CCIE Practice Lab: OSPF

Written by:
Ashwin Kohli
CCIE # 8877
ASHWIN KOHLI, Ashwin Kohli is a dual CCIE #8877 (Routing/Switching and Security). He is currently a Global Architect for one of the top three financial companies, and is responsible for architecting enterprise solutions. He has worked at many of the top financial companies over the last 10 years. Ashwin also holds the CCNP®, CCDP® and a BSc in Computer Science & Accounting form Manchester University, United Kingdom. He has more than 10 years experience in Cisco® networking and security including planning, designing, implementing, and troubleshooting enterprise multi-protocol networks. Ashwin also writes Cisco® training material for Network Learning, Inc.
TABLE OF CONTENTS

Introduction .. 9
Labs Structure .. 9
Equipment Required ... 9
Practicing the labs .. 9
Links ... 9

1.0 OSPF setup on Ethernet network .. 10
 ANSWER ... 11

2.0 OSPF setup on Frame Relay Point-to-Point network (using Physical Interfaces) 29
 ANSWER ... 30
 Solution (using the main interface) ... 30

3.0 OSPF setup on Frame Relay Point-to-Point network (using Sub-Interfaces) 33
 Lab Setup .. 33
 ANSWER ... 34

4.0 OSPF setup on Frame Relay Fully Mesh Network – NBMA (Method 1) 37
 ANSWER ... 38

5.0 OSPF setup on Frame Relay Fully Mesh Network – NBMA (Method 2) 43
 ANSWER ... 44
 SOLUTION 2 – NBMA (using neighbor statement) .. 44

6.0 OSPF setup on Frame Relay Fully Mesh Network – NBMA (Method 3) 49
 ANSWER ... 50

7.0 OSPF setup on Frame Relay Partial Mesh Network – NBMA (Method 1) 54
 ANSWER ... 55
 SOLUTION 1 – NBMA (using ip ospf network broadcast)... 55

8.0 OSPF setup on Frame Relay Partial Mesh Network – NBMA (Method 2) 60
 ANSWER ... 61
 SOLUTION 2 – NBMA (using neighbor statement) ... 61

9.0 OSPF setup on Frame Relay Partial Mesh Network – NBMA (Method 3) 72
 ANSWER ... 73
 SOLUTION 3 – Point-to-Multipoint (ip ospf point-to-multipoint) .. 73

10.0 OSPF setup on Frame Relay Partial Mesh Network using sub-interface (Method 1) 78
 ANSWER .. 79
 SOLUTION 1 – NBMA (using ip ospf network broadcast)... 79

11.0 OSPF setup on Frame Relay Partial Mesh Network using sub-interface (Method 2) 78
 ANSWER .. 79
 SOLUTION 2 – NBMA (using neighbor statement) ... 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>OSPF setup on Frame Relay Partial Mesh Network using sub-interface (Method 3)</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>SOLUTION 3 – Point-to-Multipoint (ip ospf point-to-multipoint)</td>
<td>85</td>
</tr>
<tr>
<td>13.0</td>
<td>OSPF setup on Frame Relay Partial Mesh Network using a physical & sub</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>91</td>
</tr>
<tr>
<td>14.0</td>
<td>OSPF – plain-text authentication</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>98</td>
</tr>
<tr>
<td>15.0</td>
<td>OSPF – MD5 authentication</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Lab Setup</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>102</td>
</tr>
<tr>
<td>16.0</td>
<td>OSPF setup on Frame Relay Partial Mesh Network using a physical & sub</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>107</td>
</tr>
<tr>
<td>17.0</td>
<td>OSPF – Virtual-link</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>113</td>
</tr>
<tr>
<td>18.0</td>
<td>OSPF – Virtual-link with MD5 authentication</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>9</td>
</tr>
<tr>
<td>19.0</td>
<td>OSPF LSA Type 1 – Router LSA</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>127</td>
</tr>
<tr>
<td>20.0</td>
<td>OSPF LSA Type 2 – Network LSA</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>133</td>
</tr>
<tr>
<td>21.0</td>
<td>OSPF LSA Type 3 – Network Summary LSA</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>138</td>
</tr>
<tr>
<td>22.0</td>
<td>OSPF LSA Type 5 – AS External LSA</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>144</td>
</tr>
<tr>
<td>23.0</td>
<td>OSPF LSA Type 4 – ASBR Summary LSA</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>152</td>
</tr>
<tr>
<td>24.0</td>
<td>OSPF LSA Type 7 – NSSA External LSA</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>157</td>
</tr>
<tr>
<td>25.0</td>
<td>OSPF – Generating a Default Route - Stub Area</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>163</td>
</tr>
<tr>
<td>26.0</td>
<td>OSPF – Generating a Default Route - Totally-Stub Area</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>168</td>
</tr>
<tr>
<td>27.0</td>
<td>OSPF – Generating a Default Route - Type 5 LSA</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>173</td>
</tr>
<tr>
<td>28.0</td>
<td>OSPF – Generating a Default Route – NSSA – Type 7 Default Route</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>180</td>
</tr>
<tr>
<td>29.0</td>
<td>OSPF – Route Manipulation – Inter-Area Route Summarization</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>ANSWER</td>
<td>187</td>
</tr>
</tbody>
</table>
30.0 OSPF – Route Manipulation – External Route Summarization ... 191
Lab Setup .. 191
ANSWER ... 193

