Data Center Front End Architecture Solution for Business Continuance

Yves LOUIS

Cisco Networkers 2007
HOUSEKEEPING

- We value your feedback, don’t forget to complete your online session evaluations after each session and complete the Overall Conference Evaluation which will be available online from Friday.

- Visit the World of Solutions on Level -01!

- Please remember this is a ‘No Smoking’ venue!

- Please switch off your mobile phones!

- Please remember to wear your badge at all times including the Party!

- Do you have a question? Feel free to ask them during the Q&A section or write your question on the Question form given to you and hand it to the Room Monitor when you see them holding up the Q&A sign.
Agenda

- Introduction to Data Center—The Evolution
- Application and Business Continuance
 - Increasing HA in the Data Center
 - HA with Virtualisation
- Data Center Disaster Recovery
 - Failure Scenarios
 - Design Options
- Components of Disaster Recovery
 - Site Selection—Front End GSLB
 - Server High Availability—Clustering
The Evolution of Data Center
Data Center Evolution

Compute Evolution
- Mainframes
- Client/Server
- Terminal
- DECnet
- Thin Client: HTTP
- TCP/IP

Internet Computing
- Optimization
- Content Networking
- Data Center Virtualization
- Data Center Consolidation
- Data Center Continuous Availability

1. Consolidation
2. Integration
3. Virtualization
4. High Availability

Business Agility

1960 1980 2000 2010
Data Center Elements

Application Solution
- Linux/HP,
- Solaris/SunFire,
- WebLogic, J2EE Custom App, Etc.

Database Solution
- Linux/HP, Solaris/
- SunFire, Oracle 10G
- RAC, Etc.

Storage Solution
- MDS9000
Data Center Elements

Network Infrastructure Solution
- Cisco GSRs, Cisco Catalyst 6500, Cisco Catalyst Cat4000

Layers 4–7 Services Solution
- ACE, CSM, SSLM, CSS, CE, GSS

Network Security Solution
- PIX®, FWSM, IDSM, VPNSM, CSA

Management and Instrumentation Solution
- Terminal Servers, NAM, Cisco Works LMS/VMS, ANM, ASDM

Application Solution

Database Solution
- Linux/HP, Solaris/SunFire, Oracle 10G RAC, Etc.

Storage Solution
- MDS9000
Data Center Elements

Redundancy

Network Infrastructure Solution
- GSRs, Cat6500, Cat4000
- HSRP, RPR, SSO, NSF, RPVST, MST

Layers 4–7 Services Solution
- ACE, CSM, SSLM, CSS, CE, GSS
- State Full Redundancy on ACE, CSM and FWSM

Network Security Solution
- PIX, FWSM, IDSM, VPNSM, CSA

Management and Instrumentation Solution
- Terminal Servers, NAM, Cisco Works LMS/VMS, ANM, ASDM

Application Solution

Database Solution
- Linux/HP, Solaris/SunFire, Oracle 10G RAC, Etc.

Storage Solution
- MDS9000

99.999% Availability Desired
Data Center Elements
Scalability

Network Infrastructure Solution
- GSRs, Cat6500, Cat4000
- Core, Aggregation/Distribution/Services, Access Model

Layers 4–7 Services Solution
- ACE, CSM, SSLM, CSS, CE, GSS
- Ability to Scale to Multiple Services Modules (ACE, SSLM, etc.)

Flexible and Simple Growth Capabilities Desired

Network Security Solution
- PIX, FWSM, IDSM, VPNSM, CSA

Application Solution
- Linux/HP, Solaris/SunFire, WebLogic, J2EE Custom App, etc.

Database Solution
- Linux/HP, Solaris/SunFire, Oracle 10G RAC, etc.

Management and Instrumentation Solution
- Terminal Servers, NAM, Cisco Works LMS/VMS, ANM, ASDM

Storage Solution
- MDS9000
Data Center Elements

Security

Network Infrastructure Solution
- GSRs, Cat6500, Cat4000
- Protection Against L2 Loop & L3 neighboring

Layers 4–7 Services Solution
- ACE, CSM, SSLM, CSS, CE, GSS
- Protection of Infrastructure Devices from Unauthorized Access
- Protection Against DoS and Worm Activity

Network Security Solution
- PIX, FWSM, IDSM, VPNSM, CSA

Application Solution
- Protection of Information/Data

Database Solution
- Linux/HP, Solaris/SunFire, Oracle 10G RAC, Etc.

