

Notice that sender A keeps a single RTO retransmission timer for all outstanding packets. Every 
time a regular, non-duplicate ACK is received, the timer is reset if there remain outstanding 
packets. Thus, although a timer is set for segments sent in round 3×RTT, including segment #7, 
the timer is reset at time 4×RTT because packet #7 is unacknowledged. This is why the figure 
below shows the start of the timer for segment #7 at time 4×RTT, rather than at 3×RTT. 

At time 5×RTT, sender A has not yet detected the loss of #7 (neither the timer expired, nor three 
dupACKs were received), so CongWin = 7×MSS (remains constant). There are two segments in 
flight (segments #7 and #8), so at time = 5×RTT sender A could send up to 

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{7, 64} − 2 = 5×MSS 

but it has nothing left to send, A sends a 1-byte segment to keep the connection alive. Recall that 
TCP guarantees reliable transmission, so although sender sent all data it cannot close the 
connection until it receives acknowledgement that all segments successfully reached the receiver. 
Ditto for sender B at time = 7×RTT. 
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The A’s timer times out at time = 6×RTT (before three dupACKs are received), and A re-sends 
segment #7 and enters slow start. At 7×RTT the cumulative ACK for both segments #7 and #8 is 
received by A and it, therefore, increases CongWin = 1 + 2 = 3×MSS, but there is nothing left to 
send. 

The Reno sender, B, behaves in the same way as the Tahoe sender because the loss is detected by 
the expired RTO timer. Both types of senders enter slow start after timer expiration. (Recall that 
the difference between the two types of senders is only in Reno implementing fast recovery, 
which takes place after three dupACKs are received.) 

 

Problem 2.5 — Solution 

The range of congestion window sizes is [1, 16]. Because the loss is detected when 
CongWindow = 16×MSS, SSThresh is set to 8×MSS. Thus, the congestion window sizes in 
consecutive transmission rounds are: 1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15, and 16 MSS (see the 
figure below). This averages to 9.58×MSS per second (recall, a transmission round is RTT = 1 

sec), and a mean utilization of 
128

858.9 ×
[Kbps/Kbps] = 0.59875, or about 60%. 

#8 #7

1
2

4

8

512
1024

2048

4096

[MSS][bytes]

T
ah

oe
 S

en
de

r 
A

C
on

gW
in

1 2 3 4 5

#1
#2

,3
#4

,5
,6

,7 #8 #7

1
2

4

8

512
1024

2048

4096

1 2 3 4 5 6

Time

[RTT]

7

7

7

77 Timer timeout

(1
-b

yt
e

)

#1
#2

,3
#4

,5
,6

,7

44

9

7

(1
-b

yt
e

)

7
4

77
44

3

R
en

o 
S

en
de

r 
B

C
on

gW
in

6

8



Ivan Marsic • Rutgers University 434

 

 

1+1 packets 

Sender Receiver

 

Problem 2.6 — Solution 

The solution of Problem2.5 is an idealization that cannot occur in reality. A better approximation 
is as follows. The event sequence develops as follows: 

packet loss happens at a router (last transmitted segment), current CongWin = 16×MSS. 

the sender receives 16-1=15 ACKs which is not enough to grow CongWin to 17 

but it still sends 16 new segments, last one will be lost 

the sender receives 15 dupACKs, loss detected at the sender  

retransmit the oldest outstanding packet, CongWin ← 1 

the sender receives cumulative ACK for 16 recent segments, except for the last one 

CongWin ← 2, FlightSize = 1×MSS, send one new segment 

the sender receives 2 dupACKs, FlightSize = 3×MSS, EffctWin = 0, sends one 1-byte 
segment 

the sender receives 3rd dupACK, retransmits the oldest outstanding packet, CW ← 1 

the sender receives cumulative ACK for 4 recent segments (one of them was 1-byte), 
FlightSize ← 0 

CongWin ← 2, the sender resumes slow start 

Problem 2.7 — Solution 

MSS = 512 bytes 

SSThresh = 3×MSS  

RcvBuffer = 2 KB = 4×MSS  

TimeoutInterval = 3×RTT 
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At time = 3×RTT, after receiving the acknowledgement for the 2nd segment, the sender’s 
congestion window size reaches SSThresh and the sender enters additive increase mode. 

Therefore, the ACK for the 3rd segment is worth 
3

1
1

CongWindow

MSS
MSS

1

×=×
t-

= 0.33 MSS. 

CongWindow3×RTT = 3.33×MSS. Therefore, the sender sends 3 segments: 4th, 5th, and 6th. The 
router receiver 3 segments but can hold only 1+1=2. It will start transmitting the 4th segment, 
store the 5th segment in its buffer, and discard the 6th segment due to the lack of buffer space 
(there is a waiting room for one packet only). The acknowledgements for the 4th and 5th segments 

add 3.0
33.3

1
1 =× ×MSS and 28.0

63.3

1
1 =× ×MSS, respectively, so CongWindow4×RTT = 

3.91×MSS. The effective window is smaller by one segment because the 6th segment is 
outstanding: 

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{3.91, 4} − 1 = 2×MSS 

At time = 4×RTT the sender sends two segments, both of which successfully reach the receiver. 
Acknowledgements for 7th and 8th segments are duplicate ACKs, but this makes only two 
duplicates so far, so the loss of #6 is still not detected. Notice that at this time the receive buffer 
stores two segments (RcvBuffer = 2 KB = 4 segments), so the receiver starts advertising 
RcvWindow = 1 Kbytes = 2 segments. 

The sender computes 

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{3.91, 2} − 3 = 0 

so it sends a 1-byte segment at time = 5×RTT. 

At time = 6×RTT, the loss of the 6th segment is detected via three duplicate ACKs. Recall that the 
sender in fast retransmit does not use the above formula to determine the current EffctWin—it 
simply retransmits the segment that is suspected lost. That is why the above figure shows 
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EffctWin = 2 at time = 6×RTT. The last EffctWin, at time = 7×RTT, equals 2×MSS but 
there are no more data left to send. 

Therefore, the answers are: 

(a) 

The first loss (segment #6 is lost in the router) happens at 3×RTT, so 

CongWindow 3×RTT = 3.33×MSS. 

 

(b) 

The loss of the 6th segment is detected via three duplicate ACKs at time = 6×RTT. 

At this time, not-yet-acknowledged segments are: 6th, 7th, and 8th, a total of three. 

 

Problem 2.8 — Solution 

In solving the problem, we should keep in mind that the receive buffer size is set relatively small 
to 2Kbytes = 8×MSS. 

In the transmission round i, the sender sent segments k, k+1, …, k+7, of which the segment k+3 is 
lost. The receiver receives the four segments k+4, …, k+7, as out-of-order and buffers them and 
sends back four duplicate acknowledgements. In addition, the receiver notifies the sender that the 
new RcvWindow = 1 Kbytes = 4×MSS. 

At i+1, the sender first receives three regular (non-duplicate!) acknowledgements for the first 
three successfully transferred segments, so CongWin = 11×MSS. Then, four duplicate 
acknowledgements will arrive while FlightSize = 5. After receiving the first three dupACKs, 
Reno sender reduces the congestion window size by half, CongWin = 11 / 2 = 5×MSS. 

The new value of SSThresh = CongWin / 2 + 3×MSS = 8×MSS. 

Because Reno sender enters fast recovery, each dupACK received after the first three increment 
the congestion window by one MSS. Therefore, CongWin = 6×MSS. The effective window is: 

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{6, 4} − 5 = −1 (#) 

Thus, the sender is allowed to send nothing but the oldest unacknowledged segment, k+3, which 
is suspected lost. 

There is an interesting observation to make here, as follows. Knowing that the receive buffer 
holds the four out-of-order segments and it has four more slots free, it may seem inappropriate to 
use the formula (#) above to determine the effective window size. After all, there are four free 
slots in the receive buffer, so that should not be the limiting parameter! The sender’s current 
knowledge of the network tells it that the congestion window size is 6×MSS so this should allow 
sending more!? Read on. 

The reason that the formula (#) is correct is that you and I know what receiver holds and where 
the unaccounted segments are currently residing. But the sender does not know this! It only 
knows that currently RcvWindow = 4×MSS and there are five segments somewhere in the 
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network. As far as the sender knows, they still may show up at the receiver. So, it must not send 
anything else. 

At i+2, the sender receives ACK asking for segment k+8, which means that all five outstanding 
segments are acknowledged at once. Because the congestion window size is still below the 
SSThresh, the sender increases CongWin by 5 to obtain CongWin = 11×MSS. Notice that by 
now the receiver notifies the sender that the new RcvWindow = 2 Kbytes = 8×MSS, because all 
the receive buffer space freed up. 

The new effective window is: 

EffctWin = min{CongWin, RcvWindow} − FlightSize = min{11, 8} − 0 = 8×MSS  

so the sender sends the next eight segments, k+8, …, k+15. 

Next time the sender receives ACKs, it’s already in congestion avoidance state, so it increments 
CongWin by 1 in every transmission round (per one RTT). 

Notice that, although CongWin keeps increasing, the sender will keep sending only eight 
segments per transmission round because of the receive buffer’s space limitation. 

 

Some networking books give a simplified formula for computing the slow-start threshold size 
after a loss is detected as SSThresh = CongWin / 2 = 5.5×MSS. Rounding CongWin down to 
the next integer multiple of MSS is often not mentioned and neither is the property of fast 

SSThresh
10

8

Transmission round

S
en

d 
k,

 k
+

1,
 k

+
2,

 …
k+

7
lo

st
 s

eg
m

en
t: 

k+
3

3 
A

C
K

s
+

4 
du

pA
C

K
s

re
-s

en
d 

k+
3

4

CongWin

A
C

K
 k

+
9 

re
ce

iv
ed

(5
se

gm
en

ts
 a

ck
ed

)
S

en
d 

k+
8,

 k
+

9,
 …

k+
15

i i+1 i+2 i+3 i+4 i+5

12

A
ll 

8
A

C
K

s
re

ce
iv

ed
bu

t,
 it

’s
 c

on
ge

st
io

n 
av

oi
da

nc
e.

S
en

d 
k+

8,
 k

+
16

, 
…

k+
23

8

5

15

11

14



Ivan Marsic • Rutgers University 438

recovery to increment CongWin by one MSS for each dupACK received after the first three that 
triggered the retransmission of segment k+3. 

In this case, the sender in our example would immediately enter congestion avoidance, and the 

corresponding diagram is as shown in the figure below.  

 

Problem 2.9 — Solution 

We can ignore the propagation times because they are negligible relative to the packet 
transmission times (mainly due to short the distance between the transmitter and the receiver). 
Also, the transmission times for the acknowledgements can be ignored. Because the transmission 
just started, the sender is in the slow start state. Assuming that the receiver sends only cumulative 
acknowledgements, the total time to transmit the first 15 segments of data is (see the figure): 

4  × 0.8 + 15 × 8 = 123.2 ms. 
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 The timing diagram is as shown in the figure. 

 

Problem 2.10 — Solution 

(a) 

During the slow start phase, an incoming acknowledgment will allow the sender to send two 
segments. The acknowledgements to these two segments will be separated by 1 ms, as shown in 
the figure below.  
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 (b) 

The start times for the transmissions of the first seven segments are as shown in the figure: 

(c) 

We can make the following observations: 

o1. Except for the first round, packets always arrive in pairs at the router. The reason for this 
was explained under item (a); that is, during the slow start phase, each acknowledgement 
will allow the sender to send two segments back-to-back. 

o2. The time gap between the packet pairs is 1 ms, because the time gap between the 
acknowledgements (during slow start) is 1 ms. This gives enough time to the router to 
transmit one packet before the arrival of the next pair. 
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o3. We can think conceptually that from each pair, one packet is relayed by the router and the 
other remains in the router’s buffer. (This is not true, because the router transmits packets 
in the order of their arrival (FIFO), so it will first transmit any packets remaining from 
previous pairs, but we can think this way conceptually.) 

o4. Because router can hold 9+1=10 packets, the first loss will happen when ≥ 20 packets is 
sent on one round. In 5th round, time = 5×RTT, the CongWin = 32, so this is when the 
first loss will happen 

o5. The packets sent in this round will find the following number of packets already at the 
router (packet pairs are separated by ||):  
0, 1  ||  1, 2  ||  2, 3  ||  3, 4  ||  4, 5  ||  5, 6  ||  6, 7  ||  7, 8  ||  8, 9  ||  9, 10  ||  9, 10  || 9, 10  ||  9, 10  

||  9, 10  ||  9, 10  || 9, 10 . 

o6. Therefore, the 20th packet of this round will find 10 packets already at the router and this 
packet will be lost. This is the 41st packet from the start of sending at time = 0. 

o7. By the time the next pair arrives, the router will have transmitted one packet, so 21st 
packet finds 9 packets already at the router, but its companion in the pair, 22nd packet 
finds 10 packets and is lost 

o8. This pattern repeats until the last, which is 32nd packet of this round. 

o9. A total of 7 packets will be lost, starting with 20th, 22nd, 24th, …, and 32nd. 

o10. At time, 6×RTT, the congestion window will grow up to 32 + 19 = 51 

o11. After this ≥ 3 × dupACKs will be received and the sender will go into the multiplicative 
decrease phase 

Therefore, the congestion window sizes for the first 6×RTT are: 1, 2, 4, 8, 16, 31, 51. 

(d) 

As shown in (c), the first packet will be lost in the 5th round, and it is the 20th packet of this round. 
Its ordinal number is #51, determined as follows:  
1 + 2 + 4 + 8 + 16 = 31 (from previous four rounds) + 20 (from the 5th round) = 51 

(e) 

… 

Problem 2.11 — Solution 

Transmission delay for all three scenarios is: 

ms 8.192
secondper  bits 0000001

bits 8192

bandwidth

lengthpacket ===xt  

In the first scenario (RTT1 = 0.01 sec), the round-trip time is about the same as transmission 
delay. The sender can send up to one segment and start with a second one before it receives the 
acknowledgement for the first segment. Conversely, in the third scenario (RTT3 = 1 sec), the 
sender can send a burst of up to 122 segments before receiving the acknowledgement for the first 
segment of this burst. 
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We ignore the initial slow-start phase and consider that the sender settled into a congestion-
avoidance state. Because the network exhibits periodic behavior where every tenth packet is lost, 
we need to determine the sender’s cyclic behavior. The figure illustrates the solution and the 
description follows below the figure.  
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To detect a lost 10th segment, the sender must have sent at least three more to receive three 
duplicate acknowledgements. Let us assume the sender detects the loss (via 3 dupACKs) after it 
has sent 13 segments. The 14th transmission will be retransmission of the 10th segment (the lost 
one). The receiver fills the gap and cumulatively acknowledges up to the segment #13, requesting 
the sender to send the next segment (#14). This table shows how the first scenario sender sends 
segments and receives acknowledgements:  

packet 
number 

10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 

segment 
seq. num. 

