·IIIII CISCO

Circuit Emulation over IP/MPLS

BRKBBA-3012

Bertrand Duvivier

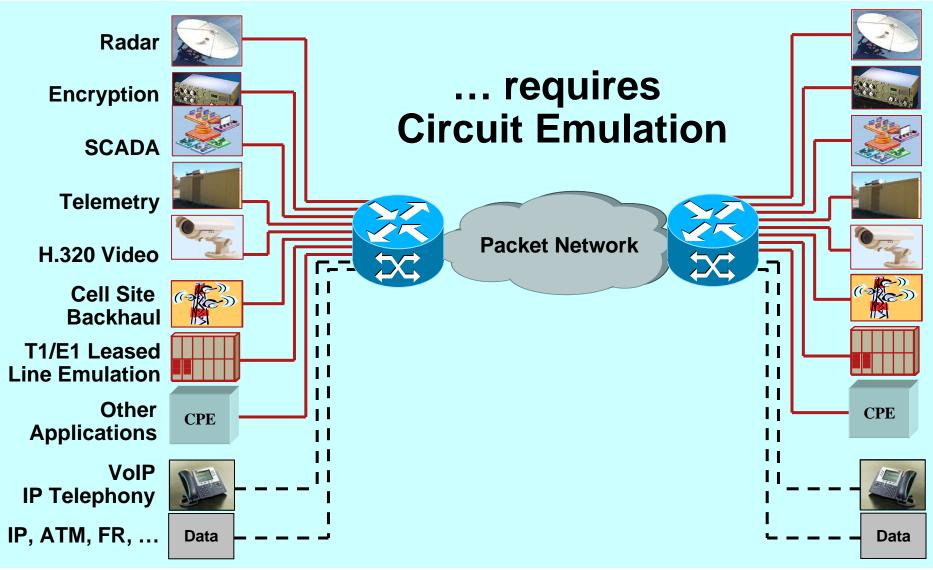
Cisco Networkers 2007

HOUSEKEEPING

- We value your feedback, don't forget to complete your online session evaluations after each session and complete the Overall Conference Evaluation which will be available online from Friday.
- Visit the World of Solutions on Level -01!
- Please remember this is a 'No Smoking' venue!
- Please switch off your mobile phones!
- Please remember to wear your badge at all times including the Party!
- Do you have a question? Feel free to ask them during the Q&A section or write your question on the Question form given to you and hand it to the Room Monitor when you see them holding up the Q&A sign.