Management and Instrumentation Solution
- Terminal Servers, NAM, Cisco Works LMS/VMS, HSE

Storage Solution
- MDS9000
Typical Data Center Topology

- Internal Network
- Service Provider A
- Service Provider B
- Edge Routers
- Core Switches
- Aggregation Switches
- Access Switches
- WEB Tier
- Application Tier
- Database Tier

- Internet
Distributed Data Center

Primary Data Center

Secondary Data Center

Data Replication

App A

App B

App A

App C

FC

FC
Why Distributed Data Centers?

- Required by disaster recovery and business continuance
- Avoid single, concentrated data depositary
- High availability of applications and data access
- Load balancing together with performance scalability
- Better response and optimal content routing: proximity to clients
Front-End IP Access Layer

“Content Routing” Site Selection

Primary Data Center

Secondary Data Center
Application and Database Layer

“Content Switching” Load Balancing
“Server Clustering” High Availability

Primary Data Center

Secondary Data Center
Backend SAN Extension

“Storage” and “Optical” Data Replication and Transporting
Data Center Application & Business Continuance
Agenda

- Introduction to Data Center—The Evolution
- Application and Business Continuance
 - Increasing HA in the Data Center
 - HA with Virtualisation
- Data Center Disaster Recovery
 - Failure Scenarios
 - Design Options
- Components of Disaster Recovery
 - Site Selection—Front End GSLB
 - Server High Availability—Clustering
High Availability in the Data Center
Server High Availability

Common Points of Failure

1. Server network adapter
2. Port on a multi-port server adapter
3. Network media (server access)
4. Network media (uplink)
5. Access switch port
6. Access switch module
7. Access switch
8. Aggregation switch port

These Network Failure Issues Can Be Addressed by Deployment of Dual Attached Servers Using Network Adapter Teaming Software
High Availability in the Data Center
Common NIC Teaming Configurations

AFT—Adapter Fault Tolerance
- Default GW: 10.2.1.1 HSRP
- Eth0: Active
- Eth1: Standby
- IP=10.2.1.14
 MAC =0007.e910.ce0f
- On failover, Src MAC Eth1 = Src MAC Eth0
- IP address Eth1 = IP address Eth0

SFT—Switch Fault Tolerance
- Default GW: 10.2.1.1 HSRP
- Eth0: Active
- Eth1: Standby
- IP=10.2.1.14
 MAC =0007.e910.ce0f
- On failover, Src MAC Eth1 = Src MAC Eth0
- IP address Eth1 = IP address Eth0

ALB—Adaptive Load Balancing
- Default GW: 10.2.1.1 HSRP
- Eth0: Active
- Eth1-X: Active
- IP=10.2.1.14
 MAC =0007.e910.ce0f
 MAC =0007.e910.ce0e
- One port receives, all ports transmit
- Incorporates Fault Tolerance
- One IP address and multiple MAC addresses
High Availability in the Data Center
LACP – 802.1ad

EtherChannel splitted between multiple Access Switches (Cat3750 StackWize) provides:

- Higher Throughput
- Higher Availability

at both Server and Switch sides....
High Availability in the Data Center
Failover Times

- The overall failover time is the combination of convergence at L2, L3, + L4 components
 - Stateful devices can replicate connection information and typically failover within 3-5sec
 - EtherChannels < 1sec
 - STP converges in ~1 sec
 - HSRP can be tuned to <1s, but why

- Where does TCP break? Microsoft, Linux, AIX, etc..

