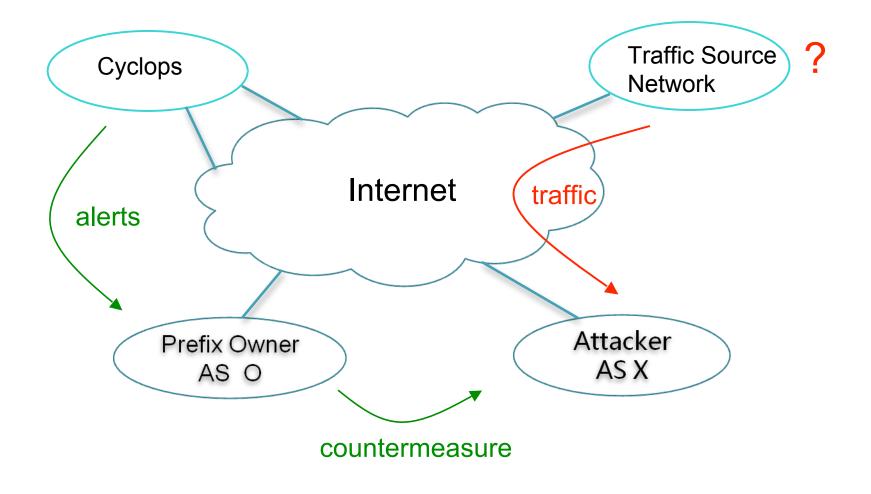
# Large Route Leak Detection

Qing Ju, Varun Khare, Beichuan Zhang University of Arizona


## Route Leak/Prefix Hijack

- An unauthorized network announces prefixes of other networks.
  - Prefix owner: the destination of the traffic.
  - □ Attacker: the blackhole of the traffic.
  - Other networks: the source of the traffic.
- Both the prefix owner (traffic destination) and other networks (traffic source) are victims.

## Current Practice

- Only prefix owner deals with leak/hijack.
  - A monitoring system, such as Cyclops, MyASN, BGPMon, sends alerts to the prefix owner.
  - Prefix owner decides which one is a real incident.
  - Prefix owner contacts attacker or his upstream ISP to stop the attack.
- Problem: the whole process takes time, during which data traffic is vulnerable.
  - E.g., the YouTube case took 2 hours to resolve. In the meantime users experienced YouTube outage.

### Different parties in a leak/hijack incident



## Protect My Traffic

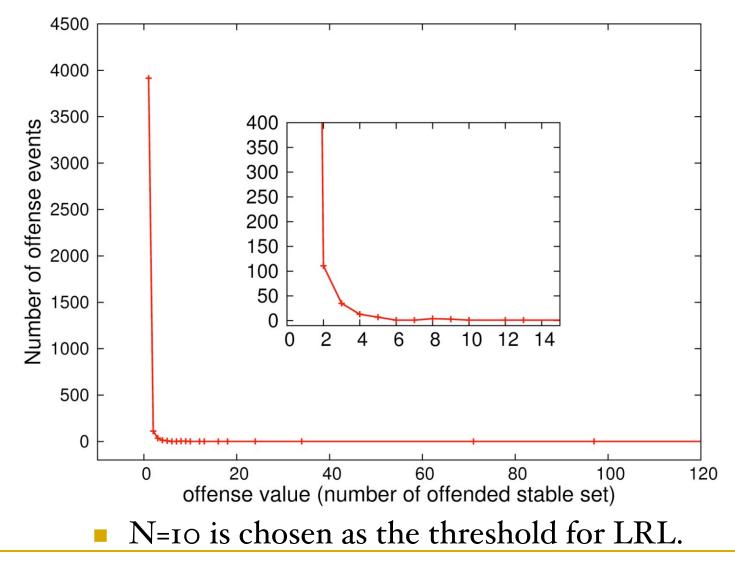
- How do networks other than the prefix owner protect their traffic before the attack is resolved?
  - Identify and drop false routing announcements.
- It is very difficult to *accurately* identify *all* false routing announcements without authoritative knowledge from the prefix owner.
  - There are many legit origin changes.
- There are cases relatively easier to detect.
  - □ Improve upon what we have now.

