

Troubleshooting 802.11 Wireless LANs with Centralized Controllers

Tom Koenig Wireless Product Manager APAC tk@cisco.com

Session Number Presentation ID

© 2005 Cisco Systems, Inc. All rights reserved.

Troubleshooting 802.11 Wireless LANs Agenda

- Review: Cisco's Unified Architecture
- Debugging and Troubleshooting
 - Wireless LAN Controllers (WLCs)
 - Access Points
- Tools you should know about...

Review: Cisco's Unified Architecture

Review: Cisco's Unified Architecture Agenda

- Cisco Centralized WLAN Model
- Split MAC and Local MAC
- LWAPP Architecture
 - Layer-2
 - Layer-3

4

But first...

Marketing slides!!!

© 2005 Cisco Systems, Inc. All rights reserved.

5

Cisco Unified Wireless Network End-to-End, Unified – Only Cisco

Unified Advanced Services

Unified cellular and Wi-Fi VoIP. Advanced threat detection, identity networking, location-based security, asset tracking and guest access.

World-Class Network Management

Same level of security, scalability, reliability, ease of deployment, and management for wireless LANs as wired LANs.

Network Unification

Integration into all major switching and routing platforms. Secure innovative WLAN controllers.

Mobility Platform

Ubiquitous network access in all environments. Enhanced productivity. Proven platform with large install base and 63% market share. Plug and Play.

Client Devices

90% of Wi-Fi silicon is Cisco Compatible Certified. "Out-of-the-Box" wireless security.

Cisco Unified Wireless Network Product Portfolio

Session Number Presentation ID

Enterprise-Wide RF Intelligence Pervasive, Easy-to-Use, Unified with Wired Network

Session Number Presentation ID

© 2005 Cisco Systems, Inc. All rights reserved.

Now...

... back to your regularly scheduled presentation.

© 2005 Cisco Systems, Inc. All rights reserved.

Cisco Confidential

9

Cisco Centralized WLAN Model

Session Number Presentation ID

© 2005 Cisco Systems, Inc. All rights reserved.

Cisco Centralized WLAN Model

Session Number Presentation ID

Division of Labor—Split MAC

Session Number Presentation ID

Division of Labor—Split MAC Illustrated

Division of Labor—Local MAC

Session Number Presentation ID

Layer-2 LWAPP Architecture

- Access Points don't require IP addressing
- Controllers need to be on EVERY subnet on which APs reside
- L2 LWAPP was the first step in the evolution of the architecture; many current product do not support this functionality

Layer-3 LWAPP Architecture

- Access Points require IP addressing
- APs can communicate w/ WLC across routed boundaries
- L3 LWAPP is more flexible than L2 LWAPP and all products support this LWAPP operational 'flavor'

Debugging and Troubleshooting

Troubleshooting 802.11 Wireless LANs Agenda

- Review: Cisco's Unified Architecture
- Debugging and Troubleshooting
 - Wireless LAN Controllers (WLCs)
 - Access Points

18

Client Mobility

- L2 mobility
- L3 Mobility
 - Fully transparent to clients
 - **Conceptually similar to Proxy Mobile IP**
 - Foreign and Anchor Controllers
 - Asymmetric traffic flow
- Fast, Secure Roaming

PKC – Proactive Key Caching
WPA2 / 802.11i Fast Roaming (select supplicants, only)
CCKM – Cisco Centralized Key Management (available in 4.0)
WPA / WPA2 / 802.11i Fast Roaming (CCX v3 and higher)

Layer 2 Mobility

Client connects to AP A on Controller 1

Client database entry created

Client roams to AP B on Controller 1

PKC and CCKM provide fast roam times. Keys are cached, so no need to reauthenticate to Radius server.

 Client roams from AP B (Controller 1) to AP C (Controller 2)

> Controller 2 makes a Mobility Announcement to peers in Mobility Group looking for Controller with client MAC

Controller 1 responds, handshakes, ACKs

Client database entry moved to Controller 2

PMK data included (master key data from Radius server)

PKC and CCKM provide fast roam times. Keys are cached, so no need to reauthenticate to Radius server.

Layer 3 Mobility

- Ethernet in IP Tunnels automatically created between controllers
- Client connects to AP B on Controller 1

Client database entry created as ANCHOR

Client roams to AP C on Controller 2

Controller 2 makes a Mobility Announcement to peers in Mobility Group looking for Controller with client MAC

Controller 1 responds, handshakes, ACKs

Client database entry copied to Controller 2

Marked as FOREIGN

PMK data included (master key data from Radius server)

PKC and CCKM provide fast roam times. Keys are cached, so no need to reauthenticate to Radius server.

Client roams to AP on 3rd Controller

Same as above except FOREIGN client DB entry moved from previous Foreign Controller

Roam is transparent to client

- •Traffic from client to network exits at Foreign Controller
- •Traffic to client tunneled from Anchor to Foreign Controller
- •Same DHCP address maintained
- •PKC or CCKM provide fast, secure roams

Mobility Configuration

Make sure that each controller is configured to be in the same Mobility Group In the controller WebGUI: **Controller | General**

Default Mobility Domain Name mobility group

00:0b:85:1d:62:e0

00:0b:85:1d:1a:a0 10.10.10.10

 Populate each controller with every other controller's MAC and IP address

Mobility Group Members > Edit All

This page allows you to edit all mobility group members at once. Mobility group members are listed below, one per line. Each mobility group member is represented as a MAC address, IP address and group name(optional) separated by one or more spaces.

20.20.20.20

In the controller WebGUI: Controller | Mobility Management →Mobility Groups | Edit All

 Ensure each WLC shares the same Virtual interface **IP** address

Debugging Mobility: First things first...

Can you ping between WLCs in the mobility group?
 Ping from WLC CLI or GUI

(WLC_CLI)>ping [WLC IP Address]

 If you can ping, can you ping through both the inter-controller control and data channels?

-CLI-only commands eping and mping are new features in the 4.0 controller software release.

•Control (WLC_CLI)>mping [WLC IP Address]

•Data (WLC_CLI)>eping [WLC IP Address]

If regular pings are not successful, check WLC IP addressing and network connectivity.
If pings go through, but mpings do not, ensure each WLC's mobility group name is the same and make sure each WLC's IP, MAC, and mobility group name is entered in every WLC's mobility list.
If pings and mpings are successful, but epings are not, check the network to make sure that IP protocol 97 (Ethernet-over-IP) is not blocked.

