
ATM Signalling
PROTOCOLS AND PRACTICE

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

ATM Signalling
PROTOCOLS AND PRACTICE

Hartmut Brandt
GA4D Fokus, Berlin, Germany

Christian Hapke
vectos GmbH, Berlin, Germany

JOHN WILEY & SONS, LTD
Chichester New York Weinheim Brisbane Singapore Toronto

Copyright 0 2001 by John Wiley & Sons, Ltd
Baffiins Lane, Chichester,
West Sussex, P019 IUD, England

National 01243 779777
International (+44) 1243 779777

e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on http://www.wiley.co.uk or http://www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms
of the Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing
Agency, 90 Tottenham Court Road, London, W1P 9HE, UK, without the permission in writing of the Publisher, with
the exception of any material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the publication.

Neither the author@) nor John Wiley & Sons Ltd accept any responsibility or liability for loss or damage occasioned to
any person or property through using the material, instructions, methods or ideas contained herein, or acting or
refkainiing from acting as a result of such use. The author@) and Publisher expressly disclaim all implied warranties,
including merchantability of fitness for any particular purpose.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where
John Wiley & Sons is aware of a claim, the product names appear in initial capital or capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding trademarks and registration.

Other Wiley Editorial Ofices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Wiley-VCH Verlag GmbH
Pappelallee 3, D-69469 Weinheim, Germany

Wiley Australia Ltd, 33 Park Road, Milton,
Queensland 4064, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road
Rexdale, Ontario, M9W 1L1, Canada

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01,
Jin Xing Distripark, Singapore 129809

Library of Congress Cataloging-in-Publication Data
Brandt, Hartmut, 1963-

ATM signalling: protocols and practice / Hartmut Brandt, Christian Hapke.

Includes bibliographical references and index.
ISBN 0 471 62382 2

p. cm.

1. Asychronous transfer mode. 2. Signals and signalling. I. Hapke, Christian, 1974- 11.
Title.

TK5105.35. B73 2001
621.382’16 - dc21

British Library Cataloguing in Publication Data

A catalogue record for this book is available fkom the British Library

ISBN 0 471 62382 2

00-069345

Contents

Preface . ix

... Abbreviations . xm

1 Introduction . 1
1 .l Organisation of the Book . 2
1.2 Systems used for Experiments . 2
1.3 Protocol Tracing Tools . 4

1.3.1 Introduction . 4
1.3.2 Sun Batman API to Packet Stream Stub baps 5
1.3.3 Fore API to Packet Stream Stub f aps 5
1.3.4 Reading ATM Cells with HP 75000 BSTS and hpcs 5
1.3.5 Cell Stream Dump with csdump . 6
1.3.6 AAL5 Reassembly Tool a5r . 6
1.3.7 Generic Packet Stream Dump psd 6
1.3.8 Trace SSCOP Protocol tool sscopdump 6
1.3.9 Generic Decoder for UN1 3.1, UN1 4.0, 4.2931 and PNNI 1.0

Signalling sigdump . 6
1.3.10 ATM Forum PNNI 1 . 0 Routing Decoder pnnidump 7
1.3.11 ILMI Dump tool ilmidump . 7

1.4 ATM Protocol Software . 7
1.5 Standardisation Process . 7

2 Overview of ATM Signalling . 9
2.1 Signalling Interfaces and Protocols . 9
2.2 Example ATM Connection . 11

3 UNI: User-Network Interface . 17
3.1 Overview . 17
3.2 Configuration . 19

3.2.1 Signalling Channels and Modes . 20
3.2.2 Proxy Signalling . 22
3.2.3 Virtual UNIs . 24

3.3 UN1 Messages . 25
3.3.1 Message Header . 26
3.3.2 Information Elements . 28

vi CONTENTS

3.3.3 Information Element Coding . 30
3.3.4 Coding Examples . 30
3.3.5 Interdependence of Information Elements 35

3.4 Connection States . 36
3.5 Point-to-point Calls . 37

3.5.1 Outgoing Calls . 40
3.5.2 Connection Identifier Selection . 44
3.5.3 Negotiation of Connection Characteristics 45
3.5.4 Incoming Calls . 47
3.5.5 Unsuccessful Calls . 51
3.5.6 Clearing a Call . 54
3.5.7 Status Enquiry Procedure and STATUS Messages 59

3.6 Point-to-Multipoint Calls . 60
3.6.1 End Point References and Party States 63
3.6.2 Establishment of the First Party . 66
3.6.3 Adding a Leaf . 66
3.6.4 Rejecting an ADD PARTY Request 72
3.6.5 Dropping a Leaf . 72
3.6.6 Party Status Enquiry Procedure . 76
3.6.7 Leaf-Initiated Join . 77

3.7 Restart Procedure . 82
3.8 Interface to the SAAL . 85
3.9 Exception Handling . 88
3.10 The Structure of a UN1 Protocol Instance 94

4 ATM Addresses .
4.1 The semantics of Addresses .
4.2 Called and Calling Party Numbers .
4.3 AESA: ATM End System Address .
4.4 Native E . 164 Addresses .
4.5 ATM Anycast .
4.6 Address Aggregation .
4.7 Summary .

99
99
99

102
105
105
106
108

5 SAAL: Signalling ATM Adaptation Layer . 109
5.1 SSCOP: Service Specific Connection Oriented Protocol 110

5.1 . l SSCOP Interfaces . 113
5.1.2 Message Types . 114
5.1.3 State Variables . 114
5.1.4 Connection Establishment . 116
5.1.5 Connection Tear-down . 121
5.1.6 Assured Data Transfer and Keep-Alive 122
5.1.7 Flow Control . 130
5.1.8 Recovery from Protocol Errors . 133
5.1.9 Resynchronisation . 135
5.1.10 Unassured Data Transfer . 137
5.1.1 1 Message Retrieval and Buffer Management 138

CONTENTS vii

5.1.12 Interface to Layer Management . 141
5.2 SSCF UNI: Service Specific Coordination Function at the UN1 143
5.3 SSCF NNI: Service Specific CoordinationFunction at theNNI 144
5.4 Summary . 149

6 PNNI: Private Network Node Interface . 151
6.1 Introduction . 151

6.1.1 Introduction to the PNNI Routing Protocol 151
6.1.2 Introduction to the PNNI Signalling Protocol 153

6.2 Routing Protocol . 153
6.2.1 Addressing . 153
6.2.2 Logical Links . 155
6.2.3 PNNI Routing Control Channels . 155
6.2.4 Identifiers and Indicators . 156
6.2.5 Hello Protocol . 158
6.2.6 Database Synchronisation . 162
6.2.7 Topology Description and Distribution 165
6.2.8 Advertising and Summarising Reachable Addresses 166
6.2.9 Flooding . 167
6.2.10 Hierarchy . 167
6.2.1 1 Communication Examples . 167

6.3 Signalling Protocol . 188
6.3.1 Communication Examples . 190

6.4 Summary . 198

7 ILMI: Integrated Local Management Interface 199
7.1 Introduction to ILMI . 199
7.2 The ILMI Protocol . 200
7.3 The ATM Interface MIB . 201

7.3.1 System Information MIB . 201
7.3.2 Link Management MIB . 202
7.3.3 Address Registration MIB . 203

7.4 Automatic Configuration . 203
7.4.1 Automatic Link Configuration . 203
7.4.2 Automatic Address Registration . 204

7.5 ILMI Communication Examples . 205
7.5.1 An Unattached ATM End System Interface 206
7.5.2 An Unattached ATM Switch Port 206
7.5.3 An ATM Link is Going Up . 207
7.5.4 An ATM Link is Up (Normal Operation) 212
7.5.5 An ATM Link is Going Down . 212
7.5.6 Addition of an ATM Address Prefix 213
7.5.7 Removal of an ATM Address Prefix 214

7.6 Summary . 215

8 Protocols on Top of ATM Signalling . 217
8.1 Introduction . 217

... v111 CONTENTS

8.2 CLIP: Classical IP over ATM . 217
8.2.1 Overview . 217
8.2.2 IP PDU Encapsulation . 219

8.3 LANE: LAN Emulation over ATM . 222
8.3.1 Overview . 222
8.3.2 LANE Connections . 223
8.3.3 LEC States . 225
8.3.4 Address Registration . 226
8.3.5 Address Resolution . 227
8.3.6 User Data Transport . 229
8.3.7 Flush Message Protocol . 230
8.3.8 Verify Protocol . 231
8.3.9 Interface to Higher Layer Services 231
8.3.10 Management of a LEC . 232

8.4 Sylvia: A Native ATM Multimedia Application 232
8.5 Summary . 233

Appendix A ITU-T Standards . 235

Appendix B Source Code Availability . 239
B.l Standards . 239

B . 1 .l ATM Forum Standards . 239
B . 1.2 ITU-T Standards . 239
B.1.3 RFCs . 239

B.2 Protocol Tracing Tools . 239
B.3 ATM Protocol SoRware . 240

8.2.3 ATMARP: ATM Address Resolution Protocol in CLIP 220

. References 241

Index . 247

Preface

After more than 10 years of standardisation effort, the asynchronous transfer mode (ATM)
technology has experienced a remarkable growth in backbone and large private networks
during the last few years. ATM has not fulfilled all its expectations: it was seen as the network
technology of the future ranging from desktop applications to large scale backbone networks.
With the advent of cheap and fast Ethernet solutions, the “ATM to the desktop” tendencies
have slowed down and it is not clear whether this will change in the near future. However,
ATM is growing, especially for large networks-it proves to be scalable, reliable and able to
provide Quality of Service (QoS) guarantees for applications. All three of these features of
ATM are essential for the deployment of this technology in integrated networks, i.e. networks
that are equally suited to transport classical telephony traffic as well as data traffic.

The features of ATM do not come cheaply for. ATM technology is complex. Two major
organisations have driven the standardisation process and continue to produce new standards:
the ITU-T’ and the ATM-Forum. There are many more than one hundred standards (or
recommendations) issued by the ITU-T, mainly in the I and Q-Series, and the ATM-Forum
web-site lists 155 standards at the time of writing. The situation is further complicated by
the fact that most of the standards are written in a style that is very different from the more
informal style used in Internet RFCs. This makes it hard to read and understand for people not
used to this style. As an example, the standard describing the transport protocol used in ATM
signalling (4.21 lO), consists of about 50 pages of SDL (Structured Description Language)
and only about 10 pages prose description. For the beginner in ATM it is often hard even to
find out, which standards are the most relevant ones.

This book presents a small part of the entire ATM technology in a more practical way than
is done in standard documents. It is addressed to people doing practical work with ATM and
to people who want to understand what ATM is and how it works.

The book focusses on the signalling protocols used in private ATM networks and protocols
built on top of signalling. ATM, in contrast to the IP protocol used in the Internet, is
connection-oriented. This means that before one can send data, a connection must be
established to the intended receiver. To establish and control a connection, a specialised
suite of signalling protocols is used. These protocols are quite complex but a thorough
understanding of them is necessary to understand ATM networks.

ATM networks are generally divided into two classes: public networks and private net-
works. Public ATM networks are used in the backbone networks of the large telecommuni-
cation operators. The exceptionally strong reliability and performance requirements of these

International Telecommunication Union, the former CCITT (Comiti: consultatif international ti:li:graphique et
t6li:phonique).

X PREFACE

networks and the necessity of intenvorking with existing equipment and the smooth introduc-
tion of new technology have lead to a complex architecture and a set of complex protocols for
these networks. In private networks, on the other hand, performance requirements are not so
high and the existing infrastructure can be changed more easily. For this reason the protocols
used in private ATM networks are sometimes different from those in public networks. Be-
cause it is most likely that people are going to use private ATM network equipment, the book
focuses on the appropriate protocols. Where appropriate public ATM protocols are discussed
in short.

The book not only explains the protocols, but also shows traces of the most relevant protocol
operations. To really understand protocol operation, it is not enough to read, how a protocol
should work, but hands-on experience is needed in different situations. One way to get this
experience is to trace an existing network during operation, another is to use a controllable
protocol implementation to force the protocol into different states and observe how it behaves
by means of communication traces. In both cases it is essential to see how the communication
between protocol instances work. The tools needed to obtain communication traces for the
ATM signalling protocols are publicly available and can be used to repeat the experiments.
Experience has shown that tracing is also an excellent tool for finding problems in a network.
In the ATM network used for the experiments in this book, optical splitting boxes are inserted
permanent into most strategic links (for example, links between major switches). These boxes
deliver a copy of the traffic on the given link to test systems. If problems arise in the network,
tracing tools can be used on the test systems to locate the problems.

The material in this book is based on ITU-T standards and ATM-Forum standards as well
as on more than five years of practical experience with ATM. GMD Fokus was one of the
early users of ATM technology in Germany. In the ATM laboratory of GMD Fokus, ATM
equipment of different vendors was used and tested. Numerous protocols and testing tools
were implemented. GMD Fokus took also part in several European Union ACTS (Advanced
Communications Technologies and Services) projects, like INSIGNIA and ELISA, which
were dedicated to ATM. In these projects applications and signalling stacks were implemented
and successfully demonstrated. In the last two years, work on ATM in Fokus has moved to
more advanced topics like wireless and mobile ATM, ATM over satellites and security in ATM
networks.

Acknowledgements

We wish to thank all our friends for their support during the writing of this book. Their
patience and encouragement made this project possible.

GMD Fokus’s ATM Laboratory provided a good working environment where we could run
most of our experiments on the available ATM infrastructure.

It has been a pleasure working with the Tina protocol tracing tools. These tools are the basis
of experiments described in this book. We especially thank Jorg Micheel, Robert H. Fomin
and Harold I. Coy of the Begemot Computer Associates team who were developing these
tools together with both authors. We also thank Robert H. Fomin for the development of the
protocol software that we used in many experiments.

A camera-ready copy of this book was produced by the authors. The book was typeset with
UT@, a macro package for T@. The figures were drawn using the xf ig UNIX program. The
bibliography was prepared using bibtex. The book design was provided and implemented in
UT@ by Wiley.

PREFACE xi

We also would like to thank vectos Corporation for its support and patience during the
time-consuming preparation of the manuscript.

It is the publisher that does whatever is required to deliver the final product to the reader.
Pak-Hang Wan, Sarah Hinton and Robert Hambrook gave us much support and encouraged
us to finish the manuscript. Many other professionals at Wiley worked to finish the book.

Finally, we welcome emails from any reader with comments, suggestions or bug fixes.

Berlin, Germany
August 2000

Hartmut Brandt <brandtOf okus . gmd. de>
Christian Hapke <Christian. hapkeQvectos. de>

Abbreviations

AA Administrative Authority

AAL ATM Adaptation Layer

AALS ATM Adaptation Layer 5

AAL-CP ATM Adaptation Layer Common Part

ABR Available Bit Rate

AESA ATM End System Address

AFI Authority and Format Identifier

AINI ATM Inter-Network Interface

ANS ATM Name Service

ANSI American National Standards Institute

AoD Audio on Demand

API Application Programming Interface

ARP Address Resolution Protocol

ASP ATM Service Provider

ATM Asynchronous Transfer Mode

ATMARP ATM Address Resolution Protocol

ATMF ATM Forum

AvCR Available Cell Rate

AW Administrative Weight

BCD Binary Coded Decimal

BHLI Broadband Higher Layer Information

B-ICI B-ISDN Inter Carrier Interface

xiv ABBREVIATIONS

B-ISDN Broadband ISDN

B-ISUP Broadband ISDN User Part

BLLI Broadband Lower Layer Information

BUS Broadcast and Unknown Server

CAC Call Admission Control

CBR Constant Bit Rate

CDV Cell Delay Variation

CLIP Classical IP over ATM

CLIR Calling Line Identification Restriction

CLP Cell Loss Priority

CLR Cell Loss Ratio

COB1 Connectionless Bearer-Independent

CP-AAL Common Part AAL

CPCS Common Part Convergence Sublayer

CR Cell Rate

CRC Cyclic Redundancy Check

CRM Cell Rate Margin

CTD Cell Transfer Delay

DCC Data Country Code

DFI Domain Specific Part Format Indicator

DFN Deutsches Forschungsnetzwerk

DNS Domain Name System

DS Database Summary

DSP Domain Specific Part

DTL Designated Transit List

ESI End System Identifier

ETSI European Telecommunications Standards Institute

Eurescom European Institute For Research And Strategic Studies in Telecommunications

FCS Frame Check Sequence

ABBREVIATIONS xv

FSM Finite State Machine

GCAC Generic Call Admission Control

HO-DSP High-Order DSP

ICD International Code Designator

ID Identification

ID1 Initial Domain Identifier

IDP Initial Domain Part

IE Information Element

IETF Internet Engineering Task Force

IG Information Group

ILMI Integrated Local Management Interface

IME Interface Management Entity

InATMARP Inverse ATM Address Resolution Protocol

IP Internet Protocol

IPv4 IP version 4

IPv6 IP version 6

ISDN Integrated Services Digital Network

ITU-T International Telecommunication Union

LAN Local Area Network

LANE LAN Emulation over ATM

LE LAN Emulation

LE Service LAN Emulation Service

LEC LAN Emulation Client

LECID LAN Emulation Client ID

LECS LAN Emulation Configuration Server

LES LAN Emulation Server

LGN Logical Group Node

LIS Logical IP Subnetwork

LLC Logical Link Control

xvi ABBREVIATIONS

LNNI LAN Emulation Network-Network Interface

LUNI LAN Emulation User-Network Interface

MAC Media Access Control

MAC Multiple Access Control

maxCR maximum Cell Rate

maxCTD maximum Cell Transfer Delay

MIB Management Information Base

MID Multiplexing Identifier

MPOA Multi Protocol Over ATM

MTP3b Message Transfer Part 3 (broadband)

MTU Maximum Transport Unit

NDIS Network Driver Interface Specification

N-ISDN Narrowband ISDN

NNI Network-Node Interface

NSAP Network Service Access Point

ODI Open Data-link Interface

OUI Organisationally Unique Identifier

PDU Protocol Data Unit

PGL Peer Group Leader

PNNI Private Network Node Interface

POTS Plain Old Telephone System

prefix Network Address Prefix

PSA Proxy Signalling Agent

PTSE PNNI Topology State Element

PTSP PNNI Topology State Packet

PVC Permanent Virtual Connection

PVCC Permanent Virtual Channel Connection

PVPC Permanent Virtual Path Connection

QoS Quality of Service

ABBREVIATIONS xvii

RAIG Resource Availability Information Group

RCC PNNI Routing Control Channel

RCC Routing Control Channel

W C Request for Comments

W C Remote Procedure Call

SAAL Signalling ATM Adaptation Layer

SDL Structured Description Language

SEL Selector

SMS Selective Multicast Server

SNAP SubNetwork Attachment Point

SNMP Simple Network Management Protocol

SSCF Service Specific Coordination Function

SSCOP Service Specific Connection Oriented Protocol

SSCP Signalling Connection Control Part

SSCS AAL Service Specific Convergence Sublayer

stdin standard input

stdout standard output

SVC Switched Virtual Channel

SVCC Switched Virtual Channel Connection

SVP Switched Virtual Path

TCAP Transaction Capabilities

TLV TypelLengthNalue

TNS Transit Network Selection

UBR Unspecified Bit Rate

ULIA Uplink Information Attribute

UN1 User-Network Interface

UPC Usage Parameter Control

VBR Variable Bit Rate

VC Virtual Channel

xviii ABBREVIATIONS

VCC Virtual Channel Connection

VC1 Virtual Channel Identifier

VoD Video on Demand

VP Virtual Path

VPC Virtual Path Connection

VPCI Virtual Path Connection Identifier

VPI Virtual Path Identifier

VR Variance Factor

Index

a5r, 6, 168, 191
a5r tool, 205
AAL, 109
AAL for signalling, 109
AAL-CP, 110
AAL-DATA Signal, 86
AAL-ESTABLISH Signal, 85
AAL-RELEASE Signal, 85
AAL3/4, 109
AAL5, 6,109,219
Access switch, 9
Acknowledgement, 123
ADD PARTY

ADD PARTY ACKNOWLEDGE message, 63,
69

ADD PARTY message, 61
Address

Message, 67

AESA, 101,102
E.164, 101, 105
NSAP, 101

Address aggregation, 106
Address hierarchy, 106
Address MIB table, 205
Address registration, 204,226
Address registration MIB, 203
Address resolution, 227
Address scope, 157
Addressing, 99
AESA, 99,102
AFI, 103, 154
Agent application, 200
AINI, 11
Alerting, 13,62, 68
ALERTING message, 62,68,91
Anycast, 105, 157
AoD, 232
AppleTalk, 222
Application on top of ATM, 232
ARP, 227
Assured data transfer, 122
Asynchronous Transfer Mode, 1
ATM, 1

ATM adaptation layer, 2
ATM Addresses, 99
ATM cell, 1
ATM cells, 1
ATM cube, 1
ATM end system address, 102
ATM end systems, 3
ATM Forum, 1
ATM Forum Standards, 239
ATM Interface MIB, 201
ATM signalling overview, 9
atmos, 3
Audio on Demand, 232
Automatic Address Registration, 204
Automatic Configuration, 203
Automatic Link Configuration, 203
AvCR, 166
AW, 166

B-ICI, 11
B-ISUP, 11, 110, 146
baps, 5
BCD, 103
Begemot

Begemot Computer Associates, 4
Begemot Computer Associates team, X
BLLI, 30
Bridge, 222
Broadband Series Test System, 5
BSTS, 5
Buffer management, 138
BUS, 222
BUS Connect state, 226

Call FSM, 95
CALL PROCEEDING message, 61,68,9 1
Call state compatibility, 60
Called Party Number, 78,99,204
Calling Party Number, 78,99,204
Cause

FreeUNI, 94

Classes of, 59
Diagnostics, 59
Information Element, 58

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

248 INDEX

Location, 58
CDV, 166
Cell stream, 4
Cells, 1
Classical IP over ATM, 2 17
Clear-buffers parameter, 139
CLIP, 2 17
CLIR, 52
CLP, 166
CLR, 166
CO-ord-N, 94
CO-ord-U, 94
coldstart trap, 200
Configuration state, 225
Configure Direct flow, 223
CONNECT ACKNOWLEDGE message, 63
CONNECT message, 63,69
Connected number, 100
Connection identifier IE, 82
Connection scope, 106
Control Direct flow, 224
Control Distribute flow, 224
Control plane, 1,9
Coordinator process, 94
Coordinator State, 86
Country code, 105

CPCS, 113
CR, 166
C M , 166
csdump, 6
CTD, 166

CP-AAL, 109

Data Country Code, 103
Data Direct flow, 224
Database, 200
Database Summary Packets, 153
DCC AESA, 103
Default Multicast Send flow, 224
DROP PARTY ACKNOWLEDGE message, 63,

DROP PARTY message, 63,72
Dropping a leaf, 72
DS, 153
DSP, 103
DTL, 188

E.164, 99, 103, 105
Embedded E.164, 103
End system, 3,9
End System Identifier, 204
Endpoint reference, 63
Endpoint state, 65
ESI, 204

72

Ethernet, 217,222
Examples of PNNI routing protocol, 167
Examples of PNNI signalling protocol, 190
Experiments with ATM systems, 2
Explicit error handling, 93

faps, 5
Flow control, 123, 130
Flush message protocol, 230
forelle, 2
foreplay, 2
forest, 2
forever, 2
FreeUNI, 94

GCAC, 167
Get, 200
GetNext, 200
GetNextRequest-PDU, 200
GetRequest-PDU, 200
GetResponse-PDU, 200

Hello Protocol, 158
HP 75000 BSTS, 5
hpcs, 5

ICD AESA, 103
IDI, 103
IDP, 103
IEEE 802.3,217,222
IEEE 802.5,217,222
IG, 161
ILMI, 9, 157, 199
ILMI Protocol, 200
ilmidump, 7
ilmidump tool, 205
IME, 199
Information Element

Cause, 58
Connection Identifier, 82
Endpoint reference, 63
Endpoint state, 66
Restart indicator, 82

Information element
error in, 91
mandatory, 9 1
non-mandatory, 9 1

Initial Registration state, 226
Initial SSCOP window, 131
Initial State, 225
Integrated link management interface, 199
Integrated local management interface, 199
Interface MIB, 201
Interfaces, 9

INDEX 249

Interim local management interface, 199
International Telecommunication Union, 1
Internet, 233

IP over ATM, 2 17
IP PDU, 219
IPv4,222
IPv6,222
ITU, 1
ITU-T Standards, 235,239

Join state, 226

IP datagram, 2 19

Keep-alive, 122
kirk, 3

LAN Emulation, 2 17
LAN Emulation over ATM, 222
LANE, 217,222
Leaf-initiated join, 77

Leaf-prompted, 77
Network-prompted, 8 1
Root-prompted, 77,79

LEC, 222
LECS, 222
LECS Connect state, 225
LES, 222
LGN, 152
LIJ, see Leaf-initiated join
Link management MIB, 202
LIS, 218
LLC, 219
Local AESA, 103
Locator, 99
Logical group node, 152
Logical links, 155
Logical node, 152
lovina, 3

MAC, 231
MAC address, 99
Management, 232
Management application, 200
Management data transfer, 137
Management Information Base,

232
200, 201, 225,

Management plane, 1
Mandatory idormation element, 91
maxCR, 166
maxCTD, 166
Message

ADD PARTY, 6 1,67
ADD PARTY ACKNOWLEDGE, 63,69
ALERTING, 62,68,91

BGAK, 115,117
BGN, 111,117
BGREJ, 115,117
CALL PROCEEDING, 61,68,91
call reference error, 90
CONNECT, 63,69
CONNECT ACKNOWLEDGE, 63
DROP PARTY, 63,72
DROP PARTY ACKNOWLEDGE, 63,72
END, 115,121
ENDAK, 115, 121
ER, 111, 115, 133
ERAK, 115,133
MD, 115, 137
MGN, 115
MODIFY REQUEST, 91
of the UNI, 25
PARTY ALERTING, 62,68
POLL, 115,123
RELEASE, 59,63,72,89
RELEASE COMPLETE, 63,89
RESTART, 82
RESTART ACKNOWLEDGE, 82
RS, 111, 115, 135
RSAK, 115,135
SD, 111,115,122
sequence error, 90
SETUP, 6 1
STAT, 115,123
STATUS, 59,76,89
STATUS ENQUIRY, 59,76
UD, 115,137
unknown type error, 91
USTAT, 115,128

Message retrieval, 138
Messages of UNI, 25
Meta-Signalling, 9
MIB, see Management Information Base
MODIFY REQUEST message, 9 1
MPOA, 2 17

Multicast, 195
Multicast Forward flows, 225
Multimedia application on top of ATM, 232
Multiplexing, 1
Multiprotocol over ATM, 21 7

MTP-3b, 144

N(MR), 111,124, 130
N(PS), 123, 124
N(R), 124
N(S), 111, 123
N(SQ), 111
Name in MIB, 201

250 INDEX

National destination code, 105
Native ATM multimedia application, 232
Native E.164, 105
NDIS, 23 1
NetBIOS, 222
Network LIJ, 77, 81
Network prefix, 204
Network Prefix MIB table, 205
NNI, 110, 144,151
Node, 152
Node ID, 157
Node identifier, 157
Non-mandatory information element, 9 1
NSAP, 99

ODI, 23 1
Operational state, 226
Optical splitting box, 3

p2mp, 195
Packet stream, 4
Parameter, 201
Party alerting, 62,68
PARTY ALERTING message, 62,68
Party dropping, 63, 72
Party FSM, 95
Party state, 65
Peer group, 152

identifier, 156
leader, 152
leader election, 152

Peer-to-peer flow control, 132
PGL, 152
PNNI, 6,7, 10, 151
PNNI RCC, 155
PNNI routing control channel, 155
pnnidump, 7, 168
Point-to-multipoint, 195
Point-to-multipoint calls, 60
Point-to-point calls, 37
Port ID, 157
Prefix, 204
Private network, 9
Private network node interface, 15 1
Private network-to-network interface, 15 1
Protocol tracing tool, 4
Protocols, 9
PSA, 22

PTSE, 153
PTSP, 153
Public network, 9

psd, 6

RCC, 155

Receiver window, 13 1
RELEASE COMPLETE message, 63,89
RELEASE message, 59,63,72, 89
Reset, 82
RESTART, 82
Restart

Classes, 83
indicator, 82

RESTART ACKNOWLEDGE, 82
Restart procedure, 82
Restart process, 94
Restart-Response-N, 94
Restart-Response-U, 94
Restart-Start-N, 94
Restart-Start-U, 94
Resynchronisation, 135
RFCs, 239
Root LIJ, 77
Router, 217,222
routing, 10
Routing Control Channel, 155
Routing control channel, 155
Routing protocol of P M , 153

examples, 167
introduction, 15 1

RPC, 110

SAAL, 85,109
S A A L management interface, 114
SD message window, 116
SEL, 204
Selective Multicast Send flows, 225
Selector, 154, 204
Service selector, 99
Service specific connection oriented protocol,

110
Service specific coordination function, 143, 144
Set, 200
SetRequest-PDU, 200
SETUP message, 61
sigdump, 6, 191
Signal

AA-DATA, 1 13
AA-ESTABLISH, 113
AA-RECOVER, 114
AA-RELEASE, 113
AA-RESYNC, 113
AA-RETRIEVE, 114, 140
AA-RETRIEVE-COMPLETE, 114,140
AA-UNITDATA, 114
AAL-DATA, 143
AAL-ESTABLISH, 143
AAL-RELEASE, 143

INDEX 25 1

AAL-UNITDATA, 143
MAA-ERROR, 114
MAA-UNITDATA, 114

Signalling, 10
Signalling AAL, 109
Signalling overview, 9
Signalling protocol of PNNI, 188

examples, 190
introduction, 153

Simple Network Management Protocol, 200
SMS, 222
SNAP, 219
SNMP, 9,200,232
Source code availability, 239
Splitting box, 3
spock, 3
SSCF, 85,88,110

at the NNI, 144
changeover, 147
messages, 147
parameters, 148
states, 146

at the UNI, 143
parameters, 145

SSCOP, 6,85, 110
active phase, 125
Assured data transfer, 122
Buffer management, 13 8
buffers and queues, 13 8
connection establishment, 117
connection tear-down, 121
error codes, 141
Error recovery, 133
Flow control, 130
idle phase, 126
Interfaces, 113
Keep alive, 122
Layer management interface, 14 1
lost messages, 124
management data transfer, 137
Message retrieval, 13 8
Message types, 114
PDUs, 11 1
phases, 125
Resynchronisation, 135
sequence numbers, 123
state variables, 114
States, 112
Timers, 112
traces, 1 16
transient phase, 125
unassured data transfer, 137

sscopdump, 6, 191

SSCP, 144
SSCS, 155
Standards, 235,239
STAT message window, 116
Status enquiry, 59
STATUS ENQUIRY message, 59,76
STATUS message, 59, 76, 89
Subaddress, 99
Subscriber number, 105
Sun Sparc 20 workstation, 3
Sun Sparc Ultra 1 workstations, 3
Sun Sparc 10 workstation, 3
Sylvia, 232
System information MIB, 201

Tanya, 3
TCAP, 144
Timer

c c , 112
IDLE, 113, 126
KEEP ALIVE, 1 13
KEEP-ALIVE, 125
NO-RESPONSE, 113,125
POLL, 113, 125
T301,43,51,96
T303,40,51,96
T308,54,89,96
T309,86,88
T310,41,51,96
T313,51,96
T3 16,84,96
T3 17,84,96
T322,59,96
T331,77
T397,68,96
T398,72,96
T399,67,68,96

Default values, 96
Timers

Tina, 4
TLV, 165
Token Ring, 2 17,222
Trap, 200
Trap-PDU, 200

ULIA, 161
Unassured data transfer, 137
UNI, see also User-network interface

configuration, 19
instance, 94

data, 95
structure, 94

messages, 25
User data transport, 229

252 INDEX

User plane, 1
User-network interface, 6, 17, 157, 199,202
User-to-user information, 110, 11 1

Value in MIB, 201
Variable name, 201
Verify protocol, 23 1
Video on Demand, 232
Virtual channel, 1
Virtual channel connection, 1
Virtual path connection, 1
Virtual paths, 1
VoD, 232
VR, 166
VR(H), 116
VR(MR), 116, 124,130, 131
VR(R), 116, 124
VR(SQ), 115
VT(A), 116
VT(CC), 115
VT(MS), 116
VT(PA), 115
VT(PD), 116
VT@'S)), 115, 123
VT(S), 116, 123
W s Q) , 114

Workstation, 9

1

Introduction

During the last few years the use of Asynchronous Transfer Mode (ATM) networks has
increased dramatically. Both public and private network providers use ATM which integrates
conventional line-switched networks, such as Narrowband ISDN (N-ISDN), and conventional
data networks, such as Ethernet. ATM is based on the standards of the International
Telecommunication Union (ITU) and the ATM Forum.

In ATM networks the information is transmitted between communicating entities using
fixed-size packets, referred to as the ATM cells. An ATM cell has a length of 53 octets,
consisting of a 5-octet header and a 48-octet payload field. Therefore, all data transmitted
from a source must be segmented into cells of this size. Then these cells can be transported as
a stream by the ATM network. If different streams need to be transported, the associated cells
can be multiplexed inside the ATM network. This process increases the network utilisation
and is essential to achieve an economically working network.

Connection-oriented networks like ATM substantially differ from connectionless networks
like Internet Protocol (IP) in the need for control protocols. In connectionless networks
all information that is needed to get the information from the source to the destination
is contained in every datagram. In connection-oriented networks a connection must be
established before data can be transmitted. This is done by means of control protocols.
Naturally, in connection-oriented networks it is easier to support quality of service-
much more information can be exchanged in the connection establishment phase between
the network and the user (in pure connectionless networks one would need to carry this
information in every datagram) and network resources can be verified and reserved in the
establishment phase. The network can optimise the route and fit it to the needs of the user.

The philosophy and architecture of the ATM control plane stems from the telephone
network. Many of the concepts and much of the terminology are adapted to a broadband
environment (in ATM speak narrowband means the telephone network, broadband means
Asynchronous Transfer Mode (ATM)). In contrast to IP, ATM was first standardised and then
implementation begun. All this together has led to a quite complicated architecture.

The ATM protocol architecture is usually described as a cube consisting of planes
(Figure 1.1). ATM networks distinguish between the data, control and management planes.
The data plane defines the protocol layers that are used to process user data, whereas the
control plane defines the stack of protocols that are used to establish, tear-down and modify
user and control connections. The management planes are used to manage the layers of the
user and control plane (layer management) and the planes as a whole (plane management).

In this book we focus on the control plane protocols used in private ATM networks. We
expect the reader to be familiar with the general concepts of ATM: cells, virtual channels

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

2 INTRODUCTION

Plane Management

Layer Management

User plane

Call/Connection Applications Control

ATM Adaptation Layer

ATM Layer

Physical Layer /
Figure 1.1: ATM protocol reference model

and paths, virtual channel and path connections, multiplexing and the ATM Adaptation Layer
(AAL).

1.1 Organisation of the Book

This book describes the most important protocols of the ATM control plane that are used
in private ATM networks. In Chapter 3 we start with the User-Network Interface (JJNI)
protocol, which is the central protocol to establish connections in an ATM network. Chapter 5
analyses the layer below the UN-the Signalling ATM Adaptation Layer (SAAL). This layer
provides transport services to the UNI. ATM is asymmetric in the sense that the protocols at
the boundary of the network (the UNI) are different from the protocols inside the network.
Chapter 6 concentrates on the routing and connection control protocols inside the network-
the Private Network Node Interface (PNNI). UN1 links need to be managed. This is the task of
the Integrated Local Management Interface (ILMI) which is discussed in detail in Chapter 7.
A couple of protocols use the services of the ATM control protocol suite to provide other
network services. The most popular of these protocols, Classical IP over ATM (CLIP) and
LAN Emulation over ATM (LANE), are described in Chapter 8.

Two appendices help the reader to find the way through the labyrinth of ITU-T standards
(Appendix A) and to find source code for tracing tools and protocol software as well as to find
standard documents (Appendix B).

1.2 Systems used for Experiments

In this book we show the results of several experiments with ATM systems. The experiments
were performed in the ATM laboratory of GMD Fokus.

In our experiments we used up to four different ATM switches. The names of these switches
are foreplay, forelle, forest and forever. All these switches are Fore ASX 200 switches running

SYSTEMS USED FOR EXPERIMENTS 3

version 4 and 5 of the ForeThought software. The switches support the network side as well
as the user side of the ATM protocols. Depending on the goal of the experiment, each switch
was equipped with an appropriate number of OC3 and TAXI 100MBith ATM port modules.
All ATM cables were optical fibres. Electrical twisted pair cables are unsuitable because it is
difficult to trace the communication on such cables.

We used four different workstations as ATM end systems. The names of these workstations
are kirk, spock, atmos and lovina. Kirk and spock are Sun Sparc Ultra 1 workstations
with 128 MB RAM running Sun’s operation System Solaris 2.5. Atmos is a Sun Sparc 10
workstation with 96 MB RAM running Solaris 2.5 and lovina is a Sun Sparc 20 workstation
with 96 MB RAM running Solaris 2.5. Kirk, spock and atmos use one Fore SBA 100 ATM
adapter (TAXI 100MBitls). Lovina is equipped with a Fore SBA 200 ATM adapter (OC3).
In addition, lovina contained two Tanya ATM interface cards [GMD] for tracing. Different
software was used for the different experiments. The software of the Fore ATM interface
cards was always running and supports the protocols AAL5 and ILMI. For the SAAL and
UN1 experiments the software described in Section 1.4 was employed.

The workstations and switches were used exclusively for our experiments. Side effects with
other communications were not possible.

=F
optical splitting box

original ATM link
with splitting box inserted

lovina

Figure 1.2: ATM link with optical splitting box inserted

Lovina plays a special role in our experiments in addition to its role as ATM end system.
In all experiments lovina was used to capture ATM traces of other systems communicating
via one or more optical ATM links. How does this capturing work? In each ATM link to be
traced an optical splitting box was inserted. Such a splitting box splits the optical signals of a
link (one link = two fibres, one for each direction) from two input fibres to four output fibres.
Figure 1.2 shows one ATM link with the optical splitting box inserted. The two additional
output fibres were connected to the receivers of two additional ATM interface cards in lovina.
The input on these two ATM interface cards was captured and decoded with the software
described in the next section. The communication of the original ATM link is not affected. All
traces presented in this book were generated using this principle.

4 INTRODUCTION

1.3 Protocol Tracing Tools

1.3.1 Introduction

The Tina framework was written by the Begemot Computer Associates team. Tina is a
set of tools and library routines designed for ATM and network testing. The Tina tool
framework was designed to support network providers and administrators on maintaining
complex networks. Although Tina was originally used in the ATM context, it can be also used
in non-ATM environments.

The toolkit currently m s on UNIX workstations and employs the approach of combining
tools by pipelining to achieve a certain functionality. The kit uses two different binary
interfaces named cell stream and packet stream.

Tina stems from the paradigm that there needs to be a single inexpensive tester for
all kinds of ATM and network testing. Testing means monitoring, interoperability testing,
performance measurements and simulations, as well as measurements of a living ATM
network (troubleshooting, monitoring, accounting, etc.).

The framework of interfaces and tools runs on a variety of platforms ranging from
specialised ATM testing hardware to standard workstations and personal computers. A
workstation or PC equipped with a standard ATM adapter is sufficient for higher level protocol
testing and fulfils the requirement of being inexpensive.

Typical tools of Tina follow the UNIX filter principle: they consume a certain stream of
data at the standard input (stdin) and generate another at the standard output (stdout). The
toolkit employs binary interfaces due to performance reasons. A wide variety of compile,
decompile and dump tools exist for conversion between the binary data and their respective
human readable forms.

How can one start using Tina? Download the Tina framework software as stated in
Section B.2. Then unpack the package and follow the instructions in the “README” file. Then
you can start using the software, e.g. you can start the tools of the framework. Or you can
explore more details and background information from the delivered HTML documentation
and man pages.

The Tina framework software runs on UNIX platforms such as Solaris, Linux or FreeBSD.
We used the Solaris version for the experiments in this book. Each tool comes with its own
manual page that can be displayed with

m a n name-of -the-tool.

With

m a n TINA

you can get an introduction to the Tina manual pages.
The Tina framework is based on cell and packet streams. A cell stream is a binary interface

between software or hardware modules describing a unidirectional sequence of ATM cells.
An ATM cell consist of all the fields found in standard ATM cells plus some flags and a 64-bit
timestamp. The packet stream is a binary interface that describes a sequence of variable-
length messages. It uses the same 64-bit timestamp as a cell stream. These binary streams are
byte-order dependent, i.e. the streams must be converted if they are to be exchanged between
little-endian and big-endian systems.

PROTOCOL TRACING TOOLS 5

The timestamps are essential for the measurements. The timestamp used by Tina is a 64-bit
signed integer value. Because absolute times are never smaller than 0, actually 63 bits of the
value can be used. The granularity of a timestamp is 1 nanosecond. This gives a maximum
duration of a cell or packet stream of more than 290 years. That was long enough for our
experiments, especially because the start moment is context dependent and can be moved.

The tools of the Tina toolkit can be connected by pipes to exchange data. Sometimes it is
also important to transport control information which has a special semantics inside a running
system. One application of the control information is a flushing mechanism, and another is
the contribution of clock information. Both control cells and control packets are used in Tina.
They are almost transparent to the user. To use the Tina toolkit it is not essential to understand
the control concept. The user only needs to know that there can be control cells and packets
and that they can safely be ignored.

The following is a short description of the tools we used for our experiments. Many more
tools are shipped with the Tina framework. The Tina documentation provides more details.

1.3.2 Sun Batman API to Packet Stream Stub baps

The baps tool is used to capture AAL5 packet stream data from the ATM network using Sun’s
network interface cards with the second preliminary Application Programming Interface.
The -d option is used to specify the device of the ATM interface card, the default is
“/dev/baO”. The packet stream is written to stdout. One or more WIsNCIs may be specified
for attachment by the option -c. The packets from different VPIsNCIs get fed into the
outgoing stream in the order they appear at the API. Timestamping is done in the user process
software.

1.3.3 Fore API to Packet Stream Stub f aps

The f aps tools is used to capture AAL4 and AAL5 packet stream data out of the ATM
network using Fore network interface cards with the preliminary (SPANS-based) Application
Programming Interface. By default AAL5 packets are assumed. One or more VPIsNCIs may
be specified for attachment by the -c option. The packets from different VPIsNPCs get fed
into the outgoing stream (stdout) in the order they appear at the API. Timestamping is done
in the user process. The -d option is used to specify the device of the Fore card; the default is
“/dev/f aO”.

1.3.4 Reading ATM Cells with HP 75000 BSTS and hpcs

The Broadband Series Test System 75000 (BSTS) from Hewlett Packard is a high end ATM
tester. It is specialised for testing at ATM layers and AAL layers. A special feature of the
BSTS is the capability of capturing incoming ATM cells. The BSTS can write up to 131072
cells directly from the link to the capture buffer. The BSTS adds a high precision absolute
timestamp (resolution: 100 ns) to every received cell. This is much better than the software-
generated timestamps of baps and f aps.

The program hpcs controls the capture process. It lets the BSTS fill the capture buffer for
a limited time or until the buffer is full. Then hpcs reads the capture buffer and outputs the
cells as a cell stream. This cell stream can be stored to a disc or directly used as input for other
modules (e.g. a5r).

6 INTRODUCTION

A problem with the BSTS is that it cannot receive new cells while the program reads cells
from the capture buffer. This makes it impossible to capture cells over a long timeframe
without interruption. Therefore, we did not use this tool and its high resolution timestamps
for the experiments in this book.

1.3.5 Cell Stream Dump with csdump

This tool dumps all cells in the input cell stream from stdin in a human-readable format, which
can be specified by the user, to stdout. Header fields, the timestamp and the payload can be
dumped.

1.3.6 AAL5 Reassembly Tool a5r

a5r reassembles a cell stream consisting of AALS S A R cells into AALS frames. The cell
stream could be a received stream from an ATM interface card. a5r also outputs a packet
stream containing periodic samples of error statistics.

Normally a5r is used to reassemble A A L S frames based on the cells received from stdin
and write them to the packet output stream on stdout. Each packet receives the timestamp
from the last cell of this packet. At the same time a5r emits a statistics stream on the file
descriptor 3. A special option -c can be used to specify a specific channel (VPINCI). Cells
on other channels will be ignored.

1.3.7 Generic Packet Stream Dump psd

psd dumps the packet stream from stdin, which is assumed to contain binary data, in
hexadecimal onto stdout. The output is human readable.

1.3.8 Trace SSCOP Protocol tool sscopdump

sscopdump dumps a packet stream from stdin, which is supposed to contain a trace of SSCOP
messages, onto stdout. There are different modes of operation: trace the protocol in a human-
readable format, dump only user data (can by used as packet stream to analyse the higher
layer information, e.g. UNI) and try to report problems like retransmissions and error states.
See also Chapter S .

1.3.9 Generic Decoderfor UNI 3.1, UNI 4.0, Q.2931 andPMVI 1.0 Signalling sigdwnp

sigdump dumps the contents of the packet stream on stdin, which is assumed to contain
signalling protocol messages, onto stdout. The output is human readable by default. The user
of the tool can specify the protocol type and its version. Details on the protocols can be found
in Chapters 3 and 6.
sigdump might be used in two ways. In principle, VPINCI 015 should be captured and

piped trough sscopdump first to get only the data stream at the top of the SAAL layer.
sigdump supports the -i option that strips SSCOP trailers and alleviates the need for
sscopdump.
sigdump extensively checks the correctness of message coding. Errors are flagged with

a bang (!). Decoding proceeds until the end of the message, if possible. Length checking is

ATM PROTOCOL SOFTWARE 7

done to the extension made possible by specifications. Trailing (unused) bytes are printed if
present.

At verbose level 1 (option -v) a HINT section is appended to each message giving
advice about potential problems with information elements resulting from inter-message
dependencies, which cannot be checked by sigdump. sigdump does not implement the
signalling state machine and therefore cannot do a full check of message contents. The maybe
statement in the output indicates that sigdump has detected a portion of the message which
suggests that this message may belong to a different signalling version or protocol.

Records include invalid i (but present) information elements, mandatory m (but missing)
elements, potentially illegal pi or potentially mandatory pm elements, depending on message
type and signalling context.

1.3.10 ATMForum PMVI 1.0 RoutingDecoder pnnidwnp

pnnidump dumps the packet stream from stdin, which is assumed to contain PNNI 1 .O routing
protocol messages, onto stdout. The output is human readable by default. See Chapter 6 for
more details about PNNI routing protocol.

PNNI signalling messages are not dumped by this tool. Use sigdump instead.

1.3.11 ILMIDump tool ilmidump

ilmidump dumps the content of the standard packet stream from stdin, which is assumed to
contain ILMI protocol messages, onto stdout. The output is human readable. See Chapter 7
for more details about ILMI.

1.4 ATM Protocol Software

The ATM control protocols are quite complex. Therefore publicly available implementations
are quite rare and new features that the standardisation organisations continue to define are
introduced slowly. Three implementations of UN1 software are:

0 The Begemot FreeUNI implementation. This software implements UN1 3.1 and some
of the ITU-T supplementary services, as well as parts of the Generic Functional
Protocol [Q.2932. l]. It is available via the Internet (see Appendix B).

0 The HARP Host ATM Research Platform from Network Computer Services
(www.msci.magic.net/harp).

0 The LinuxATM software (lrcwww. epf 1. ch/linux-atm).

For our experiments we have used the Begemot FreeUNI implementation. This package
runs on Sun Solaris, FreeBSD and Linux, and is easily portable to other operating systems.

1.5 Standardisation Process

The original ATM standardisation efforts were driven by the ITU-T in an attempt to provide a
more scalable bandwidth and more services than ISDN more than 15 years ago. This process
was mainly dictated by political discussions and not by technical arguments. One of the
main goals of ATM (or B-ISDN, as it was called later) was compatibility or interworking
with existing telecommunication systems including Plain Old Telephone System (POTS) and

8 INTRODUCTION

narrowband ISDN. All this has led to a very complicated system of standards with a gap
of several years between standardisation and implementation. First implementations of ATM
protocols usually appear on the market several years after the standard was finalised. One of
the possible readings of ATM is After The Millennium. But the millennium has arrived and
the gap has not closed.

Some years ago a couple of major ATM equipment manufacturers came together to found
the ATM-Form-an organisation to fill the missing gaps in the ITU-T recommendations
and to streamline the standards into a form in which they could be implemented. At the
beginning of this process the ATM-Forum was quite successful-standards came out that
were small and (if compared with the ITU-T recommendations) easy to implement. Since
than the organisation has become bigger and slower. Often, new ATM-Forum standards are
ITU-T documents with small changes.

A number of other organisations also take part in the work on ATM: ETSI-the European
Telecommunications Standards Institute (www . et si. org), Eurescom-the European Insti-
tute For Research And Strategic Studies in Telecommunications(www . eurescom. de), the In-
ternet Engineering Task Force (IETF) and others.

Anyway, we have to live with these standards because some of them (most notably UNI,
ILMI, PNNI, LANE) are now widely adopted. Experience in the implementation of complex
protocols has grown, and more and more, even of the esoteric features, get implemented.
Major telecom operators use ATM now in their backbone networks and offer ATM services
to their customers. ATM has proved to be an excellent technology to build large, scalable and
robust private networks.

2

Overview of ATM Signalling

2.1 Signalling Interfaces and Protocols

The ATM control plane consists of many protocols that run between the different entities of
the network. ATM is asymmetric in the sense that the protocols, and even the cell format,
are different on the interfaces between end user systems and network nodes, and between the
network nodes. In IP, on the other hand, datagrams are the same, whether they are exchanged
between a computer and a router, or between two routers (although routing protocols have
diverged now).

The situation is even more complex because in ATM usually two network types are taken
into account: public networks and private networks. In the past public networks used to be
built and operated by government organisations-the public telcos. Each country had at most
one public telecom operator. Nowadays most of these organisations in Europe have become
private companies and there is not just one of them in a given country but many. So the
difference between public and private networks has become somewhat fuzzy. One might say
that a public network is a network that is managed and operated by dedicated companies (soon
even this may be not true because these companies are trying to move over into electricity,
television and other markets). A private network is owned and operated by a company for
which this network is simply a part of the company’s infrastructure.

Because of the large number of available protocols and interface variants it is not easy to
show all the different ATM interfaces in one figure. Figure 2.1 tries to show at last those that
are analysed in this book.

ATM end systems (usually computers or multimedia workstations, often referred to as “the
user”) can be connected either to a private or to a public network. For the establishment of user
data connections the User-Network Interface (UNI) protocol is used between the end system
and the first switch in the network (the access switch). This protocol runs on a dedicated, pre-
configured channel (although, theoretically it is possible to dynamically establish this channel
via Meta-Signalling [Q.2120]). The discussion about this protocol is the central goal of this
book.

If an end system is attached to a private network usually a second protocol is used for
interface configuration, namely the Integrated Local Management Interface (ILMI). This
protocol is based on the Simple Network Management Protocol (SNMP) and provides
automatic configuration facilities for end systems and end system switch ports. This protocol
is not used in public ATM networks (although it could be).

The biggest difference between public and private networks from the protocol point of view
is in the protocols used between the network nodes. Private systems use Private Network Node

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

10 OVERVIEW OF ATM SIGNALLING

Public ATM network
Public UN1 DATA r k m end system public . . . B-ISW fi Public

switch (PNNI) switch
(Access) (Access)

DATA

B-ISUP :
PNNI) .

. .
Public
switch

B-ISUP
.

(ANI)

Figure 2.1: Interfaces in an ATM network

other networks

. . . .

. . . .

. . . .

. . . .

. . . .
Public
switch
(Core)

Interface (PNNI), whereas most public systems use Broadband ISDN User Part (B-ISUP). It is
also possible to use PNNI in public networks-PNNI scales quite well. PNNI consists of two
protocols: PNNI signalling, which is based on UN1 signalling, and the PNNI routing protocol.
The signalling protocol’s task is to establish user connections between switches. The routing
protocol is use for the dynamic topology management of ATM networks.

EXAMPLE ATM CONNECTION 11

Between two ATM networks several protocols may be used. Two public networks usually
are connected via B-ISUP. Private networks are attached to public, B-ISUP based networks
via UNI. Two private or two public networks can also be connected by B-ISDN Inter Carrier
Interface (B-ICI) (see [BICQ.O] and [BICQ.l]), which is based on B-ISUP, or ATM Inter-
Network Interface (A N) [A N 1 .O], which is based on PNNI.

In this book we focus on the interfaces and protocols in private networks. The complex
public network protocols would fill another book. The interested reader should refer to the
standard documents, especially the Q.7XX and Q.22XX, Q.26XX and Q.27XX series of
ITU-T recommendations (see Appendix B for availability).

2.2 Example ATM Connection

To establish a connection through a private ATM network a number of protocols have to play
together. The most basic protocols are UNI, PNNI and ILMI. The following is a schematic
example of a call setup in a private network with an overview explanation of these protocols.

calling X X
end system switch c end system switch b switch a

Figure 2.2: ATM call example: configuration

Figure 2.2 shows our example configuration. The ATM network consists of three switches
and two end systems. Let us assume for the moment that the second end system is not yet
connected to the network. Let us also assume that PNNI routing is up and running. In this
case the network is in a stable state-ach node knows each other node (provided that they
are all in the same PNNI hierarchy level), and each node knows how to reach the single end
system.

calling called X X X
end system switch a switch c switch b end system

SetReq(addressPrefm) -
SetReq(address) -

Figure 2.3: ATM call example: ILMI address registration

When the second end system is plugged in, the ILMI protocol instances in both the switch
and the end system connect to each other (Figure 2.3). They exchange information about the
physical and ATM layers and establish the end system address. This is done by the switch
providing the end system with its switch prefix (this is one part of the entire address), and the

12 OVERVIEW OF ATM SIGNALLING

switch responding with the entire address (the switch prefix plus an end system specific part).
Both of these messages are acknowledged (not shown here). At the end of this procedure the
end system and the switch know the address of the end system. Switches can set more than
one address prefix in the end system and end systems can register more than one address in
the switch. Basing addresses on switch provided prefixes ensures that all, or at least many,
of the addresses at a given switch have the same prefix and can be advertised to the other
switches using only the common prefix. The downside is that moving an end system from one
switch to another changes its address. This problem can be overcome by using either fixed
addresses or by using symbolic names. If fixed addresses are used (without common and,
between different switches, unique prefixes), reachability information for each single address
has to be distributed to the other switches. Symbolic names can be used in analogy to IP-the
ATM-Forum has defined an ATM Name Service (ANS) which is based on, and almost similar
to, the Domain Name System (DNS) for IP networks.

calling called X X X
end system switch a switch c switch b end system

PTSP - PTSP

PTSEACKP PTSEACKP
-L-

Figure 2.4: ATM call example: PNNI reachability information flooding

Now the switch has to distribute the information that an end system with the new address
is reachable to all switches in the network (Figure 2.4). This is done by sending PNNI
Topology State Packet (PTSP) messages to all adjacent switches. These in turn will send
the information to their neighbour. This process is called flooding. Each of the messages is
acknowledged. Besides flooding of reachability information the PNNI routing protocol also
provides the facility for semi-automatic network configuration, periodic link status checks
and the exchange of topology information. These operations are not shown in this example,
because they are to complex and will be analysed in Chapter 6 .

Once this process ends, the network is again in a stable state. Now the left end system needs
to establish a connection to the right one. This is done by sending a SETUP message over the
UN1 channel to the switch to which the system is connected (see Figure 2.5). After checking
the SETUP message for correctness and after checking for availability of resources the switch
may send a CALL PROCEEDING message back to the end system to inform it that the call
is going to be forwarded. Based on the information it got during reachability information
flooding the switch computes a Designated Transit List (DTL), which is a list of all network
nodes through which the called end system can be reached. It includes this list into the SETUP
packet and sends this to the next hop switch on the PNNI signalling channel. The next switch
answers with a CALL PROCEEDING (after checking the message itself and the availability
of resources) and forwards the SETUP to the next hop switch. In this way the SETUP travels
through the network until it reaches the last switch just before the called system. This switch

EXAMPLE ATM CONNECTION 13

calling called X X X
end system switch a switch c switch b end system

CALL PROCEEDING SETUP - -
CALL PROCEEDING -- SETUP

CALL PROCEEDING SETW - -
CALL PROCEEDING -

Figure 2.5: ATM call example: sending the SETUP

removes all PNNI specific information elements, builds a UN1 SETUP message and sends
this message to the called user. This user in turn may answer with a CALL PROCEEDING to
indicate that he is going to process the call.

The SETUP message contains all the information that is needed to allocate resources in
the network and may provide the called end system with additional information about the call
(which user level protocol will be used, and which AAL; application dependent identifiers and
parameters). Information for the network includes: the kind of call (point-to-point or point-to-
multipoint), the kind of connection (CBR, VBR, UBR, ABR), timing requirements of the call
(real time, non-real time, end-to-end transit delay), cell rates (peak, mean), quality of service
requirements, and others. The switch includes an application on top of the signalling stacks,
namely the Call Admission Control (CAC). This application checks the SETUP parameters
for consistency and ensures that sufficient resources are available on the given switch and
its links for that call. Some of the SETUP parameters are also needed for Usage Parameter
Control (UPC), which controls the traffic sent by the user to ensure that it matches the SETUP
parameters. Traffic parameters may also be needed for the Multiple Access Control (MAC) or
the physical layer if some links are wireless links.

Now the called end system can “alert” the user. For some types of connections this does not
make much sense (for example, connections that are going to carry IP packets). For others,
like video telephony calls, it may be useh1 to inform the calling system that the user is alerted.
This is done by sending an ALERTING message backwards through the network (Figure 2.6).

Alerting obviously stems from narrowband ISDN on which ATM signalling is based.
Because one of the main applications of N-ISDN is the provision of plain telephone services,
the alerting feature is needed to signal the calling user that the phone at the other end is
ringing. In the context of ATM, where much more information must be provided (given that
the main application area of ATM will be multimedia), alerting will rather be provided at the
application level. Nevertheless alerting via signalling is available for ATM.

When the called end system decides that the call has to be completed it responds to the
SETUP request with a CONNECT message (Figure 2.7). This message travels backwards

14 OVERVIEW OF ATM SIGNALLING

calling called X X X
end system switch a switch c switch b end system

ALERTING

ALERTING -
ALERTING

ALERTING
1

Figure 2.6: ATM call example: alerting

calling
end system switch c switch b switch a end system

called X X X

CONNECT -
CONNECT CONNECT ACKNOWLEDGE

CONNECT
--

CONNECT
- -

CONNECT ACKNOWLEDGE
L-

Figure 2.7: ATM call example: connecting

through the network. At the UN1 interfaces the CONNECT is answered with a CONNECT
ACKNOWLEDGE. At this point the connection is established and data can be sent.

The CONNECT message may be used to carry parameters from the called user back to the
calling user. This is especially useful if certain parameters of the connection are negotiated
during the setup. Negotiation is possible for traffic parameters, like cell rates, as well as for
end-to-end parameters, like AAL maximum message size and lower layer user protocols and
their parameters. Negotiation is done by including alternative parameters or parameter ranges
in the SETUP message. These parameters may be adjusted by the network and the called user,
who puts these adjusted parameters into the CONNECT message. CONNECT carries these
parameters back to the calling user who may adapt the traffic to the negotiated parameters.

When one of the end systems decides that the call should be released, it sends a RELEASE
message to its switch (Figure 2.8). The switch releases all resources that where allocated to
this connection, answers with a RELEASE COMPLETE and forwards the RELEASE to the
next hop. In this way the clearing process moves through the network until the last hop is
released.

The user who initiates the release may include a cause for that release into the RELEASE
message. This code is carried to the other side of the connection, where it may be used

EXAMPLE ATM CONNECTION 15

calling called X X X
end system switch a switch c switch b end system

RELEASE

RELEASE COMPLETE --
RELEASE RELEASE COMPLETE - -

RELEASE RELEASE COMPLETE --
RELEASE COMPLETE
L-

Figure 2.8: ATM call example: clearing the call

by the application process. If no cause is specified by the user, a default value of "normal,
unspecified" is provided by the network.

3

UNI: User-Network Interface

3.1 Overview

Figure 3.1 shows the layers of the control plane. The control plane shares the lower two
layers (physical and ATM) with the user plane. The ATM Adaptation Layer (AAL) consists
of several sublayers. The lower sublayers again share with the user plane (usually this is
AALS), whereas the higher layers are specific to the control plane (note that it is possible to
use the Service Specific Connection Oriented Protocol (SSCOP) as user transport protocolF
it provides a reliable message transfer. The UN1 layer contains the state machines necessary
to manage the user connections. This layer is slightly different in switches and in end systems.
On top of the UN1 either the user applications (in end systems) or switch functions like
routing, call admission control and management are located.

end system j ATM switch

Control
Routing

Management

UN1 (4.2931)

SSCF WI)
SSCOP

A A L 5 (AAL 314)

I ATM layer

I Physical layer

Figure 3.1: ATM control plane

\

\
\
\
/ S A A L

/
/

/

Figure 3.2 shows the control plane for a user connection, which involves several ATM
switches and crossconnects and two end systems. One point that often causes confusion is
that the UN1 is a protocol that runs between the end system and the access switch (the first
switch of the ATM network): it is not an end-to-end protocol. The signalling stack of the

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

18 UNI: USER-NETWORK INTERFACE

source end system does not talk to the UN1 stack of the destination system, but to the stack in
the switch. The figure also shows that this is not always that easy: there may be crossconnects
between the end system and the switch or between switches. These crossconnects can even
be normal ATM switches that have configured a Virtual Path Connection (VPC) for the given
signalling association.

..

..

end
system

switch switch crossconnect
system

end

Figure 3.2: Example of the control plane for a user connection

In this chapter we describe the UN1 part of the control plane, i.e. the state machine and
messages used between an ATM end system and an ATM switch.

ATM protocols are standardised by two major standardisation bodies: the ITU-T and the
ATM-Forum. Because of this, there are actually several standards, which differ slightly. The
ITU-T standards for UN1 signalling are [Q.2931] and [Q.2971] with numerous additions
in the Q.29XX series of standards. The ATM-Forum standards are [UNI3.1] and [UNI4.0].
Fortunately, with UN14.0 these standards have been converged-UN14.0 is a quite short
document which summarises many of the Q.29XX standards and defines some minor changes
and additions. Therefore, this chapter will be based on UN14.0.

ATM connections come in two different flavours: point-to-point connections (Figure 3.3)
and point-to-multipoint connections (Figure 3.4). Although there was some discussion about
multipoint-to-multipoint connections, the standardisation bodies have not yet come up with
standards in this area and the semantics of such connections are not very clear.

Figure 3.3: Point-to-point connection

ATM connections are always bi-directional in the sense that the VPINCI values along the
connection are reserved in both directions. However, they can be, and in the case of point-
to-multipoint connections must be, used uni-directionally-the traffic in one of the directions
may be zero.

CONFIGURATION 19

End system End system

1 \

X

Called

End system End system

Called
(Leaf) (Leaf)

Called

End system
(Leaf)

X Called

End system
(Leaf)

Called

End system End system

Called
(Leaf) (Leaf)

\

Called

End system
(Leaf)

I

Called

End system
(Leaf)

Figure 3.4: Point-to-multipoint connection

For most of the procedures of the UN1 we will show traces that were taken with the
method described in Section 1.2. The traces always show the communication over one UN1
with timing information. Timing is relative. This means that the part of the entire UN1
communication that is of interest was cut out from the entire communication protocol and
the begin was set to zero to allow better tracking of the messages by the reader. An arrow
between the two characters S (for Switch) and E (for End system) shows the direction of the
message. The timestamp and the direction of each message is shown only in the first line that
belongs to that message. Lines without the arrow and the timestamp are continuation lines.

3.2 Configuration

Put simply UN1 is a protocol running between an ATM end system and the first ATM switch
(access switch) in the network. This protocol is used to manage connections between ATM
end systems, i.e. establish, modify and release them. In practice things are not so easy. A
common configuration of ATM end systems and switches is shown in Figure 3.5.

In ATM usually two kinds of networks are distinguished: public ATM networks and private
ATM networks. The difference between them is somewhat hzzy. Public networks are usually
associated with the big telecom operators; private networks are intranets that are more or less
under control of the user. The private ATM network is interfaced to the public ATM network
via a UNI, which in this case is called a public UNI. Of course, end systems can be interfaced
to the public network directly (see ATM end system A) or via VPI crossconnects (systems B 1
and B2). A VPI crossconnect is an ATM switch that switches only VPIs, not VCIs, without
signalling support. Connections through a VPI crossconnect are established by administrative
means.