## Large Route Leaks (LRL)

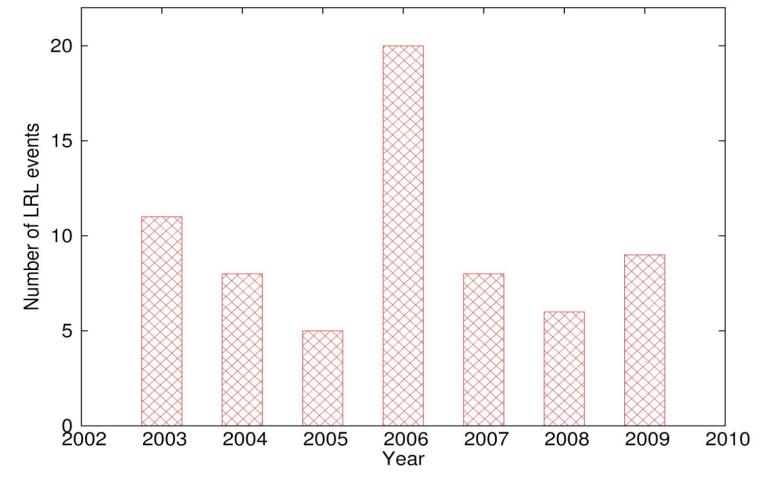
- Sometimes a network hijacks prefixes of multiple other networks, likely due to misconfiguration.
  - More often than you thought or reported on NANOG list.
- Our goal is to *automatically* detect these incidents.
  - Without help from prefix owner.
  - Try to minimize false positives.
    - We may miss some incidents, but what we report are highly likely to be real incidents.
- So that networks (non prefix owners) can respond to these attacks quickly to protect their traffic.

## Detecting Large Route Leaks

- Basic observation:
  - When an AS announces a prefix of another network, it is difficult to tell whether this is legit or not.
  - When an AS announces prefixes of *many* different networks at the *same time*, it is very likely that this is a hijack/leak.
- Basic approach:
  - Get all origin changes from BGP routing updates.
  - □ Find all *suspicious* origin changes.
  - Correlate the suspicious origin changes along time as well as attacker AS to identify LRL events.


## Narrowing Down Suspicious Events

- The raw BGP data contains way too many origin changes, and most of them are legit.
- We filter out the following ones.
  - I. The AS has announced the prefix for more than one day in the past year.
  - II. The AS has announced a super-prefix for more than one day in the past year.
  - III. The AS has a stable inter-domain link connected to the AS that normally announces the prefix or its super-prefix.
  - IV. WHOIS says that both new and old origin ASes belong to the same organization.
  - v. IXP prefixes.
- This filtering does not have to be perfect. It just reduces the noise in the later results.


## Identifying LRL Incidents

- After the previous step of filtering, if an AS still announces prefixes that are normally announced by N different networks, we say this AS has an *offense value* of N.
  - □ N is mostly 1 or 2 for the vast majority of events.
- We set N=10 as the threshold to become an LRL incident.

### Distribution of Offense Values



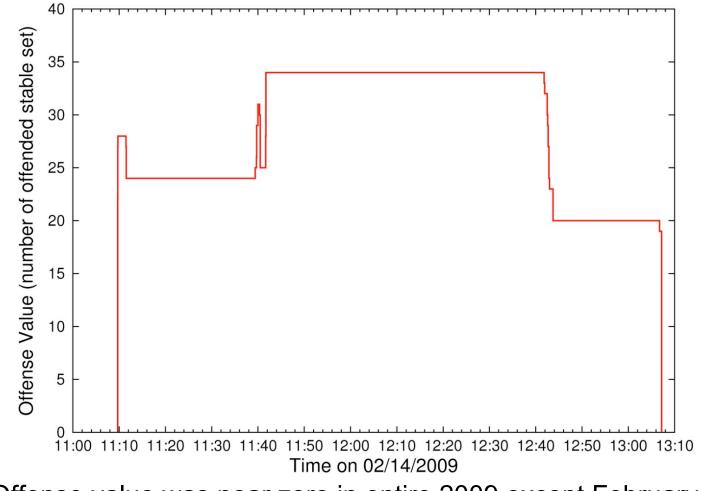
## Number of LRL Incidents Detected



RouteViews Oregon collector data, 2003-2009.