Verifying Connectivity Between WLCs

		ICMP echo pad between WL	ckets .Cs					
Packet	Source	Destination	Flags	Size		Relative Time	Protocol	Summary
1	20.20.20.220	10.10.10.110		122		0.000000	PING Req	Echo: 10.10.10.110
2	10.10.10.110	20.20.20.220		122		0.009188	PING Reply	Echo Reply: 20.20.20.220
3	20.20.20.220	10.10.10.110		122		0.109941	PING Req	Echo: 10.10.10.110
4	10.10.10.110	20.20.20.220		122		0.110006	PING Reply	Echo Reply: 20.20.20.220
5	20.20.20.220	10.10.10.110		122		0.219892	PING Req	Echo: 10.10.10.110
6	10.10.10.110	20.20.20.220		122		0.219896	PING Reply	Echo Reply: 20.20.20.220
7	20.20.20.220	10.10.10.110		70		5.180978	IP	
8	20.20.20.220	10.10.10.110		70		5.180981	IP	eping' sends echo
9	20.20.20.220	10.10.10.110		70		5.180983	IP	packets in the inter-WLC
10	10.10.10.110	20.20.20.220		70		5.181225	IP	Ethernet-over-IP data
11	10.10.10.110	20.20.20.220		70		5.181227	IP	tunnel
12	10.10.10.110	20.20.20.220		70		5.181230	IP 🥒	
13	20.20.20.220	10.10.10.110		86		11.463588	UDP	Src=16666,Dst=16666 ,L= 40
14	20.20.20.220	10.10.10.110		86		11.463591	UDP	Src=16666,Dst=16666 ,L= 40
15	20.20.20.220	10.10.10.110		86	~	11.463593	UDP	Src=16666,Dst=16666 ,L= 40
16	10.10.10.110	20.20.20.220		86	\square	11.464000	UDP	Src=16666,Dst=16666 ,L= 40
17	10.10.10.110	20.20.20.220		86	/	11.464002	UDP	Src=16666,Dst=16666 ,L= 40
18	10.10.10.110	20.20.20.220		86		L 11.464005	UDP	Src=16666,Dst=16666 ,L= 40

'mping' sends echo packets in the UDP 16666 inter-WLC control path

'ping' sends regular

Session Number Presentation ID

Check the Mobility Group

• Make sure every WLC is a part of the same mobility group

(WLC_CLI) > show mobility summary

Mobility Protocol Port	16666
Mobility Security Mode	Disabled
Default Mobility Domain	cisco_mobility
Mobility Group members configured	3

Switches configured in the Mobility Group

MAC Address	IP Address	Group Name
00:0b:85:40:7a:00	20.20.20.220	<local></local>
00:0b:85:40:81:00	10.10.10.110	cisco_mobility
00:0b:85:40:a9:00	30.30.30.330	cisco_mobility

Mobility Debug Scenario

© 2005 Cisco Systems, Inc. All rights reserved.

Dot11 Mobile Debugs

On Foreign Controller

(ForeignWLC) >debug mac addr 00:13:ce:57:2b:84

(ForeignWLC) >debug dot11 mobile enable

[TIME]: DEBU STA 00:13:ce:57:2b:84 apfCreateMobileStationEntry:1046 Adding mobile 00:13:ce:57:2b:84 on LWAPP AP 00:13:5f:fa:28:10(0)

[TIME]: DEBU STA 00:13:ce:57:2b:84 apfProcessAssocReq:2170 Association received from mobile 00:13:ce:57:2b:84 on AP 00:13:5f:fa:28:10

[TIME]: DEBU STA 00:13:ce:57:2b:84 apfSendAssocRespMsg:854 Sending Assoc Response to station 00:13:ce:57:2b:84 on BSSID 00:13:5f:fa:28:10 (status 0)

On Anchor Controller

(AnchorWLC) >debug mac addr 00:13:ce:57:2b:84

(AnchorWLC) >debug dot11 mobile enable

[TIME]: DEBU STA 00:13:ce:57:2b:84 apfUpdateMobileStationLocation:1948 Updated location for station 00:13:ce:57:2b:84 - old AP 00:0b:85:22:95:90-0, new AP 00:00:00:00:00:00-0

Mobility Handoff Debugs

 The 'mobility handoff' debug shows client handoff between WLCs in a mobility group during inter-WLC roams

Roaming handoff debug Steps:

Create a debug filter for the MAC of the client of interest

Then run the handoff debug on both the anchor and foreign controllers

Check debug output to verify proper roam operation

'Mobility Handoff' Debug on Foreign WLC

Anchor Controller's IP: 20.20.20.20 Foreign Controller's IP: 10.10.10.10

Session Number Presentation ID

'Mobility Handoff' Debug on Anchor WLC

code 2, reason 1, PEM State RUN, Role Anchor(2)

Anchor Controller's IP: 20.20.20.220 | Foreign Controller's IP: 10.10.10.110

Session Number Presentation ID

Client Record in Foreign WLC

Cisco Systems				Save Configuration Ping Logout Refree	
dhudhu.	MONITOR WLANS CONTR	ROLLER WIRELESS SECUR	ITY MANAGEMENT COMM	4ANDS HELP	
Wireless	Clients > Detail		< Back	Apply Link Test Remove	
Access Points All APs 802.11a Radios 802.11b/o Radios	Client Properties	00:13:ce:57:2b:84	AP Properties	00:13:5f:fa:28:10	
Mesh	IP Address 20.20.20.123 User Name	20.20.20.123	AP Name AP Type	AP0014.6a1b.3b88 802.11g	
Rogue APs Known Rogue APs	Port Number	1	WLAN SSID	cisco_guest	
Rogue Clients Adhoc Rogues	Interface VLAN ID	management 0	Status Association 18	Associated	
802.11a Network	CCX Version E2E Version	CCXv1 Not Supported	802.11 Authentication Reason Code	Open System 0	
Client Roaming Voice Video	Mobility Role	Foreign	Status Code	0 Not Implemented	
802.11h 802.11b/g	Policy Manager State	RUN	CF Poll Request	Not Implemented	
Network Client Roaming Voice Video	Mirror Mode Security Information	Disable 💌	Short Preamble PBCC	Implemented Not Implemented	
Country	Security Policy Completed	Yes	— Channel Agility Timeout	Not Implemented 0 WEP Enable	
Timers	Policy Type Encryption Cipher	N/A WEP (104 bits)	WEP State		
	ЕАР Туре	N/A			

In the WLC GUI, go to: Wireless | Clients and select Details for the client of choice.