31.0 OSPF – Route Filtering – Using Distribute Lists .. 201
ANSWER ... 202

32.0 OSPF – Route Filtering – OSPF ABR Type 3 LSA Filtering .. 210
ANSWER ... 211

33.0 OSPF – LSA Filtering – demand-circuit .. 217
Lab Setup .. 217
ANSWER ... 218

34.0 OSPF – LSA Filtering - flood reduction .. 221
Lab Setup .. 221
ANSWER ... 222

35.0 OSPF – LSA Filtering – Passive Interface ... 225
Lab Setup .. 225
ANSWER ... 226

36.0 OSPF Timers ... 229
ANSWER ... 230

37.0 Reference Bandwidth ... 233
ANSWER ... 334

38.0 OSPF – Through the PIX .. 237
ANSWER ... 238

APPENDIX .. 246
1. Configure the OSPF areas for your network as per the above diagram.
2. For MD5 authentication use `cisco` key.
3. Test your configuration that the correct neighbor relationships have been established. Ensure that you can ping each other’s LAN network.
ANSWER

NOTE: This is a trick to putting in the inverse-mask for the OSPF. If you do not know how to calculate the inverse-mask then just put in the normal mask and the router automatically puts the inverse mask in. For example:

```plaintext
Router ospf 100
    Network 137.1.45.0 255.255.255.192 area 0
```

The router would automatically convert this to:

```plaintext
Router ospf 100
    Network 137.1.45.0 0.0.0.63 area 0
```

ROUTER1

Interface loopback 0
- Ip address 11.11.11.11 255.255.255.0
- Ip ospf network point-to-point

Interface f0/0
- Ip address 137.1.13.1 255.255.255.248
- Ip ospf message-digest 1 md5 cisco

Interface s0/0
- Ip address 137.1.200.1 255.255.255.224
- Encapsulation frame-relay
- No frame-relay inverse-arp
- Frame-relay map ip 137.1.200.2 101 broadcast
- Ip ospf network point-to-point
- Ip ospf message-digest 1 md5 cisco

Router ospf 100
- Router-id 11.11.11.11
- Network 11.11.11.0 0.0.0.255 area 0
- Network 137.1.13.0 0.0.0.7 area 0
- Network 137.1.200.0 0.0.0.31 area 1
- Area 0 authentication message-digest
- Area 1 authentication message-digest
- Area 1 virtual-link 22.22.22.22 authentication message-digest
- Area 1 virtual-link 22.22.22.22 message-digest-key 1 md5 cisco

ROUTER2

Interface loopback 0
- Ip address 22.22.22.22 255.255.255.0
- Ip ospf network point-to-point

Interface e0/0
- Ip address 137.1.24.2 255.255.255.240
- Ip ospf message-digest 1 md5 cisco

Interface s0/0
- Ip address 137.1.200.2 255.255.255.224
Encapsulation frame-relay
No frame-relay inverse-arp
Frame-relay map ip 137.1.200.1 110 broadcast
Ip ospf network point-to-point
Ip ospf message-digest 1 md5 cisco

