NETWORKERS 2003 THE POWER TO TRANSFORM BUSINESS. **now.**

CCIE Power Session

Session PWR-5014

Power Session Topics

...Cisco.com

Session 1	CCIE Roadmap/Exam Basics
Session 2	Spanning Tree/Multi-Layer Switching/DLSWoE
Session 3	QOS/IP Routing Concepts
Session 4	IP Routing OSPF
Session 5	IP Routing BGP
Session 6	Multicast/ATM/Security
Session 7	ISDN and Dial Features
Session 8	Preparation/Q&A

Content Note

- Not all the topics discussed today appear on every exam
- For time reasons, we're unable to discuss every feature and topic possible on the exam

Session 1

CCIE Exam and Configuration Fundamentals

CCIE Program

CCIE Program (Cont.)

- Each exam track has a separate qualification exam (or set of qualification exams) and a lab exam
- Not all exams are available at all sites
- There are more than 9500 CCIE's worldwide

- Candidate builds a network to a supplied specification
- The exam is graded after the candidate is finished for the day
- R/S Exam results will be available on the web to the candidate within 24 hours
- Security, C&S and Voice will be emailed within 48 hours

- The "network specification" is a series of questions
- Point values for each question are shown on the exam
- The questions can be done in any order, but some questions depend on the completion of previous parts of the network

Sample Topology

Sample Protocol Boundaries Diagram

Sample Question

Cisco.com

• 2.5 RIP

Configure RIP on R1, R2, and R5

Redistribute between RIP and OSPF on R5

The class B loopback on R1 should not appear in the OSPF domain

All other routes should be visible on all routers

Scoring 2 Points

Grading the Exam

- Partial marks are not awarded for questions
- Some questions have multiple solutions
- Points are awarded for working solutions only

Standard Restrictions

- Unless a question says so, you are not permitted to use**:
 - Static routes (of any kind)
 - **Default routes**
 - **Dynamic routes to null are permitted

Test Philosophy

Cisco.com

 The Routing and Switching exam tests your ability to apply configuration knowledge and skill to new situations; it is not a design test, nor is it always a test of "best practices" for use in the field

Lab Layout

Cisco.com

Racks Are Fully Cabled

Candidates Do Not Have to Touch Racks

PWR-5014 8166_05_2003_c1

© 2003, Cisco Systems, Inc. All rights reserved.

Lab Layout (Cont.)

- Each candidate has his/her own PC and rack of equipment
- Check the CCIE web page for the latest equipment list

Rack Access

Rack Connection Method:

Passwords

All routers and switches have a startup configuration: hostnames, passwords, line setup, and IP addresses for primary interfaces are already configured; since all tests require the router to be accessible via the VTY and AUX ports, do not change these established configs

 Know the password recovery procedures for the devices in the equipment list

Questions?

Session 2

Spanning Tree Catalyst—Multilayer Switching DLSW over Ethernet

Catalyst

- Spanning Tree
- Cat3550
- VTP
- Layer2
- Layer3

Catalyst—Spanning Tree

Transparent Bridging Overview

Cisco.com

 Transparent bridging is a means to connect networks together at the data-link layer

Spanning Tree Overview

- STP calls for the election of the root switch
- Bridges/switches transmit BPDU frames to communicate
- Bridge protocol data units are sent every two seconds by default
- STP ports have five states—blocking, listening, learning, forwarding, or disabled
- STP forces redundant data paths into a standby (blocked) state

BPDU—Bridge Protocol Data Unit

What's in a BPDU?

- The unique bridge ID of the switch that the sending switch identifies as the root switch
- The spanning-tree path cost to the root
- The bridge ID of the sending switch
- Message age
- The identifier of the sending interface
- Values for the hello, forward delay, and max-age protocol timers

Spanning Tree Timers

Cisco.com

• Hello timer

Determines how often the switch broadcasts hello messages to other switches

Forward-delay timer

Determines how long each of the listening and learning states last before the interface begins forwarding

Maximum-age timer

Determines the amount of time the switch stores protocol information received on an interface

Spanning Tree Protocol in Action

IEEE 802.1d BPDU

Spanning Tree Commands

Configuring the Root Switch—(CatOS set spantree root)

Cisco

Cisco.com

spanning-tree vlan [vlan-id] root [primary/secondary]

Switch(config)#spanning-tree vlan 100 root primary

vlan 100 bridge priority set to 24576 vlan 100 bridge max aging time unchanged at 20 vlan 100 bridge hello time unchanged at 2 vlan 100 bridge forward delay unchanged at 15 Switch(config)# Bridge Priority Gets Set to 24567 Or 4096 Less than the Current Root Priority, Whichever Is Less

Verify STP (CatOS show spantree)

Cisco.com

Show spanning-tree [vlan]—to view spanning tree information

Switch#show spanning-tree

VLAN0001	4	Which VLAN				
Spanning Root ID	tree enablec Priority 32 dress 000a	Designated Root Information				
Thi Hel	s bridge is the location of th	ne root ec Max Age	20 sec Forward De	lay 15 sec		
Bridge ID Ade Hel Agi	Priority 32 dress 000a lo Time 2 so ing Time 300	2769 (priorit) 1.41d6.7e00 ec Max Age	y 32768 sys-id-ext 1 4 20 sec Forward De) lay 15 sec	This Bridge Information	
Interface	Port ID	Designated		ort ID		
Name	Prio.Nbr	Cost Sts	Cost Bridge ID	Prio.Nbr	Port States and Cost	
Fa0/24	128.20	19 FWD	0 32769 000a.41	d6.7e00 128.20		
Fa0/13	128.21	19 FWD	0 32769 000a.410	d6.7e00 128.21		
Fa0/14	128.22	19 FWD	0 32769 000a.410	d6.7e00 128.22		
Fa0/15	128.23	19 FWD	0 32769 000a.410	d6.7e00 128.23		
Fa0/16	128.24	19 FWD	0 32769 000a.41	d6.7e00 128.24		

PWR-5014 8166_05_2003_c1

Spanning Tree Review

1.....Cisco.com

- Spanning tree is a link management protocol that provides path redundancy while preventing undesirable loops in the network
- Spanning tree operation is transparent to end stations
- Catalyst enterprise LAN switches use the Spanning Tree Protocol, IEEE 802.1D
- A single instance of STP runs on each configured VLAN
- Spanning tree defines a tree with a root switch and a loop-free path from the root to all switches in the extended layer 2 network

Spanning Tree

Cisco.com

Switch Commands—STP

*forward-time	Set the Forward Delay for the Spanning Tree			
*hello-time	Set the Hello Interval for the Spanning Tree			
*max-age	Set the Max Age Interval for the Spanning Tree			
***priority	Set the Bridge Priority for the Spanning Tree			
***root	Configure Switch as Root			
**backbonefast	Enable BackboneFast Feature			
**etherchannel	Spanning Tree EtherChannel Specific Configuration			
*extend	Spanning Tree 802.1t Extensions			
***pathcost	Spanning Tree Pathcost Options			
***portfast	Spanning Tree Portfast Options			
**uplinkfast	Enable UplinkFast Feature			
Importance: ***High **Medium *Low				

Transparent Bridging

Cisco.com

Basic bridging example—the system has two Ethernets and one serial line; IP traffic is routed and everything else is bridged

```
interface Ethernet 0
  ip address 192.31.7.26 255.255.255.240
  bridge-group 1 🖛 Bridging Is Enabled
                                                E0
                                                                  S0
 interface Ethernet 1
                                                E1
  ip address 192.31.7.65 255.255.255.240
  bridge-group 1 - Bridging Is Enabled
 interface serial 0
  ip address 192.31.7.34 255.255.255.240
  bridge-group 1 🖛 Bridging Is Enabled
                                                      Spanning Tree Is Enabled
 bridge 1 protocol ieee
PWR-5014
8166 05 2003 c1
               © 2003, Cisco Systems, Inc. All rights reserved
```

Integrated Routing and Bridging

Cisco.com

Integrated Routing and Bridging Allows Bridged and Routed Traffic of the Same Protocol to Be Interchanged

Cisco.com

Each candidate rack will consist of 2 (two) Catalyst 3550 switches with the Enhanced Multilayer Image-EMI IOS Software
Terminology Review

Cisco.com

Catalyst VTP—VLAN Trunk Protocol

VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis

Catalyst VTP Domain—VLAN management domain

One or more interconnected switches that share the same VTP domain name

• EMI—Enhanced Multilayer Image

Cisco IOS 12.1 EMI The layer2/3 IOS software for Catalyst 3550

• For more information check CCO at the following url:

http://www.cisco.com/univercd/cc/td/doc/product/lan/c3550/

Switching Overview

PWR-5014 8166_05_2003_c1

VTP—VLAN Trunk Protocol

Cisco.com

- VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis
- Switches must be in the same VTP domain to share VLAN information

Verify VTP

Switch#show vtp status

VTP Version	: 2
Configuration Revision	: 1
Maximum VLANs supported locally	: 1005
Number of existing VLANs	: 12
VTP Operating Mode	: Server
VTP Domain Name	: CCIE-LAB
VTP Pruning Mode	: Disabled
VTP V2 Mode	: Disabled
VTP Traps Generation	: Disabled
Configuration last modified by 1.1.1.1	at 3-1-93 04:16:16
Local updater ID is 1.1.1.1 on interface	VI1

VTP

Cisco.com

Switch Commands—VTP

***domain	Set the Name of the VTP Administrative Domain		
*Interface	Preferred Source for the VTP IP Updater Address		
***mode client	Set the Device to Client Mode		
***mode server	Set the Device to Server Mode		
****mode transparent	Set the Device to Transparent Mode		
*file	IFS File System File where VTP Configuration Is Store	ed	
**pruning	Set the Administrative Domain to Permit Pruning		
*v2-mode	Set the Administrative Domain to v2 Mode		
*password	Set the Password for the VTP Administrative Domain		
Importance: ***High **Medium *Low			

Catalyst 3550 and VLAN's

Cisco.com

- The Catalyst 3550 switch supports 1005 VLANs in VTP client, server, and transparent modes
- VLANs are identified with a number from 1 to 4094
- VLAN IDs 1002 through 1005 are reserved for Token Ring and FDDI VLANs
- VTP only learns normal-range VLANs, with VLAN IDs 1 to 1005; VLAN IDs greater than 1005 are extendedrange VLANs and are not stored in the VLAN database
- The switch must be in VTP transparent mode when you create VLAN IDs from 1006 to 4094

VLAN Configuration Mode Options

Cisco.com

- Config-vlan mode
- Database mode

Both methods produce the same results!