<table>
<thead>
<tr>
<th>Failover Time</th>
<th>L2 Convergence</th>
<th>L3 Convergence</th>
<th>L4 Convergence</th>
<th>~ 3-6s</th>
<th>9s</th>
<th>~30s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft XP 2003 Server TCP Stack Tolerance</td>
<td>~9s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Linux and others tolerate a longer outage</td>
</tr>
</tbody>
</table>
High Availability in the Data Center

NSF/SSO

- NSF/SSO is a supervisor redundancy mechanism for intra-chassis supervisor failover
- SSO synchronizes layer 2 protocol state, hardware L2/L3 tables (MAC, FIB, adjacency table), ACL and QoS tables
- SSO synchronizes state for: trunks, interfaces, EtherChannels, port security, SPAN/RSPAN, STP, UDLD, VTP
- SSO prevents line cards and service modules from reset.
- NSF with EIGRP, OSPF, IS-IS, BGP makes it possible to have no route flapping during the recovery
High Availability in the Data Center
NSF/SSO in the Data Center

- SSO in the Access Layer:
 - Improves availability for single attached servers
 - Under 2s convergence

- SSO in the Aggregation Layer:
 - Consider in primary agg layer switch
 - Avoids rebuild of arp, igp, stp tables
 - Prevents service module switchover (~6sec or greater)
 - SSO switchover time less than 2sec
 - 12.2.18SXD3 or higher

- Possible Implications
 - * HSRP state between Agg switches is not tracked and will show switchover, existing sessions resume with Agg1 as default gateway
 - * RHI is not SSO aware: must extend failed and retry timers
 - IGPs cannot be aggressive (tradeoff)

* Note: RHI and HSRP will be NSF/SSO aware in next release
High Availability in the Data Center
Hardening the Aggregation Layer

- **FT Path for Service Modules**

 Consider second channel/link for FT vlans. Helps to prevent active/active scenario in congested or certain failure or mis-configuration conditions.

 FWSM checks for mate on 2 interfaces before switching to active (FT or data vlans).

- **Establish Path Preference:** Align primary service modules on Agg1 as preferred path – leverage Route Health Injection on CSM.

 Use Probes to monitor health of server farm.

 Use “Advertise Active” to dynamically install host route.

 Adjust Route-Map metric such that Agg1 is preferred route advertised to core. If active-active occurs, Agg1 will be preferred path reducing change of asymmetric connections.
High Availability in the Data Center
Hardening the Aggregation Layer

- **Spanning Tree**
 - STP primary/secondary root alignment with HSRP primary/secondary
 - Avoid getting close to STP watermarks
 - Avoid 2 tier- Layer 2 “Super Aggregation” Designs
 - Remove unused vlans from CSM EtherChannel interface (int range port-ch 255-259, no vlan xx)

- **HSRP**
 - Stay under 500 HSRP Instances per Agg module
 - Recommend HSRP Hello-1, Holdown=3 timers
 - Other CPU driven processes may reduce max number of instances, or increase timers
High Availability in the Data Center
Best Practices- STP, HSRP, Other

Rapid PVST+
Loopguard on all Trunks (not global)
UDLD Enable
Spanning Tree Pathcost Method=Long

L3+ L4 CEF Hash
Agg1
STP Primary Root
HSRP Primary
HSRP Preempt and Delay
Dual Sup with NSF+SSO

LACP+L4 Hash
Dist EtherChannel for FT
and Data Vlans

Agg2
STP Secondary Root
HSRP Secondary
HSRP Preempt and Delay
Single Sup

LACP+L4 Hash
Dist EtherChannel

Rootguard
Portfast + BPDUguard
Blade Chassis with Integrated Switch

Rapid PVST+: Maximum Number of STP Active Logical Ports- 8000 and Virtual Ports Per Linecard-1800
Server Load Balancing & integrated Firewall Design

Context Switching design Approach
 - Transparent & Routed approaches
Firewall design Approach
 - Transparent approaches

BRKAAP-1002: Introduction to ACE
BRKAPP-2005: Server Load Balancing Design
Agenda

- Introduction to Data Center—The Evolution
- Application and Business Continuance
 - Increasing HA in the Data Center
 - HA with Virtualisation
- Data Center Disaster Recovery
 - Failure Scenarios
 - Design Options
- Components of Disaster Recovery
 - Site Selection—Front End GSLB
 - Server High Availability—Clustering
Typical Today’s Data Center Design

- active / standby configuration
- point-to-point L3 links to core
- CSM 1-arm routed
 - server-to-server offload
 - PBR / source NAT
- RHI attracts traffic to active switch
 - minimize ISL requirement
- segmentation
 - transparent firewalls
 - multiple contexts
 - single failover group
- Looped access with rapid PVST+
 - dual links + trunk
Chaining of L4-L7 Services
Failure Isolation with Virtualization
Failure Isolation with Virtualization
Adding Virtualized Firewalls

