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Foreword 

Rijndael was the surprise winner of the contest for the new Advanced En­
cryption Standard (AES) for the United States . This contest was organized 
and run by the National Institute for Standards and Technology (NIST) be­
ginning in January 1997; Rijndael was announced as the winner in October 
2000. It was the "surprise winner" because many observers (and even some 
participants) expressed scepticism that the U .S .  government would adopt as 
an encryption standard any algorithm that was not designed by U .S .  citizens . 

Yet NIST ran an open, international, selection process that should serve 
as model for other standards organizations. For example, NIST held their 
1999 AES meeting in Rome, Italy. The five finalist algorithms were designed 
by teams from all over the world. 

In the end, the elegance, efficiency, security, and principled design of 
Rijndael won the day for its two Belgian designers, Joan Daemen and Vincent 
Rijmen, over the competing finalist designs from RSA, IBl\!I, Counterpane 
Systems, and an English/Israeli/Danish team. 

This book is the story of the design of Rijndael, as told by the designers 
themselves . It outlines the foundations of Rijndael in relation to the previous 
ciphers the authors have designed. It explains the mathematics needed to 
underst(�md_ the operation of Rijndael, and it provides reference C code and 
test vectors for the cipher . 

Most importantly, this book provides justification for the belief that 
Rijndael is secure against all known attacks. The world has changed greatly 
since the DES was adopted as the national standard in 1976. Then, argu­
ments about security focussed primarily on the length of the key (56 bits) . 
Differential and linear cryptanalysis (our most powerful tools for breaking 
ciphers) were then unknown to the public. Today, there is a large public lit­
erature on block ciphers, and a new algorithm is unlikely to be considered 
seriously unless it is accompanied by a detailed analysis of the strength of 
the cipher against at least differential and linear cryptanalysis . 

This book introduces the "wide trail" strategy for cipher design, and 
explains how Rijndael derives strength by applying this strategy. Excellent 
resistance to differential and linear cryptanalysis follow as a result . High 
efficiency is also a result , as relatively few rounds are needed to achieve strong 
security. 
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The adoption of Rijndael as the AES is a major milestone in the history of 
cryptography. It is likely that Rijndael will soon become the most widely-used 
cryptosystem in the world. This wonderfully written book by the designers 
themselves is a "must read" for anyone interested in understanding this de­
velopment in depth. 

Ronald L. Rivest 
Viterbi Professor of Computer Science 

MIT 

Preface 

This book is about the design of Rijndael, the block cipher that became 
the Advanced Encryption Standard (AES) . According to the 'Handbook of 
Applied Cryptography' [68] , a block cipher can be described as follows: 

A block cipher is a function which maps n-bit plaintext blocks to n­
bit ciphertext blocks ; n is called the block length. [ . . .  J The function 
is parameterized by a key. 

Although block ciphers are used in many interesting applications such as e­
commerce and e-security, this book is not about applications. Instead, this 
book gives a detailed description of Rijndael and explains the design strategy 
that was used to develop it . 

Structure of this book 

When we wrote this book, we had basically two kinds of readers in mind. 
Perhaps the largest group of readers will consist of people who want to read 
a full and unambiguous description of Rijndael. For those readers, the most 
important chapter of this book is Chap. 3, that gives its comprehensive de­
scription. In order to follow our description, it might be helpful to read the 
preliminaries given in Chap.  2. Advanced implementation aspects are dis­
cussed in Chap. 4. A short overview of the AES selection process is given in 
Chap. 1 .  

A large part of this book i s  aimed at the readers who want t o  know why 
we designed Rijndael in the way we did . For them, we explain the ideas and 
principles underlying the design of Rijndael, culminating in our wide trail 
design strategy. In Chap.  5 we explain our approach to block cipher design 
and the criteria that played an important role in the design of Rijndael. Our 
design strategy has grown out of our experiences with linear and differential 
cryptanalysis, two crypt analytical attacks that have been applied with some 
success to the previous standard, the Data Encryption Standard (DES) . In 
Chap. 6 we give a short overview of the DES and of the differential and 
the linear attacks that are applied to it . Our framework to describe linear 
cryptanalysis is explained in Chap. 7; differential cryptanalysis is described 
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in Chap. 8. Finally, in Chap . 9, we explain how the wide trail design strategy 
follows from these considerations 

Chapter 10 gives an overview of the published attacks on reduced-round 
variants of Rijndael. Chapter 1 1  gives an overview of ciphers related to 
Rijndael. We describe its predecessors and discuss their similarities and dif­
ferences. This is followed by a short description of a number of block ciphers 
that have been strongly influenced by Rijndael and its predecessors. 

In Appendix A we show how linear and differential analysis can be applied 
to ciphers that are defined in terms of finite field operations rather than 
Boolean functions. In Appendix B we discuss extensions of differential and 
linear cryptanalysis. To assist programmers, Appendix C lists some tables 
that are used in various descriptions of Rijndael, Appendix D gives a set 
of test vectors , and Appendix E consists of an example implementation of 
Rijndael in the C programming language. 

See Fig. 1 for a graphical representation of the different ways to read this 
book. 

2 3 10 � � 11 
Fig. 1 .  Logical dependence of the chapters. 

Large portions of this book have already been published before: Joan's 
PhD thesis [18] , Vincent 's PhD thesis [80] , our submission to AES [26] , and 
our paper on linear frameworks for block ciphers [22] . 
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1. The Advanced Encryption S tandard Process 

The main subject of this book would probably have remained an esoteric topic 
of cryptographic research - with a name unpronounceable to most of the 
world - without the Advanced Encryption Standard (AES) process. There­
fore, we thought it proper to include a short overview of the AES process. 

1 . 1  In the Beginning . . .  

In January 1997, the US National Institute of Standards and Technology 
(NIST) announced the start of an initiative to develop a new encryption 
standard: the AES . The new encryption standard was to become a Federal 
Information Processing Standard (FIPS) , replacing the old Data Encryption 
Standard (DES) and triple-DES . 

Unlike the selection process for the DES ,  the Secure Hash Algorithm 
(SHA-1 ) and the Digital Signature Algorithm (DSA) , NIST had announced 
that the AES selection process would be open. Anyone could submit a can­
didate cipher. Each submission, provided it met the requirements ,  would be 
considered on its merits . NIST would not perform any security or efficiency 
evaluation itself, but instead invited the cryptology community to mount 
attacks and try to crypt analyse the different candidates, and anyone who 
was interested to evaluate implementation cost. All results could be sent to 
NIST as public comments for publication on the NIST AES web site or be 
submitted for presentation at AES conferences . NIST would merely collect 
contributions using them to base their selection. NIST would motivate their 
choices in evaluation reports. 

1 . 2  AES: Scope and Significance 

The official scope of a FIPS standard is quite limited: the FIPS only applies 
to the US Federal Administration. Furthermore, the new AES would only 
be used for documents that contain sensitive but not classified information. 
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However, it was anticipated that the impact .of the AES would be much larger 
than this: for AES is the successor of the DES, the cipher that ever since its 
adoption has been used as a worldwide de facto cryptographic standard by 
banks, administrations and industry. 

Rijndael's approval as a government standard gives it an official ' certifi­
cate of quality' . AES has been submitted to the International Organization 
for Standardization (ISO) and the Internet Engineering Task Force (IETF) 
as well as the Institute of Electrical and Electronics Engineers (IEEE) are 
adopting it as a standard. Still, even before Rijndael was selected to be­
come the AES, several organizations and companies declared their adoption 
of Rijndael. The European Telecommunications Standards Institute (ETSI) 
uses Rijndael as a building block for its MILENAGE algorithm set , and sev­
eral vendors of cryptographic libraries had already included Rijndael in their 
products. 

The major factors for a quick acceptance for Rijndael are the fact that 
it is available royalty-free, and that it can be implemented easily on a wide 
range of platforms without reducing bandwidth in a significant way. 

1 .3 Start of the AES Process 

In September 1997, the final request for candidate nominations for the AES 
was published. The minimum functional requirements asked for symmetric 
block ciphers capable of supporting block lengths of 128 bits and key lengths 
of 128 ,  192 and 256 bits. An early draft of the AES functional requirements 
had asked for block ciphers also supporting block sizes of 192 and 256 bits, 
but this requirement was dropped later on. Nevertheless, since the request 
for proposals mentioned that extra functionality in the submissions would 
be received favourably, some submitters decided to keep the variable block 
length in the designs. (Examples include RC6 and Rijndael. )  

NIST declared that it was looking for a block cipher as secure as triple­
DES) but much more efficient. Another mandatory requirement was that the 
submitters agreed to make their cipher available on a world wide royalty-free 
basis, if it would be selected as the AES . In order to qualify as an official 
AES candidate, the designers had to provide: 

1 .  A complete written specification of the block cipher in the form of an 
algorithm. 

2. A reference implementation in ANSI C, and mathematically optimized 
implementations in ANSI C and Java. 

3. Implementations of a series of known-answer and Monte Carlo tests, as 
well as the expected outputs of these tests for a correct implementation 
of their block cipher. 
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4. Statements concerning the estimated computational efficiency in both 
hardware and software, the expected strength against cryptanalytic at­
tacks , and the advantages and limitations of the cipher in various appli­
cations. 

5. An analysis of the cipher's strength against known cryptanalytic attacks . 

It turned out that the required effort to produce a ' complete and proper' 
submission package would already filter out several of the proposals. Early in 
the submission stage, the Cryptix team announced that they would provide 
Java implementations for all submitted ciphers, as well as Java implementa­
tions of the known-answer and Monte Carlo tests. This generous offer took 
some weight off the designers' shoulders, but still the effort required to com­
pile a submission package was too heavy for some designers. The fact that 
the AES Application Programming Interface (API) , which all submissions 

:vere required to follow, was updated two times during the submission stage, 
mcreased the workload. Table 1 . 1  lists (in alphabetical order) the 15 submis­
sions that were completed in time and accepted. 

Table 1 . 1 .  The 15 AES candidates accepted for the first evaluation round. 

Submissions Submitter(s) Submitter type 
CAST-256 Entrust (CA) Company 
Crypton Future Systems (KR) Company 
D EAL Outerbridge, Knudsen (USA-DK) Researchers 
D FC ENS-CNRS (FR) Researchers 
E2 NTT (JP) Company 
Frog TecApro (CR) Company 
HPC Schroeppel (USA) Researcher 
LOKI97 Brown et al . (AU) Researchers 
Magenta Deutsche Telekom (DE) Company 
Mars IBM (USA) Company 
RC6 RSA (USA) Company 
Rijndael Daemen and Rijmen (BE) Researchers 
SAFER+ Cylink (USA) Company 
Serpent Anderson, Biham, Knudsen (UK-IL-DK) Researchers 
Twofish Counterpane (USA) Company 

1 .4  The First Round 

The selection process was divided into several stages , with a public workshop 
to be held near the end of each staQ"e. The nroc:ess sb.rt.erl wit.h ::1 . .  '!?I.nmi.'!'!?:n?1 
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stage, which ended on 15 May 1998. All accepted candidates were presented 
at The First Advanced Encryption Standard Candidate conference, held in 
Ventura, California, on 20-22 August 1998. This was the official start of the 
first evaluation round, during which the international cryptographic commu­
nity was asked for comments on the candidates. 

1 . 5  Evaluation Criteria 

The evaluation criteria for the first round were divided into three major cate­
gories: security, cost and algorithm and implementation characteristics. NIST 
invited the cryptology community to mount attacks and try to crypt analyse 
the different candidates, and anyone interested to evaluate implementation 
cost . The result could be sent to NIST as public comments or be submitted 
for presentation at the second AES conference. NIST collected all contribu­
tions and would use these to select five finalists. In the following sections we 
discuss the evaluation criteria. 

1.5.1 Security 

Security was the most important category, but perhaps the most difficult 
to assess. Only a small number of candidates showed some theoretical design 
flaws. The large majority of the candidates fell into the category 'no weakness 
demonstrated' . 

1.5.2 Costs 

The 'costs' of the candidates were divided into different subcategories. A first 
category was formed by costs associated with intellectual property (IP) issues . 
First of all, each submitter was required to make his cipher available for free 
if it would be selected as the AES.  Secondly, each submitter was also asked 
to make a signed statement that he would not claim ownership or exercise 
patents on ideas used in another submitter 's proposal that would eventually 
be selected as AES . A second category of ' costs ' was formed by costs asso­
ciated with the implementation and execution of the candidates . This covers 
aspects such as computational efficiency, program size and working memory 
requirements in software implementations, and chip area in dedicated hard­
ware implementations. 

1.5.3 Algorithm and Implementation Characteristics 

The category algorithm and implementation characteristics grouped a num­
hor "f fp"tllrPC! th!Oli', !Olrl" h::1Tnpr t.o (1lumt,ifv. The first one is versatilitv, meaning 
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the ability to be implemented efficiently on different platforms. At one end 
of the spectrum should the AES fit 8-bit micro-controllers and smart cards , 
which have limited storage for the program and a very restricted amount of 
RAM for working memory. At the other end of the spectrum the AES should 
be implement able efficiently in dedicated hardware , e .g. to provide on-the-fly 
encryption/decryption of communication links at gigabit-per-second rates. In 
between there is the whole range of processors that are used in servers ,  work­
stations, PCs ,  palmtops etc. , which are all devices ii1 need of cryptographic 
support . A prominent place in this range is taken by the Pentium family of 
processors due to its presence in most personal computers. 

A second feature is key agility. In most block ciphers, key set up takes 
some processing. In applications where the same key is used to encrypt large 
amounts of data, this processing is relatively unimportant. In applications 
where the key often changes , such as the encryption of Internet Protocol 
(IP) packets in Internet Protocol Security (IPSEC) , the overhead due to key 
setup may become quite relevant . Obviously, in those applications it is an 
advantage to have a fast key setup. 

Finally, there is the criterion of simplicity, that may even be harder to 
evaluate than cryptographic security. Simplicity is related to the size of the 
description, the number of different operations used in the specification, sym­
metry or lack of symmetry in the cipher and the ease with which the algo­
rithm can be understood. All other things equal, NIST considered it to be 
an advantage for an AES candidate to be more simple for reasons of ease of 
implementation and confidence in security. 

1 . 6  Selection of Five Finalists 

In March 1999, the second AES conference was held in Rome, Italy. The 
remarkable fact that a US Government department organized a conference 
on a future US Standard in Europe is easily explained. NIST chose to combine 
the conference with the yearly Fast Software Encryption Workshop that had 
for the most part the same target audience and that was scheduled to be in 
Rome. 

1.6.1 The Second AES Conference 

The papers presented at the conference ranged from crypto-attacks , cipher 
cross-analysis , smart-card-related papers , and so-called algorithm observa­
tions. In the session on cryptographic attacks, it was shown that FROG, 
Magenta and LOKI97 did not satisfy the security requirements imposed by 
NIST. For DEAL it was already known in advance that that the security re­
quirements were not satisfied. For HPC weaknesses had been demonstrated 
in a DaDer Dreviouslv sent to NTST. Thi::.; plimin::l.t,pn fivp (,::lnnin::1t,p!,< 
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Some cipher cross-analysis papers focused on performance evaluation. The 
paper of B .  Gladman [37] , a researcher who had no link with any submission, 
considered performance on the Pentium processor. From this paper it became 
clear that RC6 ,  Rijndael , Twofish, MARS and Crypton where the five fastest 
ciphers on this processor. On the other hand, the candidates DEAL, Frog, 
Magenta, SAFER+ and Serpent appeared to be problematically slow. Other 
papers by the Twofish team (Bruce Schneier et al . )  [84] and a French team 
of 12 cryptographers [5] essentiplly confirmed this. 

A paper by E. Biham warned that the security margins of the AES can­
didates differed greatly and that this should be taken into account in the 
performance evaluation [7] . The lack of speed of Serpent (with E. Biham in 
the design team) was seen to be compensated with a very high margin of se­
curity. Discussions on how to measure and take into account security margins 
lasted until after the third AES conference. 

In the session on smart cards there were two papers comparing the perfor­
mance of AES candidates on typical 8-bit processors and a 32-bit processor : 
one by G .  Keating [48] and one by G .  Hachez et al. [40] . From these papers 
and results from other papers, it became clear that some candidates simply 
do not fit into a smart card and that Rijndael is by far the best suited for this 
platform. In the same session there were some papers that discussed power 
analysis attacks and the suitability of the different candidates for implemen­
tations that can resist against these attacks [ 10 ,  15 ,  27] . 

Finally, in the algorithm observations session, there were a number of 
papers in which AES submitters re-confirmed their confidence in their sub­
mission by means of a considerable amount of formulas , graphs and tables and 
some loyal cryptanalysis (the demonstration of having found no weaknesses 
after attacks of its own cipher) . 

1.6.2 The Five Finalists 

After the workshop there was a relatively calm period that ended with the 
announcement of the five candidates by NIST in August 1999. The finalists 
were (in alphabetical order) : MARS, RC6, Rijndael, Serpent and Twofish. 

Along with the announcement of the finalists, NIST published a status 
report [72] in which the selection was motivated. The choice coincided with 
the top five that resulted from the response to a questionnaire handed out 
at the end of the second AES workshop. Despite its moderate performance , 
Serpent made it thanks to its high security margin. The candidates that had 
not been eliminated because of security problems were not selected mainly 
for the following reasons: 

1. CAST-256: comparable to Serpent but with a higher implementation 
cost . 
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2 .  Crypton: comparable to Rijndael and Twofish but with a lower security 
margin. 

3. DFC: low security margin and bad performance on anything other than 
64-bit processors . 

4. E2 : comparable to Rijndael and Twofish in structure, but with a lower 
security margin and higher implementation cost . 

5. SAFER+: high security margin similar to Serpent but even slower. 

1 . 7  The Second Round 

After the announcement of the five candidates NIST made another open call 
for contributions focused on the finalists. Intellectual property issues and 
performance and chip area in dedicated hardware implementations entered 
the picture. A remarkable contribution originated from NSA, presenting the 
results of hardware performance simulations performed for the finalists. This 
third AES conference was held in New York City in April 2000. As in the 
year before, it was combined with the Fast Software Encryption Workshop. 

In the sessions on cryptographic attacks there were some interesting re­
sults but no breakthroughs, since none of the finalists showed any weak­
nesses that could jeopardize their security. Most of the results were attacks 
on reduced-round versions of the ciphers . All attacks presented are only of 
academic relevance in that they are only slightly faster than an exhaustive 
key search. In the sessions on software implementations, the conclusions of 
the second workshop were confirmed. 

In the sessions on dedicated hardware implementations there was atten­
tion for Field Programmable Gate Arrays (FPGAs) and Application-Specific 
Integrated Circuits (ASICs) . In the papers Serpent came out as a consistently 
excellent performer .  Rijndael and Twofish also proved to be quite suited for 
hardware implementation while RC6 turned out to be expensive due to its 
use of 32-bit multiplication. Dedicated hardware implementations of MARS 
seemed in general to be quite costly. The Rijndael related results presented at 
this conference are discussed in more detail in Chap. 4 (which is on efficient 
implementations) and Chap. 10 (which is on cryptanalytic results) .  

At the end of the conference a questionnaire was handed out asking about 
the preferences of the attendants. Rijndael resoundingly voted as the public's  
favourite. 

1 .8  The Selection 

On 2 October, 2000, NIST officially announced that Rijndael, without modifi-
r�.t,inn,:: ,unlllrl ht=>f'rlrYIt=> tl-It=> ,1. RQ 1\TTQ'f',..,." hl;n"h�,..:j �� �,,��ll��-I- 11 L: ____ • ____ ___ L 
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in which they summarize all contributions and motivate the choice [71] . In 
the conclusion of this report, NIST motivates the choice of Rijndael with the 
following words . 

Rijndael appears to be consistently a very good performer in both 
hardware and software across a wide range of computing environ­
ments regardless of its use in feedback or non-feedback modes . Its 
key setup time is excellent, and its key agility is good. Rijndael's 
very low memory requirements make it very well suited for restricted­
space environments, in which it. also demonstrates excellent perfor­
mance. Rijndael 's operations are among the easiest to defend against 
power and timing attacks. Additionally, it appears that some defense 
can be provided against such attacks without significantly impacting 
Rijndael 's performance. 

Finally, Rijndael 's internal round structure appears to have good 
potential to benefit from instruction-level parallelism. 

2. Preliminaries 

In this chapter we introduce a number of mathematical concepts and explain 
the terminology that we need in the specification of Rijndael (in Chap.  3) , 
in the treatment of some implementation aspects (in Chap.  4) and when we 
discuss our design choices (Chaps . 5-9) . 

The first part of this chapter starts with a discussion of finite fields , the 
representation of its elements and the impact of this on its operations of addi­
tion and multiplication. Subsequently, there is a short introduction to linear 
codes . Understanding the mathematics is not necessary for a full and correct 
implementation of the cipher. However , the mathematics is necessary for a 
good understanding of our design motivations . Knowledge of the underlying 
mathematical constructions also helps for doing optimised implementations. 
Not all aspects will be covered in detail; where possible , we refer to books 
dedicated to the topics we introduce. 

In the second part of this chapter we introduce the terminology that 
we use to indicate different common types of Boolean functions and block 
ciphers. Finally, we give a short overview of the modes of operation of a 
block cipher. 

Notation. We use in this book two types of indexing: 

subscripts: Parts of a larger, named structure are denoted with subscripts. 
For instance, the bytes of a state a are denoted by ai,] (see Chap. 3) . 

superscripts: In an enumeration of more or less independent objects, where 
the objects are denoted by their own symbols, we use superscripts. For 
instance the elements of a nameless set are denoted by {a(l) , a(2) , . . . } ,  
and consecutive rounds of an iterative transformation are denoted by 
p(l), p(2), . . .  (see Sect . 2 .3 .4) . 
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2 . 1  Finite Fields 

In this section we present a basic introduction to the theory of finite fields . 
For a more formal and elaborate introduction, we refer to the work of Lidl 
and Niederreiter [58] . 

2.1.1 Groups, Rings, and Fields 

We start with the formal definition of a group. 

Definition 2.1.1. An Abelian group < G, + > consists of a set G and an 
operation defined on its elements, here denoted by '+  ': 

+ : G x G ---+ G : ( a ,  b) c--+ a + b . ( 2 . 1  ) 

In order to qualify as an Abelian group, the operation has to fulfill the fol­
lowing conditions: 

closed: 'v' a, b E G :  a + b E G  (2 .2 )  

associative: 'v' a, b ,  c E G : (a + b) + c = a + (b + c) (2 .3)  

commutative: 'v' a ,  b E G :  a + b = b + a (2 .4) 

neutral element: ::3 0 E G, 'v' a E G : a + 0 = a (2 .5)  

inverse elements: 'v' a E G, ::1 b E G :  a + b = 0 (2 .6)  

Example 2.1 .1 .  The best-known example of an Abelian group is < Z, + >: 
the set of integers, with the operation 'addition' .  The structure < Zn , + > is 
a second example. The set contains the integer numbers 0 to n - 1 and the 
operation is addition modulo n .  

Since the addition o f  integers i s  the best known example o f  a group , usually 
the symbol '+ ' is used to denote an arbitrary group operation. In this book, 
both an arbitrary group operation and integer addition will be denoted by 
the symbol ' +'. For some special types of groups, we will denote the addition 
operation by the symbol 'EB' (see Sect . 2 . 1 . 3) .  

Both rings and fields are formally defined as structures that consist of a 
set of elements with two operations defined on these elements. 

Definition 2.1.2. A ring < R, +, . > consists of a set R with two operations 
defined on its elements, here denoted by '+ ' and ' . '. In order to qualify as a 
ring, the operations have to fulfill the following conditions: 

1.  The structure < R, + > is an Abelian group. 
2. The operation ' .' is closed, and associative over R. There is a neutral 

plprYIprd fnr ' . ' in R 
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3. The two operations ' +' and ' .' are related by the law of distributivity: 

'v'a, b, c E R :  (a + b) · c = (a · c) + (b · c) . (2 . 7) 

The neutral element for ' .' is usually denoted by 1. A ring < R, + , ' > is 
called a commutative ring if the operation ' ·' is commutative. 

Example 2. 1.2. The best-known example of a ring is < Z, i,' >: the set of 
integers, with the operations 'addition' and 'multiplication

'
, . This ring is a 

commutative ring. The set of matrices with n rows and n columns, with the 
operations 'matrix addition' and 'matrix multiplication' is a ring, but not a 
commutative ring (if n > 1 ) .  

Definition 2.1.3. A structure < F, + , ' > is a field if the following two 
conditions are satisfied: 

1. < F, + , ' > is a commutative ring. 
2. For all elements of F, there is an inverse element in F with respect to the 

operation ' .', except for the element 0, the neutral element of < F, + > . 

