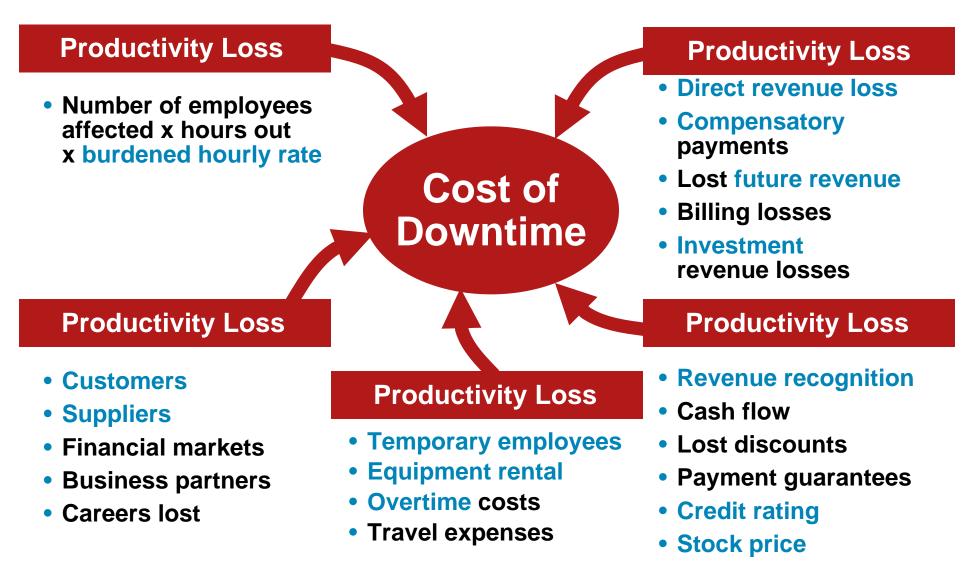
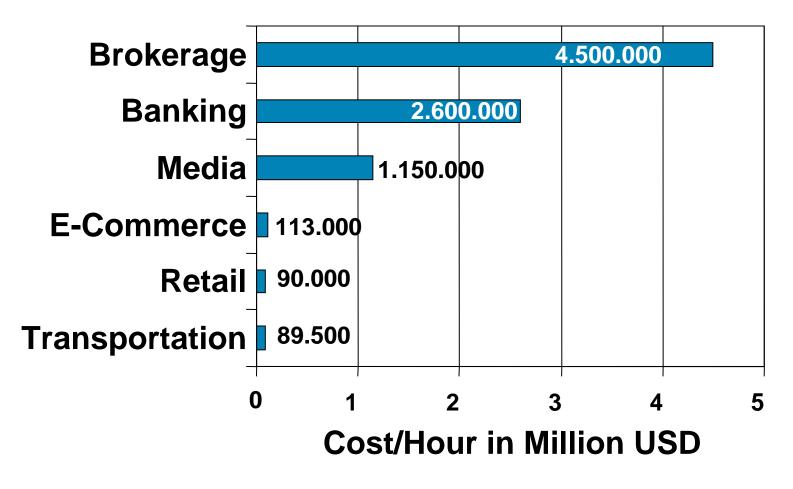


BUILDING HIGHLY AVAILABLE IP AND MPLS NETWORKS

BRKIPM-3011

Markus Hies


Cisco Networkers 2007


HOUSEKEEPING

- We value your feedback, don't forget to complete your online session evaluations after each session and complete the Overall Conference Evaluation which will be available online from Friday.
- Visit the World of Solutions on Level -01!
- Please remember this is a 'No Smoking' venue!
- Please switch off your mobile phones!
- Please remember to wear your badge at all times including the Party!
- Do you have a question? Feel free to ask them during the Q&A section or write your question on the Question form given to you and hand it to the Room Monitor when you see them holding up the Q&A sign.

What Are the Costs of Downtime?

The Cost of Network Downtime per Hour

Source: Yankee Report: The Road to a Five-Nines Network, 2004

"24x7 availability is designed in — not bought, is expensive and requires a strategy and plan."

"Surviving in a 24 hours world", Gartner, 2001

Agenda

- High Availability Fundamentals: Definition, MTBF, MTTR, Calculate vs Measured Availability
- System Level Resiliency

SSO, NSF, NSR, Warm Reload/Upgrade, ISSU

Network Level Resiliency

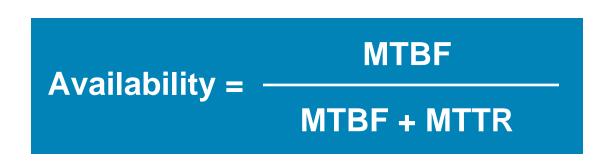
IP Event Dampening, BFD Fast Convergence, Fast Rerouting

Embedded Management

MPLS Diagnostic Expert Generic Online Diagnostic Embedded Event Manager

High Availability Best Practises

The Culture of Availability


Trouble Ticket Availability Measures (Cisco NAIS Service)

- References
- Summary

HIGH AVAILABILITY FUNDAMENTALS

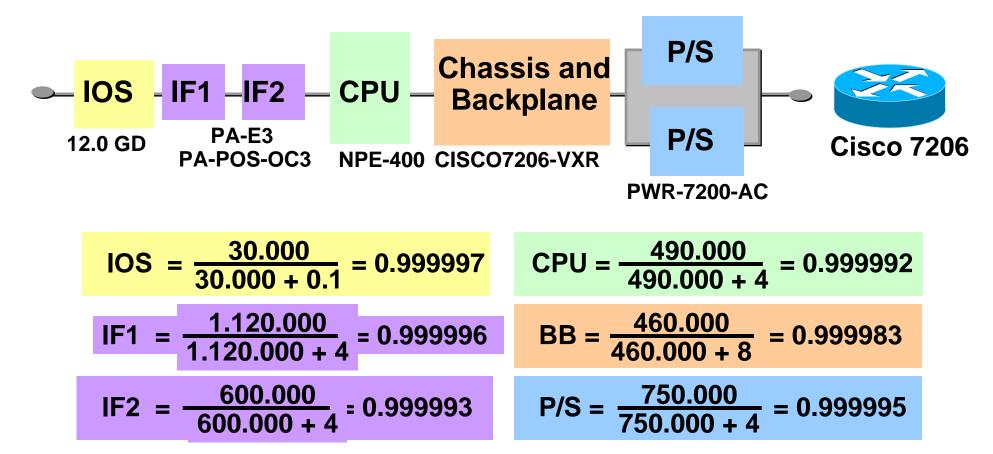
Availability Definitions

You can simply read, "The uptime divided by the total time" to create the percentage time your network is operational

- Mean Time Between Failure (MTBF) When does it fail?
- Mean Time To Repair (MTTR) How long does it take to fix?

Calculation of Availability of Complex Systems

MTBF -> Calculate


Cisco uses Industry standards to compute Hardware MTBF can be calculated

MTTR -> Estimate

Can be reasonable estimated (e.g. Reboot, exchange chassis/LC)

$$A_{\text{Series}} = \prod_{k=1}^{N} A_{k} = A_{1} \times A_{2} \times \cdots \times A_{N}$$
$$A_{\text{Parallel}} = 1 - \prod_{k=1}^{N} (1 - A_{k}) = 1 - (1 - A_{1}) \times \cdots \times (1 - A_{N})$$

Device Availability Calculation: Cisco 7206

System Availability = 0.999997 **0.999983*(1-(1-0.999995)²) = 0.999961 = 99.9961%

Calculated MTBF Values from Cisco Database

Network Availability Calculation

Availability Calculation vs Measurement

Calculation based on:

-component MTBF and MTTR

different underlying models, simulations

-network design (redundancy)

Estimation based on:

-HW/SW exchange processes (MTTR)

-Resiliency features (e.g. Fast Convergence for MTTR)

Measurement based on:

-ICMP Reachability (E2E, Device)

-Cisco Cisco IOS IP Service Level Agreement (IP SLA)

network performance measurement and diagnostics tool

- -Trouble Ticket Analysis
- -Outage Logs Analysis
- -History Method: observe shipping/RMA and project for MTBF

What Is High Availability?

Availability	DPM	Downti			
99.000%	10000	3 Days	15 Hours	36 Minutes	Reactive
99.500%	5000	1 Day	19 Hours	48 Minutes	
99.900%	1000		8 Hours	46 Minutes	Proactive
99.950%	500		4 Hours	23 Minutes	28 59 30 31 2
99.990%	100			53 Minutes	Predictive
99.999%	10			5 Minutes	
99.9999%	1			30 seconds	

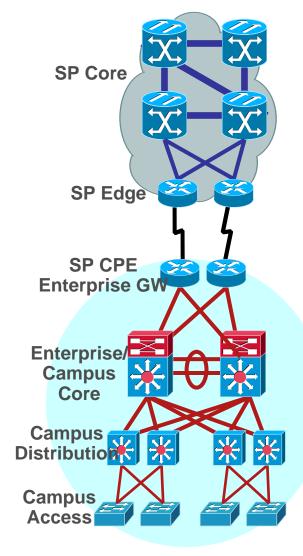
•HA is hard work, NO Silver Bullets

- •Adding a "9" can cost significantly more
- •Two ways to state availability of a network:
 - Percentage Method

•DPM Method = Defects per Million (Hours of Running Time)

Cisco High Availability Focus: End-to-End

System Level Resiliency


- at critical network edges
- increase MTBF using reliable and rebust HW/SW designed for HA
- minimize MTTR for system failures (resilient HW)
- Mitigate planned outages by providing hitless software upgrades

Network Level Resiliency

- Fast rerouting in the core and where redundant paths exist
- Deliver features for fast network convergence, protection & restoration

Embedded Management & Automation

- embedded management with active devices
- intelligent event management for proactive maintenance
- Automation and configuration management to reduce human errors

Cisco HA Feature Toolbox

Network Level Resiliency

- NSF Awareness
- IP Event Dampening
- Bi-Directional Forwarding Detection (BFD)
- Fast Convergence

BGP Convergence Optimalization iSPF Optimalization (OSPF, IS-IS) Multicast Subsecond Convergence

Fast Rerouting (IP and MPLS)

System Level Resiliency

- Control/Data Plane Resiliency: HSA, RPR, RPR+, Stateful NAT/IPSec/FW, NSF /w SSO including MPLS BGP Nonstop Routing Control Plane Policing, GLBP, HSRP, Warm Reload
- Planned Outages: ISSU, Warm Upgrade
- Link Resiliency:

Line Card Redundancy with Y-Cable Link Bundeling (Etherchannel/POS-Channel)

BRKIPM-3011

0 0

Q

3

SP Core

SP Edge

SP CPE

Enterprise GW

Enterprise

Campus

Core

Campus Distribution

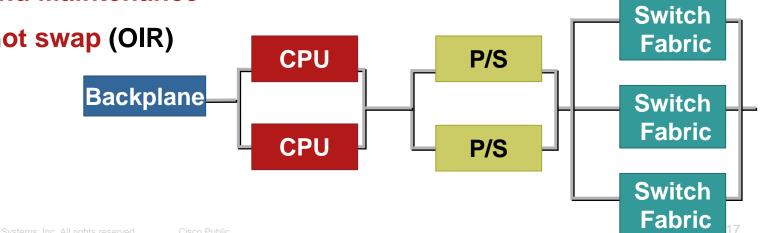
Campus Access Embedded Management & Automation:

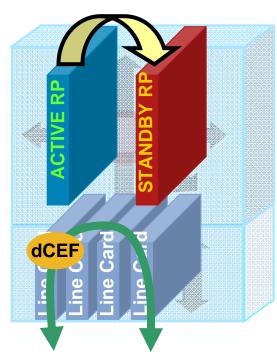
- CiscoWorks
- MPLS OAM (ISC)
- EEM
- GOLD

.

15

SYSTEM LEVEL RESILIENCY:


Stateful Switchover (SSO)


Improving Hardware Availability

- Reliable Hardware
- Load sharing redundancy
- Active/standby redundancy (processor, power, fans, line-cards)
- Active/standby fault detection
- Card MTBF (100,000 hrs)
- ECC Memory
- Separate control and forwarding plane
- Spares and Maintenance
- Robust hot swap (OIR)

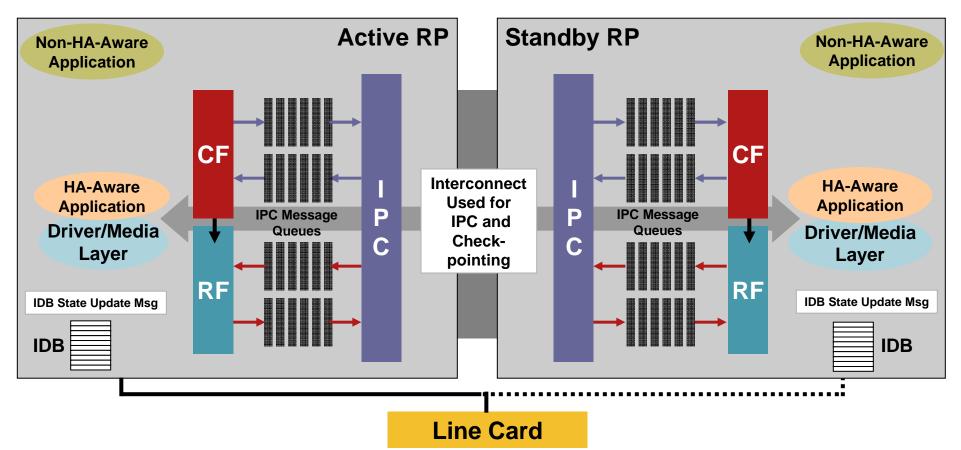
Dual Route Processor Resiliency

Cold Redundancy (2001)

HSA High System Availability (identify failure) RPR RP Redundancy (preload/boot standby RP)

Warm Redundancy (2002)

RPR+ (no reset/reload of LCs)


 Hot Redundancy (2004)
 GR / NSF / NSR w/ SSO Graceful Restart / Non-Stop Forwarding/Routing with Stateful Switchover

In-Service-Software-Upgrade: ISSU (2005)

- Standby RP takes control of router after hardware/software fault on active RP
- SSO allows standby RP to take immediate control and maintain connectivity protocols
- NSF continues to forward packets until route convergence is complete, need neigbor awareness
- NSR works with SSO to synchronize routing information between active and standby
- GR (graceful restart) reestablish routing information without churning the network
- Ultimate Goal: achieve 0% packet loss

BRKIPM-3011

SSO Infrastructure

- RF (Redundancy Facility): monitoring and reporting of RP transitions
- CF (Checkpointing Facility): allows clients to send state updates from Active to Standby
- IPC (Inter-Process Communication): transport for CF, RF and Config Sync
- Driver/Media layer: platform independent/dependent code to maintain IDB state
- Config Sync: maintains the same configuration on the Standby as on the Active

SSO Architecture with Stateful L2 Protocols (PPP, FR, HDLC ...)