Router ospf 100
 Router-id 22.22.22.22
 Network 22.22.22.0 0.0.0.255 area 0
 Network 137.1.24.0 0.0.0.15 area 2
 Network 137.1.200.0 0.0.0.31 area 1
 Area 1 authentication message-digest
 Area 1 virtual-link 11.11.11.11 authentication message-digest
 Area 1 virtual-link 11.11.11.11 message-digest-key 1 md5 cisco
 Area 2 authentication message-digest
 Area 2 virtual-link 44.44.44.44 authentication message-digest
 Area 2 virtual-link 44.44.44.44 message-digest-key 1 md5 cisco

ROUTER3

Interface loopback 0
 Ip address 33.33.33.33 255.255.255.0
 Ip ospf network point-to-point

Interface f0/0
 Ip address 137.1.13.3 255.255.255.248
 Ip ospf message-digest 1 md5 cisco

Router ospf 100
 Router-id 33.33.33.33
 Network 33.33.33.0 0.0.0.255 area 0
 Network 137.1.13.0 0.0.0.7 area 0
 Area 0 authentication message-digest

ROUTER4

Interface loopback 0
 Ip address 44.44.44.44 255.255.255.0
 Ip ospf network point-to-point

Interface f0/0
 Ip address 137.1.24.4 255.255.255.240
 Ip ospf message-digest 1 md5 cisco

Interface f0/1
 Ip address 137.1.45.4 255.255.255.192
 Ip ospf message-digest 1 md5 cisco

Router ospf 100
 Router-id 44.44.44.44
 Network 44.44.44.0 0.0.0.255 area 2
 Network 137.1.24.0 0.0.0.15 area 2
 Network 137.1.45.0 0.0.0.63 area 3
 Area 2 authentication message-digest
 Area 2 virtual-link 22.22.22.22 authentication message-digest
 Area 2 virtual-link 22.22.22.22 message-digest-key 1 md5 cisco
 Area 3 authentication message-digest
ROUTERS

Interface loopback 0
 Ip address 55.55.55.55 255.255.255.0
 Ip ospf network point-to-point

Int f0/0
 Ip address 137.1.45.5 255.255.255.192
 Ip ospf message-digest 1 md5 cisco

Router ospf 100
 Router-id 55.55.55.55
 Network 55.55.55.0 0.0.0.255 area 3
 Network 137.1.45.0 0.0.0.63 area 3
 Area 3 authentication message-digest

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.22.22.22</td>
<td>0</td>
<td>FULL/</td>
<td>-</td>
<td>137.1.200.2</td>
<td>OSPF_VL0</td>
</tr>
<tr>
<td>33.33.33.33</td>
<td>1</td>
<td>FULL/DR</td>
<td>00:00:35</td>
<td>137.1.13.3</td>
<td>FastEthernet0/0</td>
</tr>
<tr>
<td>22.22.22.22</td>
<td>0</td>
<td>FULL/</td>
<td>00:00:34</td>
<td>137.1.200.2</td>
<td>Serial0/0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.11.11</td>
<td>0</td>
<td>FULL/</td>
<td>-</td>
<td>137.1.200.1</td>
<td>OSPF_VL0</td>
</tr>
<tr>
<td>11.11.11.11</td>
<td>0</td>
<td>FULL/</td>
<td>00:00:38</td>
<td>137.1.200.1</td>
<td>Serial0/0</td>
</tr>
<tr>
<td>44.44.44.44</td>
<td>1</td>
<td>FULL/DR</td>
<td>00:00:37</td>
<td>137.1.24.4</td>
<td>Ethernet0/0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.11.11</td>
<td>1</td>
<td>FULL/BDR</td>
<td>00:00:33</td>
<td>137.1.13.1</td>
<td>FastEthernet0/0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.22.22.22</td>
<td>0</td>
<td>FULL/</td>
<td>-</td>
<td>137.1.24.2</td>
<td>OSPF_VL0</td>
</tr>
<tr>
<td>22.22.22.22</td>
<td>1</td>
<td>FULL/BDR</td>
<td>00:00:37</td>
<td>137.1.24.2</td>
<td>FastEthernet0/0</td>
</tr>
<tr>
<td>55.55.55.55</td>
<td>1</td>
<td>FULL/</td>
<td>00:00:36</td>
<td>137.1.45.5</td>
<td>FastEthernet0/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.44.44.44</td>
<td>1</td>
<td>FULL/BDR</td>
<td>00:00:38</td>
<td>137.1.45.4</td>
<td>FastEthernet0/0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neighbor ID</th>
<th>Pri</th>
<th>State</th>
<th>Dead Time</th>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
</table>