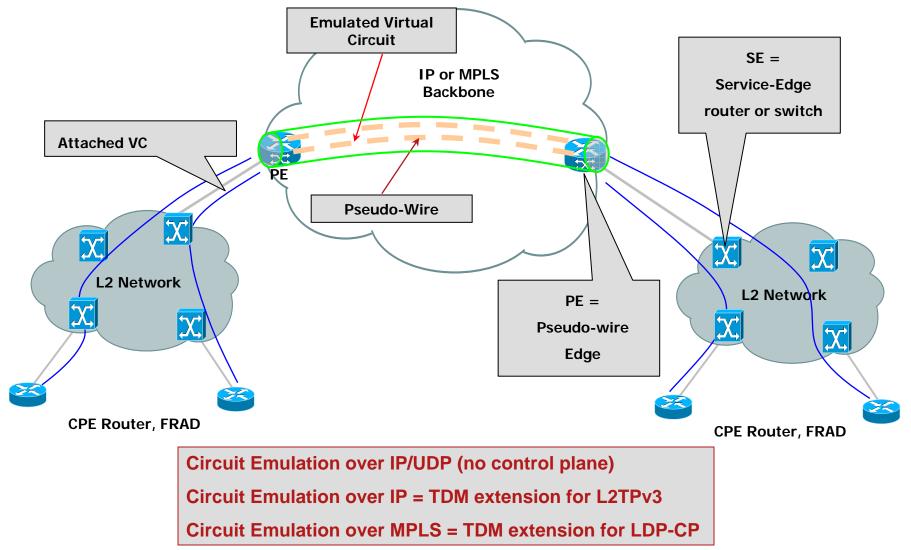
Agenda

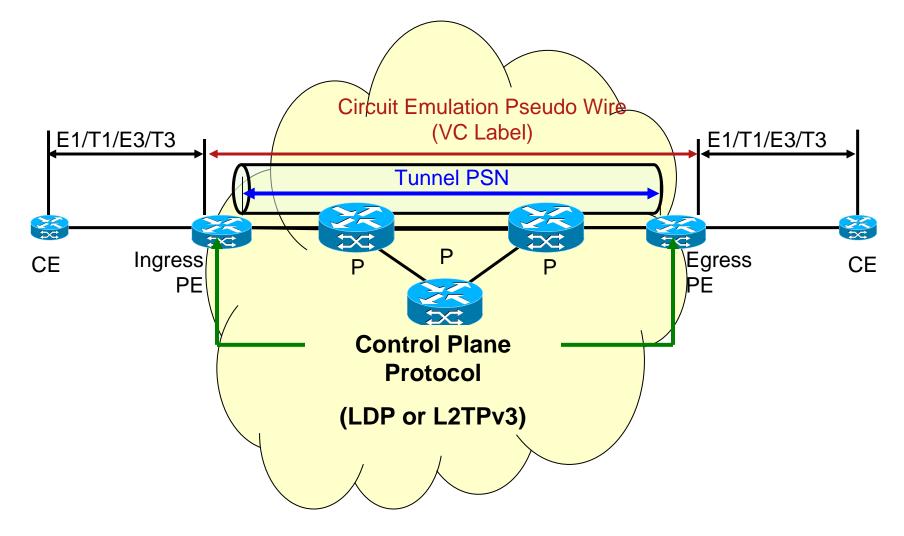
Background



- Circuit Emulation over IP/MPLS Encapsulation
- Control Plane
- Clocking
- Hardware
- Standards