On the private network side end systems can be either directly attached to the network
(system C), with the help of a proxy signalling agent as defined in [UNI4.0] (system D),
or via a VP multiplexer like systems El and E2. Proxy signalling is used for ATM systems

20 UNI: USER-NETWORK INTERFACE

Proxy Signalling
Agent I-

Private UNI

m
ATM End System 1 1 A hl

Private (virtual) UN1

ATM End System ATM End System

El I I E2

Figure 3.5: UNI interfaces

that do not support signalling by themselves (for example, small video devices) or for high
performance end systems. Virtual UNIs via a VP multiplexer are used mainly for wireless
access to ATM.

The UN1 by which end systems are connected to the private ATM network is called a private
UN1 and differs slightly from the public UN1 (mostly in the supported addressing schemes).

3.2. l Signalling Channels and Modes

The UN1 signalling protocol uses one VC for communication between the end system
and the ATM switch. The default value for the VC1 is 5, although there exists a special
metasignalling protocol that can be used to dynamically create signalling channels with other
VC1 values [Q.2120] and most switches support the assignment of the signalling channels to

CONFIGURATION 21

other VCIs.

signalling. They differ in the use of the VPs:
Generally two modes of signalling exist: non-associated signalling and associated

a Associated signalling. In this case a signalling VC controls only the VP in which it is
allocated. This means that on a given physical interface each VP can have its own signalling
VC-in the end system and in the switch there will be one UN1 protocol instance for each
of these VCIs. Switched channels are allocated in this mode only with the same VPI value
as the signalling VC.

a Non-associated signalling. In this case a signalling VC controls the VP in which it is
allocated and may control other VPs as well.

Whereas the ITU-T standards support both modes, ATM-Forum UN14.0 supports only non-
associated signalling. Note that each VP is controlled by a maximum of one signalling VC
and that each VP can carry no more than one signalling VC (with the exception of proxy
signalling; see Section 3.2.2).

The usual configuration for end system UNIs is one signalling channel with VC1 = 5 and
VPI = 0 which controls the entire VPWCI space (note that this space may be limited by
management (Chapter 7) or administrative means).

Besides the VPI and VC1 values signalling uses a Virtual Path Connection Identifier (VPCI)
to identify an ATM connection. This identifier is carried in UN1 messages between the switch
and the end system instead of the VPI. The connection identifier information element contains
two subfields: a VC1 value and a VPCI value. Usually this information element is sent from
the switch to the user when a new connection is established (although it could also be sent
by the user). Whereas the VC1 value in this information element corresponds directly to the
VC1 field in the ATM header of the data cells, the VPCI value needs to be mapped to a VPI
value. On the user side there is usually a 1 : 1 relationship between the VPCI and the VPI:
VPI = VPCI. On the switch side, however, this may be different if VP crossconnects are
used between the switch and the user, so switches may need to have a mapping table between
VPCI values and VPI values and port numbers. VP crossconnects can be used for different
tasks, namely to connect one end system to more than one switch (or network), to connect
more that one end system to one physical switch port, or to connect one end system with
more than one interface to one switch port.

Figure 3.6 shows an example where one ATM end system (or the border switch of a private
ATM network) is connected via a VP crossconnect to two switches (or public networks).
This scenario could be used to enhance reliability or to select the cheaper network on a
per connection basis depending on connection parameters. In this case the end system is
connected by one physical link to the crossconnect. This link carries a number of VPIs and
on the end system side VPI and VPCI values are numerically equal. The crossconnect maps
these VPs to two different ports and to other VPI values, so the two switches need mapping
tables that associate VPCI values with VPI values.

In Figure 3.7 an end system with two ATM interfaces is connected via a crossconnect to one
port of an ATM switch. This scenario could be used for high availability or high performance
applications (in the case when the link between the crossconnect and the switch has a higher
bandwidth than the links between the end system and the crossconnect). In this example the
end system keeps a mapping table that relates VPCI values to VPIhnterface pairs. The switch
on the other side needs a table that maps VPCI values to VPI values.

22 UNI: USER-NETWORK INTERFACE

WCIO=VPI17

cross-
connect

I End system
VPI=2 VPCI2=VPI4

Switch 2
vPCIO=WIO
WCIl=WIl
VPCI2=WI2 0 - 17, port=O X-

0 - 18, pole0
0 - 4, po*l

Figure 3.6: VPCVVPI relationship for connection to multiple switches

interface 0
VPI=O

WI=1

WI=2 Switch

cross- WI=4

connect

WI=6

WI=5

VPI=7

VPI=8

End system

WI=O X-
X- WI=1

interface 1
o.oort1 - 4

VPCIO=VPI4
VPCIl=VPIS
VPCI2=VPI6
WCI3=WI7
VPCI4=VPIS

VPCIO=VPIO,IFO
VPCIl=VPIl,IFO
VPCI2=VPI2,IFO
VPC13=VPIO,IFl
VPCI4=VPIl,IFl

1;port1 - 5
2,port 1 6
O,port2 - 7
l,port2 - 8

W mapping

Figure 3.7: VPCINPI relationship for the connection of interfaces

A third example in Figure 3.8 shows how two end systems can be connected to one switch
port via a VP crossconnect. In this case again there is no need for a mapping at the end
system; VPCI and VPI values are numerically equal, but the switch needs a mapping between
VPCI/UNI pairs and VPI values.

3.2.2 Proxy Signalling

The proxy signalling capability is an optional feature that was introduced by the ATM-Forum
in UN14.0. Proxy signalling allows one user, called the Proxy Signalling Agent (PSA), to
perform signalling on behalf of other end systems that lack signalling capabilities. As shown
in Figure 3.9 the PSA has one or more signalling VCIs, each of which controls a set of one or
more VPs, which can be across different UNIs. Applications of this feature are the support of
small ATM devices that lack the computing power for full signalling support and the support

CONFIGURATION 23

End system

cross- VPI=4

connect

VPI=6

VPI=5

WI=7

WI=I

wc10=VP10
VPCIl=VPIl
VPC12=VPI2

Switch

X- X-
End system

0,port 1 - 4
1,portl - 5

0, port2 - l
l,port2 - 8

VPCIO=VPIO
VPCIl=VPIl

2,port 1 - 6

VP mapping

VPCIO,UNIO=VPI4
VPCIl,UNIO=VPI5
VPCI2,UNIO=VPI6
VPCIO,UNIl=VPI7
VPCIl,UNIl=VPI8

Figure 3.8: VPCVVPI relationship for the connection of multiple end systems

of high performance equipment to use multiple physical interfaces that share the same ATM
address.

Signalling channel
PSA Switch

- WI=O

VPCI=O,l IF1
-

VPI=O

VPI=l
end
system

~

VPCI=2 IF2
-
~

VPI=O
VPCI=3 X- IF3
-

Figure 3.9: Proxy signalling

In Figure 3.9 a high performance end system is connected to an ATM switch via three
physical links. Each of these links has one or more VP allocated. A PSA is used to control
all three links. This PSA may reside on the end system (in this case the signalling channel
should be carried in a VP on one of the three links), or may be implemented in another end
system, which can even be remote connected to the ATM switch. It would also be possible
for the PSA to control more than one of these high performance systems. In this case there
would be one signalling channel for each of the systems between the switch and the PSA (and,
consequently, more than one signalling channel in the same VP).

Both the PSA and the switch need to know the mapping between VPCI values, interface

24 UNI: USER-NETWORK INTERFACE

numbers and VPI values, as shown in Table 3.1. This table has to be configured by
management means.

Table 3.1: WC1 mapping

2 2 0
3 3 0

3.2.3 Virtual UNIs

Virtual UNIs are an optional feature introduced by the ATM-Forum in UN14.0. Virtual
UNIs allow several end systems to share one physical port on a switch by using a VP
crossconnect. This feature is intended to implement wireless ATM access as shown in
Figure 3.10 (see [WATM]).

Access
WCI=O
VPCI=l

WCI=O

WCI=O

WCI=O

End system
Point 1

Port 0 Switch

WI=O
End system w1=2 - - -

w1=3
c -

End system
Port 1

WI=O
End system - - - X

Access
wireless interface Point 2 optical or copper cable

Figure 3.10: Wireless ATM access with virtual UNIs

In this figure two access points are connected to an ATM switch. For wireless networks
these access points contain the radio equipment. From the ATM point of view their main
task is VP switching-they act as a VP crossconnect. Each of the end systems sees at least
the standard VP with VPI = 0, which also contains the signalling channel VC1 = 5.
Additionally, end systems may also have other VPs which may be allocated via UNI. On the
switch side the different end users are distinguished by their VPI value-the switch maintains

UN1 MESSAGES 25

a mapping table between users, VPI values and WC1 values. The accumulated bandwidth of
all users, which are switched by the access point onto one switch port, may not exceed the
capacity of that port.

3.3 UNI Messages

The UN1 protocol uses variable size messages that are transported between the protocol
entities by a lower layer transport protocol. Each message consists of a fixed size header
and a variable number of variable sized information elements (see Figure 3.1 1).

I
I
I
I
I
I

Information
Element

N

I
4

Protocol
Discriminator

Length of call
reference = 3

Call reference (MSB)

Call reference (cont)
-

Call reference (LSB)

Information Element Identifier

coding I IE Instruction Field
Standard Flag I Pass I Action indicator

Contents (optional)

Figure 3.11: UNI message structure

26 UNI: USER-NETWORK INTERFACE

The message header contains the overall length of the message in bytes; the individual
information elements contain their own length. This enables some kind of consistency check.
A message can contain any number of information elements, even zero; the number of these
elements is limited by the size of the message length field (16 bit) which would enable a
message size of 64kbyte + Sbyte, and by the maximum PDU size of the underlying SAAL
which is 4096 bytes.

3.3.1 Message Header

The size of the message header is 9 byte. Each message must contain at least this header;
shorter messages trigger exception handling of the protocol.

The first byte of the message header is the protocol discriminator. It takes the fixed value of
9 and can be used to route UN1 messages to the UN1 protocol when there are other protocols
running on the same SAAL connection besides UNI.

The next four bytes contain the call reference. The call reference is an identifier that
identifies an ATM call on the given UN1 interface. This call reference is always unique on
that interface. For a given call the call reference along the connection through the network is
different at each hop-the call reference has only a local meaning at a given UN1 interface.

The first byte of the call reference contains four reserved bits and the length of the call
reference (in bytes) as a four-bit number. This length is always three. The remaining three
bytes contain the actual call reference value as a 23-bit big-endian binary number and, in the
highest bit, the call reference flag. This flag is used to avoid collisions in the allocation of call
reference values. The problem is that each of the two UN1 protocol stacks on the two sides of
a link allocate the call reference values for their outgoing calls independently. This makes it
possible that they allocate the same value for two different calls. To prevent confusion in this
situation, each message contains the call reference flag that is set to 0, if the message is sent
by the UN1 stack that also allocated the call reference, and 1 if the message is sent to that side.
So in fact all 24 bits are needed to identify the call to which the given message belongs.

Two call reference values are used for special purposes: the global call reference and the
dummy call reference. The first of these has a value of 0 and in the second one all bits are set
to 1. The global call reference is used for the reset procedure and the dummy call reference
for connectionless services (see [Q.2932.1]).

The next two bytes of the message header describe the message type. The first byte is
the actual eight-bit message type, and the second byte contains flags to handle exceptions.
Table 3.2 gives a list of messages defined for basic signalling.

The message action indicator in the second byte of the message type field gives a UN1 stack
the opportunity to change the exception handling of the peer entity. Normally the flag bit in
this byte is set to zero, which means: follow the default exception handling procedures. Setting
this flag to 1 enables the use of the action indicator which can take the following values:

0 Clear (release) the call in the case of an exception.

1 Discard this message and ignore it. This can be used if it is not known, whether
the peer UN1 stack supports a given optional UN1 feature or not.

2 Discard this message and report status. In this case a STATUS message is sent
back to the sender of the original message, containing a indication of the problem.

UN1 MESSAGES 27

This also can be used to exploit optional features and to detect whether they are

3

supported or not.

This value is reserved and handled like value 0.

Table 3.2: UNI messages

Code Message name

Basic point-to-point messages (Q.2931)

Ox00
OxFF

escape code (not supported by UN14.0)
extension code

Call establishment:

Ox01
CALL PROCEEDING 0x02
ALERTING

CONNECT ACKNOWLEDGE OxOF
SETUP ACKNOWLEDGE (narrowband intenvorking) OxOD
CONNECT 0x07
SETUP 0x05
PROGRESS (narrowband interworking) 0x03

Call clearing:

Miscellaneous:

Basic point-to-multipoint messages (4.2971)

0x80

PARTY ALERTING 0x85
DROP PARTY ACKNOWLEDGE 0x84
DROP PARTY 0x83
ADD PARTY REJECT 0x82
ADD PARTY ACKNOWLEDGE 0x81
ADD PARTY

Messages for leaf-initiated joins (UN14.0)

Ox90
Ox91

LEAF SETUP FAILURE
LEAF SETUP REQUEST

28 UNI: USER-NETWORK INTERFACE

Table 3.2: UNI messages (continued)

Code Message name

Messages for generic functional protocol (Q.2932.2)

Ox15 CO-B1 SETUP
0x62 FACILITY

Messages for bandwidth modification (4.2963)

0x88

CONNECTION AVAILABLE Ox8B
MODIFY REJECT Ox8A
MODIFY ACKNOWLEDGE 0x89
MODIFY REQUEST

The Pass Along bit is defined only for PNNI (see Chapter 6). It indicates that the message, if
not recognised by the receiving instance, should be forwarded, provided that the next interface
is a PNNI. No error checking occurs. The same holds for the Pass Along bit in the information
element header-if the IE is not recognised it should be forwarded without checking. For UN1
both bits are reserved and should be set to zero.

The last element in the message header is the message length field. This field contains the
total length of the message minus the header as a 16-bit big-endian number.

3.3.2 Information Elements

Each Information Element (IE) starts with a header of four bytes (see Figure 3.1 1). The first
byte of this header contains the eight-bit information element identifier. Table 3.3 lists the
most common information element identifiers. This identifier is followed by the flag byte and
the 16-bit information element length field.

Other information elements are defined in the Q.29XX series of standards and in new and
upcoming ATM-Forum documents.

The flag byte contains two fields: an instruction field like that in the message header, and
the coding standard identifier. The coding standard identifier describes by which standard
the actual information element contents are covered (see Table 3.4). Although there are four
values defined only two of them are actually used. The use of these values is somewhat
confusing: all the ITU-T defined information elements contain the indication 0, meaning
“ITU-T standardised coding”. The ATM-Forum, however, changed some of these information
elements and added new elements. For some of these a coding of 3 (network specific or ATM-
Forum specific) is used and for some of them not. For some of the ATM-Forum no coding is
specified, but it is suggested that 3 should be used.

The instruction field contains a bit which, if 0, selects default error handling and, if 1, the
error handling defined by the three-bit action indicator. The action indicator tells the receiver
of a message what to do in the case of errors in this information element (see Table 3.5). It can
be set to values that report STATUS to detect whether the peer UN1 handles certain optional
features and extensions.

For the PNNI (see Chapter 6) bit 4 is defined as the Pass Along Request bit. If a PNNI
protocol instance receives a message which contains an information element that it cannot

UN1 MESSAGES

Table 3.3: UN1 information elements

29

Code Information Element Name

0x04 narrowband bearer capability
0x08 cause
0x14 call state
OxlC Q.2932 facility
OxIE progress indicator
0x27 notification indicator
0x42 end-to-end transit delay
Ox4C connected number
Ox4D connected subaddress
0x54 endpoint reference
0x55 endpoint state
0x58 AAL parameters
0x59 ATM traffic descriptor
Ox5A connection identifier
Ox5C quality of service parameter
Ox5D broadband higher layer info
Ox5E broadband bearer capability
Ox5F broadband lower layer info
0x60 broadband locking shift
0x6 l broadband non-locking shift

aOnly in UN14.0.

Code Information Element Name

0x62 broadband sending complete
0x63 broadband repeat indicator
Ox6C calling party number
Ox6D calling party subaddress
0x70 called party number
0x71 called party subaddress
0x78 transit network selection
0x79 restart indicator
Ox7E user-to-user info
Ox7F generic identifier transport
0x81 minimum ATM traffic descriptor
0x82 alternative traffic descriptor
0x84 ABR setup parametersa
0x89 broadband report type
OxE4 ABR additional parametersa
OxE8 LIF call identifief
OxE9 LIF parametersa
OxEA LIF sequence numbef
OxEB connection scope selectiona
OxEC extended QoS parametersa

understand, it looks at the Pass Along Request bit. If this bit is set and the next hop of the
connection is also a PNNI hop, the information element is transferred without any error
checking to the message to be sent at the next hop. In this way PNNI is able to support
information elements which it does not yet know. For UN1 this bit should be set to zero (it is
a reserved bit).

Table 3.4: Information elements codings

I Code I Coding Standard 1
0

network specific; ATM-Forum standard 3
national standard 2
ISO/IEC standard 1
ITU-T standardised coding

30 UNI: USER-NETWORK INTERFACE

Table 3.5: IE action indicator

Code Action

0

discard and ignore message, send STATUS 6
discard and ignore message 5
discard and ignore IE, send STATUS 2
discard and ignore IE 1
clear call

3.3.3 Information Element Coding

UN1 messages contain many parameters which are coded in different ways. A number of rules
can be extracted from the standards:

0 Integer values of different sizes are supported. The size of these integers is not always a
power of two-there are also odd sized integers (three-bit and five-bit, for example). Integer
are mostly unsigned values.

0 If an integer value is longer than one byte and has a fixed size, it is coded as a big-endian
binary values. 24-bit values, for example, are coded in three bytes.

0 Sometimes values are coded with an extension mechanism: The most significant bit of a
byte is set to 1 if this is the last byte of the value and to 0 if other bytes follow.

0 There are spare bits and reserved bits. Reserved bits must be zero, spare bits should be zero,
but are ignored.

0 Some information elements contain subfields, which are identified by a l-byte subfield
identifier. These subfields can come in any order, repetitions are ignored.

0 The BLLI information element has two-bit subfield identifiers. Q.293 1 defines no order for
the subfields; UN14.0 specifies an order.

Note, that all these different coding variants can be mixed in one information element.
Some information elements can be repeated in a message. There are two different

mechanisms to do this: explicit indication of repetition and implicit indication of repetition.
The first kind of repetition uses a special information element, i.e. the Broadband repeat
indicator. This indicator can specify how the repeated information elements are to be treated.
At the moment only one interpretation is defined: as a prioritised list with descending priority
where one information element has to be selected. The main use of this feature is protocol
negotiation by means of the broadband lower layer information IE. Implicit repetition is done
by simply including several information elements of the same kind into a message. In this
case usually all these IEs are used for processing at the receiver. In both cases all information
elements of the same kind must follow each other and must, for explicit repetition, directly
follow the broadband repeat indicator.

3.3.4 Coding Examples

Figure 3.12 shows one of the more complex information elements, namely the Broadband
Lower Layer information element (BLLI). This IE is used to carry information about lower
protocol layers to the called user. Up to three of these IEs can be included in a call so that the

UN1 MESSAGES 31

receiver can select the one he supports. The BLLI element is an example of an information
element with subfield identifiers but a fixed order of the subfields. Its structure is further
complicated by the fact that ITU-T and the ATM Forum continue to produce standards whith
changes to this IE.

Byte Coding Meaning

Ox5F 0 10 l l l l l information element identifier

0x80 1------- last byte in this group
-00----- ITU-T standardised coding
---00000 default error handling

Ox00 00000000
0x05 00000101 information element length

0x50 0------- information continued
-10----- layer-2 subfield
---l0000 user-specifiedprotocol

0x83 1------- end of information subfield
-00000 l l user protocol identifier

0x66 0------- information continued
-11----- layer-3 subfield
---00110 X.25 packet layer

0x20 0------- information continued
-01----- normal packet sequence numbering
---00000 spare

Ox8C 1------- end of information subfield
-000---- spare
----l100 default packet size 4096

Figure 3.12: Example of a BLLI element

Figure 3.13 shows the ATM traffic descriptor IE. This is used to communicate cell rates,
burst sizes and other characteristics of the expected traffic on a given connection to the
network. Resource reservation and allocation, as well as usage parameter control, is done
based on this information element.

The traffic descriptor is an example of an IE with subfields. Each subfield of the information
element starts with a subfield identifier. This identifier defines the length and format of
the subfield and its meaning. Most of the subfields are optional but there is a table in the
appendix of UN14.0 that lists all the legal combinations of subfields. Most subfields in
the traffic descriptor contain a three-byte integer. There is also a one-byte subfield used to

32 UNI: USER-NETWORK INTERFACE

Byte Coding Meaning

Ox5F 0 10 1100 l information element identifier

0x80 1------- last byte in this group
-00----- ITU-T standardised coding
---00000 default error handling

Ox00 00000000
0x08 00001000 information element length

0x82 10000010 subfield identifier: forward PCR

Ox00 00000000
Ox00 00000000
0x80 10000000 128 cellslsecond

0x83 10000010 subfield identifier: backward PCR

Ox00 00000000
Ox00 00000000
0x80 00000000 0 cellslsecond

Figure 3.13: Example of a traffic descriptor IE

specify tagging and frame discard options and the best-effort indicator that consists only of
its identifier.

Figure 3.14 shows an (almost) minimal SETUP message with two BLLI information
elements. In this example a point-to-point connection to the national telephone number
112 (this is the fire department in Germany) is requested. The connection should be a
unidirectional (the backward peak cell rate is specified as zero), non-realtime VBR with a
forward peak cell rate of 128. The requested QoS class is 0 (unspecified QoS). The called
user can select among two user-specified layer 2 protocols: protocol 1 and protocol 2. The
two BLLI elements are preceeded by a broadband repeat indicator.

UN1 MESSAGES 33

Byte Coding Meaning
Ox09 00001001 protocol discriminator
0x03 0000---- reserved

----0011 length of call reference
Ox00 0------- messages sent by call reference originator

-0000000
Ox00 00000000
Ox01 00000001 call reference 1
0x05 00000101 SETUP
0x80 l------- end of this information subfield

-00-00-- spare
---0--00 default error handling

Ox00 00000000
0x32 00110010 message length 50

Ox5F 0 10 l l l10 broadband bearer capabilites
0x80 l------- last byte in this group

-00----- ITU-T standardised coding
---00000 default error handling

Ox00 00000000
0x03 000000 l l information element length
0x81 0------- information continued

-00----- spare
---l0000 BCOB-X

Ox8A l------- last byte in this group

0x80 1------- last byte in this group
-0001010 non-realtime VBR

-00----- no clipping
---000-- spare
------ 00 point-to-point connection

Ox5F 0 11000 11 broadband repeat indicator
0x80 1------- last byte in this group

-00----- ITU-T standardised coding
---00000 default error handling

Ox00 00000000
Ox01 00000001 information element length
0x82 1------- last byte in this group

-000---- spare
----0010 Drioritised list

Figure 3.14: Example of a SETUP message

34 UNI: USER-NETWORK INTERFACE

Byte Coding Meaning
Ox5F 0 10 11 11 1 broadband lower layer information
0x80 1------- last byte in this group

-00----- ITU-T standardised coding
---00000 default error handling

Ox00 00000000
0x02 00000010 information element length

information continued
layer-2 protocol
user-specific protocol
last byte in this group
protocol 1

broadband lower layer information
last byte in this group
ITU-T standardised coding
default error handling

information element length
0x50 0------- information continued

-10----- layer-2 protocol
---l0000 user-specific protocol

0x82 l------- last byte in this group
-0000010 protocol 2

0x70 01 l l0000 calledparty number
0x80 1------- last byte in this group

-00----- ITU-T standardised coding
---00000 default error handling

Ox00 00000000
0x04 00000100 information element length
OxAl 1------- last byte in this group

-0 10 - - - - national number
----0001 ISDN (E.164) number

0x31 00110001
0x31 00110001
0x32 00110010 number = “1 12”

Figure 3.14: Example of a SETUP message (continued)

UN1 MESSAGES 35

Byte Coding Meaning
Ox5F 0 10 1100 1 ATM tra@c descriptor
0x80 I------- last byte in this group

-00----- ITU-T standardised coding
---00000 default error handling

Ox00 00000000
0x08 00001000 information element length
0x82 10000010 subfield identifier: forward PCR
Ox00 00000000
Ox00 00000000
0x80 10000000 128 cells/second
0x83 10000010 subfield identifier: backward PCR
Ox00 00000000
Ox00 00000000
0x80 00000000 0 cellslsecond

Ox5C 01011100 QoSparameters
0x80 I------- last byte in this group

-00----- ITU-T standardised coding
---00000 default error handling

Ox00 00000000
0x04 00000010 information element length
Ox00 00000000 forward QoS class 0
Ox00 00000000 backward QoS class 0

Figure 3.14: Example of a SETUP message (continued)

3.3.5 Interdependence of Information Elements

A problem that often occurs is that a connection cannot be established with the network
returning error codes like “unsupported combination of traffic parameters”. In general
information elements cannot be treated as independent entities. This is especially true for the
information elements that specify the parameters of the connection to be established. These
information elements are:

0 Broadband bearer capabilities
0 ATM traffic descriptor
0 Quality of Service parameters
0 End-to-end transit delay
0 Alternative ATM traffic descriptor
0 Minimum traffic descriptor
0 Extended QoS parameters

36 UNI: USER-NETWORK INTERFACE

For a standard connection setup the first three of these are specified; the alternative and
minimum traffic descriptors are used if traffic parameter negotiation is required, and the last
one if there is a need for fine-grained QoS specification (for example cell loss ratios). In the
case of ABR connections there are also:

0 ABR setup parameters
0 ABR additional parameters

As it turns out, the parameters specified in all these information elements depend on each
other to some extent-it is not possible to specify arbitrary combinations. [UNI4.0] lists the
allowable combinations of traffic parameters in Annex 9. However, specifying legal parameter
combinations does not necessarily mean that the connection request will succeed-some
network nodes still may not support these concrete traffic parameters. If a SETUP is rejected
with error codes like “unsupported combination of traffic parameter” or “bearer capability not
implemented” one should fist check whether the traffic parameters are specified correctly.

3.4 Connection States

ATM connections generally have three phases: the establishment phase, the active phase and
the release phase. During the establishment phase signalling messages are exchanged between
the end systems and the network to negotiate connection characteristics and parameters. In this
phase data cannot yet be sent, although at the called side there is no means to detect whether
the connection has been fully established. In the active phase data actually can be sent and,
this is an optional feature of the network, connection parameters can be modified. For point-
to-multipoint connections new leaf nodes can be added to the connection tree or removed from
it. In the release phase signalling messages are exchanged again to tear-down the connection.

These different connection phases are handled on the protocol side by different states of the
protocol instance, namely the call states (see Table 3.6).

Code

uomo
u 1 m 1
u2m2
u3m3
u4m4
U6m6
u 7 m 7
U8m8
u9/u9
UlO/NlO
U1 m 1 1
u12m12
U13m13
U14/N14
U25m25

Table 3.6: U N 1 call states

State

Null
Call initiated
Overlap sending
Outgoing call proceeding
Call delivered
Call present
Call received
Connect request
Incoming call proceeding
Active
Release request
Release indication
Modify requested
Modify received
Overlap receiving

Remark

not in UN14.0

in 4.2963
in 4.2963
not in UN14.0

POINT-TO-POINT CALLS 37

Each state has two short names: the UX are for the user side UN1 instance, and the NX for
the network site UN1 instance. Calls in the active phase are in state UlO/NlO, U13/N13 or
U14/N14; calls in the release phase are in state U1 UN11 or U12/N12. UO/NO means that the
call does not exist. All other states belong to the call establishment phase.

Besides these call states, there is also a state associated with the global call reference. This
call reference can be used to reset the entire UN1 stack (and thereby release all connections)
or a single ATM connection (that is, a VPINCI pair). The process handling this reset can be
in one of three states as shown in Table 3.7 (see also the section on the structure of a UN1
stack (Section 3.10) and the restart procedure (Section 3.7)).

Table 3.7: Global call states

I Code I State
l I

REST0

Restart REST2
Restart request REST1
Null

l I

3.5 Point-to-point Calls

The result of a point-to-point call is a bi-directional connection between two ATM end
systems. Bi-directional does not necessarily mean that traffic will be sent in both directions. It
only means that the VCINPI values are reserved for both directions while the traffic descriptor
may specify a cell rate of zero. It is usual to differentiate outgoing and incoming calls-the
meaning of outgoing and incoming is taken from the end system’s point of view. The end
system that initiates the call is said to make an outgoing call; the end system receiving the call
is said to get an incoming call.

During the establishment phase the call goes through the following steps:

1. The calling end system places an outgoing call by sending a SETUP message on the
signalling channel to the network. The network may acknowledge the receipt of the SETUP
and the start of processing it by responding with a CALL PROCEEDING (Figure 3.15).

I caller

SETUP

CALL PROCEEDING

Figure 3.15: Setting

SETUP
-

caller
switch

callee X
CALL T- PROCEEDING

Figure 3.15: Setting up a point-to-point connection, part 1

m switch € callee

, up a point-to-point connection, part 1

2. The call is forwarded across the network, resources may be reserved along the path, and
the last switch in the network creates an incoming call on the called end system by sending
a SETUP message on the signalling channel to that end system (our example shows only

38 UNI: USER-NETWORK INTERFACE

one switch). The called system in turn can acknowledge the receipt of the SETUP and the
start of processing it with a CALL PROCEEDING (Figure 3.16).

SETUP
-

caller X
switch 4-

callee

@
CALL PROCEEDING

Figure 3.16: Setting up a point-to-point connection, part 2

3. The called system may send an ALERTING message back to the calling system to indicate
that it is calling the user (or starting the application or whatever meaning one puts on the
telephone term “alerting”). This message is forwarded to the calling system (Figure 3.17).

caller X
4- 4- switch

callee

@ 0
ALERTING ALERTING

Figure 3.17: Setting up a point-to-point connection, part 3

4. When the called system has finished everything that has to be done to use the connection

1

(starting applications, allocating resources, etc.) it sends a CONNECT message to
the network. This message is acknowledged by a CONNECT ACKNOWLEDGE and
forwarded to the calling end system. At this point the connection is in the active phase
for the called system and the user can start sending ATM cells. However these cells are not
guaranteed to arrive until the CONNECT is received by the calling system-there is no
guarantee, that the CONNECT returning to the calling user travels at a higher or even the
same speed as the user plane ATM cells.

The calling end system receives the CONNECT message and returns a CONNECT
ACKNOWLEDGE. At this point the connection is hlly established (Figure 3.18).

Releasing a connection is much simpler:

One of the end systems (this may be either the calling one or the called one) decides to
release the connection and sends a RELEASE message to the network (Figure 3.19). This
message may include a cause information element that indicates the reason for releasing
the connection. There is no way to reject a connection release (except if the message has
an error). Note that it is also possible for one of the switches to release the connection in
the case of an error.

POINT-TO-POINT CALLS 39

CONNECT ACKNOWLEDGE
~

CONNECT ACKNOWLEDGE
~

caller
switch

callee X
T- CONNECT Y- CONNECT

Figure 3.18: Setting up a point-to-point connection, part 4

caller X
switch +- callee

0
RELEASE

Figure 3.19: Releasing a point-to-point connection, part 1

2. This message is acknowledged with a RELEASE COMPLETE after releasing all the
resources for that connection. At the same time the RELEASE is forwarded in the direction
of the other end system and resources are freed as the message travels along the path
(Figure 3.20).

RELEASE COMPLETE

c l I

caller X callee

4- - switch

0
RELEASE

Figure 3.20: Releasing a point-to-point connection, part 2

3. Finally the second end system receives the RELEASE message, releases all the resources
for this connection and acknowledges the message with a RELEASE COMPLETE. At this
point all resources of this connection have been released in the network (Figure 3.21).

In the next section the protocol operation on both sides of the call will be discussed in
detail.

40 UNI: USER-NETWORK INTERFACE

RELEASE COMPLETE
~

caller
switch

callee X

Figure 3.21: Releasing a point-to-point connection, part 3

3.5.1 Outgoing Calls

The flow of messages between the initiating end system and the network for an outgoing call
is shown in Figure 3.22.

Setup-request

T 3 0 3 E CALL PROCEEDING

Proceeding-indication

Alerting-indication

T301

Setup-confm
CONNECT
ACKNOWLEDGE

End System Network

Figure 3.22: Message flow for an outgoing call

The corresponding state changes for the user side are shown in Figure 3.23 and for the
network side in Figure 3.24.

The end system initiates the call by sending a SETUP message to the network with a fresh
call reference and starting timer T303. This timer is usually 4 seconds long and protects
against loss of the SETUP message. The following trace shows a typical SETUP message
sent to the network:

1 E j S 0.000 uni cref={you,lZ) mtype=setup mlen=51
2 traffic=Cfpcr0l=0,bpcrOi=O,be~
3 bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=pZp)
4 called=(type=unknown,plan=aesa,addr=spock)

POINT-TO-POINT CALLS

n
41

n 2nd T303 timeout

1st T303 timeout
resend SETUP A /, ~%E’

send
receive
CALL PROCEEDING

I^.- TPPPIXTP

receive
CONNECT

I \ I CONNECT I send I CONNEC
ACKNOV

“I&*-
r p n A

T
VLEDGE

CONNECT
ACKNOWLEDGE T3 10 timeout

send RELEASE

U10

T301 timeout . . send RELEASE

i U11 ;
..._..**

Figure 3.23: State changes for an outgoing call (user)

5 calling={type=unknom,plan=aesa,addr=kirk)
6 qos=Cforw=classO/unspecified,back=classO/unspecified)
7 E + S 0.170 uni cref={me,l2) mtype=call-proc mlen=9

9 E + S 0.204 uni cref={me,l2) mtype=alerting mlen=0
10 E e S 0.234 uni cref=Cme,l2) mtype=connect mlen=O
1 1 E j S 0.250 uni cref={you,l2) mtype=conn-ack mlen=O

8 connid=(vpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=56)

In this example the end system “kirk” establishes a UBR connection to the end system
“spock”. In lines 1 to 6 the SETUP message is sent to the switch. At this point timer T303 is

42 UNI: USER-NETWORK INTERFACE

receive

CONNECT

CALL PROCEEDING

CONNECT

ACKNOWLEDGE

send
ALERTING

send
CONNECT

Figure 3.24: State changes for an outgoing call (network)

running and the call is in state U1 (call initiated) and N1 on the switch side. After 170 milli-
seconds the switch sends a CALL PROCEEDING message to the end system, indicating that
the message seems OK and that it is processing the SETUP. Now the call progresses to state
U3 (outgoing call proceeding) and N3 on the network side. Timer T303 is stopped and T3 10
started instead. T3 10 is considerably longer than T303 (30-120 seconds instead of 4). It must
be noted that the CALL PROCEEDING message has only local relevance; receiving it means
two things: the SETUP message was received and is syntactically OK and the access switch
is going to forward the SETUP message across the network.

The CALL PROCEEDING contains a connection identifier IE. This tells the end system
the VPCI and VC1 that will be used for that connection. Generally these values are negotiable
(see Section 3.5.2).

When the called end system receives the SETUP message it can respond with an
ALERTING message. This ALERTING message obviously has come from narrowband
ISDN, where the user is alerted and the calling user should receive a tone indication that

POINT-TO-POINT CALLS 43

the remote phone is ringing. In the context of data networks and ATM this seems archaic.
Nevertheless the ATM-Forum has decided to take the entire ITU-T 4.293 1 standard including
such features into its UN14.0 standard.

When an ALERTING message is sent by the called system, it is forwarded backwards
through the network to the calling system. When the caller receives this message, it stops
timer T310, optionally starts T301 and goes into state U4 (call delivered) (see Figure 3.23).
The switch goes to state N4 when sending the ALERTING. Starting timer T30 1 is specified in
Annex H of 4.293 1. Originally the network side and the user side of the UN1 protocol were
specified somewhat asymmetrically. Annex H specifies optional extensions to the protocol
for symmetric operation. In most UN1 implementations this Annex is implemented. So the
alerting phase is protected by a timer on the caller's side. This timer is even longer than T303
and T3 1 &its minimum value is 3 minutes.

Our example end systems are faster, so the CONNECT (which was originally sent by the
called system to the network) arrives quite fast in line 10 (now the switch is in state N10). Kirk
answers with a CONNECT ACKNOWLEDGE in line 1 1 after stopping T30 1. At this point the
call is active in state U10 and data can be received and sent. Like the CALL PROCEEDING,
the CONNECT ACKNOWLEDGE has local meaning only. In fact, the switch silently ignores
it, because it moved to state N10 when it sent the CONNECT message (this is one of the
remaining asymmetries of the protocol).

One thing must be noted: although we have used the (almost) simplest SETUP message,
from the protocol point of view we have seen all, even the optional, messages. One of the
problems with this type of connection creation is that it takes a quite a long time to come to
a state where data can be sent. In the next trace we will go the shortest way to get a working
connection.

To establish a connection both the CALL PROCEEDING and the ALERTING messages
can be omitted. Whether to send a CALL PROCEEDING in response to a SETUP is usually
a configuration feature of the access switch; to send ALERTING or not is a feature of the
end system software. In the following trace we have configured the switch to not send CALL
PROCEEDING and the end system to not send ALERTING (see also Figure 3.25 for the
message flow).

1 E J S
2

3

4

5

6

7 E e S
8

9 E J S

0.000 uni cref=Cyou,lZI mtype=setup mlen=76
traffic=Cfpcr0l=0,bpcrOi=O,be~
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=pZp)
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling=Ctype=unknow,plan=aesa,addr=kirk)
qos=Cforw=classO/unspecified,back=classO/unspecified)

connid=(vpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=57)
0.347 uni cref=Cme,l4) mtype=connect mlen=9

0.420 uni cref=Cyou,lZ) mtype=conn-ack mlen=O

In this scenario the SETUP is directly answered with a CONNECT. When the CONNECT
is received, T303 is stopped and the call goes from state U1 (call initiated) directly to state
U10 (active).

Whether or not to configure a switch to send a CALL PROCEEDING depends on the
expected total round trip time of a call setup. If no CALL PROCEEDING is sent by the
access switch, the first answer from the called end system must come back to the calling

44 UNI: USER-NETWORK INTERFACE

Setup-request

Setup-confirm

ACKNOWLEDGE

End System Network

Figure 3.25: Short message flow for outgoing call

system within the runtime of T303 (3 seconds). If a CALL PROCEEDING is sent, this is
relaxed to T310 (30-120 seconds). Three seconds may be too short if a complex multihop
topology is involved (especially, if geostationary satellite hops are needed to reach the called
system).

3.5.2 Connection Identijer Selection

Generally the VPCI and VC1 to be used for a connection can be negotiated over the UNI.
The originator of a connection can include a connection identifier (Figure 3.26) in its SETUP
message. The peer UN1 can then decide whether this connection identifier is acceptable or not
and, if not, can reject the call. In most UN1 implementations, however, connection identifiers
are selected by the switch: an outgoing SETUP (i.e. one sent by the end system) does not
include a connection identifier; an incoming SETUP (sent by the switch) always includes a
connection identifier. If the SETUP contains no connection identifier, the first message sent
in response to this SETUP is required to contain one. This message may be either a CALL
PROCEEDING, an ALERTING or a CONNECT. Later messages can repeat the connection
identifier IE.

For negotiation the sender of the SETUP message includes a connection identifier
information element with one of the following three codings:

1. the IE indicates “exclusive VPCI; any VCI” (1);
2. the IE indicates “exclusive VPCI; exclusive VCI” (0);
3. the IE indicates “exclusive VPCI; no VCI” (4).

In all three cases the receiver of the SETUP checks whether the indicated VPCI value is
acceptable. If it is, then for the first case the receiver selects an appropriate VC1 value. For
the second case the receiver checks whether the indicated VC1 value is also acceptable. The
third case is allowed only when the bearer capabilities IE indicates that a transparent VP is to
be established. In this case the VC1 field is ignored. In any case, if the indicated value is not
acceptable or an appropriate value cannot be allocated, the SETUP is rejected. If the checks
are acceptable, the resulting connection identifier is reported back in the first message that
answers the SETUP. The sender of the SETUP is required to check that the returned values
actually match what was sent.

POINT-TO-POINT CALLS 45

IE identifier Ox5A

1
Coding IE instruction field
&mdard

Flag I Res. I
IE length = 0

Action indicator

IE length (continued) = 5

W-ASSOC Preferred
Exclusive

1 byte
I I

Figure 3.26: Connection identifier IE

For associated signalling (not supported by UN14.0 but by PNNI) a connection identifier IE
must always be included in the SETUP. Here only the first two codings are allowed and the
VPCI field in the information element is ignored (because the VC1 is always allocated in the
VPC carrying the signalling channel). The indication whether signalling is associated (coded
as 0) or non-associated (coded as 1) is contained in the connection identifier.

3.5.3 Negotiation of Connection Characteristics

Several parameters of the connection can be negotiated between the calling system and the
called system. These parameters fall into two groups: parameters that have meaning for
resource allocation in the network and for the end systems, and parameters that are meaningful
only for the end systems. Table 3.8 shows some of these parameters.

For each of these four groups a different mechanism for negotiation is used:

0 AAL parameters. The calling system includes an AAL Parameters IE in the SETUP
message. On receipt of this message the called system checks whether the negotiable
parameters are acceptable. If they are too low to be usable, the called system should
reject the SETUP; if they are too high, they are adjusted accordingly and the changed

46 UNI: USER-NETWORK INTERFACE

information element is included in the CONNECT message that is sent back to the caller.
Not all AAL parameters are negotiable. For AAL314 these include: forward and backward
maximum CPCS-PDU size (can only be reduced), MID (can only be reduced) and SSCS
type. For AAL5: forward and backward maximum CPCS-PDU size and SSCS type. The
recent Amendment 4 to Q.2931 also allows negotiation of the AAL type. For this type
of negotiation two AAL parameter information elements can be included in the SETUP
message.

Table 3.8: Parameters that can be negotiated

I Parameter I Network resource

AAL parameters

AAL314 Forward maximum CPCS size

no AAL5 Backward maximum CPCS size
no AAL5 Forward maximum CPCS size
no AAL314 MID range
no AAL314 Backward maximum CPCS size
no

Traffic parameters

Forward and backward PCR
Forward and backward SCR
Forward and backward MBS
Tagging
Frame discard
Best effort indication

Broadband lower layer information

Layer 2 protocol

no Layer 3 parameters
no Layer 3 protocol
no Layer 2 parameters
no

End-to-end transit delay

Cumulative delay Yes

Traficparameters. These are negotiated by including a minimum ATM traffic descriptor IE
or an alternative ATM traffic descriptor IE in the SETUP message in addition to the normal
ATM traffic descriptor.

In the case of the minimum traffic descriptor the called system can adjust the original
value of a parameter to a value between the original one and the minimal one. Suppose,
for example, that the traffic descriptor contained a forward PCR of 1024 cellslsecond and
the minimum traffic descriptor 256 cellshecond. In this case the called system can choose
any value between 256 and 1024 to be returned in the traffic descriptor of the CONNECT
message.

If an alternate traffic descriptor is included in the SETUP, the called system has the option

POINT-TO-POINT CALLS 47

to choose that one instead of the normal traffic descriptor if it cannot support the values in
the normal traffic descriptor.

a Lower layer information. This information is negotiated by including up to three Broadband
Lower Layer Information (BLLI) information elements in the SETUP, preceeded by a
repeat indicator. The called system must choose one of these to return it in the CONNECT
message. The BLLIs are ordered with decreasing precedence.

a End-to-end transit delay. This information element once included in the SETUP, is updated
at each node as it travels along the network. Each switch and the called end system add their
delay into the cumulative transit delay. The information element can specify a maximum
allowable value. If the cumulative delay turns out to be higher than the maximum, the call
is rejected.

It must be noted that some of the parameters that are marked with “no” in Table 3.8 may
influence network resources if the call is an intenvorking call with narrowband ISDN.

3.5.4 Incoming Calls

The flow of messages between the network and the end user for an incoming call is shown in
Figure 3.27. The state changes for this case can be seen in Figure 3.28 and in Figure 3.29 for
the network side.

7
I
I

T303 I
I

t
T310

F
T301

I

L

ACKNOWLEDGE

Setup-indication

Proceeding-request

Alerting-request

7
Setup-response

i T3 13

3
Setup-complete-indication

Network End System

Figure 3.27: Message flow for an incoming call

The new call instance is created when the network sends the SETUP message to the called
system (lines 1 to 7 in the following trace). The switch instance is now in state N6 (call
present) and timer T303 with a value of 4 seconds is started to guard against loss of the
SETUP (or a hanging end system). Upon receipt of the SETUP the user side UN1 stack

48 UNI: USER-NETWORK INTERFACE

.. .-
Figure 3.28: State changes for an incoming call (user)

creates a call instance and moves it to state U6. Depending on the time it takes to process
the incoming SETUP, the end system can optionally send a CALL PROCEEDING (line 8).
If this is done, the user side goes into state U9 (incoming call proceeding) and the network
side starts timer T3 10 (10 seconds) and goes to state N9. Now the user system can send

POINT-TO-POINT CALLS 49

send 1 st T303 timeout

receive
CALL PROCEEDING

T3 10 timeout

ALERTING

T301 timeout

send
CONNECT ACKNOWLEDGE

Figure 3.29: State changes for an incoming call (network)

an ALERTING message to inform the calling user that it is alerting the user (or starting
applications). This message (line 9) moves the user side of the UN1 to state U7 (call received)
and the network side to N7. The network stops whatever timer is running (T303 or T3 10) and
starts T301 with a minimum timeout of 3 minutes. In the next step the calling end system sends

50 UNI: USER-NETWORK INTERFACE

a CONNECT message across the UNI, indicating that it is willing to accept the connection.
It starts timer T3 13 (4 seconds) goes into state U8 and waits for the acknowledgement of its
message. The network, upon receipt of the CONNECT, forwards it to the calling user and
answers the CONNECT with a CONNECT ACKNOWLEDGE (line 11). At this point the
connection is in the active state (U10 and N10).

1 E + S 0.000
2

3

4

5

6

7

8 E + S 0.127
9 E + S 0.201

10 E + S 0.277
1 1 E + S 0.340

uni cref={you,81445) mtype=setup mlen=85
traffic={fpcr01=0,bpcrOI=O,be~
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p~
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling={type=unknow,plan=aesa,addr=kirk)
connid=(vpass=explicit,pex=exclusive~vpci~vci,vpci=~,vci=~55~
qos={forw=classO/unspecified,back=classO/unspecified)
uni cref={me,81445) mtype=call-proc mlen=0
uni cref={me,81445) mtype=alerting mlen=0
uni cref={me,81445) mtype=connect mlen=0
uni cref={you,81445) mtype=conn-ack mlen=O

Note that in this example the switch is offering the connection identifier to the end system.
As in the case of an outgoing call, all the optional messages can be omitted leading to faster

establishment of the call (see also Figure 3.30):

1 E + S 0.000
2

3

4

5

6

7

8 E + S 0.151
9 E S 0.272

uni cref={you,81447) mtype=setup mlen=85
traffic={fpcr01=0,bpcrOI=O,be~
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p~
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling={type=unknow,plan=aesa,addr=kirk)
connid=(vpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=254~
qos={forw=classO/unspecified,back=classO/unspecified)
uni cref={me,81447) mtype=connect mlen=0
uni cref={you,81447) mtype=conn-ack mlen=0

I
I Setup-indication
I

T303 I SetupTesponse
I CONNECT + /- I T3 13 *

ACKNOWLEDGE Setup-complete-indication

Network End System

Figure 3.30: Short message flow for an incoming call

POINT-TO-POINT CALLS 51

3.5.5 Unsuccessful Calls

Calls can be rejected for a number of reasons in various stages. They can be rejected by
network nodes, by the called end system and by the called user.

3.5.5.1 Timer Expiry

As we have seen, several timers are used to safeguard the different states of a connection
establishment at the outgoing and incoming interface. What happens when a timer expires
depends on which timer has expired and whether it was on the network or user side. The
following paragraphs show some of the most common situations.

T303

T3 10

T30 1

T3 13

Timer T303 is the timer that is started when a SETUP is sent over the UNI. Its
value is normally 4 seconds. On the first expiry of this timer the SETUP message
is usually resent (this is optional in UN14.0). On the second expiry the call is
cleared locally (which means any resources in the end system or the switch that
were reserved for this call are released). If this happens in a switch when creating
an incoming call, a release towards the calling user is also initiated.

One may ask why do we need a retransmission at the UN1 layer when there is
a reliable transport protocol (SSCOP) beneath the UNI? There are two reasons for
this: first, in the configuration of the UN1 the SSCOP may actually lose messages
(see Section 5.2) and second, the called end system, although able to process the
SSCOP, may be too busy and drop the SETUP. Both of these reasons are of course
quite weak and, obviously because of this weakness, the retransmission feature
was made optional.

Timer T3 10 is the timer that is started when a CALL PROCEEDING was
received (and a SETUP is acknowledged) and the UN1 instance is waiting for
an ALERTING or CONNECT. This timer is different at the user and the network
sites: 30-120 seconds vs. 10 seconds. If this timer expires, normal call clearing is
initiated by sending a RELEASE and entering state U1 1 or N11. If this happens at
a switch, call clearing towards the calling user is also initiated.

Timer T301 is the timer that safeguards the alerting phase. Because it is supposed
to involve user action (although this seems peculiar in the ATM context) it is
considerably longer than the other timers-its minimum value is 3 minutes. It must
be noted that often networks implement alerting timers at higher layers. These
timers must be aligned appropriately. If the timer expires, call clearing is initiated
by sending a RELEASE and entering state U1 1 or N11. A switch will also start
call clearing towards the calling user.

This timer is started at the user site when a CONNECT is sent to the network.
It has a value of 4 seconds and if the timer expires, call clearing is initiated by
sending a RELEASE to the switch and entering state U1 1. This timer is not used
at the switch side

The following trace shows an example of an incoming call with a SETUP retransmission
(T303 expiry) and a T3 13 expiry.

52 UNI: USER-NETWORK INTERFACE

1 E + S
2

3

4

5

6

7

8 E + S
9

10

11

12

13

14

IS E J S
16 E J S
15

18

19 E + S
20

0.000 uni cref=Cyou,37) mtype=setup mlen=85
traffic=Cfpcr01=0,bpcrOI=O,be~
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p~
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling=Ctype=unknow,plan=aesa,addr=kirk)
connid=(vpass=explicit,pex=exclusive_vpci_vci,vpci=O,vci=60~
qos=Cforw=classO/unspecified,back=classO/unspecified)

4.102 uni cref=Cyou,37) mtype=setup mlen=85
traffic=Cfpcr0l=0,bpcrOl=O,be~
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p~
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling=Ctype=unknown,plan=aesa,addr=kirk)
connid=(vpass=explicit,pex=exclusive~vpci~vci,vpci=O,vci=6O~
qos=Cforw=classO/unspecified,back=classO/unspecified)

4.197 uni cref={me,37) mtype=connect mlen=O
8.511 uni cref={me,37) mtype=release mlen=g

cause=Cloc=user,cvalue=recovery-on-timer-expiry,
class=protocol-error,timer=T313>

8.617 uni cref=Cyou,37) mtype=release-comp mlen=6
cause=Cloc=user,cvalue=normal_call_clearing,class=normal_event)

The SETUP sent in line 1 obviously got lost and is resent after T303 timeout in line 8. This
time the SETUP is answered by the user with a CONNECT in line 15, but the CONNECT
ACKNOWLEDGE from the switch is lost, so the user times out and sends a RELEASE in
line 16. This RELEASE is acknowledged in line 19 and the call is cleared.

3.5.5.2 Call Rejection by the Called User

A call may be rejected by the called user for many reasons:

0 Bad called address or subaddress. According to [Q.2931] the called user is required to
check whether the called addresses or subaddresses in an incoming SETUP really match
the addresses of the endpoint. If they do not match, the call should be rejected. This check
is optional in [UNI4.0].

0 Bad connection characteristics. The called user should check the connection characteristics
that are specified in the call (cell rates, bearer capabilities, QoS parameters, etc.). If they are
not usable, the user should reject the call. This is optional in [UNI4.0].

0 Bad AAL parameters. The called user should check the AAL parameters IE and reject the
call if he cannot support the specified parameters (or they cannot be adjusted as described
in Section 3.5.3).

0 Bad lower layer information. The called user should reject the call if he cannot support the
specified protocols or parameters (see also Section 3.5.3).

0 Bad higher layer information. The call should be rejected by the called user if he cannot
support the protocol or protocol parameters specified in this information element.

0 CLIR. The user may reject calls with Calling Line Identification Restriction (CLIR).
0 Missing optional IEs. The called user may reject calls where certain optional information

elements are missing, for example calling party number or calling party subaddress.
0 User busy. The call may be rejected because the user is busy. This seems to be an

anachronism from narrowband ISDN.

POINT-TO-POINT CALLS 53

The call can be rejected in two ways. Normally a RELEASE is sent to the network
including an appropriate cause information element (for example, “User rejects all calls with
call line identification restriction (CLIR)”) and, if applicable, diagnostics. The switch releases
resources, initiates call clearing towards the calling user and sends a RELEASE COMPLETE.
If immediately after receiving the SETUP the end system can determine that the call has to be
rejected, it can also send a RELEASE COMPLETE with an appropriate cause IE and without
allocating any resources to the call. In this case the network will release its resources and clear
the call towards the calling user. The following trace shows a rejection because of bad AAL
parameters (the user does not support AAL3/4) after sending a CALL PROCEEDING.

1 E + S
2

3

4

5

6

7

X

9

10 E J S
11 E J S
12

13

14 E + S
I5

0.000 uni cref={you,557231 mtype=setup mlen=103
aal={aaltype3/4={fmaxcpcs=4096 ,bmaxcpcs=4096 ,midrange={O, 631,

sscstype=data-sscs-assured)
traffic={fpcrOl=O,bpcrOl=O,be)
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p~
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling={type=unknow,plan=aesa,addr=kirk)
connid=(vpass=explicit,pex=exclusive~vpci~vci,vpci=O,vci=212}
qos={forw=classO/unspecified,back=classO/unspecified)

0.291 uni cref={me,55723) mtype=call-proc mlen=O
0.324 uni cref={me,55723) mtype=release mlen=6

cause={loc=user,cvalue=aal_parameters_can_not_be_supported,
class=service-or-option-not_implemented1

0.401 uni cref={you,557231 mtype=rel-compl mlen=6
cause={loc=user,cvalue=normal-call-clearing,class=normal-event1

In this trace the call is rejected because the called party number is wrong. This usually
means a misconfiguration of the switch or a failure of PNNI or ILMI:

1 E
-

2

3

4

5

6

7

x E
9

10

S 0.000 uni cref={you,55797) mtype=setup mlen=85
traffic={fpcrOl=O,bpcrOl=O,be~
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p~
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=lovina)
calling={type=unknown,plan=aesa,addr=kirk)
connid=~vpass=explicit,pex=exclusive~vpci~vci,vpci=O,vci=201~
qos={forw=classO/unspecified,back=classO/unspecified)

cause={loc=user,cvalue=incompatible-destination,
J S 0.397 uni cref={me,55797) mtype=rel-compl mlen=7

class=invalid_message,ie=called1

3.5.5.3 Call Rejection by the Network

The call can also be rejected by the network. There are four major groups of reasons for call
rejection:

0 Message errors. The contents of the SETUP message are wrong. The message or
information elements may be wrongly coded, length information may be inconsistent,
mandatory information elements may be missing or the call reference may be in use. Not
all coding errors lead to a rejection of the call. Errors in optional information elements are

54 UNI: USER-NETWORK INTERFACE

usually reported via a STATUS message and the information elements are discarded. The
call is progressed in that case. If mandatory information elements are bad or missing, the
call is rejected with an appropriate diagnostics field in the cause information element.

0 Unsupported feature. The calling end system may try to use optional features or features
that are supported in [UNI4.0] but not in the ITU-T standards. Examples are: requesting
a switched virtual path, ATM anycast or a second called party subaddress IE. The cause
information element must be examined in this case. Note that not all unimplemented
optional features lead to call rejection. In the case of a second subaddress IE, this IE maybe
discarded by the switch and the call forwarded without that IE.

0 Unsupported connectionparameters. The user may try to request a connection that cannot
be established because of its parameters. Examples are: unimplemented bearer classes or
QoS parameters, cell rates are unavailable or maximum end-to-end transit delay exceeded.
One major problem are the cause codes 65 (“Bearer capability not implemented”) and 73
(“Unsupported combination of traffic parameters”). These usually mean that the user has
requested a combination of bearer capabilities, traffic parameters or QoS classes which are
illegal. The allowed combinations are listed in Annex 9 of [UNI4.0].

0 Destination problems. If the user specifies an unknown called party number in the SETUP
or the destination system is down, the call is rejected by the network with cause codes
27 (“Destination out of order”), 41 (“Temporary failure”), 1 (“Unallocated number”) or 3
(“No route to destination”). Other cause codes are also possible (the standards are somewhat
fuzzy about the usage of specific cause codes).

Depending on where and when the problem is detected, the call may be rejected with a
RELEASE or a RELEASE COMPLETE. The latter happens only if the first switch is able to
find the problem before sending a CALL PROCEEDING.

In the following trace the user requests a CBR connection and specifies sustainable cell
rates. According to Annex 9 of [UNI4.0] and Appendix F of [UN13.1] this is illegal, so the
call is rejected by the access switch.

1 E j S 0.000
2

3

4

5

6

7 E j S 0.157
8

9

10

uni cref=Cyou,27) mtype=setup mlen=9l
traffic=~fpcr01=334,bpcr01=334,fscr01=334,bscr01=334,fmbs0l=4,bmbs0l=4~
bearer=(class=bcob-x,traffic=cbr,timing=noind,clip=not,user=pZp)
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling=Ctype=unknow,plan=aesa,addr=kirk)
qos=Cforw=classO/unspecified,back=classO/unspecified)
uni cref=Cme,27) mtype=rel-compl mlen=6
cause=Cloc=private-network-serving-local-user,

cvalue=unsupported_combination_of_traffic_parameters,
class=service-or-option-not-implemented)

3.5.6 Clearing a Call

Call clearing (or connection release) may be initiated by either side of the connection as well
as by the network. Normally a call is cleared on a UN1 by sending a RELEASE message. The
only exception is call rejection via RELEASE COMPLETE (see Sections 3.5.5.2 and 3.5.5.3).

The sender of a RELEASE message starts timer T308 (30 seconds) and enters state U1 1 or
N11 (release request). Upon receipt of the RELEASE the peer should release all resources for
this connection. If it is a switch initiate call clearing towards the other end of the connection

POINT-TO-POINT CALLS 55

Q
RELEASE receive

RELEASE
send
RELEASE
COMPLETE

Figure 3.31: Call clearing initiated by a local user

Release-request -

~----

RELEASE COMPLETE

Release-confirm I
End System Network

Figure 3.32: Message flow for call clearing by a local user

and answer with a RELEASE COMPLETE. The sender of the RELEASE should then release
its resources and stop the timer. At this point the connection no longer exists on this connection
segment. It should be noted that RELEASE COMPLETE has only local significance-it does
not indicate, that the entire connection has been released.

The following trace shows a release initiated by the user. The corresponding state changes
are shown in Figure 3.3 1 and the message flow in Figure 3.32.

1 E j S 0.000 uni cref=Cyou,33) mtype=release mlen=6

3 E e S 0.127 uni cref=Cme,33) mtype=rel-compl mlen=6
2 cause=Cloc=user,cvalue=normal-call-clearing,class=normal-event)

4 cause={loc=private-network-serving-local-user,
5 cvalue=normal-call-clearing,class=normal-event)

The user sends a RELEASE in lines 1 and 2 containing a cause information element that

56 UNI: USER-NETWORK INTERFACE

informs the remote user about the reason for the connection tear-down. In lines 3 to 5 the
switch answers with the appropriate RELEASE COMPLETE.

What happens if timer T308 expires? This can happen when either the RELEASE or the
RELEASE COMPLETE message are lost (the switch could also be too busy to answer in time,
although this seems unlikely with a timeout of 30 seconds). On the first expiry of T308 the
original RELEASE message is retransmitted, optionally including a second cause information
element with cause code 102 (“Recovery on timer expiry”) as can be seen in the following
trace.

1 E J S
2

3 E J S
4

5

6

7 E + S
8

9

0.000 uni cref=Cyou,33) mtype=release mlen=6

30.472uni cref=Cyou,33) mtype=release mlen=15
cause=Cloc=user,cvalue=normal-call-clearing,class=normal-event)

cause=Cloc=user,cvalue=normal_call_clearing,class=normal_event)
cause=Cloc=user,cvalue=recovery-on-timer-expiry,

class=protocol_error,timer=T308)
30.60luni cref=Cme,33) mtype=rel-compl mlen=6

cause=Cloc=private_network_serving_local_user,
cvalue=normal_call-clearing,class=normal-event)

This RELEASE finds the call at the switch either in state N10 (or another state N1. . .NlO) if
the RELEASE was lost, or in state NO (i.e. it does not find the call altogether), if the RELEASE
COMPLETE was lost. In any case a new RELEASE COMPLETE is transmitted. On the
second expiry of T308 all local resources for the call are released and, as the standard states,
“the virtual channel placed in a maintenance condition”. Additionally the restart procedure
can be invoked (see Section 3.7). Generally the VPWCI values that were associated with the
call should be marked as in use, because there is no evidence to the UN1 stack that the network
has really released the channel.

If a call is released by the remote peer, the operation of the protocol is symmetric to the
described one (see Figures 3.33 and 3.34).

Of course, it may happen that both the local user and the remote user release the call at the
same time. This can lead to a so-called clear collision, as one can see from the state diagrams
(Figures 3.31 and 3.33). This is handled by treating a RELEASE message in state U11 and
N12 like a RELEASE COMPLETE. Figure 3.35 shows the message flow. The following is a
trace that was obtained by delaying the release-response of the application in the end system.

1 E S 0.000 uni cref=Cme,37) mtype=release mlen=6

3 E j S 5.812 uni cref=Cyou,37) mtype=release mlen=6
2 cause=Cloc=user,cvalue=normal_call_clearing,class=normal_event)

4 cause=Cloc=user,cvalue=normal_call_clearing,class=normal_event)

There is also a faster way to release a call by using the exception handling procedures
specified in the standard. If a RELEASE COMPLETE message is received in a state where it
is not expected (and it is expected only in UO, U1, U1 1 on the user side and in NO, N6 and
N11 or the switch side), all resources for the call are released, all timers stopped and, if this
happens at a switch, the call released towards the remote user.

A call may also be released by the network in exceptional conditions. This may happen, for
example, if the remote user disappears (i.e. its SAAL goes down and cannot be restarted) or

POINT-TO-POINT CALLS 57

0
RELEASE

receive receive

receive I send
RELEASE RELEASE

COMPLETE
RELEASE

COMPLETE

W

send
RELEASE 1 st T308 timeout

send RELEASE

RELEASE

2nd T308 timeout

Figure 3.33: Call clearing initiated by a remote user

Network End System

Figure 3.34: Message flow for call clearing by a remote user

T308 I

Release-confrm
End System Network

Figure 3.35: Call clearing collision

a link in the network is broken (excavators are good for doing this kind of experiment). The
procedures used in this case are exactly the same as for normal call clearing, except that an

58 UNI: USER-NETWORK INTERFACE

appropriate cause information may be included in the RELEASE messages.
The cause information element is used to communicate all kinds of more or less useful

information between network nodes, especially during call clearing. The structure of this
information element is shown in Figure 3.36. The information element is specified in [Q3501
(cause values, location values), [Q.2610] (additions for B-ISDN), [UN13.1] and [UNI4.0]
(some additional cause values).

IE identifier 0x08 I
1 1 Coding

Flag I Res. I Action indicator standard
IE instruction field

4 1
spare

0 0 0
Location

5 1
Cause value

class value
I

6 1
I
I
I

I

Diagnostics (if any)

1 byte
I

I I

Figure 3.36: U N 1 cause idormation element

The location field of the information element describes where the reason for the release of
the connection has been detected. The possible values are shown in Table 3.9. This enables
a user to see who actually initiated the release and, in the case of unusual cause values, who
detected the problem that led to the call clearing.

The cause value consists of two subfields: a class (see Table 3.10) and the cause value
in this class. At the time of this writing approximately 80 cause values have been defined
(see [Q.850] for most of these values).