OSPF_VL1 is up, line protocol is up
 Internet Address 0.0.0.0/0, Area 0
 Process ID 100, Router ID 22.22.22.22, Network Type VIRTUAL_LINK, Cost: 10
 Configured as demand circuit.
 Run as demand circuit.
 DoNotAge LSA allowed.
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:04
 Index 3/5, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1

 Adjacent with neighbor 44.44.44.44 (Hello suppressed)
Suppress hello for 1 neighbor(s)
Message digest authentication enabled
Youngest key id is 1
OSPF_VL0 is up, line protocol is up

<table>
<thead>
<tr>
<th>Internet Address 0.0.0.0/0, Area 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process ID 100, Router ID 22.22.22.22, Network Type VIRTUAL_LINK, Cost: 64</td>
</tr>
<tr>
<td>Configured as demand circuit.</td>
</tr>
<tr>
<td>Run as demand circuit.</td>
</tr>
<tr>
<td>DoNotAge LSA allowed.</td>
</tr>
<tr>
<td>Transmit Delay is 1 sec, State POINT_TO_POINT,</td>
</tr>
<tr>
<td>Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5</td>
</tr>
<tr>
<td>oob-resync timeout 40</td>
</tr>
<tr>
<td>Hello due in 00:00:09</td>
</tr>
<tr>
<td>Index 2/4, flood queue length 0</td>
</tr>
<tr>
<td>Next 0x0(0)/0x0(0)</td>
</tr>
<tr>
<td>Last flood scan length is 1, maximum is 4</td>
</tr>
<tr>
<td>Last flood scan time is 0 msec, maximum is 4 msec</td>
</tr>
<tr>
<td>Neighbor Count is 1, Adjacent neighbor count is 1</td>
</tr>
</tbody>
</table>

Adjacent with neighbor 11.11.11.11 (Hello suppressed)
Suppress hello for 1 neighbor(s)
Message digest authentication enabled
Youngest key id is 1
Loopback0 is up, line protocol is up

<table>
<thead>
<tr>
<th>Internet Address 22.22.22.24/24, Area 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process ID 100, Router ID 22.22.22.22, Network Type POINT_TO_POINT, Cost: 1</td>
</tr>
<tr>
<td>Transmit Delay is 1 sec, State POINT_TO_POINT,</td>
</tr>
<tr>
<td>Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5</td>
</tr>
<tr>
<td>oob-resync timeout 40</td>
</tr>
<tr>
<td>Hello due in 00:00:02</td>
</tr>
<tr>
<td>Index 1/1, flood queue length 0</td>
</tr>
<tr>
<td>Next 0x0(0)/0x0(0)</td>
</tr>
<tr>
<td>Last flood scan length is 0, maximum is 0</td>
</tr>
<tr>
<td>Last flood scan time is 0 msec, maximum is 0 msec</td>
</tr>
<tr>
<td>Neighbor Count is 0, Adjacent neighbor count is 0</td>
</tr>
</tbody>
</table>

Suppress hello for 0 neighbor(s)
Serial0/0 is up, line protocol is up

<table>
<thead>
<tr>
<th>Internet Address 137.1.200.2/27, Area 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process ID 100, Router ID 22.22.22.22, Network Type POINT_TO_POINT, Cost: 64</td>
</tr>
<tr>
<td>Transmit Delay is 1 sec, State POINT_TO_POINT,</td>
</tr>
<tr>
<td>Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5</td>
</tr>
<tr>
<td>oob-resync timeout 40</td>
</tr>
<tr>
<td>Hello due in 00:00:02</td>
</tr>
<tr>
<td>Index 1/3, flood queue length 0</td>
</tr>
<tr>
<td>Next 0x0(0)/0x0(0)</td>
</tr>
<tr>
<td>Last flood scan length is 1, maximum is 1</td>
</tr>
<tr>
<td>Last flood scan time is 4 msec, maximum is 4 msec</td>
</tr>
<tr>
<td>Neighbor Count is 1, Adjacent neighbor count is 1</td>
</tr>
</tbody>
</table>