A structure < F, + , ' > is a field iff both < F, + > and < F\{O} , · > are 
Abelian groups and the law of distributivity applies. The neutral element of 
< F\ {O} , . > is called the unit element of the field. 

Example 2. 1 .3. The best-known example of a field is the set of real num­
bers , with the operations ' addition' and 'multiplication. ' Other examples are 
the set of complex numbers and the set of rational numbers , with the same 
operations. Note that for these examples the number of elements is infinite. 

2.1.2 Vector Spaces 

Let < F, + , ' > be a field , with unit element 1, and let < V, + > be an 
Abelian group. Let '8' be an operation on elements of F and V: 

8 :  F xV---+V. (2 .8) 

Definition 2.1.4. The structure < F, V, +,  +, ' , 8  > is a vector space over 
F if the following conditions are satisfied: 

1. distributivity: 

'v' a E F, 'v' v, W E V: a 8 (v + w) = (a 8 v) + (a 8 w) 
'v' a ,  b E F, 'v' v E V: (a + b) 8 v = (a 8 v) + ( a  8 v) 

2. associativity: 

'v' a, b E  F, 'v' v E V : ( a · b) 8 v = a 8 (b 8 v) 

(2 .9 )  

(2 . 10)  

( 2 . 1 1) 
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3. neutral element: 

v v E V :  1 8  v = v. (2 .12)  

The elements of V are called vectors, and the elements of F are the scalars. 
The operation '+ ' is called the vector addition, and '8' is the scalar multi­
plication. 

Example 2.1.4. For any field F, the set of n-tuples (aa , al , . . .  , an-d forms a 
vector space, where ' + '  and '8' are defined in terms of the field operations : 

(al , . . .  , an ) + (bI , . . .  , bn ) = (al + h , · . · , an + bn ) 
a 8 (h , . . .  , bn ) = (a · bI , . . .  , a · bn ) .  

(2 . 13) 

(2 . 14) 

A vector v is a linear combination of the vectors w(1) , w(2) , . . .  , w(s) if 
there exist scalars a(i) such that:  

(2 . 15) 

In a vector space we can always find a set of vectors such that all elements of 
the vector space can be written in exactly one way as a linear combination of 
the vectors of the set . Such a set is called a basis of the vector space. We will 
consider only vector spaces where the bases have a finite number of elements. 
We denote a basis by 

e =  [e(1 ) , e(2) , . . .  e(n) ] T (2 . 16)  

In this expression the T superscript denotes taking te transpose of the column 
vector e. The scalars used in this linear combination are called the coordinates 
of x with respect to the basis e :  

(2 . 1 7) 

In order to simplify the notation, from now on we will denote vector addition 
by the same symbol as the field addition ( '+' ) ,  and the scalar multiplication 
by the same symbol as the field multiplication ( " ' ) .  It should always be clear 
from the context what operation the symbols are referring to. 

A function f is called a linear function of a vector space V over a field F, 
if it has the following properties : 

v x, Y E V : f (x + y) = f (x) + f (y ) 

V a E F, V x E V :  f (ax) = a f (x) . 

(2 . 1 8) 
(2 . 19) 

The linear functions of a vector space can be represented by a matrix multi­
plication on the coordinates of the vectors. A function f is a linear function 
of the vector space GF(p t iff there exists a matrix M such that 

co (f(x)) = M . x, V x E GF (pt . (2 .20) 
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2. 1 .3 Fields with a Finite Number of Elements 

A finite field is a field with a finite number of elements . The number of 
elements in the set is called the order of the field. A field with order m exists 
iff m is a prime power, i.e. m = pn for some integer n and with p a prime 
integer. p is called the characteristic of the finite field . 

Fields of the same order are isomorphic: they display exactly the same 
algebraic structure differing only in the representation of the elements. In 
other words, for each prime power there is exactly one finite field, denoted 
by GF(pn ) .  From now on, we will only consider fields with a finite number of 
elements. 

Perhaps the most intuitive examples of finite fields are the fields of prime 
order p. The elements of a finite field GF(p) can be represented by the integers 
0, 1 ,  . . .  , p - 1 .  The two operations of the field are then 'integer addition 
modulo p' and 'integer multiplication modulo p ' .  

For finite fields with an order that i s  not prime, the operations addition 
and multiplication cannot be represented by addition and multiplication of 
integers modulo a number . Instead, slightly more complex representations 
must be introduced. Finite fields GF(pn) with n > 1 can be represented in 
several ways . The representation of GF(pn ) by means of polynomials over 
GF(p ) is quite popular and is the one we have adopted in Rijndael and its 
predecessors. In the next sections , we explain this representation. 

2. 1.4 Polynomials over a Field 

A polynomial over a field F is an expression of the form 

b(x) = bn_Ixn-1  + bn_2xn-2 + . . . + b2x2 + blx + ba , ( 2 . 2 1 )  

x being called the indeterminate of  the polynomial, and the b i  E F the 
coefficients. 

We will consider polynomials as abstract entities only, which are never 
evaluated. Because the sum is never evaluated, we always use the symbol '+ '  
in polynomials, even if  they are defined over a field with characteristic 2 .  

The degree of a polynomial equals R if  bj = 0 ,  Vj > R, and R is  the smallest 
number with this property. The set of polynomials over a field F is denoted 
by F[x] . The set of polynomials over a field F, which have a degree below R, 
is denoted by F[x] l e .  

In  computer memory, the polynomials in  F[x] l e  with F a finite field can 
be stored efficiently by storing the R coefficients as a string. 
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Example 2. 1 . 5. Let the field F be GF(2), andlet £ = 8. The polynomials can 
conveniently be stored as 8-bit values, or bytes : 

(2 .22) 

Strings of bits are often abbreviated using the hexadecimal notation. 

Example 2. 1 . 6. The polynomial in GF(2) l s  

corresponds to  the bit string 01010 1 1 1 ,  or 5 7  in  hexadecimal notation. 

2 . 1 . 5  Operations on Polynomials 

We define the following operations on polynomials. 

Addition. Summing of polynomials consists of summing the coefficients 
with equal powers of x, where the summing of the coefficients occurs in the 
underlying field F: 

c(x) = a(x) + b(x) {:} Ci = ai + bi , 0 � i < n. (2 .23) 

The neutral element for the addition 0 is the polynomial with all coefficients 
equal to O. The inverse element of a polynomial can be found by replacing 
each coefficient by its inverse element in F. The degree of c( x) is at most the 
maximum of the degrees of a( x) and b( x) , hence the addition is closed. The 
structure < F[xl l e ,  + > is an Abelian group . 

Example 2. 1 . 7. Let F be the field GF(2) . The sum of the polynomials de­
noted by 57 and 83 is the polynomial denoted by D4, since: 

(x6 + x4 + x2 + X + 1) ffi (x7 + X + 1 )  
= x7 + x6 + x4 + x2 + ( 1  ffi l )x + ( 1  ffi 1 )  
= X 7 + x6 + x4 + x2 . 

In binary notation we have : 010101 1 1  ffi 1000001 1  = 1 1010100. Clearly, the 
addition can be implemented with the bitwise XOR instruction. 

Multiplication. Multiplication of polynomials is associative (2 .3) , commu­
tative (2 .4) and distributive (2 .7) with respect to addition of polynomials. 
There is a neutral element: the polynomial of degree 0 and with coefficient 
of xO equal to 1 .  In order to make the multiplication closed (2 .2 )  over F[xl l e ,  
we select a polynomial m(x) of  degree £, called the reduction polynomial. 
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The multiplication of two polynomials a(x) and b (x) is then defined as the 
algebraic product of the polynomials modulo the polynomial m(x) : 

c(x) = a(x) . b (x)  {:} c (x) == a(x) x b(x) (mod m(x) ) .  (2 .24) 

Hence, the structure < F[xl l e ,  + , ' > is a commutative ring. For special 
choices of the reduction polynomial m(x) , the structure becomes a field. 

Definition 2 . 1 . 5 .  A polynomial d(x) is irreducible over the field GF(p) 
iff there exist no two polynomials a (x) and b(x) with coefficients in GF (p) 
such that d(x) = a(x) x b(x) , where a(x) and b(x) are of degree > O .  

The inverse element for the multiplication can be  found by means o f  the 
extended Euclidean algorithm (see e.g. [68 , p. 81 ] ) . Let a(x) be the polynomial 
we want to find the inverse for. The extended Euclidean algorithm can then 
be used to find two polynomials b( x) and c( x) such that : 

a(x) x b(x) + m(x) x c(x) = gcd (a(x) , m(x) ) .  (2 .25) 

Here gcd (a(x) , m(x) ) denotes the greatest common divisor of the polynomials 
a(x) and m(x) , which is always equal to 1 iff m(x) is irreducible. Applying 
modular reduction to (2 .25) , we get : 

a(x) x b(x) == 1 (mod m(x) ) ,  (2 . 26) 

which means that b (  x) is the inverse element of a( x) for the definition of the 
multiplication ' . ' given in (2 .24) . 

Conclusion. Let F be the field GF(p) . With a suitable choice for the reduc­
tion polynomial, the structure < F[xl l n , + , ' > is a field with pn elements, 
usually denoted by GF(pn ) .  

2 . 1 . 6  Polynomials and Bytes 

According to (2 . 22) a byte can be considered as a polynomial with coefficients 
in GF(2) :  

(2 .27) 

(2 .28 ) 

The set of all possible byte values corresponds to the set of all polynomials 
with degree less than eight. Addition of bytes can be defined as addition of 
the corresponding polynomials . In order to define the multiplication, we need 
to select a reduction polynomial m(x) .  



16  2 .  Preliminaries 

Example 2. 1 . 8. In our representation for GF(28 ) ,  the product of the elements 
denoted by 57 and 83 is the element denoted by e i ,  since: 

and 

(x6 + x4 + x2 + X + 1) X (x7 + X + 1 )  
= (x13 + xl I + x9 + x8 + x7) E8 (x7 + x5 + x3 + x2 + x)  

E8 (x6 + X4 + x2 + X + 1 )  
= x13 + Xl I + x9 + x8 + x6 + x5 + x4 + x3 + 1 

(X13 + xl I + x9 + x8 + x6 + x5 + x4 + x3 + 1 )  

== x7 + x6 + 1 (mod x8 + X4 + x3 + X + 1 ) .  

As opposed t o  addition, there i s  no  simple equivalent processor instruction. 

2.1. 7 Polynomials and Columns 

2 . 2  Linear Codes 1 7  

Multiplication with a fixed polynomial. We work out in  more detail 
the multiplication with the fixed polynomial used in Rijndael. 

Let b( x) be the fixed polynomial with degree three: 

(2 .32)  

and let c(x) and d(x) be two variable polynomials with coefficients Ci and di , 
respectively (0 :::; i < 4) . We derive the matrix repr'esentation of the trans­
formation that takes as input the coefficients of polynomial c, and produces 
as output the coefficients of the polynomial d = b x c. We have: 

d = b ·  c 

:[): 
( bo + brx + b2x2 + b3x3 ) X (co + CIX + C2x2 + C3x3 ) 

== (do + d1x + d2x2 + d3x3 ) (mod X4 + 1 )  

(2 .33 )  

(2 .34) 

Working out the product and separating the conditions for different powers 
of x ,  we get : 

(2 .35) 

2.2 Linear Codes 

In this section we give a short introduction to the theory of linear codes . 
For a more detailed treatment, we refer the interested reader to the work of 
MacWilliams and Sloane [63] . In code theory textbooks , it is customary to 
write codewords as 1 x n matrices, or row vectors. We will follow that custom 
here. In further chapters, one-dimensional arrays will as often be denoted as 
n x 1 matrices, or column vectors. 

2.2.1 Definitions 

The Hamming weight of a codeword is defined as follows. 

Definition 2.2.1. The Hamming weight Wh (X) of a vector x is the number 
of nonzero components of the vector x.  

Based on the definition of  Hamming weight, we can define the Hamming 
distance between two vectors. 
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Definition 2 .2 .2 .  The Hamming distllrlCe between two vectors x and y is 
Wh (x - y) ) which is equal to the Hamming weight of the difference of the two 
vectors. 

N ow we are ready to define linear codes. 

Definition 2 .2 .3 .  A linear [n, k, d) code over GF(2P )  is a k-dimensional sub­
space of the vector space GF(2Pt)  where any two different vectors of the sub­
space have a Hamming distance of at least d (and d is the largest number 
with this property) . 

The distance d of a linear code equals the minimum weight of a non-zero 
codeword in the code. A linear code can be described by each of the two 
following matrices: 

1. A generator matrix G for an [n , k, d) code C is a k x n matrix whose rows 
form a vector space basis for C (only generator matrices of full rank are 
considered) . Since the choice of a basis in a vector space is not unique, a 
code has many different generator matrices that can be reduced to one 
another by performing elementary row operations. The echelon form of 
the generator matrix is the following: 

Ge = [ I k x k  Ak x (n-k) J ' 
where I k x k  is the k x k identity matrix. 

(2 .36) 

2 .  A parity-check matrix H for an [n, k , d) code C is an (n - k) x k matrix 
with the property that a vector x is a codeword of C iff 

(2 .37) 

If G is a generator matrix and H a parity-check matrix of the same code, then 

(2 .38) 

lVloreover, if G = [ I C) is a generator matrix of a code, then H = [_CT I J is a 

parity-check matrix of the same code. 

The dual code C-L of a code C is defined as the set of vectors that are 

orthogonal to all the vectors of C: 

C-L = {x I xyT = 0 ,  'v' y E C} .  (2 .39) 

It follows that a parity-check matrix of C is a generator matrix of C-L and 

vice versa. 
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2.2 .2 MDS codes 

The theory of linear codes addresses the problems of determining the distance 
of a linear code and the construction of linear codes with a given distance. 
We review a few well-known results. 

The Singleton bound gives an upper bound for the distance of a code with 
given dimensions. 

Theorem 2 .2 . 1  (The Singleton bound) . If C 1,S an [n, k, d) code) then 
d ::; n - k + 1 . 

A code that meets the Singleton bound, is called a maximal distance sepa­
rable (MDS) code .  The following theorems relate the distance of a code to 
properties of the generator matrix G.  

Theorem 2 .2 .2 .  A linear code C has distance d iff every d - 1 columns of 
the parity check matrix H are linearly independent and there exists some set 
of d columns that are linearly dependent. 

By definition, an MDS-code has distance n - k + 1. Hence, every set of n - k 
columns of the parity-check matrix are linearly independent . This property 
can be translated to a requirement for the matrix A: 

Theorem 2 .2 .3  ( [63] ) .  An [n, k, d) code with generator matrix 

G = [ I k x k  Ak x (n-k) J ' 
is an MDS code iff every square submatrix of A is nonsingular. 

A well-known class of MDS codes is formed by the Reed-Solomon codes , for 
which efficient construction algorithms are known. 

2 .3  Boolean Functions 

The smallest finite field has an order of 2: GF(2) . Its two elements are denoted 
by 0 and 1 .  Its addition is the integer addition modulo 2 and its multiplication 
is the integer multiplication modulo 2. Variables that range over GF(2) are 
called Boolean variables, or bits for short. The addition of 2 bits corresponds 
with the Boolean operation exclusive or, denoted by XOR. The multiplica­
tion of 2 bits corresponds to the Boolean operation AND . The operation of 
changing the value of a bit is called complementation. 

A vector whose coordinates are bits is called a Boolean vector. The oper­
ation of changing the value of all bits of a Boolean vector is called comple­
mentation. 
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If we have two Boolean vectors a and b of the same dimension, we can apply 
the following operations : 

1 .  Bitwise XOR: results in a vector whose bits consist of the XOR of the 
corresponding bits of a and b.  

2 .  Bitwise AND: results in a vector whose bits consist of  the AND of the 
corresponding bits of a and b.  

A function b = ¢( a) that maps a Boolean vector to another Boolean 
vector is called a Boolean function: 

¢ : GF(2)n ---t GF(2)m : a f--t b = ¢( a) ,  (2 .40) 

where b is called the output Boolean vector and a the input Boolean vector. 
This Boolean function has n input bits and m output bits. 

A binary Boolean function b = f (a) is a Boolean function with a single 
output bit , in other words m = 1 :  

f : GF(2t ---t GF(2) : a f--t b = f (a) ,  (2 .41)  

where b is  called the output bit . Each bit of the output of a Boolean function 
is itself a binary Boolean function of the input vector. These functions are 
called the component binary Boolean functions of the Boolean function. 

A Boolean function can be specified by providing the output value for the 
2n possible values of the input Boolean vector. A Boolean function with the 
same number of input bits as output bits can be considered as operating on 
an n-bit state. We call such a function a Boolean transformation. A Boolean 
transformation is called invertible if it maps all input states to different output 
states . An invertible Boolean transformation is called a Boolean permutation. 

2 .3 . 1  Bundle Partitions 

In several instances it is useful to see the bits of a state as being partitioned 
into a number of subsets, called bundles. Boolean transformations operating 
on a state can be expressed in terms of these bundles rather than in terms 
of the individual bits of the state . In the context of this book we restrict 
ourselves to bundle partitions that divide the state bits into a number of 
equally sized bundles. 

Consider an nb-bit state a consisting of bits ai where i E I. I is called the 
index space. In its simplest form, the index space is just equal to { I ,  . . .  , nb } .  
However, for clarity the bits may be  indexed in  another way to  ease specifica­
tions. A bundling of the state bits may be reflected by having an index with 
two components : one component indicating the bundle position within the 
state, and one component indicating the bit position within the bundle. In 
t.h i "  rpnrp�pnt.;:}t,inn n. r "  "\ wnllld m ean the state bit in bundle i at bit Dosition 
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j within that bundle. The value of the bundle itself can be indicated by ai . On 
some occasions , even the bundle index can be decomposed. For example, in 
Rijndael the bundles consist of bytes that are arranged in a two-dimensional 
array with the byte index composed of a column index and a row index. 

Examples of bundles are the 8-bit bytes and the 32-bit columns in Rijndael. 
The non-linear steps in the round transformations of the AES finalist Serpent 
[3] operate on 4-bit bundles . The non-linear step in the round transformation 
of 3-Way [20] and BaseKing [23] operate on 3-bit b�ndles. The bundles can 
be considered as representations of elements in some group, ring or field. 
Examples are the integers modulo 2m or elements of GF(2m ) .  In this way, 
steps of the round transformation, or even the full round transformation can 
be expressed in terms of operations in these mathematical structures. 

2 .3 .2  Transpositions 

A transposition is a Boolean permutation that only moves the positions of 
bits of the state without affecting their value. For a transposition b = n ( a) 
we have: 

bi = ap(i) , (2 .42) 

where p(  i )  is a permutation over the index space. 

A bundle transposition is a transposition that changes the positions of 
the bundles but leaves the positions of the bits within the bundles intact. 
This can be expressed as: 

b (i ,j ) = a(p(i) ,j) '  (2 .43) 

An example is shown in Fig. 2 . 1 .  Figure 2.2 shows the pictogram that we will 
use to represent a bundle transposition in this book. 

Fig. 2 . 1 .  Example of a bundle transposition. 

I I � I I 
Fig. 2 . 2 .  Pictogram for a bundle transposition. 
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2 .3 .3  Bricklayer Functions 

A bricklayer function is a function that can be decomposed into a number 
of Boolean functions operating independently on subsets of bits of the input 
vector . These subsets form a partition of the bits of the input vector. A 
bricklayer function can be considered as the parallel application of a number 
of Boolean functions operating on smaller inputs. If non-linear, these Boolean 
functions are called S-boxes. If linear, we use the term D-box, where D stands 
for diffusion. 

A bricklayer function operating on a state is called a bricklayer transfor­
mation. As a bricklayer transformation operates on a number of subsets of the 
state independently, it defines a bundle partition. The component transforma­
tions of the bricklayer transformation operate independently on a number of 
bundles. A graphical illustration is given in Fig. 2 .3 .  An invertible bricklayer 
transformation is called a bricklayer permutation. For a bricklayer transfor­
mation to be invertible, all of its S-boxes (or D-boxes) must be permutations. 
The pictogram that we will use is shown in Fig. 2 .4 .  

For a bricklayer transformation b = ¢( a) we have: 

(2 .44) 

for all values of i . If the bundles within a and b are represented by ai and bi ,  
respectively, this becomes: 

(2 .45)  

Fig. 2 . 3 .  Example o f  a bricklayer transformation. 

DDDDDDDDD 
Fig. 2 .4 .  Pictogram for a bricklayer transformation. 

2.3 .4 Iterative Boolean Transformations 

A Boolean vector can be transformed iteratively by applying a sequence of 
Boolean transformations. one after the other. Such a seauence is referred to 
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as an iterative Boolean transformation. If the individual Boolean transfor­
mations are denoted with p(i), an iterative Boolean transformation is of the 
form: 

(2 .46) 

A schematic illustration is given in Fig. 2 .5 .  We have b = tJ( d) , where 
d = a(O) , b = a(m) and a(i) = p(i) (a(i- l)) .  The value of a(i) is called the 
intermediate state. An iterative Boolean transformation that is a sequence of 
Boolean permutations is an iterative Boolean permutation. 

Fig. 2 . 5 .  Iterative Boolean transformation. 

2.4 Block Ciphers 

A block cipher transforms plaintext blocks of a fixed length nb to ciphertext 
blocks of the same length under the influence of a cipher key k .  More precisely, 
a block cipher is a set of Boolean permutations operating on nb-bit vectors. 
This set contains a Boolean permutation for each value of the cipher key k. In 
this book we only consider block ciphers in which the cipher key is a Boolean 
vector. If the number of bits in the cipher key is denoted by nk , a block cipher 
consists of 2nk Boolean permutations. 

The operation of transforming a plaintext block into a ciphertext block is 
called encryption, and the operation of transforming a ciphertext block into 
a plaintext block is called decryption. 

Usually, block ciphers are specified by an encryption algorithm, being 
the sequence of transformations to be applied to the plaintext to obtain 
the ciphertext. These transformations are operations with a relatively simple 
description. The resulting Boolean permutation depends on the cipher key 
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by the fact that key material, computed froin the cipher key, is used in the 
transformations . 
For a block cipher to be up to its task, it has to fulfil two requirements: 

1 . Efficiency. Given the value of the cipher key, applying the corresponding 
Boolean permutation, or its inverse, is efficient , preferably on a wide range 
of platforms. 

2 .  Security. It must be impossible to exploit knowledge of the internal 
structure of the cipher in cryptographic attacks. 

All block ciphers of any significance satisfy these requirements by itera­
tively applying Boolean permutations that are relatively simple to describe.  

2.4. 1 Iterative Block Ciphers 

In an iterative block cipher, the Boolean permutations are iterative. The block 
cipher is defined as the application of a number of key-dependent Boolean 
permutations. The Boolean permutations are called the round transforma­
tions of the block cipher. Every application of a round transformation is 
called a round. 

Example 2.4 . 1 . The DES has 16 rounds . Since every round uses the same 
round transformation, we say the DES has only one round transformation. 

We denote the number of rounds by r. We have: 

(2 .47) 

In this expression, p(i) is called the ith round of the block cipher and k(i) is 
called the ith round key. 

The round keys are computed from the cipher key. Usually, this is specified 
with an algorithm. The algorithm that describes how to derive the round keys 
from the cipher key is called the key schedule. The concatenation of all round 
keys is called the expanded key, denoted by K:  

(2 .48) 

The length of the expanded key is denoted by nK . The iterative block ci­
pher model is illustrated in Fig. 2 .6 .  Almost all block ciphers known can be 
modelled this way. There is however a large variety in round transformations 
and key schedules. An iterative block cipher in which all rounds (with the 
exception of the initial or final round) use the same round transformation is 
called an iterated block cipher. 
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k 

Fig. 2 . 6 .  Iterative block cipher with three rounds. 

2 .4 .2 Key-Alternating Block Ciphers 

Rijndael belongs to a class of block ciphers in which the round key is ap­
plied in a particularly simple way: the key-alternating block ciphers. A key­
alternating block cipher is an iterative block cipher with the following prop­
erties: 

1. Alternation. The cipher is defined as the alternated application of key­
independent round transformations and key additions. The first round 
key is added before the first round and the last round key is added after 
the last round. 

2 .  Simple key addition. The round keys are added to the state by means 
of a simple XOR A key addition is denoted by a rk] .  

We have: 

(2 .49) 

A graphical illustration is given in Fig. 2 . 7. 