10 
(×) 

11 12 13 10 14 15 16 17 18 
19 
(×) 

20 21 22 19 23 

ACK _  10 10 10 14 15 16 17 18 19 _ 19 19 19 23 24
CongWin    1 2 2.5 3 3.3 3.7 3.7 3.7 3.7 1 2 2.5

This cycle will repeat. The sender is sending segments back-to-back. The only overhead it 
experiences is that every tenth packet is lost, which implies that during 10 transmission delays it 
successfully sends 9 segments. Hence, the average data rate the sender achieves is: (9/10) × 1 
Mbps = 900 Kbps. 

Let us now consider the third scenario with RTT3 = 1 sec. Because the round-trip time is much 
longer than transmission time and every 10th packet is lost, we can consider that burst 
transmissions are clocked to RTT intervals. 

RTT  n−1 n n+1 n+2 n+3 n+4 
packet 
number 

10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 

segment 
seq. num. 

10 
(×) 

11 12 13 10 14 15 16 17 18 
19 
(×) 

20 21 22 19 

ACK _  10 10 10 14 15 16 17 18 19 _ 19 19 19 23
CongWin  1 2 2.5, 3 3.3, 3.7, 4 1 2
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In this scenario, the cycle lasts 4×RTT and the sender successfully sends 9 segments of which 6 
are acknowledged and 3 are buffered at the receiver and will be acknowledged in the next cycle. 
Hence, the average data rate the sender achieves is: 

Kbps 18.4  bps 184321000000
4

0.073728
Mbps1

RTT4

9
≈=×=×

×
× xt

 

Obviously, the sender in the third scenario achieves much lower rate than the one in the first 
scenario. The reason for this is that the first-scenario sender receives feedback quickly and reacts 
quickly. Conversely, the third-scenario sender receives feedback very slowly and accordingly 
reacts slowly—it is simply unable to reach the potentially achievable rate. 

Problem 2.12 — Solution 

Object size,   O = 1 MB = 220 bytes = 1048576 bytes = 8388608 bits 

Segment size MSS = 1 KB,  S = MSS × 8 bits = 8192 bits 

Round-trip time   RTT = 100 ms 

Transmission rate,   R = as given for each individual case (see below) 

There are a total of L = 10242
2

2

1

1 10
10

20

===
KB

MB
 segments (packets) to transmit. 

(a) 

Bottleneck bandwidth, R = 1.5 Mbps, data sent continuously: 

 

59.5
1500000

8388608

1500000

81048576

105.1

82
6

20

==×=
×

×=
R

O
 sec 

latency = 2 × RTT + O / R = 200 × 10−3 + 5.59 sec = 5.79 sec 

 

(b) 

R = 1.5 Mbps, Stop-and-wait 

latency = 2 × RTT + 10241.0
1500000

8192
2.0RTT ×






 ++=×






 + L

R

S
= 108.19 sec 

 

(c) 

R = ∞, Go-back-20 

Because transmission time is assumed equal to zero, all 20 packets will be transmitted 
instantaneously and then the sender waits for the ACK for all twenty. Thus, data will be sent in 
chunks of 20 packets: 

latency = 2 × RTT + RTT ×
20

L
= 0.2 + 5.12 = 5.22 sec 
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(d) 

R = ∞, TCP Tahoe 

Because the transmission is error-free and the bandwidth is infinite, there will be no loss, so the 
congestion window will grow exponentially (slow start) until it reaches the slow start threshold 
SSThresh = 65535 bytes = 64 × MSS, which is the default value. From there on it will grow 
linearly (additive increase). Therefore, the sequence of congestion window sizes is as follows: 

 Congestion window sizes:

1, 2, 4, 8, 16, 32, 64,  65, 66, 67, 68, 69, 70, ... 

Slow start 
-- total 7 bursts

Additive increase
-- total 13 bursts  

Then, slow start phase consists of 7 bursts, which will transfer the first 127 packets. The additive 
increase for the remaining 1024 − 127 = 897 packets consists of at most 897/64 ≈ 14 bursts. 
Quick calculation gives the following answer: 

Assume there will be thirteen bursts during the additive increase. 

With a constant window of 64 × MSS, this gives 13 × 64 = 832. 

On the other hand, additive increase adds 1 for each burst, so starting from 1 this gives 

1+2+3+ … + 13 = 
( )
2

11313 +×
 = 91 packets. 

Therefore, starting with the congestion window size of 64 × MSS, the sender can in 13 bursts 
send up to a total of 832 + 91 = 923 packets, which is more than 832. 

Finally, sender needs total of 7 + 13 = 20 bursts: 

latency = 2 × RTT + 20 × RTT = 2.2 sec. 

Problem 2.13 — Solution 

It is easier to solve this problem if we represent the relevant parameters in a tabular form as in the 
table below (see also the figure below). 

First, we know that this is a TCP Reno sender, currently in the slow start phase, with 
CongWin(ti) = 400 bytes. Given that MSS = 200 bytes, the sender sends a “burst” of two 
segments back-to-back. According to Listing 2-1 (summarized on page 147), when sending a 
segment, the sender needs to set the RTO timer if it is not already running. The RTO timer is not 
running at ti because all previous segments were successfully acknowledged. So, using equation 
(2.2), the sender obtains: 

TimeoutInterval(ti) = EstimatedRTT(ti) + 4 ⋅ DevRTT(ti) = 100.8 + 4×9 = 136.8 ms 

where EstimatedRTT(ti) and DevRTT(ti) are determined as follows (using default values for α 
= 0.125 and β = 0.25): 
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EstimatedRTT(ti) = (1−α) ⋅ EstimatedRTT(ti−1) + α ⋅ SampleRTT(ti) = 
0.875×100 + 0.125×106 = 100.8 ms 

DevRTT(ti) = (1−β) ⋅ DevRTT(ti−1) + β ⋅ |SampleRTT(ti) − EstimatedRTT(ti−1)| = 
0.75×10 + 0.25×|106 − 100| = 9 ms 

The sender does not modify the RTO timer when sending the second segment, because the timer 
is already running. 

Notice that the top row of the table shows the times when each segment is transmitted. Although 
the problem statement does not require determining these, we can easily determine them as 
follows. We assume for simplicity that ti = 0 ms. Given that tx << tp and the propagation times are 
in the range from 50 ms to 100 ms, we can assume for simplicity that the segment transmission 
time equals tx = 1 ms. However, assuming any other small number for tx would not make a 
difference for the problem solution. 

The second segment is sent right after the first one, so ti+1 = ti + 1 = 1 ms. Notice that at ti+1 there 
is no acknowledgement that arrived, so the sender does not calculate EstimatedRTT(ti+1) and 
DevRTT(ti+1) and these entries are left empty in the table. 

Time t [ms] ti 
(=0 ms) 

ti+1 
(=1 ms) 

ti+2 
(=105) 

ti+3 
(=106) 

ti+4 
(=107) 

ti+5 
(=108) 

ti+6 
(=237.5) 

ti+7 
(=288) 

ti+7+tx 
(=289) 

CongWin(t) 2×MSS 4×MSS 1×MSS 3×MSS 
SSThresh(t) 64 KBytes 2×MSS 
RTT(t) 105 93 179 182 165 193 154 171  
SampRTT(t) 106  105       
EstimRTT(t) 100.8  101.3       
DevRTT(t) 9  7.8       
TimeoutInt 136.8 ms 132.5 265 
Transmiss’n 
type 

Burst #1 Burst #2 
Re-
transmit 

Burst #3 

The sender then waits idle until an acknowledgement arrives for the two segments that it sent. 

The ACK for the first segment (shown in the figure as ACK #3) will arrive at the time ti + 
RTT(ti) = 0 + 105 = 105 ms. 

The ACK for the second segment (shown in the figure as ACK #1 - duplicate) will arrive at time 
ti+1 + RTT(ti+1) = 1 + 93 = 94 ms. This is earlier than the ACK for the first segment by 11 ms and 
we assume that the second segment also arrived before the first one to the receiver. Because 
segment #2 is out of order, the receiver will immediately send a duplicate ACK, asking again for 
segment #1. The sender will do nothing when it receives the duplicate ACK. (Recall that the TCP 
sender retransmits only when it receives ≥3×dupACKs, and it does not sample RTT for duplicate 
ACKs.) 

When the first segment arrives, the receiver will acknowledge both outstanding segments by 
sending a cumulative ACK #3. When the sender receives ACK #3 at 105 ms, it will increment its 
congestion window by 2×MSS and send four more segments at times ti+2, ti+3=ti+2+tx, ti+4=ti+3+tx, 
and ti+5=ti+4+tx. 
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At the time of arrival of ACK #3, the sender measures the sample RTT. This time corresponds to 
ti+2 and SampleRTT(ti+2) = RTT(ti) = 105 ms. The sender calculates EstimatedRTT(ti+2) and 
DevRTT(ti+2) as shown in the table. 

Because ACK #3 acknowledged all the outstanding segments and the RTO timer was reset, the 
sender will calculate the new value TimeoutInterval(ti+2) = 132.5 ms and set the RTO timer 
when it sends the third segment at ti+2 = 105 ms. Three more segments will be sent in this burst at 
times ti+3=106 ms, ti+4=107 ms, and ti+5=108 ms. 

Given that RTT(ti+4)=165 ms is the shortest for all the segments from the second burst, we will 
again assume that segment #5 arrived out of order and the receiver will immediately send a 
duplicate ACK (shown in the figure as ACK #3 - duplicate). The acknowledgements for the four 
segments of the second burst will arrive at these times (see also the figure): 

For segment #5 (ACK #3 - duplicate) arrives at: ti+4 + RTT(ti+4) = 107 + 165 = 272 ms. 

For segment #3 (ACK #4) arrives at: ti+2 + RTT(ti+2) = 105 + 179 = 284 ms. 

For segments #4 and #5 (ACK #6) arrives at: ti+3 + RTT(ti+3) = 106 + 182 = 288 ms. 

For segment #6 (ACK #7) arrives at: ti+5 + RTT(ti+5) = 108 + 193 = 301 ms. 

All of the above times are too late for the RTO timer, which will expire at time ti+6 = 
ti+2 + TimeoutInterval(ti+2) = 105 + 132.5 = 237.5 ms. Notice that both TCP Tahoe and TCP 
Reno behave the same on RTO timer expiration. They both enter slow start, so there will be no 
difference in behavior and CongWin(ti+6) = 1×MSS = 200 bytes. Also, according to equation 
(2.1), the timeout interval is set to twice the previous value, so TimeoutInterval(ti+6) = 
2 × TimeoutInterval(ti+2) = 265 ms. 

 

Sender Receiver

Seg#2

Seg#1

Ack#3

Ack#1 (duplicate)

Seg#4

Seg#5

Seg#6

Seg#3

Ack#4

Ack#6

Ack#7

Ack#3 (duplicate)

Seg#7

Seg#3 
(retransmitted)

ti

ti+1

ti+2
ti+3
ti+4
ti+5

ti+6

ti+7

Timeout for Seg#3

ti ti+1 t i+2 t i+3 t i+4 t i+5 ti+6 ti+7

R
T

T
(t

)

136.8 ms 132.5 ms

265 ms

Time
Ack#7 (duplicate)

Ack#8

TimeoutInterval(t)

(b)(a)

1

1

1
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Because of the expired RTO timer, the sender will retransmit the oldest outstanding segment at 
time ti+6 = 237.5 ms. This segment is a copy of the third segment, but we count it as the seventh 
transmission. Given that RTT(ti+6) = 154 ms, the corresponding acknowledgement will arrive at 
the time ti+6 + RTT(ti+6) = 237.5 + 154 = 391.5 ms. 

Meanwhile, the duplicate ACK #3 will arrive and the sender will ignore it. Next, the ACK for 
segment #3 (shown in the figure as ACK #4) will arrive at time equal 284 ms. Notice that this is 
the ACK for the original segment #3, not the retransmitted one. Although at this time segment #5 
is already at the receiver, it is still out of order: there is a gap because segment #4 still did not 
arrive, so the receiver is asking for #4. The sender thinks that the receiver is acknowledging the 
retransmitted segment, so it increments CongWin to 2×MSS. There are still three outstanding 
segments (#4, #5 and #6), so EffectiveWindow = CongWindow − FlightSize = 0 and 
the sender remains quiet. Notice also that now CongWindow reached SSThresh, so the sender 
enters congestion avoidance. 

At the time equal 288 ms, ACK #6 arrives acknowledging segments #4 and #5. Because the 
sender is in congestion avoidance and CongWin = 2×MSS, the two-segment ACK will count as 
one by equation (2.5), so CongWin becomes 3×MSS. There is one more segment unaccounted 
(#6), so FlightSize = 1 and EffectiveWindow = 2 and the sender transmits two segments 
at times ti+7 and ti+7 + tx. 

(a) 
The table below shows the congestion window sizes CongWin(t) and the sequence numbers of 
the segments transmitted from the sender. (Recall that the sender’s sequence number for the 
segment that will be transmitted at ti equals 30 and MSS = 200 bytes.) 

Time t [ms] ti 
(=0 ms) 

ti+1 
(=1 ms) 

ti+2 
(=105) 

ti+3 
(=106) 

ti+4 
(=107) 

ti+5 
(=108) 

ti+6 
(=237.5) 

ti+7 
(=288) 

ti+7+tx 
(=289) 

CongWin(t) 2×MSS 4×MSS 1×MSS 3×MSS 
SeqNum(t) 30 230 430 630 830 1030 430 1230 1430 

(b) 
To determine the times when the ACKs will arrive, we simply add the corresponding RTT to the 
time the segment departed, as was already done above for most of the segments. The table below 
shows the times of ACK arrivals, the sequence numbers of the ACKs, and the values of 
RcvWindow as carried in each ACK segment (recall that the receiver’s buffer size 
RcvWindow(ti) = 1000 bytes and also see how the figure above indicates the receive buffer 
occupancy). 