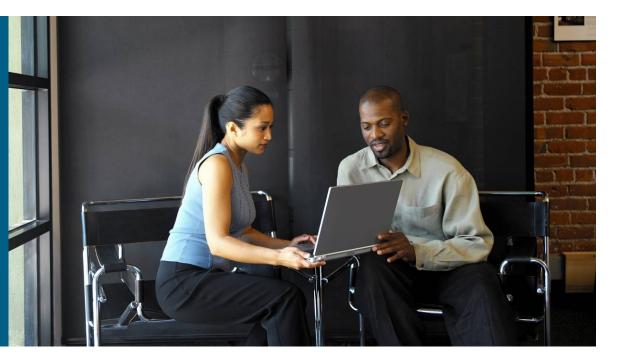
Circuit Emulation Background

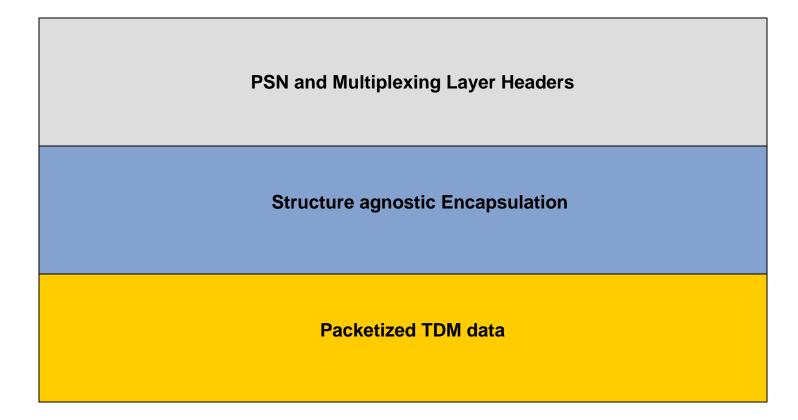

IP NGN is about having 1 network for all services


Pseudowires

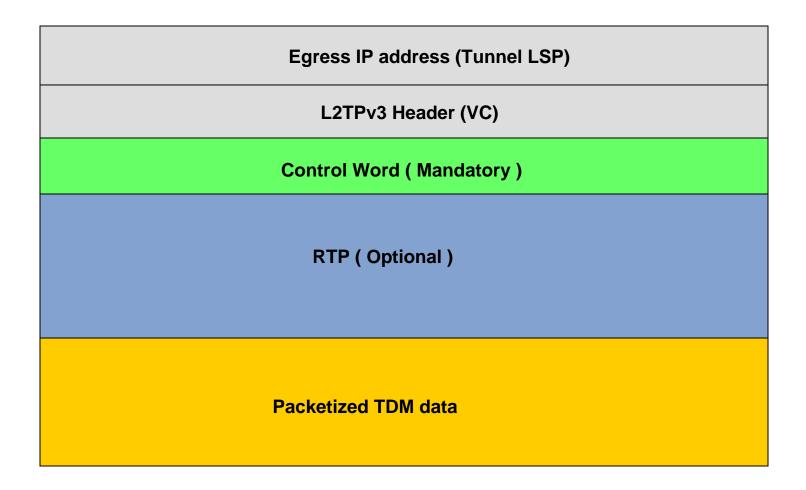
- One purpose of PWs is to support the convergence of networks to an IP/MPLS core by carrying traditional "transport" mechanisms over IP/MPLS.
- The first wave of widely deployed PWs were concerned with the emulation of data-services: Frame-relay, Ethernet, ATM, HDLC.
- The second wave of deployments is concerned with the development of more complex PW hierarchies (Multi Segment-PWs) and with the emulation of synchronous transport mechanisms such as TDM, SONET/SDH and associated with a clocking model.
- This talks focuses on some of the emulation of synchronous transport mechanisms.

IETF : Circuit Emulation (Pseudo-Wire Emulation Edge to Edge)


Circuit Emulation semantic


Standards Taxonomy

- There are a number of standards bodies working on the transport of synchronous services: IETF, ITU, MEF, MFA
- The encapsulation and control work at these standards bodies has been well co-ordinated. The structure and language is different, but the underlying technology is identical.
- Most of the control plane work is being done in the IETF
- There are two classes of synchronous circuit emulations:
 - TDM (T1/E1 up to T3/E3)
 - SDH/SONET (not covered in this presentation)
- There are three methods of carrying TDM over IP/MPLS:
 - Structure Agnostic (SAToP)
 - Structure Locking (CESoPSN)
 - Structure Indication/Recovery (TDMoIP)
- There are three implementation supported:
 - IP / UDP IP / L2TPv3 MPLS


Basic structure agnostic Packet Format

UDP (no control plane)

Egress IP address (Tunnel LSP)					
UDP socket (VC)					
RTP (Optional)					
Control Word (Mandatory)					
Packetized TDM data					

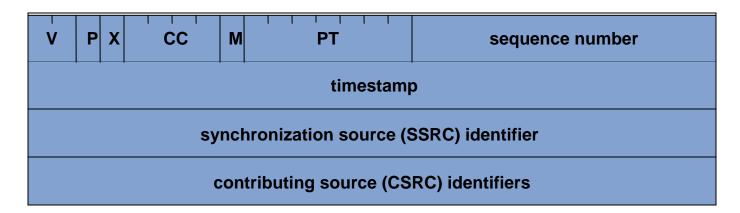
L2TPv3 (L2TPv3 control plane)

MPLS (LDP control plane or static)

Tunnel LSP label (Tunnel LSP)					
VC label (VC)					
Control Word (Mandatory)					
RTP (Optional)					
Packetized TDM data					

Structure agnostic : Control Word

The CW is used to signal per packet control information


0000	L	R	00	FR	Length	Sequence

0-3	0000	Reserved
4	L	Payload invalid due to attachement circuit fault
5	R	if set, indicates that local CE-bound interface is in the packet loss state.
6-7	00	Reserved
8-9	FR	defined in draft [PWE3-fragmentation]: not used except for CAS packets
10-15	Length	CEM Header + Payload
16-31	Sequence	16 bit unsigned SN includes 0 [RFC3550]

RTP Header

- RTP Header is optional
- RTP Header is used when using separate clock sources for adaptive clock mechanism.
- Equivalent to ATM Circuit Emulation SRTS (Synchronous Residual Time Stamp).

