

Design and Architecture of Data Center Networking Platforms

Lincoln Dale <ltd@cisco.com> TME, Data Center Switching

Agenda

- Part I—Design Considerations
- Part II—Architectures
- Part III—Real World Implementation
- Part IV—The Future

· | | . . | | . CISCO

Part I – Design Considerations

Part I—Design Considerations

Many Factors to Weigh

- Buffering
- Multiprotocol
- One Plus One Is Not Necessarily Equal to Two
- Future (Investment Protection)

Many Factors to Weigh Applicable to Any Switch/Router Design

- Standards requirements
- Market requirements
- Designability
- Silicon technology
- Processor technology

- Product is chassis and network
- Manufacturability
- Time to market
- Flexibility
- Budget

Many Factors to Weigh Baseline Data Center Switch requirements

Data Plane

- Buffering
- No packet drop
- Throughput
- Port count
- Modular
- No single point of failure
- In-order delivery
- Future protocol compatibility

Control plane

- Modular
- Restartable (including active-active state handling)
- Non-disruptive code load & activation
- No single point of failure
- Scaleable
- Unit Testable
- Future protocol compatibility

Part I—Design Considerations

- Many Factors to Weigh
- Buffering
- Multiprotocol
- One Plus One Is Not Necessarily Equal to Two
- Future (Investment Protection)

Part I—Design Considerations

- Many Factors to Weigh
- Buffering
- Multiprotocol
- One Plus One Is Not Necessarily Equal to Two
- Future (Investment Protection)

Multi Protocol

- Protocol Agnostic
- Protocol Translation
- Drop Behavior
- Shared Uplinks
- Multiple Topologies
- 10Base{2,5,T} / 100Base{S,T,TX} / 1000BaseT
- 10GbE
- Fibre Channel
- FICON
- ESCON
- Token Ring
- 100BaseVG

Design & Architecture of Data Center Network Platforms

6 Cisco Systems, Inc. All rights reserved. Cisc

- IP & TCP
- IPv4/IPv6
- 802.1q VLANs
- MPLS / MPLS {P,PE} / MPLE {CE,..}, ..
- VPLS
- q-in-q VLAN encapsulation
- 802.2 LLC/SNAP
- ATM
- Frame Relay
- DOCSIS
- AToM

- IP/Ethernet
- 802.11 "WiFi"
- 802.16 "WiMax"
- FDDI
- Vines
- XNS
- AppleTalk
- IPX/SPX
- Netbeui
- DECnet
- OSI/ISO
- ArcNet
- L2TPv3

Part I—Design Considerations

- Many Factors to Weigh
- Buffering
- Multiprotocol
- One Plus One Is Not Necessarily Equal to Two
- Future (Investment Protection)

One Plus One Does Not Equal Two

10 Links @ 1Gbps Each Bandwidth = 10Gbps Flow Bandwidth = 1Gbps Serialization Delay = 20uS 1 Link @ 10Gbps Each Bandwidth = 10Gbps Flow Bandwidth = 10Gbps Serialization Delay = 2uS

·IIIII CISCO

Part II – Architectures

Part II—Architectures

Centralized Memory

Switch on a Chip / "System on Chip" (SoC)

- Bus
- Mesh

Centralized memory in a mesh

- Two-Tier / Banyan / Clos
 Centralized memory in two tiers
- Cross-Bar

Part II—Architectures

Centralized Memory

Switch on a chip / "System on Chip" (SoC)

- Bus
- Mesh

Centralized memory in a mesh

- Two-Tier / Banyan / Clos
 Centralized memory in two tiers
- Cross-Bar

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

- Scalability limited by memory bandwidth/size
- Typically optimized for fixed configuration— inflexible
- Port count 8–32
- Cost effective with small port counts
- Often used as building block
- Almost required for Blade Server Applications

Part II—Architectures

Centralized Memory

"Switch on a chip" / System on Chip (SoC)