Active RP Stationer Non-HA-Aware Non-HA-Aware **Application** Application CF Interconnect HA-Aware **HA-Aware** Used for **Application Application** IPC and Ρ **IPC Message** Driver/Media Driver/Media Queues Check-С Layer pointing Layer RF **IDB State Update Msg** IDB State Update Msg **IDB IDB**

Line Card

- Failure on active RP initializes through RF messages a switchover
- L2 Information is maintained across switchover using the CF messages
- Line Cards are connected to new Active RP
- adjacent devices do not see a link failure/flap during switchover

animated

SSO Supported Protocols and Applications

Line Protocols and Features

- ATM
- APS
- Frame Relay
- HDLC
- PPP
- SRPLink negotiation
- VLANs, VTP, trunks, DTP
- Spanning tree
- UDLD
- SPAN/RSPAN
- 802.1x
- Port security

Traffic storm control
L2 protocol tunneling
Flow control
LACP/PAGP
MAC move notification
ARP
Diagnostics
DAI, IPSG, Port Security
......

Other Applications

- Access control lists
- QoS policers
- IP Multicast entries
- FIB/CEF Table
- Adjacency Table
- MAC-address Table
- Routing Protocols

Line Card Drivers

- Platform dependendLoaded with IOS image
- Linecard status information

For a complete list check release notes of the platform/ IOS Release and the Feature Navigator.

Enabling and monitoring SSO

RouterA(config)# redundancy

RouterA(red-config)# mode ?

rpr Route Processor Redundancy

rpr-plus Route Processor Redundancy Plus

sso Stateful Switchover (Hot Standby)

show redundancy [all | arbitration | clients | counters | history | negotiation |
switchover | standby-cpu | states | trace | trace all]

Cisco 12000 syntax options with 12.0(S)

```
router# show redundancy states

my state = 13 -ACTIVE

peer state = 8 -STANDBY HOT

<snip>

client count = 13

Redundancy Mode = SSO
```

SSO Operation Example

Router# show redundancy client clientID = 0 clientSeq = 0 RF_INTERNAL_MSG

clientID = 25 clientSeg = 130 CHKPT RF

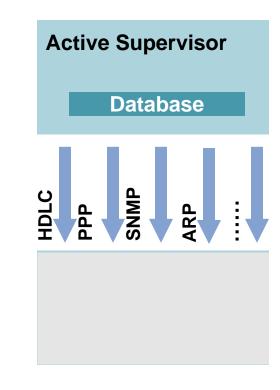
clientID = 27 clientSeq = 132 C12K RF COMMON Client

clientID = 30 clientSeq = 135 Redundancy Mode RF

clientID = 22 clientSeq = 140 Network RF Client

clientID = 24 clientSeq = 150 CEF RRP RF Client

clientID = 49 clientSeq = 225 HDLC

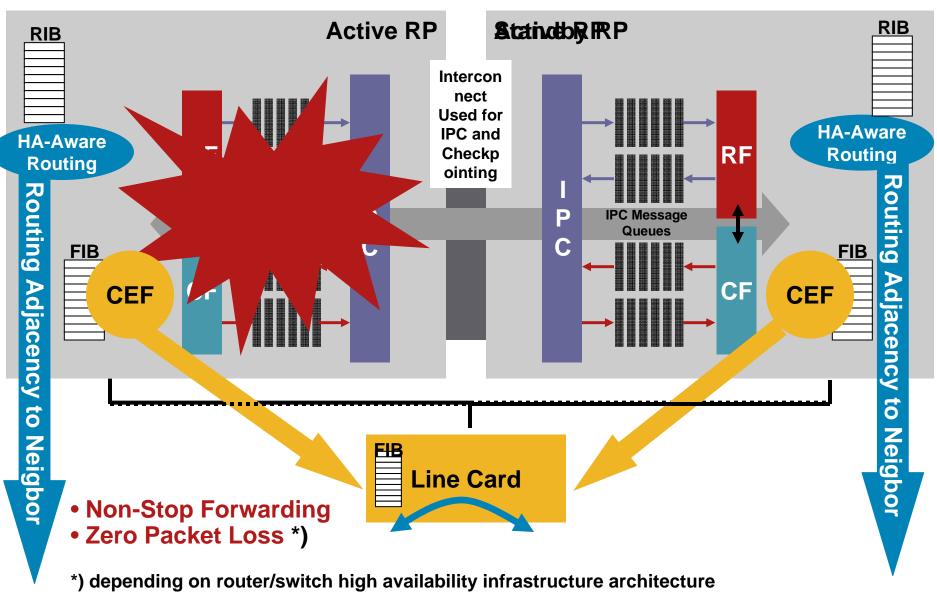

clientID = 21 clientSeq = 320 PPP RF

clientID = 34 clientSeq = 330 SNMP RF Client

<snip>

router# show redundancy switchover history

Index Prev Active Curr Active		Swact Reason	Swact Time		
	1	1	0	unsupported	8:03:52 UTC Thu Nov 29 2003
	2	0	1	unsupported	08:07:00 UTC Thu Nov 29 2003


SYSTEM LEVEL RESILIENCY:

Non-Stop Forwarding (NSF)

animated

NSF Architecture with HA-aware Routing

Requirements and Enhancements for NSF-aware Routing Protocol

Requirements:

Switchover MUST be completed before dead/hold timer expires

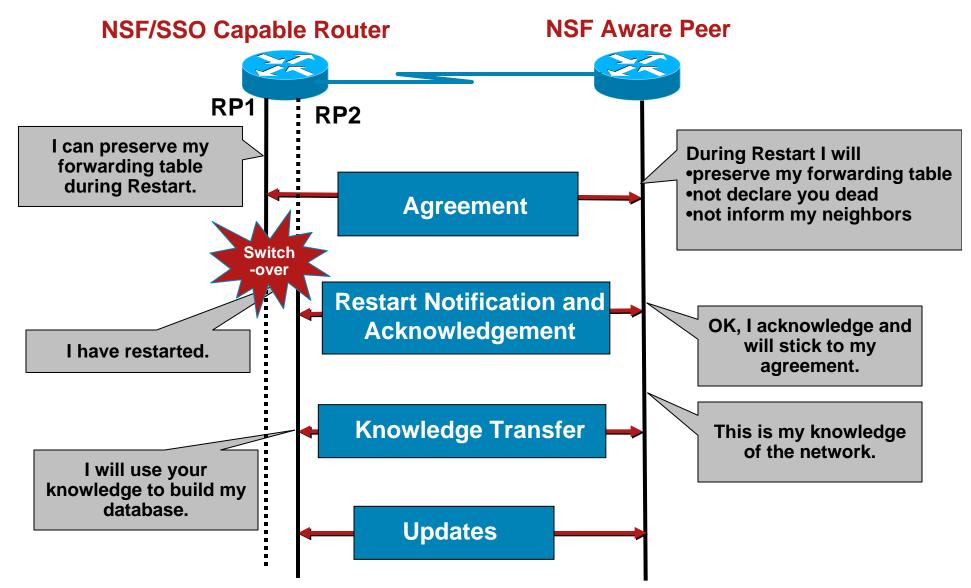
Else peers will reset the adjacency and reroute the traffic

FIB MUST remain unchanged during switchover

Current routes marked as "stale" during restart

"Cleaned" once convergence is complete

Transient routing loops or black holes MAY be introduced if the network topology changes before the FIB is updated


Adjacencies MUST NOT be reset when switchover is complete

Protocol state is not maintained

Enhancements:

- Neighbors must know that NSF router can still forward packets: NSF aware, as opposed to NSF capable
- Enhancements to ISIS, OSPF, EIGRP, BGP and LDP designed to prevent route flapping

Relationship Building of NSF-aware Routing Protocols

NSF IGP Routing Protocols Extensions:

Enabling NSF in Routing Protocols:

router eigrp / ospf / isis nsf <protocol specific timer/interval configuration>

Relevant Standards and Drafts

The mechanisms used to provide continuous forwarding in the event of a route processor switchover are not completely standardized

2 different OSPF implementations: Cisco's OSFP NSF vs IETF Graceful OSPF Restart

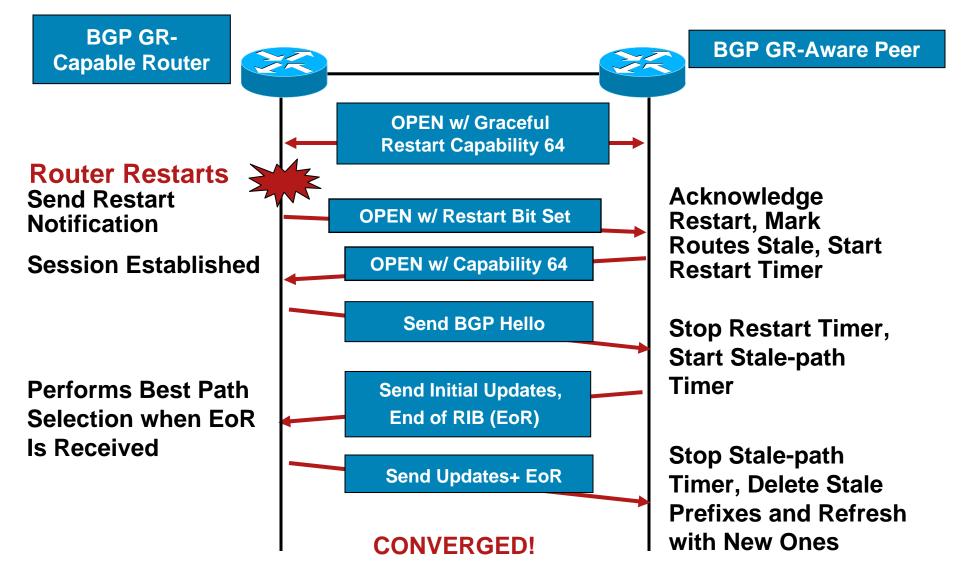
Cisco's NSF implementation for ISIS (ietf option) follows the specification described in RFC 3847 Restart Signaling for Intermediate System to Intermediate System (IS-IS) -> stateful solution providing NSR exists also

For Details see NSF Deployment Guide:

http://www.cisco.com/en/US/tech/tk869/tk769/technologi es_white_paper0900aecd801dc5e2.shtml

BGP Graceful Restart

IETF: draft-ietf-idr-restart-13.txt

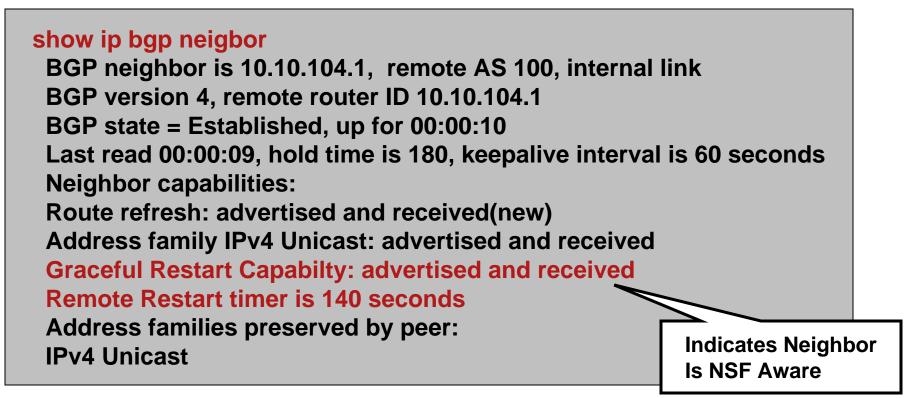

submitted to IESG as proposed standard (expires 1/2007)

- Provides a graceful recovery mechanism for a restarting BGP process
- Implementation on Cisco IOS/XR: 12.0S, 12.2T, 12.2S, XR 2.0

release and device dependent

- Requires a graceful restart aware neighbor
- Graceful restart capable routers are 7300, 7500, 7600, 12000, 10000, CRS-1

Graceful Restart BGP Operation


BGP Graceful Restart Commands

router bgp 100

bgp graceful-restart

bgp graceful-restart restart-time 120 bgp graceful-restart stalepath-time 360

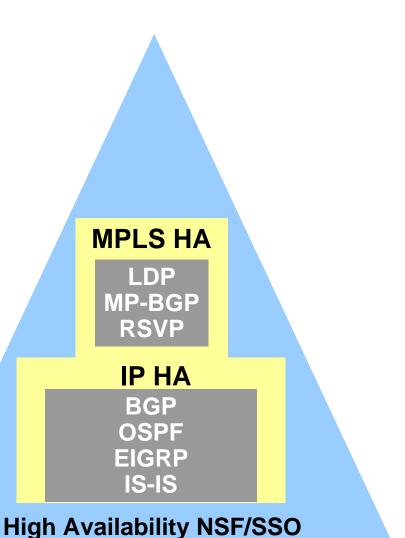
- Restart timers: max time peer waits for reconection BGP session (def. 120s, adv. to peer)
- Stalepath timers: upper limit, how long peer will continue to use stale routes after re-establishing BGP (def. 360s, used internally)
- BGP hold time: 180 seconds (3 x 60 sec keep-alive)