RTP header (fixed)

- version (v): 02
- padding (p): 0
- extension (x): 0
- CSRC count (CC): 0
- marker (M): 0

- payload type (PT): Selected from the dynamic range. MAY be identical for both ends. Used to verify config.

- sequence number: The Sequence Number is identical to the Sequence Number in the CW.

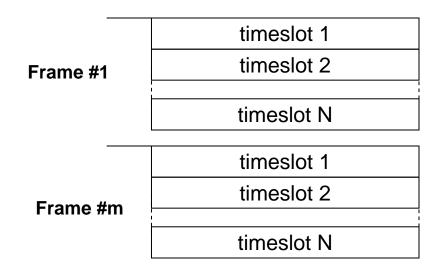
- timestamp: the timestamp reflects the sampling instant of the first octet in the RTP data packet. May be used in absolute or relative mode.

-SSRC: used to identify misconfigurations

Structure agnostic Payload

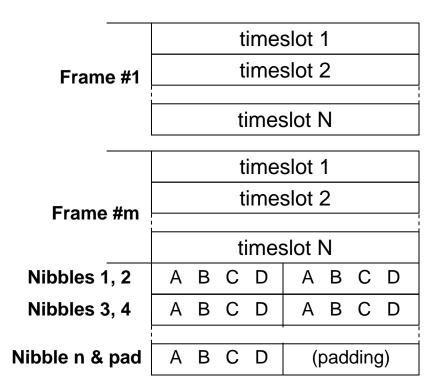
- Bytes taken sequentially from AC and put into payload
- No attempt is made to locate any structure in payload
- The following payload sizes MUST be supported
 - -E1 256 bytes TDM data payload
 - -T1 192 bytes TDM data payload
 - –E3/T3 1024 bytes TDM data payload
- There is also an octet aligned mode used in conjunction with SONET/SDH that carries data units of 200 bytes (i.e. units of payload 1ms long)

Circuit Emulation Structure locking



Packet Format

- The payload format is unique to structure locking
- The CW signals some additional states
- All other aspects of the prototol are identical to structure agnostic.


Payload structure locking basic

- Payload is NxDS0
- If N=1 then DS0 payload size = 64 bytes
- If N=2, 3 or 4 DS0 payload size = 32 bytes
- If N>4 DS0 payload size = 8 bytes

Payload structure locking with CAS (in-band) (Communicating Applications Specifications)

CAS nibbles are added at end of Frames Sequences

Control Word

As for structure agnostic Except as shown

	0000		L	R	ММ	FR	Length	Sequence		
4	L			if	if set, indicates some abnormal condition of AC					
6-7		ММ				if	if L is cleared then MM indicates			
	[CESoPSN]				00 structure locking data packet is in normal condition					
							10 structure locking data packet, RDI condition of the AC			
							11 structure locking signaling packet (CAS)			
						if	if L is set then MM indicated			
							00 TDM data invalid			
8-9					FR	sp	defined in draft [PWE3-fragmentation]: not used except for trunk specific NxDS0 with CAS, in which as they may be used to indicate fragmentation of multiframe packets.			

Circuit Emulation Structure Indication/Recovery

Structure Indication/Recovery Packet Format

- The payload format is unique to structure indication/recovery and consists of ATM AAL1 & AAL2 PDUs. Note this is the 48 byte ATM payload, NOT the 53 byte ATM cell.
- Chosen so that the TDM over ATM designs could be reused.
- AAL1 used for fixed rate
- AAL2 used for variable rate, including silence suppression
- The CW signals some additional states
- All other aspects of the protocol are identical to SAToP