• You could place a Virtualized Firewall closer to the servers, or between the MSFC and the ACE

• Considering that ACE provides higher throughput you may want to keep the server-to-server with LB traffic off of the FWSM
Adding VRF-lite

- A Virtual Routing Instance closer to the server can provide higher server-to-server forwarding throughput with basic security mechanisms, such as ACLs

- You would add a VRF with multiple SVIs behind of the ACE

- Server-to-server traffic with load balancing would go up to the ACE and back to the VRF

Note: Static ARPs map to static mac-addresses

arp vrf red 13.20.80.2 0000.0000.0080 ARPA
mac-address 0000.0000.0208 (int vlan 208-vrf red)
arp 13.20.80.252 0000.0000.0208 ARPA
mac-address 0000.0000.0080 (int vlan 80)
Asymmetric routing support

- FWSM support differs slightly from PIX and ASA
- There are 2 flavors of asymmetric routing support on FWSM:
 - Single FWSM (or within a virtual firewall)
 independently of redundancy
 - When running in active/active mode
- PIX/ASA support the latter only
- Option #1 is achieved using a new concept called “ASR group”
- Option #2 is automatically enabled when configuring active/active redundancy
Asymmetric support using ASR groups

Client initiates a connection to Top.

The initial SYN could take the Router A route, while the SYN-ACK could come back via the Router B route.

With ASR group concept it is possible for the FWSM to accept the returning SYN-ACK segment even though no corresponding SYN was ever seen on that interface.

A SYN-ACK will be permitted on a different interface than the original one if and only if a valid SYN matches the returning SYN-ACK!

- Up to 8 interfaces per ASR group
- Up to 32 groups per FWSM.
- Packets belonging to a given session can enter and leave from any interface within the ASR group.
Asymmetric routing support with Act/Act

Interface VLAN X in ASR group? Let’s perform a session lookup across all contexts using the ASR group as the key! Match found in Ctx A – we’re standby, let’s send the SYN-ACK across VLAN W.
Data Center
Disaster Recovery
Agenda

- Introduction to Data Center—The Evolution
- Application and Business Continuance
 - Increasing HA in the Data Center
 - HA with Virtualisation
- Data Center Disaster Recovery
 - Failure Scenarios
 - Design Options
- Components of Disaster Recovery
 - Site Selection—Front End GSLB
 - Server High Availability—Clustering
Failure Scenarios

Disaster Could Mean Many Types of Failure

- Network failure
- Device failure
- Storage failure
- Site failure
Network Failures

- ISP failure
 - Dual ISP connections
 - Multiple ISP
- Connection failure within the network
 - EtherChannel®
 - Multiple route paths
Device Failures

- Routers, switches, FWs
 - NSF/SSO
 - FT
 - HSRP
 - VRRP

- Hosts
 - HA cluster
 - LB server farm
 - NIC teaming
Storage Failures

- Disk arrays
 - RAID
- Disk controllers
Site Failures

- Partial site failure
 - Application maintenance
 - Application migration
 - Application scheduled DR exercise

- Complete site failure
 - Disaster
Agenda

- Introduction to Data Center—The Evolution
- Application and Business Continuance
 - Increasing HA in the Data Center
 - HA with Virtualisation
- Data Center Disaster Recovery
 - Failure Scenarios
 - Design Options
- Components of Disaster Recovery
 - Site Selection—Front End GSLB
 - Server High Availability—Clustering
Cold Standby

- One or more data center with appropriately configured space equipped with pre-qualified environmental, electrical, and communication conditioning
- Hardware and software installation, network access, and data restoration all need manual intervention
- Least expensive to implement and maintain
- Substantial delay from standby to full operation
Disaster Recovery—Active/Standby
Warm Standby

- A data center that is equipped with hardware and communications interfaces capable of providing backup operating support
- Latest backups from the production data center must be delivered
- Network access needs to be activated
- Application needs to be manually started
- Provides better RTO and RPO than cold standby backup
Disaster Recovery—Active/Standby
Hot Standby