Key-alternating block ciphers are a class of block ciphers that lend them­
selves to analysis with respect to the resistance against cryptanalysis. This 
will become clear in Chaps. 7-9 .  A special class of key-alternating block ci­
phers are the key-iterated block ciphers. In this class, all rounds (except maybe 
the first or the last) of the cipher use the same round transformation. We 
have: 

(2 .50)  

In this case , p is  called the round transformation of the block cipher . The 
relations between the different classes of block ciphers that we define here 
are shown in Fig. 2 . 8 .  
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k 

Fig. 2 . 7. Key-alternating block cipher with two rounds. 

Key-iterated block ciphers lend themselves to efficient implementations. 
In dedicated hardware implementations , one can hard-wire the round trans­
formation and the key addition. The block cipher can be executed by simply 
iterating the round transformation alternated with the right round keys. In 
software implementations, the program needs to code only the one round 
transformation in a loop and the cipher can be executed by executing this 
loop the required number of times . In practice, for performance reasons, block 
ciphers will often be implemented by implementing every round separately 
(so-called loop unrolling) . In these implementations , it is l�ss important 

.
to 

have identical rounds. Nevertheless, the most-used block cIphers all consIst 
of a number of identical rounds. Some other advantages of the key-iterated 
structure are discussed in Chap.  5 .  

iterated 
block ciphers key-iterated 

block ciphers 

iterative block ciphers 

Fig. 2 . 8 .  Block cipher taxonomy. 
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2 .5 Block Cipher Modes of Operation 

A block cipher is a very simple cryptographic primitive that can convert a 
plaintext block to a ciphertext block and vice versa under a given cipher 
key. In order to use a cipher to protect the confidentiality or integrity of long 
messages, it must be specified how the cipher is used. These specifications are 
the so-called modes of operation of a block cipher. In the following sections, 
we give an overview of the most-widely applied mode of operation. Modes of 
encryption are standardized in [43] , the use of a block cipher for protecting 
data integrity is standardized in [42] and cryptographic hashing based on a 
block cipher is standardized in [44] . 

2 .5 . 1  Block Encryption Modes 

In the block encryption modes , the block cipher is used to transform plaintext 
blocks into ciphertext blocks and vice versa. The message must be split up 
into blocks that fit the block length of the cipher. The message can then be 
encrypted by applying the block cipher to all the blocks independently. The 
resulting cryptogram can be decrypted by applying the inverse of the block 
cipher to all the blocks independently. This is called the Electronic Code 
Book mode (ECB ) . 

A disadvantage of the ECB mode is that if the message has two blocks with 
the same value , so will the cryptogram. For this reason another mode has been 
proposed: the Cipher Block Chaining (CBC) mode. In this mode, the message 
blocks are randomised before applying the block cipher by performing an 
XOR with the ciphertext block corresponding with the previous message 
block. In CBC decryption, a message block is obtained by applying the inverse 
block cipher followed by an XOR with the previous cryptogram block. 

Both ECB and CBC modes have the disadvantage that the length of the 
message must be an integer multiple of the block length. If this is not the 
case, the last block must be padded, i .e .  bits must be appended so that it 
has the required length. This padding causes the cryptogram to be longer 
than the message itself, which may be a disadvantage is some applications . 
For messages that are larger than one block, padding may be avoided by 
the application of so-called ciphertext stealing [70 , p.  8 1] ' that adds some 
complexity to the treatment of the last message blocks. 

2 .5 .2  Key-Stream Generation Modes 

In so-called key-stream generation modes , the cipher is used to generate a key­
stream that is used for encryption by means of bitwise XOR with a message 
stream. Decryption corresponds with subtracting (XOR) the key-stream bits 
from the message. Hence, for correct decryption it suffices to generate the 
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same key-stream at both ends . It follows that at both ends the same function 
can be used for the generation of the key-stream and that the inverse cipher is 
not required to perform decryption. The feedback modes have the additional 
advantage that there is no need for padding the message and hence that the 
cryptogram has the same length as the message itself. 

In Output Feed Back mode (OFB) and Counter mode, the block cipher is 
just used as a synchronous key-stream sequence generator. In OFB mode, the 
key-stream generator is a finite state machine in which the state has the block 
length of the cipher and the state updating function consists of encryption 
with the block cipher for some secret value of the key. In Counter mode, 
the key-stream is the result of applying ECB encryption to a predictable 
sequence, e.g. an incrementing counter. 

In Cipher Feed Back mode (CFB) , the key-stream is a key-dependent 
function of the last nb bits of the ciphertext. This function consists of en­
cryption with the block cipher for some secret value of the key. Among the 
key-stream generation modes , the CFB mode has the advantage that decryp­
tion is correct from the moment that the last nb bits of the cryptogram have 
been correctly received. In other words, it has a self-synchronizing property. 
In the OFB and Counter modes , synchronization must be assured by external 
means. For a more thorough treatment of block cipher modes of operation 
for encryption, we refer to [68 , Sect . 7 .2 .2] . 

2 .5 .3 Message Authentication Modes 

Many applications do not require the protection of confidentiality of mes­
sages but rather the protection of their integrity. As encryption by itself does 
not provide message integrity, a dedicated algorithm must be used. For this 
purpose often a cryptographic checksum, requiring a secret key, is computed 
on a message. Such a cryptographic checksum is called a Message Authenti­
cation Code (MAC) . In general, the MAC is sent along with the message for 
the receiving entity to verify that the message has not been modified along 
the way. 

A MAC algorithm can be based on a block cipher. The most widespread 
way of using a block cipher as a MAC is called the CBC-MAC. in its simplest 
form it consists of applying a block cipher in CBC mode on a message and 
taking (part) of the last cryptogram block as the MAC. The generation of 
a MAC and its verification are very similar processes. The verification con­
sists of reconstructing the MAC from the message using the secret key and 
comparing it with the MAC received. Hence, similar to the key-stream gen­
eration modes of encryption, the CBC-MAC mode of a block cipher does not 
require decryption with the cipher. For a more �horough treatment of message 
authentication codes using a block cipher, we refer to [68, Sect . 9 .5 . 1] . 
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2 . 5 .4 Cryptographic Hashing 

In some applications, integrity of a message is obtained in two phases: first 
the message, that may have any length, is compressed to a short , fixed­
length message digest with a so-called cryptographic hash function, and sub­
sequently the message digest is authenticated. For some applications this 
hash function must guarantee that it is infeasible to find two messages that 
hash to the same message digest (collision resistant) . For other applications, 
it suffices that given a message, no other message can be found so that both 
hash to the same message digest (second-preimage resistant) . For yet other 
applications it suffices that given a message digest, no message can be found 
that hashes to that value (one-way or preimage resistant) . 

A block cipher can be used as the compression function of an iterated hash 
function by adopting the Davies-Meyer, Matyas-Meyer-Oseas or Miyaguchi­
Preneel mode (see [68] ) .  In these modes the length of the hash result (and 
also the chaining variable) is the block length. In the assumption that the 
underlying block cipher has no weaknesses, and with the current state of 
cryptanalysis and technology, a block length of 128 bits is considered sufficient 
to provide both variants of preimage resistance. If collision resistance is the 
goal , we advise the adoption of a block length of 256 bits . For a more thorough 
treatment of cryptographic hashing using a block cipher , we refer to [68, 
Sect . 9 .4 . 1] . 

2 .6  Conclusions 

In this chapter we have given a number of definitions and an introduction to 
mathematical concepts that are used throughout the book. 



3 .  Specification of Rij ndael 

In this chapter we specify the cipher structure and the building blocks of 
Rijndael. After explaining the difference between the Rijndael specifications 
and the AES standard, we specify the external interface to the ciphers. This is 
followed by the description of the Rijndael structure and the steps of its round 
transformation. Subsequently, we specify the number of rounds as a function 
of the block and key length, and describe the key schedule. We conclude this 
chapter with a treatment of algorithms for implementing decryption with 
Rijndael. This chapter is not intended as an implementation guideline. For 
implementation aspects, we refer to Chap .  4. 

3 . 1  Differences between Rijndael and the AES 

The only difference between Rijndael and the AES is the range of supported 
values for the block length and cipher key length. 

Rijndael is a block cipher with both a variable block length and a variable 
key length. The block length and the key length can be independently spec­
ified to any multiple of 32 bits, with a minimum of 128 bits and a maximum 
of 256 bits. It would be possible to define versions of Rijndael with a higher 
block length or key length, but currently there seems no need for it . 

The AES fixes the block length to 128 bits, and supports key lengths of 
128 ,  192 or 256 bits only. The extra block and key lengths in Rijndael were 
not evaluated in the AES selection process, and consequently they are not 
adopted in the current FIPS standard. 

3 .2  Input and Output for Encryption and Decryption 

The input and output of Rijndael are considered to be one-dimensional arrays 
of 8-bit bytes . For encryption the input is a plaintext block and a key, and the 
output is a ciphertext block. For decryption, the input is a ciphertext block 
and a key, and the output is a plaintext block. The round transformation of 
RiindaeL and its sUms . nnpr�.t.p on �.n i n tprrn pr1 i � t p  rDcm l t  ,... ", 1 1 ",,-l t- h A  n + � + �  
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The state can be pictured as a rectangular array of bytes, with four rows. 

The number of columns in the state is denoted by Nb and is equal to the 

block length divided by 32. Let the plaintext block be denoted by 

where Po denotes the first byte,and P4.Nb- l denotes the last byte of the plain­
text block. Similarly, a ciphertext block can be denoted by 

Let the state be denoted by 

ai,.j ,  0 ::;  i < 4, 0 ::; j < Nb · 

where ai ,j denotes the byte in row i and column j .  The input bytes are 

mapped onto the state bytes in the order ao ,o , al , O , a2,O , a3,O , aO , l , al , l , a2 , 1 , 

a3 , 1 , . . .  . For encryption, the input is a plaintext block and the mapping is 

ai,j = Pi+4j , 0 ::;  i < 4, 0  ::; j < Nb · (3 . 1 )  

For decryption, the input is  a ciphertext block and the mapping is 

(3 .2) 

At the end of the encryption, the ciphertext is extracted from the state by 
taking the state bytes in the same order: 

(3 .3) 

At the end of decryption, the plaintext block is extracted from the state 
according to 

Pi = ai mod 4,i/4 , 0 ::; i < 4Nb · (3 .4) 

Similarly, the key is mapped onto a two-dimensional cipher key. The cipher 

key is pictured as a rectangular array with four rows similar to the stat�. The 

number of columns of the cipher key is denoted by Nk and is equal to the 

key length divided by 32. The bytes of the key are mapped onto the bytes of 

the cipher key in the order: ko,o , kl ,o , k2,o , k3,o , kO , I , kl , l , k2, 1 , k3 , 1 , k4, 1 . . . .  

If we denote the key by: 

then 

(3 .5 ) 

The representation of the state and cipher key and the mappings plaintext­
�t.�.t.f" Rnc1 kf"v-c:i nhpr kpv are illustrated in Fig. 3 . 1 .  
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po P4 Ps PI2 ko k4 ks k12 kI6  k20 

PI P5 pg PI3 kl k5 kg kI3 k17 k2 I  

P2 P6 PIO PI4 k2 k6 klO kI4 klS k22 

P3 P7 Pl l  PI5 k3 k7 kl l  kI5  kI9 k23 

Fig. 3 . 1 .  State and cipher key layout for the case Nb = 4 and Nk = 6 .  

3 .3  Structure of Rijndael 

Rijndael is a key-iterated block cipher: it consists of the repeated application 
of a round transformation on the state. The number of rounds is denoted by 
N r and depends on the block length and the key length. 

Note that in this chapter, contrary to the definitions (2 .47)-(2 .50) , the 
key addition is included in the round transformation. This is done in order 
to make the description in this chapter consistent with the description in the 
FIPS standard. 

Following a suggestion of B .  Gladman, we changed the names of some 
steps with respect to the description given in our original AES submission. 
The new names are more consistent, and are also adopted in the FIPS stan­
dard. We made some further changes, all in order to make the description 
more clear and complete. No changes have been made to the block cipher 
itself. 

An encryption with Rijndael consists of an initial key addition, denoted 
by AddRoundKey, followed by N r - 1  applications of the transformation Round, 
and finally one application of FinalRound. The initial key addition and every 
round take as input the State and a round key. The round key for round i 
is denoted by ExpandedKey [i] , and ExpandedKey [O] denotes the input of the 
initial key addition. The derivation of ExpandedKey from the CipherKey is 
denoted by KeyExpans ion. A high-level description of Rijndael in pseudo-C 
notation is shown in List. 3 . 1 .  

3 .4  The Round Transformation 

The round transformation is denoted Round, and is a sequence of four trans­
formations , called steps. This is shown in List . 3 . 2 .  The final round of the ci­
pher is slightly different . It is denoted FinalRound and also shown in List . 3 .2 .  
In the listings, the transformations (Round, SubBytes , ShiftRows , . . .  ) op­
erate on arrays to which pointers (Stat e , ExpandedKey ri j )  are provided. It is 
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Rijndael (State , CipherKey) 

{ 
KeyExpansion (CipherKey , ExpandedKey) ; 
AddRoundKey (State , ExpandedKey[Oj ) ; 
f or (i = 1 ;  i < Nr ; i + + )  Round(State , ExpandedKey[ij ) ;  

FinalRound (State , ExpandedKey[Nrj ) ; 

} 
List . 3 . 1 .  High-level algorithm for encryption with Rijndael.  

easy to verify that the transformation FinalRound is equal to the transforma­
tion Round, but with the MixColumns step removed. The steps are specified 
in the following subsections, together with the design criteria we used for 
each step. Besides the step-specific criteria, we also applied the following two 
general design criteria: 

1. Invertibility. The structure of the Rijndael round transformation re­
quires that all steps be invertible. 

2. Simplicity. As explained in Chap. 5 ,  we prefer simple components over 
complex ones . 

Round (State , ExpandedKey[ij ) 

{ 
SubBytes (State) ; 
ShiftRows (State) ; 
MixColumns ( State ) ;  
AddRoundKey (State , ExpandedKey[ij ) ; 

} 
FinalRound (State , ExpandedKey [N r ] ) 

{ 
SubBytes ( State) ; 
ShiftRows (State) ; 
AddRoundKey (State , ExpandedKey[Nr ] ) ; 

} 
List . 3 .2 .  The Rij ndael round transformation. 

3.4 .1  The SubBytes  Step 

The SubByte s  step is the only non-linear transformation of the cipher. 
SubBytes  is a bricklayer permutation consisting of an S-box applied to the 
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bytes of the state. We denote the particular S-box being used in Rijndael 
by SRD . Figure 3 .2  illustrates the effect of the SubBytes  step on the state. 
Figure 3.3 shows the pictograms that we will use to represent SubBytes  and 
its inverse. 

SRD � 
ao,o aO , 1  ai aO,3 bo,o 

" 
bO , 1  �2 bO ,3 

� 
bl ,2] al,O al , l  al ,2 al ,3 bl ,o bl , l  bl ,3 

a2 ,O  a2 , 1  a2 , 2  a2 ,3 b2 ,o b2 , 1 b2 , 2  b2,3 

a3 ,O a3 , 1  a3 ,2  a3 ,3 b3 ,o b3 , 1  b3 ,2 b3 ,3 

Fig. 3 . 2 .  SubBytes acts on the individual bytes of the state. 

I> I> I> I> 
I> I> I> I> 
I> I> I> I> 
I> I> I> I> 

<J <J <J <J 
<J <J <J <J 
<J <J <J <J 
<J <J <J <J 

Fig. 3 . 3 .  The pictograms for SubBytes (left) and InvSubBytes (right). 

Design criteria for SRD . We have applied the following design criteria for 
SRD , appearing in order of importance: 

1 .  Non-linearity. 

a) Correlation. The maximum input-output correlation amplitude 
must be as small as possible. 

b) Difference propagation probability. The maximum difference 
propagation probability must be as small as possible. 

2. Algebraic complexity. The algebraic expression of SRD in GF(28 ) has 
to be complex. 

Only one S-box is used for all byte positions . This is certainly not a necessity: 
SubBytes  could as easily be defined with different S-boxes for every byte. This 
issue is discussed in Chap.  5 . The non-linearity criteria are inspired by linear 
and differential cryptanalysis . Chap. 9 discusses this in depth. 

Selection of SRD ' In [74] , K. Nyberg gives several construction methods for 
S-boxes with good non-linearity. For invertible S-boxes operating on bytes , 
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the maximum correlation amplitude can be rnade as low as 2-3 , and the max­

imum difference propagation probability can be as low as 2-6 . We decided to 

choose - from the alternatives described in [74] - the S-box that is defined 

by the following function in G F (28 ) : 

(3 .6)  

We use the polynomial representation of GF (28 ) defined in Sect . 2 . 1 .6 :  the 
elements of GF(28 ) are considered as polynomials having a degree smaller 
than eight, with coefficients in the finite field GF(2) . Multiplication is done 
modulo the irreducible polynomial m(x) = x8 + X4 + x3 + X + 1, and the 
multiplicative inverse a-I is defined accordingly. The value 00 is mapped 
onto itself. By definition, 9 has a very simple algebraic expression. This could 
allow algebraic manipulations that can be used to mount attacks such as in­
terpolation attacks. Therefore, we built the S-box as the sequence of 9 and an 
invertible affine transformation 1. This affine transformation has no impact 
on the non-linearity properties, but if properly chosen, allows SRD to have a 
complex algebraic expression. We have chosen an affine transformation that 
has a very simple description per se, but a complicated algebraic expression 
if combined with the transformation g .  Because this still leaves many possi­
bilities for the choice of 1 , we additionally imposed the restriction that SRD 
should have no fixed points and no opposite fixed points: 

SRD [a] EB a f 00,  'Va 
SRD [a] EB a f FF, 'Va. 

(3 .7) 

(3 .8) 

Note that we are not aware of any attacks that would exploit the existence 
of (opposite) fixed points. 

The affine transformation 1 is defined by: 

b = l (a) 
1): 

b7 1 1 1 1 1 0 0 0 a7 0 
b6 0 1  1 1 1 1 0 0 a6 1 
b5 0 0 1  1 1 1 1 0 a5 1 
b4 0 0 0 1 1 1 1  1 a4 0 (3 .9) 

1 0 0 0  1 1 1 1 
x EB 0 b3 a3 

b2 1 1 0 0  0 1 1 1 a2 0 
b1 1 1 1 0 0 0  1 1 a1 1 
bo 1 1 1 1 0 0 0  1 ao 1 

The affine transformation 1 can also be described as a polynomial multiplica­

tion, followed by the XOR with a constant. This is explained in Appendix C,  
where also a tabular description of  SRD i s  given. 

3.4 The Round Transformation 3 7  

Inverse operation. The inverse operation of SubBytes  is  called 
InvSubBytes .  It is a bricklayer permutation consisting of the inverse S-box 
SRD - 1  applied to the bytes of the state. The inverse S-box SRD -1 is obtained 
by applying the inverse of the affine transformation (3 .9)  followed by taking 
the multiplicative inverse in GF (28 ) . The inverse of (3 .9)  is specified by: 

X7 0 1 0 1 0 0 1 0  Y7 0 
X6 0 0 1 0 1 0 0 1  Y6 0 
X5 1 0 0 1 0 1 0 0  Y5 0 
X4 0 1 0 0 1 0 1 0  Y4 0 (3 . 10) 

0 0 1 0 0 1 0 1  x EB 
0 X3 Y3 

X2 1 0 0 1 0 0 1 0  Y2 1 Xl 0 1 0 0 1 0 0 1  Y1 0 
Xo 1 0 1 0 0 1 0 0 Yo 1 

Tabular descriptions of SRD -1 and 1-1 are given in Appendix C.  

3.4 .2 The ShiftRows Step 

The ShiftRows step is a byte transposition that cyclically shifts the rows of 
the state over different offsets .  Row 0 is shifted over Co bytes, row l over 
C1 bytes, row 2 over C2 bytes and row 3 over C3 bytes, so that the byte at 
position j in row i moves to position (j - Ci ) mod Nb . The shift offsets Co ,  
C1 , C2 and C3 depend on the value of Nb . 

Design criteria for the offsets. The design criteria for the offsets are the 
following: 

1. Diffusion optimal. The four offsets have to be different (see Defini­
tion 9 .4. 1 ) .  

2 . Other diffusion effects.  The resistance against truncated differential 
attacks (see Chap. 10) and saturation attacks has to be maximized. 

Diffusion optimality is important in providing resistance against differential 
and linear cryptanalysis. The other diffusion effects are only relevant when 
the block length is larger than 128 bits. 

Selection of the offsets. The simplicity criterion dictates that one offset is 
taken equal to O. In fact , for a block length of 128 bits , the offsets have to be 
0, 1, 2 and 3 .  The assignment of offsets to rows is arbitrary. For block lengths 
larger than 128 bit , there are more possibilities. Detailed studies of truncated 
differential attacks and saturation attacks on reduced versions of Rijndael 
show that not all choices are equivalent . For certain choices, the attacks can 
be extended with one round. Among the choices that are best with respect 
to saturation and truncated differential attacks , we picked the simplest ones . 
1'h p rl i fFprpnt. V!OI l l 1 PC:: !OI rp C::rlPl"'ih t:>rl i n  'T'", h l o  Q 1 R; rr" ... " Q A ;ll " n f. � n f.�n f. h � �.I+� �f. 
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of the ShiftRows step on the state. Figure 3 .5  shows the pictograms for 
ShiftRows and its inverse. 

Table 3 . 1 .  ShiftRows : shift offsets for different block lengths. 

Nb Co C1 C2 C3 
4 0 1 2 3 
5 0 1 2 3 
6 0 1 2 3 
7 0 1 2 4 
8 0 1 3 4 

� 1 +++ 1 � 
II a b c d II a b c d II 

e f g h f g h e 

i j k l k l i j 

m n 0 P P m n 0 

Fig. 3 . 4. ShiftRows operates on the rows of the state. 

Fig. 3.5. Pictograms for ShiftRows (left) and InvShiftRows (right). 

Inverse operation. The inverse operation of ShiftRows is called 

InvShiftRows . It is a cyclic shift of the 3 bottom rows over Nb - Gl , Nb - G2 
and Nb - G3 bytes respectively so that the byte at position j in row i moves 

to position (j + Gi) mod Nb · 

3.4.3 The MixColumns Step 

The MixColumns step is a bricklayer permutation operating on the state col­
umn by column. 

I .  

i 
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Design criteria. The design criteria for the MixColumns step are the fol­
lowing: 

1 .  Dimensions. The transformation is a bricklayer transformation operat-
ing on 4-byte columns. 

2. Linearity. The transformation is preferably linear over GF(2) . 

3 .  Diffusion. The transformation has to have relevant diffusion power. 

4. Performance on 8-bit processors. The performance of the transfor­
mation on 8-bit processors has to be high. 

The criteria about linearity and diffusion are requirements imposed by the 
wide trail strategy (see Chap.  9) . The dimensions criterion of having columns 
consisting of 4 bytes is to make optimal use of 32-bit architectures in look-up 
table implementations (see Sect . 4 .2 ) . The performance on 8-bit processors 
is mentioned because MixColumns is the only step that good performance on 
8-bit processors is not trivial to obtain for .  

Selection. The diffusion and performance criteria have lead us  to  the follow­
ing choice for the definition of the D-box in MixColumns . The columns of the 
state are considered as polynomials over GF(28 ) and multiplied modulo x4 + 1  
with a fixed polynomial c ( x) . The criteria about invertibility, diffusion and 
performance impose conditions on the coefficients of c(x) . The performance 
criterion can be satisfied if the coefficients have simple values , such as 00, 01 , 02 , 03 , . . . .  Multiplication with the value 00 o r  01 implies no processing at 
all, multiplication with 02 can be implemented efficiently with a dedicated 
routine (see Sect . 4 . 1 . 1 )  and multiplication with 03 can be implemented as a 
multiplication with 02 plus an additional XOR operation with the operand. 
The diffusion criterion induces a more complicated condition on the coeffi­
cients of c( x) . We determined the coefficients in such a way that the branch 
number of MixColumns is five, i .e .  the maximum possible for a transforma­
tion with these dimensions. Further explanation of the branch number of a 
function and the relation to the diffusion power can be found in Sect . 9 . 3 .  