Switch#conf t Switch(config)#vtp mode server Switch(config)#vtp domain CCIE-LAB Switch(config)#vlan 10 Switch(config)#vlan 20 Switch(config-vlan)#end Switch#

Database Mode—Commands

PWR-5014 8166_05_2003_c1

VLAN Port Assignments—Commands

Verify VLAN's

dilling Cisco.com

Switch#show vlan brief

VLAN Name	Status	Ports	
1 default	active	Fa0/4, Fa0/5, Fa0/6, Fa0/7	
		Fa0/8, Fa0/9, Fa0/11, Fa0/12	
		Fa0/13, Fa0/14, Fa0/15, Fa0/16	
		Fa0/17, Fa0/18, Fa0/19, Fa0/20	
		Fa0/21, Fa0/22, Fa0/23, Fa0/24	
		Gi0/1, Gi0/2	
10 R2-R3	active	Fa0/1	
20 VLAN0020	active	Fa0/2	
30 VLAN0030	active	Fa0/3, Fa0/10	
36 VLAN_A	active		
40 VLAN_BB2	active		
62 VLAN_B	active		
99 VLAN0099	active		
187 VLAN0187	active		

Verify Switchport

Cisco.com

Switch#show interfaces FastEthernet 0/1 switchport Name: Fa0/1 Switchport: Enabled Administrative Mode: static access Operational Mode: static access Administrative Trunking Encapsulation: negotiate Operational Trunking Encapsulation: native Negotiation of Trunking: Off Access Mode VLAN: 10 (test) Trunking Native Mode VLAN: 1 (default) Trunking VLANs Enabled: ALL Pruning VLANs Enabled: 2-1001

Trunking

1

Carries the Traffic of Multiple Vlans over a Single Link

Configured on Fast Ethernet or Gigabit Ethernet Ports or Channels

Switch(config-if)#switchport trunk encapsulation isl

Verify Trunk

Switch#show interfaces trunk

Port	Mode	Encapsulation	Status	Native vlan
Fa0/24	on	isl	trunking	1

- Port Vlans allowed on trunk
- Fa0/24 1-4094
- **Port** Vlans allowed and active in management domain
- Fa0/24 1,10,20,30,36,40,62,99,187
- PortVlans in spanning tree forwarding state and not prunedFa0/241,10,20,30,36,40,62,99,187

Troubleshooting Commands show version

filling Cisco.com

Show version—to view features and interfaces

Switch#sh version **Cisco Internetwork Operating System Software** IOS (tm) C3550 Software (C3550-I5Q3L2-M), Version 12.1(9)EA1c, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2002 by cisco Systems, Inc. Compiled Tue 28-May-02 10:31 by antonino Image text-base: 0x00003000, data-base: 0x00685778 ROM: Bootstrap program is C3550 boot loader Switch uptime is 5 hours, 17 minutes Cisco IOS System returned to ROM by power-on Software System image file is "flash:c3550-i5g3l2-mz.121-9.EA1c" cisco WS-C3550-24 (PowerPC) processor (revision D0) with 65526K/8192K bytes of m emory. Processor board ID CHK0629V0CG Last reset from warm-reset Bridging software. EMI Feature Set **Running Layer2/3 Switching Image** 24 FastEthernet/IEEE 802.3 interface(s) Interfaces 2 Gigabit Ethernet/IEEE 802.3 interface(s)

Troubleshooting Commands show int status

All Cisco.com

Show interface status [num]—to view port status

Switch#show interfaces status

Port Name	Status	Vlan	Duplex Speed Type
Fa0/1	connected	10	a-half a-10 10/100BaseTX
Fa0/2	notconnect	20	auto auto 10/100BaseTX
Fa0/3	notconnect	30	auto auto 10/100BaseTX
Fa0/4	notconnect	1	auto auto 10/100BaseTX
Fa0/5	notconnect	1	auto auto 10/100BaseTX
Fa0/6	notconnect	1	auto auto 10/100BaseTX
Fa0/7	notconnect	1	auto auto 10/100BaseTX
Fa0/8	notconnect	1	auto auto 10/100BaseTX
Fa0/9	notconnect	1	auto auto 10/100BaseTX
Fa0/10	notconnect	30	auto auto 10/100BaseTX
Fa0/11	notconnect	1	auto auto 10/100BaseTX
Fa0/12	notconnect	1	auto auto 10/100BaseTX
Fa0/13	connected	1	a-full a-100 10/100BaseTX
Fa0/14	connected	1	a-full a-100 10/100BaseTX
Fa0/15	connected	1	a-full a-100 10/100BaseTX
Fa0/16	connected	1	a-full a-100 10/100BaseTX
Fa0/17	notconnect	1	auto auto 10/100BaseTX
Fa0/18	notconnect	1	auto auto 10/100BaseTX
Fa0/19	notconnect	1	auto auto 10/100BaseTX
Fa0/20	notconnect	1	auto auto 10/100BaseTX
Fa0/21	notconnect	1	auto auto 10/100BaseTX

8166_05_2003_c1

© 2003, Cisco Systems, Inc. All rights reserved.

Troubleshooting Commands show int stats

View traffic sent and received

show interfaces stats

Switch#sh interfaces stats

Interface Vlan1 is disabled

FastEthernet0/1

Switching path	Pkts In	Chars In	Pkts Out	Chars Out
Processor	1	64	14542	2228830
Route cache	0	0	0	0
Total	1	64	14542	2228830

FastEthernet0/2

Switching path	Pkts In	Chars	In	Pkts Out	Chars Out
Processor	0	0	0	0	
Route cache	0	0	0	0	
Total	0	0	0	0	

Troubleshooting Commands

Cisco.com

show cdp neighbor detail—to show neighbor devices

Troubleshooting Commands show mac-address

Cisco.com

show mac-address-table [static /dynamic]

Switch#sh mac-address-table dynamic Mac Address Table

Vlan Mac Address Type Ports _____ ____ 000a.41c7.6800 DYNAMIC Fa0/13 1 000a.41c7.6801 DYNAMIC Fa0/13 1 000a.8a07.fe00 DYNAMIC Fa0/14 1 1 000a.8a07.fe01 DYNAMIC Fa0/14 Fa0/16 1 000a.8a08.0880 DYNAMIC 1 000a.8a08.0881 DYNAMIC Fa0/16 000a.8a08.4c00 DYNAMIC Fa0/15 1 000a.8a08.4c01 DYNAMIC Fa0/15 1 100 000a.8a07.bf00 DYNAMIC Fa0/23 100 000a.8a07.bf13 DYNAMIC Fa0/23 Total Mac Addresses for this criterion: 10

References

Cisco.com

 Cisco LAN Switching, Kennedy Clark, Cisco Press

Catalyst 3550 configuration guide CCO

http://www.cisco.com/univercd/cc/td/doc/product/lan/c3550

Questions?

Catalyst—Layer 3

Switched Virtual Interface SVI

Routed ports

SVI—Switched Virtual Interface

- Software-based virtual interface
- Configure SVIs for any VLANs for which you want to route traffic
- SVI VLAN1 is created by default

Routed Ports

Cisco.com

- Acts like a port on a router
- Not associated with a particular VLAN
- Put the interface into Layer 3 mode with the no switchport interface configuration command

SVI—Routed Port Configuration

! interface Vlan10 ip address 3.0.0.1 255.0.0.0 end

SVI

Routed Port

interface FastEthernet0/5 no switchport ip address 5.0.0.1 255.0.0.0 end

Cisco.com

- Cat3550 with EMI behaves like a Cisco IOS router
- Practice RIP, EIGRP and OSPF using SVI and Routed interfaces
- IP Routing must be enabled first!

Catalyst Features

Cisco.com

Catalyst 3550—Cisco IOS Features

		4
*Voice VLAN's	Carry IP Voice Traffic from an IP Phone	
**SPAN	Switch Port Analyzer	
**Security	General Security and ACL's	
**QoS	Catalyst QoS	
**EtherChannel	PaGP, Load Balancing, STP	
*Fallback Bridging	Bridging Non-IP Protocols	
*CDP	Cisco Discovery Protocol	
*RMON	Remote Network Monitoring	
***Unicast Routing	RIP, EIGRP,OSPF	
***Multicast Routing	PIM SM, PIM DM, PIM SDM	
802.1Q and Layer 2 Prote	ocol Tunneling RESERVED FOR C/S EXAM	

Importance: ***High **Medium *Low

References

Cisco.com

Cisco LAN Switching, Kennedy Clark, Cisco Press

Cisco Documentation

Questions?

DLSWoE

DLSW+

• DLSW+

DLSWoE Configuration

What Is DLSw+

Cisco.com

- Means to transport SNA and NetBIOS over multiprotocol backbone
- Fully compliant with DLSw standard
- Offers scalability, availability, and usability enhancements

PWR-5014 8166_05_2003_c1

DLSW+ over Ethernet

Example of DLSW—Simple Configuration

IP Address

Must Match

interface Ethernet0 ip address 5.1.1.1 255.255.255.0 bridge-group 1

interface Serial0 ip address 10.1.1.1 255.255.255.0

bridge 1 protocol ieee

hostname RouterB dlsw local-peer peer-id 10.1.1.2 dlsw remote-peer 0 tcp 10.1.1.1 dlsw bridge-group 1

interface Ethernet0 ip address 20.1.1.1 255.255.255.0 bridge-group 1

interface Serial0 ip address 10.1.1.2 255.255.255.0

bridge 1 protocol ieee

PWR-5014 8166_05_2003_c1

Troubleshooting DLSW

Cisco.com

DLSW Show Commands

- show dlsw peers
- show spanning-tree
- show dlsw reachability

Show dlsw Peers

If Not 'CONNECT'ed, Troubleshoot Your IP Connectivity; Check Routes, IP Filters, etc.

PWR-5014 8166_05_2003_c1
Show spanning-tree

Cisco.com

Verify That DLSW Is 'Tied into' the Transparent Bridging Domain

Router#sh spanning-tree

Port 5 (Ethernet0/0) of Bridge group 1 is forwarding **bridge-group 1** Port path cost 100, Port priority 128, Port Identifier 128.5. Designated root has priority 32768, address 00e0.1e65.2d01 Designated bridge has priority 32768, address 00e0.1e65.2d01 Designated port id is 128.5, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 2 BPDU: sent 95424, received 1185

Port 12 (DLSw Port0) of Bridge group 1 is forwarding disw-bridge-group 1 Port path cost 10, Port priority 128, Port Identifier 128.12. Designated root has priority 32768, address 00e0.1e65.2d01 Designated bridge has priority 32768, address 00e0.1e65.2d01 Designated port id is 128.12, designated path cost 0 Timers: message age 0, forward delay 0, hold 0 Number of transitions to forwarding state: 1 BPDU: sent 96469, received 0

Show dlsw Reachability

DLSW Builds Its Reachability Cache as It Learns about End Stations

Cisco.com

Cisco Interactive Mentor, Multiprotocol Challenge, Cisco Press

Cisco Documentation

Questions?

Session 3

QOS/IP Routing/RIP/EIGRP

PWR-5014 8166_05_2003_c1

© 2003, Cisco Systems, Inc. All rights reserved.

QoS Quality of Service

QoS—Quality of Service

Cisco.com

Traffic Classification

Policy-Based Routing

Committed Access Rate

Class-Based Weighted Fair Queuing

Congestion Management

Weighted Fair Queuing

Class-Based Weighted Fair Queuing

Priority Queuing

Custom Queuing

Congestion Avoidance Weighted Random Early Detection

The Hook for Scalable IPv4 Packet-Marking and Classification

Cisco.com

Packets Are Marked @ the Edge, for Purposes of Classification in the Core

The IPv4 Header and the Type of Service (ToS) Byte

IPv4 ToS vs. DS-Field (The ToS Byte Is Re-Defined)

dillinini Cisco.com

000 - Routine

PWR-5014 8166 05 2003 c1

DSCP Cisco.com CU DSCP **DS Field** Class #4 Class #2 Class #3 Class#1 DROP Precedence **AF11 AF21 AF31 AF41** Low Drop (001010) (010010) 011010) (100010) Precedence 10 26 18 34 **AF12 AF22 AF32 AF42** Medium (001100) (010100) (100100) 011100) **Drop Prec** 12 20 28 36 **AF13 AF23 AF33 AF43 High Drop** (010110) (100110) (001110) (011110) Precedence 14 22 30 38 High Priority = EF = 101110 = 46 Best Effort = 000000 = 0

Cisco.com

- Configured on the receiving interface
- Packets are routed based on a configured policy

Cisco.com

Configuration steps:

Configure a route map to identify which packets will be policy routed

route-map example permit 10

match length min max

or

match ip address 1 – 99 or 1300-1999 (standard) or

match ip address 100 – 199 or 2000 – 2699 (extended)

Cisco.com

Configuration Steps:

 Configure a route map to classify and/or policy route the packets

route-map example permit 10 match length min max or match ip address set ip precedence 0-7 or name

critical	Set critical precedence (5)
flash	Set flash precedence (3)
flash-override	Set flash override precedence (4)
immediate	Set immediate precedence (2)
internet	Set internetwork control precedence (6)
network	Set network control precedence (7)
priority	Set priority precedence (1)
routine	Set routine precedence (0)

Cisco.com

route-map example permit 10 match length *min max* or match ip address set ip interface *interface name and number*

Forward Packet out the Indicated Interface if It Is up; If It Is down then Use the IP Routing Table

set default interface interface name and number

Forward Using the IP Routing Table if a Route Exists; If a Route Does Not Exist then Forward to the Indicated Interface

Cisco.com

route-map example permit 10 match length min max or match ip address set ip next-hop IP address

Forward Packet to the Indicated Next Hop if It Exists; If Not, then Use the IP Routing Table

set ip default next-hop IP address

Forward Using the IP Routing Table if a Route Exists; If a Route Does Not Exist then Forward to the Next Hop

Cisco.com

Configuration Example:

access-list 1 permit ip 135.1.9.1 access-list 2 permit ip 135.1.9.2 ! interface ethernet 0/0

ip policy route-map example

route-map example permit 10 match ip address 1 set ip precedence critical set ip default next-hop 135.1.20.3 ! route-map example permit 20 match ip address 2 set ip precedence routine set interface Serial0/0

Cisco.com

 Packets that are generated by the router are not normally policy-routed; to enable local PBR for such packets, indicate which route map the router should use by using the following command in global configuration mode:

ip local policy route-map name

Cisco.com

 PBR can be fast-switched; prior to Cisco IOS Release 12.0, PBR could only be process-switched, which meant that on most platforms the switching rate was approximately 1000 to 10,000 packets per second; this speed was not fast enough for many applications; users that need PBR to occur at faster speeds can now implement PBR without slowing down the router; enable using the interface command:

ip route-cache policy

The set ip default next-hop and set default interface commands are not supported.