- A data center that is environmentally **ready** and has sufficient hardware, software to provide data processing service with little down time
- Hot backup offers disaster recovery, with **little or no human intervention**
- Application data is replicated from the primary site
- A hot backup site provides better **RTO/RPO** than warm standby but **cost** more to implement
- Business continuance
Disaster Recovery—Active/Standby

Primary Data Center

Secondary Data Center

App A

App B

App C

IP/Optical Network
Disaster Recovery—Active/Active

What Does Active/Active Mean?
Active/Active Data Centers

- Internal Network
- Service Provider A
- Service Provider B
- Internet
- Active/Active Web Hosting
- Active/Active Application Processing
- Active/Standby Database Processing
- or Active/Active for Different Application
Components of Disaster Recovery
Agenda

- Introduction to Data Center—The Evolution
- Application and Business Continuance
 - Increasing HA in the Data Center
 - HA with Virtualisation
- Data Center Disaster Recovery
 - Failure Scenarios
 - Design Options
- Components of Disaster Recovery
 - Site Selection—Front End GSLB
 - Server High Availability—Clustering
Site Selection Mechanisms

- Site selection mechanisms depend on the technology or mix of technologies adopted for request routing:
 1. HTTP redirect
 2. DNS-based
 3. L3 Routing with Route Health Injection (RHI)

- Health of servers and/or applications needs to be taken into account

- Optionally, other metrics (like load) can be measured and utilized for a better selection
HTTP Redirection—The Idea

- Leveraging the HTTP redirect function: HTTP return code 302
- Proper site selection made after the initial DNS request has been resolved, via redirection
- Mainly as a method of providing site persistence while providing local server farm failure recovery
HTTP Redirection—Traffic Flow

1. GET/HTTP/1.1
 Host: www.cisco.com
2. HTTP/1.1 302 Moved
 Location: www2.cisco.com
3. GET/HTTP/1.1
 Host: www2.cisco.com
 HTTP/1.1 200 OK

http://www.cisco.com/
http://www2.cisco.com/
http://www1.cisco.com/
http://www2.cisco.com/
Advantages of the HTTP Redirection Approach

- Can be implemented without any other GSLB devices or mechanisms
- Inherent persistence to the selected location
- Can be used in conjunction with other methods to provide more sophisticated site selection
Limitations of the HTTP Redirection Approach

- It is protocol specific—relies on HTTP
- Requires redirection to fully qualified additional names—additional DNS records
- Users may bookmark a specific location—loosing automatic failover
- HTTPS redirect requires full SSL hand shake to be completed first
DNS-Based Site Selection—The Idea

- The client D-proxy (local name server) performs iterative queries
- The device which acts as “site selector” is the authoritative name server for the domain(s) distributed in multiple locations
- The “site selector” sends keepalives to servers or server load balancer in the local and remote locations
- The “site selector” selects a site for the name resolution, according to the pre-defined answers and site load balance method
- The user traffic is sent to the selected location
DNS-Based Site Selection—Traffic Flow

Client

DNS Proxy

Root Name Server for /

Data Center 1

Authoritative Name Server for .com

Autoritative Name Server

www.cisco.com

Autoritative Name Server

www.cisco.com

UDP:53

TCP:80

Data Center 1

Data Center 2

Keepalives
Advantages of the DNS Approach

- Protocol independent: works with any application that uses name resolution
- Minimal configuration changes in the current IP and DNS infrastructure (DNS authoritative server)
- Implementation can be different for specific host names
- A-records can be changed on the fly
- Can take load or data center size into account
- Can provide proximity
Limitations of the DNS-Based Approach

- Visibility limited to the D-proxy (not the client)
- Can not guarantee 100% session persistency
- DNS caching in the D-proxy
- DNS caching in the client application
- Order of multiple A-record answers can be altered by D-proxies
Route Health Injection—The Idea

- Server and application health monitoring provided by local server load balancers
- SLB can advertise or withdraw VIP address to upstream routing devices depending on the availability of the local server farm
- Same VIP addresses can be advertised from multiple data centers—IP Anycast
- Relying on L3 routing protocols for route propagating and content request routing
- Disaster Recovery provided by network convergence
Route Health Injection—Implementation
Advantages of the RHI Approach

- Supports legacy application and does not rely on a DNS infrastructure
- Very good re-convergence time, especially in Intranets where L3 protocols can be fine tuned appropriately
- Protocol-independent: works with any application
- Robust protocols and proven features
Limitations of the RHI Approach