The polynomial c( x) i s  given by c(x) = 03 . x3 + 0 1 . x2 + 0 1 . x + 02 . (3 . 1 1 )  

This polynomial i s  coprime t o  x4 + 1 and therefore invertible. A s  described in 
Sect . 2 . 1 . 7, the modular multiplication with a fixed polynomial can be written 
as a matrix multiplication. Let b(x) = c(x) . a(x) (mod x4 + 1 ) .  Then [ bO ] [ 02 03 01 0 1 ] lao ] bl 01 02 03 01 al 

= x b2 01 01 02 03 a2 ' b3 03 01 01 02 a3 (3 . 12)  

Figure 3 .6 illustrates the effect of the MixColumns step on the state. Figure 3 .7 
shows the pictograms for MixCol umns and its inverse. 
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[ 2 3 1 1 1 1 2 3  1 
� 1 1 2 3  x · � 3 1 1 2 

ao,o aO , 1  aO,2 aO ,3 bo ,o bO , 1  bO ,2 bO ,3 

al ,O  al , l  al , 2  al ,3  h,o  bl , l  bl , 2  h ,3 

a2 ,O a2 , 1  a2 ,2 a2 ,3 b2 ,o b2 , 1  b2 ,2 b2 ,3 

a3 ,O a3 , 1  a3 ,2 a3,3 b3 , o bs , l  b3 ,2 b3 ,3 
=== = 

Fig. 3 . 6 .  MixColumns operates on the columns of the state. 

Fig. 3.7. Pictograms for MixColumns (left) and InvMixColumns (right). 

Inverse operation. The inverse operation of MixColumns is called 
InvMixColumns. It is similar to MixColumns . Every column is transformed 
by multiplying it with a fixed multiplication polynomial d( x) , defined by 

(03 · x3 + 0 1  . x2 + 0 1 · x + 02) . d(x) == 0 1  (mod x4 + 1 ) .  (3. 13) 

It is given by 

d( x) = OB . x3 + OD . x2 + 09 . x + OE. (3. 14) 

Written as a matrix multiplication, InvMixColumns transforms the columns 
in the following way: [�� ] _ [�� �� �� ��] x [::°:1 ] . b2 . 

- OD 09 OE OB 
b3 OB OD 09 OE 

3 .4.4 The Key Addition 

(3 . 15) 

The key addition is denoted AddRoundKey. In this transformation, the state 
is modified by combining it with a round key with the bitwise XOR opera­
tion. A round key is denoted by ExpandedKey [i] , 0 :::; i :::; Nr . The array of 
round keys ExpandedKey is derived from the cipher key by means of the key 
schedule (see Sect . 3.6) . The round key length is equal to the block length. 
The AddRoundKey transformation is illustrated in Fig. 3 .8 .  AddRoundKey is 
its own inverse. Figure 3 .9  shows the pictogram for AddRoundKey. 

I .  
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ao ,o aO , 1 aO,2 aO ,3 ko ,o kO , 1  kO ,2  kO ,3 bo , o  bO , 1  bO ,2  bO ,3 

al ,O al , l al , 2  al ,3 kl ,o kl , l  kl , 2  kl ,3 bl , o  h , l  bl , 2  bl ,3 

a2 ,O  a2 , 1  a2 ,2  a2 ,3 k2 ,O k2 , 1  k2 ,2 k2 ,3 b2 ,o  b2 , 1  b2 ,2 b2 ,3 

a3 ,O a3 , 1  a3 , 2  a3 ,3 k3 ,O k3 , 1  k3 ,2 k3 , 3  b3 , O  b's , l  b3 ,2 bs ,3 

Fig. 3 . 8 .  In AddRoundKey, the round key is added to the state with a bitwise XOR. 

Fig. 3 . 9 .  Pictogram for AddRoundKey. 

3 .5  The Number of Rounds 

The current state-of-the-art in cryptanalysis indicates that the resistance 
of iterative block ciphers against cryptanalytic attacks increases with the 
number of rounds. 

We have determined the number of rounds by considering the maximum 
number of rounds for which shortcut attacks (see Sect . 5 .5 . 1 )  have been found 
that are significantly more efficient than an exhaustive key search. Subse­
quently, we added a considerable security margin. For Rijndael with a block 
length and key length of 128 bits, no shortcut attacks had been found for re­
duced versions with more than six rounds . We added four rounds as a security 
margin. This is a conservative approach, because: 

1 .  Two rounds of Rijndael provide 'full diffusion' in the following sense : 
every state bit depends on all state bits two rounds ago, or a change in 
one state bit is likely to affect half of the state bits after two rounds. 
Adding four rounds can be seen as adding a 'full diffusion step ' at the 
beginning and at the end of the cipher. The high diffusion of the Rijndael 
round transformation is thanks to its uniform structure that operates on 
all state bits. For so-called Feistel ciphers, a round only operates on half 
of the state bits and full diffusion can at best be obtained after three 
rounds and in practice it typically takes four rounds or more. 

2. Generally, linear cryptanalysis, differential cryptanalysis and truncated 
differential attacks exploit a propagation trail through n rounds in order 
to attack n + 1 or n + 2 rounds. This is also the case for the saturation 
attack (see Sect. 10 .2)  that uses a four-round propagation structure to 
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attack six rounds. In this respect, adding four rounds actually doubles 
the number of rounds through which a propagation trail has to be found. 

For Rijndael versions with a longer key, the number of rounds was raised 
by one for every additional 32 bits in the cipher key. This was done for the 
following reasons: 

1. One of the main objectives is the absence of shortcut attacks, i .e .  attacks 
that are more efficient than an exhaustive key search. Since the workload 
of an exhaustive key search grows with the key length, shortcut attacks 
can afford to be less efficient for longer keys. 

2. (Partially) known-key and related-key attacks exploit the knowledge of 
cipher key bits or the ability to apply different cipher keys. If the ci­
pher key grows, the range of possibilities available to the cryptanalyst 
mcreases. 

The publications on the security of Rijndael with longer keys have shown that 
this strategy leads to an adequate security margin [31 ,  36 , 62] . For Rijndael 
versions with a higher block length, the number of rounds is raised by one 
for every additional 32 bits in the block length, for the following reasons: 

1 .  For a block length above 128 bits, it takes three rounds to realize that full 
diffusion, i .e .  the diffusion power of the round transformation, relative to 
the block length, diminishes with the block length. 

2. The larger block length causes the range of possible patterns that can 
be applied at the input/output of a sequence of rounds to increase. This 
additional flexibility may allow the extension of attacks by one or more 
rounds. 

. We have found that extensions of attacks by a single round are even hard 
to realize for the maximum block length of 256 bits. Therefore, this is a 
conservative margin. 

Table 3 . 2  lists the value of Nr as a function of Nb and Nk . For the AES , 
Nb is fixed to the value 4; Nr = 10 for 12S-bit keys (Nk = 4) , Nr = 12  for 
192-bit keys (Nk = 6) and Nr = 14 for 256-bit keys (Nk = 8) . 

Table 3 . 2 .  Number of rounds (Nr )  as a function of Nb (Nb = block length/32) and 

Nk (key length/32) . 

Nb 

Nk 4 5 6 7 8 

4 10 1 1  12 13  14 
5 1 1  1 1  1 2  1 3  14 
6 12 1 2  1 2  13  14 
7 13 13  13 13  14 
8 14 14 14 14 14 
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3 .6  Key Schedule 

The key schedule consists of two components: the key expansion and the 
round key selection. The key expansion specifies how ExpandedKey is derived 
from the cipher key. The total number of bits in ExpandedKey is equal to 
the block length multiplied by the number of rounds plus 1, since the cipher 
requires one round key for the initial key addition, and on� for each of the 
rounds. Please note that the ExpandedKey is always derived from the cipher 
key; it should never be specified directly. 

3 .6 .1  Design Criteria 

The key expansion has been chosen according to the following criteria: 

1. Efficiency. 

a) Working memory. It should be possible to execute the key schedule 
using a small amount of working memory. 

b) Performance. It should have a high performance on a wide range 
of processors. 

2 .  Symmetry elimination. It should use round constants to eliminate 
symmetries. 

3. Diffusion. It should have an efficient diffusion of cipher key differences 
into the expanded key, 

4. Non-linearity. It should exhibit enough non-linearity to prohibit the 
full determination of differences in the expanded key from cipher key 
differences only . 

For a more thorough treatment of the criteria underlying the design of the 
key schedule, we refer to Sect . 5 . S .  

3.6 .2  Selection 

In order to be efficient on 8-bit processors , a lightweight , byte-oriented ex­
pansion scheme has been adopted. The application of the non-linear SRD 
ensures the non-linearity of the scheme, without adding much in the way of 
temporary storage requirements on an 8-bit processor. 

During the key expansion the cipher key is expanded into an expanded 
key array, consisting of 4 rows and Nb (Nr + 1) columns. This array is here 
denoted by W[4] [Nb (Nr + 1)] . The round key of the ith round, ExpandedKey [i] , 
is given by the columns Nb . i to Nb . (i + 1 )  - 1 of W: 
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ExpandedKey [i] = 

W [ · ] [Nb . i] 1 1  W [ · ] [Nb . i + 1] 1 1 . . . I I  W [ · ] [Nb . (i + 1 )  - 1] ,  

0 :::; i :::; Nr · (3 . 16 )  

The key expansion function depends on the value of  Nk :  there i s  a version 
for Nk equal to or below 6, shown in List. 3.3 ,  and a version for Nk above 
6, shown in List . 3 .4 . In both versions of the key expansion, the first Nk 
columns of W are filled with the cipher key. The following columns are defined 
recursively in terms of previously defined columns. The recursion uses the 
bytes of the previous column, the bytes of the column Nk positions earlier, 
and round constants RC [j ] . 

The recursion function depends on the position of the column. If i is not 
a multiple of Nk , column i is the bitwise XOR of columns i - Nk and column 
i - 1 .  Otherwise, column i is the bitwise XOR of column i - Nk and a non­
linear function of column i - 1 .  For cipher key length values Nk > 6, this is 
also the case if i mod Nk = 4. The non-linear function is realized by means of 
the application of SRD to the four bytes of the column, an additional cyclic 
rotation of the bytes within the column and the addition of a round constant 
(for elimination of symmetry) . The round constants are independent of N k ,  
and defined by a recursion rule in  GF (28 ) : 

RC [l ] = xO (i .e .  01 )  
RC [2] = x (i .e . 02) 
RC [j ] = x ·  RC [j - 1] = xj- l , j > 2 .  

(3 . 17) 

(3 . 18) 

(3 . 19 )  

The key expansion process and the round key selection are illustrated in 

Fig. 3 . 10 .  

ko kl k2 k3 k4 k5 k6 k7 ks kg klo kl l kI2 k 13 kI4 k15  . . .  

Round key 0 Round key 1 Round key 2 
k6n = k6n-6 EEl f(k6n- l )  

ki = ki-6 EEl ki- I ,  i -=/=- 6n 

Fig. 3 . 1 0 .  Key expansion and round key selection for Nb = 4 and Nk = 6 .  

3 . 7  Decryption 

KeyExpansion (byte K [4] [Nk] ,  byte W[4] [Nb (Nr + 1 ) ] ) 

{ 
for (j = 0 ;  j < Nk ; j + +) 

for (i = 0 ; i < 4 ;  i++)  W[i] [j] 
f or (j = Nk ; j < Nb (Nr + l) ;  j ++) 

{ 
if (j mod Nk == 0 )  

{ 

1* for Nk ::; 6 *1 

K[i] [j] ; 

W[O] [j] = W[O] [j - Nk] EEl S[W[I ] [j - 1] ]  EEl RC [j/Nk] ; 
for (i = l ; i < 4 ; i++)  

else 

} } 

} 
{ 

W[i] [j] = W[i] [j - Nk] EEl S[W[i + 1 mod 4] [j - 1] ] ; 

for (i = 0 ;  i < 4 ;  i++)  
W[i] U] = W[i] [j - Nk ]  EEl W[i] [j - 1] ; 

} 

List . 3 .3 .  The key expansion for Nk ::; 6 .  

3 . 7  Decryption 
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The algorithm for decryption can be found in a straightforward way by using 
the inverses of the steps InvSubBytes , InvShiftRows , InvMixColumns and 
AddRoundKey, and reversing their order . We call the resulting algorithm the 
straightforward decryption algorithm. In this algorithm, not only so the steps 
themselves differ from those used in encryption, but also the sequence in 
which the steps occur is different . For implementation reasons, it is often 
convenient that the only non-linear step (SubBytes) is the first step of the 
round transformation (see Chap .  4) . This aspect has been anticipated in 
the design. The structure of Rijndael is such that it is possible to define an 
equivalent algorithm for decryption in which the sequence of steps is equal to 
that for encryption, with the steps replaced by their inverses and a change in 
the key schedule. We illustrate this in Sect . 3 .7 . 1-3 .7. 3  for a reduced version 
of Rijndael , that consists of only one round followed by the final round. 
Note that this identity in structure differs from the identity of components 
and structure (d. Sect . 5 .3 .5 ) that is found in most ciphers with the Feistel 
structure, but also in IDEA [56] . 

3 .7 .1  Decryption for a Two-Round Rijndael Variant 

The straightforward decryption algorithm with a two-round Rijndael vari­
ant consists of the inverse of FinalRound. followed hv the inver�p nf Rcmn n  
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KeyExpansion (byte K [4] [Nk] ,  byte W[4][Nb (Nr + 1 ) ] )  
1 *  f or Nk > 6 *1 

{ 
for (j = 0 ;  j < N k ;  j + + ) 

for (i = 0 ;  i < 4 ;  ++) W[i] [j] = K [i] [j] ;  
for (j = Nk ; j < Nb (Nr + 1 ) ;  j + +) 

} 

{ 
if (j mod Nk == 0) 

{ 
W[O] [j] = W[O] [j - Nk] E8 S[W[l] [j - 1] ]  E8 RC[j/Nk] ;  
for (i  = 1 ; i < 4 ; i++)  

W[i] [j] = W[i] [j - Nk] E8 S[W [i + 1 mod 4] [j - 1] ] ; 

} 
else if (j mod Nk == 4) 

{ 
for (i = 0 ;  i < 4 ;  i + + ) 

W[i] [j] = W[i] [j - Nk] E8 S[W[i] [j - 1] ] ; 

} 
else 

{ 
f or (i = 0 ;  i < 4 ;  i + + ) 

W[i] [J· ] = W[i] [J" - Nk] E8 W[i] [j - 1] ; 

} } 

List . 3 .4 .  The key expansion for Nk > 6 .  

followed by a key addition. The inverse transformation of Round is  denoted 
InvRound. The inverse of FinalRound is denoted InvFinalRound. Both trans­
formations are described in List . 3 .5 .  Listing 3 .6  gives the straightforward 
decryption algorithm for the two-round Rijndael variant . 

3 .7.2  Algebraic Properties 

In order to derive the equivalent decryption algorithm, we use two properties 
of the steps: 

1 .  The order of InvShiftRows and InvSubBytes  is indifferent . 
2 . The order of AddRoundKey and InvMixColumns can be inverted if the 

round key is adapted accordingly. 

The first property can be explained as follows . InvShiftRows simply trans­
poses the bytes and has no effect on the byte values . InvSubBytes  operates 
on individual bytes, independent of their position. Therefore, the two steps 
commute. 

InvRound (State , ExpandedKey [i] ) 
{ 
AddRoundKey (State , ExpandedKey [i] ) ; 
InvMixColumns (State) ; 
InvShiftRows (State) ; 
InvSubBytes ( State) ; 
} 

InvFinalRound (State , ExpandedKey [Nr] )  
{ 
AddRoundKey (State , ExpandedKey[Nr] ) ; 
InvShiftRows (State) ; 
InvSubBytes (State) ; 
} 

3.7 Decryption 

List . 3 . 5 .  Round transformations of the straightforward decryption algorithm. 

AddRoundKey (State , ExpandedKey [2] ) ; 
InvShiftRows (State) ; 
InvSubBytes (State) ; 
AddRoundKey (State , ExpandedKey [l] ) ; 
InvMixColumns (State) ; 
InvShiftRows (State) ; 
InvSubBytes (State) ; 
AddRoundKey (State , ExpandedKey[O] ) ; 

List . 3 .6 .  Straightforward decryption algorithm for a two-round variant . 

47 
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The explanation of the second property is somewhat more sophisticated. 
For any linear transformation A : x --+ y = A(x) ,  it holds by definition that 

A(x E9 k) = A(x) E9 A(k) . (3 .20) 

Since AddRoundKey simply adds the constant ExpandedKey [i] to its input , 
and InvMixColumns is a linear operation, the sequence of steps 

AddRoundKey (State , ExpandedKey [i] ) ; 
InvMixColumns (Stat e ) ; 

can be replaced by the following equivalent sequence of steps: 

InvMixColumns ( State ) ; 
AddRoundKey ( Stat e , EqExpandedKey [i] ) ; 

where EqExpandedKey [i] is obtained by applying InvMixColumns to 
ExpandedKey [i] . This is illustrated graphically in Fig. 3 . 1 1 .  

k 
k 

x L(x E9 k) x L(x) E9 L(k) 

Fig. 3 . 1 1 .  A linear transformation L can be ' pushed through' an XOR. 

3 .7.3 The Equivalent Decryption Algorithm 

Using the properties described above, we can transform the straightforward 
decryption algorithm given in List . 3 .6  into the algorithm given in List . 3 .7 .  

Comparing List. 3.7 with the definition of the original round transformations 
Round and FinalRound (List . 3 .2) , we see that we can regroup the opera­
tions of List . 3 .7  into an initial key addition, a Round-like transformation 
and a FinalRound-like transformation. The Round-like transformation and 
the FinalRound-like transformation have the same structure as Round and 
FinalRound, but they use the inverse transformations . We can generalize this 
regrouping to anv number of rounds . 

AddRoundKey (State , ExpandedKey [2] ) ; 
InvSubBytes (State) ; 
InvShiftRows (State) ; 
InvMixColumns (State ) ; 
AddRoundKey (State , EqExpandedKey[l] ) ; 
InvSubBytes (State ) ; 
InvShiftRows (State) ; 
AddRoundKey (State , ExpandedKey[O] ) ; 

3 .7 Decryption 

List . 3 .7. Equivalent decryption algorithm for a two-round variant . 
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We define the equivalent round transformation EqRound and the equiv­
alent final round transformation EqFinalRound to use in the equivalent de­
cryption algorithm. The transformations are described in List . 3.8 .  Listing 3 .9  
gives the equivalent decryption algorithm. Figure 3 . 12  shows a graphical il­
lustration for encryption with the two-round Rijndael variant , decryption 
according to the straightforward algorithm and decryption according to the 
equivalent algorithm. The dashed box encloses the steps that can be imple­
mented together efficiently. In the straightforward decryption algorithm, the 
(inverse) steps appear in the wrong order and cannot be implemented as 
efficiently. By changing the order of InvShiftRows and InvSubBytes , and 
by pushing MixColumns through the XOR of AddRoundKey, the equivalent 
decryption algorithm is obtained. This structure has again the operations in 
a good order for efficient implementation. 

EqRound (State , EqExpandedKey [i] ) 

{ 
InvSubBytes (State) ; 
InvShiftRows (State) ; 
InvMixColumns (State) ; 
AddRoundKey (State , EqExpandedKey[i] ) ; 

} 

EqFinalRound (State , EqExpandedKey [O] )  
{ 
InvSubBytes (State) ; 
InvShiftRows (State) ; 
AddRoundKey (State , EqExpandedKey[O] ) ; 

} 

List. 3 .8 .  Round transformations for the equivalent decryption algorithm. 

EqKeyExpansion, the key expansion to be used in conjunction with the 
eouivalent n er,rvnt, inn ::l.l p'nrit.hm i.e: ,j pfi n p,j !'IC! fnl l rmTC! ' 
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InvRijndael (State , CipherKey) 
{ 
EqKeyExpansion (CipherKey , EqExpandedKey) ; 
AddRoundKey (State , EqExpandedKey [Nr] ) ; 
f or ( i  = Nr - 1 ; i >  0 ;  i- - )  EqRound (State , EqExpandedKey[ij ) ;  
EqFinalRound (State , EqExpandedKey [O] )  ; 
} 

List . 3 .9 .  Equivalent decryption algorithm. 

1 .  Apply the key expansion KeyExpansion. 
2 . Apply InvMixColumns to all round keys except the first one and the last 

one . 

Listing 3 . 10  gives a description in pseudo-C notation. 

EqKeyExpansion (CipherKey , EqExpandedKey) 
{ 
KeyExpansion (CipherKey , EqExpandedKey) ; 
f or (i = l ; i < Nr ; i++)  

InvMixColumns (EqExpandedKey[i] ) ; 
} 

List . 3 . 10 .  Key expansion for the equivalent decryption algorithm. 

3 .8  Conclusions 

In this chapter we have given the specification of Rijndael encryption and 
decryption, and the motivation for some of the design choices. 
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Fig. 3 . 12 .  Graphical representation o f  the algorithm for a two-round Rijndael 
variant : encryption (top), decryption in the straightforward way (middle) and de­
cryption in the equivalent way (bottom). The dashed box encloses the operations 
that can be implemented together efficiently. 
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In this chapter we discuss issues related to the implementation of Rijndael on 
different platforms. Most topics apply also to related ciphers such as Square, 
Anubis and Crypton that are discussed in Chap. 1 1 .  We have grouped the 
material of this chapter into sections that deal with the most typical issues 
for one specific platform each. However, several of the discussed issues are 
relevant to more than one platform. If you want to squeeze out the best 
possible performance, we advise reading the whole chapter, with a critical 
mindset . 

4. 1 8-Bit Platforms 

The performance on 8-bit processors is an important issue, since most smart 
cards have such a processor and many cryptographic applications run on 
smart cards . 

4 .1 . 1  Finite Field Mult iplication 

In the algorithm of Rijndael there are no multiplications of two variables in 
GF(28 ) ,  but only the multiplication of a variable with a constant. The latter 
is easier to implement than the former. 

We describe here how multiplication by the value 02 can be implemented. 
The polynomial associated with 02 is x . Therefore, if we multiply an element 
b with 02, we get : 

b . x = b7x8 + b6x7 + bsx6 + b4xS 
+ b3x4 + b2x3 + b1x2 + box (mod m(x) ) 

= b6x 7 + bsx6 + b4xS + (b3 EB h )x4 
+ (b2 EB b7 )x3 + b1x2 + (bo EB b7) x  + b7 . 

(4 . 1 ) 

(4. 2 ) 

The multiplication by 02 is  denoted xtime (x) . xt ime can be implemented 
with a shift operation and a conditional XOR operation. To prevent timing 
attacks . attention mm;;t. hp n::l.i il ,,0 t.h ::l t. yt: i m � i" i Tn nl C>Tn c> n t c>ri ; 1'1 C' l 1 roh Q 
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way that it takes a fixed number of cycles, independently of the value of 
its argument. This can be achieved by inserting . dummy instructions at the 
right places. However, this approach is likely to introduce weaknesses against 
power analysis attacks (see Sect . 10 .8 .2) . A better approach seems to define 
a table M, where M[a] = 02 . a. The routine xt irne is then implemented as 
a table look-up into M. 

Since all elements of GF (28 ) can be written as a sum of powers of 02 ,  
multiplication by any constant value can be implemented by a repeated use 
of xt irne . 

Example 4 . 1 . 1 .  The multiplication of an input b by the constant value 15  can 
be implemented as follows: 

b ·  15 = b ·  (0 1  EB 04 EB 10) 
= b ·  (0 1  EB 022 EB 024 ) 
= b EB xt irne(xtirne (b))  EB xt irne (xt irne (xt irne (xtirne (b) ) ) )  
= b EB xt irne (xtirne (b EB xt irne (xt irne (b) ) ) ) .  

4.1 .2  Encryption 

On an 8-bit processor , encryption with Rijndael can be programmed by sim­
ply implementing the different steps. The implementation of ShiftRows and 
AddRoundKey is straightforward from the description . The implementation of 
SubBytes  requires a table of 256 bytes to store SRD . 

AddRoundKey, SubBytes and ShiftRows can be efficiently combined and 
executed serially per state byte. Indexing overhead is minimized by explicitly 
coding the operation for every state byte. 

MixColurnns . In choosing the MixColurnns polynomial, we took into account 
the efficiency on 8-bit processors . We illustrate in List . 4 . 1 how MixColurnns 
can be realized in a small series of instructions. (The listing gives the algo­
rithm to process one column. )  The only finite field multiplication used in this 
algorithm is multiplication with the element 02 ,  denoted by 'xtirne ' .  

t = a[Q] EB a[l]  EB a [2] EB a[3] ; /* a is  a column * /  
U =  a[Q] ; 
v = a [Q] EB a[l] ; 
v = a[l] EB a[2] ; 
v = a[2] EB a[3] ; 
v = a[3] EB u ;  

v = xtime (v ) ; a [Q] = a [Q] EB v EB t ;  
v = xt ime ( v ) ; a [1] = a [1] EB v EB t ; 
v = xtime (v ) ; a [2] = a [2] EB v EB t ;  
v = xtime (v ) ; a[3] = a[3] EB v EB t ;  

List . 4. 1 .  Efficient implementation of MixColumns .  
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The key expansion. Implementing the key expansion in a single-shot op­
eration is likely to occupy too much RAM in a smart card. Moreover , in most 
smart card applications, such as debit cards or electronic purses, the amount 
of data to be encrypted, decrypted or which is subject to a MAC is typically 
only a few blocks per session. Hence, not much performance can be gained 
by storing the expanded key instead of regenerating it for every application 
of the block cipher. 