Cisco.com

- Use on edge routers to classify and/or rate limit traffic
- Can be applied to all traffic or a subset of the traffic selected by an access list
- It is configured on the interface

Cisco.com

rate-limit {input|output} bps normal-burst max-burst **conform-action** action **exceedaction** action

rate-limit {input/output} access-group index bps normal-burst max-burst conformaction action exceed-action action

bps normal-burst max-burst index

8000 – 2,000,000,000 bits per second 1000 – 512,000,000 bytes 2000 – 1,024,000,000 bytes IP access list number

action continue drop set-dscp-continue 0-63 set-dscp-transmit 0-63 set-mpls-exp-continue 0-7 set-mpls-exp-transmit 0-7 set-prec-continue 0-7 set-prec-transmit 0-7 set-qos-continue 0-99 set-qos-transmit 0-99 transmit

scan other rate limits drop packet set dscp, scan other rate limits set dscp and send it set exp, continue set exp and send it rewrite precedence, continue rewrite precedence and send it set qos-group, continue set qos-group and send it transmit packet

PWR-5014 8166_05_2003_c1

Metering with Token Bucket

Cisco.com

- Common rate measurement mechanism used by Policer and Shaper
- Components:
 - Bc = Commited Burst Be = Excess Burst
 - CIR = Committed Rate PIR = Peak Info. Rate
 - **CBS = Committed Burst Size**
 - **PBS = Peak Burst Size**
- Basic operation:
 - Token bucket starts out full of Tokens
 - #s of tokens based on CIR are added at delta T
 - #s of tokens based on the size of the packet are removed from the token bucket upon forwarding that packet

RFC 2697: Single Rate Policer

Conditions and Actions

Cisco.com

Conform Condition

Bits-to-be-sent <= normal-burst (Bc)</pre>

Exceed Condition

normal-burst < bits-to-be-sent <= excess-burst (Be)</pre>

Violate Condition

bits-to-be-sent > excess burst (Be)

Actions: Drop/Transmit/Mark and Transmit

Cisco.com

Configuration Example:

- All World Wide Web traffic is sent; however, the IP precedence for web traffic that conforms to the first rate policy is set to 5; for nonconforming Web traffic, the IP precedence is set to 0 (best effort)
- File Transfer Protocol (FTP) traffic is sent with an IP precedence of 5 if it conforms to the second rate policy; if the FTP traffic exceeds the rate policy, it is dropped
- Any remaining traffic is limited to 8 Mbps, with a normal burst size of 16,000 bytes and an Excess Burst size of 24,000 bytes; traffic that conforms is sent with an IP precedence of 5; traffic that does not conform is dropped

dillight Cisco.com

Configuration Example:

interface Hssi0/0/0

```
description 45Mbps to R2
```

rate-limit output access-group 101 20000000 24000 32000 conform-action setprec-transmit 5 exceed-action set-prec-transmit 0

rate-limit output access-group 102 10000000 24000 32000 conform-action

```
set-prec-transmit 5 exceed-action drop
```

```
rate-limit output 8000000 16000 24000 conform-action set-prec-transmit 5
```

exceed-action drop

```
ip address 10.1.0.9 255.255.255.0
```

```
.
```

access-list 101 permit tcp any any eq www

```
access-list 102 permit tcp any any eq ftp
```

Weighted Fair Queuing

Cisco.com

- Traffic is queued by flow
- A flow is a conversation between a source and a destination
- It is configured on the interface

Weighted Fair Queuing Chart

Cisco.com

Weighted Fair Queuing Example

Cisco.com

Discard Threshold of 100 Messages 500 Dynamic Queues 20 RSVP Queues

Cisco.com

- Traffic is queued by user defined classes
- A queue is reserved for each class
- Queue uses tail drop or WRED
- Unclassified traffic is flow-based

Cisco.com

Step 1—Define the traffic classes

Global Configuration

class-map name class-map match-all name class-map match-any name

namename of the class mapmatch-allall clauses must matchmatch-anyany clause for a match

1

Global Configuration

class-map match-any GOLD

match

access-group Access group Any packets any Class map class-map IEEE 802.1Q/ISL class of service/user priority values COS Destination address (MAC) destination-address Select an input interface to match input-interface IP specific values ip Multi Protocol Label Switching specific values mpls Negate this match result not Protocol protocol Qos-group qos-group source-address Source address (MAC)

Cisco.com

Global Configuration

class-map match-any GOLD match protocol sqlnet match protocol ipsec match access-group 100 match ip precedence 4 5

class-map match-all SILVER match access-group 101 match access-group 102

class-map BRONZE match access-group 103

PWR-5014 8166_05_2003_c1

Cisco.com

• Step 2—Define the policy

Global Configuration

policy-map name class class-map-name bandwidth queue-limit random-detect shape police priority

kilobits/sec or percentage (1 – 512 packets - for tail drop) (WRED) token bucket parameters (CAR) Low Latency Queuing

Cisco.com

• Step 3—Apply the policy

policy-map SERVICES class GOLD bandwidth 6000 class SILVER bandwidth 3000 class BRONZE bandwidth 700 class class-default bandwidth 200

interface Ethernet 1/1 service-policy output policy1

PWR-5014 8166_05_2003_c1

Low Latency Queuing

Cisco.com

policy-map Multiservice class VoIP priority 240 (kilobits/sec)
Priority Queuing

Cisco.com

- Traffic is queued by protocol and optionally port number
- Traffic is put into high, medium, normal, and low priority queues
- Traffic in higher priority queues will be serviced first

This may result in lower queues not getting serviced

• Queue depths can be configured

Default queue depths for high, medium, normal, and low are 20, 40, 60, and 80

Priority Queuing Chart

Priority Queuing Example

Cisco.com

SNA Traffic Is High Priority WWW IP Traffic Is Low Priority All Other IP Traffic Is Medium Priority Set the Queue Depth for SNA Traffic to Be 50 Messages

Cisco.com

- Traffic is queued by protocol and optionally port number
- Traffic is put into user defined queues
- Traffic in each queue is serviced based on byte counts and queue depths

Once a queue's byte count limit is exceeded, the next queue is serviced

 Queue byte count limit and depths can be configured

Default queue byte count limit is 1500 bytes

Custom Queuing Chart

Custom Queuing Example

dilling Cisco.com

SNA Traffic Gets Triple the Bandwidth of All Other Traffic IP Gets a Maximum of 3500 Bytes Serviced IPX Gets a Maximum of 1500 Bytes Serviced

Weighted Random Early Detection (WRED)

- Randomly drops packets prior to periods of high congestion
- Can use IP precedence to provide for preferential traffic handling of higher priority packets
- Attempts to anticipate and avoid congestion rather than control congestion once it occurs
- Uses a configurable exponential weighting constant

Weighted Random Early Detection (WRED)

Cisco.com

interface Serial 0/1 random-detect

Once random-detect is enabled then more configuration options appear

random-detect ?	
dscp	parameters for each dscp value
dscp-based	Enable dscp based WRED on an interface
exponential-we	ighting-constant weight for mean queue depth calculation
flow	enable flow based WRED
prec-based	Enable prec based WRED on an interface
precedence	parameters for each precedence value
<cr></cr>	

References

Cisco.com

IP Quality of Service, Srinivas Vegesna Cisco Press

Cisco Documentation

Questions?

- Split Horizon
- Administrative Distance
- **RIP/EIGRP Command Guide**

Split Horizon

 Do not send a routing update out the interface on which it was learned

Cisco.com

Split Horizon

Serial Interfaces

Frame Relay not enabled— Split Horizon is enabled

Frame Relay enabled, no sub-interface— Split Horizon is disabled

Frame Relay enabled, sub-interfaces— Split Horizon is enabled

All Cisco.com

Administrative Distance

Connected	0
Static	1
EBGP	<u>2</u> 0
EIGRP	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
IBGP	200

 A router with more than 1 IP routing protocol enabled will use the administrative distance to select a route if the route is learned from more than 1 protocol; a lower admin distance is preferred

PWR-5014 8166_05_2003_c1

All Cisco.com

Router Commands—RIP

*auto-summary	Enable Automatic Network Number Summarization
default	Set a Command to Its Defaults
**default-information	Control Distribution of Default Information
**default-metric	Set Metric of Redistributed Routes
**distance	Define an Administrative Distance
***distribute-list	Filter Networks in Routing Updates
exit	Exit From Routing Protocol Configuration Mode
*flash-update-threshold	Specify Flash Update Threshold in Second
help	Description of the Interactive Help System
*input-queue	Specify Input Queue Depth
*maximum-paths	Forward Packets over Multiple Paths

Importance: ***High **Medium *Low

Router Commands—RIP

**neighbor	Specify a Neighbor Router
**network	Enable Routing on an IP Network
no	Negate a Command or Set Its Defaults
*offset-list	Add or Subtract Offset from IGRP or RIP Metrics
output-delay	Interpacket Delay for RIP Updates
*passive-interface	Suppress Routing Updates on an Interface
***redistribute	Redistribute Information from Another Routing Protocol
*timers	Adjust Routing Timers
*traffic-share	Algorithm for Computing Traffic Share for Alternate Routes
*validate-update-source	Perform Sanity Checks against Source Address of Routing Updates
**version	Set Routing Protocol Version
Importance: ***High **Medium *Low	

Cisco.com

Router Commands—RIP

Rtr(config-if)#ip rip ?	
**Authentication	Authentication Control
**receive	Advertisement Reception
**send	Advertisement Transmission

Importance: ***High **Medium **Low

Cisco.com

Router Commands—EIGRP

Router Configuration Commands	Configuration (Commands:
-------------------------------	-----------------	-----------

*auto-summary	Enable Automatic Network Number Summarization
default	Set a Command to Its Defaults
**default-information	Control Distribution of Default Information
**default-metric	Set Metric of Redistributed Routes
**distance	Define an Administrative Distance
***distribute-list	Filter Networks in Routing Updates
*eigrp	EIGRP Specific Commands
exit	Exit From Routing Protocol Configuration Mode
help	Description of the Interactive Help System
*maximum-paths	Forward Packets over Multiple Paths

Importance: ***High **Medium *Low

Cisco.com

Router Commands—EIGRP

Router Configuration Commands:	
metric	Modify IGRP Routing Metrics and Parameters
**neighbor	Specify a Neighbor Router
**network	Enable Routing on an IP Network
no	Negate a Command or Set Its Defaults
*offset-list	Add or Subtract Offset from IGRP or RIP Metrics
*passive-interface	Suppress Routing Updates on an Interface
***redistribute	Redistribute Information from Another Routing Protocol
*timers	Adjust Routing Timers
*traffic-share	Algorithm for Computing Traffic Share for Alternate Routes
*variance	Control Load Balancing Variance

Importance: ***High **Medium *Low

Cisco.com

Router Commands—EIGRP

Rtr(config-if)#ip hello-interval eigrp 1 ? <1-65535> Seconds Between Hello Transmissions

Rtr(config-if)#ip hold-time eigrp 1 ? <1-65535> Seconds Before Neighbor is Considered Down

Rtr(config-if)#ip split-horizon eigrp ? <1-65535> Autonomous System Number

Cisco.com

Route Redistribution

RIP/IGRP/EIGRP

Route Redistribution

Redistribute igrp and eigrp into RIP; Assign Specific igrp Routes a Metric (hop count) of 1, Other igrp Routes a Metric of 3 and eigrp Routes a Metric of 2

router rip redistribute igrp 1 route-map igrpmetric redistribute eigrp 3 default-metric 2

route-map igrpmetric permit 10 match ip address 1 set metric 1 route-map igrpmetric permit 20 set metric 3

access-list 1 permit 172.16.0.0 0.0.255.255

Preparation Suggestions

Cisco.com

• With two routers you can practice every command

References

Cisco.com

Routing TCP/IP Vol. 1 Jeff Doyle, Cisco Press

- EIGRP Network Design Solutions, Ivan Pepelnjak, Cisco Press
- Cisco Documentation

Questions?