Time t [ms] ti 
(=0 ms) 

ti+1 
(=1 ms) 

ti+2 
(=105) 

ti+3 
(=106) 

ti+4 
(=107) 

ti+5 
(=108) 

ti+6 
(=237.5) 

ti+7 
(=288) 

ti+7+tx 
(=289) 

ACK arrives 105 ms 94 ms 284 288 278 301 391.5 459  
ACKSeqNo 430 30/dup 630 1030 430/dup 1230 1230/dup 1430  
RcvWindow 1000 800 800 1000 800 1000 1000 1000  

(c) 
The values of EstimatedRTT(t) and DevRTT(t) are shown in the first table above. Recall that 
the TCP retransmission-timer management algorithm measures SampleRTT for segments that 
have been transmitted once and not for segments that have been retransmitted. It also ignores 
dupACKs. An extract from the first table shows that EstimatedRTT(t) and DevRTT(t) are 
calculated only at ti and ti+2: 
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Time t [ms] ti 
(=0 ms) 

ti+1 
(=1 ms) 

ti+2 
(=105) 

ti+3 
(=106) 

ti+4 
(=107) 

ti+5 
(=108) 

ti+6 
(=237.5) 

ti+7 
(=288) 

ti+7+tx 
(=289) 

RTT(t) 105 93 179 182 165 193 154 171  
SampRTT(t) 106  105       
EstimRTT(t) 100.8  101.3       
DevRTT(t) 9  7.8       

(d) 
The TCP sender will set its retransmission timer three times during the considered interval, and 
the values of TimeoutInterval(t) are as follows: 

Time t [ms] ti 
(=0 ms) 

ti+1 
(=1 ms) 

ti+2 
(=105) 

ti+3 
(=106) 

ti+4 
(=107) 

ti+5 
(=108) 

ti+6 
(=237.5) 

ti+7 
(=288) 

ti+7+tx 
(=289) 

TimeoutInt 136.8 ms 132.5 265 

 

Problem 2.14 — Solution 

 

Problem 2.15 — Solution 

During the specified period of time, the sender will receive only 5 acknowledgements for new 
data. This will happen at times: at 89 for segment #33 (which was transmitted earlier, at time t = 
82); at 96 for the retransmitted segment #35; at 104 for segment #37; at 113 for segment #39; and 
at 120 for segment #41. Check the pseudocode at the end of Section 2.1.2 to see that all other 
ACKs are ignored because they are acknowledging already acknowledged data (they are called 
“duplicate ACKs”). 

By examining Figure 2-19, we can see that the retransmitted segments #33, #35, and #37 arrive at 
an idle router, so they will be transmitted first and their measured RTT values equal 6. However, 
segment #39 will find segment #73 in front of it at the router, and segment #41 will find segments 
#80 and #81 in front of it at the router. The measured values of SampleRTT(t) as read from 
Figure 2-19 are: 

SampleRTT(89) = 6; SampleRTT(96) = 6; SampleRTT(104) = 6; SampleRTT(113) = 7; 
SampleRTT(120) = 8; 

The calculation of TimeoutInterval(t) is straightforward using Eq. (2.2). 

 

 

Problem 3.1 — Solution 
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Problem 3.2 — Solution 

Notice that the first packet is sent at 20 ms, so its playout time is 20 + 210 = 230 ms. The playout 
of all subsequent packets are spaced apart by 20 ms (unless a packet arrives too late and is 
discarded). 

Notice also that the packets are labeled by sequence numbers. Therefore, although packet #6 
arrives before packet #5, it can be scheduled for playout in its correct order. 

 
Packet sequence number Arrival time ri [ms] Playout time pi [ms] 

#1 195 230 
#2 245 250 
#3 270 270 
#4 295 discarded ( >290) 
#6 300 330 
#5 310 310 
#7 340 350 
#8 380 discarded ( >370) 
#9 385 390 

#10 405 410 

 

The playout schedule is also illustrated in this figure: 

 

 

Problem 3.3 — Solution 

(a) 
Packet sequence number Arrival time ri [ms] Playout time pi [ms] 
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#1 95 170 
#2 145 190 
#3 170 210 
#4 135 230 
#6 160 250 
#5 275 discarded ( >270) 
#7 280 290 
#8 220 310 
#9 285 330 

#10 305 350 

(b) 

The minimum propagation delay given in the problem statement is 50 ms. Hence, the maximum a 
packet can be delay for playout is 100 ms. Because the source generates a packet every 20 ms, the 
maximum number of packets that can arrive during this period is 5. Therefore, the required size 
of memory buffer at the destination is 6 × 160 bytes = 960 bytes. (The buffer should be able to 
hold 6 packets, rather than 5, because I assume that the last arriving packet is first buffered and 
then the earliest one is removed from the buffer and played out.) 

 

Problem 3.4 — Solution 

The length of time from when the first packet in this talk spurt is generated until it is played out 
is: 

  qk = kδ̂  + K ⋅ kυ̂  = 90 + 4 × 15 = 150 ms 

The playout times for the packets including k+9th are obtained by adding this amount to their 
timestamp, because they all belong to the same talk spurt. Notice that the k+5th packet is lost, but 

this is not interpreted as the beginning of a new talk spurt. Also, when calculating 6
ˆ

+kδ  we are 

missing 5
ˆ

+kδ , but we just use 4
ˆ

+kδ  in its stead. 

The new talk spurt starts at k+10, because there is no gap in sequence numbers, but the difference 
between the timestamps of subsequent packets is tk+10 − tk+9 = 40 ms > 20 ms, which indicates the 
beginning of a new talk spurt. The length of time from when the first packet in this new talk spurt 
is generated until it is played out is: 

 qk+10 = 10
ˆ

+kδ  + K ⋅ 10ˆ +kυ  = 92.051 + 4 × 15.9777 = 155.9618 ms ≈ 156 ms 

and this is reflected on the playout times of packets k+10 and k+11. 

 
Packet 
seq. # 

Timestamp 
ti [ms] 

Arrival time 
ri [ms] 

Playout time 
pi [ms] 

Average delay iδ̂  
[ms] 

Average 
deviation iυ̂  

k 400 480 550 90 15 
k+1 420 510 570 90 14.85 
k+2 440 570 590 90.4 15.0975 
k+3 460 600 610 90.896 15.4376 
k+4 480 605 630 91.237 15.6209 
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k+7 540 645 690 91.375 15.6009 
k+6 520 650 670 91.761 15.8273 
k+8 560 680 710 92.043 15.9486 
k+9 580 690 730 92.223 15.9669 

k+10 620 695 776 92.051 15.9777 
k+11 640 705 796 91.78 16.0857 

 

Problem 3.5 — Solution 

Given the playout delay, we can determine the constant K using Eq. (3.1) to find out which value 
of K gives the playout delay of 300 ms. Then, we use the chart shown in Figure A-7 in Appendix 
A to guess approximately what is the percentage of packets that will arrive to late to be played 
out. 

 

Problem 3.6 — Solution 

 

 

Problem 3.7 — Solution 

The solutions for (a) and (b) are shown in the figure below. 

(c) 
If the RPF uses pruning and routers E and F do not have attached hosts that are members of the 
multicast group, then there will be 6 packets less forwarded in the entire network per every packet 
sent by A, compared to the case (b). 
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Problem 4.1 — Solution 

 

Problem 4.2 — Solution 
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Problem 4.3 — Solution 

The architecture of a first-generation router is shown in Figure 4-5(a). As shown in Figure 4-6, in 
this architecture every packet must cross the system bus two times on its way from the input port 
to the output port. We assume that processing times in line cards and the CPU are negligible. 

(a) 

If packets arrive simultaneously on all four ports, it will take 
R

L
T ××= 244 time units to move the 

packets from their input ports to their output ports. During this time, two packets can arrive on 
each input port. If packets continue arriving at the link data rate R, which is the peak rate, then 
during each cycle two packets will arrive on an input port and only one will be moved to the 
output port. The remaining packets will accumulate and the delay can grow arbitrarily high, 
depending on how long the period of peak-rate arrivals lasts. 

The figure below illustrates an example of peak rate behavior. We assume that packets will arrive 
on all input ports simultaneously. However, to move the packet to the CPU, the input ports will 
access the system bus randomly, without priority access. Similarly, CPU will randomly access the 
system bus to move the packets to their output ports. As already stated, it takes T4 time units 
move four incoming packets to their output ports, but at the same time up to 2 new packets can 
arrive at each input port. As illustrated in the figure, there will be a queue buildup on each input 
port. Notice also that there may be queue buildup on output ports, for example, if packets from 
different input ports are heading to the same output port. Because of random access to the system 
bus, even packets from the same port may need to queue, as illustrated for output port 3 in the 
figure below at time t3. 
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(b) 

Technically speaking, there is neither head-of-line blocking nor output blocking in this system. 
Head-of-line blocking happens when one packet may be heading to an idle port, but in front of it 
may be another packet headed for an output port that is currently busy, and the former packet 
must wait until the one in front of it departs. This assumes that packets are not moved to their 
output port until their output port becomes idle. However, in the first generation routers, both 
input and output ports must be able to queue packets. (An input port must be able to queue a 
newly arriving packet while some previously arrived packets are waiting for access to the system 
bus, to be moved to the CPU for forwarding table lookup. The input port does not know where 
the incoming packet is heading, so all incoming packets are queued in FCFS manner to wait for 
access to the system bus and transfer to CPU. 

CPU will examine the packet’s header and decide to which output port it goes. Once CPU decides 
the output port, the packet is lined up in a FCFS queue, where the same queue is for all output 
ports. However, the head-of-line packet is never waiting for its output port to become idle; rather, 
it is waiting for the system bus access to get moved to its output port (regardless of whether this 
output port is currently idle or busy). 
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Output blocking occurs if two or more packets (all from different input ports) are headed to the 
same output port and the switching fabric is unable to move the simultaneously. The first 
generation routers are based on system bus as their switching fabric, so packets are always moved 
sequentially, one-by-one, and never simultaneously. Therefore, any delays that packet experience 
at their input ports neither qualify neither as head-of-line blocking nor as output blocking. 

This is not to say that there are no queuing delays in this system. Quite opposite, there will be a 
major buildup of packets both at input and output queues during peak-arrival-rate periods, as 
explained above in part (a). 

Problem 4.4 — Solution 

 

Problem 4.5 — Solution 

Check Problem 1.32 — Solution to see that the next hop router for the arrived packets is as 
follows: 

Packet arrived from Packet destination IP address Next hop Output port 

B 63.67.145.18 G 6  (tag: 110) 

C 223.123.59.47 D 3  (tag: 011) 

G 223.125.49.47 C 2  (tag: 010) 

The packets will traverse the Banyan switch as shown in the figure below. The top part of the 
figure shows how the router’s network ports are wired to the switching fabric. Every network port 
is bidirectional and connected by a full-duplex link to another router. 

Banyan fabric0 4

1

A E

Input ports Output ports

Banyan fabric0 4

1

A E

Input ports Output ports
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Notice that although all packets go to different output ports, there will be a collision in the second 
stage of the Banyan fabric because packets from ports 2 and 6 are trying to go to the same output 
of the second-stage 2×2 switching element. 

Problem 4.6 — Solution 

 

Problem 4.7 — Solution 

Two alternative solutions for the Batcher-banyan fabric are shown: 
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Result: the packets at inputs I0 and (I1 or I2) are lost. 
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The reader may notice that the above 4 × 4 Batcher network looks different from that in Figure 
4-10(b). This just means that the same sorting problem can be solved in different ways, with 
different Batcher networks. 

Problem 4.8 — Solution 

 

Problem 4.9 — Solution 

The figure below shows the components of the router datapath delay (compare to Figure 4-13). 
We ignore the forwarding decision delay. Transmission delays as well as reception delays are the 

same on all communication lines. Crossbar traversal delay equals xt2

1
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The timing diagram of packet handling in the router is shown in the figure below. 
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Only the first packet on input port 1 (P1,1) will experience no waiting at all. All other packets will 
experience some form of blocking. The second packet on input port 1 (P1,2) must wait before 
traversing the crossbar because the first packet on input port 2 (P2,1) is currently traversing the 
crossbar and then it must wait for P3,1 (although P3,1 is on a higher-index port, it arrived before 
P1,2)—so P1,2 is experiencing output blocking. P2,1 is also experiencing output blocking because it 
has to wait for P1,1 to traverse the crossbar. Finally, packet P3,1 is also experiencing output 
blocking because it has to wait for P2,1 to traverse the crossbar. 

Packets P2,2 and P3,2 are experiencing head-of-line blocking, because they could traverse the 
crossbar if it were not for packets P2,1 and P3,1, respectively, which are if front of them in their 
respective queue and are blocking their access to the crossbar. 

Output blocking and head-of-line blocking both prevent crossbar traversal and therefore cause 
queuing delay before crossbar traversal. 

Notice also that packets P1,2 and P3,1 must wait at the output port for their turn for transmission. 
This is indicated as transmission queuing delay in the first figure above. 

Problem 4.10 — Solution 

 

Problem 4.11 — Solution 
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Problem 4.12 — Solution 

 

Problem 4.13 — Solution 

The problem statement gives arrival times Ai and service times Xi. From these we need to 
determine total delays Ti in the system for each customer. Notice that there is a single server, so if 
a new customer arrives while one customer is served, the new customer should join the waiting 
line. Figure 4-17 illustrates that the total delay for a customer consists of waiting plus service 
time, i.e., Ti = Wi + Xi. 

(a) 

The following figure illustrates the arrivals A(t), delays Ti and departures B(t). The first customer 
arrives at an idle server, so immediately goes into service, i.e., W1 = 0 and T1 = X1. The second 
customer arrives at time t = 2 and finds the first customer in service, so has to wait one time unit, 
W2 = 1 and T2 = W2 + X2. The length of the observed interval is 36 time units, until the last 
customer that arrived during the observed interval (customer #10) departs. 
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(b) 

The lower chart indicates the current number of customers in the system, N(t). We can calculate 
the average number N over the observed interval as follows 

16.3
36

130

36

)71()67()53()48()35()27()15( ==×+×+×+×+×+×+×=N customers 

The average delay T per customer over the observed interval is 

9.12
10

129

10

)320()416()314()411()212()58()28()54()41(3 ==++++++++++++++++++=T

Assuming that the arrival rate is λ = 1 customer/unit-of-time, the Little’s Law should yield N = 
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λ ⋅ T. However, over the observed interval we have 3.61 ≠ 1×12.9. Therefore, the system does not 
satisfy the Little’s Law over the observed interval. 

