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Preface 

Queuemg networks and Markov chains are commonly used for the perfor- 
mance and reliability evaluation of computer, communication, and manu- 
facturing systems. Although there are quite a few books on the individual 
topics of queueing networks and Markov chains, we have found none that 
covers both of these topics. The purpose of this book, therefore, is to offer a 
detailed treatment of queueing systems, queueing networks, and continuous 
and discrete-time Markov chains. 

In addition to introducing the basics of these subjects, we have endeav- 
ored to: 

l Provide some in-depth numerical solution algorithms. 

0 Incorporate a rich set of examples that demonstrate the 
the different paradigms and corresponding algorithms. 

application of 

l Discuss stochastic Petri nets as a high-level description language, there- 
by facilitating automatic generation and solution of voluminous Markov 
chains. 

l Treat 
els. 

in some detail approximation met hods that will handle large mod- 

l Describe and apply four software packages throughout the text. 

l Provide problems as exercises. 

This book easily lends itself to a course on performance evaluation in the 
computer science and computer engineering curricula. It can also be used for a 
course on stochastic models in mathematics, operations research and industri- 
al engineering departments. Because it incorporates a rich and comprehensive 
set of numerical solution methods comparatively presented, the text may also 
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well serve practitioners in various fields of applications as a reference book for 
algorithms. 
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Introduction 

1.1 MOTIVATION 

Information processing system designers need methods for the quantification 
of system design factors such as performance and reliability. Modern com- 
puterr communicationI’ and production line systems process complex work- 
loads with random service demands. Probabilistic and statistical methods 
are commonly employed for the purpose of performance and reliability eval- 
uation. The purpose of this book is to explore major probabilistic modeling 
techniques for the performance analysis of information processing systems. 
Statistical methods are also of great importance but we refer the reader to 
other sources [JainSlI’Triv82] for this topic. Although we concentrate on per- 
formance analysisI’we occasionally consider reliabilityI”availabilityI’and com- 
bined performance and reliability analysis. Performance measures that are 
commonly of interest include throughputI’resource utilizationrloss probabili- 
@and delay (or response time). 

The most direct method for performance evaluation is based on actual 
measurement of the system under study. HoweverI’during the design phaser 
the system is not available for such experimentsrand yet performance of a 
given design needs to be predicted to verify that it meets design requirements 
and to carry out necessary trade-offs. HenceI’abstract models are necessary 
for performance prediction of designs. The most popular models are based on 
discrete-event simulation (DES). DES can be applied to almost all problems 
of interestrand system details to the desired degree can be captured in such 
simulation models. F’urthermoreI’many software packages are available that 
facilitate the construction and execution of DES models. 

1 



2 INTRODUCTION 

The principal drawback of DES models, however, is the time taken to run 
such models for large, realistic systems particularly when results with high 
accuracy (i.e., narrow confidence intervals) are desired. A cost-effective alter- 
native to DES models, analytic models can provide relatively quick answers to 
“what if” questions and can provide more insight into the system being stud- 
ied. However, analytic models are often plagued by unrealistic assumptions 
that need to be made in order to make them tractable. Recent advances in 
stochastic models and numerical solution techniques, availability of software 
packages, and easy access to workstations with large computational capa- 
bilities have extended the capabilities of analytic models to more complex 
systems. 

Analytical models can be broadly classified into state space models and 
non-state space models. Most commonly used state space models are Markov 
chains. First introduced by A. A. Markov in 1907, Markov chains have been in 
use in performance analysis since around 1950. In the past decade, consider- 
able advances have been made in the numerical solution techniques, methods 
of automated state space generation, and the availability of software packages. 
These advances have resulted in extensive use of Markov chains in performance 
and reliability analysis. A Markov chain consists of a set of states and a set of 
labeled transitions between the states. A state of the Markov chain can model 
various conditions of interest in the system being studied. These could be the 
number of jobs of various types waiting to use each resource, the number of 
resources of each type that have failed, the number of concurrent tasks of a 
given job being executed, and so on. After a sojourn in a state, the Markov 
chain will make a transition to another state. Such transitions are labeled 
either with probabilities of transition (in case of discrete-time Markov chains) 
or rates of transition (in case of continuous-time Markov chains). 

Long run (steady-state) dynamics of Markov chains can be studied using 
a system of linear equations with one equation for each state. Transient (or 
time dependent) behavior of a continuous-time Markov chain gives rise to 
a system of first-order, linear, ordinary differential equations. Solution of 
these equations results in state probabilities of the Markov chain from which 
desired performance measures can be easily obtained. The number of states 
in a Markov chain of a complex system can become very large and, hence, 
automated generat ion and efficient numerical solution met hods for underlying 
equations are desired. A number of concise notations (based on queueing 
networks and stochastic Petri nets) have evolved, and software packages that 
automatically generate the underlying state space of the Markov chain are 
now available. These packages also carry out efficient solution of steady-state 
and transient behavior of Markov chains. In spite of these advances, there 
is a continuing need to be able to deal with larger Markov chains and much 
research is being devoted to this topic. 

If the Markov chain has nice structure, it is often possible to avoid the 
generation and solution of the underlying (large) state space. For a class 
of queueing networks, known as product-form queueing networks (PFQN), 
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it is possible to derive steady-state performance measures without resorting 
to the underlying state space. Such models are therefore called non-state 
space models. Other examples of non-state space models are directed acyclic 
task precedence graphs [SaTr87] and fault-trees [STP96]. Other examples of 
methods exploiting Markov chains with “nice” structure are matrix-geometric 
methods [Neut81]. We do not discuss these model types in this book due to 
space limitations. 

Relatively large PFQN can be solved by means of a small number of simpler 
equations. However, practical queueing networks can often get so large that 
approximate methods are needed to solve such PFQN. Furthermore, many 
practical queueing networks (so-called non-product-form queueing networks, 
NPFQN) do not satisfy restrictions implied by product-form. In such cases, 
it is often possible to obtain accurate approximations using variations of algo- 
rithms used for PFQNs. Other approximation techniques using hierarchical 
and fixed-point iterative methods are also used. 

The flowchart shown in Fig. 1.1 gives the organization of this book. The 
rest of this chapter, Section 1.2, covers the basics of probability and statistics. 
In Chapter 2, Markov chains basics are presented together with generation 
methods for them. Exact steady-state solution techniques for Markov chains 
are given in Chapter 3 and their aggregation/disaggregation counterpart in 
Chapter 4. These aggregation/disaggregation solution techniques are useful 
for practical Markov chain models with very large state spaces. Transient 
solution techniques for Markov chajns are introduced in Chapter 5. 

Chapter 6 deals with the description and computation of performance mea- 
sures for single-station queueing systems in steady state. A general description 
of queueing networks is given in Chapter 7. Exact solution methods for PFQN 
are described in detail in Chapter 8 while approximate solution techniques for 
PFQN are described in Chapter 9. Solution algorithms for different types 
of NPFQN ( sue as networks with priorities, non-exponential service times, h 
blocking, or parallel processing) are presented in Chapter 10. 

The solution algorithms introduced in this book can also be used for opti- 
mization problems as described in Chapter 11. For the practical use of mod- 
eling techniques described in this book, software packages (tools) are need- 
ed. Chapter 12 is devoted to the introduction of a queueing network tool, a 
stochastic Petri net tool, a tool based on Markov chains and a toolkit with 
many model types, and the facility for hierarchical modeling is also intro- 
duced. Each tool is described in some detail together with a simple example. 
Throughout the book we have provided many example applications of dif- 
ferent algorithms introduced in the book. Finally, Chapter 13 is devoted to 
several large real-life applications of the modeling techniques presented in the 
book. 



4 INTRODUCTION 

Fig. 1.1 Flowchart describing how to find the appropriate chapter for a given perfor- 
mance problem. 
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1.2 BASICS OF PROBABILITY AND STATISTICS 

We begin by giving a brief overview of the more important definitions and 
results of probability theory. The reader can find additional details in books 
such as [AllegO, Fe1168, Koba78, Triv82]. We assume that the reader is familiar 
with the basic properties and notations of probability theory. 

1.2.1 Random Variables 

A random variable is a function that reflects the result of a random experi- 
ment. For example, the result of the experiment “toss a single die” can be 
described by a random variable that can assume the values one through six. 
The number of requests that arrive at an airline reservation system in one hour 
or the number of jobs that arrive at a computer system are also examples of 
a random variable. So is the time interval between the arrivals of two consec- 
utive jobs at a computer system, or the throughput in such a system. The 
latter two examples can assume continuous values, whereas the first two only 
assume discrete values. Therefore, we have to distinguish between continuous 
and discrete random variables. 

1.2.1.1 Discrete Random Variables A random variable that can only assume 
discrete values is called a discrete random variable, where the discrete values 
are often non-negative integers. The random variable is described by the pos- 
sible values that it can assume and by the probabilities for each of these values. 
The set of these probabilities is called the probability muss function (pmf) of 
this random variable. Thus, if the possible values of a random variable X are 
the non-negative integers, then the pmf is given by the probabilities: 

pk = P(x = k), for k = 0, 1,2.. . , (1-l) 

the probability that the random variable X assumes the value Ic. 
The following is required: 

P(X = k) 2 0, 

c P(X = k) = 1. 
all k 

For example, the following pmf results from the experiment “toss a single 
die” : 

P(X=k)=i, forIc=1,2 ,..., 6. 

The following are other examples of discrete random variables: 

l Bernoulli random variable: Consider a random experiment that has 
two possible outcomes, such as tossing a coin (Ic = 0,l). The pmf of the 

random 



random variable X is given by: 

P(X = 0) = 1 -p and P(X = 1) = p, with 0 < p < 1. (1.2) 

l Binomial random variable: The experiment with two possible outcomes 
is carried out n times where successive trials are independent. The 
random variable X is now the number of times the outcome 1 occurs. 
The pmf of X is given by: 

P(X = k) = 0 i ~“(1 -p)+lc, k = O,l,..., n. w 

l Geometric random variable: The experiment with two possible out- 
comes is carried out several times, where the random variable X now 
represents the number of trials it takes for the outcome 1 to occur (the 
current trial included). The pmf of X is given by: 

P(X = k) = p(l - PI”-‘7 k = 1,2,. . . . (1.4 

l Poisson random variable: The probability of having k events (Poisson 
pmf ) is given by: 

j’(X = k) = @&.e-, k = 0, 1,2, . . . ; a > 0. (1.5) . 

The Poisson and geometric random variables are very important to our topic; 
we will encounter them very often. Several important parameters can be 
derived from a pmf of a discrete random variable: 

l Mean value or expected value: 

X=E[X]=~k?(X=k). 
all k 

(l-6) 

The function of a random variable is another random variable with the 
expected value of: 

all k 

l nth moments: 

X” = E[Xn] = c k”. P(X = k), 
all k 

W) 

that is, the nth moment is the expected value of the nth power of X. 
The first moment of X is simply the mean of X. 
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l nth central moment: 

(X - xp = E[(X - E[X]y] = X(/k - X)“. P(X = k). 
all k 

W) 

The nth central moment is the expected value of the nth power of the 
difference between X and its mean. The first central moment is equal 
to zero. 

l The second central moment is called the variance of X: 

0: = var(X) = (X - 3Q2 = X2 -X2, (1.10) 

where crx is called the standard deviation. 

l The coefficient of variation is the normalized standard deviation: 

*X cx=Y-. 
X 

(1.11) 

Information on the average deviation of a random variable from its expected 
value is provided by cx , ox, and var( X) . If cx = ox = var( X) = 0, then the 
random variable assumes a fixed value with probability one. 

Tab/e 1.1 Properties of several discrete random variables 

Random Variables Parameter 52; var(X) 

Bernoulli P 
1-P 

P P&P) - 
P 

Binomial w 
1-P 

w w(l-P) - 
w 

Geometric 

Poisson 

P 

a 

1 1-P 

G P2 
1-P 

1 
a cy - 

Q 

Table 1.1 gives a list of random variables, their mean values, variances, 
and the squared coefficients of variation for some important discrete random 
variables. 

121.2 Continuous Random Variables A random variable X that can assume 
all values in the interval [a, b] , where --00 5 a < b 5 +oo, is called a contin- 
uous random variable. It is described by its distribution function (also called 
CDF or cumulative distribution function): 

(1.12) 
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which specifies the probability that the random variable X takes values less 
than or equal to x, for every x. 

Prom Eq. (1.12) we get for 2 < y: 

F,(x) 5 F,(Y)7 

P(x < x 5 Y) = F,(Y) - F, (4. 

The probability density function (pdf) f x x can be used instead of the dis- ( ) 
tribution function, provided the latter is differentiable: 

fx(x) = y. 

properties of the pdf are: 

fx (4 
00 

s 
fx (4dx 

-CO 

P(Xl I x L x2) 

2 0 for all 2, 

= 1, 

= x2 fx (x)dx, 
s 

Xl 

~(x = x) = 
s 

fx(x)dx = 0, 

2 

cc 

P(X > x3) = 
s 

fx(x)dx. 

23 

Note that for so-called defective random variables [STP96] we have: 

(1.13) 

s fx(x)dx < 1. 

-CC 

The density function of a continuous random variable is analogous to the 
pmf of a discrete random variable. The formulae for the mean value and 
moments of continuous random variables can be derived from the formulae 
for discrete random variables by substituting the pmf by the pdf and the 
summation by an integral: 

l Mean value or expected value: 

03 

x = E[X] = 
s 

x* fx (4dx (1.14) 
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and: 

l nth moment: 
cc 

X” = E[X”] = 
s 

xn* fx (x)dx. 

--rx) 

(1.15) 

(1.16) 

l nth central moment: 

(X - X)” = E[(X - E[X]yy = px - T)“fx(x)dx. (1.17) 

-CO 

0 Variance: 

0: = var(X) = (X - IT)’ = x2- X2, (1.18) 

with ox as the standard deviation. 

0 Coefficient of variation: 

OX cx -. =- 
X 

(1.19) 

A very well known and important continuous distribution function is the 
normal distribution. The CDF of a normally distributed random variable X 
is given by: 

F,(x) = -$+J ] exp (-‘“LT2) du, 
--oo 

(1.20) 

and the pdf by: 

fx(2) = r& exp (- (x2:?2) . 
X 

The standard normal distribution is defined by setting x = 0 and ax = 1: 

CDF: 

pdf: 

@(x) = $= T. 1 exp (-z) du, 

--03 

c)(x) = -&. exp (-;) . 
II- 

(1.21) 
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-3 -2 -1 0 1 2 3 

X 

Fig. 1.2 pdf of the standard normal random variable. 

A plot of the preceding pdf is shown in Fig. 1.2. 
For an arbitrary normal distribution we have: 

and fx(x) = 4 7 

respectively. 
Other important continuous random variables are described as follows. 

(a) Exponential Distribution 

The exponential distribution is the most important and also the easiest to 
use distribution in queueing theory. Interarrival times and service times can 
often be represented exactly or approximately using the exponential distribu- 
tion. The CDF of an exponentially distributed random variable X is given 
by Eq. (1.22): 

o<x<oo, 

otherwise. 

1 (1.22) 
X’ 

if X represents interarrival times, 
with x = 

1 

2 
if X represents service times. 

Here X or p denote the parameter of the random variable. In addition, for 
an exponentially distributed random variable with parameter X the following 
relations hold: 
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pdf: AX 
fx(z) = Xe- , 

mean: FE ;, 

variance: var(X) = $, 

coefficient of variation: cx = 1. 

Thus the exponential distribution is completely determined by its mean 
value. 

The importance of the exponential distribution is based on the fact that it 
is the only continuous distribution that possesses the memoryless property: 

P(XLU+tIX>u)=l-exp -f = 
( > 

P(X 5 t). (1.23) 

As an example for an application of Eq. (1.23), consider a bus stop with 
the following schedule: Buses arrive with exponentially distributed interarrival 
times and identical mean x. Now if you have already been waiting in vain 
for u units of time for the bus to come, the probability of a bus arrival within 
the next t units of time is the same as if you had just shown up at the bus 
stop, that is, you can forget about the past or about the time already spent 
waiting. 

Another important property of the exponential distribution is its relation 
to the discrete Poisson random variable. If the interarrival times are expo- 
nentially distributed and successive interarrival times are independent with 
identical mean F, then the random variable that represents the number of 
buses that arrive in a fixed interval of time [0, t) has a Poisson distribution 
with parameter a = t/s?. 

Two additional properties of the exponential distribution can be derived 
from the Poisson property: 

1. If we merge n Poisson processes with distributions for the interarrival 
times 1 - eSxtt, 1 < i < n, into one single process, then the result is - - 

a Poisson process for which the interarrival times have the distribution 
1 - eext with X = Cy=, Xi (see Fig. 1.3). 

Fig. 1.3 Merging of Poisson processes. 

2. If a Poisson process with interarrival time distribution 1 - e- xt is split 
into n processes so that the probability that the arriving job is assigned 
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to the ith process is qi, 1 5 i 5 n, then the ith subprocess has an 
interarrival time distribution of 1 - e-qiXt, i.e., n Poisson processes have 
been created, as shown in Fig 1.4. 

ax 
/ 

x 
q2x 

-e 

. 

. 

. 

Fig. 1.4 Splitting of a Poisson process. 

The exponential distribution has many useful properties with analytic trac- 
tability, but is not always a good approximation to the observed distribution. 
Experiments have shown deviations. For example, the coefficient of variation 
of the service time of a processor is often greater than one, and for a peripheral 
device it is usually less than one. This observed behavior leads directly to the 
need to consider the following other distributions: 

(b) Hyperexponential Distribution, H,+ 

This distribution can be used to approximate empirical distributions with a 
coefficient of variation larger than one. Here k is the number of phases. 

Fig. 1.5 A random variable with Hk distribution. 

Figure 1.5 shows a model with hyperexponentially distributed time. The 
model is obtained by arranging k phases with exponentially distributed times 
and rates ~1,,22,. . . ,pk in parallel. The probability that the time span is 
given by the jth phase is qj , where C:=r qj = 1. However, only one phase 
can be occupied at any time. The resulting CDF is given by: 

l+(x) = &$(l- e--I-Lq, 
j=l 

x 2 0. (1.24) 
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ed 

pdf: 

mean: 

variance: 

coefficient of variation: cx = 

i 

2&3-l 2 1. 
j=l ’ 

For example, the parameters PI, t32 of an Hz distribution can be estimat- 
to approximate an unknown distribution with given mean x and sample 

coefficient of variation cx as follows: 

(1.25) 

(1.26) 

The parameters qr and q2 can be assigned any values that satisfy the restric- 
tions ql, q2 2 O,ql +qz = 1 and pi, ~2 > 0. 

(c) Erlang-k Distribution, Ek 

Empirical distributions with a coefficient of variation less than one can be 
approximated using the Erlang-Ic distribution. Here Ic is the number of expo- 
nential phases in series. Figure 1.6 shows a model of a time duration that 
has an EI, distribution. It contains Ic identical phases connected in series, 
each with exponentially distributed time. The mean duration of each phase 
is x/i?, where x denotes the mean of the whole time span. 

Fig. 1.6 A random variable with Ek distribution. 

If the interarrival times of some arrival process like our bus stops are identi- 
cal exponentially distributed, it follows that the time between the first arrival 
and the (Ic + 1)th arrival is Erlang-k distributed. 
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The CDF is given by: 

pdf: 

Fx(x) = 1 -e x 2 0,k = 1,2.... (1.27) 

fx(x) kdkpx)k-l = (k - I)! e-kpx, 2 > 0 ? k = 1 7 2 Y”‘, 

1 

mean: 

variance: 

xc 1, 
I-L 

var(X) = -+$, 
1 

coefficient of variation: cx = 5 5 1. 

If the sample mean x and the sample coefficient of variation cx are given, 
then the parameters k and ,IA of the corresponding Erlang distribution are 
estimated by: 

(1.28) 

and: 

1 p=- 
c$ Icy’ 

(1.29) 

(d) Hypoexponential Distribution 

The hypoexponential distribution arises when the individual phases of the Ek 
distribution are allowed to have assigned different rates. Thus, the Erlang 
distribution is a special case of the hypoexponential distribution. 

For a hypoexponential distributed random variable X with two phases and 
the rates ~1 and ,u2 (~1 # ~2), we get the CDF as: 

P2 l+(x) = l- -e -P1X + Pl c-P2X 
7 x > 0. 

P2 - Pl P2 - Pl 
(1.30) 

pdf: fx(x) = s(emp2x - evplx), x > 0, 

mean: XC ;+-$ 

variance: var(X) = -j!j + i, 

coefficient of variation: cx=h5Z<l 
* Pl fP2 
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The values of the parameters ~1 and ~2 of the hypoexponential CDF can 
be estimated given the sample mean x and sample coefficient of variation by: 

with 0.5 5 c$ 5 1. 

For a hypoexponential distribution with k phases and the phase rates ~1, 

P2, *** > pk, we get [Bega93]: 

k 

pdf: fx(x) = ca&e;Aix, 2 > 0, 
i=l 

mean: 

k 

with ai = rI 
& 

j=l,jzi pj - I&’ l 5 2 L Icy 

coefficient of variation: cx = 

(e) Gamma Distribution 

Another generalization of the Erlang-k distribution for arbitrary coefficient of 
variation is the gamma distribution. The distribution function is given by: 

X 

Fx(x) = 
J 

cl+’ (cxpu)“-l 
r(~) f emapudu, x 2 0, ct > 0, 

0 

with I’(a) = 
Jrn 

u~-‘~~-~cZU, a! > 0. 
0 

(1.31) 

If a = k is a positive integer, then I’(k) = (k - l)! 
Thus the Erlang-k distribution can be considered as a special case of the 

gamma distribution: 
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pdf: 

mean: y= 1, 
P 

variance: var(X) = --&, 

coefficient of variation: cx=-. 
A 

It can be seen that the parameters Q and ,Q of the gamma distribution can 
easily be estimated from cx and x: 

1 
and a=-. 

CL 

(f) Generalized Erlang Distribution 

fig. 1.7 A random variable with generalized Erlang distribution. 

Rather complex distributions can be generated by combining hyperexpo- 
nential and Erlang-Ic distributions; these are known as generalized Erlang 
distributions. An example is shown in Fig. 1.7 where 72 parallel levels are 
depicted and each level j contains a series of rj phases connected, each with 
exponentially distributed time and rate rjpj. Each level j is selected with 
probability j. The pdf is given by: 

x 2 0. (1.32) 

Another type of generalized Erlang distribution can be obtained by lift- 
ing the restriction that all the phases within the same level have the same 
rate, or, alternatively, if there are non-zero exit probabilities assigned such 
that remaining phases can be skipped. These generalizations lead to very 
complicated equations that are not further described here. 
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(g) Cox Distribution, cr, (Branching Erlang Distribution) 

In [Cox55] the principle of the combination of exponential distributions is 
generalized to such an extent that any distribution that possesses a rational 
Laplace transform can be represented by a sequence of exponential phases 
with possibly complex probabilities and complex rates. Figure 1.8 shows a 
model of a Cox distribution with k exponential phases. 

Fig. 1.8 A random variable with Ck distribution. 

The model consists of k phases in series with exponentially distributed 
times and rates ~1, ~2,. . . , ,~k. After phase j, another phase j + 1 follows 
with probability aj and with probability bj = 1 - aj the total time span 
is completed. As described in [SaCh81], there are two cases that must be 
distinguished when using the sample mean value x and the sample coefficient 
of variation cx to estimate the parameters of the Cox distribution: 

Case I: cx 5 1 

To approximate a distribution with cx 5 1, we suggest using a special Cox 
distribution with (see Fig. 1.9): 

/Lj =/A j= l,...,k, 

CLj=l j=2,...,k-1. 

From the probabilistic definitions, we obtain: 

mean: x = h + k(l - bl) 
7 

I-L 

variance: var(X) = 
k + bl(k - 1) (bl(1 - k) + k - 2) 

P2 
7 

squared coefficient of variation: 2 cx = 
k + bl(k - 1) (bi(1 - k) + k - 2) 

[bl + k(l - h)12 ’ 

In order to minimize the number of stages, we choose k such that: 

rli k= k- . 
I I G (1.33) 
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Fig. 1.9 A random variable with ck distribution and cx 5 1 

Then we obtain the parameters 131 and ,LL from the preceding equations: 

b 
1 

= 2kc$ + (ii - 2) - j/k2 + 4 - 41cc; 

2(c$ + l)(k - 1) 
7 (1.34) 

P= 
k - bl * (k - 1) 

x * 
(1.35) 

Case 2: cx > 1 

For the case cx > 1, we use a Cox-2 model (see Fig. 1 .lO) 

Fig. 1.10 A random variable with Cox-2 distribution. 

From classical formulae, we obtain: 

mean: 

variance: var(x) = l-4 + a/-w - a> 
d 94 ’ 

squared coefficient of variation: 2 _ Pi + ad@ - a> 
cx - (~2 +wI)~ * 

We have two equations for the three parameters ~1, ~2, and a, and therefore 
obtain an infinite number of solutions. To obtain simple equations we choose: 

p1=$ (1.36) 

and obtain from the preceding equations: 

1 
and a=ZC2. (1.37) 

X 
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(h) Weibull Distribution 

The Weibull distribution is at present the most widely used failure distribu- 
tion. Its CDF is given by: 

Fx(x) = 1 - exp(-(Xx)“), 2 2 0. (1.38) 

pdf: fx(x) = ~X(XX)“-~ exp(-(Xx)“), X > 0, 

mean: .x=;r 1+: ) 
( ) 

squared coefficient of variation: 
r(1 + 2/cu) 

cc = {I?(1 + l/o.)}2 - l* 

with the shape parameter a! > 0 and the scale parameter X > 0. 

(i) Lognormal Distribution 

The lognormal distribution is given by: 

171(2)=m(l+y), x>o. 

pdf: f+) = ---& w+-@(x) - J92/2a2>, x > 0, 

(1.39) 

mean: X = exp(X + a2/2), 

squared coefficient of variation: c$- = exp(a2) - 1, 

where the shape parameter a! is positive and the scale parameter X may assume 
any real value. 

The parameters a and X can easily be calculated from c$ and x: 

Q = -\/ln(cz + l), 

Q2 
X=lnX--. 

2 
(1.40) 

The importance of this distribution arises from the fact that the product of n 
mutually independent random variables has a log-normal distribution in the 
limit n -+ 00. In Table 1.2 the formulae for the expectation E[X], the variance 
war(X), and the coefficient of variation cx for some important distribution 
functions are summarized. Furthermore, in Table 1.3 formulae for estimating 
the parameters of these distributions are given. 

1.2.2 Multiple Random Variables 

In some cases, the result of one random experiment determines the values 
of several random variables, where these values may also affect each oth- 
er. The joint probability mass .function of the discrete random variables 
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Table 1.2 Expectation E[X], variance var(X), and coefficient of variation cx of 
important distributions. 

Distribution Parameter -WI var(X) cx 

Exponential 
1 1 

CL - 
/-L2 

1 
P 

Erlang cl,k 
k=l,Z,... 

1 - 
P 

1 

kcL2 

Gamma 
cl! CY - 

CL2 
o< 

P 
<OO 

Hypoexponential PlTP2 L+' L+L 

Pl P2 2 4 

k k 

Hyperexponential k,I.Lz,qz x: = ; 2/A2cq1>1 
i=l i=l 4 

&,X2,-. , X, is given by: 

P(X1 = 21,x2 = x2,. . . ,xn = XJ (1.41) 

and represents the probability that Xi = xi, X2 = x2, . . . X, = x,. In the 
continuous case, the joint distribution function: 

~x(x)=~(x1121,x2122,...,x7L<~~) (1.42) 

represents the probability that Xi 5 xi, X2 5 x2, . . . X, 5 x,, where X = 

(X l,***, X,) is the n-dimensional random variable and x = (xi, x2, . . . , x,). 
A simple example of an experiment with multiple discrete random variables 

is tossing a pair of dice. The following random variables might be determined: 

Xi number that shows on the first die, 

X2 number that shows on the second die, 

X3=&+&, sum of the numbers of both dice. 

1.2.2.1 independence The random variables Xi, X2, . . . , X, are called (sta- 
tistically) independent if, for the continuous case: 

P(XlLXl,X:! 5x2,...,Xn <xn) 
P(X1 5 x1)* P(X2 < X2)‘. . . * P(X, 5 x,), 

(1.43) = 

or the discrete case: 

P(X1=21,X2 =x2,...,Xn =x,) 

= P(X1 = Xl). P(X2 = X2)‘. , . * P(X, = 2,). 
(1.44) 
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Table 1.3 Formulae for estimating the parameters of important distributions. 

Distribution Parameter Calculation of the Parameters 

Exponential 

Erlang cl,k 
/c=1,2,... 

k = ceil(l/c$) 

P = l/(+ kx) 

Gamma 

Hypoexponential 

Hyperexponential 

Wd 

CL1 = + [l+q-l 
Pl,P2,Ql,Q2 

p2 = $ [l+&q-1 
41 +42 = 1,/K! > 0 

k = ceil(l/c$) 

cox (cx 5 1) k, bz, puz 

2kc;+k-2- k +4-4kc, 
7 bl = 

2(C$ + l)(k - 1) 

bp = b3 = . . . = bk-1 =o, bl, = 1 

p1 = /&’ = . . . = /.hk = 
k - bl. (k - 1) 

x 

cox (cx > 1) 

k = 2 

k,b,/a,m 
b = c$[l-,/*I 
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Otherwise, they are (statisticuZZy) dependent. In the preceding example 
of tossing a pair of dice, the random variables Xr and X2 are independent, 
whereas Xr and Xa are dependent on each other. For example: 

since there are 36 different possible results altogether that are all equally 
probable. Because the following is also valid: 

P(x,=i)*P(x2=j)+; t6, =- 
P(Xi = i, X2 = j) = P(Xi = i)- P(X2 = j) is true, and therefore Xr and X2 
are independent. On the other hand, if we observe the dependent variables 
Xi and Xs, then: 

since Xr and X2 are independent. Having: 

P(X1 = 2) = ; and 

P(X3=4)=P(X1=1,Xz=3)+P(X1=2,X2=2) 

+P(X,=3,Xz=1)=$& 

results in P(Xr = 2). P(Xa = 4) = 6. & = $, which shows the dependency 
of the random variables Xr and X3 : 

P(X1 = 2,X3 = 4) # P(X1 = 2)+(X3 = 4). 

1.2.2.2 Conditional Probability A conditional probability: 

P(X1 =x1 1 x2 =22,.*.,X,=x,) 

is the probability for Xr = 21 under the conditions X2 = x2, X3 = x3, etc. 
Then we get: 

P(X1 = Xl 1 x2 = x2,. , . ) x, = xn) 

= P(X1=21,X2 =x2 )...) x, =x,) (1.45) 

P(X2 =x2,...,xn =x,) * 

For continuous random variables we have: 

P(X1 I Xl 1 x2 L x2,. . . ) x, 5 x?J 

= 
P(Xl 1X1,X2 Lx2,...Jn LGL) 

P(X2 L x2,-..&I I xn) * 

(1.46) 
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We demonstrate this also with the preceding example of tossing a pair of 
dice. The probability that Xa = j under the condition that Xi = i is given 
by: 

P(X3 = j ) x1 = i) = P(X3 = j,x, = i) 
P(X1= i) * 

For example, with j = 4 and i = 2: 

l/36 1 
P(X3 = 4 ) x1 = 2) = - = - 

l/6 6’ 

If we now observe both random variables Xi and X2, we will see that 
because of the independence of Xi and X2, 

P(X1 =j) x2 =i) = 
P(X1= j, x2 = i) 

P(X2 = i) ’ 

= P(X1= j)*P(X2 = i) 
P(X2 = i) ’ 

= P(X1= j). 

1.2.2.3 important Relations The following relations concerning multiple ran- 
dom variables will be used frequently in the text: 

l The expected value of a sum of random variables is equal to the sum of 
the expected values of these random variables. If cl, . . . , c, are arbitrary 
constants and Xi, X2, . . . , X, are (not necessarily independent) random 
variables, then: 

rn 1 n 
E c cixi = c CiE[XJ. 

i 1 
(1.47) 

i=l i=l 

l If the random variables Xi, X2, . . . , X, are stochastically independent, 
then the expected value of the product of the random variables is equal 
to the product of the expected values of the random variables: 

rn ln 
(1.48) 

l The covariance of two random variables X and Y is a way of measuring 
the dependency between X and Y. It is defined by: 

cov[X, Y] = E [(X - E[X])(Y - E[Y])] = (X - r?)(Y - L) 
- -- 

= E[X.Y] - E[X]. E[Y] = XY - X-Y. (1.49) 
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If X = Y, then the covariance is equal to the variance: 

cov[X, X] = x2 - X2 = var(X) = a$. 

If X and Y are statistically independent, then Eq. (1.48) gives us: 

and Eq. (1.49): 

E[X* Y] = E[X]LqY], 

cov(X, Y) = 0. 

In this case, X and Y are said to be uncorrelated. 

l The correlation coeficient is the covariance normalized to the product 
of standard deviations: 

cor[X, Y] = 
cov[X, Y] 

Ux’Uy - 
(1.50) 

Therefore, if X = Y, then: 

cor[X,X] = 2 = 1. 

l The variance of a sum of random variables can be expressed using the 
covariance: 

n 
var [ 1 c ciXi = 2 cT var(Xi) + 2.2 f: cicj COV[Xi, Xj]. (1.51) 

i=l i=l i=l j=i+1 

For two independent (uncorrelated) random variables we get: 

n 
var [ 1 c ciXi = 2 cf var(Xi). (1.52) 

i=l i=l 

1.2.2.4 The Central Limit Theorem Let Xr , X2, . . . , X, be independent, iden- 
tically distributed random variables with an expected value of E[X,] = z, and 
a variance of var( Xi) = a$. Then their arithmetic mean is defined by: 

sn=;gxi. i=l 
We have E[Sn] = x and var(&) = OS/n. Regardless of the distribution of 
Xi, the random variable S, approaches, with increasing n, a normal distribu- 
tion with a mean of x and a variance of var(X) /n: 

(1.53) 
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1.2.3 Transforms 

Determining the mean values, variance, or moments of random variables is 
often rather tedious. However, these difficulties can sometimes be avoided 
by using transforms, since the pmf of a discrete or the density function of a 
continuous random variable are uniquely determined by their x- or Laplace 
transform, respectively. Thus if two random variables have the same trans- 
form, they also have the same distribution function and vice versa. In many 
cases, the parameters of a random variable are, therefore, more easily com- 
puted from the transform. 

1.2.3.1 x-Transform Let X be a discrete random variable with the proba- 
bility mass function pk = P(X = k) for k = 0, 1,2,. . . , then the x-transform 
of X is defined by: 

G,(z) = Fp/+z” with jz[ 5 1. 
k=O 

(1.54) 

The function G,(z) is also called the probability generating function. Table 
1.4 specifies the probability generating functions of some important discrete 
random variables. If the x-transform G, (x) of a random variable is given, 
then the probabilities pk can be calculated immediately: 

PO = G,(O), 

1 d”G,(z) 
pk= jJ’ &k 7 k = 1,2,3,. . * * 

z=o 

(1.55) 

(1.56) 

And for the moments: 

(1.57) 

(1.58) 

d”G, (4 k-l 

x"= 
dx’” +x ak,,i’ 3, k=3,4,..., (1.59) 

z=l i=l 

with 

3ak,l = (-l)“(k - I)!, k = 3,4,. . . , 

k(k - 1) 
ak,k-l = ~ 

2 ’ 
k = 3,4,. . . ) 

ak,i = ak-l,i-1 - (k - l)ak-l,i, k = 4,5, . . . and i = 2, . . . , k - 2. 



26 INTRODUCTION 

Table 1.4 Generating functions of some discrete 
random variables 

Random Variable Parameter G, (4 

Binomial n,p u - P> + P4” 

Geometric 
PZ 

P 
1 - (1 - p)z 

Poisson a pb-1) 

The generating function of a sum of independent random variables is the 
product of the generating functions of each random variable, so for X = 
CF=, Xi we get: 

G,(z) = fi G&). (1.60) 
i=l 

1.2.3.2 Lap/ace Transform The Laplace transform plays a similar role for 
non-negative continuous random variables as the z-transform does for discrete 
random variables. If X is a continuous random variable with the density 
function fx(z), then the Lap&e transform (LT) of the density function (pdf) 
of X is defined by: 

L,(s) = mfx(x)e-s5dz, 
I 

1 ems I< 1, _ 

0 

(1.61) 

where s is a complex parameter. Lx(s) is also called the Laplace-Stieltjes 
transform (LST) of the distribution function (CDF) and can also be written 

03 

Lx(s) = 
I 

e-““dFx(z). (1.62) 

0 

LST of a random variable X will also be denoted by X” (s). 
The moments can again be determined by differentiation: 

, k=1,2 ,.... 
s=o 

(1.63) 

The Laplace transforms of several pdfs of well-known continuous random 
variables as well as their moments are given in Table 1.5. 
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Table 1.5 Laplace transform and moments of several continuous random variables 

Random Variable Parameter L&)=x-(s) X” 

Exponential 

Erlang k,X 
k(k + 1). . . (k + n - 1) 

An 

Gamma 

Hyperexponential x 

Hypoexponential 

CY(LY + 1). . . (CL: + n - 1) 

An 

Analogous to the x-transform, the Laplace transform of a sum of inde- 
pendent random variables is the product of the Laplace transform of these 
random variables: 

(1.64) 
i=l 

More properties and details of Laplace and z-transforms are listed in [Klei75]. 

1.2.4 Parameter Estimation 

Probability calculations discussed in this book require that the parameters of 
all the relevant distributions are known in advance. For practical use, these 
parameters have to be estimated from measured data. In this subsection, we 
briefly discuss statistical methods of parameter estimation. For further details 
see [Triv82]. 

Definition 1.1 Let the set of random variables Xi, X2, . . . , X, be given. 
This set is said to constitute a random sample of size n from a population with 
associated distribution function Fx(x). It is presupposed that the random 
variables are mutually independent and identically distributed with distribu- 
tion function (CDF) Fxi (x) = Fx(x) V’i, x. 

We are interested in estimating the value of some parameter 6’ (e. g. , the 
mean or the variance) of the population based on the random samples. 

Definition 1.2 A function 6 = 6(X1, X2, . . . , X,) is called an estimator 
of the parameter 8, and an observed value 6 = 6(x,, 22 . . . , x~) is known as 
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an estimate of 8. An estimator 6 is considered unbiased, if: 

E[QXl, x2, * * . )X,)] = 8. 
- 

It can be shown that the sample mean X defined as: 

,2exi 
i=l 

(1.65) 

is an unbiased estimator of the population mean p, and the sample variance 
S2 defined as: 

s2 = 1 &Xi - 7q2 
n - l i=l 

(1.66) 

is an unbiased estimator of the population variance 02, 

Definition 1.3 An estimator 6 of a parameter 8 is said to be consistent 
if 6 converges in probability to 8 (so-called stochastic convergence); that is: 

lim P(lC3 - 81 2 e) = OV/E > 0. 
n+oo 

1.2.4.1 Method of Moments The Icth sample moment of a random variable 
X is defined as: 

n x’” 
ML =cx--$ k= 1,2 ,.... (1.67) 

i=l 

To compute one or more parameters of the distribution of X, using the method 
of moments, we equate the first few population moments with their corre- 
sponding sample moments to obtain as many equations as the number of 
unknown parameters. These equations can then be solved to obtain the 
required estimates. The method yields estimators that are consistent, but 
they may be biased. 

As an example, suppose the time to failure of a computer system has a 
gamma distributed pdf: 

fx(4 = 

pz”-le-x~ 

wd 
, k= 1,2 ,..., (1.68) 

with parameters X and a. We know that the first two population moments 
are given by: 

Pl = ; and I_L~ = 5 + ~1~. 

Then the estimates i and & can be obtained by solving: 

Hence: 

&!= Ml2 Ml 

M2 - M12’ 
and i = 

M2 - M12’ 
(1.69) 
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1.2.4.2 Maximum- Likelihood Estimation The principle of this method is to 
select as an estimate of 6’ the value for which the observed sample is most likely 
to occur. 
densities: 

We define the likelihood function as the product of the marginal 

where t9 = (&,&,... ,13,) is the vector of parameters to be estimated. Under 
some regularity conditions, the maximum-likelihood estimate of 8 is the solu- 
tion of the simultaneous equations: 

ALP) 
- =o, dei i= 1,2 ,...) Ic. 

As an example, assume the interarrival time, X, of a system 
distributed with arrival rate X. To estimate the arrival rate X 
sample of n interarrival times, we define: 

L(X) = fiAexp(-Xxi,) = X’“exp(-AF zi), 
i=l i=l 

is exponentially 
from a random 

(1.70) 

dL - = nAna 
dX 

from which we get the maximum-likelihood estimator 
is equal to the reciprocal of the sample mean x. 

of the arrival rate that 

1.2.4.3 Confidence Intervals So far we have concentrated on obtaining the 
point estimates of a desired parameter. However, it is very rare in practice for 
the point estimate to actually coincide with the exact value of the parameter 
8 under consideration. In this section, we instead consider the evaluation of 
an interval estimate. We construct an interval, called the confidence interval, 
in such a way that we have a certain confidence that this interval contains the 
true value of the unknown parameter 8. In other words, if the estimator 6 
satisfies the condition: 

P@-~~<~&+E~)=Y, (1.72) 

then the interval A(8) = (6 - cl,6 + ~2) is a 100 x y percent confidence 
interval for the parameter 8. Here y is called the confidence coefficient (the 
probability that the confidence interval contains S). 

Consider obtaining confidence intervals when using the sample mean x 
as the estimator for the population mean. If the population distribution is 
normal with unknown mean ,Q and a known variance g2, then we can show 
that the sample mean is normally distributed with mean ,Q and variance 02/n, 
so that the random variable 2 = (57 - ,LL) / (a/+) has a standard normal 
distribution N(0, 1). To determine a 100 x y percent confidence interval for 
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the population mean ,LL, then we find a number z,12 (using N(0, 1) tables) 
such that P(Z > z,,s) = a/2, where a = 1 - y. Then we get: 

PC-%/2 < 2 < &/2) =Y* (1.73) 

We then obtain the 100 x y percent confidence interval as: 

-G/2 < (X-P)I(+m < G/2 (1.74) 

or: 

(1.75) 

The assumption that the population is normally distributed does not always 
hold. But when the sample size is large, by central limit theorem, the statis- 

tic CT- PL)l(~ldT n is asymptotically normal (under appropriate conditions). 
Also, Eq. (1.75) requires the knowledge of the population variance u2. When 
a2 is unknown, we use the sample variance S2 to get the approximate confi- 
dence interval for p: 

(1.76) 

When the sample size is relatively small and the population is normal 
distributed, then the random variable T = (x - p)/(S/fi) has the student t 
distribution with n - 1 degrees of freedom. We can then obtain the lOO( 1 - o) 
percent confidence interval of /J from: 

x - L1;,/2- < p < x + t,-pap- 
$ g 

(1.77) 

where P(T > tn-pa,2) = a/2. 

1.2.5 Order Statistics 

Let X1, X2 . . . , X, be mutually independent, identically distributed continu- 
ous random variables, each having the distribution function F(.) and density 
f(.). Let Yr, Ys,. . . , Y, be random variables obtained by permuting the set 
x1,x2,... ,X, so as to be in increasing order. Thus, for instance: 

Yr = min{Xr, X2,. . . ,X,} 

and: 
Y, = max{Xr,X2,. . . ,Xn}. 

The random variable Yk is generally called the kth -order statistic. Because 
x1,x2,..., X, are continuous random variables, it follows that Yr < YZ < 
. . . < Y, (as opposed to Yr 5 Y2 < . . . < Yn) with a probability of one. 
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As examples of the use of order statistics, let Xi be the time to failure of 
the ith component in a system of n independent components. If the system 
is a series system, then Yr will be the system lifetime. Similarly, Y, will 
denote the lifetime of a parallel system and Y,-,+I will be the lifetime of an 
m-out-of-n system. 

The distribution function of Yk is given by: 

FYdY) = 2 &%)[l - F(y)]“-? -oo<y<oo. (1.78) 
j=k 

In particular, the distribution functions of Y, and Yr can be obtained from 
Eq. (1.78) as: 

Fy,(Y) = F%m --oo < Y < 00, 
and 

F&(Y) = 1 - [I - F(y)]“, -oo < y < 00. 

1.2.6 Distribution of Sums 

Assume that X and Y are continuous random variables with joint probability 
density function f. Suppose we are interested in the density of a random 
variable 2 = @(X, Y). The distribution of 2 may be written as: 

F&) = P(Z 5 x) 

= JJ fh Y)dXdY, (1.79) A* 
where A, is a subset of R2 given by: 

Az = {(x,Y> I Q(x, Y> L 21 

= @-“((-co, x]). 

A function of special interest is 2 = X + Y with 

AZ = {(x, Y) I x + Y 5 4, 

which is the half-plane to the lower left of the line x+y = x, shown in Fig. 1.11. 
Then we get: 

Fz(z) = 

= 

JJ f(x, Y)dXdY 

00 z-x 

JJ f(x, YPYdX* -m -ccl 
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Fig. 1.11 Area of integration for the convolution of X and Y. 

Making a variable substitution y = t - LC, we get: 

co z 

rz(~) = 
JJ 

f(x,t - 

-co -cm 

.z 00 

= 

JJ 
f(x,t - 

-cm -co 

= J fz (Wt. 
Thus the density of 2 is given by: 

x)dtdx 

x) dxdt 

fz(~> = 7 f(x, x - x)dx, -co<x<m. 
-CO 

(1.80) 

Now if X and Y are independent random variables, then f (x, y) = fx (x) fu (y), 
and Formula (1.80) reduces to: 

f.h> = 7 fx(x)fy(x - x)dx, -oo<X<~. 
--00 

Further, if both X and Y are nonnegative random variables, then: 

(1.81) 

f&d = /- fx(x)fu(z - x)dx, o<z<m. (1.82) 

0 
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This integral is known as the convolution of fx and fy . Thus, the pdf of the 
sum of two non-negative independent random variables is the convolution of 
their individual pdfs. 

If xr, x2,..., X, are mutually independent, identically distributed expo- 
nential random variables with parameter X, then the random variable Xi + 
x2 + * * * + X, has an Erlang-r distribution with parameter X. Consider an 
asynchronous transfer mode (ATM) switch with cell interarrival times that are 
independent from each other and exponentially distributed with parameter X. 
Let Xi be the random variable denoting the time between the (i - 1)st and 
ith arrival. Then 2, = Xi +X2 +. . . +X, is the time until the rth arrival and 
has an Erlang-r distribution. Another way to obtain this result is to consider 
N,, the number of arrivals in the interval (0, t]. As pointed out earlier, Nt 
has a Poisson distribution with parameter At. Since the events [Z, > t] and 
[N, < ~1 are equivalent, we have: 

P(& > t) = P(N, < r) 

which implies that: 

F&(t) = P(.G I t) 

?--I @t)j -At 
= l-c,,e > 

j=o * 

which is the Erlang-r distribution function. If X N EXP(Xr), Y N EXP(&), 
X and Y are independent, and Xi # X2, then 2 = X + Y has a two-stage 
hypoexponential distribution with two phases and parameters Xi and X2. To 
see this: 

2 > 0 (by Eq. (1.82)) 

= .I 
Jjle-AlXX2e-X2(z-z)dZ 

0 

h&i = -e-‘2’ + WQ 
x1- x2 

-ewXIZ (see Eq. (1.30)). 
x2 -x1 
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Fig. 1.12 Hypoexponential distribution as a series of exponential stages. 

A more general version of this result follows: Let 2 = 2 Xi, where 
i=l 

x1,x2,.. . , X, are mutually independent and Xi is exponentially distribut- 
ed with parameter Xi (Xi # Xj f or i # j). Then 2 has a hypoexponential 
distribution with r phases and the density function: 

(1.83) 

where: 

r 

rI 
XLi ai= - 

j.l Xj - Ai ’ 
l<i<r. 

j#i 

(1.84) 

Such a phase type distribution can be visualized as shown in Fig. 1.12 (see 
also Section 1.2.1.2). 



2 
Markov Chains 

2.1 MARKOV PROCESSES 

Markov processes provide very flexible, powerful, and efficient means for the 
description and analysis of dynamic (computer) system properties. Perfor- 
mance and dependability measures can be easily derived. Moreover, Markov 
processes constitute the fundamental theory underlying the concept of queue- 
ing systems. In fact, the notation of queueing systems has been viewed some- 
times as a high-level specification technique for (a sub-class of) Markov pro- 
cesses. Each queueing system can, in principle, be mapped onto an instance 
of a Markov process and then mathematically evaluated in terms of this pro- 
cess. But besides highlighting the computational relation between Markov 
processes and queueing systems, it is worthwhile pointing out also that fun- 
damental properties of queueing systems are commonly proved in terms of the 
underlying Markov processes. This type of use of Markov processes is also pos- 
sible even when queueing systems exhibit properties such as non-exponential 
distributions that cannot be represented directly by discrete-state Markov 
models. Markovizing methods, such as embedding techniques or supplemen- 
tary variables, can be used in such cases. Here Markov processes serve as a 
mere theoretical framework to prove the correctness of computational methods 
applied directly to the analysis of queueing systems. For the sake of efficiency, 
an explicit creation of the Markov process is preferably avoided. 

2.1.1 Stochastic and Markov Processes 

There exist many textbooks like those from King [KingSO], Trivedi [Triv82], 
Allen [AllegO], G ross and Harris [GrHa85], Cinlar [Cin1?5], Feller (his two 
volume classic [FeUSS]) , and Howard [Howa71] that provide excellent intro- 

35 
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ductions into the basics of stochastic and Markov processes. Besides the the- 
oretical background, many motivating examples are also given in those books. 
Consequently, we limit discussion here to the essentials of Markov processes 
and refer to the literature for further details. 

Markov processes constitute a special, perhaps the most important, sub- 
class of stochastic processes, while the latter can be considered as a gen- 
eralization of the concept of random variables. In particular, a stochastic 
process provides a relation between the elements of a possibly infinite family 
of random variables. A series of random experiments can thus be taken into 
consideration and analyzed as a whole. 

Definition 2.1 A stochastic process is defined as a family of random vari- 
ables {Xt : t E T} where each random variable Xt is indexed by parameter 
t E 57, which is usually called the time parameter if T G IK+ = [0, co). The 
set of all possible values of Xt (for each t E T) is known as the state space S 
of the stochastic process. 

If a countable, discrete-parameter set T is encountered, the stochastic pro- 
cess is called a discrete-parameter process and 7’ is commonly represented 
by (a subset of) No = {O,l,. . .}; otherwise we call it a continuous-parameter 
process. The state space of the stochastic process may also be continuous or 
discrete. Generally, we restrict ourselves here to the investigation of discrete 
state spaces and in that case refer to the stochastic processes as chains, but 
both continuous- and discrete-parameter processes are considered. 

Definition 2.2 Continuous-parameter stochastic processes can be proba- 
bilistically characterized by the joint (cumulative) distribution function (CDF) 
Fx(s; t) for a given set of random variables {Xt, , Xt, , . . . , Xt,}, parameter 
vector t = (tl, t2, . . . , tn) E Iw”, and state vector s = (si, ~2,. . . , sn) E Iw”, 
where tl < t2 < . . . < t,: 

Fx(s;t) =P(Xt, < Sl,& I S2,-.Jt, I sn>. (24 

The joint probability density function, pdf: 

fx(s; t) = 
PFx(s; t) 

as&~ . . . ds, 
is defined correspondingly if the partial derivatives exist. If the so-called 
Markov property is imposed on the conditional CDF of a stochastic process, 
a Markov process results: 

Definition 2.3 A stochastic process {Xt : t E T} constitutes a Murkov 
process if for all 0 = to < tl < . . . < t, < tn+l and all si E S the conditional 
CDF of Xt,+l depends only on the last previous value Xt, and not on the 
earlier values Xt, , X,, , . . . , Xtnel : 

P(Xt n+l L &+1 I Xtn = %,xt,-l = h-1,. * * A, = so) 

= p(&,+l I %+1 I Xtn = 4. 
cw 
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This most general definition of a Markov process can be adopted to spe- 
cial cases. In particular, we focus here on discrete state spaces and on both 
discrete- and continuous-parameter Markov processes. As a result, we deal 
primarily with continuous-time Markov chains (CTMC), and with discrete- 
time Markov chains (DTMC), which are introduced in the next section. 
Finally, it is often sufficient to consider only systems with a time indepen- 
dent, i.e., time-homogeneous, pattern of dynamic behavior. Note that time- 
homogeneous system dynamics is to be discriminated from stationary system 
behavior, which relates to time independence in a different sense. The former 
refers to the stationarity of the conditional CDF while the latter refers to the 
stationarity of the CDP itself, 

Definition 2.4 Letting to = 0 without loss of generality, a Markov process 
is said to be time-homogeneous if the conditional CDF of Xt,+l does not 
depend on the observation time, that is, it is invariant with respect to time 
epoch t,: 

P(&n+l I %+1 I xt, = sn) = qG,+& I h&+1 I x0 = Sn). (2.3) 

2.1.2 Markov Chains 

Equation (2.2) d escribes the well-known Markov property. Informally this can 
be interpreted in the sense that the whole history of a Markov chain is sum- 
marized in the current state Xtn. Equivalently, given the present, the future 
is conditionally independent of the past. Note that the Markov property does 
not prevent the conditional distribution from being dependent on the time 
variable t,. Such a dependence is prevented by the definition of homogeneity 
(see Eq. (2.3)). A um ‘q ue characteristic is implied, namely, the sojourn time 
distribution in any state of a homogeneous Markov chain exhibits the mem- 
oryless property. An immediate, and somewhat curious, consequence is that 
the mean sojourn time equals the mean residual and the mean elapsed time 
in any state and at any time [Triv82]. 

If not explicitly stated otherwise, we consider Markov processes with dis- 
crete state spaces only, that is, Markov chains, in what follows. Note that in 
this case we are inclined to talk about probability mass functions, pmf, rather 
than probability density functions, pdf. Refer back to Sections 1.2.1.1 and 
1.2.1.2 for details. 

2.1.2.1 Discrete-Time Markov Chains We are now ready to proceed to the 
formal definition of Markov chains. Discrete-parameter Markov chains are 
considered first, that is, Markov processes restricted to a discrete, finite, or 
countably infinite state space, S, and a discrete-parameter space T. For the 
sake of convenience, we set T 2 lVe. The conditional pmf reflecting the 
Markov property for discrete-time Markov chains, corresponding to Eq. (2.2), 
is summarized in the following definition: 
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Definition 2.5 A given stochastic process (X0, Xi,. . . , Xn+i, . . .} at the 
consecutive points of observation 0, 1, . . . , n + 1 constitutes a DTMC if the 
following relation 011 the conditional pmf, that is, the Markov property, holds 
for all n E Ne and all .si E S: 

P(X,+1 = s,+1 1 x, = s,, X,-l = s,-1, . . . ,x0 = so) 

= q&a+1 = ha+1 I xx = sn). 
(2.4 

Given an initial state se, the DTMC evolves over time, that is, step by 
step, according to one-step transition probabilities. The right-hand side of 
Eq. (2.4) reveals the conditional pmf of transitions from state s, at time 
step n to state s,+i at time step (n + 1). Without loss of generality, let 
S = {0,1,2,...} d t an wri e conveniently the following shorthand not ation for 
the conditional pmf of the process’s one-step transition from state i to state j 
at time n: 

p,‘:‘(n) = P(X,+l = s,+l = j 1 X, = sn = i). P-5) 

In the homogeneous case, when the conditional pmf is independent of epoch n, 
Eq. (2.5) reduces to: 

p!!) = p!!)(n) = P(X 2.7 a.7 
n+l = j 1 X, = i) = P(X1 = j 1 X0 = i), Vn E T. 

(2.6) 

For the sake of convenience, we usually drop the superscript, so that pij = ~13) 
refers to a one-step transition probability of a homogeneous DTMC. 

Starting with state i, the DTMC will go to some state j (including the 
possibility of j = i), so that it follows that Cj pij = 1, where 0 5 pij 5 1. 
The one-step transition probabilities pij are usually summarized in a non- 
negative, stochastic’ transition matrix P: 

PO0 PO1 po2 * * ’ 

p = p(l) = bij] = ;;; ;;; g:; : 1: . 

I .I . . . . . 
. . . 

Graphically, a finite-state DTMC is represented by a state transition dia- 
gram, a finite directed graph, where state i of the chain is depicted by a 
vertex, and a one-step transition from state i to state j by an edge marked 
with one-step transition probability pij. As an example, consider the one-step 
transition probability matrix in Eq. (2.7) with state space S = (0, 1) and the 
corresponding graphical representation in Fig. 2.1. 

‘The elements in each row of the matrix sum up to 1. 
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Example 2.1 The one-step transition probability matrix of the two-state 
DTMC in Fig. 2.1 is given by: 

Conditioned on the current DTMC state, a transition is made from state 0 
to state 1 with probability 0.25, and with probability0.75, the DTMC remains 
in state 0 at the next time step. Correspondingly, a transition occurs from 
state 1 to state 0 with probability 0.5, and with probability 0.5 the chain 
remains in state 1 at the next time step. 

Fig. 2.1 Example of a discrete-time Markov chain referring to Eq. (2.7). 

Repeatedly applying one-step transitions generalizes immediately to n-step 
transition probabilities. More precisely, let p$‘(Ic, Z) denote the probability 
that the Markov chain transits from state i at time Ic to state j at time Z in 
exactly n = 1 - Ic steps: 

Again, the theorem of total probability applies for any given state i and any 
given time values k and Z such that Cj piy)(b, 1) = 1, where 0 < piy)(k, 1) 5 
1. This fact, together with the Markov property, immediately leads us to a 
procedure for computing the n-step transition probabilities recursively from 
the one-step transition probabilities: The transition of the process from state i 
at time Ic to state j at time Z can be split into subtransitions from state i at time 
k to an intermediate state2 h, say, at time m and from there, independently 
of the history that led to that state, from state h at time m to state j at time 
I, where k < m < Z and n = Z - k. This condition leads to the well known 
system of Chapman-Kolmogorov equations: 

p$)(k, Z) = c p,(;-“) (k,m)pL3ym)(m Z) 7 7 0 5 k < m < 1. 
hES 

cw 

Note that the conditional independence assumption, i.e., the Markov property, 
is reflected by the product of terms on the right-hand side of Eq. (2.9). 

2The Markov chain must simply traverse some state at any time. 
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Similar to the one-step case, the n-step transition probabilities can be sim- 
plified for homogeneous DTMC such that pi:) = p$) (Ic, Z) depend only on the 
difference n = I - k and not on the actual values of k and I: 

p!,“’ = P(x~+, = j 1 XI, = i) = P(X, = j 1 X0 = i), ‘dk E T. (2.10) 

Under this condition, the Chapman-Kolmogorov Eq. (2.9) for homogeneous 
DTMC simplifies to: 

p!?) = C p,(;l”)p~-m’, 
%.I 

0 < m < n. 

&S 

Because Eq. (2.11) holds for all m < n, let m = 1 and get 

(n) _ (1) (n-1) Pij - c Pi, P&j * 
hES 

With Pen) as the matrix of n-step transition probabilities ply’, Eq. (2.11) 

can be rewritten in matrix form for the particular case of m = 1 as Pen) = 
p(l)p(n-1) = pp(n-1). A pp ying 1 this procedure recursively results in the 
following equation3: 

~(4 = pp(n--1) = pn. (2.12) 

The n-step transition probability matrix can be computed by the (n - l)-fold 
multiplication of the one-step transition matrix by itself. 

Example 2.2 Referring back to the example in Fig. 2.1 and Eq. (2.7), the 
four-step transition probability matrix, for instance, can be derived according 
to Eq. (2.12): 

p(4) = pp(“) = p2pw 

= (‘b;; og2Prz) = (y-$7; y-y;;) PPW (2*13) 

0.67188 0.32813 0.66797 = 0.65625 0.34375 0.66406 0.33203 > 0.33594 * 

Ultimately, we wish to compute the pmf of the random variable X,, that is, 
the probabilities v;(n) = P(X, = i) that the DTMC is in state i, at time 
step n. These probabilities, called transient state probabilities at time n, will 
then allow us to derive the desired performance measures. Given the n-step 
transition probability matrix P cn), the vector of the state probabilities at time 

31t is important to keep in mind that P cn) = Pn holds only for homogeneous DTMC. 
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n, y(n) = @0(n), vi(n), v2(n), , . .> can be obtained by unconditioning Pen) on 
the initial probability vector y(O) = (vo(O), e(O), vz(O), - * .>: 

y(n) = v(O)P (4 = v(o)Pn = v(?2 - l)P. (2.14) 

Note that both v(n) and v(0) are represented as row vectors in Eq. (2.14). 

Example 2.3 Assume that the DTMC from Eq. (2.7) under investigation 
is initiated in state 1, then the initial probability vector v(l)(O)=(O, 1) is to 
be applied in the unconditioning according to Eq. (2.14). With the already 
computed four-step transition probabilities in Eq. (2.13) the corresponding 
pmf y(l) (4) can be derived: 

“(l)(4) = (0,l) 
0.66797 0.33203 
0.66406 0.33594 > 

= (0.66406,0.33594). 

Example 2.4 Alternatively, with another initial probability vector: 

“(2)(O) = ($, ;> = (0.66,0.33) , 

according to Eq. (2.14), we would get: 

~(~~(4) = (0.66,0.33) 

as the probabilities at time step 4. 

Of particular importance are homogeneous DTMC on which 
stationary probability vector can be imposed in a suitable way: 

a so-called 

Definition 2.6 State probabilities u = (~0, ~1,. . . vi,. . .) of a discrete-time 
Markov chain are said to be stationary, if any transitions of the underlying 
DTMC according to the given one-step transition probabilities P = bij] have 
no effect on these state probabilities, that is, vj = ‘& uipij holds for all 
states j E S. This relation can also be expressed in matrix form: 

u = VP, c vi = 1. (2.15) 
iES 

Note that according to the preceding definition, more than one stationary 
pmf can exist for a given, unrestricted, DTMC. 

Example 2.5 By substituting the one-step transition matrix from Eq. (2.7) 
in Eq. (2.15), it can easily be checked that: 

uc2) = (;, 3) = (0.66,0.33) , 

is a stationary probability vector while Y(‘) = (0,l) is not. 



42 MARKOV CHAINS 

Definition 2.7 For an efficient analysis, we are interested in the limiting 
state probabilities 6 as a particular kind of stationary state probabilities, which 
are defined by: 

fi = &nrV(n) = $r& v(0)P(nJ = y(O) lim Pen) = y(O)p. 
n-+03 

(2.16) 

Definition 2.8 As n + cc, we may require both the n-step transition 
probability matrix Pen) and the state probability vector v(n) to converge 
independently of the initial probability vector v(0) to %’ and V, respectively. 
Also, we may only be interested in the case where the state probabilities 
Vi > 0, Vi E S, are strictly positive and xi Yi = 1, that is, 5 constitutes a 
pmf. 

If all these restrictions apply to a given probability vector, it is said to be 
the unique steady-state probability vector of the DTMC. 

Example 2.6 Returning to Example 2.1, we note that the n-step transi- 
tion probabilities converge as n -+ 00: 

Example 2.7 With this result, the limiting state probability vector G, 
which is independent of any initial probability vector Y(O), can be derived 
according to Eq. (2.16): 

2, = (0.66,0.33). 

Example 2.8 Since all probabilities in the vector (0.66,0.33) are strictly 
positive, this vector constitutes the unique steady-state probability vector of 
the DTMC. 

Eventually, the limiting state probabilities become independent of time 
steps, such that once the limiting probability vector is reached, further transi- 
tions of the DTMC do not change this vector, i.e., it is stationary. Note that 
such a probability vector does not necessarily exist for all DTMCs. 

If Eq. (2.16) holds and fi is independent of v (0)) it follows that the limit 
p(n) = [p!“‘] is independent of time n and of index i. All rows of 6 would 
be identiczl, that is, the rows would match element by element. Furthermore, 
the jt h element j&j of row i equals zP~ for all i E S: 

(2.17) 

If the unique steady-state probability vector of a DTMC exists, it can be 
determined by the solution of the system of linear Eqs. (2.15), so that I? need 
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not be determined explicitly. From Eq. (2.14), we have y(n) = v(n - l)P. If 
the limit exists, we can take it on both sides of the equation and get: 

lim v(n) = ZI = lim v(n - l)P = C/p. 
n+cc n+cc 

(2.18) 

In the steady-state case no ambiguity can arise, so that, for the sake of con- 
venience, we may drop the annotation and refer to steady-state probability 
vector by using the notation u instead of t. Steady-state and stationarity 
coincide in that case, i.e., there is only a unique stationary probability vector. 

The computation of the steady-state probability vector u of a DTMC is 
usually significantly simpler and less expensive than a time-dependent compu- 
tation of v(n). It is therefore the steady-state probability vector of a DTMC 
that is preferably taken advantage of in modeling endeavors. But a steady- 
state probability vector does not exist for all DTMCS.~ Additionally, it is not 
always appropriate to restrict the analysis to the steady-state case, even if it 
does exist. Under some circumstances time-dependent, i.e., transient, anal- 
ysis would result in more meaningful information with respect to an appli- 
cation. Transient analysis has special relevance if short-term behavior is of 
more importance than long-term behavior. In modeling terms, “short term” 
means that the influence of the initial state probability vector Y(O) on v(n) 
has not yet disappeared by time step n. 

Before continuing, some simple example DTMCs are presented to clarify 
the definitions of this section. The following four one-step transition matrices 
are examined for the conditions under which stationary, limiting state, and 
steady-state probabilities exist for them. 

Example 2.9 Consider the DTMC shown in Fig. 2.2 with the one-step 
transition probability matrix (TPM): 

p= l O 
( > 0 1 * 

(2.19) 

Fig. 2.2 Example of a discrete-time Markov chain referring to Eq. (2.19). 

l For this one-step TPM, an infinite number of stationary probability 
vectors exists: Any arbitrary probability vector is stationary in this 
case according to Eq. (2.15). 

*The conditions under which DTMCs converge to steady-state is precisely stated in the 
following section. 
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l The n-step TPM Pen) converges in the limit to: 

lim PC”) = fi = t i . 
n-boo ( > 

Furthermore, all n-step TPMs are identical: 

P = P = Pen), Vn E T. 

The limiting state probabilities z/ do exist and are identical to the initial 
probability vector Y(O) in all cases: 

fi = Y(O)P = u(0). 

l A unique steady-state probability vector does not exist for this example. 

Example 2.10 Next, consider the DTMC shown in Fig. 2.3 with the 
TPM: 

p= O l 
( > 1 0 * 

(2.20) 

Fig. 2.3 Example of a discrete-time Markov chain referring to Eq. (2.20). 

l For this one-step TPM, a stationary probability vector, which is unique 
in this case, does exist according to Eq. (2.15): 

u = (0.5,0.5). 

l The n-step transition matrix P cn) does not converge in the limit to any 
p. Therefore, the limiting state probabilities t do not exist. 

l Consequently, a unique steady-state probability vector does not exist. 

Example 2.11 Consider the DTMC shown in Fig. 2.4 with the TPM: 

p = 0.5 0.5 

( > 0.5 0.5 4 
(2.21) 

l For this one-step TPM a unique stationary probability vector does exist 
according to Eq. (2.15): 

u = (0.5,0.5) . 
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Fig. 2.4 Example of a discrete-time Markov chain referring to Eq. (2.21). 

Note that this is the same unique stationary probability vector as for 
the different DTMC in Eq. (2.20). 

l The n-step TPM Pen) converges in the limit to: 

Furthermore, all n-step TPMs are identical: 

P = @ = Pen), Vn E T. 

The limiting state probabilities fi do exist, are independent of the initial 
probability vector, and are unique: 

2, = u(O)P = (0.5,0.5). 

l A unique steady-state probability vector does exist. All probabilities 
are strictly positive and identical to the stationary probabilities, which 
can be derived from the solution of Eq. (2.15): 

u = ti = (0.5,0.5) . 

Example 2.12 Now consider the DTMC shown in Fig. 2.5 with the TPM: 

(2.22) 

Fig. 2.5 Example of a discrete-time Markov chain referring to Eq. (2.22). 

l For this one-step TPM a unique stationary probability vector does exist 
according to Eq. (2.15): 

u = (0,l). 
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l The n-step TPM Pen) converges in the limit to 

Furthermore, all n-step TPMs are identical: 

P=p=P(“), ‘inET. 

The limiting state probability vector ti does exist, is independent of 
the initial probability vector, and is identical to the unique stationary 
probability vector u: 

ti = u = (0,l) . 

l A unique steady-state probability vector does not exist for this example. 
The elements of the unique stationary probability vector are not strictly 
positive. 

We proceed now to identify necessary and sufficient conditions for the exis- 
tence of a steady-state probability vector of a DTMC. The conditions can be 
given immediately in terms of properties of the DTMC. 

2.1.2.1.1 C/as.sifications of DTMC DTMCs are categorized based on the clas- 
sifications of their constituent states. 

Definition 2.9 Any state j is said to be reachable from any other state 
i, where i, j E S, if it is possible to transit from state i to state j in a finite 
number of steps according to the given transition probability matrix. For 
some integer n 2 1, the following relation must hold for the n-step transition 
probability: 

p(n) 
ij > O7 3n,n > 1. (2.23) 

A DTMC is called irreducible if all states in the chain can be reached 
pairwise from each other, i.e., V’i, j E S, 3n, n 2 1 : p$’ > 0. 

A state i E S is said to be an absorbing state5 if and only if no other state 
of the DTMC can be reached from it, i.e., pii = 1. 

Note that a DTMC containing at least one absorbing state cannot be irre- 
ducible. If countably infinite state models are encountered, we have to dis- 
criminate more accurately how states are reachable from each other. The 
recurrence time and the probability of recurrence must also be taken into 
account. 

5Absorbing states play an important role 
transient analysis is of primary interest. 

in the modeling of dependable systems where 



MARKOV PROCESSES 47 

Definition 2.10 Let f!“’ called the n-step recurrence probability, denote 
the conditional probabilitj 0; the first return to state i E S in exactly n 2 1 
steps after leaving state i. Then, the probability fi of ever returning to state 
i is given by: 

fi = 2 f,!“‘. 
n=l 

(2.24) 

Any state i E S to which the DTMC will return with probability fi = 1, is 
called a recurrent state; otherwise, if fi < 1, i is called a transient state. 

Given a recurrent state i, the mean recurrence time rni of state i of a DTMC 
is given by: 

co 

rni = Cf 
n (n) 

i * 
n=l 

(2.25) 

If the mean recurrence time is finite, that is, rni < co, i is called positive 
recurrent or recurrent non-null; otherwise, if rni = 00, state i is said to be 
recurrent null. For any recurrent state i E S, let di denote the period of state 
i, then di is the greatest common divisor of the set of positive integers n such 
that pi:) > 0. A recurrent state i is called aperiodic if its period di = 1, and 
periodic with period di if di > 1. 

It has been shown by Feller [Fe11681 that the states of an irreducible DTMC 
are all of the same type. Hence, all states are periodic, aperiodic, transient, 
recurrent null, or recurrent non-null. 

Definition 2.11 If one of the states i of an irreducible DTMC is aperiodic 
then so are all the other states j E S, that is, dj = 1,Vj E S, and the 
DTMC itself is called aperiodic; otherwise it is said to be periodic with unique 
period d. 
An irreducible, aperiodic, discrete-time Markov chain with all states i being 
recurrent non-null with finite mean recurrence time rni is called an ergodic 
Markov chain. 

We are now ready to summarize the main results for the classification of 
discrete-time Markov chains: 

l The states 
non-null. 

of a finite-state, irreducible Markov chain are all recurrent 

l Given an aperiodic DTMC, the limits fi = limn-+oo v(n) do exist. 

l For any irreducible and aperiodic DTMC, the limit ti exists and is inde- 
pendent of the initial probability vector Y(O). 

b For an ergodic DTMC, the limit V = (GO, fi1, fiz, . . .) exists and comprises 
the unique steady-state probability vector u. 
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l The steady-state probabilities vi > 0, i E S, of an ergodic Markov chain 
can be obtained by solving the system of linear Eq. (2.15) or, if the 
(finite) mean recurrence times rni are known, by exploiting the relation: 

1 vi = - 
rni ’ 

vi E s. (2.26) 

If finite-state DTMCs are investigated, the solution of Eq. (2.15) can be 
obtained by applying standard methods for the solution of linear systems. In 
the infinite case, either generating functions can be applied or special structure 
of the one-step transition probability matrix P(l) = P may be exploited to 
find the solution in closed form. An example of the latter technique is given in 
Section 3.1 where we investigate the important class of birth-death processes. 
The special (tridiagonal) structure of the matrix will allow us to derive closed- 
form solutions for the state probabilities that are not restricted to any fixed 
matrix size so that the limiting state probabilities of infinite state DTMCs 
are captured by the closed-form formulae as well. 

2.1.2.1.2 DTMC State Sojourn Times The state sojourn times - the time 
between state changes - play an important role in the characterization of 
DTMCs. Only homogeneous DTMCs are considered here. We have already 
pointed out that the transition behavior reflects the memoryless property, that 
is, it only depends on the current state and neither on the history that led to 
the state nor on the time already spent in the current state. At every instant 
of time, the probability of leaving current state i is independently given by 
(1 - pii) = Cizj pij. Applying this repeatedly leads to a description of a 
random experiment in form of a sequence of Bernoulli trials with probability 
of success (I- pii), where “success” denotes the event of leaving current state 
i. Hence, the sojourn time Ri during a single visit to state i is a geometrically 
distributed random variable6 with pmf: 

P(Ri = k) = (1 - pi,)pfi-l, vlc E IQ+. (2.27) 

We can therefore immediately conclude that the expected sojourn time E[Ri], 
that is, the mean number of time steps the process spends in state i per visit, 
is: 

(2.28) 

Accordingly, the va,riance var[&] of the sojourn time per visit in state i is 
given by: 

(2.29) 

6Note that the geometric distribution is the discrete-time equivalent of the exponential 
distribution, i.e., it is the only discrete distribution with the memoryless propert,y. 
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2. I .2.2 Continuous-Time Markov Chains Continuous- and discrete-time Mar- 
kov chains provide different yet related modeling paradigms, each of them 
having their own domain of applications. For the definition of CTMCs we 
refer back to the definition of general Markov processes in Eq. (2.2) and spe- 
cialize it to the continuous parameter, discrete state space case. CTMCs are 
distinct from DTMCs in the sense that state transitions may occur at arbi- 
trary instants of time and not merely at fixed, discrete time points, as is the 
case with DTMCs. Therefore, we use a subset of the set of non-negative real 
numbers lR$ to refer to the parameter set 7’ of a CTMC, as opposed to Ne 
for DTMCs: 

Definition 2.12 A given stochastic process {Xt : t E T} constitutes a 
CTMC if for arbitrary ti E lR$, with 0 = te < ti < . + . < t, < tn+i, Vn E N, 
and ‘dsi E S = Ne for the conditional pmf, the following relation holds: 

fy&,+l = %+1 I xtn = sn,&,-~ = %-1, * * * Jt, = so> 

= P(&,+l = %+1 I Xtn = 4. 

(2.30) 

Similar to Eq. (2.4) for DTMCs, Eq. (2.30) expresses the Marlcow property 
of continuous-time Markov chains. If we further impose homogeneity, then 
because the exponential distribution is the only continuous-time distribution 
that provides the memoryless property, the state sojourn times of a CTMC 
are necessarily exponentially distributed. 

Again, the right-hand side of Eq. (2.30) is referred to as the transition 
probability 7 pij(u, V) of the CTMC to travel from state i to state j during the 
period of time [u, w), with u, w E T and u 5 u: 

Pij (U, v) = P(X, = j 1 X, = i). 

For u = w we define: 

Pij (UT U) = 
1, i = j, 

0, otherwise. 

(2.31) 

(2.32) 

If the transition probabilities pii(u, V) depend only on the time difference 
t = w - u and not on the actual values of u and w, the simplified transition 
probabilities for time-homogeneous CTMC result: 

Pij(t) = Pij(O, t) = P(Xu+t = j I -&A = i) = P(Xt = j 1 x0 = i), VJU E T. 

(2.33) 

Given the transition probabilities pij(u, w) and the probabilities ri(u) of 
the CTMC at time u, the unconditional state probabilities ~j (v), j E S of the 

7Note that, as opposed to the 
transition steps considered here. 

discrete-time case, there is no fixed, discrete number of 
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process at time v can be derived: 

?tv> = Ouija, Vu,v E T (u 5 w). (2.34) 
iES 

With P(u, V) = [pij (u, v)] as the matrix of the transition probabilities, for 
any pair of states i, j E S and any time interval [u, v), u, w E T, from the 
parameter domain, and the vector X(U) = (71-e(u), 7rr(u),~(u), . . .) of the 
state probabilities at any instant of time u, Eq. (2.34) can be given in vector- 
matrix form: 

n(v) = rr(u)P(u, w), Vu, u E T (u 5 v). (2.35) 

Note that for all u E T, P(u,u) = I is the identity matrix. 
In the time-homogeneous case, Eq. (2.34) reduces to: 

TAt) = ~P,wm = ~Pij(O&r~(O), (2.36) 
iES iES 

or in vector-matrix notation: 

n(t) = T(O)P(i) = 7r(O)P(OJ). (2.37) 

Similar to the discrete-time case (Eq. (2.9)), the Chapman-Kolmogorov 
Eq. (2.38) for the transition probabilities of a CTMC can be derived from 
Eq. (2.30) by applying again the theorem of total probability: 

PdU~4 = ~Pik(W)P&v): 0 5 u < w < 21. (2.38) 
kES 

But, unlike the discrete time case, Eq. (2.38) cannot be solved easily and 
used directly for computing the state probabilities. Rather, it has to be trans- 
formed into a system of differential equations which, in turn, leads us to the 
required results. For this purpose, we define the instantaneous transition rates 
qij(t) (i # j) of the CTMC traveling from state i to state j. These transition 

rates are related to conditional transition probabilities. Consider the period 
of time [t, t + At), where At is chosen such that Cj,-s qij(t)At + o(k) = 18. 
The non-negative, finite, continuous functions qij(t) can be shown to exist 
under rather general conditions. For all states i, j , i # j , we define: 

pij (6 t + At) 
f&j(t)= lim At , i#j, 

At-+0 

qii(t) = lim 
pii(t, t + At) - 1 

At-+0 At ’ 

(2.39) 

(2.40) 

‘The notation o(At) is defined such that limAt+o q = 0; that is, we might substitute 
any function for o(At) that approaches zero faster than the linear function At. 
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If the limits do exist, it is clear from Eqs. (2.39) and (2.40) that, since 
c jEs pij(t, t + At) = 1, at any instant of time t: 

Cqij(t)=o, ViES. (2.41) 
jCS 

The quantity -qii (t) can be interpreted as the total rate at which state i is 
exited (to any other state) at time t. Accordingly, q~ (t), (i # j), denotes 
the rate at which the CTMC leaves state i in order to transit to state j at 
time t. As an equivalent interpretation, we can regard qij(t)At + o(At) as 
the transition probability pij(t, t + At) of the Markov chain to transit from 
state i to state j in [t, t + At), where At is chosen appropriately. Having these 
definitions, we return to the Chapman-Kolmogorov Eq. (2.38). Substituting 
v + At for v in (2.38) and subtracting both sides of the original Eq. (2.38) 
from the result gives us: 

pd”~ v + At> - P&-d = c P&J, w)[;or~j(w, v + At) - ~,z&J, v)]. (2.42) 
kES 

Dividing both sides of Eq. (2.42) by At, taking limat+e of the resulting quo- 
tient of differences, and letting w --+ v, we derive a differential equation, the 
well known Kolmogorov’s forward equation: 

d”i$;‘“’ = ~p&h,v)qQ(v), 0 5 u < v. 
kES 

(2.43) 

In the homogeneous case, we let t = v - u and get from Eqs. (2.39) and 
(2.40) time-independent transition rates qij = qij(t),Vi, j E S, such that sim- 
pler versions of the Kolmogorov’s forward differential equation for homoge- 
neous CTMCs result: 

(2.44) 

Instead of the forward Eq. (2.43), we can equivalently derive and use the 
Kolmogorov’s backward equation for further computations, both in the homo- 
geneous and non-homogeneous cases, by letting w -+ u in Eq. (2.42) and 
taking limat+o to get: 

8Pij (u, v) 
dU 

= ~pkj(u,+hk(U), 0 5 u < v. 

kES 

(2.45) 

Differentiating Eq. (2.34) on both sides gives Eq. (2 $47)) using the Kol- 
mogorov’s (forward) Eq. (2.43) yields Eq. (2.48), and then, again, applying 
Eq. (2.34) to Eq. (2.49), we derive the differential equation for the uncondi- 
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tional state probabilities ~j(v), ‘dj E S, at time v in Eq. (2.50): 

d~J+J) -----z d Ci@ Pij(U, V)%(?-q 
dv dV 

II 
c 

8PG (% 4 ~ 

iES 
dV 

i 
@) 

(2.46) 

(2.47) 

ZZ 
c(c 

Pi& +7kj(V) n&) 
iES kES ) 

= c qkj(u> &ik(U, v)%(u) 

kES iES 

= c qkj (+k (v). 

kES 

(2.48) 

(2.49) 

(2.50) 

In the time-homogeneous case, a simpler version of Eq. (2.50) results by 
assuming t = v - ‘u and using time-independent transition rates qzj. So we 
get the system of differential Eqs. (2.51): 

dTi (4 
&t = CQi.jni(t), Vj E S, 

iES 

(2.51) 

which is repeatedly used throughout this text. Usually, we prefer vector- 
matrix form rather than the notation used in Eq. (2.51). Therefore, for the 
homogeneous case, we define the infinitesimal generator matrix Q of the tran- 
sition probability matrix P(t) = [pij(O, t)] = bij(t)] by referring to Eqs. (2.39) 
and (2.40). The matrix Q: 

Q = [qiJ, K j E S, (2.52) 

contains the transition rates qij from any state i to any other state j, where 
i # j, of a given continuous-time Markov chain. The elements qii on the 
main diagonal of Q are defined by qii = - Cj jfi qij. With the definition in 
Eq. (2.52), Eq. (2.51) can be given in vector-matrix form as: 

da 
+) = & - = rr(t)Q. (2.53) 

For the sake of completeness, we include also the matrix form of the Kol- 
mogorov differential equations in the time-homogeneous case. The Kolmogo- 
rev’s forward Eq. (2.44) can be written as: 

= P(t)&. (2.54) 

The Kolmogorov’s 
matrix form as: 

backward equation in the homogeneous case results in 

Ii)(t) = T = QP(t). (2.55) 
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As in the discrete-time case, often the steady-state probability vector of a 
CTMC is of primary interest. The required properties of the steady-state 
probability vector, which is also called the equilibrium probability vector, are 
equivalent to the discrete time case. For all states i E S, the steady-state 
probabilities ri are: 

1. Independent of time t 

2. Independent of the initial state probability vector ?r(O) 

3. Strictly positive, 7ri > 0 

4. Given as the time limits, ri = limt,, ri(t) = limt+W pji(t), of the state 

probabilities 7ri( t) and of the transition probabilities pji (t), respectively 

of 
If existing for a given CTMC, 
time, we immediately get: 

the steady-state probabilities are independent 

lim 3.2 = 0 
t+oo dt ’ 

(2.56) 

Under Condition (2.56), the differential Eq. (2.51) for determining the 
unconditional state probabilities resolves to a much simpler system of linear 
equations: 

0 = Cqijri, Vj E S. (2.57) 
iES 

In vector-matrix form, we get accordingly: 

O=nQ. (2.58) 

Definition 2.13 In analogy to the discrete-time case, we call a CTMC for 
which a unique steady-state probability vector exists, an ergodic CTMC. 

The strictly positive steady-state probabilities can be gained by the unique 
solution of Eq. (2.58), when an additional normalization condition is imposedg. 
To express it in vector form, we introduce the unit vector 1 = [l, 1,. . . , llT 
so that the following relation holds: 

7rl= c 7Ti = 1. (2.59) 
iES 

Another possibility for determining the steady-state probabilities ri for 
all states i E S of a CTMC, is to take advantage of a well-known relation 

‘Note that besides the trivial solution 7r2 = 0, Vi E S, any vector, obtained by multiplying 
a solution of Eq. (2.58) by an arbitrary real-valued constant, would also yield a solution of 
Eq. (2.58). 
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between the ;TT~ and the mean recurrence time lo Ik& < 00, that is, the mean 
time elapsed between two successive visits of the CTMC to state i: 

1 
ri = - &Jqii ’ vi E s. (2.60) 

In the time-homogeneous case, we can derive from Eq. (2.41) that for any 
j E S qjj = - &fj qji, and from Eq. (2.57) we get xi,ifj qijri = -qjj’rrj. 
Putting these together immediately yields the system of global balance equa- 
tions: 

c qij7ri = 77-j c qji, VjES. (2.61) 
i,i#j i,i#j 

On the left-hand side of Eq. (2.61), the total flow from any other state i E S 
into state j is captured. On the right-hand side, the total flow out of state j 
into any other state i is summarized. The flows are balanced in steady state, 
i.e., they are in equilibrium. 

The conditions under which a CTMC is called ergodic are similar to those 
for a DTMC. Therefore, we can briefly summarize the criteria for classifying 
CTMCs and for characterizing their states. 

2.1.2.2.1 Classifications of CTMC 

Definition 2.14 As for DTMCs, we call a CTMC irreducible if every state 
i is reachable from every other state j, where i, j E S; that is, Vi, j, i # j, 3 : 
pji(t) > 0. In th o er words, no proper subset 3 c S, 3 # S, of state space S 
exists, such that CjE3 ciEs,g qji = 0. 

Definition 2.15 An irreducible, homogeneous CTMC is called ergodic if 
and only if the unique steady-state probability vector 7r exists. 

As opposed to DTMCs, CTMCs cannot be periodic. Therefore, it can be 
shown that for an irreducible, homogeneous CTMC: 

l The limits iii = limt+oo ni(t) = Zimt,,pji(t) exist Vi, j E S and are 
independent of the initial probability vector r(0). l1 

l The steady-state probability vector X, if existing, can be uniquely deter- 
mined by the solution of the linear system of Eq. (2.58) constrained by 
normalization Condition (2.59). 

l A unique steady-state, or equilibrium, probability vector 7r exists, if the 
irreducible, homogeneous CTMC is finite. 

l The mean recurrence times AL& are finite for all states i E S, A4i < co, 
if the steady-state probability vector exists. 

loIn contrast to DTMCs, where lowercase notation is used to refer to recurrence time, 
uppercase notation is used for CTMCs. 
llThe limits do not necessarily constitute a steady-state probability vector. 
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2.1.2.2.2 CT/UC State So;ourn Times We have already mentioned that the 
distribution of the state sojourn times of a homogeneous CTMC must have the 
memoryless property. Since the exponential distribution is the only continuous 
distribution with this property, the random variables denoting the sojourn 
times, or holding times, must be exponentially distributed. Note that the same 
is true for the random variable referred to as the residual state holding time, 
that is, the time remaining until the next state change occurs. l2 Furthermore, 
the means of the two random variables are equal to l/(-qi;). 

Let the random variable IQ denote either the sojourn time or the residual 
time in state i, then the CDF is given by: 

FRi(r) = 1 - eqzir, r 2 0. (2.62) 

The mean value of I&, the mean sojourn time or the mean residual time, is 
given by: 

q&l = --$ (2.63) 

where qii is defined in Eq. (2.40). 

2.1.2.3 Recapitulation We have introduced Markov chains and indicated 
their modeling power. The most important feature of homogeneous Markov 
chains is their unique memoryless property that makes them remarkably 
attractive. Both continuous- and discrete-time Markov chains have been 
defined and their properties discussed. 

The most important algorithms for computation of their state probabilities 
are discussed in following chapters. Different types of algorithms are related 
to different categories of Markov chains such as ergodic, absorbing, finite, or 
infinite chains. Furthermore, the algorithms can be divided into those appli- 
cable for computing the steady-state probabilities and those applicable for 
computing the time-dependent state probabilities. Others provide approxi- 
mate solutions, often based on an implicit transformation of the state space. 
Typically, these methods fall into the categories of aggregation/disaggregation 
techniques. Note that this modeling approximation has to be discriminated 
from the mathematical properties of the core algorithms, which, in turn, can 
be numerically exact or approximate, independent of their relation to the 
underlying model. Typical examples include round-off errors in direct meth- 
ods such as Gaussian elimination and convergence errors in iterative methods 
for the solution of linear systems. 

12The residual time is often referred to as the forward recurrence time. 
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2.2 THE MODELING PROCESS 

So far, we have limited our discussion to the mathematical foundations and 
properties of DTMCs and CTMCs. Since we follow an application-oriented 
approach, it is worthwhile to provide explicit guidelines on how to use the the- 
oretical concepts in a practical manner. DTMCs and CTMCs are extensively 
used for performance and dependability analysis of computer systems, and 
the same fundamental techniques can be employed in different contexts. But 
the context strongly determines the kind of information that is meaningful 
in a concrete setting. Note that the context is not simply given by a plain 
technical system or a given configuration that is to be modeled. Additional 
requirements of desired qualities are explicitly or implicitly specified that need 
to be taken into account. 

As an illustrative example, consider the outage problem of computer sys- 
tems. For a given configuration, there is no ideal way to represent it without 
considering the application context and defining respective goals of analyses, 
which naturally ought to be reflected in the model structure. In a real-time 
context, such as flight control, even the shortest outage might have catas- 
trophic implications for the system being controlled. Therefore, an appro- 
priate model must be very sensitive to such a (hopefully) rare event of short 
duration. In contrast, the total number of jobs processed or the work accom- 
plished during flight time is probably a less important performance measure 
for such a safety-critical system. If we look at a transaction processing system, 
however, short outages are less significant for the success but throughput is 
of predominant importance. So it is not useful to represent effects of short 
interruptions, which are of less importance in these circumstances. 

There are cases where the right choice of measures is less obvious. There- 
fore, guidelines are equally useful for the practitioner and the beginner. Later 
in this chapter, a framework based on A4urlcov reward models (MRMs) is pre- 
sented providing recipes for a selection of the right model type and the defi- 
nition of an appropriate performance measure. But before going into details 
of model specification, the modeling process is sketched from a global view 
point, thereby identifying the major phases in the modeling life-cycle and the 
interdependencies between these phases. 

2.2.1 Modeling Life-cycle Phases 

There can be many reasons for modeling a given system. Two of the important 
ones are: 

1. Existing systems are modeled for a better understanding, for analyses of 
deficiencies such as identification of potential bottlenecks, or for upgrad- 
ing studies. 

2. Models are used during the design of future systems in order to check 
whet her requirements are met. 
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Different levels of detail are commonly entailed in the two cases. Since for 
projection and design support fewer details are known in advance, the models 
tend to be more abstract so that analytical/numerical techniques are more 
appropriate in these instances. 

Control 

Fig. 2.6 A simplified view of the modeling process. 

In general, the modeling process can be structured into phases as depicted 
in Fig. 2.6. First, there are certain requirements to be met by the applica- 
tion; these have an impact on what type of model is used. At this point 
we use the term “requirements” in a very broad sense and use it to refer to 
everything related to the evaluation of accomplishment levels, be it task or 
system oriented. As an example, consider the earlier discussion on the signif- 
icance of outage phases for the expressiveness of the model, which cannot be 
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determined a priori without reference to an application context. More details 
related to this issue are discussed in the following sections. 

A high-level description of the model is the first step to be accomplished. 
Either information about a real computer system is used to build the mod- 
el, or experiences gained in earlier modeling studies are implicitly used. Of 
course, this process is rather complicated and needs both modeling and sys- 
tem application-specific expertise. Conceptual validation of the correctness 
of the high-level model is accomplished in an iterative process of step-wise 
refinement, which is not represented in full detail in Fig. 2.6. Conceptual 
validation can be further refined [NaFi67] into “face validation,” where the 
involved experts try to reach consensus on the appropriateness of the model 
on the basis of dialogs, and into the “validation of the model assumptions,” 
where implicit or explicit assumptions are cross-checked. Some of the cru- 
cial properties of the model are checked by answering the following questions 
[HMTSl]: 

l Is the model logically correct, complete, or overly detailed? 

l Are the distributional assumptions justified? How sensitive are the 
results to simplifications in the distributional assumptions? 

l Are other stochastic properties, such as independence assumptions,valid? 

l Is the model represented on the appropriate level? Are those features 
included that are most significant for the application context? 

Note that a valid model is not necessarily complete in every respect, but 
it is one that includes the most significant effects in relation to the system 
requirements. It leaves higher-order effects out or simplifies them drastically. 
In order to produce a useful model, leaving out may be of the same importance 
as the validity of underlying stochastic assumptions. 

Once confidence is gained in the validity of the high-level model description, 
the next step is to generate a computational model. Sometimes the available 
solution techniques are inadequate for solving the high-level model. Some of 
these difficulties arise from: 

l Stochastic dependencies and correlated processes. 

l Non-exponential distributions. 

l Effects of stiffness, where classes of events 
that occur at extremely different rates. 

are described in a single model 

l System requirements that are too sophisticated leading to an overly 
complicated model and system measures that cannot be computed easi- 
ly, such as dist,ribution functions capturing response times or cumulative 
work. 

Note that even discrete-event simulation (DES) techniques might suffer 
from difficulties such as largeness or stiffness. For instance, it is a non-trivial 
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problem to simulate with high confidence scenarios entailing relatively rare 
events while others are occurring much more often. Large or complex prob- 
lems, in contrast, require the input of excessively numerous parameter sets so 
that correspondingly numerous simulation runs need to be executed. Many 
techniques have been suggested to overcome some of the problems. Among 
the most important ones are: 

l Hybrid approaches that allow the combination of different solution tech- 
niques to take advantage of and to combine their strengths. Examples 
are mixed simulation and analytical/numerical approaches, or the com- 
bination of fault trees, reliability block diagrams, or reliability graphs, 
and Markov models [STP96]. Also product-form queueing networks and 
stochastic petri nets or non-product-form networks can be combined. 
More generally, this approach can be characterized as intermingling of 
state-space based and non-state-space based methods [STP96]. 

l Phase-type expansions are used to replace and approximate non-exponen- 
tial distributions. As a trade-off, model size and computational com- 
plexity need to be taken into account. 

l Sometimes aggregation/disaggregation techniques can be used to elimi- 
nate undesirable model properties. An approach to eliminate stiffness 
for transient analysis is introduced and discussed in detail in Chapter 5. 

l Transformations can be applied leading from one domain of representa- 
tion to another. Space, for example, is sometimes traded with time to 
replace one cumulative measure by another that is easier to calculate. 

l DES of rare events is achieved by artificially speeding up these events 
in a controlled manner and taking some correction measures afterwards. 
This technique is called importance sampling [NNHGSO]. 

Finally, the computational model may be prohibitively large due to the 
complexity of the problem at hand so as to preclude a direct use of the solution 
techniques. A low-level description is often out of the question due to the sheer 
size of the model and the error-prone process of creating it by hand. What is 
needed are techniques allowing for a compact or high-level representation of 
the lower-level model to be analyzed. Usually the higher-level representation 
languages are referred to as specification techniques and come with paradigms 
providing application specific structures that can be of help to practitioners. 

Two primary methods to deal with large models: 

l Many high-level specification techniques, queueing systems, generalized 
stochastic Petri nets (GSPNs), and stochastic reward nets (SRNs), being 
the most prominent representatives, have been suggested in the litera- 
ture to automate the model generation [HaTr93]. While GSPNs/SRNs 
are covered in more detail in Section 2.2.3, our major theme is queueing 
systems. Both approaches can be characterized as tolerating largeness 
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of the underlying computational 
for generating them. 

models and providing effective means 

l Another way to deal with large models is to avoid the creation of such 
models from the beginning. The major largeness-avoidance technique 
we discuss in this book is that of product-form queueing networks. The 
main idea is that t,he structure of the underlying CTMC allows an effi- 
cient solution that obviates the need of the generation, storage, and 
solution of the large state space. The second method of avoiding large- 
ness is to separate the originally single large problem into several smaller 
problems and to combine submodel results into an overall solution. Both 
approximate and exact techniques are known for dealing with such mul- 
tilevel models. The flow of information needed among submodels may 
be acyclic, in which case we have a hierarchical model [STP96]. If the 
flow of needed information is not acyclic, a fixed-point iteration may be 
necessary [CiTr93]. Other well-known techniques applicable for limiting 
model sizes are state truncations [BVDT88, GCSS86] and state lumping 
[NicoSO] . 

Ideally, the computational model is automatically generated from a high- 
level description based on a formal and well-understood approach such as 
GSPNs or SRNs. In this case, verification is implicitly provided through the 
proven correctness and completeness of the techniques and tools employed. 
In practice, heuristics are often applied and, even worse, model generation is 
carried out manually. In this case, verification of the correctness of the compu- 
tational model with respect to a given high-level description is of importance. 
But because approximations are often used, correctness is not given by a 
one-to-one relation between computational model and high-level description. 
Thus errors incurred need to be explicitly specified or bounded. 

Note that the distinction between a high-level description and a compu- 
tational model may sometimes be conceptual when the two representations 
coincide. Both the issues of model generation and analytical/numerical solu- 
tion methods are the main topics of this book. 

Once computational results have been produced, they need to be validated 
against data collected through measurements, if available, and against system 
requirements. The validation results are used for modification of the existing 
(high-level) model or for a proof of its validity. Of course, many iterations 
may be required for this important task. Note that a change in the model 
might ultimately result in a change in the system design. 

There is a strong relation between measurements and modeling. Measure- 
ment data are to be used for model validation. Furthermore, model parum- 
eterixution relies heavily on input from measurement results. In case of a 
system design where the computer system does not yet exist, input usually 
comes from measurements of earlier studies on similar systems. Conversely, 
measurement studies are better planned and executed if guided by a model 
and by requirements placed on the computer system to be measured. In prac- 
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tice, measurements and models are not always applied on the same system. 
Of course, measurements cannot be used directly for the design of computer 
systems. Consequently, models-based solutions ought to be applied. Mea- 
surements, on the other hand, can provide the most accurate information on 
already existing systems. Measurement studies are often resource demanding, 
both with respect to hardware and software, and may require a great deal 
of work. The best approach, as always, is to combine the strengths of both 
techniques as much as possible. 

In the following, we examine the issue of model formulation and the formal 
definition of measures based on given system requirements. While the general 
discussion of this section is not limited to a specific model type, in what follows 
we narrow our view and concentrate on CMTCs. 

2.2.2 Performance Measures 

We begin by introducing a simple example and then provide an introduction 
to Markov reward models as a means to obtain performance measures. 

Parameter Meaning 
State 

l/Y mean time to failure 
Meaning 

116 mean time to repair i E {0,1,2} i working processors 

lb mean time to reboot RC recovery 

l/P mean time to recover RB reboot 
C coverage probability 

Fig. 2.7 A simple model of a multiprocessor system. 

2.2.2.1 A Simple Example As an example adapted from Heimann, Mittal 
and Trivedi [HMTSI] , consider a multiprocessor system with n processor ele- 
ments processing a given workload. Each processor is subject to failures with 
a mean time to failure (MTTF), l/y. In case of a failure, recovery can success- 
fully be performed with probability c. Typically, recovery takes a brief period 
of time with mean l/p. Sometimes, however, the system does not success- 
fully recover from a processor failure and suffers from a more severe impact. 
In this case, we assume the system needs to be rebooted with longer average 
duration of l/a. Probability c is called the coverage factor and is usually close 
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to 1. Unsuccessful recovery is most commonly caused by error propagation 
when the effect of a failure is not sufficiently shielded from the rest of the 
system. Failed processors need to be repaired, with the mean time to repair 
(MTTR) of l/S. Only one processor can be repaired at a time and repair of 
one processor does not affect the proper working of the remaining processors. 
If no processor is running correctly, the whole system is out of service until 
first repair is completed. Neither reboot nor recovery is performed when the 
last processor fails. If all times are assumed to be independent, exponentially 
distributed random variables, then a CTMC can be used to model the sce- 
nario. In Fig. 2.7 an example is given for the case of n = 2 processors and 
state space S = (2, RC, RB, l,O}. 

Since CTMC in Fig. 2.7 is ergodic, the unique steady-state probability 
vector z = (~2, ARC, ~TTRB, ~1, ~0) is the solution of the Eqs. (2.58) and (2.59). 
From Fig. 2.7 the infinitesimal generator matrix can be derived: 

i 

-27 2cy 2(1- c)y 
0 -P 0 

Q= o o --a 
s 0 0 
0 0 0 

Clearly, the model in Fig. 2.7 is already an abstract representation of the 
system. With Eqs. (2.53) and (2.58), transient and steady-state probabili- 
ty vectors could be computed, but it is not yet clear what kind of measures 
should be calculated because we have said nothing about the application con- 
text and the corresponding system requirements. We take this model as a 
high-level description, which may need further elaboration so that a compu- 
tational model can be generated from it. We consider four classes of system 
requirements for the example. 

1. System availability is the probability of an adequate level of service, or, 
in other words, the long-term fraction of time of actually delivered ser- 
vice. Usually, short outages can be accepted, but interruptions of longer 
duration or accumulated outages exceeding a certain threshold may not 
be tolerable. Accordingly, the model in Fig. 2.7 must be evaluated with 
respect to requirements from the application context. First, tolerance 
thresholds must be specified as to what extent total outages can be 
accepted. Second, the states in the model must be partitioned into two 
sets: one set comprising the states where the system is considered “up,” 
i.e., the service being actually delivered, and the complementary set 
comprising the states where the system is classified as “down.” In our 
example, natural candidates for down states are in the set: (0, RC, RI?}. 
But not all of them are necessarily classified as down states. Since recon- 
figuration generally takes a very short time, applications may well not 
be susceptible to such short interruptions. As a consequence, the less 
significant state RC could even be eliminated in the generation of the 
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computational model. Finally, the measures to obtain from the compu- 
tational model must be decided. For example, the transient probability 
of the system being in an up state at a certain time t conditioned on 

measures. 

2. System reliability is the probability of uninterrupted service exceeding 
a certain length of time. By definition, no interruption of service at all 
can be tolerated. But note that it still needs to be exactly specified 
as to what kind of event is to be considered as an interruption. In the 
most restrictive application context, reconfiguration (RC) might not be 
acceptable. In contrast, nothing prevents the assumption to be made 
that even a reboot (RB) can be tolerated and only the failure of the 
last component leads to the single down state (0). As a third alter- 
native, reconfiguration may be tolerated but not reboot and not the 
failure of the last component. The three possible scenarios are captured 
in Fig. 2.8. The model structures have also been adapted by introduc- 
ing absorbing down states that reflect the fact that down states are 
considered as representing catastrophic events. 

0 ‘2 A ,l- 0 

Variant 1 Variant 2 

Variant 3 

Fig. 2.8 Model variants with absorbing states capturing reliability requirements. 

3. System performance takes the capacity of different configurations into 
account. Typical measures to be calculated are the utilization of the 
resources or system throughput. Other measures of interest relate to 
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the frequency with which certain incidents occur. With respect to the 
model in Fig. 2.7, the individual states need to be characterized by their 
contribution to a successful task completion. The higher the degree of 
parallelism, the higher the expected accomplishment will be. But it is a 
non-trivial task to find the right performance indices attributable to each 
particular state in the computational model. The easiest way would be 
to assign a capacity proportional to the number of working processors. 
But because each such state represents a whole configuration, where 
each system resource and the imposed workload can have an impact on 
the overall performance, more accurate characterization is needed. One 
way would be to execute separate modeling studies for every possible 
configuration and to derive some more detailed measures such as state- 
dependent effective throughputs or response time percentiles. Another 
way would be to expand the states and to replace some of them with a 
more detailed representation of the actual configuration and the work- 
load. This approach will lead to a model of enormous size. 

4. Tusk completion is reflected in the probability that a user will receive 
service at the required quality, or in other words, in the proportion 
of users being satisfied by the received service and its provided quali- 
ty. Many different kinds of measures could be defined in this category. 
It could be the proportion of tasks being correctly processed or the 
probability that computation-time thresholds are not exceeded. With 
advanced applications such as continuous media (e.g., audio and video 
streams), measures are investigated relating the degree of user’s satis- 
faction to the quality of the delivered service. Usually, such application- 
oriented measures are composed of different constituents such as time- 
liness, delay-variation, loss, and throughput measures. 

In this subsection, we have indicated how system requirements affect mod- 
el formulation. Furthermore, different types of performance measures were 
motivated and their relation to the model representation outlined. Next, we 
will show how the performance measures derived from system requirements 
can be explicitly specified and integrated into the representation of the com- 
put at ional model. 

2.2.2.2 Markov Reward Models MRMs provide a unifying framework for an 
integrated specification of model structure and system requirements. We con- 
sider the explicit specification of system requirements as an essential part of 
the computational model. Once the model structure has been defined so that 
the infinitesimal generator matrix is known, the basic equations can be written 
depending on the given system requirements and the structure of the matrix. 
For the sake of completeness, we repeat here the fundamental Eqs. (2.53), 
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(2.58) and (2.59) for the analysis of CTMCs: 

d7r (t > - = WQ, 
dt 

@) = no, 

O=rQ, 7rl= 1, 

where n(t) is the transient state probability vector of the CTMC and 7r is the 
steady-state probability vector (assuming it exists). In addition to the tran- 
sient state probabilities, sometimes cumulative probabilities are of interest. 
Let: 

L(t) = 
s 

+)dw (2.64) 

0 

then Li(t) denotes the expected total time the CTMC spends in state i during 
the interval [0, t). A more convenient way to calculate the cumulative state 
probabilities is by solution of differential Eq. (2.65) [RST89]: 

$ = L(t)Q +r(o), L(O) = 0. (2.65) 

Closely related to the vector of cumulative state probabilities is the vector 
describing the time-average behavior of the CTMC [SmTrSO]: 

M(t) = ;L(t). (2.66) 

With I denoting the identity matrix, M(t) can be seen to satisfy the differen- 
tial Eq. (2.67): 

M(0) = 0. (2.67) 

With these definitions, most of the interesting measures can be defined. But 
the special case of models containing absorbing states, like those in Fig. 2.8, 
deserves additional attention. Here, it would be interesting to compute mea- 
sures based on the time a CTMC spends in non-absorbing states before an 
absorbing state is ultimately reached. Let the state space S = A U N be 
partitioned into the set A of absorbing and the set N of non-absorbing (or 
transient) states. Then, the time spent before absorption can be calculated 
by taking the limit limt+oo LN(t) restricted to the states of the set N. Note 
that, in general, unless very special cases for the initial probability vector are 
considered, the limit does not exist for the states in A. Therefore, to calculate 
LN(oo), the initially given infinitesimal generator matrix Q is restricted to 
those states in N, so that matrix QN of size IN] x IN] results. Note that QN is 
not an infinitesimal generator matrix. Restricting also the initial probability 
vector ~(0) to the non-absorbing states N results in TN(O) and allows the 
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computation of lim t+oo on both side of differential Eq. (2.65) so that following 
linear Eq. (2.68) results [STP96]: 

LN(~)QN = -n-v(O). (2.68) 

To give an example, consider the variant three in Fig. 2.8. Here the state 
space S is partitioned into the set of absorbing states A = {RB, 0) and non- 
absorbing states N = (2, RC, 1) so that Q reduces to: 

With LN(oo), the mean time to absorption (MTTA) can then be written as: 

MTTA = c L&o). (2.69) 
iEN 

MRMs have long been used in Markov decision theory to assign cost and 
reward structures to states of Markov processes for an optimization [Howa71]. 
Meyer [Meye80] adopted MRMs to provide a framework for an integrated 
approach to performance and dependability characteristics. He coined the 
term performability to refer to measures characterizing the ability of fault- 
tolerant systems, that is, systems that are subject to component failures and 
that can perform certain tasks in the presence of failures. 

With MRMs, rewards can be assigned to states or to transitions between 
states of a CTMC. In the former case, these rewards are referred to as reward 
rates and in the latt’er as impulse rewards. In this text we consider state-based 
rewards only. 

The reward rates are defined based on the system requirements, be it avail- 
ability, reliability, or task oriented. Let the reward rate ri be assigned to state 
i E S. Then, a reward ri7-i is accrued during a sojourn of time 7; in state i. 
Let {X(t),t 2 0) d enote a homogeneous finite-state CTMC with state space 
S. Then, the random variable: 

w> = TX(t) (2.70) 

refers to the instantaneous reward rate of the MRM at time t. Note the dif- 
ference between reward rates ri assigned to individual states i and the overall 
reward rate Z(t) of the MRM characterizing the stochastic process as a whole. 
With the instantaneous reward rate of the CTMC defined as in Eq. (2.70), 
the accumulated reward Y(t) in the finite time horizon [0, t) is given by: 

t t 

Y(t) = 1 Z(r)&- = S,\.(,i'k. 
0 0 

(2.71) 
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1 -- 

Markov Reward Model 

0'. 
t1 t2 t3 t4 

Reward 
Rate 

t 

Q = -,“r” 
0 

-(A Xl) x1 
0 P2 --CL2 

Total 
Reward 

A 

Y4 -- . 

. . . 
y2 =y3-- l .a’ yw 

Yl = rot1 = 3t1 

Yz=Yl+rl(t2-tl)=yl+t2-tl 

Yl -- r Y3 = y2 +r2(t3 - t2) = y2 

Y4=Y3+7$t4-t3)=y3+t4-t3 

,; 

l I I I I I I I I ,t 

t1 t2 t3 t4 

Fig. 2.9 A three-state Markov reward model with sample paths of the X(t), Z(t), 
and Y(t) processes. 
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For example, consider the sample paths of X(t) , Z(t) , and Y(t) processes 
in Fig. 2.9 adapted from [SmTrSO]. A simple three-state MRM is presented, 
consisting of a CTMC with infinitesimal generator matrix Q, and the reward 
rate vector r = (3,1,0) assigning reward rates to the states 0, 1, and 2, respec- 
tively. Assuming an initial probability vector ~(0) = (l,O, 0), the process is 
initiated in state 0, that is, X(0) = 0. Since the sojourn time of the first 
visit to state 0 is given by tl, the reward y1 = 3tl is accumulated during this 
period. After transition to state 1, additional reward y2 - y1 = l(t2 - tl) is 
earned, and so forth. While process X(t) is assumed to follow the state tran- 
sition pattern as shown in Fig. 2.9, the processes Z(t) and Y(t) necessarily 
show the behavior as indicated, because they are depending on X(t) through 
the given reward vector r. While X(t) and Z(t) are discrete valued and non- 
monotonic functions, Y(t), in contrast, is a continuous-valued, monotonically 
non-decreasing function. 

Based on the definitions of X(t), Z(t), and Y(t) , which are non-independent 
random variables, various measures can be defined. The most general measure 
is referred to as the performability [Meye80]: 

(2.72) 

where q(y, t) is the distribution of the accumulated reward over a finite 
time [0, t). Unfortunately, the performability is difficult to compute for unre- 
stricted models and reward structures. Smaller models can be analyzed via 
double Laplace transform [SmTr90], while references to other algorithms are 
summarized in Table 2.17. The same mathematical difficulties arise if the dis- 
tribution Q(y, t) of the time-average accumulated reward is to be computed: 

(2.73) 

The problem is considerably simplified if the system requirements are lim- 
ited to expectations and other moments of random variables rather t>han dis- 
tribution functions of cumulative rewards. Alternatively, efficient solution 
algorithms are available if the rewards can be limited to a binary structure or 
if the model structure is acyclic. 

The expected instantaneous reward rate can be computed from the solution 
of differential Eq. (2.53): 

E[Z(t)] = Cri~i(t). 
iES 

(2.74) 

If the underlying model is ergodic, the solution of linear Eqs. (2.58) and (2.59) 
can be used to calculate the expected reward rate in the limit as t -+ 00: 

(2.75) 
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To compute the first moment of the performability, or the expected accumu- 
lated reward, advantage can be taken of the solution of differential Eq. (2.65): 

E[Y(t)] = Cr&(t). (2.76) 
iES 

For models with absorbing states, the limit as t --+ 00 of the expected 
accumulated reward exists and is called the expected accumulated reward until 
absorption. It follows from the solution of linear Eq. (2.68) that: 

E[Y(oo)] = Cril,(m). 
iEN 

(2.77) 

Also, higher moments of the random variables can be derived. As an example, 
the variance of the instantaneous reward rate Z(t) is obtained from: 

( ) 
2 

var[Z(t)] = C rf7ri(t) - C ri7ri(t) . 
iES iES 

(2.78) 

Probabilities of 2(-L) and 2 can also be easily written [TMWH92]: 

P[z(t) = x] = c 7ri(t), (2.79) 
iES,ri=x 

P[Z=x]= c 7Ti. 
iES,ri=X 

(2.80) 

Two different distribution functions can also be easily derived. With the 
transient state probabilities gained from the solution of Eq. (2.53), the proba- 
bility that the instantaneous reward rate Z(t) does not exceed a certain level 
x is given as: 

P[Z(t) 5 X] = C ri(t). (2.81) 

The distribution P[Y(oo) 5 y] of the accumulated reward until absorption 
can be derived by applying a substitution according to Beaudry [Beau781 and 
Ciardo et al. [CMSTSO]. Th e essential idea is to generate a (computation- 
al) model with a binary reward structure and infinitesimal generator matrix 
Q from the given (high-level) CTMC with a general reward structure and 
infinitesimal generator matrix Q. This transformation is achieved by apply- 
ing a normalization in the time domain according to the reward rates so that 
the distribution of the time until absorption of the new CTMC can be used 
as a substitute measure: 

(2.82) 
icN 
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Returning to the example model in Fig. 2.7, we apply the MRM frame- 
work with respect t,o different system requirements to demonstrate how the 
model can be instantiated in several ways to yield meaningful computational 
models. The following case study [HMTSI] serves as a guideline as to how to 
describe models in light of different system requirements, such as availability 
and reliability or task-oriented and system performance. 

2.2.2.3 A Case Study We now illustrate the use of MRMs by means of the 
example in Fig. 2.7. 

2.2.2.3.1 System Availability Availability measures are based on a binary 
reward structure. Assuming for the model in Fig. 2.7 that one processor 
is sufficient for the system to be “up” (set of states U = (2,l)) and that 
otherwise it is considered as being down (set of states D = {RC, RI?, 0}, 
where S = U U D), a reward rate 1 is attached to the states in tJ and a 
reward rate 0 to those in D. The resulting reward function r is summarized 
in Table 2.1. 

The instantaneous availability is given by: 

A(t) = Jwwl = &R(t) = -&i(t) = 7r@) + 7rz(t), 
iES iEU 

Unavailability can be calculated with a reverse reward assignment to that for 
availability. The instantaneous unavailability, therefore, is given by: 

UA(t) = E[Z(t)] = xriri(t) = C ri(t) = ran + rRB(t) + TO(~). 
iES iED 

Steady-state availability, on the other hand, is given by: 

A=E[Z]=Cri~i=~~i=~2+-irl. 
iES iEU 

The interval availability provides a time average value: 

A(t) = iE[Y(b)] = Jj / Ads = i E/*i(s)dr = i[Lz(t) + Ll(t)]. 

0 iEU 0 

Note that a different classification of the model states would lead to other 
values of the availability measures. Instantaneous, interval, and steady-state 
availabilities are the fundamental measures to be applied in this context, but 
there are related measures that do not rely on the binary reward structure. 
Other measures related to availability can be considered. To compute the 
mean transient uptime T(l) (t) and the mean steady-state uptime Tc2)(t) in a 
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Table 2.1 Reward assignment Tab/e 2.2 Reward assignment 
for computation of availability for mean uptimes 

State i Reward Rate rz State i Reward Rate r, 

2 1 2 t 
RC 0 RC 0 
RB 0 RB 0 

1 1 1 t 
0 0 0 0 

given time horizon [0, t), reward rates 1 in Table 2.1 are replaced by reward 
rates t in Table 2.2: 

W(t) = +[Y(t)] = it c L&) = c L&) = tA(t), 
iEV iEV 

2d2)(t) = E[Z] = tA. 

Very important measures relate to the frequency of certain events of inter- 
est. Any event represented in the model can be captured here. For example, 
we could be interested in the average number of repair calls made in a given 
period of time [0, t). With assumed repair rate 6 and the fact that repair calls 
are made from states 0 and 1 of the model of Fig. 2.7, the transient aver- 
age number of repair calls N(l)(t) and steady-state average number of repair 
calls M2) (t) can again be determined, with the reward function as defined in 
Table 2.3: 

Nyt) = +[Y(t)] = 6(L)(t) + L&)), 

lm(t) = E[Z] = tS(;lr() + 7rl). 

Tab/e 2.3 Reward assignment 
for number of repair calls in [0, t) 

State i Reward Rate ri 

2 0 
RC 0 
RB 0 

1 t6 
0 t6 

Tab/e 2.4 Reward assignment 
for computation of mean num- 
ber of outages exceeding cer- 
tain state-dependent thresholds 
in finite time [O,t) with the 
CTMC from Fig 2.7 

State i Reward Rate r, 

2 0 
RC t&+RC 

RB tae-OrRB 

1 
0 
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Sometimes, local tolerance levels Ti, i E S are considered such that certain 
events, such as outages, can be tolerated as long as they do not last longer 
than a specified threshold ri. In our context it would be natural to assume 
a tolerance with respect to duration of reconfiguration and possibly also with 
respect to reboot. Based on these assumptions, the reward function as shown 
in Table 2.4 is defined to compute the mean number of severe interruptions 
I(l)(t), 1c2)(t) in finite time [0, t), i.e., interruptions lasting longer than certain 
thresholds for the transient and the steady-state based cases, respectively: 

I(l)(t) = iE[Y(t)] = PemaTRCLRC(t) + CliemaTRBLRB(t) + 6eehToLo(t), 

Ic2) (t) = E[Z] = tpemPTRC7rRC + t&e-“rRB rTTRB + t&e-b’TOTo. 

The reward rates in Table 2.4 are specified based on the observation that 
event duration times are exponentially distributed in CTMCs, such as the one 
depicted in Fig. 2.7. Therefore, if the parameter were given by X, the prob- 
ability of event duration lasting longer than Ti units of time would be e--x7X. 
This probability is used to weight the average number of events 0. But note 
that the reward rates are by no means limited to exponential distributions, 
any known distributions could be applied here. It is useful to specify events 
related to timeouts or events that have a (deterministic) deadline attached to 
them. 

2.2.2.3.2 System Reliability Again, a binary reward function T is defined that 
assigns reward rates 1 to up states and reward rates 0 to (absorbing) down 
states, as given in Table 2.5. Recalling that reliability is the likelihood that 
an unwanted event has not yet occured since the beginning of the system 
operation, reliability can be expressed as: 

R(t) = P[T > t] = qqt> = I] = 1 - P[z(t) < o] = qqt)], 

where the random variable T characterizes the time to the next occurrence 
of such an unwanted (failure) event. Referring to the scenarios depicted in 
Fig. 2.8, three different reliability functions can be identified: 

h(t) = 7r2(t), 

Rz(t) = r2(t) + rRC(t) + rRB(t) + nl(t), 

R3(t) = x2(t) + rRC(t) + rl(t). 

Remember that Ri (t) , R2 (t), and R3 (t) are computed on the basis of three 
different computational models. The function to be used depends on the 
application requirements. 

With a known reliability function R(t), the mean time to the occurrence 
of an unwanted (failure) event is given by: 

E[T] = MTTF = MTTA = 
s 

R(t)dt. 

0 
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MTTF and MTTA are acronyms for mean time to failure and mean time to 
absorption, respectively. With the formula of Eq. (2.69), the MTTF (MTTA) 
can be efficiently computed. 

Table 2.5 Reward assignment 
for computation of reliabili- 
ty with variant-2 CTMC from 
Fig 2.8 

Table 2.6 Reward assignment 
for predicting the number of 
catastrophic incidents with 
variant-2 CTMC from Fig 2.8 

State i Reward Rate pi State i Reward Rate r, 

2 1 
RC 1 
RB 1 

1 1 
0 0 

2 0 
RC 0 
RB 0 

1 t-l 
0 0 

With the reliability R(t) = E[Z(t)] g iven, the unreliability follows as the 
complement: 

cm(t) = 1 - qqt)] = 1 - 23(t) = 1 - P[T > t] = P[T 5 t]. 

It is an important observation that the unreliability is given ZLS a distribution 
function of a time variable. Note that we have gained this result simply by 
computing E[Z(t)]. The trick was to modify the computational model in the 
right way such that absorbing states were introduced and the appropriate 
reward structure was chosen, as the one depicted in Table 2.5. Rather gener- 
al time distribution functions can be effectively computed in this way. This 
method allows the calculation of percentiles and other powerful performance 
measures like response-time distribution functions, which are not necessarily 
of exponential type [MMKT94]. It is also worth mentioning that the unreli- 
ability could be calculated based on a reward assignment complementing the 
one in Table 2.5. In this case, we would get UR(t) = E[Z(t)] = To(t). 

Related to reliability measures, we would often be interested in knowing 
the expected number of catastrophic events C(t) to occur in a given time 
interval [0, t). To this end: 

c(t) = ;E[Y(t)] = y&(t) 

needs to be calculated for some interesting initial up state, i E U with the 
reward assignment, as given in Table 2.6. 

2.2.2.3.3 System and Task Performance In the preceding two subsections, 
where availability and reliability measures were considered, binary reward 
functions were of predominant importance. However, other reward functions 
have already been used to model availability- and reliability-oriented measures 
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such as frequencies of outages or other related incidents of interest. A more 
general view is presented in this section. 

First, we look at a particular task with some assumed task execution time 
x. Under the given circumstances, we would like to know the probability 
of successful completion of this task. Two different aspects come into the 
picture here: the dynamics of the system and the susceptibility of the task 
(or its user) to these dynamic changes in the configuration. In the case of the 
example in Fig 2.7, just out ages and their impact on the task completion are 
considered. But this situation can be generalized to different degrees of the 
task’s susceptibility to loss of data or other disturbing events as well. 

In the case of a user requiring uninterrupted service for some time x, the 
probabilities that no interruption occurs in the respective states are assigned 
as reward rates. We allow task requirement to be state dependent as well so 
that in state 2 the task requires x2 time units to complete and likewise for 
state 1. The probabilities can be easily concluded from Fig. 2.7. In state 2, 
for example, the probability P[O > 221 that the system will be operational for 
more than 22 units of time is given by e -‘YZ2. Therefore, the task interruption 
probability is: 

conditioned on the assumption the system is running in state 2 and on the 
hypothesis that the first failure causes a task’s interruption. These proba- 
bilities can be assigned as reward rates as shown in Table 2.7, so that the 
interruption probability IP(‘) (xl, x2) of a task of length xl, x2, respectively 
is computed with E[Z], w h en assuming that probability of a user finding the 
system initially being up is given by the steady-state probabilities: 

IP(1)(x1,x2) = E[Z] = (1 - e-2Y22)iTTa + (1 - emyIc1)7rr. 

Table 2.7 Reward assignment 
for computing a task’s interrup- 
tion probability with duration x 
for the CTMC from Fig 2.7 

State i Reward Rate ri 

2 
RC 
RB 

1 
0 

1 -e--2Y~2 

0 
0 

1 _ e-Yzl 

0 

Table 2.8 Reward assignment 
for computing a task’s interrup- 
tion probability in case of uncov- 
ered error or loss of required 
processor for the CTMC from 
Fig 2.7 

State i Reward Rate r(i) 

2 l- e-(YP--c)+Y)s2 

RC 0 
RB 0 

1 l-ee-Yzl 

0 0 

Another scenario would be that a running task is constrained to using a 
single processing element, even if two were available. In this case, a task would 
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only be susceptible to a failure of its own required processor or if an uncov- 
ered failure occurs that also has severe impacts on the currently running one. 
With the reward assignment as shown in Table 2.8 the desired interruption 
probability IPc2) is obtained: 

,TP(2)(~l, x2) = E[Z] = (1 - e-(y(1-c)+y)z2)7r2 + (1 - e-yz1)7ri. 

Recall also the reward function as defined in Table 2.4. Based on these 
reward rates, it is also possible to compute the mean number of severe inter- 
ruptions in a finite time duration. These measures can also be applied as 
success measures for running a task with finite execution time x and with 
certain interruption tolerance patterns attached to it. In particular, continu- 
ous media exhibit such a kind of susceptibility profile. Interruptions or losses 
can be tolerated up to a certain threshold. Beyond that threshold, a severe 
degradation in quality is perceived by users. 

Referring back to the example in Fig.2.7, it could be of interest to take into 
account different levels of performance that the modeled system may exhibit 
in various states. One simple method is to use the processing power (propor- 
tional to the number of processing elements actually working). This would 
lead to the reward function depicted in Table 2.9. With this reward assign- 
ment, the expected available computing capacity in steady state E[Z], the 
expected instantaneous capacity at time t, E[Z(t)], or the cumulative capaci- 
ty deliverable in finite time [O,t), E[Y(t)], or its time average iE[Y(t)] could 
be computed. These availability measures are known as capacity-oriented 
availability. But this reward assignment is too coarse to capture performance 
effects accurately. First, it is overly optimistic with respect to the actual 
performance and, second, effects due to outages tend to be masked by the 
coarse reward structure and tend to become insignificant as a consequence. 
From this point of view, either the reward function or the model structure are 
ill-posed with respect to the system requirements. 

Table 2.9 Reward assignment Table 2.10 Reward assignment 
for computation of capacity ori- for computing the total loss 
ented availability measures for probability for the CTMC from 
the CTMC from Fig 2.7 Fig 2.7 

State i Reward Rate ri State i Reward Rate r(i) 

2 2 2 12 
RC 0 RC 1 
RB 0 RB 1 

1 1 1 11 
0 0 0 1 

More sophisticated approaches either take into account the user’s require- 
ments related to the tasks to be processed or incorporate more information 
about the investigated system into the model. A hierarchical method is pos- 
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sible, where every working configuration is modeled separately with some 
(queueing) models so that more interesting parameters can be derived. Trive- 
di et al. [TMWH92], f or example, use a finite queueing system that is sub- 
ject to losses due to buffer overflow and to response time deadline violation 
[TSIHSO], while de M eer et al. [MTD94] apply infinite queueing systems with 
limits imposed on the system’s response time for processing the tasks, so that 
losses occur if a deadline is missed. In both cases, closed-form solutions are 
available to calculate the loss probabilities Zi for all working configurations or 
up states i E U [GrHa85]. Of course, knowledge of the processing power of the 
working components and of the traffic characteristics are needed to parame- 
terize the underlying performance models. Many of the details are given in 
later chapters when appropriate. 

Table 2.11 Reward assignment Table 2.12 Reward assignment 
for computing the normalized for computing of the expected 
throughput for the CTMC from number of tasks lost in finite time 
Fig 2.7 for the CTMC from Fig 2.7 

- 
State i Reward Rate r(i) State i Reward Rate r, 

2 1 - 12 2 12x 
RC 0 RC x 
RB 0 RB x 

1 1 -I1 1 11X 
0 0 0 x 

The values Zi are used to characterize the percentage loss of tasks arriving 
at the system in state i E U. Consequently, tasks arriving in down states 
are lost with a probability of 1.0, that is, Zi = 1, i E D. Furthermore, it is 
assumed that (quasi) steady state in the performance model is maintained in 
all configuration states, such as those depicted in Fig. 2.7. In other words, 
tasks arriving at the system in a certain state are assumed to leave the system 
in the same state. This assumption is admissible because the events related 
to traffic effects usually occur in orders of magnitude faster than events relat- 
ed to changes in configurations (due to failure-repair events), The resulting 
reward assignment is summarized in Table 2.10. Of course, a complementary 
reward structure as in Table 2.11 could also be chosen, so that the normalized 
throughput would be calculated as has been done by Meyer [MeyeBO]. 

The expected total loss probability, TLP, in steady state and the transient 
expected total loss probability TLP(t) are then given by: 

7wyt) = E[Z(t)l 

= C liTi + C ITi 
iEU iED 

= /2n2(t) + Zm(t) + rdt) + ma(t) + 7@(t), 
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TLP = E[Z] 

= c li7ri + c hi 
iEU iED 

= /2x2 + llrl + TRC + TRB + TO. 

To compute the expected number of tasks lost in finite time [0, t), two 
choices are available: the interval-based measure TL(r)(t) or the steady-state- 
based measure TLc2) (t) can be applied. In the first case, the reward rates 
in Table 2.10 are multiplied by the tasks’ arrival rate X to yield Table 2.12 
and to compute E[Y(t)]. In the second case, E[Z] is calculated on the basis 
of a modified reward assignment. All reward rates from Table 2.12 need 
to be multiplied by the length of the investigated time horizon [O,t) to get 
Table 2.13. Of course, the same reward assignment could be used for the 
interval-based case and iE[Y(t)] could be evaluated instead: 

To(t) = E[Y(t)] 

= 

ifU iED 

= A (z2L&> + hLl@) + LRC(t) + LRB(t) + b-j(t)), 

= tX (l2r2 + llrl + TRc + TRB + To). 