Towards Zero Downtime: Route Processor High Availability Feature Evolution

Technology/Router	Link Flap	Route Flap	Cisco 7500 Series Router	Cisco 12000 Series Router	Cisco 10000 Series Router	Cisco 6500/7600 Series Routers
Single Route Processor Reboot	YES	YES	8:00 Minutes	2:32 Minutes	2:45 Minutes	
Cold Redundancy (Cisco RPR)	YES	YES	2:06 Minutes	1:20 Minutes	0:26 Seconds	3:00 Minutes
Warm Redundancy (Cisco RPR+)	NO	YES	0:30 Seconds	0:08 Seconds	0:14 Seconds	0:15 – 0:30 Seconds
Hot Redundancy Cisco NSF with SSO (Available Since Cisco IOS Software Release 12.0(22)S)	NO	NO	~0:06 Seconds	0 Seconds	~0:01.63 Seconds	< 0:05 Seconds

This is a SSO/NSF switchover on a system with 200 ATM PVCs, 100 defined channels, 100K + BGP routes, 30K OSPF routes, traffic

MPLS and IP NSF/SSO-Coexistence


IP HA speeds up MPLS recovery

No waiting for the route processor

No loss of Layer 2 connectivity, so it does not need to be re-established

MPLS with IP SSO begin rebuilding more quickly after switchover to the standby RP

- SSO coexistence feature allows the mix of SSO and non-SSO features at the same time
- During the IP NSF switchover, MPLS forwarding entries are removed from the linecards and MPLS forwarding is stopped.
- Need to enhance the Key Protocols used in MPLS Control Plane to minimize the disruption in MPLS forwarding plane

MPLS HA Components and Key Elements

MPLS HA—LDP NSF/SSO

 Checkpointing local label bindings to backup RP On devices with route processor redundancy
 LDP graceful restart capability On participating PEs, RRs, and P routers
 Checkpoint refreshed/new local label bindings

MPLS HA—BGP VPNv4 NSF/SSO

- 1. MPLS VPN checkpointing capability
- 2. BGP graceful restart capability

For Details see: <u>http://www.cisco.com/univercd/cc/td/doc/product/soft</u> <u>ware/ios122s/122snwft/release/122s25/fshaov.htm</u>

MPLS VPN HA: Putting it Together

redundancy mode sso

mpls ldp graceful-restart

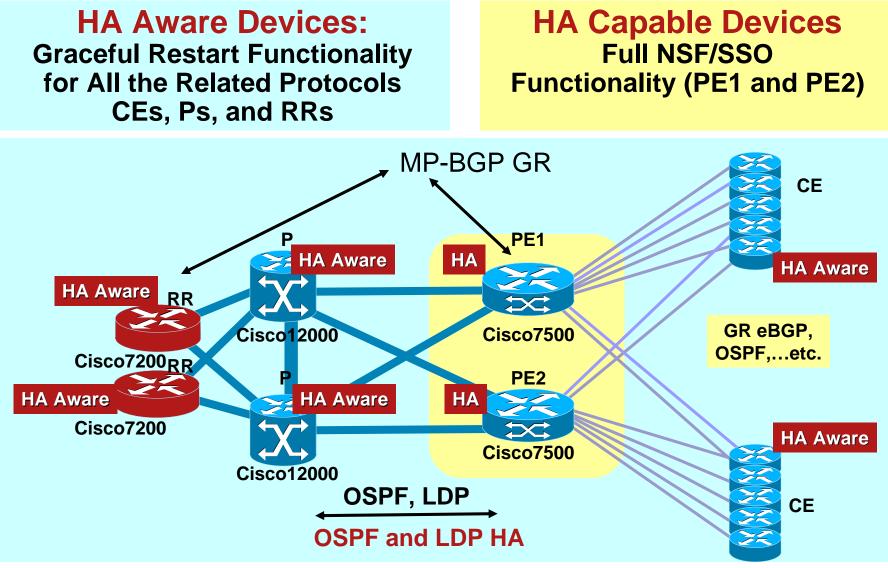
mpls ip mpls label protocol ldp mpls ldp router-id Loopback0 force mpls ldp advertise-tags

```
router ospf 10
```

nsf

I

I


```
network 8.8.8.8 0.0.0.0 area 0
```

router bgp 1

bgp graceful-restart restart-time 120 bgp graceful-restart stalepath-time 360 bgp graceful-restart

show ip bgp labels show ip bgp vpnv4 all labels debug ip bgp vpnv4 checkpoint debug ip bgp vpnv4 nsf show mpls ldp checkpoint

Deploying MPLS HA Example

SYSTEM LEVEL RESILIENCY:

Non-Stop Routing (NSR)

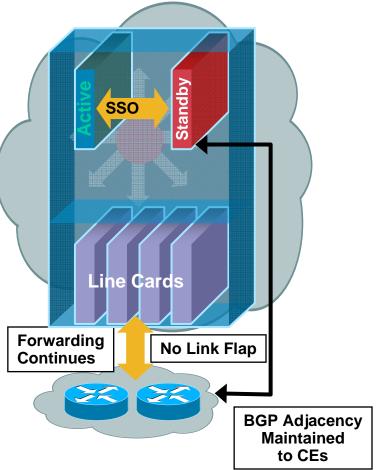
Non-Stop Routing (NSR)

- NSR and NSF are not the same
- NSR in a nutshell

-Provides forwarding and preserves routing during Active RP failover to Standby RP like NSF

-does not require any protocol extension like NSF

-does not require software upgrades on peer routers (NSF-aware)


-TCP and applications (BGP/LDP) are maintained and stateful switchover is achieved

IOS Support for NSR:

-ISIS NSR (stateful NSF!, Cisco Version)

-BGP NSR (introduced with 12.2(28)SB for Cisco 10000 PRE2)

-LDP NSR (IOS-XR in 2007)

BGP NonStop Routing with SSO

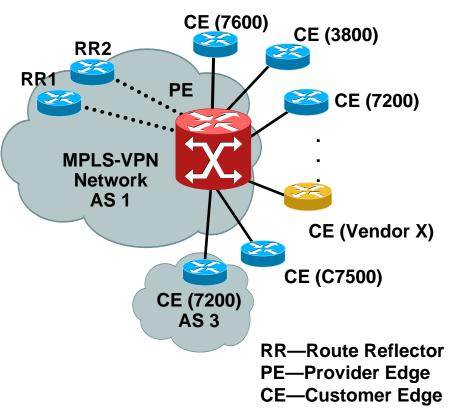
Cisco BGP NSR SSO

provides a transparent BGP failover mechanism for PE routers engage in eBGP peering with CE routers that do not support the graceful restart mechanism

 Simplified deployment for service providers

> Only PEs need to be upgraded to support NSR (incremental deployment)

CEs are not touched (i.e., no software upgrade required)


Scaling optimizations

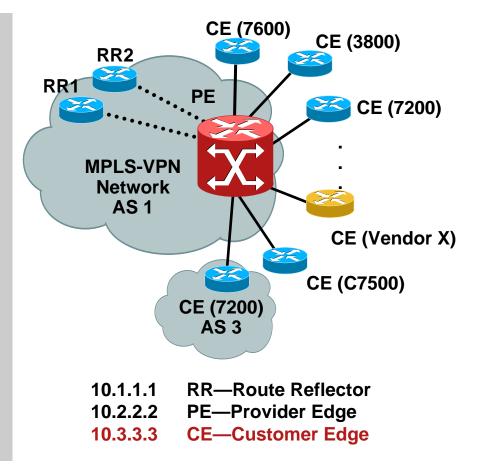
PE uses NSR with CEs that are not NSFaware

PE uses NSF (Graceful Re-start) with NSFaware CEs

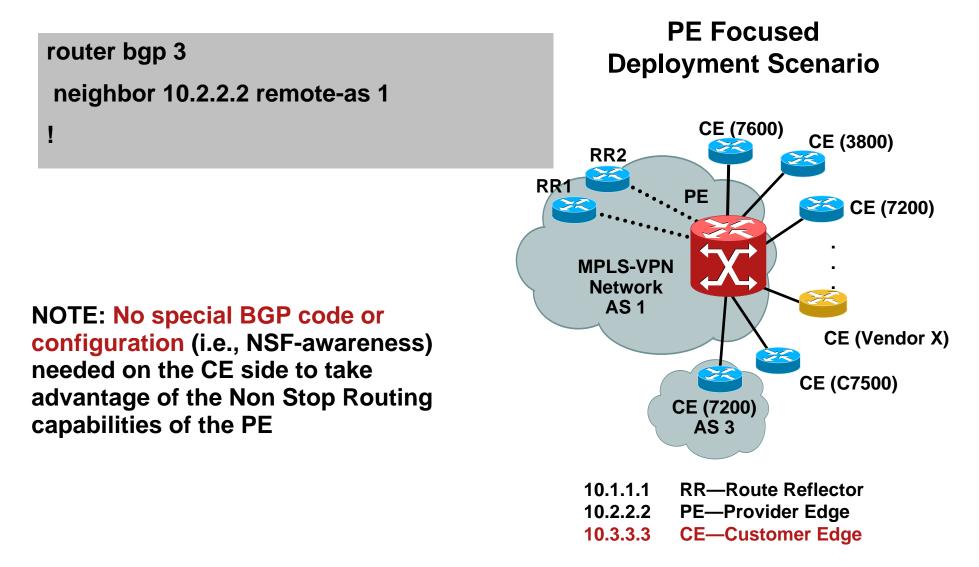
iBGP sessions to RRs use NSF (Graceful Restart)

PE Focused Deployment Scenario

NSR – PE Configuration


Configuration:

neighbor x.x.x.x ha-mode sso


- x.x.x.x IP address of neighbor router
- used to configure a BGP neighbor to support SSO
- supported for BGP peer, BGP peer group, and BGP session template configurations

Example:

```
router bgp 1
bgp graceful-restart restart-time 120
bgp graceful-restart stalepath-time 360
bgp graceful-restart
neighbor 10.1.1.1 remote-as 1
I
<snip>
address-family ipv4 vrf Customer1
 neighbor 10.3.3.3 remote-as 3
 neighbor 10.3.3.3 ha-mode sso
 neighbor 10.3.3.3 activate
 neighbor 10.3.3.3 as-override
exit-address-family
```


NSR – CE Configuration

Verifying BGP Support for NSR with SSO

Router# show ip bgp vpnv4 all sso summary

stateful switchover support enabled for 40 neighbors

displays the number of BGP neighbors that are in SSO mode

Router# show ip bgp vpnv4 all neighbors 10.3.3.3

BGP neighbor is 10.3.3.3, vrf vrf1, remote AS 3, external link

<snip>

Stateful switchover support enabled

<snip>

SSO Last Disable Reason: Application Disable (Active)

displays VPN information from the BGP indicating whether SSO is enabled or disabled and displays information about the last BGP session that lost SSO capability

For details see the BGP NSR Feature Guide:

http://www.cisco.com/en/US/products/ps6566/products_feature_guide09186 a008067a607.html

Troubleshooting BGP NSR with SSO

debug ip bgp sso {events | transactions} [detail]

displays **BGP-related SSO events**

displays debugging information for **BGP-related interactions** between the active RP and the standby RP

useful for monitoring or troubleshooting BGP sessions on a PE router during an RP switchover or during a planned ISSU

debug ip tcp ha {events | transactions} [detail]

displays TCP HA events or debugging information for TCP stack interactions between the active RP and the standby RP

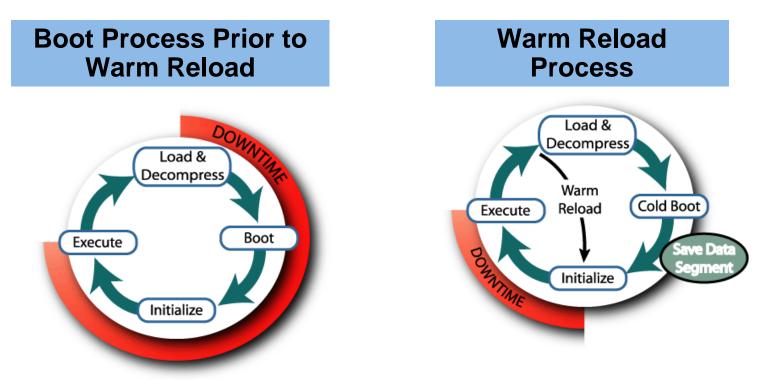
useful for troubleshooting SSO-aware TCP connections

show tcp [line-number] [tcb address]

displays the status of TCP connections.