Unfortunately the standards are in many cases quite reluctant to specify the exact cause
value that should be used in a given situation. This has led to different UN1 implementors
returning different cause values for the same problem. In some cases however, the standard
specifies exact values to use.

POINT-TO-POINT CALLS

Table 3.9: Location values for the cause IE

59

Coding

Ox0
ox 1
0x2
0x3
0x4
0x5
0x7
Oxa

Location

user
private network serving local user
public network serving local user
transit network
public network serving remote user
private network serving remote user
international network
network beyond intenvorking point

Table 3.10: Classes of cause values

Coding Class

0

intenvorking 7
protocol error 6
invalid message 5
service or option not implemented 4
service or option not available 3
resource not available 2
normal event l
normal event

The cause information element may include a diagnostic field. The contents and length of
this field depend on the cause value: no explicit type information is included. The range of
possible diagnostic information goes from a list of information element identifiers for cause
value 96 (“Mandatory information element missing”), a connection identifier for value 82
(“Identified channel does not exist”) to entire information elements for 2 (“No route to
specified transit network”) and 22 (“Number changed”). The diagnostic for cause 22 is
especially interesting because it includes the new number where the end system can be reached
and allows for a limited form of mobility.

The RELEASE message can include up to two cause information elements. This is usehl to
handle timeouts during call clearing-an additional information element describing the timer
expiry can be included in the message.

3.5.7 Status Enquiry Procedure and STATUS Messages

In any state of a call (even in UO/NO) a UN1 instance can ask its peer about the peer’s vision
of the call state. This is done by sending a STATUS ENQUIRY message and starting T322,
which is normally 4 seconds. The peer should answer with a STATUS message with a cause
information element that contains cause value 30 (“Response to STATUS ENQUIRY”) and a
call state information element. Upon receipt of this message the UN1 stops T322 and does an
implementation dependent consistency check. If no STATUS message is received when T322

60 UNI: USER-NETWORK INTERFACE

expires, the STATUS ENQUIRY message may be retransmitted one or several times (again
this is the implementor’s decision). If after all retransmissions no answer is received, the call
is cleared with a cause value of 4 1 (“Temporary failure”). The following is a trace of a status
enquiry for a connection in the active state with one retransmission of the enquiry message.

1 E + S 0.000 uni cref=Cyou,41) mtype=stat-enq mlen=0
2 E + S 4.233 uni cref=Cyou,41) mtype=stat-enq mlen=O
3 E S 4.301 uni cref=Cme,4i) mtype=status mlen=li
4 callstate=CiO-Active)
5 cause=Cloc=private-network-serving-local-user,
6 cvalue=response_to_status_enquiry,class=normal_event}

The “implementation dependent” procedure to check the compatibility of the peer’s call
state with the own vision of the call could, in the simplest case, either always report
compatibility of the call states, or simply compare them. The problem with the second variant
is that it fails if the status enquiry is invoked while a retransmission timer like T303 or T308
is running. In this case the call states of both peers are different, but this is expected. If,
for example, the first SETUP was lost, the local call state will be U1 (call initiated), but the
peer call state will still be NO. These are different, but obviously compatible. The standard,
however, requires three things from the procedure:

1. If the STATUS message indicates a state other than UO/NO, but in the UN1 protocol instance
no such call exists (i.e. the call is in UO/NO), a RELEASE COMPLETE message should
be sent. This forces the peer to release the call that is unknown to the receiving protocol
instance.

2. A STATUS message which indicates states other than UO/NO received in U1 UN11 or
U12/N12 (these are the releasing states) is effectively ignored.

3. If a STATUS message that indicates UO/NO is received in any other state (this means that
the receiver has a call that is unknown to the peer), the call is locally released.

STATUS messages can be sent not only upon enquiry, but also in exceptional situations
(and, on user request, any time). This is especially useh1 to handle unimplemented optional
features of UN1 (see Section 3.9).

3.6 Point-to-Multipoint Calls

Point-to-multipoint calls are used to establish uni-directional connection trees from one source
end system, called root, to a set of destination end systems called leaves. Uni-directional in
this context means that although the VPINCI values are allocated for both directions of the
connection and connection segments, data can flow only from the root to the leaves. The
backward cell rates in the SETUP messages must be specified as zero. Signalling for the
establishment of point-to-multipoint connections is defined in [Q.2971] which also contains
numerous corrections of [Q.293 l]. According to the ITU-T standards, point-to-multipoint
connections are an optional part of ATM signalling for end systems as well as for switches;
according to UN14.0, which builds on [Q.2971], point-to-multipoint support is mandatory for
switches.

For switches point-to-multipoint signalling support is not sufficient-they must also
support cell duplication to split the traffic when the multipoint tree at this point involves

POINT-TO-MULTIPOINT CALLS 61

multiple output ports. For switches that do not support point-to-multipoint (e.g. switches that
conform to [Q.293 l]) the signalling specification supports some kind of workaround to use
these switches in point-to-point mode only. In the same manner end systems which are not
capable of point-to-multipoint signalling nevertheless can be leaves in such a connection. An
example of a point-to-multipoint connection is shown in Figure 3.37.

Figure 3.37: Point-to-multipoint example

In this example one root node is connected to seven leaves, where leaves 4 and 5 and
leaves 6 and 7 live in the same end systems (from the UNI’s point of view). This can happen,
for example, if these end systems are interworking units or border switches of private ATM
networks. There are two switches with point-to-multipoint support (S1 and S3) and one switch
without (S2). Because S2 is unable to duplicate the traffic for leaves 2 and 3, this is done by S 1.
S2 does not know even, that the two connections belong to the same call. In the same way
the end system hosting leaves 4 and 5 does not support point-to-multipoint signalling; the end
system with leaves 6 and 7 does. In the first case the switch will duplicate the traffic and make
two normal point-to-point SETUPS to the end system; in the second case the end system has
to do the traffic duplication.

Once a point-to-multipoint call is created, additional leaves can be added to the call and
existing leaves can be removed from it (dropped). Creating a call with two parties starts with
the same steps as creating a point-to-point call. The only difference is in the contents of some
of the exchanged messages (see Figures 3.15 to 3.18). Once the connection to the first leaf is
established the second leaf will be added with the following steps:

1. The root node sends an ADD PARTY message containing the address of the new leaf to the
network. This message is forwarded across the network to the called system. As long as the
message travels along an existing branch of the call, it is sent as an ADD PARTY. As soon
as the next node, which would either be not capable of point-to-multipoint signalling or a

62 UNI: USER-NETWORK INTERFACE

node, previously not involved in this call (i.e. a new branch must be forked from the tree),
the ADD PARTY is converted to a SETUP (Figure 3.38). Note that in the case of public
signalling (B-ISUP) the actual message names differ from the names used here. To set up
a connection to the first party at a given endpoint, a SETUP message is used. The called
end system may acknowledge the receipt of the SETUP with a CALL PROCEEDING.

ADD PARTY
A

SETUP

leaf 2

CALL PROCEEDING

Figure 3.38: Adding a new party, step 1

2. The called leaf may send an ALERTING indication back to the root node to indicate that it
is alerting the user or starting applications. This message is forwarded to the calling system
and converted to a PARTY ALERTING message on the way (Figure 3.39).

PARTY ALERTING
-

caller
switch 1

leaf 1 X

(ALERTING) “4
leaf 2

0
ALERTING

Figure 3.39: Adding a new party, step 2

POINT-TO-MULTIPOINT CALLS 63

3. When the called user has accepted the call, the end system sends a CONNECT message
to the network. This message is sent back to the root node and converted to an ADD
PARTY ACKNOWLEDGE on the way. The CONNECT message is acknowledged with
a CONNECT ACKNOWLEDGE to the leaf. When the ADD PARTY ACKNOWLEDGE
has been received by the root, the new branch is fully established (Figure 3.40).

ADD PARTY ACKNOWLEDGE
-

caller
switch 1

leaf 1 X

(CONNECT)

CONNECT

Figure 3.40: Adding a new party, step 3

Dropping a party from a point-to-multipoint tree can be initiated by both the root node and
the leaf. The leaf does so by sending either a DROP PARTY message or a RELEASE message
(if this is the only leaf at this endpoint). The root drops a party by sending a DROP PARTY or
a RELEASE if the last leaf has to be dropped or the entire call has to be cleared. Root-initiated
dropping of a party from a point-to-multipoint tree involves the following steps:

1. The root sends a DROP PARTY message to the switch (see Figure 3.41). This message is
forwarded to the leaf and may be converted to a RELEASE along the path (Figure 3.42).

The switch acknowledges the receipt of the DROP PARTY with a DROP PARTY
ACKNOWLEDGE. This message has only local significance, which means that the
resources for this leaf at this interface of the switch have been released. It does not mean
that the remote party has been dropped already. With receipt of the acknowledge the party
dropping procedure at the leaf is finished and all local resources are released.

2. The leaf acknowledges receipt of the RELEASE with a RELEASE COMPLETE after
releasing all resources that were allocated to this connection (Figure 3.43).

In the next sections the operation of the protocol for the establishment of new parties and
the dropping of parties will be described in detail.

3.6. l End Point References and Party States

Because all messages for a given point-to-multipoint call at a given UN1 use the same call
reference, even if they belong to different parties, an additional information element needs to

64 UNI: USER-NETWORK INTERFACE

DROP PARTY
-

caller
switch 1
X leaf 1

Figure 3.41: Dropping a party, step 1

DROP PARTY ACKNOWLEDGE RELEASE
~ 0

caller
switch 1
X leaf 1

Figure 3.42: Dropping a party, step 2

RELEASE COMPLETE

U U

Figure 3.43: Dropping a party, step 3

POINT-TO-MULTIPOINT CALLS 65

0 IE identifier 0x54

1 1
Coding IE instruction field
standard

Flag I Res. I Action indicator

2 IE length (0)

3 1
IE length (continued) (2)

Endpoint reference value

5

Figure 3.44: Endpoint reference IE

be used to distinguish messages for different parties. The endpoint reference IE contains a 15-
bit integer value that uniquely identifies a leaf in a given point-to-multipoint call. As compared
with the call reference, the endpoint reference has end-to-end meaning, which means that, it
does not change when a message travels between the root and the leaf. Endpoint reference
values are allocated by the root node. The value for the first leaf (which is connected when
the call itself is established) should be zero. The format of the IE is shown in Figure 3.44.

The endpoint reference IE also includes a flag, which indicates, whether the given message
is sent by the creator of the endpoint reference (i.e. the root node, flag 1) or has come from
the leaf (flag 0).

To handle point-to-multipoint calls UN1 stacks use an additional party object to describe
the state of each party for a given call (see Section 3.10). For each party there is an associated
party state (see Table 3.1 1).

Table 3.11: U N 1 party states

Code

Ox00
Ox0 1
0x04
0x06
0x07
OxOb
oxoc
OxOa

Name

PUOPNO
PUlPN1
PU2PN2
PU3PN3
PU4PN4
PU5PN5
PU6PN6
PU7PN7

State

Null
Add party initiated
Party alerting delivered
Add party received
Party alerting received
Drop party initiated
Drop party received
Active

66 UNI: USER-NETWORK INTERFACE

As in the case of call states (see Section 3.4) each state has two names: PUX for the user
side of the UN1 and PNX for the network side. PU7/PN7 are the active states where actual
data is delivered; PUl/PNl to PU4/PN4 are the party establishment states and PU5/PN5 and
PU6/PN6 are the drop states.

The state of a party may be communicated to the peer of the UN1 via a STATUS message
including an endpoint reference IE and an endpoint state IE. The endpoint state IE is shown
in Figure 3.45.

IE identifier 0x55

1
Coding IE instruction field
standard

Flag I Res. I
IE length (0)

Action indicator

IE length (continued) (1)

spare
0 0

Endpoint state

Figure 3.45: Endpoint state information element

3.6.2 Establishment of the First Party

For a point-to-multipoint call the call (and thus the connection to the initial party) is
established in exactly the same way as a point-to-point call. The only difference is in the
SETUP message:

0 The bearer capability information element must request a configuration of point-to-

0 Backward cell rates in any of the traffic descriptors must be zero.
0 The type of bearer indicated in the bearer capability information element may not be ABR.

multipoint instead of point-to-point.

No ABR specific information elements may be included in the SETUP.

Additionally a party FSM is created for the first leaf, and instead of the optional timer T301

Refer to Section 3.5 for information, on how a point-to-point connection is established.
the (optional) timer T397 is used.

3.6.3 Adding a Leaf

New leaves can be added to a point-to-multipoint call only from the root node (see
Section 3.6.7 for the leaf-initiated join feature). The messages for adding a new leaf use
the same call reference as for the original call setup. Individual leaves are identified by the

POINT-TO-MULTIPOINT CALLS 67

endpoint reference information element. These references are generated by the root node,
usually starting at zero for the initial party.

-r
I
I
I
I
I
I
I
I

T399 I

I
I
I
I
I
I
I
I
I

t

L

I
T391 I

I

Root

PARTY ALERTING
/

ACKNOWLEDGE

- - - - - - - -B

7
I

T303 I
I
I

F
I

T301 I

F
T3 1 OL

- -
L- -

_ - - -

Network

CALL PROCEEDING

/

I
I
I
I T3 13
I

A!
ACKNOWLEDGE

Leaf

Figure 3.46: Message flow for adding a party

Adding a new leaf is initiated by sending an ADD PARTY message from the root node
to the network and starting timer T399 (see Figure 3.46). The party FSM that is created to
handle the party enters state PU1 (add party initiated). On the network side a new party object
is created upon receipt of the ADD PARTY message and the state of the FSM is set to PN2
(add party received). The message is then forwarded in the direction of the leaf.

The ADD PARTY message contains a subset of the information elements that are allowed
for a SETUP. No traffic-related IEs are allowed because the traffic characteristics for all leaves
are the same and are established at the time when the call was originally created and the first
leaf contacted. Negotiation of any parameters is also not allowed, so there is only on BLLI.

The ADD PARTY message may travel in the direction of the addressed leaf along already
existing branches of the point-to-multipoint call. Usually at one point in the network a new
branch has to be forked of from the point-to-multipoint tree. At this node the ADD PARTY is
translated into an appropriate SETUP message. The main difference between an ADD PARTY
and a SETUP from the resource point of view is that an ADD PARTY simply advises, that
later in the network there will be another leaf getting the same traffic, while a SETUP will
allocate a new virtual channel or path. This means that if an intermediate switch decides that
the traffic now has to be duplicated, it must transform the ADD PARTY into a SETUP. This

68 UNI: USER-NETWORK INTERFACE

ADD PARTY ADD PARTY

ALERTING ADD PARTY ALERTING

receive
ADD PARTY

ACKNOWLEDGE
ADD PARTY

ACKNOWLEDGE

ADD PARTY
ACKNOWLEDGE

Figure 3.47: State diagram for adding a party at the root interface

also means that the information that was contained in the original SETUP, but is missing in
the ADD PARTY, has to be cached at each intermediate node. However, not all information
has to be cached-information elements that were used for negotiation, like repeated BLLIs,
need not be inserted into the SETUP. Also information elements with end-to-end significance
like Generic Identifier Transport are not cached at the network nodes but taken from the ADD
PARTY. Of course, there are cases when an ADD PARTY never gets transformed before
leaving the given network. If there are multiple leaves behind a public UN1 in a private
network (if we look from the viewpoint of the public network), the traffic duplication point
will be in the private network and the ADD PARTY message will be sent over the public UN1
to the private network (see later in this section).

When the leaf receives the SETUP the usual point-to-point establishment procedures apply,
except that negotiation procedures do not apply (only for the initial leaf which is identified
by an endpoint reference of zero negotiation is possible). The leaf may respond with a CALL
PROCEEDING and an ALERTING. The ALERTING is sent back in the direction of the

POINT-TO-MULTIPOINT CALLS 69

root node and gets transformed into a PARTY ALERTING. Upon receipt of the PARTY
ALERTING the root stops timer T399 for this party and starts T397 instead. The network
party is now in state PN3 (party alerting delivered) and the user party in state PN4 (party
alerting received).

When the called leaf accepts the call it sends a CONNECT message to the network. This
message is sent back to the root and transformed into an ADD PARTY ACKNOWLEDGE
which finally reaches the root node. Upon receipt of this message the root node stops all party
timers and enters PU7 (active). The network side party state is PN7. At this point the new leaf
is fully connected to the call.

We now look at some traces. We assume that the call has been established already and we
want to add another leaf.

1 E J S
2

3

4

5 E + S
6

7 E + S
8

9 E J S
10

11 E + S
12

13

14

I5

16

31.247uni cref=Cyou,42) mtype=add-party mlen=57
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling={type=unknown,plan=aesa,addr=kirk)
epref=Ctype=local,flag=me,idval=l)

31.680uni cref=Cme,42) mtype=party-alerting mlen=7
epref={type=local,flag=notme,idval=l)

31.72iuni cref=Cme,42) mtype=add-party-ack mlen=7
epref={type=local,flag=notme,idval=l)

33.112uni cref=Cyou,42) mtype=stat-enq mlen=7
epref =Ctype=local , f lag=me , idval=l)

33.190uni cref=Cme,42) mtype=status mlen=23
callstate=ClO-Active)
cause={loc=private-network-serving-local-user,

epref={type=local,flag=notme,idval=l)
epstate={state=active)

cvalue=response_to_status-enquiry,class=normal_event)

In lines 1-3 the root node sends an ADD PARTY message the network. The leaf user
obviously has decided to send an ALERTING message, so the root node receives a PARTY
ALERTING in lines 5 and 6 . The called user accepts the call. This shows up at the root node as
an ADD PARTY ACKNOWLEDGE in lines 7 and 8. At the end we invoke the status enquiry
procedure to verify the state of the call and the party-the call is in state UlO/NlO (active)
and the party is in state PU7/PN7 (active).

As we have mentioned previously, the traffic duplication point may actually be behind the
destination UN1 (as seen from the root node). One example is a private network with more
than one leaf (see Figure 3.48). In this example a root node in the public network is connected
to three leaves in a private network. For performance reasons the traffic should be duplicated
in the private switch. That means that the second and the third leaves have to be added at the
public UN1 via ADD PARTY messages, not by transforming the ADD PARTYs into SETUPS.
How this works is shown in Figure 3.49).

The ADD PARTY message is sent to the user side of the UN1 and timer T399 is started
on the switch. The user side may respond with a PARTY ALERTING in which case T399
is stopped and optionally T397 started. The PARTY ALERTING will be forwarded to
the root node in this case. When the leaf has accepted the connection an ADD PARTY
ACKNOWLEDGE is received from the user side of the UNI. The network stops all its timers
and forwards the message to the root. The party is now in state PU7/PN7. Note that the state
diagram is the same as for the root UNI.

70 UNI: USER-NETWORK INTERFACE

7
I
I
I
I
I
I
I
I

T399 I
I
I
I
I
I
I
I

t
I

T391 I
I
I

L

\ Network I I

Yl Leaf 3

Figure 3.48: More than one leaf behind a destination UN1

Root

PARTY ALERTING

/

ADD PARTY
ACKNOWLEDGE

ADD PARTY
ACKNOWLEDGE

Leaf

Figure 3.49: Message flow for adding a party at the leaf interface

POINT-TO-MULTIPOINT CALLS 71

The following is a trace taken on the destination system of the call in the previous example
(spock). A second leaf is added to spock. The actions on the root side are almost identical
to those in the previous trace, except that the endpoint reference is now 2. Note that the call
reference is different, because this is the destination interface of the call.

1 E + S
2

3

4

5 E J S
6

7 E J S
8

9 E J S
10

1 1 E + S
12

13

14

I5

16

67.612uni cref=Cyou,343) mtype=add-party mlen=57
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling={type=unknown,plan=aesa,addr=kirk)
epref=Ctype=local,flag=me,idval=2)

67.860uni cref=Cme,343) mtype=party-alerting mlen=7
epref=Ctype=local,flag=notme,idval=2)

68.124uni cref=Cme,343) mtype=add-party-ack mlen=7
epref=Ctype=local,flag=notme,idval=2)

70.30iuni cref=Cme,343) mtype=stat-enq mlen=7
epref =Ctype=local ,f lag=notme, idval=2)

70.312uni cref=Cyou,343) mtype=status mlen=23
callstate=ClO-Active)
cause=Cloc=private-network-serving-local-user,

epref =Ctype=local , f lag=me , idval=2)
epstate=Cstate=active)

cvalue=response-to-status-enquiry,class=normal-event)

In this trace the network sends an ADD PARTY in lines 1 4 . The end system responds with
a PARTY ALERTING in lines 2-6 and later with an ADD PARTY ACKNOWLEDGEMENT
in lines 7 and 8. Then the end system verifies the party and call states by means of a STATUS
ENQUIRY (lines 9 and lO), which is answered by the local switch in lines 11 to 16. The
STATUS indicates, that the call and the party are both in their active states.

Of course, as for a point-to-point call, the PARTY ALERTING (or ALERTING at the
destination UNI) messages are optional. In this case the establishment of a new leaf at the
root node is shorter (same call as previous):

1 E J S
2

3

4

5 E e S
6

7 E J S
8

9 E e S
10

11

12

13

14

210.08Omi cref=Cyou,42) mtype=add-party mlen=57
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling=Ctype=unknown,plan=aesa,addr=kirk)
epref=Ctype=local,flag=me,idval=6)

210.42hni cref=Cme,42) mtype=add-party-ack mlen=7
epref=~type=local,flag=notme,idval=6)

214.02%ni cref=Cyou,42) mtype=stat-enq mlen=7
epref=Ctype=local,flag=me,idval=6)

214.08&ni cref=Cme,42) mtype=status mlen=23
callstate=ClO-Active)
cause={loc=private-network-serving-local-user,

epref=Ctype=local,flag=notme,idval=6~
epstate={state=active)

cvalue=response_to_status_enquiry,class=normal_event)

Here the ADD PARTY in lines 1 4 is directly answered with the ADD PARTY
ACKNOWLEDGE (lines 5 and 6). The status enquiry procedure verifies that the call and
the party are in the active state.

72 UNI: USER-NETWORK INTERFACE

3.6.4 Rejecting an ADD PARTY Request

A request to add a party can be rejected either by the network or by the user in the same
manner as the establishment of a point-to-multipoint call is rejected. The network may reject
the new party, for example because of a wrong ADD PARTY message, insufficient resources
or because the new leaf is non-existent. The leaf itself may reject the adding because the
real leaf does not exist (in the case that the destination UN1 is a public UN1 where a private
network is connected) or because the addressed application does not exist or resources are not
available.

Let us look at what will happen if we address a non-existent leaf. The address f oobar in
the following example has been set to a non-existent address. The trace at the root interface is
as follows:

1 E j S 29.70iuni cref={you,51) mtype=add-party mlen=57
2 called=(type=unknown,plan=aesa,addr=plan=aesa,addr=foobar)
3 calling={type=unknown,plan=aesa,addr=kirk)
4 epref={type=local,flag=me,idval=l)
5 E S 29.789uni cref={me,5i) mtype=add-party-reject mlen=6
6 cause={loc=private-network-serving-local-user,
7 cvalue=no-route-to-destination,class=normal-event)

The root node sends an ADD PARTY with the unknown address to the network. Because
the switch cannot find a route to the end system, it rejects the ADD PARTY with an ADD
PARTY REJECT and an appropriate cause value.

The sequence of events is exactly the same when the remote user rejects the ADD PARTY
request. He does so by sending a RELEASE COMPLETE message in response to the SETUP
to the network. As the RELEASE COMPLETE travels back to the root node it gets converted
to an ADD PARTY REJECT with the cause information element preserved.

3.6.5 Dropping a Leaf

A leaf can be dropped from a point-to-multipoint call either by the root node, the leaf itself
or the network. The root node and the network can also drop all leaves at once by clearing
the entire call. We will not look at network dropping because it is not different from the other
variants except for the cause code and cause location value.

The network and user side party states for dropping a leaf by the root node are shown in
Figure 3.50. The corresponding message flows at the root and leaf interface are shown in
Figure 3.5 1.

The root node drops a leaf by sending a DROP PARTY message to the network indicating
the endpoint reference of the leaf to be dropped. It then starts timer T398 and enters state
PU5 (drop party initiated). When the network receives this message it initiates remote party
dropping towards the leaf and responds to the user with a DROP PARTY ACKNOWLEDGE
message. The root then node stops T398 and destroys the party object.

If the leaf to be dropped is the last leaf, which is in the active state (or one of the
establishment states), the sequence of actions is different from the one described. There
are two variants of what can happen: the root node can release the entire call by sending
a RELEASE or the network will respond with a RELEASE instead of the DROP PARTY
ACKNOWLEDGE. The second variant is shown in Figure 3.5 1. The root node sends a DROP

POINT-TO-MULTIPOINT CALLS 73

received

ACKNOWLEDGE

DROP PARTY DROP PARTY

\ l
receive
DROP PARTY
ACKNOWLEDGE W

Figure 3.50: State machine for dropping a leaf

T398

T398

- - - - RELEASE

I

T308 I RELEASE

I
l

Leaf N

-----M RELEASE

T308
RELEASE

T308 I COMPLETE

Root Network Last leaf

Figure 3.51: Message flow for dropping a leaf by the root node

74 UNI: USER-NETWORK INTERFACE

PARTY to the network to drop the last leaf. The network initiates remote dropping towards
the leaf and determines that this is the last leaf in this call. It then starts call clearing on the
root interface by sending a RELEASE message to the root node. The root node in turn stops
timer T398 which it started when sending the DROP PARTY, releases all local resources for
the call and responds with a RELEASE COMPLETE. At this point the entire call including
the call reference has been released.

T308

Root Network Last leaf

Figure 3.52: Dropping all parties from a call

A root node can also drop all parties at the same time and release all resources by sending a
RELEASE message to the network (Figure 3.52). The network, when receiving this message,
initiates party dropping towards all parties, releases resources and answers the root node with
a RELEASE COMPLETE.

A leaf can also drop itself by sending a RELEASE to the network. The network forwards
this message towards the root node, transforming it to a DROP PARTY on the way and
responds to the leaf with a RELEASE COMPLETE (see Figure 3.53).

Let us look at some examples. The first trace shows a point-to-multipoint call with three
leaves. The first two leaves are dropped by the root node and then the entire call is released:

1 E j S 0.000 uni cref={you,34) mtype=drop-party mlen=13
2 cause=Cloc=user,
3 cvalue=normal,-unspecified,class=normal-event)
4 epref=Ctype=local,flag=me,idval=Z)
5 E S 0.046 uni cref={me,34) mtype=drop-party-ack mlen=13
6 cause=Cloc=private-netvork-serving-local-user,
7 cvalue=normal,-unspecified,class=normal-event)

POINT-TO-MULTIPOINT CALLS 75

8

9 E J S
10

11

12

13 E + S
14

IS

16

17 E J S
18

19

20 E + S
21

22

epref=Ctype=local,flag=notme,idval=2)
8.224 uni cref=Cyou,34) mtype=drop-party mlen=l3

cause=Cloc=user,

epref =Ctype=local , f lag=me , idval=3)
8.310 uni cref=Cme,34) mtype=drop-party-ack mlen=l3

cause=Cloc=private-network-serving-local-user,

epref =Ctype=local ,f lag=notme, idval=3)

cause=Cloc=user,

cvalue=normal,-unspecified,class=normal-event)

cvalue=normal,-unspecified,class=normal-event)

14.712uni cref=Cyou,34) mtype=release mlen=6

cvalue=normal,-unspecified,class=normal-event)
14.806uni cref=Cme,34) mtype=rel-compl mlen=6

cause=Cloc=private-network-serving-local-user,
cvalue=normal,-unspecified,class=normal-event) - DROP PARTY DROP PARTY

ACKNOWLEDGE

RELEASE

RELEASE

RELEASE

Root

- -
5-

_ _ - -

I T398
I

1

-
5- -

_ _ c -

l

I T308
I

1

Network

7
I

I T308
I

i
Leaf N

RELEASE I 7 I T308

Figure 3.53: Dropping initiated by the leaf

Last leaf

The first DROP PARTY is sent by the end system in lines 1 4 . The answer appears in
lines 5-8. Then the party with endpoint reference 3 is dropped in lines 9-16. Finally the
end system decides to release the entire call in lines 17-19 by sending a RELEASE. This is
answered by the switch in lines 2&22.

The following trace shows dropping initiated by the leaves.

76 UNI: USER-NETWORK INTERFACE

1 E + S
2

3

4 E J S
5

6

7 E + S
8

9

10 E + S
11

12

13

14

IS E + S
16

17

18 E J S
19

20

0.000 uni cref=Cme,42) mtype=drop-party mlen=6
cause=Cloc=private-network-serving-remote-user,

cvalue=destination-out-of-order,class=normal-event)
0.212 uni cref=Cyou,42) mtype=drop-party-ack mlen=6

cause=Cloc=user,
cvalue=normal,-unspecified,class=normal-event)

20.903uni cref=Cme,42) mtype=drop-party mlen=6
cause=Cloc=user,

cvalue=normal,-unspecified,class=normal-event)
25.026uni cref=Cme,42) mtype=drop-party-ack mlen=l5

cause=Cloc=user,

cause=Cloc=private-network-serving-local-user,
cvalue=normal,-unspecified,class=normal-event)

cvalue=recovery-on-timer-expiry,class=protocol-error,timer=T398)
42.402uni cref=Cme,42) mtype=release mlen=6

cause=Cloc=private-network-serving-local-user,
cvalue=normal,-unspecified,class=normal-event)

42.872uni cref=Cyou,42) mtype=rel-compl mlen=6
cause=Cloc=private-network-serving-local-user,

cvalue=normal,-unspecified,class=normal-event)

Dropping the fist leaf was generated by unplugging the cable from the switch. After the
SAAL times out and cannot be re-established, leaf dropping is initiated towards the root. At
the root this appears as a DROP PARTY message with cause number 27 (“Destination out of
order”) in lines 1-3. The acknowledge from the end system comes in lines 4-6. The second
leaf drops itself normally. In lines 7-9 the DROP PARTY is received by the end system. This
time the end system fails to respond, so timer T398 expires after approximately 4 seconds
and a DROP PARTY ACKNOWLEDGE is sent by the switch. When the last leaf releases
its branch of the call, the network clears the entire call towards the root by transmitting a
RELEASE in lines 15-17. The end system acknowledges the RELEASE with a RELEASE
COMPLETE in lines 18-20.

3.6.6 Party Status Enquiry Procedure

In Section 3.5.7 we saw how a UN1 protocol instance can check the state of its peer entity with
regard to a given call. In the same way it is possible to enquire the state of a point-to-multipoint
call and the state of each party of such a call.

The call state of a point-to-multipoint call is questioned by sending a STATUS ENQUIRY
over the UN1 indicating the call reference of the call. The peer will answer with a STATUS
message containing cause code 30 (“Response to STATUS ENQUIRY”) and a call state
information element. This is no different from the point-to-point case.

To enquire the state of a party the sender of the STATUS ENQUIRY must include an
endpoint reference information element in the STATUS ENQUIRY message. The responding
side will then include an endpoint state information element in addition to the call state
information element in the STATUS message.

One problem, however, is that timer T322, which is used to detect lost STATUS ENQUIRY
and STATUS messages, is a call timer, not a party timer. This means that at any given time
only one STATUS ENQUIRY message can be outstanding. This poses a problem if the state
of multiple parties is to be checked. This happens, for example, if the SAAL has failed and

POINT-TO-MULTIPOINT CALLS 77

could be re-established. In this case the state of all parties must be checked with the peer.
This is done by maintaining a queue of pending status enquiry requests for each call in a UN1
instance. As soon as a STATUS message is received in response to a STATUS ENQUIRY the
next STATUS ENQUIRY may be sent.

3.6.7 LeafInitiated Join

We have seen in the previous sections that in a point-to-multipoint call new leaves are always
added by the root node. This works well as long as there are not too many leaves to handle and
all the leaves are known. There are, however, situations where this may not be the case. An
example of this are broadcasting services, where not all the receivers are known in advance,
nor can they all be handled by one node because of their number. What is needed in this case
is the ability for a leaf to say: I want to be connected to that call. This feature is the intention
of the leaf-initiated join (LIJ) capability that was added to UN14.0.

This feature uses two additional messages: LEAF SETUP REQUEST and LEAF SETUP
FAILURE. Additionally three new information elements are used: the LIJ call identifier, the
LIJ parameter IE and the leaf sequence number IE.

There are two types of LIJ calls:

1. Root-promptedjoin. In this case the leaf sends a request via UN1 to the root node of the
call indicating that it wants to be added to the call. The root adds the leaf by means of
the normal point-to-multipoint procedures. This procedure allows the root to check the
authorisation of the leaf to be added to the call. It also puts the burden of signalling on the
root if there are many leaves in the call.

2. Leaf-prompted join without root notiJication. In this mode of operation the leaf sends a
request over the UN1 to the network to be added to a point-to-multipoint call. The adding
of the leaf is entirely handled by the network-the root is not notified. When the call does
not yet exist, the request is forwarded to the root node which can establish the call to the
requesting leaf as the first leaf.

The user side of the UN1 uses an FSM to handle the LIJ requests, which is different from
the normal call state machine. The LIJ machine has two states:

0 Null. The state machine does not exist.
0 Leafsetup initiated. A LEAF SETUP REQUEST has been sent and the leaf is waiting for

a SETUP, ADD PARTY, LEAF SETUP FAILURE or timer T33 1 to expire.

The state machine uses an additional timer: T33 1. This has a default value of 60 seconds and
can optionally be restarted on expiry (with a retransmission of the LEAF SETUP REQUEST).
Figure 3.54 shows the state machine.

When the UN1 user requests to be added as a leaf to a point-to-multipoint connection a
FSM is created. It sends a LEAF SETUP REQUEST, starts timer T33 1 and enters state LIJl .
Then one of four things can happen:

0 SETUP receipt. If a SETUP is received it means that the network or root a going to add
the user to the requested point-to-multipoint call. Usually SETUP procedures apply (see
Section 3.6). The timer can be stopped and the FSM for the LEAF SETUP REQUEST can
be destroyed.

78 UNI: USER-NETWORK INTERFACE

LEAF SETUP
send

REQUEST
receive SETUP,
ADD PARTY,
LEAF SETUP FAILURE

% 31 timeout

Figure 3.54: Leaf-initiated join FSM

0 ADD PARTY receipt. This means that the network or root is going to add the user to the
point-to-multipoint call and the new leaf is not the first one of the given call in this end
system or switch. Usual ADD PARTY procedures apply. The timer can be stopped and the
FSM destroyed.

0 LEAF SETUP FAILURE receipt. The leaf cannot be added to the specified call. There
are many reasons why this could happen. Besides the usual reasons why a call can fail there
are additional cases: the feature may not be implemented, the call could not be found, the
user is not authorised to be added to the call, etc.

0 T331 expiry. In this case the LEAF SETUP REQUEST may be retransmitted several times.
On final expiry the FSM is destroyed and the failure is reported to the user.

The LEAF SETUP REQUEST sent by the user includes the following information
elements:

0 Transit network selection.'
0 Calling party number.
0 Calling party subaddress.'
0 Called party number.
0 Called party subaddress.'
0 LIJ call identifier.
0 LIJ sequence number.

The transit network selection (TNS) and called party information elements are used as
usual to locate the root node of the call in the network. Because a given root node may offer
more that one point-to-multipoint call for which add requests can be received, an additional

This is optional.

POINT-TO-MULTIPOINT CALLS 79

identifier for calls for a given root node is needed. This is the LIJ call identijier which is a
32-bit number that uniquely identifies the call on the given root.

When a node receives a SETUP, ADD PARTY or LEAF SETUP FAILURE message it
needs to locate the LIJ FSM that handles the add request (given that the SETUP or ADD
PARTY was triggered by a LEAF SETUP REQUEST). This is done by including a leaf
sequence number into the LEAF SETUP REQUEST. This information element is echoed
back by the network or root node in the ADD PARTY or SETUP message and enables the
leaf node to correlate these messages to the original request. The leaf sequence number is a
32-bit integer that is unique on the given leaf.

When connecting the initial leaf of a point-to-multipoint call for which leafjoin requests are
expected, the root node must include at least the LIJ call identifier IE in the SETUP message.
If the desired mode of joining is “network-prompted”, then the root must also include an LIJ
parameter IE. This IE has only one field (screening indication) for which one value, “Network
Join Without Root Notification”, is defined. If the SETUP is the response to a LEAF SETUP
REQUEST, the invoker’s leaf sequence number must also be included. (Note that the initial
party may also be a normal party, joined by the root.)

Unfortunately we were not be able to verify the operation of the LIJ feature because the
switch software of our switches does not yet support this feature. Because of this the following
paragraphs show how LIJ should work.

T33 1

T3 13

LEAF SETUP
REQUEST
(callid, seqno)
I
I
I
I
I
I
I
I
I
I
I
I
I SETUP
I (callid, seqno) +/
I

CONNECT
ACKNOWLEDGE

- - - - - - -
LEAF SETUP
REQUEST

-L (callid, seqno)

(callid, seqno)
I

I T303
v - -
I
I
I

I T310
I

-b I +
4

CONNECT
ACKNOWLEDGE

Leaf 1 Network Root

Figure 3.55: Root-prompted LIJ example, initial leaf

We first look at a call in root-prompted mode (Figure 3.55). Let us assume that the call
does not yet exist when the first leaf requests the join. The first leaf sends a LEAF SETUP

80 UNI: USER-NETWORK INTERFACE

REQUEST with the LIJ call identifier and the sequence number to the network. The network
routes the message to the root node because it knows nothing about that call. The root node,
upon receipt of the request, checks the message (whether the call identifier is legal and whether
the leaf is authorised for this call). If everything is acceptable the root node initiates a point-
to-multipoint call in the usual way with the first leaf being the leaf that sent the request (this is
not necessarily so-the root could also set up the connection to any other address and add the
requesting leaf in analogy to the second leaf). The call identifier and the invoker’s sequence
number must be included in the SETUP. The network proceeds with the establishment in
the usual way and the leaf will receive a SETUP message with the sequence number and,
optionally, the call identifier (for example, if this is an interface to a private network). It
locates the FSM handling the LEAF SETUP REQUEST, stops the timer and destroys that
FSM. It then continues to handle the point-to-multipoint call SETUP in the usual way. The
CONNECT message will be sent back to the root node and at this point the connection to the
first leaf is fully established.

7
I
I

T331 I
I
I
I
I
I
I
I
I
I
I

L
7

T313 I
L

LEAF SETUP
REQUEST
(callid, seqno)

SETUP
(callid, seqno)

/

/
CONNECT
ACKNOWLEDGE

Leaf 2

- - - - - - - -l

l- - _ _ - - - -

- - - - - _ _
-I

Network

LEAF SETUP
REQUEST
(callid, seqno)

ADD PARTY

ADD PARTY

I
I
I
I
I

I T399
I
I
I
I
I

Lt

Root

Figure 3.56: Root-prompted LIJ example, second leaf

Now the second leaf (residing on another ATM end system) requests to join the call
with a LEAF SETUP REQUEST including the same call identifier and a sequence number
(Figure 3.56). This request is forwarded through the network. Because the call is now known
to the network it will check in which mode the call was established. Because the mode is
“root-prompted’’ the LEAF SETUP REQUEST will be sent to the root node. The root node
checks authorisation and whatever it needs to check and, if everything is fine, it sends an ADD
PARTY message to the network to add the new leaf to the call. This message is forwarded
through the network to the requesting node and pops out there as a SETUP containing the

POINT-TO-MULTIPOINT CALLS 81

original sequence number. The leaf locates the LIJ FSM and destroys it after stopping the
timer. It responds to the SETUP with a CONNECT, which is transferred to the ROOT as an
ADD PARTY ACKNOWLEDGE. At this point the second leaf is fully added.

LEAF SETUP
REQUEST
(callid, seqno)

ADD PARTY

ADD PARTY
ACKNOWLEDGE

Leaf 3

I- - _ _ - - - -

- - - - - - - *

Network

LEAF SETUP
REQUEST
(callid, seqno)

ADD PARTY

ADD PARTY

Root

Figure 3.57: Root-prompted LIJ example, third leaf

Now let us suppose a third leaf is added (Figure 3.57), but now a branch of the point-
to-multipoint call exists already through the node (this may be the case if the node is the
border switch of a private network and this is the second leaf to join in that network).
Everything starts exactly as in the previous case, only this time the setup request sent by
the root appears as an ADD PARTY at the UNI. This time the leaf responds with an ADD
PARTY ACKNOWLEDGE which gets forwarded to the root to finish joining the third leaf.

In the case of a network-prompted join the establishment of the first party happens in
exactly the same way as for a root-prompted call. The only difference is that the root will
include an LIJ parameter IE in the SETUP identifying the call as a network join call.

When the second leaf is set up (see Figure 3.58) it sends a LEAF SETUP REQUEST as
usual. This request gets forwarded through the network until it finds a switch which knows the
call to be joined to. When it identifies the call as a network-join call then instead of forwarding
the LEAF SETUP REQUEST further to the root, it generates a SETUP message, includes the
sequence number and optionally the call identifier from the request and sends this SETUP
back to the leaf. The leaf accepts the SETUP by means of a CONNECT which gets forwarded
to the point where the SETUP was originated. At this point the new leaf is fully added to the
call. The root gets no indication that an additional leaf has appeared.

Note that for a network LIJ call the root itself may also add leaves. The dropping of leaves
from such a call is handled by the root or the leaf for leaves added by the root, and the network

82 UNI: USER-NETWORK INTERFACE

-r
I
I

T331 I
I
I
I
I
I
I
I
I
I
I

L
-r

T313

L

LEAF SETUP
REQUEST
(callid, seqno)

SETUP
(callid, seqno)

/

CONNECT
ACKNOWLEDGE

Leaf 2

- - - - - - - -l

- _ _ - - -
l-

- - -
----- l

Network Root

Figure 3.58: Network-prompted LIJ example, second leaf

and the leaf for automatically added leaves. As an exception to 4.297 1, the root node should
not release the call if it drops the last party, because there may be network-added leaves still
active. In this case call clearing is handled by the network.

3.7 Restart Procedure

The restart procedure can be invoked on either side of a UN1 to return one or all virtual
channels or paths to a known state. This procedure is invoked via a request from the UN1
user (call control in the switch or applications in the end system). Typical causes to invoke
a restart are: no response to other messages from the peer, failure during call clearing (no
RELEASE COMPLETE), and local failures (ATM board failure). When the procedure is
finished all resources that were associated with the restarted channels and paths have been
freed, including call references. This means that calls that use these channels and paths are
cleared. When this happens on a switch, call clearing towards the remote user is also initiated.

The restart procedure is associated with the global call reference (all bits zero). It can be
invoked from both sides of a UNI-the procedures are independent and the messages can be
discriminated by looking at the call reference flag.

Two messages are used for this procedure: RESTART and RESTART ACKNOWLEDGE.
Both messages always use the global call reference (all zeros). The call reference flag must be
zero in the RESTART message (because it is always sent by the side invoking the procedure).
In the RESTART ACKNOWLEDGE message the flag should be 1, but if the flag is 0,
the message is interpreted as a RESTART message. Both messages can contain the same
information elements: the restart indicator IE (see Figure 3.59) and the connection identifier
IE (see Figure 3.26).

RESTART PROCEDURE 83

IE identifier 0x79

Coding IE instruction field
1

Action indicator

IE length = 0 I
IE length (continued) = 1 I

I I soare I I
4 1

0 0 0 0
Class

1 byte
I I

Figure 3.59: Restart indicator IE

Table 3.12: Restart classes

I Code I Class

0

all virtual channels and paths that are controlled by the given UN1 2
path that are controlled by the given UN1 protocol instance
all virtual channels in the indicated virtual path or the indicated virtual 1
indicated virtual channel

The restart indicator describes the set of virtual channels and paths that are to be reset
(Table 3.12).

Note that only switched channels and paths can be reset- semi-permanent or permanent
channels and paths are ignored by this procedure.

If code 0 or 1 is used, the connection identifier IE must be included in the RESTART
message. It indicates the channel or path that is to be restarted. For code 1 the action depends
on whether the indicated virtual path is a switched path or not. If it is, it is restarted. If it is
not, then all channels in this path are restarted.

For code 2 (restart all channels and paths) no connection identifier should be present in the
message.

The state diagram for both sides of a UN1 in the case of a restart is shown in Figure 3.60.
Each side of a UN1 always runs FSMs which go through both diagrams. The left FSM talks
with the right FSM in the peer and vice versa.

The restart procedure is invoked by the UN1 user by means of a Restart.request. When
this signal is received, a RESTART message is sent to the peer with the global call reference
and the call reference flag set to zero, which contains the appropriate restart indicator and
connection identifier IEs.

84 UNI: USER-NETWORK INTERFACE

After sending the RESTART timer T3 16 is started, which ensures that the peer completes
the restart procedure in a limited time frame. This timer is about 2 minutes by default. The
FSM moves to state REST1 (restart request).

The peer, upon receipt of the RESTART, informs its user with a Restartindication, sets
timer T3 17 and goes to state REST2 (restart). Timer T3 17 should be less than the peer’s T3 16
to ensure that the UN1 user completes the restart faster than the peer can time out. Now the
application process on top of the UN1 (either a real application or the call control stack in the
case of the switch) should release all resources corresponding to the restarted channels and
paths (including the call reference).

T3 17 tin
Restart

send
RESTART

ACKNOWLEDGE

neout Restarthd
.error to A P I

Restart.response
from A P I

Figure 3.60: Restart state diagram

When the UN1 user has finished this process, it sends a Restart.response signal to the UNI.
The UN1 in turn stops T3 17, sends a RESTART ACKNOWLEDGE, and enters state RESTO.

The invoker of the restart procedure upon receipt of the RESTART ACKNOWLEDGE
stops its timer T3 16, informs the user about the successful restart via a Restart.confirm and
enters RESTO. At this point the procedure is finished.

If timer T316 expires because the peer fails to answer the restart request, the RESTART
message may be retransmitted and the timer restarted several times (default is 2). If no
response is received even after all retransmissions a Restart.error indication is sent to the
UN1 user and the RESTO state is entered. The channels and paths that could not be restarted
should be put in a state where they are not used.

If timer T317 expires because the UN1 user fails to respond to the Restart.indication, a
Restart.error indication is sent to the UN1 user and the FSM returns to state RESTO.

INTERFACE TO THE SAAL 85

The following is a trace of a successful restart of channel 56 on path 0:

1 E + S 0.000 uni cref={you,global) mtype=restart mlen=i4
2 connid=(vpass=explicit,pex=exclusive_vpci-vci,vpci=O,vci=56)
3 restart={class=vc)

5 connid=(vpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=56)
4 E + S 0.087 uni cref={me,global) mtype=res-ack mlen=14

6 restart={class=vc)

And the following is another trace for a restart of the whole UNI:

1 E + S 0.000 uni cref={you,global) mtype=restart mlen=5

3 E S 0.278 uni cref={me,global) mtype=res-ack mlen=5
2 restart={class=allvc-layer3)

4 restart={class=allvc-layer3)

In both cases a RESTART message is sent in line 1. To restart only a channel, it contains
a connection identifier IE for channel 0/56. To restart the entire UNI, no connection identifier
IE is contained. The RESTART ACKNOWLEDGE should contain the same restart class and
connection identification as the RESTART. This is checked by the end system that initiated
the procedure. If a mismatch is detected, the RESTART ACKNOWLEDGE is ignored.

3.8 Interface to the SAAL

UN1 as well as PNNI signalling uses a Signalling ATM Adaptation Layer (SAAL) consisting
of the Service Specific Connection Oriented Protocol (SSCOP) with a UN1 Service Specific
Coordination Function (SSCF) on top. Below the SSCOP is a standard AAL5. Chapter 5
provides an in-depth description of the SAAL.

From the SAAL signals at the upper layer of the SSCF only the following are used:

AAL-ESTABLISH.indication
This indicates to the UN1 that either the peer has established a new SAAL
connection, or the SAAL connection had to be re-initialised due to a protocol
error.

AAL-ESTABLISH.request
This is invoked by the UN1 to start the SAAL. Although [Q.2931] Structured
Description Language (SDL) diagrams show that an SAAL connection should be
established, when a Setup. request signal is received from the UN1 user, most
implementations try to start the SAAL as soon as they are started. This reduces the
setup time for the first call. It also makes error reporting better, because a broken
UN1 link is not detected when one tries to establish a connection, but when the
terminal is switched on.

AAL-ESTABLISH.confirm
This reports the successful establishment of the SAAL underlying SAAL
connection.

86 UNI: USER-NETWORK INTERFACE

AAL-RELEASE.indication
This reports that the SAAL connection was lost either because of an error or
because of a peer release request. Most implementations initiate a new SAAL
establishment when they receive this indication.

AAL-RELEASE.request
Releasing the SAAL may be requested from the UN1 user. This seems to make
sense only for access by management operations.

AAL-DATA.request
This request is used by the UN1 to send messages to the peer UNI.

AAL-DATA.indication
This signal is invoked by the SAAL to inform the UN1 about the arrival of a
message from the peer UNI.

The unassured data transfer feature as well as user data in SSCOP connection control
messages is not used.

Which channel is used for the SAAL depends on the configuration of the UN1 (see
Section 3.2). Normal configuration is to use VPI= 0 and VCI= 5 to control the entire link
(non-associated signalling). [Q.293 l] allows for associated signalling (in this case other VPs
on the link can carry their own signalling channel in VCI= 5). [Q.2120] has support for
the dynamic allocation of signalling channels. However, [UNI4.0] only allows the standard
configuration. The only exception is proxy signalling or virtual UN1 support. The VC1 number
and signalling mode is usually a configuration option in switches and end systems.

[UNI4.0] specifies also the characteristics of the signalling VC: service category, traffic
contract, cell loss ratios and end-to-end transit delay.

The state of the entire UN1 stack is described by the so-called coordinator state. This state
can have the following values (see also Figure 3.61):

C U k A A L Connection Released
In this state no SAAL connection exists. No messages can be received or sent.
An SAAL connection is established either by the peer, or by the UN1 user by
means of a Restart. request to execute a restart procedure, a Setup. request
to establish an ATM connection or a Link-Establish.request to establish
the SAAL connection. In the last three cases the coordinator issues an
AAL-ESTABLISH. request, starts T309 and enters state CU1. In the first case it
goes directly to CU3.

CUI-AAL Establish Request
The coordinator has requested the establishment of the SAAL connection.
If the connection is successfully established, the coordinator receives an
AAL-ESTABLISH . confirm, stops T309 and enters CU3. If the establishment fails,
either an AAL-RELEASE . indication is received or T309 times out. In both cases
the coordinator goes back to CUO.

CU2-AAL Awaiting Release
The UN1 user has requested the release of the SAAL connection. The coordinator
waits for the AAL-RELEASE . confirm signal. If it is invoked, CUO is entered.

INTERFACE TO THE SAAL 87

got AAL-RELEASE.indication
or T309 timeout

T309 timeout
got AF'I LinkEstablish.request

AF'I Reset.request

do AAL-ESTABLISH.request

got
AAL-ESTABL1SH.confirm

Link-Release.request

U-ESTABL1SH.confm or
AAI-ESTABLISH.indication

Figure 3.61: Coordinator states

CU3-AAL Connection Established
The SAAL connection is up and running. Messages can be transmitted and
received.

The corresponding states on the network side UN1 are called CNO, CN1 , CN2 and CN3.
Normally the SAAL connection is established as soon as the interface is configured to be

up. On successful establishment the coordinator remains in state CU3 or CN3 all the time.
If there are problems on the link AAL-ESTABLISH or AAL-RELEASE signals can be received
from the SAAL because of either error recovery or connection release by the peer or by one
of the SSCOP instances. The coordinator translates these signals to four different signals that
are then sent to all call FSMs:

Link-Establish.indication
This means that there was a problem on the link and the SAAL connection was
either successfully re-established or the error recovery procedure was invoked and
finished. If a call FSM receives this signal the action of the FSM depends on the
current state. For calls in the release states (U1 1 and U12) no action is taken. For
calls in the establishment states (Ul-US) the status enquiry procedure may be
invoked. If the call is in state U10, then either the call status enquiry is invoked or
the party status enquiry for all active parties for point-to-multipoint calls. Parties in
the drop states are ignored and the state of parties in the add states may optionally
be enquired.

88 UNI: USER-NETWORK INTERFACE

Link-Establish.confirm
This means that there was a problem on the link and the SAAL connection was
successfully re-established. Because there was a Link-Release.indication received
previously only active calls and parties exist at this point. For all calls and parties
the status enquiry procedure is invoked.

Link-Release.indication
This means that the link was released either by the peer or by the SSCOP because
of extensive errors. All calls that are not in state U1 0 are locally released. For point-
to-multipoint calls all parties not in the active party state are released. This means
that only active calls and active parties remain. Additionally the re-establishment
of the SAAL connection is requested if any call is found in state U10. Normal
implementation always request SAAL establishment, even if no call is active.

Link-Release.confirm
This happens only if the request to release the SAAL connection was invoked from
the UN1 user. It means that the link is now released.

There is also a Link-Establish.error indication. This is invoked by the coordinator if the
SAAL (re-)establishment fails. In this case all calls and parties are locally cleared.

(Re-)establishment of the SAAL is controlled by timer T309. This timer is started whenever
an AAL-ESTABLISH.request signal is sent to the SAAL (provided that it is not running
already). If the timer expires, an error is assumed and all calls are cleared. The timer normally
has a values of 10 seconds which is far more than the SAAL should need to establish the
connection (the SSCF at the UN1 (see Section 5.2) specifies four attempts with an interval of
1 second).

3.9 Exception Handling

In such a complex protocol like the UN1 with such a complex message structure many
exceptional situations can arise. An additional problem is the existence of different protocol
variants (4.293 1,Q.2971, UN13.1, UN14.0) and the existence of many optional features and
enhancements (for example, bandwidth modification of existing connections [Q.2963.1]-
[Q.2963.3]). In the UN1 protocol even the error handling is complex.

There are four basic kinds of errors that can occur:

0 Wrong message encoding. This can happen because of implementation errors or mis-
interpretations of the standard. Features that are implemented on one side of a UNI, but
not on the other, also lead to coding errors, because non-implemented information elements
or messages are handled like coding errors.

0 Status errors. In this class are errors like: receiving a message not expected in the given
state, information elements that should be in the message for the current state but are
missing, or information elements that should not be contained in the message but are found.
As in the previous case this can be the result of a non-implemented optional feature. An
example is the receipt of a CONNECT message in response to an outgoing SETUP without
an intervening CALL PROCEEDING. According to 4.2931 this is an optional feature
(see Annex H of [Q.2931]). If an end system has not implemented this features, but the
access switch has been configured to not send a CALL PROCEEDING, the CONNECT or
ALERTING that is received later will be treated as an error.

EXCEPTION HANDLING 89

0 Semantic errors in the messages. These errors are quite hard to spot if they occur. As already
noted, there are many interdependencies between the information elements of a message,
and even between different messages for one call. If, for example, the bearer capability
information element specifies a point-to-multipoint connection, the backward cell rates in
the traffic descriptor must be zero. Because a switch need not to implemented all legal
bearer types, traffic classes, QoS classes and traffic characteristics and a call typically
travels through many switches in the network, all possibly with different implementations
and configurations, these kinds of errors can happen at any stage in the call and it is difficult
for the user to located, where the error really occurred. To make it even more complicated,
if the network uses dynamic routing (PNNI), one call make succeed but a later call with the
same characteristics may fail.

0 Not enough resources. Even if everything is fine, the network may lack the resources needed
for the call.

If an error situation occurs a UN1 can react in different ways:

0 It can release the call. This is probably the most drastic action, but in a case like, for

0 It can report the problem by means of a STATUS, ignore the offending information elements

0 It can report the problem with a STATUS message, ignore the entire message that had an

0 It can ignore erroneous information elements and try to continue.
0 It can ignore the offending message and remain in its state.

example, the lack of resources, there is nothing the network can do about the call.

and try to continue.

error and remain in the state it was prior to receipt of that message.

The standard specifies a default action for all errors2 This default error handling can
be overridden on a per-information-element or per-message basis by means of the action
indicator (see Figure 3.1 1 and Table 3.5). In addition the PNNI has a Pass Along Request
bit in the message and the information element header which, if set, entirely inhibits error
processing. If this bit is set, the information element is forwarded to the next link as it is. This
feature allows the support of new information elements and messages in PNNI even if not all
switches implement the new feature.

If an error is not entirely ignored, the call is either released or a STATUS message is sent
back to the originator of the offending message. In any case one of three message types
is generated: RELEASE, RELEASE COMPLETE, or STATUS. RELEASE COMPLETE is
used either in “very” exceptional situations, when the call is to be released very quickly, or
when a call attempt has to be rejected. The normal action to release a call is by means of
a RELEASE message. If exception handling specifies that the call should not be cleared, a
STATUS message is emitted. All three messages contain a cause information element (see
Figure 3.36) that tells the peer UN1 what the problem is. In the case of an error during the
release procedure, the RELEASE message can even include two of these causes (this happens
when, during a release, timer T308 times out).

Let us look at some common error handling examples in the following traces.
When a message is received the highest priority check is for the correctness of the message

header. If the protocol discriminator is wrong, the call reference has a wrong format (reserved

Well, not for all, but for most. Some kinds of errors are simply not mentioned in the standards and the implementor
must choose a sensible way of handling them.

90 UNI: USER-NETWORK INTERFACE

bits not zero or length not 3) or the message is shorter than 9 bytes (so that the length is
missing), then the message is totally ignored. This type of error is not shown in the following
examples.

The first two traces shows the reaction of the network to a message with a wrong call
reference.

1 E + S 0.000 uni cref=Cme,27) mtype=connect mlen=O
2 E + S 0.078 uni cref=Cyou,27) mtype=rel-compl mlen=6
3 cause=Cloc=private-network-serving-local-user,
4 cvalue=invalid_call_reference~value,class=invalid~message}

Here a CONNECT message is sent with a call reference that is not used yet. The
network answers with a RELEASE COMPLETE. This reaction seems sensible, because the
CONNECT message could be the result of the user side thinking that the call exists. The
RELEASE COMPLETE lets it release all resources for that call, so it is now non-existent on
both sides of the interface.

1 E
2

3

4

5

6 E
7

8

9

+ S 0.000 uni cref=Cyou,global) mtype=setup mlen=51
traffic=Cfpcr01=0,bpcrOI=O,be~
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p~
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
qos=Cforw=classO/unspecified,back=classO/unspecified)

callstate=CO-Null)
cause=Cloc=private-network-serving-local-user,

+ S 0.091 uni cref=Cme,global) mtype=status mlen=il

cvalue=inval id~cal l~reference~value.class=inval id~message~

In this example a SETUP is sent with the global call reference. This is illegal so the network
rejects this with a STATUS message indicating that the call reference is invalid. Upon receipt
of this message the UN1 stack does compatibility checking of the call states and finds a
mismatch-the call state on the user side is U1 (call initiated), but the response from the
network indicates U0 (not existent). This leads to a local clearing of the call.

The protocol reactions to these kinds of errors are specified in this way to synchronise the
state of the UN1 protocol instances on both ends of the interface.

The following two examples show the default reaction to messages received in the wrong
state.

1 E j S 0.000
z E e S 0.101
3

4

5

6 E j S 5.027
7 E S 5.090
8

9

10

11

uni cref=Cyou,35) mtype=stat-enq mlen=O
uni cref=Cme,35) mtype=status mlen=ll
callstate=ClO-Active)
cause=Cloc=private-network-serving-local-user,

uni cref=Cyou,35) mtype=connect mlen=O
uni cref=Cme,35) mtype=status mlen=ll
callstate=ClO-Active)
cause=Cloc=private-network-serving-local-user,

cvalue=response-to-status-enquiry,class=normal-event}

cvalue=message-not-compatible-with-call-state,
class=protocol_error,mtype=OxO7)

EXCEPTION HANDLING 91

In this example we have a call in the active state. This is verified by invoking a status
enquiry in line 1. Lines 2-5 show the STATUS message from the switch which indicates state
N10. In line 6 a CONNECT message is sent, which is clearly wrong in that state. The switch
responds with a STATUS. The call state indicates that it has effectively ignored the message
(the state did not change). The cause value shows that the last message was received in the
wrong state.

1 E + S 0.000
2 E S 0.137
3

4

5

6 E j S 3.870
7

8

9 E + S 3.923
10

11

12

13

uni cref=Cyou,41) mtype=stat-enq mlen=O
uni cref=Cme,41) mtype=status mlen=li
callstate=ClO-Active)
cause=Cloc=private-network-serving-local-user,

uni cref=Cyou,41) mtype=!Ox88
cvalue=response_to_status_enquiry,class=normal_event)

unparsed=(88:80:00:0c:59:80:00:08:84:00:07:d0:85:00:07:
d0:00:00:00:00:00~

uni cref=Cme,41) mtype=status mlen=12
callstate=CiO-Active)
cause=Cloc=private-network-serving-local-user,

cvalue=message-type-non-existent-or-not-implemented,
class=protocol_error,mtype=Ox88)

This trace shows the invocation of an unimplemented feature. The user sends a MODIFY
REQUEST message to change the peak cell rate of a CBR connection (the call state is again
checked by means of a status enquiry procedure). This feature is not implemented in the
switch, so it responds with a status message. This time the error code shows that the message
was not completely understood. We see also another problem: the sigdump tool that is used
to trace the message also does not understand the MODIFY REQUEST and prints its contents
as hex numbers. Before we try to invoke the modify procedure we verify that the call is in
state 10.

Errors in single information elements are classified into two groups:

0 errors in mandatory information elements;
0 errors in non-mandatory information elements.

Whether an information element is mandatory in a given type of message or not may depend
on the state of the call and on previous messages. If, for example, an ALERTING message is
sent by the network to the calling end system, then the connection identifier is mandatory if no
CALL PROCEEDING was sent previously, and non-mandatory if a CALL PROCEEDING
was sent. Another example would be if the called user has received an end-to-end transit
delay information element in the SETUP, he must include an end-to-end transit delay IE in
the CONNECT.

When a mandatory information element is missing or has a content error, the message is
usually ignored and a STATUS message sent. Exceptions are: a SETUP is rejected by means
of a RELEASE COMPLETE; an invalid or missing cause in a RELEASE is interpreted as a
normal cause; and an error in the cause of a RELEASE COMPLETE is ignored. The following
traces show these actions.

92 UNI: USER-NETWORK INTERFACE

1 E + S 0.000
2

3

4

5 E + S 0.056
6

7

X

uni cref=Cyou,27) mtype=setup mlen=26
traffic=CfpcrOl=O,bpcrOl=O,be)
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p)
qos=Cforw=classO/unspecified,back=classO/unspecified)
uni cref=Cme,27) mtype=rel-compl mlen=7
cause=Cloc=private-network-serving-local-user,

cvalue=mandatory-information-element-is-missing,
class=protocol-error,ie=called)

In this example the user sends a SETUP message without a called party number
information element (lines 1 4 . This is rejected by the network with an appropriate RELEASE
COMPLETE indicating the missing IE (lines 5-8).

Now an example of a missing cause in a RELEASE:

1 E + S 0.000 uni cref=Cyou,28) mtype=release mlen=O
2 E S 0.137 uni cref=Cme,28) mtype=rel-compl mlen=7
3 cause=Cloc=private-network-serving-local-user,
4 cvalue=mandatory-information-element-is-missing,
5 class=protocol-error, ie=cause)

The RELEASE message in line 1 is missing the cause information element. The switch
clears the call anyway and responds with a RELEASE COMPLETE indicating the missing
cause in lines 2-5.

The behaviour for information elements with errors is the same as for missing IEs, only
error code 100 (“Invalid information element contents”) is used instead of 8 1.

For errors in non-mandatory information elements the actions of the UN1 stack are
different-normally a STATUS message is sent after handling the message. The information
element with an error is ignored. This may of course lead to the establishment of a connection
with the wrong characteristics. This may be hard to detect. If, for example, the calling user
wants to negotiate AAL parameters (see Section 3.5.3) he includes an AAL parameters IE
into the SETUP. The called user should adjust the parameters in this IE and return it in
the CONNECT message. If he makes an error in the coding of this IE, the network sends a
STATUS message to the called user and forwards the CONNECT without the AAL parameters
to the calling user. He in turn will falsely assume that the called user has accepted the settings
in the AAL parameters IE. In such a case the called user should probably release the call.