Table 2.13 Reward assignment 
for computing the expected total 
number of tasks lost in finite time 
for the CTMC from Fig 2.7 

Table 2.14 Reward assignment 
for throughput computation 
with the CTMC of Fig 2.10 

State i Reward Rate r, State i Reward Rate r, 

2 t12 x 
RC tX 
RB tX 

1 tllX 
0 tX 

3 P 
2 CL 
1 I-L 
0 0 

Response time distributions and percentiles of more complicated systems 
can rarely be computed by simple elementary queueing systems, and closed- 
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form solutions are rarely available. Muppala et al. have shown how CTMCs 
with absorbing states (or their equivalent SRNs) can be exploited to compute 
these measures numerically in rather general cases [MuTrSl, MMKT94]. Once 
the probabilities that the response time exceeds a certain threshold have been 
derived with this method, the reward assignments can be made corresponding 
to Tables 2.10, 2.12, or 2.13 and the appropriate measures can be derived. 

The use of reward rates is not restricted to reliability, availability, and per- 
formability models. This concept can also be used in pure (failure-free) per- 
formance models to conveniently describe performance measures of interest. 
In many computer performance studies, expected throughput, mean response 
time, or utilization are the most important measures. These measures can 
easily be specified by means of an appropriate reward function. Throughput 
characterization, for example, can be achieved by assigning the state tran- 
sition rate corresponding to departure from a queue (service completion) as 
reward rates to the state where the transition originates. Mean response 
time of queueing systems can be represented indirectly and computed in two 
steps. First, by assigning the number of customers present in a state as the 
reward rate to that state and to compute the measures as required. Sec- 
ond, it can be proven that there exists a linear correspondence between mean 
response time and mean number of customers present so that Little’s theo- 
rem [LittGl, King901 can be used for the computation of the mean response 
times from the mean number of customers. Finally, it is worth mentioning 
that the utilization is also based on a binary reward assignment. If a particu- 
lar resource is occupied in a given state, reward rate 1 is assigned, otherwise 
reward rate 0 indicates the idleness of the resources. 

To illustrate these measures, reward definitions for a simple CTMC are 
considered. Imagine customers arriving at a system with exponentially dis- 
tributed interarrival times with mean l/X. In the system they compete for 
service from a single server station. Since service is exclusively received by 
each customer, if more than one customer is in the system at the same time, 
the others have to wait in line until their turn comes. Service times are 
independent exponentially distributed with mean l/p. To keep the example 
simple, we limit the maximum number of customers in the system to three. 
The system is described by the MRM shown in Fig. 2.10. 

Fig. 2.10 A simple CTMC with arrivals and services. 

Every state in S = {3,2,1,0} of the MRM represents the number of cus- 
tomers in the system. A state transition occurs if a customer’s service is 
completed by the service station (arc annotated with p) or if a new customer 
arrives (arc annotated with X). Tables 2.14, 2.15, and 2.16 summarize the 
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Table 2.15 Reward assignment 
for computing the mean number 
of customers with the CTMC of 
Fig 2.10 

State i Reward Rate pi 

3 3 
2 2 
1 1 
0 0 

Tab/e 2.16 Reward assignment 
for computing utilization mea- 
sures with the CTMC of Fig 2.10 

State i Reward Rate rz 

3 1 
2 1 
1 1 
0 0 

reward assignments for throughput, mean number of customers, and utiliza- 
tion measure computations, respectively. The formulae for the computation 
of throughput measures A(l)(t), Xc21 (t), Xc3); the mean number of customers 
K(1)(t), K(2)(t), K(3); 

- - - 
mean response time measures T(r) (t), Z’(2) (t), Z’(s) ; and 

utilization measures p(‘)(t), pc2) (t), pc3) are also given. Note that response 
time measures Tci) can be calculated with the help of Little’s theorem [LittGl]: 

T(i) = @I. (2.83) 

X(‘)(t) = E[Y(t)] = j (c T~TQ(T)) dr = &Li(t) 
i 

= CL &3(t) + L2(t) + h(i)), 

i 

XC2)(Q = W(t)] = -&n(t) = p (r3(t) + 7T2(t) + n1(t)) ) 

KO(t) = E[Z(t)l = C Tini = 3n3(t) + 27T2(t) + lTl(t>, 

To(t) = +(l)(t) = ; (37r3(t) + 27Q(t) + 17rl@)) ) 
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To(t) = $w(t) = ; (3&(i) + 2&?(t) + L&(t)), 

h’(3) = E[Z] = &ri = 37r3 + 27Q + hl, 

T(3) = 1&w = 
x 

; (37r3 + 27r2 + 1x1) * 

PW) = ~Lw)l = pi%(t) = x3(t) + n2(t) + 7r&), 

,d2)(t) = +[Y(t)] = ; j ( xri7ri(~)) dr = 5 C&(t) 

0 i 2 

= 5 &3(t) + J52(t) + b(t)), 

pC3) = E[Z] = c rilTi=T3+7T2+7Tl. 

More MRM examples with all these types of reward assignments can be 
found in [MTBH93], and MuTr92, and in [TMWH92] where multiprocessor 
architectures with different interconnection techniques are studied by defining 
corresponding reward functions. As another example, queues with breakdown 
are investigated. 

Tables 2.17, 2.18, 2.19, and 2.20 summarize the different reward assign- 
ments discussed in this section. 

2.2.3 Generation Methods 

We have already pointed out the importance of model generation, There are 
many reasons for the separation of high-level model description and lower-level 
computational model. For one thing, it will allow the modeler to focus more 
on the system being modeled rather than on low-level modeling details. Recall 
that CTMCs and similar other state-space based models tend to become very 
large when real-world problems are studied. Therefore, it is attractive to be 
able to specify such large models in a compact way and to avoid the error- 
prone and tedious creation of models manually. The compact description is 
based on the identification of regularities or repetitive structures in the system 
model. Besides reducing the size of the description, such abstractions provide 
visual and conceptual clarity. 

It is worth repeating that regularities must be present in order to take 
advantage of automatic model generation techniques. If repetitive structures 
cannot be identified, the “higher-level” representation would hardly be smaller 
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Table 2.17 Overview of important MRM measures 

Measure Formula Literature 

Em 

Jww1 

Jw WI 

Jwwl 
P[z(t) = Lz] 

ci,s ra*a 

c 2ES 7’24) 

CiES raL (t> 

c aE~ rib(m) 
CT,=z,iES 4) 

c ?-$ <2,iES 4) 
1 - I&r %(Y> 

(al + uR - &)a*(~, a) = e 
(for small models) 

[GaKe79], [Kuba86], 
[MuTrSl], [MTBH93], 
[TSIHSO] 
[BRT88], [DaBh85], 
[HMTSI], [MuTrSl], 
[NaGa88] 
[BRT88], [NaGa88], 
[MTD94], [MTBH93] 
[TMWH92] 
[Husl81], [LeWi89], 
[Wu82] 
[SoGa89] 
[Beau78], [CMSTSO] 
[STR88], [GoTa87], 
[CiGr87], [SoGa89], 
[DoIy87], [Meye82] 

and may even be more cumbersome. Furthermore, since software tools, hard- 
ware resources, human labor, and time are necessary to install and run such 
an automatic generation facility, its application is recommended only beyond 
a certain model size. Finally, the structure of the high-level description lan- 
guage generally makes it more suited for a specific domain of applications. As 
an example, effects of resource sharing and queueing are naturally represented 
by means of queueing systems, while synchronization can be easily specified 
with some Petri net variant. 

Many high-level description languages exist, each with its own merits and 
limitations. A comprehensive review of specification techniques for MRMs 
can be found in [HaTr93]. In the remainder of this chapter, we discuss two 
types of stochastic Petri nets: generalized stochastic Petri nets (GSPNs) and 
stochastic reward nets (SRNs). We also discuss algorithms to convert a GSPN 
into a CTMC and an SRN into an MRM. 

2.2.3.1 Petri Nets Petri nets (PNs) were originally introduced by C.A. Petri 
in 1962 [Petr62]. A PN is a bipartite directed graph, consisting of two types 
of nodes, namely places, P, and transition, 7’. Arcs between the nodes fall in 
two categories: input arcs lead from an input place to a transition and output 
arcs connect a transition to an output place. Arcs always have to lead from 
one type of nodes to the complementary one. A finite number of tokens can 
be distributed among the places and every place may contain an arbitrary 
(natural) number of tokens. A marking m E M is defined as a possible 
assignment of tokens to all places in the PN. Markings are sometimes referred 
to as states of the PN. If P denotes the set of places, then a marking m is 
amultiset,mEM ClN IpI describing the number of tokens in each place. , 
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Table 2.18 Use of reward rates to compute different measures - part I 

Requirement Rewsr d Assignments Measure 

Avazlabzlity 
[HMTSI], 

1 ifiEU 
r - 

L - 0 else 

[Table 2. l] 

E[Z] (steady state) 
E[Z(t)] = P[Z(t) = l] 
(instantaneous) 
+E[Y(t)](interval) 

Jw(~)l* 1 P[Y(=J) I T/1* 
Pl+w I Yl 

Unavazlabzlaty 
[HMTSl], 
[MTD94], 
[MCT94] 

1 ifiED 
I- - 

L - 0 else 
E[Z](steady state) 
E[Z(t)] = P[Z(t) = l] 
(instantaneous) 
$E[Y(t)](interval) 

P[SW) 5 Yl 

Mean uptzme in 

WI t) 

t ifiEU 
I’, = 

0 else 

[Table 2.21 

EL-4 (ww-ox.1 
$ aY(t)l 

Mean uptame in 

[O, t) 

1 ifiEU 
rz = 

0 else 

[Table 2. l] 

ED’-(t)1 
EP’(~)I*> WY(~) 5 YI* 

Approz. fre- 
quency of 
repair calls in 
[0, t) with mean 
duration $ 

[HMTSl] 

tS if i E SR 
I-, = 

0 else 

(SR: states where repair is need- 
cd) [Table 2.31 

EL? 

Frequency of 
repair calls in 
[0, t) with rnean 
duration 6 
[HMTS~] 

6 if i E SR r 
z 

= 

0 else 

(SR: states where repair is need- 
cd) [Table 2.31 

WY(t)1 

Mean percent- 

age of severe 
interruptzons 

[HMTSl] 

P[T > pi] if z E U 
7-t = 

0 else 

(rZ 2 0: threshold for state i, 
T: duration of outage) 
[Table 2.41 

W’(t)1 

*The measure is valid for models with absorbing states. 

N: non-absorbing states; A: absorbing states; U: up states; D: down states. 
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Tab/e 2.19 Use of reward rates to compute different measures - part II 

Requirement Reward Assignments Measure 

Reliabilzty 
1 ifiEN 

ri = 
0 else 

[Table 2.51 

E[Z(t)], P[z(t) = 11 

Unreliability 
[STP96] 

1 ifiEA 
r2 = 

0 else 
E[Z(t)l, P[z(t) = 11 

System MTTF 
[HMTSl] 

1 ifiEN 
ri = 0 else 

[Table 2.51 

Jw(=J)l* 

Expected num- 
ber of catas- 
trophic events 
in [0, t) 
[HMTSl] 

X ifiESc 
r, = 

0 else 
W’(t)1 

(SC: states where catastrophe 
may occur, X: rate of catastro- 
phe) [Table 2.51 

Task interrup- 
tion probabilzty 
[HMTSl], 
[TSIHSO] 

P[Oi 5 xi] if i E U 
r, = 

t 0 else E[Zl 

(xi: task execution time in 
state i, 
Oi: sojourn time in state i) 
[Table 2.7, 2.81 

Capacity ori- 
ented availabil- 
ztY 
[HMTSl], 
[MTD94], 
[CiGr87] 

r, = 
cap(i) if i E U 
0 else 

(cap(i): capacity of state i) 
[Table 2.91 

E[Zl> E[Z(t)l, -W(t)l, 
+ W(t)1 
P[z(t) = x:1, P[z(t) 5x1, 
PLY(t) 5 Yl 

Total loss prob- 
abality 
[MuTrSl], 
[TMWH92], 
[TSIHSO] 

1 ifiED 
7-i = 

1, else 

(li: percentage loss in state i) 
[Table 2.101 

E[Zl, wZ(t)l, w(t)11 
$WWl, 
P[z(t) = xc], P[z(t) 2 xl, 
W(t) I Yl 

Normalzzed 
throughput 
[MeyeW, 
[MeyeW, 
[GaKe79], 

l-li ifiEU 
r, = 

0 else 

[Table 2.111 P[z(t) = xl, p[z(t) 5 xl, 
W(t) 5 Yl 

*The measure is valid for models with absorbing states. 
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Table 2.20 Use of reward rates to compute different measures - part III 

Requirement Reward Assignments Measure 

Approx. total 
tX1, ifiEU 

7-i = -w-l 
ZOSS 

tX else 

[MTD94], 
[MeSe97] 

[Table 2.131 

Loss 
[HMTSl] i 

61, if i E U 
r, = 

6 else 

Mean number ri = c(i) 
of customers (c(i): number of customers in 
[MTBH93] state i) 

WI Y -wYtx T 
qz(t) = x] 

Expected 
throughput 
[MeSe97], 
[DoIy871, 
[MTBH93] 

pi if i E ST 
r, = 

0 else 

(w service rate while in 
state i) 

Utilization 
[Husl81], 
[GoTa87], 
[MTBH93] 

0 if resource is idle 
7-i = 

1 else ww $w(t)l~ 
WI, p[$W I ~1 

*The measure is valid for models with absorbing states 

To refer to the number of tokens at a particular place Pi, 1 5 i 5 IPI, in a 
marking m, the notation #(Pi,m) is used. 

A transition is enabled if all of its input places contain at least one token. 
Note that a transition having no input arc is always enabled. An enable 
transition can fire by removing from each input place one token and by adding 
to each output place one token. The firing of a transition may transform a PN 
from one marking into another. With respect to a given initial marking, the 
reachability set, RS, is defined as the set of all markings reachable through 
any possible firing sequences of transitions, starting from the initial marking. 
The 72% could be infinite if no further restrictions are imposed. Even PNs 
appearing as being relatively simple can give rise to large or infinite RSs. If 
more than one transition is simultaneously enabled but cannot fire in parallel, 
a conflict between transitions arises that needs to be resolved through some 
selection policy, for example, based on a priority scheme or according to a 
given pmf. Markings in which no transition is enabled are called absorbing 
markings. 
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For a graphical presentation, places are usually depicted as circles and 
transitions as bars. A simple PN with an initial marking: 

m0 = C&O, O,O> y 

and subsequent marking: 

ml = (Lb LO>, 

reachable through firing of transition ti, is shown in Fig. 2.11. 

p3 t 
0 . 

t p4 

0 
Fig, 2.11 A simple PN before and after the firing of transition tl S 

Transition ti is enabled because its single input place Pi contains two 
tokens. Since P2 is empty, transition t2 is disabled. When firing takes place, 
one token is removed from input place PI and one token is deposited in both 
output places P2 and P3. In the new marking, both transitions ti and t2 are 
enabled. The apparent conflict between ti and t2 must be solved to decide 
which of the alternative (absorbing) markings will be reached: 

m2 = (0,2,2,0) or 

m3 = (O,O, 1,l). 

The reachability set in this example is 
the markings are given as defined earlier. 

given by (me, ml, m2, m3), where 

Definition 2.16 A PN is given by a 5-tuple PN = {P,T, D-, D+,mo} 
with: 

l A finite set of places P = {PI, P2, . . . , PIPI}, where each place contains 
a non-negative number of tokens. 

l A finite set of transitions T = {ti, . . . , +I}, such that 7’ n P = 8. 

l The set of input arcs D- E (0, l}IPxTl and the set of output arcs 
D+ E (0, l}lPxTl. If D-(Pi,tk) = 1, then there is an input arc from 
place Pi to transition tk, and if D+(Pj,tl) = 1, then there is an output 
arc from transition tl to place Pj. 

l The initial marking mo E M. 
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2.2.3.2 Generalized Stochastic Petri /Vets GSPNs generalize PNs in such a 
way that each transition has a jiring time assigned to it, which may be expo- 
nentially distributed or constant zero. Transitions with exponentially dis- 
tributed firing times are called timed transitions, while the others are referred 
to as immediate transitions. The new type of transitions require enabling and 
firing rules to be adapted accordingly. 

The markings M = V U ‘T in the reachability set RS of a GSPN are parti- 
tioned into two sets, the vanishing markings v and the tangible markings 7. 
Vanishing markings comprise those in which at least one immediate transition 
is enabled. If no immediate transition is enabled, that is, only timed tran- 
sitions or no transitions are enabled, a tangible marking results. Vanishing 
markings are not resided in for any finite non-zero time and firings are per- 
formed instantaneously in this case. Therefore, immediate transitions always 
have priority over timed transitions to fire. If several immediate transitions 
compete for firing, a specified pmf is used to break the tie. If timed transi- 
tions compete, a race model is applied so that the transition whose firing time 
elapses first is the next one to fire. 

From a given GSPN, an extended reachability graph (ERG) is generated 
containing the markings of the reachability set as nodes and some stochastic 
information attached to the arcs, thereby relating the markings to each other. 
Absorbing loops of vanishing markings are a priori excluded from the ERG, 
because a stochastic discontinuity would result otherwise. The GSPNs we 
are interested in are bounded, i.e., the underlying reachability set is finite. 
Marsan, Balbo, and Conte proved that exactly one CTMC corresponds to a 
given GSPN under condition that only a finite number of transitions can fire 
in finite time with non-zero probability [ABC84]. 

Fig. 2.12 A simple GSPN before and after the firing of transition tl . 

Thick bars are used to represent timed transitions graphically, while thin 
bars are reserved for immediate transitions. An example of a GSPN is shown 
in Fig. 2.12. In contrast to the PN from Fig. 2.11, an exponentially distributed 
firing time with rate Xi has been assigned to transitions tl. While in the PN 
of the right part in Fig. 2.11 both transitions tl and tz were enabled, only 
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immediate transition t2 is enabled in GSPN of the right part in Fig. 2.12, 
because immediate transitions have priority over timed transitions. 

2.2.3.3 Stochastic Reward Nets Many proposals have been launched to pro- 
vide extensions to GSPNs (PNs). Some of the most prominent ones are revisit- 
ed in this section: arc multiplicity, inhibitor arcs, priorities, guards, marking- 
dependent arc multiplicity, marking-dependent firing rates, and reward rates 
defined at the net level. With these extensions we obtain the formalism of 
stochastic reward nets. We note that the first three of these extensions are 
already present in the GSPN formalism. 

Arc Multiplicity. Frequently more than one token needs to be removed 
from a place or deposited into a place, which can be easily represented with arc 
multiplicities. It could be awkward, otherwise, to draw an arc for each token 
to be moved. Arc multiplicity is a syntactical extension that does not increase 
the principal modeling power but makes the use of GSPNs more convenient. 
Arcs with multiplicity are represented by a small number attached to the arc 
or by a small line cutting through the arc. By default, a multiplicity of 1 is 
assumed. An example of arcs with multiplicities is depicted in Fig. 2.13. 

t2 

fig 2.13 Simple example of multiple arcs. 

Since there are initially three tokens in place Pi, transition ti is enabled, 
and after elapsing of the firing time, two tokens are removed from place Pi 
(multiplicity 2) d an one token is deposited into place P2. No other transition 
is enabled in the initial marking. Since in the new marking there are two 
tokens in Pz and one token in PI, only t2 is enabled and fires immediately, 
thereby removing two tokens from P2 (multiplicity 2) and adding one token 
to PI. After some exponentially distributed firing time has elapsed, transition 
ti fires for the last time, because an absorbing marking will then be reached. 
Finally, there will be zero tokens in PI and one token in Pz. 

Inhibitor Arcs. An inhibitor arc from a place to a transition disables 
the transition in any marking where the number of tokens in the place is 
equal to or greater than the multiplicity of the inhibitor arc. An inhibitor arc 
exhibits a complementary semantic to the one of a corresponding ordinary arc 
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(with the same multiplicity). If a transition were enabled under the conditions 
imposed by an ordinary arc it would never be enabled under the conditions 
imposed by its counterpart, an inhibitor arc, and vice versa. Graphically, an 
inhibitor arc is indicated by a small circle instead of an arrowhead. The use 
of an inhibitor arc is dernonstrated in Fig. 2.14. 

Fig. 2.14 A GSPN with an inhibitor arc having a multiplicity assigned. 

The figure entails a queue with finite capacity, which customers enter with 
a mean interarrival time of 1 /X as long as the queue is not full, that is, fewer 
than k customers are already in the system. Arrivals to a full system may 
not enter and are considered as lost. The arrival transition is disabled in 
this case. The effective arrival rate, therefore, turns out to be less than X. 
Note that we have made use of these kind of scenarios in earlier sections 
when specifying reward assignments capturing throughput losses or related 
performance requirements. Customers leave the system after receiving service 
with exponentially distributed length of mean duration l/cl. 

Arrival 
t1 

Priorities, 

A 
41 

Case 
92 

t2 
l- -r 

t3 

Queue1 

(Priority 1) t4 

Queue2 

ts (Priorityz) 

Fig. 2.15 A GSPN with priorities. 

Although inhibitor arcs can be used to specify priority rela- 

tions, it is easier if priority assignments are explicitly introduced in the pa- 
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radigm. Priorities are specified by integer numbers assigned to transitions. 
A transition is enabled only if no other transition with a higher priority is 
enabled, In Fig. 2.15 a simple example of a GSPN with priorities is shown. 
An idle server is assigned with different priority to each type of waiting 
customers. Arriving customers belong to priority class i with probability 
qi, xi pi = 1. Recall that immediate transitions must always have priority 

Fig. 2.16 An SRN with guards. 

Guards. Guards are general predicates that determine when transitions 
are to be enabled. This feature provides a powerful means to simplify the 
graphical representation and to make GSPNs easier to understand, for exam- 
ple, by identifying modular substructures. With these extensions, we have 
moved out from GSPN class to SRNs [CBC+92]. An example for an SRN 
with guards is given in Fig. 2.16. A system with two types of resources being 
subject to failure and repair is represented. The scenario modeled captures 
the situation of a finite capacity queueing system with finite number of servers 
(net 1) and additional buffer space (net 2) usable if the active servers are tem- 
porarily occupied. The total number of customers in the system is limited by 
the total of failure-free buffer spots plus the failure-free server units. Hence, 
arriving customers, which enter with a mean interarrival time l/X (net 3), 
can only be admitted if fewer customers are already present than given by 
the current capacity. This condition is described by the guard attached to the 
“arrival” transition. The guard characterizing the enabling conditions of the 
“service” transition explicates the fact that service can only be delivered if at 
least one server is failure free (besides the apparent condition of the presence 
of at least one customer). 
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1 
Arrival 

fig. 2.17 Place flushing modeled with marking-dependent arc multiplicity. 

Marking-Dependent Arc Multiplicity. This feature can be applied 
when the number of tokens to be transferred depends on the current marking. 
A useful application is given when places need to be “flushed” at the occur- 
rence of a certain event, such as the appearance of a token at a particular 
place. Such a case is shown in Fig. 2.17. Customers arrive from outside at 
place Pr and are immediately forwarded and deposited at places Pz, P3, or PJ, 
with probabilities 41, q2, and 43, respectively. Whenever there is at least one 
token at place PA, transition t5 is enabled, regardless of the number of tokens 
in the other input places P2 and Pa. When t5 fires, one token is removed from 
place P4, all tokens are removed from place P2 and P3, and a single token 
appears in place P5. 

Marking-Dependent Firing Rates. A common extension of GSPNs 
is to allow marking-dependent firing rates, where a firing rate can be specified 
as a function of the number of tokens in any place of the Petri net. Restricted 
variants do exist, where the firing rate of a transition may depend only on 
the number of tokens in the input places. As an example, the firing rate of 
transition service in net 3 of Fig. 2.16 is a function of the number of servers 
currently up, that is, the number of tokens in place serv-up. 

Reward Rate Specification. Traditional output measures obtained from 
a GSPN are the throughput of a transition and the mean number of tokens 
in a place. Very often it is useful to have more general information such as: 

l The probability that a place Pi is empty while the transition tj is 
enabled. 
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l The probability that two different 
ously enabled. 

transitions tl and t2 are simultane- 

Very general reward rates can be specified on an SRN so as to allow the 
user to compute such custom measures. Examples of the use of reward rates 
can be found in [CFMT94, MCT94, MMKT94, MaTr93, MuTr91, MuTr92, 
WLTV96]. 

2.2.3.4 GSP/V,/SRN Analysis In this section we introduce the techniques of 
automated generation of stochastic processes underlying a GSPN/SRN. But 
it is worthwhile remembering that GSPNs can also be evaluated with discrete- 
event simulation techniques, a non-state-space based method, and that each 
technique has its merits. 

In general, the analysis of a GSPN/SRN can be decomposed into four 
subtasks: 

1. Generation of the UZ&J, thereby defining the underlying stochastic pro- 
cess. A semi-Markov process (SMP) results, with zero or exponentially 
distributed sojourn times. In the case of an SRN, a reward rate for each 
tangible marking is also generated in this step. 

2. Transformation of the SMP into a CTMC by elimination of the van- 
ishing markings with zero sojourn times and the corresponding state 
transitions. 

3. Steady-state, transient, or cumulative transient analyses of the CTMC 
with methods presented in Chapters 3, 4, and 5. 

4. Computation of measures. In the the case of a GSPN, standard measures 
such as the average number of tokens in each place and the throughput 
of each timed transition are computed. For the SRN, the specification 
of reward rates at the net level enables the computation of very general 
custom measures. 

In the ERG, which reflects the properties of the underlying stochastic pro- 
cess, arcs representing the firing of timed transitions are labeled with the 
corresponding rates, and arcs representing the firing of immediate transitions 
are marked with probabilities. The ERG can be transformed into a reduced 
reachability graph (RG) by eliminating the vanishing markings and the cor- 
responding transitions. Finally, a CTMC will result. In the case of an SRN, 
a reward vector is also generated and, hence, an MRM is produced. 

2.2.3.4.1 CR&T Generation An U?$ is a directed graph with nodes corre- 
sponding to the markings (states) of a GSPN/SRN and weighted arcs rep- 
resenting the probabilities or rates with which marking changes occur. The 
basic ER&7 generation algorithm is summarized in Fig. 2.18. 

Starting with an initial marking mo, subsequent markings are generated 
by systematically following all possible firing patterns. If a new marking is 
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fig. 2.18 Basic ERG generation algorithm. 

generated, the arcs labeled with the corresponding rates and probabilities are 
added to the E’JZS. The algorithm terminates if all possible markings have 
been generated. Three main data structures are used in this algorithm: a 
stack (S), the ERG, and a search structure (D). 

l Stack (S): Newly generated markings are buffered in a stack until they 
are processed. 

l ERG: This data structure is used to represent the generated extended 
reachability graph. 

l Search structure (D): This data structure contains all earlier gener- 
ated markings so that a current marking can be checked as to whether it 
is new or already included in the set D. For efficiency reasons, memory 
requirements and access time to the data structure should be of concern 
in an implementation. If the data structure is stored in hash tables, fast 
access results but memory requirements could be excessive. In contrast, 
tree structures are more flexible and can be stored more compactly, but 
access time could be intolerably high for unbalanced trees. Balanced 
trees such as AVL trees and B-trees are used for this reason [AKH97]. 

2.2.3.4.2 Elimination of Vanishing Markings The elimination of vanishing 
markings is an important step to be accomplished for generation of a CTMC 
from a given GSPN/SRN. Two different techniques can be distinguished, 
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“elimination on the fly” and “post-elimination” [CMTSl]. To give an example, 
consider the GSPN in Fig. 2.19a. 

t3 p4 

p2 

c 

t-0 Q 
1-q 

t&-4 

Fig. 2.19 The elimination of vanishing markings demonstrated by: (a) a GSPN, (b) 
the underlying ER&7, (c) the resulting R&Y, and (d) the corresponding CTMC. 

The underlying ERG in Fig. 2.19b contains five markings. Tangible mark- 
ings are represented by oval boxes, while rectangular boxes are reserved for 
vanishing markings. The elimination of the vanishing markings (0, 1, 0, 0,O) 
and (O,O, l,O,O) leads to an RG, shown in Fig. 2.19c. The RG is a CTMC 
(redrawn in Fig 2.19d). The elimination of vanishing markings can either be 
integrated into the generation of the &RS ( 1 e imination on the fly) or performed 
afterwards (post-elimination). The merits of both methods are discussed in 
the subsequent subsect ions. 

2.2.3.4.3 Elimination on the f/y Consider the snapshot in Fig. 2.19b. Gen- 
eration of vanishing markings such as (0, l,O, 0,O) is avoided by splitting the 
arc and its attached rate, which would be leading to this vanishing marking, 
and redirecting the resulting new arcs to subsequent markings. If at least one 
of these subsequent markings is also of vanishing type, the procedure must be 
iterated accordingly. Such a situation is indicated in Fig. 2.19b. The splitting 
is accomplished by weighing the rates in relation to the firing probabilities of 
the immediate transitions (in our example, t2 and ta). As a result, only tan- 
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gible markings and the arcs with adjusted rates need to be stored. Vanishing 
markings and the associated firing probabilities are discarded immediately. 
The principle of rate splitting and elimination of vanishing markings is illus- 
trated in Fig. 2.20. 

< 

G ” T 
rl 

T 

r2 
G T 

7-1 = r - q, 7-2 = r . (1 - q) 

Fig. 2.20 On-the-fly elimination of vanishing markings. 

Elimination on the fly is efficient with respect to memory requirements, 
because vanishing markings need not be stored at all. But these savings in 
space have to be traded with additional cost in time. The same vanishing 
markings may be hit several times through the &%&generation process. The 
elimination step would be repeated although it had been perfectly executed 
before. This repetition could amount to a significant wast of execution time. 

2.2.3.4.4 Post-Elimination In post-elimination, the complete &RG is stored 
during generation. With this technique, it is easier to recognize and resolve 
(transient) loops consisting of vanishing markings only [CMT90]. Further- 
more, no work is duplicated during ERG generation, and, as an additional 
advantage, the complete information included in the ERG is kept for fur- 
ther use. Once the &RS has been generated, it is transformed into a CTMC 
by simply applying the same rate splitting method as has been described in 
Section 2.2.3.4.3. 

The success of the post-elimination method largely depends on the use of 
efficient matrix algorithms. Let: 

pv = [PVV ] PV7] 

denote a matrix, which is split into transition probabilities between vanishing 
markings only (P”‘) and between vanishing markings and tangible mark- 
ings (Pv7), where Pv ’ is of dimension ]VJ x IM 1 and the set of markings is 
partitioned such that M = I/ U 7. Furthermore, let: 

u7 = [P 1 CT] 

denote a matrix, which is split into transition rates from tangible markings to 
vanishing markings (UT’) and between tangible markings only (UT7), where 
U7 is of dimension (71 x IM I. P recisely the same information as contained 
in the ERG is provided by U7 together with Pv. 

With representation in matrix form, it is easy to complete the set of transi- 
tion rates by formally applying the rate-splitting method as indicated earlier. 
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The complete set of transition rates, gained after the rate-splitting method 
has been applied, is summarized in the rate matrix U, which is of dimension 
171 x 171 [CMTSl]: 

u&J77+urv (I - PVV) --I PV? (2.84) 

Rate matrix U = [uij], which contains all initially present rates between 
tangible markings plus the derived rates between tangible markings, obtained 
by applying the rate-splitting method, needs to be completed to derive the 
infinitesimal generator matrix Q = [aij], the entries of which are given by: 

uij ifi#j, 
4ij = 

-c kcT,k#i uik if i = j, 
(2.85) 

where 7 denotes the set of tangible markings. Note that U may contain 
non-zero entries on its diagonal, which can be simply ignored as redundant 
information when creating the infinitesimal generator matrix Q as shown in 
Eq. (2.85). 

Once the generator matrix has been derived with the described method, 
numerical solution methods can be applied to yield performance measures as 
required. Finally, it may be of interest to realize that instead of eliminating the 
vanishing markings, they can be preserved and the underlying semi-Markov 
process can be solved numerically [CMTSO, MTD94]. 

fig. 2.21 Simple queueing network. 

Example 2.13 A simple example is given to demonstrate the generation 
of an ERG by applying the algorithm from Fig. 2.18. Consider the GSPN in 
Fig. 2.21a that models a simple network of queues. An equivalent queueing 
network representation is shown in Fig. 2.21b (f or a detailed introduction to 
queueing networks see Chapter 6). The network contains K = 2 customers, 
which are assumed to be initially in node 1. Let (i, j) denote a state of the 
network, where i represents the number of customers at node 1 and j those 
at node 2. 
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The CTMC can be directly derived from the resulting &ES since there are 
no vanishing markings in this ERG. 

Example 2.14 With the example GSPN from Fig. 2.22a, the intermediate 
steps to create the rate matrix U and the infinitesimal generator matrix Q 
are demonstrated. Post-elimination is assumed so that the complete ERG is 
available, as indicated in Fig. 2.22b. 

The four matrices Pvv, Pv7, UT’, and UT7 are given by: 

pvv cl2 0 0 _ - ( 0 Ql 0 0 > ' pVT= ( 0 0 0 q4 !I3 > ' 

h-4 Pa\ /o 0 0 o\ 

un- - I 0 0 I UT7 I 0 0 0 = CL3 0 0 ' 000 0 I * 

\o 0) \o 0 0 0) 
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p3 P3 

I /7 n 

t p6 p5 

Fig. 2.22 (a) Simple GSPN, (b) the underlying ERG, and (c) the corresponding 
CTMC. 

Then we get: 

Pl q2rcL1+ P2 

(I-py-1 = :, “1” ) ( > u~yI-pvv)-l= ; ; 

t 1 
) 

0 0 

uTv(I~pvv)-lpv7= 0 

i 

0 q1cL1 Q4672Pl + P-12) Q3(Q2Pl + P2) 

0 0 0 
0 0 0 0 
0 0 0 0 

i 9 
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QPl c?4(cIZPl + pa) q3(q2/!L1 + /L2)‘ -(w1 + q4(q2111 + p2) 

+q3(q2pl + p2)) 

Q= 0 -P3 0 P3 

0 0 0 0 
0 0 0 0 I 

With Eq. (2.85), the entries of the generator matrix Q can be determined 

!I3k2Pl + P2) 

P3 

0 

1 

> 

0 

from U. 

2.2.3.5 A larger Example To demonstrate the automated generation of 
CTMCs from high-level GSPN description, an example of a polling system 
adapted from [IbTrSO] is now presented. (For an introduction to polling sys- 
tems see [Taka93].) 

Consider a two-station single-buffer polling system as modeled by the GSPN 
shown in Fig. 2.23. The places in the GSPN are interpreted as follows. A 
token in place Pi represents the case that station 1 is idle and a token in P2 
correspondingly indicates the idleness of station 2. Tokens in places P, (Ps) 
indicate that the server is serving station 1 (station 2). Tokens appearing in 
Places P3 (P4) indicate that station 1 (station 2) has generated a message. If 
a token appears in place P7, the server is polling station 2, while a token in 
place Ps indicates polling of station 1. In the situation illustrated in Fig. 2.23, 
both stations are idle and the server has finished polling station 1 (the server 
is ready to serve station 1). We assume that the time until station i generates 
a message is exponentially distributed with mean l/Xi. Service and polling 
times at station i are assumed to be exponentially distributed with mean l/pi 
and l/yi, respectively (i = 1,2). As soon as station 1 (station 2) generates a 
message, the timed transition ti (tz) fires. 

Consider initial marking me shown in Fig. 2.23, where Ps contains a token 
and P3 contains no token. In this situation the immediate transition si is 
enabled. It fires immediately and a token is deposited in place PT. This 
represents the condition that the server, when arriving at station 1 and finding 
no message there, immediately proceeds to poll station 2. In the case that 
a token is found in place P3, the timed transition t3 is enabled and its firing 
causes a token to be deposited in place Pi and another token to be deposited 
in place PT. This represents the condition that station 1 returns to the idle 
state while the server proceeds to poll station 2. 

Let Zi denote the number of tokens in place P; and rnj = (Zr, . . . , 1s) denote 
the jth marking of the GSPN. The ERG, obtained from the initial marking 
mo, is shown in Fig. 2.24. Labels attached to directed arcs represents 
those transitions whose firing generates the successor markings. If a previ- 



THE MODELING PROCESS 99 

Fig. 2.23 GSPN Model for the two-station single-buffer polling system. 

ously found marking is obtained again (like ms), further generations from 
such a marking are not required. All sixteen possible and unique markings 
are included in Fig. 2.24. To reduce the clutter, several markings appear 
more than once in the figure. The &RG consists of four vanishing mark- 
ings {mo,m4,m6,m13}, represented in the graph by rectangles and tangible 
markings represented by ovals. We can eliminate the vanishing markings by 
applying the algorithm presented in Section 2.2.3.4.2. 

From Fig. 2.24 we can see that all the tangible markings containing a token 
in place Pi indicate the condition that station 1 is idle. The set of markings in 
which station 1 is idle is S’(l) = { ml, m3, m7, rnlo, rnls}. The set of markings 
Sc2) = {ml, m2, m7, mg, rn12) gives the condition that station 2 is idle. 

In Fig. 2.25, the finite and irreducible CTMC corresponding to the GSPN 
of Fig. 2.23 is shown, where each state j corresponds to the tangible marking 
rnj of the &RG in Fig. 2.24. With the ergodic CTMC in Fig. 2.25, the steady- 
state probability vector 7r can be derived according to Eq. (2.58). Letting 
7rk denote the steady-state probability of the CTMC being in state Ic and 
letting pci) denote the steady-state probability that station i, i = 1,2 is idle, 
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Fig. 2.24 Extended reachability graph for the GSPN Model in Fig. 2.23. 

we conclude: 

p(l) = Tl + 7r3 + r7 + TlO + r15, 

p = ~1+~2+~7+~9+~12. 

(2.86) 

As can be seen in Fig. 2.23, the model is structurally symmetric relative to 
each station and therefore it can easily be extended to more than two stations. 

With Eq. (2.86), the mean number of customers E[K(i)] = Kci) at single- 
buffer station i is determined as: 

KG) = 1 - #). 

Also with Eq. (2.86), the effective arrival rate at single-buffer station Z follows 
aS: 
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Fig. 2.25 CTMC for the GSPN in Fig. 2.23. 

From Little’s theorem [LittGl], f ormulae can be derived for the computation 
of mean response times of simple queueing models such as the polling system 
we are investigating in this section. The mean response time JY[T(~)] = T(i) 
at station i can be computed as: 

T(i) = Idi) 
A;’ * (2.87) 

As an extension of the two-station model in Fig. 2.23, let us consider a 
symmetric polling system with n = 3,5,7,10 stations, with ,ui = ,u = 1, 
l/y = l/yi = 0.005, and Xi = X for all stations 1 5 i 5 n. The offered load is 
defined by p = x7=1 X/p = r-A/p. 

For a numerical computation of steady-state probabilities of CTMCs such 
as the one depicted in Fig. 2.25, algorithms introduced in Sections 3.3 and 3.4 
can be used. In Table 2.21, the mean response times Tci) = T of single buffer 
schemes are given for different number of stations. For many other versions 
of polling system models, see [IbTr90]. 

Problem 2.1 With Definition 2.64, prove differential Eq. (2.65) by inte- 
gration of Eq. (2.53) on both sides. 

Problem 2.2 With Definition 2.66, prove differential Eq. (2.67). 

Problem 2.3 Prove linear Eq. (2.68) by observing $L~(co) = ON. 

Problem 2.4 Classify the measure mean time to absorption (MTTA) as 
being of transient, steady-state, or stationary type. Refer back to Eqs. (2.65) 
and (2.68) and give reasons for your decision. 

Problem 2.5 Does lim t+coJw(t)] exist if the underlying model has at 
least one absorbing state? If so, what would this measure mean? 
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Tab/e 2.21 Mean response times T at a station 

P 3 Stations 5 Stations 7 Stations 10 Stations 

0.1 1.07702 1.09916 1.11229 1.12651 
0.2 1.14326 1.18925 1.21501 1.24026 
0.3 1.20813 1.28456 1.32837 1.37051 
0.4 1.27122 1.38418 1.45216 1.51879 
0.5 1.33222 1.48713 1.58582 1.68618 
0.6 1.39096 1.59237 1.72836 1.87310 
0.7 1.44732 1.69890 1.87850 2.07914 
0.8 1.50126 1.80573 2.03464 2.30293 
0.9 1.55279 1.91201 2.19507 2.54220 

Problem 2.6 Specify the reward assignments to model variants one and 
three in Fig. 2.8 for reliability computations. 

Problem 2.7 Compare reliability (unreliability) R(t) (UR(t)) functions 
from Section 2.2.2.3.2 with the computation formula of the distribution of 
the accumulated reward until absorption, P[Y(oo) 5 y] in Eq. (2.82) and 
comment on it. 



3 
Steady-State Solutions of 

Markov Chains 

In this chapter, we restrict ourselves to the computation of the steady-state 
probability vector’ of ergo&c Markov chains. Most of the literature on solu- 
tion techniques of Markov chains assumes ergodicity of the underlying model. 
A comprehensive source on algorithms for steady-state solution techniques is 
the book by Stewart [Stew94]. 

From Eq. (2.15) and Eq. (2.58), we have v = VP and 0 = nQ, respective- 
ly, as points of departure for the study of steady-state solution techniques. 
Eq. (2.15) can be transformed so that: 

0 = Y(P -1). (3.1) 

Therefore, both for CTMC and DTMC, a linear system of the form: 

O=xA (3.2) 

needs to be solved. Due to its type of entries representing the parameters 
of a Markov chain, matrix A is singular and it can be shown that A is of 
rank n - 1 for any Markov chain of size IS’] = n. It follows immediately that 
the resulting set of equations is not linearly independent and that one of the 
equations is redundant. To yield a unique, positive solution, we must impose 
a normalization condition on the solution x of equation 0 = xA. One way to 
approach the solution of Eq. (3.2) is to directly incorporate the normalization 
condition 

xl= 1 (3.3) 

’ For the sake of 
hand notation. 

convenience sometimes use the term ‘steady-state analysis’ as a short- 
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into the Eq. (3.2). This can be regarded as substituting one of the columns 
(say, the last column) of matrix A by the unit vector 1 = [I, 1,. . . , llT. With 
a slight abuse of notation, we denote the new matrix also by A. The resulting 
linear system of non-homogeneous equations is: 

b=xA, b= [O,O ,..., OJ]. (3.4) 

An alternative to solving Eq. (3.2) is to separately consider normalization 
Eq. (3.3) as an additional step in numerical computations. We demonstrate 
both ways when example studies are presented. It is worthwhile pointing out 
that for any given ergodic CTMC, a DTMC can be constructed that yields an 
identical steady-state probability vector as the CTMC, and vice versa. Given 
the generator matrix Q = [qij] of a CTMC, we can define: 

P = Q/q + I, (3.5) 

where Q is chosen such that Q > max;,jcs )qij]. Setting q = maxi,jeS lqijJ 
should be avoided in order to assure uperiodicity of the resulting DTMC 
[GLT87]. Th e resulting matrix P can be used to determine the steady-state 
probability vector x = u, by solving u = VP and vl = 1. This method, used 
to reduce a CTMC to a DTMC, is called randomization or sometimes uni- 
formixation in the literature. If, on the other hand, a transition probability 
matrix P of an ergodic DTMC were given, a generator matrix Q of a CTMC 
can be defined by: 

Q=P-I. (3.6) 

By solving 0 = 7rQ under the condition ~1 = 1, the desired steady-state 
probability vector 7r = v can be obtained. 

To determine the steady-state probabilities of finite Markov chains, three 
different approaches for the solution of a linear system of the form 0 = xA 
are commonly used: direct or iterative numerical methods and techniques that 
yield closed-form results. Both types of numerical methods have merits of 
their own. Whereas direct methods yield exact results2 iterative methods are 
generally more efficient, both in time and space. Disadvantages of iterative 
methods are that for some of these met hods no guarantee of convergence 
can be given in general and that determination of suitable error bounds for 
termination of the iterations is not always easy. Since iterative methods are 
considerably more efficient in solving Markov chains, they are commonly used 
for larger models. For smaller models with fewer than a few thousand states, 
direct methods are reliable and accurate. Though closed-form results are 
highly desirable, they can be obtained for only a small class of models that 
have some structure in their matrix. 

2Modulo round-off errors resulting from finite precision arithmetic. 
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Fig. 3.1 Birth-death process. 

Problem 3.1 Show that P - I has the properties of a CTMC generator 
matrix. 

Problem 3.2 Show that Q/q+1 has the properties of a stochastic matrix. 

Problem 3.3 Define a CTMC and its generator matrix Q so that the 
corresponding DTMC would be periodic if randomization were applied with 
q = rnaxi,jeS 1qijl in Eq. (3.5). 

3.1 SYMBOLIC SOLUTION: BIRTH-DEATH PROCESS 

Birth-death processes are Markov chains where transitions are allowed only 
between neighboring states. We treat the continuous time case here, but 
analogous results for the discrete-time case are easily obtained. 

A one-dimensional birth-death process is shown in Fig. 3.1 and its generator 
matrix is shown as Eq. (3.7): 

--X0 X0 0 0 . . . 

Pl -(k + CLl) Xl 0 . . . 

“=i “0” 

ii * ! : * 

-(Xz+p2) x2 et* . 

-@3+p3) *** 

1 

(3.7) 
I93 

. . . . 

The transition rates Xk, Ic 2 0 are state dependent birth rates and ~11, L 2 1, are 
referred to as state dependent death rates. Assuming ergodicity, the steady- 
state probabilities of CTMCs of the form depicted in Fig. 3.1 can be uniquely 
determined from the solution of Eq. (2.58): 

Solving Eq. (3.8) f or ~1, and then using this result for substitution with 
lc = 1 in Eq. (3.9), and solving it for 7r2 yields: 

X0 AoX1 
7Tl = -7r0, IT2 = - 

Pl plP2ro* 
(3.10) 
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Eq. (3.10) together with Eq. (3.9) suggest a general solution of the following 
form: 

(3.11) 

Indeed, Eq. (3.11) provides the unique solution of a one-dimensional birth- 
death process. Since it is not difficult to prove this hypothesis by induction, 
we leave this as an exercise to the reader. From the law of total probability, 
xi ri = 1, we get for the probability ~0 of the CTMC being in State 0: 

1 
7ro = = 

co k-l 

l+ ,F;, go ik 

(3.12) 

The condition for convergence of the series in the denominator of Eq. (3.12)) 
which is also the condition for the ergodicity of the birth-death CTMC, is: 

gko, Vk > k. : 
AI, - < 1. 

Eq. (3.11) and Eq. (3.12) are used extensively in Chapter 6 to determine the 
probabilities n!, for many different queueing systems. These probabilities are 
then used to calculate performance measures such as mean queue length, or 
mean waiting time for these queueing systems. We deal with multidimensional 
birth-death processes in Chapter 7. 

Problem 3.4 Consider a discrete-time birth-death process with birth prob- 
ability ‘bi, the death probability di, and no state change probability 1 - bi - di 
in state i. Derive expressions for the steady-state probabilities and conditions 
for convergence [Triv82]. 

3.2 HESSENBERG MATRIX: NON-MARKOV’IAN QUEUES 

Section 3.1 shows that an infinite state CTMC (or DTMC) with a tridiag- 
onal matrix structure can be solved to obtain a closed-form result. In this 
section we consider two other infinite state DTMCs. However, the structure 
is more complex so as to preclude the solution by “inspection” that we adopt- 
ed in the previous section. Here we use the method of generating functions 
(or z-transform) to obtain a solution. The problems we tackle originate from 
non-Markovian queueing systems where the underlying stochastic process is 
Markov regenerative [Kulk96]. One popular method for the steady-state anal- 
ysis of Markov regenerative processes is to apply embedding technique so as to 
produce an embedded DTMC from the given Markov regenerative process. An 
alternative approach is to use the method of supplementary variables [Hend72]. 
We follow the embedded DTMC approach. 
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We are interested in the analysis of a queueing system, where customers 
arrive according to a Poisson process, so that successive interarrival times are 
independent, exponentially distributed random variables with parameter X. 
The customers experience service at a single server with the only restriction 
on the service time distribution being that its first two moments are finite. 
Order of service is first-come-first-served and there is no restriction on the size 
of the waiting room. We shall see later in Chapter 6 that this is the M/G/l 
queueing system. Characterizing the system in such a way that the whole 
history is summarized in a state, we need to specify the number of customers 
in the system plus the elapsed service time received by the current customer 
in service. This description results in a continuous state stochastic process 
that is difficult to analyze. 

But it is possible to identify time instants where the elapsed time is always 
known so they need not be explicitly represented. A prominent set of these 
time instants is given by the departure instants, i.e., when a customer has just 
completed receiving service and before the turn of the next customer has come. 
In this case, elapsed time is always zero. As a result, a state description given 
by the number of customers is sufficient. Furthermore, because the service 
time distribution is known and arrivals are Poissonian, the state transition 
probabilities can be easily computed. It is not difficult to prove that the 
stochastic process defined in the indicated way constitutes a DTMC. This 
DTMC is referred to as embedded into the more general continuous state 
stochastic process. 

Conditions can be identified under which the embedded DTMC is ergodic, 
i.e., a unique steady-state pmf does exist. In Section 3.2.1 we show how 
the steady-state probability vector of this DTMC can be computed under 
given constraints. Fortunately, it can be proven that the steady-state pmf of 
the embedded DTMC is the same as the limiting probability vector of the 
original non-Markovian stochastic process we started with. The proof of this 
fact relies on the so-called PASTA theorem, stating that “Poisson arrivals see 
time averages” [Wolf82]. The more difficult analysis of a stochastic process of 
non-Markovian type can thus be reduced to the analysis of a related DTMC, 
yielding the same steady-state probability vector as of the original process. 

3.2.1 Non-Exponential Service Times 

The service times are given by independent, identically distributed (i.i.d.) 
random variables and they are independent of the arrival process. Also, the 
first moment E[S] = 9 and the second moment E [S2] = s2 of the service 
time S must be finite. Upon completion of service, the customers leave the 
system. 

To define the embedded DTMC X = {X,; n = 0,l.. .}, the state space is 
chosen as the number of customers in the system (0, 1, . . .}. As time instants 
where the DTMC is defined, we select the departure epochs, that is, the points 
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in time when service is just completed and the corresponding customer leaves 
the system. 

Consider the number of customers X = {X,; n = 0, 1, . . .} left behind by 
a departing customer, labeled n. Then the state evolution until the next 
epoch n + 1, where the next customer, labeled n + 1, completes service, is 
probabilistically governed by the Poisson arrivals. 

Let the random variable Y describe the number of arrivals during a service 
epoch. The following one-step state transitions are then possible: 

X 
1 

X,+Y-1, if X, > 0, 
n+1 = 

Y, if X, = 0. 
(3.14) 

Let c&k = P[Y = Ic] denote the probability of k arrivals in a service period 
with given distribution B(t). If we fix the service time at t, then Y is Poisson 
distributed with parameter At. To obtain the unconditional probability ak, 
we uncondition using the service time distribution: 

cm 
ak = 

.I 
0 

(3.15) 

Now the transition probabilities are given as: 

P[X,,l = j 1 x, = i] = i>O, j>i--1, 

i = 0, j > 0. 
(3.16) 

The transition probability matrix P of the embedded stochastic process, which 
is a Hessenberg matrix, is then given by: 

a0 al a2 . . . 

(3.17) 

P can be effectively created, because the arrivals are Poisson and the service 
time distribution B(t) is known. With P given as defined in Eq. (3.17), it 
is not difficult to prove that a DTMC has been defined, i.e., the Markov 
property from Eq. (2.2) holds. The reader should also verify that this DTMC 
is aperiodic, and irreducible. It is intuitively clear that State 0 is positive 
recurrent, if the server can keep up with arrivals, i.e., the mean service time 
3 is smaller than than mean interarrival time l/X. Equivalently, the mean 
number of arrivals E[N] = N during mean service period ?? should be less 
than one [Triv82]: 

N=A;T<l. (3.18) 
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We know from Section 2.1.2.1 that the states of an irreducible DTMC are 
all of the same type. Therefore, positive recurrence of state 0 implies positive 
recurrence of the DTMC constructed in the indicated way. A formal proof of 
the embedded DTMC being positive recurrent if and only if Relation (3.18) 
holds has been given, for example, by Cinlar [Cin175]. We also know from 
Section 2.1.2.1 that irreducible, aperiodic, and positive recurrent DTMCs are 
ergodic. Therefore, the embedded DTMC is ergodic if Relation (3.18) holds. 
Assuming the DTMC to be ergodic, the corresponding infinite set of global 
balance equations is given as: 

uo = vOa0 + vm, 
k+l 

uk = uoak + c via]c-i+l, k > 1. 
(3.19) 

i=l 

To compute the steady-state probability vector u of the DTMC, we use the 
method of generating functions wherein we also need to use the LST of the 
service time random variable. Let the service times distribution be denoted 
by B(t) and its LST B”(s) be given by: 

00 

B'(s) = 
s 

eestdB(t). 

0 

Defining generating functions of the state probabilities: 

G(x) = 2 VkZk, 
k=O 

and of the { aj } sequence: 

GA(X) = Fajzj, 
j=o 

from Eq. (3.19), we have: 

G(x) = euk,zk = u()Eakz' + ~A~Yiak-i+lZk, 
k=O k=O k=Oi=l 

or: 

G(x) = uoGA(~) + c c wk-i+l~IC 

i=l k=i-1 

(3.20) 

(3.21) 

(3.22) 

= Us& + CC uiajzjsiel 
ix1 j=O 
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= ‘OGA(X) + --(G(z) - VO)GA(Z), 

or: 

G(4 x - GA(X) = u. bG&) - GA(d) 
7 

z x 

or: 

G(x) = u. 
ZGA(X) - GA(~) 

X-GA(X) ’ 
(3.23) 

Now, because the arrival process is Poisson, we can obtain the generating 
function of the {aj} sequence by first conditioning on a fixed service time and 
then unconditioning with the service time distribution: 

GA(Z) = C ajzj = C J P[Y = j ) service = t)dB(t)z” 
j=O j=O o 

coo0 
= 

cs j=o 0 
e~“t~&?(t)zi 

co 

= 

I( 

O” ow -At 
c j!e 

&qt) 

0 j=O ) 
(3.24) 

cc 

= 

.I 

e -xt+xtzqq 

0 
co 

= 
.I 

e-wl-")&qt) 

= i-(x(1 - 2)). 

Thus, the generating function for the {aj} sequence is given by the LST of 
the service time distribution at X(1 - z). Hence, we get an expression for the 
generating function of the DTMC steady-state probabilities: 

G(z) = u. zB-(X(1 - ‘d> - B-(X(1 - ‘>> 
2 - &(X(1 - 2)) 

B-(X(1 - z))(z - 1) 
= u” x -X(X(1 - 2)) * 

(3.25) 
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The generating function in Eq. (3.25) allows the computation of the infinite 
steady-state probability vector u of the DTMC embedded into a continuous- 
time stochastic process at the departure epochs. These epochs are given by the 
time instants when customers have just completed their generally distributed 
service period. The steady-state probabilities are obtained by repeated dif- 
ferentiations of the probability generating function G(x), evaluated at x = 1: 

(3.26) 

If we set z = 1 on the right hand side of Eq. (3.25) and since GA(~) = 
ET=, aj = 1, we have O/O. Differentiating the numerator and the denomina- 
tor, as per L’Hospital’s rule, we obtain: 

G(1) = 1 

= uo 
B-(X(1 - z)) + z(-l)XK’(X(l - 2)) + XB”‘(X(1 - x)) 

1+ XK’(X(1 - x)) 

= uow~ - 2)) + XK’(X(l- x))[l- z] 
1+ XB-‘(X(l- z)) 

B”(O) 
= ” 1 + XB*‘(O) ’ 

From Eq. (3.24) it can be easily shown B”(O) = 1 and -B-‘(O) = 3, so that 
we have: 

1 
l=ve------- 

l-X?? 

or: 

uo = 1 - xz7. (3.27) 

Taking the derivative of G(z) and setting z = 1, we get the expected number 
of customers in the system, E[X] = x, in steady state: 

x=x9+ x2s2 
2(1 - XS)’ 

(3.28) 

Equation (3.28) is known as the Pollacxek-Khintchine formula. Remember 
that this formula has been derived by restricting observation to departure 
epochs. It is remarkable that this formula holds at random observation points 
in steady state, if the arrival process is Poisson. The proof is based on the 
PASTA theorem by Wolff, stating that “Poisson arrivals see time averages” 
[Wolf82]. 

We refrain from presenting numerical examples at this point, but refer the 
reader to Chapter 6 where many examples are given related to the stochastic 
process introduced in this section. 
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Problem 3.5 Specialize Eq. (3.28) above to: 

(a) Exponential service time distribution with parameter 1-1 

(b) Deterministic service time with value l/p 

(c) Erlang service time distribution with mean service time l/p and Ic phases 

In the notation of Chapter 6, these three cases correspond to M/M/l, M/D/l, 
and M/EI, / 1 queueing systems, respectively. 

Problem 3.6 Given a mean interarrival time of 1 second and a mean 
service time of 2 seconds, compute the steady-state probabilities for the three 
queueing systems M/M/l, M/D/l, and M/Ek/l to be idle. Compare the 
results for the three systems and comment. 

Problem 3.7 Show that the embedded discrete-time stochastic process 
X = {X,;n = O,l,. . .} defined at the departure time instants (with transition 
probability matrix P given by Eq. (3.17)), forms a DTMC, i.e., it satisfies the 
Markov property Eq. (2.2). 

Problem 3.8 Give a graphical representation of the DTMC defined by 
transition probability matrix P in Eq. (3.17). 

Problem 3.9 Show that the embedded DTMC X = {X,;n = O,l, . . .} 
defined in this section is aperiodic and irreducible. 

Problem 3.10 Consider a single-server queueing system with indepen- 
dent, exponentially distributed service times. Furthermore, assume an arrival 
process with independent, identically distributed interarrival times; a general 
service time distribution is allowed. Service times and interarrival times are 
also independent. In the notation of Chapter 6, this is the GI/M/l queueing 
system. 

1. Select a suitable state space and identify appropriate time instants where 
a DTMC X* should be embedded into this non-Markovian continuous 
state process. 

2. Define a DTMC X* = {X:; n = 0, 1, . . .} to be embedded into the 
non-Markovian continuous state process. In particular, define a DTMC 
X* by specifying state transitions by taking Eq. (3.14) as a model. 
Specify the transition probabilities of the DTMC X* and its transition 
probability matrix P*. 

3.2.2 Server with Vacations 

Server vacations can be modeled as an extension of the approach presented 
in Section 3.2.1. In particular, the impact of vacations on the investigated 
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performance parameters is of additive nature and can be derived with decom- 
position techniques. Non-Markovian queues with server vacations have proven 
to be a very useful class of models. They have been applied in a great variety 
of contexts [DoshSO], some of which are: 

l Analysis of server brealcdowns, which may occur randomly and preempt 
a customer (if any) in service. Since breakdown (vacation) has priority 
over customer service, it is interesting to find out how the overall service 
capacity is affected by such breakdowns. Such insights can be provided 
through the analysis of queueing systems with vacations. 

0 Investigation of maintenance strategies of computer, communication, or 
manufacturing systems. In contrast to breakdowns, which occur ran- 
domly, maintenance is usually scheduled at certain fixed intervals in 
order to optimize system dependability. 

l Application of polling systems or cyclic server queues. Different types 
of polling systems that have been used include systems with exhaustive 
service, limited service, gated service, or some combinations thereof. 

3.2.2.1 Polling Systems Because polling systems are often counted as one of 
the most important applications of queueing systems with server vacations, 
some remarks are in order here. While closed-form expressions are derived 
later in this section, numerical methods for the analysis of polling systems on 
the basis of GSPNs is covered in Section 2.2.3. 

The term polling comes from the polling data link control scheme in which 
a central computer interrogates each terminal on a multidrop communication 
line to find out whether it has data to transmit. The addressed terminal 
transmits data, and the computer examines the next terminal. Here, the 
server represents the computer, and a queue corresponds to a terminal. 

Basic polling models have recently been applied to analyze the performance 
of a variety of systems. In the late 195Os, a polling model with a single buffer 
for each queue was first used in an analysis of a problem in the British cotton 
industry involving a patrolling machine repairman [MMW57]. In the 196Os, 
polling models with two queues were investigated for the analysis of vehicle- 
actuated traffic signal control [Newe69, NeOs69]. There were also some early 
studies from the viewpoint of queueing theory, apparently independent of 
traffic analysis [AMM65]. In the 197Os, with the advent of computer commu- 
nication networks, extensive research was carried out on a polling scheme for 
data transfer from terminals on multidrop lines to a central computer. Since 
the early 198Os, the same model has been revived by [Bux81] and others for 
token passing schemes (e.g., token ring and token bus) in local area networks 
(LANs). In the current investigation of asynchronous transfer mode (ATM) 
for broadband ISDN (integrated services data network), cyclic scheduling is 
often proposed. Polling models have been applied for scheduling moving arms 
in secondary storage devices [CoHo86] and for resource arbitration and load 



114 STEADY-STATE SOLUTIONS OF MARKOV CHAINS 

sharing in multiprocessor computers. A great number of applications exist 
in manufacturing systems, in transportation including moving passengers on 
circular and on back-and-forth routes, internal mail delivery, and shipyard 
loading, to mention a few. A major reason for the ubiquity of these applica- 
tions is that the cyclic allocation of the server (resource) is natural and fair 
(since no station has to wait arbitrarily long) in many fields of engineering. 

The main aim of analyzing polling models is to find the message waiting 
time, defined as the time from the arrival of a randomly chosen message to 
the beginning of its service. The mean waiting time plus the mean service 
time is the mean message response time, which is the single most important 
performance measure in most computer communication systems. Another 
interesting characteristic is the polling cycle time, which is the time between 
the server’s visit to the same queue in successive cycles. Many variants and 
related models exist and have been studied. Due to their importance, the 
following list includes some polling systems of interest: 

0 Single-service polling systems, in which the 
sage and continues to poll the next queue. 

server serves only one mes- 

l Exhaustive-service polling systems, in which the server serves all 
messages at a queue until it is empty before polling the next queue. 

the 

l Gated-service polling systems, in which the server serves only those 
messages that are in the queue at the polling instant before moving to 
the next queue. In particular, message requests arriving after the server 
starts serving the queue will wait at the queue until the next time the 
server visits this queue. 

l Mixed exhaustive- and single-service polling systems. 

l Symmetric and asymmetric limited-service polling systems, in which the 
server serves at most Z(i) customers in in each service cycle at station i, 
with Z(i) = I for all stations i in the symmetric case. 

3.2.2.2 Analysis As in Section 3.2.1, we embed a DTMC into a more general 
continuous-time stochastic process. Besides non-exponential service times S 
with its distribution given by B(t) and its LST given by B * (s), we consider 
vacations of duration V with distribution function C(t) and LST C”(s), and 
rest periods of the server of duration R, with distribution D(t) and LST D’(s). 
Rest periods and vacations are both given by i.i.d. random variables. Finally, 
the arrivals are again assumed to be Poisson. Our treatment here is based on 
that given in [KingSO]. 

If the queue is inspected and a customer is found to be present in inspection 
in epoch n, that is X, > 0, the customer is served according to its required 
service time, followed by a rest period of the server (see Fig. 3.2). Thus, after 
each service completion the server takes a rest before returning for inspection 
of the queue. If the queue is found to be empty on inspection, the server takes a 
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Fig. 3.2 Phases of an M/G/l queue with vacations. 

vacation before it returns for another inspection. We embed a DTMC into this 
process at the inspection time instants. With E denoting the arrivals during 
service period including following rest period and F denoting the arrivals 
during a vacation, Eq. (3.14) d escribing possible state transitions from state 
X, at embedding epoch n to state X n+r at embedding epoch n + 1 can be 
restated: 

X 
X,+=-l, if X, > 0, 

n-t1 = 
F7 if X, = 0. 

(3.29) 

With ek = P[E = k] and fi = P[F = Z] d enoting the probabilities of Ic or I 
arrivals during the respective time periods, the transition probabilities of the 
embedded DTMC can be specified in analogy to Eq. (3.16): 

p[&+l = j 1 x, = i] = 

1 
ej-i+17 i>O, j>i-120, 

fj7 i = 0, j 2 0. 
(3.30) 

The resulting transition probability matrix of the embedded DMTC is given 
by: 

P= 

fo fl fz . ..’ 

eo el e2 . . . 
0 eo el . . . 
0 0 eo . . . 

* . . . . . 

(3.31) 

Note that this transition probability matrix is also in Hessenberg form like 
the M/G/l case. 
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Let p denote the state probability vector of the embedded DTMC at inspec- 
tion instants. Then its generating function is given by: 

G(z) = epkzk 
k=O k=O k=O i=l 

= PoG&) + 2 2 p&4+12” 

i=l k&-l 

(3.32) 

(3.33) 

= po ~Gdd - GE(Z) 

x-G&) * 
(3.34) 

In analogy to Eq. (3.24)) the generating functions GE(Z) and GF (z) can be 
derived: 

GE(X) = ge.jzj = 27 [ P E = j ) service = t]d[B(t) + D(t)],2 
j=o j=o 0 moo = cs j=o 0 

eFxt y d[B(t) + D(t)]2 
. 

XC s me-xt(‘-z)d[B(t) + D(t)] 

= ii-(x(1 - z>>o-(X(l- x)), 

G&z) = C-(X(1 - z)). 

(3.35) 

(3.36) 

With generating functions G(x), GE(Z), and GF(x) defined, and the transi- 
tion probability matrix as given in Eq. (3.31), an expression for the probability 
generation function at inspection time instants can be derived for the server 
with vacation: 

+) = pozc- (‘(’ - ‘>> - B-(X(1 - x))D”(x(l - ‘d> 
x - B”(X(1 - x))D”(X(l - 2)) * 

(3.37) 

Remembering G( 1) = 1 and by evaluating Eq. (3.37) at x = 1, again by 
differentiating the denominator and the numerator, we have: 

1 - X(S + R) 

po = 1 - X(S + R) + XV’ 
(3.38) 

So far, we have derived an expression for the probabilities pi at inspection 
time instants. But to arrive at the steady-state probabilities, we infer the 
state probabilities un at departure instants. Then an inspection at a time 
instant immediately preceding the departure must find at least one customer 
present, i > 0, with probability pi, because a departure occurred. With 
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ak = P[Y = k] d enoting again the probability of Ic arrivals in a service period, 
the probabilities vn, pi, and ak can be related as follows: 

nfl 

v, = 
c 

Pi%+l-i 

i.l 1 -Po * 

Then, the generating function of the steady-state queue length 

X(x) = 2 VjXj 
j=o 

is given by: 

x(x> = fJ Xn n$r &%+1--i = fJ 2 In&an+l-i 
n=O i=ln=i--1 

= i-J-& g 2 ,Zi+'-lpiaj = z(l t po) gpiPi 2 ajxi 

2=1 j=o 2=1 j=o 

l (G(~-Po)GA(~. 
= 41 -Po> 

(3*3g) 

Recalling GA(Z) = B-(X(1 - x)) and the formula for G(Z), we have: 

G(x) = PO 
xC”(X(1 - x)) - X(X(1 - Z))D”(X(l- x)) 

x - B-(X(1 - Z))D”(X(l- x)) 

x - X(X(1 - x))D”(X(l- Z)) 

-z-B-(X(1 - x))D-(X(l- x)) 1 
xC”(X(1 - x)) - x 1 x - B-(X(1- x))D”(X(l - z)) ’ 

(3.40) 

and: 

x(z) = Z(l~Po) 
Z[c-(X(1 - 2)) - l]B”(X(l - x)) 

Z - B-(X(1 - Z))W(X(l- Z)) 

1 - XE[S + JL] [c-(x(1 - Z)) - l]B”(X(l - 2)) = 
WV1 z - B-(X(1- x))D”(X(l- x)) * 

(3.41) 

Taking the derivative and setting x = 1, we have: 

x=x9+ X2(S + R)2 xv2 
____ - 

2(1-XS+R) + 277’ 
(3.42) 

If there is no rest period, that is, R = 0, and if the server takes no vacation, 
that is, V = 0, then Eq. (3.42) re d uces to the Pollaczek-Khintchine formula 
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of Eq. (3.28). Furthermore, 
given by the term: 

the average number of arrivals during a vacation, 

is simply added to the average number of customers that would be in the 
system without vacation. With respect to accumulating arrivals, the rest 
period can simply be considered as an extension of the service time. 

Problem 3.11 Give an interpretation of servers with vacation in terms of 
polling systems as discussed in Section 3.2.2.1. Give this interpretation for all 
types of polling systems enumerated in Section 3.2.2.1. 

Problem 3.12 How can servers with breakdown and maintenance strate- 
gies be modeled by servers with vacation as sketched in Fig. 3.2? What are 
the differences with polling systems? 

Problem 3.13 Give the ergodicity condition for an M/G/l queue with 
vacation defined according to Fig. 3.2. 

Problem 3.14 Derive the steady-state probabilities ve and ~1 of an M/G/l 
queue with vacation. Assume that the following parameters are given: Rest 
period is constant at 1 second, vacation is a constant 2 seconds, arrival rate 
X = 1, and service time distribution is Erlang Ic with k = 2 and mean 
l/p = 0.2 seconds. Check for ergodicity first. 

Problem 3.15 Use the same assumptions as specified in Problem 3.14 
and, if steady state exists, compute the mean number of customers in system 
for the following cases: 

1. M/G/l queue with vacation according to Fig. 3.2. 

2. Parameters same as in Problem 3.14 above but with rest period being 
constant at 0 seconds. 

3. Parameters same as in Problem 3.15 part 2 above with vacation being 
also constant at 0 seconds. 

3.3 NUMERICAL SOLUTION: DIRECT METHODS 

The closed-form solution methods explored in Sections 3.1 and 3.2 exploit- 
ed special structures of the Markov chain (or, equivalently, of its parameter 
matrix). For Markov chains with a more general structure, we need to resort 
to numerical methods. There are two broad classes of numerical methods to 
solve the linear systems of equations that we are interested in: direct methods 
and iterative methods. Direct methods operate and modify the parameter 
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matrix. They use a fixed amount of computation time independent of the 
parameter values and there is no issue of convergence. But they are subject 
to fill-in of matrix entries, that is, original zero entries can become non-zeros. 
This makes the use of sparse storage difficult. Direct methods are also subject 
the accumulation of round-off errors. 

There are many direct methods for the solution of a system of linear equa- 
tions. Some of these are restricted to certain regular structures of the parame- 
ter matrix that are of less importance for Markov chains, since these structures 
generally cannot be assumed in the case of a Markov chain. Among the tech- 
niques most commonly applied are the well known Gaussian elimination (GE) 
algorithm and, a variant thereof, Grassmann’s algorithm. The original version 
of the algorithm, which was published by Grassmann, Taksar, and Heyman, is 
usually referred to as the GTH algorithm [GTH85] and is based on a renewal 
argument. We introduce a newer variant by Kumar, Grassmann, and Billing- 
ton [KGB871 h w ere interpretation gives rise to a simple relation to the GE 
algorithm. The GE algorithm suffers sometimes from numerical difficulties 
created by subtractions of nearly equal numbers. It is precisely this property 
that is avoided by the GTH algorithm and its variant through reformulations 
relying on regenerative properties of Markov chains. Cancellation errors are 
nicely circumvented in this way. 

3.3.1 Gaussian Elimination 

As the point of departure for a discussion of Gaussian elimination, we refer 
back to Eq. (3.4). The idea of the algorithm is to transform the system 
of Eq. (3.43) which corresponds in matrix notation to Eq. (3.4), into an 
equivalent one by applying elementary operations on the parameter matrix 
that preserve the rank of the matrix: 

ao,oxo + alp1 + . . . + an-l,oxn-1 = bo, 

qm + al,lxl + . . . + an--1,1x,-l = bl, 
(3.43) 

aO,n-lxO + u~,~--~xI + . . . + ~~--l,~-lxn--l = bn-1. 

As a result, an equivalent system of linear equations specified by Eq. (3.44) 
with a triangular matrix structure is derived, from which the desired solution 
x, which is identical to the solution of the original system given by Eq. (3.43), 
can be obtained: 

ao,o (n-1)xo = b, (n-1) , 
apl-2) 

, x:o+al,l 
(n-2)x1 = by-2) 

7 
(3.44) 

(0) (0) 
aO,n-lxO + ‘l,n- I+... + af)Al n-lxn-l = b”? n 1’ 
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If the system of linear equations has been transformed into a triangular 
structure, as indicated in Eq. (3.44), the final results can be obtained by 
means of a straightforward substitution process. Solving the first equation for 
20, substituting the result in the second equation and solving it for ~1, and 
so on, finally leads to the calculation of CC,-~. Hence, the xi are recursively 
computed according to Eq. (3.45): 

j-1 (n-j) 
(3.45) 

c 
aki 

k=O aj~-j)“k, .i = 172,***9n- 1. 

, 

To arrive at Eq. (3.44), an elimination procedure first needs to be per- 
formed on the original system of Eq. (3.43). Informally, the algorithm can be 
described as follows: first the nth equation of Eq. (3.43) is solved for x,-i, 
and then x,-r is eliminated from all other n- 1 equations. Next, the (n- 1)th 
equation is used to solve for x,-2, and, again, x,-2 is eliminated from the 
remaining n - 2 equations, and so forth. Finally, Eq. (3.44) results, where 
ai:' denotes the coefficient of xi in the (j + 1)th equation, obtained after the 
/Ah elimination step .3 For the sake of completeness it is pointed out that 
a!‘) = ai j a.i > * 

‘-More formally, for the lath elimination step, i.e, the elimination of x,-k 
from equations j, j = n - k, n - lc - 1,. . . , 1, the (n - k + 1)th equation is to 
be multiplied on both sides by: 

(k-1) 
an-k,j-l - 

(k-l) ’ 
an-k,n-k 

(3.46) 

and the result is added to both sides of the jth equation. The computation of 
the coefficients shown in the system of Eq. (3.47) and Eq. (3.48) for the lath 
elimination step is: 

I 0, j = n - k - 1, n - k - 2, , . . , 0, 

(k) _ i=n-l,n-2 ?“‘T n - li, 
a.. - ZJ (3.47) 

,yy-l) (k-1) 
aW) 

n-k,j 
23 - ai,n-k a(k-l) 7 otherwise, 

n-k,n-k 

b(') = b("-l) _ bF:t) 

a(W 

j j 
n-kJ' , 

aW) 
j = n - k - 1, n - k,. . . ,O. (3.48) 

n-k,n-k 

3Note that i n t he system of Eq. (3.44) relation k = n - j >_ 0 holds. 
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In matrix notation we begin with the system of equations: 

121 

an-i,0 an-l,1 - - - an-l,n-1 

After the elimination procedure, a modified system of equations results, which 
is equivalent to the original one. The resulting parameter matrix is in upper 
triangular form, where the parameters of the matrix are defined according to 
Eq. (3.47) and the vector representing the right-hand side of the equations 
according to Eq. (3.48): 

9 xn-1) 

ao,o 
(n-1) arl-2) ac2-3) 

0 
(A-2) 

%,l 
(A-3) * -* 

ao,n-i 

%,2 *** al,,-i 

0 0 ) *.. ap2-3) 
a2,n-1 

0 . . . 0 an-l,n-1 / 

(3.49) 

=xu 

The Gaussian elimination procedure takes advantage of elementary matrix 
operations that preserve the rank of the matrix. Such elementary operations 
correspond to interchanging of equations, multiplication of equations by a real- 
valued constant, and addition of a multiple of an equation to another equation. 
In matrix terms, the essential part of Gaussian elimination is provided by the 
factorization of the parameter matrix A into the components of an upper 
triangular matrix U and a lower triangular matrix L. The elements of matrix 
U resulted from the elimination procedure while the entries of L are the terms 
from Eq. (3.46) by which the columns of the original matrix A were multiplied 



122 STEADY-STATE SOLUTIONS OF MARKOV CHAINS 

during the elimination process: 

= 

ape-l) ($72) (.$-3) 
> ao,n--1 
0 ap aj;“,-3) * * - . . . 

0 ‘0 a$$2-3) . . . 
al,,-i 

ah 

0 0 .** 0 an-i,n-i. 

= UL. 

1 0 

(1) 
an-2,0 

(1) ** 
an-2,n-2 

an-l,0 

an--l,n--l 

. . . 0' 

0 . . * 0 

1 0 i 

(1) 
an-2,n-3 (1) 1 0 
an-2,n-2 

\ 

an--l,n-2 
. . , 1 an--l,+-l J 

(3.50) 

As a result of the factorization of the parameter matrix A, the computation 
of the result vector x can split into two simpler steps: 

b=xA=xUL=yL. 

The solutions of both equations, first of: 

yL = b (3.51) 

for the vector of unknowns y and then finally of: 

xu=y (3.52) 

(3.53) 

for the vector of unknowns x is required. 
Note that the intermediate result y from Eq. (3.51), being necessary to 

compute the final results in Eq. (3.52), is identical to Eq. (3.49) and can 
readily be calculated with the formulae presented in Eq. (3.48). Since only 
the coefficients of matrix U are used in this computation, it is not necessary 
to compute and to represent explicitly the lower triangular matrix L. It is 
finally worth mentioning that pivoting is not necessary due to the structure 
of the underlying generator matrix, which is weakly diagonal dominant, since 
)q+ 1 > qi,j, V’i, j. This property is inherited by the parameter matrices. 

Now the Gaussian elimination algorithm can be summarized as follows: 

Construct the parameter matrix A and the right-side vector b 
according to Eq. (3.4) as discussed in Chapter 3. 
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Carry out elimination steps or, equivalently, apply the standard 
algorithm to split the parameter matrix A into upper triangular matrix U 
and lower triangular matrix L such that Eq. (3.50) holds. Note that the 
parameters of U can be computed with the recursive formulae in Eq. (3.47) 
and the computation of L can be deliberately avoided. 

Compute the intermediate results y according to Eq. (3.51) or, 
equivalently, compute the intermediate results with the result from Eq. (3.53) 
according to Eq. (3.48). 

Perform the substitution to yield the final result x according to 
Eq. (3.52) by recursively applying the formulae shown in Eq. (3.45). 

Example 3.1 Consider the CTMC depicted in Fig. 3.3. This simple finite 
birth-death process is ergodic for any finite X and ,Q so that their unique 
steady-state probabilities can be computed. Since closed-form formulae have 

Fig. 3.3 A simple finite birth-death process. 

been derived for this case, we can easily compute the steady-state probabilities 
ri as summarized in Table 3.1 with X = 1 and ,Q = 2 and with: 

1 
7ro = c(> 3 2 3 lk = 1,2,3. 

x 
i=O 

CL 

Table 3.1 Steady-state probabilities 
computed using closed-form expressions. 

s 
15 

Alternatively, the state probabilities can be computed applying the Gaus- 
sian elimination method introduced in this section. The results from Table 3.1 
can then be used to verify the correctness of the results. 
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First, the generator matrix Q is derived from Fig. 3.3: 

0 0 2 -2 

In order to include the normalization condition and to derive the parameter 
matrix A of the linear system to be solved, the last column of Q is replaced 
by the unit vector: 