Problem 4.14 — Solution 

 

Problem 4.15 — Solution 

 

Problem 4.16 — Solution 

(a) 

This is an M/M/1 queue with the arrival rate λ = 950,000 packets/sec and service rate 
μ = 1,000,000 packets/sec. The expected queue waiting time is: 

( ) ( ) sec1019
95000010000001000000

950000 6−×=
−×

=
−⋅

=
λμμ

λ
W  

(b) 

The time that an average packet would spend in the router if no other packets arrive during this 

time equals its service time, which is sec101
1000000

11 6−×==
μ

 

(c) 

By Little’s Law, the expected number of packets in the router is 

packets 191020950000
1 6 =××=
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Problem 4.17 — Solution 

 

Problem 4.18 — Solution 

Given 

Data rate is 9600 bps  the average service time is 83.0
9600

81000

rate datalink 

lengthpacket  average1 =×==
μ

 

∴ μ = 1.2 

Link is 70% utilized  the utilization rate is ρ = 0.7 

For exponential message lengths: M/M/1 queue with μ = 1.2, ρ = 0.7, the average waiting time is 

sec94.1
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ρμ
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For constant-length messages we have M/D/1 queue and the average waiting time is derived in 

the solution of Problem 4.22(b) below as: sec97.0
3.02.12

7.0

)1(2
=

××
=

−⋅⋅
=

ρμ
ρ

W . 

It is interesting to notice that constant-length messages have 50 % shorter expected queue waiting 
time than the exponentially distributed length messages. 

 

Problem 4.19 — Solution 

The single repairperson is the server in this system and the customers are the machines. Define 
the system state to be the number of operational machines. This gives a Markov chain, which is 
the same as in an M/M/1/m queue with arrival rate μ and service rate λ. The required probability 

is simply pm for such a queue. Because the sum of state probabilities is 1
0

=
=

m

i
ip , the fraction of 

time the system spends in state m equals pm. From Eq. (4.8), we have the steady-state proportion 

of time where there is no operational machine as 
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Problem 4.20 — Solution 

This can be modeled as an M/M/1/m system, because the there are a total of K users, and there 
can be up to K tasks in the system if their file requests coincide. The average service time is 

A
R

RA =×==
rate throughput

lengthpacket  average1

μ
 and the service rate is μ = 1/A. The user places the 

request, but may need to wait if there are already pending requests of other users. Let W denote 
the waiting time once the request is placed but before the actual transmission starts, which is 
unknown. Every user comes back, on average, after A+B+W seconds. Hence, the arrival rate is λ 

= 
WBA

K

++
. 

From Little’s Law, given the average number N of customers in the system, the average waiting 

delay per customer is A
N

ATW −=−=
λ

. The time T is from the moment the user places the 

request until the file transfer is completed, which includes waiting after the users who placed their 
request earlier but are not yet served, plus the time it takes to transfer the file (service time), 
which on average equals A seconds. (Only one customer at a time can be served in this system.) 

Then, λ = 
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For an M/M/1/m system, the average number N of users requesting the files is: 
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where ρ = λ /μ is the utilization rate. Finally, the average time it takes a user to get a file since 
completion of his previous file transfer is A + B + W. 

 

Problem 4.22 — Solution 

This is an M/D/1 queue with deterministic service times. Recall that M/D/1 is a sub-case of 
M/G/1. Given: Service rate, μ = 1/4 = 0.25 items/sec; arrival rate, λ = 0.2 items/sec. 

(a) 

Mean service time X  = 4 sec. 
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2 1
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The second moment of service time for the deterministic case is obtained as 
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(b) 

The total time spent by a customer in the system, T, is T = W + X , where W is the waiting time in 

the queue sec8
)1(2

=
−⋅⋅

=
ρμ

ρ
W  so the total time T = 12 sec. 

 

Problem 4.23 — Solution 

 

Problem 4.24 — Solution 

 

 

 

 

Problem 5.1 — Solution 

 

 

Problem 5.2 — Solution 
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Problem 5.3 — Solution 

 

Problem 5.4 — Solution 

Recall that packet-by-packet FQ is non-preemptive, so the packet that is already in transmission 
will be let to finish regardless of its finish number. Therefore, the packet of class 3 currently in 
transmission can be ignored from further consideration. It is interesting to notice that the first 
packet from flow 1 has a smaller finish number, so we can infer that it must have arrived after the 
packet in flow 3 was already put in service. 

The start round number for servicing the currently arrived packet equals the current round 
number, because its own queue is empty. Hence, F2,1 = R(t) + L2,1 = 85000 + 1024×8 = 93192. 

Therefore, the order of transmissions under FQ is: pkt2,1 < pkt1,1 < pkt1,2 ; that is, the newly arrived 
packet goes first (after the one currently in service is finished). 

 

Problem 5.5 — Solution 

 

 

Problem 5.6 — Solution 

F1,1 = L1,1/w1 = 200×8/3 = 533.3 

F2,1 = L2,1/w2 = 50×8/1 = 400 

F3,1 = L3,1/w3 = 1000×8/1.5 = 5333.3 

F1,1 = 98304

Flow 1 Flow 2 Flow 3

F1,2 = 114688

F3,1 = 106496
(in transmission)

F1,1 = 98304

Flow 1 Flow 2 Flow 3

F1,2 = 114688

F3,1 = 106496
(in transmission)

BEFORE FLOW 2 PACKET ARRIVAL: AFTER SCHEDULING THE ARRIVED PACKET:

F2,1 = 93192
1

2
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Data
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1.  At time t = 0, P2,1 is served first; transmission time tx = 400/1M = 0.4ms; 

2.  At time 0.4ms, P1,1 is served; tx = 1600/1M = 1.6ms; 

3. At time 2ms, P3,1 is served; tx = 8000/1M = 8ms; 

4. At time 10ms, no packets in any queues 

5. At time t = 20ms 

R(t) = t×C/N = 20000/2=10000 

F1,2 = max(F1,1, R(t)) + L1,2/w1 =10000 + 533.3 = 10533.3 

F2,2 = 10000 + 500×8/1 = 14000 

6. At time 20ms, P1,2 is served; tx = 1.6ms 

7. At time 21.6ms, P2,2 is served; tx = 4000/1M = 4ms 

8. At time t = 40ms 

 R(t) = 40000/3 = 13333.3 

 F1,3 = max(F1,2, R(t)) + L1,3/w1 = 13333.3 + 533.3 = 13866.6 

 F2,3 = max(F2,2, R(t)) + L2,3/w2 = 14000 + 8000/1= 22000 

 F3,2 = max(F3,1, R(t)) + L3,2/w2 = 5333.3 + 5333.3 = 10666.6 

9. At time 40ms, P3,2 is served; tx = 8000/1M = 8ms 

10. At time 48ms, P1,3 is served; tx = 1.6ms 

11. At time 49.6, P2,3 is served; tx = 8ms 

12. At time t = 60, P1,4 is served because there are no other queued packets, tx = 1.6ms 

 R(t) = 60000 

 F1,4 = max(F1,3, R(t)) + L1,4/w1 = 60000 + 533.3 = 60533.3 

13. At time 70, P2,4 is served; tx = 0.4ms 

14. At time t = 80 
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 R(t) = 80000/2 = 40000 

 F1,5 = max(F1,4, R(t)) + L1,5/w1 = 60533.3 + 533.3 = 61066.6 

 F3,3 = max(F3,2, R(t)) + L3,3/w3 = 40000 + 5333.3 = 45333.3 

15. At time 80, P3,3 is served 

16. P1,5 

17 At last, P1,6 

Problem 5.7 — Solution 

(a) Packet-by-packet FQ 

The following figure helps to determine the round numbers, based on bit-by-bit GPS. The packets 
are grouped in two groups, as follows. Regardless of the scheduling discipline, all of the packets 
that arrived by 300 s will be transmitted by 640 s. It is easy to check this by using a simple FIFO 
scheduling. Therefore, the round number R(t) can be considered independently for the packets 
that arrive up until 300 s vs. those that arrive thereafter. This is shown as Part A and B in the 
above figure. (Resetting the round number is optional, only for the sake of simplicity.) 
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The packet arrivals on different flows are illustrated on the left hand side of the figure, in the 
round number units. Thus, e.g., packet P2,1 arrives at time t2,1 = 200 s or round number R(t2,1) = 
100. The following table summarizes all the relevant computations for packet-by-packet FQ. 

Arrival times & state Parameters Values under packet-by-packet FQ 
t = 0: {P1,1, P3,1} arrive 
server idle, q’s empty 

Finish numbers R(0) = 0;  F1,1 = L1,1 = 100;  F3,1 = L3,1 = 60 
Transmit periods Start/end(P3,1): 0→60 sec; Start/end(P1,1): 60→160 s 

t = 100: {P1,2, P3,2} 
P1,1 in transmission 

Finish numbers R(t) = t⋅C/N = 100×1/2 = 50 
F1,2 = max{F1,1, R(t)} + L1,2 = 100 + 120 = 220; 
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All queues empty F3,2 = max{0, R(t)} + L3,2 = 50 + 190 = 240 
Transmit periods Start/end(P1,2): 160→280 s; Queued packets: P3,2  

t = 200: {P2,1} arrives 
P1,2 in transmission 
P3,2 in queue 

Finish numbers 
R(t) = t⋅C/N = 200×1/2 = 100 
F2,1 = max{0, R(t)} + L2,1 = 100 + 50 = 150 
F3,2 = 240 (unchanged); 

Transmit periods P1,2 ongoing; Queued packets: P2,1 < P3,2  

t = 250: {P4,1} arrives 
P1,2 in transmission 
{P2,1, P3,2} in queues 

Finish numbers 

R(t) = (t−t′)⋅C/N + R(t′) = 50×1/3 + 100 = 116 2/3 
F2,1 = 150 (unchanged); 
F3,2 = 240 (unchanged); 
F4,1 = max{0, R(t)} + L4,1 = 76.116   + 30 = 76.146   

Transmit periods Start/end(P4,1): 280→310 s; Queued pkts: P2,1 < P3,2  

t = 300: {P4,2, P1,3} 
P4,1 in transmission 
{P2,1, P3,2} in queues 

Finish numbers 

R(t) = (t−t′)⋅C/N + R(t′) = 50×1/4 + 76.116   = 129 1/6

F1,3 = max{0, R(t)}+L1,3 = 61.129   + 60 = 61.189  ; 
F2,1 = 150 (unchanged); 
F3,2 = 240 (unchanged); 

F4,2 = max{0, R(t)} + L4,2 = 61.129   + 30 = 61.159   

Transmit periods
P4,1 ongoing; Queued packets: P2,1 < P4,2 < P1,3 < P3,2  
Start/end(P2,1): 310→360 s; s/e(P4,2): 360→390 s; 
Start/end(P1,3): 390→450 s; s/e(P3,2): 450→640 s. 

At t = 640 s, round number reset, R(t) = 0, because the system becomes idle. 
t = 650: {P3,3, P4,3} 
server idle, q’s empty 

Finish numbers R(0) = 0;  F3,3 = L3,3 = 50;  F4,3 = L4,3 = 30 
Transmit periods Start/end(P4,3): 650→680 sec; s/e(P3,3): 680→730 s.  

t = 710: {P1,4, P4,4} 
P3,3 in transmission 
All queues empty 

Finish numbers 
R(t) = (t−t′)⋅C/N + R(t′) = 110×1/2 + 0 = 55 
F1,4 = max{0, R(t)} + L1,4 = 55 + 60 = 115; 
F4,4 = max{30, R(t)} + L4,4 = 55 + 30 = 85 

Transmit periods
P3,3 ongoing; Queued packets: P4,4 < P1,4  
Start/end(P4,4): 730→760 s; s/e(P1,4): 760→820 s. 

 

(b) Packet-by-packet WFQ; Weights for flows 1-2-3-4 are 4:2:1:2 

The round number computation, based on bit-by-bit GPS, remains the same as in the figure 
above. The only difference is in the computation of finish numbers under packet-by-packet WFQ, 
see Eq. (5.3), as summarized in the following table. 

Packets P1,4 and P4,4 end up having the same finish number (70); the tie is broken by a random 
drawing so that P1,4 is decided to be serviced first, ahead of P4,4. 

Arrival times & state Parameters Values under packet-by-packet FQ 
t = 0: {P1,1, P3,1} arrive 
server idle, q’s empty 

Finish numbers R(0) = 0;  F1,1 = L1,1/w1 = 100/4 = 25;  F3,1 = 60 
Transmit periods Start/end(P1,1): 0→100 s; Start/end(P3,1): 100→160 s 

t = 100: {P1,2, P3,2} 
P3,1 in transmission 
All queues empty 

Finish numbers 
R(t) = t⋅C/N = 100×1/2 = 50 
F1,2 = max{F1,1, R(t)} + L1,2/w1 = 100 + 120/4 = 130; 
F3,2 = max{0, R(t)} + L3,2/w3 = 50 + 190/1 = 240 

Transmit periods Start/end(P1,2): 160→280 s; Queued packets: P3,2  
t = 200: {P2,1} arrives 
P1,2 in transmission 
P3,2 in queue 

Finish numbers 
R(t) = t⋅C/N = 200×1/2 = 100 
F2,1 = max{0, R(t)} + L2,1/w2 = 100 + 50/2 = 125 
F3,2 = 240 (unchanged); 
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Transmit periods P1,2 ongoing; Queued packets: P2,1 < P3,2  

t = 250: {P4,1} arrives 
P1,2 in transmission 
{P2,1, P3,2} in queues 

Finish numbers 

R(t) = (t−t′)⋅C/N + R(t′) = 50×1/3 + 100 = 116 2/3 
F2,1 = 125 (unchanged); 
F3,2 = 240 (unchanged); 
F4,1 = max{0, R(t)} + L4,1/w4 = 76.116  +30/2 = 76.131 

Transmit periods Start/end(P2,1): 280→330 s; Queued pkts: P4,1 < P3,2  

t = 300: {P4,2, P1,3} 
P2,1 in transmission 
{P3,2, P4,1} in queues 

Finish numbers 

R(t) = (t−t′)⋅C/N + R(t′) = 50×1/4 + 76.116   = 129 1/6

F1,3 = max{0, R(t)}+L1,3/w1 = 61.129  +60/4 = 61.144  ;
F3,2 = 240 (unchanged); 
F4,1 = 76.131   (unchanged); 
F4,2 = max{ 76.131  , R(t)} + L4,2/w4 = 76.146   

Transmit periods
P2,1 ongoing; Queued packets: P4,1 < P1,3 < P4,2 < P3,2  
Start/end(P4,1): 330→360 s; s/e(P1,3): 360→420 s; 
Start/end(P4,2): 420→450 s; s/e(P3,2): 450→640 s. 