- Relies on host routes (32 bits), which cannot be propagated all over the internet
- Requires tight integration between the application-aware devices and the L3 routers
- Inability to intelligently load balance among the data centers
Agenda

- Introduction to Data Center—The Evolution
- Application and Business Continuance
 - Increasing HA in the Data Center
 - HA with Virtualisation
- Data Center Disaster Recovery
 - Failure Scenarios
 - Design Options
- Components of Disaster Recovery
 - Site Selection—Front End GSLB
 - Server High Availability—Clustering & L2 extension
Extended L2 deployment scenarios

- Migration purposes:
 1. Legacy Applications where the IP parameters can not be easily modified.
 2. Move a portion of the farm

- Geoclusters or geo dispersed HA Clusters
 1. Heartbeat
 2. VIP

- Geographically dispersed Network Services
 1. Statefull Failover
 2. Conns and Sticky Replication
Migration Purposes

Legacy Applications

- Many applications have been written for mainframes
- They have been used for many years ago
 - Airline reservation systems
 - Trading systems
 - ATMs, etc...
- Moving systems running such applications to a new facility lead to avoid to “readdress” the machines due to:
 - Complexity
 - Business continuance
 - Lack of knowledge for such Application changes (Hardcoded IP address)
- For these legacy Applications it is necessary to extend the layer 2 network between the original Data Center to the new one for the time it takes to migrate those servers to the new location.
The picture shows the logical view of the Cisco multi-tier design Data Center divided in two, and run redundant hardware in separate floors, buildings or geographical regions.

Deploy redundant network devices by placing one network device in one site and its peer network device in a remote site.

The HSRP, OSPF, Firewalls, Load Balancers… hearbeats need to be carried across.
Virtual Machines

VMWARE and VMotion Requirements

VMotion

- Method used by VMWares’s ESX Server to migrate active virtual machines (VMs) within an ESX server farm from one physical ESX host to another.
- This is the foundation of several high availability features provided in VMWare’s Virtual Infrastructure product.
- Allows the movement of active VMs with minimal downtime.
- Server administrators may schedule or initiate the VMotion process manually through the VMware VirtualCenter management tool.
Cluster Overview

- A cluster is two or more servers configured to appear as one
- Two types of clustering: Load balancing (LB) and High Availability (HA)
- Clustering provides benefits for availability, reliability, scalability, and manageability
- LB clustering: multiple copies of the same application against the same data set, usually read only
- HA clustering: multiple copies of long running application that requires access to a common data depository, usually read and write, running on same hardware and OS
HA Cluster/GeoCluster

Requirements

- * Microsoft MSCS
- * Veritas Cluster Server (Local)
- Solaris Sun Cluster Enterprise
- VMware Cluster (Local)
- Oracle RAC (Real Appl.Cluster)
- HP MC/ServiceGuard
- HP NonStop
- HP Open VMS/TruCluster
- IBM HACMP
- EMS/Legato Automated Availability Mgr

Common Functions

- VIP address on both nodes
- Extended L2 VLAN
- Dedicated L2 used for heartbeat & performance control
- Quorum Disk
- Software is unaware of extended members of cluster

* Veritas VCS offers an extended Cluster solution using L3 for inter-site connectivity
* Next release of MS Longhorn to support L3 site to site.
Geo-Clusters

Geo-Cluster: Cluster That Span Multiple Data Centers

- **Public Network** (typically Ethernet) for client/Application requests
- **Private Network** (typically Ethernet) for interconnection between nodes; could be direct connect, or optionally going through the public network
- **Storage Disk** (typically Fiber) shared storage array, NAS or SAN
Extended Layer 2 Network

- In most implementation, a common L2 network is needed for the heartbeat between the nodes, as well as public client access (Cluster VIP)
- Extending VLAN on a geographical basis is not considered best practice because of the impact of broadcasts, multicast, flooding and Spanning-Tree integration issues
Geographically Dispersed Cluster
Logical Architecture

Site 1
L2
L3 Access from outside
Site 2

N1
N2
N3
N4

Storage Ctl 1
Single cluster
Disk Replication
Storage Ctl 2
Routing in Presence of Failures