-1 1 0 1 

0 0 2 1 

The resulting system of linear equations is fully specified according to Eq. (3.4), 
when vector b = (O,O, 0,l) is given. 
-;-w-7 ;.:‘;gw;,<# 
~~~~~~~ With Eq. (3.47) and Eq. (3.48) in mind, matrix A is transformed 
into upper-triangular matrix U via intermediate steps A(l), Ac2), Ac3) = U. 
In parallel, vector b is transformed via b(l) and bc2) into bc3), resulting in 
the following sequence of matrices: 

b(l) = (0, o, -2, I), 

0 0 0 1 

bc2) = (o,+-,,,), 

0 0 01 

bc3) = +,-f,-a,l . 

0 0 01 

For the sake of completeness we also present the lower triangular 
matrix L containing the factors from Eq. (3.46) used in the elimination steps: 

It can be easily verified that: 

y = bc3) = (4 -;, -2,l) 
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is the intermediate solution vector y of Eq. (3.51) with given lower triangular 
matrix L. 

The last step is the substitution according to the recursive Eq. (3.45) 
to yield the final results x as a solution of Eqs. (3.52) and (3.53): 

b(“) yo 
x0=--&=-----&= 

> > 

8 -- 17 8 
II =- 

l5 15’ -- 
17 

UO,l 
--x0 
Ul,l 

4 -- 
5 ;8 4 

=-3------ l7 15 15’ -- -- 
5 5 

Y2 uo,2 u1,2 
1 = - - -20 - -21 

u2,2 u2,2 u2,2 

-2 -2 8 -14 2 ---------=- 
-5 -5 15 -515 15’ 

b3 a0,3 al,3 a2,3 
x3 = - - -X0 - -X1 - -22 

a3,3 a3,3 a3,3 a3,3 

=A!?- uo,3 u1,3 u2,3 
- -x0 - -X1 - -22 

u3,3 u3,3 u3,3 u3,3 

=l-x()-xi-x2=1- 
8+4+2 1 

15 = 15’ 

The computational complexity of the Gaussian elimination algorithm can be 
characterized by O(n3/3) multiplications or divisions and a storage require- 
ment of O(n2), where n is the number of states, and hence the number of 
equations. 

Note that cancellation and rounding errors possibly induced by Gaussian 
elimination can adversely affect the results. This difficulty is specially relevant 
true if small parameters have to be dealt with, as is often the case with 
the analysis of large Markov chains, where relatively small state probabilities 
may result. For some analyses though, such as in dependability evaluation 
studies, we may be particularly interested in the probabilities of states that 
are relatively rarely entered, e.g., system down states or unsafe states. In this 
case, the accuracy of the smaller numbers can be of predominant interest. 

3.3.2 The Grassmann Algorithm 

Grassmann’s algorithm constitutes a numerically stable variant of the Gaus- 
sian elimination procedure. The algorithm completely avoids subtractions 
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and it is therefore less sensitive to rounding and cancellation errors caused 
by the subtraction of nearly equal numbers. Grassmann’s algorithm was 
originally introduced for the analysis of ergodic, discrete-time Markov chains 
X = {X,; n = 0, 1, . . .} and was based on arguments from the theory of regen- 
erative processes [GTH85]. A modification of the GTH algorithm has been 
suggested by Marsan, Meo, and de Souza e Silva [MSA96]. We follow the vari- 
ant presented by Kumar et al., which allows a straightforward interpretation 
in terms of continuous-time Markov chains [KGB87]. 

We know from Eq. (2.41) that the following relation holds: 

-qi,i = c Qi,j- (3.54) 
j,i#i 

Furthermore, Eq. (2.57) can be suitably rearranged: 

n-l 

--;TTiQi,i = c rjqj,i. (3.55) 
j=O,j#i 

Letting i = n - 1 and dividing Eq. (3.55) on both sides by qn-l,+l yields: 

n-2 

-7rn-1 = 
c 

~. %,n--1 

j=o ’ 4n-l,n-1’ 

This result can be used to eliminate rn-1 on the right side of Eq. (3.55): 

n-2 n-2 

--7riqi,i = 
c rjqj,i - c 

iTT, qj,n-lqn-1,i 

j=O,j#i j=o 3 Qn-l,n-1 

n-2 

= 

= ( 
rj Qj,i - 

qj,n-lqn-1,i 

> 

_ ~ Qi,n-lQn-1,i 

4n-l,n-1 ’ Qn-l,n-1 * j=O,j#i 

(3.56) 

Adding the last term of Eq. (3.56) on both sides of that equation results 
in an equation that can be interpreted similarly as Eq. (3.55): 

-Ti 
( > 

n-2 

Qi,i - 
%,n-lqn-1,i ZZ 

4n-l,n-1 = ( 
rj qj,i - 

qj,n-lqn-1,i 

j=O,j#i 4n-l,n-1 > 
, O<i<n-2. 

(3.57) 

With: 

qj,i = qj,i _ qj7n-lqn-lTi = qj i + qf+;lqn--l,i, 
qn-l,n-1 ’ 

C h-l,1 
I=0 

the transition rates of a new Markov chain, having one state less than the 
original one, are defined. Note that this elimination step, i.e., the computation 
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of x7j.i 7 is achieved merely by adding non-negative quantities to originally non- 
negative values Qj,i, j # i. Only the diagonal elements pi i and ai i are negative. 
It should be noted that the computation of the rates ii i on the diagonal of 
the reduced Markov chain can be completely avoided due to the property of 
Markov chains reflected in Eq. (3.54). I n order to assure the [i!jj,i] properly 
define a CTMC, it remains to be proven that the following equation: 

n-2 

c ‘j,i = 0, 

i=O 

holds for all j : 

n-2 n-2 n-2 n-2 n-2 

C qj,i = C qj,i + C q~~~lqn-l’i = C qj,i + qj,n-1 C n_Q2n-1’i 

i=O i=O 
i=” C qn-1,l 

i=O i=O 
C qn-1,l 

I=0 l=O 

n-2 n-l 

= 
C %,i + Qj,n-1 = C qj,i = 0. 

i=O i=o 

The new transition rates ~j,i can be interpreted as being composed of rate 
qj,i, describing direct transitions from state j to state i, and of rate qj,n-r 
describing transitions from state j via state n - 1 to state i with conditional 
branching probability: 

Qn-1,i 
n-2 

C 4n-1,l 
I=0 

This interpretation implies that no time is spent in (the otherwise eliminated) 
state n - 1. The elimination procedure is iteratively applied to the genera- 
tor matrix with entries 41:’ of stepwise reduced state spaces until an upper 

triangular matrix results, where qi:’ denotes the matrix entries after having 
(n-1) applied elimination step Ic, 1 5 k 5 n - 1. Finally, each element qi,i on the 

main diagonal is equal to - 1. 
As usual, the elimination is followed by a substitution process to express 

the relations of the state probabilities to each other. Since the normalization 
condition has not been included initially, it must still be applied to yield the 
final state probability vector. Grassmann’s algorithm has been presented in 
terms of a CTMC generator matrix and, therefore, the parameter matrix must 
initially be properly defined: 

A= Q, for a CTMC 
P - I, for a DTMC 
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j < 1,i = 1, 

j # i, 1 < j, i < 1 - 

For 1 = 1,2, . . . , n - 1 do: 

l-1 
Xl = c 

x ,,(n-1) 
ai1 * 

i=O 

For i = 0, 1, . . . , n - 1 do: 

1, 

j=i=l 

j = l,i <'1.4 

In matrix notation, the parameter matrix A is decomposed into factors of 
an upper triangular matrix U and a lower triangular matrix L such that the 
following equations hold: 

O=xA=xUL. 

Of course, any (non-trivial) solution of 0 = XU is also a solution of the original 
equation 0 = xA. Therefore, there is no need to represent L explicitly. 

Example 3.2 Consider the CTMC presented in Fig. 3.4. It represents 
a finite queueing system with capacity 3, where customers arrive according 
to independent, exponentially distributed interarrival times with rate X as 
long as buffer space is available. Service is received from a single server in 
two consecutive phases, both phases having mean duration 1/(2~). The pair 
of integers (k, Z) assigned to a state i represents the number of customers 
k(i) in the system and the phase Z(i) of the customer currently in service. 
To construct the generator matrix Q, the states are ordered as indicated in 
Table 3.2. 

4Setting the elements on the diagonal equal to -1 and below the diagonal equal to 0 is only 
included here for the sake of completeness. 
implementation for efficiency reasons. 

These assignments can be skipped in an actual 



NUMERICAL SOLUTION: DIRECT METHODS 129 

Fig. 3.4 A CTMC for a system with Erlang-2 service time distribution. 

Table 3.2 A possible state ordering for Fig. 3.4 

(h 1) w9 (1, 1) (al) (3,1> (1,2) (2,2) (3,2) 

# 0 1 2 3 4 5 6 

Grassmann’s algorithm is applied with X = p = 1: 

A= 

-1 1 0 0 0 0 0 
0 -3 1 0 2 0 0 
0 0 -3 1 0 2 0 
0 0 0 -2 0 0 2 
2 0 0 0 -3 1 0 
0 2 0 0 0 -3 1 
0 0 2 0 0 0 -2 

f 

\ 

I -1 

1 0 0 0 0 0 
0 -3 1 0 2 0 0 
0 0 -3 1 0 2 0 
0 0 2 -2 0 0 1 

1 

, 
2 0 0 0 -3 1 0 
0 2 1 0 0 -3 $ 
0 0 0 0 0 0 -1 

-1 1 0 0 0 0 0 
0 -3 1 0 2 0 0 
0 4 -3 1 0 $ 0 
0 0 2 -2 0 0 1 , 
2 2 1 1 
0 Fi ?I 

0 -3 0 
0 0 21 ; 

,o 0 0 0 0 0 -1 I 



130 STEADY-STATE SOLUTIONS OF MARKOV CHAINS 

A(3) = 

I -1 4 -3 1 3. y 0 0 0 0 g 0 0 0 0 

A(“) = 

0 $ 2 -3 1 0 3 0 
0 0 2 -2 0 0 1 
0 0 0 0 -1 ; 0 
0 0 0 0 0 -1 $ 
0 0 0 0 0 0 -1 

-1 1 0 0 0 0 0 
3 II 6 -3 

! -“3 
0 1 i 0 0 

-“l 

0 ; 0 

0 0 0 0 0 1 
0 0 0 0 -1 l 0 
0 0 0 0 0 “1 1 

0 0 0 0 0 0 -“l 

-11 0 0 0 0 o\ 
4 8 -3 -1 z 0 0 0’ 

0 + 
$ 
0 $ 0 

0 0 0 -1 0 0 1 ) 
0 0 0 0 -1 1 0 
0 0 0 0 0 21 3 

0 0 0 0 0 0 -1 J 

fo ; 0 0 0 0 0 
0 -1 fi 0 $ 0 0 
0 0 -1 $ 0 $ 0 
0 0 0 -1 0 0 1 
0 0 0 0 -1 l 0 
0 0 0 0 0 “1 1 

(0 0 0 0 0 0 -“l 

Since Ac6) is in upper triangular form the solution of xAc6) = 0 
can be easily obtained: 

3 11 1 
Xl = -x0 

4 x2 = 5x1 x3 = -x2 
2 

2 1 2 1 
x4 = -21 x5 = -x4+ -22 26 = 

3 3 3 
-25 
2 

+x3. 

Because only six equations with seven unknowns were derived, one equation 
is deliberately added. For convenience, we let x0 = 2, thereby yielding the 
intermediate solution: 

4 11 11 2 5 21 
x= +--,--,-?-,- 12 24 3 6 24 
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With: 

1 12 -=- 
n-l 
c xi 73’ 
i=o 

and with: 

Xi xi = - 
n-l ’ 

c xi 
i=o 

the state probability vector 7r results: 

T = (0.2192,0.1644,0.1507,0.0753,0.1096,0.1370,0.1438) . 

Measures of interest could be the average number of customers in the sys- 
tem E[N] = N: 

n-l 

N = c k(i)7ri = r1+ r4 + 2(7b + WI) + 3(7ra + n-6) = 1.507, 
i=o 

the effective throughput: 

A, = X(x0 + nl + 7r2 + 7~~ + q,) = 0.7809, 

or the mean response time E[T] = ?;: 

N 
T = x = 1.9298. 

e 

Comparing these results to the measures obtained from an analysis of the 
birth-death process for this queueing system assuming exponentially (rat her 
than Erlang) distributed service times with same parameters X = p = 1 shows 
that response time has decreased and the effective throughput has increased 
simply by reducing the variance of the service process: 

cEXP) = f. = 0 25 T/c 4 *’ 
k = 0 1 2 3 7 ) 7 > 

&fCEXP) = (1 + 2 + 3) * a = ; = 1.5, 

pw = 3. ; = 0.75, 
e 

i$EW = 3 4 _ 2 
2’3- * 

The computational complexity of Grassmann’s algorithm is, similar to 
Gaussian elimination, O(n3/3) multiplications or divisions, and the storage 
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requirement is O(n2). Sparse storage techniques can be applied under some 
circumstances, when regular matrix structures, like those given with diagonal 
matrices, are preserved during computation. Although cancellation errors are 
being avoided with Grassmann’s algorithm, rounding errors can still occur, 
propagate, and accumulate during the computation. Therefore, applicability 
of the algorithm is also limited to medium size (around 500 states) Markov 
models. 

3.4 NUMERICAL SOLUTION: ITERATIVE METHODS 

The main advantage of iterative methods over direct methods is that they 
preserve the sparsity the parameter matrix. Efficient sparse storage schemes 
and efficient sparsity-preserving algorithms can thus be used. Further advan- 
tages of iterative methods are based on the property of successive convergence 
to the desired solution. A good initial estimate can speed up the computation 
considerably. The evaluation can be terminated if the iterates are sufficiently 
close to the exact value, i.e., a prespecified tolerance level is not exceeded. 
Finally, because the parameter matrix is not altered in the iteration process, 
iterative methods do not suffer from the accumulation of round-off errors. 
The main disadvantage of iterative methods is that convergence is not always 
guaranteed and depending on the method, the rate of convergence is highly 
sensitive to the values of entries in the parameter matrix. 

3.4.1 Convergence of Iterative Methods 

Convergence is a very important issue for iterative methods that must be dealt 
with consciously. There are some heuristics that can be applied for choosing 
appropriate techniques for decisions on convergence, but no general algorithm 
for the selection of such a technique exists. In what follows we mention a few 
of the many issues to be considered with respect to convergence. A complete 
picture is beyond the scope of this text. 

A tolerance level E must be specified to provide a measure of how close 
the current iteration vector xck) is to the desired solution vector x. Because 
the desired solution vector is not known, an estimate of the error must be 
used to determine convergence. Some distance measures are commonly used 
to evaluate the current iteration vector xc’) in relation to some earlier iter- 
ation vectors x(‘), 1 < k. If the current iteration vector is “close enough” to 
earlier ones with respect to E, then this condition is taken as an indicator of 
convergence to the final result. If E were too small, convergence could become 
very slow or not take place at all. If E: were too large, accuracy requirements 
could be violated or, worse, convergence could be wrongly assumed. Some 
appropriate norm functions have to be applied in order to compare differ- 
ent iteration vectors. Many such norm functions exist, all having a different 
impact on speed and pattern of convergence. Size and type of the parameter 
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matrix should be taken into consideration for the right choice of such a norm 
function. Concerning the right choice of E and the norm function, it should 
be further noted that the components Q of the solution vector can differ by 
many orders of magnitude from each other in their values. An appropriate 
definition must take these differences into account and relate them to the 
accuracy requirements derived from the modeling context. 

3.4.2 Power Method 

Referring to Eq. (2.15) immediately leads to a first, reliable, though sometimes 
slowly converging, iterative method for the computation of the steady-state 
probability vector of finite ergo&c Markov chains. For the sake of completeness 
we may mention here that for the power method to converge the transition 
probability, matrix P only needs to be aperiodic; irreducibility is not necessary. 
The power method mimics the transient behavior of the underlying DTMC 
until some stationary, not necessarily steady-state, convergence is reached. 
Therefore, it can also be exploited as a method for computing the transient 
state probability vector v(n) of a DTMC. 

Equation v = VP suggests starting with an initial guess of some probability 
vector Y(O) and repeatedly multiplying it by the transition probability matrix 
P until convergence to v is assured, with lim+, vci) = u. Due to the 
assumed ergodicity, or at least aperiodicity, of the underlying Markov chain, 
this procedure is guaranteed to converge to the desired fixed point of the 
unique steady-state probability vector. A single iteration step is as follows: 

yG+l) = &)p, i > 0, - (3.58) 

Hence, the iteration vector at step i is related to the initial probability vector 
via the Pi, the ith power of the transition probability matrix P: 

y(i) = JO)pi 7 i 2 0. (3.59) 

The power method is justified by the theory of eigenvalues and eigenvectors. 
The vector u can be interpreted as the left eigenvector y1 corresponding to 
the unit eigenvalue Xr = 1, where X1 is the dominant eigenvalue, which is the 
largest of all n eigenvalues, IX11 > IX21 2 . . - 2 IX,1 . Since the eigenvectors 
are mutually orthogonal, Y(O) can be expressed as a linear combination of all 
left eigenvectors of P so that the following relation holds: 

Y(O) = clyl + c2y2 + * * * + c,y,, cjEII%, ILjln. (3.60) 

Accordingly, after the first iteration step, the estimate Y(‘) = v(O)P can again 
be expressed in terms of the eigenvectors yi and eigenvalues Xi: 

Y(l) = CiAiyi + Q&y2 + -. . + cnXnyn, cj E R, 1 5 j 5 n. (3.61) 

Repeatedly applying this procedure yields: 

Jlci) = ClXZ;Yl + czAay2 + * * * + CnAkyn, cj E R, 1 < j 5 n. (3.62) 
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Since all eigenvalues 1 Xj ) < 1 for j 2 2, the ith power of the eigenvalues 
Xj, j > 2, approaches 0 in the limit, lim;,, l&Ii = 0. With respect to 
the unit eigenvalue [Xrl = 1 we obtain lXrli = 1, for all i 2 1. Therefore, 
Relation (3.63) holds and proves our assumption of the correct convergence 
of the power method: 

lim VCi) = lim {C&Q + cZ&7Z + . . . + c,$Y,j i-bee i-boo 
= h& CJ”,Yl (3.63) 

= ClYl. 

Only a renormalization remains to be performed to yield the final result of 
the steady-state probability vector u. 

An immediate consequence of the nature of the power method is that speed 
of convergence depends on the relative sizes of the eigenvalues. The closer 
the non-dominant eigenvalues are to 1, the slower the convergence, as can 
be concluded from Eq. (3.63). The second largest eigenvalue, 1x2 I, is the 
dominating factor in this process, i.e., ,if it is close to 1, convergence will be 
slow. 

The algorithm of the power method is outlined as follows: 

Select Q appropriately: 

A= P, 

Q/q + 1; 

JO) = 
( v(y), ViO), (0) “‘7 Vn-1 * > 

Select convergence criterion E, and let n = 0. Define some vector norm func- 
tion f (Ilvcn), y(‘)J/), n > 1. 
Set convergence = false- 

Repeat until convergence: 

-2.1 dn+l) = &)A; 
I-1 IF f (Il~(~+l), ~(‘+l)li) < E, 1 < n - 

THEN convergence = true; 

lYIIYl STEP 2 8 n=n+l,l=li-1. 

Example 3.3 Assume three customers circulating indefinitely between two 
service stations, alternately receiving service from both stations having expo- 
nentially distributed service times with parameters ,~r and ~2, respectively. 
Let (i, j) denote a possible state of the system, where i + j = 3 and i, j refer 
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Fig. 3.5 A birth-death model of a two station cyclic queue with three customers. 

to the number of customers at the first and the second stations, respectively. 
The CTMC shown in Fig. 3.5 models this two station cyclic queueing network. 

With ~1 = 1 and ~2 = 2 the following generator matrix Q results: 

-1 1 0 0 
2 -3 1 0 

Together with an arbitrarily given initial probability vector: 

n(o> = (~3,0(~),~2,1(~>,~1,2(0),~0,3(0)) 

= (0.25,0.25,0.25,0.25), 

and, given Q = 3.0000003, a transition probability matrix: 

0.6666667 0.3333333 0 0 
p 0.6666666 0.0000001 0.3333333 0 = 

0 0.6666666 0.0000001 0.3333333 ’ 
0 0 0.6666666 0.3333334 

the power method can be applied, recalling Y(O) = 7r (0). 
Since we are dealing here with a small ergodic model, Gaussian elimination 

or Grassmann’s algorithm could also be applied to yield the following exact 
steady-state probability vector: 

n = (0.533,0.26~,0.133,0.6~). 

Using this result, the iteration vector can be compared to the exact probability 
vector T at intermediate steps for the purpose of demonstrating convergence 
as shown in Table 3.3. The results are gained by choosing E = 10s7 and by 
applying the following test of convergence, presuming n 2 1: 

The number of iteration steps necessary to yield convergence to the exact 
results depends strongly on the uniformization factor q. Some examples 
demonstrating this dependency are summarized in Table 3.4. 
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Tab/e 3.3 Intermediate steps and convergence of the power method 

y(O) 0.25 0.25 0.25 0.25 
y(l) 0.333333325 0.25 0.25 0.166666675 
y(2) 0.3888888778 0.2777777722 0.1944444556 0.1388888944 
y(3) 0.4444444278 0.2592592648 0.1851851880 0.1111111194 
y(4) 0.4691357926 0.2716049333 0.1604938370 0.09876543704 
y(5) 0.4938271481 0.2633744897 0.1563786029 0.08641975926 
yw 0.5276973339 0.2671002038 0.1357177959 0.06948466636 
yW) 0.5332355964 0.2666741848 0.1333746836 0.06671553511 
y(30) 0.5333316384 0.2666667970 0.1333340504 0.06666751412 
y(3f3) 0.5333332672 0.2666666718 0.1333333613 0.06666669973 

Table 3.4 Convergence of the power 
method as a function uniformization 
factor q 

4 Iterations 

3.000003 54 
3.003 55 
3.03 55 
3.3 61 
6 115 
30 566 

3.4.3 Jacobi’s Method 

The system of linear equations of interest to us is: 

b=xA. (3.64) 

The normalization condition may or may not be incorporated in Eq. (3.64). 
The parameters of both DTMC and CTMC are given by the entries of the 
matrix A = [aij]. The solution vector x will contain the unconditional state 
probabilities, or, if not yet normalized, a real-valued multiple thereof. If 
the normalization is incorporated, we have b = [0, 0, . . . , 0, 11, and b = 0 
otherwise. Consider the jth equation from the system of Eqs. (3.64): 

bj = C aijxi. 

iES 

(3.65) 

Solving Eq. (3.65) for xj immediately results in: 

bj - C aijxi 

Xj = 
i,i#j 

. 
ajj 

(3.66) 

Any given approximate solution ji: = [go, 21, . . . , &-r] can be inserted for the 
variables xi, i # j, on the right side of Eq. (3.66). From these intermediate 
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values, better estimates of the xj on the left side of the equation may be 
obtained. Applying this procedure repeatedly and in parallel for all n equa- 
tions results in our first iterative method. The values xc’) of the lath iteration 
step are computed from the values obtained from the (Ic - 1)st step for each 
equation independently: 

bj - C a+~“-‘) 
x(,“) - i,i#j 

9 - 7 by E s. 

aj.i 

(3.67) 

The iteration may be started with an arbitrary initial vector x(O). The closer 
the initial vector is to the solution, the faster the algorithm will generally 
converge. Note that the equations can be evaluated in parallel, a fact that 
can be used as a means for computational speed-up. The method is therefore 
called the method of simultaneous displacement or, simply, the Jacobi method. 
Although the method is strikingly simple, it suffers from poor convergence 
and hence is rarely applied in its raw form. 

Splitting the matrix A = D - L - U into its constituents of the diagonal 
matrix D, the strictly lower-triangular matrix -L, and the strictly upper- 
triangular matrix -U provides a way to present the main computation step 
of the Jacobi method in matrix notation: 

xc’) - (b + x(‘-‘) (U + L)) D-l. - (3.68) 

Before the algorithm is presented, we may recall that we can deliberately 
incorporate the normalization condition into the parameter matrix A. Note 
that repeated normalization could have an adverse effect on convergence if 
large models are investigated, since relatively small numbers could result. 
Therefore, we leave it open whether to repeat normalization in each iteration 
step or not. 

Define parameter matrix A and b properly from generator matrix 
Q or transition probability matrix P. 

Choose initial vector x(O). 

Choose convergence criterion E. 

Choose some norm function f ([lx(“), x(“)/l), Ic > Z. 

Split parameter matrix A = D - L - U. 

convergence = false, and k = I = 1. 

Repeat until convergence: 

[I xck) = (b + x(lc-l) (U + L)) D-l; 

[l . IF f (\\x’“’ - x(~-I)))) < E 
- THEN convergence = true 
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-ELSEk=k+landZ~{l,...,Ic}. 

Example 3.4 Consider two customers circulating among three service sta- 
tions according to the following pattern. When a customer has received service 
of mean duration l/p1 at the first station, it then queues with probability ~12 
at station two for service of mean duration 1/,~2, or with ~13 at station three 
with a mean service duration of l/ps. After completion of service at stations 
two or three, customers return with probability one back to station one. 

This scenario is captured by a CTMC with the state diagram in Fig. 3.6, 
where the notation (Ic, 1, m) indicates that there are Ic customers in station one, 
1 customers in station two, and m customers in station three. We number the 
states of the CTMC of Fig. 3.6 as per Table 3.5. 

Table 3.5 A possible state ordering according to Fig. 3.6 

# 1 2 3 4 5 6 

With PI = 1, ~2 = 2, ~3 = 3, ~12 = 0.4, and ~13 = 0.6, the generator 
matrix Q can be obtained: 

Q= 

-1 0.4 0.6 0 0 0 
2 -3 0 0.4 0.6 0 
3 0 -4 0 0.4 0.6 
0 2 0 -2 0 0 
0 3 2 0 -5 0 
0 0 3 0 0 -3 

To provide a controlled experiment with respect to the iteration process, 
we first compute the exact state probabilities in Table 3.6 with Grassmann’s 
algorithm introduced in Section 3.3.2. With Table 3.6 we know the exact 
state probabilities x = 7r and can use them for comparison with the iteration 
vector xc’). 

With the following constraints concerning equation vector b, initial proba- 
bility vector x(O), normalization after each iteration step, convergence criterion 
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Fig. 3.6 A birth-death model of two customers traversing three stations. 

Tab/e 3.6 State probabilities for 
Fig. 3.6 computed using Grass- 
mann’s algorithm 

Table 3.7 State probabilities for 
Fig. 3.6 computed using Jacobi’s 
method 

TO 0.6578947368 
Tl 0.1315789474 
r2 0.1315789474 
r3 0.02631578947 
x4 0.02631578947 
r5 0.02631578947 

TO 0.6578947398 
Tl 0.1315789172 
772 0.1315789478 
R3 0.02631578619 
r4 0.02631578846 
r5 0.02631582059 

E, and the norm for test of convergence, Jacobi’s method is applied: 

b = (O,O, (4% (JO>, x(o) = I I I 1 I 1 
> 6’6’6’6’6’6 ’ 

x@) 
xU4 

= IIx(lc)lll? E = lo-7, 
Ip - X(k--1q2 < E 

11x@-1) 112 * 

The results of using Jacobi algorithm, needing 324 iterations are given in 
Table 3.7. 

The method of Jacobi is of less practical importance due to its slow pattern 
of convergence. But techniques have been derived to speed up its convergence, 
resulting in well-known algorithms such as Gauss-Seidel iteration or the suc- 
cessive over-relaxation (SOR) method. 

3.4.4 Gauss-Seidel Method 

To improve convergence, a given method often needs to be changed only slight- 
ly. Instead of deploying full parallelism by evaluating Eq. (3.67) for each state 
j E S independently, we can serialize the procedure and take advantage of the 
already updated new estimates in each step. Assuming the computations to 
be arranged in the order 0, 1, . . . , n - 1, where ISI = n, it immediately follows, 
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(k) that for the calculation of the estimates xj , all j previously computed esti- 

mates xik), i < j, can be used in the computation. Taking advantage of the 
more up-to-date information, we can significantly speed up the convergence. 
The resulting method is called the Gauss-Seidel iteration: 

b. _ 
3 

‘2 a. .x(k) + ncl a. .x(k-l) 
23 2 2.7 i 

(kc) _ 
i=o i=j+1 

Xi - 7 
aii 

vj E s. (3.69) 

Note that the order in which the estimates xjk) are calculated in each 
iteration step can have a decisive impact on the speed of convergence. In 
particular, it is generally a matter of fact that matrices of Markov chains are 
sparse. The interdependencies between the equations are therefore limited to 
a certain degree, and parallel evaluation might still be possible, even if the 
most up-to-date information is incorporated in each computation step. The 
equations can deliberately be arranged so that the interdependencies become 
more or less effective for the convergence process. Equivalently, the possible 
degree of parallelism can be maximized or minimized by a thoughtful choice of 
that order. Apparently, a trade-off exists between the pattern of convergence 
and possible speedup due to parallelism. In matrix notation, the Gauss-Seidel 
iteration step is written as: 

xc’) = b + x(‘-l)L (D - u)-’ , 
> 

k 2 1. (3.70) 

Equivalently, we could rewrite Eq. (3.70), thereby reflecting the Gauss-Seidel 
step from Eq. (3.69) more obviously: 

b + x(‘“)U + x(‘“-l)L D-l, 
> 

k > 1. (3.71) 

3.4.5 The Method of Successive Over-Relaxation 

Though Gauss-Seidel is widely applied, further variants of the iteration scheme 
do exist. A promising approach for an increased rate of convergence is to apply 
extrapolations via the so-called method of successive over-relaxation, SOR for 
short. The SOR method provides means to weaken or to enhance the impact 
of a Gauss-Seidel iteration step. A new estimate is calculated by weighting 
(using a relaxation parameter w) a previous estimate with the newly computed 
Gauss-Seidel estimate. The iteration step is presented in matrix notation in 
Eq. (3.72)) from which it can be concluded that the SOR method coincides 
with Gauss-Seidel if w is set equal to one: 

xc’) = wb + x (‘--l) (wL + (1 -w) D)) (D - wU)-’ , k 2 1. (3.72) 

Equation (3.72) can be easily verified. Remembering the splitting of matrix 
A = D - L - U and introducing a scalar w, we can immediately derive the 
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equation wb = xw (D - L - U) f rom Eq. (3.64) as a starting point. Adding 
xD to both sides of the equation yields: 

wb+xD=xw(D-L-U)+xD. (3.73) 

By applying simple arithmetic manipulations we get: 

wb+x(wL+(l-w)D)=x(D-wU), (3.74) 

and, finally, by multiplying both sides of Eq. (3.74) with (D - wU)-‘, we 
get Eq. (3.72). T o complete the description of the SOR algorithm, we need 
to focus on the impact of the numerical properties of the iterative method 
on the convergence process. First of all, a sensible choice of the relaxation 
parameter w is crucial for an accelerated convergence. Then we need to care- 
fully specify appropriate criteria to test convergence in each iteration step. It 
is wise to choose these criteria as a function of the problem domain, i.e., in 
a model-specific manner. Finally, overflows and underflows have to be dealt 
with, especially if the investigated models contain states with very small prob- 
abilities associated with them. This situation commonly occurs if very large 
or so-called stiff models are investigated, such that some states have a very 
small probability mass. 

3.4.5.1 The Relaxation Parameter The relaxation parameter w was intro- 
duced to gain an increased speed of convergence. It was mentioned that the 
incorporation of the normalization condition xl = 1 in each iteration step can 
have a negative impact on the rate of convergence. From this point of view, 
normalization should, for practical reasons, be postponed until convergence 
has been assured. Henceforth, we continue discussion of the iterative met hod 
on the basis of a homogeneous linear system 0 = xA according to Eq. (3.64). 
With this variant in mind, the solution of Eq. (3.72) can be identified as the 
largest left eigenvector yi of the matrix (wL + (1 - w) D) (D - wU)-‘. For 
the corresponding eigenvalue, we have IX,] = 1. (Note that the normalized 
eigenvector equals the desired solution vector x.) It is known from [StGo85] 
that the speed of convergence is a function of the second largest eigenvalue 
X2, with 1x11 2 IX:!), of the iteration matrix, which can be influenced by an 
accurate choice of w. To guarantee convergence, all eigenvalues should be 
real valued, the second largest eigenvalue [X2( should be smaller than one in 
magnitude because the smaller JX 2 is, the faster the convergence would be. I 
Conditioned on the assumption that 1x2) < 1, which is not always true, the 
following relation holds for the number of iteration steps i, the second largest 
eigenvalue (X2 I, and the required accuracy E: 

w4 
i z log(]X2])’ 

(3.75) 

If all the eigenvalues were known, an optimal we that minimizes I X2 ] of 
the iteration matrix could be derived. But this computation is generally 
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more expensive than the gain due to the implied acceleration of the conver- 
gence. Therefore, heuristics are often applied and instead of an exact value 
we, an approximation ~0” is derived. Sometimes advantage is taken of cer- 
tain regularities of the parameter matrix for a simplified estimation wr of 
we. Equivalently, the parameter matrix can sometimes be rearranged in a 
problem-dependent way so that a more favorable structure results. 

For the SOR iteration method to converge, it has been shown in [HaYo81] 
that the relaxation parameter must obey the relation 0 < w < 2. It is usually a 
promising approach to choose c3 adaptively by successive reestimations of LJ:. 
In particular, we follow [StGo85] for such a technique. With the subsequently 
introduced approach, w should be chosen such that w 5 WE, otherwise conver- 
gence is not guaranteed because of possible oscillation effects. Furthermore, 
we assume w. _ M > 1, i.e., underrelaxation is not considered. 

The computation would be initiated with tic11 = 1, which is fixed for some, 
say 10, steps of iterations. Using the intermediate estimate ]Xr(“)I of the 
second largest eigenvalue, which is also called the subdominant eigenvalue, in 
the iteration process an intermediate estimate WE(~) of the optimal relaxation 
parameter can be derived by evaluating Eq. (3.76): 

Wr(k) = l+&y* 
The estimated subdominant eigenvalue ]A?(‘) ] is approximated as a function 
of the recent relaxation parameter w(‘-‘) and the relative change in values 
S(‘-r) of the successive iterates x(‘-~), x(lcm2), x(‘-‘) as shown in Eq. (3.77): 

I I 
p(k) _ ($(‘“-1) + (p-1) - 1 

2 - w(“-l)j/jFG - (3.77) 

Finally, the relative change in values &‘-l) is calculated from the interme- 
diate results as presented in Eq. (3.78): 

SC’“-1) = 
IIX(k--l) - X(k-2) 11~ 

llx(“-2) - x(k--3) Iloo * 
(3.78) 

Note that the maximumvector norm ]]x]]~ is defined as ]]x]]~ = maxr<i<n 1~~1, -- 
where x E Iw”. We hasten to add that the preceding heuristic for the esti- 
mation of the relaxation parameter has to be applied carefully. The setting 
in which it had originally been introduced was restricted to a certain regular 
model structure. If it is applied otherwise, we must be aware of the heuris- 
tic nature of the approach. The choice of the relaxation parameter w has a 
decisive impact on the speed of convergence. Due to the lack of a universally 
applicable formula for an accurate computation of the parameter, its non- 
trivial estimation is the most critical task for a successful application of the 
SOR method. In addition, we would like to point out that w does not have 
to be reestimated in each iteration step Ic but, rather, periodically with some 
period of, say, 10 iteration steps. 
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3.4.5.2 The Test of Convergence To terminate an iterative computation pro- 
cess, appropriate criteria need to be provided by means of which it can be 
assured that the iteration process converges to the desired solution x. Gen- 
erally, some vector norm 1 Ix - xc’) 11 would be used to estimate the error that 
should be smaller than some threshold E. Since x is not known, it must either 
be estimated as shown in [StGo85], or some different heuristics have to be 
applied. Intuitively, convergence is reached if successive iterates do not differ 
substantially. But what “substantial difference” means can only be answered 
in the context of the model under consideration. Convergence could be rel- 
atively slow, that is, the vectors x(‘-‘), x(‘) would not be much apart, even 
though still being far from the final solution x. Furthermore, if the underlying 

(k) model is large, the elements xi of x(‘) could easily become smaller than E 
and convergence could be mistakenly assumed. 

To overcome these two problems, it is often a good choice to use the crite- 
rion from Eq. (3.79) of the relative change in values of the most recent iterate 
x(‘) and the vector obtained m > 1 steps earlier, x(lcWm), namely: 

IIX(k) - X(k-m)lloo < E 
Wk) II00 * 

(3.79) 

According to [StGo85], m should be chosen as a function of the number of 
necessary iterations, 5 < m < 50. If SOR converges quickly, the much simpler 
and computationally more efficient criterion as given in Eq. (3.80) might be 
applicable: 

11x(“) - X(k-l))) < E. (3.80) 

Commonly applied vector norms are: 

lb41 = 2 14, 
i=l 

Il4I2 = g- Ix?. 
\ 

(3.82) 
i=l 

3.4.5.3 Overflow and Underflow If the normalization condition is incorpo- 
rated in the transition matrix, as discussed in the context of Eq. (3.64), over- 
flow and underflow are less likely to occur, but convergence is much slower 
and computational overhead is higher. Therefore, some heuristics are applied 

(k) to circumvent these numerical problems. To avoid underflow, elements xi 
shrinking below a lower threshold el are simply set equal to zero. Conversely, 
if there exist elements xi (ICI that exceed an upper threshold Ed, a normalization 
is adaptively performed and the values are scaled back to a more convenient 
range. 
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3.4.5.4 The Algorithm The algorithm presented in Fig. 3.7 is in a skeletal 
form. As we have discussed at length, it needs to be carefully adapted for 
the peculiarities of specific cases to which it is applied. Since for w = 1 SOR 
coincides with Gauss-Seidel, we do not separately present the Gauss-Seidel 
algorithm. Furthermore, for the sake of simplicity, we do not consider scaling 
and resealing of the parameter matrix, which is a technique that is commonly 
performed in order to avoid divisions by diagonal elements ajj (cf. Eq. (3.69)). 
It should be noted that a sum indexed from 0 to -1 is interpreted to be zero, 

3.5 COMPARISON OF NUMERICAL SOLUTION METHODS 

The solution algorithms discussed in earlier sections are herein compared by 
the means of the model introduced in Fig. 2.7 (Section 2.2.2). Patterns of 
convergence and numerical accuracy are compared. According to Eq. (2.58), 
the following system of steady-state equations results: 

0 = -2yn2 + 67r1, 

0 = -prRC + 2c77@, 

0 = -OTRB + 2(1- C)y;lrz, 

0 = -(Y+S)q + QKRB + @RC + SrO, 

0 = -&p-J + y7r1. 

With the normalization condition: 

and the parameters from Table 3.8, three computational experiments were 
performed using the Gaussian elimination algorithm. The results are summa- 

Table 3.8 Experimental parameters for the model with two processor elements 

Parameter Experiment 1 Experiment 2 Experiment 3 

24 hr 54 set 
4 hr 10 min 
10 min 
30 set 
0.99 

1 yr 12 hr 100 yr 262 hr 48 min 
4 hr 10 min 4 hr 10 min ’ 
10 min 10 min 
30 set 30 set 
0.99 0.99 

rized in Table 3.9. From the data of the first experiment it is concluded that, 
for example, with probability 7r2 + ~1 w .71+ .25 = .96, at least one processor 
is up in steady state. This quantity could provide an important measure for 
the availability of a modeled system. Other measures of interest can be simi- 
larly derived. By comparing the results of different experiments in Table 3.9 
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I- 

84lve xl= 1 

Fig. 3.7 The SOR iteration algorithm. 
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Table 3.9 Steady-state probabilities of the model with two processor elements 

Probability Experiment 1 Experiment 2 Experiment 3 

r2 0.7100758490525 0.9990481945467 0.9999904674119 
TRB 0.0000986153339 0.0000003796383 0.0000000038040 
TRC 0.0004881459029 0.0000018792097 0.0000000188296 
m 0.2465383347910 0.0009490957848 0.0000095099093 
TO 0.0427990549197 0.0000004508205 0.0000000000452 

it can be seen how the state probabilities depend on the MTTF, being var- 
ied from approximately 1 day to a little less than 100 years and 11 days. 
Although the probability mass is captured to a larger extent by ~2, the other 
probabilities are of no less interest to designers of dependable systems because 
the effectiveness of redundancy and recovery techniques is measured by the 
values of these small probabilities. Note, in the case of the third experiment 
in particular, that the numbers differ by many orders of magnitude. This 
property could impose challenges on the numerical algorithms used to ana- 
lyze the underlying CTMC since an appropriate accuracy has to be assured. 
For instance, the results in Table 3.9 are exact values up to 13 digits. While 
such an accuracy is most likely not very significant for the probability ~2, it 
seems to be a minimum requirement for the computation of OTTO, since the 10 
leading digits of ~0 are zeroes in the third experiment. The more the values of 
the model parameters diverge from each other and the larger the investigated 
model is, the more this property tends to manifest itself. Note that for the 
analysis of larger models, iterative methods are usually preferred. The con- 
vergence criteria have to be chosen very carefully in cases where the resulting 
values differ by orders of magnitude. On the one hand, the convergence crite- 
ria should be stringent if the significant measures result in very small values. 
One the other hand, computational complexity increases substantially with a 
more stringent convergence criteria. Even worse, the probability of conver- 
gence might significantly decrease. More details are presented in the following 
sections. 

3.5.1 Case Studies 

In the following, we refer back to the model in Fig. 2.7 as a starting point. 
The model can easily be extended to the case of n processors, while the basic 
structure is preserved. Furthermore, the same parameters as in Table 3.8 are 
used in three corresponding experiments. The computations are performed 
with Gauss elimination, the power method, the Gauss-Seidel algorithm, and 
different variants of the SOR method. The intention is to study the accuracy 
and pattern of convergence of the iterative methods in a comparative manner. 
Concerning the SOR method, for example, no sufficiently efficient algorithm 
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is known for a computation of the optimum w. With the help of these case 
studies some useful insights can be obtained. 

There are many possibilities to specify convergence criteria, as has been 
discussed earlier. 
norm variant: 

In our example, convergence is assumed if both a maximum 

(3.83) 

of the difference between the most recent iterates xcn) and x(+l) and the 
square root norm: 

In-1 
lb% = C(d2, 

11 i=o 
(3.84) 

of the residues: 

i-l n-l 

ri = C qj,ixy) + C qj,ixi”-” - bi, (3.85) 
j=o j=i 

are less than the specified E: 

Note that the pattern of convergence of iterative methods can depend on 
the ordering of the states as well, and thus on the iteration matrix. This 
dependence is particularly important for the SOR-type methods where in each 
iteration step the most up-to-date information is used in the computation of 
the components of the intermediate solution vector. Therefore, we provide in 
our comparative study the results of two different state ordering strategies. 
The resulting number of iterations are summarized in Table 3.10 for the cases 
of E = 10-l’, 10-15, 10-l”, 10-17, and 10m20 as some examples. 

Comparing corresponding experiments, it can be seen from Table 3.10 how 
the number of iteration steps of the power method increases as the convergence 
criterion is tightened from E = 10-l’ to E = 10e2’. Furthermore, the power 
method tends to converge faster, the more the model parameters differ quan- 
titatively from each other. In these examples, convergence is relatively slow in 
experiment one, medium in experiment two, and fast in the third experiment 
for fixed E. A similar pattern of convergence using the Gauss-Seidel method 
and the SOR variants can be observed. The relative best results are achieved 
by SOR with w = 0.8. Gauss-Seidel and SOR (w = 1.2) do not converge if 

Another view is provided in Fig. 3.8 where the number of iterations is 
depicted as a function of w that is systematically varied, 0 < w < 2, and the 
criterion of convergence E = 10-15 is chosen. Entries on the graph indicate 
that convergence was observed within 20,000 iterations for a particular w. 



148 STEADY-STATE SOLUTIONS OF MARKOV CHAINS 

Table 3.10 Number of iterations required to analyze the model with ten processors 

e= 1.e-10 e= l.e-15 

Methods Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3 

Power 32119 16803 16703 61013 24305 24083 
Gauss-Seidel 653 23 17 * 25 17 
SOR (w = 1.2) 

2;9 

49 - 

3:7 

55 - 

SOR (w = 0.8) 41 41 47 41 

Methods 

Power 
Gauss-Seidel 
SOR (w = 1.2) 
SOR (w = 0.8) 

e= lee-l6 e = 1. e-l7 

Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3 

66547 26487 25309 70221 26883 26625 
* 25 17 * * * 
* 57 * 

369 47 4: * 4; 4: 

f~1.e~~~ 

Methods Exp. 1 Exp. 2 Exp. 3 

Power 71573 30039 30703 
Gauss-Seidel * * * 
SOR (w = 1.2) * * 
SOR (w = 0.8) * * 4*7 

Note: An asterisk (*) indicates no convergence in 20,000 iterations and a dash (-) indicates 

convergence with negative results. 

6000 

4000 

Iterations 

3000 

exp. 1 
exp. 2 

,___r_____-- -e-e- 

012 014 0.6 0:s i "' 1:2 "" 

Fig. 3.8 The number of SOR iterations as a function of w. 
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The results confirm that convergence is relatively slow in experiment one. 
Furthermore, in experiment one, SOR converges only if w < 1 while the 
number of iterations are quite sensitive to variations in ‘w. Fewer iteration 
steps are needed in experiments two and three. Relatively fewer iterations, 
279, are observed in experiment one with w = 0.95, in experiment two, 25, 
with w = 1.0; and in experiment three, 21, with w = 1.01. It is interesting to 
note that in experiments one and three, even if w is chosen only slightly larger 
than 0.95 and 1.01, respectively, no convergence results. Similar outcomes 
are observed for different criteria of convergence E. Over-relaxation, that is 
w > 1, can only be successfully applied in experiment two. 

Table 3.11 Accuracy (A) in the number of digits and number of iterations (I) needed 
by different SOR variants with E = lo-l5 

Exp. 2 (d) Exp. 2 (r) Exp. 3 (d) Exp. 3 (r) 

W A I A I A I A I 

0.1 * * 
0.2 21 279 
0.5 22 97 
0.7 23 59 
0.8 23 47 
1.0 33 27 
1.1 28 41 
1.2 23 57 
1.3 23 81 

20 539 
2: 2:5 

20 507 
20 273 20 247 
20 91 23 91 21 83 
22 57 23 55 21 51 
23 47 24 43 23 41 
23 25 49 21 30 17 
23 39 45 45 - - 
23 55 * * - - 
23 79 * * - - 

Note: An asterisk (*) indicates no convergence in 20,000 iterations and a dash (-) indicates 

convergence with negative results. 

Using different norms affects pattern of convergence and accuracy of the 
numerical results even for the same criterion of convergence E. In Fig. 3.9 
the number of iterations is depicted as a function of w in experiment three, 
comparing the residue norm (T) to the difference norm (d) with E = 10-15. It 
can be seen that applying the difference norm consistently results in slightly 
more iterations for a given w. A similar pattern was observed in all the 
experiments. There are ranges of w where the application of the difference 
norm does not lead to convergence while the application of the residue norm 
does lead to convergence, and vice versa. 

The accuracy in terms of the number of correct digits of the numerical 
values resulting from the application of different norms in the SOR algorithm 
is indicated in Table 3.11. The numbers are compared to the results obtained 
using Gauss elimination. It can be seen that the difference norm, both in 
experiments two and three, consistently results in the same or higher accuracy 
as the residue norm for a given w. A trade-off is observed between the number 
of necessary iterations and the achieved accuracy. Both factors have to be 
taken into account when designing calculations. 
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In experiment four, the data from Table 3.12 are applied in a series of 
computations. The number of iterations versus w is depicted in Fig. 3.10. 
The sensitivity of the convergence behavior to w is impressive in this study. 
While the minimum number of iterations are observed with w NN 0.8, the 
number of iterations grows quickly as w approaches one. 

:, exp. 3(r) 
, \ I 
, 

0 
l.:::l::,:,,::,l.:::I: ::I::.: 

0:2 0.4 0:6 0:8 

W 

Fig. 3.9 Comparison of difference (d) and residue (T) norm in experiment three. 

Table 3.12 Experimental parameters for 

the model with ten processors 

Parameter Experiment 4 

9512 yr 8243 hr 24 min 
50 min 
5 min 
30 set 
0.99 

10-20 
norm residue 

We do not claim to be complete in the discussion of factors that have 
an impact on the speed of convergence of numerical techniques. We only 
presented some issues of practical relevance that have to be taken into account 
while considering convergence. The results presented are conditioned on the 
fact that other convergence dominating issues such as state ordering were not 
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800-- 

600~- 

Iterations 
400~- 

200~- 

01 0:2 0.4 0.6 0.8 1 

W 

Fig. 3.10 Number of iterations applying the square root norm llrjlz < 10m2’ of the 
residue in experiment four. 

taken into account. The methods could have been tuned further, of course, 
resulting in a different pattern of convergence. 





Steady-State 
Aggregation/ D&aggregation 

Methods 
In this chapter we consider two main approximation methods: Courtois’s 
decomposition method and Takahashi’s iterative aggregation/disaggregation 
method. 

4.1 COURTOIS’S APPROXIMATE METHOD 

In this section we introduce an efficient method for the steady-state analy- 
sis of Markov chains. Whereas direct and iterative techniques can be used 
for the exact analysis of Markov chains as previously discussed, the method 
of Courtois [Cour75, Cour77] is mainly applied to approximate computations 
u NN of the desired state probability vector u. Courtois’s approach is based 
on decomposability properties of the models under consideration. Initially, 
substructures are identified that can separately be analyzed. Then, an aggre- 
gation procedure is performed that uses independently computed subresults 
as constituent parts for composing the final results. The applicability of the 
method needs to be verified in each case. If the Markov chain has tightly cou- 
pled subsets of states, where the states within each subset are tightly coupled 
to each other and weakly coupled to states outside the subset, it provides a 
strong intuitive indication of the applicability of the approach. Such a sub- 
set of states might then be aggregated to form a macro state as a basis for 
further analysis. The macro state probabilities, together with the conditional 
micro state probabilities from within the subsets, can be composed to yield 
the micro state probabilities of the initial model. Details of the approach are 
clarified through the following example. 

153 
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4.1.1 Decomposition 

Since the method of Courtois is usually expressed in terms of a DTMC, where- 
as we are emphasizing the use of a CTMC in our discussion of methodologies, 
we would like to take advantage of this example and bridge the gap by choos- 
ing a CTMC as a starting point for our analysis. With the following model 
in mind, we can explain the CTMC depicted in Fig. 4.1. We assume a sys- 
tem in which two customers are circulating among three stations according 
to some stochastic regularities. Each arbitrary pattern of distribution of the 
customers among the stations is represented by a state. In general, if there 
are N such stations over which K customers are arbitrarily distributed, then 
from simple combinatorial reasoning we know that (“$“F’) = (“‘,“-‘) such 
combinations exist. Hence, in our example with N = 3 and K = 2 we have 

4 
0 2 = 6 states. 

Fig. 4.1 CTMC subject to decomposition. 

In state 020, for example, two customers are in station two, while stations 
one and three are both empty. After a time period of exponentially distributed 
length, a customer travels from station two to station one or station three. 
The transition behavior is governed by the transition rates ,921 or ~23 to states 
110 or 011, respectively. The transition behavior between the other states can 
be explained similarly. 

The analysis of such a simple model could be easily carried out by using one 
of the standard direct or iterative methods. Indeed, we use an exact method 
to validate the accuracy of the decomposition/aggregation approach for our 
example. We use the simple example to illustrate Courtois’s method. To this 
end, the model needs to be explored further as to whether it is nearly com- 
pletely decomposable, that is, whether we can find state subsets that represent 
tightly coupled structures. 

The application may suggest a state set partitioning along the lines of 
the customers’ circulation pat tern among the visited stations. This would 
be a promising approach if the customers are preferably staying within the 
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Fig. 4.2 Decomposition of the CTMC with regard to station three. 

Fig. 4.3 Decompositions of the CTMC with regard to stations two and one. 

bounds of a subset of two stations and only relatively rarely transfer to the 
third station, i.e., the most isolated one. All such possibilities are depicted 
in Fig. 4.2 and 4.3. In Fig. 4.2, station three is assumed to be the most 
isolated one, i.e., the one with the least interactions with the others. Solid 
arcs emphasize the tightly coupled states, whereas dotted arcs are used to 
represent the “loose coupling.” When customers are in the first station, they 
are much more likely to transit to the second station, then return to the 
first station, before visiting the third station. Hence, we would come up 
with three subsets {020,110,200}, {011, lOl}, and {002} in each of which the 
number of customers in the third station is fixed at 0, 1, and 2, respectively. 
Alternatively, in Fig. 4.3, we have shown the scenario where stations two and 
three are isolated. 

Now we proceed to discuss Courtois’s method on the basis of the set of 
parameters in Table 4.1. It suggests a decomposition according to Fig. 4.2. 
Clearly, the parameter values indicate strong interactions between stations 
one and two, whereas the third station seems to interact somewhat less with 
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Tab/e 4.1 Transition rates 

p12 = 4.50 1-121 = 2.40 p31 = 0.20 
p13 = 0.30 /A.23 = 0.15 jai32 = 0.20 

the others. This level of interaction should be reflected at the CTMC level 
representation. The corresponding infinitesimal generator matrix Q is given 
ES: 

Q= 

-4.80 4.50 0 0.30 0 0 
2.40 -7.35 4.50 0.15 0.30 0 

0 2.40 -2.55 0 0.15 0 
0.20 0.20 0 -5.20 4.50 0.30 

0 0.20 0.20 2.40 -2.95 0.15 
0 0 0 0.20 0.20 -0.40 

and is depicted symbolically in Table 4.2. 

Tab/e 4.2 Generator matrix Q of the CTMC 
structured for decomposition 

200 110 020 101 011 002 
I I 

200 -c l-412 0 P13 0 

110 P21 -c P12 CL23 Pl3 

020 0 1121 -c 0 P.23 

101 P31 P32 0 -c i-412 

011 0 P31 P32 P21 -c 

002 0 0 0 P31 l-W.2 

W3 

It is known from Eq. (3.5) that we can transform any CTMC to a DTMC 
by defining P = Q/q + I, with Q > maxi,jES I~ijl. Next we solve v = VP 
instead of 7rQ = 0 and we can assert that v = 7r. Of course, we have to fulfill 
the normalization condition vl = 1. For our example, the transformation 
results in the transition probability matrix as shown in Table 4.3, where q is 
appropriately chosen. 

Given the condition g > max;,j )g;jJ = 7.35, we conveniently fix 4 = 10. 
Substituting the parameter values from Table 4.1 in Table 4.3 yields the tran- 
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Tab/e 4.3 Transition-probability matrix P of the DTMC 
structured for decomposition 

157 

200 

110 

020 

101 

so11 

002 

200 110 020 101 011 002 

l-5 y  0 Lui 4 0 0 

l!Lzl l-5 y  y  y  0 4 

0 &LL 0 l!Lzi 0 4 1-F Q 

l!Ql fz!a2 0 4 Q 1-F y  l!aa 
Q 

0 .&u ?!siz &u 4 4 4 1-F y  

0 0 0 l!A3.l t&XL 4 4 1-F 

sition probability matrix P: 

0.52 0.45 0 0.03 0 0 
0.24 0.265 0.45 0.015 0.03 0 

P= 
0 0.24 0.745 0 

0.02 0.02 0 (4.1) 

0 0.02 0.02 0.24 0.705 0.015 
0 0 0 

As indicated, P is partitioned into I&! x M) number of submatrices PIJ, 
with A4 = 3 and 0 5 I, J 5 2 in our example. The submatrix with macro row 
index I and column index J is denoted by PIJ, while the elements of each 
submatrix can be addressed via double subscription PI Jij. The M diagonal 
submatrices PII represent for I = 0, 1,2 the interesting cases of zero, one, 
and two customers, respectively, staying in the third station. For example, 
the second diagonal submatrix Prr is: 

The elements of the submatrix can be addressed by the schema just intro- 
duced: pll 1,-, = 0.24. Since the indices I, 0 5 I 5 M - 1 are used to uniquely 
refer to subsets as elements of a partition of the state space S, we conveniently 
denote the corresponding subset of states by SI; for example, Sr = { 101,011). 

Of course, each diagonal submatrix could possibly be further partitioned 
into substructures according to this schema. The depth to which such mul- 
tilayer decomposition/aggregation technique is carried out depends on the 
number of stations N and on the degree of coupling between the stations. We 
further elaborate on criteria for the decomposability in the following. 



158 STEADY-STATE AGGREGATION/DlSAGGREGATlON METHODS 

A convenient way to structure the transition probability 
example is to number the states using radix K notation: 

matrix in our 

N N 

c 
kiKi, where c ki = K. 

i=l i=l 

where /Q denotes the number of customers in station i and N is the index 
of the least coupled station, i.e., the one to be isolated. For instance, in our 
example a value of 4 would be assigned to state 200 and a value of 12 to state 
011. Note that the states in Table 4.2 and 4.3 have been numbered according 
to this rule. 

The transition probability matrix in block form is given as: 

P= 

’ PO0 PO1 . . . PO(M-1) 

PlO Pll . . . Pl(M-1) 

PI0 . . . PIJ * ** PI(M-1) * (4.3) 

. 
. 

P(M-2)O . . * P(M-P)(M-1) 

,P(M-1)O . . * q&f-1)(&l) 

/ 

\ 

Generally, the partitioning of matrix P in submatrices PIJ is done as a 

function of the number of customers in the least, coupled station N. Given 
that K customers are in the system, there will be M = K + 1 diagonal 
submatrices. Each diagonal submatrix PII, 0 5 I 5 K, is then considered to 
be a basic building block for defining transition probability matrices P;I of a 
reduced system of N-l stations and K-I customers. For example, PT, would 
be used to describe a system with K - 1 customers circulating among N - 1 
stations, while one customer stays in station N all the time. The transitions 
from station N to all other stations would be temporarily ign0red.l In terms 
of our example, we would only consider transitions between states 101 and 
011. 

To derive stochastic submatrices, the transition probability matrix P is 
decomposed into two matrices A and B that add up to the original one. 
Matrix A comprises the diagonal submatrices PII, and matrix B the comple- 
mentary off-diagonal submatrices PIJ, I # J: 

P=A+B. (4.4) 

In our example, Eq. (4.4) has the following form: 

Ot 
‘Note that P11 is not a stochastic matrix; it has to be modified to obtain a stochastic 
matrix PT1. 
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/0.52 0.45 0 0.03 0 0 
0.24 0.265 0.45 0 0 0.015 0.03 0 

P= 0 0.24 0.745 0 0.015 0 
0.48 0.45 0.02 0.02 0 0.03 

0 0.24 0.705 0 0.02 0.02 0 0.015 
\ 0.96 0 0 0 0.02 0.02 0 I 

A B 

Since we wish to transform each diagonal submatrix PII into a stochastic 

matrix PT,, we need to define a matrix X, such that Eq. (4.5) holds and 
matrices P*, P&, . . . PT,-,)(,-,) are all stochastic: 

P*=(A+X)= 

There are multiple ways to define matrix X. Usually, accuracy and comput a- 
tional complexity of the method depend on the way X is defined. It is most 
important, though, to ensure that the matrices P;,,O 5 I 2 M - 1, are all 
ergodic, i.e., they are aperiodic and irreducible. Incorporating matrix X in 
matrix P, we get: 

P=(A+X)+(B-X) 

=p*+c. (4.6) 

In our example, we suggest the use of following matrix X in order to create 
a stochastic matrix P** . 

0 0 0.03 0 0 0 \ 

x= 

This gives us: 

P= 

'0.52 0.45 0.03 
0.24 0.31 0.45 
0.015 0.24 0.745 

0 

C 
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4.1.2 Applicability 

The applicability of Courtois’s method needs to be checked in each case. In 
general, partitioning of the state space and subsequent aggregation of the 
resulting subsets into macro states can be exactly performed if the DTMC 
under consideration has a lumpable transition probability matrix. In such a 
case, the application of Courtois’s method will not be an approximation. A 
transition probability matrix P = bij] is lumpable with respect to a partition 
of S in subsets SI, 0 5 1 5 n/r - 1, if for each submatrix PIJ,V’I, J,O 5 I # 
J 5 111 - 1 real-valued numbers 0 < ~IJ 5 1 exist such that Eq. (4.7) holds 
[KeSn78]: 

c PIJij = “+IJ, vi E SI. (4*7) 

jESJ 

Note that the diagonal submatrices PII need not be completely decoupled 
from the rest of the system, but rather the matrix has to exhibit regularities 
imposed by the lumpability condition in order to allow an exact aggregation. 
In fact, if the PII are completely decoupled from the rest of the system, i.e., 
the r~ J = 0, I # J, then this can be regarded as a special case of lumpability 
of P. More details on and an application example of state lumping techniques 
are given in Section 4.2, particularly in Section 4.2.2. 

From our example in Eq. (4.1), P is not lumpable with respect to the 
chosen partition. Hence Courtois’s method will be an approximation. A 
measure of accuracy can be derived according to Courtois from Eqs. (4.4) and 
(4.6). The degree E of coupling between macro states can be computed from 
matrix B = [bij] in Eq. (4.4). If E is sufficiently small it can be shown that 
the error induced by Courtois’s method is bounded by O(E). 

Let E be defined as follows: 

e=max 
iES 

Eq. (4.6) can be rewritten as: 

(44 

P=P*+&. (4-g) 

In our example, E can be computed to be: 

0.03 
0.015 0.03 + 

0.015 E = max i 0.02 0.02 0.03 = + + 1 0-07* 
0.02 t 0.02 0.015 t 

0.02 + 0.02 
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To prove that P is nearly completely decomposable, it is sufficient to show 
that Relation (4.10) holds between E and the maximum of the second largest 
eigenvalues A;(2) of P;, for all I, 0 5 I 5 M - 1 [Cour77]: 

E < 1 - maw IAl;@) 
2 - 

(4.10) 

For each PT,, the eigenvalues A; (k) can be arranged according to their decreas- 
ing absolute values: 

IW)I > IJw>l > *-* > Im-wl~ (4.11) 

Since P;,, 0 5 I 5 2, are all stochastic, we can immediately conclude 
Ix;(l)( = 1 f or all I. In our example, the eigenvalues of the three diago- 
nal submatrices: 

need to be computed. The eigenvalues of P&, are the roots of the following 
equation: 

(0.52 - A;) 0.45 0.03 
det(P& - X:1) = 0.24 (0.31 - Xi) 0.45 

0.015 0.24 (0.745 - A;) 

= (XT - 1)(x; - 0.595)(x; + 0.02) 

= 0, 

where I denotes the identity matrix. The resulting eigenvalues of P& are 
arranged according to their absolute value as: 

Ix;(l)j = 1, Ix;(a)/ = 0.595, IX;;(3)1 = 0.02. 

The eigenvalues of PT 1 are determined by the solution of: 

det(PT, - XTI) = 
(0.48 - A;) 0.52 

0.295 (0.705 - A;) 

= (A; - 1)(X; - 0.185) 

= 0, 
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which, in turn, gives: 

IXi(l)I = 1 and IXi(2)l = 0.185. 

The eigenvalue of P&, immediately evaluates to: 

Ix;(l)1 = 1. 

With the second largest eigenvalues computed, we can examine whether 
decomposability Condition (4.10) holds: 

m;xjJI;(2)/ = max od5ps8\ 
L 1 

= 0.595 

0.07 = E < 1 - maxl IX”;(Z)1 
2 

- 
o.o7=e< 

1 0.595 
2 = 0.2025. 

Because E < 0.2025, Condition (4.10) holds and the transition probabili- 
ty matrix P is nearly completely decomposable with respect to the chosen 
decomposition strategy depicted in Fig. 4.2. 

4.1.3 Analysis of the Substructures 

As a first step toward the computation of the approximate state probability 
vector v” w u, we analyze each submatrix P;I separately and compute the 
conditional state probability vector Y;, 0 5 I 5 M - 1: 

qp;, - I) = 0, up= 1. (4.12) 

Thus V; is the left eigenvector of Pf, corresponding to the eigenvalue X;(l) = 
1. Substituting the parameters from P& of our example, the solution of 

(0.52 - 1) 0.45 0.03 
(yg*cv vo*P 42) - 0.24 (0.31 - 1) 0.45 = 0, YZl = 1 

0.015 0.24 (0.745 - 1) 

yields the conditional steady-state probabilities 
to the corresponding macro state 0: 

of the micro states aggregated 

z&, = 0.164, u& = 0.295, l& = 0.54. 

Similarly, PT, is used in 

( 40’4,) - ( 
(0.48 - 1) 0.52 

0.295 (0.705 - 1) > 
=o, VT1 = 1 
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to obtain the conditional state probabilities 
the corresponding macro state 1: 

of the micro states aggregated to 

l& = 0.362, z& = 0.638. 

Finally: 

to 
Nearly completely decomposable systems 
“long-term” and “short-term” behavior: 

can be characterized with respect 

l From a “short-term” perspective, systems described by their probability 
transition matrix P can be decomposed into M independent subsystems, 
each of whose dynamics is governed by a stochastic process approximate- 
ly described by the matrices PF, , O<I<M---1. Asanoutcomeof 
the analyses of A4 independent subsystems the conditional micro-state 
probability vector VT results. 

l In the “long run,” the impact of the interdependencies between the 
subsystems cannot be neglected. The interdependencies between sub- 
systems, or macro states, I and J, for all I, J, are described by the 
transition probabilities IIJ that can be - approximately - derived from 
the transition probability matrix P and the conditional state probability 
vector UT. Solving the transition matrix P = [I’,J] for the macro states 
yields the macro-state probability vector y. The macro-state probability 
vector y can, in turn, be used for unconditioning of UT, 0 5 I 5 Ad- 1, to 
yield the final result, the approximate state probability vector V” * V. 

4.1.4 Aggregation and Unconditioning 

Having obtained the steady-state probability vector for each subset, we are 
now ready for the next step in Courtois’s method. The transition probability 
matrix over the macro states, T’ = [I’ 1~ is approximately computed as: ] 

(4.13) 

Comparing Eq. (4.13) with the lumpability Condition (4.7), it is clear that the 
I’IJ can be exactly determined if the model under consideration is lumpable, 
that is: 

hJ = rIJT (4.14) 

holds, independent of v;. 
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In our example, the macro-state transition probabilities I~J are derived 
according to Eq. (4.13): 

roe = 40. (PO000 + PO001 + poo()J + z&. (pool0 + pool1 + POO12) 
+ 42. (PO020 + PO021 + poo22) = 0.9737, 

l-b1 = uto* (PO100 +Po101) + V&b (poll0 + POlll) 

+ 42. (Po120 + ~01~~) = 0.0263, 

r02 = 40. (P0200) + vile (p02~~) + uT3- (pozzo) = 1 - roe _ rol = 0, 

ho = 40. ho00 + moo1 + PlOo2) + z&. (plolo + PIOll + plo12) = 0.04, 

‘ll = ‘TO* hloo + Pllol) + &* (JIlllo + pllll) = 0.9396, 

r12 = 1 -ho - rll = 0.0204, 

r20 = 40’ (P2000 + p2001 + p2002) = 0, 

I721 = G (Pa100 + p2101) = 0.04, 
h3 = 1 - r20 - r21 = 0.96. 

Accordingly, the macro-state transition probability matrix r is: 

0.9737 0.0263 0 
I?= 0.04 0.9396 0.0204 

0 0.04 0.96 

The next step is to compute the macro steady-state probability vector y 
using: 

Yr=Y, yl= 1. (4.15) 

In our example, Eq. (4.15) results in: 

(0.9737 - 1) 0.0263 
(YO/YlrY2) 0.04 (0.9396 - 1) 0.0:04 = 0, yl = 1, 

0 0.04 (0.96 - 1) 

from which the macro steady-state probabilities are calculated as: 

YO = 0.502, yl = 0.330, y2 = 0.168. 

The final step is to obtain the approximate steady-state probabilities for 
the original model. For convenience, the elements of the state probability 
vector vz E u are partitioned along the lines of the decomposition strategy. 
Hence, we refer to the elements of V” = [v?J in compliance with the usual 
notation in this context. The unconditioning in Eq. (4.16) of the VT is to be 
performed for all macro states I: 

qi = YI’TiT 0 5 I 5 M - 1 and V’i E SI (4.16) 
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Tab/e 4.4 State probabilities computed using Courtois’s method and exact ones 

State Probability Formula Approx. Exact % Error 

200 6J Yo& 0.0828 0.0787 + 5.2 
110 Gl You;1 0.1480 0.1478 + 0.1 
020 G2 70 u; 2 0.2710 0.2777 - 2.4 
101 +I Yl$o 0.1194 0.1144 + 4.4 
011 U1”l Yl& 0.2108 0.2150 - 2.0 
002 UF Y2$ 0.1680 0.1664 + 0.1 

The use of Eq. (4.16) in our example gives the results summarized in 
Table 4.4. For the sake of completeness, the exact state probabilities are 
also shown for comparison. 

For models with large state spaces, Courtois’s method can be very efficient 
if the underlying model is nearly completely decomposable. If the transition 
probability matrix obeys certain regularity conditions the results can be exact. 
The error induced by the method can, in principle, be bounded [CoSe84]. But 
since the computational complexity of this operation is considerable, a formal 
error bounding is often omitted. The efficiency of Courtois’s method is due to 
the fact that instead of solving one linear system of equations of the size of the 
state space S, several much smaller linear systems are solved independently, 
one system for each subset SJ of the partitioned state space S, and one for 
the aggregated chain. 

We conclude this section by summarizing the entire algorithm. For the 
sake of simplicity, only one level of decomposition is considered. Of course, 
the method can be iteratively applied on each diagonal submatrix P;,. 

4.1.5 The Algorithm 

Create the state space and organize it appropriately according to 
of decomposition. 

Build the transition probability matrix P (by use of randomization 
P = Q/q+1 if the starting point is a CTMC), and partition P into 

AL! x M number of submatrices PIJ, 0 2 I, J, 5 M - 1, appropriately. 

Verify the nearly complete decomposability of P according to Rela- 
with the chosen value of E. 

Decompose P such that P = P* + EC according to Eq. (4.9). 
Matrix P* contains only stochastic diagonal submatrices P;,, and E is a mea- 
sure of the accuracy of Courtois’s method. It is defined as the maximum sum 
of the entries of the non-diagonal submatrices PIJ, I # J, of P. 

For each I, 0 5 I 5 M - 1, solve equation $PT, = 
vT1 = 1 to obtain the conditional state probability vectors UT. 

UT with 
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Compute the coupling between the decomposed macro states: 

-1 Generate the transition probability matrix I’ = [l?~,] according 
to Eq. (4.13). 

-1 Solve Eq. (4.15) to obtain the macro steady-state probability 
vector y. 

Compute the approximate steady-state probability vector zP of 
the micro states by unconditioning of the conditional state probability vectors 
vT,O 5 I < &! - 1, according to Eq. (4.16). 

From v” compute steady-state performance and dependability mea- 
sures along the lines of a specified reward structure. 

Problem 4.1 Verify that the transition probability matrix from Eq. (4.1) 
is not lumpable according to the chosen partition. 

Problem 4.2 Recall Eq. (4.7) and modify the parameters in Table 4.1 of 
the example in Fig. 4.1 such that the resulting model is lumpable and nearly 
completely decomposable. Derive the generator matrix according to Table 4.2 
and the transition probability matrix according to Table 4.3 for the resulting 
model. 

Problem 4.3 Discuss the relationship between lumpability and nearly 
complete decomposability. Under what condition does Courtois’s method 
yield the exact state probabilities if the model is both lumpable and nearly 
completely decomposable ? As a hint, compare Eq. (4.13) with lumpability 
Condition (4.7) and relate it to Eq. (4.16). 

Problem 4.4 Modify Courtois’s method such that it becomes directly 
applicable for an analysis of CTMCs. Apply the new algorithm directly, that 
is, without using uniformization, to the original model in Fig. 4.1 and solve 
for the steady-state probability vector. 

4.2 TAKAHASHI’S ITERATIVE METHOD 

Although closely related to and under some circumstances even coinciding 
with Courtois’ approach, Takahashi’s method [Taka75] differs substantially 
both with respect to the methodology used and the applicability conditions. 
While Courtois’s method is non-iterative and is applied for the approximate 
computation of the steady-state probability vector v” for a given ergodic 
DTMC (or 7rTx in the case of a CTMC), Takahashi’s iterative method allows 
a computation of the exact state probability vector. (Note that numerical 
errors are still encountered even in such “exact” methods. The method is exact 
in that there are no modeling approximations.) To allow a straightforward 
comparison of the two methods, we prefer a continued discussion in terms of 
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DTMCs. Recall that any given ergodic CTMC can easily be transformed into 
an ergodic DTMC. 

Much like Courtois’s method, Takahashi’s approach is to partition the state 
space S into M disjoint subsets of states Sr c S, 0 5 I 5 iVl - 1 such that 
each subset Sr is aggregated into a macro state I. The criteria, however, 
used to cluster states differ in the two approaches. The calculation of tran- 
sition probabilities IIJ among the macro states I and J is performed on the 
basis of conditional micro-state probability vector V; and the originally given 
transition probabilities pij, or PI Jij according to Eq. (4.13). With Courtois’s 
method, the conditional probability vectors UT, given partition element I, can 
be separately computed for each subset of micro states SI, 0 5 I 5 M - 1, if 
the original model is nearly completely decomposable. By contrast, in Taka- 
hashi’s method, the partitioning of the state space is performed on the basis 
of approximate lumpabiEity.2 

Note that if the state space is approximately lumpable with respect to a 
partition, it does not necessarily imply that the subsets are nearly decoupled as 
needed in Courtois’s approach. As an immediate consequence, the conditional 
micro-state probabilities cannot be calculated independently for each subset 
of states. Instead, the complementary subset of states and the interactions 
with this complement is taken into account when approximating conditional 
micro-state probabilities of a partition element. The whole complementary 
set is aggregated into a single state representing all external interactions from 
the states within the particular subset. Since the micro-state probabilities as 
well as the macro-state probabilities are not known in the beginning, initial 
estimates are needed. The macro- and micro-state probabilities are iteratively 
calculated with Takahashi’s method. Aggregation and disaggregation phas- 
es are repeated alternately until some convergence criterion is satisfied. By 
adding an extra computational step, Schweitzer [Schw84] shows that geomet- 
ric convergence can be guaranteed. Usually, the extra computation takes the 
form of a power or a Gauss-Seidel iteration step. 

4.2.1 The Fundamental Equations 

Our discussion of Takahashi’s method is based on that given by Schweitzer 
[Schw84]. Further details can also be found in [Stew94]. Let a given state 
space S be partitioned into M subsets: 

M-l 

s= u SI and &nsJ=& VI#J, O<I,JLM-1. (4.17) 
I=0 

2While lumpability has been introduced in Eq. (4.7), approximate lumpability is defined 
later in Section 4.2.2. 
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Formally, the macro-state probability vector y could be calculated from the 
micro-state probability vector v for each component I of the vector: 

YI= -& O<I<M-1. (4.18) 
iESI 

Since u is not known in advance, Eq. (4.18) cannot be directly used. The 
macro-state probabilities can be derived, however, if the macro-state transi- 
tion probability matrix I? = [I’IJ] were known via the solution of Eq. (4.19): 

y = yr, yl = 1. (4.19) 

The implied aggregation step is based on iterative approximations of the 
probabilities uTi of states i E SI given an estimate vx of the micro-state 
probability vector: 

(4.20) 

Therefore, from Eq. (4.20), and Eq. (4.13), th e macro-state transition proba- 
bilities ~IJ can be approximated as: 

(4.21) 

For the disaggregation step, the probabilities rli of transitions from macro 
state I to micro state i are pairwise needed for all 0 5 I 5 M - 1 and for all 
i E S. The transition probabilities rli can be derived from Eq. (4.21) and are 
given by Eq. (4.22): 

. (4.22) 

To complete the disaggregation step, the micro-state probabilities vi are ex- 
pressed in terms of macro-state probabilities ye and transition probabilities 
l?r; for each subset of states Sr separately. To accomplish this task, [SI] linear 
equations need to be solved for each subset SI : 

M-l 

vi = 
c UjPji + c YKrKi, vi E sI. (4.23) 

jESI K=O,K#I 

The second term in Eq. (4.23) represents the aggregation of the complemen- 
tary subset of macro states into a single external “super” state and the inter- 
actions in terms of transition probabilities with this state. 
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Macro-state probability vector Eq. (4.19), together with transition prob- 
ability aggregation steps as given in Eq. (4.21), constitute one major part 
of Takahashi’s method, the aggregation step. Micro-state probability vector 
Eq. (4.23), together with transition probability disaggregations, as indicated 
in Eq. (4.22), f orm the other major part of Takahashi’s method, the disaggre- 
gation step. 

4.2.2 Applicability 

Given partition: 

M-l 

s= u SJ, 

J=O 

a subset Sr is lumpable if and only if real-valued constants rrj exist such that 
condition (4.24) holds Vj E S - SI: 

pii=rIi ViESI. (4.24) 

Condition (4.24) is necessary and sufficient for the lumpability of SI with 
respect to S - SI. The lumpability condition may be restated by referring to 
Eq. (4.7) if pairwise lumpability is required such that real-valued constants 
rI J exist and Condition (4.25) holds V’I, J, 0 5 I # J 5 A4 - 1: 

Vi E SI. (4.25) 

If the state space can be partitioned such that the lumpability condition 
holds for all pairs of subsets SI, SJ c S, then Takahashi’s algorithm termi- 
nates in one iteration with the exact state probability vector V. Unfortunately, 
lumpability implies very strict structural limitations on the underlying Markov 
model. More often, however, Markov chains exhibit approximate lumpability 
such that there exists a sufficiently small lumpability error E: 

M-l 

E= (4.26) 
J=O,J#I iESI ~ESJ 

Lumpability error E is a measure for the speed of convergence of Takahashi’s 
method. The problem remains, however, to find a good partitioning among 
the states of a given DMTC. Some hints concerning convergence and state 
space partitioning can be found in Stewart’s book [Stew94]. The underly- 
ing Markov models of some so-called product-form queueing networks, which 
are discussed in Chapter 7, exhibit the exact lumpability property. F’urther- 
more, the lumpability equations can be exploited theoretically to investigate 
accuracy of approximate product-form queueing network algorithms. 
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In general, the efficiency of Takahashi’s method can benefit from an exploi- 
table structure of the underlying transition probability matrix. This fact, 
however, imposes the burden on the user of finding a good clustering strategy, 
and no generally applicable rule is known for a good clustering strategy. Final- 
ly, it is worth mentioning that approximate lumpability is different from weak 
lumpability, which can be applied for an aggregation-disaggregation based 
transient analysis of CTMCs. A comprehensive study on lumpability and 
weak lumpability is presented by Nicola [NicoSO]. 

4.2.3 The Algorithm 

Since convergence of Takahashi’s method is a non-trivial problem, some care is 
needed here. We follow an approach that is often applied to enforce geometric 
convergence, namely, to incorporate an intermediate power, Gauss-Seidel, or 
SOR step between successive aggregations and disaggregations. If the decrease 
in residual error is not sufficient from iteration to iteration, such a step is 
suggested to be included in the computation. Usually, the corresponding 
condition is stated in terms of a real-valued lower improvement bound c, 0 < 
c < 1 on the error ratio from iteration step n - 1 to iteration step n: 

residualerror (~(“1) 

residualerror (~(~-l)) ’ ‘* 
(4.27) 

The complete algorithm is presented as Fig. 4.4. 

4.2.4 Application 

We demonstrate Takahashi’s method with the same example used in Sec- 
tion 4.1 to illustrate Courtois’s method to allow an easy comparison of the 
numerical behavior of the two algorithms. Recall that we considered a net- 
work in which two customers were circulating among three stations according 
to some stochastic regularities. The resulting state transition diagram of the 
set S of six states was depicted in Fig. 4.1. Again, we will apply the decompo- 
sition strategy indicated in Fig. 4.2 and partition S into three disjoint subsets: 
So = {020,110,200}, Si = (011, lOl}, and S:! = (002). Arranging the states 
in the same order as defined in Table 4.3 and using the same numbers in our 
example results in the following transition probability matrix: 

P= 

L 

0.52 0.45 0 0.03 0 
0.24 0.265 0.45 0.015 0.03 0 

0 0.24 0.745 0 
0.02 0.02 0 0.48 0.45 

(4.28) 

0 0.02 0.02 0.24 0.705 0.015 
0 0 0 0.02 
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Create the state space 9 and organize it appropriately according to a pattern 
09 decomposition along the lines of approximate fumpability into transition 
probabiJ.ity matrix P = [PJJ~~]. 

fnitiaLioation: 
a) r1.:=0; 
b) estimate Y(O); 
c> choose c andO<c<l; 
d) choose some vector-norm function f([i, . .I/); 

f (w”’ - V’“‘Pfl) 2 E 

,(nf = v’P; 

n:=n+l; 

according to Eq. (4.211; 
b) solve yfle) = yfn)I’(nf accordjag to Eq. (4.19); 

Disa&gregation for all 0 5 15 kf -1: 

a) calculate I?$’ = &g, ,a, tt’j E S 
kES1 Vk 

according to Eq. (4.22); 
b) calculate VP’ = furi] with Eq. (4,23) by solving the system of 
equations : 

(n) 
yi = & fpP$i + K=~p?ifYl;)rg. vi E SIi 

I 

Normalizat foa : 
With v(n) = ~(;l’ 

E 3 
from the previous step solve; v(“)l=l, 

Fig. 4.4 Takahashi’s algorithm. 



172 STEADY-STATE AGGREGATiON/DlSAGGREGATlON METHODS 

It has been shown that the transition probability matrix P in Eq. (4.28) is 
nearly completely decomposable so that Courtois’s method could be applied. 
We now investigate the lumpability error induced for the same partition with 
respect to approximate lumpability as defined in Eq. (4.26). To calculate the 
lumpability error, we first let I = 0, J = 1 and denote with EIJ the inner sum: 

601 = c c xi - & c c Pij 
iESo jESl iESo jESl 

= o o3 _ 0.03 + 0.015 + 0.03 + 0.015 
3 

0.015 0.03 0.03 + 0.015 + 
+ 

+ 0.03 + 0.015 - 
3 

+ o 015 _ 0.03 + 0.015 + 0.03 + 0.015 
3 

= IO.03 - 0.031 + 10.045 - 0.031 + 10.015 - 0.031 

= 0 + 0.015 + 0.015 0.03. = 

Similarly, we get: 

E()g = 0. 

Therefore, by letting I = 0, J # I, the total lumpability error is given by: 

ql = EOl + 602 = 0.03 + 0 = 0.03. 

For the other elements of the partition, we get: 

El = 0.015, E2 = 0. 

With: 

E= o<t-ia-i-l ~1 = max{0.03,0.015,0} = 0.03, 
-- 

measures can be derived for the speed of convergence if Takahashi’s method 
is applied with respect to the given partition of S = U”,=, SI. 

4.2.4.1 Aggregation With the initial probability vector: 

y(O) = y(0) = ( 111111 
$$g’ g’s’ g 7 

> 

the first aggregation step, i.e., the computation of 

r(l) = ri:’ 
[ I 
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can be accomplished according to Eq. (4.21). As an example, the calculation 

of r$) is shown: 

r(l) = $ * lxo~ij 00 

= 5 + (0.52 + 0.45 + 0.24 + 0.265 + 0.45 + 0.24 + 0.745) 

= ; * 2.91 = 0.97. 

Thus, in the first aggregation step, we get the following macro-state tran- 
sition probability matrix: 

0.97 0.03 0 
I’(‘) = 0.04 0.9375 0.0225 . (4.29) 

0 0.04 0.96 

Then the macro-state probability vector y(l) is given by the solution of the 
following system of linear equations: 

-0.03 0.03 0 
# 7 p, # 0.04 -0.0625 0.0225 = 0, y(l)1 = 1. (4.30) 

0 0.04 -0.04 

From Eq. (4.30) we obtain the macro-state probabilities up to the fourth 
decimal digit: 

y(l) = (0.4604,0.3453,0.1943) . (4.31) 

4.2.4.2 Disaggregation In the first part of the disaggregation step, transition 
probabilities I’if’, are computed: 

IT\:) = Jjo.02 + io = 0.01, r&) = 0. 

From there we compute: 

(1) - Vo - c vJ(%jo + 71 r10 (1) (1) + -iil)ral,) 
j=o,1,2 

= (z@ 0.52 + vi’). 0.24 + v;l’ * 0) + (0.3453.0.01 + 0.1943.0) 

= (@ - 0.52 + vi’)- 0.24 + z@ 0) + 0.003453. 
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The remaining transition probabilities from macro states to micro states are 
summarized as follows: 

To complete disaggregation in the first iteration step, the following three 
sets of equations, for { vir), vi’), Vil)}, {Vi”, Vi” }, and { $)) need to be solved 
separately for a calculation of micro-state probabilities: 

VO ('I = (z@0.52 + $)-0.24) + 0.003453, 

*1 ('I = (~$0.45 + i+O.265 + z@O.24) + 0.006906, 

V2 (l) = (zp.0 + up. 0.45 + up. 0.745) + 0.003453, 

V3 (') = (z&O.48 + ~$0.24) + 0.010792, 

v4 (l) = (zp.O.45 + zp.O.705) + 0.010792, 

(1) _ 
V5 

(1) 
- (u5 ~0.96) + 0.00776925. 

With the solutions of these systems of equations and the normalization con- 
dition: 

vQ)l = 1, 

the probability vector Y(‘) at the end of the first iteration with a precision up 
to the fourth digit is: 

Y(‘) = (0.0812,0.1486,0.2753,0.1221,0.1864,0.1864) . (4.32) 

In Table 4.5, the micro-state probabilities obtained after one iteration of 
Takahashi’s method are compared to the results gained if Courtois’s method is 
applied. The percentage error in the results obtained with Courtois’s approach 
are also included in the table. It can be seen that even after the first iteration 
step, the results are already relatively close to the exact values. After four 
iterations, the results gained with Takahashi’s method resemble the exact 
values up to the fourth decimal digit. 

4.2.5 Final Remarks 

Takahashi’s method was presented in terms of DMTCs. However this choice 
implies no limitation since it is a well-known fact that ergodic DTMCs and 
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Table 4.5 State probabilities: Takahashi’s, Courtois’s and exact methods 

State y(O) y(l) y(2) y(3) y(4) Exact % Error(‘) % Errod4) 

200 0.166 0.0785 0.0787 0.0787 0.0787 0.0787 - 0.3 0.0 
110 0.16g 0.1436 0.1476 0.1478 0.1478 0.1478 - 2.8 0.0 
020 0.166 0.2660 0.2770 0.2777 0.2777 0.2777 - 4.2 0.0 
101 0.166 0.1179 0.1146 0.1144 0.1144 0.1144 + 3.1 0.0 
011 0.166 0.2138 0.2150 0.2150 0.2150 0.2150 - 0.6 0.0 
002 0.16G 0.1801 0.1672 0.1665 0.1664 0.1664 + 8.2 0.0 

State Courtois Exact % Error 

200 0.0828 0.0787 + 5.2 
110 0.1480 0.1478 + 0.1 
020 0.2710 0.2777 - 2.4 
101 0.1194 0.1144 + 4.4 
011 0.2108 0.2150 - 2.0 
002 0.1680 0.1664 + 0.1 

CTMCs are equivalent with respect to their steady-state probability compu- 
tations, when applying the transformations given in Eq. (3.6) and Eq. (3.5). 
But Takahashi’s method can be more conveniently applied directly on the 
generator matrix Q = [qij] of a CTMC. As usual, we refer to the steady-state 
probability vector of the given micro-state CTMC through z or VP, respec- 
tively. In the continuous-time case, the resulting equations correspond directly 
to their discrete-time counterparts. Instead of using Eq. (4.19), the macro- 
state probability vector o is now calculated based on infinitesimal generator 
matrix Z of the continuous-time macro state process: 

o=aq al= 1. (4.33) 

The matrix entries CIJ of X are calculated with an interpretation corre- 
sponding to the one applied to Eq. (4.21): 

I # J. (4.34) 

The disaggregation steps are analogous to Eq. (4.22) and Eq. (4.23) VI, 0 5 
Igvi-1: 

CIj = c 

c 

eqij - ) j E SJ, J # I, 
iESI kESI “g 

(4.35) 

jES,j#i jESr,j#i J=O, J#I 
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Problem 4.5 Compare Courtois’s method to Takahashi’s method for nu- 
merical accuracy on the example studies performed in Sections 4.1 and 4.2.4. 
In particular, explain the observed numerical differences in the corresponding 
macro-state transition probability matrices r, in the corresponding macro- 
state probability vectors y, and in the corresponding micro-state probability 
vectors u. 

Problem 4.6 Apply decomposition with regard to station two, as indi- 
cated in Fig. 4.3, to the DTMC underlying the discussions in Sections 4.1 
and 4.2.4. Build up and organize a transition probability matrix that proper- 
ly reflects the chosen strategy of decomposition. Calculate the approximate 
lumpability error E according to Eq. (4.26)) compare it to the results obtained 
in Section 4.2.4, and interpret the differences. 

Problem 4.7 Apply Takahashi’s algorithm on the basis of the decomposi- 
tion strategy with regard to station two, as discussed in the previous problem. 
Compare the resulting macro-state transition probability matrices, the macro- 
state probability vectors, and the micro-state probability vectors obtained in 
the iteration step to those obtained under the original decomposition strategy 
in Section 4.2.4. Comment on and interpret the results. 

Problem 4.8 Use the modified algorithm of Takahashi and apply it for 
a numerical analysis of the CTMC specified by its generator matrix Q in 
Table 4.2 and the parameters in Table 4.1. Apply the same partition as 
indicated in Table 4.2. 



5 
Transient Solution of 

Markov Chains 

Transient solution is more meaningful than steady-state solution when the 
system under investigation needs to be evaluated with respect to its short- 
term behavior, Using steady-state measures instead of transient measures 
could lead to substantial errors in this case. Furthermore, applying transient 
analysis is the onl y choice if non-ergodic models are investigated, Transient 
analysis of Markov chains has been attracting increasing attention and is of 
particular importance in dependability modeling. 

Unlike steady-state analysis, CTMCs and DTMCs have to be treated differ- 
ently while performing transient analysis. Surprisingly, not many algorithms 
exist for the transient analysis of DTMCs. Therefore, we primarily focus on 
methods for computing the transient state probability vector r(t) for CTM- 
Cs as defined in Eq. (2.53). Furthermore, additional attention is given to the 
computation of quantities related to transient probabilities such as cumulative 
measures. 

Recall from Eq. (2.53) that for the computation of transient state proba- 
bility vector n(t), the following linear differential equation has to be solved, 
given infinitesimal generator matrix Q and initial probability vector m(O): 

d7r (t> 
dt = m(t)Q, ~(0) = (Mom,. . .> . (54 

Measures that can be immediately derived from transient state probabil- 
ities are often referred to as instantaneous measures. However, sometimes 
measures based on cumulative accomplishments during a given period of time 

177 
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Fig. 5.1 A pure birth process. 

[0, t) could be more relevant. Let: 

t 

L(t) = 
.I 

7r(U)dU 

0 

denote the vector of the total expected times spent in the states of the CTMC 
during the indicated period of time. By integrating Eq. (2.53) on both sides, 
we obtain a new differential equation for L(t): 

dW - = L(t)Q + r(O), 
dt 

L(0) = 0. 

Cumulative measures can be directly computed from the transient solution 
of Eq. (5.2). 

5.1 TRANSIENT ANALYSIS USING EXACT METHODS 

We introduce transient analysis with a simple example of a pure birth process. 

5.1.1 A Pure Birth Process 

As for birth-death processes in steady-state case, we derive a transient closed- 
form solution in this special case. Consider the infinite state CTMC depicted 
in Fig. 5.1 representing a pure birth process with constant birth rate X. The 
number of births, N(t), at time t is defined to be the state of the system. The 
only transitions possible are from state Ic to state k + 1 with rate X. Note 
that this is a non-irreducible Markov chain for any finite value of X, so the 
steady-state solution does not exist. 

From Fig. 5.1, the infinitesimal generator matrix Q is given by: 

Due to the special structure of the generator matrix, it is possible to obtain a 
closed-form transient solution of this process. With generator matrix Q and 
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Eq. (2.53), we derive a system of linear differential equations for our example: 

With the initial state probabilities: 

‘Irk(O) = 
{ 

1 Ic=o, 

0 k>l, 

(5.3) 

(54 

(5.5) 

the solution of the differential equations can be obtained. From differentiation 
and integration theory the unique solution of Eq. (5.3) is: 

7ro(t) = emAt. (5.6) 

By letting k = 1 in Eq. (5.4) and subsequently substituting the solution 
for TO(~) into the differential equation, we get: 

$m(t) = -k(t) + xTo(t) 
= -hrl(t) + Xesxt. 

Applying again elementary differentiation and integration 
ent i al equation results in another simple unique solution: 

rules to this differ- 

If this process is repeated, 
state probability i~~k(t): 

nl(t) = AtemAt. (5.7) 

we get a closed-form solution for each transient 

--Xt, k > 0 
- * 

The proof of Eq. (5.8) is straightforward using the principle of induction 
and we leave it as an exercise to the reader. We recognize Eq. (5.8) as the 
Poisson pmf. Poisson probabilities are plotted as functions of t in Fig. 5.2 
for several values of X. Thus, the random variable N(t) at time t is Poisson 
distributed with parameter X-L, while the stochastic process {N(t)It 2 0) is the 
Poisson process with rate X. So the transient analysis of a very simple birth 
process provided as a by-product one of the most important results of Markov 
chain and queueing theory, i.e., the stochastic process under consideration is 
the Poisson process. One important measure of the Poisson process is its 
mean value function m(t), defined as the expected number of births in the 
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1 

0.8 

fig. 5.2 Selected Poisson probabilities with parameters X = 0.5 and 1.0. 
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interval [0, t). This measure is computed as: 

181 

m(t) = 2 i7r$) = 2 i y+ 
i=o i=o * 

e-xt 
2 (W1 -(At) = (Xt)cAt 2 y (5.9) = 
izl (i - v i=o * 

= (Xt)emxtex” = At. 

Eq. (5.8) together with Eq. (5.9) characterize the Poisson pmf and its mean 
At. 

Problem 5.1 Using the principle of mathematical induction, show that 
the Poisson pmf as given in Eq. (5.8) is the solution to Eq. (5.4). 

Problem 5.2 Derive the solution of Eq. (5.2) of the pure birth process of 
Fig. 5.1, assuming no(O) = 1 and ~(0) = 0, V’k > 1. 

5.1.2 A Two-State CTMC 

While in the previous section transient analysis based on closed-form expres- 
sions was possible due to very simple and regular model structure, in this sec- 
tion we carry out closed-form transient analysis of a CTMC with two states. 
Our treatment closely follows that in [STP96]. Fig. 5.3 shows a homoge- 
neous, continuous time Markov chain model for this system with state space 
S = (0, 1). A typical application of this model is to a system subject to failure 
and repair. 

Fig. 5.3 A simple two-state CTMC. 

The generator matrix of the CTMC of Fig. 5.3 is: 

Q=[ ;’ :A]. 

From the system of Eqs. (2.51), we get: 

&o(t) = -P-o(t) + h(t), 
d 

p(t) = wo(t> - h(t). (5.10) 
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Applying the law of total probability, we conclude: 

To@> = 1 - w(t), 

and rewrite Eq. (5.10) as: 

$1(t) = p(1 - 7r1(t)) - h(t) 

or: 

d 
g1 (t> + (P + +h(q = p. 

A standard method of analysis for linear differential Eq. (5.11) is to use 
the method of integrating factors [RaBe74]. Both sides of the (rearranged) 
equation are multiplied by the integrating factor: 

to get: 

p&+W = &+W d --gl(t) + (p + X)e(p+x)trl(t) (5.12) 

(5.13) 

By inspection of Eq. (5.12) it can be seen that the sum expression on the right 
side of the equation equals the derivative of the product of the subterms so 
that Eq. (5.13) results. Integrating Eq. (5.13) on both sides gives us as an 
intermediate step: 

I-L -e(CL+‘Jt + c = e(P+‘b 
PL+X 

71‘1(t). (5.14) 

Multiplying Eq. (5.14) with: 

,++w 

provides the desired result: 

w(t) = 5 + ce-(P+X)t (5.15) 

Integration constant c reflects the dependency of the transient state prob- 
abilities on the initial probability vector m(O). Assuming, for example: 

7r(l)(O) = (0,l) , 

results in: 

1 = r(l) (0) = 1 
5 + ce-(P+x)o 

=- 
pL+c* 
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Thus, unconditioning with an initial pmf 7r(l)(O) yields the corresponding 
integration constant: 

c=l- P x -I- 
Pu+X p+X’ 

The final expressions of the transient state probabilities in this case results 
in: 

@(t) = L p+x+p+x x (,++X)t) ) 
7&t> = 1 - 7p(t) 

p + X p + X (e--(p+X)t) =-- 
I-L+X ,w+X 

= X - X (e--(p+X)t) 

PL+X 
x = - - X (e-(P+h)t) . 

p+x p+x 

(5.16) 

(5.17) 

With a closed-form expression of the transient state probabilities given, per- 
formance measure can be easily derived. 

Problem 5.3 First, derive expressions for the steady-state probabilities 
of the CTMC shown in Fig. 5.3 by referring to Eq. (2.58). Then, take the 
limits as t -+ 00 of the transient pmf z(‘)(t) and compare the results to the 
steady-state case 7r. 

Problem 5.4 Derive the transient state probabilities of the CMTC shown 
in Fig. 5.3 assuming initial pmf rrc2)(0) = (0.5,0.5). Take the limit as t + 00 
of the resulting transient pmf 7rc2)(t) and compare the results to those gained 
with 7r(‘)()) when taking the limit. 

Problem 5.5 Assume the system modeled by the CTMC in Fig. 5.3 to be 
“up” in state 1 and to be “down” in state 0. 

(a) Define the reward assignments for a computation of availability measures 
based on Table 2.1. 

(b) Derive formulas for the instantaneous availability A(t), the interval 
unavailability UA( t) , and the steady-state availability A for this model, 
based both on 7r(‘)(t) and 7rc2)(t). Refer to Section 2.2.2.3.1 for details 
on how these availability measures are defined. 

(c) Let p = 1, X = 0.2 and compute all measures that have been specified 
in this problem. Evaluate the transient measures at time instants t E 
{1,2,3,5,10>. 
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computations with small numbers, a left truncation point 1 can be introduced. 
To this end an overall error tolerance E = ~1 +E, is partitioned to cover both left 
and right truncation errors. Applying again a vector norm, a left truncation 
point 1 can be determined similarly to the right truncation point r: 

1-l 
c e-qt (qtY - 5 El. 
i=O 

i! 
(5.24) 

With appropriately defined truncation points I and r as in Eqs. (5.23) and 
(5.24), the original uniformization Eq. (5.21) can be approximated for an 
implement at ion: 

7r(t) 73 2 v(i)emqtq, Y(0) = 7T(O). 
i=l 

. 
(5.25) 

In particular, O(a) terms are needed between the left and the right 
truncation points and the transient DTMC state probability vector Y(Z) must 
be computed at the left truncation point 1. The latter operation according 
to Eq. (5.22) requires O(qt) computation ‘time. Thus the overall complexity 
of uniformization is 0 (qqt) [ReTr88]. (Here q denotes the number of non- 
zero entries in Q.) To avoid underflow, the method of Fox and Glynn can 
be applied in the computation of Z and r [FoG188]. Matrix squaring can be 
exploited for a reduction of computational complexity [ReTr88, AbMa93]. But 
because matrix fill-ins might result, this approach is often limited to models 
of medium size (around 500 states). 

5.1.4.2 Stiffness Tolerant Uniformiza tion As noted, uniformization is plagued 
by the stiffness index qt [ReTr88]. Muppala and Trivedi observed that the 
most time consuming part of uniformization is the iteration to compute y(i) 
in Eq. (5.22). But this iteration is the main step in the power method for 
computing the steady-state probabilities of a DTMC as discussed in Chap- 
ter 2. Now if and when the values of y(i) converge to a stationary value ti, 
the iteration Eq. (5.22) can be terminated resulting in considerable savings 
in computation time [MuTr92]. We have also seen in Chapter 2 that speed 
of convergence to a stationary probability vector is governed by the second 
largest eigenvalue of the DTMC, but not by qt. However, since the proba- 
bility vectors v(i) are computed iteratively according to the power method, 
convergence still remains to be effectively determined. Because an a priori 
determination of time of convergence is not feasible, three cases have to be 
differentiated for a computation of the transient state probability vector z(t) 
[MuTr92, MMT94] : 

1. Convergence occurs beyond the right truncation point. In this case, com- 
putation of a stationary probability vector is not effective and the tran- 
sient state probability vector ?r(t) is calculated according to Eq. (5.25) 
without modification. 
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1. Convergence occurs beyond the truncation point, that is, c > r. As a 
consequence, Eq. (5.29) remains unaffected and must be evaluated as is. 

2. If convergence occurs before truncation point, Eq. (5.29) is adjusted to: 

L(t) = k fy v(i)L’(t) 
2=0 

= f 5 v(i)L’(t) + TV 2 L’(t) 
2=0 kc+1 

= ; $ v(i)L’(t) + fv(c) 2 L’(i) - 2 L’(t) 
a=0 ( i=o i=O ) 

= ig (3 ‘( > 
a=0 

u 8 L t +$44 (91-@f(t)) 

= ; 2 u(i) 
i=o 

(l-ge-qq 

+$44 iqt-g (1-$0tQ$)), (5.30) 

with 

In case truncation needs to be performed, a time-dependent error-bound 
estimate d’)(t) related to Eq. (5.29) can be given as a function of the trun- 
cation point r. Assuming an error tolerance allowance, the corresponding 
number of required terms r can be determined: 

&9(t) 5 I 2 2 e-G y 
q i=r+1j=i+1 ’ 

5; ,g (i-(r+l))e-qty 

z=?-+1 

< l cc 
i 

- 

G i=r+1 
c 

ie-ql(;) --f ,e (r+l)e-d$ 

- z=r+1 

(d r+l O3 
&cqtll-- 

c 
(?-qt Glv 

i==T . 
q i=r+l 

i! * 
(5.31) 
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5.1.5 Other Numerical Methods 

We briefly discuss numerical methods based on ordinary differential equation 
approach followed by methods exploiting weak lumpability. 

5.1.5.1 Ordinary Differential Equations Standard techniques for the solution 
of ordinary differential equations (ODE) can be utilized for the numerical 
solution of the Kolmogorov differential equations of a CTMC. Such ODE 
solution methods discretize the solution interval into a finite number of time 
intervals {ti, 62,. . t’ t }. The difference between successive time points, *, Z?“‘? 7% 
called the step size h, can vary from step to step. There are two basic types 
of ODE solution methods: explicit and implicit. 

In an explicit method, the solution rr(ti) is approximated based on values 
7r(tj) for j < i. The computational complexity of explicit methods such 
as Runge-Kutta is O(qqt) [ReTr88]. Although explicit ODE-based methods 
generally provide good results for non-stiff models, they are inadequate if stiff 
models need to be studied. Note that stiff CTMCs are commonly encountered 
in dependability modeling. 

In an implicit method, r(ti) is approximated based on values n;TT( tj) for 
j 5 i. Examples of implicit methods are TR-BDF2 [ReTr88] and implicit 
Runge-Kutta [MMT94]. At each time step a linear system solution is required 
in an implicit method. The increased overhead is compensated for by bet- 
ter stability properties and lower computational complexity on stiff models 
[MMT94, ReTr88]. 

For non-stiff models, Uniformization is the method of choice, while for mod- 
erately stiff models, uniformization with steady-state detection is recommend- 
ed [MMT94]. For extremely stiff models, TR-BDF2 works well if the accuracy 
required is low (eight decimal digits). For high accuracy on extremely stiff 
models, implicit Runge-Kutta is recommended [MMT94]. 

5.1.5.2 Weak Lumpability An alternative method for transient analysis based 
on weak lumpability has been introduced by Nicola [NicoSO]. Nicola’s method 
is the transient counterpart of Takahashi’s steady-state method, which was 
introduced in Section 4.2. Recall that state lumping is an exact approach for 
an analysis of a CMTC with reduced state space and, therefore, with reduced 
computational requirements. State lumping can be a very efficient method 
for a computation of transient state probabilities, if the lumpability condi- 
tions apply. Note that state lumping can also be orthogonally combined with 
other computational methods of choice, such as stiff uniformization, to yield 
an overall highly accurate and efficient method. 

For the sake of completeness, we present the basic definitions of weak 
lumpability without going into further detail here. Given conditional proba- 
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previously described state partition: 

L 

A00 Aol . . . AOF 

Al0 41 . . . &F 

Q= ; . . 

A(F-1)0 e-S QF-1 
AFO . . . AF(F-1) *i 

. . (5.35) 

A(F-l)F 

AFF 

Let Qr = Q~r,l 5 I 5 F - 1, denote submatrices containing transition 
rates between grouped states within fast recurrent subset Sr only. Subma- 
trices AIJ, I # J, contain entries of transitions rates from subset SI to SJ. 
Finally, Ace and AFF collect intra slow states and intra fast transient states 
transition rates, respectively. 

Matrices Qr , 1 5 I 5 F - 1, contain at least one fast entry in each row. 
Furthermore, there must be at least one fast entry in one of the matrices 
AFI, 0 5 I 5 F - 1 if SF # 8. Matrix AFF may contain zero or more fast 
entries. Finally, all other matrices, i.e., Aoo,&J,-~ # J,O L I L F-LO 5 
J < F, cant ain only slow entries. By definition, only slow transitions are 
possible among these subsets SI and S J. An approximation to r(t) is derived, 
where n(t) is the solution to the differential Eq. (5.36): 

The reorganized matrix Q forms the basis to create the macro-state gen- 
erator matrix X. Three steps have to be carried out for this purpose: first, 
aggregation of the fast recurrent subsets into macro states and the correspond- 
ing adaptation of the transition rates among macro states and remaining fast 
transient states, resulting in intermediate generator matrix %. In a second 
step, the fast transient states are eliminated and the transition rates between 
the remaining slow states are adjusted, yielding the final generator matrix 
X. Finally, the initial state probability vector ~(0) is condensed into a(O) 
as per the aggregation pattern. Transient solution of differential Eq. (5.37) 
describing the long-term interactions between macro states is carried out: 

$7(t) = tT(t)lx, (5.37) 

g(o) = (~Oo(~),~~~,~O,,_,(~),~l(~),~~~,~F-l(~)) a 

Once the macro state probability vector o(t) has been computed, disag- 
gregations can be performed to yield an approximation r”(t) of the complete 
probability vector n(t). 

5.2.2 Aggregation of Fast Recurrent Subsets 

Each subset of fast recurrent states is analyzed in isolation from the rest of the 
system by cutting off all slow transitions leading out of the aggregate. Col- 
lecting all states from such a subset S’I and arranging them together with the 
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corresponding entries of the originally given infinitesimal generator matrix Q 
into a submatrix &I gives rise to the possibility of computing the conditional 
steady-state probability vectors XT, 1 < I 5 F - 1. Since &I does not, in 
general, satisfy the properties of an infinitesimal generator matrix, it needs to 
be modified to matrix QT: 

Q;=QI+DI. (5.38) 

Matrix DI is a diagonal matrix whose entries are the sum of all cut-off 
transition rates for the corresponding state. Note that these rates are, by 
definition, orders of magnitude smaller than the entries on the diagonal of 
Qr. The inverse of this quantity is used as a measure of coupling between the 
subset Sr and the rest of the system. 

Since Q: is the infinitesimal generator matrix of an ergodic CMTC, the 
solution of: 

$Q; = 0, 7rp = 1 (5.39) 

yields the desired conditional steady-state probability vector X; for the subset 
of fast states SI. For each such subset SI, a macro state I is defined. The set 
of aggregated states {I, 1 5 I 5 F - I}, constructed in this way, together with 
the initially given slow states Se form the set of macro states niir = SoU{I, 1 5 
I 5 F - 1) for which a transient analysis is performed in order to account for 
long-term effects among the set of all macro states. 

To create the intermediate generator matrix 2 of size (]1M( + no) x (]A!!] + 
no), unconditionings and aggregations of the transition rates have to be per- 
formed. The dimensions [no x 7251 of submatrices 21~ are added to the cor- 
responding equations in what follows. Let us define matrices of appropriate 
size: 

E= 

1 
1 

. . . 

. . . 1 

containing 1s only as entries. The following cases are d 

l Transitions remain unchanged among slow states 

istinguished: 

in Se: 

zoo = Aoo, [no x no] * (5.40) 

0 nanSitiOnS involving fast transient states from SF: 

- Transitions between slow states and fast transient states, and vice 
versa, remain unchanged: 

EFO = AFO, [nF x 7201 7 (5.41) 

EOF =AoF, [no x nF]. (5.42) 
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a way that it reflects the partitioning into macro states and fast transient 
states: 

(5.49) 

If no fast transient states are included, then X = Z already constitutes the 
final generator matrix. In any case, a transient analysis can be carried out 
based on a model with reduced state space. Although the intermediate model 
may still be stiff because fast and slow states are still simultaneously included, 
the computational savings can be considerable due to smaller state space. 
But more aggregation is possible, as is highlighted in the following section. 
With 2 given, a differential equation can be derived for the computation of 
the transient state probability vector 3(t), conditioned on initial probability 
vector 8(O): 

$=(t) = 5(t)%, (5.50) 

w> = (km.. . ,~o,,~Jo>,~l(o), . . * ,&?-1(0),aF,(0), . . . ,i?F,F-l(o)) . 

5.2.3 Aggregation of Fast Transient Subsets 

Recall that a fast transient subset of states is connected to states in other 
subsets by at least one fast transition. Thus if such a set is not nearly com- 
pletely decomposable from the rest of the system, it is tightly coupled to at 
least one other non-empty subset of states. 

Now consider an intermediate state space consisting of a non-empty fast 
transient subset of states SF c S, and the set of macro states n/r = SoU{I, 1 5 
I 5 F - l} resulting from aggregation of fast recurrent subsets and collecting 
them together with the slow states. Furthermore, assume the intermediate 
transition rates among the states in MU SF to be already calculated as shown 
in the previous section. 

From Eq. (5.50) and Eq. (5.49)) the following two equations can be derived: 

(5.51) 

(5.52) 

It is reasonable to assume that for the fast transient states, the derivative on 
the left-hand side of Eq. (5.52) approaches zero (i.e., d/d-G-~(t) = 0), with 
respect to the time scale of slow states. Hence from Eq. (5.52) we obtain an 
approximation of 0~ : 
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Using the result from Eq. (5.53) in Eq. (5.51) provides us with the following 
approximation: 

(5.54) 

= c+gf(t) (2 MM - ~M&%M 
> 

(5.55) 

= +z(t)k;,. (5.56) 

Hence, E x %EM is taken as the infinitesimal generator matrix of the final 
aggregated Markov chain. Bobbio and Trivedi [BoTr86] have shown that: 

(5.57) 

is the asymptotic exit probability matrix from the subset of fast transient 
states SF to macro states M. The matrix entries of PFM = bi~(O, oo)] ,i E 
SF, I E AI are the conditional transition probabilities that the stochastic 
process, once initiated in state i at time t = 0 will ultimately exit SF and hit 
macro state I E 44 as time t -+ co. These probabilities are used to adjust 
the transition rates among macro states during elimination of fast transient 
states. The interpretation is that the fast transient states form a probabilistic 
switch in the limit, and the time spent in these sets of states can be neglected 
in the long run. Furthermore, related to this assumption, the exit stationary 
probability will be reached in a period of time much smaller than the time 
scale characterizing the dynamics among the macro states. The error induced 
by this approximation is inversely proportional to the stiffness ratio. 

For the sake of completeness, it is worth mentioning that the entries in 
matrix I!ZMF from Eq. (5.55) denote exit rates, leading from macro states in 
AL! via the probabilistic switch, represented by matrix PFM Eq. (5.57),_back 
to macro states. Hence, the rate matrix YZMFPFM is simply added to XMM 
in Eq. (5.55) to obtain the rate adjustment. 

5.2.4 Aggregation of Initial State Probabilities 

Since the transient analysis is performed only on the set of macro states M, the 
initial probability vector ~(0) must be adjusted accordingly. This adjustment 
is achieved in two steps. First, the probability mass z1(0) assigned to micro 
states i E ,571, which are condensed into a single macro state I, is accumulated 
for all I, 1 5 I 5 F - 1: 

61(O) = 7rI(O)l. (5.58) 

Second, if SF # 8, then the probability mass ?TF(O) assigned to the fast 
transient states SF is spread probabilistically across the macro states A4 
according to rule implied by the probabilistic switch PFM given in Eq. (5.57): 

5;(O) = &(O)+TF(O)PFM. (5.59) 



AGGREGATION OF STIFF MARKOV CHAINS 197 

Depending on SF, the initial probability vector a(O) is given by 5; (0) accord- 
ing to Eq. (5.58) or by 5(O) according to Eq. (5.59). 

The aggregation part has now completely been described. With this tech- 
nique, the transient analysis of large stiff Markov chains can be reduced to the 
analysis of smaller non-stiff chains. Transient analysis is accomplished only 
for the macro states in the model, be it either the initially present slow states 
or the macro states resulting from an aggregation of fast recurrent subsets of 
states. The accuracy of the method is inversely proportional to the stiffness 
ratio of the initial model. 

With the assumption that steady state is reached much quicker for the 
fast states than for the slow states, further approximations become possible. 
Applying certain disaggregation steps, approximations of the transient fast 
state probabilities can also be derived, thus resulting in a complete state 
probability vector. 

5.2.5 Disaggregations 

525.1 Fast Transient States With the approximate macro state probability 
vector &E(t), obtained as the solution of Eq. (5.56), the approximate fast 
transient state probability vector 8:(t) can be derived easily with a transient 
interpretation of Eq. (5.53): 

*F(t) = -c&(t)&&;;. (5.60) 

With: 

c = b;(t)l+ iqtp, (5.61) 

normalization can be taken into account for computation of a probability 
vector so that the first disaggregation step is accomplished, leading to the 
intermediate transient state probability vector u - =(c) (t) as an approximate 
solution of Eq. (5.50): 

b(t) z ec) (t) = i (i?%(t), a;(t)) . (5.62) 

5.2.5.2 Fast Recurrent States In a second disaggregation step, the transient 
micro-state probability vector m”(t) is also calculated as an approximation of 
n(t), which is formally defined as the solution of Eq. (5.36), incorporating the 
original infinitesimal generator matrix Q from (5.35). For a computation of 
7?(t) = @y(t)), we need to refer to the conditional micro-state probability 
vectors 7r; = (7rT0,. . . ,7r;,1P1 ), 1 5 I < F - 1, from Eq. (5.39). The transient - 
macro-state probabilities ar(t), 1 5 I 5 F - 1, are used to uncondition the 
conditional steady-state probability vectors $, 1 5 I 5 F - 1: 

7rr(t) z 7ry (t) = (ar(t)-$) . (5.63) 
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If SF # 0 unconditioning has to be performed on the basis of b(t) z 
&“)(t) according to Eq. (5.62): 

7Q(t) x Try (4 = ( p $ (4 ) . (5.64) 

Collecting all the intermediate results from Eq. (5.62) and Eq. (5.64) yields 
the final approximate transient probability vector in its most general form: 

= 
( p(t),Ty(t), . . . ,7r~-l(t),ti~~c~(t)) . (5.65) 

If SF = 8 then Eq. (5.65) simplifies to the following: 

7(t) E5 7P (t> = (ab&), . * * 7 ~o,,-l (4, 

(5.66) 

5.2.6 The Algorithm 

Initialization: 

l Specify r >> l/T, the transition rate threshold, as a function of the 
time horizon T for which the transient analysis is to be carried out. 

l Partition the state space S into slow states SO and fast states S - SO 
with respect to r. 

l Partition the fast states S - So further into fast recurrent subsets Sl, 1 5 
I < F - 1 and possibly one subset of fast transient states SF. 

l Arrange the infinitesimal generator matrix Q according to Eq. (5.35). 

Steady-state analysis of fast recurrent subsets: 

l Prom submatrices Q1 (Eq. (5.35)), bt 0 ain infinitesimal generator matri- 
ces Q; according to Eq. (5.38). 

l Compute the conditional micro state probability vectors $ according to 

Construction of the intermediate generator matrix 2 as in Eq. (5.49): 

l Use Q from Eq. (5.35) and n;, 1 5 I 5 F - 1 from Eq. (5.39) and apply 
operations starting from Eq. (5.40) through Eq. (5.48). 
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Aggregation of fast transient states: 

l IF SF # 8 

- THEN perform aggregation of fast transient states and construct -- 
E;M: 

* Compu_te the probabilistic switch PFM according to Eq. (5.57) 
and ELM according to Eq. (5.55) and Eq. (5.56) from 2. 

* x=%~&f. 

- ELSE X = 2:. 

Aggregation of the initial state probability vector a(O): 

l Accumulate initial probabilities ~1, (0) 0 micro states i E SI into 61(O), 1 5 f 
Is F - 1 according to Eq. (5.58). 

l IF SF # 8 

- THEN calculate approximate initial macro-state probability vector 
o(0) = 5$(O) according to Eq. (5.59). 

- ELSE a(O) = k(O) according to Eq. (5.58). 

Computation of the transient macro-state probability vector a(t): 

l Solve Eq. (5.37). 

Disaggregations: 

- THEN 

* Compute intermediate transient state probability vector 6(t) 
according to Eq. (5.62). 

* Compute the approximate micro-state probability subvectors n?(t) 
by unconditioning of $ according to Eq. (5.64) for all 1 < I 5 
F - 1. 

- ELSE compute ?ry(t) by unconditioning of 7rT according to Eq. (5.63) 
for all 1 5 I 5 F - 1. 

Final result: 

l Compose the approximate transient probability vector r(t) w n”(t) 
according to Eq. (5.65) if SF # 0 or Eq. (5.66) if SF = 8. 
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5.2.7 An Example: Server Breakdown and Repair 

Assume a queueing system with a single server station, where a maximum of m 
customers can wait for service. Customers arrive at the station with arrival 
rate X. Service time is exponentially distributed with mean I/,X Further- 
more, the single server is subject to failure and repair, both times to failure 
and repair times being exponentially distributed with parameters y and 6, 
respectively. It is reasonable to assume that X and /J differ by orders of mag- 
nitude relative to y and 6. Usually, repair of a failed unit takes much longer 
than traffic-related events in computer systems. This condition is even more 
relevant for failure events that are relatively infrequent. While traffic-related 
events typically take place in the order of micro seconds, repair durations are 
in the order of minutes, hours, or days, and failure events in the order of 
months, years, or multiple thereof. Thus, the transition rates X and p can be 
classified as being fast, and y and S as slow. Note that we are interested in 
computing performance measures related to traffic events so that for the rate 
threshold, the relation r < S < y generally holds and the application of the 
aggregation/disaggregation approach is admissible. 

The described scenario is captured by a CTMC with a state space S = 
{(M),O L 1 I m,k E {OJ}}, w h ere Z denotes the number of customers in the 
queue and Ic the number of non-failed servers, as depicted in Fig. 5.4a. The 
state space S is partitioned according to the classification scheme applied to 
the rates, into a set of slow states Se, a set of fast recurrent states Si, and a 
set of fast transient states SF = S2: 

SO = {(m,W, 

Sl = {(O, I>, (1,1>, -. . , Cm, I)), 

S2 = {(0,0),(1,0),-,(m- LO)}. 

For the case of m = 2, the following state ordering is used in compliance with 
the partitioning: 

lo 11 12 20 21 

& (071) (171) c&l> W) (LO) * 

To complete initialization, the infinitesimal generator matrix Q, m = 2, is 
restructured accordingly to reflect the partitioning: 

Q= 

-6 
-(x0+?) 

0 s 0 0 
0 x 0 Y 0 

0 P -(X+Y+P) Y 
Y 0 P -(cw t 0 
0 6 0 0 -(A + S) 
x 0 s 0 0 -(AA+ 6) 1 

. 
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birth-death process as described by QT : 

0 - x i 
lq = l-; 3’ i = 

0 

0, 1, . . . ) 2. 

CL 
l- ; 

To aggregate the set of fast recurrent states Sr into macro state 1, $ 
is used to derive the intermediate infinitesimal generator matrix 2 for the 
reduced state space {(2,0), 1, (O,O), (1,O)). By applying Eq. (5.40) through 
Eq. (5.48): 

-4 s 0 0 

g= G,r -Y G,Y xi,? 
0 s -(X+6) x 
x 6 0 -(A + S) 

Matrix 2 represents the CTMC as depicted in Fig. 5.4b for the case of 

m = 2. For an aggregation of the fast transient states, first 2,; and the 
probabilistic switch P FM are calculated from 9 according to Eq. (5.57): 

With 2 and PFM given, I= = 2” MM can be easily derived using some algebraic 
manipulation according to Eq. (5.55) and Eq. (5.56): 

where X/(X + S) d enotes the probability that a new customer arrives while 
repair is being performed, and y (X/(X + s>)2-i is the probability that a failure 
occurs when there are i customers present and that m - i customers arrive 
during repair. 

An initial probability vector ~(0) = (0, 1, 0, . . . , 0) is assumed, i.e., ~1~ = 1. 
This condition implies a(0) = (0,l) in Eq. (5.58) and Eq. (5.59). From 
Eqs. (5.16) and (5.17) we know symbolic expressions for the transient state 
probabilities of a two-state CTMC, given an initial pmf r(O). We can therefore 
apply this result by substituting the rates from I% into these expressions. By 
letting: 

2 x 

( ) 

2-i 
cl=ypri xs6 ’ 

i=o 
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we get the following macro-St ate probabilities: 

ao(t> = 1 - a(t), 
s 

m(t) = G + 
& (,++a) . 

Finally, disaggregations must be performed. Given &c(t) = a(t), Eq. (5.60) 
needs to be evaluated for a computation of the fast transient probability vec- 
tor: 

( 

i 
= m(t)~dm&j (Q +$J). A+6 

Next, normalization is accomplished with help of c according to Eq. (5.61): 

c= 1+01(t)& (6 (1+&J +c). 

The intermediate transient state probability vector a(t) from Eq. (5.62) fol- 
lows immediately : 

( 

i 
W) = ; 1 - ol(t),~l(t),~l(t)~,~l(t)~ (Q +r:l)). x + 6 

The final step consists of unconditioning the micro-state probability vector 
$: 

01 w 
7qt) = - 

C 
( TTo’ 4,) 12 7r* ) . 

Collecting all the results provides an approximation m%(t) to the transient 
probability vector, which is represented as the transpose: 

7r(t) 73 n”(t) = 
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From the transient state probabilities, all the performance measures of interest 
can be calculated. 

Table 5.2 Parameter set for Table 5.2. 

6 Y x I-1 

0.01 0.0001 0.5 1 

The exact transient state probability vector n(t) is compared to the approx- 
imate state probability vector m”(t) at time instants t = 10,100 and 1000 
in Table 5.2, with the parameter set from Table 5.1. (Note that the initial 
probability vectors are chosen as has been specified earlier.) The results of 
the approximate method are generally very close to the exact values for most 
states. Usually, the accuracy depends on the length of the investigated time 
horizon for a transient analysis. Short-term results are particularly dependent 
on the initial probability vector so that some more significant differences can 
arise as in the case of state (2,O) in our example, where the absolute state 
probabilities are rather small, and hence the percentage difference is high. 
Furthermore, whether the error is positive or negative may change over time. 

0.008 

0.006 

0.004 

0.002 
8 

A 
Q 
5 0 

2 
2 

-0.002 

-0.004 

-0.006 

-0.008 I I 
I #I Y 

0.0001 0.001 0.01 

Fig. 5.5 Errors of the approximate method as a function y. 
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Table 5.2 State probabilities as a function of time: exact vs. approximate 

Exact r(t) 

No. State t=o t = 10 t = 100 t = 1000 

0 
ii>;; 

0 0.00067567 0.00601869 0.00962544 
lo 

(1:1) 
1 0.57099292 0.56777268 0.56567586 

11 0 0.28540995 0.28392083 0.28289339 
12 Gw 0 0.14264597 0.14201127 0.14152880 
20 (ON 0 0.00011195 0.00011134 0.00011092 
21 (170) 0 0.00016354 0.00016484 0.00016421 

Approx zTM (t) 

No. State t=o t = 10 t = 100 t = 1000 

0 cw> 0 0.00092448 0.00611894 0.00962543 
lo 0.571429 0.57074200 0.56777400 0.56577100 
11 0.285714 0.28537100 0.28388700 0.28288600 
12 0.142857 0.14268500 0.14194400 0.14144300 
20 0 0.00011191 0.00011133 0.00011094 
21 0 0.00016567 0.00016481 0.00016423 

Absolute error Error % 

No. State t = 10 t = 100 t = 1000 t = 10 t = 100 t = 1000 

0 -2.488e-04 -l.O03e-04 le-08 -36.8242 -1.66564 0.00010 
lo 2.509e-04 -1.32e-06 -9.514e-05 0.04394 -0.00023 -0.01682 
11 3.895e-05 3.383e-05 7.39e-06 0.01365 0.01192 0.00261 
12 -3.903e-05 6.727e-05 8.58e-05 -0.02736 0.04737 0.06062 
20 4e-08 le-08 -2e-08 0.03573 0.00898 -0.01803 
21 -2.13e-06 3e-08 -2e-08 -1.30243 0.01820 -0.01218 

The impact of different degrees of stiffness on the accuracy of the results 
are indicated in Table 5.3 and in Fig. 5.5. In particular, the empirical results 
depicted in Fig. 5.5 support the assumption of the approximation being better 
for stiffer models. Almost no error is observed if y 5 10v4, while the error 
substantially increases for the less stiff models as y gets larger. The results 
depend on the three different parameter sets given in Table 5.4. A closer look 
at Fig. 5.5 reveals a non-monotonic ordering of the degree of accuracy. Let 
y = 0.01, then the worst result is obtained for the largest 6, that is, S = 0.1 
in state (2, l), as anticipated. But this behavior does not occur for y < 0.001, 
where the approximate probability is closer to the exact value for S = 0.1 than 
for 6 = 0.01. Similar patterns can be observed in other cases, as well. 

Problem 5.6 Verify the construction of the intermediate infinitesimal gen- 
erator matrix & in the example study by applying Eq. (5.40) through Eq. (5.48) 
for each submatrix of Q in the indicated way. 
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Table 5.4 Parameter set for Table 5.3 

Experiment 6 Y x I-L 

;i; 0.001 0.01 0.0001 0.001 0.5 1 
(3) 0.1 0.01 

full, in which case they must be rejected. Use this probability to calculate the 
eflective arrival rate X,, defined as X minus the rejected portion of arrivals. 
Use Little’s law to calculate the average response time. 

Problem 5.10 Apply the aggregation technique for the transient anal- 
ysis of stiff Markov chains of this section to the example in Section 4.1 
and derive the approximate transient probability vector. Assume ~(0) = 

( 
111111 
g7 g’g’g, g7 g ), evaluate the approximate transient state probability vector 

at time instances t E {1,2,3,5, lo}, and compare the results to those obtained 
by applying Courtois’s method and to the exact results. 





6 
Single Station Queueing 

Systems 

A single station queueing system, as shown in Fig. 6.1, consists of a queueing 
buffer of finite or infinite size and one or more identical servers. Such an 
elementary queueing system is also referred to as a service station or, simply, 
as a node. A server can only serve one customer at a time and hence, it is 

Arriving 
Jobs 

Departing 
Jobs 

Servers 

Fig. 6.1 Service station with m servers (a multiple server station). 

either in a “busy” or an “idle” state. If all servers are busy upon the arrival 
of a customer, the newly arriving customer is buffered, assuming that buffer 
space is available, and waits for its turn. When the customer currently in 
service departs, one of the waiting customers is selected for service accord- 
ing to a queueing (or scheduling) discipline. An elementary queueing system 
is further described by an arrival process, which can be characterized by its 
sequence of interarrival time random variables {Al, As, . . s}. It is common 
to assume that the sequence of interarrival times is independent and iden- 
tically distributed, leading to an arrival process that is known as a renewal 
process [Triv82]. Recent work on correlated interarrival times can be found 
in [LucaSl] and [Luca93]. The distribution function of interarrival times can 
be continuous or discrete. We deal only with the former case in this book. 

209 
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For information related to discrete interarrival time distributions, the reader 
may consult recent work on discrete queueing networks [Dadu96]. 

The average interarrival time is denoted by E[A] = TA and its reciprocal 
by the average arrival rate X: 

The most common interarrival time distribution is the exponential, in which 
case the arrival process is Poisson. The sequence {Bi, &, + . +} of service times 
of successive jobs also needs to be specified. We assume that this sequence 
is also a set of independent random variables with a common distribution 
function. The mean service time E[B] ’ d is enoted by TB and its reciprocal by 
the service rate ,X 

6.1 KENDALL’S NOTATION 

The following notation, known 
elementary queueing systems: 

as Kendall’s notation, is widely used to describe 

(6.2) 

A/B/m - queueing discipline, 

where A indicates the distribution of the interarrival times, B denotes the 
distribution of the service times, and m is the number of servers (m 2 1). 
The following symbols are normally used for A and B: 

M Exponential distribution (memoryless property) 
EI, Erlang distribution with Ic phases 
Hk Hyperexponential distribution with k phases 
Ck Cox distribution with k phases 
D Deterministic distribution, i.e., the interarrival time 

or service time is constant 
G General distribution 
GI General distribution with independent interarrival times 

Due to proliferation of high-speed networks, there is considerable inter- 
est in traffic arrival processes where successive arrivals are correlated. Such 
non-G1 arrival processes include Markov modulated Poisson process (MMPP) 
[FiMe93] or batch Markovian arrival process (BMAP) [LucaSl]. Queueing sys- 
tems with such complex arrival processes have also been analyzed [Luca93]. 
Except for an example of the use of MMPP, we do not consider such queueing 
systems in this book. 

The queueing discipline or service strategy determines which job is select- 
ed from the queue for processing when a server becomes available. Some 
commonly used queueing disciplines are: 
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FCFS (First-Come-First-Served): If no queueing discipline is given in the 
Kendall notation, then the default is assumed to be the FCFS disci- 
pline. The jobs are served in the order of their arrival. 

LCFS (Last-Come-First-Served): The job that arrived last is served next. 

SIR0 (Service-In-Random-Order): The job to be served next is selected at 
random. 

RR (Round Robin): If the servicing of a job is not completed at the end of 
a time slice of specified length, the job is preempted and returns to the 
queue, which is served according to FCFS. This action is repeated until 
the job service is completed. 

PS (Processor Sharing): This strategy corresponds to round robin with infini- 
tesimally small time slices. It is as if all jobs are served simultaneously 
and the service time is increased correspondingly. 

IS (Infinite Server): 
ever forms. 

There is an ample number of servers so that no queue 

Static Priorities: The selection depends on priorities that are permanently 
assigned to the job. Within a class of jobs with the same priority, FCFS 
is used to select the next job to be processed. 

Dynamic Priorities: The selection depends on dynamic priorities that alter 
with the passing of time. 

Preemption: If priority or LCFS discipline is used, then the job currently 
being processed is interrupted and preempted if there is a job in the 
queue with a higher priority. 

As an example of Kendall’s notation, the expression 

M/G/l - LCFS preemptive resume (PR) 

describes an elementary queueing system with exponentially distributed inter- 
arrival times, arbitrarily distributed service times, and a single server. The 
queueing discipline is LCFS where a newly arriving job interrupts the job 
currently being processed and replaces it in the server. The servicing of the 
job that was interrupted is resumed only after all jobs that arrived after it 
have completed service. 

Kendall’s notation can be extended in various ways. An additional param- 
eter is often introduced to represent the number of places in the queue (if the 
queue is finite) and we get the extended notation: 

A/B/m/K - queueing discipline, 

where K is the capacity of the station (queue + server). This means that if 
the number of jobs at server and queue is K, a newly arriving job is lost. 
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6.2 PERFORMANCE MEASURES 

The different types of queueing systems are analyzed mathematically to deter- 
mine performance measures from the description of the system. Because a 
queueing model represents a dynamic system, the values of the performance 
measures vary with time. Normally, however, we are content with the results 
in the steady-state. The system is said to be in steady state when all tran- 
sient behavior has ended, the system has settled down, and the values of the 
performance measures are independent of time. The system is then said to 
be in statistical equilibrium, i.e., the rate at which jobs enter the system is 
equal to the rate at which jobs leave the system. Such a system is also called 
a stable system. Transient solutions of simple queueing systems are available 
in closed-form, but for more general cases, we need to resort to Markov chain 
techniques as described in Chapter 5. Recall that the generation and the 
solution of large Markov chains can be automated via stochastic reward nets 
[MuTr92]. 

The most important performance measures are: 

Probability of the Number of Jobs in the System rk: It is often pos- 
sible to describe the behavior of a queueing system by means of the 
probability vector of the number of jobs in the system rk. The mean 
values of most of the other interesting performance measures can be 
deduced from 7’rk: 

xk = P[there are Ic jobs in the system]. 

Utilization p: If the queueing system consists of a single server, then the 
utilization p is the fraction of the time in which the server is busy, i.e., 
occupied. In case there is no limit on the number of jobs in the single 
server queue, the server utilization is given by: 

mean service time arrival rate X 
P= = 

mean interarrival time 
I-* 

service rate p (6.3) 

The utilization of a service station with 
fraction of active servers. Since mp is the 

p=X 
v’ 

multiple servers is the mean 
overall service rate: 

(64 

and p can be used to formulate the condition for stationary behavior 
mentioned previously. The condition for stability is: 

PC 1, (6.5) 

i.e., on average the number of jobs that arrive in a unit of time must 
be less than the number of jobs that can be processed. All the results 
given in Chapters 6-10 apply only to stable systems. 
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Throughput A: The throughput of an elementary queueing system is defined 
as the mean number of jobs whose processing is completed in a single 
unit of time, i.e., the departure rate. Since the departure rate is equal 
to the arrival rate X for a queueing system in statistical equilibrium, the 
throughput is given by: 

in accordance with Eq. (6.4). W e note that in the case of finite buffer 
queueing system, throughput can be different from the external arrival 
rate. 

Response Time T: The response time, also known as the sojourn 
the total time that a job spends in the queueing system. 

time, is 

Waiting Time W: The waiting time is the time that a job spends in a queue 
waiting to be serviced. Therefore we have: 

Response time = waiting time + service time. 

Since W and T are usually random numbers, their mean is calculated. 
Then: 

(6.7) 

The distribution functions of the waiting time, Fw(x), and the 
time, FT(~), are also sometimes required. 

response 

Queue Length Q: The queue length, Q, is the number of jobs in the queue. 

Number of Jobs in the System K: The number of jobs in the queueing 
system is represented by K. Then: 

k=l 

The mean number of jobs in the queueing system K and the mean queue 
length Q can be calculated using one of the most important theorems of 
queueing theory, Little’s theorem: 

K=AT, 
and G = Xw. 

(6.9) 
(6.10) 

Little’s theorem is valid for all queueing disciplines and arbitrary GI/G/m 
systems. The proof is given in [LittGl]. 
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6.3 THE M/M/l SYSTEM 

Recall that in this case, the arrival process is Poisson, the service times are 
exponentially distributed, and there is a single server. The system can be 
modeled as a birth-death process with birth rate (arrival rate) X and a constant 
death rate (service rate) CL. We assume that X < ,Q so the underlying CTMC 
is ergodic and hence the queueing system is stable. Then using Eq. (3.12)) we 
obtain the steady-state probability of the system being empty: 

1 1 
7ro = 

00 k-l 

1-tm-I; 
k=li=O 

= 1+ g(qky 

k=l p 

which can be simplified to: 

1 

?ro=l+* 
x1-x. 

I-L 

From Eq. (3.11) we get for the steady-state probability that there are k 
jobs in the system: 

0 
k 

n,+ = TO - , 

rk=(l-‘) 

k 2 0. 
CL 

x A’” 

/J-CL * 
( ) 

or with the utilization p = X/,X 

no-l-p (6.11) 

and: 

rk = (1 - P)Pk, (6.12) 

the probability mass function (pmf) of the modified geometric random vari- 
able. In Fig. 6.2, we plot this pmf for p = l/2. The mean number of jobs is 
obtained using Eqs. (6.12) and (6.8): 

x=2- 
1-p. 

(6.13) 

In Fig. 6.3, the mean number of jobs is plotted as a function of the utiliza- 
tion p. This is the typical behavior of all queueing systems. 

From Eq. (1.10) we obtain the variance of the number of jobs in the system: 

2 -P 
OK - (1 - p)2 

(6.14) 
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k 

fig. 6.2 The solution for ~TTI, in a M/M/l system. 

and the coefficient of variation: 

With Little’s theorem (Eqs. (6.9) and (6.10)) we get for the mean response 
time: 

T= lh 
l-p’ 

with Eq. (6.7) for the mean waiting time: 

and with Little’s theorem again for the mean queue length: 

&=p2 
l-p’ 

(6.15) 

(6.16) 

(6.17) 

The same formulae are valid for M/G/l-PS and M/G/l-LCFS preemp- 
tive resume (see [Lave83]). For M/M/l-FCFS we can get a relation for the 
response time distribution if we consider the response time as the sum of k + 1 
independent exponentially distributed random variables [Tkiv82]: 

x+x1+&+“‘+&, 
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5-- 

0.8 1 
P 

Fig. 6.3 The mean number of jobs ?? in a M/M/l system. 

where X is the service time of the tagged job, Xr is the remaining service 
time of the job in service when the tagged job arrives, and X2,. . . , XI, are the 
service times of the jobs in the queue; each of these is exponentially distributed 
with parameter CL. Note that Xr is also exponentially distributed with rate p 
due to the memoryless property of the exponential distribution. Noting that 
the Laplace-Stieltjes transform (LST) of the exponentially distributed service 
time (see Table 1.5) is: 

I-L Lx(s) = ___ 
p+s’ 

we get for the conditional LST of the response time: 

Unconditioning using the steady-state probability Eq. (6.12), the LST of 
the response time is: 

LT(S) = co (&) Ic+l * (1 - P)Pk 
(6.18) 

LT(S) = 
I41 - P) 

s + PC1 - P> * 
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Thus the response time 7’ is exponentially distributed with the parameter 

CL0 - 4: 

FT(x) = 1 -e -P(l--Pb (6.19) 

and the variance: 

var(T) = 
1 

P2(l - d2’ 
(6.20) 

Similarly we get the distribution of the waiting time: 

1 - P, x = 0, 

ev(x) = (6.21) 
1 - p . e--cLC1-P12, x > 0. 

Thus Fw(O) = P(W = 0) = 1 - p is the mass at origin, corresponding to the 
probability that an arriving customer does not have to wait in the queue. 

6.4 THE M/M/co SYSTEM 

In an M/M/co queueing system we have a Poisson arrival process with arrival 
rate X and an infinite number of servers with service rate ,LL each. If there are 
k jobs in the system, then the overall service rate is kp because each arriving 
job immediately gets a server and does not have to wait. Once again, the 
underlying CTMC is a birth-death process. Prom Eq. (3.11) we obtain the 
steady-state probability of k jobs in the system: 

with Eq. (3.12), we obtain the steady-state probability of no jobs in the sys- 
tem: 

1 

= 

and finally: 

A’“1 

k=l 0 i-J ‘Ic! 

e-t, 
(6.22) 

(6.23) 



218 SINGLE STATION QUEUEING SYSTEMS 

This is the Poisson lmf, and the expected number of jobs in the system is: 

K= x. 
P 

(6.24) 

With Little’s theorem the mean response time as expected: 

(6.25) 

6.5 THE M/M/m SYSTEM 

An M/M/m queueing system with arrival rate X and service rate p for each 
server can also be modeled as a birth-death process with: 

XI, = 4 Jc 2 0, 

Pk = 
i 

b% O<Icpp 

*t% m 5 k. 

The condition for the queueing system to be stable (underlying CTMC to 
be ergodic) is X < mp. The steady-state probabilities are given by (from 
Eq. (3.11)): 

rk = 
m-l 

TO rI 

k-l 

rI 
i=m 

x 
*IQ’ 

With an individual server utilization, p = A/(mp), we obtain: 

rk = ( 

I pkmm 
TO- *! ’ JC 2 *, 

and from Eq. (3.12) 

-’ 

(6.26) 

(6.27) 
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The steady-state 
queue is given by: 

probability that an arriving customer has to wait in the 

Pm = P(K 2 m) = 5 rk 
k=m 

b-v)” 
= m!(l - p) * 7ro 

(6.28) 

Using Eqs. (6.26) and (6.8) we obtain for the mean number of jobs in the 
system: 

E=mpfL-Pm, 
1-P 

and for the mean queue length: 

Q=P.p,. 
1-P 

(6.29) 

(6.30) 

From this the mean response time ?? and mean waiting time w by Little’s 
theorem (Eqs. (6.9) and (6.10)) can be easily derived. A formula for the 
distribution of the waiting time is given in [GrHa85]: 

&v(x) = 
{ 

l-pm, x = 0, 

1 _ pm . e-mP(l-Pb, x > 0. 
(6.31) 

Figure 6.4 shows the interesting and important property of an M/M/m 
system that the mean number of jobs in the system K increases with the 
number of servers m if the server utilization is constant but the mean queue 
length s decreases. 

6.6 THE M/M/l/K FINITE CAPACITY SYSTEM 

In an M/M/l/K queueing system, the maximum number of jobs in the system 
is K, which implies a maximum queue length of K - 1. An arriving job enters 
the queue if it finds fewer than K jobs in the system and is lost otherwise. 
This behavior can be modeled by a birth-death process with: 

x = A, 09-K 
k 

{ 0, k 2 K, 

/& =p k= l,...,K. 

Using Eqs. (3.12), (3.11), and a = X/p, we obtain the steady-state probability 
of k jobs in the system: 

OLk<K, 

k > K. 
(6.32) 
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m 

Fig. 6.4 Mean queue length 8 and mean number of jobs in the system K as functions 
of the number of servers m. 

Since there are no more than K customers in the system, the system is 
stable for all values of X and CL. That is, we need not assume that X < p for 
the system to be stable. In other words, since the CTMC is irreducible and 
finite, it is ergodic. If X = CL, then a = 1 and: 

1 
TO = K+1 = TIC, k = 1,2, . . . , K. 

The mean number of jobs in the system is given by (using Eq. (6.8)): 

, a K+l ~ - . $+I 
l-a 1 - (JK+l 7 

K 
,2’ 

a# 1, 

a = 1. 

(6.33) 

(6.34) 

Note that the utilization p = 1 - ~0 # X/p in this case; it is for this 
reason that we labeled the quantity a = X/,Q in the preceding equations. The 
throughput in this case is not equal to X, but is equal to X(1 - no). Similar 
results have been derived for an M/M/m/K system (see [Klei75], [AllegO], 
[GrHa85], or [Triv82]). 
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6.7 MACHINE REPAIRMAN MODEL 

Another special case of the birth-death process is obtained when the birth 
rate Xj is of the form (M - j)X, j = 0, 1, . . . , A4, and the death rate, ,~j = ,Q. 
This structure can be useful in the modeling of interactive computer systems 
where a an individual terminal user issues a request at the rate X whenever it 
is in the “thinking state.” If j out of the total of m terminals are currently 
waiting for a response to a pending request, the effective request rate is then 
(A4 - j)X. The request completion rate is denoted by ,X Similarly, when M 
machines share a repair facility, the failure rate of each machine is X and the 
repair rate is ,Y (see Fig. 6.5). Since the underlying CTMC is irreducible and 

Fig. 6.5 Machine repairman model. 

finite, it is ergodic implying that the queueing system is always stable. The 
expressions for steady-state probabilities are obtained using Eqs. (3.12) and 
(3.11) as: 

rk = TQ 
k-1 X(A4 - i) 
rI 
i=o CL 

or: 

Hence: 
1 

7ro = 
M 

w 
x 

k 

k=O ’ 

(6.35) 

(6.36) 

The utilization of the computer (or the repairman) is given by p = (1 - ~0) 
(see Eq. (6.11)) and the throughput by ~(1 - ~0). With the average thinking 
time l/X, we get for the mean response time of the computer: 

TX AL? 1 -- 
&-no) J-l 

and, using Little’s theorem, the average number of jobs in the computer: 

- I( = j’,,f _ id1 ; To). (6.38) 
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6.8 CLOSED TANDEM NETWORK 

Consider the closed tandem network in L Fig. 6.6 with a total number of K 

fig. 6.6 Closed tandem network. 

customers. This network is known as the cyclic queueing network. Assume 
that node 1 has service rate p, and node 2 has service rate ~2. The state space 
in this case is {(ICI, Jcz) 1 Icr 2 0, Ic2 2 0, Icr + lc:! = K} where Ici (i = 1,2) is 
the number of jobs at node i. Such multidimensional state spaces, we modify 
the earlier notation for steady-state probabilities. The joint probability of the 
state (IQ, Ic2) will be denoted by r(Icr, Icz) while the marginal pmf at node i 
will be denoted by ni(lci). Although, the underlying CTMC appears to have 
a two-dimensional state space, in reality it is one-dimensional birth-death 
process because of the condition Icr + i& = K. Thus the marginal pmf of 
node 2 can be derived from Eqs. (3.12) and (3.11): 

k2 
9 k2 I K; r2(k2) = 0, k2 > K. 

r2(0) = 
1 

1+5 (g 
i=l 

and with u = I_L~/,x~: 

fl2@2) = 

Similarly, we obtain for node 1: 

l-u 
1 _ @+l ’ u# 1, 

1 
K+l’ 

u = 1. 

n(h) = m(O) - --&, 

v(O) = 

I 

1-i 

1 - (i)““’ 
u# 1, 

1 
K+l’ 

u= 1. 

The utilizations are given by: 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

P11 - Tl (O), P2 = 1 - 7r2(0), (6.43) 
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and the throughput: 

x = Xl = x2 = p1p1 = p2p2, (6.44) 

and the mean number of customers in node 2 with equation: 

772 = Q(O) - 5 ii3 * uk2 
k2=0 

a K = 7r2(0) * ?A& - c Uk2 
k2=0 

8 1 - ukz+l 

= 7r2(0) * ux * 
l-u 

U =-- 
l-u 

(K+l)*uK+l uz1 
1 -UK+1 ’ 7 

K1=K-K2. 

(6.45) 

(6.46) 

6.9 THE M/G/lSYSTEM 

The mean waiting time w of an arriving job in an M/G/l system has two 
components: 

1. The mean remaining service time we of the job in service (if any), 

2. The sum of the mean service times of the jobs in the queue. 

We can sum these components to: 

W=Wo+Q-TB, (6.47) 

where the mean remaining service time we is given by: 

we = P(server is busy) . z + P(server is idle) . 0, (6.48) 

with the main remaining service time x of a busy server (the remaining service 
time of an idle server is obviously zero). When a job arrives, the job in service 
needs R time units on the average to be finished. This quantity is also called 
the mean residual life and is given by [Klei75]: 

T; TB 
R = --$- = -+1+ c”,). 

B 

For an M/M/l system (c”, = l), we obtain: 

(6.49) 

72 M/M/l =TB = ;, 
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which is related to the memoryless property of the exponential distribution. 
The probability P(server is busy) is t,he utilization p by definition. From 
Eq. (6.47) and Little’s theorem s = X . w, we obtain: 

wo WE--- 1-P 
and with Eq. (6.49) finally: 

2 
(1+ 4) 

n=&* 2 ' 

(6.50) 

(6.51) 

the well-known Pollaczek-Khintchine formula (see Eq. (3.28)) for the mean 
queue length. 

For exponentially distributed service time we have ci = 1 and for deter- 
ministic service time we have c& = 0. Thus: 

(see Eq. (6.17)), 

The mean queue length is divided by two if we have deterministic service time 
instead of exponentially distributed service times. Using the theory of embed- 
ded DTMC (see Section 3.2.1), the Pollaczek-Khintchine transform equation 
can be derived (Eq. (3.25)): 

G@) = B-(X - AZ) (’ - p)(l - ‘1 
B”(X - AZ) - x’ (6.52) 

where G(x) is the z-transform of steady-state probabilities of the number of 
jobs in the system rk and B”(s) is the LST of the service time. 

As an example we consider the M/M/l system with B” (s) = p/ (s + p) 
(see Table 1.5). From Eq. (6.52) it follows that: 

(+) = l-p 
1 - pz 

G(x) = F(l - p)pk - 2’. 
k=O 

Hence we find the steady-state probability of Ic jobs in the system: 

TI, = (1 - P)Pk. 
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With Eqs. (6.52) and (1.57) we obtain for the mean number in the system 
[Klei75] (see also Eq. (3.28)): 

&p+p2.- 1+ c; 
l-p 2 

(6.53) 

or, using Eq. (6.7) and Little’s theorem: 

K=p$ifJ. (6.54) 

Hence: 

&- p2 y3, 
1-P 

which is the same as Eq. (6.51). 
Figure 6.7a shows that for an M/G/l system the mean number of jobs 

K increases linearly with increasing squared coefficient of variation, and that 
the rate of increase is very sensitive to the utilization. From Fig. 6.7b we 
see how dramatically the mean number of jobs K increases if the utilization 
approaches 1 and that this is especially the case if the squared coefficient of 
variation cg is large. 

6.10 THE GI/M/lSYSTEM 

We state the results for GI/M/l systems, using the parameter o given by: 

CT = A-(/L - /LO) (6.55) 

where A”(s) is the LST of the interarrival time [Tane95]. For example, the 
mean number of jobs in the system: 

j&-L- 
1-O’ 

(6.56) 

the variance of the number of jobs in the system: 

2 p(l+* - P) 
OK= (l-42 ’ 

the mean response time: 

T,L.- 1 
/!A l-a’ 

the mean queue length: 

Q= Pea 
1-O’ 

(6.57) 

(6.58) 

(6.59) 
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Fig. 6.7 (a) Mean number of jobs ?? in an M/G/l system as a function of & with 
parameter p. (b) M ean 
parameter ci . 

number of jobs I? in a M/G/l system as a function of p with 
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the variance of the queue length: 

0; = PO + 4 - P>> 
(l-a)2 ’ 

the mean waiting time: 

(6.60) 

and the waiting time distribution: 

- &v(x) 1 0, x = 0, = { 

1 _ 0. e-P(l--a)z 7 x > 0. 
(6.63) 

In the case of an M/M/l system, we have A-(s) = X/(s + X) (see Table 1.5). 
Together with Eq. (6.55) we obtain: 

and with the Eqs. (6.56)-(6.63), the well-known M/M/l formulae. 
A more interesting example is the Ez/M/l system. From Table 1.5 we 

have: 

( > 
2 

A-(s) = & ) 
and with Eq. (6.55) we have 

Using Eqs. (6.56)-(6.63), we obtain explicit formulae for Ez/M/l performance 
measures. 

The behavior of an M/G/l and of a GI/M/l system is very similar, espe- 
cially if c$ S-1. This is shown in Fig. 6.8 where we compare the mean num- 
ber of jobs K for M/G/l and GI/M/l systems having the same coefficient 
of variation cg. Note that c$ in the case of GI/M/l denotes the coefficient 
of variation of the interarrival times, while in the M/G/l case it denotes the 
coefficient of variation of the service times. Note also that in the M/G/l case, - 
K depends only on the first two moments of the service time distribution, 
while in the GI/M/l case, the dependence is more extensive. In Fig. 6.8, for 
the GI/M/l system, the gamma distribution is used. For increasing value of 
c$ the deviation increases. 



228 SINGLE STATION QUEUEING SYSTEMS 

20 

t 
- GI/M/l 
__-______ M/G/l 

c”x = 10/i p = 4 

= 1 

= 0.1 

0:2 0:3 0:4 ” 0:5 ‘.’ 0.6 :‘:I’:““‘: 0:7 0:8 019 

P 

Fig. 6.8 Mean number of jobs K in an M/G/l and a GI/M/l system. 

6.11 THE GI/M/m SYSTEM 

Exact results for GI/M/m queueing systems are also available, See [Alle90], 
[Klei75], or [GrHa85]. The mean waiting time is given by: 

jYj% J 
m/!L( 1 - 0)2 ’ 

(6.64) 

where: 

and: 

a=A”(mp--mpo) (6.65) 

J= 

For Rk, see [Klei75] (page 408). We introduce only a heavy traffic approxi- 
mation: 

(6.66) 

which is an upper bound [Klei75] and can be used for GI/G/l and GI/G/m 
system as well (see subsequent sections). Here X is the reciprocal of the mean 
interarrival time, ai is the variance of interarrival time, and a$ is the variance 
of service time. 



THE G/,/G/l SYSTEM 229 

6.12 THE GI/G/lSYSTEM 

In the GI/G/l case only approximation formulae and bounds exist. We can 
use M/G/l and GI/M/l results as upper or lower bounds, depending on the 
value of the coefficient of variation (see Table 6.1). 

Table 6.1 Upper bounds (UB) and lower 
bounds (LB) for the GI/G/l mean waiting 
time 

4 43 M/W GI/M/l 

>l >l LB LB 
>l <l LB UB 
<l >l UB LB 
<l <l UB UB 

Another upper bound is given by Eq. (6.66) with m = 1 [Klei75]: 

A modification of this upper bound is [Marc78]: 

(6.67) 

(6.68) 

This formula is exact for M/G/l and is a good approximation for GI/M/l 
and GI/G/l systems if p is not too small and ci or ci are not too big. 

A lower bound is also known [Marc78]: 

w > P2 * c2B + P(P - 2) 

2X(1-p) ' 
(6.69) 

but more complex and better lower bounds are given in [Klei76]. 
Many approximation formulae for the mean waiting time are mentioned in 

the literature. Four of them that are either very simple and straightforward 
or good approximations are introduced here. First, the well-known Allen- 
Cunneen approximation formula for GI/G/m systems is [AllegO]: 

(6.70) 

This formula is exact for M/G/l (Pollaczek-Khintchine formula) and a fair 
approximation elsewhere and is the basis for many other better approxima- 
tions. A very good approximation is the Kramer/Langenbach-Belz formula, 
a direct extension of Eq. (6.70) via a correction factor: 

(6.71) 
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with the correction factor: 

( 2 1-P exP --*-* (1-c?J2 3 
P 

G 

c; + ci 
> 

) 0 5 cA 5 1 
9 

KLB = (6.72) 

(=P CA > 1. 

Another extension of the Allen-Cunneen formula is the approximation of 
Kulbatzki [Kulb89]: 

(6.73) 

with: 

f 1, CA E {%I}, 

[p(14.1cA - 5.9) + (-13.7cA + 4.1)] c; 

+ [p(-59.7ca + 21.1) + (54&A - 16.3)] cg 

I + [&A - 4.5) + (-1.5cA + 6.55)], o<CA<l, 

; -0.75~ + 2.775, CA > 1, 

(6.74 

It is interesting to note that Eq. (6.74) was obtained using simulation exper- 
iments. A good approximation for the case ci < 1 is the Kimura approxima- 
tion [Kimu85]: 

c2,+c;- wz 2 -wM/M/rn ((I-&)exp(v) +&)-l. (6.75) 

6.13 THE M/G/m SYSTEM 

We obtain the Martin’s approximation formula for M/G/m systems [Mart721 
by an extension of the Eq. (6.47) for the mean waiting time for an M/G/l 
system: 

w=w +” T 0 ** 
m 

(6.76) 

Because of the m servers, an arriving customer has to wait, on the average, 
only for the service of Q/m customers. The remaining service time in this 
case is: 

Tvo=Pm*R. (6.77) 
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With Eq. (6.49) we obtain as an approximation: 

and with Eqs. (6.76) and (6.77) finally: 

w c pmlP . C1 +43) 

l-p 2m * 

(6.78) 

(6.79) 

This is a special case of the Allen-Cunneen formula for GI/G/m systems (see 
next section) and is exact for M/M/m and M/G/l systems. 

For the waiting probability Pm we can use Eq. (6.28) for M/M/m systems 
or a simple yet good approximation from [Bolc83]: 

(6.80) 

As an example, we compare the exact waiting probability with this approxi- 
mation for m = 5 in Table 6.2. 

Tab/e 6.2 Exact (Eq. (6.28)) and approximate (Eq. (6.80)) values 
of the probability of waiting 

P 0.2 0.4 0.6 0.7 0.8 0.9 0.95 0.99 

P me, 0 0.06 0.23 0.38 0.55 0.76 0.88 0.97 
P mwP 0 0.06 0.21 0.34 0.56 0.75 0.86 0.97 

From Fig. 6.9 we see that the deviation for the mean number of jobs K in 
the system is very small if we use the approximation for Pm instead of the 
exact value. 

A good approximation for the mean waiting time in M/G/m systems is 
due to Cosmetatos [Cosm76]: 

&c/m % CB 2w M/M/m + (I- cf?)~M/D/m* (6.81) 

In Eq. (6.81), we can use Eq. (6.30) for FM/M/m and use: 

1 1 
WM/D/m = - ’ - ’ WM/M/m 

2 nCDm 

where: 

I t (1 - p)(m - 1) &TY5ii-2 -l 
ncDm = 

> 16pm ’ 
(6.82) 
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= 10 

= 5 

= 2 

Fig. 6.9 Mean number of jobs in an M/M/m system with exact and approximative 
formulae for P,. 

For WM,Dlrn we can also use the Crommelin approximation formula [Crom34]: 

(ypdUrn 
(vm)! 

(6.83) 

Boxma, Cohen, and Huffels [BCH79] 1 a so use the preceding formulae for 

w M/D/m as a basis for their approximation: 

wiV/G/m 
(6.84) 

where: 

a= 
i 1, m- 

1 
1 

( 

(‘i+l) -- 71 m+l 1 , m m>l = 1, 7 

and: 

71 
1 - c; G? X-+---$ 
m+l 
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Tijms [Tijm86] uses yi from the BCH-formula (Eq. (6.84)) in his approxima- 
tion: 

8-- 

l-- 

Fv,G,m = ((1 - P)Ylm + $(c:, + 1)) WIv,M,m. (6.85) 

------mm_ DES 
ac: Allen-Cunneen 
cro: Crommelin 
co: Cosmetatos 
tij: Tijms 
bch: Boxma, Cohen, Huffles 

tij 
bch 

4 

0 

Fig. 6.10 Comparison of different M/G/5 approximations with DES (p = 0.7). 

In Fig. 6.10 we compare five approximations introduced above with the 
results obtained from discrete-event simulation (DES). From the figure we see 
that for p = 0.7 all approximations are good for ci < 2, and that for higher 
values of ci the approximation due to Cosmetatos is very good and the others 
are fair. 

6.14 THE GI/G/m SYSTEM 

For GI/G/m systems only bounds and approximation formulae are available. 
These are extensions of M/G/m or GI/G/l formulae. We begin with the 
well-known upper bound due to Kingman [King’i’O]: 

and the lower bound of Brumelle [Brum71] and Marchal [Marc74]: 

(6.86) 

wz P2& - PC2 - P> m-l cg+l --.- 
Nl - P> m 2P - 

(6.87) 
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As a heavy traffic approximation we have Eq. (6.66), which we already intro- 
duced for GI/M/m systems: 

(6.88) 

and the Kingman-Kiillerstrijm approximation [Kii1174] for the waiting time 
distribution: 

Fw(x) M 1 - exp ( 
W-P) 1 - 

0; +ai/m2 ’ Xx > * 
(6.89) 

The most known approximation formula for GI/G/m systems is the Allen- 
Cunneen (A-C) formula [AllegO]. We already introduced it for the special case 
GI/G/l (Eq. (6.70)). Note that the A-C formula is an extension of Martin’s 
formula (Eq. (6.79)) h w ere we replace the 1 in the term (1 + c”,) by ci to 
consider approximately the influence of the distribution of interarrival times: 

KnlP c; + c2B was:.- 
l-p 2m * 

(6.90) 

For the probability of waiting we can either use Eq. (6.28) or the good 
approximation provided by Eq. (6.80). As in the GI/G/l case, the Allen- 
Cunneen approximation was improved by Kramer/Langenbach-Belz [KrLa76] 
using a correction factor: 

w&z Pm//L c; + c2 - * B * GKLB, 
l-p 2m 

(6.91) 

21-P(1-4)2 exp --- ( 3 en cl + c; > 
) ()<CA<l 

9 

GKLB = (6.92) 

exP CA > 1, 

and by Kulbatzki [Kulb89] using the exponent f (CA, cB, p) in place of 2 for 
CA in Eq. (6.90): 

p,lp 
w=:. 

$A ,CB 4) + cg 

1-P 2m * 
(6.93) 

For the definition of f(cA, cg, p), see Eq. (6.74). The Kulbatzki formula was 
further improved by Jaekel [JaekSl]. We start with the Kulbatzki GI/G/l- 
formula and use a heuristic correction factor to consider the number of servers 
m: 

(6.94) 
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This formula is applicable even if the values of m and the coefficients of 
variation are large. 

In order to extend the Cosmetatos approximation [Cosm76] from M/G/m 
to GI/G/m systems, FM/M/m and WM,D,~ need to be replaced by WGI,M,~ 
and m~r,n,~, respectively: 

w GI/G/m !-z CB 2w GI/M/m + (l - C$i)~GI/D/rn, 

where WGI/M/m is given by Eq. (6.64) or by the following approximation: 

forO<cA 5 I, 
m 

WGI/M/m x 

$cZ, + l)exp (-i. A$. ‘:i$“) 
A 

CA’CB “) + 1 WM,M,~ 
> 

for CA > 1, 

(6.96) 

and WGI/D/m by: 

(6.97) w 1 1 
GI/D/m = - * - ’ WGI/M/m> 

2 ncDm 
with ncDm from Eq. (6.82) or: 

WGIIDIm z Cy,m)f(cA,o@) . jqYMIDlm 
(6.98) 

h(p, m) = 4J(m - l)/(m + 4) f (1 - p) + 1 

with WM,Dirn from Eq. (6.82) or Eq. (6.83). A good approximation for the 
case ci 2 l’is given by Kimura [Kimu85]: 

1 - ci 
1 - 4c(m, p) exp 

+ l- 43 +c2 

l+c(m,p) A 

c(m, p) = (1 - P>(m - 1) 
dG-2 

16pm ’ 

+ 
> 

-1 

c; - 1 7 

(6.99) 

Finally the Boxma, Cohen, and Huffels formula [BCH79] can be extended to 
GI/G/m systems: 

- 

WGI/G/m = 2 
2WGI/D/m w 

I(’ + “) 2&&I,D,m + (1 -:($;I,M, 
(6.100) 

m 
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(b) 

sac 

Fig. 6.11 (a) Mean queue length g of a GI/G/lO system, and (b) mean queue length 
6 of a GI/G/m system with p = 0.8. 
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1 = 0.95 

= 0.9 

= 0.7 

Fig. 6.12 Mean queue length of a GI/G/m system with r-n = 1,5,10. 

as well as the Tijms formula [Tijm86]: 

~GI/G/m = ((1 - P)Ylm + $c; + 1,) ~GI,M/rn, (6.101) 

with a and yi from Eq. (6.84). 
In Figs. 6.11 and 6.12 the mean queue lengths as functions of the coefficients 

of variation ci, ci, the utilization p, and the number of servers m are shown 
in a very compact manner using the approximate formula of Allen-Cunneen. 
Fig. 6.13 shows that the approximations of Allen-Cunneen, Kramer/Langen- 
bath-Belz, and Kulbatzki are close together, especially for higher values of 
the coefficients of variation c$ with a large number of servers m. 

6.15 PRIORITY QUEUEING 

In a priority queueing system we assume that an arriving customer belongs 
to a priority class T (T = 1,2,. . . , R). The next customer to be served is 
the customer with the highest priority number r. Inside a priority class the 
queueing discipline is FCFS. 
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= 1 

= 0 

I 

O'O.6 0.65 0.7 0.75 0.8 0.85 019 

P 

Fig. 6.13 (a) Mean queue length 0 for a GI/G/lO system with cl = 0.5. (b) Mean 
queue length Q for a GI/G/lO system with cl = 2.0. 
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6.15.1 System without Preemption 

Here we consider the case where a customer already in service is not preempted 
by an arriving customer with higher priority. The mean waiting time w, of 
an arriving customer of priority class T has three components: 

1. The mean remaining service time we of the job in service (if any). 

2. Mean service time of customers in the queue that are served before the 
tagged customer. These are the customers in the queue of the same and 
higher priority as the tagged customer. 

3. Mean service time of customers that arrive at the system while the 
tagged customer is in the queue and are served before him. These are 
customers with higher priority than the tagged customers. 

Define: 

Ni,: Mean number of customers of class i found in the queue by the tagged 
(priority r) customer and receiving service before him, 

a+: Mean number of customers of class i who arrive during the waiting time 
of the tagged customer and receive service before him. 

Then the mean waiting time of class r customers can be written as the sum 
of three components: 

For multiple server systems (m > 1): 

R N. 1 RYiTi, 1 w,=w,+~“T-+~m.-, 
i=l m GUI i=l Pi 

(6.102) 

(6.103) 

- 
where Ni, and YVi, are given by: 

7Vir = 0 i < r, 
(6.104) 

and, with Little’s theorem: 

T&. = xgi i 2 r, 

We can solve Eqs. (6.102) and (6.103) to obtain: 

TV,= 
WO 

(1 - G)(l - Or+l) 

(6.105) 

(6.106) 
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where: 

R 

0, = 
c pi* (6.107) 
i=r 

The overall mean waiting time is: 

R xi - w=cx.wi. (6.108) 
i=l 

Values for wo are given by Eqs. (6.48), (6.49), (6.77), and (6.78) and are 
the weighted sum of the woi of all the classes: 

R 

WO,M/M/l = Cpid7 

i=l 

R 
1+ c; 

WO,M/G/l = C pi * 2 
i=l 2t% ’ 

R 

(6.109) 

(6.110) 

(6.111) 

R 

WO,GI/G/l,KLB R5 C Pi ’ 
c$ + c& 

=ZPi 
* GKLB, (6.112) 

i=l 

R f(CA 

WO,GI/G/l,KUL C3 c pi ’ cAz 

z lcB, di) + cii 

3-G 
7 (6.113) 

i=l 

(6.114) 

mO,GI/G/m,KLB = - 
cl, + cg. 

’ GKLB, 
Pi 

(6.115) 

(6.116) 

(6.117) 

(6.118) 

FOT ~(cA~, cgi, pi), see Eq. (6.74); for GKLB,GI/G/l, see Eq. (6.72); and for 
GKLB,GI/G/~, see Eq. (6.92). 
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Also, the GI/G/m-FCFS Approximation of Cosmetatos can be extended 
to priority queues: 

with: 

WGI/M/m, = 
WO,GI/M/m 

(l- a,)(1 -G-+1)’ 

&,D,mr = 
WO,GI/D/m 

(1 - G4l - G-+1) ’ 

PTn R $Ai,O,Pi) 

WO,GI/D/m e - C pi ’ * 
2mP i=l Pi 

Fig. 6.14 Mean queue lengths g’, for an M/M/l priority system without preemption. 

The M/G/m Cosmetatos approximation can similarly be extended. All 
GI/G/m approximations yield good results for the M/G/m-priority queues 
as well. 

Figure 6.14 shows the mean queue length G, for different priority classes 
of a priority system without preemption and R = 3 priority classes together 
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with the mean queue length for the same system without priorities. It can 
be seen that the higher-priority jobs have a much lower queue length, and 
the lower-priority jobs have a much higher mean queue length than the FCFS 
system. 

6.15.2 Conservation Laws 

In priority queueing systems, the mean waiting time of jobs is dependent on 
their priority class. It is relatively short for jobs with high priority and con- 
siderably longer for jobs with low priority because there exists a fundamental 
conservation law ([Klei65, Schr70, HeSo841): 

R 

c 
pJvi = pwo = 

1-P 
p * WFCFS 

i=l 

or: 

PiTTi = 
1-P 

FCFS- 

(6.120) 

(6.121) 

The conservation law to apply the following restrictions must be satisfied: 

1. No service facility is idle as long as there are jobs in the queue, i.e., 
scheduling is work conserving [ReKo75]. 

2. No job leaves the system before its service is completed. 

3. The distributions of the interarrival times and the service times are arbi- 
trary with the restriction that the first moments of both the distributions 
and the second moment of the service time distribution exist. 

4. The service times of the jobs are independent of the queueing discipline. 

5. Preemption is allowed only when all jobs have the same exponential ser- 
vice time distribution and preemption is of the type preemptive resume. 

6. For GI/G/ m systems all classes have the same service times. This 
restriction is not necessary for GI/G/l systems [HeSo84]. 

If for GI/G/ m systems the service times of the classes differ, then the 
conservation law is an approximation [Jaek9 11. 

6.15.3 System with Preemption 

Here we consider the case that an arriving customer can preempt a customer 
of lower priority from service. The preempted customer will be continued later 
at the point where he was preempted (preemptive resume). Thus a customer 
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of class T is not influenced by customers of the classes 1 
we need to consider only a system with the classes T, r + 

,2,...,r - 
1 9 - - * , R to 

1. Hence 
calculate 

-r 

wr = - WO 

1 -Or7 

where wb is the mean remaining service time for such a system 
it by substitution of p by or in the formulae. For example: 

-r 
W 

P; R 
OAC = 2ma, - c pi 

c; + cg 

i=r 

(6.122) 

and we obtain 

(6.123) 

We sum only from r and R rather than from 1 to R. For P&, we replace p by 
or in the exact or approximative formula for Pm. 

To obtain the mean waiting time of a customer of class r we apply the 
conservation law twice: 

i=r 

(6.124) 
R 

-r+l 
Or+l’W = c pi ‘Wis 

i=r+l 

By substitution we obtain: 

W, = A- (OrWr - CTr+l~r+l) * 
Pr 

(6.125) 

Equation (6.125) is exact for M/,&I/l and M/G/l systems. It is also exact 
for M/M/m systems if the mean service time of all classes are the same. For 
other systems, Eq. (6.125) is a good approximation. From Fig. 6.15 it can 
be seen that even for heavy utilization the mean queue length for the highest 
priority class is negligible in the case of preemption, at the expense of poorer 
service for lower-priority classes. 

6.15.4 System with Time-Dependent Priorities 

Customers with low priorities have long waiting times especially when the 
utilization of the system is very high. Sometimes it is advantageous for a 
customer priority to increase with the time, so that he does not have to wait 
too long. This possibility can be considered if we do not have a fixed priority 
function: 

ar(t) = Priority of class r at time t. 
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= 2 

= 3 

Fig. 6.15 Mean queue lengths for an M/M/l priority system with and without pre- 
emption. 

Such systems are more flexible but need more expense for the administration. 
A popular and easy to handle priority function is the following: 

%@) = (t - to) * b, (6.126) 

(see Fig. 6.16a), with 0 < br 5 b2 5 . . . 5 b,. The customer enters the system 
at time to and then increases the priority at the rate b,. Customers of the 
same priority class have the same rate of increase b, but different values of 
the arrival time to. 

We only consider systems without preemption and provide the following 
recursive formula [BoBr84] for the mean waiting time of priority class-r cus- 
tomer: 

TV, = (6.127) 

with the same mean remaining service times wa as for the priority systems 
with fixed priorities. If these are exact, then Eq. (6.127) is also exact; other- 
wise it is an approximation formula. 

Another important priority function is: 

q&) = r’, + t - to, (6.128) 
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(4 Priority 
A 

Fig. 6.16 (a) Priority function with slope b,. (b) Mean queue length 0, for an M/M/l 
priority system with time-dependent priorities having slope b,. 

with 0 5 ~1 5 ~2 5 . . . 5 T,. Each priority class has a different starting 
priority rr and a constant slope (see Fig. 6.17a). In [BoBr84] a heavy traffic 
approximation (as p approaches 1) is given: 

as well as a more accurate recursive formula: 

(6.129) 

(6.130) 

Note that for m = 1, we have P, = p. 
From Figs. 6.16b and 6.17b it can be seen that systems with time-dependent 

priorities are more flexible than systems with static priorities. If the values of 
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b, or rT, respectively, are close together, then the systems behave like FCFS 
systems, and if they are very different, then they behave more like systems 
with static priorities. 

In many real time systems, a job has to be serviced within an upper time 
limit. To achieve such a behavior, it is advantageous to use a priority function 
that increases from 0 to 00 between the arrival time and the upper time 
limit ul-. A convenient priority function is: 

(4 

G-(t) = 
{ 

(t-to)&-t+to) to cKu,+to, 
co UT + to 5 t. 

Priority 

c 

rr 
i -t 

to 4 t” 0 

(6.131) 

=l 

= 5 

= 10 

Fig. 6.17 (a) Priority function with starting priority Tr. (b) Mean queue lengths &, 
for an M/M/l priority system with time-dependent priorities having starting priorities 
rr. 
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(b) 

to tb t:, + G, to+&- 
- 
GP 4 b 
Gi 

- 
WV 

Fig. 6.18 (a) P riority function with upper time limit ur. (b) Mean waiting time 
w, for an M/M/l priority system with static priorities and with upper time limits 
ur = 2,4,6. 

Again we get a heavy traffic approximation (as p approaches 1): 

(6.132) 
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and a recursive formula for more accurate results: 

TV, x 
( 

6 
--fJ-FVi(l-~) (I-Pmexp(--C2))) 
1-P 

-(l-iglpi(l-z) (l-P.,,~exp(-!Zk)))~l. (6’133) 

Also see [BoBr84] and [Jaekgl] for other priority functions. 
In Fig. 6.18b, the mean waiting times for a system with static priorities are 

compared to those of a priority system with upper time limits. The figure 
also contains the upper time limits. For the two higher priorities, the static 
priority system is better, but the upper time limit system is better over all 
priorities. 

6.16 THE ASYMMETRIC SYSTEM 

The calculation of the performance measures is fairly simple if there is only 
one server or several servers with identical service times arranged in paral- 
lel, and the interarrival time and service time are exponentially distributed 
(M/M/m queueing systems). However, heterogeneous multiple servers often 
occur in practice and here the servers have different service times. This sit- 
uation occurs, for example, when machines of different age or manufacturer 
are running in parallel. It is therefore useful to be able to calculate the per- 
formance measures of such systems. One method for solving this problem is 
given in [BoScSl] in which the formulae derived provide results whose relative 
deviation from values obtained by simulation are quite acceptable. The het- 
erogeneous multiple server is treated in more detail by [BFH88] and [Baer85] 
who achieve exact results. Also see [Triv82] and [GeTr83] for exact results. 

We will assume throughout this section that the arrival process is Poisson 
with rate X and that service times are exponentially distributed with rate ,Q; 
on the ith server. 

6.16.1 Approximate Analysis 

In homogeneous (symmetric) queueing systems, the response time depends 
only on whether an arriving job finds some free server. A heterogeneous 
(asymmetric) multiple server system differs since which of the m servers pro- 
cesses the job is now important. The analysis in [BoScSl] is based on the 
following consideration: Let p,+ (k = 1, . . . , m) be the probability that a job 
is assigned to the &h server. Because it can be assumed that a faster server 
processes more jobs than a slower server, it follows that the ratios of the prob- 
abilities p!, to each other are the same as the ratios of the service rates to each 
other. Here no distinction is made between different strategies for selecting a 
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free server. This approximation is justified by the fact that in a system with 
heavy traffic there is usually one free server and therefore a server selection 
strategy is not needed. Then pk (1 5 /C 5 m) is approximately given by: 

Pk &!L- 

Et%’ 

(6.134) 

i=l 

In addition, pk can be used to determine the utilization pk of the lath server: 

i=l i=l 

(6.135) 

Thus the utilization of all the servers is the same and the overall utilization 
is given by: 

p = pk. (6.136) 

In [BoScSl] it is shown that the known formulae for symmetric M/M/m and 
GI/G/m systems can be applied to asymmetric M/M/m and GI/G/m systems 
if Eqs. (6.135) and (6.136) are used to calculate the utilization p. Good 
approximations to the performance measures are obtained provided the values 
of the service rates do not differ too much, i.e, pmin/pmax 5 10 (see Table 6.3). 

Table 6.3 Approximative and simulative results for (a) M/M/5 and (b) M/E2/5 

queueing systems 

x I-lk P(A) PW > P@ > WV a%) 7x92) 

(4 73 10,15,20,20,25 0.811 0.799 0.819 2.472 2.367 2.495 
73 16,17,18,19,20 0.811 0.807 0.812 2.472 2.476 2.500 
73 5,10,18,22,35 0.811 0.808 0.844 2.472 2.443 2.626 
81.11 4,8,16,32,40 0.811 0.826 0.858 2.472 2.549 2.713 
81.11 8,9,20,31,32 0.811 0.807 0.839 2.472 2.456 2.606 
81.11 8,14,20,26,32 0.811 0.801 0.830 2.472 2.442 2.569 
81.11 10,15,20,25,30 0.811 0.799 0.824 2.472 2.425 2.523 

(b) 81.11 10,15,20,25,30 0.811 0.800 0.825 1.854 1.854 1.962 

Notes: A = approximation, S1 = discrete-event simulation with random selection of a free 

server, and 5’2 = discrete-event simulation with selection of the fastest free server. 

6.16.2 Exact Analysis 

This section describes the methods used for calculating the characteristics 
of asymmetric queueing systems described in [BFH88] and [Baer85]. These 
systems are treated as a CTMC, and the performance measures are calculated 
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by solving the underlying CTMCs. In this way exact results are obtained for 
elementary asymmetric M/M/m queueing systems. This method is used as 
follows: First, the steady-state probabilities are calculated for systems without 
queues, known as loss systems. Then the formulae given in [BFH88] and 
[Baer85] can be used to extend the results to asymmetric, non-lossy systems. 

Two strategies for selecting a free server are investigated: 

1. The job is assigned randomly to a free server as in [BFH88]. 

2. The fastest free server is selected as in [Baer85]. 

6.16.2.1 Analysis of M/M/m 1 oss Systems A loss system contains no queues. 
The name indicates that jobs that cannot find a free server are rejected and 
disappear from the system. A CTMC is constructed and solved to obtain 
a closed-form formula for its steady-state probabilities. It should be noted 
that asymmetric queueing systems differ from symmetric queueing systems in 
that it is not sufficient when producing the CTMC to describe the states by 
the number of servers occupied. Due to the different service rates, the state 
classification depends on which of the m servers are currently occupied. Thus 
each state is characterized by a set g = (ICI, Ic2, . . . , k,), where k, belongs to g 
if the Zth server is currently occupied. Here i = (g( is the number of servers 
currently occupied (1 5 i < m) and I is an index (1 5 I 5 m). 

Fig. 6.19 CTMC for an asymmetric M/M/3 loss system with random selection of a 
free server. 

Random Selection of a free Server An M/M/3 system is used as an example. 
The state transition diagram of the loss system is shown in Fig. 6.19. The 



THE ASYMMETRIC SYSTEM 251 

steady-state probabilities are given by [BFHM]: 

7r - (m - ‘g’Y rI x 9-- m! *kEgG *=” 
(6.137) 

for all g C G with g # 8 and G = {1,2,. . . , m}. In order to determine ;TT~, we 
use the normalization condition: 

c 7rg = 1 with G = {1,2,. . . ,m). (6.138) 
gEG 

The probability of loss r CL) is the probability that all servers are occupied: 

dL) = r{l 2. _ m I , . ,m } = TG. (6.139) 

The utilization pk of the kth server is equal to the sum of the state probabilities 
of all states in which the kth server is occupied: 

d = c =g* 
g: kEg 

(6.140) 

Choice of the Fastest Free Server. Here it is always assumed that the individ- 
ual servers are sorted in descending order of the service rates, i.e., the fastest 
server has the lowest index. Let pm = (~1, ~2, . . . , bum) and let (pk-‘, pm) = 

(P1,P2,*.* ~~k-l,~m)* The probability of loss n!$) = ~~l,..,,ml(~m) is given 
by [Baer85]: 

7T(L) = ~{l,.,.,m}(Pm) = Bm(Pm) m 

-’ 
= Bm-l(pm-l) * 

&(CL”-‘,/km) 1 
(6.141) 

Bk(pkwl,pk + b7L> ’ 

with: 

w4 = “iT{l}(Pl) = &. 

The utilization pk of the individual servers is given by: 

pk = -$Bk-l(pk-‘) - Bk(pk)] with Bo(pO) = 1. (6.142) 

6.16.2.2 Extending to Non-Lossy System According to [BFH88], the next 
step is to use the results obtained so far to draw conclusions about the behavior 
of the corresponding non-lossy system. Here the met hod used to select a free 
server of the corresponding loss system does not matter. It is only necessary 
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that the values appropriate to the selected strategy are used in the formulae 
finally obtained. In what follows, a superscript W means that the variable 
is a characteristic of a non-lossy system; a superscript L means that the 
variable is a characteristic of the corresponding loss system. The steady-state 
probabilities are given by [BFH88]: 

m-i 

. ,w 
m for i > m, (6.143) 

with: 

where: 

7&y ,w = - 
m 

N’ 
(6.144) 

7&y * c 
N=l+- 

l-c 
with 

x c=- 

f? pk’ 

(6.145) 

k=l 

It is now possible to calculate all the state probabilities of the asymmetric 
non-lossy system and all interesting performance measures. It should be noted 
that c is not the same as the utilization p. The method for calculating p is 
described in the following. 

The probability Pm that an arriving job is queued is equal to the sum of the 
probabilities of all states in which there are more than m jobs in the system: 

(6.146) 
i=m 

Analogous to the symmetric case, the mean queue length 8 is given by: 

Q= 2 (i-m).rjW)=E. 
- 

i=m+l 

The mean waiting time can be calculated using Little’s theorem: 

Q TV=x. 

(6.147) 

(6.148) 

To calculate the utilization p it is first necessary to calculate the specific 
utilization pk for each server: 

+ 7&y * c/( 1 - c) 
N . (6.149) 

i=m+l 

Then p is given by: 

(6.150) 
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6.16.3 Exact Analysis of an Asymmetric M/M/2 System 

In [Triv82] an exact solution is given for an asymmetric M/M/2 system with 
the strategy of selecting the fastest free server. Figure 6.20 shows the CTMC 
state transition diagram for this system. The state of the system is defined 

Fig. 6.20 CTMC for the M/M/2 asymmetric system. 

to be the tuple (ICI, k 2 w ) h ere ICI 2 0 denotes the number of jobs in the queue 
including any at the faster server, and k2 E (0, 1) denotes the number of jobs 
at the slower server. 

If we use Eq. (2.58) for the underlying CTMC, we can calculate the steady- 
state probabilities easily with: 

x 
c= - 

tQ1-k P2 
(6.151) 

r(k) 1) = cr(k - 1,1) = c’“%(l, l), for k > 1. (6.152) 

Furthermore: 

n(O,l) = 5 %o, o>, 
1+ 2c p2 

7T(l,O) = 
l+c x 

--7q4 o), 
1+2cp1 

c n(l,l) = - x(x+Il”)T(o 0) 
1+2c Plj.42 

7 * 

Finally, using the normalization condition, we get: 

n-(0,0) = [l + 
X(X + Y2> 

p&(1 + 2c)(l - J1* 

And with these, the utilizations of the two servers: 

p1 = 1 - T(O,O) - 7T(O, l), 

p2 = 1 - 7T(O,O) - 7+,0), 

(6.153) 

(6.154) 

(6.155) 
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and the mean number of jobs in system: 

j& 1 
A(1 - c)~’ 

(6.156) 

where: 

’ 
+- 1 l-c ’ 

Example 6.1 To show how to use the introduced formulae for asymmetric 
M/M/m systems, we apply them to a simple M/M/2 example with X = 0.2, 
~1 = 0.5, and ~2 = 0.25. 

Approximation [BoSc91] With Eq. (6.136) for the utilization: 

p’p1’p2’x= 
0.2 

= 
CL1 + P2 0.5 + 0.25 

0.267, 

with Eq. (6.29) for symmetric M/M/2 systems for mean number in system: 

- 2P3 K=2p+-r 
1 - p2 

0.575, 

and with Little’s theorem (Eq. (6.9)): 

T = 2.875. 

Exact [Triv82] With Eq. (6.151): 

c = 0.267, 

with Eqs. (6.153), (6.154), and (6.155) for the utilizations of the servers: 

O.a(O.2 + 0.25) -I 
0.25 a 0.5(1 + 2c)(l - c) 1 

= 0.6096, 

7r(O, 1) = 
0.267 

- 0.2 + 0.6056 = 0.085, 
1 + 0.534 0.25 

7r(l,O) = - 1.267 . - 0.2 . 0.6056 = 
1.534 0.5 

0.2014, 

p1 = l-0.6096 $0.085 = 0.305, 
p2 = 1 - 0.6096 + 0.2014 = 0.189, 
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and with Eq. (6.156): 

A = 0.5 - 0.25(1 + 0.534) + 1 
0.2(0.2 + 0.25) 

- = 3.495, 
0.733 

K= 1 
3.495 + 0.7332 

= 0.533, 

K 
T = x = 2.663. 

Exact [BFH88] First we consider the asymmetric M/M/2 loss system with 
random selection of a free server: With Eq. (6.156) for the state probabilities: 

(2-l)! x 1 0.2 
5TT1=-. 

2! j-jy’*o=y~’ 7ro = 0.2X(), 

(2-l)! x 1 0.2 
7r2 = - 2! ‘/12’ro=y~’ 7r() = 0.47r(), 

7r1,2 = 
(2 -‘I! A A ro = 0 lfjT -.-.-. 

2! Pl P2 * O* 

With the normalizing condition: 

(1 + 0.2 + 0.4 + 0.16)no = 1, x0 = 0.568. 

Now the probability of loss can be determined (Eq. (6.139)): 

?p = 7rl,2 = 0.16.0.568 = 0.091, 

and also the utilizations of the servers (Eq. (6.140)): 

pf = n1 + 7r1,2 = (0.2 + 1.6) - 0.568 = 0.204, 

pi = r2 + r1,2 = (0.4 + 1.6) e 0.568 = 0.319. 

This result means that the slower server has a higher utilization as expect- 
ed. Now we can use these results of the loss system to obtain performance 
measures for the non-lossy system. For c and N we get with Eq. (6.145): 

0.2 0.091 . 0.267 ’ = = 0.267, N=l+ = 
0.5 + 0.25 0.733 

1 033 
LY 

and for the probability of waiting (Eq. (6.146)): 

1 0.091 p2=---.- = 
0.733 1.033 

0.120. 

The mean queue length and the mean waiting time (Eqs. (6.147), (6.148)): 

Q= 0.120.0.267 
= 

0.733 
0.0437, w = 0.219. 
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Utilization of the servers (Eq. (6.149)): 

(w) _ 0.204 + 0.091 .0.267/0.733 = o 230 
Pl - 1.033 b? 

(w) _ 0.319 + 0.091 s 0.267/0.733 = o 341 
P2 - 1.033 L. 

Utilization of the system (Eq. (6.150)): 

2 
P= 

I-+&i 
= 0.275. 

0.230 . 

Mean number of jobs in system: 

E = PI + ~2 + 62 = 0.230 + 0.341 + 0.0437 = 0.6147. 

Mean response time: 
K 

T = x = 3.074. 

Exact [Baer85] The last case we consider is the asymmetric M/M/2 sys- 
tem with selection of the fastest free server using the formulae in [Baer85]. 
First we again consider the loss system and determine the probability of loss 
(Eq. (6.141)): 

CL 
r2 ) = B2(p2) = B&2) 

[ 
1+ E. Bl(P2) -l 

x R(Pl-tP2) 1 
x -1 

x =-. 
x+/-Q 1 

1+!% x:‘“2 
x---- 

x+cL1+I.L2 I 

0.2 + 0.25 + 0.5 -’ 
0.2 + 0.25 1 

= 0.0785, 

and the utilizations of the servers (Eq. (6.142)): 

pf = +30(po) - B&d)] = g [l- Oe2 1 0.286, = 0.2 + 0.5 

Pi = g [&W) -B2(P2)] = g [020;20 . 5 - 0.0785 1 = 0 166 A* 
Again we use the results of the loss system to obtain performance measures 

for the queueing system with selection of the fastest server. From Eq. (6.145)): 

c = 0.267, N=l+ 
0.0785 mO.267 = l 0286 

0.733 +* 
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Probability of waiting (Eq. (6.146)): 

1 0.0785 p,=-.-= 
0.733 1.0280 

0.104. 

Mean queue length (Eq. (6.147)): 

Mean waiting time: 

0.104 ’ 0.267 
0.733 

= 0.0379. 

WC g = 0 190 
x L- 

Utilizations of the servers (Eq. (6.149)): 

py = 0.286 + 0.0785 e 0.267/0.733 = o 306 
1.0286 L, 

(w) _ 0.166 + 0.0785 .0.267/0.733 
P2 - = 

1.0286 
0.189. 

Utilization of the system (Eq. (6.150)): 

2 
P= 1 = 0.234. 

0.306 +1 0.189 

Mean number of jobs in the system: 

x = ~1 + p2 + s = 0.306 + 0.189 + 0.0379 = 0.533. 

Mean system time: 
K 

T = x = 2.665. 

In Table 6.4, results of this example are summarized. In Table 6.5, the 

Table 6.4 Results for several performance measures with different solution techniques 
and strategies for a asymmetric M/M/Z system (A = 0.2, ~1 = 0.5, ~2 = 0.25) 

Strategy Awr . 
Reference [BoScS l] 

FFS 
[Triv82] 

FFS 
[Baer85] 

Random 
[BFH88] 

P 0.267 (0.267) 0.234 0.275 
Pl 0.267 0.305 0.306 0.230 
P2 0.267 0.189 0.189 0.341 
E 0.575 0.533 0.533 0.615 
T 2.875 2.663 2.665 3.074 

Notes: FFS = selection of the fastest free server and Random = random selection of the 

free server. 

mean response time T for an asymmetric M/M/2 system is compared with 
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-- 
Table 6.5 Mean response times T, TI, and Ta for an 
asymmetric M/M/2 system with strategy FFS and two 
M/M/l systems (A = 0.2, ~2 = 0.25, ~1 = cv e ~2) 

a 1 2 3 4 5 

Tl 20 3.33 1.818 1.25 0.55 
572 20 20 20 20 20 
T 4.762 2.662 1.875 1.459 1.20 

the mean response times Ti (for a M/M/l system with service rate pi) and 
??z (for a M/M/l system with service rate ,CQ) [Triv82]. From Table 6.5 we 
see that sometimes it is better to disconnect the slower server if we wish to 
minimize the mean response time. This is the case only for low utilization of 
the servers and if the service rates differ considerably. This issue is further 
explored in [GeTr83]. 

6.17 SYSTEMS WITH BATCH SERVICE 

An interesting and important way to service customers in queueing systems is 
the batch service. In such batch systems the service of all the customers of a 
batch is started at the same time. There are many applications of this kind of 
service, especially in manufacturing systems. Two policies are in use. In the 
case of a full batch policy (FB), the service of the batch is started when all b 
customers of the batch have arrived. In the case of the minimum batch policy 
(MB), a minimum number of a customers is sufficient to start the service of 
the batch. If there are more then b waiting customers, only b customers are 
collected to a batch and serviced together. 

The extended Kendall notation for batch systems is: 

GI/G[“~b]/m, M u iserver system with MB policy It’ 
GI/G[blb]/m, M u iserver system with FB policy It’ 

A special case of the MB policy is the GREEDY policy where the service 
begins when a = 1 customer is in the queue. To obtain a formula for the 
mean waiting time and the mean queue length for the GI/G[b~bl/m queueing 
system, we use the already introduced formulae for GI/G/m queueing systems 
and calculate the mean queue length $ for the batches. From the result we 
can calculate the mean queue length abatch for the individual customers. If 
the arrival rate of the individual customers is X, then the arrival rate of the 
batches with batch size b is: 

x A= b, (6.157) 
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and the coefficient of variation for the batch interarrival time is: 

(6.158) 

using Eq. (1.52) with the coefficient of variation of the individual customers 
CA. Using the queue length 0 of the batches, the queue length of the individual 
customers is approximately given by [HaSp95, KirsSl]: 

The first part of the formula is due to the customers in the dj batches of the 
queue, and the second part is the mean number of customers who are still 
not combined to a batch. The accuracy of Eq. (6.159) depends mainly on the 
accuracy of the applied approximation formula for calculating 0. 

A solution for GI/GI”>bl/ m queueing systems is given by a heuristic exten- 
sion of Eq. (6.159) [KirsSI]: 

-b,bl Q batch wbdj+P, (6.160) 

Eq. (6.160) includes Eq. (6.159) if a = b. For the probability of waiting Pm, 
we use the corresponding value for the M/M/m queueing system. 

In the special case of an M/M[b~61/l system, we obtain an Eb/M/l queueing 
system for the calculation of 0 since in this case the interarrival time of the 
batch is the sum of b exponentially distributed interarrival times. In the case 
of an M/MIb7’]/m system, we obtain an Eb/M/m queueing system for which 
exact formulae (see Eqs. (6.59) and (6.64) respectively) are known. 

From Fig. 6.21~ it can be seen how the mean queue length Qbatch for 
individual jobs depends on the batch size b in a full batch system. Figure 6.21b 
shows that for increasing values of p, the mean queue length of a minimum 
batch system approaches that of a full batch system with the same batch size 
b. 

Figure 6.22 shows that the queue length Qbatch of an individual job in a 
minimal batch system depends more on the batch size b than on the minimum 
batch size a, as also can be seen from Eq. (6.160). Moreover we realize that 

a has a noticeable influence only on Gk$Lh for small values of p. 

Problem 6.1 Consider two M/M/l systems with arrival rate Xi = 0.5/ set 
and service rate ~1 = l/set each and an M/M/2 system with arrival rate 
x2 = 2x1 = l/ set and service rate ,LQ = ,~i = l/set for each server. Compare 
utilization pi, mean number of jobs in the system ?7i, mean waiting time wi, 
and mean response time Fi for both cases (i = 1,2). Discuss the results! 

Problem 6.2 Consider an M/M/l/K system and determine the through- - 
put and the mean number of jobs K as a function of the maximum number 
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c_____- ----- 

0-0 012 0:3 Ol4 0:5 016 017 
.1 

o:a 019 

P 

Fig. 6.21 (u) M ean queue length Gbatch for a full batch system M/M[‘?b]/l-FCFS 

and (b) ?#$~~ for a minimum batch system. 
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p = 0.8 

p = 0.6 

p = 0.3 

Fig. 6.22 Mean queue length QL& of a minimum batch system. 

of jobs in the system K for the cases X = ,x/2, X = p, and X = 2,~ with 
,Q = l/ sec. Discuss the results. 

- 
Problem 6.3 Compare the mean number of jobs K of an M/D/l, an 
M/M/l, and an M/G/l system (cg - 2 - 2) with X = 0.8/set and p = l/set. 
Give a comprehensible explanation why the values are different although the 
arrival rate X and the service rate h are always the same. 

- 
Problem 6.4 Compare the mean number of jobs E( of an M/G/l and 
a GI/M/l system with X = O.g/sec, p = l/set, ci = 0.5, and cg = 0.5, 
respectively. Discuss the results. 

Problem 6.5 Consider a GI/G/l system with p = 0.8, cl = 0.5, and 
c; = 2. Compute the mean queue length s using the Allen-Cunneen, the 
KrRmer/Langenbach-Belz, and the Kimura approximation. Also compute 
upper and lower bounds for the mean queue length (see Section 6.12). 

Problem 6.6 Consider an M/M/l priority system with 2 priority classes, 
and ~1 = ~2 = l/set and Xr = X2 = 0.4/ sec. Compute the mean waiting 
time w for the two classes for a system with and without preemption. Discuss 
the results and compare them to the corresponding M/M/l-FCFS system. 

Problem 6.7 Consider an asymmetric M/M/2 system with X = l/set, 
~1 - l/set, and ~2 - l.S/sec. C jompute the utilizations p1 and p2 of the two 
servers and the mean number of jobs r using the approximation method and 
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the exact methods for the strategy random selection of the free server and 
the strategy selection of the fastest free server (see Section 6.16). Discuss the 
results. 

Problem 6.8 Consider an IvI/M[~J~]/~ batch system and an M/M[275]/1 
batch system with p = 0.5. Compute the mean queue length 8 for both cases 
and discuss the results. 



7 
Queueing Networks 

Queueing networks consisting of several service stations are more suitable for 
representing the structure of many systems with a large number of resources 
than models consisting of a single service station. In a queueing network at 
least two service stations are connected to each other. A station, i.e., a node, 
in the network represents a resource in the real system. Jobs in principle can 
be transferred between any two nodes of the network; in particular, a job can 
be directly returned to the node it has just left. 

A queueing network is called open when jobs can enter the network from 
outside and jobs can also leave the network. Jobs can arrive from outside 
the network at every node and depart from the network from any node. A 
queueing network is said to be closed when jobs can neither enter nor leave 
the network. The number of jobs in a closed network is constant. A network 
in which a new job enters whenever a job leaves the system can be considered 
as a closed one. 

In Fig. 7.1 an open queueing network model of a simple computer system is 
shown. An example of a closed queueing network model is shown in Fig. 7.2. 
This is the central-server model, a particular closed network that has been 
proposed by [Buze71] for the investigation of the behavior of multiprogram- 
ming system with a fixed degree of multiprogramming. The node with service 
rate ,ur is the central-server representing the central processing unit (CPU). 
The other nodes model the peripheral devices: disk drives, printers, magnet- 
ic tape units, etc. The number of jobs in this closed model is equal to the 
degree of multiprogramming. A closed tandem queueing network with two 
nodes is shown in Fig. 7.3. A very frequently occurring queueing network is 
the machine repairman model, shown in Fig. 7.4. 

263 
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s&yvb;f 

Disk 

L,,o Ii: 

CPU Printer 

cl -‘T-p 
Stream of 
completed 

jobs 
Magnetic Tape 

fig. 7.1 Computer system shown as an open queueing network. 

I 

Fig, 7.2 Central-server model. 

There are many systems that can be represented by the machine repairman 
model, for example, a simple terminal system where the M machines repre- 
sent the M terminals and the repairman represents the computer. Another 
example is a system in which A4 machines operate independently of each oth- 
er and are repaired by a single repairman if they fail. The M machines are 
modeled by a delay server or an infinite server node. A job does not have 
to wait; it is immediately accepted by one of the servers. When a machine 
fails, it sends a repair request to the repair facility. Depending on the service 
discipline, this request may have to wait until other requests have been dealt 
with. Since there are M machines, there can be at most .M repair requests. 

fig. 7.3 Closed tandem network. 
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Fig. 7.4 Machine repairman model. 

This is a closed two-node queueing network with h/i7 
processed, waiting, or are in the working machines. 

jobs that are either being 

7.1 DEFINITIONS AND NOTATION 

We will consider both single class and multiclass networks. 

7.1.1 Single Class Networks 

The following symbols are used in the description of queueing networks: 

POj 

Pi0 

XOi The arrival rate of jobs from outside to the ith node 

N Number of nodes 

K The constant number of jobs in a closed network 

(h, k2, . . .,lc~) The state of the network 

k The number of jobs at the ith node; for closed networks 

zki=K 
i=l 

mi 

Pi 

lIPi 

Pij 

The number of parallel servers at the ith node (mi > 1) 

Service rate of the jobs at the ith node 

The mean service time of the jobs at the ith node 

Routing probability, the probability that a job is transferred 
to the jth node after service completion at the ith node. (In 
open networks, the node with index 0 represents the external 
world to the network.) 

The probability that a job entering the network from outside 
first enters the jth node 

The probability that a job leaves the network just after com- 

pleting service at node i (pi0 = 1 - 5 pij). 
j=l 
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x The overall 
N 

arrival rate from outside to an open network 

(A = c Xoi) 
i=l 

the overall arrival rate of jobs at the ith node 

The arrival rate Xi for node i = 1,. . . , N of an open network is calculated 
by adding the arrival rate from outside and the arrival rates from all the other 
nodes. Note that in statistical equilibrium the rate of departure from a node 
is equal to the rate of arrival, and the overall arrival rate at node i can be 
written as: 

N 

for an open network. These are 
works these equations reduce to: 

Xi = Xoi + C Xjpji 7 for i = 1, . . . , N 
j=l 

known as traffic equations. For closed net- 

(74 

Xi = c Xjpji, for i = 1,. . . , N, (74 
j=l 

since no jobs enter the network from outside. 
Another important network parameter is the mean number of visits (ei) of 

a job to the ith node, also known as the visit ratio or relative arrival rate: 

xi ei = -, 
x 

for i= l,...,N, (7.3) 

where X is the overall throughput of the network(see Eqs. (7.24) and (7.25)). 
The visit ratios can also be calculated directly from the routing probabilities 
using Eqs. (7.3) and (7.1), or (7.3) and (7.2). For open networks, since Xoi = 
X*pOi: 

N 

ei =po; + Cejpji, for i = l,..., N, (7.4) 
j=l 

and for closed networks: 

(7.5) 

Since there are only (N - 1) independent equations for the visit ratios in 
closed networks, the ei can only be determined up to a multiplicative constant. 
Usually we assume that er = 1, although other possibilities are used as well. 
Using ei, we can also compute the relative utilixation xi, which is given by: 

(74 
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It is easy to show that [ChLa74] the ratio of server utilizations is given by: 

7.1.2 Multiclass Networks 

The model type discussed in the previous section can be extended by including 
multiple job classes in the network. The job classes can differ in their service 
times and in their routing probabilities. It is also possible that a job changes 
its class when it moves from one node to another. If no jobs of a particular class 
enter or leave the network, i.e., the number of jobs of this class is constant, 
then the job class is said to be closed. A job class that is not closed is said to 
be open. If a queueing network contains both open and closed classes, then it 
is said to be a mixed network. Figure 7.5 shows a mixed network. 

The following additional symbols are needed to describe queueing networks 
that contain multiple job classes, namely: 

R 

k. ar 

Kr 

K 

Si 

S 

Pir 

The number of job classes in a network 

The number of jobs of the rth class at the ith node; for a closed network: 

N R 

cc kir = K (74 

The number of jobs of the rth class in the network; not 
constant, even in a closed network: 

N 

c 
kir = Kr 

i=l 

The number of jobs in the various classes, known as the 
vector (K = (KI, . . . , KR)) 

The state of the ith node (Si = (ki,, . . . , kiR)): 

N 

c 
Si = K 

i=l 

The overall state of the network with multiple classes (S = (S 

The service rate of the ith node for jobs of the rth class 

necessarily 

(7.9) 

population 

(7.10) 

Pir,js that a job of the rth class at the ith node is transferred 
to the sth class and the jth node (routing probability) 

po,js The probability in an open network that a job from outside the network 
enters the jth node as a job of the sth class 



268 QlJEUElNG NETWORKS 

Pir,o The probability in an open network that a job of the rth 
the network after having been serviced at the ith node, so: 

Pir,O = 1 - 5 2 Pir,js 
j=l s=l 

(7.11) 

x The overall arrival rate from outside to an open network 

Xa,ir The arrival rate from outside to node i for class r jobs (Xe,ir = X. PO,+) 

A. al- The arrival rate of jobs of the rth class at the ith node: 

(7.12) 
j=l s=l 

for closed networks, pg,i, = 0 (1 < i < N, 1 < r < R) and we obtain: 

&r = 5 5 xjs * Pjs,ir. 
j=l s=l 

(7.13) 

The mean number of visits e;, of a job of the rth class at the ith node of 
an open network can be determined from the routing probabilities similarly 
to Eq. (7.4): 

eir = PO,ir + 2 2 ejsPjs,i7-, for i=l,,.., N, r=l,..., R. (7.14) 
j=l s=l 

For closed networks, the corresponding equation is: 

for i=l,..., N, r=l,..., R. (7.15) 

Usually we assume that er, = 1, for r = 1, . . 
also possible. 

7.2 PERFORMANCE MEASURES 

7.2.1 Single Class Networks 

. , R, although other settings are 

Analytic methods to calculate state probabilities and other performance mea- 
sures of queueing networks are described in the following sections. The deter- 
mination of the steady-state probabilities r(kl,. . . , k~) of all possible states of 
the network can be regarded as the central problem of queueing theory. The 
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mean values of all other important performance measures of the network can 
be calculated from these. There are, however, simpler methods for calculating 
these characteristics directly without using these probabilities. 

Note that we use a slightly different notation compared with that used 
in Chapters 2-5. In Chapters 2-5, xi(t) denoted the transient probability of 
the CTMC being in state i at time t and 7ri as the steady-state probability in 
state i. Since we now deal with multidimension state spaces, ~(ki, Icz, . . . , IAN) 
will denote the steady-state probability of state (ki, lc2, . . . , k~). 

The most important performance measures for queueing networks are: 

Marginal Probabilities ri(lc): For closed queueing networks, the marginal 
probabilities xi(k) that the ith node contains exactly ki = k jobs are 
calculated as follows: 

7ri(k) = c ~(kl,...,kN). 

5 k,=K 
j=1 

& ki=k 

(7.16) 

Thus xi(k) is the sum of the probabilities of all possible states (kl, . . . , 

kN), 0 5 ki 5 K that satisfy the condition 5 kj = K where a fixed 
j=l 

number of jobs, k, is specified for the ith node. The normalization con- 
dition that the sum of the probabilities of all possible states (ICI, . . . , kN> 

that satisfy the condition 5 kj = K with (0 5 kj 5 K) must be 1, 

that is: 
j=l 

c 7r(kl,...,kN) = 1. (7.17) 

Correspondingly, for open networks we have: 

ri(k) = c r(kl,. . . Jw), 
k,=k 

with the normalization condition: 

C( OTT ICI,... ,kN)=L 

Now we can use the marginal probabilities to obtain other interesting 
performance measures for open and closed networks. For closed net- 
works we have to take into consideration that xi(k) = 0 Vk > K. 

Utilization pi: The utilization pi of a single server node with index i is given 
by: 

pi = ITi (7.18) 
k=l 
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where pi is the probability that the ith node is busy, that is: 

pi = 1 - 7ri(O). (7.19) 

For nodes with multiple servers we have: 

pi = k Fmin(mi, k);lri(lc) = 1 - mgl G.,,(i,), (7.20) 
2 k=O k=O 

and if the service rate is independent of the load we get (see Eq. (6.4)): 

Ai pi zz - 
mini ’ 

(7.21) 

Throughput Xi: The throughput Xi of an individual node with index i rep- 
resents in general the rate at which jobs leave the node: 

(7.22) 

where the service rate pi(Jc) is, in general, dependent on the load, i.e., 
on the number of jobs at the node. For example, a node with multiple 
servers (m; > 1) can be regarded as a single server whose service rate 
depends on the load pi (Ic) = min(k,mi). pi, where ,!~i is the service rate 
of an individual server. It is also true for load-independent service rates 
that (see Eqs. (6.4), and (6.5)): 

We note that for a node in equilibrium, arrival rate and throughput 
are equal. Also note that when we consider nodes with finite buffers, 
arriving customers can be lost when the buffer is full. In this case, node 
throughput will be less than the arrival rate to the node. 

Overall Throughput A: The overall throughput X of an open network is 
defined as the rate at which jobs leave the network. For a network in 
equilibrium this departure rate is equal to the rate at which jobs enter 
the network, that is: 

x = 2 xoi. 
i=l 

(7.24) 

The overall throughput of a closed network is defined as the throughput 
of a particular node with index i for which ei = 1. Then the overall 
throughput of jobs in closed networks is: 

(7.25) 



PERFORMANCE MEASURES 271 

Mean Number of Jobs xi: The mean number of jobs at the ith node is 
given by: 

Ki = &i(k). (7.26) 
k=l 

From Little’s theorem (see Eq. (6.9)) it follows: 

Ki = A& (7.27) 

where Fi denotes the mean response time. 

Mean Queue Length &i: The mean queue length at the ith node is deter- 
mined by: 

(7.28) 

or, using Little’s theorem: 

6.i = XiWi, (7.29) 

where Wi is the mean waiting time. 

Mean Response Time Ti: The mean response time of jobs at the ith node 
can be calculated using Little’s theorem (see Eq. (6.9)) for a given mean 
number of jobs f;;i : 

Ki 
Ti=r. 

i 
(7.30) 

Mean Waiting Time wi: If the service rates are independent of the load, 
then the mean waiting time at node i is: 

wigi-l. 
Pi 

(7.31) 

7.2.2 Multiclass Networks 

The extension of queueing networks to include multiple job classes leads to a 
corresponding extension of the performance measures. The state probability 
of a network with multiple job classes is represented by r(Sr, . . . , S,). The 
normalization condition that the sum of the probabilities of all possible states 
(Sl,.. . , S,) is 1 must also be satisfied here. 
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Source 

7 

---- Open Class 
- Closed Class 

Fig. 7.5 A mixed network. 

Marginal Probability n;(k): For closed networks the marginal probability, 
i.e., the probability that the ith node is in the state Si = k, is given 

by: 

n(k) = c +h,..vSv), 
-$ S,=K 

3=1 

& S,=k 

(7.32) 

and for open networks: 

7ri(k) = c x(S1,. . . , S,). 
s,=k 

(7.33) 

The following formulae for computing the performance measures can be applied 
to open and closed networks. 

Utilization pir: The utilization of the ith node with respect to jobs of the 
rth class is: 

Pir - - - f, c ?ri(k)? min(rni, Ici), Ici = f &, (7.34) 
’ all states k 

a r=l 
with k, > 0 

and if the service rates are independent on the load: 

Air 
Pir = 

m&7- 
(7.35) 

Throughput Air: The throughput Air is the rate at which jobs of the rth 
class are serviced and leave the ith node [BrBa80] : 

all states k 
with k, > 0 

2 

(7.36) 
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or if the service rates are independent on the load: 

Ai, = mi.pirspir. (7.37) 

Overall Throughput A,: The overall throughput of jobs of the rth class in 
closed networks with multiclasses is: 

+xiT, 
ei, 

(7.38) 

and for open networks: 

k- = 5 xo,ir. (7.39) 
i=l 

Mean Number of Jobs %?i,: The mean number of jobs of the rth class at 
the ith node is: 

Ic,. q(k). (7.40) 
all states k 
with Ic,. > 0 

Little’s theorem can also be used here: 

Ki, = Ai,* Fir. (7.41) 

Mean Queue Length gir: The mean queue length of class r jobs at the ith 
node can be calculated using Little’s theorem as: 

Qir = Xi,wip* (7.42) 

Mean Response Time Ti,: The mean response time of jobs of the rth class 
at the ith node can also be determined using Little’s theorem (see 
Eq. (7.41)): 

(7.43) 

Mean Waiting Time Wi,: If the service rates are load-independent, then 
the mean waiting time is given by: 

wi, ZTi, - ‘. 
t%r 

7.3 PRODUCT-FORM QUEUEING NETWORKS 

(7.44) 

In the rest of this chapter, we will discuss queueing networks that have a 
special structure such that their solutions can be obtained without generating 
their underlying state space. Such networks are known as product-form or 
separable networks. 
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7.3.1 Global Balance 

The behavior of many queueing system models can be described using CTMCs. 
A CTMC is characterized by the transition rates between the states of the 
corresponding model (for more details on CTMC see Chapters 2-5). If the 
CTMC is ergodic, then a unique steady-state probability vector independent 
of the initial probability vector exists. The system of equations to determine 
the steady-state probability vector 7r is given by 7rQ = 0 (see Eq. (2.58)), 
where Q is the infinitesimal generator matrix of the CTMC. This equation 
says that for each state of a queueing network in equilibrium, the flux out of 
a state is equal to the flux into that state. This conservation of flow in the 
steady state can be written as: 

c rjqji = 7ri c qij, ‘d&S, (7.45) 
j&s jES 

where qij is the transition rate from state i to state j. After subtracting ni eqii 
from both sides of Eq. (7.45) and noting that qii = - Cjfi qij, we obtain the 
global balance equation (see Eq. (2.61)): 

Vi E S : c r’jqji - 7ri 
c 4ij = 0, (7.46) 

i#i i#i 

which corresponds to the matrix equation rrQ = 0 (Eq. (2.58)). 
In the following we use two simple examples to show how to write the global 

balance equations and use them to obtain performance measures. 

Example 7.1 Consider the closed queueing network given in Fig. 7.6. The 
network consists of two nodes (N = 2) and three jobs (K = 3). The service 
times are exponentially distributed with mean values l/pi = 5 set and l/p2 = 

2.5 set, respectively. The service discipline at each node is FCFS. The state 
space of the CTMC consists of the following four states: 

((3, O), c&l>, (1, a>, (0,3)}* 

Fig. 7.6 A closed network. 

The notation (ki, /&) says that there are /cl jobs at node 1 and k2 jobs at 
node 2, and r(lcl, Ic2) denotes the probability for that state in equilibrium. 
Consider state (1,2). A transition from state (1,2) to state (0,3) takes place 
if the job at node 1 completes service (with corresponding rate ~1). Therefore, 
,LL~ is the transition rate from state (1,2) to state (0,3) and, similarly, ~2 is 
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Fig. 7.7 State transition diagram for Example 7.1. 

the transition rate from state (1,2) to state (2,l). The flux into a state of the 
model is just given by all arcs into the corresponding state, and the flux out 
of that state is determined from the set of all outgoing arcs from the state. 
The corresponding state transition diagram is shown in Fig. 7.7. The global 
balance equations for this example are: 

439 oh1 = 7-42, qp2, 

427 w/Q1 + P2> = 7r(3,0)/% + 7r(l, 2)/L& 

+ 2)t/% + P2) = 7+, l)/% + T(o, 3),Q,, 

7@, ~)CLZ = r( 1,Qh. 

Rewriting this system of equations in the form rrQ = 0 we have: 

and the steady-state probability vector n = (7r(3,0), ~(2, l), n(l,2), ~(0,3)). 
Once the steady-state probabilities are known, all other performance measures 
and marginal probabilities xi(k) can be computed. If we use ~1 = 0.2 and 
~2 = 0.4, then th e generator matrix Q has the following values: 

-0.2 0.2 0 0 

‘; iof 0 0 $26 0.4 oo2 * -0.4 

Using one of the steady-state solution methods introduced in Chapter 3, 
the steady-state probabilities are computed to be: 

7r(3,0) = 0.5333, 7r(2,1) = 0.2667, n&2) = 0.1333, ~(0,3) = 0.0667 

and are used to determine all other performance measures of the network, as 
follows: 

l Marginal probabilities (see Eq. (7.16)): 

q(O) = x2(3) = 7r(0,3) = 0.0667, q(l) = n,(2) = +,2) = 0.133, 
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~~(2) = ~(1) = 7r(2,1) = 0.2667, 7rr(3) = 7r2(0) = n(3,O) = 0.5333. 

l Utilizations (see Eq. (7.20)): 

p1 = 1 - 7rl(O) = 0.9333, p2 = 1 - 7r2(0) = 0.4667. 

a Throughput (see Eq. (7.23)): 

x = h = x2 = plpl = pap2 = 0.1867. 

l Mean number of jobs (see Eq. (7.26)): 

El = 2 knl (k) = 2.2667, X2 = 2 h2(k) = 0.7333. 
k=l k=l 

l Mean response time of the jobs (see Eq. (7.30)): 

Xl x2 
% = ~1 = 12.1429, T2 = xz = 3.9286. 

Example 7.2 Now we modify the closed network of Example 7.1 so that 
the service time at node 1 is Erlang-2 distributed, while the service time at 
node 2 remains exponentially distributed. The modified network is shown in 
Fig. 7.8. Service rates of the different phases at node 1 are given by ~11 = 
~12 = 0.4sec-l and the service rate of node 2 is ~2 = 0.4. There are K = 2 
jobs in the sysiem. A state (ICI, I; Icz), I = 0, 1,2, . . ., of the network is now 

Fig. 7.8 Network with Erlang-2 distributed server. 

not only given by the number Ici of jobs at the nodes, but also by the phase 1 
in which a job is being served at node 1. This state definition leads to exactly 
five states in the CTMC underlying the network. 

Pll CL12 Pll Pl2 

Fig. 7.9 State transition diagram for Example 7.2. 
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The state transition diagram of the CTMC is shown in Fig. 7.9. The 
following global balance equations can be derived: 

451; Oh1 = n(L 1; qp2, 

4272; oh12 = 74271; qp11 + n(l, 2; l)p2, 

al; Wll + pa) = 742,2; O)p12 + n(O,O; 2)/&, 

492; l)(Pl2 + P2) = +,1; q/w, 

7440; 2)/92 = +2; l)p12. 

The generator matrix is: 

0 0 0 

Pl2 0 0 

-(I-h1 + cL2) Pll 

0 -(I412 +p2) pY2 * 

IQ2 0 -P2 

After inserting the values ~11 = p12 = p2 = 0.4, Q becomes: 

-0.4 0.4 0 0 0 
-0.4 0.4 0 0 

-0.8 0.4 0 
-0.8 0.4 

0 0 0.4 0 -0.4 

Solving the system of equations 7rQ = 0, we get: 

x(2,1; 0) = 0.2219, n(2,2; 0) = 0.3336, 

7r(l, 1; 1) = 0.2219, 7r(l,2; 1) = 0.1102, 

r(O,O; 2) = 0.1125. 

These state probabilities are used to determine the marginal probabilities: 

q(O) = 7r2(2) = ?r(O,O; 2) = 0.1125, 

~~(1) = ~~(1) = x(1,1; 1) + ~(1,2; 1) = 0.3321, 

7rr(2) = n2(0) = n(2,l; 0) + 7r(2,2; 0) = 0.5555. 

The computation of other performance measures is done in the same way 
as in Example 7.1. 

7.3.2 Local Balance 

Numerical techniques based on the solution of the global balance equations 
(see Eq. (2.61)) can in principle always be used, but for large networks this 
technique is very expensive because the number of equations can be extremely 
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large. For such large networks, we therefore look for alternative solution 
techniques. 

In this chapter we show that efficient and exact solution algorithms exist 
for a large class of queueing networks. These algorithms avoid the generation 
and solution of global balance equations. If all nodes of the network fulfill 
certain assumptions concerning the distributions of the interarrival and service 
times and the queueing discipline, then it is possible to derive local balance 
equations, which describe the system behavior in an unambiguous way. These 
local balance equations allow an essential simplification with respect to the 
global balance equations because each equation can be split into a number of 
single equations, each one related to each individual node. 

Queueing networks that have an unambiguous solution of the local balance 
equations are called product-form networks. The steady-state solution to such 
networks’ state probabilities consist of multiplicative factors, each factor relat- 
ing to a single node. Before introducing the different solution methods for 
product-form networks, we explain the local balance concept in more detail. 
This concept is the theoretical basis for the applicability of analysis methods. 

Consider global balance equations (Eq. (2.61)) for a CTMC: 

vi E s : 
c 

Tiqii = 7Ti 
c 4ij 

jES j&3 

or: 

rQ=O, 

with the normalization condition: 

c iTTi = 1. 

iES 

Chandy [Chan72] noticed that under certain conditions the global balance 
equations can be split into simpler equations, known as local balance equations. 

Local balance property for a node means: The departure rate from a state 
of the queueing network due to the departure of a job from node i equals 
the arrival rate to this state due to an arrival of a job to this node. 

This can also be extended 
in the following way: 

to queueing networks with several job classes 

The departure rate from a state of the queueing network due to the 
departure of a class r-job from node i equals the arrival rate to this 
state due to an arrival of a class r-job to this node. 

In the case of non-exponentially distributed service times, arrivals and 
departures to phases, instead of nodes, have to be considered. 
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Fig. 7.10 A closed queueing network. 

Example 7.3 Consider a closed queueing network (see Fig. 7.10) consist- 
ing of N = 3 nodes with exponentially distributed service times and the 
following service rates: ,LJ~ = 4sec-‘, ~2 = lsec-l, and ,93 = 2sec-l. There 
are K = 2 jobs in the network and the routing probabilities are given as: 
p12 = 0.4, p13 = 0.6, and p21 = p31 = 1. The following states are possible in 
the network: 

(2,0, O), ((4% O), (O,O, 3, (171, o>, (LO, 117 (07 L 0 
The state diagram of the underlying CTMC is shown in Fig. 7.11. 

We set the overall flux into a state equal to the overall flux out of the state 
for each state to get global balance equations: 

(1) 42,0, WcLlP12 + I-LlPl3) = n(l, 0, qp3p31 + r(l, l,O)p2p21, 

(a> 407 27 Q2P21 = r(l, 1, QlP12, 

(3) 40? 07 %-43P31 = +, 0, QJlP13, 

(4) 417 17 Ob2P21 + /JlP13 + YlP12) = @, 2, qp2p21 + 42,0,0)/4p12 
+ 40,1, 1b3P317 

c5) +, 0,1)(~3P31 + plPl2 + plP13) = +, 0,2)jJ3p31 + T(O, 1, +2p21 

+ 64 O,O)/aP13, 

(6) ~(0~ 19 WcL3P31 + P2P21) = +, 1, qp1p13 + n(l, 0, qp1p12. 

To determine the local balance equations we start, for example, with the 
state (1, 1,O). The departure rate out of this state, because of the departure 
of a job from node 2, is given by ~(1,1,0)+,~2~p2r. This rate is equated to 
the arrival rate into this state (I, 1,O) due to the arrival of a job at node 2; 
7r(2,0,0). ,~l.p12. Therefore, we get the local balance equation: 

(4’) +,1,0>* ruZ’P21 = 7@, 60). /Ql'Pl2. 

Correspondingly, the departure rate of a serviced job at node 1 from state 
(1, 1,O) equals the arrival rate of a job, arriving at node 1 into state (l,l,O): 

(4”) al, 0). Pl. (P13 + P12) = n(0, 1, 1). /J3’P31 + n(O,2,0). /Q.p21. 
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Fig. 7.11 The CTMC for Example 7.3. 

By adding these two local balance equations, (4’) and (4”)) we get the 
global balance Eq. (4). Furthermore, we see that the global balance Eqs. (l), 
(2), and (3) are also local balance equations at the same time. The rest of the 
local balance equations are given by: 

c5’) T(l, o,lh (Pl2 + P13) = ‘@, 1, +2P21 + r(o, 0,2)jJ31331, 

(5”) 417 07 G3P31 = 7+,0, Qw13, 

(6’) 407 17 l)PwzPZl = q, 0, Qw12, 

(f-0 Q, 1, Q3P31 = q, LO)pm3, 

with (5’) + (5”) = (5) and (6’) + (6”) = (6), respectively. 
Noting that ~12 + ~13 = 1 and ~21 = ~31 = 1, the following relations can 

be derived from these local balance equations: 

7r(l 7 0 7 
1) 

= 7r(2 7 0 7 O)c"'p 13’ 
7r(l 

7 1 7 0) = 7r(2 7 0 ? 
P3 

0)&p 12’ P2 

2 2 7r(O 7 0 7 a>= n(2 7 0 7 0) ( fip13 > 7 n-(0 7 2 7 O)= 42 7 0 7 0) ( fip12 > 7 

P3 Pu:! 

7r(O, 1,1) = 7r(2,0,0) P2 -p12P13. 
p2p3 

Imposing the normalization condition, that the sum of probabilities of all 
states in the network is 1, for 7r(2,0,0) we get the following expression: 

After inserting the values, we get the following results: 

7r(2,0,0) = 0.103, r(l, (41) = 0.123, 7r(O,O, 2) = 0.148, 

~(0,2,0) = 0.263, ~(1, I$) = 0.165, ~(0, I, I) = 0.198. 
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As can be seen in this example, the structure of the local balance equa- 
tions is much simpler than the global balance equations. However, not every 
network has a solution of the local balance equations but there always exists 
a solution of the global balance equations. Therefore, local balance can be 
considered as a sufficient (but not necessary) condition for the global balance. 
Furthermore, if there exists a solution for the local balance equations, the 
model is then said to have the local balance property. Then this solution is 
also the unique solution of the system of global balance equations. 

The computational effort for the numerical solution of the local balance 
equations of a queueing network is still very high but can be reduced consid- 
erably with the help of a characteristic property of local-balanced queueing 
networks: For the determination of the state probabilities it is not necessary 
to solve the local balance equations for the whole network. Instead, the state 
probabilities of the queueing network in these cases can be determined very 
easily from the state probabilities of individual single nodes of the network. 
If each node in the network has the local balance property, then the following 
two very important implications are true: 

l The overall network also has the local balance property as proven in 
[CHT77]. 

l There exists a product-form solution for the network, that is: 

+%, s2, * * * ) S,) = ; [7r(S1)* n(S2)* . . . * 7T(S,)] ) (7.47) 

in the sense that the expression for the state probability of the network 
is given by the product of marginal state probabilities of each individual 
node. The proof of this fact can be found in [Munt73]. The normaliza- 
tion constant G is chosen in such a way that the sum of probabilities 
over all states in the network equals 1. 

Equation (7.47) says that in networks having the local-balance property, 
the nodes behave as if they were single queueing systems. This characteristic 
means that the nodes of the network can be examined in isolation from the 
rest of the network. Networks of the described type belong to the class of so- 
called separable network or product-form networks. Now we need to examine 
for which types of elementary queueing systems a solution of the local balance 
equation exists. If the network consists of only these types of nodes then we 
know, because of the preceding conclusion, that the whole network has the 
local-balance property and the network has a product-form solution. The 
local-balance equations for a single node can be presented in a simplified form 
as follows [SaCh81]: 

~(S)%-(S) = T(S -1,)*X,. (7.48) 
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In this equation, Pi is the rate with which class-r jobs in state S are 
serviced at the node, A, is the rate at which class-r jobs arrive at the node, 
and (S - 1,) describes the state of the node after a single class-r job leaves it. 

It can be shown that for the following types of queueing systems the local 
balance property holds [Chan72]: 

Type-l : M/M/ m-FCFS. The service rates for different job classes must be 
equal. Examples of Type-l nodes are input/output (I/O) devices or 
disks. 

Type-Z?: M/G/l-PS. The CPU of a computer system can very often be 
modeled as a Type-2 node. 

Type-3: M/G/w (infinite server). Terminals can be modeled as Type-3 
nodes. 

Type-d: M/G/l-LCFS PR. There is no practical example for the applica- 
tion of Type-4 nodes in computer systems. 

For Type-2, Type-3, and Type-4 nodes, different job classes can have dif- 
ferent general service time distributions, provided that these have rational 
Laplace transform. In practice, this requirement is not an essential limitation 
as any distribution can be approximated as accurately as necessary using a 
Cox distribution. 

In the next section we consider product-form solutions of separable net- 
works in more detail. 

Problem 7.1 Consider the closed queueing network given in Fig. 7.12. 
The network consists of two nodes (N = 2) and three jobs (K = 3). The 

Fig. 7.12 A simple queueing network example for Problem 7.1. 

service times are exponentially distributed with mean values l/pi = 5 set 
and l/p2 = 2.5 sec. The service discipline at each node is FCFS, and the 
routing probability 4 = 0.1. 

(a) Determine the local balance equations. 

(b) From the local balance equations, derive the global balance equations. 

(4 Determine 
tions. 

the steady-state probabilities using the local balance equa- 
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7.3.3 Product-Form 

The term product-form was introduced by [Jack631 and [GoNe67a], who con- 
sidered open and closed queueing networks with exponentially distributed 
interarrival and service times. The queueing discipline at all stations was 
assumed to be FCFS. As the most important result for the queueing theory, 
it is shown that for these networks the solution for the steady-state probabili- 
ties can be expressed as a product of factors describing the state of each node. 
This solution is called product-form solution. In [BCMP75] these results were 
extended to open, closed, and mixed networks with several job classes, non- 
exponentially distributed service times and different queueing disciplines. In 
this section we consider these results in more detail and give algorithms to 
compute performance measures of product-form queueing networks. 

A necessary and sufficient condition for the existence of product-form solu- 
tions is given in the previous section but repeated here in a slightly different 
way: 

Local Balance Property: Steady-state probabilities can be obtained by 
solving steady-state (global) balance equations. These equations bal- 
ance the rate at which the CTMC leaves that state with the rate at 
which the CTMC enters it. The problem is that the number of equa- 
tions increases exponentially in the number of states. Therefore, a new 
set of balance equations, the so-called local balance equations, is defined. 
With these, the rate at which jobs enter a single node of the network is 
equated to the rate at which they leave it. Thus local balance is con- 
cerned with a local situation and reduces the computational effort. 

Moreover, there exist two other characteristics 
network with product-form solution: 

that apply to a queueing 

M + M-Property (Markov Implies Markov): A service station has the 
M + M-property if and only if the station transforms a Poisson arrival 
process into a Poisson departure process. In [Munt73] it is shown that a 
queueing network has a product-form solution if all nodes of the network 
have the M + M-property. 

Station-Balance Property: A service discipline is said to have station- 
balance property if the service rates at which the jobs in a position 
of the queue are served are proportional to the probability that a job 
enters this position. In other words, the queue of a node is partitioned 
into positions and the rate at which a job enters this position is equal to 
the rate with which the job leaves this position. In [CHT77] it is shown 
that networks that have the station-balance property have a product- 
form solution. The opposite does not hold. 



284 QUEUEING NETWORKS 

Fig. 7.13 Relation between SB, LB, PF, and M + M. 

The relation between station balance (SB), local balance (LB), product- 
form property (PF) , and Markov implies Markov property (n/r + A4) is shown 
in Fig. 7.13. 

7.3.4 Jackson Networks 

The breakthrough in the analysis of queueing networks was achieved by the 
works of Jackson [Jack57, Jack63]. He examined open queueing networks and 
found product-form solutions. The networks examined fulfill the following 
assumptions: 

There is only one job class in the network. 

The overall number of jobs in the network is unlimited. 

Each of the N nodes in the network can have Poisson arrivals from 
outside. A job can leave the network from any node. 

All service times are exponentially distributed. 

The service discipline at all nodes is FCFS. 

The ith node consists of mi 2 1 identical service stations with the service 
rates pi, i = 1,. . . , N. The arrival rates Xoi, as well as the service rates, 
can depend on the number Ici of jobs at the node. In this case we have 
load-dependent service rates and load-dependent arrival rates. 

Note: A service station with more than one server and a constant service 
rate pi is equivalent to a service station with exactly one server and load- 
dependent service rates: 

(7.49) 
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Jackson’s Theorem: If in an open network ergodicity (A; < pi. mi) holds 
for all nodes i = 1,. . . , N (the arrival rates Xi can be computed using 
Eq. (7.1)), th en the steady-state probability of the network can be 
expressed as the product of the state probabilities of the individual 
nodes, that is: 

;?-(h, k2, * * * , kN) = 7b(h)‘~2(Jc2)’ * * * ‘TN(kN). (7.50) 

The nodes of the network can be considered as independent M/M/m queues 
with arrival rate Xi and service rate pi. To prove this theorem, [ Jack631 
has shown that Eq. (7.50) fulfills the global balance equations. Thus, the 
marginal probabilities ri(lci) can be computed with the well-known formulae 
for M/M/m systems (see Eqs. (6.26), (6.27)): 

(7.51) 

where 7ri(O) is given by the condition E ri(ki) = 1: 
k,=O 

-’ 
Ai 

7 pi= - < 1. 
m&i 

(7.52) 

Proof: We verify that Eq. (7.50) fulfills the following global balance equa- 
t ions: 

= 5 Xoiy(ki)n(kl, . . . , ki - 1,. . . , kN) 
i=l 

r(k1,. . . , ki + 1,. . . , kN) 

(7.53) 

N N 

+ c c q ( kj + l)/.qpgr(kl, . . . , kj + 1,. . . , ki - 1, . . . , kN). 
i=l j=l 

The indicator function y(ki) is given by: 

y(h) = 
0, ki = 0, 

1, ki > 0. 
(7.54) 
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The function: 

gives the load-dependent service rate multiplier. 
For the proof we use the following relations: 

(7.55) 

(7.56) 

T(kl, - 6 6 s 7 kj + 1, *. -7 Ici 1,. ~6 7 ICN) _ Aj/LiCXi(lc;) 
~(JGl,...,Icj,...,~i,...,~N) - Xi/.hjCXj(kj + 1)’ 

If we divide Eq. (7.53) by ~(lcr,. . . , /CN) and insert Eq. (7.56), then, by 
using the relation y(/~i) . CX~(/C~) E oi (Ici) 7 we get: 

flhoi + eN(k)pi =e I- gpij Ai 
i=l i=l i=l ( ) j=l 

(7.57) 

N XOif%ai (h) 

+x x 

N N Pi44 

i=l i 
+ CC TPjiXj- 

i=l j=l 2 

The first term can be rewritten as: 

and the last one as: 

2 2 PiaiFk) pjixj (7.58) 
i=l j=l 2 

= f)iCri(ki) _ 2 AOipTi(ki). 

i=l i=l a 

Substituting these results on the right side of Eq. (7.57), we get the same 
result as on the left side. q.e.d. 

The algorithm based on Jackson’s theorem for computing the steady-state 
probabilities can now be described in the following three steps: 

For all nodes, i = 1, . . . , IV, compute the arrival rates Xi of the 
open network by solving the traffic equations, Eq. (7.1). 
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Consider each node i as an M/M/m queueing system. Check the 
ergodicity, Eq. (6.5), and compute the state probabilities and performance 
measures of each node using the formulae given in Section 6.5. 

Using Eq. (7.50), compute the steady-state probabilities of the 
overall network. 

We note that for a Jackson network with feedback input, processes to the 
nodes will, in general, not be Poisson and yet the nodes behave like inde- 
pendent M/M/m nodes. Herein lies the importance of Jackson’s theorem 
[BeMe78]. We illustrate the procedure with the following example. 

Example 7.4 Consider the queueing network given in Fig. 7.14, which 
consists of N = 4 single server FCFS nodes. The service times of the jobs at 

Fig. 7.14 Open queueing network model of a computer system. 

each node are exponentially distributed with respective means: 

1 
- = o.odsec, 

1 
- = 0.03seq 

1 
- = O.O6sec, 

1 
- = 0.05sec. 

tQ1 t92 IQ3 P4 

The interarrival time is also exponentially distributed with the parameter: 

X = X04 = 4 jobs/set. 

Furthermore, the routing probabilities are given as follows: 

P12 = ~13 = 0.5, ~41 = p21 = 1, p31 = 0.6, p30 = 0.4. 

Assume that we wish to compute the steady-state probability of state 
(ICI, k2, k3, k4) = (3,2,4,1) with the help of the Jackson’s method. For this 
we follow the three steps given previously: 

Compute the arrival rates from the traffic equations, Eq. (7.1): 

h = X2P21 + x3p31+ X4P41 = 20, x2 = hp12 = 10, 

x3 = hP13 = 10, x4 = x()4 = 4. 
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Compute the state probabilities and important performance mea- 
sures for each node. For the utilization of a single server we use Eq. (6.3): 

Xl 
p1=--0.8, p2=-=0.3, p3=x3&6, p&L~. 

x2 

I-L1 P2 CL3 I-L4 

Thus, ergodicity (pi < 1) is fulfilled for all nodes. The mean number of jobs 
at the nodes is given by Eq. (6.13): 

j+P1= 
1 -P1 

4, K2 = 0.429, K3=l.5, 17*=O.a5. 

Mean response times, from Eq. (6.15): 

gil - llm 
1 - Pl 

= 0.2, T2 = 0.043, T3 = 0.15, T4 = 0.0625. 

The mean overall response time of a job is given by using Little’s theorem in 
the following way: 

K 
T= x = $Fi = 1.545. 

1=1 

Mean waiting times, from Eq. (6.16): 

w1 = fd$ = 0.16, w2 = 0.013, w3 = 0.09, w4 = 0.0125. 

Mean queue lengths, from Eq. (6.17): 

~~ = Pi - = 3.2, 
1 - Pl 

Q2 = 0.129, Q4 =0.05. Q3 =0.9, 

The necessary marginal probabilities can be computed using Eq. (6.12): 

nr(3) = (1 - pl)p; = 0.1024, 7r2(2) = (1 - p2)p; = 0.063, 

~~(4) = (1 - p3)p; = 0.0518, 7r4(1) = (1 - p4)p4 = 0.16. 

Computation of the state probability 7r(3,2,4,1) using Eq. (7.50): 

7r(3,2,4,1) = 7rr(3)* 7r2(2)* 7r3(4)* n-4( 1) = 0.0000534. 

7.3.5 Gordon/Newell Networks 

Gordon and Newell [GoNe67a] considered closed queueing networks for which 
they made the same assumptions as in open queueing networks, except that 
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no job can enter or leave the system (X0; = X;e = 0). This restriction means 
that the number K of jobs in the system is always constant: 

Thus, the number of possible states is finite, and it is given by the binomial 
coefficient: 

which describes the number of ways of distributing K jobs on N nodes. The 
theorem of Gordon/Newell says that the probability for each network state in 
equilibrium is given by the following product-form expression: 

(7.59) 

Here G(K) is the so-called normalixation constant. It is given by the condition 
that the sum of all network state probabilities equals 1: 

G(K) = C fiF,(ki)- (7.60) 
5 ki=K '=' 
a=1 

The Fi(ki) are functions that correspond to the state probabilities ri(lci) of 
the ith node and are given by: 

(7.61) 

where the visit ratios ei are computed using Eq. (7.5). The function pi(Ici) is 
given by: 

ki!, ki I mi, 
pi(ki) = mi! * rnfamrni, Ici > mi, (7.62) 

1, mi = 1. 

For various applications a more general form of the function Fi (Ici) is advan- 
tageous. In this generalized function, the service rates depend on the number 
of jobs at the node. For this function we have: 

ki 
e; Fi(ki) = Ai(Q’ (7.63) 
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with 

(7.64) 

With relation (7.49) it can easily be seen that the case of constant service 
rates, Eq. (7.61), is a special case of Eq. (7.63). 

Proof: Gordon/Newell have shown in [GoNe67a] that Eq. (7.59) fulfills 
the global balance equations (see Eq. (7.53)) that have now the following form: 

(7.65) 

where the left side describes the departure rate out of state (ki, . . . , kN> and 
the right side describes the arrival rate from successor states into this state. 
The function y(ki) and cxi(ki) are given by Eqs. (7.54) and (7.55). 

We define now a variable transformation as follows: 

@l,. . . , kN) = 
Q(h,--.,k~) 

fi Pi(k) ’ 

(7.66) 

i=l 

and: 

+l, . . . , ki - 1,. . . , kj + 1,. . . , kN) = 

-$&Q(k, ,..., ki-l,...,Ic,+l,...$N) 
3 

fi Pi(k) 

. (7.67) 

i=l 

If we substitute these equations into Eq. (7.65) we get: 
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This equation can be simplified using the relation r(lci)cri(ki) E ai(lci): 

N 

c a@i)piQ(h, - a.7 kN) = 

i=l 

N N 
(7.68) 

cc ai(k)pjpjiQ(h,. . . , h - 1,. . . , kj + 1,. . . , h), 
j=l i=l 

and Q(rCr,. . . , kN) can be written in the form: 

(7.69) 

with the relative utilization xi = ei/pi (Eq. (7.6)). 
Here c is a constant. Substituting this into (7.68) we have: 

i=l 

= 5 2 cui(~i)pjpji(x~l . . . xy . . . x;j+l . . . x$cJ) . c 

This expression can be rewritten as: 

gm (pi - gpjpji$ = 0. 
Since at least one ai (ki) will be non-zero, it follows that the factor in the 
square brackets must be zero. Thus, we are led to consider the system of 
linear algebraic equations for xi: 

N 

/LiZi = 
c pjxjPji, 
j=l 

where xi = e;/pi (Eq. (7.6)) and: 

N 

ei = c ejPji* 
j=l 
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This is the traffic equation for closed networks (Eq. (7.5)). That means that 
Eq. (7.69) is correct and with Eqs. (7.66) and (7.61) we obtain Eq. (7.59).q.e.d. 

Thus the Gordon/Newell theorem yields a product-form solution. In the 
general form it says that the state probabilities r(lcl, kz, - - . , kN) are given as 
the product of the functions Fi (ki), i = 1. . . , N, defined for single nodes. It is 
interesting to note that if we substitute in Eq. (7.59) Fi(lci) by Li. Fi(ki), 1 < 
i 5 N, then this has no influence on the solution of the state probabilities 
+h,... , kN> as long as Li is a positive real number. Furthermore, the 
use of X.ei, i = l,... , N, with an arbitrary constant X > 0, has no influence 
on the results because the visit ratios ei are relative values [ShBu77]. (Also 
see Problems 2 and 3 on page 444 of [Riv82].) 

The Gordon/Newell method for computing the state probabilities can be 
summarized in the following four steps: 

Compute the visit ratios ei for all nodes i = 1,. . . , N of the closed 
network using Eq. (7.5). 

For alli = l,... , N, compute the functions Fi(ki) using Eq. (7.61) 
or Eq. (7.63) (in th e case of load-dependent service rates). 

Compute the normalization constant G(K) using Eq. (7.60). 

Compute the state probabilities of the network using Eq. (7.59). 
From the marginal probabilities, which can be determined from the state 
probabilities using Eq. (7.16), all other required performance measures can be 
determined. 

An example of the application of the Gordon/Newell theorem follows: 

Example 7.5 Consider the closed queueing network shown in Fig. (7.15) 
with N = 3 nodes and K = 3 jobs. The queueing discipline at all nodes is 
FCFS. The routing probabilities are given as follows: 

~11 = 0.6, p21 = 0.2, P31 = 0.4, 

P12 = 0.3, P22 = 0.3, p32 = 0.1, 

P13 = 0.1, P23 = 0.5, p33 = 0.5. 

The service time at each node is exponentially distributed with the rates: 

~1 = 0.8 se?, p2 = 0.6 set-l, p3 = 0.4 set-l . (7.70) 

This network consists of 
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Fig. 7.15 Closed queueing network. 

states, namely: 

(3,0, O), (2,L o), (270, I>, (k2, O), (Lb I>> 

(l,O, 2), (073, O), (0,2,1>, (0,1,2), (O,O? 3). 

We wish to compute the state probabilities using the Gordon/Newell the- 
orem. For this we proceed in the following four steps: 

r-1 Determine the visit ratios at each node using Eq. (7.5): 

el = elpll + e2p21 + e3p31 = I, 

e2 = elpl2 + e2p22 + e31332 = 0.533, 

e3 = elpl3 +e2p23 +e3p33 = 0.733. 

-1 Determine the functions Fi(ki) for i = 1,2,3 using Eq. (7.61): 

WO = (el/pl)o = 1, W) = (e1/d = 1.25, 
Fr(2) = (el/p1)2 = 1.5625, Fr(3) = (el/p1)3 = 1.953, 

and correspondingly: 

F2(0) = 1, Fz(l) = 0.889, F2(2) = 0.790, &(3) = 0.702, 

F?(O) = 1, F3(1) = 1.833, Fs(2) = 3.361, Fs(3) = 6.162. 

m] Determine the normalization constant using Eq. (7.60): 

G(3) = Fr(3)F2(0)&(0) + Fr(2)&(1)Fs(O) + Fr(2)FZ?(O)F$) 

+ ~~(~)~2(2)~3(0) + h(l)F&)F&) + Fl(1)h(o)F3(2) 
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+ pl(“)F2(3)~3(o) + Fl(o)F2(2)F3(1) + F1(0)&(1)F3(2) 
+ Fl(O)&(O)F3(3) = 24.733. 

Determine the state probabilities using the Gordon/Newell theo- 
rem, Eq. (7.59): 

1 
n(3,0,0) = G(3) -q3)*qo)* F3(0) = 0.079, 

G,L 0) = G(3) L~r(2).~2(l)+3(0) = 0.056. 

In the same way we compute: 

7r(2,0,1) = 0.116, n(1,2,0) = 0.040, ?r(l, 1,l) = 0.082, T&0,2) = 0.170, 

~(0,3,0) = 0.028, x(0,2,1) = 0.058, ~(0, 1,2) = 0.121, r(O,O, 3) = 0.249. 

Using Eq. (7.16), all marginal probabilities can now be determined: 

q(o) = 7r(o, 3,0) + n(O,2,1) + 7r(O, 1,2) + 7r(O, 0,3) = 0.457, 

7rr(l) = 7r(l, 2,O) + 7r(l, 1,l) + T(l,O, 2) = 0.292, 

~(2) = n(2,1,0) + n(2,0,1) = 0.172, 

7r1(3) = 7r(3,0,0) = 0.079, 

~~(0) = 7r(2,0,1) + r(l,O, 2) + r(O,O, 3) + n(3,0,0) = 0.614, 

T2(1) = n(2,1,0) + 7r(l, 1,l) + T(O,l, 2) = 0.259, 

7r2(2) = x(1,2,0) + 7r(O, 2,1) = 0.098, 

T2(3) = x(0,3,0) = 0.028, 

~~(0) = 7r(3,0,0) + n(2,1,0) + r&2,0) + n(O,3,0) = 0.203, 

7r3(1) = 7r(2,0,1) + ~(1, 1,l) + ~(0,2,1) = 0.257, 

~~(2) = r(l,O, 2) + ~(0,1,2) = 0.291, 

7r3(3) = 7r(O, 0,3) = 0.249. 

For the other performance measures, we get: 

l Utilization at each node, Eq. (7.19): 

p1 = 1 - 7rr(O) = 0.543, p2 = 0.386, p3 = 0.797. 

l Mean number of jobs at each node, Eq. (7.26): 

K1 = &q(k) = 0.873 &, = 0.541, K3 = 1.585. 
k=l 
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l Throughputs at each node, Eq. (7.23): 

Xl =mlplpl = 0.435, X2 = 0.232, X3 = 0.319. 

l Mean response time at each node, Eq. (7.43): 

- 
T, = Kl - = 2.009, T2 = 2.337, T3 = 4.976. 

h 

7.3.6 BCMP Networks 

The results of Jackson and Gordon/Newell were extended by Baskett , Chandy, 
Muntz, and Palacios in their classic article [BCMP75], to queueing networks 
with several job classes, different queueing strategies, and generally distribut- 
ed service times. The considered networks can be open, closed, or mixed. 

Following [BrBa80], an allowed state in a queueing model without class 
switching is characterized by four conditions: 

1. The 
i.e.: 

number of jobs in each class at each node is always nonnegative, 

2. For all jobs the following condition must hold: 

iii, > 0 if there exists a way for class-r jobs 
node i with a non-zero probability. 

to 

3. For a closed network, the number of jobs in the network is by: 

4. The sum of class-r jobs in the network is constant at any time, i.e.: 

given 

K, = gki, = const. l<r<R. 
i=l 

If class switching is allowed, then Conditions 1-3 are fulfilled, but Condi- 
tion 4 can not be satisfied because the number of jobs within a class is no 
longer constant but depends on the time when the system is looked at and can 
have the values k E {O, . . . , K}. In order to avoid this situation, the concept 
of chains is introduced. 
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7.3.6.1 The Concept of Chains Consider the routing matrix P = bir,jS], 
i,j = l,..., N, and T, s = 1,. . . , R of a closed queueing network. The routing 
matrix P defines a finite-state DTMC whose states are pairs of form (i, r) 
(node number i, class index r). We call (i,r) a node-class pair. This state 
space can be partitioned into disjoint sets Ii, i = 1,. . . , U: 

r = rl + r2 + . . . + ru, 

where Ii is a closed communicating class of recurrent states of the DTMC. 

Pl 

M-l p2 
0 

fig. 7.16 Modified routing matrix. 

With a possible relabeling of nodes, we get the routing matrix of Fig. 7.16. 
Where submatrices Pi contains the transition probabilities in set I’i and each 
Pi is disjoint and assumed to be ergodic. Let chain Ci denote the set of job 
classes in ri. Because of the disjointness of the chains Ci, it is impossible 
for a job to switch from one chain to another. If a job starts in a chain, it 
will never leave this chain. With the help of this partitioning technique, the 
number of jobs in each chain is always constant in closed networks. Therefore, 
Condition 4 for queueing networks is fulfilled for the chains. Muntz [Munt73] 
proved that a closed queueing network with U chains is equivalent to a closed 
queueing network with U job classes. If there is no class switching allowed, 
then the number of chains equals the number of classes. But if class switching 
is allowed, the number of chains is smaller than the number of classes. This 
means that the dimension of the population vector is reduced. An extension 
of the chains concept to open networks is possible. 

The procedure 
lowing: 

to find the chains from a given solution matrix is the fol- 
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Construct R sets that satisfy the following condition: 

node-class pair (j, s) can be reached from 
pair (i, r) in a finite number of steps 7 

Eliminate all subsets and identical sets so that we have: 

U 5 R sets to obtain the chains Cl,. . . , Cu. 

Compute the number of jobs in each chain 

The set of all possible states in a closed multiclass network is given by the 
following binomial coefficient: 

N+$[+K,*-I 
N. IC,l - I ’ 

where IC, ( is the number of elements in C,, llq<U. 
For open networks, the visit ratios in a chain are given by: 

2% = PO,ir + C ejsPjs,ir 
SEC, 

j=l,...,N 

r E Cq, 
for i = l,...N, 

lLqlU, 

and for closed networks: 

-Sir = c ejsPjs,ir 
SEC, 

j=l,...,N 

(7.71) 

r E c,, 
for i= l,...N, 

lSq<U. 
(7.72) 
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Example 7.6 Let the following routing matrix P be given: 

(1.1) 

(1?2) 

(133) 

(2,1) 

p = (292) 

(2>3) 

(331) 

(3.2) 

(3,3) 

By using the chainin! 

(1.1) (1,2) (1>3) (221) (292) (293) (3.1) (3,2) (393) 

’ 0 0.4 0 0 0.3 0 0 0.3 0 

0.3 0 0 0 0 0 0 0.7 0 

0 0 0 0 0 0.3 0 0 0.7 

0 0 0 0 1 0 0 0 0 

0.3 0 0 0 0 0 0.7 0 0 

0 0 0.3 0 0 0 0 0 0.7 

1.0 0 0 0 0 0 0 0 0 

0 0 0 1.0 0 0 0 0 0 

0 0 0.4 0 0 0.6 0 0 0 , 

;echnique we get: 

EI = {1,2}, E2 = {Q}, E3 = {3), 

meaning that R = 3 classes are reduced to U = 2 chains. By eliminating the 
subsets and identical sets we get two chains: 

Cl = {1,2}, c2 = (3). 

Then the reorganized routing matrix P’ has the form: 

(13 1) 

(13 2) 

(2>1) 

(27 2) 

p’ = (3,1) 

(312) 

(193) 

(223) 

(3.3) 

(19 1) (1?2) (2,1) (2.2) (3,l) (3,2) (1.3) (2.3) (393) 

’ 0 0.4 0 0.3 0 0.3 0 0 0 

0.3 0 0 0 0 0.7 0 0 0 

0 0 0 1.0 0 0 0 0 0 

0.3 0 0 0 0.7 0 0 0 0 

1.0 0 0 0 0 0 0 0 0 

0 0 1.0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.3 0.7 

0 0 0 0 0 0 0.3 0 0.7 

,o 0 0 0 0 0 0.4 0.6 0 

If a job starts in one of the chains Cl or C2, then it can not leave them. 

Because of the switch from classes to chains, it is necessary to transfer class 
measures into chain measures [BrBa80] ( c h ain measures are marked with a *): 
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l Number of visits: In a chain a job can reach different node-class pairs 
(i, j) (i: node index, j: class index) where: 

C eir 
* r-4, 

eiq = Gel,’ (7.73) 

rd2, 

l The number of jobs per class is constant in a chain, but within the chain 
jobs can change their class. Therefore, if a job of chain q visits node i, 
it is impossible to know to which class it belongs because we consider a 
chain to be a single entity. If we make the transformation 

class + chain, 

the information about the class of a job is lost. Because different job 
classes have different service times, this missing information is exchanged 
by the scale factor cv. For the service rate in a chain we get: 

1 
siq = * = c Sir ’ air 9 

I-L. 
(7.74) 

vl r&, 

ai, = - 
gireis ’ 

(7.75) 

SEC, 

In Chapter 8 we introduce several algorithms to calculate the performance 
measures of single and multiclass queueing networks without class switching 
(such as mean value analysis or convolution). Using the concept of chains, 
it is possible to also use these algorithms for queueing networks with class 
switching. To do so, we proceed in the following steps: 

Calculate the number of visits ei, in the original network. 

Determine the chains Ci . . . Cu, and calculate the number of jobs 
Kg* in each chain. 

Compute the number of visits ezq for each chain, Eq. (7.73). 

Determine the scale factors air, Eq. (7.75). 

Calculate the service times szq for each chain, Eq. (7.74). 

Derive the performance measures per chain [BrBa80] with one of 
the algorithms introduced later (mean value analysis, convolution, etc.). 

Calculate the performance measures per class from the perfor- 
mance measures per chain: 

Tir(K*) = sir * (1 + Ki(K* - 1,)) , T E Cq 
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Ai, = aiT . A$, 

pi&*) = sir - kr(K*), 

where: 

K* = (K;,...,K;): Population vector containing the number of jobs in 
each chain, 

K* - 1, : K” with one job less in chain q, 

TjT,(K* - lq) : Mean number of jobs at node i if the number of jobs 
in the chains is given by (K* - 14). 

All other performance measures can easily be obtained using the formulae of 
Section 7.2. 

In the following section we introduce the BCMP theorem, which is the 
basis of all analysis techniques to come. If class switching is not allowed in 
the network, then the BCMP theorem can be applied directly. In the case 
of class switching, it needs to be applied in combination with the concept of 
chains. 

7.3.6.2 BClVlP Theorem The theorems of Jackson and Gordon/Newell have 
been extended by [BCMP75] to networks with several job classes and different 
service strategies and interarrival/service time distributions, and also to mixed 
networks that contain open and closed classes. The networks considered by 
BCMP must fulfill the following assumptions: 

l Queueing discipline: The following disciplines are allowed at network 
nodes: FCFS, PS, LCFS-PR, IS (infinite server). 

l Distribution of the service times: The service times of an FCFS node 
must be exponentially distributed and class-independent (i.e. pi1 = 
pi2 = . . . = ,&R = pi), while PS, LCFS-PR and IS nodes can have any 
kind of service time distribution with a rational Laplace transform. For 
the latter three queueing disciplines, the mean service time for different 
job classes can be different. 

l Load-dependent service rates: The service rate of an FCFS node is only 
allowed to depend on the number of jobs at this node, whereas in a PS, 
LCFS-PR and IS node the service rate for a particular job class can also 
depend on the number of jobs of that class at the node but not on the 
number of jobs in another class. 

l Arrival processes: In open networks 
be distinguished from each other. 

two kinds of arrival processes can 

Case 1: The arrival process is Poisson where all jobs arrive at the net- 
work from one source with an overall arrival rate X, where X can depend 
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on the number of jobs in the network. The arriving jobs are distribut- 
ed over the nodes in the network in accordance to the probability PO,+. 
where: 

E PO,ir = 1. 
i=l r=l 

Case 2: The arrival process consists of U independent Poisson arrival 
streams where the U job sources are assigned to the U chains. The 
arrival rate X, from the uth source can be load dependent. A job arrives 
at the ith node with probability PO,+. so that: 

c PO,ir = 17 for all u= l,...,U. 
rEC, 

i=l N I..., 

These assumptions lead to the four product-form node types and the local 
balance conditions for BCMP networks (see Section 7.3.2), that is: 

Type-l: -/M/m - FCFS Type-2: -/G/l - PS 

Type-3: -/G/CO (IS) Type-4: -/G/l - LCFS PR 

Note that we use -/M/ m notation since we know that, in general, the arrival 
process to a node in a BCMP network will not be Poisson. 

The BCMP Theorem says that networks with the characteristics just de- 
scribed have product-form solution: 

For open, closed, and mixed queueing networks whose nodes consist 
only of the four described node types, the steady-state probabilities 
have the following product-form: 

(7.76) 

where, 

G(K) = the normalization constant, 

d(S) = a function of the number of jobs in the network, S = (Si, . . . , S,) 

and: 

d(S) = u K,(S)--1 

n J-J WL open network with arrival process 2, 
u=l i=o 

1, closed networks. I 

K(S)-1 

r-J w 

i=o 
open network with arrival process 1, 
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fi(Si) = f t a uric ion which depends on the type and state of each nodei 

Type-l, 

Type-% 

Type-3, 

Type-4. 

(7.77) 

Variables in for Eq. (7.77) have the following meanings: 

szj : Class of the job that is at the jth position in the FCFS queue. 

Pir1: Mean service rate in the Zth phase (I = 1, . . . , uir) in a Cox distribution 
(see Chapter 1). 

uir : Maximum number of exponential phases. 
l-l 

Ail-1 : n airj, probability that a class-r job at the ith node reaches the Zth 
j=o 
service phase (A,,1 = 1 because of aiT0 = 1). 

CLirj Z Probability that a class-r job at the ith node moves to the (j + 1)th 
phase. 

b-1 1 Number of class-r jobs in the Zth phase of node i. 

For the load-dependent case, fi (Si) is of the form: 

fi(Si) = -A- Ici iifZiszj. 
( > Pi j=l 

Proof: The proof of this theorem is very complex and therefore only the 
basic idea is given here (for the complete proof see [Munt72]). In order to find 
a solution for the steady-state probabilities r(S), the following global balance 
equations have to be solved: 

state transition rate 
n(s) 1 from state S ] 

state transition rate from 
state S to state S 1 7 98 

(7.78) 

with the normalization condition: 

CT(S) = 1. (7.79) 
S 
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Now we insert Eq. (7.76) into Eq. (7.78) to verify that Eq. (7.78) can be 
written as a system of balance equations that [Chan72] calls local balance equa- 
tions. All local balance equations can be transformed into a system of N - 1 
independent equations. To get unambiguity for the solution the normalization 
condition, Eq. (7.79), has to be used. 

Now we wish to give two simplified versions of the BCMP theorem for open 
and closed networks. 

BCMP Version 1: For a closed queueing network fulfilling the assumptions of 
the BCMP theorem, the steady-state state probabilities have the form: 

n(S1,. . . ) S,) = & fi fiw 
2=1 

where the normalization constant is defined as: 

(7.80) 

(7.81) 

and the function Fi(Si) is given by: 

ZqSi) = 

ki R 1 . n -efJT, 
Ici,! Type-l, 

r=l 

Type-W, (7.82) 

Type-3. 

The quantity Ici = 5 Icir gives the overall number of jobs of all classes at 
r=l 

node i. The visit ratios ei, can be determined with Eq. (7.72), while the 
function ,&(lci) is given in Eq. (7.62). 

For FCFS-nodes (mi = 1) with load-dependent service rates pi(j) we get: 

(7.83) 

BCMP Version 2: For an open queueing network fulfilling the assumptions of 
the BCMP theorem and load-independent arrival and service rates, we have: 
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where: 

(1 - Pi)P;“, Type-1,2,4 (mi = l), 

7ri(ki) = 
e---pz & 

lci! ’ Type-3, 

with: 

&-F, Type-l (mi = l), 
i 

pir = 
A, E, Type-2,3,4. 

Furthermore we have: 

ri, = pir 
1 - pi* 

(7.85) 

(7.86) 

(7.87) 

For Type-l nodes with more than one service unit (mi > 1)) Eq. (6.26) can be 
used to compute the probabilities pi. For the existence of the steady-state 
probabilities ri(~?i), ergodicity condition (pi < 1) has to be fulfilled for all i, 
i = l,...,N. 

The algorithm to determine the performance measures using the BCMP 
theorem can now be given in the following five steps: 

-1 Compute the visit ratios ei, for all i = 1,. . . , N and r = 1,. . . , R 
using Eq. (7.71). 

m/ Compute the utilization of each node using Eq. (7.86) 

-1 Compute the other performance measures with the equations given 
in Section 7.2. 

w Compute th e marginal probabilities of the network using Eq. (7.85). 

-1 Compute th t t e s a e probabilities using Eq. (7.84) 

Example 7.7 Consider the open network given in Fig. 7.17 with N = 3 
nodes and R = 2 job classes. The first node is of Type-2 and the second and 
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third nodes are of Type-4. The service times are exponentially distributed 
with the rates: 

~11 = 8sec-‘, ~21 = 12 set-‘, ~31 = 16 see-‘, 

~12 = 24sec-', ~22 = 32secA1, ~32 = 36sec-‘. 

The interarrival times are also exponentially distributed with the rates: 

X1 = X2 = 1 job/set. 

q---q---- 

CL3 

cl 
Sink 

Fig. 7.17 Open queueing network. 

The routing probabilities are given by: 

PO,11 = 1, P21,11 = 0.6, PO,12 = 1, P22,12 = 0.7, 

P11,21 = 0.4, p 21,31 = 0.4, P12,22 = 0.3, p22,32 = 0.3, 

P11,31 = 0.3, P31,11 = 0.5, Pl2,32 = 0.6, P32,12 = 0.4, 

Pll,O = 0.3, p31,21 = 0.5, p12,O = 0.1, 1)32,22 = 0.6, 

which means that class switching is not allowed in the network. We wish 
to compute the probability for the state (Ici, Icz,Ics) = (3,2,1) by using the 
BCMP theorem, Eq. (7.84). 