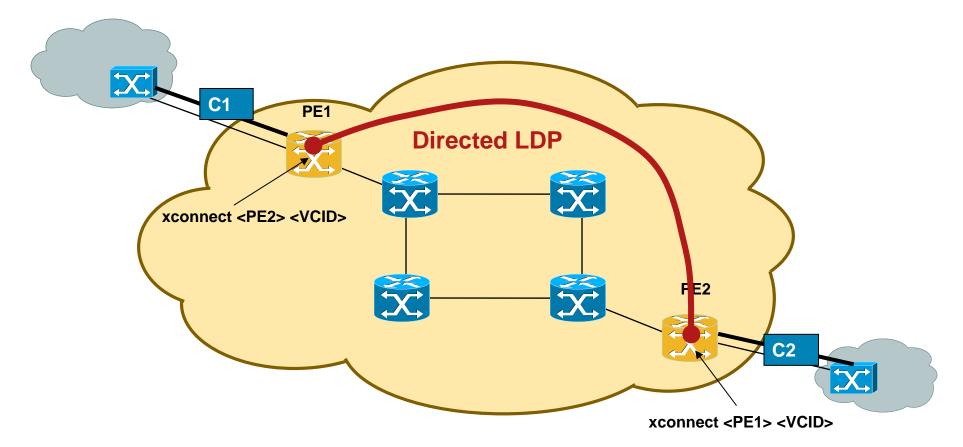
Control Word

As for structure agnostic Except as shown

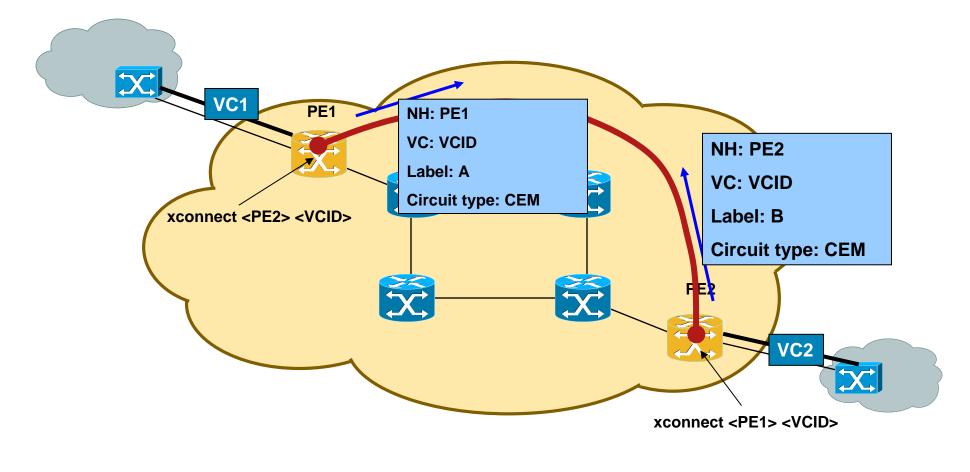
4	L	if set, indicates some abnormal condition of AC		
6-7	ММ	if L is cleared then MM indicated		
		00 TDMoIP data packet is in normal condition		
		If L is set		
		00 TDM defect that should trigger conditioning or AIS gen		
		01 TDM idle, do not trigger alarm, if config send idle		
		10 corrupted, potentially recoverable, data		

AAL Payload Format

- AAL1 Unstructured one byte of overhead + 47 bytes of payload per PDU
- AAL1 Pointer format one byte of overhead + one byte of pointer every other PDU + 46/47 bytes of data
- AAL2 3 bytes overhead per PDU


Circuit Emulation Control Plane

Methods to distribute VC Labels


- Static UDP port
- L2TPv3
- Static assigned label
- LDP with PWid FEC TLV
- LDP with Generalized FEC TLV

AToM: PWid FEC signaling

Based on xconnect command, both PE's will create directed LDP session if doesn't exist already

AToM: VC Label distributed through directed LDP session

PWid FEC TLV

CEM = SATOP E1, T1, E3, T3, CESOPSN basic, CESoPSN TDM with CAS, TDMoIP AAL1, TDMoIP AAL2

LDP: PWid FEC TLV

VC TLV	с	VC Туре	VC info length		
Group ID					
VC ID					
Interface Parameter					

<u>VC TLV = 128 or 0x80</u>

VC Type:	0x0011	E1 (SaToP)
	0x0012	T1 (SaToP)
	0x0013	E3 (SaToP)
	0x0014	T3 (SaToP)
	0x0015	CESoPSN basic mode
	0x0017	CESoPSN TDM with CAS