At t = 640 s, round number reset, R(t) = 0, because the system becomes idle. 
t = 650: {P3,3, P4,3} 
server idle, q’s empty 

Finish numbers R(0) = 0;  F3,3 = L3,3/w3 = 50;  F4,3 = L4,3/w4 = 15 
Transmit periods Start/end(P4,3): 650→680 sec; s/e(P3,3): 680→730 s.  

t = 710: {P1,4, P4,4} 
P3,3 in transmission 
All queues empty 

Finish numbers 
R(t) = (t−t′)⋅C/N + R(t′) = 110×1/2 + 0 = 55 
F1,4 = max{0, R(t)} + L1,4/w1 = 55 + 60/4 = 70; 
F4,4 = max{30, R(t)} + L4,4/w4 = 55 + 30/2 = 70 

Transmit periods
P3,3 ongoing; Queued pkts: P1,4 = P4,4 (tie  random) 
Start/end(P1,4): 730→790 s; s/e(P4,4): 790→820 s. 

Finally, the following table summarizes the order/time of departure: 

Packet 
# 

Arrival time 
[sec] 

Packet size 
[bytes] 

Flow 
ID 

Departure order/ 
time under FQ 

Departure order/ 
time under WFQ 

1 0 100 1 #2 / 60 s #1 / 0 s 
2 0 60 3 #1 / 0 s #2 / 100 s 
3 100 120 1 #3 / 160 s #3 / 160 s 
4 100 190 3 #8 / 450 s #8 / 450 s 
5 200 50 2 #5 / 310 s #4 / 280 s 
6 250 30 4 #4 / 280 s #5 / 330 s 
7 300 30 4 #6 / 360 s #7 / 420 s 
8 300 60 1 #7 / 390 s #6 / 360 s 
9 650 50 3 #10 / 680 s #10 / 680 s 

10 650 30 4 #9 / 650 s #9 / 650 s 
11 710 60 1 #12 / 760 s #11 / 730 s (tie) 
12 710 30 4 #11 / 730 s #11 / 790 s (tie) 

 

Problem 5.8 — Solution 

Let us assign the high-priority queue index 1, and the other two queues have indices 2 and 3. We 
modify Eq. (5.2) as follows. For a high priority packet P1,j, the finish number is: 

{ } jajj LtRFF ,11,1,1 )(,max += −      (5.2)′ 
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If the priority packet is at the head of its own queue and no other packet is currently serviced, 
then F1,j = R(ta) + L1,j. If a non-priority packet Pi,k, i ≠ 1, is currently in service, then we use its 
finish number Fi,k to compute F1,j = Fi,k + L1,j, because a currently serviced packet is not 
preempted. 

For a non-priority packet Pi,j, i ≠ 1: 

{ } 1;)(,,max ,1,last,1, ≠+= − iLtRFFF jiajiji    (5.2)″ 

where F1,last symbolizes the finish number of the last packet currently in the priority queue. 

Any time new packet arrives (whether to a priority or non-priority queue), we must recompute the 
finish numbers and sort the packets in the ascending order of their finish numbers. 

The order and departure times are as follows: 

P2,1 at t = 0 (not preempted) | P1,1 at t = 6 | P1,2 at t = 8 | P3,1 at t = 10 | P3,2 at t = 12 | P2,2 at t = 13 
(the tie between P2,2 and P3,2 is resolved by flipping a coin). 

Problem 5.9 — Solution 

(a) 
The solution is shown in the figure blow. Notice that LSR C can decide that packets for 
destination 17.1.1/24 and 17.3.1/24 belong to the same FEC (forwarding equivalence 
class). The reason for this is that they traverse the same path across the MPLS domain (from LSR 
F to LSR C) and neither one is assigned preferential treatment. Therefore, in this case there is no 
reason to build more than a single LSP tunnel for the traffic from F to C. 
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(b) 
Forwarding will work as illustrated in the figure below. LSR C uses its conventional IP 
forwarding table to forward packets to destinations 17.1.1.35 (first packet) and 17.3.1.24 
(3rd packet). Similarly, LSR E uses its IP forwarding table to forward packets to destination 
10.2.5.35 (2nd packet). 
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(c) 
The minimum number of FECs is 2 and the minimum number of LSP tunnels that need to be set 
up is accordingly 2: F→C and C→E. 
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Appendix A: Probability Refresher 

 

Random Events and Their Probabilities 

An experiment (or, observation) is a procedure that yields one of a given set of possible 
outcomes. Outcome is a specific result of an experiment. The sample space S of the experiment 
is the set of possible outcomes that can occur in an experiment. An event E is a collection of 
outcomes, which is a subset of the sample space. For example, tossing a coin results in one of two 
possible outcomes: heads (H) or tails (T). Tossing a coin twice results in one of four possible 
outcomes: HH (two heads), HT (a head followed by a tail), TH, or TT (see Figure A-1(a)). 
Similarly, tossing a coin three times results in one of eight possible outcomes: HHH, HHT, HTH, 
HTT, THH, THT, TTH, or TTT. Consider the experiment of tossing a coin twice, where we can 
define a number of possible events: 

Event A: The event “two heads” consists of the single outcome A = {HH}. (This event is 
equivalent to the event “no tails.”) 

Event B: The event “exactly one head” consists of two outcomes B = {HT, TH}. (This event is 
equivalent to the event “exactly one tail.”) 

Event C: The event “at least one head” consists of three outcomes C = {HH, HT, TH}. (This 
event is equivalent to the events “at most one tail” and “not two tails.”) 

We also define a null event (“nothing happened”), which is symbolized by ∅. Given a sample 
space S, the total number of events that can be defined is the set that contains all of the subsets of 
S, including both ∅ and S itself. This set is called the power set of set S and is denoted (S), or 

S, or 2S. In the example of tossing a coin twice, the power set of S contains 24 = 16 events, 
including the null event ∅. The events consisting of a single outcome are: {HH}, {HT}, {TH}, 
{TT}. The events consisting of pairs of outcomes are:  
{HH, HT}, {HH, TH}, {HH, TT}, {HT, TH}, {HT, TT}, {TH, TT}. 

HH HT

TH TT

HH HT

TH TT

H T

H

T

First toss

Second toss

First toss

Second toss Outcome

HH

HT

TH

TT

H

T

T

H

½
½

½
½

½

½

H

T

(a) (b)  

Figure A-1. (a) Possible outcomes of two coin tosses. (b) “Tree diagram” of possible 
outcomes of two coin tosses. 
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The events consisting of triples of outcomes are:  
{HH, HT, TH}, {HH, HT, TT}, {HH, TH, TT}, {HT, TH, TT}. 

Finally, the event consisting of all four outcomes is: {HH, HT, TH, 
TT}. 

 

We say that an event is random when the result of an experiment is 
not known before the experiment is performed. For example, a coin 
toss is random because we do not know if it will land heads or tails. 
If we knew how it would land, then the event would not be random 
because its outcome would be predetermined. For a random event, 
the best we can do is estimate the probability of the event. 

One way to define the probability of a random event is as the relative 
frequency of occurrence of an experiment’s outcome, when repeating 
the experiment indefinitely. Consider a jar with five balls: four black 
and one white (Figure A-2). Imagine that you reach into the jar and 
retrieve a ball, examine its color, and put it back. If you repeat this experiment many times, then, 
on average, four out of five times you will retrieve a black ball and one out of five times you will 
retrieve the white ball. Therefore, the probability of an outcome could be defined as the frequency 
of the outcome. 

We would like to know not only the probability of individual outcomes, but also the probability 
of events. Let us first consider the case when all outcomes are equally likely, and later we will 
consider the general case. In the case of equally likely outcomes, the probability of an event is 
equal to the number of outcomes in an event (cardinality of the event) divided by the number of 

possible outcomes (cardinality of the sample space): 
||

||
)(

S

E
Ep = . For example, tossing a fair 

coin has two equally likely outcomes: heads and tails are equally likely on each toss and there is 
no relationship between the outcomes of two successive tosses. When a coin is tossed twice, the 
number of outcomes is four (Figure A-1(a)). The probabilities for the three events defined above 
are: 

Event A: The probability of the event “two heads,” A = {HH}, equals p(A) = 1/4. 

Event B: The probability of the event “exactly one head,” B = {HT, TH}, equals p(B) = (1 + 1)/4 
= 1/2. 

Event C: The probability of the event “at least one head,” C = {HH, HT, TH}, equals p(C) = 
(1 + 1 + 1)/4 = 3/4. 

The Principles of Probability Theory 

Given a sample space S with finite number of elements (or, outcomes), we assume that a 
probability value p(x) is attached to each element x in S, with the following properties 

1. 0 ≤ p(x) ≤ 1, for all x ∈ S  

2. 1)( =
∈Sx

xp  

 

Figure A-2. Jar with 
black and white balls.
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Given an event E, that is, a subset of S, the probability of E is defined as the sum of the 
probabilities of the outcomes in the event E  


∈

=
Ex

xpEp )()(  

Therefore, the probability of the entire sample space is 1, and the probability of the null event is 
0. 

Events can also be combined. Given two events A and B, their intersection or conjunction is the 
event that consists of all outcomes common to both events, and is denoted as {A and B} or 
{A ∩ B}. For example, the event C defined above (“at least one head”) consists of three outcomes 
C = {HH, HT, TH}. We can define another event, “at least one tail,” which also consists of three 
outcomes D = {HT, TH, TT}. The conjunction of C and D (“at least one head and at least one 
tail”) consists of the outcomes HT and TH. (Note that this event is equivalent to the event “one 
head and one tail.”) Such an event is called a joint event (or, compound event) and the 
probability of such and event is called a joint probability (or, compound probability). 

Another type of event combination involves outcomes of either of two events. The union or 
disjunction of two events consists of all the outcomes in either event, denoted as {A or B} or 
{A ∪ B}. For example, consider again the event “at least one head,” C = {HH, HT, TH}, and the 
event “at least one tail,” D = {HT, TH, TT}. The event “at least one head or at least one tail” 
consists of {A or B} = {HH, HT, TH, TT}. This disjunction equals the entire sample space S, 
because there must be at least one head or at least one tail in any coin-toss experiment. 

An important property of random events is independence of one another. When two events are 
independent, the occurrence of one of the events gives no information about the probability that 
the other event occurs. One event does not influence another, or stated formally, the events E and 
F are independent if and only if )()()( FpEpFandEp ⋅= . 

To illustrate the above concepts, consider the following scenario of two containers with black and 
white balls (Figure A-3). First you decide randomly from which container to draw a ball from, 
and then you draw a ball from the selected vessel. To decide the vessel to draw from, you roll a 
die. If the die comes up 1 or 2, you draw a ball from the jar; otherwise, you draw from the urn 
(i.e., when the die comes up 3, 4, 5, or 6). Let us define the following events: VJ = {die roll 
outcomes: 1, 2}, VU = {die roll outcomes: 3, 4, 4, 6}, BB = {black ball taken}, BW = {white ball 
taken}. 

A joint event can be defined as JB = {black ball taken from Jar}, which is a conjunction of 
VJ ∩ BB. Another joint event is UW = {white ball taken from Urn}. One can notice that 
VJ and BB are not independent, because the occurrence of one of the events gives useful 
information about the probability that the other event occurs. That is, we know that the 
probability of taking a black ball is high die comes up 1 or 2, because the fraction of black balls is 
greater in the jar than in the urn. 

Many any problems are concerned with a numerical value associated with the outcome of an 
experiment. For example, we may be interested in the total number of packets that end up with 
errors when 100 packets are transmitted. To study problems of this type we introduce the concept 
of a random variable. A random variable is a function from the sample space of an experiment 
to the set of real numbers. That is, a random variable assigns a real number to each possible 
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outcome. (It is worth repeating that a random variable is a function; it is not a variable, and it is 
not random!) 

In the example of Figure A-3, the identity of the vessel that will be chosen is a random variable, 
which we shall denote by Y. This random variable can take one of two possible values, namely 
jar or urn. Similarly, the color of the ball that will be drawn from the vessel is also a random 
variable and will be denoted by X. It can take either of the values black or white. 

Consider the matrix representation in Figure A-4. Suppose that we run N times the experiments in 
Figure A-3 and record the outcomes in the matrix. Each cell of the matrix records the fraction of 
the total number of samples that turned out in the specific way. For example, n11 records the 
fraction of samples (out of the N total) where the selected vessel was jar and the color of the ball 
taken from the vessel was black. The joint probability of the random variables X and Y is the 
probability that X will take the value xi and at the same time Y will take the value yj, which is 
written as p(X = xi, Y = yj). For example, in Figure A-4, X = black and Y = jar. In a general case 

JarJar UrnUrn

EXPERIMENT 1:
Roll a die; if outcome 
is 1 or 2, select Jar; 
else, select Urn

EXPERIMENT 2:
Draw a ball from the 
selected container

 

Figure A-3. Two experiments using a die, and a jar and urn with black and white balls. 

n12

n22

y1 = Jar

y2 = Urn

x1 = Black x2 = White

n11

c2

n21

r1Random variable Y:
Identity of the vessel

that will be chosen

Random variable X:  Color of the ball

 

Figure A-4. Matrix of probabilities of random variables from Figure A-3. 
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where variable X can take M different values, X = xi, i = 1, …, M, and variable Y can take L 
different values, Y = yj, j = 1, …, L, we can write the joint probability as 

( )
N

n
yYxXp ij

ji === ,     (A.1) 

(Of course, for this to hold, we are assuming that N → ∞.) Similarly, the probability that X takes 
the value xi (e.g., the probability that the ball color is black) regardless of the value of Y is written 
as p(X = xi) and is given by the fraction of the total number of points that fall in column i, so that 

( )
N

c
xXp i

i ==      (A.2) 

The number of instances in column i in Figure A-4 is just the sum of the number of instances in 

each cell of that column. Therefore, we have  == L

j iji nc
1

. If we plug this to equation (A.2) and 

then use (A.1), we will obtain 
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This is known as the sum rule of probability. The probability p(X = xi) is sometimes called the 
marginal probability, because it is obtained by marginalizing, or summing out, the other 
variables (in this case Y). 