~~~~ Compute the visit ratios ei, for all i = 1,. . . , N and r = 1,. . . , R 
using Eq. (7.71). 

ell = POJI + elml,ll + e2lp21,ll + e3lp31,ll = 3.333, 

e21 = P0,21 + fmm,21 + e211321,21 + e31p31,21 = 2.292, 

e31 = P0,31 + elml,31 + e2lp21,31 + e311331,31 = 1.917. 

In the same way we get: 

el2 = 10, e22 = 8.049, es2 = 8.415. 
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Compute the utilization of each node using Eq. (7.86): 

p1 = J@L 
I-L11 

+ he12 = ~11 + p12 = 0.833, 
CL12 

P2 = X1 e21 + X2% = p21 + p22 = 0.442, 
CL21 P22 

P3=xle31+x2~=pJl+p32=o.354. 
P31 I-L32 

Compute the other performance measures of the network. In our 
case we use Eq. (7.87) to determine the mean number of jobs at each node: 

El1 = * = 2.5, 7721 = * = 0.342, 7731 = - p31 = 1 - 1 - 
Pl P2 

1 - 0.186, 
p3 

El2 = 2.5, K22 = 03, K32 = 0.362. 

Determine the marginal probabilities using Eq. (7.85): 

n1(3) = (I- pl)p; = 0.0965, 7r2(2) = (I- p2)p5 = 0.1093, 

7r3(1) = (l- p3)p3 = 0.2287. 

~~~ Compute th t, t, e s a e probabilities for the network using Eq. (7.84): 

7r(3,2,1) = 7r1(3). 7r2(2). n3(l) = 0.00241. 

An example of the BCMP theorem for closed networks, Eq. (7.80), is not 
given in this chapter. As shown in Example 7.7, the direct use of the BCMP 
theorem will require that all states of the network have to be considered 
in order to compute the normalization constant. This is a very complex 
procedure and only suitable for small networks because for bigger networks 
the number of possible states in the network becomes prohibitively large. 
In Chapter 8 we provide efficient algorithms to analyze closed product-form 
queueing networks. In these algorithms the states of the queueing network 
are not explicitly involved in the computation and therefore these algorithms 
provide much shorter computation time. 

Several researchers have extended the class of product-form networks to 
nodes of the following types: 

l In [Spir79] the SIR0 ( service in random order) is examined and it is 
shown that -/M/l-SIR0 nodes fulfill the local balance property and 
therefore have a product-form solution. 

l In [Noet79] the LBPS (last batch processor sharing) strategy is intro- 
duced and it is show that -/M/l-LBPS node types have product-form 
solutions. In this strategy the processor is assigned between the two last 
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batch jobs. If the last batch consists only of one job, then we get the 
LCFS-PR strategy and if the batch consists of all jobs, we get PS. 

l In [ChMa83] the WEIRDP-strategy (weird, parameterized strategy) is 
considered, where the first job in the queue is assigned 100 . p % of the 
processor and the rest of the jobs are assigned 100 . (1 - p) % of the 
processor. It is shown that -/M/l-WEIRDP nodes have product-form 
solution. 

l In [CHT77] it is shown that -/G/l-PS, -/G/co-IS, and -/G/l-LCFS- 
PR nodes with arbitrary differentiable service time distribution also have 
product-form solution. 

Furthermore, in [Tows80] and [Krze87], the class of product-form networks 
is extended to networks where the probability to enter a particular node 
depends on the number of jobs at that node. In this case, we have so-called 
load-dependent routing probabilities. 

Problem 7.2 Consider an open queueing network with N = 3 nodes, 
FCFS queueing discipline, and exponentially distributed service times with 
the mean values: 

1 
- = 0.08 set, 

1 
- = 0.06 set, 

1 
- = 0.04sec. 

CL1 l-42 CL3 

Only at the first node do jobs arrive from outside with exponentially dis- 
tributed interarrival times and the rate Xar = 4 jobs/set. Node 1 is a multiple 
server node with ml = 2 server, nodes 2 and 3 are single server nodes. The 
routing probabilities are given as follows: 

Pll = 0.2, p21 = 1, p31 = 0.5, 

p12 = 0.4, p30 = 0.5, 

p13 = 0.4. 

(a) Draw the queueing network. 

(b) Determine the steady-state probability for the state k = (4,3,2). 

(c) Determine all performance measures. 

Note: Use the Jackson’s theorem. 

Problem 7.3 Determine the CPU utilization and other performance mea- 
sures of a central server model with N = 3 nodes and K = 4 jobs. Each node 
has only one server and the queueing discipline at each node is FCFS. The 
exponentially distributed service times have the respective means: 

1 
2 

1 
5 

1 
- = msec, - = msec, - = 5 msec, 
Pl P2 I_L3 
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and the routing probabilities are: 

Pll = 0.3, p12 = 0.5, p13 = 0.2, p21 = p31 = 1. 

Problem 7.4 Consider a closed queueing network with K = 3 nodes, N = 
3 jobs, and the service discipline FCFS. The first node has ml = 2 servers 
and the other two nodes have one server each. The routing probabilities are 
given by: 

PII = 0.6, 1321 = 0.5, p31 = 0.4, 

P12 = O-3, p22 = 0.0, p32 = 0.6, 

p12 = o-1, p23 = 0.5, p33 = 0.0. 

The service times are exponentially distributed with the rates 

pl = 0.4sec-l 7 /A:! = 0.6sec-1 7 /L3 = 0.3sec-l. 

(a) Draw the queueing network. 

(b) What is the steady-state probability that there are two jobs at node 2? 

(c) Determine all performance measures. 

(d) Solve this p ro bl em also with the local and global balance equations 
respectively and compare the solution complexity for the two different 
methods. 

Note: Use the Gordon/Newell Theorem for parts (a), (b) and (c). 

Problem 7.5 Consider a closed queueing network with N = 3 nodes, K = 
3 jobs, and exponentially distributed service times with the rates: 

pl = 0.72 set-l, ,92 = 0.64sec-’ 7 j.~3 = lsec-l, 

and the routing probabilities: 

1331 = 0.4, p32 = 0.6, ~13 = p23 = 1. 

Determine all performance measures. 

Problem 7.6 Consider the following routing matrix P: 

P (Ll) (172) (1,3) (174) (271) (2c4 (2>3) (24) 

(1,l) 0.5 0 0 0 0.25 0 0.25 0 

y; 
(114) 

0.5 0 0.5 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0 

OY5 
0 0 0.5 0 0.25 0 0.25 

(2,l) 0:: 0 0 0.5 0 0 
(2,2) 0 0 0 0 

005 
0 0 

(2,3) 0 0 1 0 0 0 0 0 
(2,4) 0 0 0 1 0 0 0 0 
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At the beginning, the jobs are distributed as follows over the four different 
classes: 

(a) Determine the disjoint chains. 

(b) Determine the number of states in the CTMC underlying the network. 

(c) Determine the visit ratios. 

Problem 7.7 Consider an open network with N = 2 nodes and R = 2 job 
classes. Node 1 is of Type-2 and node 2 of Type-4. The service rates are 

pll = 4sec-‘, ~12 = 5sec-‘, ~21 = Gsec-‘, ~22 = 2sec-‘, 

and the arrival rates per class are 

Xr=&=lsec-l. 

The routing probabilities are given as: 

PO,11 = PO,12 = 1, P21,ll = P22,12 = 1, 

p11,21 = 0.6, ~12,22 = 0.4 PII,O = 0.4, p12,o = 0.6. 

With the BCMP theorem, Version 2, determine 

(a) All visit ratios. 

(b) The utilizations of node 1 and node 2. 

(c) The steady-state probability for state (2,1). 





8 
Algorithms for 

Product-Form Networks 

Although product-form solutions can be expressed very easily as formulae, the 
computation of state probabilities in a closed queueing network is very time 
consuming if a straightforward computation of the normalization constant 
using Eq. (7.3.5) is carried out. As seen in Example 7.7, considerable compu- 
tation is needed to analyze even a single class network with a small number 
of jobs, primarily because the formula makes a pass through all the states of 
the underlying CTMC. Therefore we need to develop efficient algorithms to 
reduce the computation time [Buze71]. 

Many efficient algorithms for calculating performance measures of closed 
product-form queueing networks have been developed. The most impor- 
tant ones are the convolution algorithm and the mean value analysis (MVA) 
[ReLa80]. The convolution algorithm is an efficient iterative technique for 
calculating the normalization constant, which is needed when all performance 
measures are computed using a set of simple equations. In contrast, the mean 
value analysis is an iterative technique where the mean values of the perfor- 
mance measures can be computed directly without computing the normaliza- 
tion constant. We also introduce the RECAL algorithm [CoGe86] (recursion 
by chain algorithm), which is well suited for networks with many job classes. 
The fourth and last method for analyzing product-form networks presented 
in detail is the so-called flow-equivalent server method [CHW75b, ABP85]. 
This method is well suited when we are especially interested in computing the 
performance of a single station or a part of the network. 

There are several other algorithms that we do not cover in detail due to 
space limitations. Based on the mean value analysis, [ChSa80] and [SaCh81] 
developed an algorithm called LBANC (local balance algorithm for normal- 

311 
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Fig, 8.1 Flowchart describing sections of Chapters 8 and 9. 

izing constants). This algorithm iteratively computes the normalization con- 
stant and the performance measures. It is very well suited for networks with 
a small number of nodes but a large number of jobs. The CCNC algorithm 
(coalesce computation of normalizing constants) [ChSa80] is especially used 
when storage space is limited. That the convolution algorithm, the mean 
value analysis, and LBANC can be derived from each other has been shown 
by [Lam81]. The DAC algorithm (distribution analysis by chain) [SoLa89] is 
used to directly compute the state probabilities of a product-form queueing 
network. A generalization of the MVA to higher moments is introduced in 
[Stre86]. Other algorithms for determining the normalization constant are the 
algorithms of [Koba78] and [Koba79] ( w ic are based on the enumeration of h h 
polynomials of Polya), and the partial fraction method of [Moor72]. 

For very large networks, execution time of the preceding algorithms is not 
acceptable. Many approximation algorithms have been developed for this 
purpose. Exact and approximate algorithms are discussed in this chapter and 
in Chapter 9 and are summarized in Fig. 8.1. 
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8.1 THE CONVOLUTION ALGORITHM 

The convolution algorithm was one of the first efficient algorithms for ana- 
lyzing closed product-form queueing networks and is still in use today. The 
name of this technique reflects the method of determining the normalization 
constant G(K) from the functions Fi(Ici), which is similar to the convolu- 
tion of two probability mass functions. Once the normalization constant is 
computed, the system performance measures of interest can be easily derived 
[Buze71]. We recall that the convolution operator @ is defined in the follow- 
ing way: Let A, B, C be vectors of length K + 1. Then the convolution 
C = A @ B is defined as: 

C(k) = &A(j) . B(k - j), k = 0, . . . , K. (84 
j=o 

First we consider 
ing networks. Then 
networks. 

the convolution algorithm for single class closed queue- 
this technique is extended to multiclass closed queueing 

8.1.1 Single Class Closed Networks 

According to the BCMP theorem, Eq. (7.80), the state probabilities of a closed 
single class product-form queueing network with N nodes can be expressed 
in the following way: 

where the functions I?i (Ici) are defined in Eq. (7.61), and: 

is the normalization constant of the network. 
The computation of G(K) is carried out by iterating over the number of 

nodes in the network and over the number of possible jobs at each node. 
For this purpose the following auxiliary functions G, (Ic) , n = 1, . . . , N and 
/k = 0, . . . ) K are defined as follows: 

The desired normalization constant is then: 

G(K) = GN(K). W) 
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From Eq. (8.2) for n > 1, it follows that: 

For n = 1 we have: 

Gl(k) = Fl(k), k = l,..., K. (8.5) 

The initial condition is of the form: 

Gn(0) = 1, n= l,..., N. (8.6) 

The convolution method for computing the normalization constant G(K) 
is fully determined by Eqs. (8.4) to (8.6). The (K + 1)-dimensional vectors: 

Gn = , n = 1,. . . , N, 

are therefore determined by the convolution: 

F,= 

The computation of G,(k) is easily visualized as in Fig. 8.2. In this figure 
we show the values of the functions needed in the calculation of GN (K). The 
real objective of the algorithm is to determine the last value in the last column 
because this value is the normalization constant G(K) that we are looking for. 
The values GN (Ic) for k = 1, . . . , K - 1 in the last column are also useful in 
determining the system performance measures. Buzen [Buze71, Buze73] has 
developed algorithms that are based on the normalization constant G(K) and 
the functions Fi(ki) to compute all important performance measures of the 
queueing network without needing the underlying CTMC state probabilities. 

Computation of the performance measures using the normalization con- 
stant is now illustrated. 
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I I 1 **a n-l I n . . . N 1 . . . n-l n . . . N 

0 0 1 1 . . . . . . Gn-l(O)(~Fn(k)) Gn-1(0)(%(k)) 1 1 = G(1) 1 = G(1) 

1 1 Fl(1) Fl(1) . . . . . . Gn-l(l)(+Fn(k - 1)) Gn-l(l)(*Fn(k - 1)) Gn(l) 

k-l Fr.(k-1) . . . k-l Fr.(k-1) . . . Gn-l(k - l)(*Fn(l)) c 

k k Fl(k) Fl(k) . . . . . . Gn-l(k)(.Fn(O)) Gn-l(k)(.Fn(O)) + Gn(k) *.* Gv(k) = G(k) Gv(k) = G(k) 

K FI (K) Gn (W &v(K) = G(K) 

Fig. 8.2 Computation of G,(k). 

(a) The marginal probability that there are exactly ki = !C jobs at the ith 
node is given by Eq. (7.16): 

n$c) = c 7r(/kl,...,k~). 

E kj=K 
3=1 

&k,=k 

If we substitute Eq. (7.59) we get: 

(8.7) 

Then G$‘(Ic) can be interpreted as the normalization constant of the 
network with Ic jobs and node i removed from the network. 

G;‘(k) = c fi Fj(kj). 

2 k.=K 27; 
3=1 3 i 
&k,=K-k 

By definition we have: 

GN-~(k)=GE~(k)=GryN)(k) for k=O,...,K. 

(8.8) 

Because of Eq. (8.7), for node N we have [Buze71, Buze73]: 

7~(k) = #4iN-l(~ - IC). (8.9) 
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In [BBS77], a simple algorithm for computing the G:‘(k) for k = 
0 , K is presented. Since the sum of all marginal probabilities is 1, 
it’ follows from Eq. (8.7): 

&(j) = g #Gf(K - j) = 1, 
j=o 

and therefore we have: 

K 

G(K) = xF,(j)+G;)(K-j), j = 1,~..,N. (8.10) 
j=o 

With the help of these equations we can derive an iterative formula for 
computing the G”)(k), for k = 0 N K* 7”‘? * 

G;‘(k) = G(k) - &(j).G$(k - j), (8.11) 
j=l 

with the initial condition: 

G$O)=G(O)=l i=l 7 N Y”‘? * (8.12) 

In the case of rni = 1 the preceding formulae can be considerably sim- 
plified . 

Because of Eq. (8.11) we have: 

k-l 

G:)(k) = G(k) - c Fi(j + l)G;‘(k - 1 - j) 
j=O 

k-l 

= G(k) - ; c F,(j)G;‘(k - 1 - j) 

' j-0 

= G(k) - ;G(k - 1). 

After inserting this result in Eq. (8.7), we get for the marginal proba- 
bilities: 

7r#c) = (~)k.~.(G(K-~)-~,G(K-ii-l)), (8.13) 

where G(k) = 0 for k < 0. 

(b) The throughput of node i in the load-dependent or load-independent case 
is given by the formula: 

X(K) = G(K - I) G(K- 1) 

G(K) 
and Xi(K) = e;- 

G(K) * 
(8.14) 
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Proof: By definition, the throughput is given by Eq. (7.22): 

= &&k - l)G$)(K - /!Y) 
k=l 

K-l 

= & c Fi(k)Gg’(K - 1 - Ic) = ei ‘gi)l). q.e.d, 
k=O 

(c) Th e u z zxa tl’ t ion of a node in the load-independent case can be determined 
by inserting Eq. (8.14) in the well known relation pi = Xi/(mipi): 

ei G(K-1) pi=------. 
mipui G(K) * 

(8.15) 

(d) The mean number of jobs for a single server node can be computed from 
following simplified equation [Buze71]: 

(8.16) 

(e) The mean response time of jobs at node i can be determined with the 
help of Little’s theorem. For a single server node we have: 

(8.17) 

The use of the convolution method for determining the normalization con- 
stant is now demonstrated by a simple example. We also show how to compute 
other performance measures from these results. 

Example 8.1 Consider the following closed queueing network (Fig. 8.3) 
with N = 3 nodes and K = 3 jobs. The first node has ml = 2 and the 
second node has m2 = 3 identical service stations. For the third node we 
have m3 = 1. The service time at each node is exponentially distributed with 
respective rates: 

~1 = 0.8 set-‘, p:! = 0.6 set-‘, p3 = 0.4 set-1 , 
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fig. 8.3 A closed queueing network. 

The visit ratios are given as follows: 

el = 1, e2 = 0.667, e3 = 0.2. 

From Eq. (7.61) it follows for the functions Fi(ki), i = 1,2,3: 

Fl(O) = I, F2(0) = 1, F3(0) = 1, 

Fl(1) = 1.25, Fz(1) = 1.111, F3(1) = 0.5, 

Fi(2) = 0.781, Fz(2) = 0.617, Fa(2) = 0.25, 

Fi(3) = 0.488, &(3) = 0.229, F3(3) = 0.125. 

In Table 8.1 the intermediate results as well as the final result of computing 
G(K) are shown. 

Table 8.1 Computation of the normal- 
ization constant 

1 2 N=3 

0 1 1 1 

1 1.25 2.361 2.861 

2 0.781 2.787 4.218 

K=3 0.488 2.356 4.465 

Thus the normalization constant G(K) = 4.465. The marginal probabilities 
for the single server node 3 can be computed using Eq. (8.13): 

r3(0) = = 0.528, 

.iT3(1) = = 0.312, 
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r,(2) = (;)2&. (G(1) - zG(O)) =0.132, 

x3(3) = (z)3.&. (G(O)- z.0) =0.028. 

For the computation of the marginal probabilities of nodes 1 and 2, we need 
the values G$ (k) for k = 0, 1,2,3 and i = 1,2. With Eq. (8.11) we get: 

G(l)(O) = 1 

G&l) = G(1) - R’i(l)G$$)(O) = 1.611, 

G:)(2) = G(2) - (Fi(l)Gg)(l) + &(2)G$(O)) = 1.423, 

G$)(3) = G(3) - (Fi(l)Gg)(2) + &‘i(2)Gg)(l) + Fi(3)Gc)(O)) = 0.940. 

In the same way we compute: 

G$)(O) = 1 7 Gg)( 1) = 1.656, GC2)(2) = 175 N -2.-.-T GC2)(3) = 1 316 N ** 

With Eq. (8.7) the marginal probabilities are: 

Tl(“) = G(3) N F(0)G(1)(3) - 0 211 - i? 7rl(l) = - F1(1) @(2) = 0 398 
G(3) N 

L, 

7rl(2) = - F1(2) G(l) (1) - 0 282 
G(3) N - d’ 

7ri(3) = - F1 (3) G(l) (0) = 0 109 
G(3) N 

A, 

and 

740) = 0.295, n2(l) = 0.412, 7r2(2) = 0.242, x2.3) = 0.051. 

The throughputs can be computed using Eq. (8.14): 

X1 = el g = 0.945, X3 = e,g = 0.189. X2 = e2 g = 0.630, 

The utilizations are given by Eq. (7.21): 

p1 = x1 - = 0.590, 
x2 x3 

p2 = ___ = 0.350, 
ml/-J1 m2l-L2 

p3 = K = 0.473. 

The mean number of jobs at the multiserver nodes is given by Eq. (7.26): 

771 = 7rl(l) + 27rr(2) + 37rr(3) = 1.290, 

1T2 = 7r2(1) + 27r2(2) + 3n2(3) = 1.050, 

where we use Eq. (8.16) for the single server node 3: 

E3=(~)gg+(~)2~+(~)3~=o.660. 
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For the mean response time we use Eq. (7.43): 
- 
Kl K2 % T1 = x1 = 1.366, T2 = x2 = 1.667, T3 = x3 = 3.496. 

8.1.2 Multiclass Closed Networks 

The convolution method introduced in Section 81.1 can be extended to the 
case of multiclass closed product-form queueing networks. According to the 
BCMP theorem, Eq. (7.80), the state probabilities for closed product-form 
queueing networks are given by: 

$31,. . . ) S,) = & fpio, 
2=1 

where the functions Fi(Si) are defined in Eq. (7.82). The determination of 
the normalization constant of the network: 

G(K) = c fiE(si), 

is analogous to the single class case. For now, we assume that class switching 
is not allowed and thus the number of jobs in each class is constant. Corre- 
sponding to Eq. (8.2), we define for k = 0, . . . , K the auxiliary functions: 

G(k) = c fi fi(si) 
2 S,-ki’l 
i=l 

(8.18) 

and determine for n = 1, . . . , N the matrix G, by convolution: 

G, = F, @ Gn-1, 

with the initial condition Gr(.) = Fl(.). For n > 1 we also have: 

C&(k) = 5 . . . 2 F,(j).G+l(k - j). 
j,=o j,=o 

(8.19) 

The computation of the normalization constant was simplified by [MuWo74b] 
and [Wong75] by introducing a much simpler iterative formula for G(K) = 
GN(K). For this purpose, we define the vector: 

kc”) =pSi = (Ici”‘,...,$)), 
i=l 
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where kp) ,1 5 T < R, is th e overall number of jobs of class r at the nodes 
1,2,..., n - 1, n. We then have: 

ky’ = 2 kir and kcN) = K. 
i=l 

With the help of these expressions, it is possible to rewrite Eq. (8.18) in 
the following manner: 

G,(k(“)) = C fJFi(Si). 
5 &=k(n) ‘=l 

i=l 

(8.20) 

Thus: 

n-l 

G,,(k(“)) = c C n Fi(Si)eFn(sn) 

k(‘+l)+S,=k(n) n-1 i=l 
C &=k(“-l) 
i=l 

= c Gn-l(k(“-‘))*F,(S,). (8.21) 
k(n-1)+$&(n) 

Equation (8.21) together with the initial conditions Gr(.) = J’r(.) completes 
the description of the algorithm of [MuWo74b] and [Wong75]. For the nor- 
malization constant we have: 

G(K) = G,v(kcN))e (8.22) 

The computation of the performance measures is as follows: 

(a) According to Eq. (7.32) th e marginal probability that there are exactly 
Si = k jobs at node i is given by: 

r;(k)= c ~(%...&v) = & c fiF,(S,) 
2 Sj=K 5 Sj=K3=l 

3=1 3=1 

&Si=k &S,=k 

= Go c fi Fj(Sj) = $$Gg(K-k), E(k) (8.23) 

~ Sj=K~~~i 

j=l 
&Si=k 
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Then G:)(K) can again be interpreted as the normalization constant of 
the network without node i: 

(8.24) 

In the same way as in the single class case (Eq. (8.11)), the iterative 

formula for computing the normalization constant G:‘(k) is given as 
follows: 

GE)(k) = G(k) - 5 S(j). Fi(j). G$‘(k - j), 
j=O 

(8.25) 

with S(j) defined by: 

Ki> = 
0, ifj=O, 

1, otherwise 
(8.26) 

and affecting the computation only for j = 0. The initial condition is: 

GE)(O) = G(0) = 1 7 i = l,...,N. (8.27) 

(b) The throughput Ai, of class-r jobs at the ith node can be expressed as 
follows [Wong75] : 

where ei, is the solution of Eq. (7.72). With (K - lT) = (Kl, . . . , K, - 
1 7 * * * , KR), we have the following simpler form: 

x =e GW- 14 
ir ir G(K) * 

(8.28) 

This formula holds for load-dependent and load-independent nodes of 
all four types. The proof can be found in [BrBa80]. 

(c) The utilization pir is given by Eq. (7.34). If the service rates are con- 
stant, then we have the following simplification because of Xir/(mipir): 

Air eir 
pir = 

G(K - lr) - = -. 

miPui7- miPir G(K) * 
(8.29) 
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Fig. 8.4 An example of a two-class closed network. 

Table 8.2 Computation of the functions 
F,(Si), i = 1,2,3,4, 

W) 1 1 1 1 

(LO) 1 1.6 3.2 2.4 

(W ‘2 2 3 4.8 

(171) 4 6.4 19.2 11.52 

(0,2> 4 4 9 11.52 

(x4 12 19.2 86.4 27.648 

Example 8.2 Consider the network given in Fig. 8.4 consisting of N = 4 
nodes and R = 2 job classes. In class 1 the number of jobs is Ki = 1 and in 
class 2, K2 = 2. It is assumed that class switching is not allowed. The first 
node is of Type-2, the second and third nodes are of Type-$, and the fourth 
node is of Type-3 with mean service times: 

1 1 1 
-=lsec, -=4sec, -=8sec, 

1 
- = 12sec, 

Pll CL21 I-L31 CL41 

1 
=2Sec, 

1 
- - = 5sec, 

1 
lOsec, 

1 
- = - = 16sec. 

CL12 CL22 CL32 p42 

The visit ratios are given by: 

ell = 1, e21 = 0.4, e31 = 0.4, e41 = 0.2, 

el2 = 1, e22 = 0.4, e32 = 0.3, e42 = 0.3. 

First, with the help of Eq. (7.82), the functions Z?i(Si),i = 1,2,3,4, are 
computed [Table 8.2). Then for determining the normalization constant we 
compute the G,(kcn)) from Eq. (8.21) where Gr(.) = Fi(.). For n = 2 we 
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have: 

Gz(O, 0) = Gl(O, O)F2(07 0) = 1 

G2(l, 0) = G1(0,O)F2(1,0) + G~(l,o)Fz(o, 0) = iii, 
G2(0, 1) = Gi(0, O)F2(0, 1) + Gl(O, l)&(O, 0) = 4, 
Gz(1, 1) = G1(O,O)F2(Ll> + Gl(L l)F2(0,0> 

+ G1(1,0)F2(0, 1) + Gi(O,l)F&O) = 15.6, 

G2(0,2) = G1(0,0)~2(0,2) + Gl(O, 2)J’2(07 0) 
+ Gl(O, l)J’2(0,1> =l2, 

G2(1,2) = G1(0,0)5’2(17 2) + Gl(l, 2)F2(07 0) 

+ G1(l, l)Fz(O, 1) + G1(0,1)F2(1,1) 

+ Gl(l,O)F$I, 2) + Gl(0,2)F2(1,0) = 62.4. 

In the same way we can compute the values for Gs ( kc3)) and G4 (kc4)) as 
summarized in Table 8.3. So the normalization constant is G(K) = 854.424. 

Table 8.3 Computation of G,(kci)) z 

ktn), 1 < n 5 N G:!(kc2)) GS(kc3)) G4(kc4)) 

Kw) 1 1 1 

(170) 2.6 5.8 8.2 

(071) 4 7 11.8 

(14 15.6 55.4 111.56 

vv) 12 33 78.12 

W) 62.4 334.2 854.424 

Now, with the help of Eq. (7.47), we can compute the marginal probability 
of 0 jobs of class 1 and 2 jobs of class 2 at node 4: 

7r4(0,2) = - F4(07 ‘) Gc4’(l 0) = 0 0782 
G(K) N ’ L7 

where G$)(l 0) , can be obtained from Eq. (8.26): 

G;)(l,O) = G(l,O) - F4(1,0).G$$(0,0) = 5. 

Similarly other marginal probabilities at the nodes can be calculated: 

F4(17 2) (4) 
r4(172) = G(K) 

-G, (0,O) = 0.0324, with Gc4)(0 0) = 1 N 7 7 

n4(17 I> = G(K) N 7 
F4(I’ ‘) Gc4)(0 1) = 0 0944 

L7 with Gc4)(0 1) = 7 N ’ -7 
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1) = 0.3112, with GC4) (1 1) = 55 4 N ’ L, 

7r4(1)0) = - F4(l, ‘)GC4)(0 2) = 0 0927 
G(K) N ’ 

L, with G(“)(O 2) = 33 N ’ ’ 

n4(0,0) = m N ’ F4(o,o)G(4)(l 2) = 0 3911 -L-----Y with GC4)(1 2) = 334 2 N ’ L, 

7r3(1,2) = 
~3(1,2) (3) -GN (0,O) = 0.1011, 
G(K) 

with GC3) (0 0) = 1 N ’ ’ 

7r3(1,0) = 
F3(1,0) (3) -GN (072) = 0.1600, 
G(K) 

with GC3) (0 2) = 42 72 N ’ L’ 

7r3(1,1) = 
F3(1,1> (3) -GN (071) = 0.1977, 
G(K) 

with GC3)(0 1) = 8 8 N ’ A* 

The rest of the marginal probabilities are computed in the same way. The 
mean number of jobs can be determined with the help of Eq. (7.40). For 
example, for node 3 the mean number of class 1 and class 2 jobs is respectively 
given by: 

- 
K31 = ~3(1,0)+~3(1,1)+~3(1,2) = 0.4588, 

1?32 = r3(0,1) + x3(1,1) + 2r3(0, 2) + 2~3(l, 2) = 0.678. 

For the IS-node 4 the mean number of jobs by class type is: 

x41 x42 K41 = - = 0.219, z42 = - = 0.627. 
P41 I-L42 

The throughputs at each node by class type can be computed with Eq. (8.28): 

For the computation of the utilizations of each node by class type, Eq. (8.29) 
is used to get: 

p11 = 0.0914, p21 = 0.1463, p31 = 0.2926, 

p12 = 0.2611, pz2 = 0.2611, /I32 = 0.3917. 
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The algorithm we presented in the preceding text is applicable only to 
networks without class switching. For networks with class switching, [Munt72] 
proved that a closed queueing network with U ergodic chains is equivalent to 
a closed network with U job classes without class switching. Therefore, the 
computation of the normalization constant for networks with class switching 
is an extension of the technique for networks without class switching. More 
details are given in [BBS771 and [.BrBa80] and Section 7.3.6. In [ReKo75] 
and [Saue83] the convolution method has been extended for analyzing open 
queueing networks with load-dependent service rates and for analyzing closed 
queueing networks with load-dependent routing probabilities. The methods 
can also be extended for networks with class specific service rates. These are 
networks in which the service rates depend not only on the overall number of 
jobs of each class at the node, but also on the number of jobs at the node. 
For this case, [LaLi83] modified the convolution algorithm so as to make the 
best use of storage space. Their algorithm is known as tree-convolution. 

Because the computation of the normalization constant can cause numerical 
problems, other techniques were developed that allow the calculation of the 
performance measures without using the normalization constant. One of the 
key development in this regard is the mean value analysis (MVA), which we 
discuss next. 

8.2 THE MEAN VALUE ANALYSIS 

The MVA was developed by Reiser and Lavenberg [ReLa80] for the analysis of 
closed queueing networks with product-form solution. The advantage of this 
method is that the performance measures can be computed without explicitly 
computing the normalization constant. The method is based on two funda- 
mental equations and it allows us to compute the mean values of measures 
of interest such as the mean waiting time, throughput, and the mean number 
of jobs at each node. In these computations only mean values are computed 
(hence the name). For the case of multiserver nodes (mi > 1)) it is necessary, 
however, to compute the marginal probabilities. 

The MVA method is based on two simple laws: 

1. Little’s theorem, which is introduced in Eq. (6.9) to express a rela- 
tion between the mean number of jobs, the throughput, and the mean 
response time of a node or the overall system: 

- 
K=X.T. (8.30) 

2. Theorem of the distribution at arrival time (in short, arrival theorem), 
proven by [LaRe80] and [SeMi81], for all networks that have a product- 
form solution. The arrival theorem says that in a closed product-form 
queueing network, the pmf of the number of jobs seen at the time of 
arrival to a node i when there are Ic jobs in the network is equal to the 
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pmf of the number of jobs at this node with one less job in the network 
(= (k - 1)). Th is property has an intuitive justification [LZGS84]. At 
the moment a job arrives at a node, it is certain that this job itself is 
not already in the queue of this node. Thus, there are only Ic - 1 other 
jobs that could possibly interfere with the new arrival. The number of 
these at the node is simply 
jobs are in the network. 

the number there when only those (K - 1) 

At first we introduce the MVA for single class closed queueing networks 
and explain it in more detail. This algorithm is then extended to multiclass 
networks, mixed networks, and networks with load-dependent service rates. 

8.2.1 Single Class Closed Networks 

The fundamental equation of the mean value analysis is based on the arrival 
theorem for closed product-form networks [ReLa80, SeMi81] and it relates the 
mean response time of a job at the ith node and the mean number of jobs at 
that node with one job less in the network, that is: 

Ti(K) = 2-m [I +QK - I)] , i = l,...,N. 
Pi 

(8.31) 

For single server stations (mi = 1) with an FCFS strategy, it is easy to give an 
intuitive explanation for Eq. (8.31) because for each FCFS node i the mean 
response time Ti(.K) of a job in a network with K jobs is given by the mean 
service time (l/pi) of that job plus the sum of the mean service times of 
all jobs that are ahead of this job in the queue. Equation (8.31) can also 
be derived without using the arrival theorem. For this purposes, we use the 
formulae for computing the utilization (Eq. (8.15)) and the mean number of 
jobs (Eq. (8.16)): 

ei G(K - 1) 
dK) = E’ G(K) 7 

and: 

17i(K) = 2 (~)k*G&? 
k=l 

From Eq. (8.16) it follows: 

If we transform Eq. (8.15) for G(K-1) and insert the result of the preceding 
equation, then, after rearranging the equation, we get: 

pi(K)*?7i(K - 1) = 5 (E)” * G$i)li) 7 
k=2 
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and substituting this equation to Eq. (8.16), we have: 

- ei G(K - 1) 

Ki(K) = 1;' 
(-qK) + Pi(h’)Z(K - 1) 

- - 
= Pik) + Pi(K)-&(K - 1) = pi(K)- [l + K;(K - l)] . 

If we assume constant service rates and rni = 1, then we get the desired result 
by using pi(K) = Xi(K)/pi and Little’s theorem: 

- 

T;(K) = - = -- [l +Ki(K - 1)] = 1. [l + Ki(K - l)] . Ki(K) pi(K) - 

Xi(K) Xi(K) Pi 

For computing the mean response time at the ith node we need two othLer 
equations in addition to Eq. (8.31) to describe the MVA completely. Both 
equations can be derived from Little’s theorem. The first one is for determin- 
ing the overall throughput of the network: 

(8.32) 

whereas the other one determines the mean number of jobs at the ith node: 
- 
Ki(k) = X(k).Ti(k). ei, (8.33) 

where ei is the visit ratio at the ith node. 
The three equations, (8.31), (8.32), and (8.33), allow an iterative compu- 

tation of the mean response time, mean number of jobs, and throughput of 
the closed product-form queueing network. The iteration is done over the 
number of jobs Ic in the network. Equation (8.31) is valid for FCFS single 
server nodes, PS-nodes, and LCFS PR-nodes. The description of the MVA 
is complete if we extend Eq. (8.31) to the case of IS-nodes and FCFS-nodes 
with multiple servers. In the case of IS-nodes we have: 

Ti(K) = ;. 
i 

(8.34) 

For the latter case, consider a job that arrives at -/M/m-FCFS node con- 
taining j - 1 jobs, given that the network population is Ic - 1. This event 
occurs with probability 7ri(j - 1 1 Ic - 1). Then we have: 

T&k) =k 3 
jE1 Pi * %(d 

- 7ri(j - 1 1 k - l), 

&i(j) = 3, 
1. 

if j < mi, 

m,i , otherwise. 
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To obtain an expression for the probability ni(j ( F;), we use the formulae pre- 
sented in the convolution algorithm for computing the performance measures 
with help of the normalization constant, namely: 

ni(jp)=Fi(j)* * G’~~k~ ‘) (see Eq. (8.7)) 

ei 
= pi . &) * Fi(j - 1) - 

G;‘((k - 1) - (j - 1)) 

W) 

1 ei - G@ - 1) . G:)(@ - 1) - (j - 1)) . qj _ l) 
= pi * w(j) *, w G(k - 1) 

‘L 
, v L / v 

h(k) ri(j--ilk-1) see Eq. (8.7) 

W) 
= pi * &i(j) 

* %(j - 1 ( k - l), 

By induction and rearrangement of the equations, the following can be obtai- 
ned: 

1 

( 

rni -2 

=-’ 
mi f Pi 

1+K&-1)+ C(mi 
j=o 

- - 1) -%(j I k - 1) , 
(8.35) 

1 
=I--. 

mi 
77lj -j) *ri(j 1 k) 7 (8.36) 

%(j I q = b@) 
Pi ’ w(j) 

- 7ri(j - 1 1 Ic - 1). (8.37) 

Now the MVA for closed single class product-form queueing networks can 
be described as follows: 

Initialization. For i = 1,. . . , iV and j = 1,. . - . , (mi 1): 

Xi(O) = 0, Ti(O 1 0) = 1, Xi(j I 0) = 0. 



330 ALGORITHMS FOR PRODUCT-FORM NETWORKS 

Iteration over the number of jobs k = 1,. . . , K. 

L. STEP 2 I Fori=l,... , N, compute the mean response time of a job at 
the ith node: 

L 

; [I l tKi(k - l)] , a 
A- 

[ 

mi-2 
T&q = 

Pi**i 

l +l?$c - 1) +c (rni - j - l)*%(j I Ic - 1) 
j=o 

1 

ii’ 

Type-1,2,4 

1 
(*i = I>, 

Type- 1 
’ (*i > I), 

Type-37 

(8.38) 

where the conditional probabilities are computed using Eqs. (8.37) and (8.36). 

[STEP] Compute the overall throughput: 

X(k) = N Ic 
c ei.T& 
i=l 

(8.39) 

The throughput of each node can be computed using the following equation: 

Xi(k) = ei* X(k), (8.40) 

where the ei can be determined with Eq. (7.5). 

I STEP 2 3 For i = 1, . . . , N, compute the mean number of jobs at the ith 
node: 

xi(k) = ei. X(k)‘Ti(k)* (8.41) 

The other performance measures, e.g., utilization, mean waiting time, mean 
queue length, etc., can be derived from the calculated measures using the well- 
known equations. 

The disadvantage of the MVA is its extremely high memory requirement. 
The memory requirement can be considerably reduced by using approxima- 
tion techniques (e.g., SCAT, or self-correcting approximation technique), dis- 
cussed in Chapter 9. Another disadvantage of the MVA is the fact that it 
is not possible to compute state probabilities. In [AkBo83], the MVA has 
been extended for computing the normalization constant and for computing 
the state probabilities. Only Step 2.2 needs to be extended to include the 
equation: 

G(k - 1) 
G(k) = qjq 7 (8.42) 

with the initial condition G(0) = 1. This follows immediately from Eq. (8.14). 
When the iteration stops, we have the normalization constant G(K) that 
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can be used to compute the state probabilities with the help of the BCMP 
theorem, Eq. (7.80). T wo applications of the mean value analysis are now 
given. 

Example 8.3 The central-server model shown in Fig. 8.5 has N = 4 nodes 
and K = 6 jobs. The service time of a job at the ith node, i = 1, 2, 3, 4, is 
exponentially distributed with the following mean values: 

1 
- = O.O2sec, 

1 
- = 0.2sec, 

1 
- = 0.4sec, 

1 
- = 0.6sec. 

I-L1 P2 P3 CL4 

-cYutG- 
L,H3 ) PI lIIn-@- 

-clYIE+ 
Fig. 8.5 The central-server model. 

The visit ratios are given as follows: 

el = 1, e2 = 0.4, e3 = 0.2, e4 = 0.1. 

With the help of the MVA, the performance measures and normalization 
constant of the network are computed in three steps: 

Initialization: 
- 

x1(0) = K2(0) = K3(0) = z4(0) = 0, G(0) = 1. 

Iteration over the number of jobs in the network starting with 

m Mean response times, Eq. (8.38): 

E(1) = ; [l -t%(o)] = 0.02, T2(1) = ; [l +Kz(O)] = 0.2, 

- 
T3(1)= ; [l+K3(0)] =0.4, T4(1) = ; [l+K4(0)] =oJ% 

1-1 Throughput, Eq. (8.39)) and normalization constant, Eq. (8.42): 

X(l)= * l = 4.167, 

C &(l) 

G(1) = # = 0.24. 

i=l 
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Tab/e 8.4 Performance measures after completing six iteration 
steps. 

Node 1 2 3 4 

Mean time !Fi response 0.025 0.570 1.140 1.244 

Throughput Xi 9.920 3.968 1.984 0.992 

Mean number of jobs K, 0.244 2.261 2.261 1.234 

Utilization pz 0.198 0.794 0.794 0.595 

-1 Mean number of jobs, Eq. (8.41): 

El(l) = X(l)Ti(l)ei = 0.083, Kz(l) = X(l)Tz(l)ez = 0.333, 

E,(l) = X(l)Ts(l)es = 0.333, F4(1) = X(l)Td(l)e4 = 0.25. 

Iteration for k = 2: 

-1 Mean response times: 

Tl(a> = ; [l +%(I)] = 0.022, Tz(2) = ; [l +K2(l)] = 0.267, 

573(2> = ; [l + K3(1>] = 0.533, T4(2) = i [l +K4(1)] = 0.75. 

-1 Throughput and normalization constant: 

X(2) = 4 2 = 6.452, G(2) = z = 3.72. 10-2. 

C eiTi(2) 
i=l 

STEP 2 l 3 Mean number of jobs: 

Ki(2) = X(2)?;1(2)el = 0.140, 1?2(2) = A(2)T2(2)e2 = 0.688, 

z,(2) = X(2)F3(2)e3 = 0.688, K4(2) = A(2)T*(2)e4 = 0.484. 

After six steps, the iteration stops and we get the final results as sum- 
marized in the Table 8.4. The normalization constant of the network is 
G(K) = 5.756 + lo-“. With Eq. (7.80) we can compute the steady-sate prob- 
ability that the network is, for example, in the state (3,1,1,1): 

h 

= 5.337. 10-4. 
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Fig. 8.6 A closed queueing network. 

Example 8.4 As anot her example, consider the closed queueing network 
given in Fig. 8.6 with K = 3 jobs. At the first node we have ml = 2 identical 
processors having exponentially distributed service times with mean l/,~r = 
0.5 sec. Node 2 and node 3 have exponentially distributed service times with 
means l/p2 = 0.6 set and l/bs = 0.8 set, respectively. At the fourth node 
(terminals), the mean service time is l/p* = 1 sec. The routing probabilities 
are as follows: 

P12 = ~13 = 0.5 and ~24 = p34 = p41 = 1. 

From Eq. (7.5) we compute the visit ratios: 

el = 1, e2 = 0.5, e3 = 0.5, e4 = 1. 

The analysis of the network is carried outin the following steps: 

~~~ Initialization: 

mo) = K2(0) = K3(0) = 0, x1(0 IO) = 1, 7rl(l IO) = 0. 

Iteration over the number of jobs in the network starting with 

I-2.1 Mean response times: 

Ti(1) = & [1+ K(0) + v(o 1 O)] = o.s, Tz(1) = ; [l + F2(0)] = 0.6, 

- 
T3(1) = i [1+ K3(0)] = 0.8, T4(1) = ; =A. 

IsTEP Throughput: 
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-1 Mean number of jobs: 

El(l) = ~(l)~l(l)el = 0.227, z,(l) = X(l)Tz(l)ez = 0.136, 

Es(l) = X(l)Fs(l)es = 0.182, ??~(l) = X(l)FA(l)ed = 0.454. 

Iteration for k = 2: 

-1 Mean response times: 

532) = & [1+~1(1)+m(o 1 l)] =0.5, 

with: 

7rl(O 1 1) = 1- $ :x(l) +7r1(1 1 
[ 

1) 1 = 0.773, 

and: 

d1 1 l> = ~~(l)n,(o 1 0) = 0.227, T2(2) = ; [I+??$)] = 0.682, 

%(2> = ; [I t-%(l)] = 0.946, T4(2) = 1. 

-1 Throughput: 

x(2) = 4 2 = 0.864. 

T f?;?;;(2) 
u -6 
i=l 

-1 Mean number of jobs: 

K1(2) = X(2)T1(2)el = 0.432, 
- 

K3(2) = X(2)T3(2)e3 = 0.409, 

Iteration for k = 3: 

-1 Mean response times: 

Kz(2) = A(2)Tz(2)ez = 0.295, 

F*(2) = X(2)?;4(2)ed = 0.864. 

C(3) = f-& [I +x1(2)+ nl(0 I2)] = 0.512, 

with: 

1 = 0.617, 
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and: 

w(l 12) = 32)711(0 1 1) = 0.334, 

%(3) = ; [l -t-&(2)] = 0.776, 

T3(3) = i [l +??,(a)] = 1.127, Ej(3) = 1. 

l’sTEf2.23 Throughput: 

X(3) = 3 = 

5 &(3) 

1.217. 

i=l 

/?!?%~~ Mean number of jobs: 

E,(3) = X(3)T1(3)el = 0.624, 17,(3) = X(3)&(3)e2 = 0.473, 

KS(~) = X(3)T3(3)e3 = O.686! z*(3) = X(3)F4(3)e4 = 1.217. 

The throughput at each node can be computed with Eq. (8.40): 

X1 = X(3). el = 1.218, X2 = X(3). e2 = 0.609, 

X3 = X(3). e3 = 0.609, X4 = X(3). e4 = 1.218. 

For determining the utilization of each node, we use Eq. (7.21): 

h 
p1= ~ = 0.304, 

x2 x3 

m1p1 
P2 = z = 0.365, p3 = - = ().487. 