C: 1 control word present

Group ID: If for a group of VC, useful to withdraws many labels at once

VC ID : ID for the transported L2 vc

Int. Param: classical + IETF-PWE3-TDM-CP-Extension

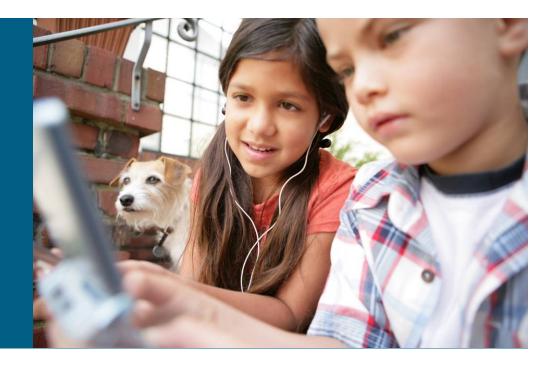
3 sub-TLV in latest [PWE3-CP] draft

Sub-TLV's

- Status sub-TLV: Goal is to map L2signaling status (LMI, AOM's) with this new TLV instead of mapping it with PW-TLV

- Status TLV will indicate if PW is up/down
- PW TLV will indicate if PW exist or not
- Group sub-TLV: Same as group ID used in PWid FEC TLV.

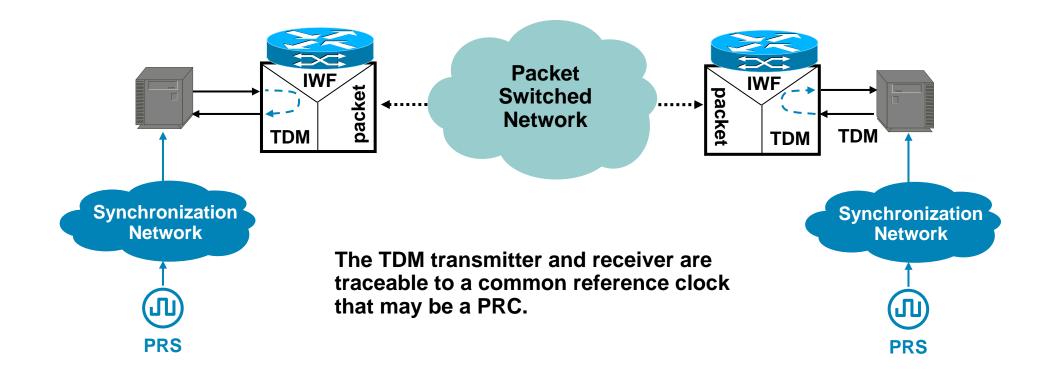
- Interfaces MTU sub-TLV: Inform on interface MTU, number of cells allow to be packed into alone MPLS frames.

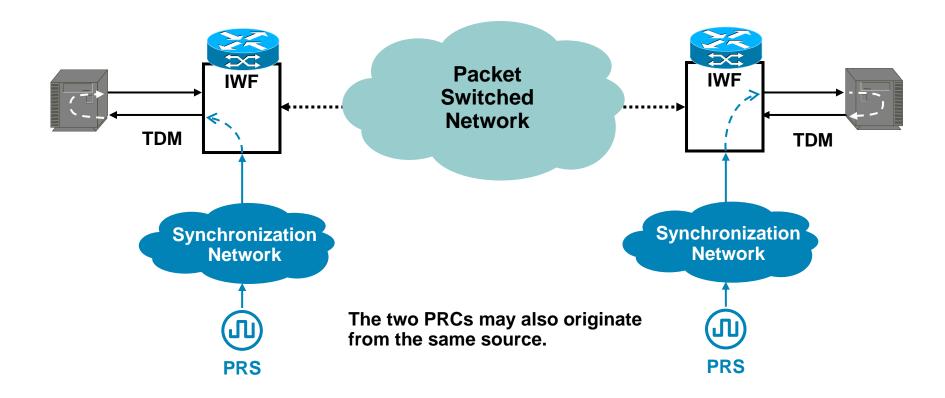

Few more sub-TLV defined in [PWE3-VCCV], [PWE3-fragmentation], [PWE3segment]