Let us fix the value of the random variable X so that X = xi, and consider the fraction of such 
instances for which Y = yj. In the example of Figure A-4, we could assume that X = white and 
consider the fraction of instances for which Y = jar. This is written as p(Y = yj | X = xi) and is 
called conditional probability of Y = yj given X = xi. It is obtained by finding the fraction of 
those points in column i that fall in cell i,j and is given as 

( )
i

ij
ij c

n
xXyYp === |     (A.4) 

Starting with equation (A.1) and using equations (A.2) and (A.4), we can derive the following 
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This relationship is known as the product rule of probability. 

Statistics of Random Variables 

If X is a discrete random variable, define SX = {x1, x2, … , xN} as the range of X. That is, the value 
of X belongs to SX. 

Probability mass function (PMF): PX(x) = P[X = x] 

Properties of X with PX(x) and SX: 

a)  PX (x) ≥ 0 ∀ x  
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b) 1)( =
∈ XSx

X xP  

c) Given B ⊂ SX, 
∈

=
Bx

X xPBP )(][  

Define a and b as upper and lower bounds of X if X is a continuous random variable. 

Cumulative distribution function (CDF): FX(x) = P[X ≤ x] 

Probability density function (PDF): 
dx

xdF
xfX

)(
)( =  

Properties of X with PDF fX(x): 

a) fX(x) ≥ 0 ∀ x  

b) 
∞−

⋅=
x

XX duufxF )()(  

c) 1)( =⋅
∞

∞−

dxxf X  

Expected value: 

The mean or first moment. 

Continuous RV case:  ⋅⋅==
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Variance: 

Second moment minus first moment-squared: ( )[ ] [ ] 222][ XX XEXEXVar μμ −=−=  

Continuous RV case: [ ] ( ) ⋅⋅=
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X dxxfxXE 22  

Discrete RV case:  [ ] ( )
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kXk xPxXE
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Standard Deviation: ][XVarX =σ  

Bayes’ Theorem 

Consider the following scenario of two containers with black and white balls (Figure A-5). First 
you decide randomly from which container to draw a ball, then you draw a ball from the selected 
container, and finally you report the ball color to your friend. To decide the container to draw 
from, you roll a die. If the die comes up 1 or 2, you draw a ball from the jar; otherwise, you draw 
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from the urn (i.e., when the die comes up 3, 4, 5, or 6). Your friend is sitting behind a curtain and 
cannot observe which container the ball was drawn from. Your friend needs to answer a question 
such as: “given that a black ball was drawn, is it more likely that the ball was drawn from the jar 
or urn?”. In other words, given that a black ball was drawn, what is the probability that it came 
from the jar? 

On one hand, we know that the fraction of black balls is greater in the jar than in the urn. On the 
other hand, we know that as the result of the roll of the die, it is twice as likely that you have 
drawn the ball from the urn. How can we combine the evidence from our sample (black drawing 
outcome) with our prior belief based on the roll of the die? To help answer this question, consider 
again the representation in Figure A-4. 

)(

)()|(
)|(

Xp

YpYXp
XYp

⋅=     (A.7) 

 

 

 

 

 

Suppose that an experiment can have only two possible outcomes. For example, when a coin is 
flipped, the possible outcomes are heads and tails. Each performance of an experiment with two 
possible outcomes is called a Bernoulli trial, after the Swiss mathematician James Bernoulli 
(1654-1705). In general, a possible outcome of a Bernoulli trial is called a success or a failure. If 
p is the probability of a success and q is the probability of a failure, it follows that p + q = 1. 

JarJar UrnUrn

EXPERIMENT 1:
Roll a die; if outcome 
is 1 or 2, select Jar; 
else, select Urn

EXPERIMENT 2:
Draw a ball from the 
selected container

Guess whether the 
ball was drawn from 

Jar or from Urn

Figure A-5. Two experiments use a die, and a jar and urn with black and white balls. The 
person behind a curtain is trying to guess from which vessel a ball is drawn, given the color 
of the ball. 
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Many problems can be solved by determining the probability of k successes when an experiment 
consists of n mutually independent Bernoulli trials. (Bernoulli trials are mutually independent if 
the conditional probability of success on any given trial is p, given any information whatsoever 
about the outcomes of other trials.) 

The probability of exactly k successes in n independent Bernoulli trials, with probability of 

success p and probability of failure q = 1 − p, is knk qpknCpnkb −⋅⋅= ),(),;( . When b(k; n, p) is 

considered as a function of k, we call this function the binomial distribution. 

Random Processes 

A process is a naturally occurring or designed sequence of operations or events, possibly taking 
up time, space, expertise or other resource, which produces some outcome. A process may be 
identified by the changes it creates in the properties of one or more objects under its influence. 

A function may be thought of as a computer program or mechanical device that takes the 
characteristics of its input and produces output with its own characteristics. Every process may be 
defined functionally and every process may be defined as one or more functions. 

An example random process that will appear later in the text is Poisson process. It is usually 
employed to model arrivals of people or physical events as occurring at random points in time. 
Poisson process is a counting process for which the times between successive events are 
independent and identically distributed (IID) exponential random variables. For a Poisson 
process, the number of arrivals in any interval of length τ is Poisson distributed with a parameter 
λ⋅τ. That is, for all t, τ > 0, 

{ } ,...1,0,
!

)(
)()( ===−+ − n

n
entAtAP

nλττ λτ   (A.8) 

The average number of arrivals within an interval of length τ is λτ (based on the mean of the 
Poisson distribution). This implies that we can view the parameter λ as an arrival rate (average 
number of arrivals per unit time). If X represents the time between two arrivals, then P(X > x), 
that is, the probability that the interarrival time is longer than x, is given by e−x/λ. An interesting 
property of this process is that it is memoryless: the fact that a certain time has elapsed since the 
last arrival gives us no indication about how much longer we must wait before the next event 
arrives. An example of the Poisson distribution is shown in Figure A-6. 
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This model is not entirely realistic for many types of sessions and there is a great amount of 
literature which shows that it fails particularly at modeling the LAN traffic. However, such 
simple models provide insight into major tradeoffs involved in network design, and these 
tradeoffs are often obscured in more realistic and complex models. 

Markov process is a random process with the property that the probabilities of occurrence of the 
various possible outputs depend upon one or more of the preceding outputs. 

Statistics Review 

Proportions of Area Under the Normal Curve 

Figure A-7 shows a coarse partition of areas under the normal curve N(μ,σ). Statistical tables are 
often used to obtain finer partitioning, as shown in Table A-1. To use this table, it is necessary to 
convert the raw magnitude to a so-called z-score. The z-score is a standard deviate that allows for 
using the standard normal distribution N(0,1), the one which has a mean μ = 0.0, a standard 
deviation σ = 1.0, and a total area under the curve equal to 1.0. 
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Figure A-6. The histogram of the number of arrivals per unit of time (τ = 1) for a Poisson 
process with average arrival rate λ = 5. 
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Figure A-7. Areas between selected points under the normal curve. 
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The values in Table A-1 represent the proportion of area under the standard normal curve. The 
table contains z-scores between 0.0 and 4.00 (i.e., four standard deviations, or 4×σ), with 0.01 
increments. Because the normal distribution is symmetrical, the table represents z-scores ranging 
between −4.00 and 4.00. 

Figure A-8 illustrates how to read Table A-1. Suppose you want to know how big is the area 
under the normal curve from the mean up to 1.5×σ, i.e., z = 1.50 and how much remains beyond. 
First, we look up Column A and find z = 1.50. Second, we read the associated values in Columns 
B and C, which represent the area between mean and z, and the area beyond z, respectively. 
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(C) 
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 (A) 
 
z 

(B) 
area 

between 
mean and z 

(C) 
area 

beyond 
z 

0.00 .0000 .5000  0.55 .2088 .2912  1.10 .3643 .1357 
0.01 .0040 .4960  0.56 .2123 .2877  1.11 .3665 .1335 
0.02 .0080 .4920  0.57 .2157 .2843  1.12 .3686 .1314 
           
           
0.34 .1331 .3669  0.89 .3133 .1867  1.44 .4251 .0749 
0.35 .1368 .3632  0.90 .3159 .1841  1.45 .4265 .0735 
0.36 .1406 .3594  0.91 .3186 .1814  1.46 .4279 .0721 
0.37 .1443 .3557  0.92 .3212 .1788  1.47 .4292 .0708 
0.38 .1480 .3520  0.93 .3238 .1762  1.48 .4306 .0694 
0.39 .1517 .3483  0.94 .3264 .1736  1.49 .4319 .0681 
0.40 .1554 .3446  0.95 .3289 .1711  1.50 .4332 .0668 
0.41 .1591 .3409  0.96 .3315 .1685  1.51 .4345 .0655 
0.42 .1628 .3372  0.97 .3340 .1660  1.52 .4357 .0643 
0.43 .1664 .3336  0.98 .3365 .1635  1.53 .4370 .0630 
0.44 .1700 .3300  0.99 .3389 .1611  1.54 .4382 .0618 
0.45 .1736 .3264  1.00 .3413 .1587  1.55 .4394 .0606 
0.46 .1772 .3228  1.01 .3438 .1562  1.56 .4406 .0594 
0.47 .1808 .3192  1.02 .3461 .1539  1.57 .4418 .0582 
0.48 .1844 .3156  1.03 .3485 .1515  1.58 .4429 .0571 
0.49 .1879 .3121  1.04 .3508 .1492  1.59 .4441 .0559 
0.50 .1915 .3085  1.05 .3531 .1469  1.60 .4452 .0548 
0.51 .1950 .3050  1.06 .3554 .1446  1.61 .4463 .0537 
0.52 .1985 .3015  1.07 .3577 .1423  1.62 .4474 .0526 
0.53 .2019 .2981  1.08 .3599 .1401  1.63 .4484 .0516 
0.54 .2054 .2946  1.09 .3621 .1379  1.64 .4495 .0505 
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Figure A-8. Illustration of how to read Table A-1 on the next page. 
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Table A-1: Proportions of area under the normal curve. (continued below) 

(A) 
 
z 

(B) 
area 

between 
mean and z 

(C) 
area 

beyond 
z 

 (A) 
 