Let us look at an example. The calling user sends a SETUP message with an error in the
AAL parameters information element:

1 E
2

3

4

5

6

7

x E
9

j S 0.000 uni cref=Cyou,l2) mtype=setup mlen=85
aal=C!illegal-aaltype6)
traffic=CfpcrOl=O,bpcrOl=O,be)
bearer=(class=bcob-x,traffic=noind,timing=noind,clip=not,user=p2p~
called=(type=unknown,plan=aesa,addr=plan=aesa,addr=spock)
calling=Ctype=unknow,plan=aesa,addr=kirk)
qos=Cforw=classO/unspecified,back=classO/unspecified)

callstate={I-Call-initiated)
+ S 0.141 uni cref=Cme,l2) mtype=status mlen=12

EXCEPTION HANDLING 93

10 cause=Cloc=private-network-serving-local-user,
11 cvalue=access_information_discarded.class=resource-unavailable,
12 ie=aal)
13 E + S 0.167 uni cref=Cyou,l2) mtype=call-proc mlen=9
14 connid=(vpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=223)

The calling user sends a SETUP with an invalid AAL type in the AAL parameters
information element. The network discards this information element and proceeds the call
(line 11). Before the CALL PROCEEDING is sent, a STATUS message reports the error
(line 8). Note that in the case of the BLLI, BHLI, AAL parameters and sub-address
information elements the error is 43 (“Access information discarded”) while for other
information elements the error would be 100 (“Invalid information element contents”).

If there is an entirely unknown information element in a message a STATUS with cause
code 99 (“Information element non-existent or not implemented”) is sent with a diagnostic
indicating the information element. This may be used by the sending entity to detect that a
certain optional feature is missing.

The previous examples have shown the action of the UN1 stack in the case of default error
handling. These rules can be overwritten by the specification of explicit action indicators
in single information elements or for the entire message. The message action indicator is
inspected when the message type is unknown or the message is unexpected in the given state.
The information element action indicator is used when the message itself is acceptable in this
state, but the information element is either in error or unknown.

In the following example we have a call established and in the active state. Then the calling
user sends a CONNECT message with the action indicator set to “clear call”. Of course, the
CONNECT in state 10 is totally unexpected by the network and it invokes its error procedures:

1 E J S
z E + S
3

4

5

6 E J S
7 E + S
8

9

10

11 E J S
12

0.000 uni cref=Cyou,51) mtype=stat-enq mlen=O
0.027 uni cref={me,51) mtype=status mlen=ll

callstate=ClO-Active)
cause={loc=private-network-serving-local-user,

cvalue=response_to_status_enquiry,class=normal_event)
4.711 uni cref={you,51) mtype=connect mlen=O
4.807 uni cref=Cme,51) mtype=release mlen=7

cause={loc=private-network-serving-local-user,
cvalue=message-not-compatible_vith_call-state,
class=protocol~error,mtype=Ox7~

5.197 uni cref=Cyou,51) mtype=rel-compl mlen=6
cause={loc=user,cvalue=normal.-unspecified,class=normal-event)

In lines 1-5 the end system enquires the state from the switch to verify that the call is in
state U10. It then sends a CONNECT message with the action indicator set to “clear call”.
Unfortunately sigdump is not able to show the action indicator. The switch responds to the
unexpected message with a RELEASE showing cause code 101 (“Message not compatible
with call state”). The end system in turn finishes call clearing with a RELEASE COMPLETE.

Error handling in UN1 is quite complex. The rules in the standards often are not very clear
and do not handle all situations. The possibility of fine-grained error handling by means
of action indicators makes error handling even more complex, but allows the step-by-step
addition of new features to a network without the need to update all switches and end systems.

94 UNI: USER-NETWORK INTERFACE

3.10 The Structure of a UN1 Protocol Instance

Figure 3.62 shows the structure of a UNI. This structure is usually described as a set
of processes, although the implementation need not be multi-threaded. The FreeUNI
implementation uses only one thread of execution for the entire UN1 plus the SAAL
(see [Begl).

f \

SAAL.

c J

c \
Restart
Request
Process

J

4 b Coordinator
Process

Restart I
Response
Process

<

Call
4 State
4

Machine

J

Figure 3.62: The structure of a U N 1 protocol instance

The central part is the coordinator process called CO-ord-N and CO-ord-U on the network
and the user sides, respectively. This process controls the SAAL connection, sends messages
to the SAAL, dispatches received messages to other processes, communicates with the
Application Programming Interface (API) and creates UN1 state machines for new calls.
The coordinator is a Finite State Machine (FSM) operating on the coordinator state (see
Section 3.8).

Two additional processes are always present: the restart requestor (Restart-Start-N and
Restart-Start-U) and the restart responder (Restart-Respond-N and Restart-Respond-U). They
are FSMs-the requestor operates on the call state of the global call reference with the call
reference value 0; the responder works on the global call reference with flag 1. This means
that the requestor communicates with the peer UNI’s responder and vice versa. RESTART
and RESTART ACKNOWLEDGE messages, as well as STATUS and STATUS ENQUIRY
messages with a global call reference are handled by these processes. There is also a set of

THE STRUCTURE OF A UN1 PROTOCOL INSTANCE 95

signals by which the API can trigger the restart process or gets an indication about a peer-
initiated restart.

The coordinator instantiates a new call FSM whenever an outgoing call is requested from
the API via a Setup.request signal when an incoming call is received, i.e. a SETUP message
arrives. Messages carrying an existing call reference are then routed to the appropriate FSM.
A call FSM is destroyed when a releasing procedure is executed, a restart of the entire UN1
or the channel that handles the FSM is requested, or when local call clearing occurs in certain
exceptional situations.

For point-to-multipoint calls each call instantiates a party FSM for each party. This
instantiation is done at the root node when an Add-party.request signal is received from the
API or an ADD PARTY message is received at a leaf node. Party-related messages and API
signals are routed from the coordinator to the call FSM and from the call FSM to the party
FSM. Outgoing signals and messages go the opposite way. A party FSM is destroyed when
the party is finally dropped or the parent call FSM is destroyed.

global data for
this UNI

poin-to-
point
call data

ADD PARTY request list

poin-to-
multipoint
call data

PARTY status enquiry list

Party 1

Party 2

...

Figure 3.63: Example of data organisation in a U N 1

Figure 3.63 shows the principal organisation of data in a UNI. There is global data

96 UNI: USER-NETWORK INTERFACE

associated with the UN1 like:3

0 initial timer values;
0 initial values for timer restart counters;
0 the VPWPCI mapping table;
0 the list of VPCIs controlled by this UNI;
0 the call state associated with the restart processes;
0 the coordinator state;
0 timers T3 16 and T3 17;
0 SAAL associated data.

The call list contains a data structure for each active call FSM which contains data like:4

0 the call reference including an ownership flag;
0 the call type: point-to-point, point-to-multipoint root, point-to-multipoint leaf, Connection-

0 the current call state;
0 timers T301, T303, T308, T310, T322 and their repeat counts (if applicable);
0 the connection identifier;
0 various saved messages and information elements for retransmission.

less Bearer-Independent (COBI) or leaf-initiated join;

If the call is a point-to-multipoint there are additional data fields for a call:

0 a list of pending ADD PARTY requests (only at the network side);
0 a list of pending party status enquiry requests;
0 aparty list.

The party list in turn contains a data structure for each active party FSM for a given point-
to-multipoint call. Among this data are?

0 the endpoint reference including an ownership flag;
0 the endpoint state;
0 timers T397, T398 and T399.

Timers in a UN1 are usually configurable. Table 3.13 shows the default values (in seconds)
as specified in the standards. Some of the timers have optional restart counters.

This list is not exhaustive.
This list is not exhaustive.
This list is not exhaustive.

THE STRUCTURE OF A UN1 PROTOCOL INSTANCE 97

Table 3.13: UNI timers

Timer Restarts User Usage Network

Point-to-point connection control

T30 1

T303

T308

T3 10

T3 13

T322

0

1C

1

0

0

Nd

T3 16

T3 17

Nd

0

2 3 min

4 s

30 S

30-120 S

4 s

4 s

2 3 min

4 s

30 S

10 S

-

4 s

Limits the length of the peer alerting
phase.
Protects against lost SETUP mes-
sages.
Retransmits RELEASE in case it is
lost.
Limits the time a SETUP can travel
to the peer.
Protects against losing the CON-
NECT at the destination interface.
Status enquiry procedure.

Restart procedure

2 min

< peer T316

2 min

< peer T316

S A A L control

Ensures that the peer answers to a
restart request.
Ensures that the layer above UN1
answers to a restart request from the
peer.

T309 I 0 110s 110s I Re-establishes SAAL in case it fails.

T397

T398

0

0

Point-to-multipoint connection control

2 3 min

or the answer messages to it.b
Protects against loss of ADD PARTY 34-124 S 34-124 S

PARTY ACKNOWLEDGE is lost.
when the DROP PARTY or DROP

alerted?
Restricts the time the remote party is 2 3 min

4 s Locally drops a party in the case 4 s

Leaf-initiated join

T331 lC 60s - Ensures LEAF SETUP REQUEST
gets answered.

'Same value as T301
'Sum of T303 and T3 10
'Restart is optional
'Restart is optional. The number of restarts is an implementation option.

ATM Addresses

4.1 The semantics of Addresses

Addresses in networks may have three semantics: they can be simple identifiers, they can be
locators or, as in ISDN and telephone networks, an address may also be a service selector (for
example, numbers starting with 800 and 900).

If addresses are identifiers they do not carry any information that can be used to locate the
addressed entity. Examples of such addresses are Ethernet Multiple Access Control (MAC)
addresses. These addresses are usually attached to the network card by the manufacturer and
if the card is moved from one computer to another, the address moves with the card. This
means that these addresses cannot directly be used to route data to the addressed entity.

Addresses used as locators need to have an internal structure. The address itself can be used
to compute the route (or at last parts of it) to the addressed entity. ATM addresses are locators.
They indicate the location of an ATM interface in the network through which traffic enters or
exits the given routing domain.

Addresses can also be service request identifiers. Certain telephone number prefixes, rather
than addressing another telephone, invoke a service that can, for example, provide address
translation or special billing variants.

ATM addresses as defined by the ATM-Forum in [ADDRl .O], [ADDRR] and [ADDRUNI]
are always locators-their intention is to address an ATM interface in the given routing
domain and to aid in the computing of the route to this interface.

4.2 Called and Calling Party Numbers

ATM addresses are used in several information elements (IEs) in signalling message as well
as in ILMI messages. There are two groups of addressing IEs: party numbers and party
subaddresses. Party numbers are used for route computations, whereas subaddresses are used
either by the end system or by network ingress and egress nodes for the tunnelling of address
information through intermediate networks (for example, to carry an AESA between parts of
a private ATM network which are connected through a public ATM network that supports
only E. 164 addressing).

The IEs containing party numbers are:

0 Called party number. (see Figure 4.1) This information element is mandatory in each
SETUP sent by a user to the network. On the basis of this information element the route to
the called user is computed. The information element is delivered to the called user which
can optionally perform a check of the number or use it to address services or applications in

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

100 ATM ADDRESSES

IE identifier 0x70

Coding IE instruction field
1

Action indicator

* l IE length

IE length (continued) I
4 1 Numbering plan Type of number

Address

1 byte
I I

Figure 4.1: Called party number IE

the user equipment (if, for example, more than one address is assigned to the called user).
0 Calling party number. This information can be included by the calling user in the SETUP

message. Its contents need not be verified by the network and may be delivered to the called
user. This delively is subject to subscription restrictions of the calling user.

0 Connected number. This information maybe included by the called user in the CONNECT
he sends to the network. In this case its contents are verified by the network to contain one
of the user’s addresses. If the user did not provide the IE, it is inserted by the network on a
per-subscription basis of the user. The contained address provides a unique identification of
the ATM interface that is connected during this call. This may be different from the calling
party number in the case of re-directions or service invocations (800 or 900 numbers).
The presentation of the information element to the calling user may be restricted on a per-
subscription basis by the called user (for example, for emergency services).

The subaddress information elements generally cannot be verified by the network and are
transparently transferred from one endpoint of the connection to the other. The network nodes
provide only syntactic checks of the information elements:

0 Called party subaddress. (see Figure 4.2) This information element contains an NSAP
address or an AESA which is used by the called end system to address sub-entities. One
major application of this IE is the tunnelling of private addressing information through
public networks. The private border switch in the calling network maps the private AESA
to an E. 164 public address and moves the private AESA into a subaddress IE. The border
switch of the called network then throws away the called party number (after verification),
moves the AESA from the subaddress IE to the called party number IE and continues to

CALLED AND CALLING PARTY NUMBERS 101

0 IE identifier 0x7 1

1 1 Coding
Flag I Res. I Action indicator standard

IE instruction field

2 IE length
.

3 IE length (continued)

4 1
Type of Spare Oddl

subaddress 0 even 0 0

Address

1 byte

Figure 4.2: Called party subaddress IE

route the call in the private network according to the AESA. This technique is also the
reason for the support of two subaddress IEs in [UNI4.0] instead of one as in [Q.2931].
This allows subaddress information to be used also in tunnelled private ATM networks.

0 Calling party subaddress. This IE can be provided by the calling user to indicate the sub-
entity of the end system that originated the call. In the case of tunnelling private networks
through public networks, this IE may contain the original calling party number while the
SETUP moves through the public network.

0 Connected subaddress. This IE can be provided by the called user to indicated the sub-
entity of the end system that handles the call.

There are three kinds of addresses used in ATM networks, where the second group is a
sub-group of the third one:

0 E.164 addresses. These addresses are also known as telephone numbers. They consist of up
to 15 digits and may be of several types: international, national, network specific, subscriber
number, abbreviated number. E. 164 is the name of the ITU-T recommendation that defines
the format of these numbers (see [E.164]). UN14.0 allows only international numbers and
defines the use of these numbers only for addressing purposes, i.e. the use of service request
identifiers like 800 or 900 is not defined.

0 ATM End System Address (AESA). This is a subclass of NSAP addresses as defined
in [X.213] and [ISO8348]. They are always 20 bytes in length and are the major class of
addresses used in UN1 and PNNI.

0 Network Service Access Point (NSAP). These can be used in the subaddress information
elements.

102 ATM ADDRESSES

Private ATM networks that conform to ATM-Forum standards must support AESAs and
may support native E. 164 addresses. Public ATM networks should support either one of them
or both.

4.3 AESA: ATM End System Address

ATM End System Addresses (AESA) are a subclass of NSAP addresses as defined
in [ISO8348]. They identify the location of one or more ATM interface in a given routing
domain. There are two groups of these addresses: individual and group. Individual addresses
identify a single ATM interface, whereas group addresses can be associated with more
than one interface (see Section 4.5). There are different formats of AESA addresses (see
Figure 4.3).

I I I I I I I I I I I I I I I

5 ESI HO-DSP DCC
cl
9

I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I

3 ESI HO-DSP ICD ii
I I I I I I I I I I I I I I I

IDP I DSP
I

I I I I I I I I I I I I I l l

5 E. 164 HO-DSP ESI
cl
%

I I I I I I I I I I I I I l l

IDP I DSP

I ID1 I

I I

I I I I I I I I I I I I I I I I

5 HO-DSP ESI ii
I I I I I I I I I I I I I I I I

Figure 4.3: DCC, ICD, E. 164 and Local AESA format

AESA: ATM End System Address 103

An AESA is always 20 bytes in length. The first byte is the Authority and Format Identifier
(AFI). The AFI specifies the following:

0 the format of the Initial Domain Identifier (IDI);
0 the network addressing authority that is responsible for the allocation of the ID1 values;
0 whether or not leading zeros in the ID1 are significant;
0 the syntax of the Domain Specific Part (DSP).

The ATM-Forum specifies the values (Table 4.1) to be used for the allocation of AESA. It
allows also for the use of other AFIs.

Table 4.1: A F I values for ATM End System Addresses

Individual AFI Format Group AFI

0x39

Local format OxC7 0x49
ICD format OxC5 0x47
E. 164 format OxC3 0x45
DCC format OxBD

The Initial Domain Identifier (IDI) part of the address specifies the network addressing
authority that is responsible for the allocation of the Domain Specific Part (DSP) values
and the domain from which these values are allocated. The AFI and the ID1 together form
the Initial Domain Part (IDP) that uniquely identifies the Administrative Authority (AA)
responsible for assignment of DSP values.

The ID1 of a Data Country Code (DCC) address specifies the country that registered the
address. These codes are given in [IS03 1661 and are always three digits long. They are Binary
Coded Decimal (BCD) encoded and padded to the right with the valued OxF. This results in
an ID1 length of two bytes.

The ID1 of an International Code Designator (ICD) address specifies the authority that is
responsible for the allocation of DSP values. It is a four-digit value that is BCD encoded into
two bytes.

The ID1 of an E. 164 AESA is the Integrated Services Digital Network (ISDN) number of
the addressed ATM interface. E. 164 AESA include telephone numbers. Only the international
format of these numbers is allowed. The number is padded to 15 digits with leading zeros,
BCD encoded and the value OxF appended for a total of eight bytes.

Local AESAs can be used to carry other non-OS1 address formats. They have no extra ID1
part. They can be used in private networks, but should never be seen outside such a network.

The Domain Specific Part (DSP) of an AESA consists of three parts: the High-Order
DSP (HO-DSP), the End System Identifier (ESI) and the Selector (SEL).

The selector is the last byte of the AESA and is never used for routing purposes. It may be
used to pass information from one end system to another (it could be used, for example, like
the port number in IP packets to address different applications).

The End System Identifier (ESI) is a six-byte value and uniquely identifies an end system
for a given value of IDP+HO-DSP. Usually this identifier is an IEEE MAC address, and thus
globally unique.

The format and value of the HO-DSP field is defined by the authority identifier by the

104 ATM ADDRESSES

IDP. This field can and should contain subfields for which the authority is delegated to
sub-authorities. These subfields should be allocated in a way so that the resulting HO-DSP
contains enough topology information to facilitate call routing. As an example Figure 4.4
shows the structure of a US DCC AESA.

I I I I I I I I I I I I I

5 ESI Specified by Org OrgName E DCC
cl
%

I I I I I I I I I I I I I

Figure 4.4: US DCC AESA format

The authority for US AESAs is ANSI. The country code is 840 and the first byte of the
HO-DSP is the Domain Specific Part Format Indicator (DFI), which currently has a single
value assigned 0x80. The DFI defines the format of the remaining bytes in the HO-DSP.
With DFI=Ox80 the next three bytes are the Organisation Name which is assigned by ANSI.
The remaining bytes are then defined by the named organisation.

I I I I I I I I I I

5 ESI AREA RD Res 2 E DCC
cl

CD1 3
I I I I I I I I I

Figure 4.5: DFN DCC AESA format

Another example is the address format used by the Deutsches Forschungsnetzwerk (DFN)
in Germany (see Figure 4.5). The country code for Germany is 0x276. The two bytes
following the country code are the Country Domain Part (CDP). This consists of a leading
Country Format Identifier (CFI) which defines the format and length of the following Country
Domain Identifier. The one-digit CFI in our example has the value 3 and the three-digit CD1
has the value Ox100 (this is the code assigned to the organisation “DFN’). The next byte is
the Format Identifier (FI); a value of Ox01 specifies that the rest of the address follows US-
GOSIP Format 11. The F1 is followed by a four-digit Region Identifier (RI). There are values
assigned to the various parts of Germany as well as to some large organisations. After two
reserved bytes with the values Ox0000 follows a two-byte Routing Domain (RD) field. The
values in this field are assigned to organisations within the given region. These organisations
then define the format and values of the remaining two-byte Area field.

The AESAs are designed in such a way that subfields are allocated from left to right.
This allows addresses to be grouped on subfield boundaries by using prefixes. During the
routing process a prefix defines the route for all AESAs beginning with that prefix. In this
way reachability information can be hierarchically grouped to reduce routing data base size
and routing traffic.

NATIVE E.164 ADDRESSES 105

4.4 Native E.164 Addresses

Native E.164 addresses are defined in ITU-T Recommendation [E.164]. Recommenda-
tion [E.191] then defines how these numbers are used in the B-ISDN context. The structure
of an E. 164 number is shown in Figure 4.6.

cc SN NDC

I
max. 15 digits

I

I I

Figure 4.6: Native E. 164 address format

An E.164 consists of a maximum of 15 digits. It starts with a country code (CC), which
identifies either a country or geographical region, a global service or a network. By assigning
a code to a country, a network or a region the responsibility for the assignment of values for
the subsequent fields is delegated to an organisation of this country, region or network. The
National Destination Code (NDC) identifies a trunk, an area in the given country, a national
service (like freephone) or a network. The subscriber number (SN) identifies an addressable
entity in the domain covered by the CC and the NDC.

E. 164 cannot only be addresses, but also service identifiers. They can be abbreviated (there
are national, local and other types of E. 164 numbers). They can be prefixed with dialling plan
digits or service selection escapes like “*” or “F’. In the context of the ATM-Forum only the
use of international E. 164 as addresses is specified. Other uses are not precluded.

4.5 ATM Anycast

ATM Anycast is specified in [UNI4.0] as an optional feature that allows a user to establish a
point-to-point connection to any member of a group of ATM end systems.

An anycast connection is requested by setting the called party number information element
in the SETUP message to one of the ATM group addresses (see Table 4.1 for the AFIs of
group addresses). The user can optionally include a connection scope information element
which restricts the routing range used for the selection of the group member (see Table 4.2).
If no scope is indicated by the user “1ocalNetwork” is used. The network, upon receipt of
an anycast SETUP, selects one of the end systems that is a member of the group and routes
the SETUP to this system. The called end system can return its real address in the connected
number and connected number subaddress information element of the CONNECT message.
How the member is selected by the network is not specified by the standard.

The Anycast capability has several uses among which are:

0 Enhanced reliability by duplication of critical servers, for example the ATM Address
Resolution Protocol (ATMARF’) server in CLIP (see Chapter 8) or the LAN Emulation
Configuration Server (LECS) in LANE.

0 Load balancing. This allows a call to be routed to a group of servers based on the current

106 ATM ADDRESSES

load of each member of the group.

The ATM Anycast group membership is handled by ILMI. ILMI supports the registration
of group addresses for an ATM interface as well as the registration of the scope of these
addresses.

Table 4.2: Organisational connection scopes

Code

Ox00
Ox01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
Ox09
OxOa
OxOb
oxoc
OxOd
OxOe
OxOf

Meaning

reserved
local network
local network plus one
local network plus two
site minus one
intra-site
site plus one
organisation minus one
intra-organisation
organisation plus one
community minus one
intra-community
community plus one
regional
inter-regional
global

4.6 Address Aggregation

As was mentioned in previous sections, the fields of AESAs are allocated from left to right in a
way to carry network topology information in the address. This allocation strategy facilitates
route aggregation by means of address prefixes. An address prefix is the leading part of an
AESA. A prefix is specified by a number L between 0 and 152 specifying the number of
leading bits in the prefix (remember that the Selector byte is never used for routing, hence
the maximum of 152), and an AESA with the rightmost 160 - L bits set to zero. A prefix
length of zero aggregates all possible AESAs; a prefix length of 152 designates a single ATM
interface.

Prefixes are aggregated in a hierarchical fashion with higher levels in the hierarchy using
shorter prefixes than lower levels. This scheme is used in the PNNI routing protocol (see
Chapter 6) to aggregate routing information in hierarchical networks. Figure 4.7 shows an
example of hierarchical aggregation.

In this example an (US) ATM Service Provider (ASP) has obtained the DCC format AESA
39.840F. 80.777888. A German multi-site customer has in turn obtained three blocks of
addresses from this service provider for its sites in Berlin, Frankhrt and Munich. These blocks
are specified by using a two-byte (four-digit) field from the ASP-defined part of the AESA.
The Berlin site has two facilities, so the address is further sub-divided by the customer by
a one-byte field. Inside each facility the customer has different buildings for which he uses

ADDRESS AGGREGATION 107

ATM Service Provider
39.840F.80.777888

Figure 4.7: Example of an AESA hierarchy

another byte. This address organisation aggregates quite nicely:

All ATM end systems in Building 1 in Berlin-Pankow can be reached through the address
prefix88/39.840F.80.777888.0001.02.01.
All systems in the Pankow Facility can be reached through the address prefix
80/39.840F.80.777888.0001.02.
All customer ATM systems in Berlin are reachable through the address prefix
72/39.840F.80.777888.0001.
To reach all end systems of this customer the service provider need only announce its
own prefix 56/39.840F. 80.777888 to other ASPS. This prefix aggregates all addresses
allocated to this ASP (not only those of the example customer).

If the customer were to use an address owned by him, which cannot be aggregated with the
ASP’S addresses (for example, an ICD format address), the ASP would need to announce the
customer’s prefixes and carry the corresponding routes in all its nodes. In this case the routing
tables grow linearly with the number of attachment points of such customers to the ASP.

Address prefixes are used for routing purposes. When routing a call the switch compares
the destination address with all known prefixes in the routing table. Of course, there may be
more than one match. Let us consider an example. A call to the customer from the previous
example has to be routed by the ASP. The called number is

39.840F.80.777888.0001.02.02.0700000000.434f00.00

108 ATM ADDRESSES

and the switch has the following routing table entries:

/O (default route)
47.0081/24
39.840F.80.777999/56
39.840F.80.777888.0/60
39.840F.80.777888.1/60
39.840F.80.777888.0001/72
39.840F.80.777888.0002/72

In this case the entries in lines 1 , 4 and 6 give a match. The route is selected based on the
longest match, which is in line 6.

If there is more than one match with the same prefix length, the selection among these
routes can be based on other information like trunk load or the traffic contract.

Hierarchical address aggregation is directly built into PNNI (although it allows other
configurations). Nodes at lower levels of the hierarchy derive their address by appending a
number of bits to the prefix of the next highest hierarchy. End systems compute their address
by appending the ESI and SEL to the switch prefix. If a PNNI network is organised in this
way, route aggregation is optimal.

4.7 Summary

In this chapter we have analysed which types of addresses are used in ATM networks. There
are two types of addresses: telephone number-like addresses, called E. 164 that are mainly used
in public ATM networks, and ATM end system addresses (AESAs) that are a subset of NSAP
addresses and are used in private ATM networks. A special feature of ATM addressing is the
Anycast capability that can be used to build high-performance or high-reliability servers. An
explanation of how works address aggregation and why it is useful closes the chapter.

5

SAAL: Signalling ATM Adaptation
Layer

The Signalling ATM Adaptation Layer (SAAL) is the lowest layer in the control plane of
the ATM that is different from the layers at the user plane [Q.2100]. Its main function is the
reliable transfer of signalling messages between two signalling entities. It consists of several
sublayers (see Figure 5.1).

AAL SAP Primitives

7
Service specific coordination

function (SSCF)

Signals

I I
Service specific connection
oriented protocol (SSCOP)

Common part AAL
protocol (CP-AAL)

Figure 5.1: SAAL stack

Service specific
convergence sublayer

Common part

The lower sublayer (CP-AAL) is usually AAL5 although AAL314 are also usable. In

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

110 SAAL: SIGNALLING ATM ADAPTATION LAYER

modern ATM interface cards this layer is implemented in the hardware for performance
reasons. The CP-AAL is used by the SSCOP to send and receive AAL messages. No user-to-
user information is carried in the AAL frames.

The Service Specific Connection Oriented Protocol (SSCOP) sublayer is the most
interesting part of the SAAL. SSCOP is a transport protocol that provides guaranteed, in
sequence delivery of messages to the layer above it. It includes also flow control, error
reporting to the management plane and a keep-alive function.

The Service Specific Coordination Function (SSCF) actually comes in two types: the
Service Specific Coordination Function (SSCF) at the User-Network Interface (UNI) and
the SSCF at the Network-Node Interface (NNI). Whereas the SSCF at the UN1 provides no
additional functionality, just some simplification of the upper interface, the SSCF at the NNI
constitutes a real protocol. This protocol is used to monitor the performance and quality of
NNI links and helps in error situations. Because the SSCF at the NNI is used only in public
networks which run the Broadband ISDN User Part (B-ISUP) stack, it is not of much interest
for this book and we will focus on SSCOP and the UN1 SSCF. A short description of the
SSCF at the NNI shows how SSCOP can be tailored depending on the requirements of the
application and how a more obscure feature of SSCOP-local message retrieval4an be
used. For a more thorough treatment of the SSCF at the NNI the user should read [Q.2140]
and [Q.2144].

5.1 SSCOP: Service Specific Connection Oriented Protocol

The SSCOP is defined in International Telecommunication Union (ITU-T) recommendation
[Q.2110]. It provides the following functions to its user:

0 Reliable and in-sequence delivery of variable size messages. Note that there is no error
checking for the contents of the message in addition to what is done by the ATM Adaptation
Layer Common Part (AAL-CP). Reliable just means that every message sent, will arrive.
This is done by selective retransmission of lost or corrupted messages. The contents of
message must, if necessary, protected by higher layers.

0 Unreliable transfer of data. This may be used to send messages outside the reliable data
stream (for example management or urgent data).

0 Flow control.
0 Keep-alive. This function ensures that the connection is alive even if no data is sent. This is

checked by an exchange of status messages at regular intervals.
0 Local data retrieval. This rather obscure function allows the SSCOP user to retrieve

messages from the SSCOP that have not yet been sent. This is used by the NNI stack
when it switches from a failed NNI link to a backup link. In this case unsent messages are
retrieved from the failed SSCOP and sent on the backup link.

It must be noted that SSCOP seems to be overly complex for the simple task of signalling
message transport at the UNI. Even careful handwritten C-code is at least in the order of
5000 lines of code. Signalling traffic on the UN1 is typically very low and could use a simple
Remote Procedure Call (WC) scheme. Nevertheless SSCOP is now in wide use and is even
used as a general-purpose transport protocol for ATM.

SSCOP is a trailer protocol-protocol information is appended to the user information. The
user information part is padded to a multiple of four bytes and protocol information is always
a multiple of four bytes long. This means that SSCOP can effectively be processed on modern

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 111

computer architectures. Figure 5.2 shows how higher layer data is packed into SSCOP and
AAL5 PDUs.

Higher layer PDU A A L S trailer
.

Any length less
than maximum

4

SSCOP PDU
multiples of four bytes

4

AAL5 PDU

multiples of 48 bytes
4

Figure 5.2: SAAL PDUs

SSCOP uses 15 different messages (see Figures 5.3-5.21 later in the chapter). The message
fields have the following meaning:

User-to-user information
This is additional information that can be transferred to the remote user with con-
nection control messages during establishment, tear-down and resynchronisation.
It is not used at the UNI. There is no guarantee that this information will arrive-if
the SSCOP needs to retransmit a connection control message it may choose not to
include the user information in the retransmitted message.

This field is up to three bytes long and pads the size of user data to a multiple of
four bytes. It should contain zeros. The length of the user-to-user information plus
padding bytes is denoted by Len in Figures 5.3-5.21.

This is the sequence number of BGN, RS and ER messages and is used to
identify retransmissions of these messages at the receiver. It is initialised to 0 and
incremented after each transmission of these messages.

This is one higher than the highest sequence number of an SD message that
the receiver will accept (the upper bound of the receiver window). Note that the
receiver may lower this variable, and even close the window.

This is the sequence number of the next new SD message.

This contains the number of padding bytes.

This is set to 1 if the connection is released by SSCOP, and 0 if released by the
SSCOP user.

This denotes reserved fields, which should be set to zero.

The state diagram for SSCOP is quite complex and is not reproduced here. It can be found
in [Q.2110].

112 SAAL: SIGNALLING ATM ADAPTATION LAYER

An SSCOP connection is in one of 10 states (the names in parentheses will later be used in
the communication traces):

l (IDLE)
Idle. No connection exists.

2 (OUT-PEND)
Outgoing connectionpending. SSCOP has sent a BGN message and is waiting for
an acknowledgement or rejection.

3 (IN-PEND)
Incoming connectionpending. SSCOP has received a BGN and informed the user.
It waits for the user to decide whether to acknowledge or reject it.

4(0UT_DIS_PEND)
Outgoing disconnectpending. SSCOP has sent a END message and waits for the
acknowledgement.

5(OUT_RESYNC_PEND)
Outgoing resynchronisation pending. An RS message has been sent on the user’s
request to resynchronise the states of the SSCOP entities. An RSAK is expected
from the peer. The result of this operation is that the user knows that all messages
have been acknowledged by the remote SSCOP entity.

G(IN-RESYNC-PEND)
Incoming resynchronisation pending. An RS message has been received. SSCOP
waits for the user to decide upon the acknowledgement.

7(0UT_REC_PEND)
Outgoing recovery pending. SSCOP has detected a problem and has requested
recovery from the peer by sending an ER message.

8 (REC-PEND)
Recovery response pending. SSCOP has completed recovery (an E M was
received), has informed its user and waits for a response from the user to enter
State 10.

9 (IN-REC-PEND)
Incoming recoverypending. SSCOP has recovered on request from the peer (which
sent an ER message) and waits for a response from the user.

I0 (READY)
Data transfer ready. SSCOP is ready to receive and transmit data.

Transitions between these states occur when SSCOP receives messages, signals or timers

SSCOP needs five timers for processing:
expire. The exact transitions can be found in the standard.

cc This timer is used during connection control phases (establishment, tear-down,
error recovery and resynchronisation). If no answer from the remote side is
received when the timer expires, the message is retransmitted. This timer should
be greater than the round trip time. The standard value is 1 second. The number
of retransmissions before giving up is configurable; the standard value is four
seconds.

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 113

POLL Each SSCOP sends its peer entity POLL messages at regular intervals to ensure
that status information (data acknowledgements and the window size) are actual.
The timer controls the interval between these messages with a standard value of
750 milliseconds. This timer is used only when data messages are to be sent or
acknowledgements are outstanding.

KEEP-ALIVE
If there are no data messages to transmit and there are no outstanding
acknowledgements, SSCOP switches from timer POLL to timer KEEP-ALIVE.
The normal value is 2 seconds.

IDLE If the connection is stable enough and there are no data messages to transmit and
no outstanding acknowledgements, SSCOP switches from timer KEEP-ALIVE to
timer IDLE. The standard value is 15 seconds.

NO-RESPONSE
In parallel to timer POLL and timer KEEP-ALIVE the timer NO-RESPONSE is
running. This timer determines the maximum time interval during which at least
one STAT message must be received in response to a POLL. On expiry of this
timer the connection is aborted. The standard value is 7 seconds.

The values of these timers are not given in the SSCOP standard but rather in the SSCF
standards that reside on top of SSCOP.

5. l. l SSCOP Interfaces

At the lower interface (the interface to the AAL5 CPCS) two signals are used:

CSCP-UNITDATA.invoke
This is used by SSCOP to send an AAL frame to the remote user.

CSCP-UNITDATAsignal
This is generated by the CPCS if an AAL frame from the remote user arrives.

The upper interface is more complex and uses many signals with different parameters which
may have request, response, indication and conjirmation forms.

AA-ESTABLISH
This group of signals is used to establish a SSCOP connection. There are four
variants of it (request, response, indication and confirmation).

AA-RELEASE
This group of signals is used to either reject a connection request or to tear-down
a connection. There is no AA-RELEASE . response. (It is not possible to reject a
connection release.)

AA-DATA
These signals are used to reliably send data or receive such data. There is a request
and an indication.

AA-RESYNC
This group is used to resynchronise the SSCOP connection. There are four forms
as in AA-ESTABLISH.

114 SAAL: SIGNALLING ATM ADAPTATION LAYER

AA-RECOVER
The indication and response forms are used to recover from protocol errors.
SSCOP invokes the recovery procedure for cases that are not covered by the
retransmission of messages-if a message is received that has already been
received or sequence numbers are outside the expected range. There are two forms:
AA-RECOVER.indicationandAA-RECOVER.response.

AA-UNITDATA
The request can be used to send an unassured message to the remote user. The
remote user will get an indication (if the message is not lost). Requests and
indications exist for AA-UNITDATA.

AA-RETRIEVE
By invoking this request the SSCOP user indicates that he wishes to get all
messages out of SSCOP’s send buffer that have not yet been transmitted. The user
can retrieve either single messages by message number or all messages. For each
retrieved message the SSCOP will invoke an indication. There is only a request
and an indication form.

AA-RETRIEVE-COMPLETE
When all requested messages have been retrieved from the SSCOP it invokes this
indication. Only the indication form exists.

The interface to layer management uses two groups of signals:

MAA-ERROR
If the SSCOP detects an error it invokes this indication. The indication contains
a one-character code which will describe the error condition. The error codes are
listed in Table 5.2 on page 142. There is only an indication form of this signal.

MAA-UNITDATA
This pair of request and indication can be used by layer management to send
messages to the remote management entity. Note, that this is an unassured service.
The UN1 does not use this feature. There is a request and an indication form.

5.1.2 Message Types

SSCOP uses 15 different message types as show in Table 5.1. The exact format of these
messages will be shown in the following sections.

5.1.3 State Variables

SSCOP needs a number of state variables. They can roughly be divided into three groups:
connection control variables, status enquiry variables and data flow variables.

The following variables are used to control a connection:

VT(SQ) Transmitter Connection Sequence. This variable is used to detect retransmissions
of connection control messages: BGN, RS and ER. Each time one of these
messages is transmitted VT(SQ) is incremented and inserted into the message. If
the message is to be retransmitted the same value will be used.

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 115

Function

Establishment

Tear-down

Resynchronisation

Error recovery

Assured data
transfer

Unassured data
transfer

Management data
transfer

Table 5.1: SSCOP PDU types

Message
name

BGN
BGAK
BGREJ

END
ENDAK

RS
RSAK

ER
ERAK

SD
POLL
STAT
USTAT

UD

MD

Code

000 1
0010
0111

001 1
0100

0101
01 10

1001
1111

1000
1010
101 1
1100

1101

1110

Description

establish connection
acknowledge connection establishment
reject connection

tear-down connection
acknowledge tear-down

start resynchronisation
acknowledge resynchronisation

start error recovery
acknowledge error recovery

sequenced data
transmit and request state information
solicited state information
unsolicited state information

unassured user data

unassured management data

VT(CC) Transmitter Connection Control State. This indicates the number of outstanding
BGN, END, ER or RS messages. This variable is set to zero if one of the
associated procedures is started (establishment, tear-down, error recovery or
resynchronisation) and incremented for each of the above messages. If a limit (the
default is four) is reached without getting a response from the peer, the connection
is aborted.

VR(SQ) Receiver Connection Sequence. This is the receiver side variable that corresponds
to VT(SQ). When a BGN, RS or ER message is seen, the current value of the
variable is compared with the sequence number in the message. If they are equal,
the message was caused by a re-transmission. After the comparison the variable is
set to the value in the message.

For the status enquiry procedure the following variables are used:

VT(PS) Poll Send State. This is the current poll message sequence number which is
incremented before each transmission of a POLL message and is inserted into
this message.

VT(PA) Poll Acknowledge State. When SSCOP receives a POLL message it inserts the
sequence number from the POLL message into the STAT message it is sending

116 SAAL: SIGNALLING ATM ADAPTATION LAYER

to acknowledge the POLL. VT(PS) is the lowest poll sequence number the sender
expects to see in a STAT message. If a STAT message is received, the variable is
set to the sequence number in the STAT message.

VT(PD) Poll Data State. This variable counts the number of SD (data) messages sent
since the last POLL message was emitted. It is reset to zero when the next POLL
message is sent.

VT(PS)@VT(PS) and VT(PA) form the window for legal sequence number values in
received STAT messages. A STAT message is legal if its sequence number SEQ holds:

V T (P S) 5 SEQ 5 VT(PA)

The rest of the variables used to control the data flow are:

Send State. This variable contains the sequence number of the next newly
transmitted SD message and is incremented after each transmission, but not for
retransmissions.

Acknowledge State. This is the sequence number of the next in-sequence SD
messages expected to be acknowledged. This is updated when the next in-sequence
SD message is acknowledged.

Maximum Send State. This is the maximum sequence number plus one that the
remote receiver will accept. This is updated on receipt of any of the messages that
contain an N(MR) field.

Receive State. This is the sequence number of the next in-sequence SD message
that the receiver expects. It is incremented when that message is seen.

Highest Expected State. This is the highest expected sequence number in an SD
message. This may be updated from the next SD or POLL message and should
roughly be equal to the peer’s VT(S).

Maximum Acceptable Receive State. This is the highest SD sequence number plus
one that the receiver will accept. How this is updated is implementation dependent.

VR(R) and VR(MR) form the window for legal SD sequence numbers on the receiver side.
An SD message is accepted when its sequence number SEQ holds:

VR(R) 5 SEQ VR(MR)

5.1.4 Connection Establishment

In the next sections the operation of SSCOP will be shown by means of communication traces.
These traces have been taken by connecting two SSCOPs with a bi-directional pipe. Between
these two SSCOPs a program is used (stee) that records all messages with timestamps in a
packet stream file. These files were then analysed with the sscopdump program.

The reader should imagine two SSCOPs-ne to the left and one to the right. There is also
an SSCOP user to the left of the left SSCOP and one to the right of the right SSCOP. There are

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 117

three colums after the starting “SSCOP” in each trace: the first stands for the upper interface
of the left SSCOP, the middle for the communication between the SSCOPs and the right for
the upper interface of the left SSCOP. A right arrow in the left column means a signal sent
from the left SSCOP user to the left SSCOP; a left arrow in that column means a signal from
the left SSCOP to the left SSCOP user. The right column is the other way around: a right
arrow denotes a signal to the user; a left arrow from the user. The second column may contain
one of the following symbols:

*X Denotes that this message from the left to the right SSCOP was lost.

X+ Denotes that this message from the right to the left SSCOP was lost.

* In the left column this means that the left SSCOP user has sent a signal to the
SSCOP; in the right column this means that the right SSCOP has sent a signal to
its user.

In the right column this means that the right SSCOP user has sent a signal to the
SSCOP; in the left column this means that the left SSCOP has sent a signal to its
user.

3 This message, sent by the left SSCOP, will be delayed on the link.

-E This message, sent by the right SSCOP, will be delayed on the link.

k The delayed message from the left SSCOP arrives.

d The delayed message from the right SSCOP arrives.

The delay of messages is sometimes necessary to show what happens if both protocol
instances do something simultaneously. Note that a delayed message is shown twice: once
when it is sent and once when it is received (both times with the sending SSCOP).

For signals, the rest of the line is the signal name and the state change, which is the result
of the signal. For messages, the next column shows the time relative to the first message in
seconds and the rest of the line describes the different fields of the message.

Before user data can be transmitted over SSCOP, the connection must be established. For
signalling connections on the UN1 this is usually initiated by the switch by sending a BGN
message (see Figure 5.3) and starting the CC timer. The other side answers with either a
BGREJ (see Figure 5.5) to reject the establishment of the connection (this is unusual for
signalling connections) or BGAK (Figure 5.4). If the timer CC expires and no message is
received, the BGN message is retransmitted. To identify duplicate messages, BNG messages
have an eight-bit sequence number which is incremented each time a BGN is transmitted.
The number of retransmissions, which is counted in the variable VR(CC), is configurable-
the UN1 SSCF defines four retransmissions. If the maximum number of retransmissions is
exceeded, the SSCOP gives up, sends an END message and remains in the idle state.

It should be noted that most ATM switches behave dzferently, i.e. they restart connection
establishment after sending the END message.

Let us take a look at a successful connection establishment. The following is a trace of the
communication between two SSCOP entities. It shows what happens if the first BGAK is lost.

118 SAAL: SIGNALLING ATM ADAPTATION LAYER

! ! 0
Userto-User information

r - - - - - - - - - - - - - -
padding (0 ... 3 bytes) i 4

- I N(S@ Len

PL Len +4 N W R) 0x01 -

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.3: SAAL BGN message

l [
Userto-User information

PL iw-w 0x02 -

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.4: S A A L BGAK message

Userto-User information

-

PL - 0x07 -

I I
byte 0 byte 1 byte 2 byte 3

I I I

Figure 5.5: SAAL BGREJ message

0

4

Len

Len +4

0

4

Len

Len t4

SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP

* . .
. * . 0.002
. . S
. . *
S . .
. . e
. X+ . 0.657
. . S

AA-ESTABLISH.request in state S-IDLE
begin mr=128 sq=l
state S-IDLE -> S-IN-PEND
AA-ESTABLISH.indication in state S-IN-PEND
state S-IDLE -> S-OUT-PEND
AA-ESTABLISH.response in state S-IN-PEND
bgak mr=128
state S-IN-PEND -> S-READY

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 119

9 SSCOP . + . 1.016 begin mr=128 sq=l
10 SSCOP . + . 1.018 bgak mr=128
11 SSCOP + . . AA-ESTABLISH.confirm in state S-OUT-PEND
12 SSCOP S . . state S-OUT-PEND -> S-READY
13 SSCOP . + . 1.416 poll s=O ps=i
14 SSCOP . j . 1.419 stat r=O mr=128 ps=l list={)

AA-ESTAE4LISH.request

AA-ESTABLISH.confm

AA-ESTABLISHhdication

AA-ESTABLISHxsponse

Figure 5.6: Losing a BGAK message

The initiating protocol instance sends a BGN (lines 1 and 2), starts timer CC and enters state
2. Upon receiving this BGN, the destination protocol instance informs its user (line 3) which
in turn tells the SSCOP to accept the connection (line 4). The SSCOP sends a BGAK (line 5) ,
starts timer POLL and timer NO-RESPONSE, enters state 10 and is thus ready to transfer data.
This first BGAK is lost, so the first SSCOP times out on timer CC and retransmits the BGN
(it contains the same sequence number, so it is a retransmission) (line 6) . Because the peer is
already in state 10 (data transfer ready) it can answer directly, without user intervention, by
retransmitting the BGAK (line 7). After receiving the BGAK the initiating protocol instance
stops timer CC, starts the timers POLL andNO-RESPONSE and enters state 10 (line 8). Now
both SSCOPs are in the ready state (this can be seen by the exchange of POLL and STAT
messages).

Another interesting question is: what happens if both SSCOPs happen to send a BGN
simultaneously? The following trace shows this scenario:

1

2

3

4

5

6

7

8

9

10

11

12

13

SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP

* . .
S . .
. q. . 0.002
. . e
. . S
. e . 0.510
e . .
S .
. . 1.011
. . *
. . S
. * . 1.012
. e . 1.012

AA-ESTABLISH.request in state S-IDLE
state S-IDLE -> S-OUT-PEND
begin mr=128 sq=l
AA-ESTABLISH.request in state S-IDLE
state S-IDLE -> S-OUT-PEND
begin mr=128 sq=l
AA-ESTABLISH.confirm in state S-OUT-PEND
state S-OUT-PEND -> S-READY
begin mr=128 sq=l
AA-ESTABLISH.confirm in state S-OUT-PEND
state S-OUT-PEND -> S-READY
bgak mr=128
bgak mr=128

120 SAAL: SIGNALLING ATM ADAPTATION LAYER

AA-ESTABLISH.request

AA-ESTABLISH.confm

AA-ESTABLISH.request

AA-ESTABLISH.confirm

Figure 5.7: Simultaneous BGN message

To do this experiment the first BGN message from SSCOP 1 is delayed for half a second so
that the peer can also send a BGN (lines 2 and 4). On line 5 the BGN is delivered to SSCOP 2.
As one can see, upon receiving the BGN in state 2 (outgoing connection pending), the first
SSCOP sends a BGAK, enters state 10 (ready), stops timer CC and starts the data transfer
timers (POLL and NO-RESPONSE). The same holds for its peer. The BGAK message
arriving in state 10 (ready) is ignored.

A connection request from the remote SSCOP can be rejected by responding to the BGN
message with a BGREJ:

1

2

3

4

5

6

7

8

9

10

SSCOP * . .
SSCOP S . .
SSCOP . * .
SSCOP . . j
SSCOP . . S
SSCOP . . -e
SSCOP . . S
SSCOP . -e .
SSCOP e . .
SSCOP S . .

AA-ESTABLISH.request in state S-IDLE
state S-IDLE -> S-OUT-PEND

0.001 begin mr=128 sq=l
AA-ESTABLISH.indication in state S-IN-PEND
state S-IDLE -> S-IN-PEND
AA-RELEASE.request in state S-IN-PEND
state S-IN-PEND -> S-IDLE

0.629 bgre j
AA-RELEASE.indication in state S-OUT-PEND
state S-OUT-PEND -> S-IDLE

AA-ESTABLISHxequest

AA-RELEASE.indication

AA-ESTABLISHindication

AA-RELEASE.request

Figure 5.8: Reject connection

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 121

An unsuccessful connection establishment because of not getting any answer is shown in
the following trace. The maximum number of connection control message retransmissions is
(as per default) four:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I5

SSCOP * . .
SSCOP S . .
SSCOP . * .
SSCOP . . j
SSCOP . . S
SSCOP . j .
SSCOP . * .
SSCOP . j .
SSCOP + . .
SSCOP + . .
SSCOP S . .
SSCOP . j .
SSCOP . . *
SSCOP . . S
SSCOP . + .

AA-ESTABLISH.request in state S-IDLE
state S-IDLE -> S-OUT-PEND

AA-ESTABLISH.indication in state S-IN-PEND
state S-IDLE -> S-IN-PEND

0.002 begin mr=128 sq=l

1.008 begin mr=128 sq=l
2.018 begin mr=128 sq=l
3.028 begin mr=128 sq=l

AA-MERR0R.indication in state S-OUT-PEND
AA-RELEASE.indication in state S-OUT-PEND
state S-OUT-PEND -> S-IDLE

4.039 end reason=sscop
AA-RELEASE.indication in state S-IN-PEND
state S-IN-PEND -> S-IDLE

4.040 endak

It can be seen that the remote SSCOP user fails to respond to the AA-establish. request.
The BGN message is retransmitted four times after the expiry of timer CC. The trace also
shows that the failure to establish the connection is reported to layer management by means
of an AA-ERROR. indication.

Note that it is possible to send additional information to the user of the remote SSCOP.
BGN, BGAK and BGREJ messages can contain user information. The UN1 does not use this
feature.

5.1.5 Connection Tear-down

Each side of an SSCOP connection can tear down the connection by sending a END message
(see Figure 5.9). This can be initiated by either the user or the protocol itself in the case of
fatal protocol errors; a bit in the protocol trailer indicates who released the connection. The
other SSCOP responds with a ENDAK message (see Figure 5.10).

l 1 0
Userto-User information

i r - - - - - - - - - - - - - -
padding (0 ... 3 bytes) i 4

- Len

Lent4 PL R S 0x03 -

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.9: SAAL END message

122 SAAL: SIGNALLING ATM ADAPTATION LAYER

- Ox01 - 4

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.10: SAAL ENDAK message

The SSCOP user initiates connection tear-down by sending the AA-RELEASE.request
signal. The user of the remote SSCOP will receive an AA-RELEASE. indication, which has
not be to answered (it is not possible to reject a release). The remote SSCOP answers the END
with an ENDAK, which generates an AA-RELEASE . confirmation to the releasing user:

SSCOP * . .
SSCOP S . .
SSCOP . * . 4.051
SSCOP . . j
SSCOP + . .
SSCOP . . S
SSCOP . + . 4.052
SSCOP S . .

AA-RELEASE.request in state S-READY
state S-READY -> S-OUT-DIS-PEND
end reason=user
AA-RELEASE.indication in state S-READY
AA-RELEASE.confirm in state S-OUT-DIS-PEND
state S-READY -> S-IDLE
endak
state S-OUT-DIS-PEND -> S-IDLE

Of course, simultaneous release also works:

1

2

3

4

5

6

7

8

9

10

11

12

13

SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP

* . .
S . .
. 3 .
. . e
. . S
. e .
e . .
S .
. L .
. . *
. . S
. e .
. * .

AA-RELEASE.request in state S-READY
state S-READY -> S-OUT-DIS-PEND

2.119 end reason=user
AA-RELEASE.request in state S-READY
state S-READY -> S-OUT-DIS-PEND

2.912 end reason=user
AA-RELEASE.confirm in state S-OUT-DIS-PEND
state S-OUT-DIS-PEND -> S-IDLE

3.123 end reason=user
AA-RELEASE.confirm in state S-OUT-DIS-PEND
state S-OUT-DIS-PEND -> S-IDLE

3.124 endak
3.124 endak

In this case the ENDAK messages are effectively ignored.
Note that a receiving an END message is legal in all states except state 2 (outgoing

connection pending)-a connection request is rejected with a BGREJ.

5.1.6 Assured Data Transfer and Keep-Alive

Data are sent to the remote SSCOP by means of SD messages (see Figure 5.1 1). Each SD
message contains a 24-bit sequence number that is taken from the variable vT(S), which is
incremented after sending a new message. This sequence number identifies the data message.

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 123

PL Len WY OX08 -

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.11: SAAL SD message

If a message needs to be resent, the same number is used again. (Messages are held in a queue
until they are acknowledged, so it is easy to retransmit the message with the same sequence
number.) The number of bytes that can be transported by an SD message is specified by the
parameter k of the protocol. For signalling purposes this parameter is set to 4096 as required
by ITU-T recommendation [Q.2130]. Note that an SD message can also be empty.

Acknowledgements and flow control information are transported in STAT messages (see
Figure 5.12). These messages are not emitted automatically, but rather requested by sending
a POLL message (Figure 5.13).

PAD

PAD

0 List element 1 (a SD N(s))

4 List element 2

List element L 4(L-1)

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.12: SAAL STAT message

POLL messages contain the current value N(S) of the U(S) variable (e.g. the sequence
number of the next fresh SD message) and the poll sequence number N(PS) from the variable
VT(PS). The first of these values is needed to detect lost messages. If, for example, SSCOP 0
has just emitted the SD message with the sequence number 56, the following POLL message
will contain the sequence number 57 (remember that VT(S) is incremented after sending the
message.) If message 56 is lost, SSCOP 1 will detect this loss, because it expects to see
sequence number 56 in the POLL.

The STAT message that is constructed in response to a POLL contains at least three numbers
and a variable sized list of SD message sequence numbers. This list specifies ranges of SD

124 SAAL: SIGNALLING ATM ADAPTATION LAYER

- 4 N(W 0x12

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.13: SAAL POLL message

messages that were apparently lost and may be empty. N(R) is the current value of VR(R),
which describes the sequence number of the next in-sequence SD message that the receiver
expects. N(MR) (the current value of VR(MR)) specifies the current receive window and
specifies one higher than the maximum sequence number the receiver is willing to accept.
N(PS) is the poll sequence number of the POLL message that triggered this STAT message.
The relationship between the different SD sequence numbers is shown in Figure 5.14.

4 4 4

t t t

fully
acknowledged

messages

partly acknowledged and
partly lost messages

free outside
transmit of
window window

Figure 5.14: SSCOP sequence number relationship

In this figure messages up to number 58 are successfidly received and also acknowledged.
This means that both VT(A) and VR(R) have the same value, namely 59: VT(A) because the
next expected in-sequence acknowledgement belongs to message 59; VR@) because the next
expected in-sequence message is message 59. Messages 59, 62, 63 and 65 have been lost.
VT(S) is 66-the next new SD message will carry this sequence number. V R W) is 65 because
the highest SD sequence number seen so far was 64. The receive window continues up to
message 67; 68 would already be outside the window so both VT(MS) and VR(MR) are 68
(given that a STAT message was received since the last update of these variables).

The POLL message and the resulting STAT message for the situation depicted in
Figure 5.14 is shown in Figure 5.15.

The POLL message says that the transmitting side has sent messages with sequence
numbers up to 65; 66 would be the next. The STAT message says that the receiver expects the
next in-sequence message to be message number 59 and that it is willing to receive messages
up to (but not including) number 68. It also contains a list of sequence numbers. These

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL

-

4 N(S) =66 0x12 -

0 N(F'S)=XXX

0 I 66 0

0

8 64 0

4 65

62

0

20 59 0

16 60

-

28 N(MR)=68 -

24 N(PS) =XXX (from POLL)

- I Ox13 32 N@) =59

125

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.15: POLL message and STAT message with lost messages list

sequence numbers must be interpreted in pairs N , M , each pair N , M tells the other side
that messages with numbers from N up to M - 1 have been lost and should be retransmitted.
In the example this means that the receiver has not received messages 59,62,63 and 65.

Data can be sent only if the SSCOP is in state 10 (ready). Actually there are three sub-states
of the ready state:

active The protocol entity is in this state if there are any SD messages to be transmitted
or when there are outstanding acknowledgements. In this state the timers POLL
and NO-RESPONSE are running in parallel. Timer POLL ensures that POLL
messages are transmitted (these are needed to get STAT messages that contain
acknowledgements and update the send window (see Section 5.1.7)).

The protocol does not insist on a STAT message in response to each POLL.
During the interval of timer NO-RESPONSE at least one STAT message must
be received. In this case the timer is restarted. If the timer expires, the SSCOP
connection is aborted.

transient When all queued SD PDUs are sent, there are no outstanding acknowledgements
and timer POLL expires SSCOP enters the active sub-state. Instead of restarting
timer POLL, timer KEEP-ALIVE is started, which is considerably longer. As
in the active state, loss of POLL or STAT messages is protected by the NO-
RESPONSE timer.

The state changes back to active whenever new data is to be transmitted.

126 SAAL: SIGNALLING ATM ADAPTATION LAYER

Timer KEEP-ALIVE is greater than timer POLL and greater than the round trip
delay. This means that viewer POLL messages are sent.

idle When a STAT message is received and timer KEEP-ALIVE is still running, both
timers KEEP-ALIVE and NO-RESPONSE are stopped and timer IDLE started
instead. While timer IDLE is running no POLL messages are sent. When the timer
expires, the transient state is entered again. Because timer KEEP-ALIVE expires
only when POLL or STAT PDUs are lost, the switch to the idle state occurs only
when the connection seems stable enough. Timer IDLE is considerably greater
than timer KEEP-ALIVE.

The following trace shows how SSCOP switches between these three sub-states.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I5

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP

* . .
S . .
. * .
. . S
. . *
. e - .
. . +
. . S
. + .
e . .
S . .
. e .
. * .
. * .
. - e .
. e .
. * .
. * .
. - e .
. * .
. - e .
. e .
. * .
3 . .
. * .
. . *
. * .
. - e .
. * .
. - e .
. e .
. * .
. * .
. - e .
. e .
. * .

AA-ESTABLISH.request in state S-IDLE
state S-IDLE -> S-OUT-PEND

0.004 begin mr=128 sq=l
state S-IDLE -> S-IN-PEND
AA-ESTABLISH.indication in state S-IN-PEND

AA-ESTABLISH.response in state S-IN-PEND
state S-IN-PEND -> S-READY

1.014 begin mr=128 sq=l

1.144 bgak mr=128
AA-ESTABL1SH.confiz-m in state S-OUT-PEND
state S-OUT-PEND -> S-READY

1.907 poll s=O ps=i

1.915 stat r=O ==l28 ps=l list=()
1.917 stat r=O ==l28 ps=l list=()
16.925 poll s=O ps=2
16.927 stat r=O ==l28 ps=2 list=()
16.929 poll s=O ps=2
16.931 stat r=O ==l28 ps=2 list=()
31.936 poll s=O ps=3
31.938 poll s=O ps=3
31 .g40 stat r=O ==l28 ps=3 list=()
31.941 stat r=O ==l28 ps=3 list=()

39.539 sd s=O k(4)=67:75:67:75

1.911 poll s=o ps=l

AA-DATA.request in state S-READY

AA-DATA.indication in state S-READY
40.294 poll s=l ps=4
40.296 stat r=l ==l29 ps=4 list=()
41.055 poll s=l ps=5
41.056 stat r=l ==l29 ps=5 list=()
46.956 poll s=O ps=4
46.957 stat r=O ==l28 ps=4 list=()
56.075 poll s=l ps=6
56.076 stat r=l ==l29 ps=6 list=()
61.975 poll s=O ps=5
61.977 stat r=O ==l28 ps=5 list=()

After a connection has been established the active phase is entered by starting timer POLL
in lines 8 and 11. At expiry of this timer POLL messages are sent (lines 12 and 13) and,

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 127

because the transmit buffer is empty and no acknowledgements are expected (i.e. VT(S,) is
equal to W @)) , timer KEEP-ALIVE is started and thus the transient phase entered. In both
phases timer NO-RESPONSE is running in parallel (this is not shown). In lines 14 and 15
both SSCOPs receive STAT messages in response to their POLL messages. Because at that
time the KEEP-ALIVE timers are still running, the idle phase is entered by stopping timers
KEEP-ALIVE and NO-RESPONSE and starting timer IDLE. These timers expire after 15
seconds and POLL messages are transmitted (lines 16 and 18). The transient phase is entered
again (to wait for the STAT messages) by starting timers NO-RESPONSE (to protect against
losing connectivity) and KEEP-ALIVE. At lines 17 and 19 responses are received and both
SSCOPs switch to the idle phase again (lasting until lines 20 and 21) . In this manner the
SSCOPs instances toggle between the transient phase to wait for a STAT and the idle phase.

If in the transient phase a STAT message (or the requesting POLL) is lost, a new POLL
is transmitted and the SSCOP remains in the transient phase, i.e. starts timer KEEP-ALIVE.
This may be repeated a number of times, which depends on the relation of the values of timers
KEEP-ALIVE and NO-RESPONSE. With the standard values (2 and 7 seconds, respectively)
three retransmissions of the POLL would be done before aborting the connection at expiry of
timer NO-RESPONSE.

If a message is to be transmitted the SSCOP leaves the transient or idle phase and enters
the active phase (see lines 24 and 25). Timer POLL is started and timer NO-RESPONSE
started or restarted and, at expiry of timer POLL (line 27), a POLL message is sent. The
STAT message in line 28 carries the acknowledgement of the data message, so the SSCOP
can enter the transient phase again.

Note that there is a maximum number of SD messages, that can be sent without an
intervening POLL. The standard value for this parameter is 25, which means that after
transmitting 25 SD messages without expiry of timer POLL, a POLL message is sent in any
case. This prevents the receiving SSCOP from getting too busy processing data messages and
not being able to acknowledge these messages. If this were to happen, the sending SSCOP
could use up the available send window and would then stop sending, which in turn would
drain the pipe and reduce performance.

Upon receipt of an SD message the SSCOP remains in the state it was-only in line 3 1 is a
new POLL sent, after timer IDLE has expired.

To speed up the recovery process in the case of lost messages, the receiving SSCOP has the
ability to report problems immediately to the sending SSCOP by means of USTAT messages
(Figure 5.16). Such messages are transmitted in two cases upon receipt of an SD message:
when the SD message falls outside the receive window (this could happen, for example, if the
receiver has reduced the window) and when an SD message loss is detected.

The first case is detected when the sequence number in the received SD message is not
less than VR('R). If this happens for the first time, an USTAT is transmitted, containing
VR(H) (the next highest SD PDU expected) and VR(MR) (the first out-of-window SD PDU).
Upon sending this message, VR(H) is set equal to VR(MR). If on receipt of another out-of-
the-window message these variables are found equal, that SD PDU is simply ignored. The
following trace shows this behaviour:

1 SSCOP . 3 . 1.521 poll s=O ps=l
z SSCOP . -G . 1.524 poll s=O ps=l
3 SSCOP . 3 . 1.525 stat r=O ==l28 ps=l list=()
4 SSCOP . -G . 1.527 stat r=O mr=128 ps=l list=()

128 SAAL: SIGNALLING ATM ADAPTATION LAYER

5

6

7

8

9

10

11

12

13

14

I5

16

SSCOP * . .
SSCOP . . =%
SSCOP . * .
SSCOP . =% .
SSCOP . .
SSCOP =% . .
SSCOP . * .
SSCOP . X+ .
SSCOP . *X .
SSCOP =% . .
SSCOP . * .
SSCOP . =%X .

3.279
4.040
4.042

4.145
4.147
4.800

5.298
5.570

AA-DATA.request in state S-READY
AA-DATA.indication in state S-READY
sd s=O k(i)=3i
poll s=l ps=2
stat r=l ==l29 ps=2 list=()
AA-DATA.request in state S-READY
sd s=131 k(1)=32
ustat r=l m=129 list=~1.129)

AA-DATA.request in state S-READY
sd s=132 k(1)=33

poll s=2 ps=3

poll s=3 ps=4

PAD

4 List element 2 PAD

0 List element 1 (a SD N (9)

NWR) 8
- 12 N(R) Ox14

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.16: SAAL USTAT message

SSCOP 1 announces a window of 128 in line 4 and SSCOP 0 sends an SD message with
sequence number 0 in line 7. In line 9 the receiver announces the new window 129. However,
in line 11 SSCOP 0 sends an SD message with sequence number 13 1, which is outside the
window and SSCOP 1 drops that message and sends a USTAT. This USTAT says that the
next in-sequence SD PDU should be number 1 (r=l), that messages up to and not including
sequence number 129 are OK to send and that the highest sequence number seen so far was 1
and the window is 129.