P3 - 

8.2.2 Multiclass Closed Networks 

The algorithm for computing the performance measures of single class closed 
queueing networks can easily be extended to the multiclass case in the follow- 
ing way [ReLa80] : 

Initialization. For i = 1,. . . , N, T = 1,. . . , R, j = 1,. . . , (mi - 1): 

J&(O,O...,O) =o, 7ri(O IO) = 1, %(j IO> =a 

IteraCon: k = 0, . . . , K: 
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[ STEP 2.1 1 For i = 1, . . . , N and r = 1, . . . , R, compute the mean response 
time of class-r jobs at the ith node: 

Type-1,2,4 

(mi = I>, ’ 
& 

. [ 
1+ e Eis(k - 1,) 

s=l 1 
1 

[ 
1+ 

Fir(k) = ( /-hr. mi 
F Fis(k - 1,) 
s=l 

1 
(8.43) 

m,-2 

-t- c (m; - j - l)r&’ ] k - 1,) , Type-1 
j=o (mi > l), 

1 
-3 Type-3. 

x Pir 

Here (k - 1,) = (ICI, . . . , Ic, - 1, . . . , /CR) is the population vector with one 
class-r job less in the system. 
The probability that there are j jobs at the ith node (j = 1,. . . , (mi - 1)) 
given that the network is in state k is given by: 

ri(j 1 k)= h 2 "i'Xr(k)ri(j- 11 k- 1,) , 
3 r=l Pir 1 

and for j = 0 by: 

?ri(O]k)=l-; 5 %X,(k) + mgl(mi - j)r&’ ] k) 
z r=l j=l 1 

where ei, can be computed by Eq. (7.72). 

1 STEP 2.2 ]Forr=l,... , R, compute the throughput: 

X,(k) = N Icr 

C eirTir(k) * 
i=l 

(8.44) 

(8.45) 

(8.46) 

1_______1 STEP 2 3 For i = 1, . . . , N and r = 1, . . . , R, compute the mean number 
of class-r jobs at the ith node: 

Fir(k) = Xr(k)*Tir(k)* ei,. (8.47) 

With these extensions the MVA algorithm for multiclass closed product-form 
queueing networks is completely specified. 

Akyildiz and Belch [AkBo83] extended the MVA for computing the nor- 
malization constant and the state probabilities. For this purpose, Step 2.2 in 
the preceding algorithm is expanded to include the formula: 

G(k) = G(k - 1,) 
L-(k) ’ 

(8.48) 
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with the initial condition G(0) = 1. After the iteration stops we get the 
normalization constant G(K) that can be used to compute the steady-state 
probabilities with the help of the BCMP theorem, Eq. (7.80). 

Fig. 8.7 Sequence of intermediate values. 

To explain iteration Step 2, we use Fig. 8.7 where the sequence of inter- 
mediate values is shown for a network with R = 2 job classes. The first job 
class has K1 = 2 jobs and the second class has K2 = 3 jobs. The mean value 
algorithm starts with the trivial case where no job is in the system, that is, 
the population vector (0,O). From this, solutions for all population vectors 
that consist of exactly one job are computed; in our example these are the 
population vectors (1,0) and (0,l). Then the solution for all population vec- 
tors with exactly two jobs are computed, and so on, until the final result for 
K = (2,3) is reached. In general, to compute the solution for a population 
vector k we need R intermediate solutions as input, namely the solutions for 
all population vectors k - l,, r = 1,. . . , R. 

Now, the algorithm is illustrated by means of an example: 

Example 8.5 Consider the queueing network shown in Fig. 8.8 with N = 
3 nodes and R = 2 job classes. Class 1 contains K1 = 2 jobs and class 2 
contains Kz = 1 jobs. Class switching of the jobs is not allowed. The service 
time at the ith, i = 1, 2, 3, node is exponentially distributed with mean 
values: 

1 1 
- = 0.4sec, 

1 
- = 0.2sec, - = 1 set, 
Pll P21 I-431 

1 1 1 
-=0.2sec, - =0.6sec, - =2sec. 
Pl2 i-422 p32 
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Fig. 8.8 Another closed queueing network. 

The visit ratios are given as follows: 

ell = 1, e21 = 0.6, e31 = 0.4, el2 = 1, e22 = 0.3, e32 = 0.7. 

The queueing discipline at node 1 is FCFS and at node 2, processor sharing. 
The terminal station is modeled as an IS-node. We analyze the network using 
the MVA in the following three steps: 

Initialization: 

Xi,(O) = 0 f or i = 1,2,3 and T = 1,2, 7r1(0 1 0) = 1, x1(1 1 0) = 0. 

Iterate over the number of jobs in the network beginning with the 
population vector k = (1,O): 

-1 Mean response times, Eq. (8.43): 

%(l,O) = & [I + %l(O, 0) + %z(O,O> + m(0 I 0, o,] = 0.2, 

T&O) = ; [1+~21(0,0) +~22(0,0)] = 0.4, 

T31(1,0) = ; =I. 

-1 Throughput for class 1 using Eq. (8.46): 

h(U) = 3 l = 1.190. 

C eiA (LO> 
i=l 

Note that the class 2 throughput for this population vector is 0. 
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-1 Mean number of jobs, Eq. (8.47): 

E,,(i,O) = X1(l,O)T&O)ell = 0.238, 

~,,(i,O) = X1(l,0)~21(l,0)e2~ = 0.286, 

E31(1, 0) = X1(1, O)T31(1,O)e31 = 0.476. 

Iteration for k = (0,l): 

[I Mean response time: 

~12(0,1> = & [I + %(o, 0) + 1712(0,0) + m(0 I 0, O)] = 0.2, 
. 

T22(0,1) = & [l + 17&O, 0) + E22(0, o)] = 0.6, 

?;32(0,1) = ; = 2. 

/?%$-%%I Throughput for class 2: 

X2(0,1) = 3 l = 0.562. - 
C ei2Ti2(O: 1) 
i=l 

Note that the class 1 throughput for this population vector is 0. 

(-1 Mean number of jobs: 

E,,(O,l) = X2(0, 1)552(0,l)e12 = 0.112, 

F22(0,i) = X~(O,l)T22(0,Q322 = 0.101, 

ES2(0, 1) = X2(0,1)5732(0,1)e32 = 0.787. 

Iteration for k = (1,l): 

I-2.1 Mean response times: 

Class 1: 

T11(1,1) = & [I + %2(0,1) + 7r1(0 1 0, l)] = 0.2, 

where: 

l n1(0 ) 0,l) = 1 - - 
[ 

%,(o, 1) + Tl(1 1 0,l) 
ml p12 1 = 0.888, 



340 ALGORITHMS FOR PRODUCT-FORM NETWORKS 

m(l I07 1) = %,(O, 1)7Tl(O ( 0,O) = 0.112, 
CL12 

T&, 1) = k [I +2721(0,1)+~22@,1)] = 0.44, 

%(l, 1) = & = 1. 

Class 2: 

F&,1) = -A- 
2. P.12 

[1+1711(1,0) +w(o ( l,O)] = 0.2, 

~(0 ( l,o) = 1 - $ E&(1,0) + ~~(1 1 1,0) 1 = 0.762, 

~~(1 1 I, 0) = $X1(1,O)n1(0 ( 0,O) = 0.238, 

T22(1, 1) = k [l + K&O)] = 0.772, 5%2(1,1) = h = 2. 

-1 Throughputs: 

J&,1> l = = 3 1.157, 

C eil%(L 1) 
i=l 

X2(1,1> 1 = = 

5 

0.546. 

ei2R2 (1, 1) 
i=l 

-1 Mean number of jobs: 

K&, 1) = X1(1, l)Tll(l, l)ell = 0.231, 

K12(1, 1) = X2(1,1)T12(1,l)el2 = 0.109, 

F&(1,1) = Xl(l,l)T21(1,l)e21 = 0.305, 

?f22(1, 1) = X2(1,1)T22(1,+22 = 0.126, 

F&(1,1) = X1(1,l)T31(l,l)e3l = !LB& 

K32(I, I) = X2(1, I)T32(1,l)e32 = O-764. 
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Iteration for k = (2,0): 

-1 Mean response times: 

%(2,0> = & [1+~11(1,0) +n(O 1 LO)] =0.2, 

Tz1(2,0) = k [I + &(l, O)] = 0.514, 

T31(2,0) = A = 1. 

1-1 Throughput: 

WV) = 
2 

= 

5 dil(2,O) 

2.201. 

i=l 

p?%?$3 Mean number of jobs: 

S&(2,0) = X1(2,O)T& O)ell = 0.440, 

xz1(2, 0) = &(2,O)Tz1(2,O)ezl = 0.679, 

KS1(2, 0) = X1(2, 0)‘?‘,1(2,O)e31 = 0.881. 

Iteration for k = (2,l): 

-1 Mean response times: 

Class 1: 

[1+ K&, 1) + -T(12(1! 1) + n(O I 1, I)] = 0.203, 

where: 

7Tl(O ) 1,1) = 1 - -L %l(l,l) + %X&,1) + 7rl(l 1 1,l) 
[ 

= 0.685, 
ml PII 1 

and: 

v(l I 171) = y$‘(l, 1)7rl(O 1 0,l) + EX?(l, l)*m(O I LO) = 0.289, 

5%(2,1> = ; [l +E& 1) +Ezz(l, I)] = 

Class 2: 

T12(2,1> = & [l +E,1(2,0) + 7rl(O 12,0)] = 0.205, 
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where: 

7r1(0 ) 2,O) = 1 - - %X1(2,0) + ~~(1 1 2,0) = 0.612, 1 
and: 

m(1 I w> = ~&(2,0)7rl(O ) 1,o) = 0.335, 

%(2,1) = & [1+ Kar(2,0)] = 1.008, Ts2(2,1) = & = 2. 

-1 Throughputs: 

= 2.113, 

C d% (2,1> 
i=l i=l 

-1 Mean number of jobs: 

&(2,1) = X1(2, 1)5711(2,l)ell = 0.428, 

E12(2, 1) = X2(2, l)T12(2,l)el2 = 0.108, 

X2r(2, 1) = X1(2, l)T21(2,+21 = 0.726, 

K22(2, 1) = X2(2, 1)5722(2,l)e22 = 0.158, 

X731(2,1) = A1(2,l)T3i(:qu&eing 0.8457 

??,,(a, 1) = X2(2, l)T32(2,+32 = 0.734. 

We can see that the MVA is easy to implement and is very fast. For 
networks with multiple server nodes (mi > 1) and several job classes, this 
technique has some disadvantages such as stability problems, accumulation 
of roundoff errors, and large storage requirements. The storage requirement 

is 0 (N. n,“=, (K, + 1)). For comparison, the storage requirement of the 

convolution algorithm is 0 (n,“=,(Kr + 1)). The time requirement in both 

cases is approximately the same: 2 . R(N - 1). fi (K, + 1) [CoGe86]. Recall 
r=l 

that N is the number of nodes in the network and K, is the number of jobs 
of class T. 

8.2.3 Mixed Networks 

In [ZaWo81] the MVA is extended to the analysis of mixed product-form 
queueing networks. But the networks are restricted to consist only of single 
server nodes. Before we introduce the MVA for mixed queueing networks, 
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we consider the arrival theorem for open queueing networks. This theorem 
says that the probability that a job entering node i will find the network in 
state (ICI.. . . , Ici, . . . , ICN) is equal to the steady-state probability for this state. 
This theorem is also called PASTA theorem. r Therefore we have for the mean 
response time of a job in an open network: 

(8.49) 

As from [ZaWo81], we have, for any class r and s, Fi, = PisKi, and, 
Pir 

therefore, with the help of the relation Fir(k) = Xir*Tir(k), it follows from 
Eq. (8.49): 

pir Pir 

1 - 5 Pis’ 

Type-1,2,4 (mi = l), 
?Tir (k) = 

s=l 

Pir 7 Type-3, 

(8.50) 

with pir = Xir/pir, where Xi, = &.a ei, is given as an input parameter. 
These results for open queueing networks are now used for analyzing mixed 

queueing networks. The arrival theorem for mixed product-form queueing net- 
works says that jobs of the open job classes when arriving at a node see the 
number of jobs in equilibrium, while jobs of the closed job classes when arriv- 
ing at that node will see the number of jobs at that node in equilibrium with 
one job less in its own job class in the network [ReLa80, SeMi81]. 

If we index the open job classes with op = 1,. . . , OP and the closed job 
classes with cl = 1, . . . , CL, then we have for the mean number of jobs in an 
open class T, taking into account Eq. (8.50): 

Fir(k) = Air* -L 
Pir 

1 + 5 Ki,cl(k) + E Xi,,,(k) 
cl=1 op=l 1 

I = 

1 - E Pi,op 

> 

op=l 

(8.51) 

‘PASTA: Poisson arrivals see time averages (see [Wolf82]). 
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where k is the population vector of the closed job classes. Equation (8.51) is 
valid for Type-1,2,4 single server nodes, while for Type-3 nodes we have: 

- 
&r(k) = pir. (8.52) 

For the mean response time of a job in a closed class r at node i we have: 

R, .(k) = L 1+ 
Pir 

=I 1+ 
Pir 

5 Ki,cl(k - lr) + 

cl=1 

1 1+ 1 

E Ki,cl(k - 1,) + 

cl=1 

5 Ki,cl (k - L-) 1 
1 L cl=1 A =- 

j%r 

1 - E Pi,op 

op=l 

OP 1 

c Ki,,,(k - I,) 

op=l 1 

r CL 1 OP 

1 + C Ki,cl(k - 1,) C pi,op 

cl=1 1 op= 1 

OP 

1 - c Pi,op 
op=l 

(8.53) 

Equation (8.53) is valid for Type-1,2,4 single server nodes. For Type-3 
nodes we have: 

Fir(k) = $ (8.54) 

With these formulae the MVA for mixed product-form queueing networks can 
be described completely. We assume for now that all arrival and service rates 
are load independent. 

The algorithm is as follows: 

Initialization. For all nodes i = 1,. . . , N, compute the utilization 
of the open class jobs op = 1,. . . , OP in the mixed network: 

1 
Pi,op = -X0,* ei,0p, 

Pi,op 
(8.55) 

- 
and check for the ergodicity condition (pi,OP 5 1). Set Ki,cl(O) = 0 for all 
i= I,..., N and all closed classes CL = 1, . . . , CL. 

Construct a closed queueing network that contains only the jobs 
of the closed job classes and solve the model with the extended version of the 
MVA, which considers also the influence of jobs of the open job classes. The 
results are the performance measures for the closed job classes of the mixed 
queueing network. 
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Iteration: k = 0,. . . , K: 

I STEP 2 I For i = 1,. . . , N and r = 1,. . . , CL, compute the mean response 
times with Eqs. (8.53) and (8.54). 

I STEP 2 2 Forr=l,..., CL, compute the throughputs with Eq. (8.46). 

I STEP 2 3 For i = 1,. . . , N and T = 1,. . . , CL, evaluate the mean number 
of jobs with Eq. (8.47). 

With the help of the solutions of the closed model and the equations 
given in Section 7.2, compute the performance measures for the open job 
classes of the network starting with Eqs. (8.51) and (8.52) for computing the 
mean number of jobs Ei,, i = 1,. . . , N and r = 1,. . . , OP. 

If we use the iterative formula (8.48) f or computing the normalization con- 
stant in Step 2, then the steady-state probabilities can be derived from the 
BCMP theorem, Eq. (7.76) [AkBo83]: 

n(S = Sl . . . ) S,) = (8.56) 

where X(j) is the (possibly state dependent) arrival rate. 

Example 8.6 As an example of a mixed queueing network, consider the 
model given in Fig. 8.9 with N = 2 nodes and R = 4 job classes. Class 1 and 
2 are open, the classes 3 and 4 are closed. Node 1 is of Type-2 and node 2 is 
of Type-4. 

Source 

LJ 

_--- Open Class 
- Closed Class 

Fig. 8.9 A mixed queueing network. 

The mean service times are given as follows: 

1 1 1 1 
- = 0.4sec, - = 0.8sec, - = 0.3seq - = 0.5sec, 
Pll CL12 I-L13 P14 

1 1 1 1 
- = 0.6sec, - = 1.6sec, - = 0.5sec, - = 0.8sec. 
P21 CL22 p23 k24 
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The arrival rates by class for the open class jobs are Xi = 0.5 jobs/ set and 
X2 = 0.25 jobs/ sec. In each of the closed classes there is K3 = K4 = 1 job. 
The routing probabilities are: 

PO,11 = 1, Pll,ll = 0, Pll,Zl = 0.5, P21,ll = 1, 

PO,12 = 1, p12,12 = 0, ~12,22 = 0.6, ~22~2 = 1, 

PO,13 = 0, P13,13 = 0.5, p13,23 = 0.5, p23,13 = 1, 

PO,14 = 0, p14,14 = 0.6, pl4,24 = 0.4, p24,l4 = 1. 

Thus, by Eq. (6.27) the visit ratios are computed to be: 

ell = 2, e12 = 2.5, e13 = 1, el4 = 1, 
e21 = 1, e22 = 1.5, e23 = 0.5, e24 = 0.4. 

The determination of the performance measures of this mixed queueing 
network is carried out with the MVA in the following three steps: 

Initialization. Compute the utilization of both nodes by the open 
job classes: 

PII = hell+ -!- = 0.4, p21 = Xle21. L =0.3, 
l-L11 IQ21 

~12 = X2el2. 2- = 0.5, ~22 = X2e22- k =0.6. 
Pi2 

Set Kii (0) = Xi2 (0) = X21(Q) = K22(Q) = 0. 

Using MVA, analyze the closed queueing network model, obtained 
by leaving out the jobs of the open job classes. 

Mean value iteration for k = (1,O): 

Mean response times, Eq. (8.53): 
- 

1+ &3(Q) = 3, T23(1,0) = J- 
1 + z,,(a) 

Pl3 1 - (Pll + P12) CL23 1 - (p21 + ,022) = 5’ 

Throughput, Eq. (8.46) : 

X3(1,0) = 2 K3 = 0.182. 

C ei3%3(1,0> 
i=l 

Mean number of jobs, Eq. (8.47): 

K13(1,0) = ~3(1,0)* ei3.T13(1,0) = 0.545, 

z23(1,0) = ~3(1~o)’ e23- T23 (1, 0) = 0.454. 
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Mean value iteration for k = (0,l): 

%4(0,1> = 5, T24(0,1> = s, 
X4(0,1) = 0.122, 

- 
K14(0, 1) = 0.610, &(O, 1) = 0.390. 

Mean value iteration for k = (1,1): 

T&(1,1) = 4.829, T2&,1) = 6.951, ?;I&, 1) = 7.727, %(l, 1) = 11.636. 

X3(1, 1) = 0.120, X4(1, 1) = 0.081. 

K13(l,1) = 0.582, &(l, 1) = 0.418, &(l, 1) = 0.624, %,(l, 1) = 0.376. 

With these results and using Eq. (8.51), the performance measures 
of the open classes can be computed: 

F1& 1> = Pll (1+ %3(L 1) + %4(L 1)) 
, 0.1 

= 8.822, 

K21(1 1> = Pzl (1 + E23(1~~> + %dl, l>> 
= , 0.1 5.383, 

K12(1 
7 

1) = P12 (1 + %3(1,1> + %4(L 1)) 
= 11.028, 

K (1 1> = p22 (1 + rc,,& + K24(1,1>> 
22 7 0.1 

= 10.766. 

For the computation of the mean response times we use, Eq. (7.43): 

Tll (1,1) = 8.822, T12(l, 1) = 17.645, 

T21(1, 1) = 10.766, T22(1, 1) = 28.710. 

Now all the other performance measures can be computed. 

There are some suggestions to extend this algorithm to mixed queueing 
networks that are allowed to contain additional multiple server nodes. The 
most important approaches can be found in [KTK81] and [BBA84]. 

8.2.4 Networks with Load-Dependent Service 

The MVA can be extended to examine product-form queueing networks where 
the service rates at node depends on the number of jobs at that node, [Reis81]. 
Let pi(j) denote the load-dependent service rate of the ith node when there 
are j jobs in it. 
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8.2.4.1 Closed Networks The algorithm for single class queueing networks 
with nodes having load-dependent service rates can be described in the fol- 
lowing steps: 

Initialization. For i = 1, . . . , N: 7ri(O 1 0) = 1. 

Iteration: Ic = 1, . . . , K. 

1 STEP 2.1 ] For i= l,... , N, compute the mean response time: 

Ti(lc) = & 3 -7ri(j - 1 1 Ic - 1). 
j=l l-G> 

-1 Compute the throughput: 

X(k) = N Ic . 
c ei. T,(k) 
i=l 

(8.57) 

(8.58) 

I STEP 2 3 Fori=l,..., N, compute the conditional probabilities of j jobs 
at the ith node given that there are Ic jobs in the network: 

I 

W) -ri(j - 1 ) k - l)ei, 
cLi(j) 

for j = 1,. . . , Ic, 

ri(j I k) = 

for j = 0. 

(8.59) 

The extension of this algorithm to multiclass queueing networks where the 
service rate of a node depends on the overall number of jobs at the node can 
be done very easily. Let hir(j) be the the service rate of class-r jobs at the 
ith node when there are j jobs in it. Then the MVA can be presented in the 
following steps: 

Initialization. For i = 1, . . . , N: 7ri(O I 0) = 1 

Iteration: k = 0,. . . , K. 

[ STEP 2.1 ] For i = 1, . . . , N and r = 1, . . . , R, compute the mean response 
times: 

Tir(k) = 2 j 
j=l f4.d 

T;(j--Ilk-l,), where k=e&. (8.60) 
r=l 
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I STEP 2 2 Forr- l,... , R, compute the throughputs: 

k-(k) = N ” . (8.61) 

C eir*Tir(k) 
i=l 

I STEP 2 3 Fori=l,... , N, determine the marginal probabilities: 

R A-(k) c 
ri(j 1 k) = 

r=l ari(j - 1 I k- L)eir, f0r.i = l,---,k, 
zr 

for j = 0. 

(8.62) 

Example 8.7 Consider again the example given in Fig. 8.6 where the 
multiple-server node 1 is replaced by a general load-dependent server. Load- 
dependent service rates are: 

,ul(l) = 2, ~~(1) = 1.667, ~~(1) = 1.25, ,u4(1) = 1, 

~$2) = 4, ~~(2) = 1.667, ~~(2) = 1.25, ~~(2) = 2, 

/~(3) = 4, ~~(3) = 1.667, ~~(3) = 1.25, ~~(3) = 3. 

Initialization: 

r;(O ) 0) = 1 for i = 1,2,3,4. 

Iteration over the number of jobs in the network starting with 

[I Mean response times, Eq. (8.57): 

??i(l) = 1n1(0 1 0) = 0.5, 
Pi(l) 

T2(1) = --&(O I 0) = 0.6, 

Ts(l) = ~ l n3(0 ( 0) = 0.8, TJ(1) = l 
P3U) 

-7r4(0 1 0) = I. 
Y4P) 

[I Throughput, Eq. (8.61) and normalizing constant, Eq. (8.42) : 

X(1) = 4 l = 0.454, G(1) = z = 2.203. 

C eiTi(l) 
i=l 
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-1 Marginal probabilities, Eq. (8.62): 

m(l 1 1) = 
w ------n-1(0 1 0)el = 0.227, 

CL1 (1) 
7rl(O ( 1) = 1 - 7ri(l ( 1) = 0.773, 

~~(0 ( 1) = 0.864, ~~(1 1 1) = 0.136, 

7r3(0 ( 1) = 0.818, ~~(1 ( 1) = 0.182, 

n-4(0 1 1) = 0.545, Q(l ) 1) = 0.454. 

Iteration for k = 2: 

-1 Mean response times: 

Tr(2) = 1 2 --7rl(O 1 1) + ___ 
CL1 (1) I-L1 (2) 

ni(1 I 1) = 0.5, 

Tz(2) = 1 
P2(1) sTr2(o 

T3(2) = J- 
P3(1) T3(o 

T4(2) = J- 
P4(1) T4(o 

1) + -7r2( 2 
I-Q (2) 

1 1 1) = 0.682, 

1) 
2 

+ -7r3(1 ) 1) = 0.946, 
CL3 (2) 

2 1) + ___ 
P4 (2) 

n4(1 I 1) = 1. 

-1 Throughput and normalizing constant: 

X(2) = 4 2 = 0.864, 2.549. 

C @i(2) 

G(2) = g = 

i=l 

-1 Marginal probabilities: 

742 I 2) = w ---7ri(l I 1)er = 0.049, 
Plc4 

n(l I 2) = 
m) -7rl(O 1 1)ei = 0.334, 

I-Q) 

q(O 1 2) = 1 - 2 7rl(l ( 2) = 0.617. 
1=1 

n2(2 ) 2) = 0.035, 7r2( 1 1 2) = 0.224, x2(0 

~~(2 1 2) = 0.063, r3( 1 1 2) = 0.283, x3(0 

n4(2 ( 2) = 0.196, 7r4(l 1 2) = 0.472, n4(0 

1 2) = 0.741, 

1 2) = 0.654, 

( 2) = 0.332. 

Iteration for k = 3: 
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-1 Mean response times: 

F(3) = --&do 12) + 2 4 I 2) 3 

Pl (2) 

+ 
-7r1(2 1 2) = 0.512, 
I-L1 (3) 

&(3) = 0.776, F3(3) = 1.127, TA(3) = 1. 

-1 Throughput and normalizing constant: 

X(3) = 1.218, G(2) 
G(3) = q3) - = 2.093. 

-1 Marginal probabilities: 

v9 7r1(3 13) = - 
P1(3)r1(2 

2)el = 0.015, 

w 7r1(2 1 3) = - 
/11(2P 

2)el = 0.102, 

v(1 I 3) = Jw -rl(O I2)el = 0.375, 
I-L1 (1) 

3 

7rl(O 1 3) = 1 - Cxl(Z ) 3) = 0.507. 
1=1 

7r2(3 1 3) = 0.013, 7rz(2 

~(1 ] 3) = 0.271, ~~(0 

~~(3 ) 3) = 0.031, 7r3(2 

7r3(1 I 3) = 0.319, 7r3(0 

7rITq(3 13) = 0.080, 7r4(2 

3) = 0.082, 

3) = 0.634, 

3) = 0.138, 

3) = 0.512, 

3) = 0.287, 

7rA(l ] 3) = 0.404, 7rJ(O ] 3) = 0.229. 

Now the iteration stops and all other performance measures can be com- 
puted. For the mean number of jobs at the nodes we have, for example: 

x1(3) = -&q(k 13) = 0.624, 
k=l 

- - 
&,(3) = 0.473, X3(3) = 0.686, K4(3) = 1.217. 

The MVA is extended by [Saue83] to deal with other kinds of load depen- 
dence: 

l Networks in which the service rate of a node depends on the number of 
jobs of the different classes at that node (not just on the total number 
of jobs at the node). 

l Networks with load-dependent routing probabilities. 
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In [TuSa85] and [HBAK86], the MVA is extended to the tree mean value 
anulysis, which is well suited for very large networks with only a few jobs. 
Such networks arise especially while modeling distributed systems. 

8.2.4.2 Mixed Networks The MVALDMX algorithm (mean value analysis 
load dependent mixed) was first presented in [BBA84] and can be used to ana- 
lyze mixed BCMP networks with load-dependent service stations. Apart from 
the algorithm presented in [BBA84], another suggestion is made in [KTK81] 
to extend the MVA to analyze multiclass load-dependent queueing networks. 
In order to extend the MVA, the equations derived in the previous sections, 
and especially the equation for the mean response time, need to be extended. 
Since a mixed network contains open as well as closed job classes, we need 
to consider the open classes in the network when computing the performance 
measures for the closed classes. Furthermore the load-dependency must be 
explicitly accounted for. To do so we need to consider marginal probabilities 
in the corresponding equations. 

Bruell, Balbo, and Afshari [BBA84] introduce the capacity function to 
describe the behavior of load-dependent service stations. The capacity func- 
tion ci(j) of node i is the number of jobs completed by that station if there 
are j jobs in the queue. 

The inverse function of the capacity function, C(j), is called the Zoud- 
dependence factor. 

The loud-dependent mean service time si,(j) for class-r jobs at service sta- 
tion i is given by the relation 

(8.63) 

The function Sir(j) can be interpreted as the nominal service time. Using 
the capacity function c,(j), we can model a general load-dependency, which 
means, ci(j) can be any function with: 

ci : W -+ lR+ and ci(l) = 1. 

In the following, load-dependency shall be restricted to multiple server 
nodes. The load-dependency factor for an -/M/m node is then: 

1 Ic’ 
I- 

if k < m;, 

Ci(k) = 1 = 
c,(k) 

(8.64) 
1 

, ifkzm;. 
mi 
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In the MVA for mixed queueing networks, and especially in the MVALD- 
MX algorithm, the procedure is to consider the performance measures for 
open and closed classes separately from each other. At first the performance 
measures of the closed classes are computed and then the performance mea- 
sures of the open classes are computed. This separation can be achieved in the 
MVALDMX algorithm by checking the marginal probabilities of different job 
combinations. In [BBA84] a recursive equation is given for the computation 
of the conditional probabilities ni(lc, K) such that there are exactly Ic jobs of 
the closed job classes at node i for a given population K. This equation is 
only valid for the closed job classes. This recursive equation is the only one 
necessary for the analysis of mixed, load-dependent queueing networks: 

T~(JC,K) = 5 s,,cl + ECi(~) . &cl(K) + ri(k - 1, K - lc& (8.65) 

Here, K is the population vector of jobs in the closed classes, and 1,~ is 
the vector whose components are all zero except the clth component, which is 
one. The variable Ic is the overall number of jobs in closed classes in a certain 
population vector during the iteration, and ECi is the inverse of the effective 
capacity function. The reduction of the mixed network to a closed network 
is given by modifying the load-dependence factor Ci (Ic). In a mixed queueing 
network, the service stations are used by jobs belonging to open as well as 
closed classes. The availability of open job classes in the network reduces 
the capacities of the service stations, which means that the closed job classes 
do not have the full capacity available any more as previously defined in the 
capacity function. 

It is for this reason that we need to define the eflective capacity function: 

1 
eciw = Eci(q = c&c) * 

Ei(k - 1) 

E;(k) ’ 
(8.66) 

This function describes the capacity that is effectively available for the closed 
classes if we consider the jobs of open classes. This step makes a separate 
analysis of the open and closed classes possible. As we can see, Ei(k) (which 
is a function that helps in computing the effective capacity of station i) is 
of basic importance for this reduction. The computation of the auxiliary 
parameters can be done for each service station i independently from the 
other service stations. 

Vk>mi- 1 : Ei(k)= 
1 

1 _ Li . Ci(mi) ' Ei(k - l)' 

Li = E Xi,op ' Si,op, 
op=l 
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‘dk 5 rni - 1 

Ei(k) = E@) + E&k) - @3(k) 

I 

&l(k) = ( 

I 

1 . ci . Eil(k - l), 
1 - LiCi(mi) C,(k) 

k > 0, 

k = 0, 

mi-2 

EiZ(k) = c &,(k,j), 
j=o 

mi-2 

&3(k) = c F3(k& 

j=o 

‘k+j - . 
j 

Li + Ci(mi) . Fis(k, j - l), IC > 0, 
j > 0, 

$$ - Fi3(k - l,O), 
i 

mi-l C,(Z) 
II 1=1 ci Crni> ’ 

k > 0, 
j > 0, 

k = 0, 
j = 0. 

Here Li denotes the load factor of open classes with regard to station i. 
Now we have all necessary equations to describe the MVA algorithm for mixed 
product-form queueing networks with multiple server nodes. In the algorithm, 
K denotes the overall number of jobs in the closed job classes of the network 
and k denotes the state vector for an iteration step for the closed job classes. 

Initialization. For all nodes i = 1,. . . , N, of the network compute 
the following values: 

[I Load factor Li of the open job classes: 

Li = E Xi,*p ’ Si,op* 

op=l 

-1 Let K = E Kcl and compute for all k = 1, . . . ,K+l the 
cl=1 

auxiliary functions Ei(k) and ECi (k). 

1 STEP 1.3 1 ni(O, 0) = 1.0. 
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Construct a closed model that contains only jobs of closed job 
classes of the original network and solve this closed model. The results that 
we get from this model are the performance measures for the closed classes of 
the mixed network. For all vectors k = 0, . . . , K, do: 

I STEP 2 i For all cl = 1, . . . , CL and i = 1, . . . , N, compute the mean 
response time: k 

F+(k) = ““’ ’ j=l 
cj. ECi(j) . ni(j - 1, k - lcl), Type-1,2,4, 

Si,cl, Type-3. 

I STEP 2 2 For all cl = 1,. . . , CL and i = 1,. . . , N, compute the through- 
put: 

J&&) z N ICC1 ’ ei7cz . 

C ej,cz . Tj,dk) 
j=l 

I STEP 2 3 For all cl = 1, . . . , CL and i = 1, . . . , N, compute the number of 
jobs: 

(-?EEZGL] Adapt the marginal probabilities for Type-1,2,4 nodes: 

For i = 1, . . . , N do: 

sum = 0.0 

for k = 1, . . . , k do: 

n&k) = E sZ,CZ . ECi(k) * h,cl(k) * ri(k - 1, k - lcl), 
cl=1 

sum = sum + ni(lc, k), 
ri(O, k) = 1.0 - sum. 

1-1 Compute all other performance measures using the well-known 
formulae (see Section 7.1) 

Compute from the solution of the closed model, the performance 
measures for the open classes of the network. For op = 1, . . . , OP and i = 
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1 ,“‘7 N, compute: 

+ 1) . EC@ + 1) . ri(lc, K), Type-Q,& 

k,op * %,op, Type-3. 

%,0,(K) 

Ti,,,(K) = Xi,op ’ Type-1’2’47 

In the following example, we show how to apply the method to a simple 
queueing network: 

Example 8.8 Consider the network given in Fig. 8.9. The mean service 
times are given as follows: 

1 1 1 1 
- = msec, - = usec, - = Qsec, - = osec, 
Pll Pl2 Pl3 Pl4 

1 1 1 1 
- = @set, - = usec, - = usec, - = @Jsec. 
P21 P22 CL23 P24 

The arrival rates for the open class jobs are Xi = 0.5 jobs/set and X2 = 
0.25 jobs/ sec. In each of the closed classes there is K3 = K4 = 1 job. The 
routing probabilities are: 

PO,11 = 1, Pll,ll = 0, P11,21 = 0.5, P21,ll = 1, 

PO,12 = 1, P12,12 = 0, m2,22 = 0.6, p22,12 = 1, 

PO,13 = 0, P13,13 = 0.5, pl3,23 = 0.5, p23,13 = 1, 

PO,14 = 0, p14,14 = 0.6, pl4,24 = 0.4, p24,14 = 1. 

For both nodes of the mixed network compute: 

op= 1 
~1,~~ = X11 . sll + X12 - ~12 = 0.9 jobs, 

L2 = 5 x2,op - ~2,~~ = Xzl + ~21 + X22 - ~22 = Q jobs. 
op=l 

CL 

-1 Set: K = C Kc1 = K3 + K4 = 2. 
cl=1 
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Fork= l,... , KcL + 1 compute Ei(k) and ECi(k): 

i=l: &l(l) = &l(l) + &2(l) - &3(l) = 100, 

'%1(z) = h(2)+ &z(2) - &s(2) = 1000, 

k(3) = h(3) + ~%2(3) - E13(3) = 10000, 

ECl(k) = 1 _ L$(ml) 
1 

1 * G(m) 
=-=lo, 

1 - Ly 

i=2: computed in a similar manner as for i = 1. 

~~(O,(O,O)) = 7r2(0,(0,0)) = 1.0. 

Analysis of the closed model, which we get after removing all open 
job classes in the network. 

Iteration for k = (1,O): 

[STEP] Compute the mean response times: 

‘T13(1,0) = s13 . & .ECl(T) * @, (O,O)) = 3, 

r=l 

T&1,0) = . . . = 5. 

-1 Compute the throughputs: 

X13(1,0) = 2 k3 *e13 = 0.182, 
- 

C ej3 - Tj3(W 
j=l 

X23(1,0) = . . . = 0.091. 

1-1 Compute the mean queue lengths: 

rir,,(l,O) = X13(1,0)'T13(l,0) = 0.545, 

K23(l,O) = . . . = 0.455. 

-1 Adapt the marginal probabilities: 

k = “c” kcl = 1. 
cl=1 
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i=l: sum = 0.0, 

for Ic = 1: 

m(L(LO)> = 5 sl,cl - EG(l) - ~l,cz(LO) .m(O,k - lcl)) 
cl=1 

= . . . = 0.546, 
sum = sum+ rr(l, (1,O)) = 0.546, 

7rl(O, (1,O)) = 1.0 - sum = 0.454, 

i=2: sum = 0.0, 

for k = 1: 
7rz(l, (1,O)) = *. . = 0.454, 

~(0, (1,0)) = . . . = 0.546. 

Iteration for k = (0,l): 

-1 Mean response times: 

T14(0,1) = . . . = 5, T24(0,1) = . . . = 8. 

-2.2) Throughputs: 

X14(0,1) = 0.122, X24(0,1) = 0.049. 

-1 Mean queue lengths: 
- 
K14(0,1) = 0.610, X24(0,1) = 0.392. 

11 Adapt the marginal probabilities: 

~~(1, (0,l)) = 0.610, 7r1(0, (0,l)) = 0.390, 

7ry,( 1, (0,l)) = 0.390, x2(0, (0,l)) = 0.610. 

Iteration for k = (1,l): 

L-2.1 Mean response times: 

T13(1, 1) = 4.829, T&l, 1) = 6.951, 

T14(1, 1) = 7.727, Tz4(1, 1) = 11.636. 
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-1 Throughputs: 

&(I, 1) = 0.120, X&,1) = 0.060, 

X&, 1) = 0.081, X2& 1) = 0.032. 

-1 Mean queue lengths: 

&(l, 1) = 0.582, &(l, 1) = 0.418, 

&(l, 1) = 0.624, K2*(1, 1) = 0.376. 

m Adapt the marginal probabilities: 

k = “c” ICC1 = 2. 
cl=1 

i=l: sum = 0.0, 

~~(1, (1,l)) = 0.324, 

sum = sum + 0.324 = 0.324. 

7rr(2, (1,l)) = 0.441, 

sum = sum + 0.441 = 0.765, 

rl(O, (1,1)) = 1 - sum = 0.235, 

i=2: sum = 0.0, 

~~(1, (1,1)) = 0.332, 

7r2(2, (1,1)) = 0.234, 

7r2(0, (1,1)) = 0.434. 

Now we can compute the performance measures for the open job 
classes. First the mean number of jobs by class and node: 

Kll(1, 1) = x11 * 311 .~(k+l).~c~(lc+l).rjl(ii,(l,l)) 
lc=o 

= 8.822, 
- 
K&l) = 5.383, 7C12(l,l) = 11.028, &(l, 1) = 10.766, 

Then the mean response time by class and node: 

- 

T&l) = “‘;!;) l) = 8.822, 

Tr2(1, 1) = 17.648, T,, (1,1) = 16.766, T&l, 1) = 28.710. 
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8.3 THE RECAL METHOD 

Another technique for the exact solution of closed product-form queueing 
networks is the RECAL ( recursion by chain algorithm) algorithm. RECAL 
is very well suited for networks with a large number of job classes but a small 
number of nodes. For the explanation of this method we assume that we have 
a product-form network N consisting only of single server or infinite server 
nodes. We consider only the case of a multiple class network (R > 1) and 
introduce an extended normalizing constant GR(v) for the network with the 
vector v = (wi,...,~~). Here, GR (0) is the standard normalizing constant 
G(K), called G for short in the following. In [CoGe86] a recursive expression 
for computing G = GR (0) ’ g is iven, which relates the normalizing constant of 
a network with r classes and the normalizing constants of a set of networks 
with each of the (r - 1) classes. The RECAL algorithm uses a simplified 
version of this general relation. This simplification can be given when each 
job class contains exactly one job, because if K, = 1 for r = 1,. . . , R, then the 
normalizing constant GR(O) is recursively given by the expression [CoGe86]: 

Gr(vr) = c(1 fvd) EG,-l (vr + li) for vT E F,, (8.67) 
i=l 

with: 

vr = (‘ulr,...,~Nr), 

Vir >Ofori= l,... , OLr<R-1, 

r = R, 

6i = 1, Type-LW, 
0, Type-3, 

li = (0,. s s ,O,l,O,* v ~70) is an N-dimensional vector with 
1 at the ith position. 

With the help of the normalizing constant GR (0)) the throughput and 
the mean number of class-R jobs can be computed because for KR = 1 the 
correctness of the following equations are proven in [CoGe86]: 

N 

eiR* c 

GR-I($) 

XiR = 
j=l GR(O)* (N + K - 1) ’ 

if there are no Type-3 nodes 
in the network, 

e R GR-l(lz) 
i * 

GR(“) 
for a Type-3 node with index 

5, 
(8.68) 
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and: 

K, = ih--l(b) eiR 
ar -*- 

%(o) /-hR’ 
(8.69) 

The basic idea of the RECAL algorithm is to generate a fictitious network 
containing one job per job class in order to be able to compute the performance 
measures using Eqs. (8.67), (8.68), and (8.69). Therefore, it must be possible 
to partition each class T into K, identical subclasses with exactly one job 
per job class. This partitioning changes the state space and the normalizing 
constant of the network, but the performance measures remain the same. 

Let N* denote the fictitious network that we get after partitioning the job 
classes into subclasses. The overall number of jobs in this fictitious network: 

K*=eK,=K, 
r=l 

and the number of job classes is, by definition of N*, exactly R* = K*. Each 
class r = l,... , R* contains exactly K: = 1 job. Let the jobs be numbered 
1,2,. . . , K* and let the function c(k) denote the class index of the lath node 
in the original network. 

Using Eq. (8.67), the normalizing constant Gk, (0) of the fictitious network 
JV is recursively given by: 

G;(vk) = $(l + vikSi)* 
i=l 

~, (k) GLlbk + li>T 
ZC 

(8.70) 

for Ic= l,... , E(* and vk E .?$ with: 

N 

vi,& 2 0 for i = 1, . . . , N; c Vik = K* - k , 
i=l 

and the initial conditions: 

G;T(vo) = 1 for all va E .7--i. 

With Eqs. (8.68) and (8.69) the performance measures A& and ??& 
relating to a class-c(R*) job in the original network N can be computed: 

N 

eic(R*)’ c 
Gk*-l(1.d 

j=l G;, (0). (N + K* - 1) ’ f;;~;;;lte,,n~e~w~; 
(8.71) 

G&,(L) 
e4R*Y G;,(o) ’ for a Type-3 node 

\ with index 2, 
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E&* = G*K*&i) eicp) .- 
Gil* (0) Pic(R*) * 

(8.72) 

From the fact that all the jobs of a given class in the network N are 
identical, the throughputs and the mean number of jobs in class c(R*) of the 
network N are given by: 

&c(R’) = Kc(R*)’ &* 7 (8.73) 
- 
KiccR*) = Kc(R*&Re. (8.74) 

Performance measures for classes other than c(R*) can be obtained by rela- 
beling the jobs in the fictitious network p with the goal that the assignment 
c(R*) belongs to another class in the original network N. At the beginning, 
the numbering of jobs in W is chosen with the following assignment to the 
jobs in N: 

I 
1, 
i, 

k= l,...,Kr - 1, 

2 5 i 5 R and 

i-l 

k = 1 + c(K7- - l), . . . , -&G- - 9, 
r=l r=l 

R R 

I R-k+l+C(Kr-l), k=l+)(Kr-I),**-yK** 
r=l r=l 

(8.75) 

After computing G&, (0) using Eq. (8.70), performance measures for class 
s = 1 in the original network N can be determined using Eqs. (8.71)-(8.74), 
due to Eq. (8.75). For the computation of performance measures of class- 
(s + 1) jobs in the network N, the jobs in N* have to be relabeled afterwards 
in the following way: 

R 

.,S-1+x 

r=l 

e(Kr - I>, 

r=l 

l+e(Kr- 

r=l 

(Kr - I>, 

l),...,K*. 

(8.76) 

Now, the performance measures for class-(s + 1) jobs can be computed 
after computing G&, (0) anew. The RECAL algorithm can be described in 
the following four steps: 
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Initialization: 

Gc(ve) = 1 for all vo E .7$. 

Number the jobs in the fictitious network n/* according to the 
assignment c(l)(k) given in Eq. (8.75). 

Compute and store the values of Gz(v,) for all w, E .7$ with 
- R by using Eq. (8.70). 

Iteration over all classes s = 1,. . . , R in the network M 

-1 Compute Gk, (0) with Eq. (8.70) by using the stored values for 
the Gi (v~). 

-1 Compute the performance measures of class s using Eqs. (8.71)- 
(8.74). If s = R then the algorithm stops. 

1-1 For computing the performance measures of class-s + 1 jobs, 
relabel the jobs in P corresponding to the assignment (8.76). 

1-1 Increase x by 1 and compute and store the values of the Gc(v,) 
anew for all v, E -Tjc* by using Eq. (8.70). 

By storing the values Gz(v5) computed in Step 3 and Step 4.4, it is not 
necessary to compute Eq. (8.70) in Step 4.1 anew for all k = 1,. . . , K* when 
evaluating the performance measures. Instead, Eq. (8.70) needs to be calcu- 
lated only for k = x, . . . , K* with x = s + C,“=, (K, - 1). The algorithm is 
illustrated by the following example: 

Example 8.9 Consider a closed queueing network with N = 2 nodes and 
R = 3 job classes and with K = 5 jobs distributed as follows: K1 = 2, KS = 
1, KS = 2. We have K = R* = K* = 5. Class switching is not allowed. 
Node 1 is a Type-2 node and node 2 is a Type-l node. The service rates are 
given as follows: 

Pll = 20% p12 = 50, p13 = 2, p21 = p22 = p23 1 4, 

and the visit ratios are: 

ell = e12 = e13 = 1, e21 = 0.72, e22 = 0.63, e23 = 0.4. 

The computation of the performance measures is carried using the RECAL 
algorithm as follows: 

Initialization: 

Gg(ve) = 1 for all ve E Fi, 

with F; = 
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Labeling the jobs in the network w with Eq. (8.75) yields: 

k = 1, 

k = 2, 

k = 3, 

k = 4, 

k = 5. 

Compute Gz(w,) for all v, E ,FG and x = K* - R = 2. We get: 

zli2>0, &=K*-2=3 = uo, % (19% (2, I>, (3,0>> * 
i=l 

With Eq. (8.70) we have: 

G;(O, 3) = $ G;(l, 3) + 4.2. G;(O, 4) = 0.727, 

G;(1,2) = 2.2. G;(2,2) + 3.2. G;(l, 3) = 0.774, 

G;(2,1) = 3.2. G;(3,1) + 2.:. G;(2,2) = 0.681, 

G;(3,0) = 4$.G;(4,0) + E.G;(3,1) = 0.448, 

GT(O, 4) = z. G;r(l, 4) + 5.2. G;(O, 5) = 0.905, 

G;(l, 3) = 2.2. G;(2,3) + 4.2. G;(l, 4) = 0.73, 

G;(2,2) = 3.2. G;;(3,2) + 3.2. G;;(2,3) = 0.555, 

G;(3,1) = 4.E. G;(4,1) + 2.2. G;(3,2) = 0.38, 

G;(4,0) = 5.2. G;(5,0) + 2. G;(5,0) = 0.205. 

Iteration over all job classes s of the given network JV, starting 
with s = 1: 
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I] Computation of G:(O) using Eq. (8.70). For this computation 
we additionally need: 

G;(O, 2) = E-G;(l,2) +3 ~2. G;(O, 3) = 0.605, 

G;(l, 1) = 2$G;(2,1) + 2.2. G;(l, 2) = 0.836, 
CL23 

G;(2,0) = 3-E. G;(3,0) + e23. G;(2,1) = 0.740, 
/-k23 

From this i 

G;(O, 1) = E. G;(l, 1) + 2-E. G;(O, 2) = 0.207, 

G:(l,O) = 2.$.Gj(2,0) + “22-G;& 1) = 0,161. 
Pm 

t follows: 

G;(O) = E, G;(l, 0) + 2. G;(O, 1) = 0.038. 

1-1 Computation of the class 1 performance measures. Because of 
Eqs. (8.71) and (8.72) we have: 

2 

XT5 = ells C GXlj) 
j=l G;(o)-(2 + 5 - 1) = 1.6117 

2 

AZ5 = e2,+C 
Wlj) 

j=l G;(o). (2 + 5 - 1) = m7 

-* I-Cl5 1 = -. G;(O) G;(l,O)- 2 = 0.021, 

-* K25 1 = -- G;(O) 1). 2 = 
G;(O) 

0.979. 

These results are needed to compute the throughputs and mean number of 
jobs in class 1 using Eqs. (8.73) and (8.74). 

Xl1 = K14;5 = 3.222, xl1 = &.l;i;, = 0.042, (8.77) 

X21 = K1. A;, = 2.320, 1721 = Q??;, = 1.958. (8.78) 

-1 Relabel the jobs in JV* in accordance to Eq. (8.76): 

d2)(k) = 

I 

17 

37 

17 

3, 

27 

k = 1) 

k = 2) 

k = 3) 

k =4, 

k = 5. 
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[ml Increase x by 1, i.e., x = 3 and compute and store Gz (vz) for 
all v, E Fz = {(0,2), (1, l), (2,O)): 

G;(0,2) = $G;(l,2) +3=G;(O,3) = 0.396, 
k421 

G;(l, 1) = 2.2. G;(2,1) + 2.2. G;(l, 2) = 0.285, 
Pll 

G$(2,0) = 3$.G;(3,0)+ $ G;(2,1) = 0.129. 

Iteration for s = 2: 

I-$,11 Computation of G;(O) with Eq. (8.70). For this computation we 
additionally need: 

G;(O, 1) = E.Gj(l, 1) + 2 .z.G;(0,2) = 0.222, 

G;(l,o) = 2$.G;(2,0)+ 2. G;(l, 1) = 0.158. 

Hence: 

G;(O) = z.G;(l,O) + E.G;(O, 1) = 0.038. 

im Computation of the performance measures for class 2 using 
Eq. (8.71) and Eq. (8.72): 

2 Gm A& = e12- C ~ 
jzl Gw 6 

Furthermore: 

A;, = 1.046, K;, = 0.083, 

= 1.661, 

E& = 0.917. 

Because of K2 = 1 with Eqs. (8.73), (8.74) we get: 

x12 = A;,, x22 = A;,, E,, = IT&, 7722 = I?;,. 

mq Relabel the jobs: 

1, fk = 1, 

3, k = 2, 
cqk) = I 1, k = 3, 

2, k = 4, 
3, k = 5. 
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11 Increase z by 1, i.e., x = 4, and compute and store Gz(v,) for 
all v, E -T4* = ((0, l), (1,O)): 

G:(O, 1) = z+ G;(l, 1) + 2.2. G;(O, 2) = 0.131, 

‘%(I, 0) = 2$.G;(2,0) + z.G;(l, 1) = 0.050. 

Iteration for s = 3: 

-1 Computation of GE(O): 

G;(O) = E.G;(l,O) + $G;(O, 1) = 0.038. 

1-1 Computation of the class-3 performance measures: 

XT:, = 0.790, A;, = 0.316, rr5 = 0.658, ?7& = 0.343. 

Hence: 

Xl3 = 1.580, XZ3 = 0.632, El3 = 1.315, K15 = 0.685. 

Now the iteration ends and all other performance measures can be obtained 
using formulae from Section 7.1. 

If the number of job classes in the network is very large, then the RECAL 
algorithm is much more efficient than the convolution algorithm or the MVA. 
But if there are only a few job classes and many nodes in the network, then 
RECAL is not very well suited (see Figs. 8.10 and 8.11). If we assume that 
K, = K for all T and N is fixed, then the time complexity and memory 
requirement grow polynomially with the number of job classes in the network. 
In this case, the memory requirement is: 

and the time requirement in number of operations is: 

0 ( (y-$RN+’ . > 
The algorithm can be extended further to analyze Type-l nodes with mul- 

tiple servers and to analyze nodes with load-dependent service rates. Based on 
the RECAL algorithm, [CSL89] developed the MVAC algorithm (mean value 
analysis by chain), which directly computes the mean values of performance 
measures. The RECAL method was extended to the tree RECAL technique 
by [McKe88]. 
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fig. 8.10 Regions in the (N x R) space in which the storage requirement of RECAL 
is less than that of convolution, for K = 1 and 12 (on or above the curves the storage 
requirement of RECAL is less than that of convolution). 

8.4 FLOW EQUIVALENT SERVER METHOD 

The last method for analyzing product-form queueing networks that we con- 
sider is called flow equivalent server (FES) method. The method is based 
on Norton’s theorem from electric circuit theory [CHW75b]. We encounter 
this method again in Chapter 9 when we deal with approximate solution of 
non-product-form networks. Here we consider this technique in the context 
of exact analysis of product-form networks. If we select one or more nodes in 
the given network and combine all the other nodes into an FES, then Norton’s 
theorem 
network. 

says that the reduced system has the same behavior as the original 

8.4.1 FES Method for a Single Node 

To describe the FES method, we consider the central-server model given in 
Fig. 8.12 where we suppose that a product-form solution exists. For this 
network we can construct an equivalent network by choosing one node (e.g., 
node 1) and combining all other nodes to one FES node c. As a result we get 
a reduced net consisting of two nodes only. This network (shown in Fig. 8.13) 
is much easier to analyze then the original one, and all computed performance 
measures are the same as in the original network. 

To determine the service rates ~Jlc), k = 1,. . . , K of the FES node, the 
chosen node 1 in the original network is short circuited, i.e., the mean service 
time of this node is set to zero, as shown in Fig. 8.14. The throughput in the 
short circuit path with k = 1,. . . , K jobs in the network is then equated to 
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Fig. 8.11 Regions in the (N x R) space in which the time requirement of RECAL 
is less than that of convolution, for K. = 1 and 12 (on or above the curves the time 
requirement of RECAL is less than that of convolution). 

Fig. 8.12 The central-server network. 

the load-dependent service rate ,u~ (Ic) , Ic = 1, . . . , K of the FES node in the 
reduced queueing network. 

The FES algorithm can now be summarized in the following three steps: 

In the given network, choose a node i and short-circuit it by setting 
the mean service time in that node to zero. Compute the throughputs XT(k) 
along the short circuit, as a function of the number of jobs k = 1, . . . , K in 
the network. For this computation, any of the earlier solution algorithms for 
product-form queueing networks can be used. 

From the given network, construct an equivalent reduced network 
only of the chosen node i and the FES node c. The visit ratios in 

both nodes are ei. The load-dependent service rate of the FES node is the 
throughput along the short-circuit path when there are Ic jobs in the network, 
that is: p,(k) = X?(k) for F; = 1,. . . , K. 

Compute the performance measures in the reduced network with 
any suitable algorithm for product-form networks (e.g., convolution or MVA). 
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chosen node 

FES node 

fig. 8.13 Reduced queueing network. 

Fig. 8.14 The short-circuited model. 

The technique just described is very well suited for examining the influence 
of changes in the parameters of a single node while the rest of the system 
parameters are kept fixed. To clarify the usage of the FES method, we give 
the following simple example: 

Fig. 8.15 Yet another closed queueing network. 

Example 8.10 Consider the closed single class product-form network shown 
in Fig. 8.15. It consists of N = 4 nodes and K = 2 jobs. The service times 
are exponentially distributed with parameters: 

fh=l, p2 = 2, pug= 3, puqz4. 

The routing probabilities are given as: 

P12 = 0.5, P2l = O-5, P31 = 0.5, $I42 = 0.4, 

P13 = 0.5, p24 = 0.5, p34 = 0.5, p43 = 0.4, p44 = 0.2. 
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With Eq. (7.5) we compute the visit ratios: 

el = 1, e2 = 1, e3 = 1, e4 = 1.25. 

Now, the analysis of the network is carried out in the following three steps: 

Choose a node, e.g., node 4 of the network shown in Fig. 8.16, and 
short circuit it. The throughput of the short circuit is computed for Ic = 1,2 

Fig. 8.16 Network after node 4 is short circuit. 

by using the MVA, for example. Then we get the following results: 

X(1) = 0.545, X(2) = 0.776. 

and therefore: 

XT(l) = 0.682, x7(2) = 0.971. 

Construct the reduced network that consists of the selected node 4 
and the FES node c as shown in Fig. 8.17. For the service rates of the FES 

Fig. 8.17 Reduced network. 

node we have: 

,uc(l) = XT(l) = 0.682, ~~(2) = X7(2) = 0.971. 

The visit ratios are: 

e4 = e, = 1.25. 
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Analyze the reduced network shown in Fig. 8.17 using, for exam- 
ple, the MVA for load-dependent nodes. The load-dependent service rates of 
node 4 can be computed by Eq. (7.49) as pq (1) = ,Q (2) = 4. 

MVA-Iteration for Ic = 1: 

T&) = -7rTTq(O 1 ( 0) = 0.25, T,(l) 1 = 

P40) 
-n,(O 1 0) = 1.467, 
l-4) 

X(1) = 0.466, ’ G( 1) = - = 2.146, 
w 

~~(1 1 1) = 0.146, n,(lll) = 0.854, 7r4(0 1 1) = 0.854, 7r,(OIl) = 0.146. 

MVA-Iteration for Ic = 2: 

T&) = - 1 x4(01 1>+ 
2 

P4W 
-7r4(l ( 1) = 0.286, 
P4 (2) 

;?;c(a> = - 1 -ire(W) + 
2 

PC (1) 
-7r,(l(l) = 1.974, 
PC (2) 

X(2) = 0.708, G(l) G(2) = x(a> = 3.032, 

~~(112) = 0.189, n4(212) = 0.032, ~(012) = 0.779, 

7@12) = 0.189, 7rc(2[2) = 0.779, 51r,(O12) = 0.032. 

Now all other performance measures of the network can be computed: 

l Mean number of jobs: 
For node 4 we get from Eq. (7.26): 

IT;4 = 2 Jc’7r4(Ic 1 2) = 0.253. 
k=l 

For the other nodes we have by Eq. (8.16): 

772 = x3 = 0.273. 0.436, 

l Throughputs, Eq. (8.14): 

= 0.708, X2 = 0.708, X3 = 0.708, X4 = 0.885. 

a Mean response times, Eq. (7.43): 

T 1= 5 = 
Xl 

1466 A? T 2 = 0.617, T, = 0.385. 
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8.4.2 FES Method for Multiple Nodes 

The usage of the FES method, when only one node is short-circuited, has 
nearly no advantage in reducing the computation time. Therefore [ABP85] 
suggest an extension of the concept of [CHW75b]. For this extension, the 
closed product-form network is partitioned in a number of subnetworks. Each 
of these subnetworks is analyzed independently from the others, i.e., the whole 
network is analyzed by short-circuiting the nodes that do not belong to the 
subnetwork that is to be examined. The computed throughputs of the short- 
circuited network form the load-dependent service rates of FES node j, which 
represents the jth subnetwork in the reduced network. When analyzing this 
reduced network, we get the normalizing constant of the whole network. The 
normalizing constant can then be used to compute the performance measures 
of interest. The FES method for this case can be described in the following 
five steps. 

-1 Partition the original network into &! disjoint subnetworks SN-j 
(1 5 j 5 &!). It is even allowed to combine nodes in the subnetwork that do 
not have a direct connection to this subnetwork. 

-4 Analyze each of these subnetworks j = 1, . . . , M by short-circuiting 
all nodes that do not belong to the considered subnetwork. The visit ratios of 
the nodes in the subnetworks are taken from the original network. For analyz- 
ing the subnetworks, any product-form algorithm can be used. Determine the 
throughputs &iv-j (k) and the normalizing constants Gj (Ic), for Ic = 1, . . . , K. 

-C b om ine the nodes of each subnetwork into one FES node and 
construct an equivalent reduced network out of the original network by putting 
the FES nodes (with visit ratio 1) together in a tandem connection. The load- 
dependent service rates of the FES node j are identical with the throughputs 
in the corresponding jth subnetwork: 

I.Lcj(k) = b~-j(k), for j = 1,. . . ,&! and Ic = I,. . . ,E(. 

r@Jm] The normalizing constant of the reduced network can be computed 
by convoluting the 111 normalizing vectors 

of the subnetworks [ABP85]: 

G=G1@G2cc..@GM, (8.79) 

where the convolution operator @ is defined as in Eq. (8.1). To determine the 
normalizing constant, the MVA for networks with load-dependent nodes (see 
Section 8.2.4) can be used instead. 
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[m] Compute the performance measures of the original network and 
the performance measures of the subnetworks with the help of the normalizing 
constants and the formulae given in Section 8.1. 

The FES method is very well suited if the system behavior for different 
input parameters needs to be examined, because in this case only one new 
normalizing constant for the corresponding subnetwork needs to be recom- 
puted. The normalizing constants of the other subnetworks remain the same. 

Example 8.11 The queueing network from Example 8.10 is now analyzed 
again. 

IW-JP tt ar i ion the whole network into M = 2 subnetworks where Sub- 
network 1 contains nodes 1 and 2 and Subnetwork 2, nodes 3 and 4 of the 
original network. 

Fig. 8.18 Subnetwork 1 with subnetwork 2 short-circuited. 

Imj Analyze the two subnetworks: To analyze Subnetwork 1, nodes 3 
and 4 are short-circuited (see Fig. 8.18). We use the MVA to compute for 
Ic = 1,2 the load-dependent throughputs and normalizing constants of this 
subnetwork: 

XsN-1(1) = 0.667, XSN-r(2) = 0.857, 

G1(l) = 1.5, Gr(2) = L.75. 

To analyze Subnetwork 2, nodes 1 and 2 are short-circuited (see Fig. 8.19). 

Analogously, we get the following results for Subnetwork 2: 

XsN-&) = 1.548, XSNM2(2) = 2.064, 

G2(1) = 0.646, G2(2) = 0.313. 

MI Construct the reduced network shown in Fig. 8.20. 
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fig. 8.19 Short-circuit of Subnetwork 1. 

Fig. 8.20 Reduced network. 

The first FES node describes the nodes of Subnetwork 1 with service rates 
/car = XSN-r(Ic) for Ic = 1,2, and the second FES node describes the nodes 
of Subnetwork 2 with service rates p,I;z(k) = XSN-z(JG). 

The normalization constants of the reduced network are computed 
using Eq. (8.79): 

By using Eq. (8.1) we get: 

G(l) = G(O)G(l) + Gr(l).Gz(0) = 2.146, 

G(2) = WWa(2) + G(l)G(l) + Gr(2).G2(0) = 3.032. 

Compute the performance measures: 

Mean number of jobs at each node is computed using, Eq. (8.16): 

= 1.038, E2 = 0.436, r3 = 0.273, 

hr4 = 0.253. 

As we can see, the same results are obtained as in Example 8.10. 

The FES method can also be applied to the case of multiple class queueing 
networks. The method is very flexible in the need for resources and lies 
between the two extremes: MVA and convolution. This flexibility is based on 
how the subnetworks are chosen. 
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Table 8.5 Storage requirement in number of storage elements and time requirement 
in number of operations [CoGe86] 

Method Storage Requirement Time Requirement 

Convolution O( fi WY + 1)) O(2. R(N - 1). fi (K, + 1)) 
r=l r=l 

MVA = O(2. R(N - 1). &G + 1)) 

RECAL* 
nN+l + 1 

o$-=-ijT- O( (N + l)! 
-=-L(R(N + 1)) 

FES > O(3 * &K, + 1)) i=2 O(2 * R(N - 1). fi (K, + 1)) 
?-=l 

* Kr=KforT=l,...,R 

8.5 SUMMARY 

As shown in Table 8.5, the time requirement for convolution, MVA and FES 
is approximately the same and differs for RECAL in dependency of the num- 
ber of nodes and number of classes (see also Fig. 8.11). Also, the storage 
requirement depends greatly on the number of nodes and classes for RECAL 
compared to the other methods (see Fig. 8.10). For larger numbers of nodes, 
MVA is much worse than FES and convolution. For FES, the storage require- 
ment depends also on the number of subnetworks. The larger the number of 
subnetworks, the smaller is the storage requirement. In Table 8.6 the main 
advantages and disadvantages of the convolution algorithm, the MVA, the 
RECAL met hod, and the FES method are summarized. 

Problem 8.1 For the closed queueing network of Problems 7.3 and 7.4, 
compute the performance measures using the convolution method. 

Problem 8.2 For a closed queueing network with N = 2 nodes and R = 2 
job classes, compute the performance measures for each class and node using 
the convolution method. Node 1 is of Type-3 and node 2 is of Type-2. Each 
class contains two jobs Ki = K2 = 2 and class switching is not allowed. The 
service rates are given as follows: 

PII = 0.4sec-l, p21 = 0.3seCl, ~12 = 0.2sec-‘, p22 = 0.4sec-1, 

The routing probabilities are: 

Pll,ll = p11,21 = 0.5, P21,ll = p22,12 = p12,z = 1. 

Problem 8.3 Compute performance measures of the network in Problems 
7.3 and 7.4 again, with the MVA. 



SUMMARY 377 

Tab/e 8.6 Comparison of the four solution methods for product-form networks 

Method 

MVA 

Advantages 

Mean values can be computed 
directly without computing the 
normalizing constant. But if 
required, the normalization con- 
stant and hence state probabili- 
ties can also be computed. 

Disadvantages 

High storage requirement (for 
multiple classes and multiple 
servers) 
Overflow and underflow prob- 
lems when computing the 
marginal probabilities for 
-/M/m nodes 

Convolution Less storage requirement than Normalizing constant (NC) has 
MVA to be computed 

Overflow or underflow problems 
when computing the NC 

RECAL Less storage and time require- More storage and time require- 
ment for a large number of job ment for small number of job 
classes and nodes than MVA and classes and nodes than MVA and 
convolution convolution 

FES The time and storage require- Multiple application of convolu- 
ment is reduced considerably tion or MVA 
when examining the influence of Network needs to be trans- 
changing the parameters of an formed 
individual or a few nodes while 
the rest of the system parame- 
ters remain unchanged 
Basis for solution techniques for 
non-product-form networks 

Problem 8.4 For a mixed queueing network with N = 2 Type-2 nodes 
and R = 4 classes (see Fig. 8.21), compute all performance measures per node 
and class. The system parameters are given as follows: 

X1 = 0.2 see-‘, X2 = 0.1 set-‘, K2 = KS = 2, 

pll = 1.5sec-l, ~12 = lsec-l, ~13 = 3sec-l, ~14 = 2sec-l, 

~21 = 2 set-‘, p22 = 0.5 set-l, /L23 = 2 set-l, /L24 = 1 set-l, 

P21,ll = P22,12 = P21,o = P22,o = 0.5. 

PO,11 = PO,12 = Pll,Zl = Pl2,22 = P13,23 = P14,24 = P23,13 = P24,14 = 1. 

Problem 8.5 Consider a closed queueing network, consisting of a Type-3 
node and a Type-l node (m2 = 2). This model represents a simple two- 
processor system with terminals. The system parameters are given as: 

K = 3, ~12 =pal = 1, 
1 

- = 2sec, 
1 

- = lsec. 
Pl. p2 

(a) Apply the mean value analysis to determine the performance measures 
of each node, especially throughput and mean response time of the ter- 
minals. 
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Fig. 8.21 Mixed queueing network. 

Determine for both nodes the load-dependent service rates and analyze 
the network again, using the load-dependent MVA. 

Problem 8.6 Compute the performance measures for the network given 
in Problem 8.2 using the RECAL algorithm. 

Problem 8.7 Consider a simple central-server model with N = 3 Type-l 
nodes (mi = 1) and K = 3 jobs. The service rates are given as follows: 

pl = lsec-l, p2 = 0.65 set-‘, p3 = 0.75 set-‘, 

and the routing probabilities are: 

~12 = 0.6, ~21 = ~31 = 1, p13 = 0.4. 

Combine nodes 2 and 3 into a FES node. Use the FES method and compare 
the results with the results obtained without the use of FES method. 

Problem 8.8 Consider a closed queueing network with N = 4 Type-l 
nodes and K = 3 jobs. The service rates are: 

p1 = 4sec-l ? p2 = 3sec-l, p3 = 2sec-l 7 CL4 = lsec-l, 

and the routing probabilities are: 

p23 =p24 = 0.5, P12 = P31 = p41 = 1. 

For computing the performance measures, use the extended FES method by 
combining nodes 1 and 2 in subsystem 1, and nodes 3 and 4 into subsystem 2. 



9 
Approximation 
Algorithms for 

Product-Form Networks 
In Chapter 8, several efficient algorithms for the exact solution of queueing 
networks are introduced. However, the memory requirements and compu- 
tation time of these algorithms grows exponentially with the number of job 
classes in the system. For computationally difficult problems of networks with 
a large number of job classes, we resort to approximation methods. In Sec- 
tions 9.1, 9.2, and 9.3 we introduce methods for obtaining such approximate 
results. 

The first group of methods is based on the MVA. The approximate methods 
that we present need much less memory and computation time than the exact 
MVA and yet give very accurate results. 

The second approach is based on the idea that the mean number of jobs 
at a network node can be computed approximately if the utilization pi of this 
node is known. The sum of all the equations for the single nodes leads to 
the so-called system equation. By solving this equation we get approximate 
performance measures for the whole queueing network. 

In some cases it is enough to have upper and lower bounds to make some 
statements about the network. Therefore, the third approach (Section 9.4) 
deals with methods on how to get upper and lower bounds on performance 
measures of a queueing network. In Section 9.5 we introduce a method that 
allows intervals as input parameters. 

For other techniques that have been developed to analyze very large net- 
works see [ChYu83, SLM86, HsLa89]. 

379 
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9.1 APPROXIMATIONS BASED ON THE MVA 

The fundamental equation of the MVA (8.31) describes the relation between 
the mean response time of a node when there are k jobs at the node and 
the mean number of jobs in that node with one job less in the network. 
Therefore, to solve a queueing network it is necessary to iterate over all jobs 
in the network, starting from 0 to the maximum number K. For this reason, 
an implementation of the MVA requires a lot of computation time and main 
memory. For multiclass queueing networks with a large number of jobs in the 
system, we will very quickly reach the point at which the system runs out of 
memory, especially if we have multiserver nodes. 

An alternative approach is to approximate the fundamental equation of 
the MVA in a way that the mean response time depends only on K and 
not on K - 1. Then it is not necessary to iterate over the whole population 
of jobs in the system but we have to improve only the performance measures 
iteratively, starting with an initial vector. This approach leads to a substantial 
reduction in computation time and memory requirement. In the following, two 
techniques based on this idea, are introduced. 

9.1.1 Bard-Schweitzer Approximation 

Bard and Schweitzer [Bard79, Schw79] suggested an approximation of the 
MVA for single server queueing networks that is based on the following idea: 
Starting with an initial value Ei,(K) for the mean number of class-r jobs 
at node i for a given population vector K, make an estimate of the mean 
number of jobs for a population vector (K - 1,). This estimating needs to 
be done for all classes s. These Ki,(K - ls) estimates are then used in the 
MVA to compute the mean response times, and only one iteration step is now 
needed to evaluate the performance measures for a given population vector 
K. In particular, new values for the K;,(K) are computed. The values we 
get are used to estimate the K+(K - 1,) again. This iteration stops if the 
values of the Ki,.(K) in two iteration steps differ by less than the chosen error 
criterion E. 

Obviously, the problem with this MVA approximation is how to estimate 
the mean value xi, (K - I,), given xi, (K) . An approximate formula for the 
case of a very large network population was suggested by [Schw79] since in 
this case a reasonable explanation can be given as to why the mean number 
of jobs of class T at node i remains nearly the same if the number of jobs in 
the network is reduced by one. For the mean number of class-r jobs at node 
i given a population vector (K - ls), they suggest the approximation: 

x,r(K - 1s) = 
cK - 'd,( (K) 

K zr y 
r 

(94 
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where: 

' 
:fE' 

, 
P-2) 

gives the number of class-r jobs when the network population K is reduced by 
one class-s job. If we assume that the jobs are initially equally distributed over 
the whole network, then the Bard-Schweitzer approximation can be described 
in the following steps: 

1-1 Initialization. For i = 1,. . . , N and s = 1,. . . , R: 

r?,,(K) = $. 

[wa For all i = 1,. . . , N and all r, s = 1,. . . , R, compute the estimated 
values for the mean number of jobs for the population vector (K - 1,): 

Kis(K - 1,) = (K G1”” *Eis(K). 
S 

-\A 1 na yze the queueing network for a population vector K by using 
one iteration step of the MVA. 

I STEP 3 1 For i = 1, . . . , N and T = 1, . . . , R, compute the mean response 
times: - 

1 +&i,(K - 1,) 1 , Type-l&t (mi = I), 
s=l 

1 I- j&r ’ 
Type-3. 

I STEP 3 2 Forr=l,... , R, compute the throughputs: 

X,(K) = N Kr . 

C ?Tir (K)eir 
i=l 

I STEP 3 3 For i = 1, . . . , N and T = 1, . . . , R, compute the mean number 
of jobs: 

K,,.(K) = Ti,.(K)X,.(K)ei,. 

I/ Check the stopping condition: 
If there are no significant changes in the xi, (K) values between the nth and 
(n - 1)th iteration step, that is, when: 

max K!:)(K) - K~~-l)(K)~ < E, 
i,r 
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for a suitable E (here the superscript cn) denotes the values for the nth iteration 
step), then the iteration stops and all other performance values are computed. 
If the stopping criterion is not fulfilled, then return to Step 2. 

This approximation is very easy to program and faster than the exact 
MVA. The memory requirements are proportional to the product of N and 
R. Therefore, this approximation needs considerably less memory than the 
exact MVA or the convolution method, especially for networks with a large 
number of job classes. A disadvantage of this approximation is that networks 
with multiple server nodes cannot be solved using it. We give a simple example 
of the use of the algorithm: 

Example 9.1 We revisit the single class network of Example 8.2 (Fig. 8.4) 
with network parameters as shown in Table 9.1. For & we choose the value 
0.06. The analysis of the network (K = 6) is carried out in the following 

Table 9.1 Input parameters for Exam- 
ple 9.1. 

i ei l/Pi 7% 

1 1 0.02 1 
2 0.4 0.2 1 
3 0.2 0.4 1 
4 0.1 0.6 1 

steps: 

Initialization: 

17,(K) = K&x-) = 11;;#iy = T-c@) = g =l& 

1. Iteration: 

Estimated values, Eq. (9.1): 

Ir,(K - 1) = ~.7qK) = 1.25, 

rjz(K - 1) = K&c - 1) = Kq(K - 1) = 1.25. 

One MVA iteration: 

1-1 Mean response times: 

?;@c) =; [1+ Ei(K - 1)] = 0.045, T2(K) = ; [I + 1T,(K - l)] = 0.45, 

T/&+-$1 +i7,(K - l)] = 1.35. 
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-4 Throughput: 

X(K) = 4 K = 11.111. 

C eiTi(K) 
i=l 

I Mean number of jobs: 

xl(K) = Fl(K)X(K)el = 0.5, E,(K) = Tz(K)X(K)ez = 2, 

x,(K) = Ts(K)X(K)es = 2, zd(K) = FA(K)X(K)eA = 1.5. 

mj Check the stopping condition: 

max IKjl)(K) - $“(K)l = 1 > 0.06. 
i 

2. Iteration: 

Estimated values: 

xl(K - 1) = y. 0.5 = 0.417, 

K2(K - 1) = 1.667, K3(K - 1) = 1.667, K4(K - 1) = 1.25. 

mi?ma One MVA Iteration: 

- 
?&(K) = ; [l+ K1(K - l)] = 0.028 

T2(K) = 0.533, Fs(K) = 1.067, T4(K) = 1.35, 

X(K) = 4 K = 10.169, 

C eiTZ(K) 
i=l 

XI(K) = Tl(K)X(K)el = 0.288, 

x2(K) = 2.169, Es(K) = 2.169, r4(K) = 1.373. 

Lmj Stopping condition: 

max E{“’ (K) - $l’(K) 1 = 0.212 > 0.06. 
i 

3. Iteration: 

[w] Estimated values: 

j&(K - 1) III y. 0.288 = 0.240, 

E,(K 
- 

- - 1) = 1.808, K3(K - 1) = 1.808, c4(K 1) = 1.144. 
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MVA Iteration: 

T&T) = 0.025, T2(K) = 0.562, T3(K) = 1.123, ??#i-) = 1.286, 

X(K) = 9.955, 

??,(A-) = 0.247, K2(lX-) = 2.236, I, = 2.236, x4(K) = 1.281. 

wm@ Stopping condition: 

max zd3’(K) - $“‘(K)I = 0.092 
i 

> 0.06. 

4. Iteration: 

li;,(K - 1) = 0.206, K2(K - 1) = 1.864, 

K3(K - 1) = 1.864, ??.*(K - 1) = 1.067. 

[y?#p@gj 

T&T) = 0.024, T2(K) = 0.573, T3(K) = 1.145, T4(K) = 1.240, 

X(K) = 9.896, 

77,(K) = 0.239, K2(K) = 2.267, x3(K) = 2.267, E4(K) = 1.227. 

m 

max $‘)(K) - f?i3’(K)I = 0.053 
i 

< 0.06. 

Now, the iteration stops and the other performance measures are computed. 
For the throughputs of the nodes we use Eq. (8.40): 

X1 = X(K). el = 9.896, X2 = 3.958, X3 = 1.979, X4 = 0.986. 

For the utilization of the nodes we get: 

pl = K = 0.198, p2 = 0.729, p3 = 0.729, p4 = 0.594. 

The final results are summarized in Table 9.2. 

A comparison with the values from Example 8.2 shows that the Bard- 
Schweitzer approximation yields results that in this case are very close to 
the exact ones. The storage requirement of the Bard-Schweitzer approxi- 
mation depends only on the number of nodes N and the number of classes 
R (= O(N x R)) and is independent of the number of jobs. This is much 
smaller than those for convolution and MVA.l The accuracy of the Bard- 

lRecal1 that the storage requirements for convolution and MVA are 0 fi (K, + 1) 
> 

and 
r=l 

0 N. fi p&+1) ) 
> 

respectively. 
r-=1 
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Tab/e 9.2 Bard-Schweitzer approximation for Example 9.1 

Node: 1 2 3 4 

Mean time T, response 0.024 0.573 1.145 1.240 
Throughput A, 9.896 3.958 1.979 0.986 
Mean number of jobs E; 0.239 2.267 2.267 1.240 
Utilization pZ 0.198 0.729 0.729 0.594 

Schweitzer approximation is not very good (the mean deviation from exact 
results is approximately 6%) but is sufficient for most applications. An essen- 
tial assumption for the Bard-Schweitzer method is that the removal of a job 
from a class influences only the mean number of jobs in that class and not 
the mean number of jobs in other classes (see Eq. (9.1)). This assumption is 
not very good and we can construct examples for which the computed results 
deviate considerably from the exact ones. In Section 9.1.2, the self-correcting 
approximation technique (SCAT) is introduced, which does not have this dis- 
advantage. Of course, the algorithm is more complex to understand and 
implement than the Bard-Schweitzer approximation. 

9.1.2 Self-Correcting Approximation Technique 

Based on the basic idea of Bard and Schweitzer, Neuse and Chandy [NeCh81, 
ChNe82] developed techniques that are an improvement over the Bard-Schwei- 
tzer approximation [ZESSS]. Th e main idea behind their approach is demon- 
strated on queueing networks consisting only of single server nodes. 

9.1.2.1 Single Server Nodes The SCAT algorithm for single server nodes 
[NeCh81] gives better results than the Bard-Schweitzer approximation, espe- 
cially for networks with small populations, because in the SCAT approxima- 
tion we not only estimate the mean number of jobs but also the change in 
the mean number of jobs from one iteration step to the next. This estimate 
is used in the approximate formula for the Ei, (K - 1,). We define F&. (K) as 
the contribution of class-r jobs at the ith node for a given population vector 
K as: 

E,,(K) 
&r(K) = K. 

r 

If a class-s job is removed from the network, Dir,(K) gives the change in this 
contribution: 

Dirs(K) = Fir(K - 1,) - Fir(K) 

= Fir(K - 1s) Fir(K) 

(K - l,), - K,’ 
(94 
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where (K - l,), is defined as in Eq. (9.2). Because the values Eir(K - 1,) are 
unknown, we are not able to compute the values Dirs(K) as well. Therefore 
we estimate values for the difference D+,(K) and then we approximate the - 
K,,(K - 1,) values by the following formula based on Eq. (9.4): 

%r(K - 1s) = (K - L)r~ [Fir(K) + Dim(K)]. (9.5) 

Note that if Dirs(K) = 0 we get the Bard Schweitzer approximation. 
The core algorithm of SCAT approximation needs the estimated values for 

Di,,(K) as input and, in addition, estimates for the mean values C,,.(K). 
The core algorithm can be described in the following three steps: 

1 STEP Cl 1 For i = 1,. . . , N and T, s = 1,. . . , R, compute with Eq. (9.5) the 
estimated values for the mean number xi, of jobs for the population (K - 1,). 

1 STEP C2 1 Analyze the queueing network by using one iteration step of the 
MVA as in Step 3 of the Bard- Schweitzer algorithm. 

1 STEP C3 ] Check the stopping condition. If: 

max = 
z;:)(K) - $-l’(K)1 

i,r KT 
< E, 

then stop the iteration, otherwise return to Step Cl (here the superscript cn) 
denotes the results of the nth iteration step), The use of & = (4000+ 16(KI)-l 
as a suitable value is suggested by [NeCh81]. 

The SCAT algorithm produces estimates of the differences DirS needed as 
input parameters of the core algorithm. So the core algorithm is run several 
times, and with the results of each run the differences Dir,(K) are estimat- 
ed. The estimated differences Dirs(K) are computed by the SCAT algo- 
rithm, hence the name self-correcting approximation technique. To initialize 
the method, the jobs are distributed equally over all nodes of the network and 
the differences DirS (K) are set to zero. The SCAT algorithm can be described 
by the following four steps: 

m Use the core algorithm for the population vector K, and input 
values K+(K) = Kr/N and Dirs (K) = 0 for all i, r, s. The auxiliary values 
of the core algorithm are not changed by the SCAT algorithm. 

Use the core algorithm for each population vector (K - lj) for j = 
1 * * 7 R, with the input values Kir(K - lj) = (K - lj)r/N and Dirs(K - 
1;; = 0 for all i, r, s. 

~ For all i = 1,. . . , N and r, s = 1,. . . , R, compute the estimated 
values for the Pi,(K) and &(K - l,), respectively, from Eq. (9.3) and the 
estimated values for the Dirs(K) from Eq. (9.4). 
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/%$$$$&I Use the core algorithm for the population vector K with values 

l?i7.(K) computed in Step 1, and values Dirs(K), computed in Step 3. Finally, 
compute all other performance measures using Eqs. (7.21)-(7.31). 

The memory requirement and computation time of the SCAT algorithm 
grows as O(N. R2) and produces, in general, very good results. Now, the 
algorithm is used on an example: 

Example 9.2 Consider the central-server model of Example 8.3 again, but 
now we use the SCAT algorithm to solve the network. 

L-1 Use the core algorithm with K = 6 jobs in the network and the 
input data ??i (K) = K/N = 1.5 and Di (K) = 0, for i = 1, . . . ,4. With these 
assumptions and E = 0.01, the usage of the core algorithm will produce the 
same results as the Bard-Schweitzer algorithm as in Example 9.1. Therefore, 
we use those results directly: 

?;1(6) = 0.024, T2(6) = 0.573, T3(6) = 1.145, T4(6) = 1.240, 

X(6) = 9.896, 

K1(6) = 0.239, X2(6) = 2.267, K4(6) = 1.227. 3?3(6) = 2.267, 

[m] Use the core algorithm for (K - 1) = 5 jobs and the inputs 1?,(5) = 

5/N = 1.25 and Di(5) = 0, for i = 1,. . . ,4. 

-1 Compute the estimated values for the K,(K - 1) from Eq. (9.5): 

(i(5) 
Ki(4) = 4. --g- = 1 for i = 1,...,4. 

1 STEP C2 1 One step of MVA: 

T1(5) 
- 

= i [l + K1(4)] = 0.04, T2(5) = 0.4, T3(5) = 0.8, T4(5) = 1.2, 

= 10.417, Z,(5) = T1(5)X(5)el = 0.417, 

izzl 

K2(5) = 1.667, K3(5) = 1.667, E4(5) = 1.25. 

(1 Check the stopping condition: 

max 
pTp(5)-Kp(5)) 

5 
=0166 >&. L 

i 

The iteration must be started again with Step Cl. 
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For the sake of brevity, we do not present all the other iterations but give 
the results after the last (fourth) iteration: 

T1(5) = 0.024, T2(5) = 0.495, T3(5) = 0.989, T4(5) = 1.123, 

X(5) = 9.405, 

K1(5) = 0.222, x2(5) = 1.861, &(5) = 1.861, x4(5) = 1.056. 

Compute with Eq. (9.4) th e estimated values for the differences 

Di(K): 

&(6) = 5 - - = - - - = El (5) E,(S) 0.222 0.239 4 7. 1o-3 
6 5 6 ’ , 

m5) K2(6) -5 7 10-3 DQ(6) = --j- - - = 
6 ** ’ 

X3(5) E3(6) -5 7 10-3 D3(6) = 5 - - = 
6 ” ’ 

x4(5) li;4@) 6 72 lo-3 D4(6) = --g- - ~ = 
6 ” * 

Use the core algorithm for K = 6 jobs in the network with the 
Ki (K) values from Step 1 and the Di(K) values from Step 3 as inputs. 

STEP cl Estimated values: 

K1(5) = 5 * %(6) 6 + Dl(6) 1 = 0.222, E,(5) = 1.861, 

X3(5) = 1.861, E4(5) = 1.056. 

[I One step of MVA: 

Tl(6) = i [l + fT1(5)] = 0.024, T2(6) = 0.572, T3(6) = 1.144, 

T4(6) = 1.234, 

X(6) = 9.908, 

x1(6) = Fl(6)X(6)el = 0.242, 

K4(6) = 1.223. 

E,(6) = 2.267, F3(6) = 2.267, 

-1 Stopping condition: 

max 
IK36) - $“(6) 1 

i 6 
= 8.128. 1O-3 < &, 

is fulfilled and, therefore the iteration stops and the preceding results are the 
final results from the SCAT algorithm. 

The exact results (MVA) are (see Example 8.3) : 

K1(6) = 0.244, G(6) = 2.261, K3(6) = 2.261, z(6) = 1.234. 
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9.1.2.2 Multiple Server A/odes If we wish to analyze networks with multiple 
server nodes, then from the MVA analysis, Eq. (8.31), we need not only the 
l?;i, values but also the conditional marginal probabilities ni(j 1 K - 1,). 
Similarly, for the SCAT algorithm, we need estimates not only for the values 
Ki,(K - ls) but also for the probabilities ni(j 1 (K - 1,). In [NeCh81] 
a technique is suggested to estimate the marginal probabilities by putting 
the probability mass as close as possible to the mean number of jobs in the 
network. Thus, for example, if 7?i(K - 1) = 2.6, then the probability that 
there are two jobs at node i is estimated to be 7ri(2 1 K - 1) = 0.4, and 
the probability that there are three jobs at node i is estimated to be ri(3 1 
K - 1) = 0.6. This condition can be described by the following formulae. We 
define: 

Ceilingi, = 1 Ei(K - 1,)1 , (9.6) 

flOOrir = 1 ITi(K - lr)] , (9.7) 

with: 

and estimate: 

ri(floori, 1 K - 1,) = ceilingi, - E(i (K - 1,), 

~i(ceiling;, ) K - lT) = 1 - ri(floori, ) K - 1,), 

ri(j I K - 1,) = 0 for j < floori, and j > ceiling;,. 

(9.8) 

W) 
(9.10) 

Now we need to modify the core algorithm of SCAT to analyze networks 
with multiple server nodes. This modified core algorithm, which takes suitable 
estimates of Dirs (K) and xiv as inputs, can be described in the following 
steps: 

Cl 1 For i = 1,. . . , N and r, s = 1,. . . , R, compute estimates for the - 
mean values Ki, (K - ls) using Eq. (9.5). Compute using Eqs. (9.7)-(9.10), for 
each multiple server node i, the estimated values of the marginal probabilities 
r;(j 1 K - l,),j = 0,. . . , (mi - 2) and r = 1,. . . , R. 

(-1 Analyze the queueing network using one step of the MVA via 
Eqs. (8.38), (8.39), and (8.41). 

[STEP] Check the stopping condition: 

max 
E;;)(K) - ??,‘,“-l’(K) / 

K- 
< e. 

i,r 

If this condition is not fulfilled, then return to Step Cl. 
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The SCAT algorithm, which computes the necessary estimated input values - 
for the differences Dirs(K) and mean values Kir(K) for the core algorithm, 
differs from the algorithm for networks with single server nodes only in the 
usage of the modified core algorithm, as follows: 

Use the modified core algorithm for the population vector K, where 
all Dir,(K) values are set to 0. 

Use the modified core algorithm for each population vector 
(K - lj). 

Compute the Fi,, and Dirs values from the previous results (see 
Eqs. (9.3) and (9.4)). 

Use the modified core algorithm with the computed F and D values 
for the population vector K. 

Example 9.3 The closed network from Example 8.4 (Fig. 8.6) is now ana- 
lyzed with the SCAT algorithm. The network contains N = 4 nodes and 
K = 3 jobs. The network parameters are given in Table 9.3. The analysis of 
the network is carried in the following four steps: 

Table 9.3 Input parameters for the net- 
work of Example 9.3 

i ea l/Pi mi 

1 1 0.5 2 
2 0.5 0.6 1 
3 0.5 0.8 1 
4 1 1 00 

The modified core algorithm for K = 3 jobs in the network with 
the input parameters ??i (K) = K/N = 0.75 and Di (K) = 0 for i = 1, . . . ,4 
is executed as follows: 

(ml Estimate values for the xi(K - 1) from Eq. (9.5): 

Ki (3) E.;(2) = 2 * 3 =O.J for i= 1,...,4. 

Estimate values for x1(0 1 K - 1). B ecause of floor1 = 1x1 (K - l)] = Q and 
ceiling, = floor1 + 1 = 1, we get: 

nr(O 1 2) = ceiling, - Kr(2) = 0.5. 
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I] One step of MVA: 

%(3) = +--& 
[ 

ml-2 

1 -t%(2) + c ( ml - j - 1). m(j 1 2) 
j=o 1 

1 
= - [1+X1(2)+( ml 

pm1 
- l)q(O ) 2)] = 0.5, 

- 
%(3) = ; [l + K2(2)] = 0.9, Ts(3) = ; [l +Ks(2)] = l.2, 

T4(3) $ 1. X(3) 3 = = = = 4 1.176, 

C G(3) 
i=l 

F,(3) = T1(3)X(3)el = 0.588, x2(3) = 0.529, 

Ks(3) = 0.706, &(3) = 1.176. 

[STEP] Check the stopping condition: 

max 
/fT,(l)(3) - FiO’(3)) 

i 3 
= 0.142 > E = 0.01. 

-1 Estimate values for the Ki(K - 1): 

= 0.392, K2(2) = 0.353, 

Ks(2) = 0.471, r,(2) = 0.784. 

Estimate values for nr(0 1 K - 1). With floor-r = L??r(K - l)] = Q and 
ceiling, = floor1 + 1 = It, we get: 

7rr(O ( 2) = ceiling, - Kr(2) = 0.608. 

-1 One step of MVA: 

After three iteration steps, we get the following results for the mean number 
of jobs: 

x,(3) = 0.603, K2(3) = 0.480, Ka(3) = 0.710, 17,(3) = 1.207. 

The modified core algorithm for (K - 1) = 2 jobs in the network 
with the input parameters K,(2) = 2/N = 0.5 and Di(2) = 0 for i = 1,. . . ,4 
is executed. After three iteration steps, for the mean number of jobs we have: 

37,(2) = 0.430, p2(2) = 0.296, Ks(2) = 0.415, x4(2) = 0.859. 
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Determine the estimates for the I$ and Di values using Eqs. (9.3) 
and (9.4)) respectively: 

K(3) 
Ji(3) = y- = 0.201, Pg2) = y-- = . ) m) 0 215 

K(3) 
h(3) = -j- = 0.160, F2(2) = 2 = . , 172(2) 0 148 

E3(3) 
F3(3) = y- = 0.237, F3(2) = 2 = . , K3P) 0 208 

K4 (3) 
F4(3) = 3 = 0.402, F4(2) = 2 = . , X4(2) 0 430 

Therefore we get: 

D1(3) = Fl(2) - Fl(3) = 0.014, 

&(3) = &(2) - F2(3) = -0.012, 

D3(3) = F3(2) - 5’s(3) = -0.029, 

D4(3) = F4(2) - F4(3) = 0.027. 

Execute the modified core algorithm for K = 3 jobs in the network 
with values Ki(K) from Step 1 and values Di(K) from Step 3 as inputs. 

I] Estimate values for the IIi(K - 1): 

r;;,(2) =2 
[ 

Z(3) yj- + D1(3) = 0.430, z,(2) = 0.296, 1 
J&(2) = 0.415, ?;;4(2) = 0.859. 

Estimate value for: 

floor1 = [Kr (2)J = 0, ceiling1 = floor1 + 1 = I., 

slrr(O 1 2) = ceiling1 - ‘I?, (2) = 0.570. 

After two iterations, the modified core algorithm yields the following final 
results: 

T1(3) = 0.5, Tz(3) = 0.776, T3(3) = 1.122, T4(3) = 1, 

X(3) = 1.224, 

x,(3) = 0.612, z,(3) = 0.475, x3(3) = 0.687, x4(3) = 1.224, 

The exact results are (see Example 8.4): 

T1(3) = 0.512, T2(3) = 0.776, T3(3) = 1.127, T4(3) = IL, 

X(3) = 1.217, 

KI(3) = 0.624, Kz(3) = 0.473, K3(3) = 0.686, x4(3) = 1.217. 
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9.1.2.3 Extended SCAT Algorithm The accuracy of the SCAT algorithm for 
networks with multiple server nodes depends not only on the estimates of the 
?i;i, (K - 1 s) values, but also on the approximation of the condition al marginal 
probabilities 7ri(j ] K - 1,). Th e suggestion of [NeCh81], to distribute the 
whole probability mass only between the two values adjacent to the mean 
number of jobs K,(K-l,), is not very accurate. If, for example, ??i(K- IT) = 
2.6, then the probability of having 0, 1, 4, and 5 jobs at the node cannot 
be neglected. Especially in the case when values ??i(K - 1,) are close to 
rni (number of identical service units at the ith node), the discrepancy can 
be large. In this case, all relevant probabilities are zero because the values 
~(j ( K - 1,) f or computing the mean response time are determined for j = 
0 * * 7 (mi - 2) only. In [AkBo88 a an improvement over this approximation ] 
of-the conditional probabilities is recommended. In Akyildiz and Belch’s 
SCAT scheme, the marginal probabilities are spread over the whole range 
0 * * 7 K,(K-l,), . . . ,2 \Ki(K)] + 1. They define the following two functions, 
the first function, PR, being a scaling function with: 

PR(1) = Q 

PR(n) = pm PR(n - 1) for n = 2,. . . , rn~x{~~}, 

where the authors give 45 and 0.7, respectively, as the optimal values for ctr 
and p. The second function W is a weighting function that is defined for all 
i = l,... , max(K,) as follows: 

W(O,O) = 1, 

W(i, j) = W(i - 1, j) - wti - Lww~) 
100 7 for j = 1,. . . ) (i _ 1) 7 

i-l 

W(i, i) = 1 - c W(6.i). 

j=O 

The values of the weighting function W(i, j), j = 0,. . . ,5 are given in Table 9.4. 

Table 9.4 Values of the weighting function W 

i W(i, 0) W(i, 1) W(i, 2) W(i, 3) W(i, 4) W(i, 5) 

0 1.0 
1 0.55 0.45 
2 0.377 0.308 0.315 
3 0.294 0.240 0.245 0.221 
4 0.248 0.203 0.208 0.187 0.154 
5 0.222 0.181 0.185 0.166 0.138 0.108 

In addition to these two functions, we need the values of floor, ceiling, and 
maxval, where floor and ceiling are defined as in Eqs. (9.7) and (9.6) and 
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maxval is defined as follows: 

maxvali, = min(2 flooriT + 1, mi). (9.11) 

The term maxval describes the maximum variance of the probability mass. 
To compute the conditional probabilities, we divide the probability mass into 
(floori, + 1) pairs, where the sum of each of these pairs has the combined 
probability mass W(i, j). Formally this computation can be described as 
follows: 

l For j III 0 . 

jobs’at 
. , floor+, compute 

are j the ith node: 
the cond it ion al probabilities that there 

7ri (floori, - j ] K - 1,) = W(floorir, l-dist) 
upperval - Zi(K - lT) 

upperval - lowerval ’ 
(9.12) 

l-dist = flooriT - j, 

upperval = ceiling;, + 1-dist, 

lowerval = flooriT - 1-dist = j. 

l For j = ceiling;, , . . . , maxvali,, we have: 

ni(j 1 K - lT) = W(fl oar;,, u-dist) - ni(floori, - u-dist ] K - l,), 
(9.13) 

with u-dist = j - ceiling+. 

l For j > maxvali, we get: 

ri(j 1 K - 1,) = 0. 

This approximation assumes that the Ki(K - lr) values are smaller than 
KT/2. If any of these values is greater than (K, - 1)/2, then we must also 
make sure that the value of upperval is not outside the range 0, . . . , (Kr - 1). 
In this case upperval is set to (K, - 1). More details of this SCAT technique 
can be found in [AkBo88a]. 

Example 9.4 Consider the network shown in Fig. 9.1. To compute the 
marginal probabilities we apply the improved technique of [AkBo88a]. The 
service time of a job at the ith node, i = 1,2, is exponentially distributed 
with rates ~1 = 0.5 and ,Q = 1. The queueing disciplines are FCFS and IS, 
respectively. There are K = 3 jobs in the network and ei = e2 = 1. 

m Execute the modified core algorithm for K = 3 jobs in the network 
and the input parameters Ei(K) = K/N = 1.5 and Di(K) = 0 for i = 1,2. 
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Fig. 9.1 A model of a multiprocessor system. 

(sTEpc1] Estimate values for the Ki(2), Eq. (9.5): 

- 

Ki(2) = 2 * yj- 
( ) 

Jw) =l i=12 -7 9 * 

Estimate value for nr(0 1 K - 1). Since: 

floor1 = LKr (2)J = IL, 

ceiling1 = floor1 + 1 = 2, 

maxvalr = min(2. floor1 + 1,mr) = 2, 

~r(0 1 2) is determined with: 

l-dist = floor1 - 0 = IL, upperval = ceiling, + 1 = 3, 

lowerval = floor1 - 1 = 0, 

from Eq. (9.12): 

7rl(O 1 2) = W(l,l) * 3-W2) =rJ * . 3 

I/ One iteration step of the MVA: 

After four iterations, we get the following results: 

Kr(3) = 2.187, x2(3) = 0.813. 

Apply the modified core algorithm for K = 2 jobs with the input 
parameters Ki(2) = 1 and Di(2) = 0, for i = 1,2. 

msT”Ep Estimate values for the xi(l): 
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Estimate values for nr(0 1 1). With: 

floor1 = LX,(l)] =Q, ceiling1 = floor1 + 1 = 1, 

maxvalr = min(2. floor1 + 1, ml) = 1, 

we determine: 

1-dist = Q, upperval = Il, lowerval = 0, 

and use these in Eq. (9.12) to compute: 

7rl(O 1 1) = W(O,O) * l-ml) =u 1 . . 

-1 One iteration step of the MVA: 

After two iterations, we get the following results: 

1?;1(2) = 1.333, E,(3) = 0.667. 

-1 Estimate the difference with Eq. (9.4): 

Dr(3) = Fr(2) - Fr(3) = -0.062, 02(3) = Fz(2) - Fz(3) = 0.062. 

Apply the modified core algorithm for K = 3 jobs in the net- 
work: 

-1 Estimate values for the zi(2): 

??r(2) = 1.333, z2(2) = 0.667. 

Estimate value for ~r(0 ) 2). With: 

floor1 = [;ilr (Z)] = 1, ceiling, = 2, maxvalr = 2, 

we determine: 

1-dist = 1, upperval = 3, lowerval = 0, 

and, therefore: 
- 

n1(0 1 2) = W(l,l)* 3 - F,(2) = 0.25. 

1-1 One iteration step of the MVA: 
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Table 9.5 Storage requirement for convolution, 
MVA, Bard-Schweitzer, and SCAT Algorithms 

Methods Storage Requirement 

Convolution Oc&~ + 1)) 

MVA OW. r&G- + 1)) 

Bard-Schweitzer O(N . R) 

SCAT O(N . R2) 

After two iterations, we get the final results: 

Tr(3) = 2.57, TZ(3) = 1, X(3) = 0.84, x1(3) = 2.16, &(3) = 0.84. 

A comparison with the exact values shows the accuracy of this technique for 
this example: 

Ti(3) = 2.45, Tz(3) = 1, X(3) = 0.87, Er(3) = 2.13, K2(3) = 0.87. 

If we use the SCAT algorithm from Section 9.1.2.2 we get: 

E(3) = 3, Tz(3) = 1, X(3) = 0.75, Er(3) = 2.25, 111;2(3) = 0.75. 

The storage requirement of SCAT is independent of the number of jobs 
(= O(N . R2)) but higher th an for the Bard-Schweitzer approximation, espe- 
cially for systems with many job classes and many jobs. The storage require- 
ment for SCAT is much less than those of MVA or convolution (see Table 9.5). 
The accuracy is much better for the SCAT algorithm (the average deviation 
from exact results is approximately 3%) than for the Bard-Schweitzer approx- 
imation and, therefore, in practice SCAT is used more often than MVA, Bard- 
Schweitzer, or convolution to solve product-form queueing networks. 

Problem 9.1 Solve Problem 7.3 with the Bard-Schweitzer and the SCAT 
algorithms. 

Problem 9.2 Solve Problem 7.4 with the SCAT and the extended SCAT 
algorithms. 

9.2 SUMMATION METHOD 

The summation method (SUM) is based on the simple idea that for each 
node of a network, the mean number of jobs at the node is a function of the 
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throughput of this node: 

For nodes 
properties: 

with load-independent service rates, function fi has the following 

(9.14) 

l Xi must be in the range 0 5 Xi 5 mipi. For IS-nodes we have 0 < Xi 5 
K* pi 3 because Xi = Xi/pi and Ki 5 K. 

l fi(Xi) 5 f(xi + A&) for AX, > 0, that is, fi is a monotone non- 
decreasing function of Xi. 

l fi(0) =O. 

Monotonicity does not hold for nodes with general load-dependent service 
rates and must therefore be examined for each individual case. For multiple 
server nodes the monotonicity is maintained. 

To analyze product-form queueing networks, [BFS87] suggest the following 
formulae: 

t Pi 
1-K-l ’ 

Type-1,2,4 (mi = l), 

KPi 

fi (Xi) = Ki = { T?2ifli + 
Pi 

l-K-mi-l 
AL,, Type-l (mi > l), 

K -mi pi 
Ai - 

\ pi ’ 
Type-3. 

(9.15) 

The utilization pi is computed using Eq. (7.21) and the waiting probability 
Pm2 with Eq. (6.28) or approximately with Eq. (6.80). It should be noted 
that Eq. (9.15) gives exact values only for Type-3 nodes while the equations 
for the other node types are approximations. The approximate equations for 
Type-l (-/M/l), Type-2, and Type-4 nodes can be derived from Eq. (6.13), 
Ki = pi/(1 - pi), and the introduction of a correction factor (K - 1)/K, 
respectively. The correction factor is motivated by the fact that in the case of - 
pi=l,allK’b JO s are at node i, hence, for pi = 1 we have Ki = K. The idea 
of the correction factor can also be found in the equation for Type-l (-/M/m) 
nodes by considering Eq. (6.29). If we assume that the functions fi are given 
for all nodes i of a closed network, then the following equation for the whole 
network can be obtained by summing over all functions fi of the nodes in the 
network: 

CRi = C fi(Xi) = K. (9.16) 
i=l i=l 
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With the relation A; = A. ei, an equation to determine the overall throughput 
X of the system can be given as: 

2 fi(X+ ei) = g(X) = K. 
i=l 

(9.17) 

In the multiple class case, the Function (9.14) can be extended: 

Kir = fir(b). (9.18) 

The function fir ( Air) has the following characteristics: 

l fir is defined in the range 0 2 Ai, 2 pi, . rni and, in case of an infinite 
server node, 0 5 Ai, 5 pir . K,. 

l fir is a monotone non decreasing function. fir (Air) 5 fir (Ai, + e), e > 0. 

. fir(O) = 0. 

For multiclass product-form queue&g networks, the following formulae, as 
extensions of Eq. (9.15), are given: 

Pir 

K-l ’ 
l-- K Pi 

Type-1,2,4 (mi = 1) 

Pir 

l-K-mi-l 
. P,,, Type-l (mi > 1), (9.19) 

K -mi Pi 

Type-3, 

with: 

Pi = 5Pir7 (9.20) 

r=l 

R 

K=xK,. (9.21) 

For the probability of waiting P,,, we can use the same formula as for 
the single class case (Eq. (6.28)) and Eq. (9.20) for the utilization pi. Now 
we obtain a system of equations for the throughputs A, by summing over all 
functions fir: 

5K;r = 5 fir(Air) = Kr (T = I,, . l , R). (9.22) 

i=l i=l 
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With Xi, = Xreir we obtain the system of equations: 

fJi.(&-ei,) = g&b) = K, r = l,...,R. (9.23) 
i=l 

In the next section, we introduce solution algorithms to determine the 
throughput X in the single class case or the throughputs X, in the multiple 
class case using the preceding fixed-point equations. 

9.2.1 Single Class Networks 

An algorithm for single class queueing networks to determine X with the help 
of Eq. (9.17) and the monotonicity of fi (Xi) has the following form: 

m-! Initialization. Choose Xl = 0 as a lower bound for the throughput 

as an upper bound. For -/G/co-nodes, rni must be 

1-1 Use the bisection technique to determine X: 

CZYI 
Xl + L STEP 2 1 Set x = - 

2 * 

-1 Determine g(X) = 2 fi (X h . e, , w ,) ere the functions f; (X. ei) are 
i=l 

determined by using Eqs. (9.15) and (9.14). 

-1 If g(X) = K f e, then stop the iteration and compute the per- 
formance measures of the network with the equations from Section 7.1. 
If g(X) > K, set X, = X and go back to Step 2.1. 

If g(X) < K, set Xl = X and go also back to Step 2.1. 

The advantage of this method is that the performance measures can be 
computed very easily. Furthermore, if we use suitable functions fi, then the 
number K of jobs in the network and the number of servers rni does not 
affect the computation time. In the case of monotonicity, the convergence is 
always guaranteed. By using suitable functions fi (Xi), this method can also 
be used for an approximate analysis of closed non-product-form networks (see 
Section 10.1.4). In [BFS87] and [AkBoBBb], it is shown that the summation 
method is also well suited for solving optimization problems in queueing net- 
works (see Chapter 11). In the following example we show the use of the 
summation method: 

Example 9.5 Consider Example 8.4 from Section 8.2.1. This network 
is examined again to have a comparison between the exact values and the 
approximate ones as computed with the summation method. The network 
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Table 9.6 Input parameters for the net- 
work of Example 9.5 

i e, lIPi mi 

1 1 0.5 2 
2 0.5 0.6 1 
3 0.5 0.8 1 
4 1 1 cm 

parameters are given in Table 9.6. The analysis of the network is carried out 
in the following steps: 

Initialization: 

Xl = Q and A, = min 
i 

Bisection: 

r---Y-y STEP 2 1 X = 
Xl + A, 
2= 1.25. 

[STEP/ Computation of the functions fi(Xi), i = 1,2,3,4 with Eq. (9.15). 
For the -/M/2 node 1 we have: 

p1 = J-1 ~ = 0.3125 and Pm1 = 0.149 
kw ml 

Eq. (6.28), 

and, therefore: 

f&Q = 2p1 + PIP,, = 0.672. 

Furthermore: 

fzP2) = fi = 0.5 with p2 = 0.375, 
3 

f3P3) = & = 0.75 with p3 = 0.5, 
3 

f4(X4) = ; = 1.25. 

Thus, we get: 

g(X) = 5 fi(Xi) = 3.172. 
i=l 

l-2.3] Check the stopping condition. Because of g(X) > K, we set 
A, = X = 1.25 and go on with the iteration. 
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[STEP 

x = AZ + AA - = 0.625. 
2 

fr(xr> = 2Pr + Pi&, = 0.319 with pi = 0.156 and Pm1 = 0.042, 
f$i2) = 0.214 with p2 = 0.1875, 

f3(X3) = 0.3 with pa = 0.25, 

f&b) = 0.625. 

It follows that: 

g(X) = -&(Xi) = 1.458. 
i=l 

-1 Because of g(X) < K, we set Xl = X = 0.625. 

x = AZ + LL -= 
2 

0.625 + 1.25 = o g375 
2 -- 

This iteration is continued until the value of g(X) equals (within E = 0.001) 
the number of jobs K in the system. To make the bisection clearer, we show 
the series of Xl and X, values in Table 9.7. 

Table 9.7 Intervals for Example 9.5 

Step: 0 1 2 3 4 5 6 7 8 9 10 

h 0 0 0.625 0.9375 1.094 1.172 1.172 1.191 1.191 1.191 1.191 
Lt 2.5 1.25 1.25 1.25 1.25 1.25 1.211 1.211 1.201 1.196 1.194 

The overall throughput of the network is X = 1.193 as computed by this 
approximation method. Compare this with the exact value of the overall 
throughput is X = 1.217 The approximate values of the throughputs and 
the mean number of jobs calculated using the SUM (Eq. (9.14)) and the 
exact values for this network calculated using MVA (see Example 8.4) are 
summarized in Table 9.8. 
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Table 9.8 Exact and approximate values for the through- 
puts Xi and the number of jobs K, for Example 9.5 

i 1 2 3 4 

x 
ZSUM 

1.193 0.596 0.596 1.193 
&MVA 1.218 0.609 0.609 1.218 
-ZSUM K 0.637 0.470 0.700 1.193 
K 

ZMVA 
0.624 0.473 0.686 1.217 

9.2.2 Multiclass Networks 

Now we assume R job classes and K = (Ki, K2, . . . , KR) jobs in the network. 
Therefore, we get a system of R equations. In general, g, are non-linear 
functions of A,: gT(Xi, X2,. . . , AR). This is a coupled system of non-linear 
equations in the throughput of the R job classes and, hence, it is not possible 
to solve each equation separately from the others. We first transform the 
system of equations into the fixed-point form: 

x = f(x). 

Under certain conditions f has only one fixed-point and can then be used to 
calculate x iteratively using successive substitution as follows: 

This method of solution is also called fixed-point iteration. In the case of the 
SUM, for the calculation of the throughputs A,, we get the following system 
of equations: 

~~=f$-(A,.ei,) = K,, T= l,..., R. (9.24) 
i=l i=l 

To apply the fixed-point iteration, this equation can easily be transformed to: 

or: 

Jb= N 
K?- 

= fr(h, * * JR) = h-(X), (9.25) 

C fixi&b . ei,) 

see [BaTh94]. 
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For the functions fixiT, we get from Eq. (9.25): 

fiXir = { 

\ 

, ei, 
Pir 

I-K-1 ’ - . K Pi 

eir 
eir I mi * j&r 

/Jir l-K-mi-l * 
K - mi ‘pi 

ei, 

b t%r ’ 

% (Pi>, Type-l rni > 1, 

Type-1,2,4 m; = 1, 

(9.26) 

Type-37 

and the throughputs A, can be obtained by the following iteration: 

~~ Initialization: 

Xl = x2 = * * * = AR = 0.00001; E = 0.00001. 

Compute the throughput A, for all r = 1, . . . , R: 

Determine error norm: 

e= 
11 

C( k2 - h-n+l)2’ 
r=l 

If e > E, go to Step 2. 

~ Compute other performance measures. 

The Newton-Raphson method can also be used to solve the non-linear sys- 
tem of equations for the SUM [HahnSO]. There is no significant difference 
between fixed-point iteration and the Newton-Raphson method in our expe- 
rience. The computing time is tolerable for small networks for both meth- 
ods (below 1 second), but it increases dramatically for the Newton-Raphson 
method (up to several hours) while it is still tolerable for the fixed-point iter- 
ation (several seconds) [BaTh94], Therefore, the fixed-point iteration should 
preferably be used. The relative error can be computed with the formula: 

difference = 
(exact value - computed value]. 1oo 

exact value 7 
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and gives, for the previous example, an error of 2.6% for the overall through- 
put. Experiments have shown that the relative error for the SUM method is 
between 5% and 15%. It is clear that the results can be further improved if 
better functions fi could be found. 

Problem 9.3 Solve Problem 7.3 and Problem 7.4 using the SUM. 

9.3 BOTTAPPROX METHOD 

We have seen that, compared to the MVA, the SUM approximation needs 
much less memory and computation time. But if we take a closer look at it, 
we will see that the number of iterations to obtain reasonably accurate results 
is still very large for many networks. Now the question arises whether it is 
possible to choose the initial guess of throughput X(O) so that the number of 
iterations can be reduced while still maintaining the accuracy of the results. A 
good initial value of throughput based on the indices of the bottleneck node is 
suggested by [BoFi93]. Recall that the node with the highest utilization pi is 
called the bottleneck node. The performance measures of the bottleneck node 
are characterized by the index bott. The resulting approximation method is 
called bottapprox (BOTT). 

9.3.1 Initial Value of X 

For the throughput X we have the relation: 

A= 
Pi * mi 
-*Pi, i = l,...,N, 

ei 

with: 

0 5 pi < 1, i = l,..., N. 

In contrast to the SUM in the BOTT we assume that the utilization &,tt of 
the bottleneck node is very close to 1, and therefore we can choose for the 
initial value of the throughput X(O): 

where argmin is the function that returns the index of the node with the 
minimum value. 

9.3.2 Single Class Networks 

The BOTT is an iterative method where for each node i in each iteration - 
step, the mean number of jobs Ki is determined as a function of the chosen 
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throughput A!“): 

?;;i = f@i). (9.27) 

For the function fi, the same approximations are used as in the SUM. By 
summing over all nodes, we get for the function g(X) : 

This sum g(X) is 
correction factor: 

compared to the 

is determined. We assume th 
mean number of jobs K; is the 
relation holds: 

K 

corr = SC4 ’ 

of jobs K in the 

.at in each node i the error in computing the 
same, and therefore for each node the following 

(9.28) 

and a 

(9.29) 

(9.30) 

For the bottleneck node the new mean number of jobs in the node is com- 
puted as follows: 

jp+1) = jp) K 
bott 

.- 

bott g(X) ’ 
(9.31) 

(k+l) and the new utilization Pbott can then be determined as a function of the 

new mean number of jobs -iTfoTtl’ at the bottleneck node using Eq. (9.15), 
that is: 

(k+l) = qptl’)* 
Pbott (9.32) 

Now the new value for the throughput X at the bottleneck node can be 
computed as a function of the new utilization (Eqs. (7.23) and (7.25)): 

(k+l) 
A(‘“+l) _ Pbott * mbott ’ pbott 

- . 

ebott 
(9.33) 

If none of the following stopping conditions is fulfilled then the iteration is 
repeated: 

l If the correction factor corr is in the interval [(l - c), . . . , (1 + E)], then 
stop the iteration. Tests have shown that for E = 0.025 we get good 
results. For smaller E, only the number of iterations increased but the 
accuracy of the results did not improve significantly. 
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l If in the computation the value of Pb&t = h(??b,tt) is greater than 1, 
then set P&t = 1 and stop the iteration. 

l To prevent endless loops, the procedure is stopped when the number of 
iterations reaches a predefined upper limit. 

The function h previously mentioned for different node types is defined as 
follows (see Eq. (9.15)): 

1. For node types -/M/l-FCFS, -/G/l-PS, and -/G/l-LCFS-PR: 

- 
h(Kbott) = 

xbott 

2. For node type -/G/oo-IS: 

xbott 
h(%ott ) = 7. 

3. For node type -/M/m-FCFS it is not possible to give an exact expres- 
sion for fi and therefore an appropriate approximation is chosen (see 
[BoFi93]): 

2 - f - mbott ’ 

with: 

f= 
K - mbott - 1 

K - mbott 
? 

b = Kbott . f + mbott -I- Pmbott, 

C = b2 - 4 * mbott * Kbott . f. 

Now we give an algorithm for the BOTT: 

Initialize: 

Iteration: 

[d Compute the following performance measures for i = 1, . . . , N: 
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-1 Compute the new throughput A: 

g(X) = &, 
i=l 

Kbott =Ebott * -$jY 

Pbott = @bott), 
x = Pbott . mbott . pbott 

ebott 

[I Check the stopping condition: 

K I I g(X) < E* 

If it is fulfilled, then stop the iteration, otherwise return to Step 2.1. 

For i = 1, . . . , N compute: 

To estimate the accuracy of the BOTT and to compare it with the SUM, 
we investigated 64 different product-form networks. The mean deviation from 
the exact solution for the overall throughput X and for the mean response time 
T was 2%. The corresponding value for the summation method was about 
3%. The number of iterations of the SUM were about three times the number 
of iterations of the BOTT. For details see Table 9.9. 

Table 9.9 Deviation in percent (%) f rom the exact values (obtained by MVA) 

Error in X Error in T 

SUM BOTT SUM BOTT 

Number of Iterations 

SUM BOTT 

min 0 0 0 0 1 1 
mean 2.60 2.10 2.70 2.10 6.60 2.30 
max 7.40 13.90 7.80 12.20 13 5 

9.3.3 Multiclass Networks 

One of the advantages of the BOTT method is that it can easily be extend- 
ed to multiple class networks. The necessary function h,(zi,) is given by 
(Eq. (9.19)): 

1. For node types -/M/l-FCFS, -/G/l-PS and -/G/l-PR: 

hr(%ott,r) = Kbott,r ’ 1 - 7 ’ pbott) . (9.34) 
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2. For node type -/G/oo-IS, /L,(K~,~): 

Fbott r 
WKbott,r ) = K. (9.35) 

3. For the node type -/M/m-FCFS: 

h-(Kbott,r) = 
Ebott,r 
1 
I 

mbott + 

1 _ K - mbott - 1 
’ Pmbott (Pbott ) 

K - mbott 
’ Pbott 

(9.36) 

Remark: Eqs. (9.34) and (9.36) are approximations because we used &ott,r 

part of &Ott = c,r”=, Pbott,i when we created the h,(Ki,,) function. 

Now we give the algorithm for the multiple class BOTT: 

Initialize: 

A- = iEIyin ,s.,,Nj{e}, forr=L..,R, 

bott, r = argmin {y},r. 

Iteration: 

IsTEh, Compute the performance measures: 

Air = b%-, 

Air 
pir = - 

mi * j&r ’ r = l,...,R, 

zr = f&h, * * a, AR), i = l,...,N. 

Pi=~Pir7 

r=l 

-1 Compute the new throughputs: 

N 

g(Xr) = CKir, 

i=l 

KY- 
Ebott,r = Ebott,r - 

S(h) ’ 

Pbott,r = h- (Ebott,r), 

xr = Pbott,r * mbott * pbott,r 
, 

eb0tt,7- 

b r = l,...,R. 
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-1 Stop the iteration for class T. If: 

go to Step 2.1, else stop iteration for class r. 

Final value of Ki,: 

KT Ki, = Fir . - 
dM ’ 

r=l,..., R, i=l,..., N. 

The deviation from the exact results is similar to the one in the single 
class case for the SUM and is slightly worse but tolerable for the BOTT (see 
Table 9.10). The average number of iterations for the examples of Table 9.10 

Tab/e 9.10 Deviation in percent (%) 
from the exact results for the through- 
put X (average of 56 examples) 

BOTT SUM 

min 0 0 
mean 6.7 4.68 
max 38.62 40.02 

used by the bottapprox algorithm is 4.5, and the maximal value is 20, which 
is much smaller in comparison with the SUM. 

Problem 9.4 Solve Problem 7.3 and Problem 7.4 using the BOTT. 

9.4 BOUNDS ANALYSIS 

Another possibility for reducing the computation time for the analysis of 
product-form queueing networks is to derive the upper and lower bounds 
for the performance measures instead of the exact values. In this section we 
introduce two methods for computing upper and lower bounds, asymptotic 
bounds analysis (ABA) and balanced-job- bounds analysis (B JB). These two 
methods use simple equations to determine the bounds. Bounds for the sys- 
tem throughput and for the mean number of jobs are calculated. The largest 
possible throughput and the lowest possible response time of the network are 
called optimistic bounds, and the lowest possible throughput and greatest pos- 
sible mean response time are called pessimistic bounds. So we have: 
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With these relations other bounds for the performance measures such as 
throughputs and utilizations of the nodes can be determined. 

In the following we make a distinction between three different network 
types: 

l Type A describes a closed network containing no infinite server nodes. 

l Type B describes a closed network with IS nodes. 

l Type C describes any kind of open network. 

We restrict our consideration to networks with only one job class. Gener- 
alizations to networks with several job classes can be found in [EaSe86]. 

9.4.1 Asymptotic Bounds Analysis 

The ABA [MuWo74a, Klei76, DeBu78] gives upper bounds for the system 
throughput and lower bounds for the mean response time of a queueing model 
(optimistic bounds). The only condition is that the service rates have to be 
independent of the number of jobs at the node or in the network. As inputs 
for the ABA method, the maximum relative utilization of all non-IS-nodes, 
2 miLX, and the sum xsum of the relative utilizations of these nodes are needed: 

X - max(xi) and xs,, = c xi, max - i 

where xi = ei/pi is the relative utilization of node i (Eq. (7.6)). The relative 
utilization of an IS node (thinking time at the terminals) is called 2. 

At first we consider the case of an open network (Type C): Since the uti- 
lization pi = Xi/pi with Xi = X. ei, the following relation holds: 

p; = A* x;. (9.37) 

Due to the fact that no node can have a utilization greater than 1, the upper 
bound for the throughput of an open network cannot exceed Xsat = l/xmax if 
the network is to remain stable. Therefore, Xsat is the lowest arrival rate where 
one of the nodes in the system is fully utilized. The node that is utilized most 
is the node with the highest relative utilization xrnax. For this bottleneck node 
we have pmax = X. x max 5 1, and the optimistic bound for the throughput is 
therefore: 

(9.38) 

To determine the optimistic bounds for the mean response time, we assume 
that in the best case no job in the network is hindered by another job,. With 
this assumption, the waiting time of a job is zero. Because the relative uti- 
lization xi = ei/pi of a node is the mean time a job spends being served at 
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this node, the mean system response time in the non-IS nodes is simply given 
as the sum of the relative utilizations. Therefore, for the optimistic bounds 
on mean response time we get: 

For closed networks we consider networks with IS nodes (Type B). From the 
results obtained for such networks we can easily derive those for networks of 
Type A by setting the mean think time 2 at the terminal nodes to zero. The 
bounds are determined by examining the network behavior under both light 
and heavy loads. We start with the assumption of a heavily loaded system 
(many jobs are in the system). The greater the number of jobs K in the 
network, the higher the utilization of the individual nodes. Since: 

Pi(K) = qqxi I 1, 
the highest possible overall network throughput is restricted by each node in 
the network, especially by the bottleneck node. As in open models we have: 

X(K) 5 1. 
Xmax 

Now assume that there are only a few jobs in the network (lightly load- 
ed case). In the extreme case K = 1, the network throughput is given by 
l/(Xsum +Z). For K = 2,3,... jobs in the network, the throughput reaches 
its maximum when each job in the system is not hindered by other jobs. In 
this case we have X(K) = K/(xsum + 2). 

These observations can be summarized in the following upper bound for 
the network throughput : 

(9.40) 

To determine the bound for the mean response time F(K), we transform 
Eq. (9.40) with the help of Little’s theorem: 

K 
< min 

C 

1 
- 

T(K) + 2 - Xmax ‘2 

and get: 

or max {xsum, K*xmax - 2) I T(K)* 

(9.41) 

The asymptotic bounds for all three network types are listed in Table 9.11. 
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Table 9.11 Summary of the ABA bounds 

Network Type ABA Bounds 

A 

x B 

C Xl1 
xmax 

T T(K) 2 max { xsurn ) K* xmax - 2) 

Example 9.6 As an example for the use of ABA, consider the closed 
product-form queueing network given in Fig. 9.2. There are K = 20 jobs 
in the network and the mean service times and the visit ratios are given as 
follows: 

~/PI = 4.6, ~/,cL~ = 8, l/p3 = 120 = 2, 

el = 2, e2 = e3 = 1. 

Fig. 9.2 Single class queueing network. 

At first we determine: 

el e2 
2 max =max --,--- 

{ > 
= 9.2, x,,, = 3 

Pl Pa 
Al + ; = 17.2, 

With these values and the formulae given in Table 9.11, we can determine the 
asymptotic bounds immediately. 
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Throughput: 

X(K) 5 min 
{ 

K ‘> =min{-$&;$-} =0.109. 
xsurn + 2’ xmax 

Mean response time: 

T(K) 2 max {CC,,,, PC. xmax - 2) = max(17.2; 64) = 64. 

Now the bounds for the other performance measures can be computed. 
With the formula pi = X. xi, we can, for example, compute the upper bounds 
for the utilizations pr 5 1 and p2 < 0.87. For this example, the exact values 
for throughput and response time are X(K) = 0.100 and T(K) = 80.28, 
respectively. 

9.4.2 Balanced Job Bounds Analysis 

With the BJB method [ZSEG82], upper as well as lower bounds can be 
obtained for the system throughput and mean response time of product-form 
networks. In general, using this analysis we get better results than with the 
ABA method. The derivation of bounds by the BJB method is demonstrated 
only for closed networks of Type A. The derivation of the bounds for the other 
two network types is similar and is therefore left to the reader as an exercise. 
In the derivation of BJB, it is assumed that the network is balanced: that 
is, the relative utilizations of all nodes are the same: xi = . . . = xN = x. 
The throughput of a balanced network can be computed by applying Little’s 
theorem: 

X(K) = N K 
C Ti(K) ’ 
i=l 

where Fi (K) is the mean response time in the ith node with K jobs in the 
network. For product-form networks, Reiser and Lavenberg [ReLa80] have 
shown that: 

Ti(K) = [I + K,(K - I)] .x. 

If we combine the two preceding formulae, we get: 

X(K) = N 
K 

= (N+ff- l).x’ 
(9.42) 

C [l +Ki(K - I)] .x 
i=l 

Equation (9.42) can be used to determine the throughput bounds of any type 
of product-form queueing network. For this computation, let xmin and xrnax, 
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respectively, denote the minimum and maximum relative utilization of an 
individual node in the network. The basic idea of the BJB analysis is to 
enclose the considered network by two adjoining balanced networks: 

1. An “optimistic” network, where the same relative utilization x,i, is 
assumed for all nodes, 

2. A “pessimistic” network, where the same relative utilization x,,, is 
assumed for all nodes. 

With Eq. (9.42), the BJB bounds for the throughputs can be determined 
as: 

(N +“K - 1) .- xi,, L X(K) L (N +“K - 1) Xii,’ .- (9.43) 

Similarly, the bounds for the mean response time can be determined by using 
Little’s theorem: 

(N+K-1)*x min 5 T(K) 5 (N + K - l)‘Xmax- (9.44) 

The optimistic bounds can be improved by observing that among all the 
networks with relative overall utilization xsum, the one with the relative uti- 
lization, xi = xsUrn /N for all i, has the highest throughput. If xave = xsum/N 
denotes the average relative utilization of the individual nodes in the network, 
then the improved optimistic bounds are given by: 

X(K) L 
K 1 K .-= 

K + N - 1 x:,,, Xsum + (K - l)xa,, 
(9.45) 

and: 

Xsum + (K - 1)xaw 5 T(K), (9.46) 

respectively. The optimistic network, the network with the highest through- 
put, has, therefore, N = xsum/xave nodes with relative utilization x,,. Anal- 
ogously, among all networks with relative overall utilization x,,, and max- 
imum relative utilization xmax, the network with the lowest throughput has 
altogether xsum/xmax nodes with relative overall utilization x,,,. Therefore 
the improved pessimistic bounds are given by: 

K 1 K .-= 
K+z-l xmax xsum + (K - 1)xmax 

I X(K) (9.47) 

and: 

respectively. 