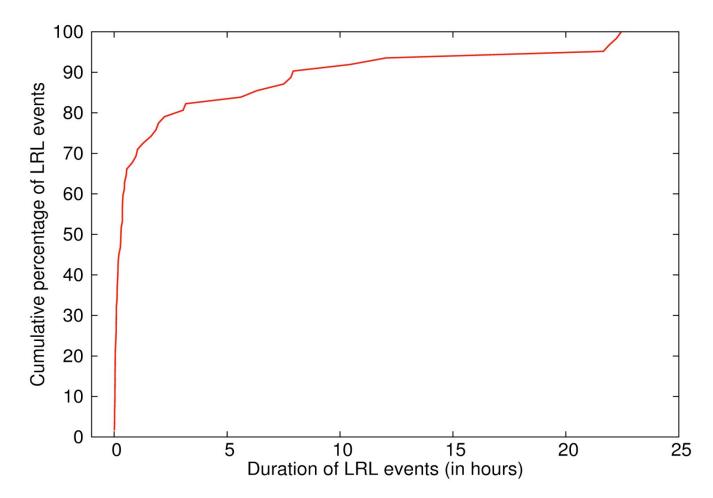
## How Accurate and Useful Is It?

- Email to victim networks to confirm.
- All 9 incidents in 2009 and 6 incidents in 2008 have been confirmed as real route leaks/hijacks.
- Only a full table leak in 2008 was reported on NANOG list. None of the other 14 incidents was reported.
- Even many victim networks were not aware of them
- Though we do not catch all leaks/hijacks, what we are able to catch are still very useful information for operators, especially those who are not the prefix owner.


## Nine Incidents Detected in 2009

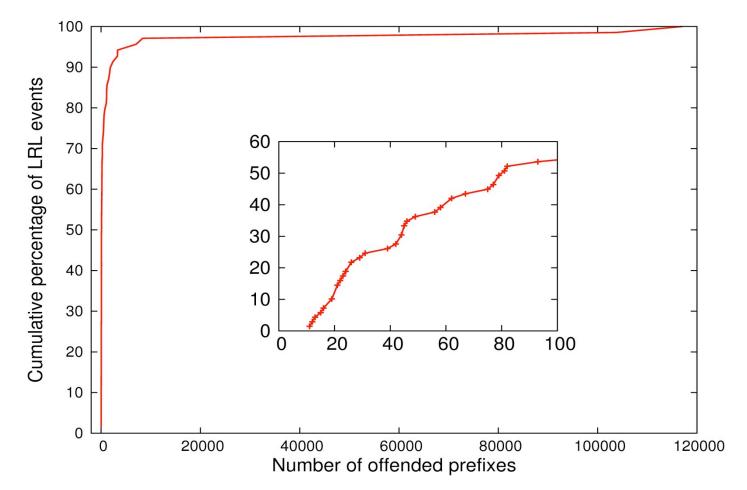
| DATE  | ASN   | OFFENSE<br>VALUE | AS NAME                   | DURATION   | Country      |
|-------|-------|------------------|---------------------------|------------|--------------|
| 02/14 | 8895  | 34               | KACST/ISU                 | 1.96 hours | Saudi Arabia |
| 04/07 | 36873 | 13               | VNL1-AS                   | 9.98 mins  | Nigeria      |
| 05/05 | 10834 | 97               | Telefornia                | 3.06 hours | Argetina     |
| 07/12 | 29568 | 16               | Comtel Supernet           | 23.45 mins | Romania      |
| 07/22 | 8997  | 170              | OJSC NorthWest<br>Telecom | 59 secs    | Russia       |
| 08/12 | 4800  | 12               | Lintasarta-AS-AP          | 32 secs    | Indonesia    |
| 08/13 | 4800  | 71               | Lintasarta-AS-AP          | 7.82 hours | Indonesia    |
| 12/04 | 31501 | 18               | SPB-Teleport              | 68 secs    | Russia       |
| 12/15 | 39386 | 24               | Saudi Telecom             | 62 secs    | Saudi Arabia |