z 

(B) 
area 

between 
mean and z 

(C) 
area 

beyond 
z 

 (A) 
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(B) 
area 

between 
mean and z 

(C) 
area 

beyond 
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0.00 .0000 .5000  0.55 .2088 .2912  1.10 .3643 .1357 
0.01 .0040 .4960  0.56 .2123 .2877  1.11 .3665 .1335 
0.02 .0080 .4920  0.57 .2157 .2843  1.12 .3686 .1314 
0.03 .0120 .4880  0.58 .2109 .2810  1.13 .3708 .1292 
0.04 .0160 .4840  0.59 .2224 .2776  1.14 .3729 .1271 
0.05 .0199 .4801  0.60 .2257 .2743  1.15 .3749 .1251 
0.06 .0239 .4761  0.61 .2291 .2709  1.16 .3770 .1230 
0.07 .0279 .4721  0.62 .2324 .2676  1.17 .3790 .1210 
0.08 .0319 .4681  0.63 .2357 .2643  1.18 .3810 .1190 
0.09 .0359 .4641  0.64 .2389 .2611  1.19 .3830 .1170 
0.10 .0398 .4602  0.65 .2422 .2578  1.20 .3849 .1151 
0.11 .0438 .4562  0.66 .2454 .2564  1.21 .3869 .1131 
0.12 .0478 .4522  0.67 .2486 .2514  1.22 .3888 .1112 
0.13 .0517 .4483  0.68 .2517 .2483  1.23 .3907 .1093 
0.14 .0557 .4443  0.69 .2549 .2451  1.24 .3925 .1075 
0.15 .0596 .4404  0.70 .2580 .2420  1.25 .3944 .1056 
0.16 .0636 .4364  0.71 .2611 .2389  1.26 .3962 .1038 
0.17 .0675 .4325  0.72 .2642 .2358  1.27 .3980 .1020 
0.18 .0714 .4286  0.73 .2673 .2327  1.28 .3997 .1003 
0.19 .0753 .4247  0.74 .2704 .2296  1.29 .4015 .0985 
0.20 .0793 .4207  0.75 .2734 .2266  1.30 .4032 .0968 
0.21 .0832 .4168  0.76 .2764 .2236  1.31 .4049 .0951 
0.22 .0871 .4129  0.77 .2794 .2206  1.32 .4066 .0934 
0.23 .0910 .4090  0.78 .2823 .2177  1.33 .4082 .0918 
0.24 .0948 .4052  0.79 .2852 .2148  1.34 .4099 .0901 
0.25 .0987 .4013  0.80 .2881 .2119  1.35 .4115 .0885 
0.26 .1026 .3974  0.81 .2910 .2090  1.36 .4131 .0869 
0.27 .1064 .3936  0.82 .2939 .2061  1.37 .4147 .0853 
0.28 .1103 .3897  0.83 .2967 .2033  1.38 .4162 .0838 
0.29 .1141 .3859  0.84 .2995 .2005  1.39 .4177 .0823 
0.30 .1179 .3821  0.85 .3023 .1977  1.40 .4192 .0808 
0.31 .1217 .3783  0.86 .3051 .1949  1.41 .4207 .0793 
0.32 .1255 .3745  0.87 .3078 .1922  1.42 .4222 .0778 
0.33 .1293 .3707  0.88 .3106 .1894  1.43 .4236 .0764 
0.34 .1331 .3669  0.89 .3133 .1867  1.44 .4251 .0749 
0.35 .1368 .3632  0.90 .3159 .1841  1.45 .4265 .0735 
0.36 .1406 .3594  0.91 .3186 .1814  1.46 .4279 .0721 
0.37 .1443 .3557  0.92 .3212 .1788  1.47 .4292 .0708 
0.38 .1480 .3520  0.93 .3238 .1762  1.48 .4306 .0694 
0.39 .1517 .3483  0.94 .3264 .1736  1.49 .4319 .0681 
0.40 .1554 .3446  0.95 .3289 .1711  1.50 .4332 .0668 
0.41 .1591 .3409  0.96 .3315 .1685  1.51 .4345 .0655 
0.42 .1628 .3372  0.97 .3340 .1660  1.52 .4357 .0643 
0.43 .1664 .3336  0.98 .3365 .1635  1.53 .4370 .0630 
0.44 .1700 .3300  0.99 .3389 .1611  1.54 .4382 .0618 
0.45 .1736 .3264  1.00 .3413 .1587  1.55 .4394 .0606 
0.46 .1772 .3228  1.01 .3438 .1562  1.56 .4406 .0594 
0.47 .1808 .3192  1.02 .3461 .1539  1.57 .4418 .0582 
0.48 .1844 .3156  1.03 .3485 .1515  1.58 .4429 .0571 
0.49 .1879 .3121  1.04 .3508 .1492  1.59 .4441 .0559 
0.50 .1915 .3085  1.05 .3531 .1469  1.60 .4452 .0548 
0.51 .1950 .3050  1.06 .3554 .1446  1.61 .4463 .0537 
0.52 .1985 .3015  1.07 .3577 .1423  1.62 .4474 .0526 
0.53 .2019 .2981  1.08 .3599 .1401  1.63 .4484 .0516 
0.54 .2054 .2946  1.09 .3621 .1379  1.64 .4495 .0505 
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Table A-1 (continued) 
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(B) 
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(C) 
area 
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1.65 .4505 .0495  2.22 .4868 .0132  2.79 .4974 .0026 
1.66 .4515 .0485  2.23 .4871 .0129  2.80 .4974 .0026 
1.67 .4525 .0475  2.24 .4875 .0125  2.81 .4975 .0025 
1.68 .4535 .0465  2.25 .4878 .0122  2.82 .4976 .0024 
1.69 .4545 .0455  2.26 .4881 .0119  2.83 .4977 .0023 
1.70 .4554 .0446  2.27 .4884 .0116  2.84 .4977 .0023 
1.71 .4564 .0436  2.28 .4887 .0113  2.85 .4978 .0022 
1.72 .4573 .0427  2.29 .4890 .0110  2.86 .4979 .0021 
1.73 .4582 .0418  2.30 .4893 .0107  2.87 .4979 .0021 
1.74 .4591 .0409  2.31 .4896 .0104  2.88 .4980 .0020 
1.75 .4599 .0401  2.32 .4898 .0102  2.89 .4981 .0019 
1.76 .4608 .0392  2.33 .4901 .0099  2.90 .4981 .0019 
1.77 .4616 .0384  2.34 .4904 .0096  2.91 .4982 .0018 
1.78 .4625 .0375  2.35 .4906 .0094  2.92 .4982 .0018 
1.79 .4633 .0367  2.36 .4909 .0091  2.93 .4983 .0017 
1.80 .4641 .0359  2.37 .4911 .0089  2.94 .4984 .0016 
1.81 .4649 .0351  2.38 .4913 .0087  2.95 .4984 .0016 
1.82 .4656 .0344  2.39 .4916 .0084  2.96 .4985 .0015 
1.83 .4664 .0336  2.40 .4918 .0082  2.97 .4985 .0015 
1.84 .4671 .0329  2.41 .4920 .0080  2.98 .4986 .0014 
1.85 .4678 .0322  2.42 .4922 .0078  2.99 .4986 .0014 
1.86 .4686 .0314  2.43 .4925 .0075  3.00 .4987 .0013 
1.87 .4693 .0307  2.44 .4927 .0073  3.01 .4987 .0013 
1.88 .4699 .0301  2.45 .4929 .0071  3.02 .4987 .0013 
1.89 .4706 .0294  2.46 .4931 .0069  3.03 .4988 .0012 
1.90 .4713 .0287  2.47 .4932 .0068  3.04 .4988 .0012 
1.91 .4719 .0281  2.48 .4934 .0066  3.05 .4989 .0011 
1.92 .4726 .0274  2.49 .4936 .0064  3.06 .4989 .0011 
1.93 .4732 .0268  2.50 .4938 .0062  3.07 .4989 .0011 
1.94 .4738 .0262  2.51 .4940 .0060  3.08 .4990 .0010 
1.95 .4744 .0256  2.52 .4941 .0059  3.09 .4990 .0010 
1.96 .4750 .0250  2.53 .4943 .0057  3.10 .4990 .0010 
1.97 .4756 .0244  2.54 .4945 .0055  3.11 .4991 .0009 
1.98 .4761 .0239  2.55 .4946 .0054  3.12 .4991 .0009 
1.99 .4767 .0233  2.56 .4948 .0052  3.13 .4991 .0009 
2.00 .4772 .0228  2.57 .4949 .0051  3.14 .4992 .0008 
2.01 .4778 .0222  2.58 .4951 .0049  3.15 .4992 .0008 
2.02 .4783 .0217  2.59 .4952 .0048  3.16 .4992 .0008 
2.03 .4788 .0212  2.60 .4953 .0047  3.17 .4992 .0008 
2.04 .4793 .0207  2.61 .4955 .0045  3.18 .4993 .0007 
2.05 .4798 .0202  2.62 .4956 .0044  3.19 .4993 .0007 
2.06 .4803 .0197  2.63 .4957 .0043  3.20 .4993 .0007 
2.07 .4808 .0192  2.64 .4959 .0041  3.21 .4993 .0007 
2.08 .4812 .0188  2.65 .4960 .0040  3.22 .4994 .0006 
2.09 .4817 .0183  2.66 .4961 .0039  3.23 .4994 .0006 
2.10 .4821 .0179  2.67 .4962 .0038  3.24 .4994 .0006 
2.11 .4826 .0174  2.68 .4963 .0037  3.25 .4994 .0006 
2.12 .4830 .0170  2.69 .4964 .0036  3.30 .4995 .0005 
2.13 .4834 .0166  2.70 .4965 .0035  3.35 .4996 .0004 
2.14 .4838 .0162  2.71 .4966 .0034  3.40 .4997 .0003 
2.15 .4842 .0158  2.72 .4967 .0033  3.45 .4997 .0003 
2.16 .4846 .0154  2.73 .4968 .0032  3.50 .4998 .0002 
2.17 .4850 .0150  2.74 .4969 .0031  3.60 .4998 .0002 
2.18 .4854 .0146  2.75 .4970 .0030  3.70 .4999 .0001 
2.19 .4857 .0143  2.76 .4971 .0029  3.80 .4999 .0001 
2.20 .4861 .0139  2.77 .4972 .0028  3.90 .49995 .00005 
2.21 .4864 .0136  2.78 .4973 .0027  4.00 .49997 .00003 
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3G — Third Generation (wireless networks) 

4G — Fourth Generation (wireless networks) 

ABR — Available Bit-Rate 

ACK — Acknowledgement 

ADDBA — Add Block Acknowledgment 
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API — Application Programming Interface 
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ARQ — Automatic Repeat Request 

ASCII — American Standard Code for Information 
Interchange 

ASIC — Application Specific Integrated Circuit 

ASN — Autonomous System Number 

ATM — Asynchronous Transfer Mode 

AWGN — Additive White Gaussian Noise 

BACK — Block Acknowledgment 

BAN — Body Area Network 

BDPDR — Bounded Delay Packet Delivery Ratio 

BER — Bit Error Rate 

BGP — Border Gateway Protocol 

bps — bits per second 

BS — Base Station 

BSS — Basic Service Set 

CBR — Constant Bit-Rate 

CBT — Core Based Tree 

CCA — Clear Channel Assessment 

CDMA — Code Division Multiple Access 
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CIDR — Classless Interdomain Routing 
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CORBA — Common Object Request Broker 
Architecture 

CoS — Class of Service 

CPU — Central Processing Unit 

CQS — Classify, Queue, and Schedule 
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CSMA — Carrier-Sense Multiple Access 
CSMA/CA — CSMA / Collision Avoidance 
CSMA/CD — CSMA / Collision Detection 

CSPF — Constrained Shortest Path First 
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DBS — Direct Broadcast Satellite 

DCF — Distributed Coordination Function 

DELBA — Delete Block Acknowledgment 

DHCP — Dynamic Host Configuration Protocol 

DiffServ — Differentiated Services (alternative: DS) 

DIFS — DCF (or Distributed) Inter Frame Space 

DNS — Domain Name System 

DPI — Deep Packet Inspection 

DSR — Dynamic Source Routing 

DTN — Disruption-Tolerant Networking 

dupACK — Duplicate Acknowledgement 

DV — Distance Vector 

DVMRP — Distance Vector Multicast Routing 
Protocol 

ECN — Explicit Congestion Notification 

EF — Expedited Forwarding 

EGP — Exterior Gateway Protocol 

EIFS — Extended Inter Frame Space 

ESS — Extended Service Set 

EV-DO — EVolution – Data Optimized 

EWMA — Exponential Weighted Moving Average 

FCFS — First Come First Served 

FDM — Frequency Division Multiplexing 

FDMA — Frequency Division Multiple Access 

FEC — Forward Error Correction; 
also: Forwarding Equivalence Class (in MPLS) 

FIB — Forwarding Information Base 

FIFO — First In First Out 

FIRO — First In Random Out 

FPGA — Field-Programmable Gate Array 

FQ — Fair Queuing 

FSM — Finite State Machine 

FTP — File Transfer Protocol 

GBN — Go-Back-N 

GPS — Generalized Processor Sharing 

GUI — Graphical User Interface 
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HAA — Home Address Agent 

HDLC — High-level Data Link Control 

HOL — Head Of Line 

HSPA — High Speed Packet Access 

HT — High Throughput 

HTML — HyperText Markup Language 

HTTP — HyperText Transport Protocol 

IANA — Internet Assigned Numbers Authority 

IBSS — Independent Basic Service Set 

ICANN — Internet Corporation for Assigned Names 
and Numbers 

ICMP — Internet Control Message Protocol 

IEEE — Institute of Electrical and Electronics 
Engineers 

IETF — Internet Engineering Task Force 

IFS — Inter Frame Spacing 

IGP — Interior Gateway Protocol 

IntServ — Integrated Services 

IP — Internet Protocol 
IPv4 — Internet Protocol version 4 
IPv6 — Internet Protocol version 6 

IPPM — IP Performance Metrics 

ISO — International Standards Organization 

ISP — Internet Service Provider 

j.n.d. — just noticeable difference 
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LAN — Local Area Network 

LCFS — Last Come First Served 

LCP — Link Control Protocol 

LFIB — Label Forwarding Information Base 

LIB — Label Information Base 

LLC — Logical Link Control 

LS — Link State 

LSA — Link State Advertisement 

LSDB — Link State Database 

L-SIG — Legacy Signal (non-high-throughput Signal 
field of 802.11n physical-layer frame header) 

LSP — Label Switched Path (in MPLS); 
also: Link State Packet (in LS routing and OSPF) 

LSR — Label Switching Router 

LTE — Long Term Evolution (also known as 4G) 

MAC — Medium Access Control 

MANET — Mobile Ad-hoc Network 

Mbps — Mega bits per second 

MCS — Modulation and Coding Scheme 

MIB — Management Information Base 

MIMO — Multiple-Input Multiple-Output 

MPDU — MAC Protocol Data Unit 

MPEG — Moving Picture Experts Group 

MPLS — MultiProtocol Label Switching 

MSDU — MAC Service Data Unit 

MSS — Maximum Segment Size 

MTU — Maximum Transmission Unit 

NAK — Negative Acknowledgement 

NAT — Network Address Translation 

NAV — Network Allocation Vector 

NCP — Network Control Protocol 

NDP — Neighbor Discovery Protocol 

NFE — Network Front-End (Processor) 

NIC — Network Interface Card 

NLRI — Network Layer Reachability Information 

NMS — Network Management System 

OLSR — Optimized Link State Routing 

OSI — Open Systems Interconnection 

OSPF — Open Shortest Path First 

P2P — Peer-to-Peer (some would say Pier-to-Pier ) 

PAN — Personal Area Network 

PC — Personal Computer 

PCM — Pulse Code Modulation 

PCO — Phased Coexistence Operation 

PDA — Personal Digital Assistant 

PDU — Protocol Data Unit 

pdf — probability distribution function 

pmf — probability mass function 

PER — Packet Error Rate 

PHB — Per-Hop Behavior 

PHY — Physical Layer 

PIFS — PCF (or Priority) Inter Frame Space 

PIM — Protocol Independent Multicast 

PLCP — Physical Layer Convergence Procedure 

PoP — Point-of-Presence 

PPDU — PLCP Protocol Data Unit 

PPP — Point-to-Point Protocol 

PSDU — PLCP Service Data Unit 

PSTN — Public Switched Telephone Network 

PtMP — Point-to-Multipoint 

PtP — Point-to-Point 

QoE — Quality of Experience 

QoS — Quality of Service 

RED — Random Early Detection 

RFC — Request For Comments 

RFID — Radio Frequency Identification 

RIB — Routing Information Base 

RIFS — Reduced Inter Frame Space 

RIP — Routing Information Protocol 

RMON — Remote Monitoring 

RPC — Remote Procedure Call 

RPF — Reverse Path Forwarding 
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RSSI — Receive(r) Signal Strength Index/Indication 