T(K) L Gum + (K - l)Xmax, (9.48) 
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Table 9.12 Summary of the BJB bounds [LZGS84] 

Network 
Type 

BJB Bounds 

A 
K 

Xsum + (K - l)xmax ’ X(K) ’ 

K 

Zsum + (K - 1)~s~ 

T B xsum 
+ CK - ljxave < gicK) I 

l+& - 

Zsum 
+ (K - l)xmax 

1+* sum 

C Gum 
IT< 

zsum 

1 - XXave l- AXmax 

The inequalities for open networks can be obtained in a similar way. In 
Table 9.12, the BJB bounds for all three network types are summarized. The 
equations for the two closed network types are identical, if the value of 2 is 
set to zero. 

Example 9.7 Consider the network of Example 9.6 again, but now we 
determine the bounds with the BJB method. With x,,~ = x,,,/N = 8.6, we 
can obtain the bounds directly from Table 9.12. 

Throughput: 

20 
17.2 + 120 + 129.5 < X(K) I 

20 
- 17.2 + 120 + 20.5’ 

0.075 < X(K) < 0.127. 

Response time: 

174.8 
17.2 + = < ‘?;(K) 5 17.2 + 1349’ 

7.977 - 
37.70 < T(K) < 146.8. 

A comparison of the results of both methods shows that for this example 
we get better results with the ABA method than with the BJB method. 
Therefore the conclusion is irresistible that using both methods in combination 
will reduce the area where the performance measures can lie. Figures 9.3 and 
9.4 show the results of the ABA and BJB values for the throughput and mean 
response time as functions of the number of jobs in the network, respectively. 
The point of intersection for the two ABA bounds is given by: 

Jq* = 2sum +Z . 
Xmax 
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K+ = (X sum + 2)2 - Xsumxave 

(X sum + 2). Xmax - Xsumxave 

upwards, the optimistic curve of the ABA method gives better results than 
the B JB one. These bounds say that the exact values for the throughput and 
the mean response time reside in the shaded area. 

BJ&,t 

ABA 

B JB,,, 

Y I , 
I -,K 
1 K* K+ 

Fig. 9.3 ABA and BJB throughput bounds as a function of K. 

A 
B J&w,, ABA 

B JB,,t 

I I I 1 
I I ;-K 
1 K* K+ 

Fig. 9.4 ABA and BJB response time bounds as a function of K. 

The performance bound hierarchy method for determing the bounds of the 
performance measures was developed by [EaSe83]. In this method we have 
a hierarchy of upper and lower bounds for the throughput. These bounds 
converge to the exact solution of the network. The method is based on the 
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MVA. Thus, there is a direct relation between the accuracy of the bounds 
and the cost of computation. If the number of iterations is high, then the 
cost is higher but the bounds are closer together. On the other hand, when 
the number of iterations is lower, the cost is lower but the bounds are farther 
apart. The extension of this method to multiclass networks can be found in 
[EaSe86]. 0th er versions can be found in [McMi84], [Kero86], [HsLa87], and 
[ShYaSS]. 

Problem 9.5 Solve Problem 7.3 with the ABA and BJB methods and 
compare the results. 

9.5 NETWORKS WITH VARIABILITIES IN WORKLOAD 

Performance models need values of input parameters in order to predict val- 
ues of performance measures. In practice, input parameters are estimated 
from measurements on real systems. Thus each input parameter will have 
a confidence interval in addition to a point estimate. Traditional algorithms 
such as MVA or SCAT accept only single values as input parameters and com- 
pute single values for the performance measures. In this section we describe 
a method that allows intervals as input parameters. As a result, the predict- 
ed performance measures are also given as intervals. The treatment here is 
adapted from [HLM96] and [MaRa95]. 

We can describe the workload variabilities, e.g., service rate variabilities, 
by intervals: 

I = [i-,if]. (9.49) 

If the performance measures are monotone with respect to the input param- 
eters, given by intervals, then a simple interval based algorithm can be derived 
from a given single value algorithm y = y (~1, ~2, . . . , pi), where y is the con- 
sidered performance measure and the service rates are given by intervals: 

Ipn = [p,,pL] n= l,,.., N. 

Now the interval based algorithm can be described as follows: 

Calculate the performance measures y for the lower and upper 
bounds of the service rates: 

!I- =Y(/q?.**&A (9.51) 

!I+ = Y(/& - * - 7 P$). (9.52) 

Calculate the intervals for the performance measure y . If y is 
monotonically increasing in the parameter, then: 

Iy = [Y-4+1. (9.53) 
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If y is monotonically decreasing, then: 

Iy = [Y+,Y-l. (9.54) 

Example 9.8 Consider a closed queueing network with two nodes and 
er = e2 = 1, K = 5, and the two intervals: 

Ipl = [l/ set, 2/ set] Ip2 = [3/ set, 4/ set]. (9.55) 

The interesting performance measures are the throughput Xr = X2 = X, 
which is monotonically increasing with service rates and the mean response 
time T, which is monotonically decreasing with service rates. 

A- = X(1/ set, 3/ set) = 0.99/ set, (9.56) 

A+ = x(2/ set, 4/ set) = 1.97/ set, (9.57) 

T- = T( l/ set, 3/ set) = 5.01 set, (9.58) 

T+ = T(2/sec,4/sec) = 2.54sec. (9.59) 

Interval for the throughput X: 

1~ = [A-, A+] = [0.99/ set, 1.91/ set]. 

Interval for the mean response time T: 

IT = [T+,T-] = [2.54sec, 5.01 set]. 

(9.60) 

(9.61) 

1 Workstations Ethernet 1 

Fig. 9.5 Model of the client-server system. 

Example 9.9 As another example, we consider a client-server system where 
the client workstations (labeled as node 1) submit SQL requests to a server, 
consisting of a CPU and n disk devices (labeled as nodes 3 and 4) [HLM96]. 
The workstations are modeled as -/G/l-IS station, while the CPU and disk 
device are modeled as -/M/l-FCFS stations. The ethernet (labeled as node 2), 
which connects the workstations with the server, can approximately be mod- 
eled by a -/G/l-IS server. The resulting network is shown in Fig. 9.5. 

The parameters of the model are listed in Table 9.13. Note that workstation 
service rate is specified as three intervals each having a given probability. For 
further details see [HLM96]. 
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Table 9.13 Parameters of the client-server system model 

Node Service Time Visit Ratios 

I1 = [2.3,2.7] : p(Il) = 0.2 
Workstation I2 = [7.4,8.4] : ~(12) = 0.5 1.0 

13 = [16,21] : p(Iz) = 0.3 
Ethernet 0.00185 set 2.0 
CPU 0.12 set 1.0 
Disk 0.054 set 1.0 

9.6 SUMMARY 

The main advantages and disadvantages of the approximation algorithms for 
product-form queueing networks described in this chapter are summarized in 
Table 9.14. 

Tab/e 9.14 Comparison of the approximation algorithms for product-form queueing 

networks. 

Algorithms Advantages Disadvantages 

Bard-Schweitzer 
CBS) 

Very low storage and time No multiple server nodes 
requirement Low accuracy 

SCAT Good accuracy Needs more iterations than BS 
Very low storage requirement 
compared with MVA or convo- 
lution 

SUM Easy to understand and imple- Accuracy is not very high (but 
ment sufficient for most applications) 
Low storage and time require- 
ment 
Easy to extend to non-product- 
form networks 

BOTT The same advantages as SUM Accuracy is not very high (but 
Fewer iterations than SUM sufficient for most applications) 
For multiple class networks, eas- 
ier to implement than SUM 
Accuracy slightly better than 
SUM 

ABA, BJB Well suited for a bottleneck Only for single class networks 
analysis Only upper and lower bounds 
In the design phase, to obtain a 
rough prediction (insight, under- 
standing) of the performance of 
a system 
Extremely low storage and time 
requirement 



IO 
Algorithms for 

Non-Product-Form 
Networks 

Although many algorithms are available for solving product-form queueing 
networks (see Chapters 8 and 9), most practical queueing problems lead to 
non-product-form networks. If the network is Markovian (or can be Markovi- 
zed), automated generation and solution of the underlying CTMC via stochas- 
tic Petri nets (SPNs) is an option provided the number of states is fewer 
than a million. Instead of the costly alternative of a discrete-event simula- 
tion, approximate solution may be considered. Many approximation methods 
for non-product-form networks are discussed in this chapter. These algo- 
rithms and corresponding sections of this chapter are laid out as shown in 
the flowchart of Fig. 10.1. Networks with non-exponentially distributed ser- 
vice times are treated in the next section, while networks with FCFS nodes 
having different service times for different classes are treated in Section 10.2. 
Priority queueing networks and networks with simultaneous resource posses- 
sion are treated in Sections 10.3 and 10.4, respectively. Network models of 
programs with internal concurrency are treated in Section 10.5. Fork-join 
systems and parallel processing are treated in Section 10.6. Networks with 
asymmetric server nodes and blocking networks are discussed in Section 10.7 
and Section 10.8, respectively. 

421 
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Fig. 10.1 Different algorithms for non-product-form networks and corresponding sec- 
tions. 
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10.1 NON-EXPONENTIAL DISTRIBUTIONS 

10.1.1 Diffusion Approximation 

Although we present diffusion approximation as a method to deal with net- 
works with non-exponential service time and interarrival time distributions, 
it is possible to apply this technique to Markovian networks as well. The 
diffusion approximation is a technique based on an approximate product- 
form solution. In this approximation, the discrete state stochastic process 
{K(t) I t 2 O> d escribing the number of jobs at the ith node at time t 
is approximated by a continuous state stochastic process (diffusion process) 
{Xi(t) ] t 2 O}. For the fluctuation of jobs in a time interval we assume 
a normal distribution. In the steady-state, the density function fi(x) of the 
continuous state process can be shown to satisfy the Fokker-Planck equation 
[Koba74] assuming certain boundary conditions. A discretization of the densi- 
ty function gives the approximated product-form-like state probabilities ?i (Ici) 
for node i (see Fig. 10.2). 

K;(t) - - - - - - - - - - - - - - - +f(j&) 

A 

Substitute the 
discrete process by Discretize the 

a continuous density function 
diffusion process 

t 

Xi@> +i (4 
Determine the density function of the diffusion pro- 
cess for the steady state case 

Fig. 10.2 The principle of the diffusion approximation. 

Although the derivation of this method is very complex, the method itself 
is very simple to apply to a given problem. Steady-state behavior of net- 
works with generally distributed service and interarrival times at nodes can be 
approximately solved with the restriction of a single single server at each node. 
At present no solutions are available for multiple class networks [Mitz97]. 

Consider a GI/G/l queueing system with arrival rate X, service rate p, and 
the coefficients of variation cA and cg of the interarrival and service times, 
respectively. Using the diffusion approximation, the following approximated 
state probabilities can be obtained [Koba74, ReKo74]: 

qk) = 
{ 

l-P, k = 0, 
p(l - &P’, Ic > 0, 

with: 

(10.2) 
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and p = X/p < 1. Note that y is defined in Eq. (10.2) for convenience so that 
fi = exp (y ) . For the mean number of jobs we then have: 

(10.3) 

Differential equations underlying the diffusion approximation need bound- 
ary conditions for their solution. Different assumptions regarding these bound- 
ary conditions lead to different expressions. The preceding expressions are 
based on the work of [Koba74] and [ReKo74]. Using different boundary con- 
ditions, [Gele75] and [Mitz97] get different results that are more accurate 
than those of [Koba74] and [ReKo74] for larger values of utilization p. They 
[Gele75], [Mitz97] d erived the following expression for the approximated state 
probabilities: 

1 - P, k = 0, 

(10.4) 

with ,6 and y as in Eq. (10.2). The mean number of jobs is then: 

K=p 1+ 
1 

pc; + c; 1 2u -4 * 
(10.5) 

Next we show how the diffusion approximation can be applied to queueing 
networks. 

10.1.1.1 Open Networks We can make use of the results for the GI/G/l 
system for each node in the network, provided that we can approximate the 
coefficient of variation of interarrival times at each node. We assume the 
following: 

l The external arrival process can be any renewal process 
arrival time 1 /X and coefficient of variation CA. 

with inter- 

l The service times at node i can have any distribution 
time l/pi and coefficient of variation cgi. 

with mean service 

l All nodes in the network are single server with FCFS service strategy. 

According to [ReKo74] the diffusion approximation for the 
state probabilities of the network have a product-form solution 

approximated 

it(kl, I I. (10.6) 
i=l 
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with the approximate marginal probabilities as in Eq. (10.1): 

jqk;) = 
1 
l - Pi) I$ = 0, 
pi(l- lj@-l, k 2 1, 

with 

X . ei 
pi = - 7 

Pi 

pi = exp ( w - Pi) - 
c& * pi + c& > * 

425 

(10.8) 

(10.9) 

We approximate the squared coefficient of variation of interarrival times at 
node i using the following expression: 

N 
cf$ = 1+ 

cc C& - 1) .p$. ej . e,l, (10.10) 
j=o 

where we set: 

2 -2 
cBO - cA* (10.11) 

For the mean number of jobs at node i we get: 

k,=l 

Similar results are presented in [Gele75], [GeMi80], and [Koba74]. 

Source 

Sink 

Fig. 10.3 A simple open queueing network. 

(10.12) 

Example 10.1 In this example (see Fig. 10.3), we show how to use the 
diffusion approximation for a simple open network with N = 2 stations. The 
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external arrival process has mean interarrival time l/X = 2.0 and the squared 
coefficient of variation cA - . 2 - 0 94. The service times at the two stations have 
the following parameters: 

pl = 1.1, p2 = 1.2, c;r = 0.5, cg2 = 0.8. 

With routing probabilities ~110 = ~112 = p21 = p22 = 0.5 and pal = 1, we 
compute the visit ratios, using Eq. (7.4): 

el = ~01 + e2 . ~21 = 2, e2 = el . ~12 + e2 . p22 = 2. 

Node utilizations are determined using Eq. (10.8): 

= 0.909, 
X . e2 

p2 = - = 0.833. 
P2 

We approximate the coefficients of variation of the interarrival time at both 
the nodes using Eq. (10.10): 

2 
Gil = 1 + C(c& - l)p& * 3 

j=o el 

= 1 + (ci - I)& * z + <CL - QPL * z + (c”,, - l)p& * 2 

= 0.920, 
2 

42 = 1 + c(c” Bj - 1)~;~ - 3 = 0.825. 
j=o e2 

With Eq. (10.9) we get: 

& = exp at1 - Pd - 
c;1 * p1+ C&l > 

= 0.873, 

$2 = exp 21 - P2) - 
& - P2 + ($2 > 

= 0.799. 

For the mean number of jobs zi, we use Eq. (10.12) and obtain: 

K1=P1= 
1 - bl 

K2 = A-S- = 4.151, 7.147, 
1 - p2 

and the marginal probabilities are given by Eq. (10.7): 

%1(O) = 1 - pr = 0.091, ?r(k) = pr(1 - /?1)&-’ 

= 0.116.0.873k-1 for k > 0, 

%2(O) = 1 - p2 = 0.167, ;r2(k) = p2(1 - @2)&1 

= 0.167.0.799”-1 for k > 0. 
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10.1.1.2 Closed Networks To apply the diffusion approximation to closed 
queueing networks with arbitrary service time distributions, we can use 
Eq. (10.7) to approximate marginal probabilities %i(ki), provided that the 
throughputs Xi and utilizations pi are known. In [ReKo74] the following two 
suggestions are made to estimate Xi: 

1. For large values of K we use the bottleneck analysis: Search for the 
bottleneck node bott (node with the highest relative utilization), set its 
utilization to 1, and determine the overall throughput X of the network 
using Eq. (10.8). With this throughput and the visit ratios ei, compute 
the utilization of each node. The mean number of jobs is determined 
using Eq. (10.12). 

2. If there is no bottleneck in the network and/or the number K of jobs in 
the network is small, replace the given network by a product-form one 
with the same service rates pi, routing probabilities pij, and the same 
K, and compute the utilizations pi. The approximated marginal proba- 
bilities given by Eq. (10.7) are then used to determine the approximated 
state probabilities: 

(10.13) 

where G is the normalizing constant of the network. Then for the mar- 
ginal probabilities and the other performance measures improved values 
can be determined. 

Fig. 10.4 A simple closed queueing network. 

Example 10.2 Consider the closed network shown in Fig. 10.4 with the 
following parameters: 

p1 = 1.1, p2 = 1.2, c& = 0.5, ci2 = 0.8, 

and the routing probabilities: 

~12 = 1 and ~21 = ~22 = 0.5. 

For the visit ratios we use Eq. (7.5) and get: 

el = 1, e2 = 2. 

At first we choose K = 6 and use the bottleneck analysis to study 
network. 

the 
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10.1.1.2.1 Solution with Bottleneck Analysis Let node bott be the bottleneck 
with the highest relative utilization: 

pb&t = m:x {pi} = A. m”;” 
, 

= x . max{0.909,1.667}, 

which means that node 2 is the bottleneck and therefore its utilization is set 
to 1: 

p2 = 1. 

Using Eq. (10.8) we determine the overall throughput X of the network: 

x = p2 * E 1 Z-----E 
1.667 

0.6. 

For the utilization of node 1 we get: 

pl=+ 0.545. 

Now we use Eq. (10.10) to determine the coefficients of variation of the inter- 
arrival times: 

2 
cam = 1 -t- (&I - l)pfl * el . ell + (c”,, - 1)&r . e2 . ell = 0.9, 

&2 = 1 + (431 - l)Pf2 * el * e;l + (~$3, - l)pz, s e2 . e;l = 0.7. 

The pi are given by Eq. (10.9): 

fi1 = exp ( w - Pl) - 
&'Pl+c;, > 

= 0.3995, - &j = exp 
( 

W-P4 = 
42.P2 +&2 > 

1. 

Now, by using Eq. (10.12) we can compute the 
mean number of jobs: 

approximate for the 

= 0.908, x2 = K - El = 5.092. 

Table 10.1 compares the values obtained by the preceding diffusion approx- 
imation (DA) with those obtained via DES. We can see that in this case the 
results match very well. Such close matching does not always occur, espe- 
cially when one node in the network is highly utilized and the coefficients of 
variation are very small. 

To show the second method, we assume that there are K = 3 jobs in the 
network. 
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Table 10.1 Comparison of results for the example (K = 6) 

Pz (DES) z, (DES) Pi (DA) Et (DA) 

Node 1 0.544 0.965 0.545 0.908 
Node 2 0.996 5.036 1 5.092 

10.1.1.2.2 Solution Using Product-Form Approximation Now we substitute 
the given network by a product-form one. To determine the utilizations of 
this network we can use the MVA and get: 

pr = 0.501 and p2 = 0.919. 

The coefficients of variation for the interarrival times remain the same as in 
the previous met hod: 

& = 0.9 and ci2 = 0.7. 

For the ,!I& we use Eq. (10.9) and obtain: 

j& = exp 21 - Pl) - 
cil * p1+ c& > 

= 0.35, p2 = 0.894. 

The approximated marginal probabilities can be computed using Eq. (10.7): 

%1(O) = 1 - pr = 0.499, h(O) = 1 - p2 = 0.081, 

*r(l) = pr(l - ,&) = 0.326, %(l) = pz(1 - @a) = 0.0974, 

fh(2) = pr(1 - /%)br = 0.114, +2(2) = ,oa(l - fi2)& = 0.0871, 

?I (3) = p1(1 - /qg = 0.039, h(3) = ,%(1 - &)p; = 0.0779. 

Now the following network states are possible: 

(3,0), (24, (1,2), (0,3), 

whose probability is computed using Eq. (10.13): 

k(3,O) = fq3) Gf2(0). ; = 0.00316 - $ 

?(2,1) = 0.01111~ $ 

;r(l,2) = 0.02839. $, 

+(0,3) = 0.03887. $ 

With the normalizing condition: 

fi(3,O) + ?(2,1) + q1,q + q&3) = 1, 
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we determine the normalizing constant G: 

G = 0.00316 + 0.01111 + 0.02839 + 0.03887 = 0.08153, 

which is used to compute the final values of the state probabilities: 

ii(3,O) = 0.039, +(2,1) = 0.136, ii(l,2) = 0.348, qo, 3) = 0.477, 

and with these state probabilities the improved values for the marginal prob- 
abilities are immediately derived: 

~~(3) = ~~(0) = 0.039, ni(2) = ~~(1) = 0.136, 

q(1) = 7r2(2) = 0.348, 7rl(O) = 7r2(3) = 0.477. 

For the mean number of jobs we get 

3 
- 
Ki = c Ice TV = 0.737 and ?7, = 2.263. 

k=l 

In Table 10.2 DES values for this example are compared to values from the 
preceding approximation. 

Table 10.2 Comparison of results for the example (K = 3). 

~z (DES) K, (DES) pi (DA) ‘is7i (DA) 

Node 1 0.519 0.773 0.501 0.737 
Node 2 0.944 2.229 0.919 2.263 

A detailed investigation of the accuracy of the diffusion method can be 
found in [ReKo74]. The higher the utilization of the nodes and the closer the 
coefficient of variation is to 1, the more accurate are the results. 

10.1.2 Maximum Entropy Method 

An iterative method for the approximate analysis of open and closed queueing 
networks is based on the principle of the maximum entropy. The term entropy 
comes from information theory and is a measure of the uncertainty in the 
predictability of an event. To explain the principle of the maximum entropy, 
we consider a simple system that can take on a set of discrete states S. The 
probabilities 7r( S) for different states are unknown; the only information about 
the probability vector is the number of side conditions given as mean values of 
suitable functions. Because in general the number of side conditions is smaller 
than the number of possible states, in most cases there is an infinite number of 
probability vectors that satisfy the given side conditions. The question now is 
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which of these probability vectors shall be chosen as the one best suited for the 
information given by the side conditions and which is least prejudiced against 
the missing information. In this case the principle of maximum entropy says 
that the best-suited probability vector is the one with the largest entropy. 

To solve a queueing network using the maximum entropy method (MEM) 
the steady-state probabilities r(S) are determined so that the entropy function 

H(T) = -C7r(S)lnn(S) (10.14) 
S 

is maximized subject to given side conditions. The normalizing condition 
-the sum of all steady-state probabilities is l-provides another constraint. 
In [KGTA88], p o en and closed networks with one or several job classes and 
-/G/l, -/G/m nodes are analyzed using this approach. Queueing disciplines 
such as FCFS, LCFS, or PS as well as priorities are allowed. An extension to 
the case of multiple server nodes is given in [KoA188]. For the sake of simplicity 
we only consider single class networks with -/G/l-FCFS nodes based on the 
treatment in [Kouv85] and [Wals85]. 

10.1.2.1 Open Networks If we maximize the entropy by considering the side 
conditions for the mean number of jobs I?,, Eq. (7.18), and the utilization pi, 
Eq. (7.26)) then the following product-form approximation for the steady-state 
probabilities of open networks can be derived [Kouv85]: 

where the marginal probabilities are given by: 

(10.15) 

(10.16) 

and where: 

(10.17) 

b, = c-i - pi z - 
Ei ’ 

(10.18) 

Gi zz e-i-- 
1 - pi * 

(10.19) 

To utilize the MEM, we thus need the utilizations pi and 
of jobs Ki at each node. The equation pi = Xi/pi can 

the mean number 
be used to easily 

determine pi from the given network parameters. The mean number of jobs 
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- 
Ki can be approximated as a function of the utilization pi and the squared 
coefficient of variation of the service and interarrival times [Kouv85]: 

(10.20) 
K, = pi 

2 
2 

I+ c$i + Pic%i 

> l-pi ’ 

if the condition (1 - c2Ai)/(l + c’,i) 5 pi < 1 is fulfilled. The computation of - 
the Ki is made possible by approximating the squared coefficient of variation 
c~i of interarrival times. The following iterative expressions for computing 
the squared coefficients of variation is provided by [Kouv85] : 

(-ii = -1+ ($.gql~ (10.21) 

C3i = 1 + pji (Cgj - 1) ) (10.22) 

c$i = pi(l - pi) + (1 - pi)Cii + pfC:i* (10.23) 

There are other approximations for the computation of the mean number 
of jobs ITi and for the estimation of the necessary squared coefficients of 
variation. For more information on these equations, see Section 10.1.3. 

With this information, the MEM for the analysis of open queueing networks 
can be summarized in the following three steps: 

Determine the arrival rates Xi using the traffic equations (Eq. (7.1)) 
and the utilizations pi = Xi/pi for all nodes i = 1, . . . , N. 

Determine the squared coefficients of variation. 

-1 Initialize. The squared coefficients of variations c2Ai of the inter- 
arrival times are initially set to one for i = 1,. . . , N. 

1 STEP 2.2 ] Compute the squared coefficients of variation c2oi of the inter- 
departure times of node i for i = 1, . . . , N using Eq. (10.23). Compute the 
squared coefficients of variation c& of node i for i = 1, . . . , N and j = 0, . . . , N 
using Eq. (10.22). From these the new values of the squared coefficients of 
variation cii of the interarrival times are computed using Eq. (10.21). 

1 STEP 2.3 ] Check the halting condition. If the old and new values for the 
c2Ai differ by more than E, then go back to Step 2.2 with the new & values. 

Determine the performance measures of the network beginning 
with the mean number of jobs ??i for i = 1,. . . , N using Eq. (10.20) and 
then compute the maximum entropy solutions of the steady-state probabili- 
ties using Eq. (10.15). 

The MEM normally approximates the coefficients of variation less accurate- 
ly than the method of Kiihn (see Section 10.1.3) and therefore the method 
of Kuhn is generally preferred for open networks with a single job class. The 
MEM is mainly used for closed networks. 
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IO. 1.2.2 Closed Networks For closed networks that consist only of -/G/l- 
FCFS nodes, the following product-form formulation for the approximated 
steady-state probabilities can be given if we maximize the entropy under the 
side conditions on the mean number of jobs ??i and the utilization pi: 

7r(kl . . .$N) = A- Aqkl). . . . 
G(K) 

- cv@N), 

with: 

(10.24) 

(10.25) 

and: 

G(K) = c F&) . . . . . FN(kN). (10.26) 

As in the case of open networks, coefficients ai and bi are respectively given 
by Eqs. (10.17) and (10.18). Th e computation of the steady-state probabilities 
of closed networks is more difficult than that for open networks as the pi and 
17, values of the individual nodes cannot be determined directly. Therefore 
we use the following trick: We construct a pseudo open network with the same 
number of nodes and servers as well as identical service time distribution and 
routing probabilities as the original closed network. The external arrival rates 
of this open network are determined so that resulting average number of jobs 
in the pseudo open network equals the given number of jobs K in the closed 
network: 

N 

c 
11; = K, (10.27) 

i=l 

where x: denotes the mean number of jobs at the ith node in the pseudo open 
network. The pseudo open network arrival rate X is determined iteratively by 
using Eqs. (10.20) and (10.27), assuming that the stability condition 

Xei 
max - <l 

i { 1 I% 

is satisfied. Here ei is the relative throughput of node i. 
Then the performance measures K;* and pg of the pseudo open network can 

be computed using the maximum entropy method for open networks as given 
in the last algorithm. These performance measures are then used to determine 
the coefficients ai and bi and steady-state probabilities of the pseudo open 
network. To compute the probability vector of the original closed network, we 
use the convolution method (see Section 8.1). By using the functions Fi(ki), 
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Eq. (10.25), th e normalizing constants as well as the utilizations and mean 
number of jobs at each node of the closed network can be computed. This 
approximation uses values for the coefficients ai and bi, which are computed 
for the pseudo open network. To compensate the error in the approximation, 
we apply the work rate theorem (Eq. (7.7)), which gives us an iterative method 
for the computation of the coefficients ai : 

.(n+l) 
z 

= a,!“’ . K . p; . (pi.p$ (10.28) 

with the initial values: 

For the coefficients bi we have: 

(10.29) 

(10.30) 

The asterisk denotes the performance measures of the pseudo open network. 
The algorithm can now be given in the following six steps. 

Compute the visit ratios ei for i = 1,. . . , N, using Eq. (7.2) and 
the relative utilizations xi = ei/pi. 

Construct and solve the pseudo open network. 

r-1 Initialize. Initial value for the squared coefficients of the inter- 
arrival times at node i = 1, . . . , N: 

Initial value for the arrival rate of the pseudo open network: 

x = Oagg 

lCbott ’ 

where x&t = max {xi} is the relative utilization of the bottleneck node. 
i 

[I Compute X from Condition (10.27) by using Eq. (10.20). Thus, 
X can be determined as solution of the equation: 

1 + Csi + X * Xi * C~i 

I.-X-Xi 
-K=O, (10.31) 

if (1 - C~i)/(l + c”,i) 5 X . x; < 1 for all i is fulfilled. To solve the non-linear 
equation, we use the Newton-Raphson method. 
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-1 Compute for i, j = 1,. . . , N the squared coefficients of variation 
2 c&, C$ and & using the Eqs. (10.21)-(10.23). For this computation we need 

the values pi = X-Q and Xi = X.ei. 

p-1 Check the halting condition. If the new values for the & differ 
less than E from the old values, substitute them by the new values and return 
to Step 2.2. 

m% Determine for i = 1, . . . , N the utilizations pi = (A . ei)/y;, and 
with Eq. (10.20) the mean number of jobs l?r in the pseudo open network. 

Determine the coefficients ai and b; of the pseudo open network 
using Eqs. (10.29) and (10.30). 

w Solve the closed network. 

-1 Use the convolution method to determine the normalizing con- 
stant G(K) of the network. The functions Fi(ki) are given by Eq. (10.25). 

-1 Determine the performance parameters pi and ??i of the closed 

network. For this we use the normalizing constant Gc’ (Ic) as defined in 

Eq. (8.8). From Eq. (8.7) we have ni(k) = Fi(lc) + G$$(K - Ic)/G(k) and 
therefore: 

(10.32) 

(10.33) 

(7 Use Eq. (10.28) to determine a new value for the coefficients ai. 
If there is a big difference between the old values and the new values, then 
return to Step 5.1. 

-1 Use Eq. (10.24) to determine the maximum entropy solution for the 
steady-state probabilities and other performance parameters of the network 
ils, e.g., Xi = /hipi or Ti = Xi/X,. 

Fig. 10.5 Closed network. 

Example 10.3 The maximum entropy method is now illustrated on a sim- 
ple network with N = 2 nodes and K = 3 jobs (see Fig. 10.5). The queueing 
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discipline at all nodes is FCFS and the service rates and squared coefficients 
of variation are given as follows: 

Pl = 1, p2 = 2, and 2 
cl?1 = 5, 

2 cB2 = 0.5. 

The analysis of the network is carried out in the following steps. As condition 
for the termination of iterations we choose E = 0.001. 

Determine the visit ratios and relative utilizations: 

el = e2 = 1, and Xl =I, X2=05 Aa 

Construct and solve the pseudo open network. 

I STEP 2 I Initialize: 

c& = ci2 = 1, x = 0.99/x1 = 0.99. 

-1 Determine X. We use the Newton-Raphson iteration method to 
solve the following equation: 

2 x-xi 
z ( - 1+ c& + x * xi * c& 

2 1-X.X; > -3=o 

and get X = 0.5558. 

-1 Determine the squared coefficients of variation: 

& = pl(l - ~1) + (1 - pl)c;, + p~c& = 2.236, 

3j2 = p2(1 - ~2) + (I- ,a)~;, + p;~;~ = 0.961, 
2 cl2 = 1 + ~12 s (c”,, - 1) = 2.236, 
2 c21 = 1 + pzl . (4, - 1) = 0.961, 

& = -1 + 
( 

x2 ’ P21 

k (%, + 1) > 

-l = o g61 
LT 

ci2 = -1+ Xl * P12 

x2 * (42 + 1) > 

--I = 2 236 
A. 

(-2.4 Check the halting condition: 

1 Cy;f-) - c?;ld) 1 = (0.961 - l( = 0.039 > E, 

Icy - c~;~~)I = 12.236 - 11 = 1.236 > E. 

As the halting condition is not fulfilled, we return to Step 2.2 and determine 
a new value for the constant X. 
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After 14 iterations, the halting condition is fulfilled and we get the following 
results: 

x = 0.490, 2 CA1 = 2.130, ci2 = 2.538. 

Determine pi* and xz: 

= 2.446, 

Determine the coefficients: 

Pi PT ~ . ~ = 0.241, 
a1 = 1 - pT KT - pi 

b =K;-d o8 
1 - =‘) -* 

Kl 

Solve the closed network. 

Pa PZ - . ~ = 0.257, 
a2 = 1 - p; 17; - p; 

bz = 
Xi-p; 
- = 0 558 E* La 

2 

-1 Determine the normalizing constant using the convolution meth- 
od (see Section 8.1). For the functions Fi(Ici), i = 1,2, we use Eq. (10.25) and 
get: 

wo = I, F2(0) = L, 

I-$(l) = 0.193, Fz(1) = 0.144, 

Fr(2) = 0.154, F2(2) = 0.080, 

&(3) = 0.123, F2(3) = 0.045. 

The procedure to determine the G(K) is similar to the one in Table 8.2 and 
summarized in the following tabular form: 

k 
\ n 2 

0 1 1 
1 0.193 0.3362 
2 0.154 0.2618 
3 0.123 0.2054 

For the normalizing constant we get G(K) = 0.2054. 

-1 Determine pi and xi. For this we need the normalizing constant 

G!‘(5) of the network with Node i short-circuited. We have only two nodes 
and therefore it follows immediately that: 

G(l% = Fz(k), nr G% = Fl (k) iv 3 
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and, therefore: 

p1 = 1 - @ = 0.782, p2 z 1 - @# = 0 400 L, 

Fl@) (1) - - . G, (K - k) = 2.090, 
k=l G(K) 

- k) = 0 910 :* 

[I Determine the new coefficients ai. With Eq. (10.28) we get: 

(new) _ 
% -. al + KS p; . (&$ =0.242, 

(new) _ 
a2 -a2+K.p;+ (p2.$$’ =o.253. 

Because the old and new values of the ai differ more than E = 0.001, the 
analysis of the closed network has to be started again, beginning with Step 5.1. 

After altogether three iteration steps the halting condition is fulfilled and we 
get the following final results: 

p1 = 0.787, p2 = 0.394, and x1 = 2.105, K2 = 0.895. 

Compute all other performance measures: 

X1 = /xlpl = 0.787, 
- 

X2 = p2p2 = 0.787, 

T1 = K1/X1 = 2.675, T2 = J&/x:! = 1.137. 

To compare the results, we want to give the exact values for the mean 
number of jobs: 

x1 = 2.206, K2 = 0.794. 

The method of Marie (see Section 10.1.4.2) gives the following results: 

x1 = 2.200, K2 = 0.800. 

The closer the service time distribution is to an exponential distribution 
(c& = 1) , the more accurate are the results of the MEM. For exponentially 
distributed service and arrival times the results are always exact. Another 
important characteristic of the MEM is the fact that the computation time is 
relatively independent of the number of jobs in the network. 
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10.1.3 Decomposition for Open Networks 

This section deals with approximate performance analysis of open non-pro- 
duct-form queueing networks, based on the method of decomposition. The 
first step is the calculation of the arrival rates and the coefficients of varia- 
tion of the interarrival times for each node. In the second step, performance 
measures such as the mean queue length and the mean waiting time are cal- 
culated using the GI/G/l and GI/G/ m f ormulae from Sections 6.12 and 6.14. 
The methods introduced here are those due to Kuhn [Kiihn’lS, Bolc89], Chylla 
[Chy186], Pujolle [PuAi86], Whitt [Whit83a, Whit83b] and Gelenbe [GePu87]. 

Open networks to be analyzed by these techniques must have the following 
properties: 

l The interarrival times and service times are arbitrarily distributed and 
given by the first and second moments. 

l The queueing discipline is FCFS and there is no restriction on the length 
of the queue. 

l The network can have several classes of customers (exception is the 
method of Kuhn). 

l The nodes of the network can be of single or multiple server type. 

l Class switching is not allowed. 

With these prerequisites the method works as follows: 

Calculate the arrival rates and the utilizations of the individual 
nodes using Eqs. (10.35) and (10.36), and (10.37) and (10.38), respectively. 

Compute the coefficient of variation of the interarrival times at 
each node, using Eqs. (10.41)-( 10.44). 

Compute the mean queue length and other performance measures. 

We need the following fundamental formulae (Step 1); most of them are 
from Section 7.1.2: 

Arrival rate Xij,T from node i to node j of class r: 

Arrival rate Xi,, to node i of class r: 

N 

k,r = XOi,r + C Xj,r * Pji,r- 
j=l 

(10.35) 
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Arrival rate Xi to node i: 

Utilization pi,r of node i due to customers of class T: 

pi,r = ~. 
mi f Pi,r 

Utilization pi of node i: 

R 

Pi = C Pi,r* 

r=l 

The mean service rate pi of node i: 

1 

Coefficient of variation cgi of the service time of node i: 

R Air 
2 

& = -1+ 
c ( 

A. r=l Ai & 
> * @fJ- + l), 

(10.36) 

(10.37) 

(10.38) 

(10.39) 

(10.40) 

with coefficient of variation ci,r for the service time of customers of class r at 
node i. 

The calculation of the coeficient of variation or interarrival times (Step 2) 
is done iteratively using the following three phases (see Fig. 10.6): 

0 1291) C2z,l > 

\ 

(hl,l, &, 

. (Lc;z) (X2) . z,CD, 

. 
) 

-: 

. 
. 

/ 

. 

VNi,R> CK,,,) (~N,R, $~v,R) 

Phase 1: Merging Phase 2: Flow Phase 3: Splitting 

Fig. 10.6 Phases of the calculation of the coefficient of variation. 

l Phase 1: Merging 

Several arrival processes to each node are merged into a single arrival 
process. The arrival rate X is the sum of the arrival rates of the individual 
arrival processes. For the coefficient of variation of the interarrival time, 
the several authors suggest different approximate formulae. 
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l Phase 2: Flow 

The coefficient of variation cg of the interdeparture times depends on 
the coefficients of variation of the interarrival times CA and the service 
times cg . Here again the different authors provide different approximate 
formulae. 

l Phase 3: Splitting 

For the splitting of the departure process, all authors apply the formula: 

cFj,r = 1 +pij,r * (c& - 1). (10.41) 

The iteration starts with phase 1 and the initial values are: cij,r = 1. 
The corresponding formulae for phases 1 and 2 are introduced in the fol- 

lowing: 

l Decomposition of Pujolle [PuAi86]: 

Merging: 

*A j,r ’ Pji,r + &i,r ’ XO,r * POi,r , (10.42) 

2 _ 1 R 
cAi - x - i 

c ‘ii,r * k,r- 

r=l 

(10.43) 

Flow: 

‘Y&i = Pf ’ <&i + l) + (l - Pi) ’ C~i + Pi * (1 - 2pi). (10.44) 

l Decomposition of Whitt [Whit83b, Whit83a]: 

Merging: see Pujolle. 

Flow: 

2 Cgi = 1 + ” ’ (~- ‘) + (1 - pi) ’ (C~i - 1). (10.45) 

l Decomposition of Gelenbe [GePu87]: 

Merging: see Pujolle. 

Flow: 

c& = -1 + Ai 5 !Q * (c& + 1) + (1 - pi) * (Cii + 1+ 2 * Pi>. 
r=l CLG~ 

(10.46) 
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l Decomposition of Chylla [Chyl86]: 

2 N xj,r * Pji,r 
CA+ = 1 + c x, * gi,, - l>, 

j=o 2,r 
(10.47) 

(10.48) 

Flow: 

2 cgi = 1 + P& (pi) + (& - 1) + (1 - P:,(pi)) * <c;, - 1). (10.49) 

fig. 10.7 Substitution of a feedback. 

l Decomposition of Kuhn [Kiihn79]: 

Before starting with the iteration in the method of Kuhn, nodes with 
direct feedback are replaced by nodes without feedback (see Fig. 10.7 
and Eq. (10.50)). 

CL: = pip - Pii), x; = Xi(l - Pii), cg = pii + (1 - p&‘,,, 

Pij 
& = 1 _ pii ~ for j f i, p,’ = 0. 

(10.50) 

c& = 2&i * x2i * (Ali + A%) * (I1 + I2 + 13 + I*) - 1. (10.51) 

Only two processes can be merged by this formula. If there are more 
processes to merge, then the formula must be used several times. The 
terms Zl,l = 1,2,3,4 are functions of the Xji and the cj;. For details see 
[Kuhn791 or [Bolc89]. 
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Flow: 

c& = Cii + a&& - pf (& + &) - GKLB. 

For GKLB see Eqs. (6.72) and (6.92). 

(10.52) 

To calculate the mean queue length (Step 3) and the other performance 
measures, GI/G/l and GI/G/ m f ormulae from Sections 6.12 and 6.14 can be 
used in the case of a single class of customers. Here we give the extension of 
the most important formulae to the case of multiple classes of customers: 

l M/M/m-FCFS: 

(10.53) 

with the probability of waiting, P,;, given by Eq. (6.28) 

l Allen-Cunneen [AllegO] : 

l Kramer/Langenbach-Belz [KrLa76]: 

Q~,TKLB = Qi,rAC ’ GKLB, 

with the correction factor: 

i 

e i 

2 (1 - pi) C1 - Gi,rj2 
--.-. 

3 Pi (CL,, + C”,i,,> 
G KLB = 

(4,r - 1) 

- 
e ( 

(’ - pi) ’ (C”,i,, + C~i,~) 
7 

l Kimura [Kimu85] : 

(10.54) 

(10.55) 

c5i,r 5 ‘7 (10.56) 

c;i,r > 1. 

<‘Zli,r- + 4i,r) 
. 

l-4, T 

l-4C(?&,) * e 
( 

2 (l--Pi) 
-3 Pi ) 

l-4, T 

+ 1fChh + cf& + c&. - 1’ 

with the coefficient of cooperation 

C(mi, pi) = (1 - pi)(mi 
-l> J275&2 

16mip; ’ 
(10.58) 

(10.57) 
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Sink 

Fig. 10.8 Open non-product-form queueing network. 

l Marchal [Marc78]: 

Qi,rMAR z5 Qi,rM,M/rn 
(1 + C”,i,,> * (c&l. + P%i,?-1 

20 + P5c;i.J 
+ GKLB. (10.59) 

Example 10.4 Consider the open non-product-form queueing network of 
Fig. 10.8. The routing probabilities of the network are given by: 

~12 = 0.5, ~13 = 0.5, p31 = 0.6, p21 = p41 = 1. 

Jobs are served at different nodes with rates: 

~1 = 25, p2 = 33.333 /!.L3 = 16.666, /A4 = 20, 

and arrive at node 4 with rate X 04 = 4. The coefficients of variation of the 
service times at different nodes as well as of the interarrival times are given 
by: 

c& = 2.0, c& = 6.0, c& = 0.5, c& = 0.2, Co4 - 2 - 4.0. 

With Eq. (10.35) we can determine the arrival rate at each node: 

Xl =2J, x2 =a, x3 =lo, x4 =4, 

and using Eq. (10.37) we determine the utilizations of different nodes: 

p1=0.8, p2=0.3, p3 = 0.6, p4 = 0.2 -* 

The initial values for the coefficients of variation cij are: 

Cf2 = CT3 = c;1 = c;1 = c& = 1. 

Now we start the iteration using the decomposition of Pujolle to obtain the 
different coefficients of variation of the interarrival times c;~, i = 1,2,3,4. 
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Iteration 1: 
Merging (Eq. (10.42)): 

d, = &h?1)21 + & X3P31 + c41 X4P41) 

= &lOl+llO~O.6+1~4l) 

YZ 1. 

Similarly, we obtain: 

Flow (Eq. (10.44)): 

611 = Pa3, + 1) + (1 - Pl)zl, + /a(1 - 2Pl) 

= 0.82(2 + 1) + (1 - 0.8) + 1 + 0.8 . (1 - 2 -0.8) 

=1.64. 

Similarly, we get: 

c& = 1.45, c& = 0.82, c& = 3.368. 

Splitting (Eq. (10.41)): 

CT2 = 1+m2+201 -1) 
= 1 + 0.5 . (1.64 - 1) 

= 1.32, 
2 cl3 = 1.32, c& = 1.45, c31 = 0.892, c& = 3.368. 

Iteration 2: 
Merging (Eq. (10.42)): 

cil = 1.666, c;2 = 1.32, ci3 = 1.32, ci4 = 4.0. 

Flow (Eq. (10.44)): 

cg, = 1.773, c& = 1.674, c& = 0.948, c& = 3.368. 

Splitting (Eq. (10.41)): 

2 cl2 = 1.387, cf3 = 1.387, c& = 1.674, c& = 0.969, c& = 3.368. 

After six iteration steps we get the values for the coefficients of variation of 
the interarrival times ci, at the nodes, shown in Table 10.3. In Table 10.4 the 
mean number of jobs at different nodes are given. We use the input parameters 
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Table 10.3 Coefficients of variation cii, i = 1,2,3,4 of the inter- 
arrival times at the nodes 

Iteration 4, 4, 4, 
1 1.0 1.0 1.0 4.0 
2 1.666 1.320 1.320 4.0 
3 1.801 1.387 1.387 4.0 
4 1.829 1.400 1.400 4.0 
5 1.835 1.403 1.403 4.0 
6 1.836 1.404 1.404 4.0 

Table 10.4 Mean number of jobs ??, at node i 
using the formulae of Allen-Cunneen (AC), Krgmer- 
Langenbach/Belz (KLB) , and discrete-event simulation 

(DES) 

Methods EI 772 773 774 

AC 6.94 0.78 1.46 0.31 
KLB 5.97 0.77 1.42 0.27 
DES 4.36 0.58 1.42 0.23 

and values for the coefficients of variation for the interarrival times at the 
nodes after six iterations (given in Table 10.3). As we can see in Table 10.4, 
we get better results if we use the Kramer-Langenbach/Belz formula instead 
of the Allen-Cunneen formula. 

Example 10.5 In this second example we have two servers at node 1. The 
queueing network model is shown in Fig. 10.9. 

Source 
z * << : < * 

c7 
” ” 

Sink 

Fig. 10.9 Open non-product-form queueing network with two servers at node 1. 

The service rate of each server at node 1 is ,~i = 12.5. All other input 
parameters are the same as in Example 10.4. We also have the same values 
for the arrival rates Xi and the utilizations pi. The initial values for the 
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coefficients of variation c;j are again: 

2 2 2 
Cl2 = Cl3 = c21 = c& = CT;1 = 1.0. 

This time we use the formula of Whitt to determine the coefficients of variation 
cAi iteratively. 

Iteration 1: 
Merging: Whitt uses the same merging formula as Pujolle (Eq. (10.42)) and 
we get: 

Flow (Eq. (10.45)): 

c& = l+ P?Gl - 1) 
fi 

+ (1 - Pxi, - 1) 

= 1 + O-64(2 - 1) 
l.h 

+ (1 - 0.64)(1 - 1) 

= 1.453 

c& = 1,45, cg3 = 0.82, c& = 3.848. 

Splitting (Eq. (10.41)): 

cT2 = 1.226, cT3 = 1.226, c;i = 1.450, c& = 0.892, & = 3.848. 

Iteration 2: 
Merging (Eq. ( 10.42)) : 

cil = 1.762, cl2 = 1.226, c;, = 1.226, c;, = 4.0. 

Flow (Eq. (10.45)): 

CL1 = 1.727, c& = 1.656, c& = 0.965, c& = 3.848. 

Splitting (Eq. (10.41)): 

2 cl2 = 1.363, cT3 = 1.363, c;i = 1.656, c& = 0.979, c& = 3.848. 

After seven iterations, we get the values for the coefficients of variation of 
the interarrival times ci, at the nodes shown in Table 10.5. In Table 10.6, 
the mean number of jobs at the different nodes are given. We use the input 
parameters and values for the coefficients of variation for the interarrival times 
at the nodes after seven iterations (given in Table 10.5). These results are 
similar to the results of Example 10.4, and the differences with discrete-event 
simulation results are slightly smaller than in Example 10.4. 
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Table 10.5 Coefficients of variation cii of the interarrival times 
at the nodes 

Iteration 4, 
1 1.0 1.0 1.0 4.0 
2 1.762 1.226 1.226 4.0 
3 1.891 1.363 1.363 4.0 
4 1.969 1.387 1.387 4.0 
5 1.983 1.401 1.401 4.0 
6 1.991 1.403 1.403 4.0 
7 1.992 1.405 1.405 4.0 

Tab/e 10.6 Mean number of jobs ??, at the nodes using the 
formula of Allen-Cunneen (AC), Krtimer-Langenbach/Belz 
(KLB), and discrete-event simulation (DES) 

AC 6.48 0.78 1.46 0.31 
KLB 6.21 0.77 1.42 0.27 
DES 4.62 0.57 1.38 0.23 

10.1.4 Methods for Closed Networks 

10.1.4.1 Robustness for Closed Networks In case of closed non-product-form 
queueing networks with -/G/l and -/G/m FCFS nodes, the easiest way to 
analyze them is to replace the -/G/l and -/G/m FCFS nodes by -/M/l 
and -/M/m FCFS nodes and to use a product-form method such as MVA, 
convolution, or the SCAT algorithm. This substitution can be done due to the 
property of robustness of such closed non-product-form queueing networks. 
Robustness, in general, means that a major change in system parameters 
generates only minor changes in the calculated performance measures. In 
our case it means that if we replace the values of the coefficients of variation 
of the service times c& (i = 1,. . . , N) by 1, i.e., we assume exponentially 
distributed service times instead of arbitrarily distributed service times, we 
obtain a tolerable deviation in the calculated performance measures. 

We have investigated more than 100 very different closed non-product- 
form queueing networks with -/G/l and -/G/m FCFS nodes. The maximum 
number of nodes was 10 and the coefficient of variation varied from 0.1 to 
15. For a network with only -/G/l FCFS nodes, the mean deviation is about 
6% for both single and multiple class networks. In the case of only -/G/m 
FCFS nodes, the deviation decreases to about 2%. If we have only -/G/co 
nodes, the deviation is zero. The difference between single and multiple class 
networks is that the maximum deviation is greater for multiple class networks 
(40% instead of 20% for single class networks). 
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For open non-product-form queueing networks, the influence of the coeffi- 
cients of variation is much greater, especially if the network is a tandem one 
without any feedback. So we cannot suggest to use the property of robust- 
ness to obtain approximate results for open non-product-form queueing net- 
works. It is better to use one of the approximation methods introduced in 
Section 10.1.2. 

Example 10.6 In this example we study the robustness property of several 
closed networks with different coefficients of variation. Consider the three 
network topologies given in Fig. 10.10 together with four combinations of the 
coefficients of variation (see Table 10.7). Note that the first combination (a) 
corresponds the case of all service times being exponentially distributed and 
the corresponding network being a product-form one. The analysis of the 
resulting models is done with K = 5 and K = 10 jobs in the system. 

Table 10.7 Squared coefficients of variation for the net- 
works in Fig. 10.10 

Combinations Node 1 Node 2 Node 3 

41 42 43, 

z 0.2 1.0 0.4 1.0 0.8 1.0 

1 4.0 2.0 4.0 1.0 0.2 8.0 

We use two combinations of service rates. The first combination leads to 
a more balanced network, while the second combination results in a network 
with a bottleneck at node 1 (see Table 10.8). 

Tab/e 10.8 Two combinations of service rates 

Balanced network 0.5 0.333 0.666 
Network with bottleneck 0.5 1.0 2.0 

In Tables 10.9 and 10.10, the throughputs X for the three network topolo- 
gies together with the different combinations of the coefficient of variation 
are given. If we compare the product-form approximation results (case a, 

Table 10.7) with the results for non-product-form networks (cases b, c, and 
&, Table 10.7), given in Tables 10.9 and 10.10, we see that the corresponding 
product-form network is a good approximation to the non-product-form one 
provided: 

l The coefficients of variation are < 1 (case b) and/or not too big (case 

4. 
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Network 1 

--l-/-F ) p12 =0.6; p13 =0.4 

r 

Network 2 

~12 = 0.6; p13 = 0.4 

P21 = 0.3; p23 = 0.7 

Network 3 

Pll = 0.2; p12 = 0.4; p13 = 0.4; 

P21 = 0.3; P22 = 0.2; p23 = 0.5; 

p31 = 0.6; p32 = 0.2; ~3~ = 0.2; 

Fig. 10.10 Different closed networks. 
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Table 10.9 Throughputs X for the networks in Fig. 10.10, for the balanced case 

Squared Coefficient Network 1 Network 2 Network 3 

of Variations K=5 K = 10 K=5 K = 10 K=5 K = 10 

E 0.43 0.47 0.47 0.50 0.41 0.45 0.47 0.49 0.37 0.40 0.42 0.44 

: 0.39 0.37 0.44 0.42 0.48 0.33 0.47 0.39 0.36 0.29 0.41 0.34 

Tab/e 10.10 Throughputs X for the networks in Fig. 10.10, for the case with a bottle- 
neck. 

Squared Coefficient Network 1 Network 2 Network 3 

of Variations K=5 K = 10 K=5 K = 10 K=5 K = 10 

; 0.50 0.50 0.50 0.50 0.52 0.51 0.50 0.50 0.50 0.50 0.52 0.52 

zi 0.49 0.47 0.50 0.50 0.52 0.47 0.50 0.50 0.49 0.48 0.52 0.50 

l The network has a bottleneck. 

l The number of jobs in the network is high. 

The larger the coefficients of variation (c& > I), the larger are the devia- 
tions. 

Example 10.7 In this example we consider in more detail the dependency 
of the approximation accuracy on the number of jobs K in the network. The 
examination is based on the first network given in Fig. 10.10 together with 
the same input parameters except that ,~i = 1, for i = 1,2,3. The results for 
the throughputs X for different numbers of jobs K are shown in Table 10.11. 
As we can see in Table 10.11, the larger the number of jobs K, the better is 
the approximation. 

Table 10.11 Throughput X for the Network 1 shown in Fig. 10.10, for different values 
of K and combinations of the cii 

K 3 4 5 10 20 50 

E 0.842 - 0.907 0.970 0.940 0.991 0.996 1.00 1.00 1.00 1.00 1.00 

zi 0.716 - 0.856 0.766 0.894 0.805 0.972 0.917 0.998 0.984 1.00 1.00 
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10.1.4.2 Marie’s Method If the network contains single or multiple server 
FCFS nodes with generally distributed service times, then an approximate 
iterative method due to Marie [Mari79, Mari80] can be used. In this method 
each node of the network is considered in isolation with a Poisson arrival 
stream having load-dependent arrival rates Xi (Ic). To determine the unknown 
arrival rates Xi (Ic), we consider a product-form network corresponding to the 
given non-product-form network. The product-form network is derived from 
the original network by simply substituting the FCFS nodes with generally 
distributed service times by FCFS nodes with exponentially distributed ser- 
vice times (and load-dependent service rates). Because the service rates pi(lc) 
for the nodes of the substitute network are determined in the isolated analysis 
of each node, the method is iterative where the substitute network is initial- 
ized with the service rates of the original network. The load-dependent arrival 
rates Xi(k) of the nodes 1, , . . , N can be computed by short-circuiting node i 
in the substitute network (see Fig. 10.11). All other nodes of the network are 
combined into the composite node c (see Section 8.4). 

fig. 10.11 Short-circuiting node i in the substitute network. 

If there are k jobs at node i, then there are exactly K - k jobs at the 
composite node c. The load-dependent service rate through the substitute 
network with K - k jobs and short-circuited node i is, therefore, the arrival 
rate at node i with k jobs at node i, which is: 

Xi(k) = Ap)(K - k), for k = 0,. . . , (K - 1). (10.60) 

Here Xp)(K - k) denotes the throughput of the network with node i short- 
circuited. This throughput can be computed using any algorithm for a pro- 
duct-form network. 

The arrival rates X;(k) can now be used for the isolated analysis of the 
single node of the network. The state probabilities ni(k) of the nodes in the 
substitute network and the values of the load-dependent service rates p;(k) 
for the next iteration step have to be computed. It is shown in [Mast771 that 
in the considered network for each isolated node, a partition of the state space 
can be found so that the following condition holds: 

vi(k) . xi(k) = Xi(k - 1) . ni(k - 1). (10.61) 

According to this equation the probability that a job leaves a node in state k 
is equal to the probability that a job arrives at the same node when this node 
is in state k - 1. The stochastic process, which can be assigned to the node 
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under consideration, behaves exactly like a birth-death process with birth 
rates Ai and death rate vi(lc) ( see Section 3.1). The state probabilities, 
which we are looking for, can therefore be computed as follows: 

k= l,...,K, (10.62) 

(10.63) 

The new load-dependent service rates for the nodes in the substitute network 
for the next iteration step are then chosen as follows: 

pi(k) = vi(k) for i = l,...,N. (10.64) 

Now the main problem is to determine the rates vi(lc) for the individual 
nodes in the network. The fact that in closed queueing networks the number 
of jobs is constant allows us to consider the individual nodes in the network 
as elementary X(lc)/G/m/K t t s a ions in the isolated analysis. The notation 
describes a more specific case of a GI/G/ m node where the arrival process is 
Poisson with state-dependent arrival rates and for which an additional number 
E( exists, so that X(lc) > 0 for all Ic < K and X(lc) = 0 for all Ic 2 K. 

If we do the isolated analysis, we have to differentiate between the following 

l Product-form node 

l Single server node with FCFS service strategy and generally distributed 
service time 

In the first case, a comparison of the Eqs. (10.62) and (10.63) with the 
corresponding equations to compute the state probabilities of product-form 
nodes with load-dependent arrival rates [Lave83] shows that the rates vi(lc) 
correspond to the service rates pi(k). For nodes with exponentially distributed 
service times and service discipline PS, IS, LCFS PR, respectively, it follows 
immediately from Eq. (10.64), that the service rates of the substitute network 
remain unchanged in each iteration step. 

Next, consider FCFS nodes with generally distributed service times, which 
can be analyzed as elementary X(k)/G/l/K-FCFS systems. Under the as- 
sumption that the distribution of the service time has a rational Laplace 
transform, we use a Cox distribution to approximate the general service times. 
Depending on the value of the squared coefficient of variation c‘& of the service 
time, different Cox models are used: if c& = l/m&& for m = 3,4, . . ., where E 
is a suitable tolerance area, then we use an Erlang model with m exponential 
phases, If ~5; _ > 0,5, then a Cox-2 model is chosen. For all other cases a 
special Cox model with m phases is chosen. 
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According to [Mari80], the parameters for the models are determined as 
follows: 

l For a Coz-2 model (Fig. 10.12): 

Fig. IO.12 Cox-2 model. 

l The special Cox-m model is shown in Fig. 10.13. A job leaves this 
model with probability bi after completing service at the first phase or 
runs through the rest of the (m - 1) exponential phases before it is 
completed. The number m of exponential phases is given by: 

1 
m= 7j-. 1 1 CBi 

” 

, ” ** 

Fig. IO.13 Special Cox-m model. 

From Section 1.2.1, we have: 

2mc& + (m - 2) - j/m2 + 4 - b, 4mcgi 
a 

= 

2(m 
9 

- 
1)(c2Bi 

+ 1) 

/% = [m - bi(m - l)] /%i* 

Here bi denotes the probability that a job leaves node i after the first 
phase. 

l For the Erlang-m model we have: 
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Fig. 10.14 General Cox-m model. 

Next consider the general Cox-m model, shown in Fig. 10.14. Each of the 
elementary X(k)/C,/l/K d no es can be assigned a CTMC whose states (k, j) 
indicate that the service process is in the jth phase and k jobs are at node i 
with corresponding steady-state probability ~(k, j). The underlying CTMC 
is shown in Fig. 10.15. 

The corresponding balance equations for each node i are given by: 

(10.65) 
j=l 

x&k - 1)7ri(lc - 1,l) + &,&,j?ri(k + l,j) 
j=l 

= Xi(lc)%(b 1) + i&,1+, 11, (10.66) 
x&k - 1)7r& - 1,j) + a;$-i&j-i7ri(k,j - 1) 

= h(+G(k?> + fii,jT(kj). (10.67) 

Let xi(k) denote the probability that there are k jobs at node i and vi(k) 
the conditional throughput of node i with k jobs: 

(10.68) 
j=l 

F h,jl%j% (k j> 

Vi(k) = j=l m 

’ 
(10.69) 

Jg 746 8 

Here b,,j denotes the probability that a job at node i leaves the node after the 
jth phase. If we add Eq. (10.66) to Eq. (10.67) (for j = 2,. . . , m), we obtain 
for node i: 

j=l j=l 

m m 
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Fig. 10.15 CTMC for the general Cox-m model. 
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Now we can apply Eq. (10.69) to Eq. (10.70) and obtain: 

&(k-l).~s(k-l,j)+u,(k+l).~?r~(k+l,j) 
j=l j=l 

= b(k) * &i(k’j) + Q‘q &i(k, j), 

j=l j=l 

Xi(k - l);lri(k - 1) + Vi(k + 1)7ri(k + 1) = Xi(lc)7ri(k) + Vi(k)7l’i(k). 

If we now consider Eq. (10.65), we finally get for the solution of an elementary 
X(k)/C,/l/K system in steady-state [Mari78]: 

Ui(k)7ri(k) = Xi(k - 1)7ri(k - 1). 

But this is exactly Eq. (10.61). For this reason the state probabilities of an 
FCFS node with generally distributed service time can be determined using 
Eqs. (10.62) and (10.63) h w ere Eq. (10.69) is used to compute the conditional 
throughputs vi (k) of the single nodes. 

To determine the conditional throughputs, efficient algorithms are given in 
[Mari80]. In the case of an exponential distribution, vk(k) is just given by: 

Vi(k) = /Lis (10.71) 

In the case of an Erlang-m model, vi(k) is given by: 
n 

Vi(k) = 

Y-1 Pi . (,i, v@sl)) ’ (10’72) 
‘%d”) + Jgl(-l)‘Ei;k(J) n fii 

with: 

Y-1 

-&k(j) = c z,,,(j), 

n=j T,” j h=k-j 

(h, h-1,. . . , &c-j) : b’k E {k,. . . , k - j}, 
k 

o<vh<n-j, 
c 

vh=n-j , 
> 

h=k-j 

%,h = 1 + (bi,h, (pi,h = Xi(h), 

Pi 

y=min{m,k}. 

For the Cox-2 model (c& 2 0.5), an even simpler equation exists: 

b(k) - L&l . bill + fiil - ,%2 

vi(k) = (Xi(k) + /Gil + /Liz) - vi(k - 1) ’ 
for k > 1. 

(10.73) 

(10.74) 
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We do not discuss the algorithms for the computation of the conditional 
throughputs of the other model type (c& < 0.5). The interested reader is 
referred to the original literature [Mari80]. 

The computed vi(b) are used in the next iteration step as load-dependent 
service rates for the nodes in the substitute network, Eq. (10.64). To stop the 
iteration, two conditions must be fulfilled. First, after each iteration we check 
whether the sum of the mean number of jobs equals the number of jobs in the 
network: 

where E is a suitable 

i=l 
K 

tolerance and 

K 

< E, 

- 
Ki = ~hri(k) 

k=l 

(10.75) 

is the mean number of jobs at the ith node. 
Second, we check whether the conditional throughputs of each node 

consistent with the topology of the network: 

1 N 
rj - - N ri c 

i=l 

1 N 
N ri c 

i=l 

are 

<E for j=l,...,N, (10.76) 

where: 

xj 1 
r.?=-=- ej ej 

is the normalized throughput of node j and ej is the visit ratio. Usual values 
for E are 10e3 or 10b4. 

Thus, the method of Marie can be summarized in the following four steps: 

Initialize. Construct a substitute network with the same topology 
as the original one. The load-dependent service rates pi(k) of the substitute 
network for i = 1,. . . , N and k = 0,. . . , K are directly given by the original 
network. A multiple server node with service rate ,QL~ and rrzi servers can be 
replaced by a single server node with the following load-dependent service 
rate (see also Section 6.5): 

“(Ic)= i Ziin{i, rn,}-pi, 

for Ic = 0, 

7 ?. for Ic > 0 . 
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With Eq. (10.60), determine for i = 1,. . . , N and k = 0,. . . ,(K-1) 
ependent arrival rates Xi(lc) by analyzing the substitute network. 

Here any product-form analysis algorithm from Chapter 8 can be used. For 
k = K we have: Xi(K) = 0. 

Analyze each individual node of the non-product-form network 
oad-dependent arrival rate X;(k). Determine the values vi(k) and 

the state probabilities ri(k). The computation method to be used for the 
vi(k) depends on the type of node being considered (for example Eqs. (10.73) 
and (10.74) for Cox-2 nodes), while the ~i (k) can all be determined using 
Eqs. (10.62) and (10.63). 

Check the stopping Conditions (10.75) and (10.76). If the condi- 
tions are fulfilled, then the iteration stops and the performance measures of 
the network can be determined with the equations given in Section 7.2. Oth- 
erwise use Eq. (10.64), pi(k) = v,(k), t o compute the new service rates for 
the substitute network and return to Step 2. 

Fig. IO.16 Closed queueing network. 

Example 10.8 In this example we show how to apply the method of Marie 
to a simple closed queueing network with N = 3 nodes and K = 2 jobs (see 
Fig. 10.16). The service strategy at all nodes is FCFS and the service times 
are generally distributed with the mean service times: 

1 
- = 2seq 

1 
- = 4sec, 

1 
- = 2 set, 

Pl P2 cl3 

and the squared coefficients of variation are: 

2 
CBl = 1, 

2 cf32 = 4, Ci3 = 0.5. 

The visit ratios are given as: 

el = 1, e2 = 0.5, e3 = 0.5. 

We assume a tolerance of E = 0.001. The analysis of the network can then be 
done in the given four steps. 
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Initialize. The service rates of the substitute network can directly 
be taken from the given network: 

/-Q(l) = Pl(2) = 0.5, /42(l) = p2(2) = 0.25, ,~(l) = ~~(2) = 0.5. 

We obtain the substitute network from the original model by replacing the 
FCFS nodes with generally distributed service times by FCFS nodes with 
exponentially distributed service times. 

Compute the load-dependent arrival rates Xi (k) for i = 1,2,3, and 
for k = 0, 1,2: When using the convolution method (see Section S.l), we first 
need to determine the normalizing constants of the substitute network: 

G(0) = 1, G(1) = 5, G(2) = 17, 

and the normalizing constants GE’ for the network with the short-circuited 
node i with Eq. (8.11) are: 

GE)(O) = 1, GE)O) = 1, G~)O) = 1, 

G;h) = -9 3 G$) = -7 3 ($1) = -, 4 

G$‘2) = 2, Gg’2) = 1, Gj;3)2) = -* 12 

The throughput in the short-circuited node with (K-k) jobs in the substitute 
network is then given by Eq. (8.14): 

Now the load-dependent arrival rates can be determined using Eq. (10.60): 

Xl(O) = X(l)(2) = el 
G;)(l) 

C - = 0.429. 
G(l) (2) N 

Similarly, the values for the other arrival rates can be determined: 

X2(O) = 0.214, X3(O) = 0.167, 

X1(1) = 0.333, X2(1) = 0.167, = As(l) 0.125, 
h(2) = 0, x2(2> = 0, A,(2) = 0. 

Perform the isolated analysis of the nodes of the given network. 
Because c& = 1, the service time of node 1 is exponentially distributed 
(product-form node) and we have to use Eq. (10.64) vi(lc) = pi(k). The state 



NON-EXPONENTIAL DISTRIBUTIONS 461 

probabilities for node 1 can be determined using Eqs. (10.62) and (10.63): 

v(o) = 
1 

= 0.412, 

Xl (0) 7rr(l) = 7rr(O) * - 
Pi(l) 

= 0.353, 

7rr(2) = 7rl(O) * fi x1(J) 
j=O/Ll(j+l) =0.235* 

Nodes 2 and 3 are non-product-form nodes. Because c2si 2 0.5, for i = 2,3, we 
use the Cox-2 distribution to model the non-exponentially distributed service 
time. The corresponding parameters for node 2 are given as follows: 

1 
jk?l = 2p2 = 0.5, = 0.0625, a2 = - 

2cg, 
= 0.125. 

For node 3 we get: 

b31 = @32 = a3 = 1. 

Using Eqs. (10.73) and (10.74), we can determine the conditional throughputs: 

v2(1) = 
X2(1&21b2 + b21P22 = () 357 
X2(l)+riL22 + a2lP21 

LT 

h(2)jhb2 + fiaG22 

v2(2) = (X2(2) + &q + /r&9) - v2(1) = o.152* 

Then: 

v3(1) = 0.471, z+(2) = 0.654. 

For the state probabilities we use Eqs. (10.62) and (10.63) and get: 

7r2(0) = 0.443, 7r2(1) = 0.266, 7r2(2) = 0.291, 

7r3(0) = 0.703, ~~(1) = 0.249, x3(2) = 0.048. 

Check the stopping condition, Eqs. (10.75) and (10.76): 

i=l k=l = 7.976 - 10-3. 
K 

Because the first stopping condition is not fulfilled, it is not necessary to check 
the second one. 
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Now we compute the new service rates of the substitute network 
using Eq. (10.64): 

pi(k) = v,(k), for i = 1,2,3, 

and go back to Step 2. 

Determine the load-dependent 
analyze the nodes of the network isolated 

arrival rates using 
from each other: 

Eq. (10.60) and 

After four iterations we get the following final results: 

Marginal probabilities: 

~~(0) = 0.438, ~~(0) = 0.438, n3(0) = 0.719, 

7rl(l) = 0.311, ~~(1) = 0.271, rg(l) = 0.229, 

7rl(2) = 0.251, 7r2(2) = 0.291, n,(2) = 0.052. 

Conditional throughputs: 

~~(1) = 0.356, z+(l) = 0.466, V2(2) = 0.151, ~~(2) = 0.652. 

Utilizations, Eq. (7.19): 

pl = 1 - ~~(0) = 0.562, p2 = 0.562, p3 = 0.281. 

Mean number of jobs, Eq. (7.26): 

Fl = ~~(1) + 2 .7rr(2) = 0.813, E2 = 0.853, x3 = 0.333. 

In most cases the accuracy of Marie’s method has proven to be very high. 
The predecessor of Marie’s method was the iterative method of [CHW75a], 
which is a combination of the FES method and a recursive numerical method. 
A network to be analyzed is approximated by K substitute networks where 
the kth substitute network consists of node Ic of the original network and one 
composite node representing the rest of the network. The service rates of the 
composite nodes are determined using the FES method under the assumption 
that the network has a product-form solution. Then, the K substitute net- 
works are analyzed using the recursive numerical method. The performance 
measures obtained from this analysis are approximate values for the whole 
network. If the results are not precise enough, the substitute networks are 
analyzed again with appropriate modifications of the service rates. These 
results are then the approximate values for the given network. The results 
thus obtained are normally less accurate than the ones derived by Marie’s 
method. 
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10.1.4.3 Extended SUM and BOTT The summation method and the bottap- 
prox method can easily be extended to non-product-form queueing networks 
with arbitrarily distributed service times. For the mean number of jobs K; in 
a -/G/l-FCFS node, we use Eq. (6.54): 

(10.77) 

Again we introduce a correction factor in Eq. (10.77) as we did in the product- 
form case, and we get: 

(10.78) 

For multiple server nodes the mean number of jobs ??i in a -/G/m-FCFS 
node is given by: 

- 
Ki=mpi+L. 

1 - pi 
ai - Pmi. 

The introduction of the correction factor yields: 

Pi 
1 _ K-m,--a - ai + Pm,. 

Kmm, ’ pi 
(10.80) 

Now we can use the SUM method for networks with these two additional node 
types by introducing Eqs. (10.78) and/or (10.80) in the system equation (9.23) 
and calculate the throughput X and other performance measures in the same 
way as in Section 9.2. 

We can also use the BOTT method if we use the corresponding formulae 
for the function to h(K;) for the bottleneck ??i = zbott. For the node type 
-/G/l-FCFS, /L(K~,,~,) has the form: 

mbott) = 
-Cl + b ’ ??;bott) + d(l+ b * Kbott,j2 + 4 - Kbott . (a - b) 

2. (a - b) 
7 

with b = (K - 1 - a)/(K - 1). For the node type -/G/m-FCFS, the function 
h(Kbott) cannot be given in an exact form and therefore an approximation is 
used: 

h(Kb,,,) = b - dc 
2 + f - mbott ’ 

with: 

f= 
K-m bott - a 1+ cg 

K - mbott 
7 a=--- 7 

b = zbott . f -t mbott + Pmbott + a, c = b2 f(4 a mbott * zbott ’ f>s 

The SUM and BOTT methods for non-product-form queueing networks can 
also easily be extended to the multiclass case as it was done in Sections 9.2 
and 9.3 for product-form queueing networks. 
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10.1.5 Closing Method for Mixed Networks 

In [BGJ92], a technique is presented that allows every open queueing network 
to be replaced by a suitably constructed closed network. The principle of the 
closing method is quite simple: The external world of the open network is 
replaced by a -/G/l node with the following characteristics: 

1. The service rate pL, of the new node is equal to the arrival rate X0 of 
the open network. 

2. The coefficient of variation cg, of service time at the new node is equal 
to the coefficient of variation of the interarrival time of the open network. 

3. If the routing behavior of the open network is specified by visit ratios, 
then the visit ratio coo of the new node is equal to 1. Otherwise the 
routing probabilities are assigned so that the external world is directly 
replaced by the new node. 

The idea behind this technique is shown in Figs. 10.17 and 10.18. 

Fig. 10.17 Open network before using the closing method. 

A very high utilization of the new node is necessary to reproduce the behav- 
ior of the open network with adequate accuracy. This utilization is achieved 
when there is a large number of jobs K in the closed network. The per- 
formance measures are sufficiently accurate after the number of jobs in the 
network has passed a certain threshold value Ki (see Fig. 10.19). Depending 
on the chosen solution algorithm, the following values for the number of jobs 
are proposed (see [BGJ92]): 

K = 100 mean value analysis, 

K = 5000 summation method, 

K = 10000 SCAT algorithm. 

To check whether the number of jobs K in the closed network is sufficiently 
large, we can repeat the closing method with a larger number of jobs K and 
compare the results. 
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Fig. IO.18 Closed queueing network with the additional -/G/l node for the closing 
method. 

Performance measure 

1 

Exact 
value 

Fig. IO.19 Threshold in the closing method. 

The closing method can be extended to multiple class queueing networks 
and mixed queueing networks. In the case of multiple class networks, the 
service rate poor of the new node is given given by R . Xcr, with r = 1, . . . , R, 
where R is the number of classes. In the case of mixed queueing networks, the 
new node is added to the open classes only and then we can use any method 
for closed queueing networks also for mixed queueing networks. Open non- 
product-form networks are easier to analyze using the methods introduced 
in Section 10.1.3. But the closing method in combination with the SCAT 
algorithm or the SUM method is an interesting alternative to the MVA (see 
Section 8.2) for mixed queueing networks in the product-form case. The main 
advantage of the closing method is the ability to solve mixed non-product- 
form-queueing networks. 
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Example 10.9 In this first example, the closing method is shown for an 
open product-form queueing network with Xe = 5, p12 = 0.3, p13 = 0.7, and 
~21 = ~31 = 0.1 (see Fig. 10.17). The service rates are ~1 = 7, ,Q = 4, and 
~3 = 3. Using Jackson’s method for this network, we obtain the following 
values for the mean response time T and the mean number of jobs in the 
open network: 

In Table 10.12 the values for these performance measures are shown as a 
function of &lo&, the number of jobs in the closed network. The results are 
obtained using MVA. From the table we see that we obtain exact results if 

Table 10.12 Mean response time ?; and 
mean number of jobs ?? for several values 
of the number of jobs in the closed network 

K closed T- K 

10 0.95 4.76 
20 1.24 6.17 
30 1.29 6.47 
50 1.30 6.52 
60 1.30 6.52 
100 1.30 6.52 

K&,sed is large enough and that, in this case, K&s& = 50 is the threshold. 

Sink 

Fig. 10.20 Open queueing network. 

Example 10.10 In this second example, the closing method is used for 
an open non-product-form network (see Fig. 10.20) with Xe = 3 and cg = 1.5. 
The routing probabilities are given by: 

Pl2 = Oe3, P13 = O-7, p22 = 0.3, $I24 = 0.7, 

P33 = 0.1, p34 = 0.9, p41 = 0.4. 
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Table 10.13 Input parameters 
for the network of Fig. 10.20 

1 9 0.5 
2 10 0.8 
3 12 2.4 
4 4 4 

The other parameters are listed in Table 10.13. 
With the method of Pujolle (see Section 10.1.3), we can analyze the open 

network directly to obtain: 

T = 4.43 
- 

and K = 13.47. 

The alternative method we use to solve the network of Fig. 10.20 is to first 
use the closing method and then use the SUM method (see Section 10.1.4.3) 
to approximately solve the resulting closed non-product-form network. The 
results are shown in Table 10.14. From this table we see that the threshold for 

Table 10.14 Mean response time T and 
mean number of jobs K as a function of 
K closed 

K closed T Fz 

100 3.94 11.83 
200 4.16 12.49 
500 4.29 12.88 
1000 4.34 13.02 
5000 4.37 13.12 
10000 4.37 13.12 

K closed is about 5000 and the results of the closing method and the method 
of Pujolle differ less than 3%. 

Example 10.11 The open networks of Example 10.9 and Example 10.10 
are much easier to analyze using the Jackson’s method and the Pujolle method, 
respectively, rather than by the closing method. Mixed product-form networks 
are easy to analyze using the MVA for mixed networks but also using SCAT 
or SUM in combination with the closing method, especially for networks with 
multiple server nodes. But the main advantage of the closing method is the 
solution of mixed non-product-form queueing networks. As an example we 
use a mixed network with N = 5 nodes and R = 2 classes. Class 1 is closed 
and contains K1 = 9 jobs (see Fig. 10.21). Class 2 (see Fig. 10.22) is open 
with arrival rate Xer = 5 and the squared coefficient of variation c& = 0.7. 
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Fig. 10.21 Closed class 1 of the mixed network. 

I 
I 
-_____-_____--______-------- 

62--K- 
~---..-.---.---------.-------’ 

Fig. 10.22 Open class 2 of the mixed network with an additional node. 

There is no class switching in this network. The routing probabilities of the 
two classes are as follows: 

Class 1: ~~2,~ = 1.0, Class 2: p12,2 = 1.0, 

p23,l = 0.7, p24,l = 0.3, p23,2 = 0.8, p24,2 = 0.2, 

P31,l = 0.7, p35,1 = 0.3, p30,2 = 0.7, p35,2 = 0.3, 
p42,l = 1.0, p42,2 = 1.0, 

P53,l = 1.0, p53,2 = 1.0. 

The other input parameters are listed in Table 10.15. Now we solve the 
equivalent closed queueing network with an additional node (CL, = 5, c& = 
0.7) for class 2 using the SUM method (see Section 10.1.4.3) and K2 = 500. 
The results for the utilization pi and the mean number of jobs Ki are listed 
in Table 10.16. Since SUM is an approximation method, we obtain deviations 
from discrete-event simulation results, which are about 6% for the utilizations 
pi and about 5% for the mean number of jobs Ki. 
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Table 10.15 Input parameters for the 
mixed queueing network 

Nodes Pi,1 = Pi,2 ctl = cf2 mi 

1 4 0.4 3 
2 4 0.3 4 
3 6 0.3 3 
4 4 0.4 2 
5 5 0.5 2 

Table 10.16 Utilizations p and mean number of jobs from 
discrete-event simulation (DES) and the closing method (CLS) 

1 0.89 0.84 4.9 5.2 
2 0.90 0.85 5.5 5.8 
3 0.85 0.80 4.0 4.1 
4 0.46 0.43 1.1 1.0 
5 0.46 0.43 1.1 1.0 

10.2 DIFFERENT SERVICE TIMES AT FCFS NODES 

If the given non-product-form network is a “small-distance” away from a 
product-form network, we may be able to modify the MVA algorithm to 
approximately solve the network. Based on this idea [Bard791 extended the 
MVA to priority scheduling as well as to networks with FCFS nodes and with 
different service rates for different job classes. The key idea for treating the 
latter case is to replace the MVA Eq. (8.31) by: 

T+(k) = 
R 1 _ 

b + c his . Kis(k - I~). ir 
s=l 

(10.81) 

This equation can also be extended for multiple server nodes [Hahn881 as: 

Fir(k) = $ 
a 

m,--2 

+l C(?rLi-l-j) 
i-4 j=o 

(10.82) 

with: 

1 R Ai, 1 
;= c 

-.- 
s=l Ai t%s ’ 
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In order to demonstrate the use of this method, consider a queueing network 
consisting of N = 6 nodes and R = 2 job classes. Nodes 1 to 5 are FCFS nodes 
with one server each and node 6 is an IS node. Class 1 contains Ki = 10 jobs 
and class 2 has K2 = 6 jobs. All service times are exponentially distributed. 
Table 10.17 shows all service rates and visit ratios for the network. Service 

Tab/e 10.17 Parameters of the network 
described in Fig. 10.22 

i PLzl l-422 61 ei2 

1 * 0.5 8 20 
2 1 1 2 2 
3 1 1 2 4 
4 1 1 2 6 
5 1 1 2 8 
6 0.1 lo7 1 1 

rate ~11, marked with an * in the table, is varied and the mean overall response 
time for all class-l jobs is determined. We compare the results of the extended 
MVA with DES. 

Tab/e 10.18 Mean overall response time of 
a class-l job for different service rates ~11 

Pll 0.5 2 128 

MVA-Ext . 260.1 143.1 105.4 
DES 260.1 141.1 102.0 

The values given in Table 10.18 show that the extension of the MVA by 
Eq. (10.81) g ives good results for queueing networks with FCFS nodes with 
different service rates for different job classes. SCAT and Bard-Schweitzer 
algorithm can also be extended [F&+39] in a similar fashion. 

10.3 PRIORITY NETWORKS 

We will consider three different methods for networks with priority classes: 
Extended MVA, shadow server technique and extended SUM method. 

10.3.1 Extended MVA (PRIOMVA) 

If a queueing network contains nodes where some job classes have priority 
over other job classes, then the product-form condition is not fulfilled and the 
techniques presented in Chapters 8 and 9 cannot be used. For the approximate 
analysis of such priority networks [BKLC84] suggest an extension of the MVA. 
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The MVA for mixed queueing networks is thus extended to formulae for the 
following priority node types: 

l -/M/l-FCFS PRS (preemptive resume): 

As per this strategy, as soon as a high priority job arrives at the node it 
will be serviced if no other job with higher priority is in service at the 
moment. If a job with lower priority is in service when the higher priority 
one arrives, then this low priority job is preempted. When all jobs with 
higher priority are serviced, then the preempted job is resumed starting 
at the point where it was stopped. It is assumed that the preemption 
does not cause any overhead. The service strategy within a priority class 
is FCFS. 

l -/M/l-FCFS HOL ( non-preemptive head-of-line): 

Here a job with higher priority must wait until the job that is processed 
at the moment is ready to leave the node even if its priority is lower 
than the priority of the arriving job. The service strategy within a class 
is again FCFS. 

The priority classes are ordered linearly where class R has lowest priority 
and class 1 has the highest one. 

At first we consider -/M/l-FCFS PRS nodes and derive a formula for the 
mean response time T,. In this case the mean response time of a class-r job 
consists of: 

l The mean service time: 

l The time it has to wait until all jobs with higher or the same priority 
are serviced: 

r KS c-a 
s=l PL, 

l The time for serving all jobs with a higher priority that arrive during 
the response time Fr : 

r-1 T, ’ A, 
c . 
s=l PS 

If we combine these three expressions, then for the mean response time of 
a priority class-r job, 1 5 T 5 R, we get the following implicit equation: 

T,$K”+C-+L, r-1 T, * A, 
s=l PS s=l A Pr 
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where K, denotes the mean number of class-s jobs at the node. With the 
relation ps = X,/p3 it follows that: 

(10.83) 

If, on the other hand, we consider an -/M/l-FCFS HOL node, then the 
considered job can not be preempted any more. In this case the mean response 
time consists of: 

l The mean service time: 

l The time needed to serve higher priority jobs that arrive during the 

waiting time with the mean W = 

l The mean time needed for the job that is being served at the moment: 

R Ps c 
s=l L’ 

l The mean service time of jobs with the same or higher priority that are 
still in the queue: 

r K-P, c . 
s=l PS 

If we combine these three terms for the mean response time of a priority 
class-r job, 1 5 T 5 R, we get: 

rz-ps Rp r-l 

Tr=C_+qf+C Tr-i .$+ 
s=l s=l s=l ( ) 

If we use the relation ps = Xs/ps, then we get: 

07 
c 2+ e ps 
s=l Ps s=r+lPs 

r-l 
. 

CCPS 
s=l 

(10.84) 
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The equations just developed give the exact T, values for M/M/l- priority 
queues. But in a priority queueing network the arrival process at a node is nor- 
mally not Poisson. This condition means that if we apply the equations given 
to a priority network, we do not get exact results. Furthermore, these equa- 
tions allow class-dependent service time distributions, while in product-form 
queueing networks a class-independent service time distribution is required at 
FCFS nodes. Nevertheless the approximation of [BKLC84] is based on these 
assumptions. 

Let xi,” denote the mean number of class-s jobs at node i that an arriving 
class-r job sees given the network population vector k. If Eq. (10.83) is applied 
to node i of a priority network, then this equation can be generalized as follows: 

(10.85) 

1 - c Pis 
s=l 

Similarly, Eq. (10.84) is of form: 

T;,.(k) = & + 
r i+;‘(k) 

c- 

++ 
s=l PiS s=r+l Pis 

r-l 

1 - c Pi.3 
s=l 

(10.86) 

For the computation of $,T’(k), the arrival theorem (see [BKLC84]) is assumed 
to hold: 

wj,“(k) = K. (k - l,), eas for closed classes r, 

&s(k), for open classes r. 
(10.87) 

For open class s, the equation: 
- 
KiS(k) = A,* ci,.Ti,(k) (10.88) 

can be used to eliminate the unknown Ei, (k). Then in Eqs. (10.85) and 
(10.86) we only need to determine the utilizations pis. For open classes we 
have pis = &slPis, independent of the number of jobs in the closed classes. 
But for closed class s the utilization pis depends on the population vector 
and it is not obvious which pi,(k), 0 5 k 5 K, should be used. However, 
[ChLa83] suggest: 

Pis = pis (k - K;,), (10.89) 
- 

where (k - Kis) is the population vector of the closed classes with Ki, jobs - 
fewer in class s. If Ki, is not an integer, then linear interpolation is used to 
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get a convenient value for pis. Equation (10.89) is based on the assumption 
that if there are already Ei, jobs at node i, then the arrival rate of class-s 
jobs at node i is given by the remaining k - Ki, jobs in the network, and 
hence: 

p 
is 

= hs(k - ;i?is) 
PiS 

= pis(k - Xi,). 

If we insert Eqs. (10.87)-(10.89) into Eqs. (10.85) and (10.86), respectively, 
then the mean response time of the closed class r at the priority node i when 
there are k jobs in the closed classes of the network: 

PRS: T+(k) = 

HOL: Ti,(k) = 

r-l , 

1 - sgl ds 

r &(k - 1,) 
c 

1 s=l /JJiS 

+ 5 pis(k - 1,) 

s=r+l Pis -+ 
f%r 

r-l 

1 - c P:, 
s=l 

(10.90) 

(10.91) 

where: 

p, 
is 

= pis(k - Ki,), for closed class s, 

PiS, for open class s. 

Analogously, for the mean response time of the open class r at the priority 
node i we get: 

PRS: Fir(k) = (10.92) 

1 - c Pi, 
s=l 

HOL: T+(k) = 
r-l 

l- c Pls 
s=l 

Now the modified MVA with the additional priority node types can be 
given. The closed classes are denoted by 1, . . . , CL and the open classes by 
1 * * > OP. Because of the fact that the values of l?is (k) are also needed for 
the open class s, it is necessary to determine the performance measures for 
the open classes in each iteration step of the algorithm. 

Initialize. For each node i = 1, . . . , N determine the utilizations of 
the open classes op = 1, . . . , OP using Eq. (8.55), that is: 

1 
Pi,op = -X0P%,0p7 

Pi,op 
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and check for stability &, 5 1). 

Set Ki,,l(O) = 0 for all nodes i = 1, . . . , N and all closed classes cl = 
1 ? * - - ? CL. 

Construct a closed model that contains only jobs of the closed 
classes and solve this model using the MVA. 

Iterate for k = 0,. . . , K: 

I] Determine Ti, (k) for all nodes i = 1, . . . , N and all closed classes 
r = l,... , CL using Eqs. (8.53), (8.54), and (10.90) and (10.91), respectively. 

[] Determine X,(k) for all closed classes r = 1, . . . , CL using Eq. 
(8.46). 

-22.31 Determine ??i, (k) for all nodes i = 1, . . . , N and for all closed 
classes r = l,... , CL using Eq. (8.47). 

[] Determine ??ir (k) for all nodes i = 1, . . . , N and all open classes 
r = l,... ,OP using Eqs. (8.51) and (8.52), and Eqs. (10.88), (10.92) and 
(10.93) respectively. 

results. 
Determine all other performance measures using the computed 

The computation sequenced from the highest priority down to the lowest one. 
The algorithm is demonstrated in the following example: 

Example 10.12 Consider the queueing network in Fig. 10.23. The net- 
work consists of N = 2 nodes and R = 3 job classes. Class 1 has highest 
priority and is open, while the classes 2 and 3 are closed. Node 1 is of type 

Source 

w 
---- Open Class 
- Closed Class 

Fig. 10.23 Mixed network with priority nodes. 

-/G/l-PS and node 2 is of type M/M/l-FCFS PRS. The arrival rate for class- 
1 jobs is Xi = 1. Each closed class contains one job (K2 = Ka = 1). The 
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mean service times are given as: 

1 
0.4, 

1 
= 0.3, 

1 
- = - - = 0.5, 
Pll P12 Pl3 

1 1 1 
- = 0.6, - = 0.5, - = 0.8. 
P21 CL22 p23 

The visit ratios are: 

ell = 2, el2 = 1, el3 = 1, e21 = 1, e22 = 0.5, e23 = 0.4. 

Set Frz(O) 

Initialize. Determine the utilizations of the open class: 

~11 = hell+ L = 0.8, ~21 = JW21. k =0.6. 
Pll 

= 7713(O) = FT22(0) = X23(O) = 0. 

Analyze the model using the MVA. 

MVA-iteration for k = (0,O): 

(-1 Mean number of jobs in the open class 1: 
Node 1, Eq. (8.51): 

%l(O, 0) = 
Pll [l + 7G2(0,0> + K3(0, O)] = 4 

1 - Pll 

Node 2, Eqs. (10.88) and (10.92): 

- 
K21(0,0> = Xl- e21. 

VP21 
-=& 
1 - P21 

MVA-iteration for k = (0,l): 

1-2.11 Mean response time for the closed class 3: We use Eqs. (8.53) 
and (10.90) to get: 

Tl3(0,1) = I* 1 = 2.5, T23(O, 1) = 
A-+Eg?!.l 

CL13 1 - Pll 
-4.25. 

l- P21 - 

[STEP-] Throughput of class 3, from Eq. (8.46): 

X3(0, 1) = 0.238. 

IJ Mean number of jobs in class 3, from Eq. (8.47): 

T&3(0,1) = 0.595, K23(O,l) = 0.405. 
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1-1 Mean number of jobs in the open class 1, using Eqs. (8.51)) 
(lO.SS), and (10.92), respectively: 

&(o, 1) = 6.38, 
- 
&(O, 1) = 1.5. 

MVA-iteration for k = (1,O) : 

p5TE-xq C&(1,0) = 1.5, %(l, 0) = 3.5, 

ri+zFTq X2(1,0) = 0.308, 

-1 Kiz(l, 0) = 0.462, ?&(l, 0) = 0.538, 

mj 3i;,,(l,O) = 5.85, K&,0) = 1.5. 

MVA-iteration for k = (1,l): 

piTiF%q T&l) = 2.393, %(l,l) = 3.5, 

[I X2(1, 1) = 0.241, 

[I &(l, 1) = 0.578, z&l, 1) = 0.422, 

[I FIs(l, 1) = 3.654, ??&l, 1) = 4.923, 

11 X3(1, 1) = 0.178, 

jJ 3T&l) = 0.65, 1?&1) = 0.35, 

[I K&l) = 8.91, 17&l) =1.5. 

These are the final results for the given mixed priority network. 

Up to now we considered a pure HOL service strategy or a pure PRS service 
strategy at a node. In many cases we may need to combine these two priority 
strategies. Let us therefore consider a combination of PRS and HOL: 

HOL-group I PRS-group 

Fig. 10.24 Splitting into HOL and PRS classes. 

In this combination, some job classes are processed by HOL and some job 
classes are processed by PRS. It is assumed that HOL jobs always have higher 
priority than PRS jobs (see Fig. 10.24). In this case: 
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An arriving HOL job cannot preempt a HOL job that is still in progress, 
but it can preempt a PRS job that is still in progress. Therefore the 
response time of a HOL job is not influenced by the arrival of PRS jobs. 

r K-P, 
T,=c,- 

s=l 

+k;+@-;).2+;. 
s=l s=l 

By simplifying the above expression we get, in analogy to Eq. (10.91): 

Tir(k) = ; + ‘=’ 

%~glp) + s=$+l P&t-yL) 

r-l , (10.94) 

1 - c As 
s=l 

j&s = pi,& - %s). 

A PRS job can always be preempted by a job with higher priority. For 
priority class r we therefore get: 

T,,f++c-+A. r-1 T, -A, 

s=l PS s=l PS Pr 

In analogy to Eq. (10.90) we get after simplification: 

(10.95) 

@is = pi+ - Eis). 

If these formulae for Tir (k) are used in the MVA instead of Fir, then we get 
an approximate MVA algorithm for closed queueing networks with a mixed 
priority strategy. In the next section we introduce the technique of shadow 
server that can also be used to analyze priority networks. 

10.3.2 The Method of Shadow Server 

10.3.2.1 The Original Shadow Technique This technique, shown in Fig 10.25, 
was introduced by [Sevc77] for networks with a pure PRS priority strategy. 
The idea behind this technique is to split each node in the network into 
R parallel nodes, one for each priority class. The problem then is that in 
this extended node, jobs can run in parallel whereas this is not possible in 
the original node. To deal with this problem and to simulate the effect of 
preemption, we iteratively increase the service time for each job class in the 
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shadow node. The lower the priority of a job, the higher is the service time 
for the job. After all iterations we have: 

Si,r L Si,r* 

Here 5i,r = l/pir denotes the approximate service time of class-r jobs at node 
i in the shadow node. 

Class 1 

rfut-e- 

c- 
. 

Class i l 

--g--@- -J-j-@- 

L 
. . 

Class R ’ 

IIIIIG- 

Original Node Shadow Node 

Fig. 10.25 The idea behind the shadow technique. 

Shadow Algorithm 

Transform the original model into the shadow model. 

Set X+ = 0. 

Iterate: 

1-1 Compute the utilization for each shadow node: 

e Pi,r = Xi,r ’ i?i,r. 

(1 Compute the shadow service times: 

Si,r = 
Si,r 

r-l ' 

l - C &,s 
s=l 

(10.96) 

(10.97) 

Here si,r denotes the original service time of a class-r job at node i in the 
original network while s”i,r is the approximated service time in the shadow 
network. 

1-1 Compute the new values of the throughput of class r at node i, 
Xi,r, of the shadow model using any standard analysis technique from Chap- 
ters 8 and 9. If the Xi,, differ less than E in two successive iterations, then 
stop the iteration. Otherwise go back to Step 3.1 
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10.3.2.2 Extensions of the Shadow Technique 

10.3.2.2.1 Extension of Kaufmann Measurements on real systems and com- 
parisons with discrete-event simulation results have shown that the technique 
of shadow server is not very accurate. Because of the lack of accuracy, [Kauf84] 
suggested an extension of the original shadow technique. This extended 
method differs from the original method in that an improved expression &,r 
is used instead of pi,f. To derive this improved utilization we define: 

c = class of the job under consideration, 

Ni,r = number of class-r jobs at node i in the shadow node, 
Pt - s. a,r - approximated mean service position time, 

r-l 

1=1 

For a pure PR strategy the following relations hold: 

l The improved utilization /3ir is expressed using s$,. : 

/%,r = k,r * sft7 

/k,r = P(K,r ‘> O>, 

Xi,r = P(Ni,l = 0 A NQ = 0 A * * * A Ni,r-1 = 0 

A Ni,r > 0) * Pi,r 

= P(Mi,r = 0 A Ni,r > 0) * pi,r, 

P(Ni,r > 0) = P(Mi,r = 0 A Ni,r > 0) * pi,r * of’,:. 

l The last equation can now be used to derive an expression for s$: 

Pt - 
‘i,r - 

P(Ni,r > 0) 

P(Mi,r = 0 A Ni,r > 0) * IL”’ 

1 

= 

l By using conditional probabilities the last expression can be rewritten 
into: 

l Now we rewrite the numerator of the last expression and define the 
correction factor Si,r which we use to express /3i,r: 

p = 
1 

i,r 
1 - P(Mi,r > 0 A C # T 1 Ni,r > 0) ’ “,” 
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With: 

and: 

bi,r = 1 - P(A&,r > 0 A c # T ] N+. > 0) 

j4,r = h,r ’ gi 7-7 , bi,r = Xi r * SPt , 2.,7-T 

we obtain: 

(Ji,r Oi,r 

As we see, the improved utilization &,r 
lization fii,r by the correction factor 6i,T. 
following approximation holds: 

6; r = PW - &-)I + 44 * Pb- + 1) 7 
Ptr)[l - Ptr>12 + a(r> ’ Pi,r 

with: 
r-l ‘I 

is just given by dividing the uti- 
In [Kauf84] it is shown that the 

for r = 2,3, . . . , R, (10.99) 

r-l 

This correction factor S changes only Step 3.2 in the original shadow algo- 
rithm: 

Si,r = 
Si,r 

r-l 1 

1 - C 6 * Pi,s 
s=l i,s 

(10.100) 

If the utilizations of the shadow nodes are very close to 1, then the expression: 

r-l 

1 - C $ * Pi,s 
SE1 2,s 

can be negative because of the approximate technique. In this case the iter- 
ation must be stopped or the extended shadow technique with bisection can 
be used. 

In the original and extended shadow method the expression: 

r-l 

c- Pi,s 
s=l 

can be very close to 1. Then the service time si,r gets very large and the 
throughput through this node is very low. In addition, the value of: 

r-l 

c- Pi,s 
s=l 
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will be very small in the next iteration step and in some cases the shadow 
technique does not converge but the computed values move back and forth 
between the two values. Whenever such swinging occurs, we simply use the 
average of the last two values of throughput in Step 3.3. Thus we have used 
bisection. 

10.3.2.2.2 Class Switching If class switching is allowed in the network then 
we use the shadow technique in combination with the concept of chains (see 
Section 7.3.6.1). The resulting algorithm can now be given in the following 
steps: 

Determine the chains in the network. 

Transform the original model into the shadow model. 

Set X+. = 0. 

Iterate: 

[I 

Pi,r = Xi,r * s”i r 7 * 

s”i,r = 
Si,r 

r-l 1 

1 - c 6 * Pi,3 
3~1 i,s 

Here si,r is the original service time of a class-r job at node i in the original 
network. 

I] Transform the class values into chain values (to differentiate 
between class values and chain values, the chain values are marked with *). 

I] Compute the performance parameters of the transformed shad- 
ow model with the MVA. If the model parameters swing, then set 

and compute the performance measures with this new response time. 

-1 Transform chain values into class values. If the XF,, (chain value) 
in two successive steps differs less than E, stop the iteration. Otherwise go 
back to Step 4.1. 
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HOL Group 

PR Group 

Original Node Shadow Node 

fig. 10.26 Shadow technique and mixed strategy. 

10.3.2.2.3 Class Switching and Mixed Priorities The original shadow tech- 
nique [Sevc77] can only be used for networks with a pure PRS-strategy, but 
in the models of a UNIX-based operating system (see Section 13.1.4), for 
example, or in models of cellular mobile networks [GBB98], a mixed priority 
strategy is used. For this reason the original shadow technique is extended to 
deal with mixed priority strategies. 

Consider the situation where the classes 1,2, . . . , u are pure HOL classes 
and u + 1,~ + 2,. . . , R are pure PRS classes, as shown in Fig. 10.26. We 
define: 

u 

Yi,r = c Ni,l, 
l=l,l#r 

and get the following relations: 

l The utilizations can be expressed as: 

n 
Pi,r =A. .sPt v- z,r) 

fii,r = P(Ni,r > 0). 

l A PRS job can only be served if no other job with higher priority is 
waiting: 

l For HOL jobs, two cases have to be distinguished: 
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1. Class-r jobs as well as HOL jobs are at the node and a class-r job 
that is just served. Then we get: 

N,r > 0 A c = r A yi,r > o, 

or 

2. Class-r jobs but no HOL jobs are waiting for service at a node. 
Then we get: 

Ni,r > 0 A yi,r = 0. 

For the HOL classes we therefore get: 

- The utilization of node i by class-r HOL jobs is given by the prob- 
ability that at least one class-r job is at node i (and is served) and 
other HOL jobs are waiting, or at least one class-r job is at node i 
and no other HOL jobs are waiting for service: 

h,r = Pi,r * /b,r 

= [P(n;i,r > 0 A C = r A yi,r > 0) + P(Ni,r > 0 A yi,r = O)] * pi,r 

= [P(Ni,r > 0) - P(Ni,r > 0 A yi,r > 0 A c # T)] * pi,rs 

- As in the case of a pure PRS strategy, we get analogously: 

sPt zz P(Ni,r > 0) -3 
a,r P(Ni,r > 0) - P(Ni,T > 0 A yi,r > 0 /I c # r) * “yr 

= 
1- P((yi,r >O/IL#T)ANi,r >0) “‘,‘* 

P(Ni,r > 0) 

- The fraction in the numerator is now rewritten using conditional 
probabilities: 

= 
1 - P(Yi,r > 0 A c # r) ( Ni,r > 0) ’ 

l As before, we now define the correction factor I/I~,~ as: 

@i,r = 1 - P(yi,r > 0 A c # r 1 Ni,r > O), 

and get: 

ji,r = 1;1- ’ &,7-e 
i,r 

(10.101) 
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As we see, the correction factor for the HOL case differs from the PRS 
only in the summation index. We then get to the following equations: 

case 

e(r>[l - e(r)1 + PW * ix4 
‘i”r = @(r)[l - @(?+)I2 + p(r) ’ @i,r ’ 

P(r) = 

wr,k = 

’ u * 
c Pi r L 

k=l,k#r wr,k ’ 

r-l - 

c 
Pi r L 

\ k=l 
wr,k ’ 

si k 1 
7 

si,r u 
c t%,k, 

k=l,k#r 
r-l 

c &,k, 

k=l 

e(r) + pi,r* 

if T E HOL, 

if r E PR, 

if r E HOL, 

if r E PR, 

(10.102) 

10.3.2.2.4 C/ass Switching and Arbitrary Mixed Priorities Up to now we assu- 
med that the classes 1, . . . , u are pure HOL classes and the classes u + 1, . . . , R 
are pure PRS classes. In the derived formulae we can see that in the HOL case, 
the summation in the correction factor is over all HOL classes excluding the 
actually considered class. In the PRS case, the summation is over all classes 
with higher priority. With this relation in mind it is possible to extend the 
formulae in such a way that every mixing of PRS and HOL classes is possible. 
Let Jr be the set of jobs that cannot be preempted by a class-r job, r $ Jr. 
For the computation of the correction factor, this mixed priority strategy has 
the consequence that : 

l For an HOL class r the summation is not from 1 to u but over all priority 
classes s E &.. 

l For a PRS class r the summation is not from 1 to r - 1 but over all 
priority classes S E <r. 

For any mixed priority strategy we get the following formulae: 

si,r = 
Si,r 

1 - C 1 * fii,s ’ 
SE:E?. +i13 

e(r)Cl - e(r)1 + P(r) - @W 
“J- = e(r)[l - e(r)12 + p(r) * @i,r ’ 

(10.103) 
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c Pi, ,r %k 
= 

wr,k ’ 
‘h,k = -7 

MET 
Sir 

Fig. 10.27 Simple network for Example 10.13. 

Example 10.13 Consider the network, given in Fig. 10.27. Node 1 is a 
-/M/l-PRIORITY node and node 2 is a -/M/l-FCFS node. The network 
contains two priority job classes, Class 1: PRS, and Class 2: HOL, and class 
switching is allowed. The routing probabilities are given by: 

Pll,ll = 0.5, P11,12 = 0.4, p11,21 = 0.1, 

P12,ll = 0.5, p 12,12 = 0.4, p12,22 = 0.1, 

P21,ll = 1.0, p22,11 = 1.0. 

The other parameters are: 

Sll = 0.1, s12 = 0.1, s21 = 1.0, 522 = 1.0, 

K = 3, E = 0.001. 

Compute the visit ratios ei, in the network. For this we use the 
formula: 

eir = 5 2 ejsPjs,ir 
j=ls=l 

and get eri = 1.5, e12 = 1.0, epl = 0.15, e22 = 0.1. 

Determine the chains in the network and compute the number of 
jobs in each chain (refer to Section 7.3.6). In Fig. 10.28 the DTMC state 
diagram for the routing matrix for the chains is shown, and it can easily be 
seen that we can reach each state from every other state (in a state (i,r), i 
denotes the node number and T denotes the class number). Therefore we have 
only one chain in the network. 

IT ransform the network into the shadow network, as it is shown in 
Fig. 10.29. 
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Fig. 10.28 DTMC state diagram of the routing matrix. 

Originally Node 1 

fig. 10.29 The Shadow model for the network in Example 10.13. 

The corresponding parameters are: 

sll = 0.1, ell = 1.5, e31 = 0.15, 

512 = 0, 

S21 = 0, 
~22 = 0.1, e12 = 0.0, e32 = 0.1, 

~31 = 1.0, e21 = 0.0, 

532 = 1.0, e22 = 1.0. 

Computxe the visit ratios eTq per chain and remember that we have 
only one chain: 

c %- 

Then we get: 

eT1 = 
ell + el2 e21 + e22 2 e31 + e32 1 = -* 
ell + el2 

= 1, e;, = 
ell + el2 

= -, 
3 

e& = 
ell + el2 6 

Compute the scale factors air. For this we use the equation: 
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ei, air = 
c ’ eis 
SE9 

and get: ell el2 
a11 = 

= 
ell + el2 

= 1.0, ai2 = 
ell + e12 

0, 

e21 
Q21 = 

e21 + e22 
- 0, 

e22 
- a22 = 

e21 + e22 

= 1.0, 

e31 = 0.6, 0~32 = 
e32 

Q31 = = 0.4. 
e31 + e32 e31 + e32 

Compute the service times per chain that are given by the equation: 

which gives: 
ST1 = Sll * 0111 + s12 * cl!12 = 0.1, 

s& = s21 * a21 + s22 * a22 = 0.1, 

SGl = S31 * cY31 + S32 * Ci!32 = 1.0. 

Now we can analyze the shadow network given in Fig. 10.29 using the following 
parameters: 

eT1 = 1.0, e;, = i, 
1 

e& = 6’ 

sil = 0.1, s;i = 0.1, s& = 1.0, 

a11 = 1.0, cl!21 = 0.0, a31 = 0.6, 

a12 = 0.0, cl!22 = 1.0 Q32 = 0.4, 

K = 3, N = 3, E = 0.001, 

Cl = {2), J2 = (1). 

Start the shadow iterations. 
1. Iteration: 

& = 0.505, & = 0.337, & = 0.841, 

XT1 = 5.049, A;, = 3.366, A;, = 0.841, 

q1 = 0.117, g1 = 0.145, s”zl = 1.000. 

2. Iteration: 

pT1 = 0.541, & = 0.447, & = 0.766, 

XT1 = 4.597, A;, = 3.065 A& = 0.766, 

;Tl = 0.125, ~$1~ = 0.142, s”& = 1.000. 



PRIORITY NETWORKS 489 

3. Iteration: 

& = 0.569, pG1 = 0.430, pi1 = 0.756, 
xT1 = 4.533, A;, = 3.022, A;, = 0.756, 
s”T1 = 0.122, z;I = 0.147, s;r = 1.000. 

4. Iteration: 

& = 0.556, pal = 0.447, ,o& = 0.755, 
A;, = 4.531, A;, = 3.012, A;, = 0.755, 
ST1 = 0.124, s”gl = 0.144, s”zl = 1.000. 

5. Iteration: 

/& = 0.565, & = 0.437, & = 0.754, 
Xi1 = 4.528, A;, = 3.018, A;1 = 0.754. 

Now we stop the iteration because the difference between the X* in the 
last two iteration steps is smaller than E. 

Retransform the chain values into class values: 

Xl1 = all * XT1 = 4.528, 

AZ2 = o22 * A;, = 3.018, 

As1 = agl * A;, = 0.452, 

X32 = Cl!32 * A;, = 0.301. 

If we rewrite the results of the shadow network in terms of the original 
network, we get the following final results: 

Xpprox) = Xl1 = 4.528, Xprox) = X22 = 3.018, 

XFprox) = X31 = 0.452, AgProx) = X32 = 0.301. 

Verify the results. To verify these results we generate and solve the 
underlying CTMC via MOSES [BoHe96] ( see Chapter 12). The exact results 
for this network are given by: 

AFact) = 4.52, AFact) = 3.01, 

$yt) = 0.45, Apt) = 0.30. 

As we see, the differences between the exact MOSES results $Tact) and the 

approximated results X!Tpprox) are very small. 
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10.3.2.2.5 Quota Nodes The idea of quota is to assign to each user in the 
system the percentage of CPU power he or she can use. If, for example, we 
have three job classes and the quota are given by 41 = 0.3, q2 = 0.2 and 
q3 = 0.5, then class 1 customers get 30% of the overall CPU time, class 2 
customers get 20% CPU time, and class 3 customers get 50% of the overall 
CPU time. In an attempt to enforce this quota, we give priority to jobs so 
that the priority of job class r, pri,, is: 

pri, = E. 
1 

(10.104) 

CPU 1 

I 

fig. 10.30 Transformation of a quota node into the corresponding shadow node. 

The higher the pri,, the higher is the priority of class r. As we can see, 
the priority of class-r jobs depends on the CPU utilization at node i and the 
quota qr of class T. A high priority job class is influenced only a little by lower 
priority job classes, while lower priority job classes are influenced much more 
by higher priority job classes. A measure for this influence is the weight i;l,,j, 
which is defined as: 

(10.105) 

The weights 13,,j are a measure for how much the rth job class is influenced 
by the jth job class. The closer these weights are to one, the higher is the 
influence. Since an active job influences itself directly (r = j), we have LZ~,~ = 
1. The mean virtual service time of a class-r job can approximately be given 
as: 

virt _ 
s . 

S&T- 
(27) - 

1 - 5 pi,?- * iz;,,k 

(10.106) 

lC=l 
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m 

Fig. 10.31 Shadow transformation of a -/M/m node. 

If we compare this equation with the shadow equation to compute the 
shadow service time, then the basic structure of the equations are the same. 
The idea, therefore, is to use the weights ;j,,j to include quota into the shadow 
technique. In order to transform a quota node with R job classes into a shadow 
node, we apply the shadow technique as shown in Fig. 10.30. The resulting 
equation for computing the service time at each shadow node can now be 
given as: 

Si,r = 

Si,r 

1 - 5 2 ’ jji,k 
if r E HOL, 

/c=l ' 

kfr 

si,r 

r-l _ if r f PRS, 

Gi,k = 
priz 

prii + prif ’ 
prik = E# 

2, 

(10.107) 

By using the weights Gi,k, we make sure that each class gets the amount of 
CPU time as specified by the CPU quota. In the case of an arbitrary mixed 
priority strategy, we use the summation index < as defined before. 
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10.3.2.2.6 Extended Nodes We now introduce a new node type, the so-called 
extended -/M/ m node. It is very easy to analyze a regular -/M/m node since 
we only have to transform it into the corresponding shadow form and use the 
equations for -/M/ m nodes when analyzing the node. The transformation of 
a -/M/m node into its corresponding shadow form is shown in Fig. 10.31. 

The node shown in Fig. 10.32 is called extended -/M/m node. This node 
contains R priority classes that are priority ordered (job class 1 has high- 
est priority, job class R has lowest priority). The CPU can process all job 
classes, while at the APU (associate processing unit), only the job classes 
U 7 * * * 7 R (1 5 u 5 R) can be processed. For a better overview, a queue 

Fig. 10.32 Extended -/M/m node (original form). 

is introduced for each job class. The result of this transformation is shown in 
Fig. 10.33. For example, let u = R = 3, then the job classes 1, 2, and 3 can 

Class R 

I Class u : I 

I Class u-l t- 

I Class 1 : I 

Fig. 10.33 Extended -/M/ m node with priority queues. 

enter the CPU, while the APU can only be entered by class-3 jobs. Priority 
class-3 jobs can always be preempted at the CPU, but in this case they can- 
not be preempted at the APU because this job class is the only one entering 
the APU. In general, the actual priority of a job also depends on the node it 
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enters. If it enters the CPU, the priority order remains unchanged (priority 
class 1 has highest priority and priority class R has lowest priority), while at 
the APU priority, class-u jobs have highest priority. Since preemption is also 
possible at the APUs, if we have more than one priority class, the shadow 
transformation can be applied to each node, from which a switch to the APU 
is possible. The result of this transformation is shown in Fig. 10.34. 

Class R 

Class u-l CPU u-l 

---0 
. . 

Class 1 l CPU 1 

--o-- 

Fig. 10.34 Extended -/M/ m node (complete shadow form). 

The components APU,, . . . , APUR form the original APU in the network. 
Now it is possible to apply the shadow algorithm to the network transformed 
in this way. Because the priority order at the APU can change, we have to 
separate the APU iterations from the CPU iterations meaning that in one 
shadow step we first iterate over all CPUs and then over all APUs. Because 
of the separated iterations over CPU and APU, we usually get different final 
service times for CPUi and APUi, resulting in a so-called asymmetric node 
[BoRo94]. 

At the CPU, class-l jobs have highest priority, while at the APUs, class-u 
jobs have highest priority. In the shadow iteration, only Step 3.2 is to be 
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changed as follows: 

Qc : &J. = 
Si,r 

l- c &*Pi,s’ 
c=l 7”‘7 R. 

S>C,SEE?- ( 

An application for this node type can be found in Section 13.1.4 where it plays 
an important role. 