Client Record in Anchor WLC

CISCO SYSTEMS					Save Configuration Ping Logout	Refre
dhodho.	MONITOR WLANS CONTR	OLLER WIRELESS	SECURITY	MANAGEMENT COMM	IANDS HELP	
Wireless	Clients > Detail			< Back	Apply Link Test Remo	ove
Access Points All APs	Client Properties			AP Properties		
802.11a Radios 802.11b/g Radios	MAC Address	00:13:ce:57:2b:84	/	AP Address	Unknown	
Mesh	IP Address	20.20.20.123		AP Name	N/A	
Rogues	User Name			АР Туре	Mobile	
Rogue APs Known Roque APs	Port Number	1		WLAN SSID	cisco_guest	
Rogue Clients	Interface	management		Status	Associated	
Adhoc Rogues	VLAN ID	0		Association ID	0	
	CCX Version	CCXv1		802.11 Authentication	Open System	
Network	E2E Version	Not Supported		Reason Code	0	
Client Roaming Voice	Mobility Role	Anchor	>	Status Code	0	
Video	Mobility Peer IP Address	10.10.10.110		CF Pollable	Not Implemented	
802.11h	Policy Manager State	RUN		CF Poll Request	Not Implemented	
Network	Mirror Mode	Disable 💌		Short Preamble	Implemented	
Client Roaming Voice				PBCC	Not Implemented	
Video	security Information		Channel Agility		Not Implemented	
Country	Security Policy Completed	Yes		Timeout	0	
Timers	Policy Type	N/A		WEP State	WEP Enable	
	Encryption Cipher	WEP (104 bits)				
	ЕАР Туре	N/A				

In the WLC GUI, go to: Wireless | Clients and select Details for the client of choice.

User Idle Timeout

- Client sessions will remain for the duration of the User Idle Timeout value
- If a client roams from one AP on one controller to another AP on another controller within that window, client state is maintained and a roaming event between controllers results

NOTE: Depending on application needs, it may be desirable to adjust this parameter to lengthen or shorten the time it will take for client records to be aged out.

User Idle Timeout (seconds) 300

0

In the WLC GUI, go to: Controller | General and adjust the duration in seconds

Traditional Guest Traffic Termination

 The traditional approach to segmenting guest traffic requires 'pulling' the guest VLAN through the corporate network

Tunnel Guest Traffic to the DMZ

- By tunneling all guest traffic to a DMZ controller, traffic originates and terminates in the DMZ
- Guest clients logically reside in the DMZ network
- No changes required to existing infrastructure except adding FW rules
- Add additional DMZ controllers for scalability

Guest Traffic Flows

Guest Tunneling Configuration

 Populate each controller with every other controller's MAC and IP address

Mobility Group Members > Edit All

This page allows you to edit all mobility group members at once. Mobility group members are listed below, one per line. Each mobility group member is represented as a MAC address, IP address and group name(optional) separated by one or more spaces.

In the controller WebGUI: **Controller | Mobility Management** | Mobility Groups | Edit All

00:0b:85:1d:62:e0 20.20.20.20 00:0b:85:1d:1a:a0 10.10.10.10

j7

 You do <u>not</u> need to have each controller configured to be in the same Mobility Group

WLCs on the 'internal' network will only require the same Mobility Group Name if roaming between them is desired; the DMZ controller(s) need not share this name.

Default Mobility Domain Name

mobility group

j7 this probably needs a screenshot refresh from the newest WLC code version jlindema, 3/24/2006

Guest Tunneling Configuration

- Select a mobility anchor or anchors where traffic will be tunneled
 - This needs to be done for each Guest WLAN on each controller – even the DMZ controller(s)!
- To configure this, DMZ controller(s) need to be a part of the Mobility List

In the controller CLI:

- > config wlan mobility anchor add [WLAN ID] [Controller Address]
- > config mobility secure-mode enable
 - > config certificate compatibility on

This is only necessary when backward compatibility with legacy Airespace equipment is required in secure mode

Firewall Entries

Open ports for:

- Inter-Controller Tunneled Client Data IP Protocol 97
- Inter-Controller Control Traffic UDP Port 16666 (or 16667, if encrypted)

 Optional management/operational protocols: SSH/Telnet – TCP Port 22/23 TFTP – TCP Port 69 NTP – UDP Port 123 SNMP – UDP Ports 161 (gets and sets) and 162 (traps) HTTPS/HTTP – TCP Port 443/80 Syslog– TCP Port 514

Design Considerations and Limitations

- Total throughput and client limitations per supported DMZ controller
 - 4100 1 Gbps and 1,500 total clients
 - 4402 2 Gbps and 2,500 total clients
 - 4404 4 Gbps and 5,000 total clients
 - WiSM 8 Gbps and 10,000 total clients
- Each DMZ controller can handle up to 40 tunnels from internal WLCs
 - Tunnels are counted per WLAN, per WLC
- Firewall limitations
 - Only 1:1 NAT is supported through the firewall
- The 2006 and WLCM module can only originate Guest Tunnels They will not be able to terminate guest traffic in the DMZ

Check Mobility Grouping

Make sure every internal WLC has its mobility table properly configured

The DMZ WLC does not need to have the same Mobility Group Name, but make sure it is entered properly into the table

All internal WLCs between which roaming is desired must have the same Mobility Group Name

(WLC_CLI) > show mobility summary

Mobility Protocol Port	16666
Mobility Security Mode	Disabled
Default Mobility Domain	cisco_mobility_internal
Mobility Group members configured	3

Switches configured in the Mobility Group

MAC Address	IP Address	Group Name
00:0b:85:40:7a:00	20.20.20.220	<local></local>
00:0b:85:40:81:00	10.10.10.110	cisco_mobility_dmz
00:0b:85:40:a9:00	30.30.30.330	cisco_mobility_internal

Verify WLAN / DMZ Anchor Coupling

(WLC_CLI) > show wlan summary

Number of WLANs 2							
WLAN ID	WLAN Name	Status	Interface Name				
1	cisco_internal	Enabled	internal				
2	cisco_guest	Enabled	management				

(WLC_CLI) > show mobility anchor 2

Mobility Anchor Export List

- WLAN ID IP Address
 - 2 10.10.10.110

Guest Tunnel Debug Scenario

© 2005 Cisco Systems, Inc. All rights reserved.