Node Failure

- **Public network**
- **Private network**
- **WAN**

- **Local Datacenter**
- **Remote Datacenter**

- **node1**
- **node2**

- **DiskReplication**: e.g. EMC SRDF
 - Synchronous
 - Synchronous or Asynchronous

- **DiskArray1**
- **DiskArray2**

- **quorum**
- **Application data**
Routing in Presence of Failures
Wan Access Failure

Public network

Private network

Disk Array 1

Disk Array 2

Disk Replication: e.g. EMC SRDF
Synchronous

Disk Replication: e.g. EMC SRDF
Synchronous or Asynchronous

node1

node2

local Datacenter

Remote Datacenter

active

quorum

Application data

© 2007 Cisco Systems, Inc. All rights reserved. Cisco Confidential
Geographically Dispersed Cluster

Problematic

Requirements:
- **L2 node to node**
 - (VIP + Bck-up HB)
 - 100% resilient

Extended L2 options:
1. Dedicated Fiber
 - Dark Fiber
 - Gig Ethernet
 - WDM + STP
 - WDM + MPLS
2. Mix L2/L3 trunk
 - STP
3. Intranet MPLS DIY
 - L2/L3 VPN
 - VPLS
4. Intranet SP
 - L2VPN
 - CsC
 - L2TPv3

![Diagram of geographically dispersed cluster with requirements and extended L2 options]
1 – Geographically Dispersed Cluster

Dedicated Fiber

- Dark Fiber
- D/CWDM
- Gigabit Eth
2 – Geographically Dispersed Cluster
Mixed \textit{L2/L3} trunk
2 – Geographically Dispersed Cluster (cont)
Mixed L2/L3 trunk - Pros & Cons

➢ Pros:

If point to point only ➔ it may be as stable as WDM

If limited to a single Cluster, it should be ok (otherwise use QinQ to limit the number of STP instances)

No need for extra cost

➢ Cons:

Extended STP: Historically hasn’t proved to be a stable solution (RSTP doesn’t bring much added value)

Could be difficult to deploy - depends on number of multi-hops (L3)

Requires Multilayer switches from end to end

Open the door to other extended L2 applications

Implies the customer owns the Intranet L3
3 - Geographically Dispersed Cluster (cont)

Intranet MPLS DIY (self-deployed)
3 - Geographically Dispersed Cluster (cont)

Intranet MPLS DIY – several options

- **EoMPLS** *(Ethernet over MPLS)*
 - Port xconnect:
 - Aka ELS (Ethernet Line Service)
 - point to point port emulation accross MPLS
 - Internal-VLAN xconnect
 - Mix any VRF, VLAN accross MPLS

- **VPLS** *(Virtual Private LAN Services)*
 - Aka EMS (Ethernet MultiPoint Service)
 - Multi-sites, dynamic Mp2Mp (L2 VLAN like)
3 - Geographically Dispersed Cluster (cont)

MPLS advantages in datacenter interconnection

- Core is any type of links (GE / POS)
- Core Links are MPLS L3 Fast Convergence protected
 - Stable
 - can be Fast Rerouting
 - no need for Optical Protection (cost reduction)
 - no STP, loop free on the core
- Same Core can be shared for Storage / Application / User traffic
- MPLS L3 VPN allows dynamic extension of VRF between Data Center
- QoS
 - per Classes of Services or per VLAN rate limiting
 - CoS transparency (keeps original CoS from end to end)
 - Redistribute unused bandwidth
- Traffic-engineering
 - Reserve Bandwidth
 - Load repartition (RSPAN, per VLAN repartition)
4 – Geographically Dispersed Cluster (cont) \textit{SP owned Intranet}
4 – Geographically Dispersed Cluster

Intranet thru MPLS IP-VPN (SP owned) - L2 transit

- SP is offering a L2 site to site transport

 Still quite rare today onto market

 Emerging and growing

1. SP provides L2VPN Ethernet

 Xconnect VPWS or VPLS

2. SP provides MPLS access

 Technology is CsC (Carrier supporting Carrier)

 » Multi-points virtualized labels (hierarchy)