Session 4

IP Routing OSPF

PWR-5014 8166_05_2003_c1

- Terminology
- Commands—Router
- Commands—Interface
- Commands—Monitoring
- Preparing for OSPF

dillining Cisco.com

Area Border Router—ABR

A router with at least one interface in area 0 and 1 or more interfaces in one or more non-backbone areas

Cisco.com

Autonomous System Boundary Router—ASBR

A router with at least one interface in an OSPF area that is redistributing routes from another protocol into OSPF

Cisco.com

Stub Area

Redistributed routes (OSPF external routes or Type 5) are not advertised into a Stub Area. OSPF Inter-area routes are Advertised into a stub area. The ABR will advertise a default into the stub area.

area 1 stub configure on all routers in the area

dillinini Cisco.com

Totally Stubby Area

Redistributed routes (OSPF external routes or Type 5) and OSPF Inter-area routes are not advertised into a Totally Stubby Area. The ABR will advertise a default into the stub area.

area 1 stub no-summary—configure on the ABR

Cisco.com

Not So Stubby Area—NSSA

Redistributed routes (OSPF external routes or Type 5) are converted to Type 7 at the ASBR. The ABR converts them back to type 5. The ABR will not advertise a default into the stub area.

area 1 nssa—configure on all routers in the area

Cisco.com

Totally Not So Stubby Area—NSSA

Redistributed routes (OSPF external routes or Type 5) are converted to Type 7 at the ASBR. The ABR converts them back to type 5. The ABR will not advertise a default into the stub area. OSPF Inter-area routes are not advertised into the area. The ABR will advertise a default route into the area.

area 1 nssa no-summary—configure on the ABR

Designated Router—DR

On a multi-access network, the DR is responsible for distributing LSAs to other attached OSPF routers; DR is selected by highest priority (default = 1), highest loopback address, or highest IP address assigned to a physical interface

DR

 Always configure a loopback interface before configuring OSPF

Backup Designated Router—BDR

The BDR will assume the DR role if the DR fails

All Cisco.com

DROTHER—Not the DR or BDR

Terminology

Adjacency

On a multi-access network, all OSPF routers will become adjacent with the DR and BDR

Full 2-Way

Terminology

OSPF Route Selection

3. Shortest path to B without going through area 0

Rtr(config)#router ospf 1 Rtr(config-router)#?				
Router Configuration Commands:				
***area	OSPF Area Parameters			
**auto-cost	Calculate OSPF Interface Cost According to Bandwidth			
default	Set a Command to Its Defaults			
*default-information	Control Distribution of Default Information			
*default-metric	Set Metric of Redistributed Routes			
*distance	Define an Administrative Distance			
*distribute-list	Filter Networks in Routing Updates			
*ignore	Do Not Complain about Specific Event			
*log-adjacency-changes	Log Changes in Adjacency State			
*maximum-paths	Forward Packets over Multiple Paths			
Importance: ***High **Medium *Low				

All Cisco.com

Rtr(config)#router ospf 1 Rtr(config-router)#?			
Router Configuration Commands:			
**neighbor	Specify a Neighbor Router		
***network	Enable Routing on an IP Network		
*no	Negate a Command or Set Its Defaults		
*passive-interface	Suppress Routing Updates on an Interface		
***redistribute	Redistribute Information from Another Routing Protocol		
*router-id	Router-id for this OSPF Process		
***summary-address	Configure IP Address Summaries		
*timers	Adjust Routing Timers		
*traffic-share	Algorithm for Computing Traffic Share for Alternate		
Importance: ***High **Medium *Low			

dillining Cisco.com

Area

Rtr(config-router)#area ?			
<0-4294967295>	OSPF Area ID as a Decimal Value		
A.B.C.D	OSPF Area ID in IP Address Format		
Rtr(config-router)#area 1 ?			

**Authentication	Enable Authentication
*default-cost	Set the Summary Default-Cost of a NSSA/Stub Area
*nssa	Specify a NSSA Area
***range	Summarize Routes Matching Address/Mask (Border Routers Only)
*stub	Specify a Stub Area
***virtual-link	Define a Virtual Link and its Parameters

Importance: ***High **Medium *Low

Cisco.com

Default-Metric

Rtr(config-router)#default-metric ? <1-4294967295> Default metric

Cisco.com

Network

- The network command is used to determine which interfaces will be enabled for OSPF
 - network 1.2.1.1 0.0.0.0 area 0
 - network 1.2.2.1 0.0.0.0 area 1
 - network 1.2.3.1 0.0.0.0 area 2

All Cisco.com

Network

network 1.2.1.00.0.255 area 0

network 1.2.2.00.0.0.255 area 1

network 1.2.3.00.0.255 area 2

dilling Cisco.com

Network

network 1.2.0.0 0.0.255.255 area 0

Cost—External Routes

 By default, redistributed routes have external metric type 2; Type 2 routes have a cost which consists of the external cost only; Type 1 routes include the cost of traversing the OSPF domain

Rtr(config-router)#redistribute rip metric-type ?

- 1 Set OSPF External Type 1 metrics
- 2 Set OSPF External Type 2 metrics

Cisco.com

Cisco.com

Cost—External Routes

Cisco.com

Summary-Address

Addresses can be summarized into OSPF on an ASBR

Range

Addresses can be summarized on an ABR into area 0 or from area 0

area 1 range 2.1.0.0 255.255.252.0 area 0 range 1.1.0.0 255.255.252.0

PWR-5014 8166_05_2003_c1

© 2003, Cisco Systems, Inc. All rights reserved.

Cisco.com

Virtual Link

area 1 virtual-link 130.11.254.254

area 1 virtual-link 130.10.254.254

Cisco.com

Auto Cost

• OSPF interfaces have a cost equal to 100,000,000/Bandwidth

Fast Ethernet = 100,000,000/100,000,000 = 1

Ethernet = 100,000,000/10,000,000 = 10

T1 = 100,000,000/1,544,000 = 65

- The auto-cost command is used to change the default of 100,000,000; changing the default affects the cost of every OSPF interface on the router
- Rtr(config-router)#auto-cost reference-bandwidth?
 <1-4294967> The reference bandwidth in terms of Mbits per second

Rtr(config-if)#ip ospf ?			
***authentication-key	Authentication Password (Key)		
**cost	Interface Cost		
*database-filter	Filter OSPF LSA during Synchronization and Flooding		
*dead-interval	Interval after which a Neighbor Is Declared Dead		
***demand-circuit	OSPF Demand Circuit		
*hello-interval	Time between HELLO Packets		
***message-digest-key	Message Digest Authentication Password (Key)		
***network	Network Type		
***priority	Router Priority		
*retransmit-interval	Time between Retransmitting Lost Link State Advertisements		
*transmit-delay	Link State Transmit Delay		
Importance: ***High **Medium *Low			

Cisco.com

Authentication—Clear Text

 Authentication requires router and interface commands; Router command is used to enable authentication for an area and the interface command is used to enable authentication on an interface

Rtr A interface serial 0 ip ospf authentication-key cisco ! router ospf 1

```
area 0 authentication
```

Rtr B interface serial 0 ip ospf authentication-key cisco ! router ospf 1 area 0 authentication

Cisco.com

Authentication—Message Digest

Rtr A interface serial 0 ip ospf message-digest-key 1 md5 cisco ! router ospf 1 area 0 authentication message-digest Rtr B interface serial 0 ip ospf message-digest-key 1 md5 cisco ! router ospf 1 area 0 authentication message-digest

(1).....Cisco.com

Authentication—Virtual Link

Rtr A

router ospf 1

area 1 virtual-link 130.11.254.254 authentication-key cisco area 0 authentication

Rtr B

router ospf 1 area 1 virtual-link 130.10.254.254 authentication-key cisco area 0 authentication

PWR-5014 8166_05_2003_c1

Cisco.com

Authentication—Can Be Applied per Interface or Virtual Link (Cisco IOS 12.x)

Interface

ip ospf authentication ip ospf authentication-key password

ip ospf authentication message-digest ip ospf message-digest key-id md5 password

ip ospf authentication null

Virtual Link

area area-id virtual-link router-id authentication authentication-key password

area area-id virtual link router-id authentication message-digest area area-id virtual link router-id message-digest-key key-id md5 password

area area-id virtual-link router-id authentication null

Non-Broadcast Multi-Access (NBMA) Network

Pvcs Can Be on Same Subnet or on Different Subnets Practice and Understand the Effect of OSPF Network Types

ip ospf network point-to-multipoint (Hello = 30, Dead = 120) Ip ospf network point-to-point (Hello = 10, Dead = 40) ip ospf network broadcast (Hello = 10, Dead = 40)

Commands—Monitoring

Cisco.com

Show

Rtr#show ip ospf ?	
*** <1-4294967295>	Process ID Number
border-routers	Border and Boundary Router Information
database	Database Summary
flood-list	Link State Flood List
**interface	Interface Information
***neighbor	Neighbor List
request-list	Link State Request List
retransmission-list	Link State Retransmission List
summary-address	Summary-Address Redistribution Information
***virtual-links	Virtual Link information
	Output Modifiers
<12>	

Importance: ***High **Medium *Low

Commands—Monitoring

Cisco.com

Show IP OSPF Neighbor

Neighbor ID	Pri	State	Dead Time	Address	Interface
1.1.1.254	1	2WAY/DROTHER	00:00:35	1.1.2.1	Ethernet0
1.1.3.254	1	FULL/BDR	00:00:39	1.1.2.2	Ethernet0
1.1.4.254	1	FULL/DR	00:00:37	1.1.2.3	Ethernet0
1.1.5.254	1	FULL/	00:00:36	1.1.6.1	Serial0

PWR-5014 8166_05_2003_c1

Preparation Suggestions

Cisco.com

Practice every OSPF command

Practice OSPF over Frame Relay

References

Cisco.com

Cisco OSPF Command and Configuration Handbook William R. Parkhurst, Cisco Press

- OSPF Network Design Solutions Thomas M. Thomas, Cisco Press
- Cisco Documentation

Questions?