The second case for transmission of a USTAT is detected when the received SD message is
not the next in sequence SD message (that is, its sequence number is not equal to VR(R)) and
it is not the next expected highest SD message, but a later one (i.e. its sequence number is not
equal to VR(H), but higher). If the SD message’s sequence number is equal to V R (H , the new
message is simply put into the buffer. If the new SD message has a sequence number higher
than MR(H), messages have been lost. In this case a USTAT is generated containing the current
V R W) and the received sequence number, thus requesting the immediate retransmission of all
messages in between. This behaviour can be seen in the following trace:

1 SSCOP . 3 . 1.510 poll s=O ps=l
z SSCOP . -G . 1.510 poll s=O ps=l
3 SSCOP . 3 . 1.513 stat r=O ==l28 ps=l list=()
4 SSCOP . -G . 1.514 stat r=O ==l28 ps=l list=()
5 SSCOP 3 . . AA-DATA.request in state S-READY
6 %COP . j . 2.363 sd s=o k(l)=31

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 129

7

8

9

10

11

12

13

14

I5

16

17

18

19

20

21

22

SSCOP . . *
SSCOP . j .
SSCOP . + .
SSCOP . j .
SSCOP . + .
SSCOP j . .
SSCOP . *X .
SSCOP j . .
SSCOP . * .
SSCOP . + .
SSCOP + . .
SSCOP . j .
SSCOP . . *
SSCOP . . j
SSCOP . * .
SSCOP . + .

3.120
3.121
3.880
3.882

4.349

4.653
4.654

4.658

5.111
5.113

AA-DATA.indication in state S-READY
poll s=l ps=2
stat r=l ==l29 ps=2 list=()
poll s=l ps=3
stat r=i ==l29 ps=3 list=()
AA-DATA.request in state S-READY
sd s=l k(i)=32
AA-DATA.request in state S-READY
sd s=2 k(i)=33
ustat r=l mr=129 list=C1.2)
AA-MERR0R.indication in state S-READY
sd s=l k(l)=32
AA-DATA.indication in state S-READY
AA-DATA.indication in state S-READY

stat r=3 ==l31 ps=4 list=()
poll s=3 ps=4

The SD message with sequence number 1 sent in line 13 is lost. When the next message
with sequence number 2 is received in line 15, the receiver detects that its sequence number
is higher than VR(H). VR(H) at that point is 1, which means that the next highest message
expected is 1. When the receiver sees sequence number 2 it deduces, that message number
1 must have been lost and sends a USTAT message requesting immediate retransmission of
message 1. Upon receipt of this message the transmitter retransmits message 1 in line 18 and
the receiver can deliver both messages 1 and 2 to the SSCOP user (lines 19 and 20).

Upon receipt of a USTAT message, SSCOP removes all acknowledged messages from its
buffers, updates U (A) and VTWS) (the send window) accordingly and moves all messages
between the receivers VR(H) and VR(MR) (which were reported in the USTAT) from the
transmission buffer, where they wait for acknowledgement, to the retransmission buffer, where
they will be held until the window allows them to be sent. If the window is open, they will be
sent immediately.

In the case, when no USTAT message is generated, but messages where lost, the next STAT
message will contain ranges of message numbers to be retransmitted. When these messages
are received, all messages that are in-sequence are delivered to the SSCOP user and deleted
from the receive buffer. The next STAT or USTAT message then acknowledges these messages
and moves the window. In the following traces messages 2, 3 and 4 are lost and then later
retransmitted:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

SSCOP . 3 .
SSCOP . -e .
SSCOP . 3 .
SSCOP . -e .
SSCOP 3 . .
SSCOP . j .
SSCOP . . 3
SSCOP . j .
SSCOP . e .
SSCOP . j .
SSCOP . e .
SSCOP j . .
SSCOP . *X .
SSCOP j . .

1.585
1.587
1.588
1.590

2.604

3.364
3.366
4.124
4.126

5.171

poll s=o ps=l
poll s=o ps=l
stat r=O ==l28 ps=l list=()
stat r=O ==l28 ps=l list=()
AA-DATA.request in state S-READY
sd s=O k(l)=31
AA-DATA.indication in state S-READY
poll s=l ps=2

poll s=l ps=3
stat r=l ==l29 ps=2 list=()

stat r=l ==l29 ps=3 list=()
AA-DATA.request in state S-READY
sd s=1 k(l)=32
AA-DATA.request in state S-READY

130 SAAL: SIGNALLING ATM ADAPTATION LAYER

I5

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

SSCOP . *X .
SSCOP j . .
SSCOP . *X .
SSCOP j . .
SSCOP . * .
SSCOP . j .
SSCOP . + .
SSCOP + . .
SSCOP . *X .
SSCOP + . .
SSCOP . + .
SSCOP . j .
SSCOP . * .
SSCOP j . .
SSCOP . * .
SSCOP . j .
SSCOP . + .
SSCOP + . .
SSCOP . * .
SSCOP . . j
SSCOP . . *
SSCOP . . j
SSCOP . . *
SSCOP . . j
SSCOP . * .
SSCOP . + .

5.411

5.664

5.938
5.940
5.942

5.947

5.948
5.950
5.952

6.554
6.704
6.706

6.709

7.464
7.466

sd s=2 k(i)=32
AA-DATA.request in state S-READY
sd s=3 k(i)=32
AA-DATA.request in state S-READY
sd s=4 k(i)=32
poll s=5 ps=4
ustat r=l ==l29 list={l,4)
AA-MERR0R.indication in state S-READY
sd s=l k(i)=32
AA-MERR0R.indication in state S-READY
stat r=i ==l29 ps=4 list={i-4,5)
sd s=2 k(l)=32
sd s=3 k(i)=32
AA-DATA.request in state S-READY
sd s=5 k(i)=32
poll s=6 ps=5
stat r=i ==l29 ps=5 list={i-2,6)
AA-MERR0R.indication in state S-READY
sd s=l k(i)=32
AA-DATA.indication in state S-READY
AA-DATA.indication in state S-READY
AA-DATA.indication in state S-READY
AA-DATA.indication in state S-READY
AA-DATA.indication in state S-READY
poll s=6 ps=6
stat r=6 mr=134 ps=6 list={)

This example shows how both mechanisms, STAT and USTAT, work. The sender’s SSCOP
tries to send five messages. The first one (sequence number 0) is received and delivered to
the receiver’s user (lines 5-7). The next three messages are lost (lines 13, 15 and 17). The
receiver detects this loss when receiving message five in line 19 (because its VR(H) is still 1)
and sends a USTAT to request retransmission of messages 1 to 3. The transmitter resends
these, but message 2 is lost again (line 23). This time the loss is not detected by the receiver
until the transmitter requests a status report. The emitted STAT message in line 31 tells the
transmitter SSCOP that message 1 is still missing. After successful retransmission and receipt
of this message all buffered messages 1-5 can be delivered to the user.

This example shows that in complex loss scenarios retransmission is triggered solely by
the exchange of POLL and STAT messages. If timer POLL is too large, this can slow down
protocol performance. To overcome this problem 4.21 10 offers an implementation option
called “Poll after retransmission”. If this option is implemented a POLL message is emitted
after the last retransmission. Each time an SD message is retransmitted, the retransmit buffer is
checked and if it is found to be empty, the POLL message is sent. In this way the receiver will
report still missing messages immediately and they can be retransmitted as fast as possible.

5.1.7 Flow Control

As already seen in previous paragraphs, SSCOP includes a window scheme for flow control.
The receiver maintains a variable VR(MR) which contains the sequence number of the first
SD message that the receiver will not accept. SD messages with numbers equal to or higher
than VR(MR) will be discarded by the receiver. In certain circumstances the receiver will emit
a USTAT message in this case.

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 131

VR(MR) is sent to the transmitter in the N(MR) field of BGN, BGAK, RS, RSAK, ER,
ERAK, STAT and USTAT messages. The transmitter copies the value from this field into its
VT(MS) variable. It uses this variable to decide whether or not another SD message can be
transmitted, when the transmit buffer is not empty.

The window on the transceiver side is bound by VT(A) at the lower end and VT(MS)-l at the
upper end. SD messages with sequence numbers between these values may be transmitted and
the receiver should be able to provide enough buffers in its receive queue to buffer all these
messages. If there is not enough buffer space in the receiver it may discard incoming messages
(which means that for performance reasons in large bandwidth-delay product situations the
receiver may allow a larger window than it is able to buffer), but may never discard already
acknowledged messages and must always be able to buffer at least the message with sequence
number VR(R), unless the window is completely closed (VR(R) = V R P) = VRWR)) .

The receiver is allowed to reduce the upper end of the window, but only to a minimum
of VR(H). This means that the window cannot be reduced below the highest currently
acknowledged message. The lower end of the window is maintained automatically by VT@)
and VR(R); the upper end is maintained through unspecified procedures in VT(MS) and
VRWR). Because of the conditions

VT(A) 5 V T (S) 5 VT(MS)

and

the window can be completely closed only when all messages are acknowledged by the
receiver.

Sequence number arithmetic in SSCOP is done modulo 224. This limits the operating
window of the protocol to 224 - 1, but, because in contrast to TCP/IP the sequence numbers
are message and not byte numbers, this limits the amount of outstanding bytes in the
pipe to (zz4 - l)k , where k is the maximum number of bytes in the user part of SD,
MD and UD messages. If this is set to the maximum allowed by AAL5 this amounts to
(224 - 1)65535 = 1,099,494,785,025, which is about 1 terabyte and should be enough
even for high-bandwidth satellite links.

The algorithm for choosing the initial window VR(MR) as well as the method of updating
the window is not specified in 4.21 10, but left to the implementation. The window should
be initialised to a value that is computed based on the round-trip delay of the connection, the
bandwidth and the value of the various timers. It must be updated each time a data receive
event occws. Appendix IV of [Q.2110] provides a formula for computing the default window
size:

where

W = the window size in messages,

TPoll = the timer POLL value of the peer in seconds,

T D ~ ~ ~ ~ = the end-to-end transit delay in seconds,

132 SAAL: SIGNALLING ATM ADAPTATION LAYER

BW = the bandwidth of the connection in bits per second, and

Len = the message length in bytes.

SSCOP events like message reception and signal processing are normally processed in
the order in which they occur. However, in the event of congestion, SSCOP status events
have priority over data transfer. When congestion at layers below SSCOP is detected (this
may happen, for example, if the underlying ATM connection is traffic-shaped, in which case
a queueing delay may be introduced and even blocking), the SSCOP entity may choose to
suspend servicing data requests from the upper layer and retransmissions. During suspension
messages are held in three different queues, for ordinary, management and unassured data,
until the lower layer gets decongested again. The interface between the SSCOP and layer
management or lower layers to detect congestion is not specified in the standard.

The following trace illustrates how the peer-to-peer flow control algorithm works:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

IS

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

SSCOP . * .
SSCOP . + .
SSCOP * . .
SSCOP . . j
SSCOP . * .
SSCOP j . .
SSCOP . * .
SSCOP . . j
SSCOP . * .
SSCOP . + .
SSCOP * . .
SSCOP . j .
SSCOP . . j
SSCOP . 3 .
SSCOP . -e .
SSCOP e . .
SSCOP j . .
SSCOP . 3 .
SSCOP . -e .
SSCOP 3 . .
SSCOP . j .
SSCOP . e .
SSCOP . j .
SSCOP . e .
SSCOP . j .
SSCOP . e .
SSCOP . j .
SSCOP . e .
SSCOP . j .
SSCOP . e .
SSCOP . j .
SSCOP . e .
SSCOP -e . .
SSCOP . 3 .
SSCOP . . j
SSCOP . . 3
SSCOP . j .
SSCOP . 3 .
SSCOP . -e .

1.683
1.686

3.065

3.728

3.824
3.825

4.252

4.584
4.585

5.354
5.355

6.114
6.115
6.874
6.875
7.634
7.635
8.394
8.396
9.155
9.157
9.914
9.915

9.918

9.921

poll s=o ps=i
stat r=O mr=3 ps=l list=()
AA-DATA.request in state S-READY
AA-DATA.indication in state S-READY
sd s=O k(i)=3i
AA-DATA.request in state S-READY
sd s=l k(i)=32
AA-DATA.indication in state S-READY
poll s=2 ps=2
stat r=2 mr=3 ps=2 list=()
AA-DATA.request in state S-READY
sd s=2 k(l)=33
AA-DATA.indication in state S-READY
poll s=3 ps=3
stat r=3 mr=3 ps=3 list=()
AA-MERR0R.indication in state S-READY
AA-DATA.request in state S-READY
poll s=3 ps=4
stat r=3 mr=3 ps=4 list=()
AA-DATA.request in state S-READY
poll s=3

poll s=3

poll s=3

poll s=3

poll s=3

poll s=3

stat r=3

stat r=3

stat r=3

stat r=3

stat r=3

stat r=3

ps=5
mr=3 ps=5 list=()
ps=6
mr=3 ps=6 list=()

mr=3 ps=7 list=()
ps=8
mr=3 ps=8 list=()

mr=3 ps=9 list=()

mr=6 ps=lO list={)

ps=7

ps=9

ps=lO

AA-MERR0R.indication in state S-READY
sd s=3 k(l)=34
AA-DATA.indication in state S-READY
AA-DATA.indication in state S-READY
sd s=4 k(l)=35

10.674 poll s=5 ps=ll
10.675 stat r=5 mr=6 ps=ll list={)

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 133

In line 2, the receiving SSCOP protocol instance announces that it is willing to accept
messages with a sequence number up to, but not including, 3. The sending SSCOP receives
requests from its user to send five messages in lines 3, 6, 11, 17 and 20. Three of these
are actually sent and delivered to the receiver’s user in lines 4, 8 and 13. Then the sender
detects that the window is closed, polls a STAT message and, on receiving this message (which
announces a closed window) in line 15, issues a management error signal with code “W’ (no
credit) in line 16. The sender now remains in the active phase and keeps polling the receiver
in the hope that the window will open. The active state is maintained because timer POLL is
much less than timer IDLE, so the opening of the window can be detected faster. In line 32 a
STAT message is finally received, which announces a new VR(MR) of 6 and the sender sends
the two queued messages.

5.1.8 Recovery from Protocol Errors

Two cases showing how the protocol recovers from transmission errors have already been
described in the previous section. By means of STAT and USTAT messages the receiver
tells the transmitter which messages seem to be missing. The transmitter retransmits these
messages until they are acknowledged.

Situations may occur, however, when the peer entities get confused about the state of each
other. This may happen, for example, when bit errors occur that are undetected by the AAL5
layer below (this is very unlikely) or, more likely, in the case of implementation errors of
the peer entity. For such cases the protocol includes a mechanism for explicit error recovery,
which is initialised automatically each time an error is detected. On the peer side the error
recovery process is reported to the upper layer and must be confirmed from that layer, so
appropriate actions for upper layer protocol integrity can be done.

Error recovery is started in state 10 (Data Transfer Ready) in the following cases:

0 an SD PDU is received that is already in the receive buffer;
0 a POLL message indicates a send state (i.e. the number of the next new SD message the

transmitter will send) that is lower than the maximum SD sequence number seen so far;
0 the receiver requests the retransmission of an SD message it has already been

acknowledged;
0 the receiver requests the retransmission of an SD message outside the window;
0 a STAT or USTAT message contains bad sequence numbers (first number of the range larger

0 a STAT message contains a POLL sequence number outside the POLL sequence window.
than the second one);

Figure 5.17 shows the signals, messages and state changes during a normal error recovery.
If one of the above conditions is detected, the SSCOP stops all timers, reports an error

to the management entity, resets the flow control window to an initial value, empties
the retransmission queue and, if allowed, empties the transmission queue and buffer (see
Section 5.1.11). It then emits an ER message (see Figures 5.18 and 5.19), starts timer CC
and enters state 7 (Outgoing Recovery Pending).

On receipt of the ER PDU the peer SSCOP stops all timers, initialises the send window
from the ER PDU, empties the retransmission queue and, if allowed, empties the transmission
queue and buffer, clears the receiver buffer (after delivering all in-sequence data to its user)
and sends an AA-RECOVER. indication to the SSCOP user. It then enters state 9 (Incoming
Recovery Pending).

134 SAAL: SIGNALLING ATM ADAPTATION LAYER

detection of
protocol error

AA-RECOVER.indication
(upper layer actions)

AA-RECOVER.response

l

9

8

10

AA-RECOVER.indication
(upper layer actions)

AA-RECOVER.response

Figure 5.17: SSCOP error recovery

- 4 N o w Ox09

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.18: S A A L ER message

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.19: S A A L ERAK message

In this state the SSCOP user can take the appropriate actions to guarantee its integrity (error
recovery is initiated in cases where the protocol cannot guarantee integrity) and then invokes
an AA-RECOVER. response. Upon receipt of this signal SSCOP the empties the transmission
buffer (if it was not allowed previously), reinitialises all data transfer state variables, transmits
an ERAK message and enters the active phase of the Data Transfer Ready state (state 10).

When the original invoker of the error recovery procedure receives the ERAK message,
it initialises its send window from the value in the ERAK, delivers any in-sequence data to
its user, clears the receive buffer, sends an AA-RECOVER. indication to its user and enters
state 8 (Recovery Response Pending). Then the user has the chance of doing everything
to guarantee its integrity and answers with an AA-RECOVER.response. When the SSCOP
receives this response it clears the transmit buffers (if it was not allowed to do this earlier),

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 135

initialises all send state variables and enters the active phase of state 10 (Data Transfer Ready).
At this point both SSCOP entities are ready to transfer data.

The following trace shows an actual error recovery. This trace was obtained by patching a
POLL message to contain a wrong value of N(S) (the sender’s VT(MS)).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I5

16

17

18

19

20

21

22

23

SSCOP . j .
SSCOP . + .
SSCOP j . .
SSCOP . * .
SSCOP . . j
SSCOP . * .
SSCOP . . j
SSCOP . . S
SSCOP . + .
SSCOP + . .
SSCOP S . .
SSCOP * . .
SSCOP . j .
SSCOP . . *
SSCOP S . .
SSCOP . . S
SSCOP . j .
SSCOP . . +
SSCOP . . S
SSCOP . + .
SSCOP . j .
SSCOP . * .
SSCOP . -e .

5.225
5.227

5.449

5.985

5.988

6.923

7.685

8.505
8.507
9.695
9.697

poll s=2 ps=3
stat r=2 mr=5 ps=3 list={)
AA-DATA.request in state S-READY
sd s=2 k(i)=33
AA-DATA.indication in state S-READY

AA-MERR0R.indication in state S-READY
state S-READY -> S-OUT-REC-PEND
er mr=3 sq=l
AA-RECOVER.indication in state S-READY
state S-READY -> S-IN-REC-PEND
AA-RECOVER.response in state S-IN-REC-PEND
erak mr=3
AA-RECOVER.indication in state S-OUT-REC-PEND
state S-IN-REC-PEND -> S-READY
state S-OUT-REC-PEND -> S-REC-PEND

poll s=2 ps=4

poll s=o ps=l
AA-RECOVER.response in state S-REC-PEND
state S-REC-PEND -> S-READY
poll s=o ps=i
stat r=O mr=3 ps=l list={)
poll s=o ps=2
stat r=O mr=3 ps=2 list={)

In line 4 the sender emits SD message number 2 and a short time later in line 6 it generates
a POLL message with N(S) set to 2. This is clearly wrong, because the next SD message
number (this is what is conveyed in N(S)) will be 3. The receiver detects this error and starts
error recovery in line 9, announcing its window. The sender exchanges AA-RECOVER signals
with its user and acknowledges the error procedure with the E M in line 13. At this point
the sender has reset all its state variables, reinitialised the window and is back in state 10. The
receiver now exchanges AA-RECOVER signals with its user and is back in state 10 in line 19.
The POLL and STAT messages in the last four lines show that the state in both instances is
reinitialised and synchronised.

5.1.9 Resynchronisation

The SSCOP includes an additional procedure to initialise synchronisation of the peer on
request from the protocol’s user. This is called resynchronisation.

Resynchronisation can be requested in either state 10 (Data Transfer Ready) or in one of
the error states 7, 8 or 9 by issuing an AA-RESYNC .request. That is, the resynchronisation
procedure takes precedence over the recovery procedure.

Upon receipt of the resynchronisation request from its user, the SSCOP stops all timers,
reinitialises the window, sends an RS message (see Figure 5.20) and clears all buffers and
queues. It then starts the connection control timer (timer CC) and enters state 5 (Outgoing
Resynchronisation Pending).

136 SAAL: SIGNALLING ATM ADAPTATION LAYER

! ! 0
Userto-User information

- I N(SQ)
Len

PL Lent4 N(MR) 0x05 -

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.20: S A A L RS message

- 0
- 4 N(MR) Ox06

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.21: S A A L RSAK message

The peer, upon receipt of the RS PDU, stops its data transfer timers, initialises the
send window from the value carried in the RS PDU, informs its user by means of an
AA-RESYNC . indicat ionand clears queues and buffers if it is allowed to do so. It then enters
state 6 (Incoming Resynchronisation Pending) awaiting a response from the user.

The user answers with an AA-RESYNC . reponse and the SSCOP reinitialises the receive
window, sends an RSAK PDU (see Figure 5.21), clears buffers and queues it was previously
not allowed to, initialises the data transfer state variables and enters the active phase of
state 10. At this point the resynchronisation ends for the peer entity.

The invoker of the procedure, upon receipt of the RSAK, initialises the send window from
the value in the RSAK PDU, confirms the resynchronisation to its user, initialises the data
transfer state and enters the active phase of state 10.

At this point both instances are guaranteed to be synchronised. The following trace shows
an example of a resynchronisation:

1

2

3

4

5

6

7

8

9

10

11

12

SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP
SSCOP

. *

. - e

. *

. - e
3 .
. *
. .
. *
. e
* .
. *
. .

. 1.683

. 1.684

. 1.686

. 1.687

. 2.473 *

. 3.232

. 3.234

. 3.447
*

p o l l s=o ps=l
p o l l s=o p s = l
stat r=O ==l28 ps=l list=()
stat r=O ==l28 ps=l list=()
AA-DATA.request in state S-READY
sd s=O k (l) = 3 1
AA-DATA.indication in state S-READY
p o l l s=l ps=2
stat r=l ==l29 ps=2 list=()
AA-RESYNC.request in state S-READY
rs mr=128 sq=2
AA-RESYNC.indication in state S-READY

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 137

13

14

I5

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

SSCOP S . .
SSCOP . . S
SSCOP . * .
SSCOP . . +
SSCOP . + .
SSCOP + . .
SSCOP S . .
SSCOP . . S
SSCOP . * .
SSCOP . + .
SSCOP . * .
SSCOP . + .
SSCOP * . .
SSCOP . j .
SSCOP . . *
SSCOP . j .
SSCOP . + .
SSCOP . j .
SSCOP . + .

4.452

4.557

5.313
5.314
5.316
5.317

7.165

7.922
7.924
8.682
8.684

state S-READY -> S-OUT-RESYNC-PEND
state S-READY -> S-IN-RESYNC-PEND
rs mr=128 sq=2
AA-RESYNC.response in state S-IN-RESYNC-PEND
rsak mr=128
AA-RESYNC.confirm in state S-OUT-RESYNC-PEND
state S-OUT-RESYNC-PEND -> S-READY
state S-IN-RESYNC-PEND -> S-READY
poll s=o ps=i
poll s=o ps=l
stat r=O ==l28 ps=l list={)
stat r=O ==l28 ps=l list={)
AA-DATA.request in state S-READY
sd s=O k(l)=32
AA-DATA.indication in state S-READY
poll s=l ps=2

poll s=l ps=3
stat r=i ==l29 ps=2 list={)

stat r=i ==l29 ps=3 list={)

In lines 5-9 of the trace an SD message is sent and the window and acknowledge
numbers updated accordingly. In line 10 the user of the left SSCOP invokes the
resynchronisationprocedure by sending an AA-RESYNC . request. An RS message is emitted
and the SSCOP goes into states 5 (Outgoing Resynchronisation Pending) and 6 (Incoming
Resynchronisation Pending). The user of the right SSCOP, after receiving the indication about
the resynchronisation, sends the AA-RESYNC . response and the SSCOP can answer its peer
with an RSAK. When this message is received by the left SSCOP both protocol instances are
ready again. The POLL and STAT messages show that the window and sequence numbers are
reset to their respective start values.

5. l. l0 Unassured Data Transfer

The SSCOP provides two channels for the unassured transfer of data messages. One of these
is reserved for use by the management plane and one can be used by the SSCOP user. This
data transfer is done via UD (unassured data) and MD (management data) messages (see
Figures 5.22 and 5.23).

l ! o
information

. 4 r - - - - - - - - - - - - - -
padding (0 ... 3 bytes)

PL OxOd - - Len

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.22: SAAL UD message

138 SAAL: SIGNALLING ATM ADAPTATION LAYER

I I I

byte 0 byte 1 byte 2 byte 3

Figure 5.23: S A A L MD message

Messages of this kind are not acknowledged and are not subject to flow control except for
the lower layer busy case. If a congestion in the layers below the SSCOP is detected, the
messages are queued until they can be sent. MD and UD messages can be sent in any state,
with or without an established connection, even when the SSCOP is in the idle state (state 0).

5. l. l l Message Retrieval and Bufler Management

The SSCOP uses a number of conceptual queues and buffers. Conceptual means that an actual
implementation can choose to use fewer queues or other mechanisms, but must provide the
same behaviour as in the standard. Queues and buffers can store messages. The number of
messages that can be stored may be restricted. Queues and buffers differ in the way messages
inside it can be accessed: messages in queues are accessed in a strict first-in, first-out manner;
messages in buffers can be retrieved by message number. Figure 5.24 shows the SSCOP
buffers and queues and their relationship.

The MD and UD queues are used to hold MD and UD messages while the lower layer
is congested. As soon as the congestion disappears, these messages are sent to the peer
SSCOP. The SD queue holds SD messages while either the lower layer is congested, the
send window is closed or there are messages waiting in the retransmission queue. All three
queues are fed from the user of the SSCOP. Whereas messages are blocked in the SD queue
by lower layer congestion and a closed window, the retransmission queue is blocked only by
congestion. When sending an SD message, the retransmission queue takes precedence over
the SD queue. If an SD message is sent, it is put into the transmission buffer. This buffer
holds SD messages until a positive (ACK) or negative (NACK) acknowledgement is received
from the peer. A message for which an ACK is received leaves the SSCOP (it is destroyed);
a message for which a NACK is received is put back into the retransmission queue (and
held in the transmission buffer). In this way messages circulate between the transmission
buffer and the retransmission queue until they are finally acknowledged by the peer SSCOP.
Note that the transmission queue and the retransmission queue are different in the sense that
the transmission queue holds messages, while the retransmission queue holds only links to
messages in the transmission buffer.

On the receiving side the configuration is much simpler. Each message received from the
peer is checked, whether it is the next in-sequence message or not. If so, it is directly delivered
to the user; if not, it is put into the receive buffer. The message is held in the receive buffer
until all messages with lower sequence numbers are received. At this moment the message
can be removed from the buffer and delivered to the SSCOP user.

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 139

+ UD queue

NACK

input i receive
buffer

l I

I t resequencing

Figure 5.24: SSCOP buffers and queues

The SSCOP provides an additional mechanism called local message retrieval. As we have
seen in the preceding sections, there are circumstances where messages can be lost, namely
if a connection is released, but there are still messages in tranmission queues and buffers, in
the case of protocol errors and during resynchronisation. For some applications this is not a
problem, because the higher level protocols do not use mechanisms like resynchronisation
and include additional mechanisms, like retransmissions, to ensure integrity. For some
applications, however, the loss of messages is not allowable. We will give an example-the
SSCF at the public NN-later in this chapter. For these applications local message retrieval
can be used to ensure that messages do not get lost.

Local message retrieval is controlled by a configuration parameter of SSCOP-the
Clear-Buf f ers parameter. The signal AA-RETRIEVE. request is used to initiate retrieval,
the AA-RETRIEVE. indication is used by the SSCOP to deliver the retrieved PDUs to
the user, and AA-RETRIEVE-COMPLETE . indication signals to the user that all messages
have been retrieved. The Clear-Buf f ers parameter controls the time at which the SSCOP
destroys SD messages. If this parameter is set to YES, messages are destroyed in the following
cases:

0 When a new connection is established the transmission queue and buffer are cleared. This is
done on the side requesting the connection as well as on the responding side. The transmitter

140 SAAL: SIGNALLING ATM ADAPTATION LAYER

is also cleared when a connection is re-established during release.

transmission queue and buffer are cleared.

as the receive buffer.

0 After the SSCOP user has responded to a resynchronisation indication. Both the

0 When resynchronisation is invoked, the transmission buffer and queue are cleared, as well

0 If error recovery is acknowledged, the receiver buffer is cleared.
0 When the connection is released, all buffers and queues are cleared.
0 When messages are in-sequence or selectively acknowledged.

Additionally, requests to send data are ignored while error recovery is in progress if
Clear-Buf f ers is YES.

To summarise: if Clear-Buf f ers is set to YES a message is deleted whenever it seems that
the peer has got it, when there is no chance that the peer will get it (because the connection is
released), when there is a protocol error or when the user invokes a procedure that interrupts
normal SSCOP operation (resynchronisation or release). Even an acknowledgedmessage may
get lost if, a short time after the acknowledgement was received, the connection is released-
if it was a selectively acknowledged message, it may still wait in the peer’s receive buffer and
will be destroyed without beeing delivered to the user.

For situations where loss of messages is not permitted, Clear-Buf f ers can be set to NO.
This changes the behaviour of the SSCOP in the following way:

0 A message is cleared from the transmitter only if: the peer has acknowledged it in sequence

0 The local data retrieval is enabled to get messages back from the SSCOP that are not yet
or the local user had a chance to retrieve it from the SSCOP.

in-sequence acknowledged from the peer.

Local retrieval works by sending an AA-RETRIEVE . request to the SSCOP. This request
carries a parameter that can have the following values:

N where N is an SD message sequence number. In this case all messages
with a sequence number higher than N are retrieved from the transmission
buffer and all messages from the transmission queue. Because now only in-
sequence acknowledged messages are removed from the transmitter, this returns
a contiguous set of messages from N + 1 up to the last message delivered to the
SSCOP.

Unknown All messages from the transmission queue (SD queue) are retrieved.

Total All messages from the transmission buffer and the transmission queue are
retrieved.

For each message that is retrieved, the SSCOP generates an AA-RETRIEVE . indication
which contains the retrieved message and its message number. These messages are removed
entirely from SSCOP, i.e. they will not be sent or cleared.

When all messages specified in the request have been retrieved, an AA-RETRIEVE-COMPLETE
signal is sent to the user.

In Figure 5.25 a situation is shown with a number of messages waiting in each of the
buffers and queues. Messages 24-27 are waiting in the SD queue (they may be blocked
because of retransmissions or the window being closed), messages 23 and 20 are waiting

SSCOP: SERVICE SPECIFIC CONNECTION ORIENTED PROTOCOL 141

SD queue
I,
g p-pppq- transmission buffer

4B-b
retransmission queue

+ , -
~ 23 j 20 j
.

Figure 5.25: SSCOP retrieval example

for retransmission and messages 2 1 and 22 have been successfully acknowledged by the peer
SSCOP. The last two messages are held in the transmission buffer because it is assumed
that Clear-Buf f ers is set to YES. Because in this case only in-sequence acknowledged
messages can be removed from the buffer and the acknowledgement for message 10 is still
outstanding, the two messages are held in the transmission buffer. If in this situation the
SSCOP starts a data retrieval, the following happens for different values of the parameter
oftheAA-RETRIEVE.request:

25 In this case messages 24, 25, 26 and 27 are retrieved. Messages 20-23 are left

21 Messages 22-27 are retrieved. Messages 21 and 20 remain in the transmission

where they are.

buffer (remember that the retransmission queue consists only of links into the
transmission buffer; message 20 is also contained in the transmission buffer).

Unknown Messages 24-27 are retrieved. Messages 20-23 remain in the transmission buffer.

Total Messages 20-27 are retrieved. The transmission buffer and both queues are empty.

After all messages that where selected by the signal parameter are retrieved, an
AA-RETRIEVE-COMPLETE signal is sent.

5.1.12 Interface to Layer Management

The interface between the SSCOP and layer management consists of one signal that signals
SSCOP errors to the layer management (MAA-ERROR. indication) and the signal MAA-DATA
(request and indication) which can be used to send unassured data between the management
instances. As of this writing, no uses for MAA-DATA are defined.

The error signal contains two parameters: an error code in the form of a single character
and, for error code “V”, a number which indicates the number of retransmitted SD PDUs.
Table 5.2 gives all possible error codes and their meaning.

The last two are not really error conditions.

142 SAAL: SIGNALLING ATM ADAPTATION LAYER

Error v p e Error

unexpected or
inappropriate
message

Unsuccessful
retransmission G M K 0 L

I p
Q Sequence num-
ber and length
errors

U

I

SD loss I v
Credit condition W I x

Table 5.2: SSCOP error codes

Description

Receipt of SD message in wrong state.
Receipt of BGN message in wrong state.
Receipt of BGAK message in wrong state.
Receipt of BGREiJ message in wrong state.
Receipt of END message in wrong state. This error never
occurs.
Receipt of ENDAK message in wrong state.
Receipt of POLL message in wrong state.
Receipt of STAT message in wrong state.
Receipt of USTAT message in wrong state.
Receipt of RS message in wrong state.
Receipt of RSAK message in wrong state.
Receipt of ER message in wrong state.
Receipt of ERAK message in wrong state.

Too many retransmissions of connection control messages

Timer NO-RESPONSE expiry, i.e. no answer to POLL
message for a long period.

An SD PDU is received that is already in the receive buffer
or a POLL PDU indicates a next new SD PDU number that
is lower than what the receiver has already seen.
A STAT message indicates a POLL sequence number
outside the window of expected numbers (either this number
was already acknowledged by an earlier STAT or a POLL
with this number was never sent).
The in-sequence acknowledge number in a STAT PDU is
outside the window of allowed values, i.e. it is either lower
than what was already acknowledged or higher than the
highest SD PDU sent up to now.
One of the SD sequence numbers in a USTAT message is
wrong.
The size of a received PDU is either less than four (so it
cannot contain a valid trailer), is not a multiple of four or
has
the wrong size for the given type of message.

SD messages were retransmitted. This signal contains the
number of retransmitted messages.

The window was closed by the receiver.
The window was reopened by the receiver.

(VT(CC) 2 MazCC).

SSCF UNI: SERVICE SPECIFIC COORDINATION FUNCTION AT THE UN1 143

5.2 SSCF UNI: Service Specific Coordination Function at the U N
The top layer of the SAAL is the so-called Service Specific Coordination Function (SSCF).
For the support of the UN1 this sublayer is defined in [Q.2 1301. Although the standard contains
over 50 pages, the SSCF at the UN1 is not much more than a null-layer, which more or less
provides a simple mapping between the signals at its lower and upper boundaries.

The signals exchanged at the upper boundary of the SSCF (and also the SAAL) are:

AAL-ESTABLISH
This signal is used to establish a connection from the SAAL (in the form of
a request and a confirmation) or to inform the upper layer that an incoming
connection has been established (indication). All three forms can take user data
as a parameter. This data may be delivered to the peer, or has been received from
the peer.

AAL-RELEASE
This is used to release a connection (request and confirmation) or to inform the
SAAL user that the connection has been released (indication). As in the AAL-
ESTABLISH case, these signals may carry user data.

AAL-DATA
This is used by the SAAL user to send a data packet and by the SAAL to hand out
a received packet to its user. The parameter is the user data. There is a request and
an indication form.

AAL-UNITDATA
This may be used by the SAAL user for unassured data transfer to the peer (request
and indication).

The SSCF simplifies the upper layer interface of the SAAL with regard to the SSCOP. As
an example the sequence of signals during connection establishment is show in Figure 5.26.

A A
AAI-ESTABLISH.cod1m AAI-ESTABLISH.indication

AAI-ESTABLISH.request

7 ,
I ,

SSCF {<;
I ,
I ,

A A
AA-ESTABLISH.indication

AA-ESTABLISH.confirm
AA-ESTABL1SH.response

AA-ESTABLISH.request

l , l
I ,
I , BG

I ,
, I , , '-i--.- _._- '----.

BGAK
___..--

SSCOP

Figure 5.26: Establishment of an SAAL connection

144 SAAL: SIGNALLING ATM ADAPTATION LAYER

On the side where the SAAL user requests the establishment of the connection,
the AAL-ESTABLISH. request is directly mapped to an AA-ESTABLISH.request. The
confirmation from SSCOP is mapped accordingly. On the incoming side, the SSCF answers
directly with an AA-ESTABLISH . conf irmto SSCOP-the user receives only an indication.

Another example is the mapping of AAL-ESTABLISH. requests to the resynchronisation
procedure in the case when the connection is already in the READY state (see Figure 5.27).
If the establishment of an AAL connection is requested when the connection is already
established, this request is mapped to an AA-RESYNC .request . In the example both SAALs
invoke the procedure at the same time and SSCOP executes a simultaneous resynchronisation.
Both SAAL users receive an AA-ESTABLISH . conf irmafter successful resynchronisation.

Figure 5.27: Re-establishment of an SAAL connection with collision

Error recovery and connection tear-down are handled in a similar manner. All cases of
simultaneous invocation of the different SSCOP procedures are handled. In all the numerous
cases the SAAL user receives sequences of establish and release indications. The action of
the user should normally be: clean up all resources in the case of a SAAL release; try to find
out the peer state in the case of an establish indication.

The SSCF standard also provides values for the parameters to the SSCOP (see Table 5.3).
The parameters in this table are default values that can be changed according to the local
operation environment (for example, for satellite links).

5.3 SSCF NNI: Service Specific Coordination Function at the NNI

In contrast to the SSCF at the UNI, the SSCF at the NNI is a complex protocol [Q.2140]. The
place of this protocol in the public NNI stack is shown in Figure 5.28.

On top of the SAAL resides the Message Transfer Part 3 (broadband) (MTP-3b). The
responsibility of the MTP is the reliable transfer of datagrams through a network. In
other words, MTP-3b implements a connectionless network on top of SAAL connections.
Users of the MTP-3b are: B-ISUP and application stacks that consist of SSCP, TCAP and

SSCF NNI: SERVICE SPECIFIC COORDINATION FUNCTION AT THE NNI 145

Table 5.3: SSCOP parameters for the U N 1

SSCOP parameter Value

MaxCC

Timer CC
Timer KEEP-ALIVE
Timer NO-RESPONSE
Timer POLL

Timer IDLE

lc

j

MaxPD

I Clear-Buffers

4

I S
2 s
7 s
750 ms

15 S

4096

I 4096
25 I YES

Meaning

number of retransmissions of control mes-
sages
retransmission timeout for control messages
switch to the idle phase
timeout to declare connection dead
maximum interval between POLL messages in
the active phase
maximum interval between POLL messages in
the idle phase
maximum number of user bytes in an SD
message
maximum number of user bytes in control
messages (not used by the UNI)
maximum number of SD messages between
POLL messages

Figure 5.28: NNI protocol stack

146 SAAL: SIGNALLING ATM ADAPTATION LAYER

application layers. B-ISUP is responsible for the establishment of ATM user connections
through the network, while the application stacks can be used to implement intelligent network
services [VH98].

Because ofthe very high performance requirements that are placed on public networks, the
SAAL layer tries to ensure that messages never get lost. There are features built into the SSCF
at the NNI that provide enhanced reliability in the SAAL, when compared with the UNI:

a Before declaring an SAAL connection available, the connection is checked for reliability

a Timers are set to values that ensure very fast reaction to link failures and congestion

a While the SAAL connection is in use its performance characteristics are monitored and, if

a Message loss is prevented by using the local retrieval feature of SSCOP and handing over

and performance for some time.

situations.

necessary, rechecking is initiated.

untransmitted messages to SSCOPs on alternative links.

Before an SAAL connection is declared as usable to the SAAL user, the link is proved (see
the state diagram in Figure 5.29).

Out of service
J

Alignment ready

In service

Figure 5.29: SSCF states at the N N I

The Proving procedure is initiated by a start request from the SAAL user. This start request
moves the SSCF into the Alignment state and generates an AA-ESTABLISH . request to the
SSCOP. This request contains an SSCF PDU in the user-to-user field. When the SSCOP
connection is successfully established (the SSCF receives the AA-ESTABLISH . confirm),
the SSCF moves to the Proving state. In the Proving state traffic is generated by the SSCF
at approximately 50% of the link bandwidth and the operation of the SSCOP is monitored

SSCF NNI: SERVICE SPECIFIC COORDINATION FUNCTION AT THE NNI 147

(retransmission rate and credit). If these parameters seem useful, the SSCF stops proving,
emits an SSCF PDU that informs the peer about successful proving and moves to the
Alignment Ready state. If the peer also enters the Alignment Ready state, both SAALs finally
declare the link In Service. In the In Service state, information can be exchanged by the SSCF
users.

The SSCF at the NNI is a real protocol in that it uses PDUs for communication between
the peer entities. SSCF PDUs can be carried either as normal sequenced SSCOP data or in
the user-to-user fields of SSCOP connection control messages. All SSCF PDUs have a size of
four bytes and all SAAL user PDUs are required to have a minimum size of five bytes. This
makes it easy to distinguish SSCF and SSCF user information: messages less than four bytes
are silently discarded, messages of four bytes are handled by the SSCF and messages greater
than four bytes are handed out to the user. Figure 5.30 shows the format of an SSCF PDU.

Reserved Status

I I I
byte 0 byte 1 byte 2 byte 3

Figure 5.30: SSCF at the NNI PDU

Three bytes of the PDU are reserved and should contain zeros. The status field in the SSCF
PDUs is used to communicate the current status to the peer in case it changes. The possible
values are shown in Table 5.4.

Table 5.4: Status field of N N I SSCF PDUs

Value

Ox0 1
0x02
0x03
0x04
0x05
0x07
0x08
0x09
OxOa

Status

out of service
processor outage
in service
normal
emergency
alignment not successful
management initiated
protocol error
proving not successfhl

To minimise loss of signalling messages in the network, the MTP-3b layer uses the local
retrieval feature of the SSCOP in the case of failures of a signalling link. NNI links are
usually configured with backup links and alternativ routes. If it is not possible to send a
signalling message on one link due to failures or congestion, the message can be sent on
another link. The procedure of switching to an alternativ link in the case of a failure is called
changeover [Q.704]. Figure 5.3 1 shows a configuration with two signalling links to a peer.

In this configuration there are two links between two MTP-3 peer entities: link-l and link-2.

148 SAAL: SIGNALLING ATM ADAPTATION LAYER

?l Link 1

I

X
To peer entity

Figure 5.31: Changeover on the NNI

Each of the links has a SAAL stack and each of the SSCOPs has a message queue: the SSCOP
on link-l has five messages and the SSCOP on link-2 two messages. If in this situation link-2
breaks (suppose an excavator were to cut the cable), then the MTP-3, as soon as it is informed
about the failed link, uses the SSCOP retrieval feature to get all messages out of the SSCOP
which have not be hlly received by the peer SSCOP, and hands these messages over to the
working link. This feature prevents the loss of messages under almost all circumstances (of
course, if the excavator cuts all your cables, then you are lost).

Just like the SSCF at the UNI, the SSCF at the NNI specifies default values for the SSCOP.
As one can see from Table 5.5, timer settings are quite different from the UNI. The small timer
values enable a faster reaction to link failures and congestion situations. Of course, these
parameters can be adjusted for operation in unusual environments, for example on satellite
links.

SUMMARY

Table 5.5: SSCOP parameters for the N N I

149

SSCOP parameter I Value I Meaning

MaxCC
Timer CC
Timer KEEP-ALIVE
Timer NO-RESPONSE
Timer POLL

Timer IDLE

MaxPD

Clear-Buffers

4
200 ms
100 ms
1.5 S

100 ms

100 ms

4096
4

500

NO

number of retransmissions of control messages
retransmission timeout for control messages
switch to the idle phase
timeout to declare connection dead
maximum interval between POLL messages in
the active phase
maximum interval between POLL messages in
the idle phase
maximum number of user bytes in SD messages
maximum number of user bytes in control
messages
maximum number of SD messages between
POLL messages

5.4 Summary

In this chapter we have looked at the layer beneath the UN1 and the PNNI signalling, namely
the Signalling ATM Adaptation Layer (SAAL). We have seen that the SAAL consists of a
complicated transport protocol, the Service Specific Connection Oriented Protocol (SSCOP),
which provides assured data transfer, keep-alive and flow control. This transport protocol sits
on top of a standard AAL5 sublayer. The upper sublayer of the SAAL is the Service Specific
Coordination Function (SSCF) which comes in two types: the SSCF at the UN1 and the SSCF
at the NNI. Whereas the SSCF at the UN1 provides a simple mapping of interface signals, the
SSCF at the NNI is a real protocol which is used below MTP-3b in public networks. Both
SSCFs provide default parameters for the parameterisation of the SSCOP. We have seen the
operation of the SSCOP and the SSCF at the UN1 for many situations.

PNNI: Private Network Node
Interface

6.1 Introduction

This chapter describes the PNNI protocol family that is used in private ATM networks. The
abbreviation PNNI stands for either Private Network Node Interface or Private Network-to-
Network Interface, reflecting two possible applications. The first application is the connection
of private ATM switches, the second is the connection of groups of private ATM switches.

The PNNI protocols were defined by the ATM-Forum in [PNNI]. The public NNI protocol
was considered too complicated, needing too many resources and beeing too static to be
implemented in cheap private ATM switches. Therefore, a set of new protocols was developed.

The Private Network Node Interface (PNNI) protocol family consists of two protocols. The
first protocol, called the PNNI routing protocol, is used to distribute topology information
between switches and groups of switches. This information will be needed for later routing of
connections.

The PNNI signalling protocol, which is the second in the family, is responsible for the
establishment of point-to-point and point-to-multipoint connections across the network. This
protocol is based on the UN1 protocol described in Chapter 3.

6.1.1 Introduction to the PNNI Routing Protocol

The PNNI routing protocol is used to distribute topology information between switches and
groups of switches. It is part of the ATM control plane and runs on top of the AALS. A
hierarchy mechanism ensures that this protocol scales well for large ATM networks.

A PNNI network like other networks consists of ATM switches and physical ATM links.
Data is passed through these nodes and links between end systems. End systems are the
originating and terminating points of connections. For routing purposes the 19 most significant
bytes of the 20 byte ATM end system addresses are used (see Chapter 4). The last byte of the
address is only interpreted inside the end system and is ignored by PNNI routing.

If a PNNI network were organised in a non-hierarchical way, then each node would have
to maintain the entire topology of the network, including information for every physical link
and every node in the network. This works well for small networks, but in large networks the
exchange of routing information creates an enormous overhead. Therefore, the PNNI supports
a hierarchy that can reduce the overhead while providing efficient routing. It is important to
recognise that the hierarchy is only used for distribution and storage of topology information

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

152 PNNI: PRIVATE NETWORK NODE INTERFACE

and for finding a route from the origin to the destination of a connection. The final user data
transport uses a flat network and does not produce any bottlenecks at higher levels of the
hierarchy.

In this book we focus on flat, i.e. non-hierarchical, PNNI networks. We do not explore the
PNNI hierarchy in detail because the authors of this book could not perform any experiments
on such a hierarchy and therefore could not verify the behaviour described in the standard
documents. However, a small survey is needed, because for the PNNI the flat network is only
a special case of the hierarchical network. The terminology of hierarchical networks is used
everywhere.

The nodes of the lowest level of the PNNI hierarchy (the switches) are organised into
groups. Such a node in the context of the lowest hierarchy level is also called a “logical
node” or “node”. A node is an ordinary ATM switch that talks the PNNI protocols. A logical
node is identified by a logical node ID.

Nodes are grouped into so-called “peer groups”. Each node of such a peer group exchanges
all information with other members of the same peer group, such that all members of the
peer group maintain an identical topology database, i.e. they all have the same view of the
network. All nodes of a peer group have the same 13-byte peer group ID which is configurable
by management means. Neighbouring nodes exchange their own peer group IDs in “Hello
packets”, as described in Section 6.2.5. If they have the same peer group ID then they know
that they belong to the same peer group. If the IDs are different, then they belong to different
peer groups.

In each peer group one node has an exposed position. This node is called the “peer group
leader” (PGL). The PGL is determined by a peer group leader election process. The criterion
for the election is the leadership priority parameter that is configured for every node. The peer
group leader election process is running all the time to avoid problems if the current PGL
fails. But what is the PGL good for? A peer group is represented in the next hierarchy level
by a single node called a “logical group node” (LGN). This is a kind of virtual node. But the
functionality of this LGN must be implemented by some real node. This is done by the PGL
of the peer group.

Let us summarise. We have nodes, which are grouped into peer groups. Each peer group
will be represented by a (logical group) node at the next hierarchy level. At this next hierarchy
level the nodes are grouped into peer groups of a higher level. Each higher level peer group
will be represented by a node at a higher lever-and so on. Finally, we have a hierarchy that
is constructed by the recursive mechanism just described. The top of the hierarchy is a peer
group without a PGL.

If we have a flat PNNI network we only have one peer group and this peer group has no
PGL.

On the basis of the structure of peer groups, topology information is collected in every peer
group. This collected information is distributed to other peer groups to allow global routing.
To enable scalability the information is aggregated and passed to the next higher hierarchy
level. This higher level is responsible for further distribution inside its peer group and further
higher levels. The aggregation comprises link aggregation, nodal aggregation and address
summarisation.

Link aggregation means that several links between two peer groups are represented by
one logical link at the next highest level of the hierarchy. In this case link parameters are
aggregated.

Nodal aggregation means that a peer group is represented by one LGN at the next highest

ROUTING PROTOCOL 153

hierarchy level. If such a group is not simply represented by one point this results in increased
complexity. In this case the LGN can have a very complicated internal structure, for example,
a star topology or even a more complex structure, with many parameters. In most cases we
have a simple nodal aggregation where a peer group will be represented by one point with
simple parameters.

Address summarisation is a very interesting feature of the PNNI which is also important in
non-hierarchical PNNI networks. It simply means that a node, which has several end systems
attached to it, can advertise the reachability of one or more address prefixes, where each
address prefix can comprise many end system addresses. This means that each end system
address need not be distributed individually.

We have already mentioned the distribution of topology information. But what does this
mean? Topology information is encoded in so-called “PNNI Topology State Elements”
(PTSEs). These PTSEs are distributed by the PNNI routing protocol.

We can distinguish between two kinds of distribution. If the network (or parts of it) starts
operation an initial database exchange is performed using so-called “Database Summary
Packets”. If the network is up and running and the initial database exchange is finished, then
a flooding mechanism with “PNNI Topology State Packets” (PTSPs) is used. PTSPs contain
one or more PTSE. Received PTSPs are acknowledged.

6.1.2 Introduction to the PMVI Signalling Protocol

The PNNI signalling protocol is responsible for the establishment of point-to-point and point-
to-multipoint connections across the network. The protocol is based on the UN1 protocol
described in Chapter 3 ([UNI4.0]).

The main differences to the UN1 are:

0 The PNNI does not support some of the UN1 features like proxy signalling, leaf-initiated

0 The PNNI is symmetric.
0 The PNNI contains additional information elements to support dynamic connection setup.
0 Associated signalling is supported.

join or some supplementary services.

The PNNI signalling protocol usually runs in VC1 5 of VPI 0 in non-associated mode. Other
VPIs can contain their own signalling connections in VC1 5, but they operate in associated
mode. The signalling in VPI 0 controls all VPIs that are not controlled by other signalling
channels.

6.2 Routing Protocol

6.2.1 Addressing

6.2.1.1 Introduction

The addresses of ATM systems and subsystems play a very important role for PNNI routing.
They need to be configured properly in a working PNNI environment (see Figure 6.1).

The addressing and identification of components of the PNNI routing hierarchy are based
on Network Service Access Point (NSAP) addresses used in private networks. These ATM
end system addresses are 20 bytes long. Embedded E.164 NSAP addresses can be used to
cover public network addresses.

154 PNNI: PRIVATE NETWORK NODE INTERFACE

1 byte 20 bytes (160 bits) NSAP address
-4 W

prefix
length

Address (incl. AFI) SEL

0-152 bits address prefix 8 bits
I L -

Figure 6.1: PNNI address prefix

A specific characteristic of PNNI routing is that it only operates on the fist (leftmost)
19 bytes of the address. The last (rightmost) byte (called the Selector/ SEL) has only local
significance to the end system and is ignored by the PNNI. It distinguishes destinations
reachable at the same ATM end system interface and therefore does not influence the routing.
The first byte of the address, the Authority and Format Identifier (AFI), is used by the PNNI to
distinguish between individual addresses and group addresses. Valid AFI values are specified
in the UN1 4.0 standard.

To support scalability PNNI uses the concept of address prefixes. A prefix of an ATM end
system address is the first (leftmost) p bits of the address. The value ofp may vary from zero to
152. Prefixes are used to summarise some portion of the addressing domain. Shorter prefixes
summarise greater portions than do longer prefixes, i.e. longer prefixes are more specific.

6.2.1.2 Node Addresses and End System Addresses

Nodes (switches) involved in the PNNI are addressed using ATM End System Addresses. A
single switching system may contain multiple nodes, e.g. if the switching system implements
the functionality of different LGNs at different levels in the hierarchy. Each of these nodes
requires a unique ATM end system address. The switching system can generate these different
addresses by using the same 19-byte prefix plus different selector values, i.e. by varying the
last byte of the ATM address.

PNNI routing uses the mechanism whereby a node advertises which end system it can
reach. To allow scalability, a node will not advertise each reachable end system address, but
will advertise the reachability of a group of end systems by using prefixes of ATM end system
addresses to form summaries. If an end system attached to a node does not fit into one of
the node's configured summaries,' then it will be necessary for the node to make an explicit
advertisement for that end system which will necessarily carry a full 152-bit (all 19 bytes)
prefix length. True summaries of end system reachability will have prefix lengths less than
152 bits.

Let us consider an example. We assume that we have a node with a configured prefix

Ox39.0000.1111.2222.3333.44 of length 80 bits

Three end systems are attached to this node with addresses:

0~39.0000.1111.2222.3333.4444.0001.ffla4ce80001.00

Both ATM end system addresses and the node summaries can be configured. Therefore they may fit or may not.

ROUTING PROTOCOL 155

0x39.0000.1111.2222.3333.4444.0022.ffla4ce70001.00
0x39.0000.9999.2222.3333.4444.0333.ffla4ce90001.00

Then this node will advertise the reachability of the two address prefixes:

0~39.0000.1111.2222.3333.44 with length 80 bits
0x39.0000.9999.2222.3333.4444.0333.ff1a4ce90001 with length 152 bits

Large networks use hierarchies. Where the addressing hierarchy follows the topology
hierarchy, it is possible to advertise reachability of a large number of end systems using a
single prefix, which is good for scalability. Shorter prefixes (i.e. lower prefix length values)
summarise greater numbers of addresses and vice versa.

It is possible that there is more than one summary which matches a given destination. In
such a case the PNNI routing mechanism has to select one summary (which corresponds to
one node) to direct the call. PNNI route computation will always direct calls to a node that
is advertising the best match for a given destination. The best match is defined to be the
matching (summary) advertisement with the longest prefix. The PNNI route computation will
also consider the scope of the advertised summary. A scope is used to mark summaries that
are only valid in a part of the routing domain.

6.2.2 Logical Links

Logical links are an abstract representation of the connectivity between two logical nodes.
Different implementations of these logical links are possible, e.g. physical links, VPCs,
uplinks (only used in a hierarchical PNNI network) and aggregation of logical links. Logical
links are mainly used to carry user data. There may be parallel logical links between two
nodes.

If VPCs are used to connect two lowest level nodes, then they must be configured by
network management.

6.2.3 PNNI Routing Control Channels

A PNNI Routing Control Channel (RCC) is a Virtual Channel Connection (VCC) used for the
exchange of PNNI routing protocol messages, such as Hellos packets, PNNI Topology State
Packets (PTSPs) and PNNI Topology State Element (PTSE) acknowledgement packets. These
RCCs are used between logical nodes that are logically or physically adjacent. In contrast to
logical links, RCCs are only used to carry PNNI routing control data.

Three different implementations of a VCC exist:

0 Over aphysical link. A reserved VCC with VPI=O and VCI=18 will be used.
0 Over a VPC with VPI=X. A VCC with VPI=X and VCI=18 will be used.
0 Over a Switched Virtual Channel Connection (SVCC). The VPI and VC1 are assigned by

PNNI signalling in the normal way

Different service categories (nrt-VBR, rt-VBR, CBR, ABR, UBR) and different traffic
parameters can be used for an RCC. The preferred way is to use of the nrt-VBR service
category.

A PNNI RCC uses the AAL Type 5 (AAL5) without an AAL Service Specific Convergence
Sublayer (SSCS). This allows an unassured information transfer and a mechanism to detect

156 PNNI: PRIVATE NETWORK NODE INTERFACE

corrupted AAL-SDUs. Error correction is handled by the PNNI above the AAL. One complete
PNNI packet is encapsulated in exactly one AAL-SDU.

SVCCs are only important in hierarchical structured PNNI systems. They are used to
connect a higher level LGN with another Logical Group Node (LGN) and to connect border
nodes with LGNs of the neighbouring group. The problem with SVCCs is that the topology
data bases of the involved nodes is incomplete when RCC-SVCCs are established. However,
the algorithms solve this problem.

At the lowest level of the hierarchy there may be multiple RCCs between two nodes.
However, only one RCC is used for the purpose of database synchronisation and flooding.
The other RCCs are only used as backup links in the case of a link failure.

6.2.4 Identijers and Indicators

6.2.4.1 Level Indicators

The PNNI can be used in a hierarchy consisting of several levels. So the PNNI entities (nodes,
links and peer groups) occur at various hierarchy levels. The indicator level is an integer
number that ranges from zero to 104. It specifies the number of significant bits used for the
peer group ID which will be used to address such a peer group. This concept is similar to the
address prefix concept we saw in the previous section.

If we have two peer groups, where one is an ancestor (parent, grandparent, etc.) of the
other in the hierarchy, the ancestor is a higher level peer group and will have a smaller level
indicator than the other. A peer group with an ID of n bits length may have a parent peer group
whose identifier ranges anywhere from zero to n - 1 bits in length. Similarly, a peer group
with an ID of m bits length may have a child peer group whose identifier ranges anywhere
from m + 1 to 104 bits in length. Not all levels need to be be used in a specific topology, i.e.
a hierarchy can consist, for example, of levels 80,32 and 16.

6.2.4.2 Peer Group and Node Identifiers

A peer group is a group of connected nodes of the same hierarchy level. They have the same
peer group identifier configured. A peer group leader identifier is a string of bits between zero
and 104 bits (13 bytes) in length. Peer group identifiers are encoded using 14 bytes: one byte
level indicator followed by 13 bytes of identifier information. The identifier information field
must be encoded with the 104 - n rightmost bits set to zero, where n is the level of the peer
group (Figure 6.2).

1 byte 13 bytes (104 bits) identifier information
-4 b

level

0-104 bits peer group identifier
L

Figure 6.2: PNNI peer group identifiers

ROUTING PROTOCOL 157

Each node is identified by its node identifier (node ID). The node identifier is 22 bytes in
length and consists of one byte level indicator followed by a 21 opaque value, i.e. these 21
bytes have no internal structure, and no internal structure may be assumed when analysing
node identifiers. This opaque value must be unique within the entire routing domain. The
level of a node is the same as the level of its containing peer group. Usually, the node opaque
value will be automatically generated and is based on the ATM end system addresses of the
node and level indicators related to the node. The node ID is not allowed to change while the
node is operational.

6.2.4.3 Scope of Addresses

Addresses and address prefixes used in PNNI can have scopes associated with them. The
scopes are used to determine the scope of the advertisement of reachable addresses. The
scope can also be used to force the user to use group addresses (e.g. an ATM Anycast address)
instead of individual address if the individual addresses have a smaller scope and can therefore
not be reached directly.

For the PNNI, the scope of reachable addresses is specified by a level indicator and
therefore ranges from zero to 104. At the UNIAntegrated Local Management Interface (ILMI),
the scope is indicated by a scope identifier between 1 (very local) and 15 (global). The
mapping between these 15 scopes and the PNNI level indicator can be configured by the
administrator. The default mapping is defined as in Table 6.1.

Table 6.1: Default mapping for UNVILMI scope and PNNI reachable addresses
level indicator

I UNInLMI scope I PNNI reachable addresses level indicator I
1-3
4-5
6-7
8-1 0
11-12
13-14

15 (global)

96
80
72
64
48
32

0 (global)

6.2.4.4 Port IDs and Logical Links

Nodes are connected by logical links. These links must be distinguished when handling
topology and routing information. Therefore, logical links and the ports they are attached
to have identifiers.

A port ID is a 32-bit number assigned by a node to unambiguously identify a point of
attachment of a logical link to that node. Port IDs are only meaningful in the context of the
assigning node, identified by its node ID. The values zero and OxFFFFFFFF are reserved and
not used to identify physical ports.

A logical link is identified by the node ID of either node at the end of that logical link and
the port ID assigned by that node, i.e. each link has two identifiers because it is attached to two
nodes. For logical links each end node advertises the port ID and outbound link characteristics

158 PNNI: PRIVATE NETWORK NODE INTERFACE

(characteristics of one direction) inside a peer group. This is important because ATM links are
bi-directional and potentially have different characteristics (e.g. different QoS parameters) in
each direction. Therefore, the characteristics of both directions should be advertised. Two
nodes of a logical link exchange their port IDs with each other using PNNI Hello packets.

6.2.4.5 Aggregation Tokens

Aggregation tokens are only used in hierarchical PNNI networks. An aggregation token, along
with the remote node ID, identifies uplinks which are to be aggregated at the next highest level
of a hierarchy. Aggregation tokens are four-byte identifiers. All links between a pair of logical
group nodes with the same value of the aggregation token must be advertised as one logical
link. The aggregation token is included in a PNNI Topology State Element (PTSE) which
describes a link. The scope of significance of an aggregation token is limited to pair-wise
logical group nodes. However, the large space allows globally unique token values for ease of
administration.

6.2.5 Hello Protocol

6.2.5.1 Introduction

The PNNI Hello protocol is used in order to discove? and verify the identity of neighbouring
nodes and to determine the status of the links to those nodes.

The Hello protocol runs on all RCCs all the time by exchanging PNNI Hello packets at
regular intervals.

Another task of the PNNI Hello protocol is the negotiation of the PNNI version to be used
between neighbouring nodes. A PNNI implementation generally supports a range of protocol
versions in protocol messages. Each Hello packet contains version fields that are unsigned
integers. Every node advertises the oldest and the newest supported version in the Hello
packet. The newest version that is supported by both nodes is finally used. If no common
version can be found, then the communication cannot be continued and an error will be
reported to the network management.

Figure 6.3 shows a PNNI Hello packet. The first six fields are included in any PNNI packet.
The value Ox0001 of the packet type field denotes that this is a PNNI Hello packet. The next
field is the length of the whole packet in bytes. The version fields are used to negotiate the
versions of neighbours, as just explained. The node IDs in the packet are used to identify
the node that is originating the packet and the node that is expected to receive it, i.e. the
neighbour of the originating node on the link. The neighbour’s node ID is known from the
last Hello packet in the opposite direction. If it is not yet known, then its node ID is set to
zero. The ATM end system address is used if somebody wants to contact the originating node
by a signalled ATM connection (only in a hierarchical network). The peer group ID of the
originating node is used by the neighbour to identify whether the originating node is in the
same peer group or not. The port ID identifies the port of the originating node to which the
current link is attached. The remote port ID is doing the same for the remote node. The Hello

The discovery of neighbouring nodes is only needed if a physical link or a Permanent Virtual Connection (PVC)
is used as an RCC. If an SVC is used (in a hierarchical system), then the identity must be clear before connection
setup.

ROUTING PROTOCOL 159

I packet type (0x0001) I packet length

current
4 version version version

oldest newest reserved

I reserved I 1 8

22 byte node ID of the originating
node

28

t 20 byte ATM end system address
of the node to receive calls to t the originating node

48

52

56

60

64

68

12

16

80

84

- 14 byte peer group ID of the -
- originating node -
-

-
- -
- 22 byte node ID of the other node -
- on the link -
- -

port ID

remote port ID
88

92

I Hello interval I reserved

I I I
byte 0 byte 1 byte 2 byte 3

Figure 6.3: PNNI Hello packet. In addition, the aggregation token, nodal hierarchy list, uplink
information attribute and LGN horizontal link extension information groups can be included

interval is the number of seconds between two subsequent Hello packets. The remote node
assumes a link failure if a couple of these packets are lost. The default interval is 1 second.