 » Edge build L3 / L2 VPN over SP-labels
EoMPLS design model 1
Port Mode

Interface Giga n/n switch mode type
Access or Trunk

Port Access or 802.1Q Cross-connect

MPLS

FRR / TE / LB

802.1Q Cross-connect Back-up

Transparent to Edge bridging
(BPDU, STP, VLAN, CoS)
EoMPLS design model 3
VLAN Mode (internal)

Interface VLAN (Internal VLAN)

PE Can Participate to Edge bridging (BPDU, STP)
Supports CoS
Requires SIP facing Core
VPLS design model 1

Native VPLS

Can Participate to Edge bridging (BPDU, STP)
Supports CoS
Requires SIP facing Core
VPLS design model 2
Hierarchical-VPLS with QinQ edge

Can Participate to Edge bridging (BPDU, STP)
Supports CoS
Requires SIP facing Core
Complex support for Core multicast, QoS today…
VPLS design model 3
Hierarchical-VPLS with EoMPLS edge

Participate to Edge bridging (BPDU, STP)
Supports CoS
Requires SIP facing Core and SIP facing Edge
Quite new, still drawback to be solved (Core multicast, QoS, ..)
Loop-free thru Split-Horizon STP design

VPLS with no STP

- Any intra-DC STP convergence will not force any STP convergence into other DC
- Any PE failure may lead to local STP convergence, but will not be extended to other DC
VPLS Split-Horizon

- A packet will never be bridged from a PW to an other PW in the VFI
- Assuming PW full-mesh in a VFI:
 - Full reachability
 - Core link back-up
 - No core L2 loop
 - No need for a loop prevention core STP

Remark:

Split-Horizon does not protect against loops on L2 parallel networks built for edge N-PE protection
VPLS with Split-Horizon
Loop-free interconnection with STP isolation

Split-Horizon prevent from Loop – no need to enable STP in the Core
From end-to-end loop may exist and need to be understood
Loops means risks of permanent broadcast storms!!
VPLS implementation versus STP

VPLS may work in two modes:

1. **STP transparency with extension**
 - Core is tunneling BPDU (plain or QinQ)
 - Core is not L2 loop-free
 - End to End STP is preventing loops

2. **STP isolation**
 - Core is filtering BPDU
 - Core & DC to DC must be L2 loop-free
 - DC independance / Small STP size
 - This is one important goal for customers
 - Mandatory VPLS-PE ! cannot be the aggregation switch
 - More complex with QinQ
Anycast PW with Traffic-Engineering

Anycast concept:
LDP Router-ID is duplicated into back-up N-PE
TE is assuring the back-up thru alternate path

Notes:
PW do not need to be stitched to physical topology
Link core back-up is RSVP-TE protected
MAC-@ flushing problem is occurring only on node up
Edge links are RSTP protected
SONET Topology with RPR

(802.17b for L2 bridging)
Extended L2 VLAN

Segmentation between distinct Applications

Enterprise Core

DC Core

Extended L2

Network & Security Services required

No service required

HA Cluster system
Conclusion

- For Business Continuance, HA includes the Network, the Devices, the Storage and the site.
- Segregate the different Applications using Layer 3
- Avoid Extending L2 VLAN if it’s not required by the Application
- If Extended L2 VLAN is required:
 - dedicate the L2 for the specific Application and keep it isolated from other Application via L3 Network
 - Avoid propagating the same STP outside your local DC
 - Police & Rate limit the traffic per VLAN \(\Rightarrow\) prevent broadcast storm
- For long distance prefer L3 Fast-Convergence and MPLS FRR with TE to make a single L2-VPN Pseudowire
 - VPLS and Split-Horizon assure a fully resilient Loop-Free Network without the need to deploy STP.
 - The Physical layer becomes logically fully resilient
 - Physical link failure becomes transparent for L2
MPLS and GeoCluster More Information

For More Information, Please Refer to Sessions

BRKIPM-3014: Advanced MPLS deployment in Enterprise
BRKDCT-2004: Back-end Solution for Disaster Recovery
BRKDCT-2005: Design and Deployment of Layer 2 Clusters Geoclusters
Recommended Reading
BRKDCT -2002

- Building Resilient IP Networks
- Data Center Fundamentals
- Storage Networking
- DNS and BIND
- Designing Content Switching

Available in the Cisco Company Store
Q and A
Complete Your Online Session Evaluation