Session 5

IP Routing BGP/ISIS

Cisco.com

- BGP Attributes
- Commands—Router
- Debugging
- Preparing for BGP

Cisco.com

AS Path

 AS Path attribute—the list of AS numbers that a route has traversed to reach a destination

PWR-5014 8166_05_2003_c1

dillining Cisco.com

Origin

• IGP

Network Layer Reachability Information (NLRI) is interior to the originating AS

• EGP

NLRI is learned via EBGP

Incomplete

NLRI is unknown; usually when redistributing static into BGP

Cisco.com

Next Hop

- The next hop IP address that is used to reach a destination
- For EBGP, the next hop is the IP address specified in the neighbor command
- For IBGP, the EBGP next hop information is carried into IBGP

Cisco.com

Next Hop—Multi-Access Networks

dillinini Cisco.com

Next Hop—NBMA Networks

Nexthop to 172.16.0.0 is 1.1.1.3—Needs to be 1.1.1.2

Cisco.com

Synchronization

All Cisco.com

Weight

 A Cisco defined attribute which is used for path selection; the weight is assigned locally and is not propagated in routing updates

Value: 0 - 65535 Default Value: 32768 Higher value is preferred

Adjust by neighbor

neighbor 1.1.1.1 weight <0 - 65535>

Adjust using a filter-list

neighbor 1.1.1.1 filter-list 5 weight 300

ip as-path access-list 5 permit ^100\$

set weight 300 route-map adjwt permit 20 set weight 200

PWR-5014 8166_05_2003_c1

Local Preference

- Signals which path is preferred to exit the AS and is exchanged among all BGP speakers in the AS; Local Preference is not exchanged between ASs
- Value: 0-4294967295

Default value: 100 Higher value is preferred

- Set on all updates to routers in the AS
- bgp default local-preference 200

PWR-5014 8166_05_2003_c1

filling Cisco.com

Local Preference

Set based on AS destination

neighbor 1.1.1.1 route-map localpref in

. . .

route-map localpref permit 10 match as-path 8 set local-preference 800 route-map local-pref permit 20 set local-preference 350

ip as-path 8 permit ^2\$

Cisco.com

Metric

- Also known as the Multi—Exit-Discriminator (MED); Metric is used as a suggestion to other ASs about the preferred path into the AS; exchanged between ASs
- Value: 0-4294967295
- Default value: 0
- Lower value is preferred

Metric

Set based on AS destination

neighbor 1.1.1.1 route-map setmed out

• • •

route-map setmed permit 10 match as-path 8 set metric 800 route-map setmed permit 20 set metric 350

ip as-path 8 permit ^2\$

Set based on IP Address

neighbor 1.1.1.1 route-map setmed out

route-map setmed permit 10 match ip address 1 set metric 800 route-map setmed permit 20 set metric 350

...

access-list 1 permit 172.16.1.0 0.0.0.255

Cisco.com

Cisco.com

Community

- Used to group destinations and apply routing decisions according to community; by default, not sent to any peers
- Value: 0-4,294,967,200 or 0:0-65535:65535
- Well known communities

no-export (Do not advertise to EBGP peers) no-advertise (Do not advertise to any peer)

• To send community values to a peer use neighbor 1.1.1.1 send-community

Cisco.com

Setting the Community Value

```
router bgp 1
neighbor 10.1.1.1 remote-as 2
neighbor 10.1.1.1 send-community
neighbor 10.1.1.1 route-map setcomm {in | out}
!
access-list 1 permit 172.16.1.0 0.0.0.255
!
route-map setcomm permit 10
match ip address 1
set community 65546 (or 1:10) {additive}
```

Cisco.com

Viewing the Community Value—Old Format

rtrA#sh ip bgp 172.16.1.0 BGP routing table entry for 172.16.1.0/24, version 7 Paths: (1 available, best #1, table Default-IP-Routing-Table) Advertised to non peer-group peers: 172.10.2.2 172.10.6.6 254 10.1.1.1 from 10.1.1.1 (199.172.15.254) Origin IGP, metric 0, localpref 100, valid, external, best Community: 65546

Cisco.com

Viewing the Community Value—New Format

ip bgp-community new-format (global configuration)

```
rtrA#sh ip bgp 172.16.1.0
BGP routing table entry for 172.16.1.0/24, version 7
Paths: (1 available, best #1, table Default-IP-Routing-Table)
Advertised to non peer-group peers:
172.10.2.2 172.10.6.6
254
10.1.1.1 from 10.1.1.1 (199.172.15.254)
Origin IGP, metric 0, localpref 100, valid, external, best
Community: 1:10
```

BGP Route Selection

Cisco.com

- 1. Ignore a route if the next hop is not known
- 2. Ignore IBGP routes that are not synchronized
- 3. Prefer the route with the largest weight
- 4. Prefer the route with the largest local preference
- 5. Prefer the route that was locally originated

BGP Route Selection

Cisco.com

- 6. Prefer the route with the shortest AS path; if using bgp bestpath as-path ignore then skip this step: When using the as-set option for aggregated routes then the as_set counts as 1 regardless of the number of AS entries in the set; confederation sub AS numbers are not used to determine the AS-path length
- 7. 7. Prefer the route with the lowest origin (IGP < EGP < Incomplete)
- 8. 8. Prefer the route with the lowest MED; this comparison is only between routes advertised by the same external AS

BGP Route Selection

Cisco.com

9. Prefer EBGP routes to IBGP routes

- **10. Prefer the route with the nearest IGP neighbor**
- **11. Prefer the oldest route**
- 12. Prefer the path received from the router with the lowest router ID

Cisco.com

Router Configuration Commands:

_	
***aggregate-address	Configure BGP Aggregate Entries
*auto-summary	Enable Automatic Network Number Summarization
*bgp	BGP Specific Commands
default	Set a Command to Its Defaults
*default-information	Control Distribution of Default Information
*default-metric	Set Metric of Redistributed Routes
*distance	Define an Administrative Distance
+++distribute-list	Filter Networks in Routing Updates
exit	Exit From Routing Protocol Configuration Mode
help	Description of the Interactive Help System
Importance: ***High **Medium *Low +++ - Do Not Use with BGP	

Use neighbor x.x.x.x distribute-list {in|out}

Router Configuration Commands:

*maximum-paths	Forward Packets over Multiple Paths
***neighbor	Specify a Neighbor Router
**network	Specify a Network to Announce via BGP
no	Negate a Command or Set Its Defaults
***redistribute	Redistribute Information from Another Routing Protocol
+++summary-address	Configure IP Address Summaries
*synchronization	Perform IGP Synchronization
*table-map	Map External Entry Attributes into Routing Table
*timers	Adjust Routing Timers
+++traffic-share	Algorithm for Computing Traffic Share for Alternate Routes

Importance: ***High **Medium *Low +++ - Do Not Use with BGP

BGP and Loopback Interfaces

RtrA

interface loopback0 ip address 1.1.1.254 255.255.255.255 ! Router bgp 100 neighbor 1.1.2.254 remote-as 100 neighbor 1.1.2.254 update-source loopback0 RtrB

interface loopback0 ip address 1.1.2.254 255.255.255.255 ! router bgp 100 neighbor 1.1.1.254 remote-as 100 neighbor 1.1.1.254 update-source loopback0

filling Cisco.com

Network

Used to tell BGP which networks to advertise to neighbors. Unlike IGPs, the network command is not used to determine which interfaces will be active for the protocol. Networks must be in the IP routing table in order for them to be advertised.

router bgp 100 neighbor x.x.x.x remote-as Y network 172.16.0.0 If auto-summary is on then a specific route from 172.16.0.0 must be in the routing table. If auto-summary is off then the prefix 172.16.0.0/16 must be in the IP routing table.

network 172.17.1.0 mask 255.255.255.0 Must be an exact match in the IP routing table.

Cisco.com

Address Aggregation

PWR-5014 8166_05_2003_c1

Cisco.com

Address Aggregation

Assume networks 1.1.0.0/24 and 1.1.1.0/24 are in the IP routing table either directly connected, learned by an IGP, or by EBGP.

Advertise 1.1.0.0/24, 1.1.1.0/24, and 1.1.0.0/23

router bgp 1 network 1.1.0.0 mask 255.255.255.0 (not needed if routes learned network 1.1.1.0 mask 255.255.255.0 from BGP or via redistribution) aggregate-address 1.1.0.0 255.255.254.0

Cisco.com

Address Aggregation

Assume networks 1.1.0.0/24 and 1.1.1.0/24 are in the IP routing table either directly connected, learned by an IGP, or by BGP.

Advertise 1.1.0.0/23 only

router bgp 1 network 1.1.0.0 mask 255.255.255.0 (not needed if routes learned network 1.1.1.0 mask 255.255.255.0 from BGP or via redistribution) aggregate-address 1.1.0.0 25 255.255.254.0 summary-only

Address Aggregation

Assume networks 1.1.0.0/24 and 1.1.1.0/24 are in the IP routing table either directly connected, learned by an IGP, or by EBGP.

Advertise 1.1.0.0/24 and 1.1.0.0/23 (aggregate and 1 specific route)

```
router bgp 1
network 1.1.0.0 mask 255.255.255.0
network 1.1.1.0 mask 255.255.255.0
aggregate-address 1.1.0.0 255.255.254.0 suppress-map specific
...
access-list 1 permit 1.1.1.0 0.0.0.255
...
route-map specific permit 10 (permit 1.1.1.0 to be suppressed)
match ip address 1
```

Cisco.com

Route Filtering

Filter networks in incoming or outgoing BGP updates based on IP address

Rtr A router bgp 1 neighbor 1.1.1.2 distribute-list 1 in

access-list 1 permit 172.16.0.0 0.0.255.255

Rtr B router bgp 2 neighbor 1.1.1.1 distribute-list 2 out

access-list 2 permit 130.15.8.0 0.0.0.255

Cisco.com

Route Filtering

 Path Filtering—Filter networks in incoming or outgoing BGP updates based on AS path information

```
Rtr A
router bgp 1
neighbor 1.1.1.2 filter-list 1 in
```

```
ip as-path access-list 1 deny ^2$
(deny routes belonging to AS 2)
ip as-path access-list 1 permit .*
```

Rtr B

```
router bgp 2
neighbor 1.1.1.1 filter-list 2 out
```

•••

ip as-path access-list 2 permit ^\$ (allow routes from this AS only)

Cisco.com

Route Maps

- Route maps can be used to set BGP parameters (MED, Weight, Local Preference, AS path, etc.)
- Route maps cannot be used to filter incoming updates based on an IP address (Cisco IOS version 11.1 and earlier)

....Cisco.com

Route Maps

neighbo	neighbor 1.1.1.1 route-map demo in	
route-ma	ap demo permit 1	10
match	as-path	Match BGP AS Path List
	community	Match BGP Community List
	interface	Match First Hop Interface of Route
	ір	IP Specific Information
	length	Packet Length
	metric	Match Metric of Route
	route-type	Match Route-Type of Route
	tag	Match Tag of Route

Route Maps

Route-n	Route-map demo permit 10	
set	*as-path	Prepend String for a BGP AS-path Attribute
	automatic-tag	Automatically Compute TAG Value
	comm-list	Set BGP Community List (for Deletion)
	*community	BGP Community Attribute
	*dampening	Set BGP Route Flap Dampening Parameters
	default	Set Default Information
	interface	Output Interface
	*ip	IP Specific Information
	level	Where to Import Route
	*local-preference	BGP Local Preference Path Attribute
	*metric	Metric Value for Destination Routing Protocol
	metric-type	Type of Metric for Destination Routing Protocol
	*origin	BGP Origin Code
	tag	Tag Value for Destination Routing Protocol
	*weight	BGP Weight for Routing Table

Cisco.com

IBGP

 IBGP requires a full mesh since IBGP speakers will not propagate routes learned from other IBGP speakers; the number of IBGP connections required is

[(N)(N-1)]/2 where N is the number of IBGP routers

For 6 routers, 15 logical IBGP connections are required

PWR-5014 8166_05_2003_c1

dillight Cisco.com

IBGP

Solution 1—Route Reflector

- Only the route reflector needs additional configuration
- Neighbor x.x.x.x route-reflector-client

Cisco.com

IBGP

Solution 2—Confederation

Cisco.com

IBGP

Confederation Configuration

Rtr A

Rtr D

router bgp 65531 bgp confederation identifier 1 bgp confederation peers 65532 neighbor (Rtr B) remote-as 65531 neighbor (Rtr C) remote-as 65531 neighbor (Rtr D) remote-as 65532 router bgp 65532 bgp confederation identifier 1 bgp confederation peers 65531 neighbor (Rtr A) remote-as 65532 neighbor (Rtr E) remote-as 65532 neighbor (Rtr F) remote-as 65532