- Bus
- Mesh

Centralized memory in a mesh

- Two-Tier / Banyan / Clos
 Centralized memory in two tiers
- Cross-Bar

Bus with centralized memory

Part II—Architectures

Centralized Memory

Switch on Chip / "System on Chip" (SoC)

- Bus
- Mesh

Centralized memory in a mesh

- Two-Tier / Banyan / Clos
 Centralized memory in two tiers
- Cross-Bar

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Design & Architecture of Data Center Network Platforms

Part II—Architectures

Centralized Memory

Switch on Chip / "System on Chip" (SoC)

- Bus
- Mesh

Centralized memory in a mesh

Two-Tier / Banyan / Clos

Centralized memory in two tiers

Cross-Bar

Two-Tier a.k.a. Banyan a.k.a. Clos

8 Port Switch Rearrangeably non-blocking

Design & Architecture of Data Center Network Platforms

© 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

8 Port Switch Rearrangeably non-blocking

Design & Architecture of Data Center Network Platforms

© 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Two-Tier

8 Port Switch

Two-Tier

8 Port Switch

Two-Tier

8 Port Switch

Two-Tier-Based Switch—64 Ports

Design & Architecture of Data Center Network Platforms

© 2006 Cisco Systems, Inc. All rights reserved nial

Two-Tier-Based Switch—128 Ports

Design & Architecture of Data Center Network Platforms

Part II—Architectures

Centralized Memory

Switch on Chip / "System on Chip" (SoC)

- Bus
- Mesh

Centralized memory in a mesh

- Two-Tier / Banyan / Clos
 Centralized memory in two tiers
- Cross-Bar

Design & Architecture of Data Center Network Platforms

© 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Advantages of Cross-Bar

- Scalable
- Multi-speed capable
- Non-blocking
- Efficient

Part III – Real World Implementation

Part III—Real World Implementation

Cross-bar Performance

Classic crossbar vs. Buffered Crossbar

- Virtual Output Queuing Head-of-Line Blocking
- Completing the Switch
- Other Features

Part III—Real World Implementation

Cross-bar Performance

Classic crossbar vs. Buffered Crossbar

- Virtual Output Queuing Head-of-Line Blocking
- Completing the Switch
- Other Features

Cross-Bar Model

Performance Issue with Cross-Bars

Fig. 9. A comparison of the mean waiting time for input queueing and output queueing for the limiting case of $N = \infty$.

Source: M. J. Karol, M.G. Hluchyj, S. P. Morgan, "Input Versus Output Queueing [sic] on a Space-Division Packet Switch", IEEE Transactions on Communications, Vol COM-35, No 12, December 1987, page 1353

Design & Architecture of Data Center Network Platforms

Cat6K & MDS Family Cross-Bar

Part III—Real World Implementation

Cross-bar Performance

Classic crossbar vs. Buffered Crossbar

Virtual Output Queuing

- Completing the Switch
- Other Features

Buffering—Input Buffering

Virtual Output Queues

Virtual Output Queues

Virtual Output Queues

Virtual Output Queues Avoids Head of line Blocking

Virtual Output Queues Larger Effective Buffers

Virtual Output Queues Better Isolation of Congestion Sources

Virtual Output Queues Better Isolation of Congested Outputs

Virtual Output Queues Better Isolation of Congestion In General

Virtual Output Queues Buffer Bandwidth Matched to Port Bandwidth

Virtual Output Queuing - SummaryPROCON

- Avoids Head-of-line blocking
- More efficient buffer usage
- Better traffic isolation
- Buffer bandwidth matched to port bandwidth
- Necessary for lossless networks. (e.g. Fibre Channel, Infiniband, ..)