Adjacent with neighbor 11.11.11.11
Suppress hello for 0 neighbor(s)
Message digest authentication enabled
Youngest key id is 1
Ethernet0/0 is up, line protocol is up

<table>
<thead>
<tr>
<th>Internet Address 137.1.24.2/28, Area 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process ID 100, Router ID 22.22.22.22, Network Type BROADCAST, Cost: 10</td>
</tr>
<tr>
<td>Transmit Delay is 1 sec, State BDR, Priority 1</td>
</tr>
<tr>
<td>Designated Router (ID) 44.44.44.44, Interface address 137.1.24.4</td>
</tr>
<tr>
<td>Backup Designated router (ID) 22.22.22.22, Interface address 137.1.24.2</td>
</tr>
<tr>
<td>Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5</td>
</tr>
<tr>
<td>oob-resync timeout 40</td>
</tr>
<tr>
<td>Hello due in 00:00:03</td>
</tr>
<tr>
<td>Index 1/2, flood queue length 0</td>
</tr>
<tr>
<td>Next 0x0(0)/0x0(0)</td>
</tr>
<tr>
<td>Last flood scan length is 1, maximum is 1</td>
</tr>
<tr>
<td>Last flood scan time is 0 msec, maximum is 4 msec</td>
</tr>
<tr>
<td>Neighbor Count is 1, Adjacent neighbor count is 1</td>
</tr>
</tbody>
</table>

Adjacent with neighbor 44.44.44.44 (Designated Router)
Suppress hello for 0 neighbor(s)
Message digest authentication enabled
Youngest key id is 1
router4# sh ip ospf int
OSPF_VL0 is up, line protocol is up
Internet Address 0.0.0.0/0, Area 0
Process ID 100, Router ID 44.44.44.44, Network Type VIRTUAL_LINK, Cost: 1
Configured as demand circuit.
DoNotAge LSA allowed.
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:02
Index 1/3, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 22.22.22.22 (Hello suppressed)
Message digest authentication enabled
Youngest key id is 1

FastEthernet0/0 is up, line protocol is up
Internet Address 137.1.24.4/28, Area 2
Process ID 100, Router ID 44.44.44.44, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 44.44.44.44, Interface address 137.1.24.4
Backup Designated router (ID) 22.22.22.22, Interface address 137.1.24.2
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:06
Index 2/2, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 3
Last flood scan time is 0 msec, maximum is 4 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 22.22.22.22 (Backup Designated Router)
Suppress hello for 0 neighbor(s)
Message digest authentication enabled
Youngest key id is 1

Loopback0 is up, line protocol is up
Internet Address 44.44.44.24/24, Area 2
Process ID 100, Router ID 44.44.44.44, Network Type POINT_TO_POINT, Cost: 1
Transmit Delay is 1 sec, State POINT_TO_POINT,
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Index 1/1, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 0, maximum is 0
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 0, Adjacent neighbor count is 0
 Suppress hello for 0 neighbor(s)
Message digest authentication enabled
No key configured, using default key id 0

FastEthernet0/1 is up, line protocol is up
Internet Address 137.1.45.4/28, Area 3
Process ID 100, Router ID 44.44.44.44, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State BDR, Priority 1
Designated Router (ID) 55.55.55.55, Interface address 137.1.45.5
Backup Designated router (ID) 44.44.44.44, Interface address 137.1.45.4
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:05
 Index 1/4, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 3
 Last flood scan time is 4 msec, maximum is 4 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 55.55.55.55 (Designated Router)
Suppress hello for 0 neighbor(s)
Message digest authentication enabled
Youngest key id is 1