'Mobility Handoff' Debug on Foreign/Internal WLC

(Internal_WLC) >debug mac addr 00:13:ce:57:2b:84	
(Internal_WLC) >debug mobility handoff enable	
[TIME]: DEBU STA 00:13:ce:57:2b:84 0.0.0.0 RUN (20) pemMscbAddNpu:1019 Plumbing duplex	mobility tunnel to 10.10.10.110
as Export Foreign (VLAN 0)	Internal notifies
[TIME]: Mobility packet sent to:	DMZ of new client
[TIME]: 10.10.10.110, port 16666, Switch IP: 20.20.20.220	
[TIME]: type: 16(MobileAnchorExport) subtype: 0 version: 1 xid: 35 seq: 35 len 244	
[TIME]: group id: fdde909c fbe10b7f 157d342a 958ad803	
[TIME]: mobile MAC: 00:13:ce:57:2b:84, IP: 0.0.0.0, instance: 0	
[TIME]: VLAN IP: 20.20.20.220, netmask: 255.255.255.0	DMZ responds with
[TIME]: Mobility packet received from:	association
[TIME]: 10.10.10.110, port 16666, Switch IP: 10.10.10.110	information
[TIME]: type: 17(MobileAnchorExportAck) subtype: 0 version: 1 xid: 35 seq: 23 len 272	
[TIME]: group id: 413eb1d5 a15f0364 388bea8e b74567c9	
[TIME]: mobile MAC: 00:13:ce:57:2b:84, IP: 10.10.10.106, instance: 1	
[TIME]: VLAN IP: 10.10.10.110, netmask: 255.255.255.0	
[TIME]: DEBU CTRLR mmAnchorExportAckRcv:2217 Received Anchor Export Ack: 00:13:ce:57	:2b:84 from Switch IP: 10.10.10.110
[TIME]: DEBU STA 00:13:ce:57:2b:84 0.0.0 RUN (20) pemUpdateMobilityRole:2443 mobility rol Export Foreign Peer = 10.10.10.110, Old Anchor = 10.10.10.110, New Anchor = 10.10.10.110	e update request from Export Foreign to

[TIME]: DEBU STA 00:13:ce:57:2b:84 apfMmProcessResponse:1282 Mobility Response: mobile 00:13:ce:57:2b:84IP 0.0.0.0

code 4, reason 4, PEM State RUN, Role Export Foreign(5)

'Mobility Handoff' Debug on DMZ WLC

(DMZ_WLC) >debug mac addr 00:13:ce:57:2b:84

(DMZ_WLC) >debug mobility handoff enable

[TIME]: Mobility packet received from:

[TIME]: 20.20.20.220, port 16666, Switch IP: 20.20.20.220

[TIME]: type: 16(MobileAnchorExport) subtype: 0 version: 1 xid: 34 seq: 34 len 244

[TIME]: group id: fdde909c fbe10b7f 157d342a 958ad803

[TIME]: mobile MAC: 00:13:ce:57:2b:84, IP: 0.0.0.0, instance: 0

[TIME]: VLAN IP: 20.20.20.220, netmask: 255.255.255.0

[TIME]: DEBU CTRLR mmAnchorExportRcv:1888 Received Anchor Export request: 00:13:ce:57:2b:84 from Switch IP: 20.20.20.220

[TIME]: DEBU CTRLR mmAnchorExportRcv:2060 Received Anchor Export policy update, valid mask 0x0:

Qos Level: 0, DSCP: 0, dot1p: 0 Interface Name: , ACL Name:

[TIME]: Mobility packet sent to:

[TIME]: 20.20.20.220, port 16666, Switch IP: 10.10.10.110

- [TIME]: type: 17(MobileAnchorExportAck) subtype: 0 version: 1 xid: 35 seq: 23 len 272
- [TIME]: group id: 413eb1d5 a15f0364 388bea8e b74567c9

[TIME]: mobile MAC: 00:13:ce:57:2b:84, IP: 10.10.10.106, instance: 1

[TIME]: VLAN IP: 10.10.10.110, netmask: 255.255.255.0

[TIME]: DEBU STA 00:13:ce:57:2b:84 0.0.0.0 DHCP_REQD (7) pemMscbAddNpu:995 Plumbing duplex mobility tunnel to 20.20.20.220 as Export Anchor (VLAN 0)

[TIME]: DEBU STA 00:13:ce:57:2b:84 10.10.10.106 RUN (20) pemMscbAddNpu:995 Plumbing duplex mobility tunnel to 20.20.20.220 as Export Anchor (VLAN 0)

Session Number Presentation_ID Internal notifies DMZ of new client

Client Record in the Internal (Foreign) WLC

Cisco Systems				Save Configuration Ping Logout Refre
Illu	MONITOR WLANS CONTR	OLLER WIRELESS SEC	URITY MANAGEMENT COM	IMANDS HELP
Wireless	Clients > Detail		< Back	Apply Link Test Remove
Access Points All APs 802.11a Radios	Client Properties	00:12:00:57:25:84	AP Properties	00.05.05.54.02.90
802.11b/g Radios Mesh	IP Address	0.0.0.0	AP Name	ap:54:c2:80
Rogues Rogue APs Known Rogue APs	User Name Port Number	1	AP Type WLAN SSID	802.11g cisco_guest
Rogue Clients Adhoc Rogues	Interface VLAN ID	management 0	Status Association 1D	Associated
Clients 802.11a Network	CCX Version E2E Version	CCXv1 Not Supported	802.11 Authentication Reason Code	Open System 0
Client Roaming Voice Video	Mobility Role Mobility Peer IP Address	Export Foreign	Status Code CF Pollable	0 Not Implemented
802.11h 802.11b/g Network	Policy Manager State Mirror Mode	RUN Disable 💌	CF Poll Request Short Preamble	Not Implemented Implemented
Client Roaming Voice Video	Security Information		PBCC Channel Agility	Not Implemented Not Implemented
Country	Security Policy Completed	Yes	Timeout	0
Timers	Policy Type Encryption Cipher	N/A WEP (104 bits)	WEP State	WEP Enable
	сан туре	N/ A		

In the WLC GUI, go to: Wireless | Clients and select Details for the client of choice.