Output includes SSO capability flag to indicate the reason that the SSO property failed on a TCP connection.

show tcp ha connections


Displays details of TCP connections that support BGP NSR with SSO (number of connections and connection-ID-to-TCP mapping data)

SYSTEM LEVEL RESILIENCY:

Warm Reload / Warm Upgrade

Cisco IOS Warm Reload

Enables significant reduction in device reboot time by lowering the mean time to repair (MTTR) for software failures

Executing begins during re-run from the start address with previously saved, pre-initialized variables

Particularly applicable to single processor systems

Warm Reload Details

- Savings from reading and decompressing of image
- Additional memory consumption to store a compressed copy of initialized variables in read-only section – typically 1-2 MB
- Useful in case of software design error:

Software-induced crash

Requires restart to repair

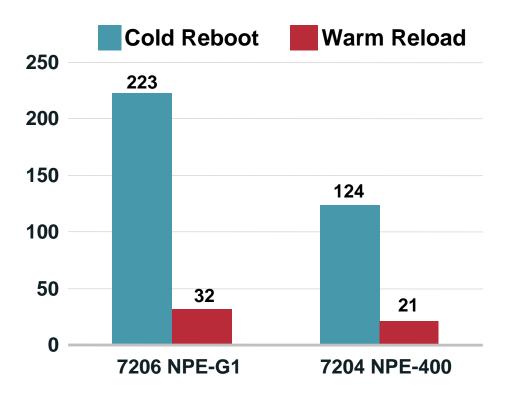
- Hardware failure will force the 'cold' reboot
- If the router reboots for the same reason within 5 minutes it will 'cold' reboot

Router(config)# warm-reboot <count> <uptime>

count - maximum number of warm reboots allowed (default 5, value 1-50)

uptime - minimum time (minutes) between initial system configuration and an exception before a warm reboot is attempted (default value is 5 minutes)

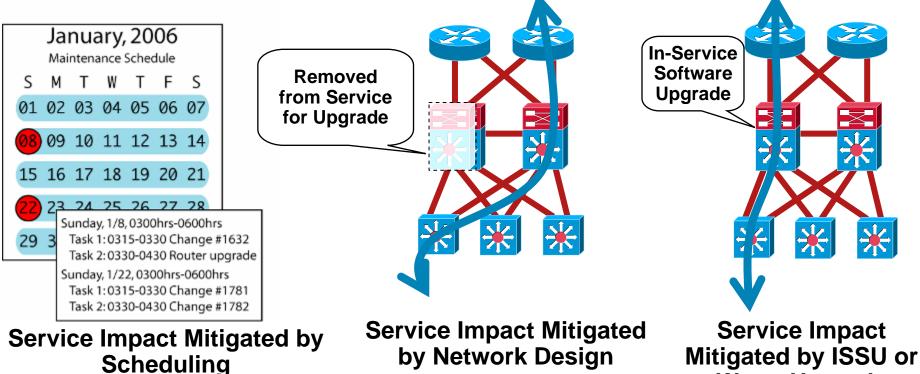
Improved Availability of Single Processor Routers and Switches


NPE-G1 Setup

Normal reload: 3:43 minutes Warm reload: 0:32 minutes Reduced downtime by 86%

NPE-400 Setup
 Normal reload: 2:04 minutes

Warm reload: 0:21 minutes Reduced downtime by 83%



introduced with 12.2(18)S and 12.3(2)T

http://www.cisco.com/en/US/tech/tk869/tk769/technologies_white_paper0900aecd801778e8.shtm Check Feature Navigator for Support on other platforms: 1xxx, 2xxx, 3xxx, 7xxx

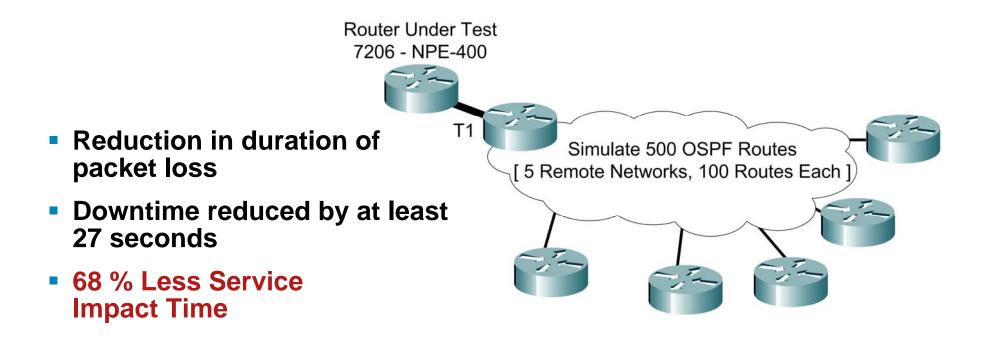
Various Methods for Minimizing Downtime Due to Planned Software Upgrades

Typical procedure performed countless times by Cisco customers

- -Download Cisco IOS Software from Cisco.com
- -Transfer to device's file system
- -Set to reload using new software
- -Users see service impact during the reload
- -Or: If network resiliency available, impact equal to reconvergence time

Warm Upgrade

Basic Upgrade Process Improved with Warm Upgrade

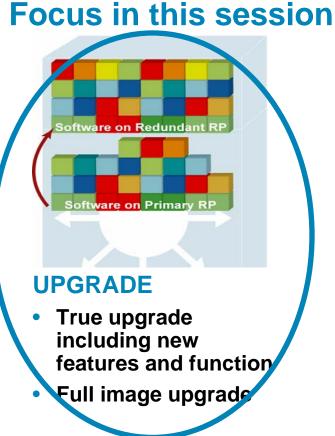

- Builds on Warm Reload, can be used in conjunction with Warm Reload
- reduce downtime for planned upgrades and downgrades
- Enables router to read and decompress the new Cisco IOS Software image and then to transfer control to it, while packet forwarding is continued
- If upgrade fails, the current instance of Cisco IOS Software will continue to run, unless the image is partially or fully erased
- Requires router to have sufficient free memory to read and decompress the new image, while the current instance of Cisco IOS Software is running

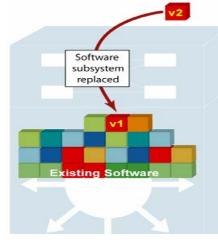
Warm Upgrade process

Router# reload warm file disk2:c7200-js-mz.122-18.S3

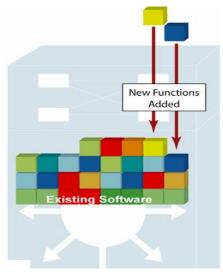
Warm Upgrade Reduces Service Impact

	Without Warm Upgrade	With Warm Upgrade
Reload Start	0:00	0:00
Packet Loss Seen	0:00	0:27
Reload Complete	2:50	1:00
OSPF Adjacency Restored	3:20	1:30
Traffic Flow Restored to All 500 Destinations	3:35	1:35

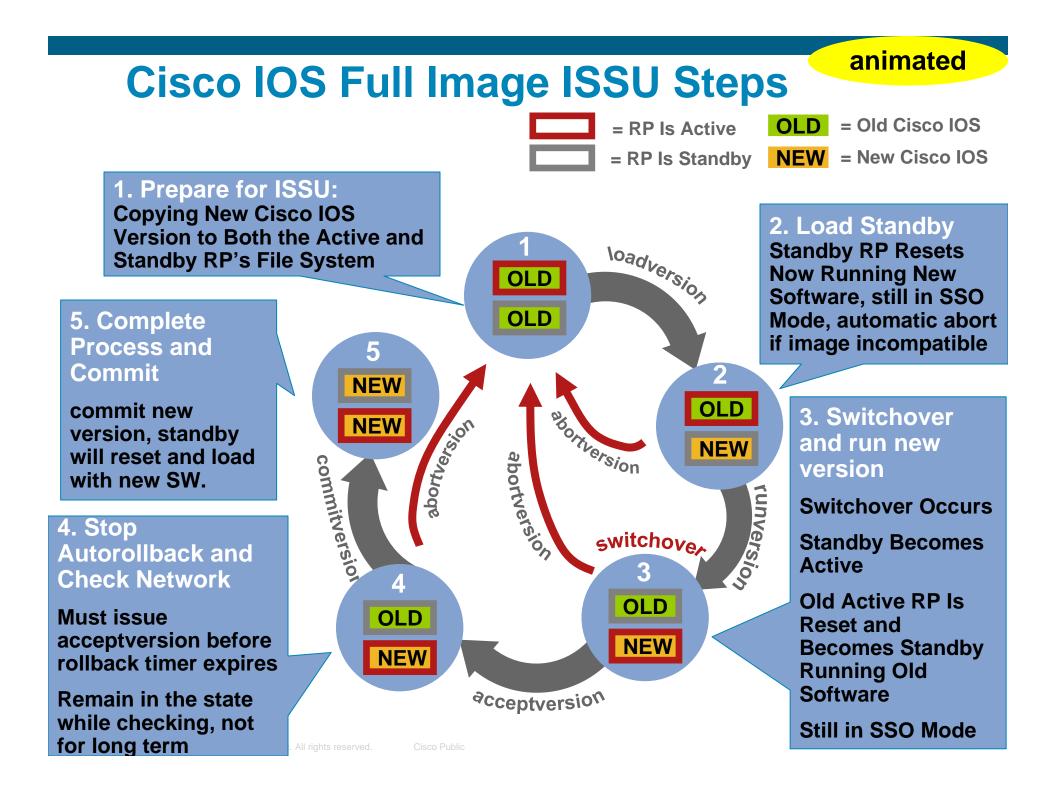

SYSTEM LEVEL RESILIENCY:


In-Service Software Upgrade (ISSU)

Cisco's In-Service Software Upgrade (ISSU)


- targeting planned downtime (software upgrades, maintenance)
- strategy spans all Cisco IOS product lines
- ranging from full image upgrades to granular, selective software maintenance (upgrade vs patch vs component upgrade)

PATCH


- Selective maintenance
- Patch a component

Component upgrade

 Add new features to existing base

. Cisco P

ISSU Commands for Full Software Upgrade

issu loadversion

Optional Parameter

r1# issu loadversion b stby-disk0:c10k2-p11-mz.2.20040830 force

"force" used to override the automatic rollback when new version is detected to be incompatible (e.g. fast software upgrade in RPR mode, service impacting if running ISSU between incompatible releases)

issu runversion

r1# issu runversion b stby-disk0:c10k2-p11-mz.2.20040830

Switches to the redundant RP with the new image and loads lines cards, parses the config, etc.

issu acceptversion

r1# issu acceptversion b disk0:c10k2-p11-mz.2.20040830

issu commitversion

r1# issu commitversion a stby-disk0:c10k2-p11-mz.2.20040830

Will cause the Standby RP to be reset and reloaded with the new software version and come up in the highest HA mode attainable, which should be SSO, since the images are the same

issu abortversion

r1# issu abortversion a stby-disk0:c10k2-p11-mz.2.20040830

When issued prior to runversion—resets and reload the Standby; When issued after runversion—switches to old version, loads lines cards, parses config, etc.; result is two service outages

BRKIPM-3011

Show ISSU State Detail

After "issu runversion"

router#sh is	ssu state det	
	Slot RP State	
Bootvar Adjus	ISSU State Sted Boot Variable	<pre>= Run Version = disk0:c10k2-p11-mz.2.20040830,12; disk0:c10k2-p11-mz.1.20040830,1;</pre>
New Version		
"2"	Current Version Slot	= disk0:c10k2-p11-mz.2.20040830 = A
		<pre>= Run Version = disk0:c10k2-p11-mz.1.20040830,1;</pre>
Old Version "1"	Secondary Version	<pre>= disk0:c10k2-p11-mz.2.20040830 = disk0:c10k2-p11-mz.1.20040830 = disk0:c10k2-p11-mz.1.20040830</pre>

router# show issu rollback-timer Rollback Process State = In progress Configured Rollback Time = 45:00 Automatic Rollback Time = 29:03

Which IOS features are ISSU capable?

- ISSU builds on NSF/SSO support for IOS features
- NSF/SSO capable feature preserved following an ISSU upgrade
 - HA system infrastructure components
 - Forwarding (CEF)

Connectivity features (ATM, FR, HDLC, PPP, MLPPP)

Routing and IP services features (BGP, OPSF, ISIS, EIGRP, ARP, HSRP) MPLS features (LDP, MPLS/VPN, InterAS, CsC)

Management Protocol (SNMP)

- Majority of IOS features do NOT require stateful information synch just need configuration synchronization between RPs
- Other features requiring stateful information synchronization support HA co-existence

These features will restart following ISSU (as in a system reboot) ISSU architecture allows ISSU support for additional features to be added in a incremental fashion over future software releases

ISSU Compatibility Matrix

ISSU compatibility for all capable Cisco IOS software assigned

Compatible

C

B

Base-level system infrastructure and all optional HA-aware sub-systems are compatible, ISSU between these versions will succeed with minimal service impact

Base-level compatible

One or more of the optional HA-aware sub-systems are not compatible

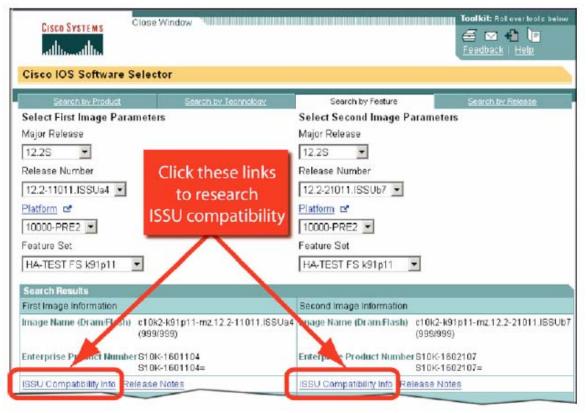
ISSU between these versions will succeed, however, some sub-systems will not be able to maintain state during the transition

Careful consideration of the impact this may have on operation and service is required before an in-service upgrade should be attempted

Incompatible

There exists core set of system infrastructure that must be able to interoperate in a stateful manner for SSO to function correctly

If any "required" features or protocols is not interoperable, then the two versions of the Cisco IOS images are declared "incompatible", ISSU not possible between these versions.


Router# show issu comp-matrix

display the compatibility matrix data between 2 software versions on a system

Compatibility Verification Using Cisco Feature Navigator

ISSU application on Cisco Feature Navigator www.cisco.com/go/fn

- Select an ISSU-capable image
- Identify which images are compatible with that image
- Compare two images and understand the compatibility level (C/B/I)
- Compare two images and see the client compatibility for each ISSU client
- Provide links to release notes for the image

ISSU Best Practices

- Avoid manual switchovers.
- Avoid card OIR (online insertion and removal).
- Copy Cisco IOS Software prior to Cisco IOS ISSU.
- Do not change redundancy mode during the Cisco IOS ISSU process.
- MDR and line-card versioning is required.
- Ensure adequate local file system capacity.
- Minimize duration of the Cisco IOS ISSU process.
- Use maintenance windows.
- Do not implement new features while Cisco IOS ISSU is in progress.
- Disable unsupported features and functions when performing a "downgrade."