In the design of the key schedule, we took into account the restrictions im­
posed by a smart card. The key expansion can be implemented using a cyclic 
buffer of 4Nk bytes. When all bytes of the buffer have been used, the buffer 
content is updated. All operations in this key update can be implemented 
efficiently with byte-level operations . 

4 .1 .3  Decryption 

For implementations on 8-bit platforms, there is no benefit in following the 
equivalent decryption algorithm. Instead, the straightforward decryption al­
gorithm is followed. 

InvMixColurnns. Decryption is similar in structure to encryption, but uses 
the InvMixColurnns step instead of MixColurnns .  Where the MixColurnns co­
efficients are limited to 0 1 ,  02 and 03 ,  the coefficients of InvMixColurnns are 
09 , OE, OB and OD. In our 8-bit implementation, these multiplications take 
significantly more time and this results in a small performance degradation 
of the 8-bit implementation. A considerable speed-up can be obtained by 
using look-up tables at the cost of additional tables. 

P. Barreto observes the following relation between the MixColurnns poly­
nomial c(x) and the InvMixColurnns polynomial d (x) : 

d (x) = (04x2 + 05)c(x) (mod X4 + 0 1 ) . 
In matrix notation, this relation becomes : r OE OB OD 09 ] [ 02 03 0 1  0 1 ] [ 05 00 04 00 ] 

09 OE OB OD 0 1  02 03 01  00 05 00 04 
= x 

OD 09 OE OB 0 1  0 1  02 03 04 00 05 00 
OB OD 09 OE 03 01 01 02 00 04 00 05 

(4.3)  

( 4.4) 

The consequence is that InvMixColurnns can be implemented as a simple 
preprocessing step , followed by a MixColurnns step. An algorithm for the 
preprocessing step is given in List . 4 .2 .  If the small performance drop caused 
by this implementation of the preprocessing step is acceptable, no extra tables 
have to be defined. 
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u = xtime (xtime ( a [OJ EB a [2] ) ) ;  /*  a is  a column */ 
v = xtime (xtime (a[IJ  EB a[3] ) ) ; 
a [OJ = a [OJ EB u ;  
a[IJ = a[IJ  EB v ;  
a[2J = a [2J EB u ;  
a[3J = a [3J EB v ;  

List . 4 .2 .  Preprocessing step for implementation of the decryption. 

The key expansion. The key expansion operation that generates W is de­
fined in such a way that we can also start :with the last N k words of round key 
information and roll back to the original cipher key. When applications need 
to calculate frequently the decryption round keys 'on-the-fly' , it is prefer­
able to calculate the last N k words of round key information once and store 
them for later reuse. The decryption round key calculation can then be imple­
mented in such a way that it outputs the round keys in the order they that are 
needed for the decryption process. Listings 4.3 and 4.4 give a description of 
InvKeyExpansion in pseudo C notation. First note that Ki , the first input of 
the routine, is not the cipher key. Instead, Ki consists of the last Nk columns 
of expanded key, generated from the cipher key by means of KeyExpansion 
(see Sect . 3.6) . After running InvKeyExpans ion, Wi contains the decryption 
round keys in the order they are used for decryption, i .e .  columns with lower 
indices are used first . Secondly, note that this is the key expansion for use 
in conjunction with the straightforward decryption algorithm. If the equiva­
lent decryption algorithm is implemented, all but two of the round keys have 
additionally to be transformed by InvMixColumns (see Sect . 3 .7.3) . 

4.2 32-Bit Platforms 

The different steps of the round transformation can be combined in a single 
set of look-up tables, allowing for very fast implementations on processors 
with word lengths 32 or greater. In this section, we explain how this can he 
done. 

4 .2 32-Bit Pl atforms 

InvKeyExpansion (byte Kd4] [NkJ , byte Wd4] [Nb (Nr + 1 ) ] )  

{ 
f or (j = 0 ;  j < N k ;  j + + ) 

for (i = O ; i < 4 ;  i++) Wdi] [jJ = KdiJ [jJ ;  
for (j = Nk ; j < Nb (Nr + 1) ;  j + +) 

{ 
if (j mod Nk == 0)  

{ 

/* for Nk ::; 6 */ 
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WdO] [jJ = WdO] [j - NkJ EB S[Wd1] [j - IJ EB WdlJ [j - 2JJ JB RC[Nr + 1 - jlNkJ ; 
for (i = l ; i < 4 ; i++) 

, 

Wdi] [jJ = Wdi] [j - NkJ EB S[Wdi + 1 mod 4] [j - IJ EB Wdi + 1 mod 4] [j - 2JJ ; 
} 

else 

{ 
f or (i = 0 ;  i < 4 ;  i++)  

} } 
} 

WdiJ [jJ = Wdi] [j - Nk] EB Wdi] [j - Nk - IJ ; 

List . 4 .3 .  Algorithm for the inverse key expansion for Nk ::; 6 .  

InvKeyExpansion (byte Kd4] [Nk] ' byte Wd4] [Nb (Nr + 1 ) ] ) 

{ 
for (j = 0 ;  j < Nk ; j ++)  

for (i = 0 ;  i < 4 ;  i++)  Wdi] [j] = Kdi] [jJ ;  
for (j = Nk ;  j < Nb (Nr + l) ;  j ++)  

{ 
if (j mod Nk == 0)  

{ 

/* for Nk > 6 */ 

WdO] [j] = WdO] [j - Nk] ffi S[Wd1] [j - IJ ffi Wd1] [j - 2]] ffi RC [Nr + 1 - jlNkJ ; 
f or (i = l ;  i < 4 ; i++)  

WdiJ [j] = Wdi] [j - NkJ EB S[Wdi + 1 mod 4] [j - I J  EB Wdi + 1 mod 4] [j - 2] ] ; 

} 
else if (j mod Nk == 4) 

{ 
for ( i = 0 ;  i < 4 ;  i++)  

Wdi] [j] = Wdi] [j - Nk] EB S[Wdi] [j - Nk - IJ J ; 
} 

else 

} } 

{ 
f or (i = O ; i < 4 ; i++)  

Wdi] [jJ = Wdi] [j - Nk] EB Wdi] [j - Nk  - 1] ; 
} 

List . 4.4.  Algorithm for the inverse key expansion for Nk > 6 .  
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Let the input of the round transformation be denoted by a, and the output 
of SubBytes by b: 

(4.5)  

Let the output of ShiftRows be denoted by c and the output of MixColumns 
by d: 

[ bO ,j+CO ] 
b1 ,j+C1 , 0 � j < Nb 
b2 ,j+C2 
b3 ,j+C3 [dO,j ] [02 03 01 01 ] [ CO ,j ] 

d1 ,j = 01 02 03 01 . CI ,j 
, 0 < j < Nb .  d2 ,j 01 01 02 03 C2 ,j -

d3 ,j 03 01 01 02 C3 ,j 

(4 .6) 

(4.7) 

The addition in the indices of (4 .6) must be done in modulo Nb . Equations 
(4.5)-( 4 .7) can be combined into: 

[ �� '� ] = [ �H� �H�] . [i:� f;� :�:�: i ] , 0 � j < Nb · (4 .8) 

d3,j 03 01 01 02 SRD [a3,j+C3 J 

The matrix multiplication can be interpreted as a linear combination of four 
column vectors : 

We define now the four T-tables: To , TI l T2 and T3 : [02 . SRD [aJ ] 
To [aJ = 01 · SRD [aJ 01 . SRD [aJ 03 · SRD [aJ 

[ 03 . SRD [aJ ] Tl [aJ = 02 · SRD [aJ 0 1 . SRD [aJ 0 1 · SRD [aJ 

(4. 10) 

(4 . 1 1 ) 
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These tables have each 256 4-byte word entries and require 4 kB of storage 
space . Using these tables , (4 .9) translates into: 

(4. 12) 
" 

Taking into account that AddRoundKey can be implemented with an addi-
tional 32-bit XOR operation per column, we get a look-up table implemen­
tation with 4 kB of tables that takes only four table look-ups and four XOR 
operations per column per round. 

Furthermore, the entries To [aJ , Tda] , T2 [aJ and T3 [aJ are rotated versions 
of one another, for all values a. Consequently, at the cost of three additional 
rotations per round per column, the look-up table implementation can be 
realized with only one table , i .e .  with a total table size of 1 kB . The size of 
the encryption routine (relevant in applets) can be kept small by including a 
program to generate the tables instead of the tables themselves . 

In the final round, there is no MixColumns operation. This boils down 
to the fact that SRD must be used instead of the T-tables . The need for 
additional tables can be suppressed by extracting the SRD-table from a T­
table by masking while executing the final round. 

Most operations in the key expansion are 32-bit XOR operations. The 
additional transformations are the application SRD and a cyclic shift over 8 
bits . This can be implemented very efficiently. 

Decryption can be described in terms of the transformations EqRound and 
EqFinalRound used in the equivalent decryption algorithm. These can be im­
plemented with look-up tables in exactly the same way as the transformations 
Round and FinalRound. There is no performance degradation compared to 
encryption. The look-up tables for the decryption are however different . The 
key expansion to be used in conjunction with the equivalent decryption al­
gorithm is slower, because after the key expansion all but two of the round 
keys are subject to InvMixColumns (cf. Sect. 3 . 7) .  

4.3  Dedicated Hardware 

Rijndael is suited to be implemented in dedicated hardware. There are several 
trade-offs between chip area and speed possible . Because the implementation 
in software on general-purpose processors is already very fast ,  the need for 
hardware implementations will very probably be limited to two specific cases: 
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1. Extremely high-speed chip with no area restrictions : the T-tables can be 
hardwired and the XOR operations can be . conducted in parallel. 

2. Compact coprocessor on a smart card to speed up Rijndael execution: for 
this platform typically SRD and the xt ime (or the complete MixColurnns ) 
operation can be hard-wired. 

In dedicated hardware , xt ime can be implemented with the combination of a 
hard-wired bit transposition and four XOR gates . The SubBytes step is the 
most critical part for a hardware implementation, for two reasons: 

1 .  In order to achieve the highest performance, SRD needs to be instanti­
ated 16 times (disregarding the key schedule) .  A straightforward imple­
mentation with 16 256-byte tables is likely to dominate the chip area 
requirements or the consumption of logic blocks. 

2. Since Rijndael encryption and decryption use different transformations, 
a circuit that implements Rijndael encryption does not automatically 
support decryption. 

However, when building dedicated hardware for supporting both encryption 
and decryption, we can limit the required chip area by using parts of the 
circuit for both transformations . In the following, we explain how SRD and 
SRD -1 can be implemented efficiently. 

4.3 . 1  Decomposition of SRD 

The Rijndael S-box SRD is constructed from two transformations: 

SRD [a] = j (g (a) ) , 

where 9 (a) is the transformation 

a -+ a-I in GF(28 ) ,  

(4. 13 )  

( 4 . 14) 

and j (a) is an affine transformation. The transformation g (a) is a self-inverse 
and hence 

. 

(4. 15 )  

Therefore, when we want both SRD and SRD -1 , we need to implement only g, 
j and j-l . Since both j and j-l  can be implemented with a limited number 
of XOR gates, the extra hardware can be reduced significantly compared to 
having to hardwire both SRD and SRD - 1 . 

The affine transformations j and j-l  are defined in Sect. 3 .4 . 1 .  For ease 
of reference, we give a tabular description of the functions j, j-l  and 9 in 

. Appendix C .  
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4.3 .2 Efficient Inversion in GF (28 ) 

The problem of designing efficient circuits for inversion in finite fields has 
been studied extensively before; e .g .  by C. Paar and M. Rosner in [78] . We 
summarize here a possible approach. 

Every element of GF (28 ) can be mapped by a linear transformation to 
an element of GF(24) 2 , i .e .  a polynomial of degree one with coefficients in 
GF(24 ) .  In order to define multiplication in GF(24) 2 , we need a polynomial 
of degree two that is irreducible over GF(24 ) .  There exiseirreducible polyno­
mials of the form 

P(x) = x2 + x + A. (4 . 16)  

Here 'A '  is  a constant element of GF(24)  that can be chosen to optimize 
the hardware, as long as P(x) stays irreducible. The inverse of an arbitrary 
element (bx + e) is then given by the polynomial (px + q) iff 

1 = (bx + e) . (px + q) mod P(x) 

= (ep E9 bq E9 bp) x + (eq E9 bpA) . 
( 4. 17) 

(4. 18) 

This gives a set of linear equations in p and q, with the following solution: 

{ p = b(Ab2 E9 be E9 e2 ) -1 
q = (e E9 b) (Ab2 E9 be E9 e2 ) - I . 

(4 . 19) 

The problem of generating an inverse in GF(28 ) has been translated into the 
calculation of an inverse and some operations in GF(24 ) .  The calculation of 
an inverse in GF(24) can be done with a small table. 

4.4 Multiprocessor Platforms 

There is considerable parallelism in the round transformation. All four steps 
of the round act in a parallel way on bytes, rows or columns of the state. In 
the look-up table implementation, all table look-ups can in principle be done 
in parallel. The XOR operations can be done mostly in parallel as well. 

The key expansion is clearly of a more sequential nature: the value of 
W[i - 1] is needed for the computation of W[i] . However , in most applications 
where speed is critical, the key expansion has to be done only once for a large 
number of cipher executions. In applications where the cipher key changes 
often (in extremis, once per application of the block cipher) ,  the key expansion 
and the cipher rounds can be done in parallel. 

A study by C. Clapp [ 17] demonstrates that the performance of Rijndael 
on parallel processors is not constrained by the critical path length. Instead, 
the limiting factor for Rijndael implementations is the number of memory 
references that can be done per cycle. 
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4.5 Performance Figures 

We conclude this chapter with the performance results that other people have 
obtained. Performance figures for a popular cryptographic primitive have a 
tendency to be outdated after a very small time period.  The figures given 
here represent only a snap shot , taken at the time of writing of this book 
(near the end of 200 1 ) :  

8-bit processor: G.  Keating reports a performance o f  54  kbit/s on  a Mo­
torola 6805 processor, with a 4 MHz clock [48] . This timing includes a 
new key setup with every encryption. 

32-bit processor. H. Lipmaa reports a performance of 426 l'vIbit/s for man­
ually optimized assembly implementation, running on an 800 MHz Pen­
tium III [57] . 

FPGA. The fastest implementation being reported for feedback modes is by 
K. Gaj and P. Chodowiec. It runs at 414 Mbit/s on a Xilinx Virtex XCV 
1000 [34] . For non-feedback modes , A. Elbirt et a1 . report a performance 
of 1938 Mbit/s on the same FPGA [29] . 

ASIC . H. Kuo and 1 .  Verbauwhede report a throughput of 6 . 1  Gbit/s, us­
ing 0 . 18  /-Lm standard cell technology [55] for an implementation with-;­
out pipelining. Their design uses 19 000 gates. B .  Weeks et a1 . report 
a throughput of 5 Gbit/s [91] for a fully pipelined version. They use a 
0 .5  /-Lm standard cell library that is not available outside NSA. 

A note about pipelining. In hardware implementations , pipelining often 
results in a significant performance increase. However, pipelining is only pos­
sible in non-feedback modes (e.g. ECB and counter modes ) ,  and therefore it 
is not always applicable. 

4.6 Conclusions 

In this chapter we have shown how Rijndael can be efficiently implemented 
in dedicated hardware and in software on a wide variety of processors. 

5 .  Design Philosophy 

In this chapter we motivate the choices we have made in the process of de­
signing Rijndael and its predecessors. We start with discussing the criteria 
that are widely considered important for block ciphers such as security and 
efficiency. After that ,  we introduce the criterion of simplicity that plays such 
an important role in our design approach. We explain what we mean by it 
and why it is so important. A very effective way to keep things simple is by 
the introduction of symmetry. After discussing different ways of introducing 
symmetry, we motivate the choice of operations in Rijndael and its predeces­
sors and our approach to security. This is followed by a discussion of what we 
think it takes to design a block cipher that satisfies our criteria. We conclude 
this chapter with a discussion on the generation and usage of round keys. 

5 . 1  Generic Criteria in Cipher Design 

In this section we describe a number of design criteria that are adopted by 
most cryptographers. 

5 . 1 . 1  Security 

The most important criterion for a block cipher is security, meaning the 
absence of cryptanalytic attacks that exploit its internal structure. Among 
other things, this implies the absence of attacks that have a workload smaller 
than that of an exhaustive search of the key. In the context of security one 
refers often to the security margin of a cipher. If, for a cipher with n rounds , 
there exists a cryptanalytic attack against a reduced-round version with n - k 
rounds , the cipher has an absolute security margin of k rounds or a relative 
security margin of k / n. As advances in cryptanalysis of a cipher tend to en­
able the breaking of more and more rounds over time, the security margin 
indicates the resistance of the cipher against improvements of known types 
of cryptanalysis. However , it says nothing about the likelihood of these ad­
vances in cryptanalysis or about the resistance of the cipher against unknown 
attacks. 



64 5. Design Philosophy 

5 . 1 . 2  Efficiency 

The complementary criterion is that of efficiency. Efficiency refers to the 
amount of resources required to perform an encryption or decryption. In 
dedicated hardware implementations, encryption and decryption speed and 
the required chip area are relevant . In software implementations , the en­
cryption/ decryption speed and the required amount of working memory and 
program-storage memory storage are relevant . 

5 . 1 . 3  Key Agility 

When quoting the speed ofa cipher, one often makes the silent assumption 
that a large amount of data is encrypted with the same key. In that case 
the key schedule can be neglected . However, if a cipher key is used to secure 
messages consisting of a few blocks only, the amount of cycles taken by the 
computation of the key schedule becomes important . The ability to efficiently 
change keys is called key agility. 

5 . 1 .4 Versatility 

Differences in processor word length and instruction sets may cause the effi­
ciency of a cipher to be very dependent on the processor type. As the AES 
will be implemented on smart cards, palmtops , desktop PCs, workstations, 
routers, set-top boxes, hardware security modules and probably some other 
types of devices, we have attempted to design a cipher that is efficient on the 
widest range of processors possible. Although just a qualifier for efficiency, 
we call this requirement versatility. 

5 . 1 . 5  Discussion 

The criteria of security and efficiency are applied by all cipher designers. 
There are cases in which efficiency is sacrificed to obtain a higher security 
margin. The challenge is to come up with a cipher design that offers a rea­
sonable security margin while optimizing efficiency. 

The criteria of key agility and versatility are less universal. In some cases 
these criteria are irrelevant because the cipher is meant for a particular ap­
plication and will be implemented on a specific platform. For the AES - the 
successor of the ubiquitous DES - we expected key agility and versatility 
to be major issues . Still, a large part of the ciphers submitted to the AES 
focus on efficiency of bulk data encryption on 32-bit processors without much 
attention to 8-bit processors , multiprocessors or dedicated hardware, or an 
efficient key schedule. 
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5 .2  Simplicity 

A notion that characterizes our design philosophy is simplicity. The design 
process can be broken down into a number of decisions and choices . In each of 
these decisions and choices, the simplicity criterion has played an important 
role. 

We distinguish simplicity of specification and simplicity of analys'ls. A 
specification is simple if it makes use of a limited number of operations and 
if the operations by themselves can be easily explainetl. An obvious advan­
tage of a simple specification is that it facilitates a correct implementation. 
Another advantage is that a cipher with a simple specification seems a more 
interesting object to study than a cipher with a complex specification. More­
over ,  the simplicity of the specification may lead people to believe that it 
is easier to find a successful attack. In other words, the simplicity of a ci­
pher contributes to the appeal it has for crypt analysts , and in the absence of 
successful cryptanalysis, to its cryptographic credibility. 

Simplicity of analysis corresponds to the ability to demonstrate and un­
derstand in what way the cipher offers protection against known types of 
cryptanalysis. In this way, resistance against known attacks can be covered 
in the design phase , thereby providing a certain level of cryptographic credi­
bility from the start. This contributes again to the appeal to cryptanalysts: 
successful cryptanalysis of a cipher with some credibility gives more prestige 
than cryptanalysis of an insignificant cipher . 

Simplicity of specification does not necessarily imply simplicity of analy­
sis . It is relatively easy to come up with a cipher with a very simple description 
for which the analysis with respect to known attacks is very hard. 

On top of the advantages cited above, we use the criterion of simplicity 
to obtain a good trade-off between security on the one hand and efficiency 
and versatility on the other hand. This is explained in the Sect . 5 .3 .  

Simplicity can be achieved in a number of  ways . In the design of  Rijndael 
and its predecessors, we have mostly realized it through the adoption of 
symmetry and our choice of operations. 

5 .3  Symmetry 

A very powerful tool for introducing simplicity is symmetry. Symmetry can 
be applied in several ways . We distinguish symmetry across the rounds, sym­
metry within the round transformation and symmetry in the steps . 
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5 .3 . 1  Symmetry Across the Rounds 

We design a cipher as the repeated iteration of the same keyed round trans­
formation. This approach has the advantage that in specifications only one 
round transformation needs to be specified, and in software implementations 
only one round has to be programmed. Moreover, it allows dedicated hard­
ware implementations that only contains a circuit for the round transforma­
tion and the key schedule. In Rijndael, the last round is different from the 
other ones in order to make the algorithms for decryption and encryption 
have the same structure (see Chap. 4) . 

One may wonder whether this symmetry cannot be exploited in crypt­
analysis. As a matter of fact , the so-called slide attacks as described by A .  
Biryukov and D.  \iVagner in  [ 12] exploit this kind of  symmetry. However, 
for slide attacks to work, also the key schedule must exhibit a large degree 
of symmetry. Hence, protection against known slide attacks can already be 
achieved with a very simple key schedule, e .g .  consisting merely of the XOR 
of well-chosen constants with the cipher key. 

5 .3 .2  Symmetry Within the Round Transformation 

Symmetry within the round transformation implies that it treats all bits of 
the state in a similar way. In the Feistel round structure, as adopted in the 
DES (see Chap. 6) this is clearly not the case since the two halves of the 
state are treated quite differently. 

A consequence of our design strategy (see Chap. 9) is that the round ' 
transformation consists of a sequence of steps, each with its own particular 
function. For each of these steps , the symmetry requirement translates easily 
into some concrete restrictions: 

1. Non-linear step. A bricklayer transformation consisting of non-linear 
S-boxes operating independently on bundles . The symmetry requirement 
translates easily in the requirement that the same S-box is used for all 
bundle positions. 

2. Mixing step. A bricklayer transformation consisting of linear D-boxes 
operating independently on columns. The symmetry requirement trans­
lates in the requirement that the same D-box is used for all column 
positions. Additionally, alignment between bundles and columns may be 
imposed: all bits in the same bundle are also in the same column. 

3. Transposition step. The transposition step consist of the mere trans­
position of bundles. Alignment with the non-linear step may be imposed: 
the transposition step is a bundle transposition rather than a bit trans­
position. 
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These symmetry requirements offer a framework in which only the size 
of the bundles and the columns, the S-box and the D-box, and the bundle 
transposition need to be specified to fully define the round transformation. 

Having a large degree of symmetry in the round transformation may lead 
to cryptographic weaknesses . An example of such a weakness is the comple­
mentation property of the DES [41] .  If in Rijndael the key application is not 
taken into account, there exist a number of byte transpositions 7f that com­
mute with the round transformation. In other words , we have 7f 0 P = p o 7f .  
If all round keys are 0 ,  this is also valid for the complete cipher. The same 
property holds if each individual round key is composed of bytes that all 
have the same value. These symmetry properties can however be eliminated 
by using even a simple key schedule. 

Imposing alignment results in the cipher actually operating on bundles 
rather than bits . As a matter of fact , this property is exploited in the most 
powerful attacks against reduced-round versions of Rijndael and its relatives 
to date, the so-called saturation attacks, which are described in Sect . 10 .2 .  
Fortunately, saturation attacks seem only to be feasible up to six or  seven 
rounds , and have an extremely high computation cost beyond that point . 
Still , the existence of the saturation attack is one of the main motivations 
behind the number of rounds in Rijndael and its relatives. 