Neighbor

Rtr(config-router)#neighbor 1.1.1.1 ?		
**advertise-map	Specify Route-Map for Conditional Advertisement	
*advertisement-interval	Minimum Interval between Sending EBGP Routing Updates	
**default-originate	Originate Default Route to this Neighbor	
description	Neighbor Specific Description	
***distribute-list	Filter Updates to/from this Neighbor	
**ebgp-multihop	Allow EBGP Neighbors Not on Directly Connected Networks	
**filter-list	Establish BGP Filters	
*maximum-prefix	Maximum Number of Prefix Accept from this Peer	
***next-hop-self	Disable the Next Hop Calculation for this Neighbor	
*password	Set a Password	
*peer-group	Member of the Peer-Group	
*prefix-list	Filter Updates to/from this Neighbor	

Importance: ***High **Medium *Low

....Cisco.com

Neighbor

Rtr(config-router)#neighbor 1.1.1.1 ?		
Specify a BGP Neighbor		
Remove Private AS Number from Outbound Updates		
Apply Route Map to Neighbor		
Configure a Neighbor as Route Reflector Client		
Send Community Attribute to this Neighbor		
Administratively Shut Down this Neighbor		
Per Neighbor Soft Reconfiguration		
BGP Per Neighbor Timers		
Route-Map to Selectively Unsuppress Suppressed Routes		
Source of Routing Updates		
Set the BGP Version to Match a Neighbor		
Set Default Weight for Routes from this Neighbor		

Importance: ***High **Medium *Low

Cisco.com

Test the IP connection between the BGP Routers

 If you can ping the remote endpoint then you can form a BGP connection

Rtr A#ping 1.1.1.2 Rtr B#ping 1.1.1.1

Cisco.com

Start with a minimum BGP configuration

router bgp 1 neighbor 1.1.1.2 remote-as 2 router bgp 2 neighbor 1.1.1.1 remote-as 1

dillinini Cisco.com

Check the BGP Connection

Rtr#show ip bgp ?	
A.B.C.D	IP Prefix <network>/<length>, e.g., 35.0.0.0/8</length></network>
A.B.C.D	Network in the BGP Routing Table to Display
cidr-only	Display Only Routes with Non-Natural Netmasks
community	Display Routes Matching the Communities
community-list	Display Routes Matching the Community-list
dampened-paths	Display Paths Suppressed Due to Dampening
filter-list	Display Routes Conforming to the Filter-list
flap-statistics	Display Flap Statistics of Routes
inconsistent-as	Display Only Routes with Inconsistent Origin ASs
neighbors	Detailed Information on TCP and BGP Neighbor Connections
paths	Path Information
peer-group	Display Information on Peer-Groups
regexp	Display Routes Matching the AS Path Regular Expression
summary	Summary of BGP Neighbor Status
<cr>></cr>	

PWR-5014 8166_05_2003_c1

Cisco.com

IF BGP state = Established then continue with your BGP configuration

Rtr A#show ip bgp neighbors

BGP neighbor is 1.1.1.2, remote AS 2, external link BGP version 4, remote router ID 1.1.1.2 BGP state = Established, table version = 1, up for 0:12:20 Last read 0:00:20, hold time is 180, keepalive interval is 60 seconds Minimum time between advertisement runs is 30 seconds Received 15 messages, 0 notifications, 0 in queue Sent 15 messages, 0 notifications, 0 in queue Connections established 1; dropped 0 Connection state is ESTAB, I/O status: 1, unread input bytes: 0 Local host: 10.1.1.7, Local port: 11002 Foreign host: 10.1.1.1, Foreign port: 179

References

Cisco.com

- Internet Routing Architectures, Bassam Halabi, Cisco Press
- Cisco BGP-4 Command and Configuration Handbook, William Parkhurst, Cisco Press
- BGP4 Case Studies/Tutorial Section 1-5

http://www.cisco.com/warp/public/459/13.html http://www.cisco.com/warp/public/459/14.html http://www.cisco.com/warp/public/459/15.html http://www.cisco.com/warp/public/459/16.html http://www.cisco.com/warp/public/459/17.html
References

All Cisco.com

Regular Expressions

http://www.cisco.com/univercd/cc/td/doc/product/software/ios11/arbook/arapptrn.htm

Questions?

NSAPs and Addressing

Cisco.com

- NSAP: Network Service Access Point
- An NSAP has an address that consists of 3 parts

Variable length area-address

6 Byte system ID

1 Byte n-selector (indicating transport layer)

Total length between 8 and 20 bytes

NSAPs and Addressing

Cisco.com

ISO/IEC 10589 distinguishes only 3 fields in the NSAP address format

Area Address: variable length field composed of high order octets of the NSAP excluding the SystemID and SEL fields

SystemID: defines an ES or IS in an area; Cisco implements a fixed length of 6 octets for the SystemID

NSEL: selector, also designated as N-selector; it is the last byte of the NSAP and identifies a network service user (transport entity or the IS network entity itself)

An Addressing Example

Cisco.com

PWR-5014 8166_05_2003_c1

Areas and Backbone Routers

Cisco.com

• ISIS has a 2 layer hierarchy

The backbone (level-2)

The areas (level-1)

An IS can be

Level-1 router (intra-area routing)

Level-2 router (inter-area routing)

Level-1-2 router (intra and inter-area routing)

Areas and Backbone Routers

Cisco.com

- ISIS does not have a backbone area
- The backbone is the contiguous collection of Level-2 capable routers
- More flexible and allows better scaling

The Backbone

Cisco.com

L2 routers must form contiguous backbone

L2 backbone is comparable with OSPF area 0 The backbone is the contiguous collection of L2 capable routers

- A router can't tell whether it is a transit IS
 Therefore the Cisco default is to be L1L2
 Backbone will be larger then necessary
 Always configure L1-only when possible
- Running L1L2 everywhere is less scalable Especially with ISIS for IP

Level-1 vs. Level-2 Routing

Cisco.com

- Rtr-B has neighbors only in its own area
- Could have a level-1 behavior
- But Rtr-A and C rely on Rtr-B to connect areas 2 and 3
- Rtr-B must have a full L2 LSDB to route to areas 2 and 3
- The level-2 backbone must be contiguous
- So all Cisco routers try to be a L1L2 IS by default

PWR-5014 8166_05_2003_c1

L1, L2, and L1L2 Routers

Cisco.com

• The backbone is the contiguous collection of L2 capable routers

Configuring Level-1 and Level-2

Cisco.com

• What are the Level-2 capable routers?

Configuring Level-1 and Level-2

• What are the Level-2 capable routers?

R1

interface Loopback0 ip address 10.1.11.11 255.255.255.0 ip router isis

interface Ethernet0/0 ip address 10.1.1.1 255.255.255.0 ip router isis

I

router isis net 01.1111.1111.1111.00 is-type level-1

R3

interface Loopback0 ip address 10.1.33.33 255.255.255.0 ip router isis

interface Serial1 ip address 10.1.4.3 255.255.255.0 ip router isis encapsulation frame-relay frame-relay map clns 316 broadcast frame-relay map ip 10.1.4.6 316 broadcast no frame-relay inverse-arp frame-relay lmi-type ansi

!

router isis net 03.3333.3333.333.00 is-type level-1 Cisco.com

Cis

Cisco.com

interface Loopback0 ip address 10.1.22.22 255.255.255.0 ip router isis interface Ethernet0/0 ip address 10.1.1.2 255.255.255.0 ip router isis interface Serial0/0 ip address 10.1.3.2 255.255.255.0 ip router isis encapsulation frame-relay frame-relay map clns 206 broadcast frame-relay map ip 10.1.3.6 206 broadcast no frame-relay inverse-arp frame-relay Imi-type ansi

interface Serial0/1 ip address 10.1.2.2 255.255.255.0 ip router isis encapsulation frame-relay frame-relay map clns 214 broadcast frame-relay map ip 10.1.2.4 214 broadcast no frame-relay inverse-arp frame-relay lmi-type ansi ! router isis net 01.2222.2222.2222.00

R2

Cisco.com

interface Loopback0 ip address 10.1.44.44 255.255.255.0 ip router isis ! interface Serial0/0 ip address 10.1.5.4 255.255.255.0 ip router isis encapsulation frame-relay frame-relay map clns 405 broadcast frame-relay map ip 10.1.5.5 405 broadcast no frame-relay inverse-arp frame-relay lmi-type ansi

interface Serial0/1 ip address 10.1.2.4 255.255.255.0 ip router isis encapsulation frame-relay frame-relay map clns 412 broadcast frame-relay map ip 10.1.2.2 412 broadcast no frame-relay inverse-arp frame-relay lmi-type ansi

router isis net 02.4444.4444.4444.00

R4

Cisco.com

R5

interface Loopback0 ip address 10.1.55.55 255.255.255.0 ip router isis ! interface Serial0 ip address 10.1.5.5 255.255.255.0 ip router isis encapsulation frame-relay frame-relay map clns 504 broadcast frame-relay map ip 10.1.5.4 504 broadcast no frame-relay inverse-arp frame-relay lmi-type ansi ! router isis net 02.5555.5555.5555.00 is-type level-1

Cisco.com

net 03.6666.6666.6666.00

interface Loopback0 ip address 10.1.66.66 255.255.255.0 ip router isis ! interface Serial0/0 ip address 10.1.3.6 255.255.255.0 ip router isis encapsulation frame-relay frame-relay map clns 602 broadcast frame-relay map ip 10.1.3.2 602 broadcast no frame-relay inverse-arp frame-relay lmi-type ansi

interface Serial0/1 ip address 10.1.4.6 255.255.255.0 ip router isis encapsulation frame-relay frame-relay map clns 613 broadcast frame-relay map ip 10.1.4.3 613 broadcast no frame-relay inverse-arp frame-relay lmi-type ansi ! router isis

PWR-5014 8166_05_2003_c1

R6

Atlining Cisco.com

R3#show	clns	neighbors

System Id Protocol	Interfa	ce SNPA	State	Ho	dtime	Туре
Rack01R6	Se1	DLCI 316	Up	9	L1	IS-IS

R3#show	isis	topo	loqv
			37

IS-IS paths to level-1 routers

System Id	Metri	c Next-Hop	Interface	SNPA
Rack10R3				
Rack01R6	10	R6	Se1	DLCI 316

References

Cisco.com

- IS-IS Network Design Solutions, Abe Martey, Cisco Press
- Routing TCP/IP Volume 1, Jeff Doyle, Cisco Press
- Cisco Documentation

Questions?

Session 6

Multicast/ATM/Security

PWR-5014 8166_05_2003_c1

© 2003, Cisco Systems, Inc. All rights reserved.