New TDM sub-TLVs [PWE3-TDM-CP] draft

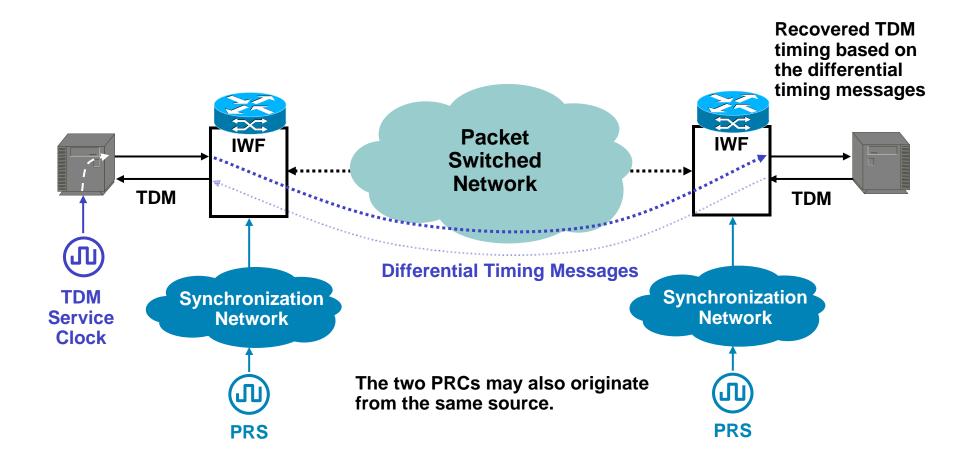
TDM sub-TLV (0x0B): Goal is to

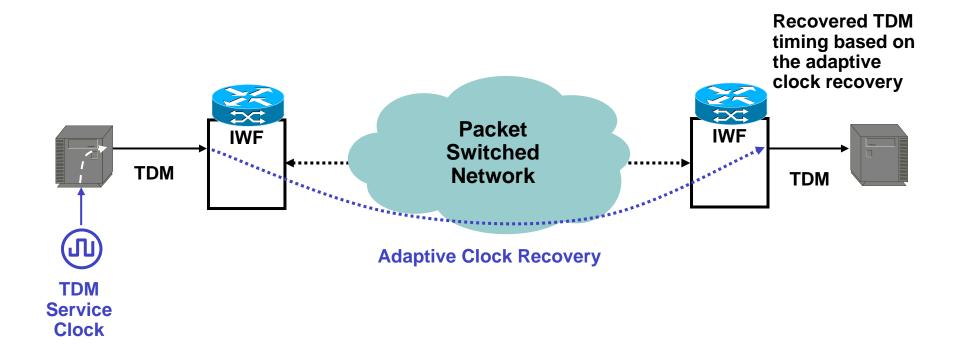
- Indicate type of clocking mechanism utilized
- Indicate usage of RTP Header and parameters
- Indicate usage of CAS and formats.

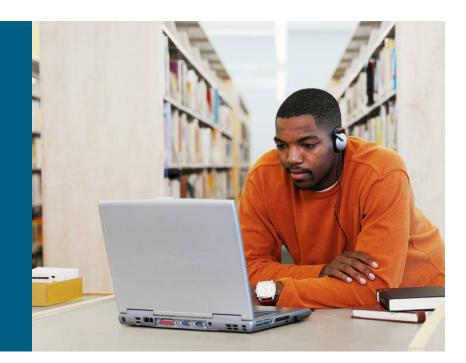

Circuit Emulation Clocking

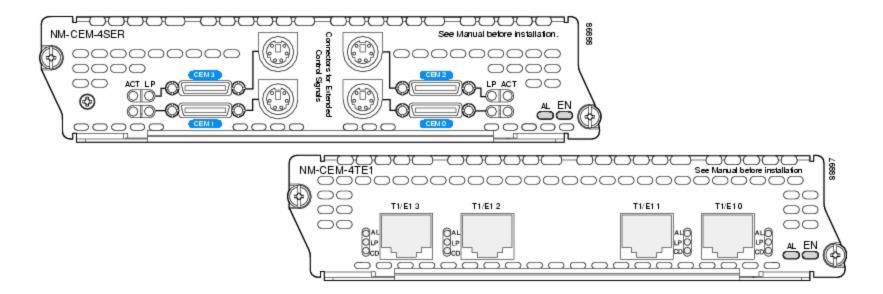

Clocking

- Clock scenarios are outlined in RFC4197 Requirements for Edge-to-Edge Emulation of Time Division Multiplexed (TDM) Circuits over Packet Switching Networks
- On the wire, TDM PW encapsulation is standard; clock recovery algorithms at the receiving end are not defined (i.e. they are proprietary)
- Clocking is a major discipline in its own right