Client Record in the DMZ (Anchor) WLC

CISCO SYSTEMS				Save Configuration Ping Logout Refree		
llu	MONITOR WLANS CONTR	OLLER WIRELESS SECU	IRITY MANAGEMENT COM	MANDS HELP		
Wireless	Clients > Detail		< Back	Apply Link Test Remove		
Access Points All APs	Client Properties		AP Properties			
802.11a Radios 802.11b/g Radios	MAC Address	00:13:ce:57:2b:84	AP Address	Unknown		
Mesh	IP Address	10.10.10.104	AP Name	N/A		
Rogues	User Name		АР Туре	Mobile		
Rogue APs Known Roque APs	Port Number	1	WLAN SSID	cisco_guest		
Rogue Clients	Interface	management	Status	Associated		
Adhoc Rogues	VLAN ID	0	Association ID	0		
	CCX Version	Not Supported	802.11 Authentication	Open System		
Network	E2E Version	Not Supported	Reason Code	0		
Client Roaming Voice	Mobility Role	Export Anchor	Status Code	0		
Video 802 11b	Mobility Peer IP Address	20.20.20.220	CF Pollable	Not Implemented		
802.11h/a	Policy Manager State	RUN	CF Poll Request	Not Implemented		
Network	Mirror Mode	Disable 💌	Short Preamble	Not Implemented		
Client Roaming Voice	Socurity Information		PBCC	Not Implemented		
Video			Channel Agility	Not Implemented		
Country	Security Policy Completed	Yes	Timeout	0		
Timers	Policy Type	N/A	WEP State	WEP Disable		
	Encryption Cipher	WEP (104 bits)				
	ЕАР Туре	N/A				

In the WLC GUI, go to: Wireless | Clients and select Details for the client of choice.

Proper Guest Tunnel Operation

용 Etheri	Peek NX - [DMZTunnell	Up.pkt]							JX
🔝 File	Edit View Capture S	end Monitor Tools V	Vindow	Help				- 1	a ×
📄 - 💕	- 📙 😂 📅 📑 🛆 🙋	A & RT 20	Σ	E 🕜 🛛	3				
← →		§ 🛃 🧐 👂 👂 👔							
Packet	Source	Destination	Flags	Size	Relative Time	Protocol	Summary		^
1	Internal WLC	DMZ WLC		290	0.000000	UDP	Src=16666,Dst=16666 ,L= 244		
2	DMZ WLC	Internal WLC		318	0.000408	UDP	Src=16666,Dst=16666 ,L= 272		
3	Internal WLC	DMZ WLC		386	4.070465	IP			
4	DMZ WLC	Internal WLC		390	6.079381	IP			
5	Internal WLC	DMZ WLC		398	6.083290	IP			
6	DMZ WLC	Internal WLC		390	6.089739	IP			
7	Internal WLC	DMZ WLC		86	6.114369	IP			
8	Internal WLC	DMZ WLC		86	7.064308	IP			
9	Internal WLC	DMZ WLC		86	8.064295	IP			
10	Internal WLC	DMZ WLC		219	9.095491	IP			_
11	Internal WLC	DMZ WLC		98	9.194930	IP			_
12	Internal WLC	DMZ WLC		219	9.195527	IP			
13	Internal WLC	DMZ WLC		154	9.354307	IP			
14	Internal WLC	DMZ WLC		98	9.673609	IP			_
15	Internal WLC	DMZ WLC		154	10.095724	IP			_
16	Internal WLC	DMZ WLC		154	10.851464	IP			_
17	Internal WLC	DMZ WLC		154	11.595601	IP			
18	Internal WLC	DMZ WLC		86	11.608458	IP			_
19	DMZ WLC	Internal WLC		86	11.608782	IP			_
20	Internal WLC	DMZ WLC		118	11.610213	IP			
21	DMZ WLC	Internal WLC		118	11.610576	IP			
22	Internal WLC	DMZ WLC		219	12.127182	IP			_
23	Internal WLC	DMZ WLC		154	12.345912	IP			_
24	Internal WLC	DMZ WLC		118	12.611163	IP			
25	DMZ WLC	Internal WLC		118	12.611387	IP			_
26	Internal WLC	DMZ WLC		154	13.095552	IP			
27	Internal WLC	DM7 MLC		118	13 615542	ТР	l		>
Packet:	3 [X]						000	J: 00 1: 13	
··· 🐨	Protocol: 9	7 Ethernet-within-IP E	ncapsul	ation			000:	2: 7F	
···· 😙	Header Checksum: 0	xFAEO					000	3: 94	
	Source IP Address: 2	0.20.20.220 Internal W	ILC .				000	4: AB	
	Dest. IP Address: 1	0.10.10.110 DMZ WLC					000-	5: C2	
🕥	Ethernet-within-IP Enca	psulation						5: 00 7· 0P	
	IP Fragment: (348 bytes)						8: 85	
E FCS	5 - Frame Check Sequence							9- 40	a 💙
Packets	Expert Nodes Protocols Sum	mary Graphs Peer Map Log							