- Complex to implement
- Locks in scalability

Part III—Real World Implementation

Cross-bar Performance

Classic crossbar vs. Buffered Crossbar

- Virtual Output Queuing Head-of-Line Blocking
- Completing the Switch
- Other Features

Completing the Swtich

Completing the Swtich

Completing the Swtich

Re-Draw

Larger Switch

Supervisor/Fabric

Part III—Real World Implementation

Cross-bar Performance

Classic crossbar vs. Buffered Crossbar

- Virtual Output Queuing Head-of-Line Blocking
- Completing the Switch
- Other Features

Other Features

- Bridging and Routing
- SVIs
- Multicast
- Broadcast
- ACLs (+VACLs)
- SPAN + RSPAN
- Security (e.g. 802.1x)
- Redundancy
- L4-7 Deep Packet Inspection

- NAT
- MPLS
- *PLS
- GRE
- Virtualization
- Virtual Router Instances
- Services / Service Modules
- Roles / RBAC
- Diagnostics
- (insert here...)

Part IV – The Future

Future Data Center considerations

Power & Heat becoming the primary consideration

Density of servers rapidly shrinking; Server density + Server capacity typically growing >3x faster than associated Cooling/AC infrastructure

Moore's Law

Today's Commodity CPUs were yesterday's Supercomputers

Virtualization

Server, Network, Storage, ...

Future Data Center Network

At most, dual server connections Higher Speeds, Lower Latency 100 Mbps ► GbE ► 10GbE ► 100+GbE? Infrastructure Simplification

Future Data Center considerations

Power & Heat becoming the primary consideration

Density of servers rapidly shrinking; Server density + Server capacity typically growing >3x faster than associated Cooling/AC infrastructure

Moore's Law

Today's Commodity CPUs were yesterday's Supercomputers

Virtualization

Server, Network, Storage, ...

Future Data Center Network

At most, dual server connections Higher Speeds, Lower Latency 100 Mbps ➤ GbE ➤ 10GbE ➤ 100+GbE? Infrastructure Simplification

Data Center Physical Infrastructure Desire is to Last 10 to 15 Years

Useful life of a Data Center facility is expected to exceed the life of the gear it contains due to the tremendous cost of relocating or renovating data center facilities

5 to 7 Server Upgrade Cycles

Mainframes \rightarrow 1/2RU Servers \rightarrow Multi-Core CPU's \rightarrow Blade Server

2 to 3 Network Infrastructure Upgrades 10/100→10/100/1000 with L4-7 Services→ 10GbE Attached hosts

Design & Architecture of Data Center Network Platforms

2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Obtaining 10-15 Years of Useful Life Requires Planning for Growth of Power and Cooling

Planning and Coordination Between IT Staff and Facilities Managers is a Must

Future Data Center considerations

Power & Heat becoming the primary consideration

Density of servers rapidly shrinking; Server density + Server capacity typically growing >3x faster than associated Cooling/AC infrastructure

Moore's Law

Today's Commodity CPUs were yesterday's Supercomputers

Virtualization

Server, Network, Storage, ...

Future Data Center Network

At most, dual server connections Higher Speeds, Lower Latency 100 Mbps ► GbE ► 10GbE ► 100+GbE? Infrastructure Simplification

Moore's Law An empirical observation

"The transistor density of Integrated Circuits, with respect to minimum component cost, will double every 24 months."

- Gordon E Moore, co-founder, Intel, 1965

- 1978: 8088: 20K transistors
- 1985: Intel® 386™: 275K transistors
- 1989: Intel® 486™: 1.2M transistors
- 1993: Intel® Pentium™: 3.1M transistors
- 1999: Intel® Pentium 3[™]: 9.5M transistors
- 2000: Intel® Pentium 4[™]: 42M transistors
- 2006: Intel® Core™2 Duo: 291M transistors

Compute Capacity is Increasing Network Challenges & Implications

- Growth is not slowing down
- More effective way to scale layer 2 networks is needed
- Ready access to compute AND storage resources
- Powering 10GbE over Copper PHYs on high density linecards (40+ ports)
- Impact of an outage/downtime
 will be magnified- maximize
 operational uptime and
 cluster utilization
- Least disruptive upgrade path – hardware, software & services

Year

Future Data Center considerations

Power & Heat becoming the primary consideration

Size of servers rapidly shrinking; Server density + Server capacity typically growing >3x faster than associated Cooling/AC infrastructure

Moore's Law

Today's Commodity CPUs were yesterday's Supercomputers

Virtualization

Server, Network, Storage, ...