Slide not in Printouts, only in pdf

Cisco IOS and IOS-XR ISSU Availability

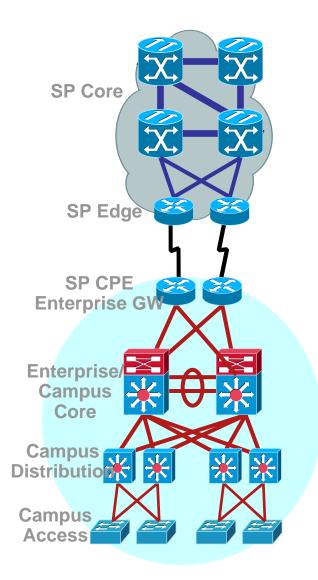
ISSU is a process or procedure

Based on an architecture for high availability

	Cisco ISR	Cat 3750	C7200	Cat 4500	Cat 6500	C7300	C7500	C7600	C10k	C12k	CRS- 1
Full Image ISSU											
Subsystem ISSU					Mod IOS					XR	XR
Enhanced FSU (SSO)											
FSU (RPR+)						7304 Only					
Warm Upgrade											

Not Planned

BRKIPM-3011

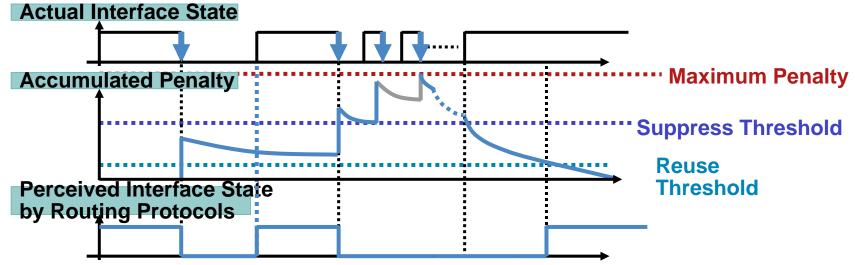

Cisco Public

NETWORK LEVEL RESILIENCY

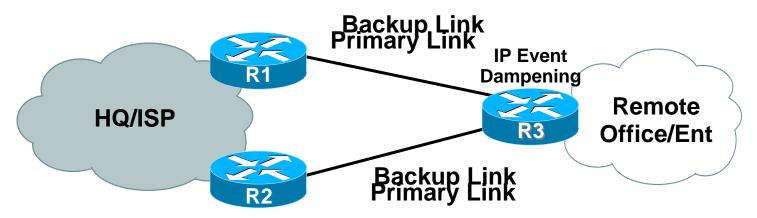
Network Level Resiliency

NSF awareness IP Event Dampening Bi-Directional Forwarding Detection Fast Convergence iSPF Optimization (OSPF, IS-IS) BGP Optimization FC and NSF/SSO Coexistence GR Shutdown Fast ReRoute (FRR) MPLS FRR IP FRR

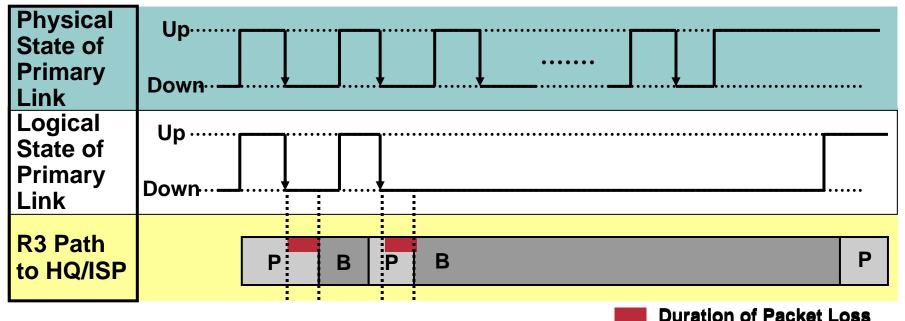
.


NETWORK LEVEL RESILIENCY:

IP EVENT DAMPENING


IP Event Dampening: Concept

- IP Event Dampening logically isolates unstable links:
 - reducing packet loss & routing CPU overhead reducing network oscillations
 - isolating unstable network elements
- Takes concept of BGP route-flap dampening to interface level
- Tracks interface flapping, applying a "penalty" to a flapping interface
- Puts the interface in "down" state from routing protocol perspective if the penalty is over a threshold tolerance
- Uses exponential decay algorithm to decrease the penalty over time and brings the interface back to "up" state



animated

IP Event Dampening: Deployment

IP Event Dampening Absorbs Link-Flapping Effects on Routing Protocols

IP Event Dampening: Configuration

interface Serial 0

dampening [half-life reuse] [suppress max-suppress [[restart-penalty]]

- Penalty: numeric value applied to the interface each time it flaps
- Half-life: time that must elapse without a flap to reduce penalty by half
- Reuse: <penalty limit interface is reintroduced to routing</p>
- Suppress: >penalty limit interface is suppressed from routing
- Max-Suppress: Maximum time an interface can be suppressed
- Restart-Penalty: initial penalty applied to interface when system boots
- Defaults: dampening 15 1000 2000 60 0
- Supports all IP routing protocols
 Static routing, RIP, EIGRP, OSPF, IS-IS, BGP
 Subinterface Restriction: Applies to all subinterfaces on physical interfaces
 Virtual Templates not supported
- Available in 12.0(22)S, 12.2(13)T, 12.2(14)S, 12.2(18)SXD
- Platforms: 1700, 1800, 2600, 2800, 3600, 3700, 3800, 7200, 7300, 7500, 7600, 10000, 12000 and Catalyst Platforms
- Check Feature Navigator for more details.

NETWORK LEVEL RESILIENCY:

Bi-Directional Forwarding Detection (BFD)

The Problem with Convergence

Process of Network Convergence

• Failure Detection, Information Dissemination, Repair

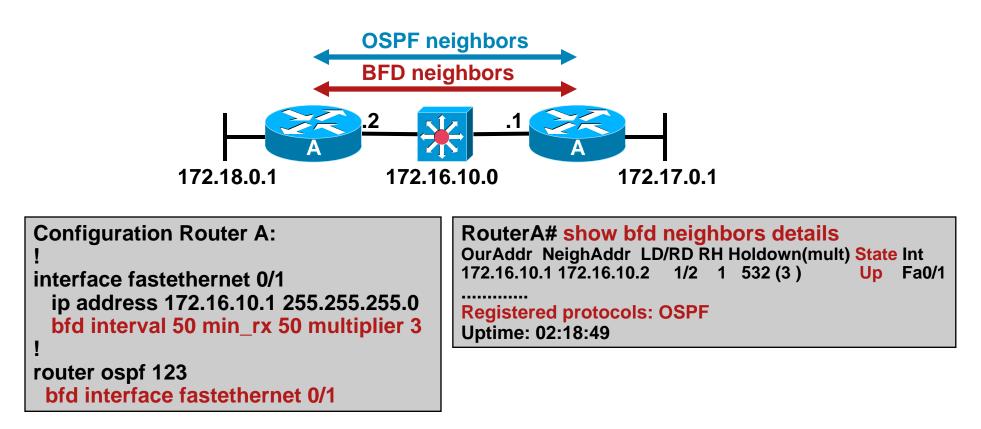
Failure Detection most problematic and inconsitent

- varying methods to detect loss of routing adjacency in different routing protocols (subsecond hello of routing protocols very CPU intensiv)
- slow neighbor failure detection by IGP built-in hellos is main reason for delayed IGP Convergence
- link-layer failure detection depending on physical media and L2 encapsulation
- intervening devices hide link-layer failure from routing protocols
- POS (SDH/Sonet) has become benchmark to detect/react to media or protocol failures (~50 msec)

Need for single standardized method of link/device/protocol failure detection at any protocol layer over any media

BFD – Bidirectional Forwarding Detection

IETF Working Group for BFD since 2004 http://www.ietf.org/html.charters/bfd-charter.html BFD BF 6 drafts: Generic, Base, Multihop, MPLS, MIB, v4v6-1hop BFD Goals: session **UDP 3784** detect faults in the bidirectional path between forwarding 3-way handshake engines, interfaces and data links with low latency operates independently of media, data protocols, routing protocols Asynch/Demand single mechanism for liveness detection (lightweight control packets protocol, easy-to-parse) flow in each direction **Different Modes** Asynchronus mode: periodically transmitting BFD control packets **Demand mode:** after establishment of BFD session, control packets on demand target at low-end platform **Echo Packets** looped by


Echo Function: loop back of echo packets through forwarding path (HW implementation)

69

remote system

(dest. port 3785)

BFD Operation with OSPF

- OSPF Hellos still needed for control plane verification, discovery, ...
- OSPF process registers neighbors on BFD enabled interfaces with BFD process
- BFD monitors liveliness of forwarding plane
- Swiftly notifies OSPF of BFD session failures
- Upon notification, OSPF brings down neighbor and recalculates routes

BFD: Support, Scaling and Performance

IOS/XR Support:

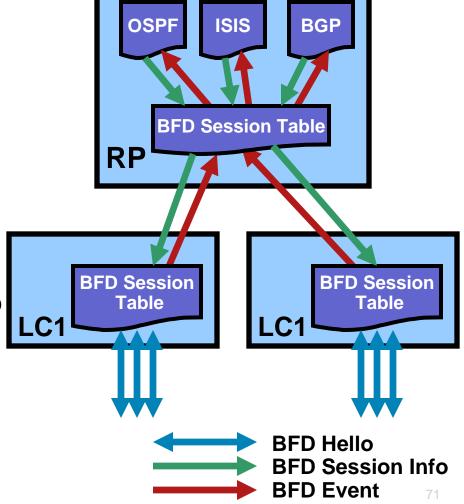
IOS: 12.0(31)S, 12.2(18)SXE, 12.4(4)T IOS-XR: 3.2

Centralized platforms:

+2% CPU @ 100 BFD session

Distributed platforms: Cisco 12000

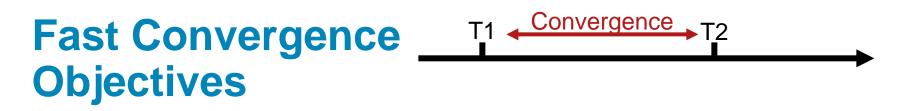
no CPU impact on RP +2% LC-CPU @ 100 session / LC with 150msec detection time

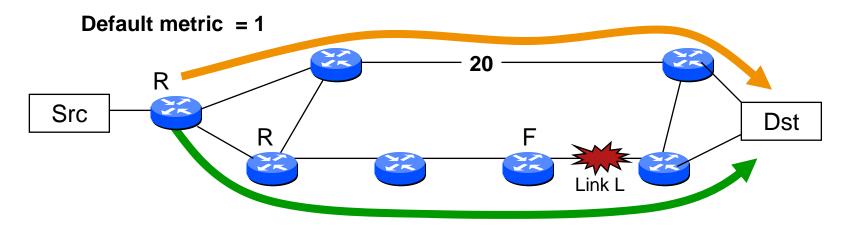

Protocol Support:

ISIS, OSPF, EIGRP, BGP-SingleHop (BGP-Multihop, LDP, IPv6)

Internetworking

IP Event Dampening (NSF/SSO/GR of BFD)





NETWORK LEVEL RESILIENCY:

FAST CONVERGENCE and FAST REROUTING

- Loss of Connectivity: T2 T1, called "convergence"
- How fast should Fast Convergence be?:
 - Sub-Second: requirements for most IP networks
 - Sub-200ms: a few applications are sensitive to LoC <= 200ms</p>
 - Sub-50ms: business requirement for some IP networks

For the first 500 IGP (OSPF/ISIS) Prefixes and all BGP prefixes whose next-hop is within the first 500 IGP prefixes assuming the BGP routes are stable

Fast Convergence Summary

- NSF /w SSO: preserves Traffic Forwarding routing information is recovered dynamically in the background
- Fast Convergence: <u>quickly redirect flow of traffic</u> on alternate path Quicker detection of failures: signaling POS to IS-IS < 10 msec
 Faster announcement of failure throughout the network: opt. flooding Prioritized update of the routing table: important prefixes
 Caching of redistributed routes:

Accelerated computation of the new network topology: iSPF No compromise in stability: exponential backoff timers

Failure scenarios:

GR/NSF covers redundant RP failure only

FC covers all failure scenarios: link failure, node failure, ...

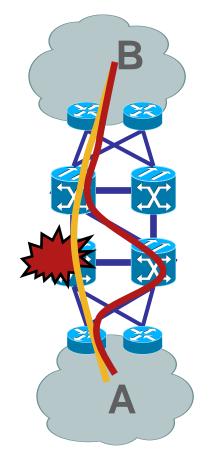
For more information: IGP and BGP Fast Convergence (BRKIPM-3004)

NSF and IGP Fast Hello Coexistence?