10.3.3 Extended SUM 

The SUM method (see Section 9.2) can be applied to priority networks if 
we extend the formula for the mean number of jobs in the system, Fir of an 
individual priority node as we did for an FCFS node with multiple job classes. 
The extended method is referred to as PRIOSUM. Here we use the formulae 
for single station queueing systems with priorities (see Section 6.15). In this 
context it is convenient to consider class 1 as the class with the highest priority 
and class R as the one with the lowest priority. Of course, this convention 
leads to minor changes in the formulae. 

l -/M/l-FCFS-HOL node 
After we have introduced multiple classes and considered the reverse 
order of priorities, we derive the following formulae from Eqs. (6.106) 
and (6.107): 

WiO 

wir = (1 - air)(l - Crir+i) ’ 

with: 
r-l 

c pij 7 r > 1, 
oar = j=l 

0, otherwise, 

and the remaining service time: 

(10.108) 

(10.109) 

(10.110) 

We obtain the final result for the mean number of jobs xi, in node i 
with: 

Kir = Pir + Qir, (10.111) 

and the introduction of correction factors as in the FCFS case: 

xi, F i+ 

Fir = pir + 
j=l Pi, 

1 - K-2 
)( 

l-K-2 * 
> 

(10.112) 
moir mgir+l 
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l -/M/m-FCFS-HOL node 
In this case we also can use Eqs. (10.108) and (10.109). Together with: 

pm% (Pi> R Pij wio = - 
mipi c j=l Lij (10.113) 

and: 

Fir = m&r + Qir7 (10.114) 

we obtain: 

Fir = mipir + 

( 1_ K-m,-1 
K-& Oir 

>( 

1_ K-7&-1 
~~~~ Oir+l 

> 

pmi (Pi) 
. 

mifh 

(10.115) 

a -/G/l-FCFS-HOL node 
Again with Eqs. (10.108) and (10.109) and the remaining service time: 

R 

Wio = i C XijO!2(Bij), (10.116) 
j=l 

we obtain: 

$xir $J XijQJa(Bij) 

Kir = pir + 
j=l 

( 
1 K-l-a 

K-1 air 
>( 

1-K-l-a 
> 

7 (10.117) 
- K-1 Q’ir+l 

with the second moment of the service time distribution: 

$j + 1 
&2CBij) = (l-lij)2 , 

c& + 1 
a=:!. 

l -/G/m-FCFS-HOL node 

(10.118) 

(10.119) 

(10.120) 

$hr 5 Pijaz(Bij)pij 

Kir = W&r + 
j=l pm% (Pi> .____ 

1 _ K-mi-a 
K-m, Oir 

)( 

1 _ K-mi-a 
K-m, Oir+l miPi 

(10.121) 
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If preemption is allowed, we get: 

(10.122) 

Let WJ,‘:’ be the mean waiting time of a job of class r in node i if we 
consider only the classes with the r highest priorities. Then we get: 

w!‘) = 
W(” 

20 

” (1 - air+l) 
. (10.123) 

l -/M/l-FCFS-PRS node 

r p.. 
Iv;;’ =x--$. (10.124) 

i=l 

Using Eq. (10.111) and Little’s theorem we obtain: 

Fir = /3ir + AirWire (10.125) 

For wir we use Eqs. (10.122), (10.123), and (10.124) and introduce the 
correction factor: 

1 . (10.126) 

l -/M/m-FCFS-PRS node 

WCr) = p77;2i ’ Pij 
i0 

-. 

mi~ir+l 
c -7 

j=l Pij 
(10.127) 

with probability of waiting P?I;Li, which we get from the probability of 
waiting Pmi by replacing pi by gir+i, With Eq. (10.114) and Little’s 
theorem: 

Kir = mipir $ 

and using Eqs. (10.122), (10.123), and 

r 

AirFir 7 

(10.127) we obtain: 

(10.128) 

Fir = mif&r •t 
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l -/G/l-FCFS-PRS node 
With the remaining service time: 

(10.130) 

and Eqs. (10.118), (10.119), (10.122), and (10.123) and the correction 
factors: 

l -/G/m-FCFS-PRS node 
Using the corresponding equations as before we get for this node type: 

(10.132) 

I 

. 

(10.133) 

10.4 SIMULTANEOUS RESOURCE POSSESSION 

In a product-form queueing network, a job can only occupy one service station 
at a time. But if we consider a computer system, then a job at times uses two 
or more resources at once. For instance, a computer program first reserves 
memory before the CPU or disks can be used to run the program. Thus 
memory (a passive resource) and CPU (or another active resource such as a 
disk) have to be reserved at the same time. To take the simultaneous resource 
possession into account in performance modeling, extended queue&g networks 
were introduced [SMK82]. I n addition to the normal (active) nodes these 
networks also contain passive nodes that consist of a set of tokens and a number 
of allocate queues that request these tokens. These passive nodes can also 
contain additional nodes for special actions such as the release or generation 
of tokens. The tokens of a passive node correspond to the service units of a 
passive node: A job that arrives at an allocate queue requests a number of 
tokens from the passive node. If it gets them, it can visit all other nodes of the 
network, otherwise the job waits at the passive node. When the job arrives 
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at the release node that corresponds to the passive node, the job releases all 
its tokens. These tokens are then available for other jobs. We consider two 
important cases where we have simultaneous resource possession. These two 
cases are queueing systems with memory constraints and I/O subsystems. 

10.4.1 Memory Constraints 

T 

. 

@ 

. . 

erminals 

Fig. 10.35 Central-server model with memory constraint. 

In Fig. 10.35 we see the typical case of a queueing network with memory 
constraints where a job first needs to reserve some memory (passive resource) 
before it can use an active resource such as the CPU or the disks. The memory 
queue is shown as an allocate node. The job occupies two resources simul- 
taneously: the memory and the CPU or memory and disks. The maximum 
number of jobs that can compete for CPU and disks equals the number of 
tokens in the passive node, representing available memory units. The service 
strategy is assumed to be FCFS. Such models can be solved by generating 
and solving the underlying CTMC (via SPN P for example). To avoid the 
generation and solution of resulting large CTMC, we use an approximation 
technique. 

The most common approximation technique is the flow-equivalent server 
method (FES) ( see Section 8.4). We assume that the network without consid- 
ering the simultaneous resource possession would have product-form solution. 
The subsystem that contains the simultaneous resource possession is replaced 
by an FES node and analyzed using product-form methods. For simple sys- 
tems with only one job class, the load-dependent service rates pi(k) of the 
FES node can be determined by an isolated analysis of the active nodes of the 
subsystem (CPU, disks), where the rest of the network is replaced by a short 
circuit path, and determination of the throughputs X(lc) for each possible job 
population along the short circuit. I f  K denotes the number of memory units, 
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then the service rates of the FES node are determined as follows [SaCh81]: 

P(k) = 
Je)l for k = 1,. . . , K, 

X(K), for k > K. 

If there are no more than K jobs in the network, then there is no memory 
constraint, and the job never waits at the allocate node. 

Example 10.14 To analyze the central-server network with memory con- 
straint given in Fig. 10.35, we first replace the terminals with a short circuit 
and compute the throughputs X(k) of th e resulting central-server network 
using any product-form method as a function of the number of jobs k in the 
network. Then we replace the subnetwork by an FES node (see Fig. 10.36). 
This reduced network can be analyzed by the MVA for queueing networks 

Fig. 10.36 Reduced network. 

with load-dependent service rates or as we do it here using a birth-death type 
CTMC (see Section 3.1). With the mean think time l/p at the terminals and 
the number of terminals M, we obtain for the birth rates: 

h=(M-k)p, k=O,l,..., K, (10.134) 

and for the death rates: 

v4 i= l,...,K, 

uk = X(K), i > K. 

Marginal probabilities of the FES node are (see Eq. (3.11)): 

r(k) = n-(O) (“;ii& . I-I”, 
- fp+ 

i=l 

and with Eq. (3.12): 

. 

(10.135) 

(10.136) 

(10.137) 
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Now the throughput X of the FES node that is also the throughput of 
terminal requests is obtained by: 

x = 5 n(i)b$ = 5 +& + VK 5 n(i). (10.138) 
i=l i=l i=K+l 

As a numerical example, assume that the mean think time l/p = 15sec, the 
maximum number of programs in the subnetwork is K = 4 and the other 
parameters are as shown in Table 10.19. We calculate the mean response 
time T for terminal requests as a function of the number of terminals M and, 
in comparison, the mean response time + for the case that the main memory 
is large enough so that no waiting for memory space is necessary, i.e., K 2 M. 
In the case with ample memory, the overall network is of product-form type 
and, hence, T can be determined using algorithms from Chapter 8. From 

Table 10.19 Parameters for the Central-server 
network 

Node CPU Disk 1 Disk 2 Disk 3 

CL3 89.3 44.6 26.8 13.4 
Pl, 0.05 0.5 0.3 0.15 

Table 10.20 we see that Q! is only a good approximation if the number of 
terminals M is not too large. 

Table 10.20 Response time for the central- 
server system with memory constraint 

M 10 20 30 40 50 

?; 1.023 1.23 1.64 2.62 7.03 
LF 1.023 1.21 1.46 1.82 3.11 

For other related examples see [Triv82], and for a SHARP E implementation 
of this technique see [STP96]. A n extension of this technique to multiple class 
networks can be found in [Saue81], [B ran82], and [LaZa82]. This extension is 
simple in the case that jobs of different job classes reserve different amounts 
of memory. But if on the other side, jobs of different job classes use the same 
amount of memory, then the analysis is very costly and complex. Exten- 
sions to deal with complex memory strategies like paging or swapping also 
exist [BBC77, SaCh81, LZGS84]. For the solution of multiple class networks 
with memory constraints see also the ASPA algorithm (average subsystem 
population algorithm) of [JaLa83]. This algorithm can also be extended to 
other cases of simultaneous resource possession. 
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Problem 10.1 Verify the results shown in Table 10.20 using PEPSY and 
SHARPE. 

Problem 10.2 Solve the network of Fig. 10.35 by formulating it as a 
GSPN and solve it using SHARPE or SPNP. Compare the results obtained 
by means of FES approximation. 

10.4.2 I/O Subsystems 

Fig. 10.37 I/O subsystem. 

The other very important case of simultaneous resource possession occurs 
in modeling an I/O subsystem consisting of several disks that are connected by 
a common channel and a controller with the CPU. In the model of Fig. 10.37 
channel and controller can be considered as one single service station because 
they are either simultaneously busy or simultaneously idle. An I/O operation 
from/to a certain disk can be subdivided into several phases: The first phase 
is the seek phase when the read/write head is moved to the right cylinder. 
The second phase is the latency phase, which is the disk rotation time needed 
for the read/write head to move to the right sector, Finally we have the 
data transfer phase. During the last two phases the job simultaneously needs 
the disk and the channel. In the special cases of rotational position sensing 
systems (RPS) the channel is needed only in the last phase. Delays due to 
simultaneous resource possession occur if a disk is blocked and no data can 
be transmitted because another disk is using the channel. 

For the analysis of I/O subsystem models, different suggestions have been 
published. In the formulation of [Wilh77], an increased service time for 
the disks is computed approximately. This increased service time takes into 
account the additional delay for the competition of the channel. Each disk is 
then modeled as an simple M/G/l queueing system. To determine the disk 
service time, another model for the probability that the channel is free when 
needed is used. Hereby it is assumed that only one access path for each disk 
exists, and a disk cannot be used by several processors simultaneously. This 
limitation is removed by [Bard801 and [Bard821 where the free path probability 
is determined using the maximum entropy principle. 

We consider a method for analyzing disk I/O systems without RPS, intro- 
duced in [LZGS84]. The influence of the channel is considered by an additional 
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term in the mean service 
disk; is given then as: 

time si of the disk. The mean service time of the 

Si = S,i + Sli + Sti + sCi, (10.139) 

with: 

s,i = mean seek time, 

Sti = mean transfer time, 

sli = mean latency time, 

sci = mean contention time. 

The contention time sci is calculated iteratively. To obtain an approximate 
formula for s,i , we first use the formula for the mean number of customers 
in a -/M/l FCFS node in an open queueing network (see Section 6.3): 

K,=-J&. 

i 
(10.140) 

In the case of the channel, any requests ahead of a diski request at the channel 
must be associated with some disk other than i, so the equation is slightly 
modified to: 

zch = Pch - &h(i) 

1 - Pch ’ 

where: 

Pch = 5 &h(i) 

i=l 

(10.141) 

(10.142) 

is the utilization of the channel and &h(i) is the utilization of the channel 
due to requests from diski. Here we have assumed that the number of disks 
is equal to U. Because the mean channel service time is the sum of the mean 
latency time S,i and the mean transfer time sti , we obtain for the contention 
time: 

sci = Pch - &h(i) 
1 - p h * hi + St& 

C 

and, hence, for the mean disk service time: 

Si = S.yi + 
(Sli + Sti)(l - p&(i)) 

1 - Pch * 

(10.143) 

(10.144) 

The measures &h(i) and &h, and other interesting performance measures 
can be calculated using the following iterative algorithm. We assume that the 
overall model is a closed queueing network that will be of product-form type 
if we have no contention at the channel. 

Initialization. System throughput X = 0. 
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Iteration: 

I STEP 2 1 For each diski, the contribution of diski to the utilization of the 
channel: 

pch(i) = A. ei(qi + sti). (10.145) 

. STEP 2 2 Channel utilization: 

ikh = x&h(i). 

i=l 

(10.146) 

-9 Compute the mean service time for each diski using Eq. (10.144). 

I] Use MVA or any other product-form method method to calculate 
system throughput X. Return to Step 2.1 until successive iterates of X are 
sufficiently close. 

Obtain the performance measures after the final iteration. 

Table 10.21 Iterative calculation of the throughput and the chan- 
nel utilization. 

k’ch (i> l’ch si s ei x out 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

0 0 0 11.00 0.056 
0.056 0.167 0.836 23.24 0.030 
0.030 0.090 0.449 12.96 0.050 
0.050 0.150 0.749 18.16 0.038 
0.038 0.113 0.564 14.10 0.047 
0.047 0.140 0.701 16.63 0.041 
0.041 0.123 0.611 14.77 0.045 
0.045 0.135 0.674 15.96 0.042 
0.042 0.127 0.635 15.18 0.044 
0.044 0.132 0.659 15.63 0.043 
0.043 0.129 0.645 15.36 0.043 
0.043 0.130 0.651 15.48 0.043 

Example 10.15 We consider a batch computer system with multipro- 
gramming level K = 10, the mean CPU service time of 15sec, one channel, 
and five disks [LZGS84], each with the mean seek time s,i = 8sec, the mean 
latency time sli = 1 set, and the mean transfer time sti = 2 sec. We assume 
ei = 1 for each node. With a queueing network having six nodes, we can 
solve the problem iteratively using the preceding method. The first 12 steps 
of the iteration are given in Table 10.21. This iterative algorithm can be easily 
extended to disk I/O systems with: 

l Multiple classes 

. RPS 
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l Additional channels 

0 Controllers 

For details see [LZGS84]. F or related examples of the use of SHARPE, see 
[STP96]. 

Problem 10.3 Verify the results shown in Table 10.21 using the iterative 
algorithm of this section and implement it in SHARPE. 

Problem 10.4 Develop a stochastic reward net model for Example 10.15 
and solve using SPN P. 

10.4.3 Method of Surrogate Delays 

Apart from special algorithms for the analysis of I/O subsystem models and 
queueing networks with memory constraints, more general methods for the 
analysis of simultaneous resource possession in queueing networks are also 
known. Two general methods with which a satisfactory accuracy can be 
achieved in most cases are given in [FrBe83] and [JaLa82]. Both methods are 
based on the idea that simultaneously occupied service stations can be subdi- 
vided into two classes: the primary stations that are occupied before an access 
to a secondary station can be made. In the case of I/O subsystem models, the 
disks constitute the primary stations and the channel the secondary station. 
In the case of models with memory constraints, the memory constitutes the 
primary stations and the CPU and disks constitute the secondary stations. 
The time while a job occupies a primary station without trying to get ser- 
vice from the secondary station is called non-overlapping service time. This 
non-overlapping service time can also be zero. The time while a job occupies 
both the primary and the secondary station is called overlapping service time. 
Characteristic for the method of surrogates [JaLa82] is that the additional 
delay time can be subdivided into: 

l The delay that is caused when the secondary station is heavily loaded. 
Heavy load means that more jobs arrive at a station than can immedi- 
ately be served. 

l The delays due to an overload at the primary station. This is exactly the 
time one has to wait for a primary station while the secondary station 
is not heavily loaded. 

To estimate the delay times, two models are generated, where each model 
provides the parameters for the other model. In this way we have an iterative 
procedure for the approximate determination of the performance measures of 
the considered queueing model. This method can be applied to single class 
closed queueing networks that would otherwise have product-form solution 
if we neglect the simultaneous resource possession. Studies have shown that 
the method of surrogate delays tends to overestimate the delay and therefore 
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underestimate the throughput. In all examples we considered 
compared to the exact values was found to be less than 5%. 

, the deviation 

10.4.4 Serialization 

Up to now we only modeled contention for the hardware resources of a com- 
puter system. But delays can also be caused by the competition for software 
resources. Delay that is caused because a process has to wait for software 
resources and that makes a serialization in the system necessary is called seri- 
alization delay. Examples for such software resources are critical areas that 
have to be controlled by semaphores or non-reentrant subprograms, Serializa- 
tion can be considered as a special case of simultaneous resource possession 
because jobs simultaneously occupy a special (passive) serialization node and 
an active resource such as CPU or disk. 

The phrase serialization phase is used here for the processing phase in which 
at most one job can be active at any time. A job that wishes to enter the 
serialization phase or that is in the serialization phase is called a serialized job. 
The processing phase in which a job is not serialized is called the non-serialized 
phase, and a job that is in a non-serialization phase is called a non-serialized 
job. There can always be more than one job in the non-serialization phase. 
All nodes that can be visited by serialized jobs are called serialized nodes, 
all other nodes are called non-serialized nodes. Each serialized node can be 
visited by serialized jobs as well as non-serialized jobs. 

An iterative algorithm for the analysis of queueing networks with serial- 
ization delay is suggested by [JaLa83]. This algorithm can also be used for 
multiple class networks where the jobs can be at most in one serialization 
phase at one time. The starting point of this method is the idea that the 
entrance of a job in a serialization phase shall lead to a class switch of that 
job. Therefore a class-r job that intends to enter the serialization phase s is 
denoted as a class-(s, r) job. When the job leaves the serialization phase, it 
goes back to its former class. In each serialization phase, there can be at most 
one job at a time. Non-serialization phases are not limited in this way. The 
method uses a two layer model and the iteration takes place between these 
two layers. For more information see [JaLa83]. 

There are also other formulations for the analysis of queueing networks 
with serialization delays, but these methods are all restricted to single class 
queueing networks. In the aggregate server method [AgBu83], an additional 
node for each serialization phase is introduced and the mean service time of 
the node is set equal to the mean time that a job spends in the serialization 
phase. The mean service time of the original node and the additional node 
have to be increased in a proper way to take into consideration the fact that 
at the original node the service of non-serialized jobs can be hindered by the 
service of serialized jobs and vice versa. Therefore, iteration is needed to solve 
the model, 
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Two different techniques to model the deleterious effect of the serialization 
delays to the performance of a computer system are proposed by [Thom83]: an 
iterative technique and a decomposition technique. The decomposition tech- 
nique also uses two different model layers. At the lower layer the mean system 
throughputs for each possible system state is computed. These throughputs 
are then used in the higher level model to determine the transition rates 
between the states from which the steady-state probabilities can be deter- 
mined by solving the global balance equations of the underlying CTMC. 
More details and solution techniques can be found in [AgTr82], [MiiRo87], 
and [SmBr80]. A SHARPEimplementation can be found in [STP96]. 

Another complex extension of the models with serialization delays are 
models for the examination of synchronization mechanism in database sys- 
tems (concurrency control). These mechanisms make sure that the data in a 
database are consistent when requests and changes to these data can be done 
concurrently. These models can be found in [BeGo81], [CGM83], [MeNa82], 
[Tay87], or [ThRy85]. 

10.5 PROGRAMS WITH INTERNAL CONCURRENCY 

A two-level hierarchical model for the performance prediction of programs 
with internal concurrency was developed by Heidelberger and Trivedi (see 
[HeTr83]). Consider a system consisting of A4 servers (processors and I/O 
devices) and a pseudo server labeled 0. A job consists of a primary task 
and a set of secondary tasks. Each primary task spawns a fixed number 
of secondary tasks whenever it arrives at node 0. The primary task is then 
suspended until all the secondary tasks it has spawned have finished execution. 
Upon spawning, each of the secondary tasks is serviced by network nodes and 
finally on completion return to node 0. Each secondary task may have to 
wait for its siblings to complete execution and return to node 0. When all 
its siblings complete execution, the primary task is reactivated. It should be 
clear that a product-form queueing model cannot be directly used here as the 
waiting of the siblings at node 0 violates the assumptions. Of course, under 
the assumption of service times being exponentially distributed, a CTMC can 
be used. In such a CTMC, each state will have to include the number of 
tasks of each type (primary, secondaryl, secondary2, etc.) at each node. The 
resulting large state space makes it infeasible for us to use the one-level CTMC 
model even if it can be automatically generated starting from an SPN model. 

The two-level decomposition we use here is based on the following idea: 
Assume that the service requirements of the primary and secondary tasks are 
substantial so that on the average, queue lengths in the network will have time 
to reach steady state before any spawned task actually completes. We could 
then use a product-form queueing network model to compute throughputs and 
other measures for a fixed number of tasks of each type. This is assumed to be 
a closed product-form network and, hence, efficient algorithms such as MVA 
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can be used to compute steady-state measures of this lower level queueing 
network. 

A CTMC is constructed as the outer model where the states are described 
just by a vector containing the numbers or each type of tasks currently in 
the system. To describe the generator matrix of the CTMC, we introduce 
the following notation. For simplicity, we assume that the parent task spawns 
exactly two children after arriving at node 0. The parent tasks are labeled 
0, while the children tasks are labeled 1 and 2. Let ai denote the number of 
tasks of type i. Then a generic CTMC state is a = (a~, ar,az). The state 
space of the CTMC will then be: 

S ={a:O~a~~N,O~a~~N-ao,O~a~~N-ao,N<ao+al+az) 

Let wi be the number of children of type i waiting for their siblings at 
node 0. Let ri(a) be the probability that a task of type i, on arrival at node 0, 
finds its sibling waiting for it there. This probability is wz/ar for a Type-l 
task and wi/uz for a Type-2 task. Denote the throughputs obtained from the 
solution of the lower level PFQN by Xi (a) as a function of the task vector 
a. Then the generator matrix Q of the CTMC can be derived as shown in 
Table 10.22. The entries listed are the off-diagonal entries q(a, b). For vectors 
b not in the table, the convention is that q(a, b) = 0. For a detailed SHARPE 

Table 10.22 Generator matrix 

b da, b) Transition Explanation 

(a0 - l,w + l,aa + 1) x0 (4 Task 0 completion, tasks 1 and 2 spawned 
(ao,m - La2) X1(8)(1 -n(a)) Task 1 completion, sibling active 
(u0,u1,u2 - 1) Xa(a)(l - r2(a)) Task 2 completion, sibling active 

(a0 + l,Ul - 142) Xl (a)@1 (a>> Task 1 completion, sibling waiting 
(a0 + 1, al, a2 - 1) A:! (4 6-2 (4 > Task 2 completion, sibling waiting 

implementation of this algorithm see [STP96]. 

10.6 PARALLEL PROCESSING 

Two different types of models of networks with parallel processing of jobs will 
be considered in this section. The first subsection deals with a network in 
which jobs can spawn tasks that do not need any synchronization with the 
spawning task. In the second subsection we consider fork-join networks in 
which synchronization is required. 

10.6.1 Asynchronous Tasks 

In this section we consider a system that consists of m active resources (e.g., 
processors and channels). The workload model is given by a set of statistically 
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independent tasks. Each job again consists of one primary and zero or more 
statistically identical secondary tasks. The primary task is labeled 1 and the 
secondary tasks are labeled 2. A secondary task is created by a primary task 
during the execution time and proceeds concurrently with it, competing for 
system resources. It is assumed that a secondary task always runs indepen- 
dently from the primary task. This condition in particular means that we do 
not account for any synchronization between the tasks. Our treatment here 
is based on [HeTr82]. 

The creation of a secondary task takes place whenever the primary task 
enters a specially designated node, labeled 0; the service time at this node is 
assumed to be 0. Let eii, i = 1,2, . . . , m denote the average number of visits to 
node i per visit to node 0 by a primary task. Furthermore ei2, i = 1,2,. . . , m 
denotes the average number of visits to node i by a secondary task. After 
completing execution, a secondary task leaves the network and eir, ei2 < 00. 
Let l/pij denote the average service time of a type j task at node i. Each 
task type does not hold more than one resource at any time. The number 
of primary jobs in the system is assumed to be constant K and concurrency 
within a job is allowed only through multitasking, while several independent 
jobs are allowed to execute concurrently and share system resources. 

In the case that the scheduling strategy at a node is FCFS, we require each 
task to have an exponentially distributed service time with common mean. 
In the case of PS or LCFS-PRS scheduling, or when the node is an IS node, 
an arbitrary differentiable service time distribution is allowed and each task 
can have a distinct service time distribution. Since concurrency within a job 
is allowed, the conditions for a product-form network are not fulfilled (see 
[BCMP75]). Th ere ore we use an iterative technique where in each step a f 
product-form queueing network is solved (the product-form solution of each 
network in the sequence is guaranteed due to the assumptions on the service 
time distributions and the queueing disciplines). 

The queueing network model of the system consists of two job classes, an 
open class and a closed class. The open classes are used to model the behavior 
of the secondary tasks and, therefore, the arrival rate of the open class is equal 
to the throughput of the primary task at node 0. The closed class models the 
behavior of the primary tasks. Because there are K primary tasks in the 
network, the closed class population is K. Notice that the approximation 
assumes the arrival process at node 0 is a Poisson process that is independent 
of the network state. Due to these two assumptions (Poisson process and 
independence of the network state), our solution method is approximate. A 
closed form solution is not possible because the throughput of the closed 
chain itself is a non-linear function of the arrival rate of the open chain. For 
the solution of this non-linear function, a simple algorithm can be used. In 
[HeT’r82] g 1 f I re u a a si was used and on the average only a small number of 
iteration steps was necessary to obtain an accurate solution of the non-linear 
function. 
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Let Xuz denote the arrival rate and X2 the throughput of the open class, 
respectively. If any of the queues is saturated, then X2 < X02. Furthermore let 
Xi denote the throughput of the closed class at node 0. We require X2 = Xi 
and for the stability of the network, we must have X2 = X02. Therefore the 
following non-linear fixed-point equation needs to be solved: 

Wo2) = x02. (10.147) 

Here X1(X02) is the throughput of the primary task at Node 0, given that the 
throughput of the secondary task is X02. Equation (10.147) is a non-linear 
function in X02 and can be evaluated by solving the product-form queueing 
network with one open and one closed job class for any fixed value of X02. Let 
XT and Xz, denote the solution of Eq. (10.147), i.e., Xi = X& = Xr (Xi,). Here 
Xi, is the approximated arrival rate of a secondary task. At this point, the 
arrival rate of a secondary task is equal to the throughput of a primary task 
at node 0. To get the approximate arrival rate X02, we can use any algorithm 
for the solution of a non-linear function in a single variable. Since the two 
classes share system resources, an increase of X02 does not imply an increase 
in Xi; we conclude that Xi is a monotone non-increasing function of X02. If 
x yax denotes the maximum throughput of the open class, then the stability 
condition is given by: 

x02 < ,yax. (10.148) 

The condition for the existence of a stable solution, i.e., a solution where 
no queue is saturated, for Eq. (10.147) is given by: 

lim X1(X02) < AFax. 
x02 +Xy= 

(10.149) 

If a stable solution exists, it is also a unique one (monotonicity property). If 
the condition is not fulfilled, primary tasks can generate secondary tasks at a 
rate that exceeds the system capacity. The node that presents a bottleneck 
determines the maximum possible throughput of the open class. The index 
of this node is given by: 

Here argmax is the function that determines the index of the 
in a set. Therefore the maximum throughput is given by: 

max 
x2 

= Pbott,2 

ebott,2 

(10.150) 

largest element 

(10.151) 

In Fig. 10.38 the three types of possible behaviors, depending on the system 
parameters, are shown. In case (a), node bott is utilized by the primary task, 
i.e.: 

ebott,l 
> 0. 

pbott,l 
(10.152) 
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6 

i 

Open Chain Throughput Open Chain Throughput 

Open Chain Throughput 

Fig. 10.38 Three types of possible behavior of the approximation method (a) Con- 
tention at bottleneck (b) N o contention at bottleneck, moderate contention at other 
devices (c) No contention at bottleneck, little contention at other devices. 

When the queue of node bott grows without bound due to an excessive arrival 
of jobs of the open job class, the throughput of the closed job class will 
approach zero. If Condition (10.152) is not satisfied, but some other network 
nodes are shared by two job classes, then either case (b) or case (c) results 
depending on the degree of sharing. Because case (b) yields a unique solution 
to (10.147), we can conclude that (10.152) is a sufficient but not necessary 
condition for convergence, while (10.150) is both necessary and sufficient. 
Compared to Condition (10.150), Condition (10.152) has the advantage that 
it is testable prior to the solution of the network. 

We can also extend this technique to include cases where more than one 
type of secondary task is created. Assume, whenever a primary task passes 
node 0, a secondary task of type k, (Ic = 2,. . . , C) is created with probability 
pk. To model the secondary tasks, C - 1 open job classes are used with 
arrival rate Xek each. Let Xe = CF=, Xek denote the total arrival rate of 
the secondary tasks. The individual arrival rates are constrained so that 

AOk = pkAO$ 2 2. The total throughput of secondary tasks is set equal 
to the throughput of the primary tasks at node 0. This condition again 
defines a non-linear equation in the single variable X. This equation is similar 
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(b) 

Fig. 10.39 The central-server model without overlapped I/O (a) and with overlapped 

I/O (b). 

to Eq. (10.147) and must be solved. As a concrete example we consider 
the central-server model. The standard model without overlap is shown in 
Fig. 10.39a. 

Node 1 represents the CPU and nodes 2, 3, 4, and 5 represent I/O devices 
such as disks. In the case without overlap, the number of primary tasks is 
constant C. The processing time of the primary tasks at the CPU is assumed 
to be random with mean l/pp. As soon as a primary task finishes processing, 
a secondary task is created with probability f. Once a secondary task is 
generated, the primary task returns to the CPU for processing (with mean 
l/pi), while the secondary task starts at the CPU queue (with mean service 
time l/piz). With probability ~12, the secondary task moves to an I/O device. 
The secondary tasks leaves the system with probability 1 - p2 and returns to 
the CPU with probability ~2. In the case that a primary task completes 
CPU processing and does not create a new secondary task (with probability 
1 - f), it begins an overhead period of CPU processing with mean ~/PO. On 
completion of this overhead processing, the primary task moves to I/O device 
i with probability pi and then returns to the CPU. As scheduling strategies, 
we assume PS at the CPU and FCFS at all I/O devices with mean service 
times l/p;. 
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A primary task can issue I/O requests that are processed by the sec- 
ondary task. Then the task continues processing without waiting for these 
I/O requests to complete. If we assume l/,~c = l/piz, then this is the aver- 
age time to initiate an I/O request. In the notation of Section 10.5 we have 
l/p11 = 1/1-+ + (I- f)l/po. On th e average, each secondary task generates 
l/(1 - pz) I/O requests and thus the fraction of all I/OS that overlap with a 
primary task, is given by: 

f 1 -. 
f”l = bP2) (1-f)+&’ 

(10.153) 

In the case of p2 = 0, we get fOl = f. 
In Fig. 10.39b, the central-server model with overlap is shown. Here the 

additional node 0 with service time 0 is introduced. Once a primary task 
leaves the CPU, it moves to node 0 with probability f and to I/O device i 
with probability (1 - f)pil. The rate at which secondary tasks are generated 
is equal to the throughput of primary tasks at node 0. Secondary tasks are 
modeled by an open class of customers where all arrivals are routed to the 
CPU. We will assume that the arrival process is Poisson. The arrival rate 
of the open class customers X02 is set equal to the throughput of the closed 
class (primary tasks) at node 0. The routing of the secondary task is as 
described earlier. A secondary task leaving the CPU visits the I/O device 
labeled i with probability pi2 and returns then to the CPU with probability 
p2 or leaves the system with 1 - ~2, respectively, For this mixed queueing 
network, the stability condition is ei2Xo2 < pi2 for all i where er2 = l/(1 -ps) 
and ei2 = piz/(l - p2), i > 1. 

Table 10.23 Input parameters for the central-server model 

Model 
Set 

r- lx1 
CL2 -iG P4 

1 
1-15 

P21 = P22 

P31 = P32 

P41 = P42 

P51 = P52 PO2 

I 0.04 0.04 0.25 0.25 0.00 
II 0.04 0.04 0.25 0.25 0.50 
III 0.04 0.04 0.30 0.10 0.00 
IV 0.04 0.10 0.30 0.10 0.00 
V 0.04 0.20 0.30 0.10 0.00 
VI 0.04 0.40 0.30 0.10 0.00 

Six sets of central-server models with 60 models for each set were ana- 
lyzed by [HeTr82]. Each set contains models with a moderate utilization 
of the devices as well as heavily CPU and/or I/O bound cases. Each set 
also contains a range of values of multiprogramming levels, K, the mean 
service time at the CPU, l/pi, and an overlapping factor f. A model with- 
in a set is then characterized by the triple (K, 1/,~1, f) where K = 1,3,5, 
l/pi = 0.002,0.01,0.02,0.10,0.2, and f = 0.1,0.25,0.5,0.75. The differences 
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between the sets are the I/O service times and the branching probabilities pij 
and ~02, respectively. Furthermore they assume for all models that the over- 
head processing times are equal, l/p0 = l/pi2 = 0.0008. The mean service 
times of the least active I/O device is varied in an interval around the mean 
service time of the other I/O devices. In addition the I/O access pattern 
ranges from an even distribution to a highly skewed distribution. The input 
parameters for each set of 60 central-server models are shown in Table 10.23. 

As a second example, we consider the terminal-oriented timesharing sys- 
tems model shown in Fig. 10.40a. Basically it is the same model as the central- 
server model except that it has an extra IS node (node 6) that represents a 
finite number of terminals. The mean service time at node 6, l/psr, can 
be considered as the mean thinking time. The number of terminals submit- 
ting primary tasks to the computer system is denoted by K. Each primary 
task first uses the CPU and then moves to I/O device i with probability 
pil. As soon as a primary task completes service at the I/O, it returns to 
the CPU with probability pl or enters the terminals with probability 1 - pl. 
We assume that during the execution of a primary task a secondary task is 
generated which executes independently from the primary task (except for 
queueing effects). In particular, the secondary task can execute during the 
thinking time of its corresponding primary task. Routing and service times 
are the same as in the central-server model. The approximate model of this 
overlap situation is shown in Fig. 10.40b. Between the I/O devices and the 
terminals, node 0 (with service time 0) is inserted. Therefore the throughputs 
at node 0 and the terminals are equal. The secondary tasks are modeled as 
open job classes and arrive at the CPU. The corresponding arrival rate X02 is 
set equal to the throughput of primary tasks at node 0. The stability condi- 
tion for this model is the same as in the model before: Xo2/(pr2 ’ (1 -pz)) < 1 
and X02 . pi2/(,t42 . (1 - ~2)) < 1 for all i > 2. 

Table 10.24 Input parameters for the terminal system 

1 
P61 

1 - 1 --- 
Pll P12 

1 
CL, Pi, Pl = pa K (no. of terminals) 

10 0.010 0.04 0.25 0.10 
10 0.015 0.04 0.25 0.10 
15 0.002 0.04 0.25 0.10 
15 0.010 0.04 0.25 0.10 
15 0.020 0.04 0.25 0.10 
15 0.020 0.08 0.25 0.02 
15 0.030 0.08 0.25 0.02 

1, 5, 10, 20, 30, 40, 50,60, 70, 80, 90, 100 
1, 5, 10, 20, 30, 40, 50,60, 70, 80, 90, 100 

25, 50, 100 
25, 50, 100 
25, 50, 100 

1, 5, 10, 20, 30, 40, 50 
1, 5, 10, 20, 30, 40, 50 

This model can be interpreted as follows: Each terminal interaction can be 
split into two tasks. A terminal user has to wait for completion of a primary 
task but not for completion of a secondary task. In [HeTr82] 47 models of this 
type were considered. The corresponding parameter settings for this model are 
described in Table 10.24. Each of the models was simulated using the IBM 
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Sink 

Fig. IO.40 Terminal model without overlapped tasks (a) and with overlapped 
tasks (b). 
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Table 10.25 Comparison of DES and analytic approximations for the central-server 
models with balanced I/O subsystem 

Models 

Set I 
Mean 
Maximum 

CPU 

P 

0.003 
0.026 

Disk CPU Disk x 

P Q s 

Absolute error 
0.006 0.011 0.044 0.056 
0.071 0.110 0.457 0.710 

Set II 

Mean 
Maximum 

Mean 
Maximum 

1.2 
15.9 

0.003 
0.020 

Relative error 
1.5 2.8 3.2 1.3 

15.4 26.2 16.2 15.5 

Absolute error 
0.005 0.009 0.072 0.034 
0.054 0.073 0.670 0.317 

Mean 
Maximum 

1.0 
9.2 

1.1 
8.7 

Relative error 
2.8 

25.0 
3.1 1.0 
15.1 9.0 

Tab/e 10.26 Comparison of simulation and analytic approximations for the terminal 
models with balanced I/O subsystem 

Models CPU Disk CPU Disk Terminal X T 

P P s s G 

Terminal 
Models Mean 0.002 0.002 

Maximum 0.010 0.008 

Mean 0.3 0.4 
Maximum 1.4 1.5 

Absolute error 
0.429 0.056 0.115 0.010 0.228 
2.261 0.421 0.674 0.036 1.141 

Relative error 
3.0 1.4 0.6 0.7 1.7 
13.4 4.5 2.7 2.2 5.4 
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Tab/e 10.27 Comparison of simulation and analytic approximations for the central 

server models with imbalance I/O 

Models CPU Disk 2 Disk 3-5 CPU Disk 2 Disk 3-5 A 

P P P s CT v 

Set III Absolute error 
Mean 0.003 0.007 0.003 0.010 0.060 0.004 0.050 
Maximum 0.025 0.076 0.025 0.101 0.799 0.065 0.631 

Mean 
Maximum 

1.2 
14.7 

1.4 
14.4 

Relative error 
1.9 2.9 3.8 2.0 1.3 

13.9 27.7 18.3 13.1 14.3 

Set IV Absolute error 
Mean 0.003 0.007 0.007 0.010 0.044 0.030 0.055 
Maximum 0.029 0.078 0.069 0.095 0.555 0.323 0.636 

Mean 
Maximum 

1.4 
15.8 

1.6 
16.2 

Relative error 
2.1 2.9 3.1 4.2 1.4 
17.4 27.0 13.6 29.2 15.9 

Set V Absolute error 
Mean 0.003 0.005 0.008 0.009 0.043 0.394 0.039 
Maximum 0.024 0.059 0.102 0.065 0.878 5.499 0.490 

Mean 
Maximum 

1.4 
15.6 

1.5 
15.3 

Relative error 
1.6 3.1 3.2 11.4 1.4 

15.9 28.7 37.4 73.2 15.3 

Set VI Absolute error 
Mean 0.002 0.002 0.007 0.008 0.041 0.592 0.019 
Maximum 0.011 0.180 0.067 0.032 0.394 4.224 0.149 

Mean 
Maximum 

1.0 
7.2 

1.2 
7.2 

Relative error 

1.3 4.0 7.4 13.7 1.1 
8.1 28.9 47.9 89.0 7.1 
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Research Queueing package RESQ, which offers a so-called split node that 
splits a job into two tasks that proceed independently through the network. 
This node type was used to model the overlap of jobs. In Table 10.25, 10.27, 
and 10.26, the results of the comparison of discrete-event simulation (DES) 
with the approximate analytic method are shown. 

Both absolute errors as well as relative errors are given. For each set of 
models, the mean and maximum absolute and relative errors are listed for 
utilizations, queue lengths, throughputs, and response times (for the terminal 
models). As we can see from the results, the approximation is particularly 
accurate for estimating utilizations and throughputs. For these quantities, the 
relative error is about 1.3010, and the maximum relative error is 17.4%. We 
can also see that the estimates for the mean queue length are somewhat less 
accurate, the mean relative error is 4.2%. The maximum relative error is very 
high (up to 89%). Th ese high errors always occur in very imbalanced systems 
such as the central-server model sets V and VI (in these sets the overlap factor 
is very high). If, on the other hand, the model is better balanced (lower values 
of fOl), we get quite accurate approximations. In this case the mean relative 
error for all performance measures is 1.9%, and the maximum relative error 
is 2.9%. 

10.6.2 Fork-Join Systems 

Fig. 10.41 Task precedence graph with (u) four parallel tasks and (b) four tasks. 

In this section we consider computer systems that are able to run programs 
in parallel by using the fork-join or parbegin-parend constructs. The parallel 
programs (jobs) consist of tasks that have to be processed in a certain order. 
This order can be given by a task precedence graph. In Fig. 10.41a the task 
precedence graph for a program consisting of four parallel tasks Y”r, T2, Ts, T4 
is shown, and in Fig. 10.41b another task precedence graph for a program 
consisting of four tasks Tr, T’, Ts, TJ is shown. In Case b, task Ts can start 
after both tasks Tr and Tz are finished while task T4 can be executed in parallel 
with task Tr , T2, and T3. The corresponding parbegin-parend constructs look 
as shown in Fig.10.42. 



518 ALGORITHMS FOR NON-PRODUCT-FORM NETWORKS 

10.6.2.1 Modeling Consider a model of a system in which a series of external 
parallel program execution requests arrive at an open queueing network where 
nodes indicate the processors and external arrivals indicate the jobs [Duda87]. 
It is assumed that each processor can execute exactly one special task. Thus 
task T! always needs to be served by processor Pi. Furthermore it is assumed 
that processors are always available when needed. The interarrival times of 
jobs are exponentially distributed with mean value l/X, and the service times 
of the tasks are generally distributed with mean value l/pi, i = 1,. . . , N. 
Figure 10.43 shows the queueing network model for jobs with the structure 
shown in Fig. 10.41~. Figure 10.44 shows the queueing network model of a 
parallel system, where jobs have the structure shown in Fig. 10.41b. The fork 
and join operators are shown as triangles. 

fig. 10.42 Parbegin-pared construct for (a) four parallel tasks (Fig. 10.41a), (b) four 
parallel-sequential tasks (Fig. 10.41b) 

The basic structure of an elementary fork-join system is shown in Fig. 10.43. 
The fork-join operation splits an arriving job into N tasks that arrive simul- 
taneously at the N parallel processors Pi, . . . , PN. As soon as job i is served, 
it enters the join queue Qi and waits until all N tasks are done. Then the job 
can leave the fork-join system. 

Fig, 10.43 Fork-join system. 

A special case of the elementary fork-join system is the fission-fusion system 
(see Fig. 10.45), where all tasks are considered identical. A job can leave the 
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Fig. 10.44 Queueing network model for the execution of a job with the task precedence 
graph shown in Fig. 10.41b. 

system, as soon as any N tasks are finished. These tasks do not necessarily 
have to belong to the same job. 

Fig. 10.45 Fission-fusion system. 

Another special case is the split-merge system (see Fig. 10.46) where the 
N tasks of a job occupy all N processors. Only when all the N tasks have 
completed, can a new job occupy the processors. In this case there is a queue 
in front of the split station and there are no processor queues. This variant 
corresponds to a blocking situation: A completed task blocks the processor 
until all other tasks are finished. 

Pl 

PN 

Fig. 10.46 Split-merge system. 

10.6.2.2 Performance Measures In this section some performance measures 
of fork-join systems are defined. They are based on some basic measures of 
queueing systems that are defined as follows (see Fig. 10.47 and Section 7.2.1): 
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-- 
Ts,l T9,2 TS,N 

(4 

D- 

TJ,N 
\ / 

(b) TFJ 

Fig. 10.47 System used for performance comparison: (a) sequential system, (b) par- 
allel system. 

Ts,+ = The mean response time of task Ti belonging to a purely sequential 
job 

Ts = The mean response time of a purely sequential job, equal to the - 
sum of all Ts,i 

FFJ = The mean response time of parallel-sequential jobs with fork-join 
synchronization 

TJ,~ = The mean time spent by task Ti waiting for the join synchroniza- 
tion in queue Qi 

si = The mean number of tasks waiting for the join synchronization in 
queue Qi 

TJ = The mean join time 

KF.J = The mean number of parallel-sequential jobs with fork-join syn- 
chronization 

In addition to these measures, the following other measures are of interest 
for parallel systems: 
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Speedup: Ratio of the mean response time in the system with N sequential 
tasks to the mean response time in a fork-join system with N parallel 
tasks: 

Ts 
GN=TFJ. 

Normalized Speedup: 

G=$, GE [+,l]s 

(10.154) 

(10.155) 

Synchronization Overhead: Ratio of the mean time that tasks have to wait 
altogether in the join queues until all tasks are finished to the mean 
response time of the fork-join system: 

N 

c TJ,i 

s = ?l=l N - 
%J ’ 

(10.156) 

Normalized Synchronization Overhead: 

s = $,s E [O,l]. (10.157) 

Blocking Factor: The blocking factor is the average total number of blocked 
tasks in the join queues: 

BN = 2Qi. (10.158) 
i=l 

Normalized Blocking Factor: The normalized blocking factor is given by: 

BN B=N. (10.159) 

10.6.2.3 Analysis The method of [DuCz87] for the approximate analysis of 
fork-join systems is based on an application of the decomposition principle: 
We consider fork-join systems as open networks and replace the subnetwork 
that contains the fork-join construct by a composite load-dependent node. 
The service rates of the composite node are determined by analyzing the iso- 
lated (closed and) short-circuited subnetwork. This analysis is done for every 
number of tasks (1. . . 00). For practical reasons this number is, of course, 
limited. During the analysis, the mean number of tasks in the join queues 
is determined by considering the CTMC and computing the corresponding 
probabilities using a numerical solution method. 
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Pl &I 

PN : QN r 

Fig, IO.48 Closed network with N- k tasks. 

Consider an elementary fork-join system with N processors as shown in 
Fig. 10.43. To analyze this system, we consider the closed queueing network 
shown in Fig. 10.48. This network contains N. Ic tasks, Ic = 1,2,. . . . 

The analysis of the network, via the numerical solution of the underly- 
ing CTMC, gives the throughput rates X(j), which are used as the load- 
dependent service rates p(j) of a FES node that replaces the fork-join system 
(see Fig. 10.49). Th e analysis of the FES node finally gives the performance 
measures of the overall system. 

Fig. 10.49 Composite service station. 

In the similar fashion, the performance measures of more complex fork-join 
systems can be computed because a job can have task precedence graphs with 
several nested fork and join constructs. The model for the service of a job 
has then the form of a series-parallel network with subnetworks that again 
contain fork-join systems. In Fig. 10.44 we have already given an example of 
such a model. The described decomposition principle is applied in this case 
several times in order to solve the fork-join subnetworks numerically so that 
they can be replaced by FES service stations. 

Example 10.16 Consider a two-server fork-join queue. Here we assume 
that the service times at both servers are exponentially distributed with mean 
l/p. This system is shown in Fig. 10.43 (with N = 2). In order to solve the 
fork-join queue, we consider the FES queue with state-dependent service rate, 
shown in Fig. 10.49. The decomposition step consists of analyzing the closed 
subsystem with 21c tasks, k = 1,2,. . . (Fig. 10.48). The service rate of the 
FES in Fig. 10.49 is set equal to the throughput of the closed subsystem. 
The solution of the FES gives overall performance measures. At the level of 
the closed subsystem we deal with forked tasks and delays caused by the join 
primitive, while at the FES level we obtain the performance measures for jobs. 
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Let X(t) denote the total number of tasks in collectively both the join 
queues at time t. The stochastic process is a CTMC with the state space 
{i = 1,2,. . . ) k}. 

The state diagrams of the CTMCs for various values of Ic are shown in 
Fig. 10.50. Each of these CTMCs is a finite birth-death process, and thus the 

Fig. IO.50 CTMC for the total number of tasks waiting in the join queues. 

steady-state probabilities can be derived using Eqs. (3.11) and (3.12): 

1 
ro= 1+21c’ (10.160) 
7ri = 27r0, i = 1,2,. . . ) It, k = 1,2 ).... 

In order to calculate the throughput of jobs A( Ic), we observe that a suc- 
cessful join corresponds to a transition at rate ,Q from state i to state (i - 1) in 
the CTMCs of Fig. 10.50. Thus assigning reward rate p to each of the states 
i = 1,2,. . . ) Ic, we obtain the needed throughput as the expected reward rate 
in the steady states. 

X(lc) =/&i = &, k = 1,2,. . . * 
i=l 

(10.161) 

State-dependent service rates of the FES are then set equal to the throughput 
of the closed subsystem: p(k) = X(k), k = 1,2,. . . . The solution of the FES 
queue then gives the steady-state probabilities of the number of jobs in the 
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fork-join queue and is given by: 

Vk = vOpki=lk ) II= 1,2 )...) 

n 2i 
i=l 

and with Eq. (3.12): 

v(-J = 

= 

1 

l+ 

(1 - 

E Pk 
k=l 

t$7 

fi2i+1 
i=l 

fJ 2i 
i=l 

(see [BrSeSI -37 P.32), 

(10.162) 

where p = X/p. These results hold for p < 1, which is just the ergodicity 
condition for fork-join queues. Knowing the probabilities of Eq. (10.162), the 
expected number of jobs in the system is: 

j&=-&,k=3.P 
k=l 

2 l-p' 

and, using Little’s theorem: 

T&J = 
KFJ 3 1 
- = 5 * /V(l - p)’ x 

(10.163) 

(10.164) 

If these values are compared to the corresponding ones for the M/M/l queue, 
it can be seen that the mean number of jobs and the mean response time of 
the fork-join queue are both 3/2 times larger than those of the M/M/l queue. 

The performance indices of the synchronization primitives are derived in the 
following: With the mean response time Ts,i of task i of a purely sequential 
job (= mean response time of a M/M/l queue, Eq. (6.15)) 

1 
Ts,+ = ~ 

41 - P> ’ 
i = 1,2, 

we obtain the mean response time of a purely sequential job: 

T,=&,,p 2 
i=l PO -P)' 

Equations (10.154) and (10.164) are used to derive the speedup: 

Ts 4 
GN=TFJ=3. 
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The normalized speedup is computed using Eq. (10.155). With N = 2 we get: 

To compute the synchronization overhead SN, we need the average time 
a task spends in the join queues. This time is just given by the difference 
between ?;FJ and TM/M/r (where TM/M/r is the time a task spends in the 
servers). If: 

then the synchronized overhead is given by (Eq. (10.156)): 

and the normalized synchronization overhead (Eq. (10.157)): 

In order to obtain the blocking factor BN, we need the mean number of 
tasks in the join queues. This number can be determined from Eq. (10.165), 
using Little’s theorem: 

and the normalized blocking factor is given by: 

Note that the speedup as well as the synchronization overhead do not depend 
on the utilization p, and that the speedup is rather poor. It can be shown that 
the speedup GZ increases from 4/3 to 2 if the coefficient of variation of the 
service time decreases from 1 (exponential distribution) to 0 (deterministic 
distribution). In Tables 10.28, 10.29, and 10.30, the speedup is given for 
different distribution functions of the service times. It is assumed that jobs 
arrive from outside with arrival rate X = 0.1. The service rate is ,Q = 10. 

For the case cx < 1, we use an Erlang-lc distribution and get the results 
shown in Table 10.28. For cx > 1, we use a hyperexponential distribution and 
get the results shown in Table 10.29. Because of the phase-type service time 
distribution, the method discussed so far can easily be extended. Underlying 
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Tab/e 10.28 System speedup with Erlang-k distributed service times 

Exact Erlang-k 

var(X) OeO ii+5 iA 1 1 1 1 1 1 
600 500 400 300 200 100 

cx 0.0 & 53 5 5 - A 5 5 1.0 

Speedup 2.0 1.760 1.671 1.630 1.605 1.569 1.524 1.453 1.333 

Table 10.29 System speedup with hyperexponentially distributed 
service times . 

var(X) 2.0 4.0 6.0 8.0 10.0 20.0 

Speedup 1.060 1.043 1.029 1.028 1.027 1.026 

CTMCs will now be more complex than those shown in Fig. 10.50. We chose 
to generate and solve these CTMCs using the MOSES tool (see Chapter 12). 

Finally we show in Table 10.30 the system speedup if the service times are 
normally distributed with standard deviation 0~ and mean value p = 10. 
The results in this case were obtained using DES. Using a similar approach, 

Tab/e 10.30 System speedup with normally distributed service times 

var(X) 0.001 0.005 0.01 0.02 0.08 0.1 0.2 0.4 

Speedup 1.697 1.525 1.487 1.463 1.439 1.437 1.433 1.431 

performance measures for the fission fusion system (see Fig. 10.45) and the 
split merge system (see Fig. 10.46) can be computed [DuCz87]. 

For fork-join systems with a large number of processors, [Duda87] devel- 
oped an approximate method for the analysis of the subnetworks. To demon- 
strate this method we consider a series-parallel closed fork-join network as 
shown in Fig. 10.51. In this method it is assumed that all service times of 
the tasks are exponentially distributed. The method is based on construction 
of a product-form network with the same topology as the original fork-join 
subnetwork and approximately the same number of states in the correspond- 
ing CTMC. The main difficulty when following this procedure is to determine 
the number of states in the fork-join subnetwork. If N denotes the number of 
parallel branches where the ith branch contains exactly ni nodes and Ic tasks, 
then the number of ways to distribute Ic tasks to ni + 1 nodes (including the 
join queue &i) is given by: 

(10.166) 
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Nk Tasks 

Fig. 10.51 Series-parallel closed fork-join network. 

Then the number of ways to distribute N. Ic tasks to all nodes is given by the 
following expression: 

fi 0 xi k . (10.167) 
i=l 

This number can be limited further. If there is exactly one job in each join 
queue Qi, then the jobs are passed immediately to the first station. Thus 
j-J:, zi(k - 1) of th e given combinations are not possible because this is the 
number of possible ways to distribute Ic - 1 tasks over ni stations, given that 
there is one task in each join queue Qi . The number of states in the fork-join 
subnetwork is therefore given by: 

&J(k) = f&i(k) - fiZi(k - 1). (10.168) 
i=l i=l 

In the following steps, the algorithm for the analysis of fork-join networks 
with possibly several nested fork-join subnetworks is given. The replacement 
of these fork-join subsystems by FES nodes is done iteratively. 

Choose one subsystem that does not contain any other fork-join 
structures and construct a closed network with N. Ic tasks by using a short 
circuit. 

Compute the number of states .&J(IC) of this closed subnetwork 
for k = 1,2, . . . (Eq. (10.168)). 
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Compute the throughput of the subnetwork. 

-1 Construct a product-form network with exactly the same M = 
CL, ni number of nodes as the subnetwork. The number of jobs K in the 
product-form network is chosen so that the number of states in the product- 
form network is approximately equal to the number of states in the fork-join 
subnetwork. Since the state space structures of both networks are almost iden- 
tical, the throughput of the product-form network XPF(K) will be approxima- 
tively equal to the throughput of the fork-join network XFJ(IC). Thus we need 
to determine K by using Eqs. (10.166) and (10.168) so that for Ic = 1,2,. . .: 

K : lzFJ(k) - zPF(K)I = mp[ZFJ(k) - ZPF@)i ? (10.169) 

with &F(K) = .z~-1(K) holding. 

1-1 Solve the product-form network for all possible numbers of jobs 
K using an algorithm such as MVA and determine the throughput as a func- 
tion of K. This throughput XPF(K) of the product-form network is approx- 
imately equal to the throughput XFJ(/C) of the fork-join subnetwork for the 
value of K corresponding to Ic. 

Replace the subnetwork in the given system by a composite node 
whose load-dependent service rates are equal to the determined throughput 
rates: 

p(k) = XFJ(IC) for k = 1,2.. . . 

If the network under consideration contains only one FES node, 
nalysis of this node gives the performance measures for the whole 

network. Otherwise go back to Step 1. 

From these performance measures, special characteristic values of 
parallel systems such as the speedup GN and the synchronization overhead 
SN can be computed. 

The algorithm is now demonstrated on a simple example. 

Example 10.17 Consider a parallel program with the precedence graph 
depicted in Fig. 10.41b. The model in the form of a series parallel fork-join 
network is presented in Fig. 10.44. The arrival rate of jobs is X = 0.04. All 
service times of the tasks are exponentially distributed with the mean values: 

1 1 1 - = 10, 1 - = 5, - = 2, - ZE 10. 
CL1 CL2 CL3 l-b 

The analysis of the model is carried out in the steps that follow: 

At first the inner fork-join system, consisting of the processors Pi 
and P2, is chosen and short-circuited. This short circuited model consists of 
2. k tasks, k = 1,2, . . . (Fig. 10.52). 
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fig. 10.52 Short-circuited model. 

Table 10.31 Number of states in the subsystem. 

k 1 2 3 4 5 6 7 8 9 10 

&‘J 3 5 7 9 11 13 15 17 19 21 
K 3 5 7 9 11 13 15 17 19 21 
m&F 3 5 7 9 11 13 15 17 19 21 

The number of states ZFJ of this subsystem is determined using 
Eq. (10.168). For Ic = 1,. . . , 10, the results are shown in Table 10.31. 

Determine the throughput of the subnetwork. 

-1 Construct a product-form network with N = 2 nodes. The 
number of jobs K in this network are determined using Eq. (10.169). For 
k = 1,2..., 10 the values for K and the number of states ZPF(K) are given 
in Table 10.31. 

-1 Using MVA we solve the product-form network, constructed in 
Step 3.1, for all possible number of jobs K. The throughputs are given by: 

X43) = 0.093, &F(5) = 0.098, 

&F(7) = 0.100, &(g) = o-100, 

These values approximately correspond to the throughputs XFJ(~) of the fork- 
join subnetwork: 

XFJ(~) = XPF(3) = o-093, 

XFJ(2) = &F(5) = &@.ii, 

&J(3) = XPF(7) = 0.100, 

XFJ(4) = XPF(g) = 0.100, 

The analyzed fork-join subnetwork, consisting of the processors PI 
and P2, is replaced by an FES node (see Fig. 10.53) with the load-dependent 
service rates p(k) = XFJ (k) for k = 1,2, . . . . 
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fig. 10.53 Fork-join subnetwork with one FES node. 

This network contains more than one node and therefore we return 
to Step 1. 

fig. 10.54 Short-circuited network. 

The short circuit of the network shown in Fig. 10.53 results in a 
closed network with 2. k tasks, k = 1,2,. . . (Fig. 10.54). 

The possible number of states ZFJ in this network is given by 
Eq. (10.168). For k = 1,. . . , 10 the values are shown in the Table 10.32. 

Tab/e 10.32 The possible number of states ZFJ as a function of k = 1,. . . , 10 

k 1 2 3 4 5 6 7 8 9 10 

ZFJ 5 12 22 35 51 70 92 117 145 176 
K 2 3 5 7 9 10 12 14 16 17 
ZPF 6 10 21 36 55 66 91 120 153 171 

Determine the throughputs. 

1m3.1) Construct a product-form network consisting of N = 3 nodes 
and determine the number of jobs K in the network using Eq. (10.169). For 
k = l,... , 10 the values of K and .&F(K) are given in Table 10.32. 

\-I Solve the network for all number of jobs K. For the computed 
throughputs, the following relation approximately holds: XpF (K) = XFJ( k). 
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ITsing the MVA we get: 

~~~(1) = X42) = 0.062, &J(Z) = XPF(3) = 0.072, 

&~(3) = APF(5) = 0.082, XFJ (4) = xpF( 7) = 0.087, 

XFJ(5) = &(9) = 0.089, XFJ (6) f8 iiPF(10) = o-090, 

XFJ(7) = XPF(l2) = o-092, XFJ(~) % XPF(14) = o-093, 

XFJ(S) x Xp~(16)=0.094, XFJ(~O) z XpF(l7) = 0.094. 

The fork-join subnetwork is now an FES node (see Fig. 10.55) with 
the load-dependent service rates $(Ic) = XFJ(~), k = 1,2,. . . . 

Fig. 10.55 FES queue for Example 10.17. 

The fork-join network is now reduced to only one node and there- 
fore the iteration stops and the performance measures of the system can be 
determined by analyzing the FES node of Fig. 10.55. For this analysis we 
determine at first the steady-state probabilities of the node using Eqs. (3.11) 
and (3.12): 

r. = 0.428, xl = 0.287, 7r2 = 0.155, 

7r3 = 0.076, 7r4 = 0.034, TT5 = 0.015, 

7r6 = 0.007, 7r7 = 0.003, r8 = 0.001, 

7rg = 0.001, n-10 = 0.000. 

These probabilities are then used to determine the mean number of jobs in 
the fork-join model, Eq. (6.8): 

KFJ = 1.116, 

and the mean response time, Eq. (6.9): 

TFJ = 27.89. 

With Eq. (6.15) and: 

r;,=&T,;+=f: l 
i=l i=l /-a - Pi> ’ 

we obtain: 

?& = 41.76. 
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To obtain the speedup, we use Eq. (10.154) and get: 

GN = 1.497. 

From this result we can compute the normalized speedup (Eq. (10.155)): 

GN 
G = N = 0.374. 

To obtain the synchronization overhead SN, we need the mean waiting time 
TJ,.i, (i = 1,2,3,4) in synchronization queues. First we consider the fork-join 
queue of node 1 and node 2: 

TJ& = TFJ12 - T.i, (10.170) 

where TF.J~ 2 is the mean response time in the fork-join construct consisting 
of node 1 and node 2. It is obtained from the state-dependent service rate 
,~(lc) for the composite node of the inner fork-join construct. At first we need 
the state probabilities, using Eqs. (3.11) and (3.12): 

x0 = 0.580, 7rl = 0.249, r2 = 0.102, 

7r3 = 0.041, r4 = 0.016, 7r5 = 0.007, 

r6 = 0.003, 7r7 = 0.001, iTTf.3 = 0.000, 

and the mean number of jobs: 

&J12 = 2 hrr, = 0.701. 
k=l 

If we apply Little’s theorem, we obtain for the mean response time of a 
parallel-sequential job with fork-join synchronizations: 

T 
K FJn 

FJu = - = 17.514. 
x 

In order to obtain the mean response time, we apply Eq. (6.15) and get: 

1 = 
Pl(1 - Pl) 

= 16.667, T&=6.25. 

Using Eq. (10.170) we finally get the the results: 

TJ,1 = %J12 - T1 = 0.874, TJ,2 = 11.264. 

From Fig. 10.53 we have: 

TJ,~ = TFJ -TFJ~~ -T3, TJ,4 = TFJ -574. 
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Applying Eq. (6.15) again: 

T3 = 2.174, T4 = 16.667. 

Together with TFJ and TFJ~~ from the preceding we get: 

TJ,3 = 8.202, TJ,4 = 11.233, 

which finally gives us the synchronization overhead (see Eq. (10.156)): 

6 TJ,i 
s =i=l 

N - = 1.132. 
%J 

The normalized synchronization overhead is given by (Eq. (10.157)): 

SN s = N = 0.292. 

Now it is easy to calculate the blocking factor. Using Little’s theorem, we 
obtain, via Eq. (10.158): 

BN = k?Ji = 1.263, 
i=l 

and with Eq. (10.159) the normalized blocking factor is given by: 

BN B = 1 = 0.316. 
4 

A comparison of the mean response time computed with the preceding 
approximation with DES shows that the differences between the DES results 
(?T = 26.27) and the approximation results are small in our example. For 
fork-join systems with higher arrival rates, the differences become larger. It 
can be shown in general that the power of the fork-join operations is reduced 
considerably by join synchronization operations. Also the speedup is reduced 
considerably by using synchronization operations. Other approaches to the 
analysis of parallel programs can be found in [Flei89], [MiiRo87], [NeTa88], 
[SaTr87], and [ThBa86]. 

Problem 10.5 Consider a parallel program with the precedence graph 
shown in Fig. 10.56. The arrival rate is X = 1 and the service rates of the 
tasks are ~1 = 2, ~2 = 4, ,Q = 4, ,Q = 5. All service times are exponentially 
distributed. Determine the mean response time and the speedup. 

10.7 NETWORKS WITH ASYMMETRIC NODES 

Whenever we have considered multiserver nodes in a network, we have always 
assumed that all the servers at the node are statistically identical. We now 
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fig. 10.56 Precedence graph for Problem 10.5. 

consider the case of networks where servers at a multiserver node have differ- 
ent service times. We first consider closed networks with asymmetric nodes 
followed by open networks with asymmetric nodes. Note that in each of these 
cases we will only obtain an approximative solution. 

10.7.1 Closed Networks 

In this section we show how to modify the summation method, the mean value 
analysis, and the SCAT algorithm to deal with asymmetric nodes[BoRo94] as 
introduced in Section 9.1.2. 

10.7.1.1 Asymmetric SUM (ASUM) T o extend the SUM (see Section 9.2) to 
queueing networks with asymmetric nodes, we need to adapt the formula for 
computing the mean number of jobs (see Eqs. (9.15) and (6.28)): 

Ki = mi f pi + 
Pi 

1-K-me--l 
*pm,, Type-l, 

K-m, ‘Pi 

with: 

‘mi(Pi) = 
m;! . (1 - pi) 

me1 (mi * pi)” + (mi . pi)mi ’ 

k=O k! mi * (1 - pi) 

For symmetric nodes, pi is given by: 

Ai 
pi = ____ 3 

mi * pi 

and for asymmetric nodes we can use Eq. (6.136) or Eqs. (6.150) and (6.146), 
respectively. Since the SUM is an approximate method, so is the extended 
SUM. By replacing p; and Pm, by the corresponding formulae, the BOTT 
can be extended to queueing networks with asymmetric nodes in the same 
way. 
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10.7.1.2 Asymmetric MVA (AM VA) The MVA was developed by Reiser and 
Lavenberg [ReLa80] for the exact analysis of product-form networks and is 
based on Little’s theorem and the arrival theorem of Reiser, Lavenberg, Sevcik, 
and Mitrani (see Section 8.2) [LittBl, ReLa80, SeMi81]. To extend the MVA 
to networks with asymmetric nodes, the equation for the calculation of the 
mean response time for symmetric -/M/m nodes: 

. i 
i 

1 + Ki(Ic - 1) + c (Mi - j - 1) * %(j I k - 1) ? 
a j=o ) 

(10.171) 

needs to be extended. Here 7ri(j 1 Ic) is the probability that there are j jobs 
at the ith node, given that there are Ic jobs in the network. This condition 
probability ri(j 1 Ic) is given by: 

*dj-w-l), j=l,..., mi-1, (10.172) 

and ri(O 1 Ic) is obtained by: 

;Iri(O ) Ic) = 1 - L 
[ 
2 * X(k) + mel(mi - j) * 7ri(j ) Ic) 

I 
* 

mi pi 
(10.173) 

j=l 

In Eq. (10.173), the factor ,Q, . rni is the overall service rate of the symmetric 
-/M/m node. For asymmetric nodes m; . pi is replaced by: 

Thus the mean response time of an asymmetric node can be computed as 
follows: 

T@) = -A- 
2 ,Uij 

j=l 
( 

m,-2 

l+IiTi(k-l)+ C ( mi-j-l)*ni(jIIc-1) . 
j=O ) 

(10.174) 

Because of the different service rates, it is necessary to take into account 
which servers are occupied as well as the number of servers when calculating 
the marginal probabilities n&j 1 k). If we assume that the free server with the 
highest service rate is selected and the service rates are arranged in descending 
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order, then the marginal probabilities are given by: 

(10.175) 

7ri(O 1 k) = 1 - * * X(k) - -&- * 
m,-1 

C( rni 
mi 

- j) .7ri(j 1 k). (10.176) 

c Pi1 j=l 
l=l 

If we consider Eq. (10.173) in more detail, we see that the factor: 

ei . X(k) 

E Pi1 
l=l 

is the utilization pi and, therefore, Eq. (10.176) can be rewritten as: 

ni(O 1 k) = 1 - pi(k) - k * mgl(mi - j) * ni(j I k). 
z j=l 

10.7.1.3 Asymmetric SCAT (ASCAT) The core of the SCAT algorithm is 
a single step of the MVA in which the formula for the mean response time, 
Eq. (10.174), is approximated so that it depends only on K and not on (K- 1). 
However, it is necessary to estimate the marginal probabilities ni(j 1 K - 1) 
that need a lot of computation time. For this reason, another formula for the 
mean response time is derived from Eq. (6.29). This derivation depends only 
on ??i and pi. For -/M/l nodes we apply Little’s theorem to the following 
equation: 

li’, = pi 
1 - pi’ 

and after reorganizing we get: 

Ti = -i(l +Ki), 
Pi 

which is the basic equation of the core of the SCAT algorithm for -/M/l 
nodes. Similarly, from Eq. (6.29) we obtain: 

and for -/M/m nodes we have: 

Ti = 
& * (mi + Ki + pmi(pi) - mi * pi). 

2’ 2 
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This formula can easily be extended to asymmetric nodes as follows: 

1 
Ti=-. 

2 Pij 
Crni + Ki + Pm% (pi) - mi . pi) . 

j=l 

At this point we proceed analogously to the SUM by using the equations 
belonging to the selected method to calculate pi and Pm% (pi). Our experience 
with these methods suggests that the mean deviation for ASUM and AMVA 
is in the order of 2-3% for the random selection of a server as well as for the 
selection of the fastest free server. For ASCAT, the situation is somewhat 
different. For random selection the deviation is considerably high (7%), while 
for the selection of the fastest free server the mean deviation is only of the 
order of 1%. Therefore, this method can be recommended. ASUM, AMVA, 
and ASCAT can easily be extended to multiclass queueing networks [AbBo97]. 

10.7.2 Open Networks 

Jackson’s method for analyzing open queueing networks with symmetric nodes 
(see Section 7.3.4) can also be extended to analyze open queueing networks 
with asymmetric nodes. Note that this will result in an approximate solution. 
Jackson’s theorem can be applied to open single class queueing networks with 
symmetric -/M/m-FCFS nodes. 

The analysis of an open Jackson network is done in two steps: 

Calculate the arrival rates Xi using traffic Eq. (7.1) for all nodes 
i = l...N. 

Consider each node i as an elementary -/M/m-FCFS queueing 
system. Check whether the ergodicity (p < 1) is fulfilled and calculate the 
performance measures using the known formulae. 

Step 1 remains unchanged when applied to asymmetric open networks. In 
Step 2, formulae given in Section 6.16 for asymmetric -/M/m-FCFS queue- 
ing networks should be used instead of formulae for symmetric -/M/m-FCFS 
queueing systems. Similarly, the BCMP theorem for open networks (see Sec- 
tion 7.3.6) can be extended to the approximate analysis of asymmetric queue- 
ing networks. Using the closing method (see Section 10.1.5) AMVA, ASCAT 
and ASUM can also be applied to open asymmetric queueing networks. Fur- 
thermore, it is also possible to apply the closing method to open and mixed 
queueing networks with asymmetric nodes. 

Example 10.18 To demonstrate different methods for networks with asym- 
metric nodes we use the example network shown in Fig. 10.57. Node 1 is an 
asymmetric -/M/2, nodes 2 and 3 are of -/M/l type, and node 4 is -/G/co. 
The routing probabilities are: 

1312 = 0.5, p13 = 0.5, p24 =p34 =p41 = 1, 
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fig. 10.57 Closed network with one asymmetric node. 

and the service rates are: 

/All = 3.333, /Liz = 0.666, /.L~ = 1.666, /.L~ = 1.25, ru4 = 1. 

The total number of jobs in the network is K = 3. From the routing proba- 
bilities we obtain the following visit ratios: 

el = 1, e2 = 0.5, e3 = 0.5, e4 = 1. 

We start with the ASUM method, which consists of the same steps as the SUM 
algorithm (see Section 9.2), but with different formulae for the utilization 
pr and the probability of waiting Pml. For the stopping condition we use 
E = 0.001. 

Initialization: 

Xl = 0 and X, = min 
i 

=Q. 

Bisection: 

r---T-] STEP 2 i X = h + AL 2= 1.25. 

-1 Calculation of the values fi(Xi), i = 1,. . . ,4. In order to get the 
result for node 1, Eqs. (6.146) and (6.150) for the exact analysis of networks 
with asymmetric nodes are used (selection of the fastest free server). With: 

p1 = e1 *A 1.25 z---z 
Pll + p12 4 

0.3125 

and: 

pm1 2-e PA”’ 1 -= * - 0.111 = 
l-c N 1 

0.153, 
- 0.3125 1.050 

we get: 

Jwl) = 2Pl + PI * Pm1 = 0.673. 
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Accordingly we obtain: 

IT,(X,) = -E- 
1 - iP2 

= 0.500 with p2 = 0.375, 

- 

K3(X3) = + = 0.750 with p3 = 0.500, 
- 3P3 

x4 
K,(X,) = - = 1.250, 

P4 

which yields: 

g(X) = -&xi) = 3.173. 
i=l 

-1 Check the stopping condition. Because of g(X) > K, we set X, = 
X = 1.25. 

r] v  = 0.625. STEP 2 i X = 

-1 Calculation of the values fi(&), i = 1,. . . ,4. With: 

171 (h) = 2Pl + p1 * en, = 0.319. with p1 = 0.156 and Pm, = 0.0386, 

K&42) = -Jk- 
1 - $P2 

= 0.214 with p2 = 0.188, 

E3(X3) = -&- = 
l- $P3 

with p3 = 0.250, 0.300 

x4 
77,(X,) = Lq = 0.625, 

g(X) = &Ti(hi) = 1.458. 
i=l 

(-2.31 Check the stopping condition. Because of g(X) < K, we set Xl = 
X = 0.625. 

(r---T-j * = 0.938. STEP 2 I X = 

-2.2 Calculation of the values fi (A,), i = 1, . . . ,4. With 

K(h) = 2p1 + p1 * En, = 0.489. with p1 = 0.234 and Pm, = 0.0881, 

s?;,(X,) = A = 
1 - $P2 

0.346 with p2 = 0.281, 

E3(X3) = dz- 
1 - $P3 

= 0.500 with p3 = 0.375, 

x4 
?74(X4) = L = 0.938, 
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we get: 

g(X) = &?i(hi) = 2.273. 
i=l 

-1 Check the stopping condition. Because of g(X) < K, we set Xl = 
x = 0.9375. 

After 11 iterations we have g(X) = 3.000 and the stopping condition is 
fulfilled. For the overall throughput we obtain X = 1.193, which yields: 

x1 = 1.193, X2 = 0.596, X3 = 0.596, X4 = 1.193. 

For the utilizations of the nodes we get: 

p11 = 0.294, ~12 = 0.317, pl = 0.298, p2 = 0.358, p3 = 0.477, 

and for the mean number of jobs in a node: 

K1 = 0.638, K2 = 0.470, ?T, = 0.700, ??, = 1.193. 

Now we analyze the network using the AMVA algorithm. 

Initialization: 

K(O) = F2(0) = K3(0) = 0, p1(0 ( 0) = 1, Pi(l IO) = 0. 

Iteration over the number of jobs in the network starting with 
k= 1. 

I-2.11 Mean response times: 

Ti(1) = 
Pll + I-L12 

(1 -t%(O) +m(0 IO)) = 0.5, 

T2(1) = ; (1+17,(o)) = 0.6, 

T3(1) = ; (1+ K3(0)) = 0.8, 

?54(1)= ; = 1. 

I-2.2 Throughput: 

X(l)= l = 

5 e;Ti(l) 

0.455. 

i=l 
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1-1 Mean number of jobs: 

xi(l) = A(l)rr(l)er = 0.227, x2(1) = X(l)T2(l)e2 = 0.136, 

KS(~) = X(l)??s(l)es = 0.182, F4(1) = X(l)TJ(l)e, = 0.455. 

Iteration for k = 2: 

I] Mean response times: 

Fi(2) = IL 
CL11 + p12 

(l-tJG(l) +p1(0 1 1)) = 0.511, 

p1(0 1 1) = 1 - elx(l) - -&(l 1 1) = 0.818 and 
Pull + Pl2 

p1(1 1 1) = -pl(O elx(l) 1 0) = 0.136, 

%(2) = ; (1 +x2(l)) = 0.682, 

Ts(2) = ; (1 +Ka(1)) = 0.945, 

T4(2),= i = I. 

I] Throughput: 

X(2) = 2 = 

e eiTi(2) 

0.860. 

i=l 

[] Mean number of jobs: 

171(2) = X(2)&(2)el = 0.440, K2(2) = X(2)T2(2)e2 = 0.293, 

X3(2) = X(2)T3(2)e3 = 0.407, K4(2) = X(2)574(2)e* = 0.860. 

Iteration for k = 3: 

]STEP] Mean response times: 

Tr(3) = l 
Pll + P12 

(1 + K,(2) + p1(0 ) a>) = 0.530, 
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where: 

p1(0 1 2) = 1 e1x(2) - - 1 = 0.679 and 
Pll + I-412 

--&( 1 2) 

pr(1 1 2) = e1x(2) ~Pl(O I 1) = 0.211, 

T2(3) = i (1 +K2(2)) = 0.776, 

T3(3) = ; (l+&(2)) = 1.125, 

-2.2 Throughput: 

X(3) = 4 3 = 1.209. 

C eiTi(3) 
i=l 

(1 Mean number of jobs: 

Fr(3) = X(3)T1(3)el = 0.641, K2(3) = X(3)T2(3)e2 = 0.469, 

Z,(S) = X(3)T3(3)e3 = 0.681, K4(3) = X(3)T4(3)ed = 1.209. 

The algorithm stops after three iteration steps. For the throughput we get: 

X1 = 1.209, X2 = 0.605, X3 = 0.605, X4 = 1.209. 

For the utilizations of the nodes we obtain: 

p1 = 0.302, p2 = 0.363, p3 = 0.484, 

and for the mean number of jobs in a node: 

K1 = 0.641, K2 = 0.469, K3 = 0.681, r4 = 1.209. 

Finally, the analysis of the network is performed using the ASCAT algo- 
rithm, where we use the approximate Eqs. (6.135) and (6.136) and Eqs. (6.27) 
and (6.28) f or asymmetric multiple server nodes. 

Modified core algorithm for K = 3 jobs in the network with the 
input parameters: 

Ki(K) = $ =m and Di(K) =0 for i = 1,...,4. 
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-1 Estimate values for the ?Ti(K - 1) from Eq. (9.5): 

xi(s) Ki(2) = 23 = 0.5 for i = 1,. . . ,4. 

For the next step we need an initial value for the throughput: 

+?) = P4 %(2) = 0.5. 

-1 One step of MVA: 

Tr(3) = 
1 

Pll + P12 * 
(ml + %(2) + &nl (PI) - mlpl) = 0.569, 

with: 

Pl = 
elA(2) 0.5 

=- 

cl11 +cL12 4 
= 0.125 and Pm1 (pr) = 0.0278, 

%(3) = ; (1 +17,(2)) = 0.9, 

TS(3) = ; (1+ Ks(2)) = l.2, 

T*(3) = i = 1. 

Throughput: 

X(3) = 4 3 = 1.145. 

C eiTi(3) 
i=l 

Mean number of jobs: 

Kr(3) = X(3)T1(3)el = 0.652, ??p(3)= A(3)T2(3)e2 = 0.515, 

?T3(3) = X(3)T3(3)es = 0.687, K,(S) = X(3)T4(3)e4 = 1.145. 

[STEP] Check the stopping condition: 

max 

{ 

/$l’(3) - $O’(3) 1 

i 3 
1 

= 0.132 > E = 0.01. 

-1 Estimate values for the Ici(K - 1) from Eq. (9.5): 

J?,(2) = 0.435, li;2(2) = 0.344, Ks(2) = 0.458, z4(2) = 0.764. 

For the next step we need an initial value for the throughput: 

x(2) = &q(2) = 0.764. 
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r-1 One step of MVA: 

After three iterations we get the following results for the mean number of 
jobs: 

zr(3) = 0.626, Ka(3) = 0.475, Ka(3) = 0.702, Ed(S) = 1.198. 

Modified core algorithm for (K - 1) = 2 jobs in the network with 
the input parameters: 

Ki(2) = ; = 0.5 and Di(2)=0 for i=1,...,4. 

-1 Estimate values for the ?ri(l) from Eq. (9.5): 

J?,(l) = 27 = . m4 0 

For the next step we need an initial value for the throughput: 

for i = 1,...,4. 

X(l) = p4 err,(l) = 0.25. 

[ml One step of MVA: 

Tr(2) = IL 
CL11 + Pl2 

* cm, + K(1) + en1 (Pl) - mlpl) = 0.533, 

with: 

Pl = 
fd(l> 

Pull + Pl2 
= 7 = 0.0625 and Pm1 (pl) = 0.00735, 

T2(2) = i (l+&(1)) =0.75, 

T3(2) = ; (l+K3(1)) = Lo, 

?&) = i = 1. 

Throughput: 

X(2) = 4 2 = 0.831. 

C eiTi(2) 
i=l 
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Mean number of jobs: 

Kr(2) = X(2)T1(2)el = 0.443, K2(2)= X(2)T2(2)e2 = 0.311, 

1?3(2) = X(2)T3(2)e3 = 0.415, 
- 
K*(2) = A(2)T4(2)e4 = 0.831. 

-1 Check the stopping condition: 

max 
(R!“(2) - $O’(2) ( 

i 2 
= 0.165 > E = 0.01. 

-1 Estimate values for the xi(l) from Eq. (9.5): 

X1(1) = 0.221, &(l) = 0.156, Es(l) = 0.208, x4(1) = 0.415. 

For the next step we need an initial value for the throughput: 

X(1) = /J*K4(1) = 0.415. 

[I One step of MVA: 

After three iterations we get the following results for the mean number of 
jobs: 

Kr(2) = 0.434, Kz(2) = 0.295, 
- 
I&(2) = 0.414, 1?4(2) = 0.857. 

t ively : 
Estimate the I?i and Di values with Eqs. (9.3) and (9.4), respec- 

x1 (3) 
Fl(3) = --j-- = 0.209, 

JG(2) 
Fr(2) = 2 = 0.217, 

h(3) % (3) m2) = 3 = 0.158, F2(2) = 2 = 0 . 148 , 

K3 (3) 
- 

F3(3) = --Fj- = 0.234, F3(2) = F = 0.207, 

F4(3) K4(3) 3w) = --j- = 0.399, F4(2) = 2 = 0 . 429 . 

Therefore we get: 

D1(3) = Fl(2) - Fl(3) = 0.00835, &(3) = F2(2) - &(3) = -0.0106, 

D3(3) = I;;(2) - F3(3) = -0.0270, D4(3) = F4(2) - F4(3) = 0.0292. 

Modified core algorithm for K = 3 jobs in the network with the 
computed E(i (K) values from Step 1 and the Di (K) values from Step 3 as 
inputs. 
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[I Estimate values for the K,(K - 1) from Eq. (9.5): 

Er(2) = 2 K(3) -yj- + Dr (3) 
> 

= 0.434, 

17,(2) = 0.295, ?73(2) = 0.414, K4(2) = 0.857. 

For the next step we need an initial value for the throughput: 

x(2) = ~4 . F4(2) = 0.857. 

j] One step of MVA: 

T1(3) = l 
Pll + p12 * 

(ml + %(2) + pm, (~1) - mlpl) = 0.520, 

with: 

pr = 0.24 and Pm1 (pr) = 0.0756, 

&(3) = ; (1 + K2(2)) = 0.777, 

?i3(3) = ; (1 +Ks(2)) = 1.131, 

T4(3) = ; = I. 

Throughput: 

X(3) = 4 3 = 1.212. 

C &T(3) 
i=l 

Mean number of jobs: 
- 
Kr(3) = X(3)T1(3)el = 0.631, ?72(3)= X(3)??2(3)e2 = 0.471, 

Es(S) = X(3)T3(3)es = 0.686, X4(3) = X(3)T4(3)e4 = 1.212. 

-1 Check the stopping condition: 

max 

{ 

/f7j1’(3) - r?i0’(3) / 

i 3 
1 

= 0.00531 < E = 0.01. 

The stopping condition is fulfilled. Therefore the algorithm stops and we get 
the following results: 

Throughputs: 

Xl = 1.212, x2 = 0.606, x3 = 0.606, x4 = 1.212. 
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Mean number of jobs: 

- K1 = 0.631, IT, = 0.471, K3 = 0.686, 774 = 1.212. 

Utilizations: 

p1 = 0.303, p2 = 0.364, p3 = 0.485. 

Table 10.33 Throughput A, and mean number of jobs Ei for different methods com- 
pared with the DES results 

Node 1 2 3 4 

ASUM 1.19 0.60 0.60 1.19 
Ai AMVA 1.21 0.61 0.61 1.21 

ASCAT 1.21 0.61 0.61 1.21 
DES 1.21 0.61 0.61 1.21 

ASUM 0.64 0.47 0.70 1.19 
E AMVA 0.64 0.47 0.68 1.21 

ASCAT 0.63 0.47 0.69 1.21 
DES 0.64 0.47 0.68 1.21 

In Table 10.33 we compare the results for the throughputs Xi and the mean 
number of jobs xi. For this example, the results of all methods are close 
together and close to the DES results. As in the case of asymmetric single 
station queueing networks, the preceding approximations are accurate if the 
values of the service rates in a station do not differ too much. As a rule of 
thumb, we consider the approximations to be satisfactory if pmin/pmax < 10 
at each asymmetric node. 

Problem 10.6 Formulate the closed network of Fig. 10.57 as a GSPN and 
solve it exactly using SHARPE or SPNP. Compare the exact results with the 
approximative ones obtained in this section using ASUM, AMVA and ASCAT. 

10.8 NETWORKS WITH BLOCKING 

Up to now we have generally assumed that all nodes of a queueing network 
have queues with infinite buffers. Thus a job that leaves a node will always 
find an empty place in the queue of the next node. But in the case of finite 
capacity queues, blocking can occur and jobs can be rejected at a node if the 
queue is full. Queueing networks that consist of nodes with finite buffer capac- 
ity are called blocking networks. Blocking networks are not only important 
for modeling and performance evaluation of computer systems and computer 
networks, but also in the field of production line systems. Exact results for 
general blocking networks can only be obtained by using the generation and 
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numerical solution of the underlying CTMC (either directly or via SPNs) that 
is possible for medium-sized networks. For small networks, closed-form results 
may be derived. The most common techniques presented in the literature for 
the analysis of large blocking networks are, therefore, approximate techniques. 

10.8.1 Different Blocking Types 

In [Perr94] three different types of blocking are introduced: 

1. Blocking after service (see Fig. 10.58): With this type of blocking, node i 
is blocked when a job completing service at node i wishes to join node j 
that is already full. This job then has to stay in the server of node i 
and block until a job leaves node j. This type of blocking is used to 
model production line systems or external I/O devices [Akyi87, Akyi88b, 
Akyi88a, Alti82, AlPe86, OnPe89, PeA186, Perr81, PeSn89, SuDi86]. In 
the literature, this type of blocking has been referred to by a variety of 
different terms such as Type-l blocking, transfer blocking, production 
blocking, and non-immediate blocking. 

Job blocks node i 

Fig. IO.58 Blocking after service. 

2. Blocking before service (see Fig. 10.59): The job to be served next at node i 
determines its source node j before it enters service at node i. If node j 
is already full, the job cannot enter the server of node i and node i 
is therefore blocked. Only if another job leaves node j will node i be 
deblocked and the first job in the queue served [BoKo81, GoNe67b, 
KoRe76, KoRe78]. In the literature, this type of blocking has also been 
referred to as Type-2 blocking, service blocking, communication block- 
ing, and immediate blocking. 

Job blocks node i 

Fig. 10.59 Blocking before service. 

3. Repetitive blocking (see Fig. 10.60): If a job that has been served at node i 
wishes to go to node j whose queue is full, it is rejected at node j 
and goes to the rear of node i queue. This procedure is repeated until 
a job leaves node j, thereby creating one empty slot in the queue of 
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node j. This type of blocking is used to model communications networks 
or flexible production line systems [Akvo89, BaIa83, Hova81, Pitt79]. 
Other terms for this type of blocking are Type-3 blocking or rejection 
blocking. 

Fig. 10.60 Repetitive blocking. 

In [OnPe86], different kinds of blocking are compared with each other. 
In [YaBu86], a queueing network model is presented that has finite buffer 
capacity and yet is not a blocking network. Here a job that would block 
node i because node j is full is buffered in a central buffer until there is an 
empty spot at node j. Such models are especially interesting for production 
line systems. 

10.8.2 Product-Form Solution for Networks with Two Nodes 

Many different techniques for the solution of blocking networks are available. 
We only consider a simple exact solution technique in detail that can be 
applied to closed blocking networks with only two nodes and blocking after 
service [Akyi87]. This method can also be extended to queueing networks with 
several nodes, but then it is an approximate technique that is very costly and 
it can only be used for throughput analysis [Akyi88b]. 

We consider queueing networks with one job class, exponentially distribut- 
ed service times, and FCFS service strategy. Transitions back to the same 
node are not possible (pii = 0). Each node has a fixed capacity iL& that 
equals the capacity of the queue plus the number rni of servers. Nodes with 
an infinity capacity can be taken into consideration by setting A4i > K so that 
the capacity of the node is bigger than the number of jobs in the network. The 
overall capacity of the network must, of course, be bigger than the number of 
jobs in the network for it to be a blocking network: 

K<Ml+M2. (10.177) 

In the case of equality in the preceding expression, deadlocks can occur 
[Akyi87]. Th e p ossible number of states in the underlying CTMC of a closed 
network with two nodes and unlimited storage capacity is: 

Z=K+l. (10.178) 

At first we consider the simple case where the number of servers at each 
node is ml = m2 = 1. The state diagram of the CTMC for such a two-node 
network without blocking is shown in Fig. 10.61. 
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Fig. 10.61 CTMC for a two-node network without blocking (ml = m2 = 1). 

As can be seen, the minimum capacity at each node is A4i = K (the queue 
must contain at least K - 1 spots) so that all states are possible. If the 
nodes have a finite capacity AL& < K, then not all K + 1 states of Fig. 10.61 
are possible. Possible states of the blocking network are then given by the 
condition that the number of jobs at a node cannot be bigger than the capacity 
of that node. In the case of a transition to a state where the capacity of a 
node is exceeded, blocking occurs. The corresponding state is called a blocking 
state. Recall that due to Type-l blocking, the job does not switch to the other 
node but stays in the original node. The state diagram of the blocking network 
is shown in Fig. 10.62. 

P2 P2 P2 

Fig. 10.62 CTMC for the two-node blocking network (states marked with * are block- 
ing states) ml = m2 = 1 (blocking after service). 

The state diagram of the blocking network shown in Fig. 10.62 differs from 
the state diagram shown in Fig. 10.61 in two aspects. First, all states where 
the capacity is exceeded are no longer necessary and, second, Fig. 10.62 con- 
tains the blocking states marked with an asterisk. The number of states 2 
in the blocking network is the sum of all possible non-blocking states plus all 
the blocking states: 

i = min{K, hli + 1) + min{K, AL?2 + 1) - K + 1. (10.179) 

It can be shown [Akyi87] that for this closed network with two nodes and 
blocking after service, an equivalent closed network with two nodes without 
blocking exists. Apart from the number of jobs i? in the equivalent net- 
work, all other parameter values remain the same. The population k in the 
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equivalent network can be determined using Eqs. (10.178) and (10.179): 

I? = min{ K, IHr + 1) + min{K, A/IQ + 1) - K. (10.180) 

The CTMC of the equivalent network isshown in Fig. 10.63. The equivalent 
network is a product-form network with Ici jobs at node i, 0 5 & 5 I?. 

Fig. 10.63 CTMC of the equivalent network corresponding to the CTMC in Fig. 10.61. 

The steady-state probabilities of the equivalent network can be determined 
using the following equation: 

(10.181) 

By equating the steady-state probabilities of the blocking network with the 
corresponding steady-state probabilities of the equivalent non-blocking net- 
work, the performance measures of the blocking network can be determined. 
To demonstrate how this technique works, the following simple example is 
used: 

Example 10.19 Consider a closed queueing network with two nodes, K = 
10 jobs, and the routing probabilities: 

PI2 = 1, P21 = 1. 

All other system parameters are given in Table 10.34. 

Table IO.34 System parameters for Example 10.19 

1 1 2 1 7 
2 1 0.9 1 5 

All service times are exponentially distributed and the service discipline at 
each node is FCFS. Using Eq. (10.178), the number of states in the network 
without blocking is determined to be 2 = K + 1 = 11. The CTMC of the 
network without blocking is shown in Fig. 10.64, while the state diagram of 
the blocking network (see Fig. 10.65) contains all possible non-blocking states 
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Fig. IO.64 CTMC of the Example 10.19 network without blocking. 

.___-_______ -  -  -  -  -  _ _ -  _ _ _ I  

Fig. 10.65 CTMC of the Example 10.19 network with blocking. 

from the original network as well as the blocking states (marked with asterisk). 
The number of states 2 of this blocking network is given by Eq. (10.179) as the 
sum of all possible non-blocking states (= 3) and the blocking states (= 2): 
2 = 5. The CTMC of the equivalent network (see Fig. 10.66) therefore 
contains 2 = 5 states and the number of jobs in the network is given by 
Eq. (10.180) as I? = 4. 

Fig. 10.66 CTMC of the equivalent network for Example 10.19. 

The throughput X,,(4) of the equivalent network can be determined direct- 
ly using the MVA and is equal to the throughput X~(10) of the blocking 
network: 

A,( 10) = X,,(4) = 0.500. 

The steady-state probabilities of the blocking network are obtained by equat- 
ing with the corresponding steady-state probabilities of the equivalent non- 

blocking network: 

~(6,4) = n(2,2) = 0.120, 

7r(7,3)* = n(4,O) = 0.550, n(5,5) = n(l, 3) = 0.054, 

7r(7,3) = 7r(3,1) = 0.248, n(5,5)* = ~(0,4) = 0.026. 
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The mean number of jobs at both nodes can be determined using the steady- 
state probabilities: 

K1 = 7 [7r(7,3)* + 7r(7,3)] + 6r(6,4) + 5 [7r(5,5) + 7r(5,5)*] = 6.73, 

K2 = 3 [7r(7,3)* + n(7,3)] + 4~(6,4) + 5 [7r(5,5) + 7r(5,5)*] = 3.27. 

With these results all other performance measures can be derived using 
the well-known formulae. Of special interest for blocking networks are the 
blocking probabilities: 

PB1 = n(5,5)* = 0.026, 

PB2 = 7r(7) 3)* = 0.0550. 

Next consider the case where each node has multiple servers (mi > 1). 
The state diagram of the CTMC underlying such a two-node network with- 
out blocking is shown in Fig. 10.67, while the state diagram of the blocking 

Fig. IO.67 CTMC of a two-node network without blocking (m, > 1). 

network (with Type-l blocking) is shown in Fig. 10.68. Here a state marked 

m2 
P2 ",2 2P2 (m2--1)C12 

-/---A+**..*/-- 
m2fi2 7n2P2 

*...* \ * /---.+ 

l ‘* 

mlP1 mlP1 mlP1 (ml-l)fil 2@1 Pl 

Fig. IO.68 CTMC for the two-node network with blocking. Blocking states are 
marked with * (mi > 1). 

with asterisks shows the number of blocked servers in that state. Therefore 
we get for the number fi of states in the blocking network, the sum of all 
possible non-blocking states plus the blocking states (mi > 1): 

9 = min{K, 1Mr + rnz} + min{K, Mz + ml} - K + 1. (10.182) 

I? is given by Eqs. (10.178) and (10.182): 

I? = min{K, Mr + m2) + min{K, Mz + ml} - K. (10.183) 
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The state diagram of the equivalent network is shown in Fig. 10.69. The 
equivalent network is again a product-form network with & jobs at node i, 
0 5 ii 5 k. 

P2 21-12 m2p2 map2 

ml/4 mlpl 2Pl CL1 

Fig. IO. 69 CTMC of the equivalent product-form network (m, > 1). 

The steady-state probabilities of the equivalent network can be determined 
using Eq. (7.59): 

(10.184) 

with pi(&), Eq. (7.62). 
The following example is used to demonstrate this technique: 

Example 10.20 Consider again the network given in Example 10.19, but 
change the number of servers, m2 = 2. All other network parameters remain 
the same. From Eq. (10.178), the number of states in the network without 
blocking is 2 = K + 1 = 11. The corresponding state diagram is shown 
in Fig. 10.70. The state diagram of the blocking network (see Fig. 10.71) 

Fig. 10.70 CTMC of the Example 10.20 network without blocking. 

contains all possible non-blocking states from the original network plus all 
the blocking states (marked with *). The number of states 2 of the blocking 
network is given by Eq. (10.182) as the sum of all non-blocking states (= 3) 
and the blocking states (= 3): 2 = 6. 

The state diagram of the equivalent network (see Fig. 10.72) contains, 
therefore, also 2 = 6 states, and for the number of jobs in the network, 
Eq. (10.180) is used: I? = 5. The throughput X,,(5) of the equivalent network 
can be determined using the MVA and, because of the equivalence of both 
networks, is identical with the throughput X~(l0) of the blocking network: 

X,(10) = X,,(5) = 0.499. 



NETWORKS WITH BLOCKING 555 

I 
I  Pl Pl Pl Pl Pl 1 

t-------_----__-_______ __-___--' 

Fig. IO.71 CTMC of the Example 10.20 blocking network. 

P2 2P2 2P2 a-42 2P.2 

Fig. 10.72 CTMC of the Example 10.20 equivalent product-form network. 

The state probabilities of the blocking network are given by equating the 
corresponding steady-state probabilities of the equivalent non-blocking net- 
work. The steady-state probabilities are determined using Eq. (10.181): 

7r(7,3)** = 7r(5,0) = 0.633, n(6,4) = n(2,3) = 0.014, 

7r(7,3)* = 7r(4,1) = 0.284, 7r(5,5) = 7r(l, 4) = 0.003, 

n(7,3) = x(3,2) = 0.064, n(5, S)* = 7r(0,5) = 0.001. 

The mean number of jobs at each node can be determined using the steady- 
state probabilities: 

Kl = 7 [7r(7,3)** + 7r(7,3)* + 7r(7,3)] + 6X(6,4) + 5 [n(5,5) + n(5,5)*] 

= 6.978, 

z, = 3 [7r(7,3)** + n(7,3)* + 7r(7,3)] + 4n(6,4) + 5 [7r(5,5) + n(5,5)*] 

= 3.022. 

All other performance measures can be determined using the well-known 
equations. Of special interest are blocking probabilities: 

P& = 7r(5,5)* = 0.001, 

P& = 7r(7,3)** + $(7,3)’ = 0.775. 

For computing PB~, the steady-state probability ~(7,3)* can only be count- 
ed half because in state (7,3) * only one of the two servers of node 2 is blocked. 

For blocking networks with more than two nodes, no equivalent non-blocking 
network can be found. For these cases only approximate results exist, which 
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are often inaccurate or can only be used for very special types of networks 
such as tandem networks [SuDi84, SuDi86] or open networks [PeSn89]. 

Problem 10.7 Consider a closed blocking network with N = 2 nodes and 
K = 9 jobs. The service times are exponentially distributed and the service 
strategy at all nodes is FCFS. All other network parameters are given in the 
Table 10.35. 

Table 10.35 Network input parameters for 
Problem 10.7 

i ea l/Pi mi Mi 

1 1 1 1 6 
2 1 1 1 4 

(a) Draw the state diagram for the network without blocking as well as the 
state diagram of the blocking network and the equivalent non-blocking 
network. 

(b) Determine the throughput X B, the mean number of jobs xi, and the 
blocking probabilities I& (i = 1,2) for the blocking network. 

Problem 10.8 Directly solve the CTMC of the blocking network in Prob- 
lem 10.7 by using SHARPE. Note that you can easily obtain transient probabil- 
ities and cumulative transients with SHARPE in addition to the steady-state 
probabilities. 

Problem 10.9 For Problem 10.8, construct an SRN and solve it using 
SPNP. Compare the results obtained from SPNP with those obtained by hand 
computation. Note that SRNs enable computation of transients and cumu- 
lative transients. Furthermore, easy definition of rewards at the net levels 
enables straightforward computation of all desired performance measures. 



Optimization 

Analytic performance models are very well suited as kernels in optimiza- 
tion problems. Two major categories of optimization problems are static and 
dynamic optimization. In the former, performance measures are computed 
separately from an analytic queueing or CTMC model and treated simply 
as functions (generally complex and non-linear) of the control (decision) vari- 
ables. In the latter class of problems, decision variables are integrated with the 
analytic performance model and hence optimization is intimately connected 
with performance evaluation. We limit our discussion to static optimization. 
For a treatment of dynamic optimization in the context of computer and com- 
munication systems see [PGTP96], [DrLa77], [MeDii97], [MTD94], [MeFi97], 
[MeSe97], and [Meer92]. 

Designs of early computer and communication systems made little use of 
mathematical optimization techniques. Because the systems were not so com- 
plex, the number of possible design alternatives was limited and a good design 
decision was often obvious. This state of affairs has changed dramatically since 
modern systems are very complex and requirements for high performance and 
dependability have evolved. Therefore an optimal design is not obvious any 
more and the number of possible design decisions can be enormous. 

A system designer is called on to produce a design of an implementable sys- 
tem from a given design specification. The design specification may include 
cost, performance, and dependability specifications, in addition to function- 
al specifications. The performance specification states how well the specified 
functions (as stated in the functional specification) should perform in terms 
of throughput, response time, etc. The dependability specification states how 
the system tolerates component/sub-system faults. The dependability spec- 

557 
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ification also includes minimum acceptable reliability, availability, etc. Cost 
specifications may indicate maximization or minimization of total cost or pro- 
vide a constraint in the optimization. 

The system design methodology takes the system specification as an input 
and transforms it into a system configuration (characterized by a set of param- 
eters) that fulfills the specification. These (hardware) parameters include the 
number of processors, the number of memories, the speed and capacity of 
resources, and other architectural parameters such as the system topology. 
Software configuration parameters describe the distribution of processes over 
system resources as well as resource scheduling policies. In addition to the 
hardware and software specification, maintenance policies might be described 
(e.g., preventive vs. corrective). It is thus a very difficult task to choose the 
configuration that best meets the system specification. Traditionally, depend- 
ability, performance, and economic analyses of computer systems have been 
studied separately and independently. Optimization methods provide a fea- 
sible avenue for combining performance, dependability, and cost for deriving 
optimal system parameters that meet the stated design specifications. Usually 
these questions are multiobjective optimization problems. Although it is pos- 
sible to deal directly with multiobjective problems [IPM82], it is common to 
pick a single relevant system specification to be used as the objective function 
and to let the remaining design factors provide constraints. An alternative is 
to combine multiple criteria into a single utility function. 

11.1 OPTIMIZATION PROBLEMS AND COST FUNCTIONS 

To formulate the optimization problem it is important to determine the system 
parameters that can be varied and hence considered to be decision variables. 
Possible types of optimization are: 

l Minimization of cost for given throughput. 

l Maximization of throughput with cost constraint. 

l Minimization of the mean response time with cost constraint. 

The simplest cost functions are linear functions: If device (resource) 
rates /.~i are decision variables, the linear cost function is given by: 

C(p) = 2 tip; = COST, 
i=l 

service 

(11.1) 

with the vector of the service rates p = (~1,. . . , pi). COST is the total 
cost of the considered system, and ci is the cost factor for service rate pi of 
resource i. 
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More realistic estimates are obtained by using non-linear cost functions: 

(11.2) 

The service rate CL; of a server depends on the speed vi of device i and the 
mean number of work units di per visit: 

For the CPU, the mean number of instructions per CPU burst is given by di 
and the CPU speed (number of instructions per time unit) by vi. In the case 
of a storage device, di is the mean number of words in an I/O operation and 
21; is the speed of the storage device in words per time unit [TrKi80]. Thus if 
the mean number of work units di of the jobs at station i is given, then the 
optimal value of the device speed vi is immediately given using the optimal 
values of the service rates pi. We can extend the optimization problem if we 
also consider the cost for main memory. In the case of a multiprogramming 
computer system, this cost depends on the degree of multiprogramming K 
(the number of jobs in the system). The cost function is then given by: 

C(/J, K) = C(K) + 5 cipyz = COST (11.3) 
i=l 

where the C(K) is the cost of the main memory satisfying the storage require- 
ment of K concurrent jobs. The next step is to choose the performance model. 
This can be a DES model or an analytic model. Among the latter we can 
choose a product-form queueing network model or a non-product-form queue- 
ing network model, a CTMC model, or a hierarchical model. The final step 
is to choose the optimization method. 

There exist numerous optimization methods that can be used in combina- 
tion with analytical methods for the performance evaluation introduced in this 
book. We show the use of a solution method based on Lagrange multipliers. 
We introduce an approximation method based on SUM (see Section 9.2) and 
a more complex but exact method, which is based on the convolution method 
(see Section 8.1). Finally, we show the use of geometric programming in the 
design of a memory hierarchy. For further study of performance optimization 
including the issue of convexity, see [TrKi80], and [SRT88]. 

11.2 OPTIMIZATION BASED ON THE SUMMATION METHOD 

This method was introduced by Belch, Fleischmann, and Schreppel [BFS87] 
(therefore called BFS method for short) and is now demonstrated using the 
following example: 
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11.2.1 Maximization of the Throughput 

We assume a closed queueing network with N stations and K jobs of a single 
class. The visit ratios e; and the functions fi (see Eq. (9.15)) that describe 
the behavior of the queues are also given. The correction factor (K - 1)/K 
is neglected to obtain formulae that are as simple as possible. This approach 
is valid if the number of jobs is large, because then (K - 1)/K is close to 1. 
However, usable formulae are also obtained if the correction factor is included. 
These provide more accurate values for the optimum, especially for small 
values of K [AkBo88b]. For Xi = X . ei, rni = 1 and pi = $ we obtain: 

Ki(X9P.i) = fi(X,/%) = 

Type-l, 2,4, and mi = 1, 

Type-3 IS. 

We seek service rates pi that maximize the overall throughput X and satisfy 
a linear cost constraint: 

C(p) = g,,i = COST + 
i=l 

Here the cost C(K) for the main memory is neglected but can easily be 
included by repeating the optimization for several values of K and choosing 
the one with the maximum throughput . The service rates must satisfy the 
system equation as well as the cost constraints. The system equation is as 
follows, using Eqs. (9.16) and (9.22): 

The optimization problem can be solved using Lagrange multipliers [BrSeSl]. 
The Lagrange function L(X, ~1,. . . , PN, yi, 92) with objective function x and 
two Lagrange multipliers yi and y2 is given by: 

N 

q~,Pl,..., ~N,yl,!/2)=~+~1 CG/X-COST 

i=l 

+Y2 c- 

( 

Xei 

#IS Pi - Xei 

+$-” . 
i 

) 

A necessary condition for optimal service rates pi and maximum 
X is obtained by differentiating with respect to X7 Pi7 Yl, Y2: 

dL 
ax= 0, dL 0 -= 

8Yl ’ 

throughput 

(11.4) 

E=o i=l 
@i ’ 

N aL ,“‘7 ? -= 0 
dY2 * 

(11.5) 
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The following optimal values are obtained by solving the preceding system 
of equations:’ 

Jj* = 
COST *K 

(~~)‘+K~w 

type i # IS, 

type i = IS. 

(11.6) 

(11.7) 

It can be seen from Eq. (11.6) that the maximum throughput A* is directly 
proportional to the total cost COST. The optimal service rates pf cannot be 
explicitly stated in more complicated optimization problems with non-linear 
cost functions, several types of stations, and further auxiliary constraints. 
They can be obtained iteratively from the system of equations. 

Further results for some of the optimization problems already mentioned 
are given in the following. 

11.2.2 Minimization of Cost 

Next we consider the minimization of cost subject to a minimum throughput 
requirement, A. By the same method as in Section 11.2.1, we obtain a closed- 
form formula for the approximate optimal values of service rates: 

The minimal cost is given by: 

C”(p) = &lCi. 
i=l 

‘Since the summation method is an approximation method for performance analysis, these 
values are approximate optimal values. 
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The following iteration method can be used for a non-linear cost function: 
Initialize: pi = 1, for i = 1, . . . , N. 
Iterate until the deviations are sufficiently small: 

y=x. ($&q2, 

i=l 

, Jwi 
7 a&pqt-1 + 

( > 
1 hei a,--1 

, QiC, 

type i # IS, 

type i = IS. 

(11.9) 

(11.10) 

11.2.3 Minimization of the Response Time 

The problem of minimizing the mean response time T is equivalent to the 
problem of maximizing the overall throughput. This result follows from Little’s 
theorem, T = K/X, and the fact that the number of jobs K in a closed network 
is constant. Explicit formulae can be provided if the cost function is linear. 

Example 11.1 In the following we wish to maximize the throughput with 
cost constraints. The service rates that produce maximum throughput are to 
be calculated. The example consists of a product-form queueing network with 
N = 5 stations, three of which are of type -/M/l and two of type -/G/oo. 
The queueing network contains 20 jobs. The visit ratios are as follows: 

el = 1, e2 = 0.2, e3 = e 4 = 0.5, e5 = 0.3. 

We assume a linear cost function with the following coefficients: 

Cl = 10, c;! = c3 = 5, c4 = 2, c5 = 1. 

The total cost is constrained to be COST = 100. Using the BFS method, 
the following values are obtained for approximate optimal service rates that 
achieve the throughput X* subject to the given cost constraints: 

/A; = 6.189, /L; = 1.689, /L; = 3.812, & = 1.096, /~uj = 1.236, 

with the approximate optimal throughput: 

A* = 6.189. 

The exact value of the throughput X = 6.569 for the approximate optimal 
service rates pL;* is obtained by means of MVA. In order to verify these approx- 
imate optimal-values, we vary the service rates, subject to the constraint: 

N 

c 
Ci/..Li = 100, 

i=l 
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as before. The new throughput is then compared with the approximate opti- 
mal throughput. If the following values of the service rates are used: 

p1 = 7, /.L2 = 1.7, pg = 3.8, pLLq = 1, pug = 0.5, 

the value for the throughput obtained by MVA is X = 6.473. This is less 
than X = 6.569, the value of the throughput obtained using the approximate 
optimal optimal service rates pa. Similar results are obtained for other values 
of the service rates that satisfy the constraint given previously. If we increase 
the distance between the selected service rates and those that produce the 
approximate optimal throughput considerably: 

PI = 8, P2 = 2, P3 = 1, p4 = 2, CL5 = 1, 

then the throughput decreases and approaches its minimal value X = 2. 

Table 11.1 Maximization of the throughput with cost constraints (COST = 100) 

Example 1 Example 2 

BFS Complex BFS Complex 
Method Method Method Method 

Example 3 

BFS Complex 
Method Method 

Pi 6.90 6.81 8.07 7.97 3.04 3.00 
& 1.69 1.65 1.30 1.41 0.66 0.69 
& 3.81 3.99 2.83 2.95 1.27 0.80 
4 1.13 1.01 0.90 0.93 0.59 0.79 
CL: 1.24 1.50 1.10 1.13 0.67 0.84 

%FS 6.19 6.56 6.66 7.56 2.63 2.95 
hNA 6.57 6.55 7.54 7.57 3.00 2.97 

COST 100.00 99.81 100.00 99.97 100.00 100.00 

Table 11.1 contains additional examples of the maximization of the through- 
put of a network with linear cost constraints. It compares values obtained by 
the BFS method with values obtained by the complex method which requires 
much more computation. If we consider the simplicity of our method, it is 
surprising how close our values are to those obtained by the complex method. 
These examples show that optimization problems can be relatively easily 
solved using the system of equations. If the cost constraint is linear, then 
the optimal service rates ,LL; can be explicitly stated. If the cost function is 
non-linear, then a simple iteration method converges well. Table 11.2 con- 
tains the results for the optimization of the throughput with a non-linear cost 
function. The service rates that produce optimal throughput were used as 
input values for the exact MVA. The BFS method is well suited for solv- 
ing optimization problems because it provides a simple relation between the 
quantity to be optimized (e.g., throughput) and the decision variables (service 
rates). If the cost constraint is linear, then explicit formulae for optimal ser- 
vice rates and throughputs are provided. It is also possible to apply the BFS 
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Tab/e 11.2 Optimization of throughput (CX = cxpouent of 
the non-linear cost function) 

a 1 1.25 1.5 2.0 2.5 3 

6 6.912 4.911 3.884 2.860 2.361 2.067 
CL; 1.689 1.242 1.017 0.806 0.716 0.674 
Pu5 3.182 2.727 2.173 1.625 1.363 1.214 
4 1.096 0.921 0.821 0.735 0.706 0.704 
d 1.236 0.998 0.883 0.781 0.774 0.732 

%FS 6.189 4.438 3.532 2.625 2.180 1.918 
xMVA 6.596 4.711 3.752 2.790 2.319 2.039 

method to non-product-form queueing networks with arbitrarily distributed 
service times if we use the corresponding formulae in the system equation (see 
Section 10.1.4.3). 

11.3 OPTIMIZATION BASED ON THE CONVOLUTION 
ALGORITHM 

With the BFS method, combined with Lagrange multiplier, we obtained 
approximate results for the optimization problem. To obtain exact results, 
we can again use the concept of Lagrange multipliers together with the con- 
volution algorithm [TrKi80, SRT88]. 

11.3.1 Maximization of the Throughput 

In the convolution algorithm we use the following formula (see Eq. (8.14)) for 
the throughput: 

G7 K) = G(P7 K - 1) 
G(CL’K) ’ 

with: 

5 ki=K ‘=I 
2=1 

and: 

ki!7 ki I mi7 
Pi(h) = mi!mFierni, ki 2 mi, 

17 mi = 1. 

(11.11) 

(11.12) 
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As a cost function, we use the one suggested in Eq. (11.2) with additional 
main memory cost C(K) : 

N 

C(p, IT) = C(K) + c c~,cL;~ = COST. 
i=l 

(11.13) 

To maximize the throughput with a cost constraint, we can use the follow- 
ing Lagrange function, which is derived from Eqs. (11.11) and (11.13)): 

-qcL, Y, K) = X(/A, K) + y C(K) - COST + 5 tips” - 
i=l 

In order to obtain the optimal values for ~1, we differentiate the Lagrange 
function. This operation results in the following non-linear system of equa- 
t ions: 

8L 
G =O, i= l,...,N, 

aL 0 
ay= * 

(11.14) 

(11.15) 

We can use the computer algebra program MAPLE to obtain the deriva- 
tives and solve the non-linear system of equations. Alternatively, Moore’s 
formula [Moor721 for the normalization constant can be used to obtain explic- 
it formula for the preceding derivatives [TrKi80]. The system of non-linear 
equations can then be solved using the Newton-Raphson or other suitable 
method. The solution of the system is the optimum service rate vector ~1 that 
fulfills Eq. (11.15). Th e maximum throughput can then be obtained with 
Eq. (11.11) 

Example 11.2 Consider a multiprogramming computer system with a 
CPU and three disk devices. The product-form queueing network model is 
given in Fig. 11.1. The corresponding routing probabilities are: 

Pll = 0.05, P12 = 0.5, p13 = 0.3, $I14 = 0.15, p21 = p31 = p41 = l,(), 

For special values of the cost coefficients ci and the exponents oi (given in 
Table 11.3), the total budget COST = 500 and a linear memory cost function 
C(K) = C,K with C, = 50, the optimal values of the throughput X”, the 
service rates &’ and degree of multiprogramming K are given in Table 11.4. 

We see that we have an optimum of throughput when degree of multipro- 
gramming K = 2. The computation time for this method is high compared 
to the BFS method. On the other hand this method delivers exact results. 

Problem 11.1 Use the BFS method for Example 11.2. 
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CPU Disk 

Disk 

Fig. 11.1 Central-server model of the multiprogramming system in Example 11.2. 

Table 11.3 Cost factors cz and expo- 
nents a, for the central-server model of 
Fig. 11.1 

CPU 131.9 0.55 
Disk1 11.5 1.00 
Disk2 54.2 0.67 
Disk2 54.2 0.67 

11.3.2 Optimal Design of Storage Hierarchies 

This example is intended to address the problem of optimally determining 
the technology and capacity of the different memory levels of a linear storage 
hierarchy. The storage hierarchy is used in a multiprogrammed environment. 
Our goal is to maximize the system throughput subject to a cost constraint. 
It is assumed that we know the number of storage levels as well as the capacity 
of the slowest level. Consider the storage hierarchy, given in Fig. 11.2 [TrSiSl]. 

It consists of m electronically accessed levels (numbered 1,2, . . . , m), as for 
example a cache and p mechanically accessed levels (numbered m + 1, m + 

Table 11.4 Optimal throughput A* with the opti- 
mal service rates ~5 for the central-server model of 
Fig. 11.1 

1 0.071 3.090 4.240 2.054 1.376 
2 0.091 2.819 3.373 1.525 1.032 
3 0.089 2.356 2.684 1.238 0.752 
4 0.076 1.967 1.979 0.847 0.571 
5 0.059 1.557 1.084 0.598 0.431 
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Access time 
and capacity 

Cost per 
byte 

Delay boundary 

Fig. 11.2 A linear storage hierarchy. 

2 - - 7 m + p), e.g., disk. 
bk a delay boundary. 

Let M = m + p. These two groups are divided 
It is assumed that the speed increases with higher 

levels (lower numbers denote a faster level) and the capacity decreases with 
higher levels. Whenever a piece of information is not found in level 1, a 
request is sent to a lower level. This activity goes on until the request can 
be satisfied. If i < m (meaning the device is above the delay boundary), it 
is assumed that the CPU is kept waiting until the information is retrieved, 
meaning that there will be no more than one request at levels 1,2, . . . , m. For 
m + 1 5 i 5 m + p, a process swap is performed to allow another process 
to use the CPU, meaning that several requests may be queued at each of the 
memory levels m+l, m+2,. . . , m+p. This linear storage hierarchy is modeled 
using a closed queueing network where K (the multiprogramming degree) 
programs circulate sharing the resources of the system. The capacity of the 
ith level is bi bits, which are organized into blocks of si bits each. The block 
sizes si, i = 1,2,... , M, are assumed to be known. The K active programs 
share the capacity of each level equally. A success function Hi denotes the 
probability that a storage reference is a hit at level i. A reasonable assumption 
is that this function depends only on hi/K and si [TrSi81]. 

Hi = H&/K, si) i = 1,2,. . . ,M. 

Let the miss ratio function Fi be defined as & = 1 - Hi. The hit ratio 
is the probability that a storage reference generated by the CPU is found in 
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level i and not in levels 1,2, . . . , i - 1. The hit ratio hi is given by: 

The definition of bu and so is such that Fe(be/K, SO) = 1 and F~(blll/K, SM) = 
0. Let pa be the probability that a given request is the last memory request 

( i.e., the program has finished execution). Then the average total number 
of memory references per program is given by l/pe. The probability that a 
memory request at level i is satisfied is then given by: 

pi=(l-pa)hi, i=1,2 ,..., M. 

The closed queueing network model of this system is shown in Fig. 11.3 
[TrSiSl]. All 1 evels where requests are not queued are merged into an equiva- 

fig. 11.3 Queueing network model of the linear storage hierarchy shown in Fig. 11.2. 

lent server. The branching probabilities for the network are given as: 

PO0 = “; 

I- CPi’ 
i=l 

poj = l?iz ) j = 1,2 ,..., p. 
1-EPi 

i=l 

In [TrSiSl] the service time for the equivalent server is derived: 

(11.16) 
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In this context tj denotes the average transfer time for a block of size sj-1 
from the jth level to the (j - l)st level. Furthermore we assume that the ser- 
vice discipline at all nodes is FCFS and all service times are exponentially 
distributed. The goal is to maximize the system throughput, which is defined 
as the average rate of flow along the new program path, X = poo,x~po, where 
pe is the utilization of the equivalent server node and is given by: 

po = s m-4 K - 1)) 
PO w4K) 

I-1= (Po,P1.1,...,ccp), 

x0=; =gpi2ti+ 5 pi&j, 
i=l j=l i=m+1 j=l 

= (’ -PO) 
i 

tl + ~tj~j-l(bj-l/K, Sj-1) , 

j=2 
1 

(11.17) 

(11.18) 

1 P 

- = eiti+, = ti+m 
Pi 

c Pj+-rn, 
j=l 

= (1 - PO)ti+mFi+m-l(Ki+m-l/K, Si+m-l), i = 1,2,. . . ,P. (11.19) 

In these expressions, e = (ee, er, . . . , eP) is the vector of the visit ratios of the 
specified closed queueing network. Since the ei can only be determined within 
a multiplicative constant, we choose: 

m 

ee-l- c Pi, 
i=l 

which yields: 

P 

ei = 
c Pj+m* 
j=l 

The system throughput is given by: 

The optimization problem is to maximize the throughput, or, in other 
words, to minimize: 

Let the technology cost curve for the ith level be given by Ci(ti). The total 
cost of memory level i is given by ci(ti)Bi (bi), where Oi(bi) accounts for the 
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economies of scale that are present in the memory 
tion problem can now be defined as follows: 

t ethnology. The optimiza- 

1 G(CL,K) Minimize x(p, K) = - 
PO G(CL, K - 1) ’ 

with p as defined in Eqs. (11.17), (11.18), and (11.19), and subject to: 

5 ci(ti)Oi(bi) 5 COST. 
i=l 

(11.20) 

In this case the decision variables are the capacities and the average access 
timesforeachlevel(bi,t;,i= 1,2 ,..., M). Thevaluesm,p,K,pa,bM,si ,..., 
SM-1, and COST are assumed to be fixed parameters. Furthermore, we 
assume that & and 8i are functions of the memory capacities bi. The b;, 
ci , and 8i are posynomial functions of the access times ti (posynomials are 
generalizations of polynomials where the coefficients are positive real numbers 
while the exponents are allowed to be arbitrary real numbers). In the special 
case of K = 1, x(p, 1) is a polynomial function of the ,UU; since: 

The optimization problem in the case of K = 1 is then seen to be a stan- 
dard geometric programming problem , provided we assume that bi, ci, and 
1!3i are polynomial functions of ti. In [TrSi81] it is shown that even in the mul- 
tiprogramming case, the optimization problem becomes a convex program- 
ming problem when logarithmically transforming the variables ti and bi (i.e., 
ti = e”z and bi = eWz, i = 1,2,. . . , A4) and requiring the functions Fi (bi ) , ci (t; ) 
and hi(bi), i = 1,2,. . . , M to be posynomial functions. Thus any local solution 
to the optimization problem is also its global solution. 



12 
Performance Analysis 

Tools 

Performance analysis tools have acquired increased importance due to increa- 
sed complexity of modern systems. It is often the case that system mea- 
surements are not available or are very difficult to get. In such cases the 
development and the solution of a system model is an effective method of 
performance assessment. Software tools that support performance modeling 
studies provide one or more of the following solution methods: 

l Discrete-event simulation. 

l Generation and (steady-state and/or transient) solution of CTMC and 
DTMC. 

l Exact and/or approximate solution of product-form queueing networks. 

l Approximate solution of non-product-form queueing networks. 

l Hierarchical (multilevel) models combining one or more of the preceding 
methods. 

If we use DES, then the system behavior can be described very accurately, 
but computation time and resource needs are usually extremely high. In this 
book queueing network solutions as well as Markov chain analysis methods 
have been introduced to analyze system models. Queueing networks are very 
easy to understand and allow a very compact system description. For a limited 
class of queueing networks (see Chapters 8 and 9), so-called product-form 
queueing networks, efficient solution algorithms (such as convolution, MVA, 
SCAT) are available. But many queueing networks do not fulfill the product- 
form requirements. In this case approximation methods can be used (see 

571 
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Chapter 10). It is also possible to develop a multilevel model to approximately 
solve a non-product-form queueing network. If the approximation methods 
are not accurate enough or cannot be applied to a certain problem, as can, 
for example, be the case when we have non-exponentially distributed service 
times or when blocking is allowed in the network, then DES or CTMC is used. 
As we have seen in earlier chapters, the state space for even simple systems can 
be huge and grows exponentially with the number of nodes and the number 
of jobs in the network. Nevertheless, due to increasing computational power 
and better solution algorithms, CTMCs have acquired greater importance. 

For the solution of our models we realize that: 

l The application of exact or approximate solution algorithms for queue- 
ing networks is very cumbersome, error prone, and time consuming and 
hence not feasible to carry out by hand calculations. 

l The generation and solution of the CTMC/DTMC for even small sys- 
tems by hand is nearly impossible. 

We therefore need tools that can automatically generate the state space of 
the underlying CTMC and apply exact or approximate solution algorithms 
and/or that have implemented exact and approximate algorithms for queue- 
ing networks. In this chapter we introduce four representative performance 
modeling and analysis tools: PEPSY, SPNP, MOSES, and SHARPE. As men- 
tioned previously, tools differ not only in their solution algorithms (DES, exact 
and approximate solution algorithms for queueing networks, generation and 
transient and steady-state solution of CTMCs) but also in their input/output 
facilities. There are tools that have a graphical user interface (GUI) and/or 
a special input language (batch mode or interactive) or both. Some tools 
are based on special model types such as queueing networks, SPNs, CTMC 
models, or precedence graphs (and others) or a combination of these model 
types. 

12.1 PEPSY 

PEPSY (performance evaluation and prediction system) [BoKi92] has been 
developed at the University of Erlangen-Niirnberg. Using this tool it is pos- 
sible to describe and solve PFQNs and NPFQNs. More than 30 solution 
algorithms are incorporated. It is possible to specify open, closed, and mixed 
networks where jobs cannot switch to another job class. Closed job classes 
are described by the number of jobs in each class, while open job classes are 
described by the arrival rate of jobs at the class. To compute performance 
measures such as throughput, utilization, or mean response time of a given 
network, different exact as well as approximation algorithms are provided for 
PFQN and NPFQN. The network is described in textual and/or graphical 
form. The X11-windows version of PEPSY is called XPEPSY [Kirs93]. PEPSY 
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can be used on almost all UNIX machines, whereas XPEPSY needs the X11 
windows system. A Windows95, WindowsNT version WinPEPSY with similar 
features is also available but it has a restricted set of solution algorithms. 

12.1.1 Structure of PEPSY 

12.1.1.1 The input File The PEPSY input file contains the specification of 
the system to be modeled. The specification file has a name of the form 
e-name and is divided into a standard block and possibly additional blocks that 
contain additional information specific to solution algorithms. The standard 
block contains all necessary descriptions for most of the solution methods, for 
example, the number of nodes and job classes, the service time distribution at 
each node, the routing behavior of the jobs, and a description of the classes. 
The input file is usually generated using the input program, which is provided 
by PEPSY. Information that is not asked for by the input program is provided 
using the addition program. 

The type of each node (and its characteristics) needs to be specified: the 
-/M/m-FCFS, -/G/l-PS, -/G/-IS, and -/G/l-LCFS) and several other node 
types. For example, two types of multiple server nodes with different ser- 
vice time distributions -/M/m-FCFS-ASYM and -/G/m-FCFS-ASYM can 
be specified. The service time distribution is defined by its first and second 
moment, or by the service rate and the squared coefficient of variation. 

For the solution of the specified models, many different algorithms are 
implemented in PEPSY. These algorithms can be divided into six groups: 

1. Convolution algorithm for product-form networks. 

2. MVA for product-form networks. 

3. Approximation algorithms for product-form networks. 

4. Approximation methods for non-product-form networks. 

5. Automated generation and steady-state solution of the underlying 
CTMC. 

6. DES. 

In addition to these six groups, there are some methods and techniques that 
do not fit in any of these groups. For example, the bounds method performs 
a calculation of the upper bounds of the throughput and lower bounds of the 
average response time. 

12.1.1.2 The Output file For each file name e-name, an output file with 
the computed performance measures is generated. It is called xx-name where 
“name” is the same as in the input file and “xx” is an abbreviation for the 
used method. The output file consists of a short header with the name of 
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the model, the corresponding input file, and the solution method used to 
calculate the performance measures. The performance measures of all nodes 
are separated by classes. 

The output file contains the performance measures for each node (through- 
put, visit ratio, utilization, average response time, average number of jobs, 
average waiting times, and average queue length) and the performance mea- 
sures for the entire network (throughput, average response time and average 
number of jobs). 

12.1.1.3 Control Files As already mentioned, PEPSY offers more than 30 
solution methods to compute performance measures of queueing networks. 
In general, each method has certain limitations and restrictions. Because it 
would be impossible for the user to know all these restrictions and limitations, 
control files are used in PEPSY. Each control file contains the limitations and 
restrictions for each solution method, namely the network type (open, closed, 
or mixed), the maximum number of nodes and classes allowed, whether the 
method can deal with routing probabilities or visit ratios, whether the service 
rates at -/M/m-FCFS nodes have to be the same for different job classes, the 
range of the coefficients of variation, and the maximum number of servers at 
a -/M/m node. 

12.1.2 Different Programs in PEPSY 

The following lists the most important programs of PEPSY. For a more 
detailed reference see [Kirs94]. 

input: This 
work. 

program is used for an interactive description of a queueing net- 

addition: For some solution algorithms, additional information is needed. 
This information is provided by invoking the addition program. 

selection: Using this program, all possible solution algorithms can be listed 
that are applicable to the system description (the file that was just 
created). The output of this program consists of two columns. The 
left-hand column contains all solution algorithms that can be applied 
directly, while the right-hand column contains the methods that can 
only be applied after specifying an additional block (using the addition 
program). 

analysis: After a complete system description, the queueing network desired 
solution algorithm can be applied by invoking the analysis program. 
The results are printed on the screen as well as written to a file. 

pinf: This program is invoked to obtain information about the solution meth- 
od utilized. 
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transform: As already mentioned before, it is possible to specify the network 
using either routing probabilities or visit ratios. By invoking the trans- 
form program, visit ratios can be transformed into routing probabilities. 

pdiffz By invoking pdiff, the results of two different solution methods can be 
compared. 

Fig. 12.1 Simple queueing network example. 

12.1.3 Example of using PEPSY 

The main steps in working with PEPSY are described herein. Starting with 
the model, first the model file is created, then the solution method is selected, 
and the analysis is carried out. The model to be analyzed is shown in Fig. 12.1. 

At first the input program is invoked by means the command input. The 
user will then be asked to enter the type and number of job classes (a closed 
network with only one job class in our case), the number of nodes (three in 
our case), the type of each node, and its service rate. After the basic network 
information is specified, the routing information is entered. In PEPSY we need 
to consider one special point when talking about routing: open job classes 
contain a (combined) source/sink-node that is used in PEPSY as a reference 
node (outside node) for relative performance values. For closed queueing 
networks the outside node also needs to be specified. Finally the number of 
jobs in the network needs to be specified. 

Now the file is saved in, say, e-first-example. The corresponding model 
description, generated by input, is shown in Fig. 12.2. The next step is the 
selection of the solution method. PEPSY supports the user with a built-in 
database with the limitations and restrictions of each algorithm and returns 
a list of applicable solution methods. In our example the result, of apply- 
ing the selection program to the model description is shown in Fig. 12.3. 
This list contains all the methods that can be used to analyze the network 
e-simple-example. In addition to the standard network description that has 
been entered in the beginning, some methods need further parameters. 
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fig. 12.2 Model description file e-simple-example. 

Fig. 12.3 The list of applicable solution methods presented by the selection program. 
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P \ 
PERF?ORMANCE,INDICES FOR NET: simple,exaqKle 
description of the network is In file ~e,slmpSe,example' 
the closed network was 801ved using z;he method 'mari@' 
jobclass 1 
marle I lambda B l/mu rho llWZ maa mwz mwsl -----------*---------------------------------------------------------------- 
CPU 
disk I 

3.922 I.000 0.100 0,392 0.166 0.613 0.056 0.221 
2.746 0.700 0,333 0,915 1.276 3.503 0.943 2.588 

tarminaX I 1.177 Q*300 s.000 o.ooa 6 .a00 5.883 0.000 0.000 

characteristic indices: 
marie t lambda mvz maa -----------$--------------*----------- 

I 3.922 2.549 10.000 
legend 
6 : average number of visits mu : smvice rate 
rho : utilisation lambda: mean throughput 
lllV2 : average respbnae time 
maa : average number of jab8 
mwz : averaGe waiting time 
snws2: average queue-length 

/ 

Fig. 12.4 Performance measures of the network esimple-example. 

For example, in order to run the sim2 method (DES), some information 
about the maximum simulation time and accuracy needs to be specified. If 
the user is not familiar with a particular method, PEPSY assists the user with 
online help. 

Suppose the user selects the method name marie and invokes the solution 
method by entering the command analysis marie simple-example. The 
resulting performance measures are shown on the screen and are also written 
into the file a-c-simple-example. The contents of this file are shown in Fig. 
12.4. 

12.1.4 Graphical User Interface XPEPSY 

To demonstrate how to work with XPEPSY, the same queueing model as in 
Section 12.1.2 is used. After the program is started, the user can graphically 
draw the network as shown in Fig. 12.5. Nodes or connections can be created, 
moved, or deleted simply by mouse clicks. The necessary parameters are 
specified in the corresponding dialog boxes. Consider, for example, the node 
data dialog box, shown in Fig. 12.6~ that appears when clicking on the service 
station in the drawing area and that is used to specify node parameters. 

When the queueing network is fully specified, XPEPSY switches from the 
edit mode to the analysis mode and a new set of menus will appear. Now 
PEPSY assists you in selecting the solution method. Four possibilities are 
offered: 

1. Select from a limited set of methods, i.e., the ones that are very well 
suited for the problem. 

2. Select from all possible methods. 
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Fig. 12.6 (a) The node data dialog box and (b) the menu of solution methods corre- 
sponding to Fig. 12.5. 
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3. Show only methods that have already been used 
results can be found without resolving the model. 

and for which valid 

4. Show all methods that cannot be used due to inherent restrictions of 
the solution method. 

Now the solution can be carried out by simply activating the Analysis 
button from the analysis menu, shown in Fig. 12.6b, and the results are pre- 
sented on the screen (see Fig. 12.4). The results can also be presented as a 
histogram or as a line drawing. In a line drawing it is also possible to show 
an output parameter as a function of an input parameter. 

Some additional programs from PEPSY are integrated into XPEPSY as well. 
Using the Method Information button, the PEPSY internal database can be 
searched for information about the selected method. 

12.2 SPNP 

The stochastic Petri net package (SPNP) d eveloped by Ciardo, Muppala and 
Trivedi, is a versatile modeling tool for performance, dependability, and per- 
formability analysis of complex systems. Input models developed based on the 
theory of stochastic Petri nets are solved by efficient and numerically stable 
algorithms. Steady-state, transient, cumulative transient, time-averaged, and 
up-to-absorption measures can be computed. Parametric sensitivity analysis 
of these measures is efficiently carried out. Some degree of logical analysis 
capabilities is also available in the form of assertion checking and the number 
and types of markings in the reachability graph. Advanced constructs avail- 
able - such as marking-dependent arc multiplicities, guards, arrays of places 
and transitions, and subnets - reduce modeling complexity and enhance the 
power of expressiveness of the package. The most powerful feature is the 
capability to assign reward rates at the net level and subsequently compute 
the desired measures of the system being modeled. The model description 
language is CSP L, a C-like language, although no previous knowledge of the 
C language is necessary to use S P N P. 

12.2.1 SPNP Features 

The input language of SPNP is CSPL (C-based stochastic Petri net language). 
A CSPL file is compiled using the C compiler and then linked with the precom- 
piled files that are provided with SPNP. The full power of the C programming 
language can be used to increase the flexibility of the net description. An 
important feature of CSPL is that it is a superset of C. Thus a CSPL user 
can exploit C language constructs to represent a large class of SPNs within a 
single CSPL file. Most applications will only require a limited knowledge of 
the C syntax, as predefined functions are available to define SPNP objects. 
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Another important characteristic of SPNP is the provision of a function to 
input values at run time, before reading the specification of the SPN. These 
input values can be used in SPN P to modify the values of scalar parameters or 
the structure of the SPN itself. Arrays of places and transitions and subnets 
are two features of SPNP that are extremely useful in specifying large struc- 
tured nets. A single CSPL file is sufficient to describe any legal SPN, since 
the user of SPNP can input at run time the number of places and transitions, 
the arcs among them, and any other required parameters. 

The SPNP package allows the user to perform steady-state, transient, cumu- 
lative transient, and sensitivity analysis of SPNs. Steady-state analysis is 
often adequate to study the performance of a system, but time-dependent 
behavior (transient analysis) is sornet imes of greater interest: instantaneous 
availability, interval availability, and reliability (for a fault-tolerant system); 
response time distribution of a program (for performance evaluation of soft- 
ware); computation availability (for a degradable system) are some examples. 
Sensitivity analysis is useful to estimate how the output measures are affect- 
ed by variations in the value of input parameters, allowing the detection of 
system performance bottlenecks or aiding in design optimization. 

Sophisticated steady-state and transient solvers are available in SPNP. In 
addition, the user is not limited to a predefined set of measures: Detailed 
expressions reflecting exactly the measures sought can be easily specified. The 
measures are defined in terms of reward rates associated with the markings 
of the SPN (see Section 2.2.3). The numerical solution methods provided in 
the package address the stiflness problems often encountered in reliability and 
performance models (see Section 5.1.4.2). 

A number of important Petri net constructs such as marking dependency, 
variable cardinality arc, guards, arrays of places and transitions, subnets, and 
assertions facilitate the construction and debugging of models for complex 
systems. A detailed description of SPNP and the input language CSPL can be 
found in [CFMT94] and [CTM89]. SPNP has been installed at more than 100 
sites and has been used to solve many practical problems at Digital Equipment 
Corporation, Hewlett Packard, Nortel and other corporations. 

Some very powerful new features that have been added to S PN P include 
the capability of DES of non-Markovian nets and fluid stochastic Petri nets 
[CNT97]. 

12.2.2 The CSPL Language 

Modeling with SPNP implies that an input file describing the system struc- 
ture and behavior must be prepared. Such an input file can be prepared 
automatically via the graphical user interface that has been recently devel- 
oped as discussed in Section 12.2.3. Alternatively, the user may decide to 
prepare such a file himself. The language designed to do so is named CSPL, 
a superset of the C language [KeRi78]. What distinguishes CSPL from C is 
a set of predefined functions specially developed for the description of SPN 
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Fig. 12.7 Basic structure of a CSPL input file 

entities. Any legal C construct can be used anywhere in the CSPL file. All the 
C library functions, such as fprintf, f scanf, log, exp, etc., are available and 
perform as expected. The only restriction to this generic rule is that the file 
should not have a main function. In spite of being a programming language, 
CSPL enables the user to describe SPN models very easily. There is no need 
to be a programmer to fully exploit all the built-in features of SPNP. Just a 
basic knowledge of C is sufficient to describe SPNs effectively; although, for 
experienced programmers, CSPL brings the full power and generality of the C 
language. 

Fig. 12.7 shows the basic structure of a CSPL input file with six different 
segments. 

Parameters Segment The function parameters allows the user to customize 
the package. Several parameters establishing a specific behavior can be select- 
ed. The function iopt (fopt) enables the user to set option to have the 
integer (double-precision floating point) value. Any of the available options 
can be selected and modified. For example: 

specifies that the solution method to be used is transient solution as uni- 
formization and that the reachability graph is to be printed. The function 
input permits the input of parameter values at run time. 

A/et Segment The function net allows the user to define the structure and 
parameters of an SPN model. For built-in functions that can be used inside 
the net segment, Fig. 12.8 provides some illustrations. 
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Fig. 12.8 The CSPL net segment. 

There are other functions such as guards, which allow the user to define 
the enabling condition of a transition as a function of tokens in various places, 
or functions that allow the user to define arrays of places and transitions or 
functions that pertain to sensitivity analysis. 

Assert Segment The assert function allows the evaluation of a logical con- 
dition on a marking of the SPN. For example, the assert definition: 

f > 
assex% 0 I 

if tmark(“p2”3+mark(‘~p3”) != 4 I I enabledC’%ii”) && enabledf”t7”)3 
ret= (RESJRROR) ; 

else 

It 
returnCRES,NOERR); 

J 

will stop the execution in a marking where the sum of the number of tokens 
in places p2 and p3 is not 4, or where t 11 and t7 are both enabled. 

Ac-init and AC-reach Segment The function ac-init is called just before start- 
ing the reachability graph construction. It can be used to output data about 
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the SPN in the “. out” file. This is especially useful when the number of places 
or transitions is defined at run time (otherwise it is merely a summary of the 
CSPL file). The function ac-reach is called after the reachability graph con- 
struction is completed. It can be used to output data about the reachability 
graph in the “. out” file. 

AC-final Segment The function ac-final is called after the solution of the 
CTMC has been completed, to carry out the computation and printing of 
user-requested outputs. For example, the following function: 

writes in the “ . out” file for each place the probability that it is not empty 
and its average number of tokens, and for each transition the probability 
that it is enabled and its average throughput, respectively. The derivatives 
of all the preceding standard measures with respect to a set of previously 
chosen parameters are computed and printed. In the end it writes the message 
goodbye. Before applying the ac-f inal function, additional functions often 
have to be provided. This can be done, for instance, using the construct 
reward-type as it is shown in the following example: 

reward-type epl(l c return(mark(“p1”)) ; 3 
reward-type ep30 I return(mark(“p3”)) ; 3 
reward-type ep7 (1 < return(mark(“p7”) > ; 3 

l . . 

ac,f inaL (1 -C 
x = expected(epl)*expectedCsp7)+expected(ep3)*1.2; 
printf (“%f I’ ,x1 ; 

3 1 

Example Using the example of Fig. 12.9, we show that the application of 
SPNP to analyse systems that can be modeled by an SPN is a straightforward 
procedure. The inhibitor arcs avoid a capacity overflow in places pl and p2. 
The CSPL file for this SPN is shown in Fig. 12.10. 

A short description of this specification follows: 

Line 4-6: The reachability graph, the CTMC, and the state probabilities of 
the CTMC are to be printed. 

Line 10-22: The places, the initial marking of the places, the transitions, 
their firing rates, and the input, output, and inhibitor arcs are defined. 

Line 26-29: Check whether a capacity overflow in either place pl or place 
p2 has occurred. 
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Pl 

P2 

fig. 12.9 Petri net example. 

Fig. 12.10 CSPL file for the SPN in Firr. 12.9. 
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Line 33-37: Data about the SPN and the reachability graph of the SPN are 
to be printed. 

Line 40: The number of tokens in 
rate sl in that marking. 

place pl in each marking is the reward 

Line 41: The number of tokens in place 
rate s2 in that marking. 

p2 in each marking is the reward 

Line 42-49: Self-explanatory. 

Line 52: Data about the CTMC and its solution are to be printed. 

Line 53-54: The mean number of tokens in the places pl and p2 are to be 
computed and printed. 

Line 55-57: The probabilities that the places pl and p2 are empty are to be 
computed and printed. 