Network Synchronous operation Reference clock at End Systems

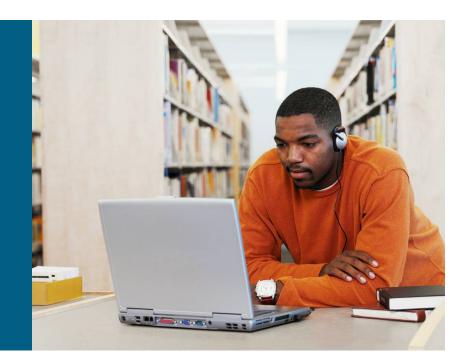

Network Synchronous Operation Reference clock at IWF devices


Timing Recovery based on the Differential Method


Timing Recovery based on the Adaptive Method

Circuit Emulation Hardware

CEM-NM-4SER & CEM-NM-4TE1



- Interfaces: 4 Serial, E1/T1
- Circuit Emulation method: CE over IP / UDP
- Clocking method: Internal, loopback or adaptive.

Circuit Emulation Standard

ITU-T Specifications

- [G.702] Digital Hierarchy Bit Rates
- [G.704] Synchronous frame structure (FAS: Frame Alignment Signal)
- [G.706] Frame Alignment and Cyclic Redundancy Check (OOF, CRC: Out of Frame Synchronization).
- [G.775] LOS, AIS, RDI (RAI) definition: Loss of signal, Alarm Indication Signal, Remote Defect (Alarm) Indication.
- [G.826] Error performance parameters and objectives for international, constant bit rate digital path at or above the primary rate.
- [T1.107-1988] ANSI specifications.

IETF drafts

- RFC 3985 (PWE3 Architecture)
- RFC 4197 (PWE3 TDM Requirements)
- draft-ietf-pwe3-satop
- draft-ietf-pwe3-cesopsn
- draft-ietf-pwe3-tdmoip
- draft-ietf-pwe3-tdm-control-protocol-extensi
- draft-ieft-l2tpext-tdm

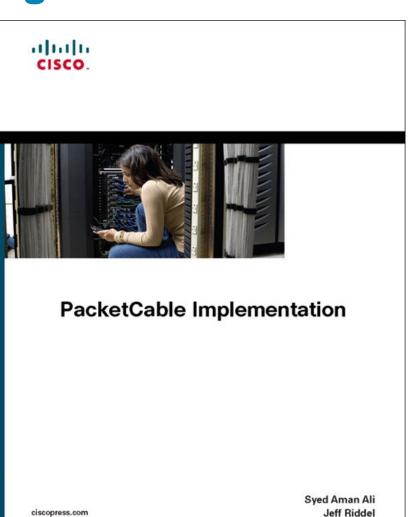
draft-ietf-pwe3-sonet

Other Standards

- ITU Y.1413 TDM-MPLS network interworking User plane interworking
- ITU Y.1543 TDM IP Interworking User plane interworking
- ITU G.8261 Timing and Synchronization aspects in Packet Networks (including over Ethernet).
- MEF 8 Implementation Agreement for the Emulation of PDH Circuits over Metro Ethernet
- TDM Transport over MPLS using AAL1 Implementation Agreement (MPLS Forum)
- Emulation of TDM Circuits over MPLS Using Raw Encapsulation Implementation Agreement (MPLS Forum)

Meet the Experts IP NGN Architectures and Technologies

- Oliver Boehmer Network Consulting Engineer
- Moustafa Kattan Consulting Systems Engineer
- Yves Hertoghs
 Distinguished System Engineer
- Ed Draiss Product Manager



Recommended Reading

BRKBBA -3012

 PacketCable Implementation (Feb 07)

Available in the Cisco Company Store

#