router5# sh ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

137.1.0.0/16 is variably subnetted, 4 subnets, 4 masks
O IA 137.1.200.0/27 [110/66] via 137.1.45.4, 00:06:17, FastEthernet0/0
O IA 137.1.13.0/29 [110/67] via 137.1.45.4, 00:04:47, FastEthernet0/0
O IA 137.1.24.0/28 [110/2] via 137.1.45.4, 00:06:17, FastEthernet0/0
C 137.1.45.0/26 is directly connected, FastEthernet0/0
33.0.0.0/24 is subnetted, 1 subnets
O IA 33.33.33.0 [110/68] via 137.1.45.4, 00:04:43, FastEthernet0/0
55.0.0.0/24 is subnetted, 1 subnets
C 55.55.55.0 is directly connected, Loopback0
22.0.0.0/24 is subnetted, 1 subnets
O IA 22.22.22.0 [110/3] via 137.1.45.4, 00:06:18, FastEthernet0/0
11.0.0.0/24 is subnetted, 1 subnets
O IA 11.11.11.0 [110/67] via 137.1.45.4, 00:06:18, FastEthernet0/0
44.0.0.0/24 is subnetted, 1 subnets
O IA 44.44.44.0 [110/2] via 137.1.45.4, 00:06:19, FastEthernet0/0

router5# sh ip ospf database

OSPF Router with ID (55.55.55) (Process ID 100)

Router Link States (Area 3)

<table>
<thead>
<tr>
<th>Link ID</th>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Checksum</th>
<th>Link count</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.44.44.44</td>
<td>44.44.44.44</td>
<td>418</td>
<td>0x80000006</td>
<td>0x00D37F</td>
<td>1</td>
</tr>
<tr>
<td>55.55.55.55</td>
<td>55.55.55.55</td>
<td>416</td>
<td>0x80000005</td>
<td>0x09F94B</td>
<td>2</td>
</tr>
</tbody>
</table>

Net Link States (Area 3)

<table>
<thead>
<tr>
<th>Link ID</th>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>137.1.45.5</td>
<td>55.55.55.55</td>
<td>418</td>
<td>0x80000001</td>
<td>0x0076DB</td>
</tr>
</tbody>
</table>

Summary Net Link States (Area 3)

<table>
<thead>
<tr>
<th>Link ID</th>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.1.0</td>
<td>44.44.44.44</td>
<td>470</td>
<td>0x80000001</td>
<td>0x0065C3</td>
</tr>
<tr>
<td>22.22.22.0</td>
<td>44.44.44.44</td>
<td>470</td>
<td>0x80000001</td>
<td>0x0055F2</td>
</tr>
<tr>
<td>33.33.33.0</td>
<td>44.44.44.44</td>
<td>313</td>
<td>0x80000001</td>
<td>0x005491</td>
</tr>
<tr>
<td>44.44.44.0</td>
<td>44.44.44.44</td>
<td>495</td>
<td>0x80000001</td>
<td>0x0030D6</td>
</tr>
<tr>
<td>137.1.13.0</td>
<td>44.44.44.44</td>
<td>317</td>
<td>0x80000003</td>
<td>0x002D8A</td>
</tr>
<tr>
<td>137.1.24.0</td>
<td>44.44.44.44</td>
<td>495</td>
<td>0x80000001</td>
<td>0x00PAF3</td>
</tr>
<tr>
<td>137.1.200.0</td>
<td>44.44.44.44</td>
<td>470</td>
<td>0x80000001</td>
<td>0x008591</td>
</tr>
</tbody>
</table>

router5# trace 33.33.33.33

Type escape sequence to abort.
Tracing the route to 33.33.33.33

1 137.1.45.4 4 msec 0 msec 0 msec
2 137.1.24.2 4 msec 4 msec 0 msec
3 137.1.200.1 28 msec 28 msec 28 msec
4 137.1.13.3 28 msec * 28 msec

router3# ping 55.55.55.55

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 55.55.55.55, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 56/57/64 ms

P1Switch# show vlan

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
</table>
2 VLAN0002 active Fa0/7, Fa0/10
3 VLAN0003 active Fa0/2, Fa0/6
4 VLAN0004 active Fa0/8, Fa0/21

<output truncated...>