12.2.3 iSPN 

Input to SPNP is specified using CSPL, but iSPN (integrated environment 
for modeling using stochastic Petri nets) removes this burden from the user 
by providing an interface for graphical representation of the model. The use 
of Tcl/Tk [Welc95] in designing iSPN makes this application portable to all 
platforms [HWFT97]. 

The major components of the iSPN interface (see Fig. 12.11) are a Petri 
net editor, which allows graphical input of the stochastic Petri net, and an 
extensive collection of visualization routines to display results of SPNP and 
aid in debugging. Each module in iSPN is briefly described in the following: 

Input Data: iSPN provides a higher level input format to CSPL, which pro- 
vides great flexibility to users. iSPN is capable of executing SPNP with 
two different file formats: Files created directly using the CSPL and files 
created using iSPN’s Petri net editor. 

The Petri net editor (see Fig. 12.12), the software module of iSPN 
that allows users to graphically design the input models, introduces 
another way of programming SPN P: The user can draw the SPN model 
and establish all the necessary additional functions (i.e., rewards rates, 
guards, etc.) through a common environment. The Petri net editor 
provides several characteristics normally available only in sophisticated 
two-dimensional graphical editors and a lot of features designed specif- 
ically for the SP N P environment. 

iSPN also provides a textural interface, which is necessary if we wish 
to accommodate several categories of users. Beginners may feel more 
comfortable using the Petri net editor, whereas experienced SPNP users 
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Modeling Environments 

Manager 

Y 

Fig. 12.11 Main software modules for iSPN. 

may wish to input their models using CSPL directly. Even if the textu- 
al input is the option of choice, many facilities are offered through the 
integrated environment. In both cases, the “SPNP control” module pro- 
vides everything a user needs to run and control the execution of SP N P 
without having to switch back and forth among different environments. 

Output Data: The main goal of most GUIs is only to facilitate the creation 
of input data for its underlying package. Usually, the return communi- 
cation between the software output and the GUI is neglected. One of the 
advantages of iSPN is the incorporation of displaying SPNP results in 
the GUI application. iSPN’s own graphing capability allows the results 
of experiments to be graphically displayed in the same environment 
(see Fig. 12.13). Different combinations of input data may be compared 
against each other on one plot or viewed simultaneously. The graphical 
output format is created in such a way that it may be viewed by other 
visualization packages such as gnuplot of xvgr. 
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fig. 12.12 The Petri net editor. 

Fig. 12.13 The iSPN output page. 
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12.3 MOSES 

In this section the CTMC-based tool MOSES (modeling, specification, and 
evaluation system), developed at the University of Erlangen, is introduced. 
MOSES is based on the system description language MOSEL (modeling spe- 
cification, and evaluation language) [BoHe96]. The core of MOSEL consists of 
several constructs to specify the possible state and the state transitions of the 
CTMC to be analyzed. The basic way that MOSES computes the performance 
measures is shown in Fig. 12.14. 

Fig. 12.14 Different steps when computing the performance measures with MOSES. 

MOSES gets as input the system description (in MOSEL) and develops the 
underlying generator matrix Q. Five solution methods for the CTMC are pro- 
vided (Grassmann (see Section 3.3.2), Jacobi (see Section 3.4.3), Gauss-Seidel 
(see Section 3.4.4), multilevel method (see [Hort96]), and uniformization (see 
Section 5.1.4)). F rom the state-probability vector, the system performance 
measures of interest are computed. In the following section we provide a brief 
overview of the model description language M OSEL. 

12.3.1 The Model Description Language MOSEL 

MOSEL consists of a series of segments, described in the following: 

The DECLARATION Part: 

#define This method of definition is similar to the corresponding C con- 
structs except that it only allows numerical values (integer and floating 
point) and no expressions or other types of assignments. 

#enum This construct allows the definition of a set of constants. If we do not 
assign any integer value to a constant name in the enumeration list, then 
this constant gets a default integer value. For example, the following 
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two enum declarations are both identical: 

enum cpu,stal;e (idle = 0, user = 1, kernel = 2, driver = 3); 
enum cpu,stats ~idle,user,kern~l,drives); 

The VECTOR Description Part: This defines how a state vector looks 
(NODES Part) and which state vectors are prohibited (NOT Part). 

NODES Part In this part of the specification the components of the state 
vector are specified. For each component of the state vector, its name 
and capacity (since we consider finite CTMCs) must be given. As an 
example, consider: 

NODE nade,lCKI ; /a Range: Q,,K */ 
NUDE cpuLcpu,stateI; /* Range: 0+.3 */ 

For the definition of cpu-state, see the example in the #enum construct 
given previously. There is also the possibility for defining subnodes with- 
in a NODE declaration. For instance: 

NDDE NICK; Nlifi]; N22[1]] /* Node Nl could model a M/E2/1 queue * 

Subnodes can, for example, be used for components with Erlang dis- 
tributed service times. 

START Part This optional part specifies a valid start state for the transient 
analysis. 

NOT Part This construct is used to specify the prohibited system states. If 
we have, for example, a closed queueing network, then the sum of jobs 
over all stations in the network cannot be different from K (the overall 
number of jobs in the system). 

The RULES Part: This is the most important segment in the system 
because the RULE constructs are used to specify the state transitions. Each 
rule consists of a global part and, optionally, a local part. Consider, for 
example, the following two rules where the first rule consists only of a global 
part while the second one has also a local part, consisting of two local rules: 

The first rule specifies a transition from node-l to node-2 with transition 
rate mu-l. Since we do not specify a routing probability, 1.0 is chosen as 
default value. It should be noted here that instead of directly specifying the 
state transitions of the underlying CTMC (although it can be done), service 
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rates of stations and routing probabilities of the network are specified. This 
compact method of specification is much easier and less error prone. The 
second rule consists of two local rules. The global part states that transitions 
begin at node-l and all take place with transition rate mu-l. These transitions 
occur only if statenode-l == up. In the local part we define the transition 
targets and probabilities. It is even possible to specify local conditions for 
each local rule. In this case the global as well as local conditions have to be 
satisfied for the transition to occur. 

The RESULT Part In this part the basic performance measures of the 

CTMC computed from the steady-state probabilities are requested to be print- 
ed. 

Loops in MOSEL Some parts of a specification happen to be very similar, 
differing, for example, only in one index. For situations like these, MOSEL 
offers the loop construct. Consider the following example specification: 

It is very cumbersome and error prone to repeat every single specification 
since they differ from each other only in the index. These three lines of code 
can be shortened using the loop construct: 

<2..4> FROM node-# TO node-1 W mu-# P p#l ; 

As we can see, the loop indices are specified within the angled brackets. 

12.3.2 Examples 

12.3.2.1 CentraLServer Mode/ In the following the central-server model is 
specified. By using MOSEL, the queueing network model shown in Fig. 12.15 
can be specified in many different ways. Here we present two different versions: 
a longer one that is quite straightforward (see Fig. 12.16) and a second one 
that is a much shorter specification and demonstrates the power of loops 
(Fig. 12.17). 

A short description of the lines in the specification of Fig. 12.16 follows: 

Line 2: Definition of the number of jobs in the system. 

Line 5-7: Definition of the state space. 

Line 9: Definition of the prohibited states in the system. At any time, the 
sum of all jobs at all nodes must be I(. 

Line 13-14: Specification of all possible state transitions from node N1. to all 
other nodes. 
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fig. 12.15 The central-server model. 

Fig. 12.16 MOSEL implementation of the central-server model without loops. 

Line 15-16: Specification of all possible transitions from nodes N2 and N3 to 
node Nl. 

Line 18-20: Specification of the utilization of a node using the UTIL con- 
struct (which computes the utilization of a node using the state proba- 
bilities). 

Line 22-24: Specification of the mean number of jobs at a node using the 
MEAN construct. 

Line 26-32: Definition of other interesting performance measures. 

As we can see, the use of loops considerably reduces the length of the 
specification. 

12.3.2.2 Fault Tolerant Multiprocessor System Here we show the usability of 
MOSEL for the model of a fault tolerant multiprocessor system. Fig. 12.18 
shows a multiprocessor system with a finite buffer capacity. It is assumed 
that the failure and repair of servers are mutually independent. The following 
characteristics also apply: 
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Fig. 12.17 MOSEL implementation of the central-server system with loops. 

Fig. 12.18 An example of a multiprocessor system. 

l The system has a finite job queue of length L. 

l The arrival rate to this queue is lambda. 

l The time to repair is exponentially distributed with the rate l/mttr. 

l The time between failures is exponentially distributed with the rate 
llmtbf. 

l If a server that is currently working on a job fails, then the job is started 
again on a free server. 

l If no server is currently available, then a job must wait until a server is 
repaired or becomes free. 

l Service times are exponentially distributed with mean l/p. 

The implementation in Fig. 12.19 shows one way to describe this model of the 
fault tolerant multiprocessor system. 

Descriptions of the lines follow: 

Line 2-4: Definition of the states space. 
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/ ‘\ 
1 /* VECTOR dascription part */ 
2 NODE queue[Ll 
3 NODE activeC31 
4 NODE workingC31 
5 
6 NOT queue*active > L+3; 
7 
8 /* RULES part */ 
Q FROME TO queue W lambda; 

10 FROM working TOE W l/mtbf; 
11 FROME TO working W l/mttr; 
12 
13 FROM queue TO active IF working-active 3 0; 
14 
15 <1..3> FROM active TOE W #*mu IF active==# AND work$ng>*#; 
16 <1.,2> FROM active TOE W #*mu IF active># AND working-#; 
17 
18 /* RESULTS part */ 
IQ RESULT A = MEAN active; 
20 RESULT rho = A/3; 
21 RESULT IF (working > 0) p-working +* PROB; 
22 RESULT DIST queue; 
23 RESULT q = MEAN queue; 

L24 RESULT >) throughput = 3*rho*mu*p,working; J 

Fig. 12.19 MOSEL implementation of the fault tolerant multiprocessor system 

Line 6: Definition of the prohibited states in the system. The sum of the 
active jobs and the jobs in the queue shall not exceed L+3. 

Line 9: Specification of the arrival of jobs in the system. (FROME: short form 
for FROM External). 

Line 10-11: Specification of the failure and the repair of a processor. (TOE: 
short form for TO External). 

Line 13: Specification of the transition from the queue to a processor. 

Line 15-16: Specification of the possible transitions from the processor to 
external. If a processor fails while the job is being processed, the job is 
started on a free server, if available, or has to wait. 

Line 19: Request the mean number of active processors. 

Line 20: Request the utilization of the processors. 

Line 21: Request the probability that at least one processor is working. 

Line 22: Request the pmf of the number of jobs in the queue. 

Line 23: Request the mean queue length. 

Line 24: Request the throughput. 
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12.4 SHARPE 

SHARPE (symbolic hierarchical automated reliability performance evaluator) 
tool was originally developed in 1986 by Sahner and Trivedi at Duke University 
[STP96]. It is implemented in C and runs on virtually all platforms. The 
advantage of SHARPE is that it is not restricted to one model type as PEPSY 
or SPNP. It offers seven different model types including product-form queueing 
networks, stochastic Petri nets, CTMCs, task precedence graphs and fault 
trees. The user can choose the model type that is most convenient for the 
problem. The models can also be hierarchical, which means the output of a 
submodel can be used as the input for another submodel. 

Several graphical user interfaces for SHARPE are now available but the 
original version used textual, line-oriented ASCII code. An interactive or 
batch oriented input is possible. The syntax for both cases is the same. The 
possibilities that SHARPE offers depend on the chosen model type. If the user 
wishes to analyze a product-form queueing network, the commands for the 
performance measures such as throughput, utilization, mean response time at 
a station, and mean queue length are provided by SHARPE. MVA is used to 
solve product-form queueing networks. For a continuous-time Markov chain, 
reward rates and initial state probability vector can be specified. Steady- 
state, transient, and cumulative transient measures can be computed. The 
tool offers two steady-state solution methods. At first it starts with the SOR 
method and after a certain period of time, it prints the number of iteration 
steps and the tolerance if no solution is found. In this case the user is asked 
whether he or she wants to go on with the SOR method or switch to Gauss 
Seidel. Three different transient CTMC solution methods are available. 

It is not possible in this context to describe the full power of SHARPE. 
Instead of describing the syntax and semantics in detail, we give examples 
that use the most important model types to show the reader that SHARPE is 
very powerful and also easy to use. SHARPE has been installed at more than 
220 sites. For more detailed information the reader can consult [STP96]. 

12.4.1 Central-Server Queueing Network 

As the first example we consider a central-server queueing network (Fig. 
12.20) consisting of a CPU and two disks with the following input param- 
eters: 

/Lo = 1000/20, 

Pll = 0.1, 

P2l = P31 = 1. 

p1 = 1000/30, p2 = 1000/42.9, 

p12 = 0.667, p13 = 0.233, 

At each node the scheduling discipline is FCFS and the service times are 
exponentially distributed. Figure 12.21 shows a SHARPE input file for this 
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Disk 2 

Fig. 12.20 A central-server rnodcl. 

f 
1 * central-server mod& 
2 
3 pfqn csm(jobs) 
4 cpu diski ~12 
5 cpu disk2 ~13 
6 disk1 cpu 2 
7 disk2 cpu 1 
8 end 
9 * servers 
10 cpu fcfs 1000/20 
11 diski fcfs 1000/30 
12 disk2 fcfs ~1000/42.918 
13 end 
14 * number of jobs 
16 chain1 jobs 
16 end 

I 

\ 
17 
18 bind 
19 ~12 0.667 
20 p13 0,223 
21 end 
22 
23 Soap i,Z,lG,2 
24 expr tputCcsm,cpu;i) 
25 expr util(csm,cpu;i) 
26 expr: qlength(csm,cputi) 
27 expr rtime(csm,cpu; i> 
28 end 
29 
30 end 

/ 

Fig. 12.21 SHARPE Input for central-server network. 

model. Lines with comments begin with an asterisk. The description of the 
SHARPE specification is given as follows: 

Line 3: Specifies the model type pf qn (= product-form queueing network), 
model named csm, and model parameter jobs. 

Line 4-8: Specification of the routing probabilities. 

Line 9-13: Specification of the nodes and the service parameters of the nodes 
(name, queueing discipline, service rate). 

Line 15-16: Gives the number of jobs in the network. 

Line 18-21: The routing probabilities are bound to specific values. 

Line 23-28: Requests the computation and printing of the throughput, the 
utilization, the mean queue length, and the mean response time at the 
cpu for the number of jobs: 2, 4, 6, 8, and 10. 

The output produced by SHARPE in this case is shown in Fig. 12.22. We 
see that the throughput grows from 29 to 45, the utilization from 0.59 to 0.90, 
the mean queue length from 0.82 to 4.60, and the mean response time from 
0.03 to 0.10, as the number of jobs increases from 2 to 10. 
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f 
i=2.000000 i=8.000000 

\ 

tput(csm,cpu;i): 2.9406&01 tput(csm,cpu;i): 4,37E;3e+Ol 
util(csm,cpu;i): 5.88lle-01 utilCcsm,cpu;i): 8.75066-01 
qlength(csm,cpu;i): 8.23318-01 qlength(csm,cpu;i): 3,6209e+OO 
rtime(csm,cpu;i): 2.7998e-02 rtime(csm,cpu;i): 8.2768e-02 

i=4.000000 i=10.000000 
tputCcsm,cpu;i): 3.7976e+Ol tput(csm,cpu;iI: 4*4992e+Ol 
util(csm,cpu;i): 7.5962e-0 util(csm,cpu;i): 8.99836-01 
qlength(csm,cpu;i): 1.7202e+OO qlength(csm,cpu;iI: 4.59556+00 
rtime(csm,cpu;i): 4.6298e-02 rtime(csm,cpu;i): 1.02146-01 

i=6.000000 
tput(csm,cpu;i): 4.1733e+Ol 
util(csm,cpu;i): 8.3466e-01 
qlength(csm,cpu;i): 2.659ie+OO 

L 
rtime(csm,cpu;i): 6,3717e-02 

/ 

fig. 12.22 SHARPE output for the central-scrvcr model. 

12.4.2 M/M/m/K System 

As a simple example for a CTMC model, we consider an M/M/5/100 queueing 
system. The state diagram for this CTMC is given in Fig. 12.23. It is of birth- 

Fig. 12.23 Markov chain for the M/M/5/100 system. 

death type and irreducible. Each state name gives the number of jobs in the 
system. The SHARPE input file is shown in Fig. 12.24. 

In the first two lines the values of the arrival and service rates are bound. 
Then the model type (markov = CTMC) and the name (mm5) of the model 
are given. Subsequent lines specify the transitions between the state together 
with their transition rates. Then five variables are defined. Pidle is the 
steady-state probability of being in state 0. This is the probability that there 
are no jobs being served, i.e., that the station is idle. Pfull is the steady-state 
probability of being in state 100. This is the probability that the queue is full. 
Lre j ect is the rate at which jobs are rejected. Mqueue is the mean number of 
jobs in the system. This can be calculated by the built-in function sum. Mresp 
is the mean response time of accepted jobs computed using Little’s theorem 
as Mqueue/(X-Lreject), expr expression prints the value of the expression 
in the output file (Fig. 12.25). 

Note that a recent extension to SHARPE includes a loop specification in 
the definition of a CTMC that can be used to make concise specification of a 
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structured CTMC such as the one just described. 
of this feature see Section 13.3.2. 

For an example of the use 

Fig. 12.25 Output file for the M/M/5/100 system. 

12.4.3 M/M/l/K System with Server Failure and Repair 

Now we extend the M/M/l/K q ueueing model by allowing for the possibility 
that a server could fail and could be repaired. Let the job arrival rate be X and 
the job service rate be p. The processor failure rate is y and the processor 
repair rate is 7. This system can be modeled using an irreducible CTMC, 
as shown in Fig. 12.26 for the case where m = 1 (one server) and IY = 10 
(the maximum number of jobs in the server and queue is 10). Each state is 
named with a two-digit number ij where i E (0, 1, . . . ,9, a} is the number 
of jobs in the system (a is 10 in hexadecimal) and j E (0, l} denotes the 
number of operational processors. SHARPE input and output files for this 
example are shown in Figs. 12.27 and 12.28. The probability that the system 
is idle is given by prob(mmlk,OO) + prob(mmlk,Ol), and the rate at which 
jobs are rejected because the system is full is given by X (prob(mmlk, d) + 
prob(mmlk, al)). 

The generalized stochastic Petri net (GSPN) in Fig. 12.29 is equivalent 
to the CTMC model and will let us vary the value of K without changing 
the model structure. We use this example to show how to handle GSPNs 
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Fig. 12.26 CTMC for an M/M/1/10 system with server failure and repair. 

f \ 
markov mmlk 11 10 CAM 30 40 LAM 
01 11 LAM 10 ii TAU 40 50 LAM 
1% ot Mu 21 10 GAM 60 70 LAM 
11 21 LAM 20 21 TAU ‘70 60 LAM 
21 11 Mu 31 30 GAM 80 90 LAM 
21 31 LAM 30 31 TAU 90 a0 LAM 
31 21 Mu 41 40 GAM end 
31 41 LAM 40 41 TAU 
41 31 Mu 61 60 GAM bind 
41 62 LAM 50 51 TAU LAM 1 
61 41 Mu 61 60 GAM MU 2 
51 61 LAM 60 61 TAU GAM O.UUOl 
61 51 MU 71 70 GAM TAU 0.1 
62 71 LAM 70 71 TAU end 

71 61 MU 81 80 GAM var Pidle probCmmik,OO)+~rob~mlk,Ol) 
72 81 LAM 80 81 TAU var Pfull prob~mmik,a0)+grob~mlk,al) 
81 71 MU 91 90 GAM var Lreject LAM*PFULL 
81 91 LAM 90 91 TAU exps Pidle 
91 81 MU al a0 GAM expr Lre j ccc 
92 al LAM a0 al TAU end 
al 91 Mu 00 IO LAM 
01 00 GAM 10 20 LAM 

\, 00 01 TAU 20 30 LAM / 

Fig. 12.27 SHARPE input for the M/M/1/10 system with server failure and repair. 

using SHARPE. The loop in the upper part of the GSPN is a representation 
of an M/M/l/K queue. The lower loop models a server that can fail and be 
repaired. The inhibitor arc from place server-down to transition service 
shows that customers cannot be served while the server is not functioning. 
The number within each place is the initial number of tokens in the place. 
All of the transitions are timed, and their firing rates are shown below the 
transitions. The input file for this model is shown in Fig. 12.30, and the 
description of this file follows: 

Line l-7: The input parameters are bound to specific values. 

Line 9: Model type and name of the model. 

Line 11-15: Places and initial numbers of the tokens. 
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fig. 12.28 SHARPE output for the M/M/1/10 system with server failure and repair. 

Fig. 12.29 GSPN model for queue with server failure and repair. 

Line 17-21: Timed transitions. 

Line 23-27: Arcs from places to transitions and arc multiplicities. 

Line 29-33: Arcs from transitions to places and arc multiplicities. 

Line 35-36: Inhibitor arcs and their multiplicities. 

Line 38: Define a variable for the probability that the server is idle. 

Line 40: Define a variable for the probability that a job is rejected at the 
server. 

Line 42: Define a variable for the rejection rate. 

Line 44: Define a variable for the average queue length at server. 

Line 46: Define a variable for the throughput of server. 

Line 48: Define a variable for the utilization of server. 

Line 50-54: Values requested to be printed (Fig. 12.31). 

This GSPN is irreducible. For GSPNs that are non-irreducible, SHARPE 
can compute the expected number of tokens in a place at a particular time t, 
the probability that a place is empty at time t, the throughput and utilization 
of a transition at time t, the time-averaged number of tokens in a place during 
the interval (O,t), and the time-averaged throughput of a transition during 
(0,t). See [STP96] for the syntax for these functions. Other model types 
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’ 1. bind 28 1 * axes, transitions-places 
2 Lambda 1.0 29 job-arrival queue I 
3 mu 2.0 30 service jobsource I 
4 gamma 0.0001. 31 faiLwe servexdown 1 I 
6 tau 0.1 32 repaix sexverup 1, 
6 K 10 33 and 
7 end 34 * inhibitox arcs 
8 36 serverdown service 1 
9 gspn mmlk-fail 36 end 
10 * places 37 
11 jobsource K 38 vax Pidle prempty(mmik-fail,q cue> 
12 queue 0 39 u 
13 servexup 1. 40 
14 serverdown 0 41 

vax Pxeject prempty(mmlk-fail/jobsource) 

16 end 42 var Lrejeet prempty(mmik-failrjobsource) 
26 * transitions 43 
17 job-arrival ind Lambda 44 var avquelength etok(mmlk-fail,queue$ 
18 service ind mu 46 
19 faiLuxe ind gamma 46 vax thxuput tput(mmlk-fail.,service) 
20 repair ind tau 47 
21 end 48 var utiY.ization uitl(mmlk-fail,service) 
22 * arcs, places-transitions 49 
23 jobsouxce job-arrival 1, 60 expx PicUe 
24 queue service I 51 expr Lreject, Preject 
25 serverup failure 1 52 exps avquelength 
26 serverdown repair 1 53 expr thruput, utilization 
27 end 64 end I 

Fig. 12.30 Input for GSPN model of t,he system with server failure and repair. 

avquelength: 1,0028e+OO 
9.9@04e-01 

utilization: 

Fig. 12.31 Output for the GSPN model. 

provided by SHARPE are multiple chain product-form queueing networks, 
semi-Markov chains, reliability block diagrams, fault trees, reliability graphs, 
and series-parallel graphs. For details see [STP96]. 

12.5 CHARACTERISTICS OF SOME TOOLS 

In Table 12.1 other important tools are listed together with their main fea- 
tures. There are pure queueing network tools such as QNAP2 or PEPSY, pure 
Petri net tools such as SPNP or PANDA, and tools that have a more general 
input and are therefore more flexible such as SHARPE or MOSES. Many of 
them provide a GUI and/or a textual input language. The GUI is very con- 
venient for getting accustomed to the tools, but the experienced user often 
prefers the use of a textual input language. 



Table 12.1 Performance Evaluation Tools 

Tool Location Reference Modeltype Solution Method GUI Language Hierarchical 

QN SPN other DES pqfn npqfn m-tr m-ss 

RESQ 
QNAP2 
MAOS 
PEPSY 
HIT 

IBM [SaMa85] * - - * * - - - * (*) 
SIMULOG [VePo85] * - - * * * * * 
TU Miinchen [FeJoSO] * - * * 

Univ. Erlangen [Kirs94] * - 1 * * i 1 i - 

ILMAOS * 
XPEPSY (Menue) 

Univ. Dortmund [BMW891 * - - * * - - * HITGRAPHIC HISLANG * 

SPNP Duke Univ. [CFMT94] - * - * - - * * iSPN CSPL 
GreatSPN Univ. Torino [ABC+951 - * - * - - * * * 

TIMENET TU Berlin [GKZH94] - * - * - - * * * (I) 
DSPNexpress TU Berlin [Lind94] - 

2 
* - * * 

Ultra SAN Univ. Illinois [SOQW95] - * - i 1 1 * * 

* 
2i 

* 

PANDA Univ. Erlangen [AlDa97] - * - * - - * * 
% 

* * 

QPN Univ. Dortmund [BaKe94] * * - - - - - * 
4 

* APNN * 5 
i 

SHARPE Duke Univ. [STP96] * * * * * * * 

(i) - - * * 
GSHARPE * * a 

MOSES Univ. Erlangen [BoHe96] * * * (*) MOSEL * 
MARCA NC State Univ. [StewSO] 

% 
* - * - - * * XMARCA 

MACOM Univ. Dortmund [ScMiiSO] * - - - - - - * * (“SE*N”M) 1 
DNAmaca Univ. Cape Town [KnKr96] * * * - - - - * C++-constructs - 

$ 
m 

Notes: m-tr: CTMC solver transient, m-ss: CTMC solver steady-state 





13 
Applications 

This chapter considers several large applications. The set of applications is 
organized into three sections. In Section 13.1, we present case studies of 
queueing network applications. In Section 13.2 we present case studies of 
Markov chains and stochastic Petri nets. In Section 13.3, case studies of 
hierarchical models are presented. 

13.1 CASE STUDIES OF QUEUEING NETWORKS 

Five different case studies are presented in this section. These range from 
multiprocessor system model, several networking applications one operating 
system model and a flexible production system model. 

13.1.1 Multiprocessor Systems 

Models of tightly coupled multiprocessor systems will be discussed first fol- 
lowed by models of loosely coupled systems. 

13.1,l.l Tightly Coupled Systems Consider a tightly coupled multiprocessor 
system with caches at each processor and a common memory, connected to 
the processors via a common bus (see Fig. 13.1). The system consists of m 
processors and a common memory with n memory modules. A processor 
sends a request via the common bus to one of the n memory modules when a 
cache miss occurs, whereupon the requested data is loaded into the cache via 

603 
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PTl Processor n 72 = 1,...,5 

cn Cache n n= 1,...,5 

iVIAl, Memory Module n n = 1,. . . ,4 

fig. 13.1 A multiprocessor system with caches, common memory, and common bus. 

the common bus. Figure 13.2 shows a product-form queueing network model 
of such a multiprocessor system. 

Replies to Memory Requests 

Replies to Memory Requests Memory Modules 

fig. 13.2 Queueing network model of the multiprocessor system shown in Fig. 13.1. 

The m processors are modeled by an IS node and the bus and the memory 
modules by single server nodes. The number of requests in the system is 
m since a processor is either working or waiting until a memory request is 
finished. Using this model we can calculate the utilization of the bus or the 
mean response time of a memory request from a processor. The mean time 
between two cache misses is modeled by the mean thinking time of the IS 
node. Other parameters that we need are the mean bus service time, the mean 
memory request time, and, finally, pi, the probability of a request to memory 
module i. In the absence of additional information, we assume pi = l/n 
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(i = 1,2,... , n). Note that for each cache miss, there are two service requests 
to the bus. It is for this reason that with probability 0.5, a completed bus 
request returns to the processor station. Similarly, the probability of visiting 
memory module i subsequent to the completion of a bus request is pi/2. 

We assume that the service times for the two types of bus requests have 
the same mean. This assumption can be easily relaxed. If we have explicit 
values for these parameters, then we can calculate interesting performance 
measures such as bus utilization and mean response time as functions of the 
number of processors. Another interesting measure is the increase in the mean 
response time assuming a fixed number of processors and memory modules, 
while changing the mean bus service time and the mean time between two 
cache misses. In Fig. 13.3 the mean response time is shown as a function 
of the mean bus service time and the mean time between two cache 
[BolcSl]. 

R 
Mean 

.espont 
Time 

misses 

4ce Time 

Mean Time Between Cache Misses 5o 

fig. 13.3 Mean response time as a function of the bus service time, and the mean 
time between cache misses (m = 5, n = 4). 

We can see that there is a wide area where the increase in the mean response 
time is tolerable (1501) o compared to the case with no waiting time at the bus 
or a memory queue (this is the minimum value of the mean response time). 
On the other hand, there is also a wide area with an intolerable increase in 
the mean response time. Thus the analysis of such a queueing network model 
can help the system designer to choose parameter values in a tolerable area. 

Problem 13.1 Verify the results shown in Fig. 13.3 by hand computation 
and using any software package available (e.g., SHARPE or PEPSY). 
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Problem 13.2 Improve the model described in Section 13.1.1.1 by consid- 
ering different mean service times for bus requests from processor to memory 
and from memory to cache (Hint: Use a multiclass queueing network model). 

13.1.1.2 Loosely Coupled Systems In a loosely coupled multiprocessor sys- 
tem, the processors have only local memory and local I/O devices, and com- 
municate via an interconnection network by exchanging messages. A simple 
queueing network model of such a system is shown in Fig. 13.4. The mean 

Network 

Processors 

Fig. 13.4 A simple queueing network model of a loosely coupled system. 

service time at the processors is the mean time between the messages, and 
the mean service time at the network node N is the mean message delay at 
the network. The routing probability pi is the probability that a message is 
directed to processor i. 

Arriving / Departing Jobs Replies to I/O Requests 

Processors 

Replies to Memory Requests I/O Processors 

Fig. 13.5 A complex queueing network model of a loosely coupled system. 

A more complex and detailed model of a loosely coupled multiprocessor sys- 
tem is shown in Fig. 13.5 [MAD94]. Here we assume that we have n separate 
I/O processors and m “computing” processors. The computing processors 
send I/O requests via the network N to the I/O processors and get the replies 
to these requests also via the network N. We assume that a job that begins at 
a computing processor is also completed at this processor and that the proces- 
sors are not multiprogrammed and are heavily loaded (for each job that leaves 
the system after being processed by a processor, a new job arrives immediate- 
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ly at the processor). This system can be modeled by a closed product-form 
queueing network with m job classes (one for each computing processor) with 
the population of each class equal to 1 [MAD94]. 

As an example we consider a loosely coupled multiprocessor system with 
eight computing processors and n = 2,3,4 I/O processors. The mean com- 
puting processor service time is 30 msec, the mean I/O time is 50 msec, and 
the mean message delay at the network is 1 msec. The probability that a 
job leaves the system after it has been processed at a computing processor 
is p&ne = 0.05. we assume that pi = l/n for all i. Some interesting results 
from this model are listed in Table 13.1. 

Table 13.1 Performance measures for the loosely coupled multiprocessor system for 
different, numbers of I/O processors 

Number of I/O Processors 2 3 4 

mean response time 
throughput 
Pcomputingprocessor 

Pnetwork 

PI/Oprocessor 

4.15 set 
1.93 set- l 
0.145 
0.070 
0.867 

3.18 set 
2.51 set-l 
0.189 
0.090 
0.754 

2.719 set 
2.944 set-l 
0.220 
0.106 
0.662 

Problem 13.3 Verify the results shown in Table 13.1 by hand computa- 
tion and using any software package available (e.g., PEPSY or SHARPE). 

Problem 13.4 Extend the complex model described in Section 13.1.1.2 so 
as to allow distinct mean network service times for request from a computing 
processor to I/O processor and vice versa. 

13.1.2 Client Server Systems 

A client server system consists of client and server processes and some method 
of interprocess communication. Usually the client and the server processes 
are executing on different machines and are connected by a LAN. The client 
interacts with the user, generates requests for a server, transmits the request 
to the server, receives the results from the server, and presents the results to 
the user. The server responds to requests from the clients and controls access 
to resources such as file systems, databases, wide area networks, or printers. 
As an example we consider a client server system with a fixed number m of 
client workstations that are connected by an Ethernet network to a database 
server. The server consists of a single disk (node number 4) and a single 
CPU (node number 3). This leads to a closed product-form queueing network 
model shown in Fig. 13.6. 

The client workstations are modeled as an IS node (node number 1) 
[MAD94], and the number of jobs in the closed system is equal to the number 
of workstations m. The Ethernet network (carrier sense multiple access with 
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Workstations 

fig. 13.6 Closed qucueing network model of a client server system. 

collision detection, or CSMA/CD, network) can be modeled as a server (node 
number 2) with the load-dependent service rate [LZGS84, MAD94, HLM96]: 

i 

- 
( 

PIlet (W = 
y$ * 3 + s * c(l))-l, k = 1, 

- (13.1) 

( ~.~+S*C(t+l))-l, k>l, 

where C(k) = (1- A(k))/A(k) is tk re average number of collisions per request 
and A(k) = (1 - l/k)'-' is the probability of a successful transmission and Ic 
the number of workstations that desire the use of the network. 

Other parameters are described in Table 13.2 and shown in Fig. 13.6. We 

Table 13.2 Parameters for the client server example 

Parameter Description 

NP 
B 
S 

GJ 

Average number of packets generated per request 
Network bandwidth in bits per second 
Slot duration (i.e., time for collision detection) 
Average packet length in bits 

compute the throughput X and other interesting performance measures using 
the load-dependent MVA ( see Section 8.2). As an example we use the param- 
eters from Table 13.3 and determine the throughput as a function of the 
number of client workstations m (see Fig. 13.7) 

Problem 13.5 Verify the results shown in Fig. 13.7 by hand computation 
and using an available modeling package such as SHARPE or PEPSY. 

13.1.3 Communication Systems 

13.1.3.1 Description of the System As an example of a more complex queue- 
ing network and the performance evaluation of communication systems, we 
consider the LAN of a medium size enterprise [Ehre96]. 
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” 20 4b 6b 8b 160 
m 

Fig. 13.7 Throughput as a function of the number of workstations. 

Table 13.3 Numerical parameter values for the client- 
server example 

Np = 7 pl = pc~ = O.l/ set 
B = 10 Mb/ set CL2 = pNet(k) 
S = 51.2 psec p3 = pcpu = 16.7/set 
z, = 1518 bits p~q = PDisk = 18.5/set 

P12 = 1 pa1 = 0.5 p32 = 0.5 P43 = 1 

p23 = 0.5 p34 = 0.5 

m Bridges in the Computer Center 

0 Bridges in the Other Buildings 

WAN Router 

LAN Analyzer 

@ Server 

•i Computer 

Fig. 13.8 The FDDI backbone with 13 stations. 
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The LAN connects several buildings that are close together and it is divided 
into several network sections. In each network section the devices of a building 
are connected to each other. Three other sections are located in one building 
and are used to connect the servers to the LAN. As a backbone for the sections, 
a fiber distributed data interface (FDDI) rin is used. Eleven bridges for the g 
sections, a WAN router, and a LAN analyzer that measures the utilization 
of the LAN constitute the stations of this ring. Figure 13.8 shows the FDDI 
ring with the stations schematically, wherein the structure of two stations is 
shown in more detail. 

The typical structure of a section in which all computers within a building 
are connected is shown in Fig. 13.9. The building has four floors. The com- 
puters on the second and third floor are connected to different segments, and 
the computers on the fourth and fifth floor are connected to the same segment. 
These three segments are connected to each other and to the FDDI ring via a 
multiport bridge. The computers are connected to a stack of four hubs that 

Cheapernet 
I I I 

Optical I 1 
Chcapernet 

Fiber -- 2nd Floor 
(Ground Floor) 

--p-& -x 
Hubs 

FDDI Ring 

5th Floor 

4th Floor 

3rd Floor 

Fig. 13.9 A section of a communication system with three segments. 

are connected to each other via Cheapernet, and there is a connection of the 
hubs to the multiport bridge via optical fibers. The CSMA/CD principle is 
used with a transmission rate of 10 Mb/set which is equal for all segments. 
Each segment is a different collision domain. 
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13.1.3.2 Queueing Network Mode/ The nodes of the queueing network model 
of the LAN are the FDDI ring, the Ethernets that connect the devices in the 
segment, the computers, the servers in the computer center, and the bridges. 
The FDDI ring can be considered as a server that serves the stations in the 
ring (12 stations without the LAN analyzer) in a fixed sequence. A station (or 
section) sends a request to another station via the FDDI ring, and the reply 
to the request is sent back to the station again via the FDDI ring. Thus we 
obtain a closed queueing network model for the LAN as shown in Fig. 13.10 
with a simplified representation of the individual sections. The FDDI ring is 
modeled by a single server node. The LAN analyzer does not influence the 
other sections and for this reason it does not appear in the model. The WAN 
router can be modeled as a single server node and the WAN itself as an IS 
node (see Fig. 13.11). There are arrivals at the WAN router from the WAN 

FDDI Ring 

P4 P5 
*1 

P3 PG 
4-Ixt-+ 

P2 P7 
+Ict-- 

3 Sec&yye;swith 
ps qT-+* 

pg q--q--@ 

Pl 
pl” +55--j-* 

WAN 
p11 +i-j--* 

p12 +-ii+--~ 

8 Sections with Computers 

Fig. 13.10 Closed queueing network model of the LAN with a simplified representation 
of the individual sections. 

and from the ring. The WAN router sends requests to the ring and to the 
WAN as well. A similar situation occurs at all the bridges/routers. 

In the sections, the segments are connected to the bridge via Ethernet. 
The Ethernet segments are modeled by a multiple server with only one queue 
where the number of servers is the number of segments in the section. Because 
of the CSMA/CD strategy, the frames are either transferred successfully to 
the computers of the sections to the bridge or in the case of a collision, sent 
back to the Ethernet queue with collision probability qi . Each computer sends 
requests to a server via the LAN and waits for the reply before it sends another 
request. Therefore the number of requests in the LAN equals the number of 
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To From To From 

A The Ring 

0.5 

-oar- 
0.5 WAN Router 

WAN 

Fig. 13.11 Detailed model of the WAN and the WAN router. 

active computers, and the requests do not have to wait at the computers. For 
this reason the computers at a section can be modeled by an IS node. 

A queueing network model of a section of the LAN is shown in Fig. 13.12 
and the queueing network model of a computer center section with the servers 

From To From To 

l--q, 
2 

l-q, 
2 

-IIllK+- ::: 
Bridge 42 

Computers 

Fig. 13.12 Detailed model of a section of the LAN. 

is shown in Fig. 13.13. Servers are modeled by a multiple server node with one 
queue where the number of servers at the node is equal to the number of real 
servers. The queue is necessary because there are more computers that can 
send requests to the servers than the number of available servers. The whole 
LAN model consists of 1 node for the FDDI ring, 12 nodes for the bridges, 11 
nodes for the Ethernet segments, 8 nodes for the computers, 3 nodes for the 
servers, and 1 node for the WAN. As we will allow non-exponential service 
time distributions, it is a non-product-form network. 

13.1.3.3 Model Parameters As parameters we need the total number of 
requests, the routing probabilities p,, the mean service times l/pi, and the 
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From To 

613 

Server ” 

Fig. 13.13 Detailed model of a section with servers. 

coefficient of variation c, of the service times of the nodes. Furthermore, we 
need the number of service units m; for the multiple server nodes. The total 
number of requests in the network is the mean number of active computers 
K = 170 (measured value). We estimate the routing probabilities pi from the 
FDDI ring to the bridges by measuring the amount of data transferred from 
the ring to the bridges, which can be measured at the bridges. This estimate 
was done based on measurements over a two-day period (see Table 13.4). 

Table 13.4 Total data transferred from FDDI ring to the bridges for a two-day period 
and estimated routing probabilities p, 

Section 1 2 3 4 5 6 7 8 9 10 11 12 

Data/Mb 2655 1690 2800 1652 2840 1500 3000 200 1940 1180 4360 4380 
Pzl% 9.5 6.2 10 5.9 10.1 5.4 10.7 0.7 6.9 4.2 14.8 15.6 

Notes: 1: WAN; 2,3,4: section with servers; 5, . . .,12: section with computers. 

Table 13.5 Collision probabilities qz 

Section 1 2 3 4 5 6 7 8 9 10 11 12 

Qz/% 1 5 1 1 1 1 1 1 1 1 3 2 

The other necessary routing probabilities are shown in Figs. 13.11, 13.12, and 
13.13 and in Table 13.5. The number of servers m; of the multiple server 
nodes is given by the number of servers for the server nodes (Table 13.6) or 
by the number of segments for the Ethernet node (Table 13.7). To obtain the 
mean service times of the nodes, we use a LAN analyzer which can measure 
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Table 13.6 Number of service 

units m, in server nodes 

Section 2 3 4 

mi 14 23 13 

Table 13.7 Number of service units nz; (= number of segments) in Ethernet nodes 

Section 2 3 4 5 6 7 8 9 10 11 12 

ma 4 7 2 4 5 3 1 4 2 5 5 

the interarrival times and the length of the frames transferred by the FDDI 
ring. The results of the measurement are shown in Tables 13.8 and 13.9. From 

Tab/e 13.8 Empirical pmf of 
the interarrival times of the 
frames. 

Interarrival Time (ps) % 

15 3.0 
5-20 0.9 

20-82 15.3 
82-328 42.7 

329-1300 27.1 
1300-5200 1.0 

Tab/e 13.9 Empirical pmf of 
the frame length L 

Length (Bytes) % 

5 32 11.1 
32-63 10.0 
64-95 33.0 

96-127 7.9 
128-191 6.8 
192-511 4.1 

512-1023 5.8 
1024-1526 21.3 

these tables we obtain the mean values and the square coefficients of variation 
(Table 13.10) of the interarrival times and frame lengths. Given the measured 
throughput X = l/346 psec = 2890 per set, and the routing probabilities (see 
Table 13.4), the traffic equations are solved to produce the arrival rates of the 
individual sections (see Table 13.11). N ormally in a closed network, relative 
throughputs are computed from routing probabilities or visit ratios. However, 
in this case we have measured throughput at one node and hence the relative 
throughputs at each node are also the actual throughputs. 

The mean service time of the FDDI ring is given by the sum of the mean 
transfer time of a frame and the mean waiting time until the token arrives at 
a station [MSWSS]. We assume one-limited service, i.e., a station transmits at 
most one frame when the token arrives. An upper limit of the service time of 
the ring is the token rotation time. The utilization pi = Xi/p is the probability 
that a station wishes to transmit a frame, and 1 --pi is the probability that the 
token is transferred to the next station without transmitting a frame. In this 
case the transfer of the token can be considered as the transfer of a frame with 
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Tab/e 13.10 Characteristic values of the interarrival times and the frame length 

Interarrival Times of the Frames Length of the Frames 

Mean value 346 p set 
Squared coefficient of variation 1.48 

382.5 Byte 
1.67 

Tab/e 13.11 Arrival rates of frames at the stations 

Station 1 2 3 4 5 6 7 8 9 10 11 12 

A, 275 179 289 171 292 156 309 20 199 121 428 451 

length 0. Accordingly, the mean token rotation time ?& can be calculated as 
follows: 

T,=U+R-‘*Z*&II~. (13.2) 

Here U denotes the free token rotation time (22psec), R denotes the transfer 
rate (100 Mb/set), and 2; denotes the mean frame length (see Table 13.10). 

With: 

c pi = 
Ipi x 
-=- 

P P’ 

(13.3) 

the approximation: 

and Eq. (13.2), it follows that the service rate of the FDDI ring is given by: 

R-XL 
‘= U.R * (13.4) 

With X = 2890/ set, z = 382.5 Bytes (see Table 13.10), we obtain the mean 
service rate: 

p = 41435/set, 

and the mean service time at the FDDI ring: 

T, M 1 = 24 psec. 
I-L 

The variance of the token rotation time T, is given by [MSW88]: 

crgT = Re2 (p . var(L) + p. (1 - pep?) z2) , (13.5) 
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where o$ and z2 can be calculated using the values from Table 13.9, the 
values ofrpi are given in Table 13.4, and p = X/p = 0.070 is given by the 
values of X and p. Then we obtain the squared coefficient of variation: 

The service time at each bridge is deterministic with the forwarding rate of 
10,000 frames/set. And, of course, the coefficient of variation is 0 in this case. 

The service time of the Ethernet is given by the sum of the transfer time 
Tt and the delay time Td of a frame. To obtain the transfer time Tt we need 
the mean frame length, which we get from Table 13.9 given that the minimum 
frame size is 72 bytes in the CSMA/CD case. Thus, 54.1% of the frames have 
a size between 72 and 95 bytes and it follows: 

Leth = 395 bytes = 3160 bit, ciplJL = 1.51. 

Given a transfer rate of 10 Mb/set (see Table 13.12), we finally have: 

F 
t 

= 3160 bit 
10 Mb/set 

= 316 psec c$~ = 1.51. 

The mean delay time ??d of the Ethernet can be calculated using Fig. 13.9 
and Table 13.12: 

Td = 0.011 km. 5 psec/km + 0.005 km . 4.3 psec/km + 0.05 km - 4.8 psec/km 

= 0.3 psec. 

Table 13.12 Characteristics of the optical fiber, the Cheaper-net, and the twisted pair 

Transfer Rate Mean Length Signal Time 

Optical fiber 
Cheapernet 
Twisted pair 

10 Mb/set 11 m 5 psec/km 
10 Mb/set 5m 4.3 psec/km 
10 Mb/s 50 m 4.8 psec/km 

In this case, Td can be neglected compared to Ft and we have: 

1 
- = 316psec. 
peth 

To obtain the service rates of the IS node (WAN or computers in a section) 
we use the formula: 

xi = ,i 
Pi ’ 

and have: 

(13.6) 
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- 
The values of the Xi are listed in Table 13.11. In order to get the K; we 
need the mean number of active computers. This value cannot be measured 
directly but we have the mean total number of active computers which is 170. - 
To get an approximation, for the Ki, we divide 170 by the number of sections, 
which is 12 (see Table 13.4 or Fig. 13.17). This yields: 

- 
Ki E $y = 14.17. 

For sections with servers (multiple server node) we use: 

pi = xi ml-La ’ 
and obtain: 

pi = xi 
mipa ’ 

(13.7) 

and can calculate the service rates using the utilization pZ of the servers, 
which was measured approximately as 90%, and the number of servers mi 
from Table 13.6. The values of the service rates are listed in Table 13.13. 

Table 13.13 Service rates of the computers, servers, and the WAN 

Station 1 2 3 4 5 6 7 8 9 10 11 12 

Pa 19.4 14.2 14.0 14.6 20.6 11.0 21.8 14.1 14.8 8.5 30.2 31.8 

Now the closed non-product-form queueing network model of the consid- 
ered communication system is completely defined. We solve it using Marie’s 
method (see Section 10.1.4.2). 

13.1.3.4 Results The closed queueing network model from Section 13.1.3.2 
together with the model parameters (as derived in Section 13.1.3.3) is solved 
using the queueing network package PEPSY (see Chapter 12). The PEPSY 
input file for this example is given in Fig. 13.14. In PEPSY, either routing 
probabilities pij or visit ratios ei can be used in the input file. Here we use the 
visit ratios, which are calculated from the originally given routing probabilities 
using Eq. (7.5). We have a closed queueing network, therefore we have the 
total number of jobs K = 170 as input. From the input file, PEPSY produces 
an output file, shown in Fig 13.15, with all performance measures. Since we 
have a non-product-form network, Marie’s method was used for the analysis. 

In the output file we see that the computed utilization of the servers is 

Pserv = 0.9, which matches with the estimated value from actual measurement, 
and that the utilization of the ring is p7. = 0.07, which also matches with the 
measured value. The mean queue length of the ring is negligible and queue 
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fig. 13.14 PEPSY input file for the LAN example. 

length at the servers is QCCZ = 3.1, GCCs = 1.9, and GCC4 = 3.2. The mean 
response time ?? for the LAN is 0.59 sec. 

Now we can use this model for some experiments. For example, we can 
change the number of active computers K. As we can then see in Table 13.14, 
the server nodes are the bottleneck and the number of active computers should 
not exceed 250 because the queue lengths become very large. The mean 
response time ‘T is not influenced much by the number of active computers 
K in our example. Table 13.15 demonstrates the influence of changing the 
number of servers at server nodes. If the number of servers is reduced to 
m2 = 10, ms = 16, and m 4 = 9, then we have a bottleneck at the server 
nodes. The situation deteriorates if we further reduce the number of servers. 
The utilization of the ring decreases when the number of servers decreases, 
whereas the utilization of the server nodes increases. 
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Fig. 13.15 PEPSY output file for the queueing network model of the communication 
system (cc; = computing center%, b, = building,). 

These two experiments show that it is easy to study the influence of the 
variation in the parameters or the structure of the LAN once we have con- 
structed and parameterized the queueing network model. We can use PEPSY, 
or any other queueing network package such as QNAP2 [VePo85] or RESQ 
[SaMa85], for analysis. To obtain the mean response time for a computer, its 
service time has to be subtracted from mean system response time T = 0.585 
and we obtain for the computers in building 5, for example, the mean response 
time 0.54 sec. 

Problem 13.6 Verify the results of the communication system model just 
described using another queueing network package such as RESQ or QNAP2. 
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Table 13.14 Pcrformancc measures for the communication system for different num- 
bers of active computers K 

K 100 130 150 170 180 200 300 

P2 0.55 0.71 0.81 0.90 0.93 0.97 0.99 
P3 0.55 0.71 0.81 0.89 0.92 0.97 0.99 
P4 0.55 0.71 0.81 0.90 0.92 0.97 0.99 

g2 0.05 0.6 1.4 3.1 4.8 7.9 50 
93 0.02 0.3 0.8 1.9 2.9 8.3 30 
Q4 0.11 0.6 1.4 3.2 4.8 9.3 43 

T 0.56 0.56 0.57 0.59 0.60 0.64 0.94 
Pring 0.043 0.055 0.063 0.070 0.072 0.075 0.077 

Notes: m2 = 14, mg = 23, rnq = 13. 

Table 13.15 Performance measures for the communication system for different number 
of servers m2, m3, and m4 of section 1, section 2, and section 3, respectively 

m2 7 10 14 16 18 28 
m:3 12 16 23 18 26 46 
m4 7 9 13 16 17 26 

P2 0.999 0.96 0.90 0.69 0.73 0.47 
P3 0.95 0.98 0.89 0.998 0.88 0.47 
P4 0.92 0.98 0.90 0.64 0.71 0.47 

G2 63 10 3.1 0.4 0.5 0 
9.6 13 1.9 28 0.7 0 
7.0 23 3.2 0.2 0.5 0 

T 1.05 0.77 0.59 0.67 0.56 0.56 
Pring 0.039 0.053 0.070 0.061 0.072 0.073 

Note: K = 170. 

13.1.4 UNIX Kernel 

We now develop a performance model of the UNIX operating system [GrBo96]. 
A job in the considered UNIX system is in the user context when it executes 
user code, in the kern context when it executes code of the operating system 
kernel, or in the driw context when it executes driver code to set up or perform 
an I/O operation. In Fig. 13.16 the life-cycle of a UNIX job is shown. 

The job always starts in the kern context from where it switches to the 
user context with probability p,,,, or to the driv context with probability 
pi,. After a mean service time s,,,, , the job returns from the user context to 
the kern context. From the driw context, where the job remains Sdrive time 
units, the job returns to the kern context with probability Pdrivdone or starts 
a I/O operation with probability 1 -Pdrivdone. After finishing the I/O, the job 

returns to the context driu and again remains there (with mean time Sdriv) 
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fig. 13.16 Model of a UNIX job. 

Table 13.16 Routing probabilities of the monoprocessor model 

(14 0 Pdrivdone 0 1 - Pdrivdone 0 0 
w> Pi0 Pdone Puser 0 0 0 

1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

(a31 0 0 0 0 0 0 

and returns to the kern context with probability p&-ivdone. A job can only 
leave the system when it is in the kern context (with probability P&ne). The 
mean service time in the kern context is S&n. The I/O operation is carried 
out on an I/O device, whereas the remaining three activities are serviced by 
the CPU. 

13.1.4.1 Model of the UN/X Kernel The UN IX kernel just described can 
be modeled by a closed non-product-form queueing network with two nodes 
(CPU, I/O) and three job classes, priorities, and class-switching (see Fig. 13.17). 

user 

driv 1 

IO 

+O--. 

Fig. 13.17 The monoprocessor model. 

Since we have only one processor, we call this the monoprocessor model. 
The three job classes correspond to the user, kern, and driv context. To 
obtain a closed network, we assume that when a job leaves the system a new 
job immediately arrives at the kern queue. 
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A state in the routing DTMC of this model is described as a pair (node 
number, class number) with: 

node number 

node number 

1: CPU, 

240, 

class number 1 : h-iv, 

class number 2 : kern, 

class number 3 : user. 

The routing probabilities are shown in Table 13.16. In the following we 
summarize the assumptions we make: 

l The network is closed and there are K = 10 jobs in the system. 

l The service times are exponentially distributed. 

l The system has three job classes user, kern, driv with the priority order 
driv > kern > user. 

l Class switching is allowed. 

l Jobs in the context user can always be preempted 
jobs. Other preemptions are not possible. 

by driv and kern 

l The time unit used in this section is msec. 

l The following parameter values are used: 

pi0 = 0.05, Suser = varied from 0.25 to 20.0, 
Pd - O.OIL/O.OO5, one - Skern = 1.0, 
Pdrivdone = 0.4, Sdriv = O-5. 

l The I/O system consists of several devices that are assumed to form 
a composite node (see Section 8.4) with load-dependent service times 
(which were measured from the real system) : 

sio(l) = 28.00, sio(6) = 12.444, 
sio(2) = 18.667, Sio(7) = 12.000, 
Sio(3) = 15.555, sio(8) = 11.667, 
Sio(4) = 14.000, Sio(9) = 11.407, 
sio(5) = 13.067, Sio(l0) = 11.200. 

The parameters Suser, Skern, and S&iv are the mean service times of class i 
(i = 1,2,3) at the CPU (node l), and sio( k) is the mean load-dependent 
service time of class 1 jobs at the I/O devices (node 2). At the CPU (node 1) 
we have a mixture of preemptive and non-preemptive service strategy, while 
at the I/O devices (Node 2) we have only one job class with the FCFS service 
discipline. The following concepts are used to solve this model: 
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Fig. 13.18 The transformed monoprocessor model. 

l Chain concept (see Section 7.3.6) 

l Extended shadow technique with mixed priority strategy and class switch- 
ing (see Section 10.3.2.2). 

Since we have three job classes, we split the CPU into three CPUs, one for 
each job class (see Fig. 13.18). Approximate iterative solution of the resulting 
model can be carried out by PEPSY or SHARPE. 

0 CPU 

Fig. 13.19 The master slave model. 

13.1.4.1.1 The Master Slave Mode/ For this model, shown in Fig. 13.19, we 
have the same basic assumptions as for the monoprocessor model but now we 
also have two APUs. An APU is an additional processor (associate processing 
unit) that works with the main CPU. It is assumed that only jobs in the user 
context can be processed at the APU. Since this is the only job class that can 
be processed at the APU, no preemption can take place there. If the APU 
as well as the CPU are free and there are jobs in the user queue, then the 
processor (CPU, APU) on which the job is served is decided randomly. If we 
apply the shadow transformation to the original model, we get the transformed 
master slave model, shown in Fig. 13.20. 
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I APU 

0 (I user 6 

& 
0 

CPUuser 

CPUkern 

CPUdriv 

Fig. 13.20 The transformed master slave model. 

Fig. 13.21 The associated processor model. 

13.1.4.1.2 The Associated Processor Model The assumptions for the associ- 
ated processor model, shown in Fig. 13.21, are the same as for the master slave 
model but now jobs in the kern context can also be processed on the APU. 
Since jobs in kern context have higher priority than jobs in user context, 
preemption can also take place at the APU. The model needs to be trans- 
formed so that it can be solved approximately using the shadow technique in 
combination with the MVA. The transformed associated processor model is 
shown in Fig. 13.22. 

13.1.4.2 Analysis We now solve the three non-product-form network models 
using approximate techniques and compare the results to the ones obtained 
from the (exact) numerical solution of the underlying CTMC. We show the 
computation of the performance measures for the monoprocessor model step 
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0 CPUuser 

CPUkern 

CPU&-iv 

Fig. 13.22 The transformed associated processor model 

by step. The procedure is analogous for the other two models and therefore 
only the results are given. 

13.1.4.2.1 The Monoprocessor Model The model, given in Fig. 13.17, con- 
tains three job classes and two nodes: 

class 1 : &iv, 
class 2 : kern, 
class 3 : user, 

node 1 : CPU, 
node 2 : I/O. 

The priority order of the job classes is driu > kern > user. Jobs in the context 
user can always be preempted by driw and kern jobs. Other preemptions are 
not possible. The chosen numerical parameter values are: 

P11,12 = Pdrivdone = 0.4, 

P12,ll = Pi0 = 0.05, 

P12,13 = Puscr - - 0.94, 

P21,ll = 1.0, 

Sll = S&-iv = 0.5, 

5’12 = Skerp = 1.0, 

s13 = Sllscr = 1.5, 

~21 = sio = load dep. 

Pll,21 = 1 - Pdrivdone = 0.6, 

P12,12 = Pdone = 0.01, 

P13,12 = 1.0, 

E = 0.001, 

N = 5 jobs, 
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Now the analysis of the monoprocessor model can be done in the following 
nine steps: 

Compute the visit ratios ei, using Eq. (7.15): 

ell = edriv = 12.5, e12 = ekern = 100, 

e13 = euscr = 94, e21 = e;, = 7.5. 

Fig. 13.23 The routing DTMC for the monoprocessor model. 

Determine the chains in the network. The DTMC state diagram 
for the routing matrix in the monoprocessor model is given in Fig. 13.23. As 
we can see, every state can be reached from every other state, which means 
that we have only one chain in the system. 

Transform the network into the shadow network (see Fig. 13.18). 
The corresponding parameter values for the transformed model are: 

4511 = 0.5, s22 = 1.0, s33 = 1.0, sA1 = load dep. 

ell = 12.5, e22 = 100, e33 = 94, e41 = 7.5. 

Compute the visit ratios ezq per chain and recall that we have only 
one chain: 

Then we get: 

ell 
eTl = - = 1, 

ell 

e33 

e22 

eG1 = z = 
8, 

ezl = G = 7.52, 
e41 

eil = G = 0.6. 

Compute the scale factors air, using the equation: 
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and get: 

ell 
a11 = 

e31 1 
ell + el2 + e13 

= 1.0, Q31 = 
e31 + e32 + e33 

0, 

el2 
a12 = 

e32 = 
ell + el2 + ~13 

0, Cl!32 = = 
e31 + e32 + e33 

0, 

el3 
Q13 = 0, 

e33 XZ 
ell + el2 + e13 

a33 = 
e31 + e32 + e33 

= 1.0, 

e21 
a21 = 

e41 = 
e21 + e22 + e23 

0, Q41 = 
e41 + e42 + e43 

= 1.0, 

e22 
a22 = = 1.0, 

e42 
a42 = = 

e21 + e22 + e23 e41 + e42 + e43 
0, 

e23 
a23 = 

e43 = 
e21 + e22 + e23 

0, a43 = = 0. 
e41 + e42 + e43 

1-1 Compute th e mean service times for the chain: 

1 
srq zz - = Si?” ’ air, 

t%q 
c 

rE7rp 

ST1 = 0.5, sll = 1.0, s& = 1.5, s& = load dep. 

m] Start the shadow iterations: 

Iteration 1: 

Iteration 2: 

Iteration 3: 

pi1 = 0.037, p;1 = 0.594, 

p& = 0.838, pi1 = 0.659, 

x;, = 0.075, x;, = 0.594, 

x;, = 0.558, xl;, = 0.045, 

pT1 = 0.016, 

p& = 0.994, 

XT1 = 0.033, 

A;, = 0.245, 

p& = 0.27, 

pi1 = 0.289, 

A;, = 0.26, 

xi, = 0.02, 

pi1 = 0.030, 

pG1 = 0.935, 

XT1 = 0.033, 

Xi1 = 0.245, 

,o& = 0.481, 

pi1 = 0.525, 

x;, = 0.473, 

xi, = 0.02, 

si;‘” = 0.5, 

Ss;;‘” = 1.03842, 

sS$;‘* = 4.06504, 

S41 -(‘)* = load dep. 

sg* = 0.5, 

-(2)* 
S21 = 1.01626, 

SE’* = 2.10084, 

S41 -(‘)* = load dep. 

siy* = 0.5, 

g* = 1.03092, 

S31 -(3)* = 3.16373, 

S41 -(3)* = load dep. 
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Iteration 15: Finally, after 
the following results. 

15 iterations, the solution converges and we have 

pi1 = 0.025, & = 0.402, Sll ,.(15)* - - 0.5, 

/I& = 0.969, pi1 = 0.435, @* = 1.0256, 

X;cl = 0.049, x;, = 0.392, S31 -(15)* = 2.61780, 

A;, = 0.368, xl;1 = 0.029, -(15)* 
S41 = load dep. 

Retransform the chain values into class values: 

x11 = allA;, = 0.049, 

x22 = cQ&, = 0.392, 

X33 = CX~~X;, = 0.368, 

x41 = a4& = 0.029. 

If we rewrite the results of the shadow network in terms of the original network, 
we get the following final results: 

~~;ppro”) = 0.049, x~;pp’“) = 0.392, 
J@prox) = 0.368, xFprox) = 0.029. 

The overall throughput of the network is then given by: 

x(wp rox) = 1000 ’ pdone * ~$prox’ = 3.92. 

Verify the results: To verify the results, we construct and solve the 
underlying CTMC using MOSES. The exact overall throughput is given by: 

X(exact) = 3.98. 

The difference between the exact and the approximate throughput is small. 

The other two models were also analyzed using the extended shadow tech- 
nique with class switching in a similar manner. 

The overall system throughput of the UNIX models is plotted as a function 
of the user service time in Fig. 13.24. There is nearly no difference between 
the approximate values and the exact values obtained from the numerical 
solution of the CTMC for the chosen parameter set. As expected, the associ- 
ated processor model has the highest system throughput. In a more detailed 
study it was found that for the master slave model the throughput cannot 
be increased any more by adding additional APUs because the CPU is the 
bottleneck. For systems that spend a lot of time doing system jobs (UNIX is 
said to spend approximately 50% of its time doing system work) it is worth 
having a parallel system kernel. For more I/O-intensive jobs, the number of 
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Fig. 13.24 Throughput for the different models covered in Section 13.1.4. 

peripheral devices must also be increased, otherwise the processors have to 
wait too long for I/O jobs to be completed. In this case it is not worth having a 
multiprocessor system. Another very important result from this study is that 
for s uSer > 3 msec, the master slave and associated processor model behave 
nearly the same and only for s,,,, < 3 msec does the associated processor 
model gives better results than the master slave model.’ However, it does not 
seem to matter as to which of the two (an associated processor configuration 
or a master slave one) configurations is used. On the other hand, if the system 
is used in a real-time environment where response times are required to be 
extremely short, the associated processor model delivers better performance 
than the master slave configuration and it is worthwhile to have a completely 
parallel kernel. 

The computation time to solve the model was approximately 45 minutes 
if the CTMC method is used. Using the shadow technique, the results were 
generated within seconds for the entire parameter set. By contrast, when this 
non-product-form network was solved using DES, it took nearly 120 hours of 
computing time. The impact of priorities is shown for the master slave model 
in Table 13.17. Here pi, is varied while p&ne is constant. On the right-hand 
side of the table the throughput for the network without priorities (nonpre), 
the original values with priorities (orig = obtained from numerical solution of 
the CTMC), and approximate values (approx = obtained using the shadow 

‘This result means that if the system will be used for very time consuming jobs, it is 
worthwhile to have a parallel kernel. 
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approximation) are given. As can be seen in the table, for some parameter 
values the impact of priorities cannot be neglected. 

Tab/e 13.17 Impact of the priorities @done = 0.01) 

Suer Pi0 Throughput 

Nonpre Approx Orig 

0.50 0.9 0.6593 0.6594 0.6593 
0.50 0.01 9.0049 9.8765 9.8765 
0.50 0.001 9.0897 9.9875 9.9875 
1.00 0.9 0.6593 0.6594 0.6593 
1.00 0.01 8.2745 9.8736 9.8716 
1.00 0.001 8.3398 9.9859 9.9832 
1.50 0.9 0.6593 0.6594 0.6592 
1.50 0.01 7.6517 9.8194 9.7666 
1.50 0.001 7.7027 9.9395 9.8983 
2.00 0.9 0.6593 0.6594 0.6592 
2.00 0.01 7.1078 9.5178 9.4700 
2.00 0.001 7.1489 9.6326 9.4000 
2.50 0.9 0.6592 0.6593 0.6592 
2.50 0.01 6.6170 8.8123 8.6144 
2.50 0.001 6.6485 8.8802 8.5100 

13.1.5 Flexible Production Systems 

Queueing network models combined with numerical solution methods are also 
a very powerful paradigm for the performance evaluation of production sys- 
tems. In this section we demonstrate how to model and analyze such systems 
using open and closed queueing networks. 

13.1.5.1 An Open Network Model Consider a simple production system that 
can be modeled as an open queueing network. The system contains the fol- 
lowing stations (Fig. 13.25): 

l A load station where the workpieces are mounted on to the pallet (LO). 

l Two identical lathes (LA). 

l Three identical milling machines (M). 

l A transfer system (T) that does the transfer between the stations and 
consists of two automatically controlled vehicles. 

l A station to unload the pallet (U), which removes the workpieces from 
the production system. 

The identical milling machines and lathes are modeled by multiple server 
nodes. With these assumptions we obtain the queueing network model shown 
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Fig. 13.25 Layout of a simple production system. 

Source 

Fig. 13.26 Open network model of the production system shown in Fig. 13.25. 

in Fig. 13.26. The production system produces different products and there- 
fore the machines are used in several different ways. For example, 60% of 
the workpieces that leave the milling machine are passed to the station that 
unloads the pallet, the rest are transferred to the lathes. Table 13.18 contains 
the probabilities qij, i = LO, M, LA, j = M, LA, U that the transfer system 
T moves workpieces from a station i to station j. 

To obtain from the transfer probabilities qij the probabilities of routing 
from the transfer system T to the lathes PT,LA, milling machines PT,M, or the 
unload station pT,U, we have to weight the individual probabilities qij with 
the individual arrival rates A;, i = LO, M, LA. The arrival rate XT to the 
transfer system can be easily obtained from Fig. 13.26: 

AT = ALO + h4 + ALA, (13.8) 
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Table 13.18 Routing table 
for the transfer system of the 
production system 

\ i ' MLA U 

LO 0.5 0.5 0 
M 0 0.4 0.6 
LA 0.7 0 0.3 

and it follows that: 

ALO ALA 
PT,M = - * XT qLO,M $- x ’ qLA,M, 

T 

ALO AM 
PT,LA = Xr 'qLO,LA + x'qM,LA, 

T 
(13.9) 

ALA AM 
PT,U = - * qLA,U i- - * qMJJ. 

XT XT 

Then, using the values from Table 13.18: 

PT,M = & (ALO * 0.5 -k ALA * 0.7)) 

PT,LA = $(A LO ’ 0.5 + AM - 0.4) , 

PTJJ = & (ALA * 0.3 + &f * 0.6) , 

we finally obtain the matrix of routing probabilities pij for the queueing net- 
work model (see Fig. 13.26 and Table 13.19). In order to apply Jackson’s 

Table 13.19 Routing matrix for the queueing 
model of the production system 

j 
\ i outside LO LA M UT 

outside 0 1 0 000 
LO 0 0 0 001 
LA 0 0 0 001 
M 0 0 0 001 
M 0 0 0 001 
u 1 0 0 000 
T 0 0 ?‘LA ?‘M PU 0 

theorem for open product-form networks (see Section 7.3.4), we make the 
following assumptions: 
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a The service times at the stations and the interarrival times at the load 
station LO are exponentially distributed. 

l The service discipline at each station is FCFS. 

l The system is stable. 

Table 13.20 Arrival rates Xoi, service rates pi (in 
l/h), and number of servers m, for the model of 
Fig. 13.26 

i XOi Pi mi 

LO 15 20 1 
LA 0 10 2 
M 0 7 3 
u 0 20 1 
T 0 24 2 

The service rates pi, the arrival rates Xei, and number of servers rni are 
listed in Table 13.20. Now we use Eq. (7.1) and the values of the routing 
probabilities from Table 13.19 to determine the arrival rates Xi: 

Ai = XOi + C Xj * pjiy i, j = LO, LA, ikl, U, T, (13.10) 

and obtain: 

XL0 = XOLO = 15, 

ALA = XT - PT,LA = XLO - 0.5 + AM - 0.4 = 14.58, 

AM = XT ‘PT,M = ALO * 0.5 •k ALA - 0.7 = 17.71, 

Au = XT * PTJJ = ALO = 15, 

XT = ALO + ALA + AM = 47.29. 

Performance measures, which were calculated using Jackson’s theorem, are 
listed in Table 13.21. 

We see that the transfer system T is heavily loaded and has a very long 
queue, and that its utilization is nearly 100%. If we use an additional vehicle, 
the utilization and the queue length are reduced substantially to 

PT = 0.66, QT = 0.82, WT = 0.02. 

The work in progress (WIP, the mean number of workpieces in the system) 
and the mean response time ?II for both cases are listed in Table 13.22. To 
improve the performance we could increase the number of milling machines 
because they have a very high utilization, PM = 0.84, or the number of lathes. 
The results for these changes are shown in Table 13.23. A further increase in 
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Table 13.21 Performance measures for the produc- 
tion system 

LO 2.25 0.15 0.75 
LA 1.66 0.11 0.73 
A4 3.86 0.22 0.84 
u 2.25 0.15 0.75 
T 65.02 1.38 0.985 

Tab/e 13.22 Work in progress 
(WIP) and mean response time T 
for 2 and 3 vehicles in the transfer 
sys km 

mT WIP T- 

2 82.5 5.5 
3 18.3 1.2 

the number of the vehicles in the transfer system has a negligible influence on 
the performance. Maximum improvement can be achieved by increasing the 
number of milling machines, because that station is the bottleneck (p; = 0.84, 
see Table 13.21). Although we have used a very simple model to approximate 
the behavior of the production system, it does provide insight into the system 
behavior and enables us to identify bottlenecks. 

13.1.5.2 A Closed Network Model Now we consider the example of a pro- 
duction system that can be modeled as a closed multiclass queueing network 
[SuHi84]. The production system consists of (see Fig. 13.27): 

a Two load/unload stations (LU). 

l Two lathes with identical tools (LA). 

Tab/e 13.23 WIP and T for different numbers of vehicles, milling 
machines, and lathes 

mT mLA mM WIP T 

3 2 3 18.3 1.22 
4 2 3 17.6 1.18 
3 3 3 16.9 1.12 
3 2 4 15.0 1.00 
3 3 4 13.6 0.90 
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l Three machine centers with different tools (M). 

l A central transfer system with eight transporters (T). 

Fig. 13.27 Layout of the production system for a closed multiclass network model. 

In the production system, workpieces for three different product classes are 
manufactured. A fixed number Ki of pallets for each class circulates through 
the system. In the first class the workpieces are mounted on the pallets in the 
LU station then they are moved by the transfer system either to the lathes LA 
or to the third Ms. Finally, they are shipped back to the LU station where 
they are unmounted. For workpieces of the other two classes, the procedure 
is similar, but they use machine MJ and MS, respectively. The load/unload 
station LU and the lathes LA can be modeled as a multiple server node and 
the machines Ma, Md, and n/r, as single server nodes. Since there are more 
transporters in the transfer system T than circulating pallets, it is modeled 
by an IS node. The parameters for the model are summarized in Table 13.24. 

Table 13.24 Parameter values for the stations 

Station, mz l/PLz el, e2% 

LU 2 7.5 2 2 2 
LA 2 28 0.5 0 0 
M3 1 12 0.5 0 0 
M4 1 30 0 1 0 
M5 1 15 0 0 1 
T 8 2.5 2 2 2 

The numbers of pallets Ki, which are the numbers of workpieces in class i, 
are given by: 

K1 =4, K2 = 1, K3 =2. 

With these parameters we obtain the queueing network models for these three 
classes, given in Fig. 13.28. Furthermore we assume that each network fulfills 
the product-form assumptions. Now we have all the necessary input param- 
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Class 1: 

Class 2: 

Class 3: 

=rl’lq-@ 

’ 0.5 
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Fig. 13.28 Closed queueing model of the production system shown in Fig. 13.27. 

eters and can use any solution method for closed product-form queueing net- 
works such as MVA, convolution, or SCAT to obtain performance measures. 
In Table 13.25, the throughput and the mean system response time for the dif- 
ferent classes are shown. The total throughput is 0.122 workpieces/min or 7.32 

Table 13.25 Performance measures for workpieces 

Class Throughput Mean Response Time 

1 0.069 58.35 
2 0.016 63.88 
3 0.037 53.77 

workpieces/h. For other interesting performance measures of the machines, 
see Table 13.26. 

Using the queueing network model, the system can be optimized. In 
Table 13.26 we can see that the load/unload stations are the bottleneck and, 
therefore, we increase the number of these stations to three and four, respec- 
tively. The results for the modified system models are given in Table 13.27, 
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Tab/e 13.26 Performance measures for the stations 

Station, m, pi 
Mean number Mean Queue 

in Service Length oi 

LU 2 0.91 1.82 1.68 
LA 2 0.48 0.96 0.12 
M3 1 0.41 0.41 0.19 
M4 1 0.47 0.47 0.00 
M5 1 0.56 0.56 0.16 
T 8 0.08 0.61 0.00 

Tab/e 13.27 Utilizations of the stations for different number of servers at the LU 
stations and routing probabilities of Table 13.28 

1 2 3 4 4a 4b 4c 4d 

LU 0.997 0.91 0.73 0.58 0.55 0.56 0.56 0.77 
LA 0.27 0.48 0.58 0.61 0.60 0.60 0.60 0.82 
M3 0.23 0.41 0.49 0.52 0.56 0.54 0.56 0.77 
M4 0.26 0.47 0.57 0.59 0.68 0.64 0.59 0.82 
M5 0.30 0.56 0.68 0.72 0.52 0.62 0.62 0.85 
T 0.04 0.08 0.092 0.096 0.09 0.09 0.08 0.129 

Pmax - Pmin 0.77 0.50 0.240 0.200 0.16 0.10 0.06 0.08 

columns 2, 3 and 4. In column 1, the number of load/unload stations is 
reduced to one. In this case the system works, but with a severe bottleneck 
at LU, the mean response time is greater than 100 units, and the mean queue 
length at LU is 3.23. For rnLu = 3, the utilization of the LU station is still 

Tab/e 13.28 Routing probabilities 

I’23 I’24 P34 P35 

E 0.2 0.1 0.8 0.9 0.2 0.1 0.8 0.9 
ii 0.2 0.8 8, K2 2, 0.1 K3 0.9 Kl = = = 4 

,OLU = 0.73, and th e system is still unbalanced, which means that the utiliza- 
tion of the different stations differ considerably, as seen in the last column of 
Table 13.27. For rnLu = 4, the system is more balanced, but now PM5 = 0.72 
is too high. To get a more balanced system, a fraction of the workpieces of 
class 2 are serviced at station A& (see Fig. 13.29). Now the system is better 
balanced especially in case 4c, but the utilizations are relatively low (pi E 0.6). 



638 APPLICATIONS 

outside 

Class 3: 

$lgy@&g 

outside . 

Fig. 13.29 Queueing network model of the production system shown in Fig. 13.28, 
with different routing for class 2 and 3. 

Therefore, we double the number of pallets in the system (K1 = 8, E(2 = 2, 
and Ka = 4) and obtain the values of the utilization in column 4d. The sys- 
tem is now balanced at a higher level of utilization (pi z 0.8). Increasing the 
number of LU servers leads to a higher throughput and a lower mean response 
time (see Table 13.29). If we increase the number of pallets to Kr = 8, K2 = 2 
and KS = 4, the mean response time increases along with the throughput (see 
Table 13.30). 

Table 13.29 Performance measures with four LU servers 

Class Throughput Mean Response Time 

1 0.086 46.29 
2 0.020 50.61 
3 0.048 41.97 

Problem 13.7 Verify the results of the closed queueing network model 
of the production system by hand computation and by using the SHARPE 
software package. 

13.2 CASE STUDIES OF MARKOV CHAINS 

In this section we show the use of CTMC models either constructed directly 
or via a higher-level specification. 
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Table 13.30 Performance measures with four LU servers 
and a higher number of pallets 

Class Throughput Mean Response Time 

1 0.117 68.21 
2 0.026 76.56 
3 0.063 63.54 

Notes: K1 = 8, K:! = 2, KS = 4. 

13.2.1 Wafer Production System 

In this section we formulate and solve a CTMC model of the photolithographic 
process of a wafer production system. The system is specified using a queue- 
ing network formalism, although for this product-form network we use the 
package MOSEL to automatically generate and solve the underlying CTMC. 
In [Rand861 the photolithographic process is divided into the following five 
steps: 

1. Clean the wafer. 

2. Put on photoresist. 

3. Bake wafer and remove solvent by evaporation. 

4. Align mask, and illuminate and develop the wafer. 

5. Etch the wafer and remove photoresist. 

The photolithographic processing is carried out by three machine types: 

l The spinning machine does the first three steps (machine type 1). 

l The masking machine does step four (machine type 2). 

l The etching machine does step five (machine type 3). 

From the first machine type, three machines are available. From the second 
machine type, we have machines from different producers. These machines 
are called masking 1 and masking 2. The third machine type does the steps 
of etching and removing the photoresist. The job of removing the photoresist 
is done by machine five in case the wafer has not been produced correctly. 
Since three layers of photoresist have to be put on, the wafer needs to be 
processed again after a successful masking and spinning. In Fig. 13.30, the 
open queueing network model of the wafer production system is shown and 
in Table 13.31 its parameter values are given. 
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Etching, Remove 

Good Wafer 

Remove Photoresist 

Fig. 13.30 Open network model of the wafer production system discussed in Sec- 
tion 13.2.1. 

In the representation of the queueing network model we use node 6 as a 
dummy node with zero service time. We use node 6 in order to easily deter- 
mine the routing probabilities, but it is, of course, also possible to determine 
the routing probabilities without the introduction of node 6. Since it is an 
open network, we limit the number of wafers in the system to K so that the 
underlying CTMC is not infinite. 

The MOSEL specification of the network is shown in Fig. 13.31; note the 
use of the loop construct to reduce the size of the specification. WIP is the 
work in progress, i.e., the mean number of wafers in the system. This value 
needs to be as small as possible for good system performance. 

Results of the analysis are shown in Fig. 13.32. Here we plot the mean 
response time as a function of the number of machines at station 1. There 
are several things that we can learn from the plot: 

l Having more than five machines at station 1 does not reduce the mean 
response time very much. Therefore it is not cost effective to have more 
than five machines at station 1. 

l Increasing the number of machines at stations 2 and 3 from two to 
three reduces the mean response time considerably, while adding more 
machines is not any more cost effective. 

l We get a large decrease in the mean response time if we increase the 
number of machines at station 1 from three to four and if we increase 
the number of machines at stations 2 and 3 from two to three. 
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Tab/e 13.31 Parameter values for the wafer production 
system discussed in Section 13.2.1 

ml =3...10 

m2 = 2...4 
mg = 2...4 
mq = 2 
m5 =1 

p12 = 0.5 
p13 = 0.5 
p24 = 0.9 
p25 = 0.1 
p34 = 0.9 
p35 = 0.1 
pqg = 0.1 
p4t3 = 0.9 
PGO = 213 
PGl = l/3 

It is possible to extend this model to allow for machine failures and repairs. 

Problem 13.8 Formulate the wafer production problem as a stochastic 
reward net and solve it using SPN P. 

13.2.2 Polling Systems 

Polling systems are very important in modeling computer and communication 
systems. The generic polling model is a system of multiple queues visited by a 
single server in cyclic order (see Fig. 13.33). For an exposition and performance 
models of polling systems, we refer the reader to [TakaSO]. In this subsection 
we wish to illustrate the use of SPNs in automatically generating and solving 
the underlying CTMC for polling system performance models. Our treatment 
is based on the paper by Ibe and Trivedi [IbT’rSO]. 

In Fig. 13.34, the GSPN for a three-station finite population single service 
polling system is shown. The potential customers that can arrive at station j 
are indicated by tokens in place Pjr, j = 1,2,3. This place contains Mj tokens 
where iVj denotes the population size of customers that potentially arrive 
at the station. The firing rate of the transitions tlj is marking-dependent, 
meaning that when the number of tokens in place Pjr is Ic, then the firing 
rate of tlj is given by Xjlc, 0 < Ic < LV,?~. A marking-dependent firing rate is 
represented by the # symbol and placed next to transition tlj. A token in 
place E’jp represents the condition that the server is polling station j; a token 
in place PUB represents the condition that a customer has arrived at station 
j, and Pjs represents the condition that the server has arrived at station j. 

The server commences polling station j + 1 after finishing service at station 
j or found no customer there when it arrived. Whenever the timed transition 
tlj fires, a customer arrives at station j. The server has finished polling station 
j when the timed transition t,j fires. Such a GSPN can be easily input to 

any of the SPN tools such as SHARPE or SPNP, whereby the underlying 
CTMC will be automatically generated and solved for steady-state or transient 
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Fig. 13.31 MOSEL specification of the wafer production system. 

behavior, and resulting performance measures calculated. We refer the reader 
to [STPSB] and [IbTrSO]. 

Other kinds of polling schemes have also been considered by [IbTrSO]. In 
the gated service polling system, only those customers are served by the server 
that arrive prior to the server’s arrival at station j. The SRN model of sta- 
tion 1 in a finite population gated service polling system is shown in Fig. 13.35. 
The difference between the GSPN model of the single service polling system 
is that now a variable multiplicity arc (indicated by the zigzag sign) is need- 
ed. Therefore, the new model is a stochastic reward net model that cannot be 
solved by pure GSPN solvers such as SHARPE or GreatSPN [STP96, ABC+95]. 
However, SPN P is capable of handling such models. For further details we 
refer the reader to [IbT!rSO] and [ChTr92]. 
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* Station 2 and 3 each have two machines 

p Station 2 and 3 each have three machiucs 

I)-----o Station 2 and 3 each have four machines 

Number of machines at Station 1 

Fig. 13.32 Results for different number of machines. 

The SRN (or GSPN) models can be solved using SPNP. The SPNP input file 
contains the specification of timed transitions and corresponding firing rates, 
immediate transitions, the input and output arc for each transition, and the 
initial number of tokens in each place. From this information SPNP generates 
the reachability graph, eliminates all vanishing markings, and constructs the 
underlying CTMC. In order to obtain the steady-state probability of each 
marking, a combination of SOR and the Gauss-Seidel method is used. It 
is possible to obtain the mean number of tokens in each place as well as 
more general reward-based measures. Furthermore, transient and sensitivity 
analysis can also be carried out. 

I 
3 
. . 1 . o- 

Fig. 13.33 A polling queue. 



644 APPLICATIONS 

I I 

L P2P 

Y-- 

Fig. 13.34 GSPN Model for the single service polling system. 
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Fig. 13.35 SRN Model of gated service polling system. 

Problem 13.9 Specify and solve the GSPN model of the single server 
polling system using SHARPE. Determine the size of the underlying CTMC 
as a function of the number of customers &,!I = iU2 = MS = M. Determine 
the steady-state and the transient performance measures. 

Problem 13.10 Specify and solve the SRN model of the gated service 
polling system using SPNP. Determine the steady-state and transient perfor- 
mance measures. 

Problem 13.11 Extend the polling model of Fig. 13.34 to an Erlang-3 
distributed polling time. Run the resulting model on both SHARPE and SPNP. 

13.2.3 Client Server Systems 

Consider a distributed computing system with one file server and N work- 
stations, interconnected by a LAN. Because the communication medium is 
shared by several workstations, the server and each workstation should have 
access to the network before it starts transmitting request/reply messages. It 
is assumed that a workstation does not start generating a new request until 
it has received the reply of its previous request. This assumption is based 
on the fact that in many situations future operations at a client workstation 
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depend on the outcome of the current operation (current service request). 
As long as a workstation’s request is outstanding, it can continue its local 
processing. Our model deals only with the aspect of a user’s processing that 
requires access to the server. Our exposition here is based on [ICT93]. 

In our system model, we assume that each time the server captures the 
access right to the network it transmits at most one reply message. The order 
of service at the server is FCFS. 

It is important to distinguish between the client server models here and 
the single buffer polling system presented in Section 13.2.2. The difference is 
that in a single buffer polling system the station does not wait for reply to its 
message. Thus in a polling system, as soon as a station transmits its message, 
it is ready to generate a new one after the reply to the last transmitted message 
has been received. The interdependencies of the access control of the network 
and workload between the client workstations and the server also make the 
analysis of client server systems different from the traditional analysis of plain 
LANs. We consider client server systems based on a token ring network. For 
another model with CSMA/CD, see [ICT93]. 

The first step of the analysis is to find an appropriate SRN model for the 
system. Since there might be a confusion between the word token in a Petri 
net or in a token ring network, we refer to token in a ring network as network 
token and to the token associated with the SRN as the PN token. We assume 
that the time until a client generates a request is exponentially distributed 
with mean l/X. The time for the network to move from one station to the 
next station (polling time) is also assumed to be exponentially distributed 
with mean l/y. The processing time of a request at a server is exponentially 
distributed with mean l/p, and the time required for the server to process 
a request is assumed to be exponentially distributed with mean l/p. The 
system consists of N clients and one server. We note that the assumption of 
exponential distribution can be realized by resorting to phase-type expansions. 

As can be seen in Fig. 13.36, we consider a tagged client and lump the 
remaining clients into one super-client. This superclient subsystem enables us 
to closely approximate (N - 1) multiples of the single client subsystem so that 
we reduce the number of states of the underlying CTMC. 

The part of the SRN model that deals with the tagged client is described in 
Fig. 13.37. The place PTI contains one PN token and represents the condition 
that the client is idle (in the sense the client does not generate a network-based 
request). The firing rate of the timed transition tt, is X. Thus, the firing of 
tt, represents the event that the client has generated a request. The place 
PTA represents the condition that the network token has arrived. Suppose 
that there is a PN token in PTS. Then if there is a PN token in PTA, the 
timed transition tt, whose mean time to fire is the mean request transmission 
time is enabled; otherwise the immediate transition sr fires. The place PSI 
represents the condition that the client’s request has arrived at the server, and 
the place PTW represents the condition that the client is waiting to receive a 
reply from the server. The place P sp represents the condition that the client 
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Server Tagged Client 

fig. 13.36 A possible configuration of network relative to the tagged client. 

has finished transmitting its request, if it is reached through tts, or the client 
has no request to transmit, if it is reached via si. The timed transition t,, 
represents the event that the network token is being passed to its neighbor, 
the server in this configuration. The place PSS represents the condition that 
the server has received the network token and can commence transmitting a 
reply, if one is ready. 

It should be noted that in this model, a network token is released from 
a station as soon as it finishes transmitting its packet. This operation of 
the token ring network is called the single-token operation and is used in 
IEEE 802.5 token ring networks [Ibe87]. Single-token operation requires a 
station that has completed its packet transmission to release a network token 
only after its packet header has returned to the station. In the case that 
the round-trip delay of the ring is lower than the transmission time, the two 
schemes become identical. 

Let us consider now the superclient subsystem. The corresponding SRN 
for this subsystem is shown in Fig. 13.38 and can be interpreted as follows: 
Place Par initially contains N - 1 PN tokens and represents the condition 
that no member of the superclient subsystem has generated a request. The 
number of tokens can generally be interpreted as the number of idle members 
of the subsystem, The firing rate of the timed transition t,, is marking- 
dependent so that if there are 1 PN tokens in place POT, the firing rate of 
t,, is given by 1 . X(0 5 1 2 N - 1). The places POW, POS, PTP, and POA 
play the same role respectively as PTW, PTS, Psp and PTA of Fig. 13.37. 
Similarly, the transitions ~2, ttp, and t,, correspond respectively to si, tsp, 
and tt, of Fig. 13.37. Furthermore, the two additional places Pc2 and Pc1 
are introduced and used to keep a count of the number of times the PN 
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Fig. 13.37 SRN for tagged client subsystem. 
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0 

Fig. 13.38 SRN for the superclient subsystem in token ring network. 
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token has gone through POS. As soon as each member of the superclient 
subsystem has been polled, a PN token is deposited in both places Pcl and 
Pc~. Note that P ~2 receives a PN token only after a walk time has been 
completed while Pcl receives the PN token immediately after a request, if 
one is transmitted, or prior to the commencement of the polling of the next 
member, if no transmission takes place. A regular arc of multiplicity N - 1 
from place Pc1 is input to transition s4 and an inhibitor arc of multiplicity 
N - 1 is input from Pc~ to the immediate transition ss. Transition ss is 
enabled if a PN token is in place Pc2 and fewer than N - 1 PN tokens are 
in place Pci. This represents the condition that the network token leaves the 
superclient subsystem if fewer than N - 1 clients have been polled. If the 
number of PN tokens in place Pc~ reaches N - 1, implying all members of the 
subsystem have been polled, then with a PN token in Pc~, s4 fires immediately 
and a PN token is deposited in PTS. In this situation the tagged client now 
has access to the network after all members of the superclient subsystem had 
their chance to transmit their requests. 

’ PTI 

0 . 

0 
POI 

N-l 

Kg. 13.39 SRN for the server subsystem. 

The SRN for the subsystem is shown in Fig. 13.39. The places Pop, PSS, 
and PSA serve the same purpose as Psp, PTS, and PTA in Fig. 13.37. A 
token in place PSI represents the condition that the server has received a 
request, while the place PTw (POW) represents the condition that a client 
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from the superclient subsystem (the tagged client) is waiting for a reply to its 
request. The firing rates of the timed transitions top, t,,, and t,, are given 
by y, p, and X respectively. The condition that the server has completed 
serving one request is represented by the place PSW and a determination is 
to be made regarding whose request was just serviced. In order to separate 
the requests from the superclient subsystem the server receives before that of 
the tagged client from those the server receives after that of the tagged client, 
the immediate transition s6 is used. To denote that the input arc from POW 
to .!96 has a variable multiplicity, the zigzag sign on that arc is used. 

Let us assume POW contains Ic PN tokens, 0 < Ic 5 N - 1, and PTW has no 
token. Then the immediate transition s6 is enabled and fires immediately by 
removing all Ic PN tokens from POW and deposits them in POH. The number 
of clients from the superclient subsystem whose requests were received by the 
server before that of the tagged client is therefore given by the marking of 
POH. The tagged client’s request cannot be replied to until requests from the 
superclient subsystem that arrived before it have been replied to, or stated 
differently. Due to the FIFO queue at the server, the immediate transition ss 
cannot fire as long as there is a PN token in POH. As soon as the immediate 
transition s7 fires, a PN token is deposited in POI, which means that a waiting 
member of the superclient subsystem becomes idle again. The complete SRN 
model for the system is shown in Fig. 13.40. 

Problem 13.12 Specify and run the client server SRN using the SPN P 
package. Compute the average response time as a function of the number of 
stations N. In each case, keep track of the number of states and the number 
of non-zero transitions in the underlying CTMC. 

Problem 13.13 Extend the previously described model to allow for an 
Erlang-2 distributed polling time. Solve the new SRN model using SPNP. 

13.2.4 ISDN Channel 

13.2.4.1 The Baseline Mode/ In this section we present a CTMC modeling 
a simplified version of an ISDN channel. Typically, heterogeneous data are 
transported across an ISDN channel. In particular, discrete and continuous 
media are served at the same time, although different qualities of service 
requirements are imposed by different types of media on the transport system. 
It is well known that voice data is very sensitive to delay and delay variation 
(jitter) effects. Therefore, guarantees must be given for a maximum end- 
to-end delay bound as far as voice data is concerned. On the other hand, 
continuous media streams such as voice can tolerate some fraction of data 
loss without suffering from perceivable quality degradation. Discrete data, in 
contrast, are very loss sensitive but require only weak constraints as far as 
delay is concerned. Trade-off analysis is therefore necessary to make effective 
use of limited available channel bandwidth. 



CASE STUDIES OF MARKOV CHAINS 651 

pTP 

Fig. 13.40 SRN for the client server system (N > 1). 
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In our simplified scenario, a single buffer scheme is assumed that is shared 
between a voice stream and discrete data units. For the sake of simplicity, 
the delay budget available for voice packets to be spent at the channel is 
assumed to be just enough for a voice data unit transmission. Any queueing 
delay would lead to a violation of the given delay guarantee. Therefore, voice 
packets arriving at a non-empty system are simply rejected and discarded. 
Rejecting voice data, on the other hand, is expected to have a positive impact 
on the loss rate of data packets due to sharing of limited buffer resources. Of 
course, the question arises to what extent the voice data loss must be tolerated 
under the given scenario. 

Fig. 13.41 CTMC modeling an ISDN channel with voice and discrete data. 

Table 13.32 Parameter val- 
ues for the ISDN channel in 
Fig. 13.41 

Parameter Value 

x1 1.0 
x2 2.0 
1-11 5.0 
cl2 10.0 
k 10 

For the time being, we assume Poisson arrivals for discrete data packets 
with parameter X2 and for voice data units with parameter X1. The trans- 
mission times of data packets are exponentially distributed with mean l/p2 

and for voice data with mean l/pi. Buffer capacity is limited to Ic = 10. The 
resulting CTMC is depicted in Fig. 13.41 and the parameters summarized in 
Table 13.32. States are represented by pairs (i, j) where i, 0 5 i < k denotes 
the number of discrete data packet!s in the channel and j, 0 5 j 5 1 indicates 
the presence of a voice data unit in the channel. 

Under these assumptions and the model shown in Fig. 13.41, some numer- 
ical computations are carried out using the SHARPE software package. First, 
transient and steady-state results for the rejection probability of data packets 
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are presented in Fig. 13.42 and for the rejection of voice data in Fig. 13.43. 
Comparing the results, it can be seen that the rejection probability of voice 
data very quickly approaches the steady-state value of a little more than 33%. 
Rejection probability of discrete data is much smaller, on the order of lo-“, 
and steady-state is also reached in coarser time scale. It was assumed that 
the system was initially empty. 

0 
t:::;;~::;;~;;::.:,;;;;I::.:,::,: 

0.5 1 1.5 2.5 
3 ! 5 Tirrlc 

Fig. 13.42 Rejection probability for data pack&s. 

The channel-idle probability of 66% is approached in a similar time scale as 
the rejection probability reaches its steady-state for voice data, as can be seen 
in Fig. 13.44. Often, a GSPN model specification and automated generation 
of the underlying CTMC is much more convenient and less error prone due to 
possible state space explosion. The GSPN in Fig. 13.45 is equivalent to the 
CTMC in Fig. 13.41 [STP96]. The GSPN was also solved using the SHARPE 
package. 

The results of Fig. 13.46 illustrate the qualitative and quantitative differ- 
ence in rejection probabilities of voice vs. discrete data. Note that rejection 
probabilities increase for voice data as channel capacity is increased. This 
effect is due to the reduced loss rate of discrete data data packets as a func- 
tion of increased buffer size. 

Figure 13.47 shows the impact that the arrivals of discrete data packets 
have on voice rejection probabilities as compared to rejection of discrete data 
packets themselves. Both steady-state and transient probabilities are present- 
ed. Note that voice data is much more sensitive to an increase in X2. 

23.2.4.2 Markov Modulated Poisson Processes Markov modulated Poisson 
processes (MMPP) are introduced to represent correlated arrival streams and 
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Fig. 13.43 Rejection probability for voice data units. 
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Fig. 13.44 Channel idle probability as a function of time. 
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T Arrival-Voice T Arrival-Data 

Data 

T Ser-Voice T Ser-Data 

Fig. 13.45 SPN representation of the CTMC in Fig. 13.41. 

e Data Packets 

Fig. 13.46 Rejection probabilities as a function of channel capacity k: voice vs. data. 

bursty traffic more precisely. An MMPP is a stochastic arrival process with 
an arrival rate governed by an m-state CTMC [FiMe93]. The arrival rate of 
an MMPP is assumed to be modulated according to an independent CTMC. 
The GSPN model of Fig. 13.45 is now modified so as to have two-state MMPP 
data arrivals as shown in Fig. 13.48 [STP96]. A token moves between the two 
places MMPPr and MMPP2. When transition Tarrival-datai is enabled and 
there are fewer than k packets transmitted across the channel, then discrete 
data is arriving with rate X21. Alternatively, the arrival rate is given by X22. 
If Xsr differs significantly from X22, bursty arrivals can be modeled this way. 
Note that the MMPP process is governed by the firing rates of T2r and Tr2, 
which are given by rates a and b, respectively. 
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Fig. 13.47 Rejection probabilities as a function of X2 and time: voice vs. 
data. 

x2 

discrete 

The results in Fig. 13.49 indicate that for small buffer sizes a Poisson traffic 
model assumption leads to more pessimistic rejection probability predictions 
than those based on MMPP assumptions. This effect is quickly reversed 
for discrete data if channel capacity is increased. For larger capacities there 
is hardly any difference in rejection probability for voice data, regardless of 
Poisson- or MMPP-type traffic model. In general, though, correlated or bursty 
traffic can make a significant difference in performance measures as opposed 
to merely Poisson-type traffic. But our modeling methods based on GSPN 
(and SRN), h’ h 11 w ic a ow us to compactly specify and automatically generate 

Table 13.33 Parameters 
to the MMPP-based ISDN 
model in Fig. 13.48 

Parameter Value 

Xl 1.0 
x21 9.615 
x22 0.09615 
I*1 5.0 
P2 10.0 
a 8.0 
b 2.0 
k 10 
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T21 

n 

I 
7’ Arrival-Voice \ I I 

- 
T Ser-Voice T Ser-Data 

Fig. 13.48 A GSPN including an MMPP modulating data packet arrival rates. 

t 

G------~--------~...---O Voice (M~pp) 

+ ________---------- ----+ Data (Poisson) 

.msm--sT _ ________--- ---+ Data (MMPP) 

6 + k 
10 

Fig. 13.49 Rejection probabilities as a function of channel capacity k: Poisson vs. 
MMPP. 



658 APPLICATIONS 

and solve large CTMCs and MRMs for steady-state and transient behavior, 
are capable of handling such non-Poisson traffic scenarios. 

13.2.5 ATM Network under Overload 

Consider a variant of the ATM network model studied in [WLTV96], consist- 
ing of three nodes, N 1, Nz, and N3. Two links, Ni N3 and Nz N3, have been 
established as shown in Fig. 13.50. Now suppose that the network connection 

Node 1 Node 3 

cell 
arrivals 

Node 2 

Fig. 13.50 The [WLTV96] 1 c ueueing model before rerouting. 

between Ni and Ns is down. Before the global routing table is updated, the 
cells destined to node N3 arriving at node Ni will be rerouted to node Nz 
(see Fig. 13.51). R e d irected cells from node Nr may be rejected and thus lost 
if the input queue of node N2 is full. Right after the rerouting starts, the cell 
loss probability of Ni will overshoot because node N2 is overloaded. 

In the original paper, the burstiness of the ATM traffic is modeled by a 
two-state MMPP arrival process. The cell transmission time is modeled by 
an Erlang-5 distribution. Here we approximate the cell arrival process by a 
Poisson process and the cell service time by an exponential distribution. We 
can easily allow MMPP arrivals and Erlangian service time, but the underlying 
CTMC will become larger. First, we analyze the simple case before the link 

Node 1 

arrivals I 

rerouting 
Node 2 

p-$uM 
cell 

arrivals I raster 2 

X 

Node 3 

Fig. 13.51 The [WLTV96] queucing model after rerouting. 
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NiN3 breaks down. Here we assume that node Ni and node N2 have the 
same structure. That is, their buffer sizes and the service rates are the same. 
Furthermore, we assume that the job arrival rates are the same for the two 
nodes and that the buffer size at node N3 is large enough to handle all the 
jobs coming from node Ni and node Nz. Thus node Ni and node Nz can be 
modeled by a finite-buffer M/M/l/N queue, where N is the buffer size. 

Fig. 13.52 The CTMC for the AI/AI/l/3 queue. 

The CTMC and the GSPN models for the node are shown in Fig. 13.52 and 
Fig. 13.53 respectively. We use SHARPE to find the steady-state probabilities 
for each state as well as the steady-state cell loss probability before the link 
NiNa breaks down. Figure 13.54 shows the SHARPE input file of the CTMC 
and the GSPN models of the M/M/1/3 q ueue together with their outputs. 
Both models give the same results for the cell loss probability. 

AL=-o-i 
arr N router 

Fig. 13.53 The GSPN model for the M/M/l/N queue. 

When the link NiN3 breaks down, the state transition diagram of the 
subnet can be given as shown in Fig. 13.55. Each state is identified by a pair 
(i,j) with i,j E (0,. . . ,3}, representing the number of cells in the buffers 
of node Nr and node Nz. The cell arrival rates are Xi and X2 and the cell 
transmission rates are ~1 and ~2. States 30, 31, 32, and 33 represent the 
buffer full states for node Nr, while states 03, 13, 23, and 33 represent the 
buffer full states for node N2. 

The loss probability (Ll) of cells destined to node Na going through node Ni 
is determined by two elements: 

1. The probability that node Ni is full, denoted by pi. 

2. The probability that the rerouted cells are dropped because node Nz is 
full, denoted by d. 

In short: Lr = pr + (1 - pi)d. 
The loss probability (Lz) of cells destined to node Na going directly through 

node N2 is simply the probability that node N2 is full, which is denoted by 
P2* 
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Fig. 13.54 SHARPE input file for the CTMC and GSPN rnodcls of the M/M/ 
queue together with the results. 

In Figs. 13.56, 13.57, and 13.58 the SHARPE input file for the irreducible 
Markov reward model from Fig. 13.55 is given. From line 1 to line 6, we 
assign the values to the input parameters, and from lines 10 through 62, the 
Markov reward model is defined. Lines 10 through 26 describe the CTMC. By 
using loops in the specification of Markov chain transitions, we can generate 
the Markov chain automatically. Without the loop functionality, it would be 
cumbersome to specify the Markov chain manually, especially when the state 
space gets large. From lines 29 through 45, the reward rates ri,j are assigned 
to the states (i, j). By default, any state not assigned a reward rate is assumed 
to have the reward rate 0. In order to analyze the transient behavior of the 
system, the initial state probabilities are assigned from the values for the 
steady-state probabilities before the link NrNa breaks down. In other words: 
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fig. 13.55 The CTMC for Fig. 13.52 after rerouting. 

where ~i,j is the initial state probability for state (i, j) in the transient mod- 
el. The probability i~~~,i is the steady-state probability of node Ni in state i 
before the link breaks down. Similarly, the probability 7rs,j is the steady-state 
probability of node Nz in state j before the link breaks down. The fact we 
wish to carry out transient analysis of an irreducible CTMC and hence need 
to assign initial state probabilities is indicated to SHARPE with the keyword 
readprobs in line 10. The assignment of the initial probabilities is done from 
line 46 to line 62. 

Reward rates for computing the average queue length of node Nr are writ- 
ten in a separate file called reward.quellength. In this file, we assign the 
reward rates to indicate the number of jobs in the first node. The contents of 
the file are as follows: 

In line 65, the keyword include is used to read the file. From lines 67 
through 69, we ask for the steady-state expected queue length of Nr. This 
result is achieved by asking for the expected steady-state reward rate using 
the keyword exrss. In line 72, we assign the new reward rates so that the 

steady-state probability that node Ni is full can be calculated. Thereafter 
we bind the value of pl to p. Similarly, from lines 83 through 121, we assign 
different reward rates and ask for the steady-state average queue length of 



662 APPLICATIONS 

fig. 13.56 First part of input file for the Markov reward model. 

fig. 13.57 Second part of input file for the Markov reward model. 
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f 119 
120 * find throughput fox router 2 
121 vax tputx:! exrss (rerouting) 
122 

‘\ 

123 * find steady-state drop probability fox rerouted cslJ.s 
124 vax d (tPuta2+tputal-tputr2)/tputai 
125 
126 vax Ll p+(i-PI *d 
127 echo steady-stats Close probability of cells destined to 
128 echo node N3 going through nods Ni 
129 expr L1 
130 
131 bind k 3 / 
132 
133 * staxt the transient analysis 
134 Loopt ,3, 90 V 3 
135 
136 bind 
137 * pt is transient probability that queue1 is full. 
138 pt sum(i,O,k, tvalus(t;rsToutfng,3,$(i))) 
139 
140 * p2t is transient probability l;hat qusaue% is full+ 
141 P2t sum(i,O,k, tvalue(t;reroutinlT,$(i),3)) 
142 
143 * tputa2t is transiant throughput queue2 
144 tputa2t lam2 * ( 1 y sum(i,O,k, tvalua(t;rerouti~,$(i),3))) 
145 
146 * tputalt is transient throughput fox queue1 
147 tputait laml * ( 1 - suan(l,O,k, tvalue(t;seroutiag,3,$Ci))) 
148 
149 * tputr2t is transient throughPut fox router2 
150 tputr2t mu2 * Cl - sum(i,O,k, tvalue(t;rerouting,$(f),O))) 
151 
152 * dt is transient drop probability for rerouted cells 
153 dt CtPutaZt + tputalt - tPutr2tI /tPutalt 
164 
156 * Lit is loss probabil.iCy of cells destined to node NS 
166 * going through node N1. 
157 L&t pt +(S-ptI* dt 
168 
169 end 
160 
161 end 
162 
163 end 

/ 

fig. 13.58 Third part of input file for the Markov reward model. 

node N2, the steady-state probability for node N2 to be full, the throughput 
of node Nr , node N2, and router 2. Finally we get the cell drop probability for 
the rerouted cells and the loss probability of cells destined to node Ns going 
through node Nr. With these steps, we can see the power of the Markov 
reward model: By just changing the reward rates, we can get different per- 
formance measures, such as throughput, average queue length, and rejection 
probability for the arriving cells. 

From line 133 to line 163, we perform transient analysis of the model. This 
result is achieved by using the keyword tvalue. With tvalue, we can get the 
probability that the system is in state (i, j) at time t. We use the nested sum 
functions to add up the transient probabilities. From lines 138 through 150, 
we use the evaluated word notation. An evaluated word is made up of one 
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or more occurrences of $(n). Whenever the evaluated word is used, the string 
$(n) is expanded into an ASCII string whose digits are the number n. For 
example, in line 138, the state name 3-$(i) includes the states: 3-0, 3-1, 3-2, 
and 3-3. In Figs. 13.59 and 13.60 the results from the analysis are shown. 

Fig. 13.59 Steady state results. 

Fig. 13.60 Results of transient analysis. 

From the results, we can see that although both router 1 and router 2 
have the same cell arrival rate, the steady-state probability for node Nz to 
be full is more than four times bigger than that of node Ni. This condition 
occurs because router 2 has two cell sources, one coming from the original 
cell source, the other from the rerouted cells coming from router 1. However, 
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the loss probability of cells destined to node Na going directly through N2 is 
smaller than that going through Nr first. From the transient results, we can 
answer questions such as: 

l How long does it take to reach steady state after the line breakdown? 

l What is the loss probability at a particular time before the system is in 
steady state? 

These are important questions that need to be considered when we make 
performance and reliability analysis. Figure 13.61 is derived from the transient 
analysis. 

1'0 2'0 3'0 4'0 50 60 
I t 

70 

Fig. 13.61 Cell loss probability for the two nodes in the network discussed in Sec- 
tion 13.2.5. 

Problem 13.14 Modify the model of overload described in Section 13.2.5 
to allow for two-state MMPP sources and three-stage Erlangian service. You 
may find it convenient to use GSPN rather than a direct use of CTMC. 

13.3 CASE STUDIES OF HIERARCHICAL MODELS 

We discuss two examples of hierarchical models in this section. Several other 
hierarchical models are discussed in Chapter 10. For further exposition on 
hierarchical models, see [MaTr93]. 
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Memory1 

-ID-(t 

. 

. 

-Ii-o 
Memory, 

Sink Xfj 

fig. 13.62 The outer model for a multiprocessor system with cache protocols. 

13.3.1 A Multiprocessor with Different Cache Strategies 

Section 13.1.1 introduces different models for loosely and tightly coupled 
multiprocessor systems. Now we model multiprocessor systems with differ- 
ent cache coherence protocols. Our treatment is based on [YBL89]. The outer 
model is a product-form queueing network, some of whose parameters are 
obtained from several lower level CTMC models. The outer model shown in 
Fig. 13.62 (where n = 2 CPUs are assumed). 

The model consists of open and closed job classes where closed job classes 
capture the flow of normal requests through the system and open job classes 
model the additional load imposed by the cache. For the queueing network 
(outer model), the following notation is used: 

m Number of memory modules 

n Number of CPUs 

PCPU Service rate at the CPU 

pcache Service rate at the cache 

pbus Service rate at the bus 

Pmem Service rate at the main memory modules 

and for the CTMC cache models (inner models), we use: 



c 
Gc 
c PC 

Cic 

S 

fuJ 

1 - fw 

h 

U 

d 

Pit 

1 - Pit 
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Overall number of blocks in each cache 

Number of shared cache blocks (blocks shared by all caches) 

Number of private cache blocks 

Number of instruction cache blocks 

Degree of sharing 

Probability that data/instructions are written 

Probability that data/instructions are read 

Probability of a given request to a private cache being a hit 

Probability that a previously accessed block has not been modified 

Probability that a private block, selected for replacement, is mod- 
ified and needs to be written back 

Probability that instructions are accessed during a memory 
request 

Probability that a data block is accessed during a memory request; 
these blocks can be either shared or private 

The cache behavior is modeled by the jobs of the open job classes. These 
additional customers induce additional traffic: 

l The traffic at the cache due to requests from other caches (loading of 
missed blocks). 

l The requests from other processors due to state updates. 

l Additional bus traffic due to invalidation signals. 

Fig. 13.63 CTMC for an instruction cache block (inner model 1). 

If we access blocks in a cache, we have to differentiate between accessing 
private blocks, shared blocks, and instructions. Private blocks can be owned 
only by one cache at a time. No other cache is allowed to have a copy of these 
blocks at the same time. Since it is possible to read and modify private blocks, 
they have to be written back to the main memory after being modified. In 
order to keep shared block consistent, a cache coherence protocol needs to be 
used because shared blocks can be modified by any other processor that also 
owns this block. Items in the instruction cache can only be read but never be 
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modified. Therefore no cache coherence protocol is necessary for instruction 
blocks. Now we develop and solve three inner models: For an instruction 
cache block, for a private cache block, and for a shared cache block. A block 
in the instruction cache can either be not in the cache or valid. If a block is 
selected for replacement, it is overwritten (no write back is necessary) since 
these blocks can not be modified. This assumption leads to the CTMC, shown 
in Fig. 13.63. 

The transition rates are given by: 

a= (1 - fw )Pic 

Cic 
pcpu, b = q~cpu, 

with Ci, = pi,C. Steady-state probabilities of this simple CTMC are easily 
obtained: 

(13.11) 

Since private cache blocks can also be modified, they have to be written back 

notin 

fig. 13.64 CTMC for a private cache block (inner model 2). 

after being modified. Modified blocks are called dirty. The corresponding 
state diagram is shown in Fig. 13.64. The transition rates are given by: 

1 - fzu 

b = (l - Pic)(l - S)~/-+U, 
PC 

l-h 
c= - 0 CPU, 

with CPc = (1 - pic(l - S)C. Steady-state probabilities of this CTMC are: 

PC - C 
To - 

PC - 

a+b+c’ r1 - 
(a + b +a&(b + c) ’ 

PC - 

x2 
- &. (13.12) 

For private and instruction cache blocks no coherence protocol is necessary, 
while for shared blocks a cache coherence protocol must be used since these 
blocks can become inconsistent in different caches. One of the first cache 
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coherence protocols found in the literature is Goodman’s write-once scheme 
[Good83]. When using this protocol, the cache blocks can be in one of five 

notin 

Fig. 13.65 CTMC for shared cache blocks (inner model 3). 

1. Notin: the block is not in the local cache. 

2. Invalid: the block is in the local cache but not consistent with other 
caches. 

3. Valid: the block is in the local cache and consistent with the main 
memory. 

4. Reserved: the block is in the local cache, consistent with the main mem- 
ory, and not in any other cache. 

5. Dirty: the block is in the local cache, inconsistent with the main memory, 
and not in any other cache. 

If a read miss to a shared cache block occurs and a block in another cache 
exists that is in state dirty, this cache supplies the block as well as writing it 
back to the main memory. Otherwise (no cache has a dirty copy), each cache 
with a copy of that block sets the block state to valid. In case of a write 
miss the block is loaded from memory or, if the block is dirty, the block is 
loaded from the cache that has a dirty copy (this cache then invalidates its 
copy). When a write hit to an already dirty or reserved cache block occurs, 
the write proceeds locally, and if the state is valid, the block is written. In case 
of a write hit to an invalid cache block, the local state of the cache block is 
changed. Finally, if a block is loaded into the cache, it can happen that there 
is not enough space in the cache and a block in the cache is to be selected 
for replacement. Blocks are replaced in the order invalid, dirty, reserved, and 
valid. 

The state diagram of the CTMC for shared cache blocks is shown in 
Fig. 13.65. Transition rates for this CTMC are: 
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l The processor under consideration generates a read request to a shared 
block: 

notin --+ valid : SC1 - ftu)(l - 2-k) cLcpu, 

Gc 

invalid +P valid : 

If the cache block is in state dirty, reserved, or valid, the read request 
can proceed without any state change and bus transaction. 

l Another processor generates a read request to a shared block: 

reserved --+ valid : Cn - l)S(l - fw)(l - Pit) 

Gc 
Pcpu 9 

dirty -+ valid : Cn - ljs(l - fw)(l - Pit) 

Gc 
Pcpu * 

If the cache block is in the states valid, invalid, or notin, no state change 
occurs. 

l The processor under consideration generates a write request to a shared 
block: 

valid + reserved : (n - l)Sfw(l - Pit) 

GC 
Pcpu 7 

reserved + dirty : 

invalid --+ dirty : 

notin + dirty : 

Cn - l)sful(l - pit) 
GC Pcpu 7 

Cn - ‘lsfW(l - Pic)pcpu, 

Gc 

sfW(l -Pit) 

Gc 
Pcpu * 

If a block is already dirty, the write request proceeds locally without 
any state change and bus transaction. 

l Another processor generates a read request to a shared block: 

dirty + invalid : Cn - l)Sjtu(l -Pit) 

Gc 
kPU7 

reserved -+ invalid : (n - l)Sf~(l -Pit) 

Gc 
Pcpu 7 

valid + invalid : (n - l)Sf~(l -Pit) 

Gc 
PCPU. 
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l A write or read miss in the local cache can result in a page replacement, 
which leads to the following state transitions: 

l-h 
reserved + notin : - 

ccc 
cpu > 

l-h 
dirty -+ notin : L__ 

0 cpu 7 

l-h 
valid --+ notin : - 

cc1 cpu > 

l-h 
invalid + notin : - 

0 cpu * 

Let: 

l-h 
a = - 

0 
cpu, b= s(l - fw)(l - Pit) I-1 

Gc 
CPU, C= 

s.fw(l - Pi,) ~ 

Gc 
CPU, 

with C,, = (1 - pic)S . C. Then the steady-state probabilities of the CTMC 
are given by: 

nr = L 
a+b+c’ 

$ = a(7rE + 7rT) + (n - l)a(l - 7rF - 7rF) 
(n - 1)a + nb + c 

7 

TT= (n-l~~~nb+c’ 

*y = b(” - w - m 
a+nb+c ’ 

Now we are ready to parameterize the outer model. To analyze the outer 
model given in Fig. 13.62, we need the visit ratios for each station and the 
arrival rates of the open job classes. We see from the following that these 
parameters are functions of the state probabilities of the three inner models: 

Visit Ratio for a Remote Cache i: A cache miss is either supplied by a 
remote cache that has a dirty copy or by one of the main memory 
modules if no dirty copy exists. Because the probability of a dirty and 
valid copy are 1 - (1 - YTT)+~ and 1 - (1 - $)lL-‘, respectively, the 
visit ratio of the remote cache i is given by: 

eci = 
(1 - J?ic)S(7rr + ry)(l - (1 - 7rF)7L--I) 

n-l 
+ JlicTi( 1 - (1 - 7rF)n-1) 

n-l 
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Visit Ratio to Main Memory Module i: The main memory is involved 
when a cache miss to a private block occurs, a cache miss to a shared 
block occurs and no other cache has a dirty copy, and a cache miss 
to instructions occurs and no other cache contains these instructions. 
Hence the visit ratio is: 

eMi = 
(1 -JIic)(l - S)(l - h) + (1 -pic)S($ + -iry)(l - 7rr)n-1 

m 
+ pi,7rE(l - ~~)?z-l 

. 
m 

Visit Ratio to the Bus: The bus is used to broadcast invalidations and to 
transmit missed blocks. Hence the visit ratio is: 

eB =2(1 - pic)S(7$ + 7$) + 2(1 - psC)(l - S)(l - h) 

+ (l - PSC)Sfw~~ + (1 - psc)(l - S)f,u + picrf. 

Once we know the visit ratios and the structure of the network, we can 
compute the routing probabilities, using Eq. (7.5). As a result, we get for the 
routing probabilities: 

m 

(eC+ - eB> + c eMj 
j=l 

Pcachei +proci = , Qi=l,,.., n, 
eci 

m 

eB - c eMj 
j=l 

Pcachei -+bus = , Vi = l,..., 12, 
eci 

m 

eB - c eMj 
j=l 

pbuwproc, = , Vi = l,..., n, 
eB 

Pb us+memj = 2 Vj = l,...,m. 

Next we obtain the arrival rates for each open customer class: 

Derivation of XC: The possible customers of a local cache are the requests 
from its owner processor (1 - pit) (1 - S) (1 - h), the loading of missed 
blocks (1 - pi,-)S(rr + R?) + pier:, the requests from other processors 
for state updating due to a write request to a shared block (n - 1) (1 - 
pic)Sfzu(~~+~~), and requests from other processors for state updating 
due to a read request for a reserved block (n - 1) (1 - pit) S( 1 - fW)7rF. 
Therefore the open customer arrival rate, denoted by XC, is given by: 

‘C =PiPCpUi ((1 -pic)(l - S)(l - h) + (1 -P;c)S($ + ry) 

+ PicXE + (n - 1)(1 - pic)Sf~(K~ + 7$) (13.14) 

+ (n - l)(l - Pic)S(l - f~)$?). 
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Derivation of Xg: A selected block needs to be written back to main memo- 
ry only if it is private and modified or shared and dirty. The probability 
for a shared block to be selected is given by C,, (1 - 7t-r)/C and the 
probability for a private block to be selected is given by C,,( 1 - $“)/C. 
The selected block is written back if it is private and modified or shared 
and dirty. The arrival rate at the bus is, therefore, given by: 

XB =piPcpu~n((l -Pic)(l - S)(l - h) + (1 -pic)S7$) 

-( 

Cpc(1 - 7$“), + Gc(l - qy) (13.15) 

C C 
7rF . 

> 

Derivation of XM: There are two possibilities: A shared read results in a 
miss and one of the remote caches has a dirty copy ( l-pic)S( l- fW) (or+ 
7T~)(l-(l-,rr~)n-l), or a write hit to a valid shared block occurs and a 
write through operation is performed (1 - pic)Sfw + (1 -piJ (1 - S)fWu. 
The arrival rate at the memory modules is, therefore, given by: 

AA4 =pi&pui n((l -pi,)S(l- fw)(rE + 7ry)(l- (1 - 7rr)n-‘) 

+ (l -Pic)Sftu + (1 -Pic)(l - S)fwU). 

(13.16) 

Because the arrival rates X C, Xg, and XM are functions of server utilizations 
that are computed from the solution of the outer model, the outer model needs 
to be solved using fixed-point iteration. The solution algorithm is sketched in 
the following: 

Solve the inner model for shared/private/instruction cache blocks 
he steady-state probabilities (see Eqs. (13.11), (13.12), and (13.13)). 

Determine the arrival rates Xc (Eq. (13.14)), XB (Eq. (13.15)), 
q. (13.16)) of the open customer classes, assuming the initial value 

i = 1 and using the steady-state probabilities of the inner model. 

Solve the outer model using the computed arrival rates to obtain 
s for the utilizations pZ. 

The computed utilizations are used to determine the new arrival 

The last two steps are repeated until the results of two successive 
iteration steps differ less than E. 

For our 
are msec) : 

example we assume the following parameter values (all time units 

C = 2048 PCPU = 0.25 h = 0.98 

s = 0.1 /f&ache = 1.0 fw = 0.3 

u = 0.1 fibus = 1.0 pi, = 0.1 

d = 0.4 Pmcm = 0.25 
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Table 13.34 Performance measures for the cache model with j&us = 1.00 

No. of Processors PCPU f'bus System Power 

2 0.475 0.356 0.950 
3 0.454 0.426 1.278 
4 0.438 0.495 1.754 
5 0.425 0.562 2.127 
6 0.413 0.619 2.478 
7 0.402 0.679 2.817 
8 0.391 0.734 3.131 
9 0.377 0.785 3.395 
10 0.363 0.821 3.634 
15 0.279 0.902 4.180 
20 0.219 0.902 4.374 

In Tables 13.34 and 13.35 the performance measures for different mean bus 
service times are given as a function of the number of processors. Here, the 
measure system power is the sum of all processor utilizations. In Table 13.34 
we see that by increasing the number of processors from 2 to 20, the system 
power increases by a factor of 4.6. Because the system bottleneck is the bus, it 
makes more sense to use a faster bus or to use a dual bus instead of increasing 
the number of processors. In Table 13.35 the results are shown for a faster 
bus with pbUs = 1.5. As a result, the system power is increased by a factor of 
6.5. 

Table 13.35 Performance measures for the cache model with pbUs = 1.50 

No. of Processors PCPU Pbus System Power 

2 
3 
4 

6 

8 
9 
10 
15 
20 

0.511 0.255 1.023 
0.486 0.303 1.458 
0.470 0.354 1.882 
0.459 0.404 2.297 
0.451 0.451 2.707 
0.445 0.501 3.115 
0.439 0.549 3.515 
0.432 0.601 3.892 
0.427 0.643 4.269 
0.379 0.817 5.688 
0.331 0.909 6.614 

13.3.2 Performability of a Multiprocessor System 

We consider a model that was developed by Trivedi, Sathaye, et al.[TSI+96] to 
help determine the optimal number of processors needed in a multiprocessor 
system. A Markov reward model is used for this purpose. In this model, it 
is assumed that all failure events are mutually independent and that a single 
repair facility is shared by all the processors. Assume that the failure rate 
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of each processor is o. A processor fault is covered with probability c and is 
not covered with probability 1 - c. Subsequent to a covered fault, the system 
comes up in a degraded mode after a brief reconfiguration delay, while after 
an uncovered fault, a longer reboot action is required. The reconfiguration 
times are assumed to be exponentially distributed with mean l/y, the reboot 
times are exponentially distributed with mean l/S, and the repair times are 
exponentially distributed with mean l/,8. It is also assumed that no other 
event can take place during a reconfiguration or a reboot phase. The CTMC 
modeling the failure/repair behavior of this system is shown in Fig. 13.66. In 
state i, 1 < i 5 n, the system is up with i processors functioning, and n - i 
processors are waiting for repair. In states (c,-i), i = 0, e . . , n - 2, the system 
is undergoing a reconfiguration. In states (b+i), i = 0,. . . , n - 2, the system 
is being rebooted. In state 0, the system is down waiting for all processors to 
be repaired. 

Fig. 13 .66 CTMC for computing the performability of a multiprocessor system. 

The reward rate in a state with i processors functioning properly corre- 
spond to some measure of performance in that configuration. Here the loss 
probability is used as a performance measure. An M/M/i/b queueing model 
is used to describe the performance of the multiprocessor system, which is 
represented by the PFQN shown in Fig. 13.67. This model contains two sta- 
tions. station mp is the processor station with i processors; it has type ms 
for multiple servers, each server having service rate ,L The other station is 
source, which represents the job source with rate X. Because there is a limited 
number b of buffers available for queueing the jobs, the closed product-form 
network with a fixed number b of jobs is chosen. 

The loss probability can be obtained via the throughput tput of station mp. 
Note that we have used a two-level hierarchical model. The lower level 
(inner model) is the PFQN (Fig. 13.67), while the outer model is the CTMC 
(Fig. 13.66). F or state i of the CTMC, the PFQN with i processors is evaluat- 
ed, and the resulting loss probability is used as a reward rate in state i. Then 
the expected steady-state reward rate is the overall performability measure of 
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Fig. 13.67 PFQN model of the M/M/i/b queue. 

the system, given by 

EXRSS = 2 rj7ri, 
i=l 

where 7ri is the steady-state probability of state i, and ri is the loss probability 
of station mp. We consider just the operational state i because in the down 
states ci, bi and 0, the loss probability (reward rate) is 1. 

arr buffer request serving service proc 

Fig. 13.68 GSPN model of the M/M/i/b queue. 

It is also possible to model the lower level model using the GSPN shown 
in Fig. 13.68, The initial number nproc of tokens in place proc means that 
there are nproc processors available. When a new job arrives in place bujFer, 
a token is taken from place proc. Jobs arrive at the system when transition 
arr fires. There is a limitation for new jobs entering the system caused by 
the inhibitor arc from place bufler to transition arr. Thus arr can only fire 
when the system is not already full. There can be only b jobs in the system 
altogether, nproc being served (in place serving) and b- nproc in place buffer. 
The firing rates are X for transition arr and k,x for transition service. Here 
k is the number of tokens in place serving; the notation for this marking- 
dependent firing rate and in Fig.13.68 is p#. The expected reward rate in 
the steady state is called the totd loss probability (TLP). It is defined as the 
fraction of jobs rejected either because the buffer is full or the system is down. 

A possible SHARPE input file for this hierarchical performability model is 
shown in Fig. 13.69. Descriptions of the lines of the SHARPE input file are as 
follows: 

Line 3-9: Assign the values to the input parameters. 
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Fig. 13.69 Input file for multiprocessor performability model. 

Line 12-37: Define the GSPN model; the model has two parameters, the 
number of processors nproc and the job arrival rate lambda. 

Line 39-40: Define a function to use for reward rates. 

Line 42-48: Specification of a Markov model for nproc = 1 processor. 

Line 46-47: Assign reward rates to all states. 

Line 50-63: Specification of a Markov model for nproc = 2 processors. 

Line 59-62: Assign reward rates to all states. 

Line 65: Input file with specification of a Markov model for 3 processors. 

Line 66: Input file with specification of a Markov model for 4 processors. 

Line 67: Define models for more processors. 
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Line 69: Let the arrival rate L vary from 50 to 200 by increments of 50. 

Line 70-75: Get the TLP for each number of processors. 

In Fig. 13.70 the total loss probability and system unavailability (TLP with 
X = 0) are plotted as functions of the number of processors. The difference 
between the unavailability and the total loss probability is caused only by 
limited buffer size b. 
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Fig. 13.70 TLP and unavailability. 
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precedence graph, 517 
Terminal system, 265, 513 

Terminals, 265 

Theorem 
arrival, 326, 343 

BCMP, 300-301 

Gordon/Newell, 292 
Jackson’s, 632, 284 

Little, 213 
Little’s, 271 

Norton’s, 368 

PASTA, 343 

Theorems 

central limit, 24 

Throughput, 213, 266, 270, 272 

Time-average accumulated reward, 68 

Time-homogeneous, 37 
Timed transition, 86 

Token rotation time, 614 

Token, 84 

TPM, 43 

Traffic equations, 266, 286, 432, 614 

Transfer 

blocking, 548 

time, 502 

Transient state, 47 
Transient state probabilities, 41 

Transient uniformization, 184 

Transition, 84 

enabled, 84 

fire, 84 

immediate, 86 

probability, 49 

rates, 50 

timed, 86 

Tree-convolution, 326 

U 

Uniformization, 104 

Unit vector, 53 

UNIX, 620 

Upper time limit, 246 

Utilization, 212, 221, 269, 272 

VW 

Vanishing marking, 86 

Variabilities in workload, 418 

Variance, 7, 9, 11, 13-14, 16-20, 214, 217 

Visit ratio, 266, 289, 297 

Wafer production system, 639 
Waiting time, 213 

WAN, 610 

XYZ 

z-transform, 25, 27 
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