Cisco.com

- Overview
- Multicast Addressing and Forwarding
- **PIM-DM Configuration and Verification**
- PIM-SM Configuration and Verification
- References

Cisco.com

Overview

Addressing

- Class A 0.0.0.0 127.255.255.255
- Class B 128.0.0.0 191.255.255.255
- Class C 192.0.0.0 223.255.255.255
- Class D 224.0.0.0 239.255.255.255
- Class A, B, and C IP packets are forwarded based on the destination address; Class D (multicast) packets are forwarded based on the source IP address

Cisco.com

Loop Detection

 A multicast packet received on an interface will be accepted if received on the interface that would be used to send a unicast IP packet back to the source; this is called Reverse Path Forwarding (RPF)

Multicast—Dense Mode

Cisco.com

Protocol-independent

Supports all underlying unicast routing protocols including: static, RIP, IGRP, EIGRP, IS-IS, BGP, and OSPF

Dense-mode

Uses "Push" Model

Traffic flooded throughout network

Pruned back where it is unwanted

Flood and Prune behavior (typically every 3 minutes)

Multicast—Dense Mode

Cisco.com

Multicast—Dense Mode Configuration

All Cisco.com

Multicast—Dense Mode Verification

All Cisco.com

r2#show ip pim interface

Address	Interface	Ver/	Nbr	Query	DR	DR
		Mode	Count	Intvl	Prior	
10.1.1.2	Ethernet0/0	v2/D	1	30	1	10.1.1.2
10.1.3.2	Serial0/0	v2/D	1	30	1	10.1.3.6
10.1.2.2	Serial0/1	v2/D	1	30	1	10.1.2.4

r2#show ip	pim neighbor		
PIM Neighb	or Table		
Neighbor	Interface	Uptime/Expires Ver	DR
Address			Priority/Mode
10.1.1.1	Ethernet0/0	22:29:27/00:01:32 v2	1 / B S
10.1.3.6	Serial0/0	22:29:02/00:01:40 v2	1 / DR B S
10.1.2.4	Serial0/1	22:28:23/00:01:41 v2	1 / DR B S

Multicast—Sparse Mode

Cisco.com

Protocol-independent

Supports all underlying unicast routing protocols including: static, RIP, IGRP, EIGRP, IS-IS, BGP, and OSPF

Sparse-mode

Uses "Pull" model

Traffic sent only to where it is requested

Explicit join behavior

Multicast—Sparse Mode

Multicast—Sparse Mode Static RP

Cisco.com

On Every Router Global Configuration Command ip multicast-routing ip pim rp-address 10.1.22.22 R4S0/0 10.2.3.4/24 R3 ip pim sparse-dense-mode S0/1 10.2.2.3/24 ip pim sparse-dense-mode S0/1 10.2.2.2/24 **R2** S0/0 10.2.3.2/24 ip pim sparse-dense-mode ip pim sparse-dense-mode E0/0 10.1.1.2/24 ip pim sparse-dense-mode E0/0 10.1.1.1/24 ip pim sparse-dense-mode

Multicast—Sparse Mode Static RP— Verification

Allining Cisco.com

r3#show ip pim rp Group: 224.0.1.40, RP: 10.1.22.22, v1, uptime 00:12:24, expires never

r2#show ip pim interface

Address	Interface	Ver/ Nbr	Query	DR	DR
		Mode Count	Intvl	Prior	
10.1.1.2	Ethernet0/0	v2/SD 1	30	1	10.1.1.2
10.1.3.2	Serial0/0	v2/SD 1	30	1	10.1.3.6
10.1.2.2	Serial0/1	v2/SD 1	30	1	10.1.2.4

r2#show ip pim neighbor

r Table			
Interface	Uptime/Expires	Ver	DR
			Priority/Mode
Ethernet0/0	1d00h/00:01:17	v2	1/BS
Serial0/0	1d00h/00:01:44	v2	1 / DR B S
Serial0/1	1d00h/00:01:44	v2	1 / DR B S
	r Table Interface Ethernet0/0 Serial0/0 Serial0/1	r Table Interface Uptime/Expires Ethernet0/0 1d00h/00:01:17 Serial0/0 1d00h/00:01:44 Serial0/1 1d00h/00:01:44	r Table Interface Uptime/Expires Ver Ethernet0/0 1d00h/00:01:17 v2 Serial0/0 1d00h/00:01:44 v2 Serial0/1 1d00h/00:01:44 v2
Multicast—Sparse Mode Auto-RP

Routers automatically learn RP address

Only routers that are candidate RPs or mapping agents need to be configured

Makes use of Multicast to distribute info

Two specially IANA-assigned groups used

Cisco-Announce—224.0.1.39

Cisco-Discovery—224.0.1.40

Typically dense mode is used forward these groups

Permits backup RP's to be configured

Multicast—Sparse Mode Auto-RP

Cisco.com

ip pim send-rp announce loopback 0 scope 16 **On Every Router Global Configuration Command** RP ip multicast-routing ip pim send-rp announce loopback 0 scope 16 **Interface Configuration Command** ip pim sparse-dense-mode

Multicast—Sparse Mode Auto-RP Verification

dilling Cisco.com

r2#show ip pim rp mapping PIM Group-to-RP Mappings This system is an RP (Auto-RP)

Group(s) 224.0.0.0/4 RP 10.1.22.22 (r2), v2v1 Info source: 10.1.44.44 (?), via Auto-RP Uptime: 00:02:19, expires: 00:02:38

r3#show ip pim rp mapping PIM Group-to-RP Mappings This system is an RP-mapping agent (Loopback0)

Group(s) 224.0.0.0/4 RP 10.1.22.22 (r2), v2v1 Info source: 10.1.22.22 (?), via Auto-RP Uptime: 00:02:55, expires: 00:02:00

r4#show ip pim rp mapping PIM Group-to-RP Mappings

Group(s) 224.0.0.0/4 RP 10.1.22.22 (r2), v2v1 Info source: 10.1.44.44 (?), via Auto-RP Uptime: 00:24:29, expires: 00:02:17

Multicast—Sparse Mode BSR

1.....Cisco.com

Multicast—Sparse Mode BSR Verification

All Cisco.com

r2#show ip pim rp mapping PIM Group-to-RP Mappings This system is a candidate RP (v2)

Group(s) 224.0.0.0/4 RP 10.1.22.22 (?), v2 Info source: 10.1.44.44 (?), via bootstrap Uptime: 00:04:09, expires: 00:02:27

r2#show ip pim bsr-router PIMv2 Bootstrap information BSR address: 10.1.44.44 (?) Uptime: 00:06:16, BSR Priority: 0, Hash mask length: 0 Expires: 00:01:55

Next Cand_RP_advertisement in 00:00:39 RP: 10.1.22.22(Loopback0)

Anycast RP—Overview

Cisco.com

• Uses single statically defined RP address

Two or more routers have same RP address RP address defined as a loopback interface Loopback address advertised as a host route Senders and receivers join/register with closest RP Closest RP determined from the unicast routing table Can never fall back to dense mode Because RP is statically defined MSDP session(s) run between all RPs Informs RPs of sources in other parts of network

RPs join SPT to active sources as necessary

Anycast RP Configuration

1.....Cisco.com

Preparation

Cisco.com

References

Developing IP Multicast Networks; Beau Williamson, Cisco Press

Routing TCP/IP Volume II; Jeff Doyle, Cisco Press

ftp://ftpeng.cisco.com/ipmulticast/training/index.html

Questions?

ATM

ATM Topics

Cisco.com

Basic ATM Scenarios

PVC-Based

Classical IP-over-ATM

ATM Feature Example

PVC Scenario

PVC Scenario (Cont.)

Cisco.com

End-Station Configuration Example

PVC Scenario (Cont.)

Cisco.com

Verifying PVC Setup

ATM SVC Setup

ATM SVC Setup (Cont.)

- Using SVC's requires the signaling and ILMI PVC's
- Station addressing uses 20-byte NSAP addresses
- Use show atm ilmi-status to check ILMI
- Use debug atm sig-events to check signaling

Classical IP-over-ATM

Step 1: RtrA Wants to Ping 1.1.1.2 Step 2: RtrA Asks ARP Server for NSAP Matching 1.1.1.2 Step 3: RtrA Creates SVC to RtrB's NSAP

Classical IP-over-ATM (Cont.)

Cisco.com

End-Station Configuration Example

Classical IP-over-ATM (Cont.)

Cisco.com

Checking End-Station Connectivity

RtrA#show arp				
Protocol Address	Age (min)	Hardware	Addr Type	Interface
Internet 1.1.1.2	0	0/55	ATM	ATM3/0.1
Internet 1.1.1.1	0	0/54	ATM	ATM3/0.1

ATM Feature Example

Cisco.com

Setting the Service Class of a PVC using the VC-Class mechanism

 hostname RtrA

 !

 interface ATM3/0.1 point-to-point

 ip address 1.1.1.1 255.255.255.0

 pvc 0/108

 class-vc vclass

 class-vc vclass

 Apply VC-Class to PVC

 protocol ip 1.1.1.2

 VC-Class Setting

 Service

 !

 Parameters

 vc-class atm vclass

 abr 1000 0

Preparing and Implementing ATM

- An ATM switch is required to practice SVC-based scenarios; the switch can also be used for various server functions in a test setup
- Classify a test question as a PVC or Classical IP-over-ATM question before you start

Preparing and Implementing ATM (Cont.)

References

ATM Resource Library, Volumes 1, 2 and 3 (Black, Prentice Hall)

http://www.cisco.com/warp/public/121/index.shtml

CiscoCD—Internetworking Design Guide—ATM

CiscoCD—Configuration and Command References

Security

Security Topics— Routing and Switching

- Using IP Access Lists
- Advanced IP Access List Example
- Catalyst Security
- Preparation and Implementation

Using IP Access Lists

Cisco.com

Two types: basic and extended

access-list 2 permit 1.1.1.0 0.0.0.255 access-list 100 permit tcp 1.1.1.1 0.0.0.0 2.2.2.2 0.0.0.0 eq 23

• List elements are applied in order

access-list 102 deny ip host 1.1.1.1 any access-list 102 permit ip host 1.1.1.1 any

Using IP Access Lists (Cont.)

Cisco.com

Implicit deny at end of list

access-list 100 permit tcp host 1.1.1.1 any

access-list 100 permit tcp host 1.1.1.1 any access-list 100 deny ip any any

Applied inbound or outbound serial 0 ip access-group 10 in

Access List Example

Cisco.com

 Apply an outgoing IP access list on Ethernet 1 of RtrA such that:

Telnet sessions originating on net A are allowed

DNS traffic is allowed

SMTP sessions originating on net B are allowed

Routing protocol traffic is permitted

All other traffic is denied

Access List Example (Cont.)

.411111

Access List Example (Cont.)

Cisco.com

interface Ethernet 1
 ip access-group 100 out
!

access-list 100 permit tcp any any eq 23
access-list 100 permit udp any any eq 53
access-list 100 permit tcp any eq 25 any established
access-list 100 permit udp any any eq rip

(The Last Line Is Not Strictly Necessary Here)

Deny Martian and RFC 1918 Addresses

Cisco.com

- RFC 1918 lists addresses known as private; no packet with such addresses should be on the Internet
- Beside RFC 1918 some addresses are currently not used or don't make sense

IANA reserved

Test

Multicast as a source

Loopback netblocks

Deny Multicast Source and RFC 1918 Addresses

interface Serial 0/0

ip access-group 111 in

access-list 111 deny ip 10.0.0.0 0.255.255.255 any access-list 111 deny ip 172.16.0.0 0.15.255.255 any access-list 111 deny ip 192.168.0.0 0.0.255.255 any

access-list 111 deny ip 224.0.0.0 31.255.255.255 any

access-list 111 permit ip any any

Don't Forget the 'implicit deny'—No Points!

. . .

Unicast Reverse-Path Forwarding Checks

Cisco.com

- Mitigates source address spoofing by checking that a packet's return path uses the same interface it arrived on
- Pay close attention to where implemented
- Requires CEF
- Not always appropriate where asymmetric paths exist

ip cef distributed

interface Serial 0 ip verify unicast reverse-path

CAR for Security

Cisco.com

interface Serial 0/0 rate-limit output access-group 102 64000 2000 2000 conform-action transmit exceed-action drop ! access-list 102 permit icmp any any echo access-list 102 permit icmp any any echo-reply

- Limits ping 'flooding' to specified rate
- Same configuration required on adjacent router in other direction? (inbound)

Debugging Access Lists

Cisco.com

show access-lists can provide traffic information on ACL's:

RtrA#sh access-lists Extended IP access list 100 permit tcp any any eq telnet (10 matches) permit udp any any eq domain permit tcp any eq smtp any established (1 match) permit udp any any eq rip

Debugging Access Lists (Cont.)

Cisco.com

Adding the *log* keyword provides more information

access-list 100 permit tcp any any eq telnet log access-list 100 permit udp any any eq domain log access-list 100 permit tcp any eq smtp any established log access-list 100 permit udp any any eq rip log access-list 100 deny ip any any

%SEC-6-IPACCESSLOGP: list 100 permitted tcp 1.1.1.1(11003) -> 4.4.4(23), 1 packet %SEC-6-IPACCESSLOGDP: list 100 denied icmp 1.1.1.1 -> 4.4.4.4 (8/0), 5 packets

Implementation Suggestions

- Draw a diagram showing required traffic through the ACL
- Watch the order of list elements, and the logic
- If all or part of the list can be tested, make sure you do!
- Check routing after applying the list
Implementation Suggestions (Cont.)