NSF/SSO and FC have conflicting goals:

NSF: maintain flow of traffic through failure router FC: fast redirect of flow of traffic away from failure router

Deployment scenarios are often different:


NSF: SP edge FC: IGP FC focus on Core (edge)

• NSF/SSO Testing with various IGP Timer settings

Testbed with 3 SUT: Cisco 12000, 10000, 7500 / 12.0(22)S ISIS with 5000 routes: hello: 1 sec (multiplier: 3) OSPF with 5000 routes: hello: 2 sec (dead: 8 sec) NSF/SSO still operates properly with these timers first hello send ~2 sec after switchover (neighbor view ~ 3 sec) Conservative setting of timers > 4sec required

For details see:

http://www.cisco.com/en/US/tech/tk869/tk769/technologies_w hite_paper09186a00801dce40.shtml

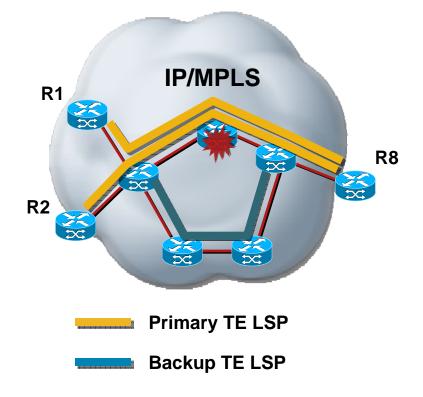
Fast IGP Convergence Current Status

Link/node down event is detected as fast as possible

Failure Detection (POS today, BFD emerging) < ~ 20ms Origination < ~ 10ms

Queueing, Serialization, Propagation < 30ms

- Propagating the change in the network as soon as possible Flooding < 5 * 2ms = 10ms</p>
- Recalculate the paths (run SPF) as soon as possible SPF < n * 40us
- Install the new routes in the routing/forwarding table


FIB update: p * 100us FIB Distribution Delay: 50ms

- ~ 100ms + p * 0.1 ms
- 500 important prefixes: ~ 150ms
- Worst-case over 100 iterations of most important prefixes: ~280ms for 1500 nodes and 2500 prefixes
- Sub-50ms impossible today -> need Fast Reroute

MPLS Fast Re-Route (FRR)

Key Element of Fast Reroute:

- Pre-computation of path
- Local action (to avoid propagation/distribution)
- Tunneling (to avoid propagation/distribution)

MPLS FRR:

- fast recovery against node/link failures
- Scalable 1:N protection
- Greater protection granularity
- Cost-effective alternative to optical protection
- Bandwidth protection

IP Fast Reroute (IPFRR) Concepts

Limited Area of failure

-Failure of Link A <--> B and topology change impacts only subset of network (orange layer, confirmed by FC project)

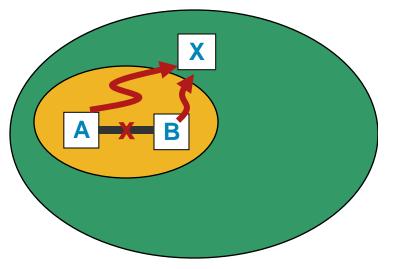
-Outside this area subset routing is consistent (green layers)

Find a consisten point in the network (X)

- X is not impacted by the failure
- X can be reached independent of failure
- X forwards traffic to any destination /wo AB

 From X all packets flow to their destination while avoiding the failure (and without knowledge of the failure)

Several proposal to IETF


Release Point, Downstream Routes, Loop-Free Alternates, U-Turns, Not-Via Addresses

Cisco proposal consists of

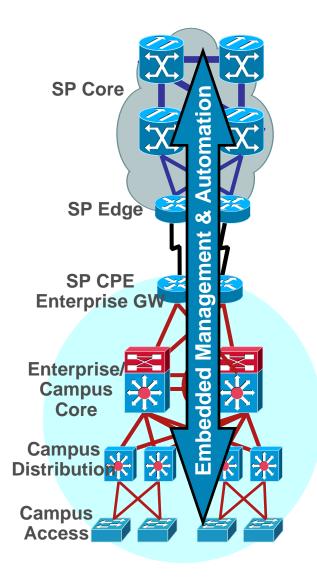
Loop Free Alternates (aka: Downstream Routes)

Not-Via Addresses

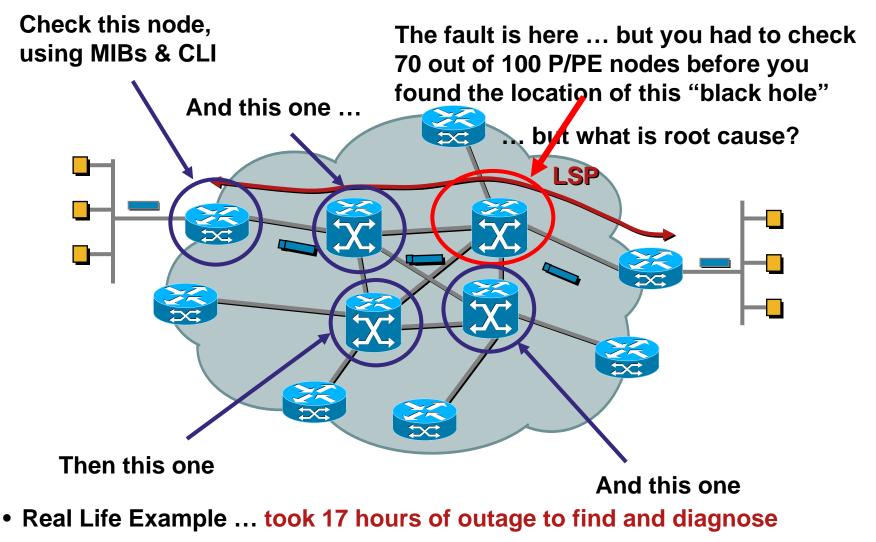
RKIPM-3011 Ordered-SPFAlgorithm cisco Public

Consistent routing

Impacted area of topology change

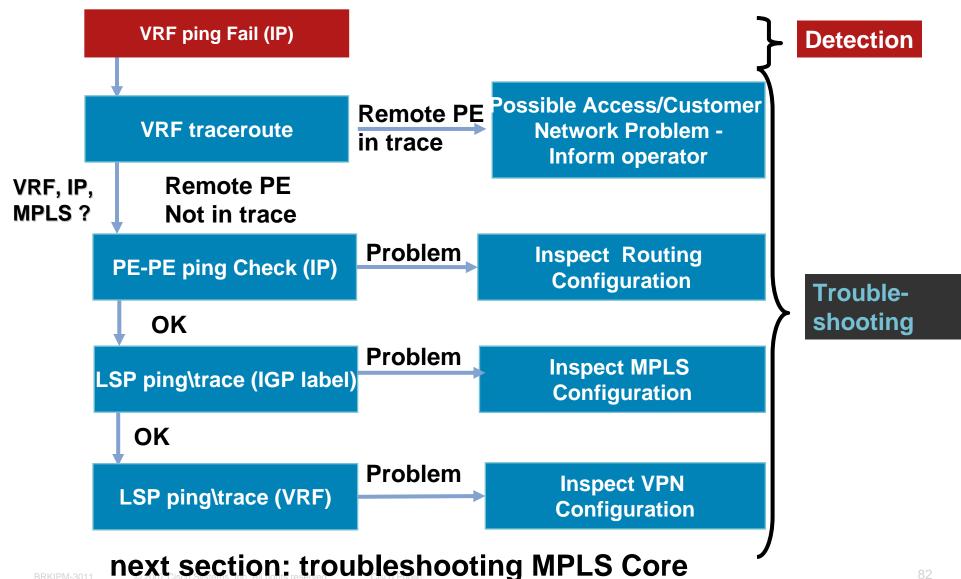

see session BRKIPM-3017 for details

EMBEDDED MANAGEMENT

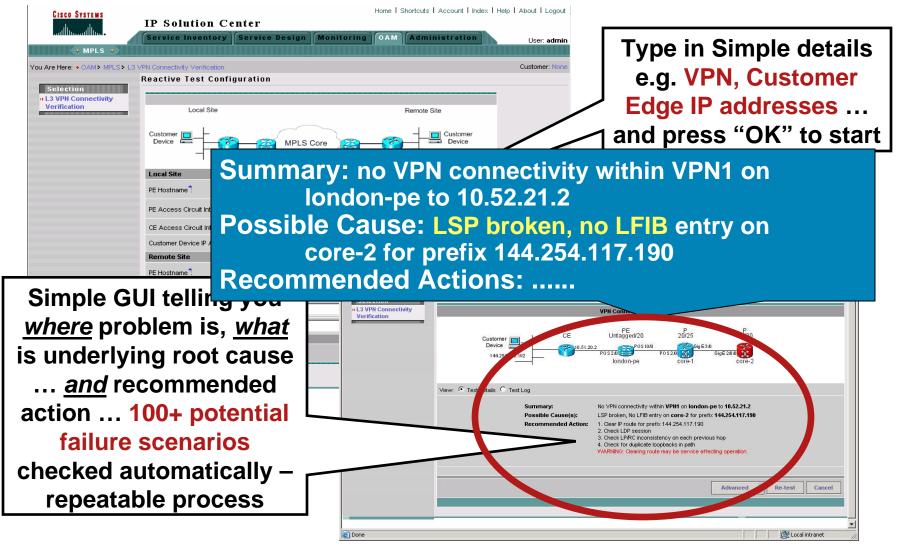


Embedded Management & Automation

- LDP Autoconfig
- MPLS OAM Toolbox: MPLS Ping MPLS Traceroute
- Device Reachability: ICMP, IP SLA,
- SNMP, RMON, Syslog
- Component Outage Online Measurement (COOL)
- Embedded Event Manager (EEM)
- Generic Online Diagnostics (GOLD)
- Internet Solution Center (ISC)
- Cisco MPLS Diagnostics Expert (MDE)



Troubleshooting MPLS/VPN: Fault in MPLS Core LSP "blackhole" (Real Life) Example



Root Cause: partial HW failure on LC affecting LSP forwarding

Troubleshooting Workflow - VRF data plane

MPLS Diagnostics Expert (MDE): Intelligent MPLS Instrumentation

www.cisco.com/go/mde

Automated Failure Scenarios with Cisco MDE

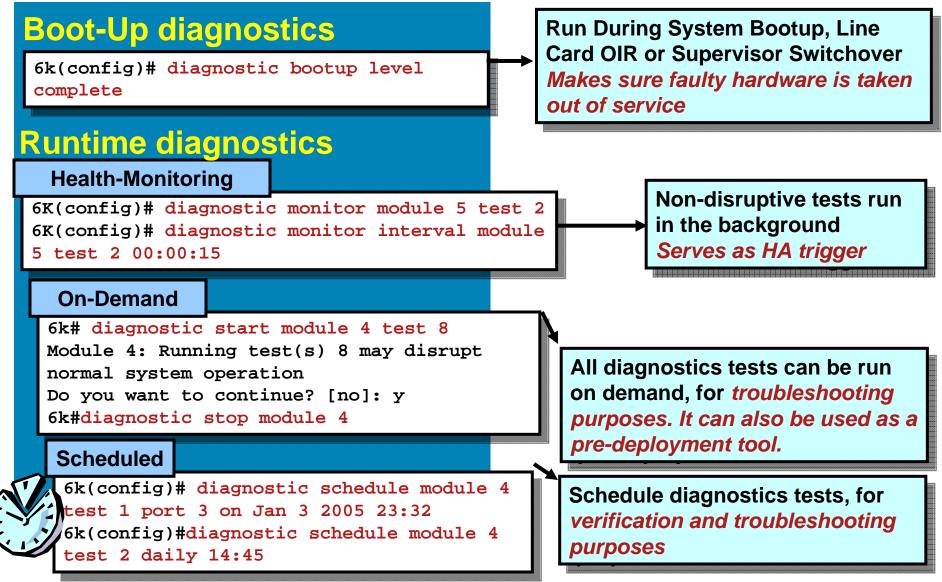
Edge: > 30 Unique Scenarios

- -Config issues e.g. Route Target Mismatches between Ingress/Egress PE
- -Interface not associated with VRF; VRF route limit exceeded
- -Inconsistencies e.g. Route installed into BGP table but not VRF
- -Mismatches between FIB/LFIB; Routes not distributed into MP-BGP

Core: > 30 Unique Scenarios

- -Config issues "finger trouble" e.g. CEF/VPNv4 Address family disabled
- -Label allocation/installation issues; RP/LC inconsistencies
- -LSP Blackholes; Packets too big for Interface MTU
- Access Circuits: > 40 Unique Scenarios
 - -Config issues Interface admin down, Line protocol down
 - -CE/PE connectivity including automated execution of ATM & FR OAM
 - -Packets being dropped in switched (ATM/FR) circuit
- Core failure diagnosis depends upon LSP ping & LSP traceroute Edge & Access <u>Don't</u>
- The 80/20 Rule

Generic OnLine Diagnostics (GOLD) What is it?


- GOLD defines a common framework for diagnostics operations across Cisco platforms running Cisco IOS Software.
- It checks the health of hardware components and verifies proper operation of the system data and control planes.
- Provides a common CLI and scheduling for field diagnostics including :
 - -Bootup Tests (includes online insertion)
 - -Health Monitoring Tests (background non-disruptive)

-User Scheduled and On-Demand Tests (disruptive and Nondisruptive)

-SNMP/CLI access to data via Management Interface

-Deployment tool

Generic OnLine Diagnostics Diagnostics Operations

Generic OnLine Diagnostics: GOLD Test Suite

Bootup Diagnostics

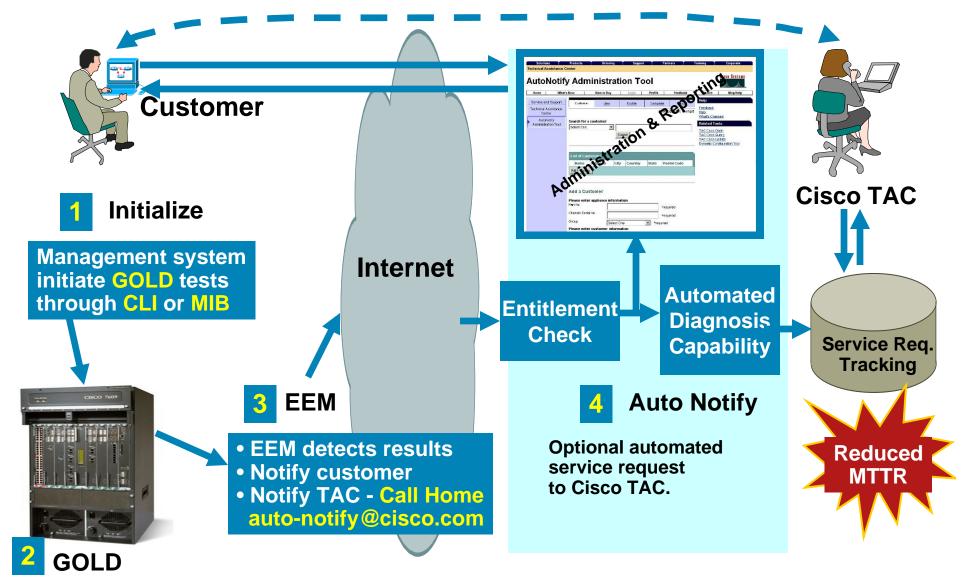
- forwarding Engine Learning Tests (Sup/DFC)
- L2 Tests (Channel, BPDU, Capture)
- L3 Tests (IPv4, IPv6, MPLS)
- Span and Multicast Tests
- CAM Lookup Tests (FIB, NetFlow, QoS CAM)
- Port Loopback Test (all cards)
- Fabric Snake Tests

Health Monitoring Diagnostics

- SP-RP Inband Ping Test (Sup's SP/RP, EARL(L2&L3), RW engine)
- Fabric Channel Health Test (Fabric enabled line cards)
- MacNotification Test (DFC line cards)
- Non Disruptive Loopback Test
- Scratch Registers Test (PLD & ASICs)

On-Demand Diagnostics

- Exhaustive Memory Test
- Exhaustive TCAM Search Test
- Stress Testing


•All bootup and health monitoring tests can be run ondemand

Scheduled Diagnostics

- All bootup and health monitoring tests can be scheduled
- Scheduled Switch-over

Functional Testing combined with components monitoring to detect fault in passive components (connector, solder joint etc.) and active components (ASICs, PLDs etc.)