If a PNNI hierarchy is used, then the PNNI Hello packet is longer and contains also
an aggregation token, a nodal hierarchy list, an uplink information attribute and an LGN
horizontal link extension.

A small trace of two ATM switches talking Hello is shown in Section 6.2.1 1.1.

160 PNNI: PRIVATE NETWORK NODE INTERFACE

6.2.5.2 Hello State Machine

Between two neighbouring nodes each RCC has its own instance of the Hello protocol. An
instance of the Hello protocol is made up of its Hello state machine. To increase the fault
tolerance, it is possible to have more than one RCC between two lowest level neighbour
nodes, i.e. two or more parallel physical links andor VPCs between the nodes are established
by network management. In such a case each RCC will run its own Hello protocol with its
own Hello state machines on both ends. However, for the purpose of data base synchronisation
and other PNNI protocols, only one RCC is used.

Each side of an RCC has its own Hello protocol instance and thus its own protocol state.
This protocol state will be analysed by other parts of the PNNI. The following states of a
Hello state machine are possible:

0 Down. Unusable (physical) link. No PNNI routing packets can be sent or received over such
a link.

0 Attempt. In this state attempts are made to contact the neighbour by periodically sending
Hello packets with period determined by a configuration parameter Hel loIn terval
(default: HeZloInterwaZ = 1 second). If a link remains in this state, there is probably
something wrong.

0 1- Waylnside. Hello packets have been received from the neighbour. Both nodes are in the
same peer group. But in the neighbour’s Hello packet the remote node ID and the remote
port ID were set to zero, i.e. the neighbour did not yet recognise me as its neighbour.

0 l-Wayoutside. Hello packets have been received from the neighbour. Both nodes are in
different peer groups. But in the neighbour’s Hello the remote node ID and the remote port
ID were set to zero, i.e. the neighbour did not recognise me as its neighbour yet.

0 2-Waylnside. Hello packets have been exchanged with the neighbour. Both nodes are in
the same peer group. This state indicates that a bi-directional communication over this
link between the two nodes has been achieved. Routing information (PNNI Topology State
Packet (PTSP)s, PTSE acknowledgement packets, etc.) can be exchanged over this link.

0 2- Wayoutside. Hello packets have been exchanged with the neighbour. Both nodes are in
different peer groups, but the nodal hierarchy list advertised by the neighbour does not
include a common higher level peer group. The node still searches for a common higher
level peer group that contains both this node and the neighbour node.

0 CommonOutside. Hello packets have been exchanged with the neighbour. Both nodes are
in different peer groups. A common higher level peer group has be found. This link can
be used as an uplink to exchange routing information (PTSPs, PTSE acknowledgement
packets, etc.).

The states 2-WayInside (if the neighbour node is in the same peer group) and
CommonOutside (if the neighbour is in a different peer group) indicate a full operational
connection to a neighbour. The states 1 -Wayoutside, 2-Wayoutside and CommonOutside are
unimportant for non-hierarchical PNNI systems.

6.2.5.3 Sending Hello Packets

In all states other than Down, Hello packets are transmitted periodically, by default every 1
second. This value is configurable. In the configuration we used for our experiments the value
was 15 seconds. In addition, Hello packets are sent if the state of a link has changed. But

ROUTING PROTOCOL 161

the period between successive transmissions of Hello packets is limited by a lower limit. This
prevents a node from sending Hello packets at unacceptably high rates if several state changes
occur, and is important to avoid a fast sequence number overflow.

If the instance does not know the remote node ID and the remote port ID (i.e. the instance
is in state Attempt) then these fields are set to zero in the transmitted Hello packets.

In hierarchical systems the nodal hierarchy list is included in the Hello packet on links
across the border to another peer group, i.e. when the state is l-Wayoutside, 2-Wayoutside
or CommonOutside. The nodal hierarchy list describes all the node’s higher level node IDs,
peer group IDs and LGN ATM end system addresses as received from the PGL in its higher
level binding information. If no higher levels of the hierarchy are known, then an empty nodal
hierarchy list must be included in the Hello packet. Whenever a change occurs in the number
or content of known higher levels, as expressed in the nodal hierarchy list, in the node ID, peer
group ID or ATM address at the lowest level, then the sequence number of the nodal hierarchy
list must be incremented and a new Hello packet must be sent. The sequence number of the
first nodal hierarchy list sent to any neighbour must be greater than zero. Note that when the
hierarchy is still coming up, the number of levels included in the nodal hierarchy list may
increase with each successive Hello packet.

If the link is in state l-Wayoutside, 2-Wayoutside or CommonOutside, i.e. it is a link
across the border, then an Uplink Information Attribute Information Group is included in the
Hello packet. This ULIA IG passes aggregated information about the peer group internal link
structure to the neighbour in the other peer group.

6.2.5.4 Receiving Hello Packets

PNNI Hello packets can be received in any state. If the protocol version of a Hello packet is
not supported, that packet will be discarded.

The node ID found in a received packet is important to the receiving node because it
identifies the neighbour node.

If the received Hello packet contains a new instance of the nodal hierarchy list, as indicated
by a new sequence number, then the nodal hierarchy list must be searched for the lowest level
peer group that both nodes have in common. Even though it does not explicitly appear in the
list, the neighbour must be considered to be the lowest level component of the nodal hierarchy
list.

6.2.5.5 LGN Hello Protocol

An LGN is a node on a higher level of the hierarchy of nodes. If two of these LGNs are
neighbours then they also use the Hello protocol to exchange information.

Two LGN neighbours are usually not connected by a direct link. Therefore, a Switched
Virtual Channel Connection (SVCC) based RCC must be used to connect these nodes. The
Hello protocol runs on this SVCC. As opposed to lowest level neighbour nodes, LGNs will
never have more than one RCC (SVCC) between them. Once the SVCC is established by
signalling, a Hello protocol instance is initiated. This protocol is essentially the same as the
protocol that runs between lowest level neighbours, with a few modifications. A port value of
OxFFFFFFFF is always used as the port ID filled in the Hello messages. This works because
there is always only one RCC between two LGNs. SVCC based RCCs are always inside one
peer group. Therefore, the Hello protocol instance may only be in the state Down, Attempt,

162 PNNI: PRIVATE NETWORK NODE INTERFACE

l-Way(1nside) or 2-Way(Inside). For the LGN, which is the calling party for the SVCC based
RCC, the uplink PNNI Topology State Element must necessarily be received before the SVCC
is established. Otherwise the path to establish the SVCC is unknown and the call cannot be
routed. If a called party LGN receives a SETUP from a node which it still has to recognise
as a neighbour, the called party LGN must accept the call, but ignore Hello packets until an
uplink PTSE is received indicating that node as a neighbour.

The Hello protocol between the LGNs is used to monitor the status of the SVCC used as
an RCC between the two LGNs to increase robustness. If the monitoring function detects a
failure, then it will cause the SVCC to be re-established. In this situation the states of the state
machines on both sides of the logical link will not change until a specific timer has expired.

6.2.6 Database Synchronisation

6.2.6.1 Introduction

The reason for the existence of the PNNI routing protocol is the need for a distributed
knowledge of topology information that can be used to route calls in the network. The database
synchronisation is a key feature to distribute the knowledge.

When a node learns about the existence of a neighbouring peer node that resides in the
same peer group from the Hello protocol, it initiates a database exchange process in oder to
synchronise the topology databases. Both nodes send their own knowledge to the neighbour
so that each node can complete its topology database.

The process of database synchronisation involves the exchange of a sequence of Database
Summary packets, which contain identifying information of all PNNI Topology State
Elements in a node’s topology database, i.e. each node sends a list of indices of the entries
contained in its database to the neighbour. One side sends a Database Summary packet and the
other side responds (and implicitly acknowledges the received packet) with its own Database
Summary packet.

After a node has received a Database Summary packet from a neighbouring peer, it
examines its topology database for the presence of each PTSE indexed in the packet. If the
PTSE is not found in the database, or the database entry is older than the PTSE listed in the
Database Summary of the neighbour, the node requests the PTSE from its peer.

6.2.6.2 Sending Database Summary Packets

Database Summary packets, as shown in Figure 6.4, are exchanged between neighbouring
nodes. To perform this a master-slave relationship is used. One node is the master and the
other node is the slave. The master sends the first Database Summary packet. The slave can
only respond to the master’s Database Summary packet. At any given time only one Database
Summary packet may be outstanding. The master is responsible for retransmission.

In the Negotiating state, the node tries to find out whether it is the master or the slave of
an RCC. Each node sends empty Database Summary packets, with the Initialise, More and
Master flag bits set to 1. The node with the largest node ID will be the master. After the
Negotiating state the nodes are in the Exchanging state. In this state it is clear which node is
the master and which node is the slave.

In the Exchanging state the Database Summary packets contain summaries of topology
state information contained in the node’s database. The PNNI Topology State Packet and the

ROUTING PROTOCOL 163

packet type (0x0003) packet length

current
version version version
oldest newest reserved

flags

database summary sequence number

reserved

type (512) length c 4 PTSE summaries of one
originaing node (will be

L -l included for each originating

1 22 byte originating node ID 4 node found in the packet
sender’s topology

databas)

l- 7
14 byte origination node’s

peer group ID

I I I S u m m a r y of a PTSE
of one originating

PTSE ID node (included for

PTSE type reserved t

I I I
byte 0 byte 1 byte 2 byte 3

Figure 6.4: PNNI s u m m a r y packet

PNNI Topology State Element header information of each such PTSE is listed in one of the
node’s Database Summary packets. PTSEs for which new instances are received after the
Exchanging state has been entered are not needed to be included in any Database Summary
packet, since they will be handled by the normal flooding procedure which is responsible for
database updates.

164 PNNI: PRIVATE NETWORK NODE INTERFACE

In the Exchange state, the determination when to send a Database summary packets
depends on whether the node is master or slave. The first Database Summary packet
is sent by the master. Any new Database Summary packet is sent by the master if
the slave acknowledged the last Database Summary packet. If the last packet has not
been acknowledged after a specific time, then the previous Database Summary packet is
retransmitted.

The slave sends Database Summary packets only in response to Database Summary packets
received from the master. If the received packet from the master is new, i.e. this packet has not
been received by the slave before, then the slave acknowledges the receivedpacket by echoing
the Database Summary sequence number as part of the new Data Summary packet sent by the
slave. If the received packet from the master is old, i.e. it is already known to the slave, then
the slave retransmits the previous Database Summary packet sent by the slave. If the slave has
no more data to send, it sends an empty Database Summary packet with the More flag bit set
to zero.

6.2.6.3 Receiving Database Summary Packets

The incoming Database Summary packet is associated with a neighbouring peer by the
interface over which it was received.

If a node is in the Negotiating state it still has to find out whether it will be the master or
the slave. If it receives an empty Database Summary packet where the Initialise, More and
Master flag bits are 1, then it determines who is the master. The node with the larger node ID
is the master. In any case the Initialise bit is now set to zero. The Master bit is only set to one
if the originator of the packet is the master.

If the flags and the sequence number of the received packet are consistent, then the packet
is processed. If a listed PTSE is new or newer compared with the own topology database, the
corresponding PTSE will be requested soon by a PTSE Request packet.

6.2.6.4 Sending PTSE Request Packets

After a Database Summary packet is received and processed the outstanding PTSEs must be
requested. To request the needed PTSEs, the node sends a PTSE Request packet containing a
list of one or more PTSEs. Figure 6.5 shows a packet.

The PTSE Request packet is transmitted to a particular neighbouring peer. The node waits
for one or more responding PNNI Topology State Packets containing all requested PTSEs. If
all requested PTSEs are not received within a specific time, then a new PTSE Request packet
including the missing PTSEs andor any other needed PTSEs is transmitted. There is at most
one PTSE Request packet outstanding at any time for each neighbouring peer.

The process continues until all needed PTSEs from any neighbouring node, whose Database
Summary indicates new PTSEs, are known to the node.

6.2.6.5 Receiving PTSE Request Packets

What happens when a node receives a PTSE Request packet? For each PTSE specified in the
PTSE Request packet, the PTSE must be looked up in the receiver’s node topology database.
The requested PTSEs are then bundled into one ore more PTSPs and are transmitted to the
neighbouring node that was sending the PTSE Request packet.

ROUTING PROTOCOL 165

packet type (0x0005) packet length

current newest oldest
version version version

reserved

type (5 13)

22 byte node ID of the originating node
of the PTSEs that are acknowledged here

F 1
PTSE request count

request the PTSEs of one
originating node (repeated

if requests for more than
one node need to be

sent)

I I I
byte 0 byte 1 byte 2 byte 3

Figure 6.5: PNNI PTSE request packet

6.2.7 Topology Description and Distribution

Topology information includes topology state parameters and nodal information. Topology
information is encoded in a flexible TypeLengtWalue (TLV) format to allow hture
extensions.

The topology state parameter is a generic term that refers to either a link state parameter or
a nodal state parameter. Two kinds of topology state parameters are known: topology metric
and topology attribute.

A topology metric combines the parameters of all links and nodes along a given path to
determine whether the path is acceptable for carrying a given connection, whereas a topology
attribute describes a single link or node.

A link state parameter provides information that captures an aspect or property of a link.
This kind of parameter is individual for both directions of a bidirectional ATM link.

A nodal state parameter provides information that captures an aspect or property of a node.
Nodal state parameters are used to construct PNNI complex node representations. These
complex node representations are only needed in complex and hierarchical systems and not
investigated further in this book.

166 PNNI: PRIVATE NETWORK NODE INTERFACE

The Resource Availability Information Group (RAIG) contains information that is used
to attach values of the topology state parameters to nodes, links, and reachable addresses.
Different parameters can be carried in a RAIG:

0 Cell Delay Variation (CDV).
0 maximum Cell Transfer Delay (maxCTD). This is the sum of the fixed delay components

0 Administrative Weight (AW). This is a value set by the network operator. A lower value

0 Cell Loss Ratio (CLR) for CLP = 0 (CL&).
0 Cell Loss Ratio (CLR) for CLP = 0 + 1 (CLRo+l).
0 maximum Cell Rate (maxCR).
0 Available Cell Rate (AvCR). This is a measure for the effective available capacity.
0 Cell Rate Margin (CRM). A very specific and optional Variable Bit Rate F B R) parameter.
0 Variance Factor (VR). A very specific and optional VBR parameter.

across the link/node and CDV.

indicates a more desirable link or node.

6.2.8 Advertising and Summarising Reachable Addresses

6.2.8.1 Scope of Advertisement of Addresses

Each address in a PNNI network has a scope of advertisement. This scope is used to determine
how far an address should be advertised in the network and only makes sense in networks with
more than one hierarchy level.

The advertisement scope of a reachable address is specified by a level indicator, which
means that the address will be advertised up to this level, but not into any higher level of PNNI
routing. Nodes outside the peer group of the destination node will not know the existence
of the advertised address. If the level indicator is set to zero, then the advertisement scope
is unlimited, which means that the address may be advertised throughout the entire PNNI
routing domain. Usually, the advertisement scope is unlimited. See Section 6.2.4.3 for further
information.

6.2.8.2 Summary Address and Suppressed Summary Address

To allow routing of calls each node must know how to route calls to any of the end systems
attached to the network. This means that each node must store routing information for
any possible destination address. This information must not just be stored-it must also be
distributed all around the PNNI network.

It is clear that this would be very inefficient in large networks. Therefore, the concept
of summary addresses is used. A summary address is an address that includes a range of
individual addresses. See also Section 6.2.1.2.

By default, a lowest level node has one default internal summary address. This is the 13-
byte prefix of the node’s address. Only if the node is at level 104 does it have no default
summary address. By default an LGN has one internal summary address which is identical to
the lower level Peer Group ID it represents.

When overlapping addresses are present, the longest match summary address will be used
to determine whether an address is to be advertised explicitly or indirectly through the use of
a summary address.

A suppressed summary address is used to suppress the advertisement of addresses which

ROUTING PROTOCOL 167

match a specified prefix, regardless of scope. By default a node has no suppressed summary
address

6.2.9 Flooding

Flooding is the mechanism used in the PNNI to distribute topology information (PTSEs)
hop-by-hop inside a peer group. PNNI flooding is a reliable process, because packets are
acknowledged and, if necessary, retransmitted. The flooding of topology information starts at
the highest hierarchy level. To allow routing of a call the topology information collected by
the highest level peer group must be available to lower level nodes. This enables every node in
the network to directly calculate appropriate routes. But it requires that all PNNI nodes have
information not only of their own peer group, but also of all of their ancestor peer groups.

How does it work? Higher level PTSEs are flooded to all nodes of their peer group, and
in addition to all descendant peer groups, i.e. to all lower level nodes contained in the lower
level peer groups represented by the nodes in this peer group, and so on. When a higher level
node floods a new or updated PTSE then this higher level node floods the PTSE to the Peer
Group Leader (PGL) of the lower level which this higher level node represents, as well as to
all neighbouring peers at its level (if it was received from another node then the PTSE would
not be sent back to this node). The PGL of the lower level peer group will in turn flood the
PTSE in the lower level peer group.

PTSEs generated in a given peer group never get flooded to a higher level peer group.
Instead, the PGL summarises the topology of the peer group (based on the PTSEs generated
within the peer group) and floods the new PTSEs originated by the LGN at the parent peer
group’s level. This mechanism allows for scalability.

Flooding in a non-hierarchical network is quite simple. Every new PTSE is passed to all
other nodes in the peer group. Summarisation is not needed.

How is flooding implemented in the PNNI? If a PTSE needs to be distributed, then it
is encapsulated in a PNNI Topology State Packet (PTSP) (see Figure 6.6). This PTSP is
then distributed. Received packets are acknowledged by PTSE acknowledgement packets
(Figure 6.7). Non-acknowledged packets are retransmitted.

The process of flooding new topology information is running all the time. The information
exchanged and stored is then used by the Generic Call Admission Control (GCAC) when a
call must be routed.

6.2.10 Hierarchy

The PNNI is designed to be scalable to large networks. To support this it can be hierarchically
structured. In this book we do not explore the PNNI hierarchy in detail because the authors
could not perform any experiments on such a hierarchy and they could therefore not verify
the behaviour that is described in the standards.

6.2.1 1 Communication Examples

This section shows seven typical PNNI routing protocol communication examples. All these
examples show the communication between the six ATM interfaces attached to the three
switches as presented in Figure 6.8. The PNNI is running on all the switches. All switches
are in the same peer group and constitute a non-hierarchical PNNI network.

168 PNNI: PRIVATE NETWORK NODE INTERFACE

packet type (0x0002) packet length

current
version version version

reserved oldest newest

- -
- 22 byte node ID of the originating -
- -

node - -
-

-
- 14 byte peer group ID of the -
- originating node -

PTSE type

PTSE ID

reserved

I PTSE sequence number I
PTSE checksum PTSE remaining lifetime

Different information groups (IGs) can
follow to complete one PTSE
-Nodal State Parameters IG
- Nodal IG
- Internal Reachable ATM Address IG
- Exterior Reachable ATM Address IG
- Horizontal Links IG
- Uplinks IG
- System Capabilities IG

e . .

I I I
byte 0 byte 1 byte 2 byte 3

one PTSE
(each PTSP can contain
several PTSEs of one
originating node)

Figure 6.6: PNNI PTSP

The communication examples were recorded in the GMD Fokus laboratory. Optical split-
ting boxes were inserted into the three physical links between the switches to allow recording
of both communication directions. The six output links of the splitting boxes (two commu-
nication streams per switch-to-switch connection) were multiplexed to two output links (on
different VPIs) by an additional crossconnect switch. These two output links of the crosscon-
nect were recorded by two additional ATM interface cards (in our case devices “/dev/tyO”
and “/dev/tyl”) inserted into an extra end system (lovina). The recorded ATM communi-
cation was decoded by the a5r tool and the pnnidump tool of the Tina tool set. To decode
the messages of one communication stream (PNNI routing protocol messages use VPI=O and
VCI=18, but in some cases the VPI is different because of the multiplexing switch) the com-
mands

ROUTING PROTOCOL 169

packet type (0x0003) packet length

current
version version version
oldest newest reserved

type (384)
Acknowledges the PTSEs

of one originating node
(repeated if acknowledgements

for more than one node need
to be sent 22 byte node ID of the origination node

of the PTSEs that are acknowledged here

t 1
AckCount

I PTSE ID that is just acknowledged

I PTSE sequence number I t Acknowledgement of a PTSE
of one originating node
(repeated for all acknow-
ledgements of this node, i.e.
AckCount times)

I I I
byte 0 byte 1 byte 2 byte 3

Figure 6.7: PNNl PTSE acknowledgement packet

a5r -c 18 < /dev/tyO I pnnidump -Fhcp

were executed at lovina under the assumption that the stream was received on VPI=O. See
Section 1.3 for details about capturing and decoding of ATM communications.

The following sections show the output of the Tina tools. The messages are marked with 1
to 6 depending on their direction (see Figure 6.8 for the six directions).

6.2.11.1 A Standalone ATM Switch

This first example shows the switch forelle that is already up and waiting for other switches.
The other switches are still down. The following messages are transmitted every 15 S over
forelle’s outgoing links to forest (2) and to foreplay (5):

1 R 2 3 0.000
2 hello

170 PNNI: PRIVATE NETWORK NODE INTERFACE

OC3 end system

end system ATM switch (lovina)

(atmos) (forelle)

end system TAXI 0c3 ATM switch

(kirk) (foreplay)
11 12

OC3

OC3

I crossconnect
ATM switch

(forest)
- Also used for TAXI

multiplexing

end system
(Sp0ck-b)

of splitting

3

4

5

6

7

8 R 3e
9

10

11

12

13

14

box output

Figure 6.8: PNNI example scenario

node=Clevel=80,node=Ox39.OOOO.ll.ZZZZZZ.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO~
addr=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00
pgid=Clevel=80,id=39OOOOllZZZZZZOOOOOOOOOOOO) rnode=Clevel=O,
peergroup=~level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO~,esi=OO:OO:OO:OO:OO:OO~
port=0x10000010 rport=OxO hinter=15

hello
node=Clevel=80,node=Ox39.OOOO.ll.ZZZZZZ.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO~
addr=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00
pgid={level=80,id=39OOOOllZZZZZZOOOOOOOOOOOO~ rnode=(level=O,
peergroup=~level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO~,esi=OO:OO:OO:OO:OO:OO~
port=0x1000001b rport=OxO hinter=15

0.157

6.2.11.2 Two Nodes of a Peer Group are Going Up

This example shows the PNNI messages when the two nodes (switches), foreplay and forelle,
are going up. They exchange messages to get synchronised databases that store the peer group
information.

Note that in this example both nodes advertise the same address prefix. This is an unsuitable
configuration for production networks, but was used to demonstrate easily crankback in later
sections.

First the switch foreplay goes up. As shown in Section 6.2.1 1.1 it transmits Hello messages
to its neighbours forest (4) and forelle (6), but they are still down:

1 R 4 j 0.988
2 hello
3 node=Clevel=80,node=Ox39.OOOO.ll.ZZZZZZ.OOOO.OOOO.OOOZ.ffOfOdc6OOOl.OO~
4 addr=0x39.0000.11.222~22.OOOO.OOOO.OOOl.ffOfOdc6OOOl.OO

ROUTING PROTOCOL 171

5

6

7

8 R 6 3
9

10

11

12

13

14

pgid=Clevel=80,id=39OOOOl~222222OOOOOOOOOOOO> rnode=Clevel=O,
peergroup=(level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO>,esi=OO:OO:OO:OO:OO:OO~
port=0x10000012 rport=OxO hinter=i5

hello
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOO2.ffOfOdc6OOOl.OO>
addr=0x39.0000.11.222222.0000.0000.0001.ff0f0dc60001.00
pgid=C1eve1=80,id=39000011222222000000000000> rnode=Clevel=O,
peergroup=~level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO>,esi=OO:OO:OO:OO:OO:OO~
port=0x10000013 rport=OxO hinter=15

3.716

Then switch forelle goes up. It starts with sending its own Hello messages as shown in
Section 6.2.1 1.1 :

1 R 5+
2

3

4

5

6

7

8 R 2 3
9

10

11

12

13

14

17.700
hello
node=Clevel=80,node=Ox39.OOOO.li.222222.OOOO.OOOO.OOOi.ffla4ce7OOOl.OO>
addr=0~39.0000.11.222222.0000.0000.0001.ffla4ce70001.00
pgid=Clevel=80,id=39OOOOl~222222OOOOOOOOOOOO> rnode=Clevel=O,
peergroup=(level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO>,esi=OO:OO:OO:OO:OO:OO~
port=0x10000010 rport=OxO hinter=i5
17.857
hello
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO>
addr=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00
pgid=C1eve1=80,id=39000011222222000000000000> rnode=(level=O,
peergroup=Clevel=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO>,esi=OO:OO:OO:OO:OO:OO~
port=0x1000001b rport=OxO hinter=15

Now the switches forelle and foreplay have received the first Hello messages from each
other (switch forest could not receive anything because it is still down). The next Hello
messages show that they now know each other (see the changed remote node [mode] field):

1 R 6 3
2

3

4

5

6

7

8 R 5+
9

10

11

12

13

14

17.630
hello
node=Clevel=80,node=Ox39.OOOO.ll.22~222.OOOO.OOOO.OOO2.ffOfOdc6OOOl.OO>
addr=0x39.0000.11.222222.OOOO.OOOO.OOOl.ffOfOdc6OOOl.OO
pgid=C1eve1=80,id=39000011222222000000000000> rnode=(level=80,
node=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
port=0x10000013 rport=0x10000010 hinter=15
17.703
hello
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO>
addr=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00
pgid=C1eve1=80,id=39000011222222000000000000> rnode=~level=80.
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
port=0x10000010 rport=0x10000013 hinter=15

172 PNNI: PRIVATE NETWORK NODE INTERFACE

At the same time they start exchanging topology information:

1 R 6 j

3 R 6 j
2

4

5

6

7

8

9

10 R 6+
11

12 R 6+
13

14

I5

16

17

18

19

20

21

22

23 R 6 j
24

25

26

27

28

29

30

31

32

33

34

35 R 6 j
36

37

38

39

40

41 R 5+
42

43 R 5+
44

45

46

47

48

49

50 R 5 e
51

52 R 5 e
53

17.632
dbsum flags=<init,more,master> seq=925413206

dbsum flags=<,,master> seq=925413207
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
pgid=C1eve1=80,id=39000011222222000000000000> scount=2
ptype=internal id=1342177285 seq=2 csum=59306 life=3575
ptype=nodal id=l seq=l csum=32489 life=3574

ptsereqp ! illegal IG 5 within ptsereq

17.633

17.669

17.670
Pt sP
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOO2.ffOfOdc6OOOl.OO>
pgid=C1eve1=80,id=39000011222222000000000000> ptse ptype=internal
id=1342177285 seq=2 csum=59306 life=3574 internal vpcap=O port=OxO
scope=O ail=20 aic=l prefix=C104,39000011222222000000000001>
ptse ptype=nodal id=l seq=l csum=32489 life=3573 nodal
nsap=0x39.0000.11.222222.0000.0000.0001.ff0f0dc60001.00 lprio=O
flags=<,transit,simple,nobranch,normal>
leader=Clevel=0,peergroup=~level=0,id=00000000000000000OOOOOOOOO>,
esi=00:00:00:00:00:0Ol
17.672
Pt sP
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOO2.ffOfOdc6OOOl.OO>
pgid=C1eve1=80,id=39000011222222000000000000> ptse ptype=hlinks
id=268435475 seq=l csum=28202 life=3599 hlinks vpcap=O
rnode=~level=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO~
rport=Ox10000010 lport=0x10000013 atoken=O ora flags=<cbr.,.,.>
aweight=5040 mcr=353207 acr=352367 ctd=745 cdv=725 clr0=8 clr01=8 ora
flags=<,rt-vbr,,,,> aweight=5040 mcr=353207 acr=352367 ctd=745 cdv=725
clr0=8 clr01=8 ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207
acr=352367 ctd=745 cdv=725 clr0=8 clr01=8 ora flags=<,.,.ubr.>
aweight=5040 mcr=353207 acr=352367 ctd=745 cdv=725 clr0=8 clr01=8

ptseackp ptseack
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO>
acount=3 id=1342177283 seq=2 csum=48237 life=3597 id=268435472 seq=l
csum=28205 life=3599 id=l seq=l csum=10091 life=3596
! unexpected 56 padding bytes ...

dbsum flags=<init,more,master> seq=925416771

dbsum flags=<,more,> seq=925413206
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000> scount=2 ptype=internal
id=1342177283 seq=2 csum=48237 life=3599 ptype=nodal id=l seq=l
csum=10091 life=3598

17.674

17.701

17.704

17.708
dbsum flags=<,,> seq=925413207

ptsereqp ! illegal IG 5 within ptsereq
17.709

ROUTING PROTOCOL 173

54 R 5+
55

56

57

58

59

60

61

62

63

64

65

66

67 R 5 e
68

69

70

71

72

73

74

75

76

77

78 R 5+
79

80

81

82

83

17.710
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000> ptse ptype=hlinks
id=268435472 seq=l csum=28205 life=3599 hlinks vpcap=O
rnode=(level=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOO2.ffOfOdc6OOOl.OO~
rport=0x10000013 lport=Ox10000010 atoken=O ora flags=<cbr,,,,,>
aweight=5040 mcr=353207 acr=352367 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,) aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,.nrt-vbr.,.) aweight=5040
mcr=353207 acr=352367 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352367
ctd=745 cdv=725 clr0=8 clr01=8
17.712
ptsp node=Clevel=80,
node=0~39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000> ptse ptype=internal
id=1342177283 seq=2 csum=48237 life=3597 internal vpcap=O port=OxO
scope=O ail=20 aic=l prefix=C104,39000011222222000000000001>
ptse ptype=nodal id=l seq=l csum=10091 life=3596 nodal
nsap=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00 lprio=O
flags=<,transit,simple,nobranch,normal>
leader=Clevel=0,peergroup=~level=0,id=00000000000000000OOOOOOOOO>,
esi=00:00:00:00:00:00)

ptseackp ptseack node=Clevel=80.
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~ acount=3
id=1342177285 seq=2 csum=59306 life=3574 id=268435475 seq=l
csum=28202 life=3599 id=l seq=l csum=32489 life=3573
! unexpected 56 padding bytes ...

17.713

6.2.11.3 A Third Node of a Peer Group is Going Up

Now the switches foreplay and forelle know each other and switch forest goes up. It starts
with sending its Hello messages to its neighbours:

1 R 3+
2

3

4

5

6

7

8 R l e
9

10

11

12

13

14

0.647
hello
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO>
addr=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00
pgid=C1eve1=80,id=39000011222222000000000000> rnode=(level=O,
peergroup=Clevel=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO>,esi=OO:OO:OO:OO:OO:OO~
port=0x10000012 rport=OxO hinter=15
1.609
hello
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO>
addr=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00
pgid=C1eve1=80,id=39000011222222000000000000> rnode=(level=O,
peergroup=(level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO>,esi=OO:OO:OO:OO:OO:OO~
port=0x1000001b rport=OxO hinter=15

So the nodes forest and forelle get to know each other and exchange corresponding Hello
messages:

174 PNNI: PRIVATE NETWORK NODE INTERFACE

1 R 2+
2

3

4

5

6

7

8 R l+
9

10

11

12

13

14

l. 063
hello
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO~
addr=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00
pgid=C1eve1=80,id=39000011222222000000000000~ rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.0001.ffia36900001.00~
port=0x1000001b rport=0x1000001b hinter=15

hello
node=Clevel=80,node=Ox39.OOOO.li.222222.OOOO.OOOO.OOOi.ffla369OOOOl.OO~
addr=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00
pgid=Clevel=80,id=39OOOOli2222222OOOOOOOOOOOO~ rnode=Clevel=80,
node=0~39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
port=0x100000lb rport=0x100000lb hinter=l5

1.611

The switches forest and foreplay also know each other and therefore exchange

Now all switches know all their neighbours, because every switch in the peer group has a

Parallel to the exchange of Hello messages the switches start to exchange topology

corresponding Hello messages (not shown here).

direct connection to every other switch in the peer group.

information (regular Hello messages are also exchanged but they are not shown here):

1 R 3+
2

3 R 3+
4

5

6

7

8

9 R 3+
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 R 3+

0.648
dbsum flags=<init,more,master> seq=925416945

dbsum flags=<,more,> seq=925413256 ptsesum
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO~
pgid=Clevel=80,id=39OOOOll222222OOOOOOOOOOOOl scount=2
ptype=internal id=1342177284 seq=2 csum=4995 life=3599
ptype=nodal id=l seq=l csum=54679 life=3598

0.650

0.652
Pt SP
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO~
pgid=Clevel=80,id=39OOOOll222222OOOOOOOOOOOOl ptse
ptype=internal id=1342177283 seq=2 csum=48237 life=3548 internal
vpcap=O port=OxO scope=O ail=20 aic=l
prefix=C104,39000011222222000000000001~
ptse ptype=hlinks id=268435472 seq=l csum=28205 life=3550
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
rport=0x10000013 lport=Ox10000010 atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352367
ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aweight=5040 mcr=353207 acr=352367
ctd=745 cdv=725 clr0=8 clr01=8 ora flags=<,.nrt-vbr.,.> aweight=5040
mcr=353207 acr=352367 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ptse ptype=nodal id=l seq=l csum=10091 life=3547
nodal nsap=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00 lprio=O
flags=<,transit,simple,nobranch,normal> leader={level=O.
peergroup=Clevel=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOOl,esi=OO:OO:OO:OO:OO:OO~
0.793

ROUTING PROTOCOL 175

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 R 3+
47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

61 R 3 e
68

69 R 3 e
70

l 1

72

13

74

l5

76

l1

78

19

80

81

82

83

84 R 3+
85

86

81

Pt sP
node=~level=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO>
pgid={1eve1=80,id=39000011222222000000000000>
ptse ptype=hlinks id=268435483 seq=l csum=39502 life=3599
hlinks vpcap=O rnode={level=80,
node=0~39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
rport=0x100000ib lport=OxiOOOOOib atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,) aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,) aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,,,,ubr,> aweight=5040 mcr=353207
acr=352341 ctd=745 cdv=725 clr0=8 clr01=8

ptsp node={level=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
pgid={1eve1=80,id=39000011222222000000000000>
ptse ptype=internal id=1342177285 seq=2 csum=59306 life=3524
internal vpcap=O port=OxO scope=O ail=20 aic=l
prefix={104,3900001122222200000000000~~ ptse ptype=hlinks
id=268435475 seq=l csum=28202 life=3549 hlinks vpcap=O
rnode=(level=80,node=Ox39.OOOO.il.222222.OOOO.OOOO.OOOl.ffia4ce7OOOi.OO~
rport=Ox10000010 lport=0x10000013 atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352367 ctd=745 cdv=725
clr0=8 clr01=8 ora flags=<,rt-vbr.,.,) aweight=5040 mcr=353207 acr=352367
ctd=745 cdv=725 clr0=8 clrOi=8
ora flags=<,,nrt-vbr,,,) aweight=5040 mcr=353207 acr=352367 ctd=745 cdv=725
clr0=8 clrO1=8 ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352367
ctd=745 cdv=725 clr0=8 clr01=8 ptse ptype=nodal id=l seq=l
csum=32489 life=3523
nodal nsap=0x39.0000.11.222222.OOOO.OOOO.OOOl.ffOfOdc6OOOl.OO
lprio=O flags=<,transit,simple,nobranch,normal> leader={level=O,
peergroup=(level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO>,
esi=00:00:00:00:00:00)

0.795

0.796
dbsum flags=<,,> seq=925413257

ptsp node={level=80,
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
pgid={1eve1=80,id=39000011222222000000000000>
ptse ptype=hlinks id=268435474 seq=l csum=54971 life=3599
hlinks vpcap=O rnode={level=80.
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~ rport=0x10000012
lport=0x10000012 atoken=O ora flags=<cbr.,.,.> aweight=5040
mcr=353207 acr=352365 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,,nrt-vbr,,,> aweight=5040
mcr=353207 acr=352365 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,,abr,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,.,.ubr.> aweight=5040 mcr=353207
acr=352365 ctd=745 cdv=725 clr0=8 clr01=8

0.797

0.798
ptsp node={level=80,
node=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
pgid={1eve1=80,id=39000011222222000000000000>

176 PNNI: PRIVATE NETWORK NODE INTERFACE

88

89

90

91

92

93

94

95

96

97

98

99 R 3+
100

101

102

103

104

105

106

107

108

109

110

111 R 3+
112

113

114

115

116 R 2 3
117

118 R 2 3
119

120

121

122

123

124

125

126

127

128

129

130

131 R 2 3
132

133 R 2 3
134

135

136

137

138

139

140

141

142

143

ptse ptype=hlinks id=268435483 seq=i csum=39502 life=3598
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
rport=Ox1000001b lport=Ox1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,) aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,.nrt-vbr.,.) aweight=5040
mcr=353207 acr=352341 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8

0.799
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000~
ptse ptype=internal id=1342177284 seq=2 csum=4995 life=3597
internal vpcap=O port=OxO scope=O ail=20 aic=l
prefix=C104,39000011222222OOOOOOOOOOOll
ptse ptype=nodal id=l seq=i csum=54679 life=3596
nodal nsap=0x39.0000.11.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO
lprio=O flags=<,transit,simple,nobranch,normal> leader=Clevel=O,
peergroup=(level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO~,
esi=00:00:00:00:00:00~
0.800
ptseackp ptseack node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~ acount=l
id=268435474 seq=l csum=50496 life=3599
! unexpected 56 padding bytes ...
dbsum flags=<init,more,master> seq=925416821

dbsum flags=<,,master> seq=925416822 ptsesum
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOO2.ffOfOdc6OOOl.OO~
pgid=C1eve1=80,id=39000011222222000000000000] scount=3
ptype=internal id=1342177285 seq=2 csum=59306 life=3526
ptype=hlinks id=268435475 seq=l csum=28202 life=3551
ptype=nodal id=l seq=l csum=32489 life=3525
ptsesum
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO~
pgid=C1eve1=80,id=39000011222222000000000000] scount=3
ptype=internal id=1342177283 seq=2 csum=48237 life=3550
ptype=hlinks id=268435472 seq=l csum=28205 life=3552
ptype=nodal id=l seq=l csum=10091 life=3549

ptsereqp ! illegal IG 5 within ptsereq
1.067
PtSP
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO~
pgid=C1eve1=80,id=39000011222222000000000000]
ptse ptype=internal id=1342177283 seq=2 csum=48237 life=3549
internal vpcap=O port=OxO scope=O ail=20 aic=l
prefix=C104,39000011222222OOOOOOOOOOOll
ptse ptype=hlinks id=268435472 seq=l csum=28205 life=3551
hlinks vpcap=O rnode=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
rport=0x10000013 lport=Ox10000010 atoken=O

l. 064

1.065

1.066

ROUTING PROTOCOL 177

144

145

146

147

148

149

150

151

152

153

154

155

156 R 2 j
157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

1 74

175

176

177

178

179 R 2 3
180

181

182

183

184

185

186

187

188

189

190

191

192

193

1% R 2 j
195

196

197

198

199

ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,) aueight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aueight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,.,.ubr.> aweight=5040 mcr=353207
acr=352367 ctd=745 cdv=725 clr0=8 clr01=8
ptse ptype=nodal id=l seq=l csum=10091 life=3548
nodal nsap=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00
lprio=O flags=<,transit,simple,nobranch,normal> leader=Clevel=O,
peergroup=(level=O , id=00000000000000000000000000>,
esi=00:00:00:00:00:0Ol
l. 180
PtSP
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOO2.ffOfOdc6OOOl.OO>
pgid=C1eve1=80,id=39000011222222000000000000> ptse ptype=internal
id=1342177285 seq=2 csum=59306 life=3525
internal vpcap=O port=OxO scope=O ail=20 aic=l
prefix=C104,39000011222222000000000001l
ptse ptype=hlinks id=268435475 seq=l csum=28202 life=3550
hlinks vpcap=O rnode=Clevel=80,
node=0~39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
rport=Ox10000010 lport=0x10000013 atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,) aueight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,,nrt-vbr,,,) aueight=5040
mcr=353207 acr=352367 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8 ptse ptype=nodal id=l seq=l csum=32489
lif e=3524
nodal nsap=0x39.0000.11.222222.OOOO.OOOO.OOOl.ffOfOdc6OOOl.OO
lprio=O flags=<,transit,simple,nobranch,normal> leader=(level=O,
peergroup=(level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO>,
esi=00:00:00:00:00:0Ol
1.181
PtSP
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO>
pgid=C1eve1=80,id=39000011222222000000000000>
ptse ptype=hlinks id=268435483 seq=l csum=39502 life=3599
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO~
rport=Ox1000001b lport=0x1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aueight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,.nrt-vbr.,.> aueight=5040
mcr=353207 acr=352341 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8
1.182
Pt sP
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOO2.ffOfOdc6OOOl.OO>
pgid=C1eve1=80,id=39000011222222000000000000>
ptse ptype=hlinks id=268435474 seq=l csum=50496 life=3598
hlinks vpcap=O rnode=Clevel=80,

178 PNNI: PRIVATE NETWORK NODE INTERFACE

200

201

202

203

204

205

206

207

208

209 R 2 3
210

211

212

213

214

215

216

217 R l+
218

219 R l+
220

221

222

223

224

225

226 R l+
227

228 R l+
229

230 R 4 3
231

232 R 4 3
233

234

235

236

237

238

239

240

241

242

243

244

245

246 R 4 j
247

248

249

250

251

252

253 R 4 3
254

255

node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
rport=0x10000012 lport=0x10000012 atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,) aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,.nrt-vbr.,.) aweight=5040
mcr=353207 acr=352367 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
1.183
ptseackp ptseack
node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO~
acount=4 id=1342177284 seq=2 csum=4995 life=3598
id=268435483 seq=l csum=39502 life=3599
id=268435474 seq=l csum=54971 life=3599
id=l seq=l csum=54679 life=3597
! unexpected 56 padding bytes ...

dbsum flags=<init,more,master> seq=925416946

dbsum flags=<,more,> seq=925416821
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000~ scount=2
ptype=internal id=1342177284 seq=2 csum=4995 life=3600
ptype=nodal id=l seq=l csum=54679 life=3599

dbsum flags=<,,> seq=925416822

ptsereqp ! illegal IG 5 within ptsereq

dbsum flags=<init,more,master> seq=925413256

dbsum flags=<,,master> seq=925413257
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
pgid={1eve1=80,id=39000011222222000000000000] scount=3
ptype=internal id=1342177285 seq=2 csum=59306 life=3526
ptype=hlinks id=268435475 seq=l csum=28202 life=3552
ptype=nodal id=l seq=l csum=32489 life=3525
ptsesum node={level=80,
node=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
pgid={1eve1=80,id=39000011222222000000000000] scount=3
ptype=internal id=1342177283 seq=2 csum=48237 life=3549
ptype=hlinks id=268435472 seq=l csum=28205 life=3551
ptype=nodal id=l seq=l csum=10091 life=3548

ptseackp ptseack node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00) acount=3
id=1342177283 seq=2 csum=48237 life=3548
id=268435472 seq=l csum=28205 life=3550
id=l seq=l csum=10091 life=3547
! unexpected 56 padding bytes ...

ptseackp ptseack node={level=80.
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~ acount=3

1.612

1.613

1.614

1.615

1.629

1.630

1.632

1.633

ROUTING PROTOCOL 179

256

257

258

259

260 R 4 j
261

262 R 4 j
263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278 R 4 j
279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294 R l+
295

296

297

298

299

300

301

302

303

304

305

306

307

308 R l+
309

310

311

id=1342177285 seq=2 csum=59306 life=3524
id=268435475 seq=l csum=28202 life=3549
id=l seq=i csum=32489 life=3523
! unexpected 56 padding bytes ...
ptsereqp ! illegal IG 5 within ptsereq

ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000)
ptse ptype=hlinks id=268435483 seq=i csum=39502 life=3598
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.0001.ff~a36900001.00~
rport=Ox1000001b lport=Ox1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,) aueight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8

ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
pgid=C1eve1=80,id=39000011222222000000000000)
ptse ptype=hlinks id=268435474 seq=i csum=50496 life=3599
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
rport=0x10000012 lport=0x10000012 atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aueight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8

l. 634

l. 635

l. 705

1.743
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000~
ptse ptype=hlinks id=268435483 seq=l csum=39502 life=3599
hlinks vpcap=O rnode=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00)
rport=Ox1000001b lport=Ox1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,rt-vbr,,,,> aweight=5040
mcr=353207 acr=352341 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352341 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,.,.ubr.> aweight=5040
mcr=353207 acr=352341 ctd=745 cdv=725 clr0=8 clr01=8
1.744
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000~

180

312

313

314

315

316

317

318

319

320 R l+
321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337 R 4+
338

339

340

341

342

343

344 R le
345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360 R l+
361

362

363

364

365

366

PNNI: PRIVATE NETWORK NODE INTERFACE

ptse ptype=internal id=1342177284 seq=2 csum=4995 life=3598
internal vpcap=O port=OxO scope=O ail=20 aic=l
prefix=C104,39000011222222000000000001l
ptse ptype=nodal id=l seq=l csum=54679 life=3597
nodal nsap=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00
lprio=O flags=<,transit,simple,nobranch,normal> leader=Clevel=O,
peergroup=(level=O , id=00000000000000000000000000>,
esi=00:00:00:00:00:0Ol

ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000>
ptse ptype=hlinks id=268435474 seq=i csum=54971 life=3599
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
rport=Ox10000012 lport=0x10000012 atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8 ora flags=<,rt-vbr.,.,) aweight=5040
mcr=353207 acr=352365 ctd=745 cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,) aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,abr,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

l. 746

3.465
ptseackp ptseack node=Clevel=80,
node=0x39.0000.11.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO~
acount=3 id=1342177284 seq=2 csum=4995 life=3597
id=268435474 seq=l csum=54971 life=3599
id=l seq=l csum=54679 life=3596
! unexpected 56 padding bytes ...

ptsp node={level=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~
pgid=C1eve1=80,id=39000011222222000000000000>
ptse ptype=hlinks id=268435474 seq=l csum=50496 life=3598
hlinks vpcap=O rnode=Clevel=80,
node=0x39.0000.11.222222.OOOO.OOOO.OOOl.ffla369OOOOl.OO~
rport=0x10000012 lport=0x10000012 atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aueight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352367 ctd=745
cdv=725 clr0=8 clr01=8

3.505

3.506
ptseackp ptseack node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~ acount=3
id=1342177285 seq=2 csum=59306 life=3525
id=268435475 seq=l csum=28202 life=3550 id=l seq=l csum=32489
lif e=3524
! unexpected 56 padding bytes ...

ROUTING PROTOCOL 181

6.2.11.4 Two or More Nodes are Up and Running

This example shows the PNNI messages that are exchanged between two switches (here
forelle and forest) that are up and running.

The following messages are transmitted approximately every 15 S on the link (1/2) between
forelle and forest:

1 R l+ 0.000
2 hello node=Clevel=80,
3 node=0x39.0000.11.222222.0000.0000.0001.ff~a36900001.00~
4 addr=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00
5 pgid=C1eve1=80,id=39000011222222000000000000>

7 port=0x100000lb rport=0x100000lb hinter=l5
6 rnode=(level=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO~

8 R 2 3 0.021
9 hello

10 node=Clevel=80,node=Ox39.OOOO.ll.222222.OOOO.OOOO.OOOl.ffla4ce7OOOl.OO>
11 addr=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00
12 pgid=C1eve1=80,id=39000011222222000000000000>
13 rnode=(level=80,node=Ox39.OOOO.il.222222.OOOO.OOOO.OOOl.ffia369OOOOi.OO~
14 port=0x1000001b rport=0x1000001b hinter=15

If we have a situation as at the end of Section 6.2.1 1.3, then these kinds of messages are
exchanged on all links (1/2), (3/4) and (5/6).

6.2.11.5 A Link is Going Down

All three switches are up and running as at the end of Section 6.2.11.3 and all links are ready.
Then the link (1/2) between forest and forelle fails (at time 0.000).

Because of the outstanding Hello messages over the link (1/2) the switches forest and
forelle recognise the link failure after about 20 S. Then the topology databases of all switches
of the peer group need to be updated. Therefore over the remaining links some packets are
exchanged.

First forest and foreplay exchange messages over their common link (regular Hello
messages were also exchanged but they are not shown here):

1 R 3+
2

3

4

5

6 R 4 3
7

8

9

10

1 1 R 3+
12

13

14

15

21.234
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000>
ptse ptype=hlinks id=268435483 seq=6 csum=39241 life=O

ptsp node={level=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
pgid={1eve1=80,id=39000011222222000000000000>
ptse ptype=hlinks id=268435483 seq=6 csum=39241 life=O

ptseackp ptseack node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00) acount=l
id=268435483 seq=6 csum=39241 life=O
! unexpected 56 padding bytes ...

21.334

21.235

182 PNNI: PRIVATE NETWORK NODE INTERFACE

16 R 4 j 21.337
17 ptseackp ptseack node=Clevel=80.
18 node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~ acount=i
19 id=268435483 seq=6 csum=39241 life=O
20 ! unexpected 56 padding bytes ...

Then forelle and foreplay exchange some messages over their common link (regular Hello
messages were also exchanged but they are not shown here):

21.404
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000)
ptse ptype=hlinks id=268435483 seq=6 csum=39241 life=O

ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffia4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000)
ptse ptype=hlinks id=268435483 seq=6 csum=39241 life=O

ptseackp ptseack node=Clevel=80,
node=0~39.0000.11.222222.0000.0000.8001.ffla4ce70001.00) acount=l
id=268435483 seq=6 csum=39241 life=O
! unexpected 56 padding bytes ...
ptseackp ptseack node=Clevel=80.
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~ acount=l
id=268435483 seq=6 csum=39241 life=O
! unexpected 56 padding bytes ...

21.407

21.405

21.408

Now all nodes of the peer group know the new topology.

6.2.11.6 A Link is Going Up

Next the link (1/2) is going up again and messages are exchanged to handle the new situation:

24.243
hello node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
addr=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00
pgid=C1eve1=80,id=39000011222222000000000000~ rnode=(level=O,
peergroup=(level=0,id=OOOOOOOOOOOOOOOOOOOOOOOOOO~,
esi=00:00:00:00:00:00) port=0x1000001b rport=OxO hinter=15

hello node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
addr=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00
pgid=C1eve1=80,id=39000011222222000000000000~
rnode=~level=0,peergroup=~level=O,id=OOOOOOOOOOOOOOOOOOOOOOOOOO~,
esi=00:00:00:00:00:00) port=0x1000001b rport=OxO hinter=15

hello node=Clevel=80,

24.302

24.306

ROUTING PROTOCOL 183

17 node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
18 addr=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00
19 pgid=C1eve1=80,id=39000011222222000000000000~ rnode=Clevel=80,
20 node=0~39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
21 port=0x100000lb rport=0x100000lb hinter=l5
22 R l+ 24.307
23 dbsum flags=<init,more,master> seq=925482970

25 dbsum flags=<init,more,master> seq=925482970

27 dbsum flags=<init,more,master> seq=925482845

29 hello node=Clevel=80,

24 R l+ 24.748

26 R 2 3 24.823

28 R 2 3 24.825

30 node=0~39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
31 addr=0x39.0000.11.222222.0000.0000.8001.ffia4ce70001.00
32 pgid=C1eve1=80,id=39000011222222000000000000~ rnode=Clevel=80.
33 node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
34 port=0x1000001b rport=0x1000001b hinter=15

Because of the successful transmission of Hello messages over the link (1/2) the switches
forest and forelle recognise that the link is up (at time 24 S) . Then the topology databases of
all nodes of the peer group need to be updated (Hello messages are not shown here):

1 R 3+
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 R 4 j
18

19

20

21

22

23

24

25

26

27

28

29

30

31

39.070
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=Clevel=80,id=39OOOOll222222OOOOOOOOOOOOl
ptse ptype=hlinks id=268435483 seq=l csum=39166 life=3599
hlinks vpcap=O rnode=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
rport=Ox1000001b lport=Ox1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aueight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

39.202
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
pgid=Clevel=80,id=39OOOOll222222OOOOOOOOOOOOl
ptse ptype=hlinks id=268435483 seq=l csum=39166 life=3598
hlinks vpcap=O rnode=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
rport=Ox1000001b lport=Ox1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aueight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745

184 PNNI: PRIVATE NETWORK NODE INTERFACE

32

33 R 4+
34

35

36

37

38 R 5+
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 R 5+
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70 R 6 j
71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86 R l+
87

cdv=725 clr0=8 clr01=8
39.203
ptseackp ptseack node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~ acount=l
id=268435483 seq=l csum=39166 life=3599
! unexpected 56 padding bytes ...
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff~a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000)
ptse ptype=hlinks id=268435483 seq=i csum=39166 life=3598
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.8001.ffia4ce70001.00)
rport=0x1000001b lport=0x1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,) aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffia4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000)
ptse ptype=hlinks id=268435483 seq=i csum=39166 life=3599
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
rport=0x1000001b lport=0x1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aveight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

39.278

39.279

39.315
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000~
ptse ptype=hlinks id=268435483 seq=l csum=39166 life=3598
hlinks vpcap=O rnode=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
rport=0x1000001b lport=0x1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

39.409
dbsum flags=<,more,> seq=925482845

ROUTING PROTOCOL 185

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.9001.ff0f0dc60001.00~
pgid=C1eve1=80,id=39000011222222000000000000) scount=4
ptype=internal id=1342177281 seq=8 csum=41639 life=2490
ptype=hlinks id=268435475 seq=7 csum=28180 life=2492
ptype=hlinks id=268435474 seq=7 csum=50490 life=2943
ptype=nodal id=l seq=7 csum=32451 life=3386
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffia4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000) scount=3
ptype=internal id=1342177282 seq=7 csum=15337 life=2026
ptype=hlinks id=268435472 seq=7 csum=28183 life=2935
ptype=nodal id=l seq=6 csum=9830 life=2025
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000) scount=3
ptype=internal id=1342177283 seq=5 csum=41744 life=1998
ptype=hlinks id=268435474 seq=7 csum=54965 life=3394
ptype=nodal id=l seq=6 csum=54450 life=2036

dbsum flags=<,more,> seq=925482845

dbsum flags=<,,> seq=925482846

ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000)
ptse ptype=hlinks id=268435483 seq=l csum=39166 life=3599
hlinks vpcap=O rnode=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
rport=0x1000001b lport=0x1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aueight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aveight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

R l+ 39.409

R l+ 39.410

R l+ 39.411

R l+ 39.412
ptseackp ptseack
node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00) acount=l
id=268435483 seq=l csum=39166 life=3599
! unexpected 56 padding bytes ...
ptseack node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~ acount=3
id=1342177283 seq=5 csum=41744 life=1997 id=268435474 seq=7
csum=54965 life=3393 id=l seq=6 csum=54450 life=2036
! unexpected 56 padding bytes ...

dbsum flags=<init,more,master> seq=925482845

dbsum flags=<,,master> seq=925482846
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.9001.ff0f0dc60001.00~

R 2 j 39.495

R 2 j 39.497

186 PNNI: PRIVATE NETWORK NODE INTERFACE

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161 R 2 3
162

163

164

165

166

167

168

169

170

171

172 R 2 3
173

1 74

175

176

177

178

179

180

181

182

183

184

185

186

187

188 R 3+
189

190

191

192

193

194

195

196

197

198

199

pgid=C1eve1=80,id=39000011222222000000000000) scount=4
ptype=internal id=1342177281 seq=8 csum=41639 life=2491
ptype=hlinks id=268435475 seq=7 csum=28180 life=2492
ptype=hlinks id=268435474 seq=7 csum=50490 life=2944
ptype=nodal id=i seq=7 csum=32451 life=3386
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffia4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000) scount=3
ptype=internal id=1342177282 seq=7 csum=15337 life=2027
ptype=hlinks id=268435472 seq=7 csum=28183 life=2937
ptype=nodal id=i seq=6 csum=9830 life=2026
ptsesum node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000) scount=3
ptype=internal id=1342177283 seq=5 csum=41744 life=1997
ptype=hlinks id=268435474 seq=7 csum=54965 life=3393
ptype=nodal id=i seq=6 csum=54450 life=2036

ptseackp ptseack node=Clevel=80,
node=0~39.0000.11.222222.0000.0000.8001.ffla4ce70001.00) acount=3
id=1342177282 seq=7 csum=15337 life=2026
id=268435472 seq=7 csum=28183 life=2935 id=l seq=6 csum=9830
lif e=2025
! unexpected 56 padding bytes ...
ptseack node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~ acount=l
id=268435483 seq=l csum=39166 life=3599
! unexpected 56 padding bytes ...
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
pgid=Clevel=80,id=39OOOOll222222OOOOOOOOOOOO~
ptse ptype=hlinks id=268435483 seq=l csum=39166 life=3599
hlinks vpcap=O rnode=Clevel=80.
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
rport=Ox1000001b lport=Ox1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aueight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

39.498

39.501

39.579
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00)
pgid=C1eve1=80,id=39000011222222000000000000~
ptse ptype=hlinks id=268435483 seq=l csum=39166 life=3598
hlinks vpcap=O rnode=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
rport=Ox1000001b lport=Ox1000001b atoken=O
ora flags=<cbr,,,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,rt-vbr,,,,> aueight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

ROUTING PROTOCOL 187

200

201

202

203

204 R 6 j
205

206

207

208

ora flags=<,,nrt-vbr,,,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8
ora flags=<,,,,ubr,> aweight=5040 mcr=353207 acr=352365 ctd=745
cdv=725 clr0=8 clr01=8

ptseackp ptseack node=Clevel=80.
node=0x39.0000.11.222222.0000.0000.8001.ffia4ce70001.00) acount=i
id=268435483 seq=l csum=39166 life=3599
! unexpected 56 padding bytes ...

39.738

6.2.11.7 A New End System Appears

All three switches are up andrunning. Now the end system spock-b (39 ... 7001.xxx)isplugged
into the switch forest. The switch recognises the new situation because of ILMI. This is the
only end system that is connected to this switch. Forest announces the reachability of end
systems that start with forest’s prefix (39 ... 7001:104).

First forelle will be informed by forest and forelle acknowledges the information:

1 R l+
2

3

4

5

6

7

8 R 2 j
9

10

11

12

0.322
ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff~a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000)
ptse ptype=internal id=1342177282 seq=2 csum=41748 life=3599
internal vpcap=O port=OxO scope=O ail=20 aic=l
prefix=C104,39000011222222000000007001l

ptseackp ptseack node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~ acount=l
id=1342177282 seq=2 csum=41748 life=3599
! unexpected 56 padding bytes ...

0.448

Then foreplay will be informed by forest. It also sends an acknowledgement:

1

2

3

4

5

6

7

8

9

10

11

12

R 3 e 0.527
ptsp node={level=80,
node=0x39.0000.11.222222.OOOO.OOOO.7OOl.ffla369OOOOl.OOl
pgid={1eve1=80,id=39000011222222000000000000~
ptse ptype=internal id=1342177282 seq=2 csum=41748 life=3599
internal vpcap=O port=OxO scope=O ail=20 aic=l
prefix=C104,39000011222222000000007001l

ptseackp ptseack node={level=80.
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~ acount=l
id=1342177282 seq=2 csum=41748 life=3599
! unexpected 56 padding bytes ...

R 4 j 0.830

188 PNNI: PRIVATE NETWORK NODE INTERFACE

Now the nodes foreplay and forelle send each other the new information. Because they
already have this information they do not send acknowledgements:

1 R 5+ 1.021
2

3

4

5

6

7

8 R 6 j
9

10

11

12

ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000>
ptse ptype=internal id=1342177282 seq=2 csum=41748 life=3598
internal vpcap=O port=OxO scope=O ail=20 aic=l
prefix=C104,39000011222222000000007001l

ptsp node=Clevel=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~
pgid=C1eve1=80,id=39000011222222000000000000>
ptse ptype=internal id=1342177282 seq=2 csum=41748 life=3598

l. 307

13 internal vpcap=O port=OxO scope=O ail=20 aic=l
14 prefix=C104,39000011222222000000007001l

6.3 Signalling Protocol

As was previously mentioned, PNNI signalling is based on UN14.0. It uses the same
messages and information elements; however, the protocol is symmetric and some additional
information elements are used.

A PNNI signalling instance can be in one of the following states:

N N O - NULL
The protocol instance is non-existent.

N N 1 - Call initiated
A SETUP message has been sent to the peer.

NN3 - Call proceeding sent
A CALL PROCEEDING message has been sent in response to an incoming
SETUP message.

NN4 - Alerting delivered
An ALERTING message has been sent to the initiator of a SETUP (i.e. in the
backward direction of a call).

NN6 - Call present
A SETUP message has been received.

NN7 - Alerting received
An ALERTING message has been received in the backward direction.

NN9 - Call proceeding received
A CALL PROCEEDING message has been received in the backward direction.

NN10 - Active
The connection is in the active state-data can be exchanged.

N N 1 1 - Release request
A RELEASE message has been sent to the next node.

SIGNALLING PROTOCOL 189

NN12 - Release indication
A RELEASE message has been received.

Usually a switch creates two finite state machine (FSM) instances for a call routed through
the switch: an incoming FSM and an outgoing FSM. The incoming FSM goes through the
following states:

1. receive SETUP + NN6
2. send CALL PROCEEDING + NN3
3. send ALERTING + NN4 (optional)
4. send CONNECT + NNlO

The FSM on the outgoing side of the node goes through the following states while talking
to the next switch:

1. send SETUP + NN1
2. receive CALL PROCEEDING + NN9
3. receive ALERTING + NN7 (optional)
4. receive CONNECT + NNlO

Note that sending the CALL PROCEEDING is mandatory in the PNNI and that it does not
use CONNECT ACKNOWLEDGE messages. As in UN14.0, timers T303, T301 and T310
are used.

Call clearing is done by sending a RELEASE message, starting timer T308 and entering
NN11. The peer should go to NN12, forward the RELEASE, release resources, respond with
a RELEASE COMPLETE and enter NNO. On receipt of the RELEASE COMPLETE the
releasing side enters NNO. Clear collision is handled by interpreting a RELEASE in NN11 as
a RELEASE COMPLETE.

Restart and status enquiry procedures are similar to [UNI4.0].
Four additional information elements are used in the PNNI (some information elements

are also slightly changed). Two of the information elements belong to the support of semi-
permanent VCs and VPs and are not of interest for our discussion. The remaining two are: the
Designated Transit List (DTL) information element and the crankback information element.

The DTL IE (Figure 6.9) is computed by the first switch receiving the SETUP from the
user. It contains a list of all switches through which the call should be routed to reach the
destination system. This list is computed from the current topology database of the switch.
This means that in contrast to IP, the PNNI is source routed.

The triple of logical node/port indicator, logical node ID and logical port ID subfields
describes one hop of the connection. There can be up to 20 hops in a DTL IE. The current
transit pointer is a pointer into the list of hops and is updated at each node when the SETUP
message is forwarded to the next node.

The crankback IE (Figure 6.10) is included in the RELEASE message when a SETUP
is rejected at a node because the DTL is wrong. This may happen because the topology
information in the originating node was not up to date. The crankback IE enables the
originating node to compute an alternative path for the SETUP.

The crankback level is the PNNI hierarchy level at which the crankback occurred. The
blocked transit type is either 2 (the call or party has been blocked at the succeeding end of this
interface), 3 (blocked node) or 4 (blocked link). In the second case the 22-byte node identifier

190 PNNI: PRIVATE NETWORK NODE INTERFACE

IE identifier Oxe2

1
Coding IE instruction field
&mdard

Flag I Res. I Action indicator

IE length

IE length (continued)

1 byte

Figure 6.9: PNNI DTL information element

is included; in the third case the node IDs of both ends and the port ID (for a total of 48
byte) are included. The cause is one of the U N 1 cause codes or one of two additional codes:
Ox80 (“Next node unreachable”) or OxaO (“DTL transit not my node I D) . The diagnostics can
optionally include topology state parameters for the generic connection admission control.

One extension to UN14.0 which must be noted is the use of bit 4 in the second byte of the
information element header. This bit is called the pass along request bit. If set, the information
element is forwarded to the next hop, even if it is not recognised. This enables easy support
of new information elements without changes to network nodes.

The protocol identifier for PNNI signalling is OxfO.