48

Broken Guest Tunnel

🔗 Etherl	Peek NX - [DMZTunnell	Down.pkt]						
🔝 File	Edit View Capture S	iend Monitor Tools V	Vindow H	lp			- 6	i ×
- 💕	- 📙 😂 🕅 🗟 🙆		ΣΙΙ	00				
← → [🗄 🔛 🔛 🔍 🛛 💎 🛨	😵 😼 😼 🔗 🔊						
Packet	Source	Destination	Flags S	ize Relative Tim	e Protocol	Summary		^
251	Internal WLC	DMZ WLC]	18 0:07:50.76215	5 IP			
252	Internal WLC	DMZ WLC]	18 0:07:56.26215	8 IP			
253	Internal WLC	DMZ WLC]	18 0:08:01.76284	7 IP			
254	Internal WLC	DMZ WLC]	18 0:08:07.26198	O IP			
255	Internal WLC	DMZ WLC	J	18 0:08:12.76267	O IP			
256	Internal WLC	DMZ WLC	L L L L L L L L L L L L L L L L L L L	18 0:08:18.26201	1 IP			
257	Internal WLC	DMZ WLC		66 0:08:19.59359	1 UDP	Src=16666,Dst=16666 ,L= 120		
258	Internal WLC	DMZ WLC]	66 0:08:20.59281	3 UDP	Src=16666,Dst=16666 ,L= 120		
259	Internal WLC	DMZ WLC	2	90 0:08:21.59291	6 UDP	Src=16666,Dst=16666 ,L= 244		
260	Internal WLC	DMZ WLC	2	90 0:08:22.59286	3 UDP	Src=16666,Dst=16666 ,L= 244		
261	Internal WLC	DMZ WLC	2	90 0:08:23.59291	2 UDP	Src=16666,Dst=16666 ,L= 244		
262	Internal WLC	DMZ WLC]	18 0:08:23.76238	7 IP			
263	Internal WLC	DMZ WLC	J	18 0:08:29.26209	6 IP			
264	Internal WLC	DMZ WLC	2	95 0:08:34.48133	3 IP			
265	Internal WLC	DMZ WLC	J	18 0:08:34.76187	7 IP			
266	Internal WLC	DMZ WLC	L L L L L L L L L L L L L L L L L L L	18 0:08:40.26190	2 IP			
267	Internal WLC	DMZ WLC]	18 0:08:45.76196	6 IP			
268	Internal WLC	DMZ WLC	J	18 0:08:51.26212	7 IP			
269	Internal WLC	DMZ WLC]	18 0:08:56.76275	3 IP			
270	Internal WLC	DMZ WLC	J	18 0:09:02.26283	O IP			
271	Internal WLC	DMZ WLC	1	18 0:09:07.77048	4 IP			
272	Internal WLC	DMZ WLC]	18 0:09:13.26168	8 IP			
273	Internal WLC	DMZ WLC	1	18 0:09:18.76168	6 IP			
274	Internal WLC	DMZ WLC	1	18 0:09:24.26190	7 IP			
275	Internal WLC	DMZ WLC]	18 0:09:29.76167	7 IP			
276	Internal WLC	DMZ WLC]	18 0:09:35.26483	3 IP			-
<								>

 The inter-WLC control and data planes will look identical for both Mobility and Guest Tunneling functions, except with Mobility, the Ethernet-over-IP data tunnel is asymmetric and will only flow from Anchor controller to Foreign controller

Link Aggregation

- LAG binds all WLC ports into one logical interface
- No need for additional AP Managers
- If WLC ports or switch ports fail, the remaining working ports will continue to operate in the LAG group
- Both the WLC and the upstream switch need to be configured to operate using Link Aggregation

Link Aggregation

• In the WLC

(WLC_CLI) >config lag enable

LAG Mode on next reboot

Configure terminal

interface port-channel <id>

switchport

switchport trunk encapsulation dot1q

switchport trunk native vlan <native vlan id>

switchport trunk allowed vlan <allowed vlans>

switchport mode trunk

no shutdown

interface GigabitEthernet <interface id>

switchport

Channel-group <id> mode on

No shutdown

NOTE: Individual interfaces' 'channel-group' IDs needs to match the desired 'portchannel' ID number.

Troubleshooting 802.11 Wireless LANs Agenda

- Review: Cisco's Unified Architecture
- Debugging and Troubleshooting
 - Wireless LAN Controllers (WLCs)
 - Access Points

LWAPP AP/WLC Discovery Process

- Every LWAPP AP requires connectivity with a controller to provide wireless service and allow for configuration
- LWAPP specifies a process by which this AP / WLC Discovery process occurs
 - Hunting Algorithm
 - **Discovery Algorithm**
 - **Join Process**

WLAN Controller Hunt, Discovery, Join Flowchart

© 2005 Cisco Systems, Inc. All rights reserved

WLAN Controller Hunting Algorithm

- **1.** Power on the AP
- 2. If a static IP address has not been previously configured, the AP issues a DHCP DISCOVER to get an IP address
- 3. If L2 mode is supported, attempt an L2 LWAPP WLAN Controller Discovery (Ethernet broadcast)
- 4. If L2 mode is not supported or step 3 fails to find a WLAN controller, attempt an L3 LWAPP WLAN Controller Discovery
- 5. If step 4 fails, reboot and return to step 1

LWAPP L3 WLAN Controller Discovery Algorithm

- AP goes through the following steps to compile a single LIST OF WLAN CONTROLLERS
- **1. LWAPP Discovery broadcast on local subnet**
- 2. Over-the-Air Provisioning (OTAP)
- **3.** Locally stored controller IP addresses
- 4. DHCP vendor specific option 43 (IP Address should be "Management Interface" IP)
- 5. DNS resolution of "CISCO-LWAPP-CONTROLLER.localdomain"(should resolve to the "Management Interface" IP)
- 6. If no controller found, start over...

L3 LWAPP WLAN Controller Discovery Algorithm

- Once a list of WLAN Controllers is compiled, the AP sends a unicast LWAPP Discovery Request message to EACH OF THE CONTROLLERS IN THE LIST
- WLAN Controllers receiving the LWAPP discovery messages respond with an LWAPP Discovery Response
- LWAPP Discovery Response contains important information:

Controller name, controller type, AP capacity, current AP load, "Master Controller" status, AP-Manager IP address

 AP waits for its "Discovery Interval" to expire, then selects a controller and sends an LWAPP Join Request to that controller

WLAN Controller Selection Algorithm

- The AP selects the controller to join using the following criteria:
 - 1. If the AP has been configured with primary, secondary, and/or tertiary controller, the AP will attempt to join these first (specified in the Controller "name" field in the LWAPP Discovery Response)
 - 2. Attempt to join a WLAN Controller configured as a "Master" controller
 - 3. Attempt to join the WLAN Controller with the greatest excess AP capacity.

This last step provides the whole system with automatic AP/WLC load-balancing functionality.