Note. Instead of translating symmetry into the requirement for bundle 
alignment, as is done for Rijndael and its relatives, one may choose for the 
opposite: non-alignment . In this case the transposition step moves bits be­
longing to the same bundle to bits in different bundles. This is the approach 
followed for the bit-slice ciphers 3-Way [20] , BaseKing [23] and Noekeon [24] . 
Because of the small size of their S-box, these ciphers are very compact in ded­
icated hardware . In software they are in general slower than Rijndael and its 
relatives. Perhaps the best known bit-slice cipher is Serpent, which is the AES 
candidate submitted by E. Biham et al . [3] . The designers of Serpent have 
not followed the same simplicity strategy: it has 8 different S-boxes giving 
rise to 8 different round transformations , and the mixing step has a substan­
tial amount of asymmetry. These factors make it harder to prove bounds for 
Serpent than for Rijndael and its relatives and the more symmetric bit-slice 
ciphers mentioned above. 

5 .3 .3  Symmetry in the D-box 

Specifying a D-box with the same size as the one used in the mixing step of 
Rijndael can in general be done with a binary 32 x 32 matrix, taking 128 bytes. 
By interpreting bytes as elements in a finite field, and restricting ourselves to 
a matrix multiplication over GF(28 ) ,  the D-box can be specified with 16 byte 
values .  We have imposed that the matrix is a circulant matrix, imposing on 
the matrix elements au = aO,i-j mod n for all i , j. This reduces the number 
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of bytes required to specify the D-box ·to 4. Other types of symmetry may �e 

imposed. For example, the mixing step of Anubis [4] makes use of a matnx 

where the matrix elements satisfy ai ,j = aO ,iffij for all i ,  j .  

5 .3 .4  Symmetry and Simplicity in  the S-box 

For a discussion on the design underlying the S-box and its predecessors used 
in Rijndael, we refer to Sect .  3 .4 . 1 .  

5 .3 .5  Symmetry between Encryption and Decryption 

In general it is an advantage for a block cipher that encryption and decryption 

can be performed with the same software program or make use of the
. 
same 

hardware circuit . In Feistel ciphers such as the DES (see Chap. 6) thIS can 

easily be achieved by omitting the switching of the two halves i� the last 

round. It suffices to execute the rounds taking the round keys m reverse 

order. 
In ciphers that have a round structure such as Rijndael, this is less t�iv­

ial to achieve. For Rijndael and its predecessors, encryption and decryptIOn 

are different algorithms . Still, in Sect. 3 . 7  we derive an equivalent decryption 

algorithm that has the same structure as the encryption algor�th
.
m. By

. 
se­

lecting the steps of the round transformation in a careful way, It IS possl?le 

to design a Rijndael-like block cipher that has encryption and decryp�IO
.
n 

algorithms that are identical with the exception of the key schedule. ThIS IS 

illustrated by the design of Anubis (see Sect . 1 1 .5 .3) . 

5 . 3 .6 Additional Benefits of Symmetry 

In this section we describe a number of benefits that result from the applica­
tion of symmetry. 

Parallelism. A consequence of the symmetry in the different steps is that 

they all exhibit a large degree of parallelism. The order in which the S-boxes 

of the non-linear step are computed is unimportant , and so they may be 

all computed in parallel. The same argument is valid for the different D­

boxes of the mixing step and for the key application. In dedicated hardware 

implementations of the round transformation, this gives rise to a critical
.
p
.
ath 

coU:sisting only of the S-box, the D-box and the XOR of the key �d��tIO�. 

In software implementations , this gives the programmer a lot of flexIbIlIty m 

the order in which the computations are executed . Moreover, it allows the 

efficient exploitation of parallelism supported by multiprocessors, as C. Clapp 

demonstrated in [17] .  
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Flexibility in the order of steps. The linearity of three of the four steps 
and the symmetry of the non-linear step allow even more freedom in the order 
in which the steps of the round transformation are executed. The transpo­
sition step and the mixing step both commute with the key addition under 
the condition that the key value is adapted to this changed order. On the 
other hand , thanks to the fact that the non-linear step has the same effect 
on all bundles, it commutes with the transposition step . This gives software 
implementers even more freedom and in fact allows conshuction of an equiv­
alent algorithm for decryption that has the same structure as the algorithm 
for encryption (see Sect . 3 . 7) .  

Variable block length. Rijndael shares with the AES candidate RC6 [82] 
the property that it supports different block lengths. In RC6,  the state con­
sists of four 32-bit words and these words appear as arguments in multipli­
cation modulo 232 , XOR and cyclic shift. By adopting another word length, 
the block length can be varied in steps of 4 bits. For example, adopting a 
word length of 40 leads to a block length of 160 bits . 

The symmetry in the steps of Rijndael similarly facilitates the definition 
of the round transformation for multiple block lengths. The non-linear step 
only requires the block length to be a multiple of the bundle size . The mixing 
step requires the block length to be a multiple of the column size. The key 
addition does not impose any condition at all. The only step that must be 
specified explicitly for each block length supported is the byte transposition. 

Changing the block length in RC6 may have a dramatic impact on the effi­
ciency of implementations . For example, implementing 40-bit multiplications 
and cyclic shifts on a 32-bit processor is not trivial. Changing the block length 
is easy in the specifications, but costly in implementations . In Rijndael, the 
basic operations and the components of the state, the bytes and columns keep 
their length if the block length changes. This gives the Rijndael round trans­
formation the unique property that the block length can be varied without 
affecting its computational cost per byte, on any platform. 

5.4 Choice of Operations 

In the specification of Rijndael and its predecessors , we have limited ourselves 
to relatively simple operations such as XOR and multiplication with constants 
in GF(28 ) .  The S-box makes use of the multiplicative inverse in GF(28 ) and 
an affine transformation. 

With this limitation we have excluded a number of simple and efficient 
operations that are widely used as components in block ciphers and that 
appear to have excellent non-linearity and/or diffusion properties. The first 
class are arithmetic operations such as addition, subtraction and multiplica­
tion. most oftp,n DP,rfnrmp,n in m nn l l l n  J'l nll TYlhPr nf Hl P fnrTYl ')n 1'h", "",rormrl 
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class are cyclic shifts over an offset that depends on state or key bits . We 
explain our objections against these operations in the following subsections. 

5 .4 .1  Arithmetic Operations 

Addition, subtraction and multiplication seem to be simple operations to 
describe .  Moreover, Boolean transformations based on multiplication seem to 
perform very well with respect to most common non-linearity and diffusion 
criteria. Most processors support arithmetic instructions that execute in as 
few cycles as a simple bitwise XOR. 

Unfortunately, if the word length of the processor does not match the 
length of the operands, either it becomes hard to take full advantage of the 
processor power due to carry propagation, or limitations in the processing 
power become apparent. For example, implementing a 32-bit multiplication 
modulo 232 on an 8-bit processor smart card requires about 10 multiply 
instructions and 16 addition instructions. 

In dedicated hardware, the number of gates required for addition (or 
subtraction) is about three times that of a bitwise XOR, and due to the 
carry propagation the gate delay is much larger and even depends on the 
word length. Implementing multiplication in dedicated hardware appears to 
give rise to circuits with a large amount of gates and a large gate delay. 

Another cost that appears is the protection against power analysis attacks . 
The carry propagation complicates the implementation of certain protection 
measures against differential power analysis (DPA) that are trivial for XOR, 
such as balancing (d. Sect . 10 .8.2) . 

If arithmetic operations are used that operate on numbers that are rep­
resented by more than a single byte, one needs to define in what order these 
bytes must be interpreted as an integer. In processors there are two archi­
tectures : big endian and little endian [87] . Depending on how the order is 
defined in the cipher specification, one of the two architectures is typically 
favoured. By not using arithmetic operations , an endian neutral cipher can 
be obtained. 

5 .4 .2  Data-Dependent Shifts 

Data-dependent shift operations seem to be simple operations to describe. 
Moreover, Boolean transformations based on data-dependent shifts seem to 
perform well with respect to most common non-linearity and diffusion crite­
ria. Many processors support data-dependent (cyclic) shift instructions that 
execute in a small fixed number of cycles. Unfortunately, if the word length 
of the processor does not match the length of the operand that is shifted, it 
takes several instructions to realize the shift operation . 
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Protection against implementation attacks (see Sect . 10 .8) may be very 
cumbersome on certain platforms. For example, on a typical smart-card pro­
cessor the only shift instructions available are those which shift the content 
of an 8-bit register over 1 bit . A straightforward implementation of a data­
dependent shift would execute in a variable number of cycles, depending on 
the value of the offset. Providing protection against timing attacks can be 
achieved by inserting dummy instructions, resulting in a constant number of 
cycles given by the worst-case offset value . Protecting against DPA on top 
of that seems a non-trivial exercise and may result in a multiplication of the 
number of cycles by at least a factor of two. 

5 . 5  Approach to Security 

5 . 5 . 1  Security Goals 

In this section, we present the goals we have set for the security of Rijndael. 
We introduce two security criteria in order to define the meaning of a suc­
cessful cryptanalytic attack. Note that we cannot prove that Rijndael satisfies 
these criteria. 

In order to formulate our goals, some security-related concepts need to be 
defined. A block cipher of block length nb has 2nb possible inputs. If the key 
length is nk , it defines a set of 2nk permutations. For a block length of nb , 
the number of possible permutations is 2nb ! . Hence the number of all possible 
block ciphers of dimensions nb and nk is 

( 5 . 1 ) 

For practical values of the dimensions (e.g.  nb and nk above 40) , the subset of 
block ciphers with exploitable weaknesses form a negligible minority in this 
set . We define two security criteria K-secure and hermetic as criteria that are 
satisfied by the majority of block ciphers for the given dimensions. 

Definition 5 . 5 . 1 .  A block cipher is K-secure if all possible attack strate­
gies for it have the same expected work factor and storage requirements 
as for the majority of possible block ciphers with the same dimensions. 
This must be the case for all possible modes of access for the adversary 
(known/ chosen/ adaptively chosen plaintext/ciphertext) known/ chosen/ adap­
tively chosen key relations . . . j and for any a priori key distribution. 

K-security is a very strong notion of security. If one of the following weak­
nesses apply to a cipher , it cannot be called K-secure: 

1 .  Existence of key-recovering attacks faster than exhaustive search. These 
are usually called shortcut attacks. 



72 5. Design Philosophy 

2. Certain symmetry properties in the block cipher (e.g. complementation 
property) . 

3. Occurrence of non-negligible classes of weak keys (as in IDEA) . 

4. Related-key attacks. 

K-security is essentially a relative measure. It is quite possible to build a 
K-secure block cipher with a 5-bit block and key length. The lack of security 
offered by such a scheme is due to its small dimensions, not to the fact that the 
scheme fails to meet the requirements imposed by these dimensions. Clearly, 
the longer the key, the higher the security requirements. 

It is possible to imagine ciphers that have certain weaknesses and still 
are K-secure. An example of such a weakness would be a block cipher with a 
block length larger than the key length and a single weak key, for which the 
permutation is linear. The detection of the usage of the key would take at least 
a few encryptions, whereas checking whether the key is used would only take a 
single encryption. If this cipher would be used for encryption, this single weak 
key would pose no problem. However , used as a component in a larger scheme, 
for instance as the compression function of a hash function, this property 
could introduce a way efficiently generating collisions. For these reasons we 
introduce yet another security concept , denoted by the term hermetic. 

Definition 5 . 5 . 2 .  A block cipher is hermetic if it does not have weaknesses 
that are not present for the majority of block ciphers with the same block and 
key length. 

Informally, a block cipher is hermetic if its internal structure cannot be 
exploited in any application . For all key and block lengths defined, the secu­
rity goals are that the Rijndael cipher is K-secure and hermetic. If Rijndael 
lives up to its goals, the strength against any known or unknown attacks is 
as good as can be expected from a block cipher with the given dimensions. 

5 .5 . 2  Unknown Attacks Versus Known Attacks 

'Prediction is very difficult, especially about the future . '  (Niels Bohr) 

Sometimes in cipher design, so-called resistance against future, as yet 
unknown, types of cryptanalysis is used as a rationale to introduce complexity. 
We prefer to base our ciphers on well-understood components that interact in 
well-understood ways allowing us to provide bounds that give evidence that 
the cipher is secure with respect to all known attacks. For ciphers making 
use of many different operations that interact in hard-to-analyse ways, it is 
much harder to provide such bounds. 
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5 . 5 .3  Provable Security Versus Provable Bounds 

Often claims are made that a cipher would be provably secure. Designing a 
block cipher that is provably secure in an absolute sense seems for now an 
unattainable goal. Reasonings that have been presented as proofs of security 
have been shown to be based on (often implicit) assumptions that make 
these 'proofs of security' irrelevant in the real world. Still, we consider having 
provable bounds for the workload of known types of cryptanalysis for a block 
cipher an important feature of the design. 

5 .6  Approaches to Design 

5 .6 . 1  Non-Linearity and Diffusion Criteria 

Many papers are devoted to describing non-linearity and diffusion criteria 
and counting or characterizing classes of Boolean functions that satisfy them. 
In most of these papers the Boolean functions are (tacitly) assumed to be 
(components of) S-boxes located in the F-function of a Feistel structure or 
in an academic round transformation model such as so-called substitution­
permutation networks [1 , 77] . These networks consist of the alternation of 
parallel S-boxes and bit permutations, and were proposed in [30 , 47] . The 
S-boxes are considered to be the elements in the round transformation that 
give the cipher its strength against cryptanalysis. Maybe the most important 
contribution of the wide trail strategy is the demonstration of the importance 
of the linear steps in the round transformation, and quantitative measures 
for the quality of the linear steps (d. branch numbers, Sect . 9 .3 ) . 

Many of the diffusion and non-linearity criteria described in cryptology 
literature are just criteria a block cipher must satisfy in order to be secure. 
They are necessary conditions for security, but not sufficient. To be of some 
use in cryptographic design, criteria for the components of a cipher are needed 
rather than criteria for the target cipher. Imposing criteria on components in 
a cipher only makes sense if first a structure of the cipher is defined in which 
the components have a specific function. 

5 .6 .2  Resistance against Differential and Linear Cryptanalysis 

The discovery of differential and linear cryptanalysis (see Chaps. 6-8) has 
given rise to a theoretical basis for the design of iterative block ciphers. 
Nowadays, a new block cipher is only taken seriously if it is accompanied with 
evidence that it resists differential and linear cryptanalysis. Naturally, differ­
ential and linear cryptanalysis are not the only attacks that can be mounted 
against block ciphers. In Chap .  10 we consider a number of generic types 
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of cryptanalysis and attacks that are specific for the structure of Rijndael 
and its related ciphers. A block cipher should resist all types of cryptanaly­
sis imaginable. Still , we see that nowadays in most cases resistance against 
differential and linear cryptanalysis are the criteria that shape a block ci­
pher and the other known attacks are only considered later and resistance 
against them can be obtained with small modifications in the original design 
(e.g. the affine transformation in the SRD to thwart interpolation attacks , d. 
Sect . 10.4) . 

Almost always , an iterative block cipher can be made resistant against dif­
ferential and linear cryptanalysis by taking enough rounds . Even if a round 
transformation is used that offers very little non-linearity or diffusion, re­
peating it often enough will result in a block cipher that is not breakable by 
differential or linear cryptanalysis . For an iterated cipher, the workload of 
an encryption is the workload of the round transformation multiplied by the 
number of rounds . The engineering challenge is to design a round transfor­
mation in such a way that this product is minimized while providing lower 
bounds for the complexity of differential and linear cryptanalysis that are 
higher than exhaustive key search. 

5 .6 .3  Local Versus Global Optimization 

The engineering challenge can be taken in different ways . vVe distinguish two 
approaches: 

1 .  local optimization. The round transformation is designed in such a 
way that the worst-case behaviour of one round is optimized. 

2. global optimization. The round transformation is designed in such a 
way that the worst-case behaviour of a sequence of rounds is optimized. 

In both cases , the worst-case behaviour is then used to determine the required 
number of rounds to offer resistance against differential and linear cryptanal­
ysis . For the actual block cipher , usually some more rounds are taken to have 
a security margin (see Sect . 5 . 1 . 1 ) .  

In the context o f  linear cryptanalysis, this worst-case behaviour corre­
sponds with the maximum input-output correlation (see Chap. 7) and in the 
case of differential cryptanalysis it corresponds to the maximum difference 
propagation probability (see Chap.  8) . 

In the case of local optimization, the maximum input-output correlation 
and the maximum difference propagation probability of the round trans­
formation determine the number of rounds required. In Feistel ciphers (see 
Chap. 6) it does not make sense to evaluate these criteria over a single round, 
since part of the state is merely transposed and undergoes no non-linear op­
eration. Therefore, for Feistel ciphers local optimization is done on a sequence 
of two rounds. 

5 . 6  Approaches to Design 75 

In Chaps. 7 and 8 we show that to obtain low maximum correlations 
and difference propagation probabilities , a Boolean transformation must have 
many input bits . In the local optimization approach the round must thus 
make use of expensive non-linear functions such as large S-boxes or modular 
multiplication. This can be considered to be a greedy approach: good non­
linearity is obtained with only few rounds but at a high implementation cost . 

The tendency to do local optimization can be found in many ciphers. For 
example, in [56] X. Lai et al . claim that the maximum diff�rence propagation 
probability over a single round is an important measure of the resistance 
that a round transformation offers against differential cryptanalysis. Another 
example of local optimization is [76] by K. Nyberg and L. Knudsen. All results 
are obtained in terms of the maximum difference propagation probability of 
the F-function (see Chap. 6) of a Feistel cipher. 

In global optimization, the maximum input-output correlation and differ­
ence propagation probability of the round transformation do not play such an 
important role. Here several approaches are possible . One of the approaches 
is the wide trail strategy that we have adopted for the design of Rijndael 
and its predecessors. To fully understand the wide trail strategy, we advise 
reading Chaps. 6-9. 

As opposed to local optimization, global optimization allows cheap non­
linear Boolean transformations such as small S-boxes. Global optimization 
introduces new diffusion criteria. These diffusion criteria no longer specify 
what the block cipher should satisfy, but give concrete criteria for the design 
of components of the round transformation .  In most cases , the round trans­
formation contains components that realize non-linearity and components 
that realize diffusion. The function of the diffusion components is to make 
sure that the input-output correlation (difference propagation probability) 
over r rounds is much less than the nth power of the maximum input-output 
correlation (difference propagation probability) of the round transformation. 

For most round transformations , finding the maximum difference prop­
agation probability and the maximum input-output correlation is computa­
tionally feasible. Computing the maximum difference propagation probability 
and the maximum input-output correlation over multiple rounds can, how­
ever, become very difficult . In the original differential cryptanalysis and linear 
cryptanalysis attacks on the DES , finding high difference propagation proba­
bilities and input-output correlations over all but a few rounds of the cipher 
turned out to be one of the major challenges. In the linear cryptanalysis 
attack (d. Chap. 6 and [65 ,  66] ) ,  lVI. Matsui had to write a sophisticated 
program that searched for the best linear expression. 

In Rijndael and its predecessors, we have made use of symmetry and align­
ment to easily prove lower bounds for sequences of four rounds (two rounds 
in SHARK, see Chap. 1 1 ) .  If alignment is not applied, proving bounds be­
comes more difficult . An illustration of this is the AES finalist Serpent [3] , 
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which also applied the principle of global optimization. The Serpent submis­
sion contains a table giving the maximum difference propagation probabilities 
and input-output correlations for 1-7 rounds, clearly illustrating this. Espe­
cially the bounds for 5-7 rounds were excellent. Unfortunately, the paper did 
not give a proof of these bounds nor a description of how they were obtained. 
Moreover, recently the designers of Serpent had to weaken the bounds due to 
new insights [8] . In our recent bit-slice cipher Noekeon [24] , we have provided 
bounds for four rounds using an exhaustive search program with a relatively 
simple structure. By exploiting the high level of symmetry in Noekeon, many 
optimizations were possible in this program, enabling us to demonstrate sur­
prisingly good bounds. 

5 .7  Key-Alternating Cipher Structure 

By applying the key with a simple XOR, we simplify the analysis of the cipher 
and hence make it easier to prove lower bounds in the resistance against 
particular attacks such as differential and linear cryptanalysis (see Sect . 9 . 1 ) . 

The advantage of the key-alternating structure is that the quality of the 
round transformations in the context of linear or differential cryptanalysis is 
independent of the round key. By adopting a key-alternating structure, the 
analysis of linear and differential trails can be conducted without even con­
sidering the influence of the key. An example of a radically different approach 
is the block cipher IDEA [56] . 

Example 5. 7. 1 . In IDEA the subkeys are applied by means of modular mul­
tiplication and addition. The difference propagation probability of the round 
transformation depend heavily on the value of these subkeys. However, the 
designers of IDEA have proposed considering alternative notions of differ­
ence to come to difference propagation probabilities that are independent of 
value of the round key. Unfortunately, attacks based on XOR as the differ­
ence appear to be more powerful than attacks making use of the alternative 
notion of difference. Moreover, the existence of weak subkeys and an unfor­
tunate choice in the key schedule give rise to large classes of weak keys for 
which IDEA exhibits difference propagations probabilities equal to 1 .  Similar 
arguments apply for the resistance of IDEA against linear cryptanalysis. 

5 .8  The Key Schedule 

5 .8 .1  The Function of a Key Schedule 

The function of a key schedule is the generation of the round keys from the ci­
pher key. For a key-alternating cipher with a block length of nb and r rounds , 
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this means nb (r + 1 ) bits. There is no consensus on the criteria that a key 
schedule must satisfy. In some design approaches , the key schedule must gen­
erate round keys in such a way that they appear to be mutually independent 
and can be considered random (see Sect .7. 10 .2  and 8 .7 .2) . Moreover, for some 
ciphers the key schedule is so strong that the knowledge of one round key 
does not help in finding the cipher key or other round keys. In these ciphers , 
the key schedule appears to make use of components that can be considered 
as cryptographic primitives in their own right. 

For the key schedule in Rijndael the criteria are less ambitious . Basically, 
the key schedule is there for three purposes. 

1 .  The first one is the introduction of asymmetry. Asymmetry in the key 
schedule prevents symmetry in the round transformation and between 
the rounds leading to weaknesses or allows attacks. Examples of such 
weaknesses are the complementation property of the DES or weak keys 
such as in the DES [28] . Examples of attacks that exploit symmetry are 
slide attacks. 

2 .  The second purpose is the resistance against related-key attacks (d. 
Sect . 10 .7) . 

3. The third purpose is the resistance against attacks in which the cipher 
key is (partially) known by or can be chosen by the cryptanalyst. This 
is the case if the cipher is used as the compression function of a hash 
function [52] . 

All other attacks are supposed to be prevented by the rounds of the block 
cipher. The modest criteria we impose can be met by a key schedule that 
is relatively simple and uses only a small amount of resources . This gives 
Rijndael its high key agility. 

5 .8 .2  Key Expansion and Key Selection 

In Rijndael, the key schedule consists of two parts: the key expansion that 
maps the nk-bit cipher key to a so-called expanded key, and the round key 
selection that selects the nb-bit round keys from the expanded key. This 
modularity facilitates the definition of a key expansion that is independent 
of the block length , and a round key selection that is independent of the cipher 
key length. For Rijndael, round key selection is very simple: the expanded 
key is seen as the concatenation of nb-bit round keys starting with the first 
round key. 

5 .8 .3  The Cost of the Key Expansion 

In general, the key schedule is independent of the value of the plaintext or 
the ciphertext. If a cipher key is used for encrypting (or decrypting) mul­
tiple blocks, one may limit the computational cost of the key schedule by 
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performing the key expansion only once and keeping the expanded key in 
working memory for the complete sequence of encryptions. If cipher keys are 
used to encrypt large amounts of data, . the computational cost of the key 
schedule can be neglected. Still , in many applications a cipher key is used 
for the encryption of only a small number of blocks. If the block cipher is 
used as a one-way function (e.g. in key derivation) , or as the compression 
function in a hash function, each encryption is accompanied by the execu­
tion of the key schedule. In these cases , the computational cost of the key 
schedule is very important . Keeping the expanded key in working memory 
consumes nb (r+ 1) bits . In the case of Rijndael , a block length and key length 
of 128 bits require 176 bytes of key storage, whereas a block length and key 
length of 256 bits require 480 bytes of key storage. On some resource-limited 
platforms such as smart cards there may be not enough working memory 
available for the storage of the expanded key. To allow efficient implementa­
tions on these platforms, the key schedule must allow implementations using 
a limited amount of working memory in a limited number of processor cycles, 
in a small program. 