Catalyst 6500 GOLD / EEM / Call Home / Auto Notify

Embedded Event Manager

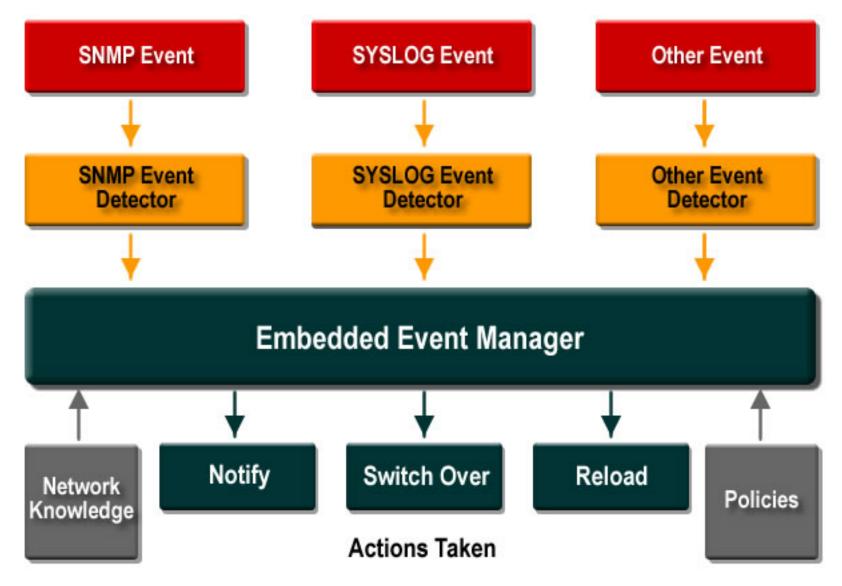
- EEM is an IOS enhancement running on CPU
- Combination of processes designed to monitor key system parameters such as CPU utilization, interface counters, SNMP and SYSLOG events.
- It acts on specific events or thresholds/counters that are exceeded...
- Available on 12.0S, 12.2S, 12.2SX, 12.3T, 12.4 and 12.4T and various platforms, check Feature Navigator

Embedded Event Manager How can it be used?

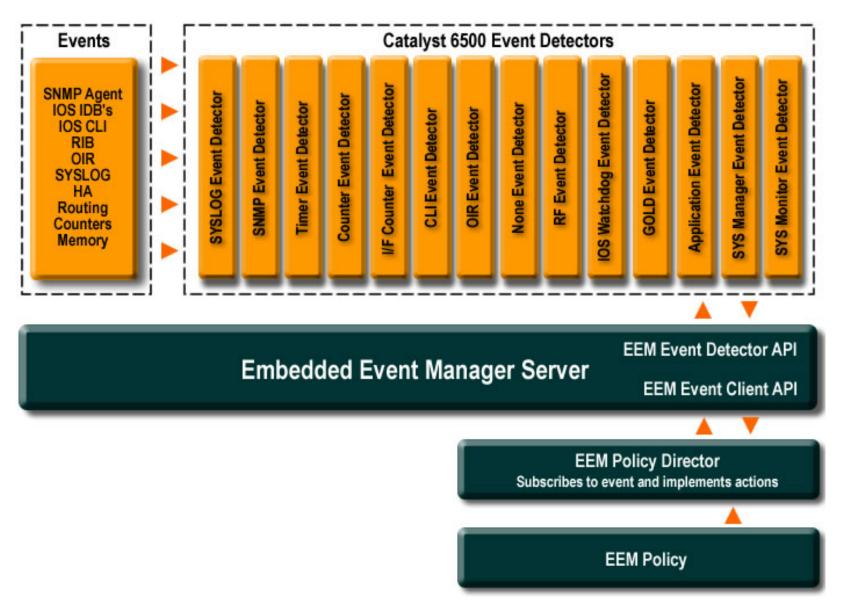
These are a few of the many uses, EEM can be applied to...

Bring a backup link up when a packet drop threshold has been exceeded...

Send an email alert when a configuration change is made in production hours...

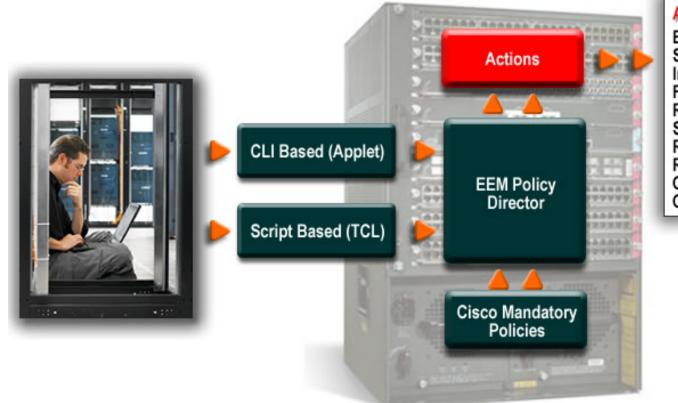

Send a page message to operations if any unauthorized hardware in installed/removed

Run specific cmds at set time intervals to assist in capacity planning


Generate custom SYSLOG on scheduled GOLD diagnostic run highlighting H/W issue..

Generate custom login message based on user-id that logs in

Embedded Event Manager Basic EEM Architecture


Embedded Event Manager Detailed Architecture and Event Detectors

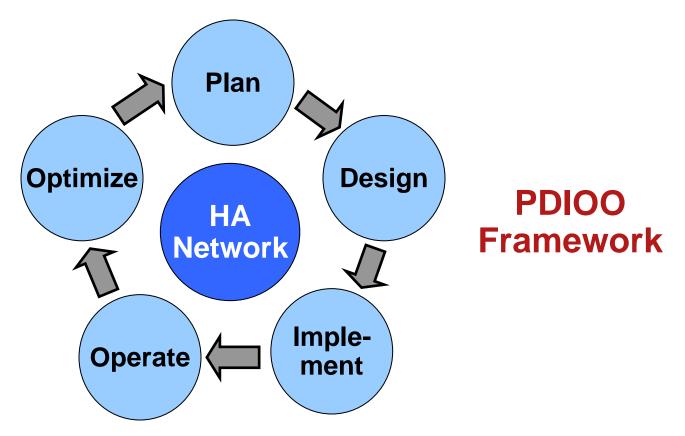
Embedded Event Manager Policies

- Policies defined via:
 - CLI (known as an applet) or
 - TCL script
- Policies loaded onto a local file system
- Policies can generate a variety of actions

ACTIONS

Execute an IOS CLI Command Send a CNS Event Increment/Decrement an EEM Counter Force an SSO Switchover Request System Information Send an E-mail Run another EEM policy Re-load the switch Generate an SNMP trap Generate a SYSLOG message

Embedded Event Manager CLI Commands – applet config mode


PODx#config t Enter configuration commands, one per line. End with CNTL/Z. PODx(config)#event man applet one PODx(config-applet)#event syslog pattern "COUNT" PODx(config-applet)#action 1.0 syslog msg "applet one" PODx(config-applet)#exit PODx(config)#exit 00:04:01: %SYS-5-CONFIG_I: Configured from console by consol **PODx# clear counters** Clear "show interface" counters on all interfaces [confirm]y 00:04:14: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console 00:04:14: %HA_EM-6-LOG: one: applet one PODx#

HIGH AVAILABILITY BEST PRACTISES:

THE CULTURE OF AVAILABILITY

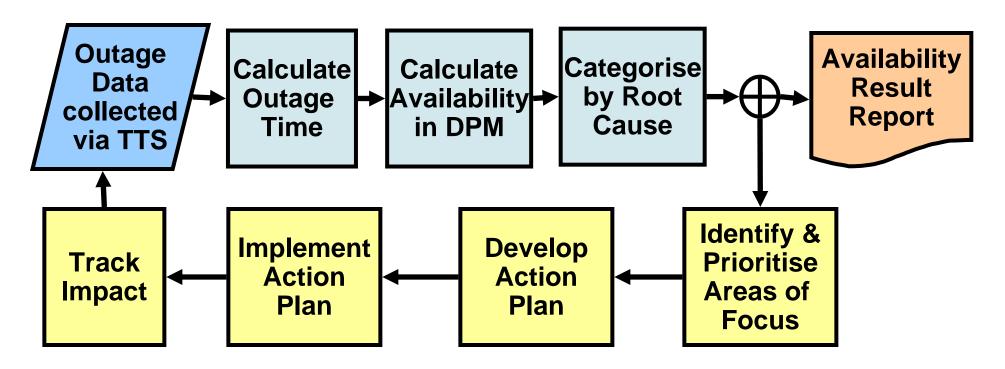
The Culture of Availability

- Calculating, Measuring, and Improving Availability
- People, Process, and Tools for High Availability
- Configuration and Design

What Is Your Availability Level?

Analyze the Gaps: Reactive ~99%

Few, if any, identified processes (fix user reported problems) Low tool utilization Low level of consistency (HW, SW, config, design) No quality-improvement processes


• Analyze the Gaps: Proactive ~99.9%

Good change management processes (what-if analysis, change validation) Fault and configuration management tools Improved consistency (HW, SW, config, design) Typically no quality improvement process

Analyze the Gaps: Predictive ~99.99+%

Consistent processes for fault, configuration, performance, and security Fault, configuration, performance, and workflow process tools Excellent consistency (HW, SW, config, design) HA culture of quality improvement

"Trouble Ticket Availability Measures" Method

- + Easy to get started (no network overhead)
- + Assists Operational & Strategic Business Decisions
- + Better data quality (categorized outages, trend impact to network)
- -- Outage may occur that are not included in Trouble Ticket System
- -- Internal consistency process issues

Cisco Advanced Services NAIS: Network Availability Improvement Service

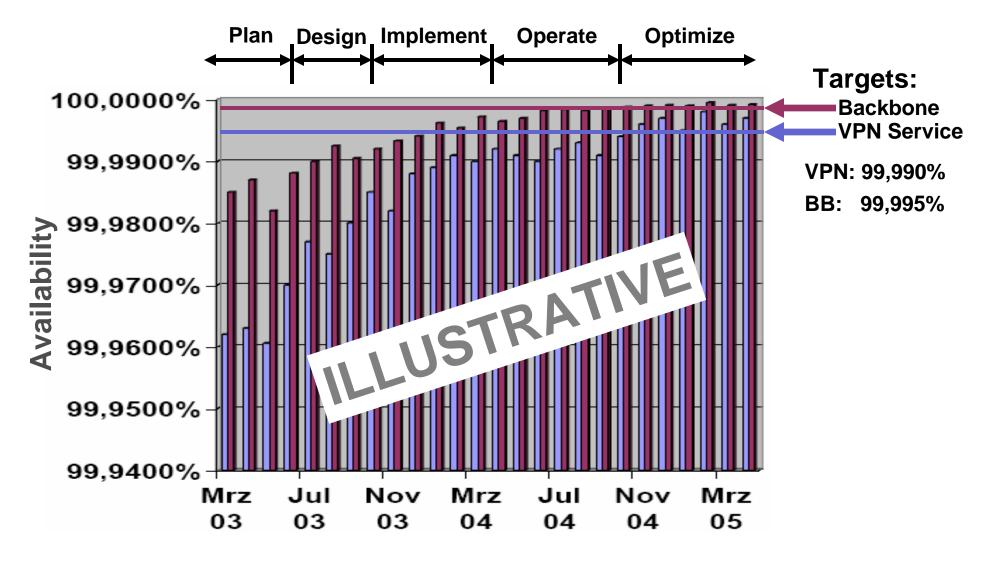
- Service based on "Trouble Ticket Measures" method
- Customized Result Packages

Overall Network Availability (Baseline, Trends)