## A Case Study

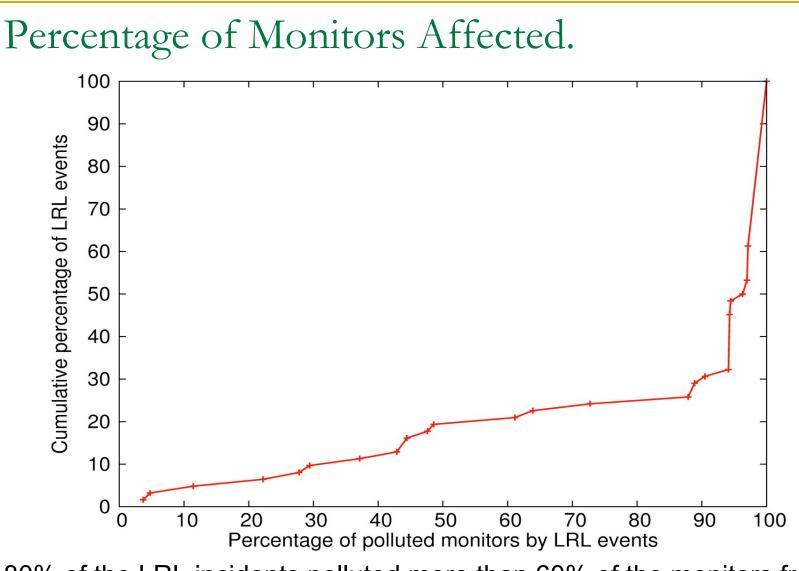

- On February 14<sup>th</sup>, 2009
  - AS 8895 (KACST/ISU, Saudi Arabia) originated 243 prefixes belonging to 34 Saudi ASes for about 2 hours.
  - □ A total of 41 out of 43 Routeviews Oregon monitors observed it.
  - Confirmed by a victim Saudi ISP operator via email.
- What happened:
  - AS 8895 used to be the upstream provider for many local ISPs before its customers switching to Saudi Telecom (AS39386)
  - But due to misconfiguration, AS 8895 announced prefixes of many ex customers.

#### A Case Study (cont.)




 Offense value was near zero in entire 2009 except February 14<sup>th</sup>, when the leak happened.

### The Duration of LRL Incidents




Most LRL incidents are short, but still 20% of them lasted more than 3 hours.

#### The Number of Prefixes Offended



Most LRL incidents affected tens of prefixes. The medium is 76 prefixes.



80% of the LRL incidents polluted more than 60% of the monitors from RouteViews Oregon collector.

## Comparison with Pretty Good BGP

#### Same goal

- protecting data traffic by non-prefix owner networks before the attack is resolved.
- Complimentary approaches
  - □ PGBGP: block all new origins for 24 hours
    - No false negative, but many false positives.
    - Only block when there is an alternative path available.
  - LRL detection
    - No or very small false positives, may have many false negatives.
    - Only trigger a small number of alerts that are highly likely real attacks, making it possible to react automatically or very quickly.

## Potential Deployment Scenarios

- Operating in the NOC of individual networks
  - Receive live BGP updates from border routers or public source like RouteViews, and generate alerts.
  - Can have multiple levels of thresholds for different actions, e.g.,
    - A high threshold for automatic response.
    - A medium threshold for manual intervention.
- Incorporated into monitoring systems like Cyclops
  Registered users can receive LRL alerts in addition to alerts regarding their own prefixes.

# On-going Work

- Improving the detection algorithm.
- Running the detection with real-time BGP data feed from RouteViews.
- Incorporating into monitoring systems like Cyclops.

## Thanks!