RSVP — Resource ReSerVation Protocol 

RTCP — Real-Time Control Protocol 

RTO — Retransmission Time Out 

RTP — Real-Time Protocol 

RTS — Request To Send 

RTSP — Real-Time Streaming Protocol 

RTT — Round-Trip Time 

SACK — Selective Acknowledgement 

SDM — Spatial Division Multiplexing 

SDP — Session Description Protocol 

SFD — Start Frame Delimiter 

SIFS — Short Inter Frame Space 

SIP — Session Initiation Protocol 

SLA — Service Level Agreement 

SMTP — Simple Mail Transfer Protocol 

SN — Sequence Number 

SNMP — Simple Network Management Protocol 

SNR — Signal-to-Noise Ratio 

SONET — Synchronous Optical Network 

SR — Selective Repeat 

SSTresh — Slow-Start Threshold 

STP — Spanning Tree Protocol 

TC — Traffic Category 

TCP — Transmission Control Protocol 

TDM — Time Division Multiplexing 

TDMA — Time Division Multiple Access 

TE — Traffic Engineering 

TID — Traffic Identifier 

TS — Traffic Stream 

TTL — Time To Live 

TXOP — Transmit Opportunity 

UBR — Unspecified Bit Rate 

UDP — User Datagram Protocol 

URL — Uniform Resource Locator 

VBR — Variable Bit Rate 

VLAN — Virtual Local Area Network 

VLSI — Very Large Scale Integration 

VoIP — Voice over IP 

VoWiFi — Voice over Wi-Fi 

VPN — Virtual Private Network 

W3C — World Wide Web Consortium 

WAN — Wide Area Network 

WAP — Wireless Access Protocol 

WEP — Wired Equivalent Privacy 

WFQ — Weighted Fair Queuing 

Wi-Fi — Wireless Fidelity (synonym for IEEE 802.11) 

WiMAX — Worldwide Interoperability for Microwave 
Access (synonym for IEEE 802.16) 

W-LAN — Wireless Local Area Network 

WWW — World Wide Web 

ZigBee — See http://en.wikipedia.org/wiki/ZigBee for the 
origins of this name
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Numbers 
3G … 

802.3 IEEE standard. See Ethernet 

802.11 IEEE standard. See Wi-Fi 

802.11n. See IEEE 802.11n 

A 
Access point … 

Acknowledgement …  

Action frame …  

Active queue management …  

Adaptive retransmission …  

Adaptive video coding …  

Additive increase …  

Addressing 

CIDR …  

class-based …  

hierarchical …  

Address Resolution Protocol (ARP) …  

Ad hoc network …  

Admission control …  

Advertised window …  

Algorithm …  

ALOHA protocol …  

Alternating-bit protocol …  

Anycast …  

Application …  

Area. See Open Shortest Path First 

Area-border router …  

Arithmetic average …  

ARQ (Automatic Repeat Request) …  

Autonomic computing …  

Autonomous system (AS) …  

depeering …  

exchange point …  

multihomed AS … 

peering agreement …  

routing …  

stub AS …  

transit agreement …  

transit AS …  

Autonomous system number (ASN) …  

B 
Backhaul …  

Backbone network …  

Backoff …  

Balance principle …  

Bandwidth …  

Banyan network …  

Basic service set …  

independent BSS …  

infrastructure BSS …  

Bayes’ rule …  

Bellman-Ford algorithm …  

Best effort …  

BGP. See Border Gateway Protocol 

Binomial distribution …  

Birth and death process …  

Bit-by-bit round-robin …  

Bit error rate (BER) …  

Bit (or byte) stuffing …  

Black box …  

Block acknowledgement …  

Blocking probability …  

Border Gateway Protocol (BGP) …  

confederation …  

export policy …  

exterior BGP (eBGP) …  

import policy …  

interior BGP (iBGP) …  

internal peering …  

message format …  

path attribute …  

route reflector …  

speaker node …  

Border router …  

Bottleneck router …  

Broadcast …  
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link …  

protocol …  

BSS. See Basic service set 

Buffer …  

Burst size …  

Bursty traffic … 

Byte …  

C 
Callback operation …  

Capacity …  

Carrier sense …  

Center-based tree …  

Center node …  

Channel …  

Channel bonding …  

Channel coding …  

Channel coherence time …  

Circuit switched network …  

Classify, queue, and schedule (CQS) architecture …  

Clear channel assessment (CCA) interval …  

Compression, data …  

Conditional probability …  

Congestion avoidance …  

Congestion control …  

Congestion window …  

Connectionless service …  

Connection-oriented service …  

Constraint-based routing …  

Constrained Shortest Path First (CSPF) …  

Contention period …  

Core-based tree …  

Correctness …  

Countdown timer …  

Counting-to-infinity problem …  

Covered station …  

Crossbar switch …  

CTS-to-self …  

Cumulative acknowledgement …  

D 
Datagram …  

Data transparency …  

Deep packet inspection …  

Delay …  

jitter …  

playout. See Playout delay 

processing …  

propagation …  

queuing …  

transmission …  

Demultiplexing …  

Designated port …  

Designated router …  

Designated switch …  

Destination IP address …  

Differentiated services (DiffServ) … 

Dijkstra’s algorithm … 

Distance vector (DV) routing algorithm …  

Distributed computing …  

Dual CTS …  

Duplex link. See Link 

Duplicate acknowledgement …  

E 
Effective window …  

Efficiency …  

Embedded processor …  

Emergent property, system …  

Encryption …  

End-to-end argument …  

Error 

control …  

detection and correction …  

recovery …  

Error-correcting code …  

Error-detecting code …  

Event …  

Event-driven application …  

Ethernet …  

address. See MAC-48 address 

Expectation of a random variable …  

Expert rule …  

Explicit congestion notification (ECN) …  

Explicit routing …  

Exponential backoff. See Backoff 

Exponential distribution …  

Exponential Weighted Moving Average (EWMA) …  

Exposed station problem …  

Exterior BGP (eBGP). See Border Gateway Protocol 

F 
Fair queuing …  

Fair resource allocation …  

Fairness index …  

Fast recovery …  
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Fast retransmission …  

FCFS …  

Fidelity …  

Finite state machine (FSM) …  

Firewall …  

Flight size …  

Flooding …  

Flow …  

control …  

soft state …  

specification. See Integrated services 

Forward error correction (FEC) … 

Forwarding …  

Forwarding equivalence class (FEC) …  

Forwarding information base (FIB). See Forwarding 
table 

Forwarding table …  

Fragmentation …  

Frame …  

Frame aggregation …  

Framing …  

FDM (Frequency Division Multiplexing) …  

FDMA (Frequency Division Multiple Access) …  

G 
Gateway router … 

Gaussian distribution …  

Go-back-N …  

Goodput …  

Group-shared multicast tree …  

Guaranteed service …  

H 
H.323 …  

Head-of-line (HOL) blocking …  

HELLO packets …  

Heuristics …  

Hidden station problem …  

High throughput (HT) devices (IEEE 802.11n) …  

Hold-down timer …  

Hot-potato routing …  

HT Capabilities element …  

Hub …  

I 
IEEE 802.3. See Ethernet  

IEEE 802.11. See Wi-Fi  

IEEE 802.11n …  

Implementation …  

Information theory …  

Input device …  

Integrated services (IntServ) …  

flow specification …  

RSVP. See Resource ReSerVation Protocol 

request specification (Rspec) 

traffic specification (Tspec) 

Interarrival interval …  

Interconnection fabric. See Switch fabric 

Interface, software …  

Interior BGP (iBGP). See Border Gateway Protocol 

Interior gateway protocols (IGPs) …  

Internet …  

Internet Protocol (IP) …  

IPv4 …  

IPv6 …  

Internet service provider …  

IP telephony. See VoIP 

J 
Jitter. See Delay 

Just noticeable difference (j.n.d.) …  

K 
Keep-alive feature …  

Kendall’s notation …  

Keyword …  

L 
Label forwarding information base (LFIB) …  

Label information base (LIB) …  

Label swapping …  

Label switching router (LSR) …  

edge …  

intermediary …  

Latency …  

Layering …  

architecture …  

OSI …  

Leaky bucket …  

Line card. See Network interface card 

Link …  

full duplex …  

half duplex …  

layer …  

wireless …  

Link-state advertisement (LSA) …  
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Link-state packet. See Link-state advertisement 

Link-state (LS) routing algorithm …  

Listen-before-talk …  

Little’s formula …  

Local area network …  

Lockstep protocol. See Stop-and-wait 

Longest prefix match …  

Loopback address …  

Loss detection …  

L-SIG TXOP protection …  

M 
M/G/1 queue …  

M/M/1 queue …  

MAC-48 address …  

MAC spoofing …  

Markov chain …  

Maximum transmission unit (MTU) …  

Max-min fairness …  

Mean value of a random variable …  

Medium access control (MAC) …  

Memoryless …  

Message …  

Messaging …  

Metadata …  

Metering …  

Middleware …  

Mobile network …  

Modem …  

Modular design …  

MPLS …  

domain …  

forwarding labeled packets …  

label …  

label stack …  

label swapping …  

traffic engineering …  

tunnel …  

Multicast addressing …  

Multicast group …  

Multicast routing …  

backbone …  

core-based tree …  

graft message …  

group-shared multicast tree …  

protocol independent …  

pruning …  

reverse-path forwarding (RPF) …  

source-based multicast tree …  

Multihomed host …  

Multimedia application …  

Multiple-input multiple-output (MIMO) …  

Multiplicative decrease …  

Multiprotocol label switching. See MPLS 

N 
Nagle’s algorithm …  

Naming …  

NAV. See Network allocation vector 

Negative acknowledgement …  

Network 

layer … 

local area network (LAN) …  

wireless …  

Network adaptor. See Network interface card 

Network allocation vector (NAV) …  

Network interface card …  

Network programming …  

Node …  

Non-preemptive priority …  

Non-work-conserving scheduler …  

Normal distribution …  

O 
Object, software …  

Object Request Broker (ORB). See Broker pattern 

Octet …  

Offered load …  

OMG (Object Management Group) …  

On-off source …  

Open Shortest Path First (OSPF) …  

area …  

backbone area …   

Operation …  

Optical fiber …  

Optimizing the common case …  

OSI (Open Systems Interconnection) …  

OSPF. See Open Shortest Path First 

P 
Packet …  

Packet aggregation …  

Packet error rate …  

Packetization …  

Packet-pair technique …  

Packet switching …  
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Parameter β … 

Path vector routing. See Routing 

Payload …  

Peak rate …  

Performance …  

Persistent CSMA …  

Persistent sender …  

Phased coexistence operation (PCO) …  

Physical layer …  

Piggyback …  

Pipelined reliable transfer protocol. See Protocol 

Playout delay …  

Point-of-Presence (PoP) …  

Poisoned reverse routing updates …  

Poisson arrival process …  

Poisson distribution …  

Policing …  

Pollaczek-Khinchin (P-K) formula …  

Port …  

Preamble …  

Preemptive scheduling …  

Presentation layer …  

Prioritization …  

Probability …  

Process …  

Processing delay. See Delay 

Program …  

Propagation constant. See Delay 

Propagation delay. See Parameter β  

Protection mechanism …  

Protocol …  

layering …  

OSI reference model …  

pipelined …  

retransmission …  

stack …  

streaming …  

transport layer …  

Protocol identifier field …  

Provider. See Internet service provider 

Proxy …  

Pulse code modulation (PCM) …  

Q 
Quality of service …  

end-to-end …  

hard guarantees…  

soft guarantees …  

Queue …  

Queuing delay. See Delay 

Queuing model ...  

R 
Radio transmission …  

Random 

event …  

process …  

variable …  

Random access channel …  

Random early detection (RED) …  

Rate control scheme …  

Reactive application. See Event-driven application 

Receive buffer …  

Receiving window …  

Redundancy …  

Regulation …  

Rendezvous point …  

Residual service time …  

Resource reservation …  

Resource ReSerVation Protocol (RSVP) …  

Retransmission …  

Retransmission timeout (RTO) …  

Reverse path forwarding (RPF) algorithm …  

RFID …  

RIP. See Routing Information Protocol 

Roaming …  

Round-robin scheduling …  

Round-trip time (RTT) …  

Route …  

Router …  

Routing 

constraint-based … 

distance vector (DV) …  

hot potato …  

link state (LS) …  

multicast …  

path vector …  

policy constraint …  

protocol …  

shortest path …  

table. See Routing information base (RIB) 

Routing information base (RIB) …  

Routing Information Protocol (RIP) …  

Rule-based expert system …  

Rx-Tx turnaround time …  
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S 
Satellite …  

Scheduling …  

Segment …  

Selective repeat …  

Self-similar traffic …  

Sensor …  

Sequence number …  

Server …  

Server vacations …  

Service …  

best-effort …  

model …  

QoS-based …  

Session layer …  

Shortest path routing. See Routing  

Signaling …  

SIP (Session Initiation Protocol) …  

Sliding-window protocol …  

Slot …  

Slotted ALOHA. See ALOHA protocol 

Slow start …  

Socket, network …  

Source coding …  

Source routing …  

Source-specific multicast tree …  

Spanning tree algorithm …  

Speaker node …  

Split-horizon routing …  

State 

flow …  

soft …  

State machine diagram …  

Stationary process …  

Statistical multiplexing …  

Steady-state distribution …  

Stop-and-wait …  

Store-and-forward …  

Streaming application …  

Subnetwork …  

Switch …  

Switch fabric …  

T 
TCP 

congestion control …  

flow control …  

Reno …  

segment …  

Tahoe …  

Vegas …  

Westwood …  

TDM (Time Division Multiplexing) …  

TDMA (Time Division Multiple Access) …  

Telnet …  

Three-way handshake …  

Throughput …  

Timeliness …  

Timeout …  

Timer …  

Time to live (TTL) …  

Token bucket …  

Traffic descriptor … 

average rate …  

peak rate …  

Traffic engineering …  

Traffic management … 

admission control …  

model …  

Transmission delay. See Delay 

Transmission round …  

Transmit opportunity (TXOP) …  

Transport layer …  

Triggered updates …  

Tunneling …  

Twisted pair …  

U 
UDP (User Datagram Protocol) …  

Unicast …  

Unified communications …  

Uniform distribution …  

Urgent data …  

URL (Uniform Resource Locator) …  

User …  

Utilization of sender …  

V 
Variable bit-rate …  

Variance of a random variable …  

Video compression …  

Videoconferencing …  

Video-on-demand application …  

Virtual private network (VPN) …  

VoIP (Voice over IP) …  

Vulnerable period … 
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W 
Weighted-fair queuing …  

Wi-Fi …  

WiMAX …  

Window …  

congestion. See Congestion window 

effective. See Effective window 

flow control …  

receiving. See Receiving window 

size …  

Window of vulnerability. See Vulnerable period 

Wireless …  

channel …  

network …  

Work-conserving scheduler …  

Worldwide Interoperability for Microwave Access. See 
WiMAX 

X 
xDSL …  

Y 
 

Z 
ZigBee standard …  
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