• Don't forget the "deny all" at the end of the list

5.1 Deny all IP traffic to host 1.1.1.1

Incorrect: access-list 100 deny ip any host 1.1.1.1

Correct: access-list 100 deny ip any host 1.1.1.1 access-list 100 permit ip any any

Catalyst Security—BPDU/Root Guard

Cisco.com

- It is possible to disable STP in loop free topologies but the test may not permit this; by default spanning tree is enabled on all VLANs
- BPDU guard

Enable globally and set the port configuration as the default for BPDU guard

Use PortFast to enable or disable BPDU guard

Disables ports upon detection of a BPDU message on the port

• Root guard

Forces a port to become a designated port so that no switch on the other end of the link can become a root switch

BPDU Guard—Sample Configuration

Cisco.com

Switch(config)# spanning-tree portfast bpduguard Switch(config-if)# spanning-port portfast Switch(config)# spanning-tree guard root (or rootguard)

NOTE: Global Configuration

PWR-5014 8166 05 2003 c1

Preparation Suggestions

- Know some standard port numbers and protocol behaviors
- Practice using access lists you can actually test

Preparation Suggestions (Cont.)

References

http://www.cisco.com/warp/public/707/index.shtml

Designing Network Security (Kaeo, Cisco Press)

Enhanced IP Services for Cisco Networks (Lee, Cisco Press)

CiscoCD—Internetworking Design Guide—Security

CiscoCD—Configuration and Command References

Questions?

Section 7

ISDN and **Dial Features**

PWR-5014 8166_05_2003_c1

© 2003, Cisco Systems, Inc. All rights reserved.

ISDN and **DDR**

- Basic Configuration-Provided
- Debugging ISDN
- Authentication and Multilink
- DDR Scenarios
- Preparing for ISDN

Basic Setup

All Cisco.com

Common Test Scenario

Basics—Legacy DDR

1.....Cisco.com

Basics—**Profiles**

Debugging—Basic Connectivity

(1).....Cisco.com

show isdn status

The current ISDN Switchtype = basic-dms100 **ISDN BRI0** interface Layer 1 Status: ACTIVE Laver 2 Status: TEI = 68, State = MULTIPLE_FRAME_ESTABLISHED TEI = 70, State = MULTIPLE FRAME ESTABLISHED **Spid Status:** TEI 68, ces = 1, state = 8(established) spid1 configured, spid1 sent, spid1 valid Endpoint ID Info: epsf = 0, usid = 70, tid = 0 TEI 70, ces = 2, state = 8(established) spid2 configured, spid2 sent, spid2 valid Endpoint ID Info: epsf = 0, usid = 71, tid = 0Layer 3 Status: 0 Active Layer 3 Call(s) Activated dsl 0 CCBs = 0 Total Allocated ISDN CCBs = 0

Debugging—Call Progress

Cisco.com

debug dialer, debug isdn events

08:45:08: BRI0 DDR: rotor dialout [priority] 08:45:08: BRI0 DDR: Dialing cause ip (s=1.1.1.2, d=1.1.1.1) 08:45:08: BRI0 DDR: Attempting to dial 1112222 08:45:08: ISDN BRI0: Outgoing call id = 0x800F, dsl 24 08:45:08: ISDN BRI0: Event: Call to 1112222 at 64 Kb/s 08:45:08: ISDN BRI0: process_bri_call(): call id 0x800F, called_number 1112222, speed 64, call type DATA 08:45:08: CC CHAN GetIdleChanbri: dsl 24 08:45:08: Found idle channel B1 08:45:08: ISDN BRI0: received HOST PROCEEDING call id 0x800F 08:45:09: ISDN BRI0: received HOST CONNECT call id 0x800F 08:45:09: %LINK-3-UPDOWN: Interface BRI0:1, changed state to up 08:45:09: BRI0:1: interface must be fifo queue, force fifo 08:45:09: %DIALER-6-BIND: Interface BRI0:1 bound to profile Dialer0 08:45:09: %ISDN-6-CONNECT: Interface BRI0:1 is now connected to 1112222 08:45:09: isdn call connect: Calling lineaction of BRI0:1 08:45:09: ISDN BRI0: Event: Connected to 1112222 on B1 at 64 Kb/s

Other Debugging Commands

• PPP: debug ppp negotiation, debug ppp authentication

- IP problems: debug ip packet
- More detailed call progress (as a last resort): debug isdn q931, debug isdn q921

Authentication

- Authentication verifies the identity of a remote host
- Authentication is also part of calling and routing with ISDN

ISDN without Authentication

ISDN without Authentication (Cont.)

- Can depend on router and telco switch configuration
- Creates two unidirectional channels i.e. uses half the bandwidth

ISDN with Authentication

ISDN with Authentication

- Less sensitive to telco switch configuration
- More reliable in test situations
- Allows full use of ISDN bandwidth

PPP Feature Example

Cisco.com

Implementation of Multilink PPP with both channels; this task requires:

authentication

Local Directory Numbers (LDN's) on SPID's

a second dialer map or string

ppp multilink command—to create bundles

dialer load-threshold command, to bring up second channel

show ppp multilink shows:

Dialer0, bundle name is RtrA

0 lost fragments, 0 reordered, 0 unassigned, sequence 0x6/0x6 rcvd/sent

0 discarded, 0 lost received, 1/255 load

Member links: 2 (max not set, min not set)

BRI0:1

BRI0:2

DDR Techniques

- Floating static routes
- Dial backup
- Dialer watch
- OSPF demand circuit

Floating Static Routes

Cisco.com

ip route 2.2.2.0 255.255.255.0 1.1.1.2 240

- Uses a higher administrative distance so that dynamic protocols will take precedence
- Use only if explicitly allowed in a test question
- Make sure the dynamic route actually exists when DDR is not active

Cisco.com

interface Serial0 backup delay 10 10 backup interface Dialer0

- Use if the backup link can be tied to a physical interface
- Use it to trigger one end of a backup link or the other—not both!
- When the bri is a backup to a primary interface, the actual interface must be down (not administratively down) as well as the line protocol

Dialer Watch

- Allows a backup link to support multiple primary links
- Monitors specific network addresses

Dialer Watch (Cont.)

Cisco.com

hostname RtrA

interface BRI0 ip address 1.1.1.1 255.255.255.0 encapsulation ppp dialer map ip 1.1.1.2 name RtrB broadcast 1113333 dialer map ip 1.1.2.0 name RtrB broadcast 1113333 dialer map ip 1.1.3.0 name RtrB broadcast 1113333 dialer-group 1 dialer watch-group 2 isdn switch-type basic-dms100 isdn spid1 902111222200 1112222 isdn spid2 902111222301 1112222 ppp authentication chap access-list 101 deny eigrp any any access-list 101 permit ip any any dialer watch-list 2 ip 1.1.2.0 255.255.255.0

dialer watch-list 2 ip 1.1.3.0 255.255.255.0 dialer-list 1 protocol ip list 101

Dialer Watch (Cont.)

- Dialer Watch will keep the backup interface down until the monitored route(s) are no longer reachable through the primary interfaces
- Dialer Watch only supports IP, works best with EIGRP but is supported for OSPF and IGRP

OSPF Demand Circuit

- Useful if the backup link and failure point are in different parts of your network
- Suppresses OSPF HELLO and Refresh LSA's and keeps routes visible even if the backup link drops
- Can be difficult to implement

OSPF Demand Circuit (Cont.)

Cisco.com

Suggestions for use:

Configure on one side of the link only

Don't change the OSPF network type of the backup link

Make sure the question permits the link to come up for topology changes

Watch for routing loops

Increase the OSPF cost value of the ISDN link so that the preferred path is always the primary link

OSPF Demand Circuit (Cont.)

Routing Loop Example:

interface BRI0 ip address 1.1.1.1 255.255.255.0 ip ospf demand-circuit ! router ospf 10 redistribute rip subnets network 1.1.1.1 0.0.0.0 area 5 ! router rip redistribute connected redistribute ospf 10 network 3.0.0.0 default-metric 3

Preparation Suggestions

- ISDN requires hands-on practice with both ends of a link
- The debug and show commands produce lots of output—you need to learn what's normal and what's unusual

References

- ISDN and SS7: Architectures for Digital Signaling Networks (Black, Prentice Hall)
- Cisco Interactive Mentor, Multiprotocol Challenge, Cisco Press
- Building Cisco Remote Access Networks (Paquet, Cisco Press)
- http://www.cisco.com/warp/public/471/index.shtml
- CiscoCD—Internetworking Design Guide
- CiscoCD—Dial Solutions Quick Configuration Guide
- CiscoCD—Configuration and Command References

Implementation Suggestions

- Start with "minimal" configuration
- Use authentication!
- Read any DDR scenario carefully
- Watch for "typing errors"
- Switch types vary from site to site

Implementation Suggestions (Cont.)

Cisco.com

Debug from the bottom up—check: Connection with the switch Call progress PPP and authentication

IP connectivity

Leave a working configuration

Questions?

Session 8

Preparation, and Questions
Topics

Cisco.com

Preparing for the Exam

- Test-Taking Strategies
- Information Sources

Exam Preparation

- The qualification test
- Assessing strengths and weaknesses
- Materials and resources
- Practicing

The Qualification Test

- Use the content blueprint on the CCIE Web page as your guide
- The reading list materials are suggestions only
- The test stresses networking theory more than configuration skill
- Don't study for the qualification test and the lab at the same time

Assessing Strengths

- Using the content blueprint, determine your experience and knowledge level in the major topic areas
- For strength areas, practicing for speed should be sufficient
- For weak areas, you may need training or books in addition to practice

Materials and Resources

- For the lab exam, choose materials that provide configuration examples and take a "hands-on" approach
- Know the Cisco documentation CD

Practicing

- Find equipment
- Build and practice scenarios on a per topic basis
- Go beyond the basics practice additional features
- Learn show and debug commands along with each topic

Practicing (Cont.)

- If a protocol has multiple ways of configuring a feature, practice all of them
- Speed is vital on the exam; review and practice core material (Frame Relay, OSPF, BGP, basic ISDN) the week before your exam date

Test-Taking Strategies

- Arrive early or visit the site the day before
- Don't schedule flights too close to the end of the exam—it can run overtime
- Get some sleep the night before the exam

- Use question point values to judge time
- Read through the entire test first to check for addressing issues

- Do each question as a unit—configure and verify before moving to the next question
- Don't assume requirements that aren't mentioned in a question
- Don't make any drastic changes in the last half hour of the exam
- Save your configs often

.41111111111

Cisco.com

Ask the Proctor Questions

Cisco.com

 The proctor's role is to keep the exam as fair as possible; you should talk to the proctor if you don't understand a question, or if you experience technical problems

For More Information...

Cisco.com

- Beware of rumors!
- Visit the CCIE web page at

www.cisco.com/go/ccie

- Email: <u>ccie@cisco.com</u>
- Cheating:

ccie-nda-enforcement@cisco.com

Questions?

Cisco.com

BGP-4 Command and Configuration Handbook

ISBN: 158705017X

Cisco OSPF Command and Configuration Handbook

ISBN: 1587050714

CCIE Practical Studies, Vol I

ISBN: 1587200023

Available on-site at the Cisco Company Store

Cisco.com

CCIE Routing and Switching Exam Certification Guide

ISBN: 1587200538

CCIE Practical Studies: Security

ISBN: 1587051109

CCIE Security Exam Certification Guide ISBN: 1587200651

Available on-site at the Cisco Company Store

Cisco.com

Network Security Principles and Practicies

ISBN: 1587050250

Troubleshooting Remote Access Enterprise Networks ISBN: 1587050765

Troubleshooting IP Routing Protocols ISBN: 1587050196

Available on-site at the Cisco Company Store

dillinini Cisco.com

Routing TCP/IP Vol. I

ISBN: 1578700418

Routing TCP/IP Vol II

ISBN: 1578700892

Cisco LAN Switching

ISBN: 1578700949

Available on-site at the Cisco Company Store

NETWORKERS 2003 THE POWER TO TRANSFORM BUSINESS. **now.**

Please Complete Your Evaluation Form

Session PWR-5014

CISCO SYSTEMS