6.3.1 Communication Examples

This section shows seven typical PNNI signalling protocol communication examples. All
these examples show the communication between the same six ATM interfaces of the three

SIGNALLING PROTOCOL 191

0 IE identifier Oxel

1 1
Coding IE instruction field
&mdard

Flag I Res. I Action indicator

2 IE length

3 1
IE length (continued)

4 1
Crankback level

5 1
Blocked transit type

I Blocked transit identifier

Cause

I Diagnostics (if any)

I 1 byte I

Figure 6.10: PNNI crankback information element

switches that were already presented earlier in Figure 6.8. The PNNI is running on all of the
switches and, as in the routing protocol traces, all switches are in the same peer group.

The communication examples were recorded similar to Section 6.2.1 1. The recorded ATM
communication was decoded by a5r (AAL decoder), by sscopdump (SSCOP decoder) and
sigdump (UN1 and PNNI signalling decoder). All these tools are part the Tina package de-
scribed in Section 1.3. To decode the messages of one communication stream (PNNI sig-
nalling protocol messages used VPI=O and VCI=5, but in some cases the VPI was different
because of the crossconnect switch) the command

a5r -c 5 < /dev/tyO I sscopdump -mo I sigdump -9p -Fhc

was executed at lovina for the VPI=O case.

to 6 depending on their direction.
The following sections show the output of the Tina tools. The messages are marked with 1

192 PNNI: PRIVATE NETWORK NODE INTERFACE

6.3.1.1 A Connection Establishment

The first example shows the establishment of a simple point-to-point connection. End system
spock-b makes a call to connect to lovina using link (1/2). Here are the setup, call proceed
and connect messages:

1 S l+
2

3

4

5

6

7

8

9

10

11

12

13

14

I5

16 S 2 j
17

18

19 S 2 3
20

0.000
pnni cref=Cyou,68) mtype=setup mlen=l41
traffic=(fpcr01=1200,bpcrOi=l2OO,be~
bearer=Cclass=bcob-x,atc=nrt-vbr~O,clip=not,user=p2p~
called=Ctype=unknown,plan=aesa,addr=plan=aesa.
addr=0x39.0000.11.222222.0000.0000.8001.002048060070.00~
qos=(forw=classO/unspecified.back=classO/unspecified)
repeat=Cindication=!illegalOxa)
dtl=(cs=net,ptr=27,Cnode=~level=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~,
port=268435483),(node=(leve1=80,
node=0x39.0000.11.222222.0000.0000.8001.ffia4ce70001.00~,
port=allports))
calling=(type=unknown,plan=aesa,
addr=0x39.276f.31.0001ef.0000.0401.7005.002048~0078c.00~

pnni cref=Cme,68) mtype=call-proc mlen=9
0.185

connid=(vpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=67)
0.188
pnni cref=Cme,68) mtype=connect mlen=0

6.3.1.2 A Connection Release

This example shows a connection release. We have an established connection between
spock-b and lovina using link (1/2). The connection is released by lovina:

1 S 2 3 0.000
2 pnni cref=Cme,68) mtype=release mlen=6
3 cause=(loc=user,cvalue=normal,-unspecified,class=normal-event)

5 pnni cref=Cyou,68) mtype=rel-compl mlen=O
4 S l+ 0.244

If spock-b were to release the connection we would see a release message on 1 and a release
complete message on 2.

6.3.1.3 Setup with Crankback

This example shows a crankback. A crankback occurs if a call gets blocked on its way through
the network. A called may be blocked, because the network topology may change while
a SETUP travels, so the DTL that was computed at the originating switch does not match
the changed topology. A crankback is triggered by rejecting the SETUP with a RELEASE
COMPLETE that includes a crankback IE. This IE describes the reason for the rejection and
allows the originating node to update its database. If there are alternative routes through the

SIGNALLING PROTOCOL 193

network the originating switch will try another route until the call succeeds or it cannot find
new routes.

To get an example of a crankback we configured the same address prefix to all switches
of our peer group (this is usually a bad idea because in normal operation we want to
avoid crankbacks). This gives alternative routes to the same destination. If a switch wants
to establish a connection to an end system that is not connected to its own port it cannot
determine the destination switch by comparing the destination address and the switch address
prefixes (all switches have the same address prefix). So the switch makes a guess of the correct
destination switch. In our experiment we tried to establish connections from spockb to lovina,
from spock-b to atmos and from spockb to kirk. In the last two cases the switch foreplay
chooses the wrong way (to forelle) first. This triggers a crankback, after which the originating
switch used the correct link.

When calling atmos from spock-b forest f ist tries to reach atmos at forelle:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I5

S l+ 0.777
pnni cref=Cyou,343) mtype=setup mlen=i4i
traffic=(fpcr01=1200,bpcrOl=l2OO,be~
bearer=Cclass=bcob-x,atc=nrt-vbr~O,clip=not,user=p2p~
called=Ctype=unknown,plan=aesa,addr=plan=aesa.
addr=0x39.0000.11.222222.0000.0000.0001.002048100898.00~
qos=(forw=classO/unspecified.back=classO/unspecified)
repeat={indication=!illegalOxa)
dtl=(cs=net,ptr=27,Cnode=~level=80,
node=0x39.0000.11.222222.0000.0000.0001.ff~a36900001.00~,
port=268435483),(node=(leve1=80,
node=0x39.0000.11.222222.0000.0000.0001.ffia4ce70001.00~,
port=allports)}
calling=(type=unknown,plan=aesa,
addr=0x39.276f.31.0001ef.0000.0401.7005.00204810078c.00~

But forelle has no end system atmos-it rejects the connection attempt and includes a
crankback IE in the RELEASE COMPLETE:

1 S 2 3
2

3

4

5

6

7

8

9

10

11

0.883
pnni cref=Cme,343) mtype=rel-compl mlen=62
cause=(loc=private-network-serving-local-user,
cvalue=no_route_to_destination,class=normal_event,
reason=user-specific,cond=unknown)
crankback=(cs=net,level=80,type=blocked~link,
precnode=Clevel=80,
node=0x39.0000.11.222222.0000.0000.0001.ffla4ce70001.00).
port=allports,succnode=~level=O,peergroup=Clevel=O,
id=00000000000000000OOOOOOOOO~,esi=OO:OO:OO:OO:OO:OO~,
cause=destination-unreachable)

Now forest tries an alternative switch: foreplay. The connection establishment via foreplay
to atmos succeeds:

1 S 3+ 0.908
2 pnni cref=Cyou,344) mtype=setup mlen=141

194 PNNI: PRIVATE NETWORK NODE INTERFACE

3

4

5

6

7

8

9

10

11

12

13

14

I5

16

17

18

19

20

traffic=(fpcrOi=1200,bpcrOl=i2OO,be)
bearer=Cclass=bcob-x,atc=nrt-vbr-O,clip=not,user=pZp)
called=Ctype=unknown,plan=aesa,addr=plan=aesa,
addr=0x39.0000.11.222222.0000.0000.0001.002048100898.00~
qos=(forw=classO/unspecified,back=classO/unspecified)
repeat=Cindication=!illegalOxa)
dtl=(cs=net,ptr=27,Cnode=(level=80,
node=0x39.0000.11.222222.0000.0000.0001.ff1a36900001.00~,
port=268435474),(node=(level=80,
node=0x39.0000.11.222222.0000.0000.0002.ff0f0dc60001.00~,
port=allports))
calling=(type=unknown,plan=aesa.
addr=0x39.276f.31.0001ef.0000.0401.7005.00204810078c.00~

pnni cref=Cme,344) mtype=call-proc mlen=9
connid=Cvpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=35)

pnni cref=Cme,344) mtype=connect mlen=O

S 4+ 0.993

S 4 j 0.997

6.3.1.4 Routing over two Nodes

This example shows the establishment of a PNNI connection over the two PNNI links (3/4)
and (5/6). Approximately at time 10.000 link (1/2) is removed. Because of the PNNI routing
protocol all switches update their topology databases in about 30 seconds.

Now spock-b (connected to forest) calls lovina (connected to forelle) at time 60 S. Because
the direct connection (1/2) is unavailable the call must use the links (3/4) and (5/6). We see
the typical messages (SETUP, CALL PROCEEDING and CONNECT):

1 S 3+
2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17

18 S 4+
19

20

21 S 6 j
22

23

24

25

60.508
pnni cref=Cyou,ll6) mtype=setup mlen=168
traffic=(fpcr01=1200,bpcrOl=l2OO,be)
bearer=Cclass=bcob-x,atc=nrt-vbr-O,clip=not,user=pZp)
called=(type=unknown,plan=aesa,addr=plan=aesa.
addr=0x39.0000.11.222222.0000.0000.8001.002048060070.00~
qos=(forw=classO/unspecified.back=classO/unspecified)
repeat=Cindication=!illegalOxa)
dtl=(cs=net,ptr=27,~node=~level=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~,
port=268435474),(node=~level=80,
node=0x39.0000.11.222222.0000.0000.9001.ff0f0dc60001.00~,
port=268435475),(node=~level=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00~,
port=allports))
calling=(type=unknown,plan=aesa,
addr=0x39.276f.31.0001ef.0000.0401.7005.00204810078c.00~
60.615
pnni cref=(me,ll6) mtype=call-proc mlen=9
connid=Cvpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=63)

pnni cref=Cyou,25) mtype=setup mlen=177 traffic=
(fpcr01=1200,bpcr01=1200,be)
bearer=Cclass=bcob-x,atc=nrt-vbr-O,clip=not,user=pZp)
called=(type=unknown,plan=aesa,addr=plan=aesa.

60.657

SIGNALLING PROTOCOL 195

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

addr=0x39.0000.11.222222.0000.0000.8001.002048060070.00~
qos=(forw=classO/unspecified.back=classO/unspecified)
connid=Cvpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=36)
repeat=Cindication=!illegalOxa)
dtl={cs=net,ptr=54,Cnode=~level=80,
node=0x39.0000.11.22~222.0000.0000.7001.ff1a36900001.00~,
port=268435474),{node={level=80,
node=0x39.0000.11.22~222.OOOO.OOOO.9OOl.ffOfOdc6OOOl.OO~,
port=268435475),{node={level=80,
node=0~39.0000.11.222222.0000.0000.8001.ffla4ce70001.00).
port=allports))
calling={type=unknown,plan=aesa.
addr=0x39.276f.31.0001ef.0000.0401.7005.00204810078c.00~

pnni cref=Cme,25) mtype=call-proc mlen=9
connid=Cvpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=36)

pnni cref=Cme,25) mtype=connect mlen=O

pnni cref=Cme,ll6) mtype=connect mlen=0

S 5+ 60.709

S 5+ 60.797

S 4 j 60.818

6.3.1.5 Hot Link Failure while Connection is Active

This example shows the establishment of a connection over the two PNNI links (3/4) and
(5/6). The link (1/2) is down for this experiment. After the connection is established the link
(5/6) is interrupted (hot link failure).

About 30 seconds after the connection establishment the link (5/6) is interrupted. The
interruption is recognised by the switches forelle and forest because of the outstanding Hello
packets of the PNNI routing protocol. After two outstanding Hello packets (about 30 seconds
later) the switch foreplay disconnects the connection that uses the interrupted link and sends
a release message to forest. Forest answers with a release complete message:

1 S 4 j 125.312
2 pnni cref=Cme,ll6) mtype=release mlen=6
3 cause=Cloc=private-network-serving-local-user,
4 cvalue=destination_out_of_order,class=normal_event)
5 S 3 e 125.134
6 pnni cref=Cyou,ll6) mtype=rel-compl mlen=O

6.3.1.6 Point-to-multipoint: Setup of the First Leaf

This example shows the setup of a point-to-multipoint connection. spock-b connects the first
leaf (kirk) using link (3/4). Here are the messages:

1 S 3 e 0.000
2 pnni cref=Cyou,92) mtype=setup mlen=148
3 traffic=~fpcr01=1200,bpcrOl=O,be~
4 bearer=Cclass=bcob-x,atc=nrt-vbr_O,clip=not,user=p2mp)
5 called=Ctype=unknown,plan=aesa,addr=plan=aesa,
6 addr=0x39.0000.11.222222.0000.0000.900i.002048i004cd.00~

196 PNNI: PRIVATE NETWORK NODE INTERFACE

7

8

9

10

1 1

12

13

14

I5

16

17 S 4*
18

19

20

21 S 5-e
22

23

qos=(forw=classO/unspecified,back=classO/unspecified)
repeat={indication=!illegalOxa)
dtl=(cs=net,ptr=27,~node=~level=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~,
port=268435474),(node=(level=80,
node=0x39.0000.11.222222.0000.0000.9001.ff0f0dc60001.00~,
port=allports))
epref =(type=local, f lag=me, idval=O)
calling=(type=unknown,plan=aesa,
addr=0x39.276f.31.0001ef.0000.0401.7005.00204810078c.00~

pnni cref=Cme,92) mtype=call-proc mlen=16
connid=Cvpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=55)
epref =(type=local, f lag=notme, idval=O)

pnni cref={me,92) mtype=connect mlen=7
epref =(type=local, f lag=notme, idval=O)

0.434

0.437

6.3.1.7 Point-to-multipoint: Adding a Second Leaf

We now add a second end system (lovina) to our point-to-multipoint tree:

1 S l+
2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17 S 2 3
18

19

20

21 S 2 3
22

23

157.565
pnni cref=Cyou,93) mtype=setup mlen=148
traffic=(fpcr01=1200,bpcrOl=O,be~
bearer=Cclass=bcob-x,atc=nrt-vbr-O,clip=not,user=p2mp)
called={type=unknown,plan=aesa,addr=plan=aesa.
addr=0x39.0000.11.222222.0000.0000.8001.002048060070.00~
qos=(forw=classO/unspecified.back=classO/unspecified)
repeat={indication=!illegalOxa)
dtl=(cs=net,ptr=27,{node=~leve1=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~,
port=268435483),Cnode=(level=80,
node=0x39.0000.11.222222.0000.0000.8001.ffla4ce70001.00~.
port=allports)}
epref=(type=local,flag=me,idva1=3***1)
calling=(type=unknown,plan=aesa,
addr=0x39.276f.31.0001ef.0000.0401.7005.00204810078c.00~
157.543
pnni cref=Cme,93) mtype=call-proc mlen=l6
connid=Cvpass=explicit,pex=exclusive-vpci-vci,vpci=O,vci=73)
epref=(type=local,flag=notme,idva1=3***1)

pnni cref={me,93) mtype=connect mlen=7
epref=(type=local, f lag=notme, idval=3***1)

157.548

6.3.1.8 Point-to-multipoint: Add a Second Leaf at the same End System

Now we add the second end system (lovina) a second time to our point-to-multipoint tree.
This time we do not see a connection setup, but a real add party procedure. Here are the ADD
PARTY and ADD PARTY ACKNOWLEDGE messages:

SIGNALLING PROTOCOL 197

1 S le
2

3

4

5

6

7

8

9

10

11

12

13

14 S 2*
I5

16

251.282
pnni cref={you,93) mtype=add_partymlen=I22
called={type=unknown,plan=aesa,addr=plan=aesa.
addr=0x39.0000.11.222222.0000.0000.8001.002048060070.00~
repeat={indication=!illegalOxa)
dtl=(cs=net,ptr=27,{node={level=80,
node=0x39.0000.11.222222.0000.0000.7001.ff1a36900001.00~,
port=268435483),(node=(level=80,
node=0~39.0000.11.222222.0000.0000.8001.ffla4ce70001.00~.
port=allports))
epref=(type=local,flag=me,idval=4***2)
calling=(type=unknown,plan=aesa,
addr=0x39.276f.31.0001ef.0000.0401.7005.00204810078c.00~

pnni cref={me,93) mtype=add-party-ack
251.210

mlen=7 epref=(type=local,flag=notme,idval=4***2)

Further additions of the same end system look the same.
This situation would also be the same if a different end system was added but the new

connection will be routed over the already existing connection of the same multicast call on
link (1/2).

6.3.1.9 Point-to-multipoint: Drop a Leaf

Starting from the situation of the previous section spockb drops one leaf of the end system
lovina. Because there is still a second leaf of the current call on the same link (1/2) the PNNI
connection will not be cleared, but a drop party procedure will be executed:

1 S l+
2

3

4

5 S 2 j
6

7

8

352.926
pnni cref={you,93) mtype=drop-party mlen=13
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)
epref={type=local,flag=me,idval=4***2~

pnni cref={me,93) mtype=drop-party-ack mlen=13
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)
epref={type=local,flag=notme,idval=4***2~

352.939

If there are no more leaves connected over link (1/2) the connection branch on this link will
be released:

1 S le 356.807
2 pnni cref={you,93) mtype=release mlen=6
3 cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)

5 pnni cref={me,93) mtype=rel_compl mlen=6
4 S 2 j 357.912

6 cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)

198 PNNI: PRIVATE NETWORK NODE INTERFACE

6.3.1.10 Point-to-multipoint: Release of all Leaves of a Call

Let us assume that we have a point-to-multipoint call with two branches rooted at spockb.
One branch with two leaves leads from forest to end systems on forelle (link 1/2) and one
branch with three leaves to end systems on foreplay (link 3/4). The root node (spockb)
releases the entire call:

1 S 3+
2

3

4

5 S 3+
6

7

8

9 S 3+
10

11

12 S 4*
13

14

I5

16 S 4*
17

18

19

20 S 4*
21

22 S l+
23

24

25

26 S
27

28

29 S 2 j
30

31

32

33 S 2 3
34

35

452.251
pnni cref=Cyou,92) mtype=drop-party mlen=l3
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)
epref =(type=local, f lag=me, idval=2)

pnni cref=Cyou,92) mtype=drop-party mlen=l3
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)
epref =(type=local, f lag=me, idval=l)

pnni cref=Cyou,92) mtype=release mlen=6
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)

pnni cref={me,92) mtype=drop-party-ack mlen=l3
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)
epref =(type=local, f lag=notme, idval=l)

pnni cref={me,92) mtype=drop-party-ack mlen=l3
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)
epref=(type=local, f lag=notme, idval=l)

pnni cref=Cme,92) mtype=rel-compl mlen=0

pnni cref=Cyou,93) mtype=drop-party mlen=13
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)
epref =(type=local, f lag=me, idval=4)

pnni cref={you,93) mtype=release mlen=6
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)

pnni cref={me,93) mtype=drop-party-ack mlen=13
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)
epref =(type=local, f lag=notme, idval=4)

pnni cref=Cme,93) mtype=rel-compl mlen=6
cause=(loc=user,cvalue=normal,_unspecified,class=normal_event)

452.252

452.253

452.685

452.686

452.687

452.800

452.807

452.911

452.912

6.4 Summary

In this chapter we have looked at the protocol family that is used between network nodes
in private networks-the PNNI. This family has two members: the PNNI routing protocol
and the PNNI signalling protocol. The routing protocol is used to configure the network and
distribute reachability information between the nodes of a network. The signalling protocol is
used to establish and clear connections based on this information. We have seen PNNI routing
and signalling operating in a non-hierarchical network.

7

ILMI: Integrated Local
Management Interface

7.1 Introduction to ILMI

The ILMI' is used to provide ATM devices such as end systems or switches with status and
configuration information. Such information is, for example, the registered ATM network
prefixes, registered ATM addresses, VPCs, VCC and much more. ILMI can also be used on
PNNI links to provide automatic configuration of the link parameters.

The typical application of ILMI is the exchange of ATM network prefixes and interface
addresses to allow an automatic configuration of end systems that are attached to an ATM
switch. See Section 7.4 for more details on the automatic configuration.

ATM user (end system) ATM network (switch) 1 Ih4EwithMIB

ATM interface
r _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

physical ATM link or W C
a b ATM interface/port

r _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

: Ih4EwithMIB :
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 7.1: ILMI connection of an ATM end system and an ATM switch

Figure 7.1 shows a typical scenario where the ATM interface of an end system is attached
via the UN1 to an ATM port of a switch. In this context the term UN1 only means that it is
an interface between user and network and does not imply signalling. Different scenarios are
possible.

The figure shows two ATM devices, the end system and the switch. Each of these two
devices contains an ATM Interface Management Entity (IME). These IMEs are the functional
units of the ATM devices that are responsible for the ILMI communication.

ILMI is sometimes also called the Integrated Link Management Interface or the Interim Local Management
Interface.

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

200 ILMI: INTEGRATED LOCAL MANAGEMENT INTERFACE

ILMI supports the bi-directional exchange of parameters between two IMEs. An ATM
device with more than one ATM interface contains a separate IME for each ATM interface.
For example, an ATM end system with one ATM interface contains one IME; an ATM switch
contains one IME per ATM port. The IME is the functional unit that supports the ILMI
function for the associated ATM interface. The ILMI communication takes place between two
adjacent IMEs over a physical link or a Virtual Path Connection (VPC). Each IME contains a
database, namely the ATM Management Information Base (MIB) that stores the information
associated with the local ATM interface/IME.

To exchange the parameters the Simple Network Management Protocol (SNMP) is used
on top of AAL5 and the usual SNMP terminology is applied. Every IME contains a server
application (also called a management application) and a client application (also called an
agent application). The server application of an IME manages the database that stores the local
ATM Interface MIB. The client application of an IME can access the remote ATM Interface
MIB via the remote server application. Because adjacent IMEs, which are connected by a link
or VPC, contain server and client application, both IMEs can access the MIB of the adjacent
IME. Details on the exchange of messages between IMEs can be found in Section 7.2.

Each IME contains an ATM Interface MIB. The structure of this MIB is the same for all
IMEs. The MIB can be extended to support new or vendor-specific features. Some extensions,
e.g. the auto configuration of a LAN Emulation Client (see Section 8.3 for details about LAN
Emulation and [LECM21 for the definition of the MIB extension), are already defined. Vendor-
specific extensions of the MIB are possible to allow the implementation of vendor-specific
features. Details of the structure of the ATM Interface MIB can be found in Section 7.3.

The ILMI communication can be quite complex. Examples will help to understand the
operation of ILMI. Section 7.5 shows and explains several ILMI communication examples of
an end system and a switch.

7.2 The ILMI Protocol

The ILMI communication protocol is used on a physical link or VPC between two adjacent
IMEs. The ILMI protocol is based on the SNMP version 1 as defined in [WC1 1571. A
preconfigured Virtual Channel Connection (VCC) carries the protocol between the adjacent
IMEs in the form of AAL5-encapsulated SNMP messages. The VPWCI of this VCC can be
configured; the default values are VPI=O and VCI=16.

The messages are encoded according to SNMP version 1. Four different operations to
manipulate the MIB are defined: Get (to retrieve specific management information), GetNext
(to retrieve, via traversal of the MIB, management information), Set (to modify management
information), and Trap (to report extraordinary events, e.g. a coldstart trap signifies that the
sending IME is reinitialising itself; the significance of the other parameters of the trap message
is implementation specific). The implementation of these four operations uses five different
PDU types: GetRequest-PDU, GetNextRequest-PDU, SetRequest-PDU, GetResponse-PDU
(response to a Get, GetNext or Set operation), and Trap-PDU.

All SNMP messages used for ILMI use the community name “ILMI”. In all SNMP Traps
the agent address field is set to the value 0.0.0.0. Addresses are not needed because there are
only two communication IMEs.

According to the standard SNMP, messages may be up to 484 bytes long, the throughput of
SNMP traffic should be no more than 1% of the link bandwidth and the burst length should
be no more than 484 bytes.

THE ATM INTERFACE MIB 20 1

The response time, i.e. the elapsed time from the submission on an SNMP message (e.g.
GetRequest message), to the receipt of the corresponding SNMP messages (e.g. GetResponse
message), is usually much less than 1 second.

7.3 The ATM Interface MIB

Each IME contains an ATM interface MIB. The structure of this MIB is the same for all
IMEs. Every MIB is associated with exactly one ATM interface and stores the management
information. This section provides a survey about the structure of the MIB. The reader will see
what kind of information is stored in the MIB, but it is not a copy of the MIB definition. The
complete MIB definition can be found in [ILMI4], [WC1 1551, [RFC1213], vendor-specific
documents and other related documents.

The managed information is stored in an MIB. The MIB is organised in a hierarchical
fashion. The smallest piece of information stored in the MIB is a parameter. Each parameter
is an instance of a type and has a unique name inside the MIB and a value. The unique name
of a parameter is sometimes also called its variable name.

The name is a sequence of non-negative numbers, each separated by a dot (e.g.
1.3.6.1.2.1.1.1.0). Usually, the last (least significant) number on the right-hand side
(here 0) specifies the instance of a type (needed because sometimes more than one instance
of a type exist; is always 0 if there is only one instance), the other (most significant) numbers
on the left-hand side (here l. 3.6. l. 2. l. l. l) specify the name of the type of the parameter.
The meaning of the parameters is specified in different documents, e.g. [ILMI4], [RFC1155]
and [RFC12 131. All these documents together specify the variable names and possible values
of all parameters. Not all parameters are always needed and implemented in an MIB.

To simplify the work with the parameters, symbolic names are associated with the
sequences of non-negative numbers or iwth a most significant part of the sequence.
For example, the sequence 1.3.6.1.2.1. l. l .O corresponds to the symbolic name
iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0.

Most of the ILMI-relevant MIB parameters are placed in the enterprise subtree. The full
nameofthissubtreeisiso.org.dod.internet.private.enterprisesor1.3.6.1.4.1.
In the rest of this chapter we will always use the term enterprises as a shortcut for its full
name. Inside the enterprises subtree we use the atmForum entry with the assigned number
353, i.e. enterprises. atmForum corresponds to the sequence 1.3.6.1.4.1.353.

In the following sections we list the names of some parameter types of the MIB and provide
a short description. The names are sometimes only the most significant and common part of
a group of parameter types, i.e. they specify a subtree of the MIB. In such a case the group of
parameters is described. For each parameter the sequences of non-negative numbers and the
associated symbolic name are shown.

7.3.1 System Information MIB

The system information MIB is defined in [RFC 12 131. The most important parameters are:

0 system2 (1.3.6.1.2.1.1)
A subtree that stores information about the system (end system interface or switch port).

Theprefixiso.org.dod.internet.mgmt.mib-2 isomitted.

202 ILMI: INTEGRATED LOCAL MANAGEMENT INTERFACE

sysDescr3 (1.3.6.1.2. l. 1.1)
Stores a description (human readable string) of the system supplied by the vendor.
sysUpTime3 (l. 3.6. l. 2. l. l. 3)
Stores the time (integer value that represents the time in hundredths of a second) since the
system was going up. For example, a value of 8640000 means that the system is 1 day up.
sysName3 (1.3.6.1.2.1.1.5)
Stores an administratively-assigned system name (human readable string).
sysLocation3 (1.3.6.1.2.1.1.6)
Stores the physical location of the system (human readable string). This value can be set by
the administrator.

7.3.2 Link Management MIB

The link management MIB is defined in [ILMI4]. The most important information is stored
in two subtrees: the physical group and the ATM layer group.

The physical group enterprises.atmForum.atmForumUni.atmfPhysica1Group
(l .3.6. l .4. l .353.2. l) stores information associated with the physical interface. Impor-
tant parameters are:

atmfPortTable4 (l. 3.6. l .4. l. 353.2. l. I)
A subtree that stores status information associated with the physical layer of the ATM
interface.
atmfMyIpNmAddress4 (1.3.6.1.4.1.353.2.1.2)
Stores an IP address that can be used for external access to the MIB of this IME via IP/UDP.
This parameter is optional and only present in the MIB if the IME supports this feature.
atmfMyOsiNmNsapAddress4 (1.3.6.1.4. l. 353.2. l. 3)
Stores an ATM NSAP address that can be used to external access to the MIB of this IME
via ATM/AAL5 without ILMI. This parameter is optional and only present in the MIB if
the IME supports this feature.

The ATM layer group enterprises.atmForum.atmForumUni.atmfAtmLayerGroup
(1 .3.6.1.4.1.353.2.2) stores information associated with the ATM layer of the interface.
This group contains a table atmf AtmLayerTable (l. 3.6. l. 4. l. 353.2.2. l. l) which
stores all possible properties of the ATM layer. Among the parameters in this group are:

atmfAtmLayerMaxVPCs’ (1.3.6.1.4.1.353.2.2.1.1.2)
Stores the maximum number of VPCs supported by this interface (integer value between 0
and 4096).
atmfAtmLayerMaxVCCs’ (1.3.6.1.4.1.353.2.2.1.1.3)
Stores the maximum number of VCCs supported by this interface (integer value between 0
and 268435456).
atmfAtmLayerUniVersion’ (1.3.6.1.4.1.353.2.2.1.1.9)
Stores the latest version of UN1 signalling that is supported on this interface (integer). Value

Theprefixiso.org.dod.internet.mgmt.mib-2 isomitted.
The prefix enterprises .atmForum. atmForumUni .atmfPhysicalGroup is omitted.
The prefix enterprises. atmForum. atmForumUni . atmfAtmLayerGroup. atmfAtmLayerTable. atmfAtm-
LayerEntry is omitted.

AUTOMATIC CONFIGURATION 203

1 means UN1 2.0, value 2 means UN1 3.0, value 3 means U N 1 3.1, value 4 means U N 1 4.0
and value 5 means that UN1 signalling is not supported.

Stores the device type (integer). Value 1 means that the interface belongs to an ATM end
system (user). Value 2 means that the interface belongs to an ATM switch (network node).

0 atmfAtmLayerDeviceType6 (1.3.6.1.4.1.353.2.2. l. 1.10)

7.3.3 Address Registration MIB

The address registration MIB is defined in [ILMI4]. The most important parameters are:

atmf NetPref ixGroup . atmf NetPref ixTable7 (l. 3 .6 . l . 4 . l . 353.2.7.1)
A subtree that stores all possible ATM network prefixes for the ATM interface. The table is
stored in the ATM end system IME. The values are set by the ATM switch.
atmfNetPrefixGroup.atmfNetPrefixTable.atmfNetPrefixEntry.
atmfNetPrefixStatus7 (1.3.6.1.4.1.353.2.7.1.1.3)
Stores single ATM network prefixes. To create a new prefix this parameter with
.O. ATM-PREFIX appended must be set to the integer value 1. For example,
. . . atmfNetPref ixStatus .O. 13. l. 1.2.2.3.3.4.4.5.5.6.6.7=1 creates a new ta-
ble entry with the 13-byte network prefix 1.1.2.2.3.3.4.4.5.5.6.6.7. To remove an existing
entry from the table the parameter plus . 0 . ATM-PREFIX must be set to the integer value 2.
For example, . . . atmf NetPref ixStatus .O. 13. l. l. 2.2.3.3.4.4.5.5.6.6.7=2 re-
moves the table entry 1.1.2.2.3.3.4.4.5.5.6.6.7.
atmfAddressGroup. atmfAddressTable7 (l. 3.6. l. 4. l. 353.2.6. l)
A subtree that stores all ATM addresses for the ATM interface. The table is stored in the
ATM switch IME. The values are set by the ATM end system.
atmf AddressGroup . atmf AddressTable . atmf AddressEntry . atmf AddressStatus7
(1.3.6.1.4.1.353.2.6.1.1.3)
Stores single ATM addresses. Possible values are 1 and 2. The handling is analogous to
atmfNetPref ixStatus above.

7.4 Automatic Configuration

This section describes the automatic configuration process of two connected ATM interfaces.
This process consists of two subprocesses: the automatic link configuration and the automatic
address registration. Both automatic configuration subprocesses are optional, and each can
be replaced by manual configuration. If both subprocesses are executed, then the automatic
link configuration is executed before the automatic address registration. Section 7.5 shows
examples of a complete automatic configuration process.

7.4.1 Automatic Link Configuration

A private ATM user or node may automatically configure the interface type (Public UNI,
Private UN1 or PNNI) and the IME type (User-Side, Network-Side or Symmetric). If the

The prefix enterprises. atmForum. atmForumUni . atmfAtmLayerGroup. atmfAtmLayerTable. atmfAtm-
LayerEntry is omitted.
The prefix enterprises .atmForum. atmForumUni is omitted.

204 ILMI: INTEGRATED LOCAL MANAGEMENT INTERFACE

automatic configuration is used, then all other ATM activities are performed after the
automatic link configuration is completed. This is because the type information, which is
a result of the automatic link configuration, is used by other ATM protocols.

Each peers provides preconfigured information about the local device type (user/end system
or networkhwitch) and the UN1 type (private or public) as part of its MIB. This information
is exchanged by using ILMI. Then, based on this information, the peers decide the interface
type and the IME type of both peers. [ILMI4] contains a list of all possible combinations and
the corresponding decisions of the peers. Some combinations (e.g. a user-user connection)
are not defined.

7.4.2 Automatic Address Registration

This section describes the automatic address registration of a private ATM end system
interface that is connected via a private UN1 to a private ATM switch port. This registration
can only be performed if the link is configured correctly, i.e. usually after the automatic link
configuration. That is because it has to be clear who is the network side (switch), and who is
the user side (end system). Symmetric links cannot use automatic address registration.

The automatic address registration is used to exchange addressing information between
the end system and the switch at the UNI. This addressing information can be used as the
Called Party Number and as the Calling Party Number in signalling messages. The addressing
information must be known to both the end system and the switch in order to establish ATM
connections via UN1 signalling (see Chapter 3).

An ATM address at the UN1 consists of three major parts: the End System Identifier (ESI),
the Selector (SEL) and the rest (network prefix). The ESI and the SEL are determined by the
end system. Because of the irrelevance of the SEL (the SEL part is only interpreted inside the
end system) for the address registration, only a real ESI value is provided by the end system
IME. Usually, the ESI is a unique value provided by the ATM interface card. The SEL field is
always set to zero, even if other values are allowed. The network prefix is determined by the
switch and therefore provided by the IME of the switch.

Both parts, the ESI and the network prefix, are exchanged by the ILMI and later used for
UN1 signalling. It is possible that the switch provides more than one network prefix: e.g.
in a transitional period to allow the switch and its end systems to use the old and the new
network prefix value. An end system may support more than one ESI, e.g. to support multiple
functions.

Not all combinations of network prefix and ESI are valid, e.g. in public networks. ATM
addresses in public networks are usually E.164 addresses. In that case the network side (the
switch) supplies the whole ATM address. The user side (the end system) does not provide any
part of the address.

Three different procedures of automatic address registration exist. These procedures include
the exchange of addressing information on new ILMI connections, the dynamic modification
of addressing information and the de-registration on lost ILMI connections.

On a new ILMI connection, i.e. when the end system or switch are going up or when the
end system is plugged into the switch, addressing information between the end system and
the switch are exchanged. This information can then be used for UN1 signalling.

A switch may also associate different network prefixes with different ports, but that is irrelevant for ILMI, because
the ILMI communication is always done in the context of one switch port and its MIB.

ILMI COMMUNICATION EXAMPLES 205

The addressing information may change during operation, e.g. the valid network prefix may
change due to topology changes. That is why it is possible to update the exchanged addressing
information during the operation. The list of network prefixes supported by the switch and the
list of ESIs supported by the end system may be changed.

When an end system is unplugged from the UNI, i.e. the ILMI connectivity is lost, the
address of the end system interface will be de-registered from the switch. This makes it
possible to plug the same end system into another port of the same switch (which will usually
have the same network prefix) without any problems. Of course, it is also possible to plug the
end system into another switch. After plugging in the end system the automatic configuration
procedure on the new ILMI connection will be executed.

7.4.2.1 Automatic Address Registration Details

As we saw in Section 7.3, two MIB tables are defined for the exchange of addressing
information. The first table contains the network prefixes, one entry for each prefix. The
second table contains the registered addresses, one entry for each address. We will now look
at the procedures of information exchange.

The IME of the end system implements the Network Prefix MIB table so that the end system
has local access to the current entries. These entries are supplied by the switch-the IME of
the switch issues SetRequest messages to create or delete entries in the Network Prefix table
in order to register or de-register network prefixes. The end system IME can accept or ignore
the supplied entries.

The IME of the switch implements the Address MIB table. The entries are supplied by the
end system. Each address entry represents an ATM address consisting of a network prefix,
ESI and SEL=O. The address entries are supplied by the end system. Thus, the IME of the end
system issues SetRequest messages to create or delete entries in the Address table in order to
register or de-register addresses. The switch IME can accept or ignore the supplied entries.

In operation, the registration of network prefixes occurs first. Then, the end system
combines its own ESI/SELs with one or more of the supplied network prefixes to create ATM
addresses. The end system then registers these addresses, and the switch IME performs a final
check to avoid the use of unsupplied network prefixes. In the case of E.164 addresses, the
network prefixes represent the complete address. Thus, the end system can simply echo one
or more of the supplied addresses.

At any time, one or both IMEs can check the consistency of a MIB. To do this, it can issue
GetRequest and GetNextRequest messages.

7.5 ILMI Communication Examples

This section shows seven typical ILMI communication examples. All of these examples show
the communication between the ATM interface of an end system and an ATM port of a switch
as presented in Figure 7.1. ILMI is running on both systems.

The communication examples were recorded in the GMD Fokus laboratory. An optical
splitting box was inserted into the physical link between both systems to allow recording
of both communication directions by the use of two additional ATM interface cards (in our
case devices “/dev/tyO” and “/dev/tyl”) inserted into a third system. The recorded ATM
communication was decoded by the a5r tool and the ilmidump tool of the TINA package of
BEGEMOT [Beg].

206 ILMI: INTEGRATED LOCAL MANAGEMENT INTERFACE

To decode the ILMI messages of both directions (ILMI messages use VPI=O and VCI=16)
the commands

a5r -c 16 < /dev/tyO I ilmidump
a5r -c 16 < /dev/tyl I ilmidump

were executed on the third system. See Section 1.3 for details about capturing and decod-
ing of ATM communication.

The following sections show the output of the Tina tools. The messages from the
switch to the end system (e e s) and from the end system to the switch (e+s) were
merged. Comments and time stamps (relative to the beginning of the experiment) were
added. The messages contain the names of MIB entries. Internally, such a name is
simply a sequence of numbers. The ilmidump tool tries to translate these numbers
into the symbolic names, but not all translations are known to the tool. Therefore,
some entries look more symbolic (e.g. mib-2. system.sysUpTime.0) than others (e.g.
enterprise.326.2.2.2.1.6.2.1.1.1.21.4294967295.0).

7.5.1 An UnattachedATM End System Interface

The first example shows an ATM end system interface that is not attached to a switch port (or
to anything else). It looks the same if an attached switch port is down. The end system’s IME
tries to establish ILMI communication, but, of course, it fails.

The following messages are transmitted every 5 S:

1 ILMI eJs 0.000 Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2.

3 ILMI eJs 0.000 GetNext(36) enterprise.atmForum.atmForumUni.6.1.1.3
2 system.sysUpTime.O=

7.5.2 An Unattached ATM Switch Port

This example shows an ATM switch port that is not attached to an end system interface (or
to anything else). It looks the same if an attached end system interface is down. The switch
port’s IME tries to establish ILMI communication but, of course, it fails.

The following messages are transmitted every 4 S:

1 ILMI e+s
2

3 ILMI e+s
4 ILMI e e s
5 ILMI e+s
6

7 ILMI e+s
8

9 ILMI e+s
10

11

12 ILMI e e s
13

0.144 Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2.

0.145 GetNext(34) enterprise.atmForum.atmForumUni.7.1
1.884 GetReq (32) mib-2.system.sysUpTime.O
1.885 GetReq (35) enterprise.atmForum.atmForumUni.

1.886 GetReq (37) enterprise.atmForum.atmForumUni.

1.887 GetReq (37) enterprise.atmForum.atmForumUni.

system.sysUpTime.O=

atmfPhysicalGroup.2.0

atmfPhysicalGroup.atmfPortTable.atmfPortEntry.atmfPortIndex.0

atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
atmfAtmLayerMaxVCCs.0

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0
1.888 GetReq (37) enterprise.atmForum.atmForumUni.

ILMI COMMUNICATION EXAMPLES 207

7.5.3 An ATMLink is Going Up

This example shows what happens if an ATM end system interface and switch port are
connected, and the automatic configuration procedure is executed (see also Section 7.4). The
communication is very similar if both systems are plugged together or after a link failure.

Before the experiment, the ATM port of the switch is down and the end system and its ATM
interface are already up (see also Section 7.5.1):

1 ILMI eJs 0.000 Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2

3 ILMI eJs 0.000 GetNext(36) enterprise.atmForum.atmForumUni.6.1.1.3
2 system.sysUpTime.O=

These two messages are sent by the end system every 5 S to check whether there is some IME
at the other end of the link. For the first 15 S the switch port was down:

1 ILMI eJs 5.007
2

3 ILMI eJs 5.007
4 ILMI eJs 10.008
5

6 ILMI eJS 10.008
7 ILMI eJs 15.009
8

9 ILMI eJs 15.009

Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2
system.sysUpTime.O=
GetNext(36) enterprise.atmForum.atmForumUni.6.1.1.3
Trap(45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2.
system.sysUpTime.O=
GetNext(36) enterprise.atmForum.atmForumUni.6.1.1.3
Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2
system.sysUpTime.O=
GetNext(36) enterprise.atmForum.atmForumUni.6.1.1.3

Now the switch port is up (set by switch management):

1 ILMI eJs 15.034 Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2.

3 ILMI eJs 15.035 GetNext(34) enterprise.atmForum.atmForumUni.7.1
4 ILMI eJs 15.036 GetResp(34) noSuchNameQ1 enterprise.atmForum.atmForumUni.
5 7.1

2 system.sysUpTime.O=

The switch requests some information (physical port, max. VCCs, ATM layer):

1 ILMI e e s 15.036
2

3 ILMI e e s 15.037
4

5 ILMI e e s 15.039
6

7

8 ILMI e+s 15.040
9

GetReq (35) enterprise.atmForum.atmForumUni.
atmfPhysicalGroup.2.0
GetReq (37) enterprise.atmForum.atmForumUni.
atmfPhysicalGroup.atmfPortTable.atmfPortEntry.atmfPortIndex.0
GetReq (37) enterprise.atmForum.atmForumUni.
atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
atmfAtmLayerMaxVCCs.0
GetReq (37) enterprise.atmForum.atmForumUni.
atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

The switch gets responses from the end system to some of these requests (physical port):

1 ILMI eJs 15.040 GetResp(35) noSuchNameQ1 enterprise.atmForum.
2 atmForumUni.atmfPhysicalGroup.2.0

208 ILMI: INTEGRATED LOCAL MANAGEMENT INTERFACE

3 ILMI eJs 15.040 GetResp(36) enterprise.atmForum.atmForumUni
4 .atmfPhysicalGroup.atmfPortTable.atmfPortEntry.atmfPortIndex.O=O

The switch sets the 13 byte ATM address prefix (57.39.111.49.0.1.239.0.0.4.1.112.6) in the
end system’s MIB:

1 ILMI e+s 15.050 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.
2 13.57.39.111.49.0.1.239.0.0.4.1.112.6=1

The switch gets responses from the end system to earlier requests (max. VCCs, ATM layer):

1 ILMI eJs 15.053 GetResp(37) enterprise.atmForum.atmForumUni.
2 atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
3 atmfAtmLayerMaxVCCs.O=1024

5 atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3
4 ILMI eJs 15.054 GetResp(36) enterprise.atmForum.atmForumUni.

The end system reports an error while setting the ATM address prefix (the end system is not
yet ready to receive the prefix):

1 ILMI eJs 15.054 GetResp(53) badValueO1 enterprise.atmForum.atmForumUni.
2 7.1.1.3.0.13.57.39.111.49.0.1.239.0.0.4.1.112.6(err objVal!=NULL)l

The switch requests some enterprise-specific information:

1 ILMI e+s 15.055 GetReq (78) enterprise.326.2.2.2.1.6.2.1.1.1.20.
2 4294967295.0 enterprise.326.2.2.2.1.6.2.1.1.1.21.4294967295.0

The switch sets the ATM address prefix (again):

1 ILMI e e s 15.064 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.
2 13.57.39.111.49.0.1.239.0.0.4.1.112.6=1

The end system reports an error while setting the ATM address prefix (again):

1 ILMI eJs 15.066 GetResp(53) badValueO1 enterprise.atmForum.atmForumUni.
2 7.1.1.3.0.13.57.39.111.49.0.1.239.0.0.4.1.112.6(err objVal!=NULL)l

The switch requests further information:

1 ILMI e e s 15.067 GetReq (38) enterprise.326.2.2.2.1.1.2.0

The end system cannot supply the requested information:

ILMI COMMUNICATION EXAMPLES 209

1 ILMI eJs 15.067 GetResp(38) noSuchNameQ1 enterprise.326.2.2.2.1.1.2.0

The switch sets the ATM address prefix (again):

1 ILMI e+s 15.070 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.
2 13.57.39.111.49.0.1.239.0.0.4.1.112.6=1

The end system reports an error while setting the ATM address prefix (again):

1 ILMI eJs 15.071 GetResp(53) badValueQ1 enterprise.atmForum.atmForumUni.
2 7.1.1.3.0.13.57.39.111.49.0.1.239.0.0.4.1.112.6(err objVal!=NULL)l

The switch requests further information (max. VCCs):

1 ILMI e+s 15.073 GetReq (37) enterprise.atmForum.atmForumUni.
2 atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
3 atmfAtmLayerMaxVCCs.0

The end system provides the requested information (max. VCCs):

1 ILMI eJs 15.074 GetResp(37) enterprise.atmForum.atmForumUni.
2 atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
3 atmfAtmLayerMaxVCCs.O=1024

The switch sets the ATM address prefix, and the end system reports an error while setting
the prefix (not shown again). The switch requests the up-time of the end system, and the end
systems answers:

1 ILMI e+s 18.953 GetReq (32) mib-2.system.sysUpTime.O
z ILMI eJs 18.953 GetResp(34) mib-2.system.sysUpTime.0=491198586

The switch requests further information (ATM layer, physical layer) and the end system
answers or reports an error:

1 ILMI e+s 18.954
Z

3 ILMI eJs 18.955
4

5 ILMI e+s 18.964
6

7 ILMI e+s 18.965
8

9 ILMI e+s 18.967
10

1 1 ILMI eJs 18.967

GetReq (37) enterprise.atmForum.atmForumUni.
atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0
GetResp(36) enterprise.atmForum.atmForumUni.
atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3
GetReq (35) enterprise.atmForum.atmForumUni.
atmfPhysicalGroup.2.0
GetReq (37) enterprise.atmForum.atmForumUni.
atmfPhysicalGroup.atmfPortTable.atmfPortEntry.atmfPortIndex.0
GetReq (37) enterprise.atmForum.atmForumUni.
atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0
GetResp(35) noSuchNameO1 enterprise.atmForum.

210 ILMI: INTEGRATED LOCAL MANAGEMENT INTERFACE

12

13 ILMI eJs 18.967

IS ILMI eJs 18.968
14

16

atmForumUni.atmfPhysicalGroup.2.0
GetResp(36) enterprise.atmForum.atmForumUni.
atmfPhysicalGroup.atmfPortTable.atmfPortEntry.atmfPortIndex.0=0
GetResp(36) enterprise.atmForum.atmForumUni.
atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3

At this point the switch requests enterprise specific information that cannot be supplied by the
end system:

1 ILMI e+s 18.978 GetReq (78) enterprise.326.2.2.2.1.6.2.1.1.1.20.

3 ILMI eJs 18.979 GetResp(78) noSuchNameQ1 enterprise.326.2.2.2.1.6.2.1.1.
4 1.20.4294967295.0
5 ILMI e+s 18.983 GetReq (38) enterprise.326.2.2.2.1.1.2.0
6 ILMI eJs 18.984 GetResp(38) noSuchNameQ1 enterprise.326.2.2.2.1.1.2.0

2 4294967295.0 enterprise.326.2.2.2.1.6.2.1.1.1.21.4294967295.0

Now the switch requests other information (max. VCCs) and the end system answers:

1 ILMI e+s 18.986 GetReq (37) enterprise.atmForum.atmForumUni.
2 atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
3 atmfAtmLayerMaxVCCs.0

5 atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
4 ILMI eJs 18.987 GetResp(37) enterprise.atmForum.atmForumUni.

6 atmfAtmLayerMaxVCCs.O=1024

The end system still checks whether there is some IME at the other end of the link (this shows
that the client and the server code work independent of each other in the same IME):

1 ILMI eJs 20.019 Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2.

3 ILMI eJs 20.019 GetNext(36) enterprise.atmForum.atmForumUni.6.1.1.3
2 system.sysUpTime.O=

The switch sets the ATM address prefix, and the end system reports an error while setting the
prefix (not shown again).
The following shows a request for further information (ATM layer) by the switch and the
answer from the end system:

1 ILMI e+s 20.023 GetReq (37) enterprise.atmForum.atmForumUni.

3 ILMI eJs 20.024 GetResp(36) enterprise.atmForum.atmForumUni.
2 atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

4 atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3

The switch response to an earlier request:

1 ILMI e+s 20.026 GetResp(35) .iso.org.dod.internet.6.3.2.1.1.1.0=1

The end system requests some information (ATM layer):

ILMI COMMUNICATION EXAMPLES 211

1 ILMI eJs 20.027 GetReq (37) enterprise.atmForum.atmForumUni.
2 atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

The switch sets the ATM address prefix (again, but this time it will be successful):

1 ILMI e+s 20.029 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.
2 13.57.39.111.49.0.1.239.0.0.4.1.112.6=1

The switch answers an end system request (ATM layer):

1 ILMI e+s 20.037 GetResp(38) enterprise.atmForum.atmForumUni.
2 atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3

The end system acknowledges the setting of the ATM address prefix:

1 ILMI eJs 20.042 GetResp(53) enterprise.atmForum.atmForumUni.7.1.1.3.0.
2 13.57.39.111.49.0.1.239.0.0.4.1.112.6=1

The end system sets the full ATM interface address (prefix + SEL + (ESI=O) =

57.39.111.49.0.1.239.0.0.4.1.112.6+0.32.72.16.4.205+O)intheswitch’sMIB.Theswitch
acknowledges:

1 ILMI eJs 20.042 SetReq (61) enterprise.atmForum.atmForumUni.6.1.1.3.0.
2 20.57.39.111.49.0.1.239.0.0.4.1.112.6.0.32.72.16.4.205.0=1
3 ILMI e+s 20.046 GetResp(61) enterprise.atmForum.atmForumUni.6.1.1.3.0.
4 20.57.39.111.49.0.1.239.0.0.4.1.112.6.0.32.72.16.4.205.0=1

Now the address registration is complete. The end system knows the ATM address prefix, and
the switch knows the full end system’s ATM address.

The switch requests hrther information (up-time, ATM layer, physical layer) and the end
system answers:

1 ILMI e+s
z ILMI eJs
3 ILMI e+s
4

5 ILMI eJs
6

7 ILMI e+s
8

9 ILMI eJs
10

23.952 GetReq (32) mib-2.system.sysUpTime.O
23.953 GetResp(34) mib-2.system.sysUpTime.0=491199086
23.954 GetReq (37) enterprise.atmForum.atmForumUni.

23.955 GetResp(36) enterprise.atmForum.atmForumUni.

23.964 GetReq (35) enterprise.atmForum.atmForumUni.

23.967 GetResp(35) noSuchNameO1 enterprise.atmForum.

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3

atmfPhysicalGroup.2.0

atmForumUni.atmfPhysicalGroup.2.0

Now all needed information is exchanged. The automatic configuration is complete and the
link is up (see Section 7.5.4).

212 ILMI: INTEGRATED LOCAL MANAGEMENT INTERFACE

7.5.4 An ATMLink is Up (Normal Operation)

When the ATM link is up the IMEs only need to track changes and to observe the link state.
To check whether the link is still up and the partner at the other side is still there, the following
messages are exchanged every 5 seconds (only the up-time of the end system changes from
time to time):

1 ILMI eJs
2 ILMI e+s
3

4 ILMI e+s
S ILMI eJs
6 ILMI e+s
7

X ILMI eJs
9

25.929 GetNext(36) enterprise.atmForum.atmForumUni.6.1.1.3
25.932 GetResp(61) enterprise.atmForum.atmForumUni.6.1.1.3.0.

28.952 GetReq (32) mib-2.system.sysUpTime.O
28.953 GetResp(34) mib-2.system.sysUpTime.0=491199586
28.954 GetReq (37) enterprise.atmForum.atmForumUni.

28.955 GetResp(36) enterprise.atmForum.atmForumUni.

20.57.39.111.49.0.1.239.0.0.4.1.112.6.0.32.72.16.4.205.0=1

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3

The following messages are exchanged every 25 seconds (the switch tries to read a value
which the end system cannot supply):

1 ILMI e e s 33.988 GetReq (35) enterprise.atmForum.atmForumUni.

3 ILMI eJs 33.991 GetResp(35) noSuchNameO1 enterprise.atmForum.atmForumUni.
2 atmfPhysicalGroup.2.0

4 atmfPhysicalGroup.2.0

7.5.5 An ATMLink is Going Down

This example shows what happens when a link between an ATM end system interface and a
switch port is up (see Section 7.5.4), but then the switch port is going down (set by switch
management).

First, the communication is as shown in Section 7.5.4. Then the switch port is going down.
Before the port is down it sends a trap and requests some information from the end system:

1 ILMI e+s
2

3 ILMI e+s
4 ILMI e e s
5

6 ILMI e e s
7

X ILMI e e s
9

10

1 1 ILMI eJs
12

13 ILMI eJs
14

15 ILMI eJs
16

17 ILMI eJs

337.049 Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2.

337.050 GetNext(34) enterprise.atmForum.atmForumUni.7.1
337.051 GetReq (35) enterprise.atmForum.atmForumUni.

337.052 GetReq (37) enterprise.atmForum.atmForumUni.

337.053 GetReq (37) enterprise.atmForum.atmForumUni.

system.sysUpTime.O=

atmfPhysicalGroup.2.0

atmfPhysicalGroup.atmfPortTable.atmfPortEntry.atmfPortIndex.0

atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
atmfAtmLayerMaxVCCs.0

337.080 GetReq (37) enterprise.atmForum.atmForumUni.
atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

337.080 GetResp(34) noSuchNameO1 enterprise.atmForum.atmForumUni.

337.083 GetResp(35) noSuchNameO1 enterprise.atmForum.atmForumUni.

337.096 GetResp(37) enterprise.atmForum.atmForumUni.

7.1

atmfPhysicalGroup.2.0

ILMI COMMUNICATION EXAMPLES 213

18 atmfAtmLayerGroup.atmfAtmLayerTab1e.atmfAtmLayerEntry.
19 atmfAtmLayerMaxVCCs.O=1024

Now the switch port is down, but the end system still needs a few seconds to recognise the
situation. It sends GetRequests, but they are not answered by the switch. The switch is quiet:

1 ILMI eJs 342.086 GetReq (37) enterprise.atmForum.atmForumUni.

3 ILMI eJs 347.087 GetReq (37) enterprise.atmForum.atmForumUni.
2 atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

4 atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

Then the end system recognises that the switch port is down. It behaves as in Section 7.5.1.

7.5.6 Addition of an ATM Address Prefi

This example shows what happens when the switch adds an ATM address prefix associated
with the port that is connected to the end system interface. The primary (new) prefix is the
13-byteprefix57.39.111.49.0.1.239.0.0.4.1.112.119,andthesecondary(old)prefixisthe 13-
byte prefix 57.39.111.49.0.1.239.0.0.4.1.112.6. Based on these two prefixes, the end system
creates a primary and a secondary ATM end system address (prefix + SEL=0.32.72.16.4.205
+ (ESI=O)).

We assume that the link is up as in Section 7.5.4. The new prefix is added to the ATM
switch port by management. The switch sets both prefixes in the end system’s MIB and the
end system sets both ATM end system addresses in the switch’s MIB:

1 ILMI e e s
2

3 ILMI eJs
4

5 ILMI e e s
6

7 ILMI eJs
8

9 ILMI e+s
10

1 1 ILMI eJs
12

13 ILMI eJs
14

15 ILMI e+s
16

145.364 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.

145.365 GetResp(53) enterprise.atmForum.atmForumUni.7.1.1.3.0.

145.365 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.

145.365 SetReq (61) enterprise.atmForum.atmForumUni.6.1.1.3.0.

145.371 GetResp(61) enterprise.atmForum.atmForumUni.6.1.1.3.0.

145.378 GetResp(53) enterprise.atmForum.atmForumUni.7.1.1.3.0.

145.379 SetReq (61) enterprise.atmForum.atmForumUni.6.1.1.3.0.

145.388 GetResp(61) enterprise.atmForum.atmForumUni.6.1.1.3.0.

13.57.39.111.49.0.1.239.0.0.4.1.112.6=2

13.57.39.111.49.0.1.239.0.0.4.1.112.6=2

13.57.39.111.49.0.1.239.0.0.4.1.112.119=1

20.57.39.111.49.0.1.239.0.0.4.1.112.6.0.32.72.16.4.205.0=2

20.57.39.111.49.0.1.239.0.0.4.1.112.6.0.32.72.16.4.205.0=2

13.57.39.111.49.0.1.239.0.0.4.1.112.119=1

20.57.39.111.49.0.1.239.0.0.4.1.112.119.0.32.72.16.4.205.0=1

20.57.39.111.49.0.1.239.0.0.4.1.112.119.0.32.72.16.4.205.0=1

The link is still up. The address information is updated, and from now the new
primary address is used if nothing else is requested. Therefore, the further com-
munication is as described in Section 7.5.4, except the fact that the old address
(57.39.111.49.0.1.239.0.0.4.1.112.6.0.32.72.16.4.205.0) is replaced by the new primary ad-
dress(57.39.111.49.0.1.239.0.0.4.1.112.119.0.32.72.16.4.205.0).

214 ILMI: INTEGRATED LOCAL MANAGEMENT INTERFACE

7.5.7 Removal of an ATMAddress Prejix

This example shows what happens when the switch port has two ATM address prefixes,
and the primary prefix is removed by management. At the beginning the situation is
as the situation at the end of Section 7.5.6. After the removal, the 13-byte prefix
57.39.1 11.49.0.1.239.0.0.4.1 .l 12.6 remains active. Based on the new primary prefix, the end
system creates a new primary ATM end system address (prefix + SEL=0.32.72.16.4.205 + 0).

We assume that the link is up as at the end of Section 7.5.6. The primary prefix is removed
from the ATM switch port by management. First, the switch changes the primary prefix (which
will be removed soon) to a secondary. The end system changes the primary end system address
(which will be removed soon) to a secondary:

1 ILMI e e s

3 ILMI eJs

5 ILMI eJs

7 ILMI e e s

2

4

6

8

222.497 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.

222.499 GetResp(53) enterprise.atmForum.atmForumUni.7.1.1.3.0.

222.499 SetReq (61) enterprise.atmForum.atmForumUni.6.1.1.3.0.

222.503 GetResp(61) enterprise.atmForum.atmForumUni.6.1.1.3.0.

13.57.39.111.49.0.1.239.0.0.4.1.112.119=2

13.57.39.111.49.0.1.239.0.0.4.1.112.119=2

20.57.39.111.49.0.1.239.0.0.4.1.112.119.0.32.72.16.4.205.0=2

20.57.39.111.49.0.1.239.0.0.4.1.112.119.0.32.72.16.4.205.0=2

Then the IME of the end system restarts. The switch sets the new prefix in the end system’s
MIB and the end system sets the new ATM end system addresses in the switch’s MIB. Other
information is exchanged too:

1 ILMI eJs
2

3 ILMI eJs
4 ILMI e e s
5

6 ILMI e e s
7

X ILMI eJs
9

10 ILMI eJs
11

12 ILMI e e s
13 ILMI eJs
14

15 ILMI e+s
16

17 ILMI e+s
18

19 ILMI eJs
20

21 ILMI eJs
22

23 ILMI e+s
24

223.171 Trap (45) enterprise.3.1.1 (0.0.0.0) coldstart 0 mib-2.

223.171 GetNext(36) enterprise.atmForum.atmForumUni.6.1.1.3
223.173 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.

223.175 GetReq (37) enterprise.atmForum.atmForumUni.

223.177 GetResp(53) badvalue01 enterprise.atmForum.atmForumUni.

223.177 GetResp(36) enterprise.atmForum.atmForumUni.

223.179 GetResp(35) .iso.org.dod.internet.6.3.2.1.1.1.0=1
223.180 GetReq (37) enterprise.atmForum.atmForumUni.

223.181 SetReq (53) enterprise.atmForum.atmForumUni.7.1.1.3.0.

223.186 GetResp(38) enterprise.atmForum.atmForumUni.

223.194 SetReq (61) enterprise.atmForum.atmForumUni.

223.195 GetResp(53) enterprise.atmForum.atmForumUni.

223.199 GetResp(61) enterprise.atmForum.atmForumUni.6.1.1.3.0.

system.sysUpTime.O=

13.57.39.111.49.0.1.239.0.0.4.1.112.6=1

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

7.1.1.3.0.13.57.39.111.49.0.1.239.0.0.4.1.112.6(err objVal!=NULL)l

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0

13.57.39.111.49.0.1.239.0.0.4.1.112.6=1

atmfAtmLayerGroup.atmfAtmLayerTable.atmfAtmLayerEntry.9.0=3

6.1.1.3.0.20.57.39.111.49.0.1.239.0.0.4.1.112.6.0.32.72.16.4.205.0=1

7.1.1.3.0.13.57.39.111.49.0.1.239.0.0.4.1.112.6=1

20.57.39.111.49.0.1.239.0.0.4.1.112.6.0.32.72.16.4.205.0=1

The link is still up. The address information is updated. Therefore W h e r communication is
as described in Section 7.5.4.

SUMMARY 215

7.6 Summary

In this chapter we analysed the operation of the Integrated Local Management Interface
(ILMI). This protocol is used to autoconfigure ATM links and to exchange address information
between switches and end systems. As we have seen, the ILMI is based on SNMP which runs
directly on an AAL5. Management information bases (MIBs) are used to hold and access the
information. We have traced protocol operation in a number of everyday situations and have
observed how the protocol recovers after link failures.

Protocols on Top of ATM
Signalling

8.1 Introduction

In this chapter we introduce two protocol families that use ATM signalling: Classical IP
over ATM (CLIP) and LAN Emulation over ATM (LANE). Both protocol families can be
used to replace LANs such as EthernetAEEE 802.3l or Token Ring/IEEE 802.5 under some
circumstances. This is not trivial because the services offered by LANs differ from those
offered by ATM. The main differences are:

0 LANs use connectionless message transport. ATM is connection oriented.
0 Because of the shared media, LANs implement multicast or broadcast without extra effort.

In ATM networks sets of point-to-point connections or point-to-multipoint connections are
needed-both variants are not that simple in use.

CLIP and LANE differ in the supported features and in their complexity. These differences
will be outlined in the following two sections. A good understanding of Local Area Network
(LAN) protocols (especially Ethernet) and IP is assumed for these sections.

A third protocol family, Multi Protocol Over ATM (MPOA), also provides LAN services on
top of ATM. This protocol family is an extension of LANE and allows shortcuts over subnet
boundaries. MPOA is very complex-a thorough description would fill another book. Refer
to [MPOAl.O] and [MPOAl. l] instead.

The final section of this chapter shows how to use ATM directly without emulating IP or
LANs. This allows optimal usage of the ATM Quality of Service (QoS). The problem of this
approach is that all communicating entities need direct access to an ATM network.

8.2 CLIP: Classical IP over ATM

8.2.1 Overview

Classical IP over ATM (CLIP) was developed as a direct replacement for LAN segments
connecting IP end systems and IP routers. CLIP allows, as other “IP over ATM’ technologies,
the usage of existing IP applications in ATM networks and the interoperability of these

Ethemet and IEEE 802.3 are slightly different in the frame encoding. IEEE 802.3 has an additional IEEE
802.2 Logical Link Control (LLC) header and an additional IEEE 802.2 SubNetwork Attachment Point (SNAP)
header.

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

218 PROTOCOLS ON TOP OF ATM SIGNALLING

applications with the Internet. The usage of ATM with CLIP as a backbone technology
between existing LANs and as a technology for dedicated circuits between IP routers is
possible, too.

The basic idea of CLIP is to keep the deployment of an ATM network using CLIP similar to
the deployment of a “classical” LAN based IP network. That means that an ATM host adapter
is treated as an ordinary LAN network interface from the point of view of the IP protocol
stack. The network configuration follows a similar model as classical IP networks including
routers and firewalls. CLIP emulates the services of the IP network layer. IP means IP version
4 (IPv4) in the context of CLIP. But only a few changes would be need to apply CLIP to IP
version 6 (IPv6).