5 .8 .4  A Recursive Key Expansion 

We addressed the requirements discussed above by adopting a recursive struc­
ture. After the first nk bits of the expanded key have been initialized with 
the cipher key, each subsequent bit is computed in terms of bits that have 
previously been generated.  More specifically, if we picture the expanded key 
as a sequence of 4-byte columns, the column at position i in the expanded · 
key can be computed using the columns at positions from i - Nk to i - I  
only. Let us now consider a block consisting of the columns with indices from 
j to j + Nk - 1 .  By working out the dependencies, we can show that this 
block can be computed using columns j - Nk to j - 1. In other words , each 
Nk-column block is completely determined by the previous Nk-column block. 
As Nk columns of the expanded key are sufficient for the computation of all 
following columns, the key schedule can be implemented taking only a work­
ing memory that is the size of the cipher key. The round keys are generated 
on-the-fly and the key expansion is executed whenever round key bits are 
required . In the case where the block length is equal to the key length, the 
blocks described above coincide with round keys, and round key i can be 
computed from round key i + 1 by what can be considered to be one round 
of the key schedule. Additionally, the recursion can be inverted, i .e .  column i 
can be expressed in terms of columns i + 1 to i + Nk. This implies that the ex­
panded key can be computed backwards , starting from the last Nk columns. 
This allows on-the-fly round key generation for decryption. 

The recursion function must have a low implementation cost while provid­
ing sufficient diffusion and asymmetry to thwart the attacks mentioned above. 
To protect against related key attacks, non-linearity can be introduced. More 
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specifically, the non-linearity should prohibit the full determination of differ­
ences in the expanded key from cipher key differences only. 

5 .9  Conclusions 

In this chapter we have tried to make explicit the mindset with which we have 
designed Rijndael and its predecessors. A large part of �t is the formulation 
of criteria that the result must satisfy. Cipher design is still more engineering 
than science. In many cases compromises have to be made between conflicting 
requirements .  We are aware that Rijndael is just an attempt to achieve a 
cipher that satisfies our criteria and that it shows such compromises. 



6 .  The Data Encryption Standard 

In this chapter we give¥' a brief description of the block cipher DES [33] . Both 
differential cryptanalysis and linear cryptanalysis were successfully applied to 
the DES : differential cryptanalysis was the first chosen-plaintext attack, and 
linear cryptanalysis was the first known-plaintext attack that was theoreti­
cally more efficient than an exhaustive key search for the DES. Resistance 
against these two attacks is the most important criterion in the design of 
Rijndael. 

We give a summary of the original differential cryptanalysis and linear 
cryptanalysis attacks using the terminology of their inventors . For a more 
detailed treatment of the attacks, we refer to the original publications [9 , 65] . 
The only aim of our description is to indicate the aspects of the attacks 
that determine their expected work factor . For differential cryptanalysis the 
critical aspect is the maximum probability for difference propagations , for 
linear cryptanalysis it is the maximum deviation from 0 .5  of the probability 
that linear expressions hold. 

6 . 1  The DES 

The cipher that was the most important object of the attacks to be discussed 
is the DES [33] . Therefore, we start with a brief description of its structure. 

The DES is an iterated block cipher with a block length of 64 bits and 
a key length of 56 bits. Its main body consists of 16 iterations of a keyed 
round function . The computational graph of the round function is depicted 
in Fig. 6 . 1 .  The state is split into a 32-bit left part Li and a 32-bit right 
part Ri . The latter is the argument of the keyed F -function. Li is modified 
by combining it with the output of the F-function by means of an XOR 
operation. Subsequently, the left and the right parts are interchanged. This 
round function has the so-called Feistel structure: the result of applying a 
key-dependent function to part of the state is added (using a bitwise XOR 
operation) to another part of the state , followed by a transposition of parts 
of the state . A block cipher that has rounds with this structure is called a 
Feistel cipher. 
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Ki 

Xi+ 1  

Fig. 6 . 1 .  Computational graph of t h e  D E S  round function. 

The computational graph of the F-function is depicted in Fig. 6 . 2 .  It consists 
of the succession of four steps: 

1. Expansion E .  the 32 input bits are expanded to a 4S-bit vector. In this 
expansion, the 32-bit vector is split up in 4-bit nibbles, and the first and 
last bit of each nibble is duplicated. 

2. Key addition. the 4S-bit vector is modified by combining it with a 
4S-bit round key using the bitwise XOR operation. 

3 .  S-boxes. the resulting 4S-bit vector is mapped onto a 32-bit vector by 
non-linear S-boxes . The 4S-bit vector is split up into eight 6-bit tuples 
that are converted into eight 4-bit nibbles by eight different non-linear 
S-boxes that each convert 6 input bits into 4 output bits. As an example, 
Table 6 . 1  gives the specification of the second S-box. This table must be 
read as follows . If the 6-bit input is denoted by ala2a3a4a5a6 , the output 
is given by the entry in row al + 2a6 and column a2 + 2a3 + 4a4 + Sa5 . 
The 4-bit values are given in hexadecimal notation, e .g .  D denotes 1 10 1 .  

4. Bit permutation P.  The bits o f  the 32-bit vector are transposed. 

Fig. 6 . 2 .  Computational graph of the DES F-function. 
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Observe that the only non-linear step in the F-function (and also in the round 
transformation) consists of the S-boxes . The 4S-bit round keys are extracted 
from the 56-bit cipher key by means of a linear key schedule. 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 : F 1 8 E 6 B 3 4 9 7 2 D C 0 5 A 
1 : 3 D 4 7 F 2 8 E C 0 1 A 6 9 B 5 
2 :  0 E 7 B A 4 D 1 5 8 C 6 9 3 2 F 
3 :  D 8 A 1 3 F 4 2 B 6 7 C 0 5 E 9 

Table 6 . 1 .  Specification of the DES S-box 82 .  

6 .2  Differential Cryptanalysis 

In this section we summarize the most important elements of differential 
cryptanalysis as E. Biham and A. Shamir described it in [9] .  

Differential cryptanalysis is a chosen-plaintext (difference) attack in which 
a large number of plaintext-ciphertext pairs are used to determine the value 
of key bits. Statistical key information is deduced from ciphertext blocks ob­
tained by encrypting pairs of plaintext blocks with a specific bitwise difference 
A' under the target key. The work factor of the attack depends critically on 
the largest probability Prob (B' IA' ) with B' being a difference at some fixed 
intermediate stage of the block cipher, e .g .  at the input of the last round. 

In a first approximation, the probabilities Prob (B' IA' ) for the DES are 
assumed to be independent of the specific value of the key. 

In the basic form of the attack, key information is extracted from the 
output pairs in the following way. For each pair it is assumed that the inter­
mediate difference is equal to B' .  The absolute values of the output pair and 
the (assumed) intermediate difference B' impose restrictions upon a number 
£ of key bits of the last round key. A pair is said to suggest the subkey values 
that are compatible with these restrictions. While for some pairs many keys 
are suggested, no keys are found for other pairs , implying that the output 
values are incompatible with B' .  For each suggested subkey value, a corre­
sponding entry in a frequency table is incremented. 

The attack is successful if the correct value of the subkey is suggested 
significantly more often than any other value. Pairs with an intermediate 
difference not equal to B' are called wrong pairs . Sub-key values suggested by 
these pairs are in general wrong. Right pairs, with an intermediate difference 
equal to B' ,  do not only suggest the right subkey value but often also a 
number of wrong subkey values. For the DES , the wrong suggestions may be 
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considered uniformly distributed among the possible key values if the value 
Prob(B' jA' )  is significantly larger than Prob ( G' jA') for any G' #- B' . 

Under these conditions it makes sense to calculate the ratio between the 
number of times the right value is suggested and the average number of 
suggestions per entry, the so-called signal-to-noise (SIN) ratio . 

The size of the table of possible values of the £-bit subkey is 2£ . If we 
denote the average number of suggested subkeys per pair by ,",( , the SIN ratio 
is given by: 

SIN = Prob(B' jA' ) 2£ IT (6 . 1 )  

The SIN ratio strongly affects the number o f  right pairs needed t o  uniquely 
identify the correct subkey value. Experimental results [9] showed that for 
a ratio of 1-2 about 20-40 right pairs are enough. For larger ratios only a 
few right pairs are needed and for ratios that are much smaller than 1 the 
required amount of right pairs makes a practical attack infeasible. 

Pairs of differences A' and B' with a large probability Prob(B' jA' )  are 
found by the construction of so-called characteristics . An r-round charac­
teristic constitutes an (r + I )-tuple of difference patterns: (X� , X{ ,  . . .  , X; ) .  
The probability of this characteristic is the probability that an initial dif­
ference pattern X� propagates to difference patterns X{ , X� ,  . . .  , X; after 1 ,  
2 ,  . . .  , r rounds , respectively. Under the so-called Markov assumption (cf. 
also Sect . 8 . 7. 2 ) ,  i .e .  that the propagation probability from XLI to X: is 
independent of the propagation from X� to XLI ' this probability is given by 

(6 .2 )  

where Prob(X: jXL1 ) is  the probability that the difference pattern XLI at 
the input of the round transformation gives rise to X: at its output . Hence, 
the multiple-round characteristic is a sequence of single-round characteristics 
(XL1 , XD with probability Prob(X: jXL 1 ) .  

In the construction of high-probability characteristics for the DES , ad­
vantage is taken from the linearity in the round transformation. Single-round 
characteristics of the form (L�_l j jR�_ l ) L� j jRD ,  where R� = L�-l and L� =­
R�_ l = 0 have probability 1 and are called trivial. The most probable non­
trivial single-round characteristics have an input difference pattern that only 
affects a small number of the eight S-boxes . 

Trivial characteristics have been exploited to construct high-probability 
iterative characteristics. These are characteristics with a periodic sequence of 
differences . The iterative characteristic with highest probability has a period 
of two. Of the two involved single-round characteristics, one is trivial. In 
the other one there is a non-zero difference pattern at the input of three 
neighbouring S-boxes, which propagates to a zero difference pattern at the 
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output of the S-boxes with probability 1/234. Hence, the resulting iterative 
characteristics have a probability of 1/234 per two rounds . 

In the actual differential attacks on the DES , some techniques are used to 
make the attack more efficient . This involves a special treatment in the first 
and last rounds . For these techniques we refer to [9] . 

6 .3  Linear Cryptanalysis 

In this section we summarize the most important elements of linear cryptanal­
ysis as M. lVlatsui presented them in [65] . Linear cryptanalysis is a known­
plaintext attack in which a large number of plaintext-ciphertext pairs are 
used to determine the value of key bits. 

A condition for applying linear cryptanalysis to a block cipher is to find 
'effective' linear expressions. Let A[i1 ' i2 , . . .  , ia] be the bitwise sum of the 
bits of A with indices in a selection pattern {iI , i2 , . .  · , ia } ;  i .e .  

(6 .3) 

Let P,  C and K denote the plaintext , the ciphertext and the key, respectively. 
A linear expression is an expression of the following type: 

(6 .4) 

with i I , i2 , . . .  , ia ,  j1 , 12 , . . .  ) jb and k1 ' k2 ) . . .  , kc being fixed bit locations. 
The effectiveness, or deviation, of such a linear expression in linear crypt­
analysis is given by jp - 1/2 j where p is the probability that the expression 
holds. By checking the value of the left-hand side of (6 .4) for a large number 
of plaintext-ciphertext pairs, the right-hand side can be guessed by taking 
the value that occurs most often. In principle, this gives a single bit of infor­
mation about the key. In [65] it is shown that the probability of making a 
wrong guess is very small if the number of plaintext-ciphertext pairs is larger 
than jp - 1/2 j -2 . 

In [65] another algorithm is given that determines more than a single 
bit of key information using a similar linear expression. Instead of (6 .4) , an 
expression is used that contains no plaintext or ciphertext bits, but instead 
contains bits of the intermediate encryption values h and h5 , respectively, 
after exactly one round and after all rounds but one: 

(6 .5 )  

By assuming values for a subset U k  of the subkey bits of  the first and last 
round, the bits of II and 115 that occur in (6 .5)  can be calculated. These 
bits are correct if the values assumed for the key bits with indices in Uk 
are correct. Given a large number £ of plaintext-ciphertext pairs, the correct 
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values of all bits in Vk and the value of the right-hand side of (6 .5)  can be 
determined in the following way. For all values of the key bits with indices 
in Vk , the number of plaintext-ciphertext pairs are counted for which (6 .5)  
holds . For the correct assumption the expected value of this sum is pI! or 
( 1 - p)l! .  Thanks to the non-linear behavior of the round transformation 
this sum is expected to have significantly less bias for all wrongly assumed 
subkey values. Given a linear expression (6 .5 )  that holds with probability p, 
the probability that this algorithm leads to a wrong guess is very small if the 
number of plaintext-ciphertext pairs is significantly (say more than a factor 
8) larger than /p - 1/2 / -2 . In an improved version of this attack, this factor 
8 is reduced to 1 [66] .  Hence, in both variants the value of /p - 1/2 / is critical 
for the work factor of the attack. 

Effective linear expressions (6 .4) and (6 .5 )  are constructed by 'chaining' 
single-round linear expressions . An (r - I )-round linear expression can be 
turned into an r-round linear expression by appending a single-round linear 
expression such that all the intermediate bits cancel: 

P [i 1 , i2 , . . .  , ia ] EEl Ir-1 [jl , j2 , . .  · , jb ] = K [k1 , k2 , . . . , kc] 
EEl 

Ir-djl , j2 , . . .  , jb] EEl Ir [ml , m2 , " " ma l = K[k2 ' k5 , · . · , kd] (6 .6)  

In [65] it  is  shown that the probability that the resulting linear expression 
holds can be approximated by 1/2 + 2 (Pl - 1/2) (P2 - 1/2) , given that the 
component linear expressions hold with probabilities PI and P2 , respectively. 

The DES single-round linear expressions and their probabilities can be 
studied by observing the dependencies in the computational graph of the 
round transformation. The selected round output bits completely specify a 
selection pattern at the output of the S-boxes . If only round output bits are 
selected from the left half, this involves no S-box output bits at all, resulting in 
linear expressions that hold with a probability of 1 .  These are of the following 
type: 

(6 .7) 

This is called a trivial expression. Apparently, the most useful non-trivial 
single-round linear expressions only select bits coming from a single S-box. 
For a given S-box, all possible linear expressions and their probabilities can 
be exhaustively calculated . Together with the key application before the S­
boxes, each of these linear expressions can be converted into a single-round 
linear expression. The most effective multiple-round linear expressions for the 
DES are constructed by combining single-round trivial expressions with linear 
expressions involving output bits of only a single S-box. The resulting most 
effective 14-round linear expression has a probability of 1/2 ± 1 . 19 x 2-2 1 . 

6 .4  Conclusions 87 

6 .4 Conclusions 

In this section we have explained the round structure of the DES and have 
given a summary of the two most important cryptanalytic attacks on the 
DES using the terminology and formalism of the original publications . 



7. Correlation Matrices 

In this chapter we consider correlations over Boolean functions and iterated 
Boolean transformations . Correlations play an important role in cryptanalysis 
in general and linear cryptanalysis in particular. 

We introduce algebraic tools such as correlation matrices to adequately 
describe the properties that make linear cryptanalysis possible . We derive 
a number of interesting relations and equalities and apply these to iterated 
Boolean transformations . 

7. 1 The Walsh-Hadamard Transform 

7. 1 . 1  Parities and Selection Patterns 

A parity of a Boolean vector is a binary Boolean function that consists of the 
XOR of a number of bits . A parity is determined by the positions of the bits 
of the Boolean vector that are included in the XOR. 

The selection pattern w of a parity is a Boolean vector value that has 
a 1 in the components that are included in the parity and a 0 in all other 
components . Analogous to the inner product of vectors in linear algebra, we 
express the parity of vector a corresponding with selection pattern w as w T a. 
The concepts of selection vector and parity are illustrated with an example 
in Fig. 7 . 1 .  

Note that for a vector a with n bits , there are 2n different parities. The 
set of parities of a Boolean vector is in fact the set of all linear binary Boolean 
functions of that vector. 

7. 1 . 2  Correlation 

Linear cryptanalysis exploits large correlations over all but a few rounds of 
a block cipher. 

Definition 7 . 1 . 1 .  The correlation C(f, g) between two binary Boolean func­
tions f (a) and g (a) is defined as 
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a: ao al a2 a3 a4 as I a6 I a7 as ag I alO I all I 
w: 0 1 0 I 0 I 1 1 0 0 1 0 0 0 

wT a: al + a4 + as + as 

Fig. 7 . 1 .  Example of state a, selection pattern w and parity wT a. 

C(j, g) = 2 · Prob(j (a) = g (a) ) - 1 .  (7. 1 ) 

From this definition it follows that C(j, g) = C(g , j ) .  The correlation between 
two binary Boolean functions ranges between - 1  and 1 .  If the correlation is 
different from zero , the binary Boolean functions are said to be correlated . If 
the correlation is 1 ,  the binary Boolean functions are equal; if it is - 1 ,  the 
binary Boolean functions are each other 's  complement . 

7.1 .3 Real-valued Counterpart of a Binary Boolean Function 

Let j (a) be a real-valued function that is - 1  for j (a) = 1 and + 1 for j (a) = O .  
This can be expressed by 

j (a) = (_ l )f (a) (7 .2) 

In this notation the real-valued function corresponding to a parity w T a 
becomes (_ 1 )wTa . The real-valued counterpart of the XOR of two binary 
Boolean functions is the product of their real-valued counterparts, i .e .  

j (a)i;g(a) = j (a)g (a) . (7 .3) 

7. 1 .4 Orthogonality and Correlation 

We define the inner product of two binary Boolean functions j and 9 as 

< j, 9 > = L j(a)g (a) . (7 .4) 
a 

This inner product defines the following norm:  

I l j l l  = J < j, j > . (7 .5) 

The norm of a binary Boolean function j (a) is equal to the square root of 
its domain size , i .e .  2n/2 . 

7. 1 The vValsh-Hadamard Transform 9 1  

From the definition of correlation it  follows that 

C (  ) = < j, g > 
j, g 

I l j l l ' l l g l l ' 
(7 .6) 

or in words, the correlation between two binary Boolean functions is equal 
to their inner product divided by their norms . In Fig. 7.2 this is illustrated 
in a geometrical way. 

C(j, g) = cos a 

j 

Fig. 7 . 2 .  Geometric representation of binary Boolean functions and their correla­
tion. 

7. 1 . 5  Spectrum of a Binary Boolean Function 

The set of binary Boolean functions of an n-bit vector can be seen as elements 
of a vector space of dimension 2n . A vector j has 2n components given by 
(_ l ) f(a) for the 2n values of a. Vector addition corresponds with addition of 
the components in JR, scalar multiplication as multiplication of components 
with elements of JR. This is the vector space < JR2n , +, . > . 

In < JR2n ,  +, . > the parities form an orthogonal basis with respect to the 
inner product defined by (7.4) : 

a 

a 

a 

Here 5( w ) is the Kronecker delta function that is equal to 1 if w is the zero 
vector and 0 otherwise. The representation of a binary Boolean function with 
respect to the parity basis is called its Walsh-Hadamard spectrum, or just its 
spectrum [38 , 79] . 
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Consider now C(f(a) , wTa) , which is the correlation between a binary 
Boolean function f(a) and the parity wTa. If we denote this by F(w) , we 
have 

(7 .7) 
w 

where w ranges over all possible 2n values . In words, the coordinates of a 
binary Boolean function in the parity basis are the correlations between the 
binary Boolean function and the parities. It follows that a Boolean function 
is completely specified by the set of correlations with all parities. 
Dually, we have: 

(7 .8)  
a 

We denote the Walsh-Hadamard transform by the symbol W. We have 

W : f (a) f-t F(w) : F (w) = W(f(a) ) . ( 7.9) 

If we take the square of the norm of both sides of (7 .7) , we obtain: 

< j(a) , j(a) >=< L F(w) ( _ l)wTa , L F(v) ( _ lrTa > . (7 . 10) 
w 

Working out both sides gives : 

w 

w v 

w v 

w 

v 

v 

Dividing this by 2n yields the theorem of Parseval [63 ,  p. 416] :  

w 

(7 . 1 1 )  

(7 . 12) 

(7 . 13 )  

(7. 14) 

(7. 15) 

This theorem expresses a relation between the number of parities that a 
given binary Boolean function is correlated with and the amplitude of the 
correlations. If we denote the square of a correlation by correlation potential, 
it states that the correlation potentials corresponding to all input parities 
sum to 1 .  
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7.2 Composing Binary Boolean Functions 

7 .2 .1  XOR 

The spectrum of the XOR of two binary Boolean functions f(a) EB g(a) can 
be derived using (7 .7) : 

u 

u v 

v 

(7 . 16)  

The values of of the spectrum H(w) = W(f EB g) are therefore given by 

H(w) = L F(v EB w)G(v) . (7 . 17) 
v 

Hence, the spectrum of the XOR of binary Boolean functions is equal to the 
convolution of the corresponding spectra. We express this as 

W(f EB g) = W(f) ® W(g) , (7 . 18) 

where ® denotes the convolution operation. Given this convolution property 
it is easy to demonstrate some composition properties that are useful in the 
study of linear cryptanalysis: 

1 . The spectrum of the complement of a binary Boolean function g (a) = 
f(a) EB 1 is the negative of the spectrum of f(a) : G(w) = -F(w) . 

2 . The spectrum of the sum of a binary Boolean function and a parity 
g (  a) = f( a) EB uTa is equal to the spectrum of f( a) transformed by a 
so-called dyadic shift: G(w) = F(w EB u) . 

7.2 .2  AND 

For the AND of two binary Boolean functions we have 

____ 1 A A 

f(a)g(a) = "2 ( 1  + f(a) + g (a) - f(a)g (a) ) .  

It follows that 

1 W(fg) = "2 (S (w) + )/\) (f) + W(g) - W(f EB g) ) . 

(7 . 19 )  

(7 .20) 
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7. 2 .3  Disjunct Boolean Functions 

The subspace of GF (2t generated by the selection patterns w for which 
F(w) -I- 0 is called the support space of f and is denoted by Vi ' The support 
space of the X 0 R of two binary Boolean functions is a subspace of the (vector) 
sum of their corresponding support spaces : 

(7 .21  ) 

This follows directly from the convolution property. Two binary Boolean 
functions are called disjunct if their support spaces are disjunct , i .e . , if the 
intersection of their support spaces only contains the origin. A vector v E 
ViEBg with f and 9 disjunct has a unique decomposition into a component 
u E Vi and a component w E Vg . In this case the spectrum of h = f EB 9 
satisfies 

H(v) = F(u)G(w) where v = u EB w and u E Vi , w E Vg . (7 . 22) 

A pair of binary Boolean functions that depend on non-overlapping sets of 
input bits is a special case of disjunct functions. 

7 .3  Correlation Matrices 

Almost all components in block ciphers are Boolean functions mapping n­
bit vectors to m-bit vectors . Examples are S-boxes , round transformations 
and their steps, and block ciphers themselves. In many cases m = n. These 
functions can be represented by their correlation matrix . 

A Boolean function h : GF(2t ---+ GF(2)m can be decomposed into m 
component binary Boolean functions : 

Each of these component binary Boolean functions hi has a spectrum Hi . 
The vector function H with components Hi can be considered the spectrum 
of the Boolean function h. As in the case of binary Boolean functions, H 
completely determines the function h. 

The spectrum of any parity of components of h is specified by a simple 
extension of (7 . 18) : 

W(uTh) = @ Hi . (7 .23) 
ui=l 

The correlations between input parities and output parities of a Boolean 
function h can be arranged in a 2m X 2n correlation matrix C(h) . The element 
C��� in row u and column w is equal to C (uTh(a) , wTa) . 
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Row u of a correlation matrix can be interpreted as 

(7 .24) 
w 

This expresses an output parity with respect to the basis of input parities. 
A binary Boolean function f (a) is a special case of a Boolean function: 

it has m = 1 .  Its correlation matrix has two rows: row 0 and row 1 .  Row 1 
contains the spectrum of f ( a) . Row 0 contains the spectrum of the empty 
parity: the binary Boolean function that is equal to 0': This row has a 1 in 
column 0 and zeroes in all other columns. 