Future Data Center Network

At most, dual server connections Higher Speeds, Lower Latency 100 Mbps ► GbE ► 10GbE ► 100+GbE? Infrastructure Simplification

VIRTUALIZATION

The capability to decouple logical functions from physical devices.

- Increase resource usability Lower CAPEX
- Loosely couple re-usable functions Flexibility
- Dynamic allocation of virtual instances Automation
- Centralized policy Management Lower TCO
- Distributed Capabilities Broad use of functions

Data Center Virtualization Examples

of Data Center Network Platforms

Future Data Center considerations

Power & Heat becoming the primary consideration

Density of servers rapidly shrinking; Server density + Server capacity typically growing >3x faster than associated Cooling/AC infrastructure

Moore's Law

Today's Commodity CPUs were yesterday's Supercomputers

Virtualization

Server, Network, Storage, ...

Future Data Center network

At most, dual server connections Higher Speeds, Lower Latency 100 Mbps ► GbE ► 10GbE ► 100+GbE? Infrastructure Simplification

At most, dual server connections

 I/O Consolidation simplifies platform architectures, reducing overall cost

of Data Center Network Platforms

Growing demands of Ethernet

• **1995**: Catalyst 5000 introduced:

16K MAC addresses

192KB buffering / 8 ports (24KB/port) (10Mbps, 10/100Mbps)

• **1999**: Catalyst 6000 introduced:

128K MAC addresses (32K-80K usable)

512KB/port buffering (GbE port)

- 2003: Catalyst 6500 Series 4 x 10GbE modules 18MB/port buffering (10GbE ports)
- 2006: Catalyst 6500 Series 8 x 10GbE module 200MB/port buffering (10GbE ports) Metro Ethernet environments demanding >128K MAC addresses

Growing demands of Ethernet

- CAM tables (L2), ACLs, QoS, CEF FIB tables (L3), Statistics all typically built using Tenary CAMs
- Tenary CAM ≈ Static RAM (SRAM)
 - -SRAM requires 6 transistors per bit
 - -'always ON' (high power)
- Transistor count for 128K MAC addresses, CEF FIB, QoS, Statistics, ...

now typical to have over 200M transistors just in tables

comparison:

Intel® Core[™]2 Duo "Extreme Edition": 291M transistors

Design & Architecture of Data Center Network Platforms

A six-transistor CMOS SRAM cell.

http://en.wikipedia.org/wiki/Static random access memory

source: Wikipedia

Moore's Law An empirical observation

"The transistor density of Integrated Circuits, with respect to minimum component cost, will double every 24 months."

- Gordon E Moore, co-founder, Intel, 1965

- 1978: 8088: 20K transistors
- 1985: Intel® 386™: 275K transistors
- 1989: Intel® 486™: 1.2M transistors
- 1993: Intel® Pentium™: 3.1M transistors
- 1999: Intel® Pentium 3[™]: 9.5M transistors
- 2000: Intel® Pentium 4[™]: 42M transistors
- 2006: Intel® Core™2 Duo: 291M transistors

Programmability

- Cisco CRS-1 Carrier Routing System
- Heart of each linecard is the "Metro" ASIC
- Programmable 40Gbps Network Processor

.5sqmm

per PPE

- 192 Cores per chip
- Fully programmable
- PowerPC-like instruction set

Cisco Data Center Network Design Goals

- Present a Unified Fabric Comprising Multiple Technologies. Service vs Technology Virtualization
- Increase Service/ Applications Deployment Velocity while Reducing Marginal Costs
- Enable Layer 2 Networks to continue to scale beyond spanning tree limitations
- Non-Intrusively Improve Applications Performance and Availability
- Reduce the Number of Audit Points
- Enable Per Business Unit and Per Application SLA's
- Support 24x7x365 operations

##