Figure 8.1: LIS scenario with three IP hosts, an ATMARP server and the maximum number of SVCs

The scope of CLIP is a Logical IP Subnetwork (LIS). An LIS is a direct replacement of a
classical LAN segment. If networks of a larger scope are desired, then routers are required that
are members of different LISs to connect these LISs. A router that is a member of a Logical
IP Subnetwork (LIS) and of a classical LAN-based IP network is needed to connect this LIS
with the classical LAN-based IP network.

Each LIS consists of its members, i.e. of its IP end systems and at least one IP routet2 In
addition an ATM Address Resolution Protocol (ATMARP) server is needed inside the LIS.
Figure 8.1 shows an example. All members of an LIS need to follow some requirements:

All members have the same IP subnet number and address mask.
Each member knows its own IP address.
All members are connected to the same signalled ATM network, i.e. they can communicate
with each other using Switched Virtual Channels (SVCs). It is possible to use Permanent
Virtual Connections (PVCs) instead of SVCs but then a hlly mashed PVC network between
all LIS members would be needed. In this book we only focus on CLIP using SVCs, which
is the typical configuration.
All hosts outside the LIS are accessed via an IP router.
Each member knows its own ATM address.
All members have a mechanism for resolving IP addresses to ATM addresses via ATMARP

An LIS does not need an IP router if no host outside the LIS must be reached.

CLIP: CLASSICAL IP OVER ATM 219

and vice versa via the Inverse ATM Address Resolution Protocol (InATMARE'). These
mechanisms are described later in this chapter.

a Each member knows the ATM address of the ATMARE' server within the LIS.

The communication inside an LIS is quite simple. The basis is a virtual network consisting
of bi-directional point-to-point SVCs that is fully meshed, i.e. each member is connected to
each other member of the LIS and to the ATMARE' server. Not all SVCs are established all
the time. Instead, only the SVCs that are needed will be established using UN1 signalling.
Idle SVCs are released after a specific timeout. The virtual network allows the easy transport
of each IP Protocol Data Unit (PDU).3 The PDUs are simply encapsulated in a special
frame and sent from the source to the destination or next router via the direct SVC. It is
obvious that this mechanism cannot handle multicast or broadcast massages which is a known
limitation of CLIP. Every member of an LIS is connected to the ATMARP server of the LIS.
This connection is used to convert the IP address of the destination or next router into its
corresponding ATM address to be able to establish an SVC to the destination or next router.
If an SVC is already established, then this established SVC will be used to transport the IP
PDUs.

Each LIS works independently of other LISs, even if they are using the same ATM network.
The ATM network is only used to provide a point-to-point connection between any two
members of a given LIS. It is important to mention that two IP hosts of different LISs must
communicate via an intermediate IP router even though they are connected to the same ATM
network and could therefore communicate directly at the ATM layer.

CLIP and its ATMARE' are based on the Internet standards [WC15771 and [WC1483].

8.2.2 IP PDUEncapsulation

In CLIP, IP PDUs are directly transmitted to the destination or next router using a separate
SVC. Each IP packet is encapsulated using LLCISNAP. This means that an 8-byte header is
added. The header plus the IP PDU are transmitted using ATM Adaptation Layer 5 (AALS).
This allows unassured transport of the IP PDU using an SVC. The Maximum Transport
Unit (MTU) size for IP PDUs is 9 180 bytes.

LLC (O x A A A A O 3) 0uI1(0x00)

OUI2 (0x0000) ETHER-TYPE (0x0800)

I
IP PDU

I

Figure 8.2: An AALS payload that contains an encapsulated IP PDU

An IP PDU is also often called an IP datagram.

220 PROTOCOLS ON TOP OF ATM SIGNALLING

Figure 8.2 shows the encapsulated IP PDU that will be carried in the AAL5 payload. The
three header fields LLC, Organisationally Unique Identifier (OUI) and ETHER-TYPE can be
used to select different protocols. Because here we always have IP this feature is not needed
and the fields are always set to the same value^.^

8.2.3 ATMARP: ATMAddress Resolution Protocol in CLIP

Address resolution plays a central role in CLIP. The main reason is that a member who wants
to send an IP PDU to another member of the LIS needs to know the ATM address of the
receiver to be able to establish an SVC, if not yet done. Because the IP address of the receiver
is known5 a mechanism is needed to translate the IP address into an ATM address. It is the
same motivation as for the Address Resolution Protocol (ARP) service in LAN based IP
networks.

The implementation of the ARP is specific to ATWCLIP. The main functionality is
performed by the ATMARP server. Each LIS contains one ATMARP server which is
responsible for the authoritative resolving of all ATMARP requests of all members within
the LIS. The ATMARP server maintains a database with all known IP address-ATM address
assignments. This database is also called the ATMARP table cache. The term “cache” is
used because table entries are usually not permanent, but are maintained dynamically. This is
important to allow the LIS to adapt to new network configurations. Table entries are removed
after 20 minutes if the entry cannot be validated.

But how does the ATMARP server get all the entries? Each member in the LIS plays the role
of an ATMARP client, which means it establishes an SVC to the ATMARP server to allow
the exchange of ATMARP and InATMARP requests and responses. After the establishment
of the SVC the ATMARP server sends an InATMARPREQUEST to the client, i.e. to the
LIS member. The client answers with the InATMARFREPLY which contains the IP and
the ATM addresses of the client. Now the ATMARP server has its entry. This procedure is
repeated regularly to validate the entries in the server ATMARP table cache.

The SVC between the ATMARP server and client will also be used by the client to
perform the required translation of IP into ATM addresses. To do so the client sends
an ATMARPREQUEST inclusive IP address to the server. The server answers with the
ATMARP-REPLY which contains the requested ATM address. If the server cannot resolve
the request, then an ATMARPNAK packet is sent back to the client to indicate the problem.

Each client implements a caching mechanism to reduce the number of ATMARP request
to the server. Each entry in the client ATMARP table cache will be invalid after 15 minutes.
After this time a new request needs to be sent to the ATMARP server if an address translation
is needed.

It is possible to implement the ATMARF’ server in a robust way consisting of multiple
servers that synchronise their databases. All these servers could be reached by the same ATM
Anycast address. A protocol for the needed database synchronisation is not standardised.

ATMARP and InATMARP use five different messages, as we already have seen. Each
message corresponds to a packet that will be transmitted in the payload over AAL5. All five

The CLIP Standard requires the header fields. There is no technical reason why we need them.
The IP address of the receiver of an IP PDU will be determined by ordinary IP algorithms. The receiver address is
the destination IP address of the PDU or the IP address of the next router depending on the destination address and
network mask configuration.

CLIP: CLASSICAL IP OVER ATM 22 1

I LLC (OxAAAAO3) I 0uI1(0x00) I 0

OUI2 (0x0000) 4 ETHER-TYPE (0x0806)

HW-TYPE (0x0013) 8 PROTOCOL (0x0800)

SATL 12 OP-CODE Ox00

SIL(OxO4) 16 TIL(Ox04) Ox00 TATL

I 20 byte SOURCE-ATM-ADDRESS
' 20
I

SOURCE-IP-ADDRESS 40
I I

I 20 byte TARGET-ATM-ADDRESS I
44

TARGET-IP-ADDRESS 64

I I I
byte 0 byte 1 byte 2 byte 3

Figure 8.3: An A A L 5 payload that contains an ATMARP or InATMARE' packet

packets have the same structure as shown in Figure 8.3. The first 12 bytes specify the PDU
type and are always the same for ATMARE' and InATMARE' PDUs. The SATL field stores
the type and length of the source ATM address. The field has the value 0x14 for a 20-byte
NSAP address and the value 0x54 for a 20-byte E. 164 address. The OP-CODE field specifies
the specific PDU type (see Table 8.1). The SIL field stores the length of the source IP address.
The TATL field stores the type and length of the target ATM address and has the value 0x14
for a 20 byte-NSAP address and the value 0x54 for a 20-byte E.164 address. TIL is the length
of the target IP address.

Table 8.1: ATMARP and InATMARP PDU types

ATMARPREQUEST
ATMARPREPLY

0x0001

0x0008 InATMARPREQUEST
0x0002

InATMARPREPLY 0x0009
InATMARPNAK OxOOOa

How are source and target address fields filled for the different PDUs? The source
address fields are always set to the addresses of the sender of the PDU. The target
addresses are set if they are known. All unknown address fields are set to zero. For
example, an ATMARPREQUEST PDU has the TARGET-ATM-ADDRESS set to zero,
and the TARGET-IP-ADDRESS contains the IP address that should be resolved. The
responding ATMARPREPLY PDU contains the resolved ATM addressin the SOURCE-
ATM-ADDRESS field, and the SOURCE-IP-ADDRESS contains the corresponding IP
address (=TARGET-IP-ADDRESS field of the request PDU). This is the same mechanism
as defined for the Ethernet ARP in [WC8261 and InARP in [WC1293].

222 PROTOCOLS ON TOP OF ATM SIGNALLING

8.3 LANE: LAN Emulation over ATM

8.3. l Overview

LAN Emulation over ATM (LANE) was developed as a direct replacement for LAN segments.
In contrast to CLIP it emulates the MAC services including the encapsulation of MAC frames.
Because of this, LANE is not limited to the support of IP. LANE emulates the LAN over the
ATM network and is independent of the used network layer protocol, i.e. LANE can be used
together with IP (IPv4), IPv6, NetBIOS, AppleTalk or any other network layer protocol. The
different network layer protocols can even be mixed in a LANE environment. The second big
difference to CLIP is the support of multicast and broadcast messages. This is important to
support a maximum number of existing applications, and many of these applications cannot
run on top of CLIP, but will run on top of LANE.

LANE was developed with the objective of keeping the deployment of an ATM network
using LANE similar to the deployment of a “classical” LAN. This means that an ATM
host adapter is treated as an ordinary LAN network interface from the point of view of the
software. LANE is supported in the operation system through special network device drivers
that emulate the LAN adapter functionality using ATM.

A LANE environment provides the service of user data transport among all members of
the emulated LAN, similar to a physical LAN. Each emulated LAN works independently of
other emulated LANs, even if they are using the same ATM network. The ATM network is
only used to provide point-to-point or point-to-multipoint connections between members of
the emulated LAN. It is important to mention that two hosts of different emulated LANs must
communicate via an intermediate bridge or router even though they are connected to the same
ATM network and can therefore communicate directly at the ATM layer.

LANE is able to emulate three different types of LANs:

0 Ethernet;
0 IEEE 802.3; and
0 Token RingAEEE 802.5.

The handling of these types is quite similar. Some differences result from the additional
LLC and SNAP headers in IEEE 802.3 and from different addressing mechanisms and the
source routing feature of Token Ring/IEEE 802.5. Because of the widespread use of the
Ethernet, we will focus on that technology. This allows an easier description of LANE.

Each emulated LAN consists of its LAN Emulation Clients (LECs), i.e. its end systems
and at least one bridge or routet6 In addition the LAN Emulation Service (LE Service)
is needed inside the emulated LAN. The LE Service itself is implemented by at least one
LAN Emulation Configuration Server (LECS), at least one LAN Emulation Server (LES)
and at least one Broadcast and Unknown Server (BUS). The interface between an LAN
Emulation Client (LEC) and the LE Service is called the LAN Emulation User-Network
Interface (LUNI) and is specified in [LUNI2]. We will describe it in this section. The interface
inside the LE Service, i.e. between LECS, LES and BUS, is called the LAN Emulation
Network-Network Interface (LNNI). The LNNI is specified in [LNNI2] and will not be
described in this book.

The LEC performs data transport, provides an MAC level emulated Ethernet service
interface to the higher layer software and implements the client part of the address resolution

An emulated LAN does not need a bridge or router if no host outside the emulated LAN needs to be reached.

LANE: LAN Emulation over ATM 223

mechanism. The data transport to other clients will be done by using a direct SVC to that
client. The address resolution service of the LES is needed to get the destination ATM address
to establish the SVC. If the destination ATM address cannot be resolved fast enough or a
multicast or broadcast message is sent, then the BUS is used to distribute the message.

The LECS assigns each LEC to its emulated LAN. This means that configuration
parameters (e.g. the ATM address of the LES) will be sent to a client which is just joining
the emulated LAN. This configuration is done in the Configuration state. It is possible to
use several LESs in an emulated LAN for scalability. In such case the LECS performs a load
distribution among all LESs. If the LECS serves more than one emulated LAN, then the LECS
decides, based on its configuration database and the ATM address of the LEC, which emulated
LAN will be assigned to the LEC.

The LES implements the central control functions of the emulated LAN. It provides the
service to register and resolve unicast and multicast MAC addresses to ATM addresses. Each
LEC connects to an LES and registers its own unicast MAC address(es) together with its own
ATM address. The LEC also registers the multicast MAC addresses where it wishes to receive
messages. The BUS is then responsible for the distribution of the multicast messages to the
registered LECs. The LES is also responsible for address resolution. This means that an LEC
can use its LES to translate a unicast or multicast MAC address (if it was registered before)
into an ATM address.

The BUS is responsible for the distribution of messages to the broadcast MAC address
(Oxffffffffffffff) to all LECs and for the distribution of messages to a multicast MAC address to
all LECs that are registered to receive messages to this specific multicast address. In addition,
unicast messages are distributed to all LECs if the LEC did not yet resolve the ATM address
and establish an SVC to the destination. In some networks a separate Selective Multicast
Server (SMS) is used for load distribution. The SMS is then responsible for the distribution
of multicast messages.

In LANE all messages are sent on top of AALS.
Figure 8.4 shows an example scenario of an emulated LAN. LANE requires point-to-point

and point-to-multipoint SVCs. The point-to-multipoint connections are used by the LES to
distribute control information and by the BUS to distribute messages to multiple LECs. This
can be a problem because some (public) ATM networks do not support multicast.

8.3.2 LANE Connections

LANE uses different connection types to transport user and control data. These connections
are called flows. In LANE seven different flows are used. The Control Distribute flow and
the Multicast Forward flow are carried on point-to-multipoint SVCs. The Configure Direct
flow, the Control Direct flow, the Data Direct flow, the Default Multicast Send flow and the
Selective Multicast Send flow are carried on point-to-point SVCs. In some situations the use
of PVCs is possible, but in this book we focus on SVCs.

Since LANE version 2 it is possible to multiplex several Data Direct flows on one SVC,
possibly of different emulated LANs. This multiplexing requires an additional LLC header
for each message sent on the SVC to be able to distinguish messages of different flows. In this
book we assume that all SVCs are non-multiplexed.

The Configure Direct flow is a bi-directional SVC set up by the LEC to the LECS in the
LECS Connect state. This SVC is signalled using the B-LLI to indicate it carries “LE Control”
messages. The Configure Direct flow is used to get configuration information, e.g. the ATM

224 PROTOCOLS ON TOP OF ATM SIGNALLING

LAN

Emulation

Client 1

W C)

Emulation
Config.
Server

LAN
Control Direct

Server
Control Direct Emulation

D

(LESI

Control Distribute l Control Distribute 4 D

Broadcast

Multicast Send
4

Multicast Send and Unknown

Server
D

@US)

Multicast Forward Multicast Forward
4 D

Data Direct
4 D

LAN

Emulation

Client 2

W C)

Figure 8.4: LANE scenario with two LAN Emulation Clients (LECs), one LAN Emulation
Configuration Server (LECS), one LAN Emulation Server (LES) and one Broadcast and Unknown
Server (BUS), with seven point-to-point and two point-to-multipoint SVCs

address of the LES.
The Control Direct flow is a bi-directional SVC established by the LEC to the LES. It is

established in the Initialisation state. The SVC of the Control Direct flow will not be released
while the LEC is participating in the emulated LAN.

The Control Distribute flow is a unidirectional point-to-multipoint SVC from the LES to
one or more LEC. The LES has the option to establish this SVC. The Control Distribute
flow is used to distribute control messages to a group of LECs more effectively. If a Control
Distribute SVC is established, then it will not be released while the LEC is participating in
the emulated LAN.

A Data Direct flow is a bi-directional SVC. It is establish from one LEC to another LEC
to exchange unicast user data. The establishing LEC needs to know the ATM address of the
second LEC. To find it out, the establishing LEC uses the address resolution service of LANE
to translate the user data destination MAC address into an ATM address of an LEC. The SVCs
of Data Direct flows will be released aRer a timeout.

An LEC sets up one bi-directional SVC to the BUS to transport the Default Multicast Send
flow. An LEC sends all user data messages using this flow that cannot be sent over other flows.
Such user data messages can be messages to the broadcast MAC address (Oxffffffffffff), to
an MAC address with unestablished Data Direct flow or to a multicast MAC address, where

LANE: LAN Emulation over ATM 225

the selective multicast procedure has not provided an alternative path. The ATM address of
the BUS to establish the SVC for the multicast flow will be determined by resolving the
broadcast MAC address via the LANE address resolution service. The SVC of the Default
Multicast Send flow will not be released while the LEC is participating in the emulated LAN.

An LEC can set up additional bi-directional SVCs to the BUS. They transport the Selective
Multicast Send flows. The ATM address of the BUS will be determined by resolving a
multicast MAC address using the LANE address resolution service. The resolved ATM
address may vary to distinguish different Multicast Send flows. One BUS may have several
ATM addresses.

The BUS is responsible for distributing multicast messages, broadcast messages and some
unicast messages. To do so it establishes one or more unidirectional point-to-multipoint SVCs
to each LEC to transport the Multicast Forward flows. The BUS uses these SVCs to forward
user data messages received by its incoming Multicast Send and Default Multicast Send flows.
The SVC of the Multicast Forward flow will not be released while the LEC is participating in
the emulated LAN.

The BUS may also use a Multicast Send flow to forward user data messages. In such a case
it is the responsibility of the BUS that an LEC does not receive duplicated messages.

8.3.3 LEC States

An LEC that wants to be a member of an emulated LAN can be in one of seven states. These
states show more details of the LANE procedures. Even if we call the states “states”, in the
LANE standard documents they are called “phases”.

An LEC starts with the Initial State. This state can be reached if the LEC is going up
or aRer an LEC has left an emulated LAN. In this state the LEC needs to know several
parameters. These parameters are, for example, its own ATM address(es), its own unicast
MAC address(es), the LAN type (Ethernet, IEEE 802.3 or IEEE 802.5), the Maximum
Transport Unit (MTU) size, the ELAN name (to distinguish multiple emulated LANs in one
ATM network) or the ATM address of the LECS.

The LECS Connect state is the second state. The state is used by the LEC to establish
an SVC that carries a Configuration Direct flow to the LECS. There are three mechanisms
to determine the ATM address of the LECS. The first and preferred mechanism is to use a
preconfigured ATM address of the LECS. If such an address is not configured, then an LECS
ATM address is obtained via ILMI. A proper MIB definition is available in the LANE standard
documents. If this fails too, then the LEC tries to establish an SVC of one of two well-known
ATM addresses. These addresses are:

Oxc50079000000000000OOOOOOOOOOaO3eOOOOOlOO;
0x470079000000000000OOOOOOOOOOaO3eOOOOOlOO.

In this case these addresses must be configured to point to an LECS.
The Configuration state follows after the LECS Connect state. In this state the LEC obtains

configuration parameters from the LECS. The most important parameter is the ATM address
of the LES. To request a parameter an LE-CONFIGUREREQUEST PDU is sent to the LECS.
The LECS answers with an LE-CONFIGUREXESPONSE PDU. Most of the parameters
are encoded as a TypelLengthNalue (TLV). Such a TLV is a pair formed by a 4-byte name
(defined in the standard documents) and a value of variable length. ARer completion of the

226 PROTOCOLS ON TOP OF ATM SIGNALLING

configuration the SVC will be released by the LEC.
The next state is the Join state. Here the LEC establishes an SVC to the LES that

carries a Configuration Direct flow. After the connection establishment the LEC sends an
LEJOIN-REQUEST PDU to the LES. Now the LEC belongs to the emulated LAN. The
PDU will also be used to register the first ATM address and the first unicast MAC address
of the LEC that will be used for address resolution. The LES will add the LEC to the point-
to-multipoint SVC that carries the Control Distribute flow. The request is answered by the
LES with an LEJOIN-RESPONSE PDU. This response contains the LAN Emulation Client
ID (LECID) which is a unique ID assigned to the LEC in the emulated LAN.

The next state is the Initial Registration state. In this state the LEC can, but does not have
to, register additional unicast and multicast addresses that will be handled by the LEC. The
registration is used by the address resolution service. This registration(s) can be changed in
the Operational state.

Now the LEC is in the BUS Connect state. The LEC connects the BUS to transport the
Default Multicast Send flow. The LEC obtains the ATM address of the BUS by using the
address resolution service and resolving the MAC broadcast address (Oxffffffffffffff) into an
ATM address. The LEC may also establish additional SVCs to the BUS to carry Selective
Multicast Send flows. Then the BUS adds the LEC to one or more point-to-point SVCs that
carry Multicast Forward flows. The LEC receives multicast and broadcast messages over these
svcs .

At the end the LEC is in the Operational state. Now the LEC can deliver unicast and
multicast MAC messages. In addition MAC addresses can be registered and unregistered and
the address resolution service can be used.

What happens when an LEC wants to finish its membership in the emulated LAN or needs
to handle the return to the Initial State because of an error? The answer is quite simple.
The LEC simply releases all SVCs using UN1 signalling. The LEC and BUS will not try
to reestablish the released connections.

8.3.4 Address Registration

An LEC can register additional MAC address and ATM address pairs not registered in the
Join state at the LES using the Data Direct flow. The LEC can also unregister address pairs.
This procedure also includes the (un)registration of multicast MAC addresses where the LEC
wants to receive messages. The broadcast MAC address cannot be registered.

The registration and unregistration uses four different PDU types:

0 LEREGISTERXEQUEST. This PDU is sent by the LEC to the LES to register a new
address pair.

0 LEREGISTEKRESPONSE. This is the answer by an LES in response to a request from
an LEC. This PDU confirms or rejects (e.g. if invalid addresses were used) the registration
request.

0 LE-UNREGISTERXEQUEST. This PDU type is sent by the LEC to the LES to unregister
an address pair.

0 LE-UNREGISTEKRESPONSE. This PDU is the answer of an LES to confirm or reject
(e.g. if the address pair was not registered) the unregistration request.

Figure 8.5 shows one of the four PDUs just described. The PDU is sent on top
of AAL5. The OP-CODE field is 0x0004 for LEREGISTERREQUEST, 0x0104 for

LANE: LAN Emulation over ATM 227

I oxmo I Ox01 I Ox01 I 0

OP-CODE

TRANSACTION ID

STATUS 4

8

REQUESTER-LECID

16

12 0x0000

SOURCE-LAN-DESTINATION

TARGET-LAN-DESTINATION, set to Ox00 I 24
I I

I 20 byte SOURCE-ATM-ADDRESS I
32

0x0000 NUIV-TLVS Ox00 52
I

I 20 byte TARGET-ATM-ADDRESS, set to Ox00
I 56
I
I

32 bytes RESERVED, set to Ox00 I
I

I
I
I
I
I

16

TLVs (if my) I108
... I

I I I
byte 0 byte 1 byte 2 byte 3

Figure 8.5: An AAL5 payload that contains an (un)registration PDU

LEREGISTERIIESPONSE, 0x0005 for LE-UNREGISTERREQUEST and 0x0105 for
LE-UNREGISTERIIESPONSE. The STATUS field is Ox0000 for requests and successful
responses. The field has a different value if the response indicates an error. The
TRANSACTION ID is set by the LEC when sending a request to the LES. The response PDU
contains the same TRANSACTION ID. The REQUESTER-LECID is a unique ID of the LEC
and was assigned to the LEC while in the Join state. The SOURCE-LAN-DESTINATION
field is the two-byte value Ox0001 plus the six-byte MAC address of the address pair. The
SOURCE-ATM-ADDRESS is the ATM address of the address pair. TLVs may also be carried
by a PDU to transmit additional parameters (e.g. QoS associated with the address pair).

8.3.5 Address Resolution

Address resolution is a service that translates unicast, multicast or broadcast MAC addresses
into ATM addresses of an LEC or BUS and vice versa. The service is needed by an LEC to
be able to transmit user data messages to the correct destination. The LEC transmits the user
data messages over the SVCs that carry the Data Direct or Multicast Send flows.

To resolve an MAC address, an LEC sends an ARP request to the LEC over the Control
Direct flow. The ARP request is encoded as LEARPXEQUEST PDU.

The LES answers the ARP request by sending an LEARPRESPONSE PDU back to the
requesting client on the same Control Direct flow. The answer is based on the address pairs

228 PROTOCOLS ON TOP OF ATM SIGNALLING

registered and stored at the LES. If the LES cannot find an appropriate entry in its address
registration cache, then one or more LECs are asked. This means that in such a case the LES
forwards the original LEARPRESPONSE PDU to many LECs using the Control Distribute
flow or many Control Direct flows. The LES hopes that at least one LEC can resolve the
address. This could be possible if the requested address was not registered by an LEC, e.g.
because the LEC is a bridge that does not register all external MAC addresses. If an LEC
receives a ARP request that it can resolve, then it sends an LEARPRESPONSE PDU to the
LES on the Control Direct flow. If the LEC cannot resolve the request, then it does nothing.

Each LEC caches address pairs resolved by ARP requests. An aging mechanism is
responsible for the removal of old entries to be able to adapt to new topologies.

oxmo I Ox01 I Ox01 0

I OP-CODE I STATUS 1 4

TRANSACTION ID 8

REQUESTER-LECID I FLAGS 12

SOURCE-LAN-DESTINATION, set to Ox00 I l6
TARGET-LAN-DESTINATION

24

I 20 byte SOURCE-ATM-ADDRESS, set to Ox00 I 32

0x0000 52 Ox00 NUk-TLVs

I 20 byte TARGET-ATM-ADDRESS
I 56

I
I

I

32 bytes RESERVED, set to Ox00 I l6
I

I I I

byte 0 byte 1 byte 2 byte 3

Figure 8.6: LANE ARP requesthesponse PDU

Figure 8.6 shows the LEARPREQUEST PDU which will be delivered on top
of AALS. The OP-CODE field is 0x0006 for LEARP-REQUEST and 0x0106 for
LEAM-RESPONSE. The STATUS field is Ox0000 for requests and successful responses.
The field has a different value if the response indicates an error. The TRANSACTION ID
is set by the LEC when sending a request to the LES. The response PDU contains the
same TRANSACTION ID. The REQUESTER-LECID is a unique ID of the LEC that was
sending the request to the LES. The FLAGS field is usually set to 0x0000. It is set to
Ox0001 in a response PDU if the TARGET-LAN-DESTINATION represents an address that

LANE: LAN Emulation over ATM 229

was not registered at the LES (e.g. an external MAC address of a bridge). The TARGET-
LAN-DESTINATION field is the two-byte value Ox0001 plus the six-byte MAC address
of the address pair. The TARGET-ATM-ADDRESS field is Ox00 ... 00 in request PDUs. In
response PDUs it is the resolved ATM address that was assigned to the TARGET-LAN-
DESTINATION. TLVs may also be carried with a PDU to transmit additional parameters
(e.g. QoS associated with the address pair).

The LENARP-REQUEST PDU is an additional PDU type defined for address resolution.
Such a PDU is issued by an LEC if a registered address pair is changed. The message is
sent to the LES. If an LES receives such a PDU, then it forwards it to all LECs over the
Control Distribute flow or all Control Direct flows. An LEC that receives the PDU removes
the invalid address pair from, and adds the new address pair to, the address resolution table
cache in the LEC. The invalid address pair and the new address pair are parameters of the
LENARP-REQUEST PDU.

For the LANE address resolution mechanism an LE-TOPOLOGYREQUEST PDU, is
defined. Such a PDU is sent by an LEC to the LES if the LEC wants to advertise
massive changes in address mappings. This is needed for LECs that work as transparent
bridges and need to clear their internal address database. If an LES receives an
LE-TOPOLOGYREQUEST PDU then it forwards it to all LECs over the Control Distribute
flow or all Control Direct flows. An LEC that receives such a PDU clears its address resolution
table cache. This allows easy adaption to a new network topology.

8.3.6 User Data Transport

User data is sent from one LEC to another over a Data Direct flow SVC. The ATM address of
the destination LEC is obtained by resolving the MAC address via LANE address resolution.
If the destination address cannot be resolved into an ATM address, then the message is sent
over the Default Multicast Send flow SVC. An example of a user data message is an IP PDU.

Multicast user data messages are sent over a Selective Multicast flow SVC to the BUS. The
ATM address of the BUS is obtained by resolving the destination multicast MAC address. If
the destination multicast address cannot be resolved or if it is the broadcast address, then the
message is sent over the Default Multicast Send flow SVC.

Figure 8.7 shows an Ethernet user data message that will be delivered on top of AAL5. The
two-byte LE-HEADER field contains the LAN Emulation Client ID (LECID) of the sending
LEC. It is allowed to set this field to Ox0000 on Direct Data flows. DESTINATION ADDRESS
and SOURCE ADDRESS are the MAC addresses. The TYPE field is 0x0600 or greater and
contains the Ethernet payload type, e.g. 0x0800 for IP. The INFO field contains the Ethernet
payload, e.g. the IP PDU. The payload is padded with zeros so that the payload is at least
46 bytes long.7 A length field is not present. The length can be determined as the difference
between the AAL5 payload length minus 16 bytes, but this calculation does not work if the
Ethernet payload length is less than 46 bytes. A Cyclic Redundancy Check (CRC) or Frame
Check Sequence (FCS) field is not needed because AAL5 already protects the message against
bit modification errors.

An LEC can receive user data messages on different flows. It is responsible for discarding
all user data messages that are not addressed to the higher layers of the LEC.

A minimum payload length of 46 bytes is needed to ensure a minimum message size in Ethernet which is important
for the Ethemet collision detection mechanism.

230 PROTOCOLS ON TOP OF ATM SIGNALLING

LE HEADER
DESTINATION ADDRESS

0

4

8
TYPE 12

INFO 16

SOURCE ADDRESS

I I I
byte 0 byte 1 byte 2 byte 3

Figure 8.7: LANE Ethernet user data message

All LECs of an emulated LAN use the same MTU. This value is configurable. For Ethernet
emulation the maximum user data size should be 1500 bytes.

LANE is prepared to support different Quality of Service (QoS) parameters on different
flows. However, ordinary Ethernet applications do not expect any QoS support. Therefore,
the LANE flows will usually be transported on Unspecified Bit Rate (UBR) connections. The
QoS parameters are specified when establishing a new SVC.

8.3.7 Flush Message Protocol

When an LEC sends a user data message to a specific destination there may be two different
flows that can be used: the Data Direct flow and the Default Multicast Send flow. It is also
possible that an LEC sends some user data messages to one flow and then changes to the other
flow. This can cause the problem that the messages are received in the wrong order because
both flows transport the messages independently of the other flow. ATM only guarantees the
correct message order on on VC, i.e. on one flow.

If an LEC receives user data messages then the original order cannot be recovered. This can
cause problems in higher level applications because they know and expect that the Ethernet
LAN transports all user data messages in the correct message order.

To avoid reordering of unicast messages the Flush Message Protocol was defined in LANE.
It consists of the two PDU type LETLUSHREQUEST and LETLUSHRESPONSE.

Let us assume the a source LEC is sending user data messages to the destination LEC on
an original flow. Now the LEC wants to change the flow. First, it will stop sending user data
flows to the destination LEC. Then it sends an LETLUSHAEQUEST PDU to the destination
LEC on the original flow. Then the source LEC waits for the LEJLUSHRESPONSE PDU
from the destination LEC. The LETLUSHAESPONSE PDU will be sent by the destination
LEC using the Control Direct flow to the LES and received by the source LEC on the Control
Distribute flow from the LES. After the source LEC has received the LETLUSHRESPONSE
PDU it is clear that there is no user data message on the way any more. Now the source LEC
can choose to use a different flow to send unicast user data messages to the destination LEC.

LANE: LAN Emulation over ATM 23 1

This guarantees that the user messages are received in the order in which they were sent.
This mechanism cannot be used for multicast and broadcast messages because too many

destinations are involved. Therefore, a source LEC waits for a configured path switching delay
when it changes the flow.

8.3.8 Verlfi Protocol

LANE defines the optional Verify Protocol. It allows an LEC to check whether the calling
party of a Multicast Forward flow SVC is a BUS of the emulated LAN. The Verify Protocol
was defined to recognise misconfigurations in a LANE.

The Verify Protocol is quite unimportant and not needed for a working emulated LAN.

8.3.9 Interface to Higher Layer Sewices

One objective of LANE is the ability to work together with existing network layer protocol
stacks like IP, NetBIOS, Apple Talk and others. These protocol stacks expect to communicate
with an MAC device driver.8 Some industry standards for MAC device drivers are in common
use, e.g. Network Driver Interface Specification (NDIS) from Microsoft and Open Data-link
Interface (ODI) from Novell. These industry standards specify the access to a MAC device
driver. All these specifications use similar service primitives. These service primitives can be
provided by the LANE service, i.e. LANE emulates the behaviour of existing MAC device
drivers. This allows an easy migration from a LAN to LANE because the upper protocol layer
does not need to be changed.

The following is a description of the two most important service primitives defined at the
interface to the higher layer in the LEC. These primitives provide the capability to exchange
user data (e.g. IP PDUs) over the LANE service.

The first important service primitive is LE-UNITDATA.request. This service primitive is
generated by the higher layer whenever it has a PDU to be transferred to a peer entity or
peer entities. Parameters of this service primitive are the unicast or multicast MAC address of
the destination, the unicast MAC address of the source, the frame type to specify Ethernet or
IEEE 802.3 and the user data payload. Beginning with LANE version 2, QoS parameters can
be assigned to the LE-UNITDATA.request. Usually, this is not used because classical LAN
applications do not know anything about QoS, i.e. the default QoS parameters will be used.

The second important service primitive is LE-UN1TDATA.indication. It is passed from the
LANE layer to the next higher layer to indicate the arrival of a PDU. Parameters of this service
primitive are unicast or multicast MAC address of the destination, the unicast MAC address
of the source, the frame type and the user data payload of the incoming PDU.

More formally a network protocol layer stack communicates with the Logical Link Control (LLC) which is the
upper sublayer of the data link layer, and the LLC communicates with the Multiple Access Control (MAC) layer
which is the lower sublayer of the data link layer. In the case of Ethernet the LLC has no functionality. Therefore
we can say that the network layer communicates with the MAC layer. But this is not true for IEEE 802.3 and Token
Ring/IEEE 802.5.

232 PROTOCOLS ON TOP OF ATM SIGNALLING

8.3.1 0 Management of a LEC

The Simple Network Management Protocol (SNMP) is widely used to allow easy
management of network attached devices. It can also be used for devices of an emulated LAN.
In [LECM21 algorithms and MIBs are defined for configuration management, performance
management and fault management of LECs.

8.4 Sylvia: A Native ATM Multimedia Application

The previous sections described how to use classical IP/LAN applications on top of ATM.
The problem of this applications is that they cannot use the advantages of QoS that can be
provided by ATM networks. Therefore it is an interesting alternative approach to develop
native ATM applications. In this section we want to give a short introduction to such a native
ATM application, namely Sylvia.

Sylvia is an extensible, high-end video conference software. It offers excellent audio and
video quality for different kinds of multimedia services. Because it is based directly on ATM,
Sylvia is able to use the QoS guarantees offered by the ATM network. The modular structure
of Sylvia enables easy installation of new services. The security mechanisms of Sylvia ensure
privacy of communication.

Services currently provided by Sylvia include a multipoint video conference, audio and
video telephony, Audio on Demand (AoD) and Video on Demand (VoD), and a shared white
board. Other possible services are an audio and video mail box, teleteaching, and TV and
radio distribution. Sylvia runs on multimedia workstations connected together by an ATM
network.

SVCs or PVCs are used to deliver audio and video streams as well as control information
from and to the users. The audio and video streams especially profit from the QoS of the ATM
network. Different service categories and traffic parameter sets can be used. Sylvia was tested
with UBR connections in a local environment and with Constant Bit Rate (CBR) connections9
in international sessions using a public ATM network.

Depending on the available bandwidth Sylvia can offer a broad range of audio and
video quality. The audio bandwidth can be from 36 kbit/s for telephone like quality up to
1.6 Mbit/s for CD-quality in stereo. The video bandwidth ranges from below 1 MBit/s for
small pictures up to 6 Mbit/s for 786 X 576 frames.

Sylvia supports different audio (8/16-bit PCM, G711 A-law and p-Law, G.72UG.723
ADPCM, MPEG bit stream) and video (Motion-JPEG, MPEG) compression standards.

To establish switched connections through private and public ATM networks different
signalling protocols can be selected: UN1 3.1, 4.2931, 4.2932.1 and Fore SPANS. NSAP
as well as E.164 address formats are supported. Multicast connections are not used because
of the availability problems in public networks.

Sylvia is implemented as a collection of interacting modules written in Java and C for
high portability and performance. Sylvia currently runs on Sun and Linux workstations with
different audio and video equipment (e.g. Parallax, Sunvideo).

A multimedia server can be used as an optional component of Sylvia. It runs centralised
services like AoD and VoD, or TV distribution. The server is designed for scalability and
extensibility-services can be added and removed without interrupting server operation. It

The use of CBR requires shaping.

SUMMARY 233

is possible to run the server distributed on several machines for maximum performance and
reliability. The multimedia server is implemented in C for high portability and maximum
performance. It currently runs on Sun workstations under the Solaris operating system.

The flexible Sylvia and multimedia server architecture supports the easy introduction of
new services. In the example configuration the video telephony (VT), and the AoD and VoD
services are installed. The AoD and VoD service needs a module running in the multimedia
server because the server stores video and audio clips and handles user navigation and
accounting.

Sylvia was developed in the context of research activities at the Research Institute for Open
Communication (GMD Fokus). Further information is available from the Sylvia Internet home
page [BTT+98].

8.5 Summary

In this chapter we looked briefly at some protocols that are used on top of ATM signalling.
In today’s world the most important protocols are the Internet protocols. A major effort of the
standardisation bodies was the definition of protocols to support the Internet in ATM. Two
of these protocols are: CLIP (Classical IP over ATM) which, as it turns out, is very easy to
implement, but suffers from security problems, bad scaleability and missing multicast, and
LANE (LAN emulation) which emulates traditional local area networks like Ethernet on top
of ATM. The chapter closed with an example of an application that builds directly on ATM
and thus can employ the Quality of Service features of native ATM.

Appendix A

ITU-T Standards

The following Standard are available from the International Telecommunication Union
(ITU-T).

0 [Q.2010] Broadband integrated services digital network overview Signalling capability set

0 [Q.2100] B-ISDN signalling ATM adaptation layer (SAAL) overview description
0 [Q.2110] B-ISDN ATM adaptation layer Service specific connection oriented protocol

0 [Q.2 1 191 B-ISDN ATM adaptation layer Convergence function for SSCOP above the frame

0 [Q.2120] B-ISDN meta-signalling protocol
0 [Q.2130] B-ISDN signalling ATM adaptation layer Service specific coordination function

0 [Q.2140] B-ISDN ATM adaptation layer Service specific coordination function for

0 [Q.2144] B-ISDN signalling ATM adaptation layer (SAAL) Layer management for the

0 [Q.2210] Message transfer part level 3 functions and messages using the services of ITU-T

0 [Q.2610] Usage of cause and location in B-ISDN user part and DSS 2
0 [Q.2650] Intenvorking between Signalling System No. 7 broadband ISDN User Part (B-

0 [Q.2660] Intenvorking between Signalling System No. 7 Broadband ISDN User Part (B-

0 [Q.2721. l] B-ISDN user part Overview of the B-ISDN Network Node Interface Signalling

0 [Q.2722. l] B-ISDN User Part Network Node Interface specification for point-to-multipoint

0 [Q.2723. l] B-ISDN User Part Support of additional traffic parameters for Sustainable Cell

0 [Q.2723.2] Extensions to the B-ISDN User Part Support of ATM transfer capability in the

0 [Q.2723.3] Extensions to the B-ISDN User Part Signalling capabilities to support traffic

1, release 1

(SSCOP)

relay core service

for support of signalling at the user-network interface (SSCF at the UNI)

signalling at the network node interface (SSCF at the NNI)

SAAL at the network node interface (NNI)

Recommendation

ISUP) and digital subscriber Signalling System No. 2 (DSS 2)

ISUP) and Narrow-band ISDN User Part (N-ISUP)

Capability Set 2, Step 1

call/connection control

Rate and Quality of Service

broadband bearer capability parameter

parameters for the Available Bit Rate (ABR) ATM transfer capability

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

236 ITU-T STANDARDS

0 [Q.2723.4] Extensions to the B-ISDN User Part Signalling capabilities to support traffic
parameters for the ATM Block Transfer (ABT) ATM transfer capability

0 [Q.2723.6] Extensions to the Signalling System No. 7 B-ISDN User Part Signalling
capabilities to support the indication of the Statistical Bit Rate configuration 2 (SBR 2)
and 3 (SBR 3) ATM transfer capabilities

0 [Q.2724.1] B-ISDN User Part Look-ahead without state change for the Network Node
Interface (NNI)

0 [Q.2725.1] B-ISDN User Part Support of negotiation during connection setup
0 [Q.2725.2] B ISDN User Part Modification procedures
0 [Q.2725.3] Extensions to the B-ISDN User Part Modification procedures for sustainable

0 [Q.2725.4] Extensions to the Signalling System No. 7 B-ISDN User Part Modification

0 [Q.2726.1] B-ISDN user part ATM end system address
0 [Q.2726.2] B-ISDN user part Call priority
0 [Q.2726.3] B-ISDN user part Network generated session identifier
0 [Q.2726.4] Extensions to the B-ISDN user part Application generated identifiers
0 [Q.2727] B-ISDN user part Support of frame relay
0 [Q.2730] Signalling System No. 7 B-ISDN User Part (B-ISUP) Supplementary services
0 [Q.2735.1] Stage 3 description for community of interest supplementary services for B-

0 [Q.275 1. l] Extension of Q.75 1.1 for SAAL signalling links
0 [Q.2761] Functional description of the B-ISDN user part (B-ISUP) of signalling system

0 [Q.2762] General Functions of messages and signals of the B-ISDN user part (B-ISUP) of

0 [Q.2763] Signalling System No. 7 B-ISDN User Part (B-ISUP) Formats and codes
0 [Q.2764] Signalling System No. 7 B-ISDN User Part (B-ISUP) Basic call procedures
0 [Q.2766. l] Switched virtual path capability
0 [Q.2767. l] Soft PVC capability
0 [Q.2931] Digital Subscriber Signalling System No. 2 (DSS 2) User-Network Interface

0 [Q.2931al] Digital Subscriber Signalling System No. 2 User-Network Interface (UNI)

0 [Q.2932.1] Digital subscriber signalling system No. 2 Generic functional protocol: Core

0 [Q.2933] Digital subscriber Signalling System No. 2 (DSS 2) Signalling specification for

0 [Q.2934] Digital subscriber signalling system No. 2 Switched virtual path capability
0 [Q.2939.1] Digital Subscriber Signalling System No. 2 Application of DSS 2 service-

0 [Q.2941.1] Digital subscriber Signalling System No. 2 Generic identifier transport
0 [Q.2951] Stage 3 description for number identification supplementary services using B-

ISDN digital subscriber Signalling System No. 2 (DSS 2) Basic Call
0 [Q.2955.1] Stage 3 description for community of interest supplementary services using B-

ISDN Digital Subscriber Signalling System No. 2 (DSS 2): Closed User Group (CUG)
0 [Q.2957. l] User-to-user signalling (UUS)

cell rate parameters

procedures with negotiation

ISDN using SS No.7: Closed User Group (CUG)

No. 7

Signalling System No. 7

(UNI) layer 3 specification for basic call/connection control

layer 3 specification for basic call/connection control

functions

Frame Relay service

related information elements by equipment supporting B-ISDN services

ITU-T STANDARDS 237

0 [Q.2959] Digital subscriber signalling system No. 2 Call priority
0 [Q.2961] Digital subscriber signalling system No. 2 Additional traffic parameters
0 [Q.2961.2] Support of ATM transfer capability in the broadband bearer capability

information element
0 [Q.2961.3] Digital Subscriber Signalling System No. 2 Additional traffic parameters:

Signalling capabilities to support traffic parameters for the available bit rate (ABR) ATM
transfer capability

0 [Q.2961.4] Digital Subscriber Signalling System No. 2 Additional traffic parameters:
Signalling capabilities to support traffic parameters for the ATM Block Transfer (ABT)
ATM transfer capability

0 [Q.2961.6] Digital Subscriber Signalling System No. 2 Additional traffic parameters:
Additional signalling procedures for the support of the SBR2 and SBR3 ATM transfer
capabilities

0 [Q.2962] Digital Subscriber Signalling System No. 2 Connection characteristics negotiation
during caWconnection establishment phase

0 [Q.2963. l] Digital Subscriber Signalling System No. 2 Connection modification: Peak cell
rate modification by the connection owner

0 [Q.2963.2] Digital Subscriber Signalling System No. 2 Connection modification:
Modification procedures for sustainable cell rate parameters

0 [Q.2963.3] Digital Subscriber Signalling System No. 2 Connection modification: ATM
traffic descriptor modification with negotiation by the connection owner

0 [Q.2964. l] Digital Subscriber Signalling System No. 2: Basic Look-Ahead
0 [Q.2971] Broadband integrated services digital network (B-ISDN) Digital subscriber

signalling system No. 2 (DSS 2) User-network interface layer 3 specification for point-
to-multipoint call/connection control

Appendix B

Source Code Availability

In this book we use and refer to many publicly available software programs and documents.
This appendix provides information on how to obtain these software programs and documents

B.l Standards

B. 1. l ATM Forum Standards

The standards and specifications of the ATM Forum (ATMF) are freely available via
the Internet. Starting from the home page h t t p : //www . atmf orum. com, go to “Technical
Specifications” and then to “Approved Specifications”. Here the downloadable documents are
listed. The documents are available in one or more of the following formats: PDF, PostScript,
MS Word. If the file names are known, then the documents can be directly downloaded via
anonymous FTP from f t p : / / f t p . atmf orum. com/pub/approved-specs/.

B.1.2 ITU-TStandards

The Q.2xxx standardsh-ecommendations of the International Telecommunication Union (ITU-
T) are available via the Internet or from CD-ROM. In both cases they must be purchased.
The home page is h t t p : //www. i t u . i n t . To download documents via the online shop go
to “Standardisation”, then to “ITU-T hblications” and then to “Recommendations in force”.
The documents are available in one or more of the following formats: PDF, PostScript, RTF,
MS Word.

B.1.3 RFCs

Every Internet standard Request for Comments (WC) can be freely downloaded from many
sites in the Internet. One URL is h t t p : //www. i e t f . o rg / r f c . html. The documents are
plain ASCII.

B.2 Protocol Tracing Tools

The Tina framework can be freely downloaded from the software section of the home page of
Begemot Computer Associates. The URL is h t t p : //www. begemot. org. Distributions for
different platforms (Solaris, FreeBSD and Linux) are available.

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

240 SOURCE CODE AVAILABILITY

B.3 ATM Protocol Software

The FreeUNI ATM protocol software can be freely downloaded from the software section of
the home page of Begemot Computer Associates, h t t p : //www . begemot. org. It is a source
code distribution which must be built on the destination platform.

References

[ADDR1.0] The ATM Forum, Technical Committee (January 1999) ATM Forum Addressing: User

[ADDRR] The ATM Forum, Technical Committee (February 1999) ATMForum Addressing: Reference

[ADDRUNI] The ATM Forum, Technical Committee (February 1999) Addressing Addendum for UNI

[AINIl.O] The ATM Forum, Technical Committee (July 1999) ATM Inter-Network Interface (AINI)

[Beg] Begemot Computer Associates ATMSoftware. http: //urn. begemot. org.
[BICI2.0] The ATM Forum, Technical Committee (December 1995) B-ISDN Inter Carrier Interface

(B-ICI) Specijication Version 2.0 (Integrated). af-bici-0013.003.
[BICI2. l] The ATM Forum, Technical Committee (November 1996) Addendum to B-ISDNInter Carrier

Interface (B-ZCI) Specijication Version 2.0 (B-ICI Specijkation Version 2. l). af-bici-0068.000.
[BTT+98] Brandt H., Todorova P., Tittel C., Welk M., Tchouto J.-J., and Hapke C. (1998) Sylvia Home-

page. GMDFokus,http://www.fokus.gmd.de/research/cc/cats/products/sylvia/.
[E. 1641 International Telecommunication Union (ITU-T) (May 1997) ITU-T Recommendation E.164:

The international public telecommunication numberingplan.
[E. 1911 International Telecommunication Union (ITU-T) (October 1996) ZTU-T Recommendation

E. 191: B-ISDN numbering and addressing.
[GMD] GMD Fokus Tanya ATM network interface.
http://www.fokus.gmd.de/research/cc/tip/products.

[ILMI4] The ATM Forum, Technical Committee (September 1996) Integrated Link Management
Interface (ILMI) Specijication-Version 4. af-ilmi-0065.000.

[IS031661 International Standardisation Organisation (December 1993) IS0 3166: Codes for the
representation of the names of countries.

[IS083481 International Standardisation Organisation (September 1996) ISOLEC 8348: Information
Techology-Open Systems Interconnection-Network Service Dejnition.

[LECM21 The ATM Forum, Technical Committee (October 1998) LANEmulation Client Management
Specijkation Version 2. af-lane-0093.000.

[LNNI2] The ATM Forum, Technical Committee (February 1999) LAN Emulation Over ATM
Version 2-LNNI SpeciJication. af-lane-0112.000.

[LW21 The ATM Forum, Technical Committee (July 1997) LAN Emulation Over ATM Version 2-
LUNI Specijication. af-lane-0084.000.

[MPOAl.O] The ATM Forum, Technical Committee (July 1997) Multi-Protocol over ATM Version 1.0.
af-mpoa-0087.000.

[MPOA1.1] The ATM Forum, Technical Committee (May 1999) Multi-Protocol over ATM Version 1.1.
af-mpoa-0114.000.

[PNNI] The ATM Forum, Technical Committee (March 1996) Private Network-Network Interface
Specijication Version 1.0 (PNNZ 1.0). af-pnni-0055.000.

[Q.2010] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2010: Broadband integrated services digital network overview Signalling capability set l , release l .

[Q.2100] International Telecommunication Union (ITU-T) (July 1994) ZTU-TRecommendation Q.2100:

Guide Version 1.0. af-ra-0105.000.

Guide. af-ra-0106.000.

Signalling 4.0. af-ra-0107.000.

SpeciJication. af-CS-0125.000.

ATM Signalling: Protocols and Practice.
Hartmut Brandt, Christian Hapke

Copyright © 2001 John Wiley & Sons Ltd
ISBNs: 0-471-62382-2 (Hardback); 0-470-84168-0 (Electronic)

242 REFERENCES

B-ISDNSignalling ATMAdaptation Layer (SAAL) overview description.
[Q.2110] International Telecommunication Union (ITU-T) (July 1994) ITU-TRecommendation Q.2110:

B-ISDNATMAdaptation Layer-Service Specijc Connection Oriented Protocol (SSCOP).
[Q.2119] International Telecommunication Union (ITU-T) (July 1996) ITU-TRecommendation Q.2119:

B-ISDN ATM Adaptation Layer-Convergence Function for SSCOP above the Frame Relay Core
Service.

[Q.2120] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2120: B-ISDNMeta-Signalling Protocol.

[Q.2130] International Telecommunication Union (ITU-T) (July 1994) ITU-TRecommendation Q.2130:
B-ISDN Signalling ATM Adaptation Layer-Service Specific Coordination Function for Support of
Signalling at the User-Network Interface (SSCF at the UNI).

[Q.2140] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2140: B-ISDN ATM Adaptation Layer-Service Specific Coordination Function for Signalling at
the Network Node Interface (SSCF at the NNI).

[Q.2144] International Telecommunication Union (ITU-T) (October 1995) ITU-T Recommendation
Q.2144: B-ISDN Signalling ATM Adaptation Layer (SAAL)-Layer Management for the SAAL at
the Network Node Interface (hGNI).

[Q.2210] International Telecommunication Union (ITU-T) (July 1996) ITU-TRecommendation Q.2210:
Message Transfer Part Level 3 Functions and Messages using the Services ofITU-TRecommendation
Q.2140.

[Q.2610] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2610: Usage of Cause and Location in B-ISDN User Part and DSS 2.

[Q.2650] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2650: Intenvorking between Signalling System No. 7-Broadband ISDN User Part (B-ISUP) and
Digital Subscriber Signalling System No. 2 (DSS 2).

[Q.2660] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2660: Intenvorking between Signalling System No. 7-Broadband ISDN User Part (B-ISUP) and
Narrow-band ISDN User Part (N-ISUP).

[Q.2721 .l] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2721. l : B-ISDN User Part-Overview ofthe B-ISDNNetwork Node Interface Signalling Capability
Set 2, Step l .

[Q.2722.1] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2722. l : B-ISDN User Part-Network Node Interface specijkation for point-to-multipoint
Call/Connection Control.

[Q.2723.1] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2723.1: B-ISDN User Part-Support ofddditional Trafic Parameters for Sustainable Cell Rate
and Quality ofservice.

[Q.2723.2] International Telecommunication Union (ITU-T) (September 1997) ITU-TRecommendation
Q.2723.2: Extensions to the B-ISDN User Part-Support of ATM Transfer Capability in the
Broadband Bearer Capability Parameter.

[Q.2723.3] International Telecommunication Union (ITU-T) (September 1997) ITU-TRecommendation
Q.2723.3: Extensions to the B-ISDN User Part-Signalling Capabilities to Support Trafic Parameters
for the Available Bit Rate @BR) ATM Transfer Capability.

[Q.2723.4] International Telecommunication Union (ITU-T) (September 1997) ITU-TRecommendation
Q.2723.4: Extensions to the B-ISDN User Part-Signalling Capabilities to Support Trafic Parameters
for the ATMBlock Transfer (ABT) ATM Transfer Capability.

[Q.2723.6] International Telecommunication Union (ITU-T) (May 1998) ITU-T Recommendation
Q.2723.6: Extensions to the Signalling System No. 7-B-ISDN User Part-Signalling Capabilities
to Support the Indication of the Statistical Bit Rate Conjguration 2 (SBR 2) and 3 (SBR 3) ATM
Transfer Capabilities.

[Q.2724.1] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2724.1: B-ISDN User Part-Look-ahead without State Change for the Network Node Interface
0 .

REFERENCES 243

[Q.2725.1] International Telecommunication Union (ITU-T) (May 1998) ITU-T Recommendation
Q.272.5.1: B-ISDN User Part-Support ofNegotiation during Connection Setup.

[Q.2725.2] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.272.5.2: B ISDN User Part-Modijcation Procedures.

[Q.2725.3] International Telecommunication Union (ITU-T) (September 1997) ITU-TRecommendation
Q.272.5.3: Extensions to the B-ISDN User Part-Modijcation Procedures for Sustainable Cell Rate
Parameters.

[Q.2725.4] International Telecommunication Union (ITU-T) (May 1998) ITU-T Recommendation
Q.272.5.4: Extensions to the Signalling System No. 7 B-ZSDN User Part-Modification Procedures
with Negotiation.

[Q.2726.1] International Telecommunication Union (ITU-T) (July 1996) ZTU-T Recommendation
Q.2726.1: B-ISDN User Part-ATMEnd System Address.

[Q.2726.2] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2726.2: B-ISDN User Part-Call Priority.

[Q.2726.3] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2726.3: B-ISDN User Part-Network Generated Session Identijer.

[Q.2726.4] International Telecommunication Union (ITU-T) (September 1997) ZTU-TRecommendation
Q.2726.4: Extensions to the B-ISDN User Part-Application Generated Identijers.

[Q.2727] International Telecommunication Union (ITU-T) (September 1996) ZTU-T Recommendation
Q.2727: B-ISDN User PartsUpport ofFrame Relay.

[Q.2730] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2730: Signalling System No. 7-B-ISDN User Part (B-ISUP)-Supplementary services.

[Q.2735.1] International Telecommunication Union (ITU-T) (June 1997) ITU-T Recommendation
Q.273.5.1: Stage 3 Description for Community ofhterest Supplementary Services for B-ISDN using
SS No. 7: Closed User Group (CUG).

[Q.2751.1] International Telecommunication Union (ITU-T) (September 1997) ZTU-TRecommendation
Q.27.51.1: Extension ofQ. 7.51.1for SAAL Signalling Links.

[Q.2761] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2761: Functional Description of the B-ISDN User Part (B-ZSUP) of Signalling System No. 7.

[Q.2762] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2762: General Functions ofMessages and Signals ofthe B-ZSDN User Part (B-ZSUP) of Signalling
System No. 7.

[Q.2763] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2763: Signalling System No. 7 B-ISDN User Part (B-ISUP)-Formats and Codes.

[Q.2764] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2764: Signalling System No. 7 B-ZSDN User Part (B-ISUP)-Basic Call Procedures.

[Q.2766.1] International Telecommunication Union (ITU-T) (May 1998) ITU-T Recommendation
Q.2766. l : Switched Virtual Path Capability.

[Q.2767.1] International Telecommunication Union (ITU-T) (May 1998) ITU-T Recommendation
Q.2767.1: Soft PVC Capability.

[Q.293 l] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2931: Digital Subscriber Signalling System No. 2 (DSS 2)-User-Network Interface ('UNO layer 3
Specification for Basic Call/Connection Control.

[Q.2931al] International Telecommunication Union (ITU-T) (June 1997) ITU-T Recommendation
Q.2931 Amd l : Digital Subscriber Signalling System No. 2-User-Network Interface Layer 3
Specification for Basic Call/Connection Control.

[Q.2932.1] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2932.1: Digital Subscriber Signalling System No. 2 -Generic Functional Protocol: Core
Functions.

[Q.2933] International Telecommunication Union (ITU-T) (July 1996) ZTU-TRecommendation Q.2933:
Digital Subscriber Signalling System No. 2 (DSS 2)-Signalling Specijcation for Frame Relay
Service.

[Q.2934] International Telecommunication Union (ITU-T) (May 1998) ITU-T Recommendation

244 REFERENCES

Q.2934: Digital Subscriber Signalling System No. 2 -Switched Krtual Path Capability.
[Q.2939.1] International Telecommunication Union (ITU-T) (September 1997) ZTU-TRecommendation

Q.2939.1: Digital Subscriber Signalling System No. 2 -Application of DSS 2 Service-related
Information Elements by Equipment Supporting B-ZSDN Services.

[Q.2941.1] International Telecommunication Union (ITU-T) (September 1997) ITU-TRecommendation
Q.2941.1: Digital Subscriber Signalling System No. 2 -Generic Identijier Transport.

[Q.2951] International Telecommunication Union (ITU-T) (May 1998) ZTU-T Recommendation
Q.2951: Stage 3 Description for Number Identijication Supplementary Services using B-ISDNDigital
Subscriber Signalling System No. 2 (DSS 2)-Basic Call.

[Q.2955.1] International Telecommunication Union (ITU-T) (June 1997) ITU-T Recommendation
Q.2955.1: Stage 3 Description for Community of Interest Supplementary Services using B-ISDN
Digital Subscriber Signalling System No. 2 (DSS 2): Closed User Group (CUG).

[Q.2957.1] International Telecommunication Union (ITU-T) (February 1995) ITU-T Recommendation
Q.2957.1: User-to-user Signalling (UUS).

[Q.2959] International Telecommunication Union (ITU-T) (July 1996) ITU-TRecommendation Q.2959:
Digital Subscriber Signalling System No. 2 -Call Priority.

[Q.2961] International Telecommunication Union (ITU-T) (June 1997) ZTU-T Recommendation
Q.2961: Digital Subscriber Signalling System No. 2 -Additional Trafic Parameters.

[Q.2961.2] International Telecommunication Union (ITU-T) (June 1997) ZTU-T Recommendation
Q.2961.2: Support of ATM Transfer Capability in the Broadband Bearer Capability Information
Element.

[Q.2961.3] International Telecommunication Union (ITU-T) (September 1997) ITU-TRecommendation
Q.2961.3: Digital Subscriber Signalling System No. 2 -Additional Trafic Parameters: Signalling
capabilities to support Trafic Parametersfor the Available Bit Rate (ABR) ATMtransfer capability.

[Q.2961.4] International Telecommunication Union (ITU-T) (September 1997) ITU-TRecommendation
Q.2961.4: Digital Subscriber Signalling System No. 2 -Additional Trafic Parameters: Signalling
Capabilities to support Trafic Parameters for the ATM Block Transfer (ABT) ATM Transfer
Capability.

[Q.2961.6] International Telecommunication Union (ITU-T) (May 1998) ZTU-T Recommendation
Q.2961.6: Digital Subscriber Signalling System No. 2 -Additional Trafic Parameters: Additional
Signalling Procedures for the support ofthe SBR2 and SBR3 ATM Transfer Capabilities.

[Q.2962] International Telecommunication Union (ITU-T) (May 1998) ITU-T Recommendation
Q.2962: Digital Subscriber Signalling System No. 2 -Connection Characteristics Negotiation during
Call/Connection Establishment Phase.

[Q.2963.1] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2963.1: Digital Subscriber Signalling System No. 2 -Connection Modijication: Peak Cell Rate
Modijication by the Connection Owner.

[Q.2963.2] International Telecommunication Union (ITU-T) (September 1997) ZTU-TRecommendation
Q.2963.2: Digital Subscriber Signalling System No. 2 -Connection Modijication: Modijication
Proceduresfor Sustainable Cell Rate Parameters.

[Q.2963.3] International Telecommunication Union (ITU-T) (May 1998) ZTU-T Recommendation
Q.2963.3: Digital Subscriber Signalling System No. 2 -Connection Modijication: ATM Trafic
Descriptor ModiJication with Negotiation by the Connection Owner.

[Q.2964.1] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation
Q.2964.1: Digital Subscriber Signalling System No. 2: Basic Look-Ahead.

[Q.2971] International Telecommunication Union (ITU-T) (October 1995) ITU-T Recommendation
Q.2971: Broadband Integrated Services Digital Network (B-ISDN)-Digital Subscriber Signalling
System No. 2 (DSS 2)-User-network Zntegace Layer 3 Specijication for point-to-multipoint
Call/Connection Control.

[Q.704] International Telecommunication Union (ITU-T) (July 1996) ITU-T Recommendation Q. 704:
Signalling networkfunctions and messages.

[Q3501 International Telecommunication Union (ITU-T) (May 1998) ITU-T Recommendation Q.850:
Usage of cause and location in the Digital Subscriber Signalling System No. l and the Signalling

REFERENCES 245

System No. 7 ISDN User Part.

Management Information for TCPLP-based Internets.
[WC11551 Network Working Group (May 1990) RFC 1155: Structure and IdentiJication of

[WC1 1571 Network Working Group (May 1990) RFC 1157: Simple Network Management Protocol.
[WC12131 Network Working Group (March 1991) RFC 1216: Management Information Base for

[WC12931 Bradly T. and Brown C. (January 1992) RFC 1293: Inverse Address Resolution Protocol.

[WC14831 Heinanen J. (July 1993) RFC 1483: Multiprotocol Encapsulation over ATM adaptation

[WC15771 Laubach M. (January 1994) RFC 1577: Classical IP and ARP over ATM. Hewlett-Packard

[WC8261 Plummer D. C. (November 1982) RFC 826: An Ethernet Address Resolution Protocol. MIT.
[UNI3.1] The ATM Forum, Technical Committee (September 1994) ATM User-Network Integace

[UNI4.0] The ATM Forum, Technical Committee (July 1996) ATM User-Network Interface

[W3981 Venieris I. and Hussmann H. (eds) (1998) Intelligent Broadband Networks. John Wiley & Sons,

[WATM] The ATM Forum, Technical Committee (October 1998) wireless ATM Capability Set l

[X.213] International Telecommunication Union (ITU-T) (November 1995) ITU-T Recommendation

Network Management of TCPLP-based Internets: MIB-II.

Wellfleet Communications.

Layer 5. Telecom Finland.

Laboratories.

SpeciJication; Version 3. l , af-uni-0010.002.

Signalling SpeciJication; Version 4.0. af-sig-0061 .OOO.

Chichester, New York, Weinheim, Brisbrane, Singapore, Toronto.

SpeciJication-Draft. btd-watm-01.09.

X213: Information Techology-Open Systems Interconnection-Network Service Dejinition.

	Cover
	Contents
	Preface
	01 Introduction
	02 Overview of ATM Signalling
	03 UNI- User-Network Interface
	04 ATM Addresses
	05 SAAL- Signalling ATM Adaptation Layer
	06 PNNI- Private Network Node Interface
	07 ILMI- Integrated Local Management Interface
	08 Protocols on Top of ATM Signalling
	Appendix A
	Appendix B
	References