WLAN Controller Join Process—Mutual Authentication

- AP LWAPP Join Request contains AP's signed X.509 certificate
- WLAN Controller validates the certificate before sending an LWAPP Join Response

Manufacture Installed Certificate (MIC)—Cisco 1000 Series, all Cisco Aironet APs manufactured after July 18, 2005

Self-Signed Certificate (SSC)—LWAPP Upgraded Cisco Aironet APs manufactured prior to July 18, 2005

SSC APs must be "authorized" on the WLAN Controller

- If AP is validated, the WLAN Controller sends the LWAPP Join Response which contains the controller's signed X.509 certificate
- If the AP validates the WLAN Controller, it will download firmware if necessary and then request its configuration from the WLAN controller

Troubleshooting LWAPP-based APs

- Converting Aironet APs to support LWAPP
 - Supported APs:
 - All 1131 and 1242
 - 1200-series APs with 802.11g or <u>new</u> 802.11a
 - 1100-series APs with 802.11g
 - 1300-series Outdoor AP (AP mode only)
- Certificate Types
 - Self-signed Certificate (SSC)
 - Manufacturer-installed Certificate (MIC)
 - Note the 'AP' vs 'LAP' in Access Point part numbers

Troubleshooting LWAPP-based APs

Check the basics first

Can the AP and the WLC communicate?

Make sure the AP is getting an address from DHCP (check the DHCP server leases for the AP's MAC address)

If the AP's address is statically set, ensure it is correctly configured

Try pinging from controller to AP and from AP to controller

If pings are successful, ensure the AP has AT LEAST ONE method by which to discovery at least a single WLC

Console or telnet/ssh into the controller to run debugs

NOTE: APs with serial ports can have a WLC IP address input manually (this is particularly useful for H-REAPs and other APs where discovery mechanisms might not be available. (AP_CLI)#debug lwapp console client (this prevents the AP from rebooting) (AP_CLI)#lwapp ap controller ip <controller ip address> (new in 4.0)

Successful LWAPP AP Join

- (WLC_CLI) >debug mac addr 00:0b:85:54:ce:00
- (WLC_CLI) >debug lwapp events enable
- [TIME]: Received LWAPP DISCOVERY REQUEST from AP 00:0b:85:54:ce:00 to 00:0b:85:40:4a:c0 on port '29'
- [TIME]: Successful transmission of LWAPP Discovery-Response to AP 00:0b:85:54:ce:00 on Port 29
- [TIME]: Received LWAPP JOIN REQUEST from AP 00:0b:85:54:ce:00 to 06:0a:20:20:00:00 on port '29'
- [TIME]: LWAPP Join-Request MTU path from AP 00:0b:85:54:ce:00 is 1500, remote debug mode is 0
- [TIME]: Successfully transmission of LWAPP Join-Reply to AP 00:0b:85:54:ce:00
- [TIME]: Register LWAPP event for AP 00:0b:85:54:ce:00 slot 0
- [TIME]: Register LWAPP event for AP 00:0b:85:54:ce:00 slot 1
- [TIME]: Received LWAPP CONFIGURE REQUEST from AP 00:0b:85:54:ce:00 to 00:0b:85:40:4a:cb
- [TIME]: spamVerifyRegDomain RegDomain set for slot 0 code 0 regstring -A regDfromCb -A
- [TIME]: spamVerifyRegDomain RegDomain set for slot 1 code 0 regstring -A regDfromCb -A
- [TIME]: Successfully transmission of LWAPP Config-Message to AP 00:0b:85:54:ce:00
- [TIME]: Running spamEncodeCreateVapPayload for SSID 'cisco-guest'
- [TIME]: Received LWAPP CONFIGURE COMMAND RES from AP 00:0b:85:54:ce:00
- [TIME]: Received LWAPP CHANGE_STATE_EVENT from AP 00:0b:85:54:ce:00
- [TIME]: Successfully transmission of LWAPP Change-State-Event Response to AP 00:0b:85:54:ce:00
- [TIME]: Received LWAPP Up event for AP 00:0b:85:54:ce:00 slot 0!
- [TIME]: Received LWAPP CHANGE_STATE_EVENT from AP 00:0b:85:54:ce:00
- [TIME]: Successfully transmission of LWAPP Change-State-Event Response to AP 00:0b:85:54:ce:00
- [TIME]: Received LWAPP Up event for AP 00:0b:85:54:ce:00 slot 1!

Failed LWAPP AP Authentication

- (WLC_CLI)>debug mac addr 00:12:80:ad:7a:9c
- (WLC_CLI)>debug lwapp events enable
- [TIME]: Received LWAPP DISCOVERY REQUEST from AP 00:12:80:ad:7a:9c to ff:ff:ff:ff:ff:ff:ff on port '1'
- [TIME]: Successful transmission of LWAPP Discovery-Response to AP 00:12:80:ad:7a:9c on Port 1
- [TIME]: Received LWAPP JOIN REQUEST from AP 00:12:80:ad:7a:9c to 06:0a:10:10:00:00 on port '1'
- [TIME]: LWAPP Join-Request does not include valid certificate in CERTIFICATE_PAYLOAD from AP 00:12:80:ad:7a:9c.
- [TIME]: Unable to free public key for AP 00:12:80:AD:7A:9C
- [TIME]: DEBU CTRLR spamProcessJoinRequest:1574 spamProcessJoinRequest : spamDecodeJoinReq failed

Set the WLC's time!

• The #1 reason APs fail to join is inaccurate controller time

Make sure each controller has the correct time set

Check the WLC's time:

(WLC_CLI) > show time

Manually set the time:

(WLC_CLI) >config time manual <MM/DD/YY> <HH:MM:SS>

or, use NTP:

(WLC_CLI) >config time ntp server <Index> <IP Address>

(WLC_CLI) >config time ntp interval <3600 - 604800 sec>

Does Regulatory Domain Matter? Yes!