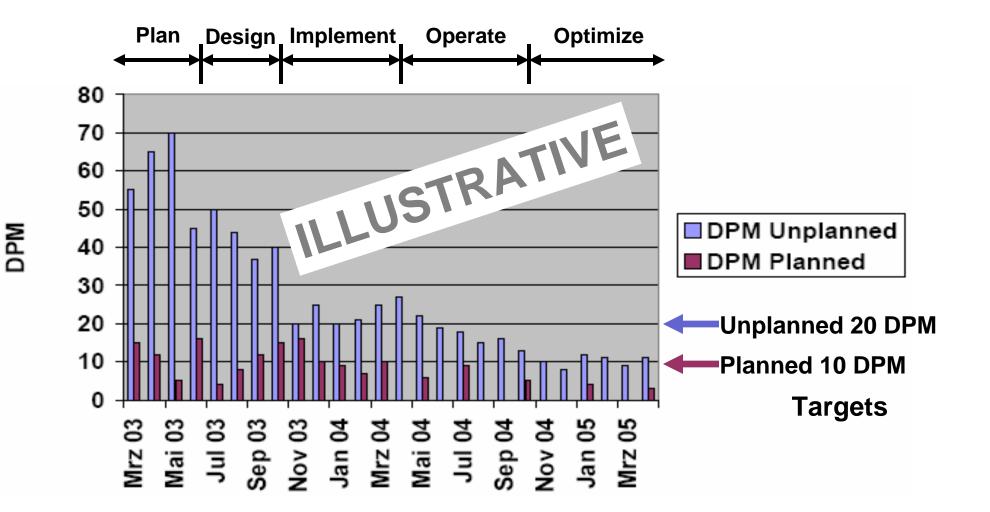
Downtime Analysis:

Planned vs unplanned

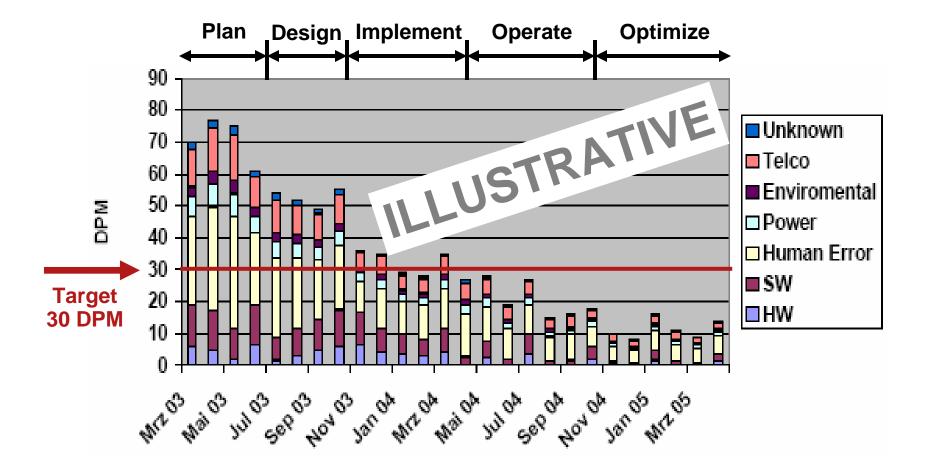
root cause

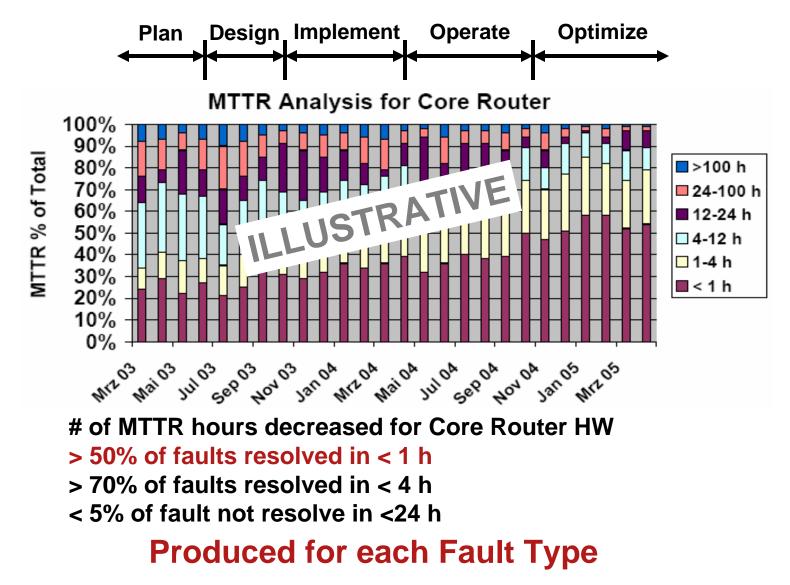

Resolution

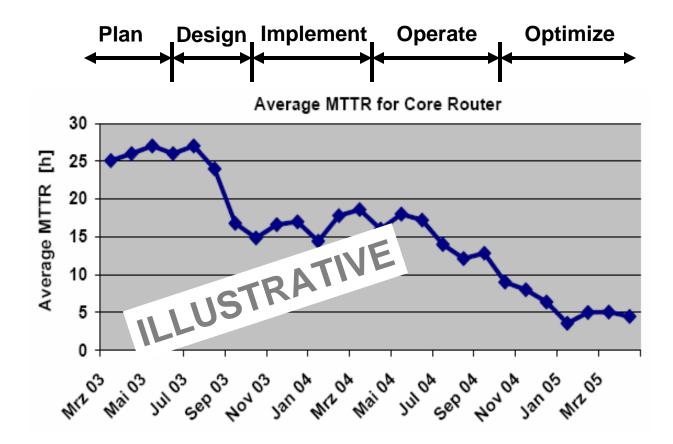
Equipment Tpye


MTTR Analysis

- 100+ Networks worldwide used service to improve availability
- Contact you local Cisco sales team for further information
- http://www.cisco.com/en/US/partner/netsol/ns206/networking_sol utions_white_paper09186a008015829c.shtml


Availability Measurement and Improvement


Reduce Unplanned Outages


Analyse DPM by Cause

MTTR Analysis – Hardware Faults

MTTR Analysis – Hardware Faults

of MTTR hours decreased for Core Router HW reduced average MTTR from 25 h down to 5 h

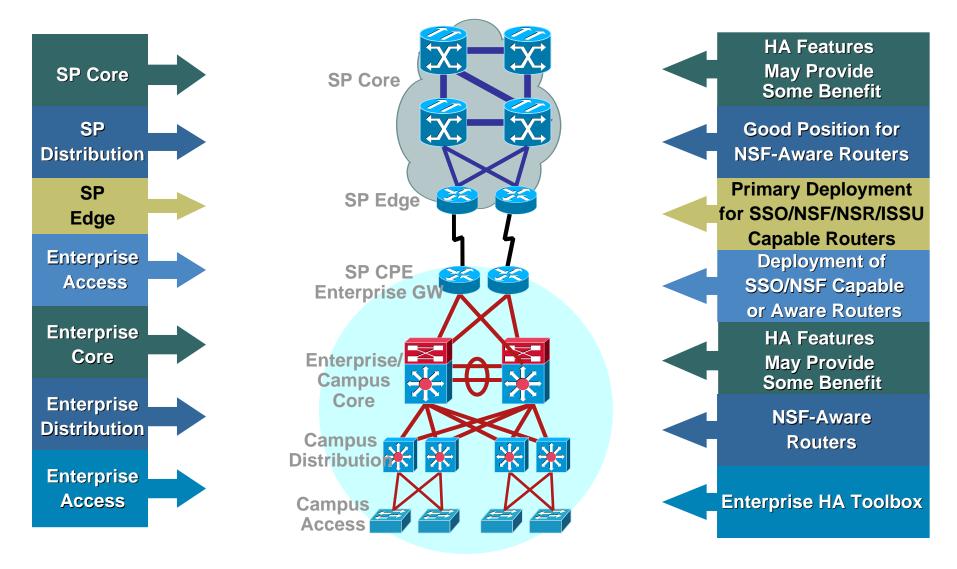
Produced for each Fault Type

"The real value of the RT59 program was to drive tangible availability improvements from assessment through to implementation. Cisco enabled us to prioritize our efforts to bring about the greatest improvements in the shortest amount of time. In addition we have seen productivity benefits and found an opportunity to sell better services to our customers."

Manager of Operations of a Service Provider about NAIS Program, 2003

Getting to 4 Nines

Roadblocks to 4 Nines (99.99%)


- Single point of failure (edge card, edge router, single trunk)
- Outage required for hardware and software upgrades
- Long recovery time for reboot or switchover
- No tested hardware spares available on site
- Long repair times due to a lack of troubleshooting guides and process
- Inappropriate environmental conditions

Getting to 5 Nines

Roadblocks to 5 Nines (99.999%)

- High probability of redundancy failure (failure not detected— redundancy not implemented)
- High probability of double failures
- Long convergence time for rerouting traffic around a failed trunk or router in the core
- Rely on manual operations

NSF/SSO: Deployment Strategies

REFERENCES

Reference Materials

CCO: http://www.cisco.com/go/availability

High Availability White Papers

http://www.cisco.com/en/US/partner/tech/tk869/tk769/tech white papers list.html

Cisco Non-stop Forwarding with Stateful Switchover Deployment Guide:

ood http://www.cisco.com/en/US/tech/tk869/tk769/technologies_white_paper0900aecd801dc5e2.sht m

MPLS High Availability:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122s/122snwft/release/122s25/fsh aov.htm

IP Event Dampening:

http://www.cisco.com/en/US/products/sw/iosswrel/ps1829/products feature guide09186a00806 994c7.html

Bidirectional Forwarding Detection:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122limit/122sx/1221 8sxe/fs bfd.htm

In Service Software Upgrade (ISSU)

http://www.cisco.com/en/US/products/ps7149/products ios protocol group home.html

High Availability Reports

- -Yankee Report, 2/2004: "The Road to a Five-Nines Network"
- -Gartner Report 2001: "Survive in a 24 hours world"
- -Infonetics Report 2/2003: "The Costs of Enterprise Downtime"
- -Meta Group Report 4/2004: "Comprehensive View of HA Data Center Networking"

Cisco Networkers 2007

Associated Sessions (1/2)

IP Routing

- Advances in BGP (BRKIPM-3005: Wedney 08:30, Thursday 15:30)
- Advances in OSPF (BRKIPM-3006: Thursday 08:30, Friday 13:30)
- Advances in EIGRP (BRKIPM-3008: Thursday 08:30)
- IGP, BGP and PIM Fast Convergence (BRKIPM-3004: Wednesday 15:30)
- IP Fast ReRoute Technologies (BRKIPM-3017: Friday 08:30)
- IP Routing Design and Deployment Techtorial (TECIPM-3003)

MPLS Technology

- MPLS Techtorial (TECIPM-300x)
- MPLS Architectures for Enterprise Networks (BRKIPM-2013: Wednesday 15:30)
- MPLS Security in Service Provider Networks (BRKIPM-3012: Thursday 13:30)
- Advanced MPLS Deployment in Enterprise Networks (BRKIPM-3014: Friday 13:30)
- Layer 2 VPNs and Pseudo Wire (BRKIPM-3002: Thursday 08:30, Friday 08:30)
- Advanced Topics and Future Directions in MPLS (BRKIPM-3003: Thursday 15:30, Friday 08:30)

Cisco Networkers 2007

Associated Sessions (2/2)

QoS Technology

- QoS Decomposed: The Components of the QoS Toolkit (BRKIPM-2010: Thursday 1330)
- End-to-end QOS Design: Deploying IP and MPLS QoS for Multiservice Networks

(BRKIPM-3009: Wednesday 08:30, Friday 13:30)

Security:

- Network Core Infrastructure Protection (BRKSEC-2013)
- Network-Based Intrusion Prevention Systems (BRKSEC-2009)
- Detecting and Mitigating Denial of Service Attack (DRKSEC-2014)
- Detecting Router Abuse (BRKSEC-2015)

Network Management

- Operating MPLS Networks and Services (TECNMS-2001)
- Protecting the SP network against attacks (TECNMS-2003)
- Advanced Network Performance measurements /w IP SLA (BRKNMS-3004)

Recommended Reading

Summary: Building Highly Available IP and MPLS Networks

High Availability Fundamentals

how to calculate and estimate System/Network Availability

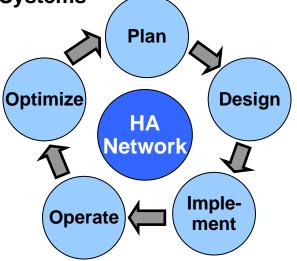
System Level Resiliency

Stateful Switchover (SSO) basic infrastructure for NSF, NSR, ISSU Non-Stop Forwarding (NSF) with Zero Packet Loss Non-Stop Routing (NSR) for PE-CE Deployments Warm Reload / Warm Upgrade for Single Processor Systems In-Service Software Upgrade (procedure)

Network Level Resiliency

IP Event Dampening to isolate unstable links BFD as single mechanism for liveness detection Fast Convergence and Fast Rerouting

Embedded Management


MPLS Diagnostics Expert (MPLS OAM) Generic Online Diagnostics (GOLD) Embedded Event Manager (EEM)

High Availability Best Practises

High Availability Network Life Cycle (PDIOO)

Trouble-Ticket Availability Measures Method (Cisco NAIS Service)

Roadblocks to 4 and 5 Nines

Recommended Reading

BRKIPM - 3011

- Continue your Networkers learning experience with further reading from Cisco Press.
- Visit the on-site Cisco company store, where the full range of Cisco Press books is available for you to browse.

Meet the Experts IP and MPLS Infrastructure Evolution

- Andy Kessler Technical Leader
- Beau Williamson Consulting Engineer
- Benoit Lourdelet IP services Product manager
- Bertrand Duvivier Consulting Systems Engineer
- Bruce Davie Cisco Fellow
- Bruce Pinsky Distinguished Support Engineer

Meet the Experts

IP and MPLS Infrastructure Evolution

- Gunter Van de Velde Technical Leader
- John Evans
 Distinguished Systems Engineer
- Oliver Boehmer
 Network Consulting Engineer
- Patrice Bellagamba Consulting Engineer
- Shannon McFarland Technical Leader

Meet the Experts IP and MPLS Infrastructure Evolution

- Andres Gasson Consulting Systems Engineer
- Steve Simlo Consulting Engineer
- Toerless Eckert Technical Leader
- Dino Farinacci Cisco Fellow & Senior Software Engineer

#