- (WLC_CLI) >debug mac addr 00:12:80:ad:7a:9c
- (WLC_CLI) >debug lwapp events enable
- <SNIP> LWAPP Discovery Request/Reply and Join Request/Reply </SNIP>
- [TIME]: * apfSpamProcessStateChange:1522 Register LWAPP event for AP 00:12:80:ad:7a:9c slot 0
- [TIME]: * apfSpamProcessStateChange:1522 Register LWAPP event for AP 00:12:80:ad:7a:9c slot 1
- [TIME]: * spamHandleLradMsg:599 Received LWAPP CONFIGURE REQUEST from AP 00:12:80:ad:7a:9c to 00:0b:85:40:7a:03
- [TIME]: * spamProcessApIpAddrPayload:16133 Updating IP info for AP 00:12:80:ad:7a:9c -- static 0, 20.20.20.135/255.255.255.0, gtw 20.20.20.1
- [TIME]: * spamUpdateRcbLradlp:334 Updating IP 20.20.20.135 ===> 20.20.20.135 for AP 00:12:80:ad:7a:9c
- [TIME]: DEBU CTRLR spamVerifyRegDomain:6167 spamVerifyRegDomain RegDomain set for slot 0 code 0 regstring -A regDfromCb -JP
- [TIME]: * spamVerifyRegDomain:6202 AP 00:12:80:ad:7a:9c 80211bg Regulatory Domain (-A) does not match with country (JP) reg. domain -JP for slot 0
- [TIME]: DEBU CTRLR spamVerifyRegDomain:6167 spamVerifyRegDomain RegDomain set for slot 1 code 0 regstring -A regDfromCb -J
- [TIME]: * spamVerifyRegDomain:6202 AP 00:12:80:ad:7a:9c 80211a Regulatory Domain (-A) does not match with country (JP) reg. domain -JP for slot 1
- [TIME]: DEBU CTRLR spamVerifyRegDomain:6210 spamVerifyRegDomain AP RegDomain check for the country JP failed
- [TIME]: * spamProcessConfigRequest:1730 AP 00:12:80:ad:7a:9c: Regulatory Domain check Completely FAILED. The AP will not be allowed to join.
- [TIME]: * apfSpamProcessStateChangeInSpamContext:1556 apfSpamProcessStateChangeInSpamContext: Deregister LWAPP event for AP 00:12:80:ad:7a:9c slot 0
- [TIME]: * apfSpamProcessStateChangeInSpamContext:1556 apfSpamProcessStateChangeInSpamContext: Deregister LWAPP event for AP 00:12:80:ad:7a:9c slot 1
- [TIME]: * apfSpamProcessStateChange:1530 Deregister LWAPP event for AP 00:12:80:ad:7a:9c slot 0
- [TIME]: * apfSpamProcessStateChange:1530 Deregister LWAPP event for AP 00:12:80:ad:7a:9c slot 1
- * <SNIP> DEBU STA 00:12:80:ad:7a:9c</SNIP>

• The Fix?

•Make sure you match your APs' regulatory domain with your WLCs'. • How do you know how to make sure you do?

Go to: www.cisco.com/warp/public/779/smbiz/wireless/approvals.html

NOTE: In the US, your

APs' regulatory coding

is '– A'. NOT '– N'!!!

Authorizing Bridge and Mesh APs

(WLC_CLI) >debug mac addr 00:0b:85:54:dc:e0

(WLC_CLI) >debug lwapp events enable

[TIME]: Received LWAPP DISCOVERY REQUEST from AP 00:0b:85:54:dc:e0 to ff:ff:ff:ff:ff:ff:ff on port '1'

[TIME]: Successful transmission of LWAPP Discovery-Response to AP 00:0b:85:54:dc:e0 on Port 1

[TIME]: Received LWAPP JOIN REQUEST from AP 00:0b:85:54:dc:e0 to 00:0b:85:33:18:40 on port '1'

[TIME]: LWAPP Join-Request AUTH_STRING_PAYLOAD, invalid BRIDGE key hash AP 00:0b:85:54:dc:e0

[TIME]: LWAPP Join-Request Bridge Authentication Failed for AP 00:0b:85:54:dc:e0

[TIME]: Unable to free public key for AP 00:0B:85:54:DC:E0

[TIME]: spamDeleteLCB: stats timer not initialized for AP 00:0b:85:54:dc:e0

[TIME]: spamProcessJoinRequest : spamDecode JoinReq failed

The Fix? •(WLC_CLI) >config auth-list add mic 00:0b:85:54:dc:e0

Remember: All Bridge and Mesh APs need to have their MAC addresses entered in all controllers to be allowed to join the network.

AP CLI Commands

 New CLI commands have been added to APs in the 4.0 release to add deployment flexibility (available only on APs with console ports)

Set the AP's IP address

(AP_CLI)#lwapp ap ip address <IP Address> <Subnet Mask>

(AP_CLI)#lwapp ap ip default-gateway <IP Address>

Set the AP's hostname

(AP_CLI)#lwapp ap hostname <WORD>

Set the controller to which the AP will connect (this can be used when no other controller discovery method is available)

(AP_CLI)#lwapp ap controller ip address <IP Address>

AP/WLC Failover

 APs will failover to other WLCs if the LWAPP control plane is interrupted

After either:

A missed heartbeat to WLC (sent every 30 seconds)

or

A Non-ACK'd LWAPP control packet

Then:

The AP will send 5 successive heartbeats (each a second apart)

If no reply is received, the AP/WLC path is assumed down and the AP will attempt to join another controller

 So, make sure ALL WLCs in the cluster will properly allow all APs to join

Make sure all WLCs are set to the correct time

Make sure all WLCs have all upgraded APs' SSC hashes

Troubleshooting 802.11 Wireless LANs Agenda

- Review: Cisco's Unified Architecture
- Review: Basic System Configuration
- Debugging and Troubleshooting
 - Wireless LAN Controllers (WLCs)
 - Access Points

Tools of the trade...

www.Thinkgeek.com

© 2005 Cisco Systems, Inc. All rights reserved.

Cisco Confidential

Wi-Spy Spectrum Analyzer

Session Number

© 2005 Cisco Systems, Inc. All rights reserved.
WiFi Finders

	Distan		1
and and a			
		AP	
	NWX	Scan	
Digi	Lai With D		

Session Number Presentation_ID

Q and A

Session Number Presentation_ID

© 2005 Cisco Systems, Inc. All rights reserved.

Cisco Confidential 73

Recommended Reading

- Continue your Networkers learning experience with further reading for this session from Cisco Press
- Check the Recommended Reading flyer for suggested books

Network Security Architectures

Expert guidance on designing secure networks

ciscopress.com

Sean Convery, CCIE® No. 4232

Available Onsite at the Cisco Company Store

Session Number Presentation ID

Complete Your Online Session Evaluation!

- Win fabulous prizes! Give us your feedback!
- Receive 10 Passport Points for each session evaluation you fill out
- Go to the Internet stations located throughout the Convention Center
- Winners will be posted on the Internet stations and digital plasma screens
- Drawings will be held in the World of Solutions

Monday, June 20 at 8:45 p.m.

Tuesday, June 21 at 8:15 p.m.

Wednesday, June 22 at 8:15 p.m.

Thursday, June 23 at 1:30 p.m.

2005 Cisco Systems, Inc. All rights reserved.