7.3 .1  Equivalence of a Boolean Function and its Correlation 
Matrix 

A correlation matrix C(h) defines a linear map with domain IF£.2n and range 
IF£.27n • Let £, be a transformation from the space of binary vectors to the space 
of real-valued functions , which transforms a binary vector of dimension n to 
a real-valued function of dimension 2n . £, is defined by 

n 2n ) T £, : GF(2) ---+ 1R : a H £'(a) = a ¢:} au = (- 1  u a .  (7 .25) 

Since £'(aEBb) = £, (a) · £, (b) , £, is a group homomorphism from < GF(2t , EB > 
to < (IR\ {O} ) 2n ,  . > ,  where ' · ' denotes the component-wise product . From 
(7 .24) it follows that 

C(h) £'(a) = £'(h(a) ) .  (7.26) 
In words, applying a Boolean function h to a Boolean vector a and trans­
forming the corresponding function (_l )uTa with the correlation matrix C(h) 
are just different representations of the same operation. This is illustrated in 
Fig. 7.3 .  

h a b = h(a) 

C(h) -----+_ (_ l) bTX 
= C (h) (_ ltTx 

Fig. 7 . 3 .  The equivalence of a Boolean function and its  correlation matrix. 
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7.3 .2  Iterative Boolean Functions 

Consider an iterated Boolean function h that is the composition of two �oolea�) 
functions h = �(2) 0 h( l ) or h (a) = h(2) (h( 1) (a) ) ,  where the func­

tIOn h( transforms n-blt vectors to p-bit vectors and where the function h(2) transforms p-bit vectors to m-bit vectors. The correlation matrix of h is 
determined by the correlation matrices of the component functions. We have 

(_ l)uTh(a) = L CS��) ) (_ l )VTh( l ) (a) 

Hence, we have 

v 

v w 

w v 

(7 . 27) 
where x denotes the matrix product , C(h(l) ) is a 2P x 2n matrix and C(h(2) ) 
is a 2m X 2P matrix. Hence the correlation matrix of the composition of 
two Boolean functions is the product of their correlation matrices . This is 
illustrated in Fig. 7.4 .  

h(l )  h(2) a h(l ) (a) h(2) (h(1 ) (a) ) 
:1): £ :1): £  :1): £  

(_ltTX 
C(h( l ) ) 

C (h( l ) ) (_ I )aTx C(h(2) ) 
. • Ch(2) C(h ( l ) ) (- ItT x 

Fig. 7.4.  Composition Boolean functions and multiplication of correlation matrices. 

The correlations over h = h(2) 0 h( l) are given by 

(7 . 28) 
v 

7.3 .3  Boolean Permutations 

If h is a permutation in GF (2 t ,  we have 

C (uTh- 1 (a) , wTa) = C (uTb , wTh (b) )  = C (wTh (b) , uTb) . (7 .29) 
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It follows that the correlation matrix of h - 1 is the transpose of the correlation 
matrix of h:  

(7 .30) 

Moreover, from the fact that the composition of a Boolean transformation 
and its inverse gives the identity function, the product of the corresponding 
correlation matrices must result in the identity matrix: 

(7 .31  ) 
It follows that : 

(7 .32) 

We can now prove the following theorem: 

Theorem 7.3 . 1 .  A Boolean transformation is invertible iff it has an invert­
ible correlation matrix. 

Proof. 

=? For an invertible Boolean transformation, both (7. 30) and (7.32) are 
valid. Combining these two equations, we have 

-¢::: Interpreting the rows of the correlation matrix according to (7. 24) yields 
a set of n equations, one for each value of u: 

w 

If we assume that the inverse of C(h) exists, we can convert this set of n 
equations , one for each value of w :  

(7. 33) 
u 

Assume that we have two Boolean vectors x and y for which h (x) = h (y) . 
By substituting a in (7 .33) by x and y respectively, we obtain n equations, 
one for each value of w :  

From this it follows that x = y and hence that h i s  injective. It  follows 
that h is invertible . 0 
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7.4 Special Boolean Functions 

7.4. 1 XOR with a Constant 

In the following, the superscript (h) in C(h) will be omitted. Consider the 
function that consists of the bitwise XOR with a constant vector k: h (a) = 
aEBk. Since u T h (a) = u T aEBu Tk, the correlation matrix is a diagonal matrix 
with 

( )UTk Cu,u = - 1 . (7 .34) 

Therefore the effect of the bitwise XOR with a constant vector before (or af­
ter) a function h on its correlation matrix is a multiplication of some columns 
(or rows) by -1 .  

7.4 .2  Linear Functions 

Consider a linear function h(a) = Ma, with M an m x n binary matrix. We 
have 

(7 .35) 

The elements of the corresponding correlation matrix are given by 

(7 .36) 

If M is an invertible matrix, the correlation matrix is a permutation matrix. 
The single non-zero element in row u is in column MT u. The effect of applying 
an invertible linear function before (or after) a function h on the correlation 
matrix is only a permutation of its columns (or rows) . 

7.4.3 Bricklayer Functions 

Consider a bricklayer function b 
component functions : 

h( a) that is defined by the following 

for 1 ::; i ::; C. For every component function h(i) ' there is a corresponding 
correlation matrix denoted by C(i) .  

From the fact that the different component functions h(i) operate on non­
overlapping sets of input bits and are therefore disjunct ,  (7 .22) can be applied. 
The elements of the correlation matrix of h are given by 

(7.37) 
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where 

and 

W = (W( l) , W(2) , · · · ,  W({n ) · 

In words the correlation between an input parity and an output parity is the 
product �f the correlations of the corresponding input apd output parities of 

f t· C(i) the component unc IOns Uti) 'W(i ) . 

7 .5  Derived Properties 

The concept of the correlation matrix is a valuable tool for demonstrating 
properties of Boolean functions and their spectra. We will illustrate this with 
some examples. 

Lemma 7. 5 . 1 .  The elements of the correlation matrix of a Boolean function 
satisfy 

W 

for all u, v, x E GF(2t . 

Proof. Using the convolution property, we have 

W((u EB v)Th(a) ) = W(uTh(a) EB vTh(a) ) 
= W(uTh(a) ) @ W(vTh(a) ) .  

(7 .38) 

(7 .39) 
(7 .40) 

Since the components of W(uTh(a) ) are given by Cu,w , the projection of 
(7 .40) onto the component with index x gives rise to (7 .38) . 0 

From this lemma it follows: 

Corollary 7. 5 . 1 .  The correlation between two output parities defined by u 
and v is equal to the convolution of columns u and v of the correlation matrix. 

(7 .41 ) 
w 

A binary Boolean function is balanced if it is 1 ( or 0) for exactly half of 
the elements in the domain. Clearly, being balanced is equivalent to being 
uncorrelated to the binary Boolean function equal to 0 (or 1 ) .  Using the 
properties of correlation matrices we can now give an elegant proof of the 
following well-known theorem [1] : 
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Theorem 7. 5 . 1 .  A Boolean transformation is invertible iff every output 
parity is a balanced binary Boolean function of input bits. 

Proof. 

=} If h is an invertible transformation, its correlation matrix C is orthogonal. 
Since Co ,o = 1 and all rows and columns have norm 1 ,  it follows that 
there are no other elements in row 0 or column 0 different from O. Hence, 
C(uTh(a) , 0) = b(u) or uTh(a) is balanced for all u i= O .  

{::: The condition that all output parities are balanced binary Boolean func­
tions of input bits corresponds to Cu,o = 0 for u i= O .  If this is the case, 
we can show that the correlation matrix is orthogonal. The expression 
CT x C = I is equivalent to the following set of conditions: 

2: Cu,wCv,w = b (u EB v) for all u, v E GF(2t · 
w 

Using (7.41 ) ,  we have 

2: Cu,wCv,w = C (UE8V) ,O ' 
w 

(7 .42) 

(7.43) 

Since Cu,o = 0 for all u i= 0 ,  and Co,o = 1, (7.42) holds for all possible 
pairs u, v. It follows that C is an orthogonal matrix, hence h-1  exists 
and is defined by CT . 0 

Lemma 7 .5 .2 .  The elements of the correlation matrix of a Boolean function 
with domain GF(2t and the spectrum values of a binary Boolean function 
with domain GF(2t are integer multiples of 21 -n . 

Proof. The sum in the right-hand side of (7 .8) is always even since its value 
is of the form k ·  ( 1 )  + (2n - k) . (- 1 )  = 2k - 2n . It follows that the spectrum 
values must be integer multiples of 21-n . 0 

7.6 Truncating Functions 

A function from GF(2t to GF(2)m can be converted into a function from 
GF(2t-1 to GF(2)m by fixing a single bit of the input . More generally, a bit 
of the input can be set equal to a parity of other input components , possibly 
complemented. Such a restriction is of the type 

vTa = E , (7 .44) 

where E E GF(2) . Assume that Vs i= O. 

7.7 Cross-correlation and Autocorrelation 1 0 1  

The restriction can be modelled by a Boolean function a' = hT (a) that is 
applied before h. It maps GF(2t-1 to GF(2t , and is specified by a� = ai 

for i i= s and a� = E EB v T a EB as .  The non-zero elements of the correlation 
matrix of hr are 

Cr:,Jv = 1 and C ���w) ,w = (_ l ) E for all w where Ws = O .  (7.45) 

All columns of this matrix have exactly two non-zero entries with amplitude 
1 .  

The function restricted t o  the specified subset of inputs is the consecutive 
application of hr and the function itself. Hence, its correlation matrix C' is 
C X C(h'r ) . The elements of this matrix are 

(7.46) 

if Ws = 0 ,  and 0 if Ws = 1. The elements in C' are spectrum values of Boolean 
functions of (n - 1) -dimensional vectors. Hence, from Lemma 7 .5 . 2  they must 
be integer multiples of 22-n . 

Applying (7. 15)  to the rows of the restricted correlation matrices gives 
additional laws for the spectrum values of Boolean functions. For the single 
restrictions of the type v T a = E we have 

2:(F(w) + F(w EB V) ) 2 = 2:(F(w) - F(w EB V) ) 2 = 2 . (7.47) 
w w 

Lemma 7.6 . 1 .  The elements of a correlation matrix corresponding to an 
invertible transformation of n-bit vectors are integer multiples of 22-n . 

Proof. Let g be the Boolean function from GF(2t-1 to GF(2)m that is ob­
tained by restricting the input of function h. Let the input restriction be spec-
ified by the vector w: wT a = O. Then C(g) = C(h) + C(h) or C(g) = 0 u,V u,V u, (vE8w) u,V . 
By filling in 0 for v this yields ' C(g) = C(h) + C(h) Now C(g) must be an , . u 0 u 0 u ,W '  ' u  0 
integer multiple of 22-n , and since 

'
accordi�g to Theorem 7.5 .  � C(hO) = 0, it u , 

follows that cS�� is also an integer multiple of 22-n . 0 

7.7 Cross-correlation and Autocorrelation 

The cross-correlation function [67, p .  1 1 7] of two Boolean functions f (a) and 
g (a) is denoted by Cfg (b) , and given by 

Cfg (b) = C(f (a) , g (a EB b) )  

= 2-n 2: j(a)g (a EB b )  = 2-n 2:( _ l ) f (a)EBg(aE8b ) . 
a a 

(7.48) 

(7.49) 
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Now consider FC, the product of the spectra of two binary Boolean func­
tions f and g :  

a 

a b 

a c 

= W((2-n L j(a)g (a ffi c) )  
c 

(7 . 50) 
b 

(7 .5 1 )  

(7 .52) 

(7 .53) 

(7 .54) 

Hence the spectrum of the cross-correlation function of two binary Boolean 
functions equals the product of the spectra of the binary Boolean functions : 
Cfg = W-1 (FC) . 

The cross-correlation function of a binary Boolean function with itself, 
cf f '  is called the autocorrelation function of f and is denoted by if . It follows 
that the components of the spectrum of the autocorrelation function are the 
squares of the components of the spectrum of f ,  i .e .  

(7. 55) 

This equation is generally referred to as the Wiener-Khintchine theorem [79] . 

7.8 Linear Trails 

Let j3 be an iterative Boolean transformation operating on n-bit vectors : 

j3 = p(r) 0 p(r-l) 0 . . . 0 p(2) 0 p(l ) . (7 . 56) 

The correlation matrix of j3 is the product of the correlation matrices corre­
sponding to the respective Boolean transformations : 

(7 . 57) 

A linear trail U over an iterative Boolean transformation consists of a 
sequence of r + 1 selection patterns : 

U = (u(O) , u( l ) ,  u(2) , . . . , u(r- l ) , u(r) ) . (7 . 58) 
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This linear trail is a sequence of r linear steps (U(i- l ) , U(i) ) that have a 
correlation 

The correlation contribution Cp of a linear trail is the product of the corre­
lation of all its steps: 

(7 .59) 

As the correlations range between -1 and + 1, so does the correlation contri­
bution. 

From this definition and (7 . 57) , we can derive the following theorem: 

Theorem 7.S. 1 (Theorem of Linear '!rail Composition) . The corre­
lation between output parity u T j3(a) and input parity wT a of an iterated 
Boolean transformation with r rounds is the sum of the correlation contribu­
tions of all r-round linear trails U with initial selection pattern w and final 
selection pattern u: 

(7 .60) 
u(O) =w , u(r) =u 

Both the correlation and the correlation contributions are signed. Some 
of the correlation contributions will have the same sign as the resulting corre­
lation and contribute positively to its amplitude; the others contribute neg­
atively to its amplitude. We speak of constructive interference in the case of 
two linear trails that have a correlation contribution with the same sign and 
of destructive interference if their correlation contributions have a different 
sign. 

7.9 Ciphers 

The described formalism and tools can be applied to the calculation of cor­
relations in iterated block ciphers such as the DES and Rijndael. 

7.9. 1 General Case 

In general, an iterative cipher consists of a sequence of keyed rounds , where 
each round p(i) depends on its round key k(i) . In a typical cryptanalytic 
setting, the round keys are fixed and we can model the cipher as an iterative 
Boolean transformation. 
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Linear cryptanalysis requires the knowledge of an output parity and an 
input parity that have a high correlation over all but a few rounds of the 
cipher. These correlations are the sum of the correlation contributions of all 
linear trails that connect the output parity with the input parity. 

In general, the correlations over a round depend on the key value, and 
hence computing the correlation contribution of linear trails requires mak­
ing assumptions about the round key values. However , in many cases the 
cipher structure allows the analysis of linear trails without having to make 
assumptions about the value of the round keys. In Sect . 7 .9 .2  we show that 
for a key-alternating cipher the amplitude of the correlation contribution is 
independent of the round key. 

7.9 .2  Key-Alternating Cipher 

We have shown that the Boolean transformation corresponding to a key ad­
dition consisting of the XOR with a round key k(i) has a correlation matrix 
with only non-zero elements on its diagonal. The element is -1 if u Tk(i) = I ,  
and 1 otherwise. If we denote the correlation matrix o f  p by C ,  the correlation 
contribution of the linear trail U then becomes : 

) II u(i ) T k(i) Cp (U = (- 1 ) Cu(i) ,u( i- l ) (7 .61 ) 

= (_l )duEElEBi u(i) Tk( i) I Cp (U ) I , (7 .62) 
where du = 1 if ft Cu(i) u(i - l ) is negative, and du = 0 otherwise. I Cp (U ) 1 
is independent of the round keys, and hence only the sign of the correlation 
contribution is key-dependent. The sign of the correlation contribution can be 
expressed as a parity of the expanded key K plus a key-independent constant : 

S = UT K EB du , (7 .63) 
where K denotes the expanded key and U denotes the concatenation of the 
selection patterns u(i) . 

The correlation between output parity u T f3(a) and input parity wT a ex­
pressed in terms of the correlation contributions of linear trails now becomes 

C(vTf3 (a) , wTa) = L (_ l) duEElUTK I Cp (U ) I · (7 .64) 
u(O) =W,U( 7') =V 

Even though for a key-alternating cipher the amplitudes of the correlation 
contribution of the individual linear trails are independent of the round keys, 
this is not the case for the amplitude of the resulting correlation at the left­
hand side of the equation. The terms in the right-hand side of the equation 
are added or subtracted depending on the value of the round keys. It depends 
on the value of the round keys whether interference between a pair of linear 
trails is constructive or destructive. 
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7.9.3 Averaging over all Round Keys 

In Sect . 7.9 . 2 we have only discussed correlations for cases in which the value 
of the key is fixed. For key-alternating ciphers we can provide an expression 
for the expected value of correlation potentials, taken over all possible values 
of the expanded key (i .e .  the concatenation of all round keys) . 

Assume that we are studying the correlation Ct between a particular input 
selection pattern and a particular output selection pattern, and that there are 
n linear trails Ui connecting them. In the case of a key-alternating cipher , the 
correlation contribution amplitudes I Cp ( Ui ) I of these trails are independent 
of the key. Let us now express the correlation contribution of trail Ui as 

where Ci is the amplitude of the correlation contribution and Si is a bit 
determining the sign. The sign for a trail Ui is equal to a parity of the 
expanded key plus a trail-specific bit : Si = UiT K EB d·Ui . The expected value 
of the correlation potential is given by 

E(Ct 2 )  = 2-nK L(L ( _1 ) Si Ci ) 2 (7.65) 
K 

= 2-nK L (L (-1 ) U iTKEEldUi Ci ) 2 .  (7.66) 
K 

We can now prove the following theorem: 

Theorem 7.9. 1 .  The average correlation potential between an input and an 
output selection pattern is the sum of the correlation potentials of all linear 
trails between the input and output selection patterns: 

Proof. 

K 
= 2-nK L (L ( _l) U iTKEEldUi Ci ) (L( _l ) Uj T KEElduj Cj ) 

K i j 
= 2-nK L L L( (  _ l ) UiTKEEldUi Ci ) ( ( _l ) Uj T KEElduj Cj ) 

K .7 
= 2-nK L L L(_l) (UiEElUj )TKEEldUi EEldUj CiCj 

K j 
= 2-nK L L(L( _l ) (UiEElUj fI' KEEldui EEldUj )CiCj . 

j K 

(7.67) 

(7.68) 
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For the factor of CiCj in (7 .68) , we have: 

L( _ 1) (UiEBUj )TKEBdui EBdUj = 2nK 5(i E9  j) . (7 .69) 
K 

Clearly, the expression is equal to 0 if Ui EB Uj -=I=- 0: if we sum over all values 
of K, the exponent of (- 1 ) is 1 for half the terms and 0 for the other half. 
For any pair i -=I=- j ,  Ui and U j are also different as we sum over all different 
linear trails. On the other hand, if i = j the exponent of ( - 1 ) becomes 0 and 
the expression is equal to 2nK . Substitution in (7 . 68) yields 

E(Ct 2 ) = 2-nK L L 2nK 5(i E9j)CiCj 
j 

proving our theorem. 

7.9.4 The Effect of the Key Schedule 

o 

In the previous section we have taken the average of the correlation potentials 
over all possible values of the expanded key, implying independent round 
keys. In practice, the values of the round keys are restricted by the key 
schedule that computes the round keys from the cipher key. In this section 
we investigate the effect that the key schedule has on expected values of 
correlation potentials . 

First assume that we have a linear or affine key schedule. For the sake of 
simplicity, we limit ourselves to the linear case, but the conclusions are also 
valid for the affine case . If the key schedule is linear, the relation between the 
expanded key K and the cipher key k can be expressed as the multiplication 
with a binary matrix: 

If we substitute this in (7 .66 ) ,  we obtain 

E(Ct 2 ) = 2-nk L (L (_1) UiT MKkEBdUi Cd2 . 
k 

Working out the squares in this equation yields: 

E(Ct2 ) = 2-nk L L(L (_ 1) (U iEBU j )TM K kEBdui EBdUj )CiCj . 
j k 

(7 .70 )  

(7.71 ) 

(7 .72) 

For the factor of CiCj in (7.68) , we have 

L (-1) UiEBUj TM KkEBdui EBduj 
k 
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(7 .73) 
As above, the expression is equal to 0 if (U i EB Uj ) T MK; -=I=- 0: if we sum over 
all values of k, the exponent of (- 1 ) is 1 for half the terms and 0 in the 
other half. However , if (U i EB Uj )T MK; = 0, all terms have': the same sign: 
(_ l ) (dui EBdUj ) . The condition MK;T (Ui EB Uj ) = 0 is equivalent to saying that 
the bitwise difference of the two trails is mapped to 0 by M K; '  or equiva­
lently, that the two linear trails depend on the same parities of the cipher 
key for the sign of their correlation contribution. Let us call such a pair of 
trails a colliding pair. The effect of a colliding pair on the expression of the 
expected correlation potential in terms of the correlation potentials of the 
trails is the following. Next to the terms Ci2 and Cj2 there is twice the term 
(_ l ) (dui EBdUj ) CiCj . These four terms can be combined into the expression 
(Ci + (- 1 ) (dui EBduj ) Cj ) 2 .  The effect of a colliding pair is that their correlation 
contributions cannot be considered to be independent in the computation of 
the expected correlation potential. They systematically interfere positively if 
dUi = duj , and negatively otherwise. Their contribution to the correlation 
potential is (Ci + (- 1 ) (dUi +du) Cj ) 2 .  
Example 7. 9. 1 .  We illustrate the above reasoning on an example in which the 
key schedule has a dramatic impact . Consider a block cipher B2 [k( 1 ) , k(2 ) ]  (x) 
consisting of two rounds . The first round is encryption with a block cipher 
B with round key k(l) , and the second round is decryption with that same 
block cipher B with round key k(2) . Assume we have taken a state-of-the­
art block cipher B. In that case, the expected correlation potentials between 
any pair of input and output selection patterns of B2 are the sum of the 
correlation potentials of many linear trails over the composition of B and 
B-1 .  The expected value of correlation potentials corresponding to any pair 
of input and output selection patterns is of the order 2-nb . 

Let us now consider a block cipher C[k] defined by 

C[k] (x) = B2 [k , k] (x) .  
Setting k(1)  = k(2) = k can be seen as a very simple key schedule. Clearly, 
the block cipher C[k] (x) is the identity map, and hence we know that it has 
correlation potentials equal to 1 if the input and output selection pattern 
are the same, and 0 otherwise. This is the consequence of the fact that in 
this particular example, the key schedule is such that the round keys can no 
longer be considered as being independent. We have: 

C��;[k( l ) ,k(2) J )  = L C��Jk( l ) J )  C��:l [k(2 ) ] )  = L C�Jk( l ) J ) C�tk(2) J )  . (7 .74) 
v v 
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If k( l) = k (2) = k, this is reduced to 

((e[k] ) 
= 

� ((E [k] ) ( (E [k] ) = <5 (u E9 w) . U,w L U , v  W,v 
v 

(7 .75 )  

This follows from the fact that for any given value of  k, ((E [k] ) is an orthog­
onal matrix. 

As opposed to this extreme example, pairs of linear trails that always 
interfere constructively or destructively due to the linear key schedule are 
very rare. The condition is that the two trails depend on the same parity 
of cipher key bits for their sign. The probability that this is the case for 
two trails is 2-nk . If the key schedule is non-linear, linear trails that always 
interfere constructively or destructively due to the key schedule can even not 
occur. Instead of K = Mr;;k we have K = jr;; (k) with jr;; a non-linear function. 
The coefficient of the mixed terms are of the form 

L ( - 1 )  U iEBUj T I", (k)EBdui EBduj . 
k 

(7 .76)  

It  seems hard to come up with a reasonable key schedule for which this 
expression does not have approximately as many positive as negative terms. 
If that is the case, the sum of the correlation potentials of the linear trails 
are a very good approximation of the expected correlation potentials. Still , 
taking a non-linear key schedule to avoid systematic constructive interference 
seems unnecessary in the light of the rarity of the phenomenon. 

7.10 Correlation Matrices and Linear Cryptanalysis 
Literature 

In this section we make an attempt to position our approach with respect to 
the formalism and terminology that are mostly used on the subject of linear 
cryptanalysis in the cryptographic literature. 

7 .10 .1  Linear Cryptanalysis of the DES 

For an ov:erview of the original linear cryptanalysis attack on the DES we 
refer to Sect . 6 .3 .  The multiple-round linear expressions described in [65] 
correspond to what we call linear trails. The probability p that such an ex­
pression holds corresponds to � ( 1  + Cp (U ) ) ,  where Cp (U )  is the correlation 
contribution of the corresponding linear trail . The usage of probabilities in 
[65] requires the application of the so-called piling-up lemma in the com­
putation of probabilities of composed transformations. When working with 
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correlations , no such tricks are required: correlations can be simply multi­
plied. 

In [65] the correlation over multiple rounds is approximated by the corre­
lation contribution of a single linear trail . The silent assumption underlying 
this approximation, that the correlation is dominated by a single linear trail, 
seems valid because of the large relative amplitude of the described corre­
lation. There are no linear trails with the same initial and final selection 
patterns that have a correlation contribution that comes close to the domi­
nant trail . 

The amplitude of the correlation of the linear trail is independent of the 
value of the key, and consists of the product of the correlations of its steps . 
In general, the elements of the correlation matrix of the DES round function 
are not independent of the round keys , due to the fact that the inputs of 
neighbouring S-boxes overlap while depending on different key bits. However , 
in the described linear trails the actual independence is caused by the fact 
that the steps of the described linear trail only involve bits of a single S-box. 

The input-output correlations of the F-function of the DES can be cal­
culated by applying the rules given in Sect . 7.4. The 32-bit selection pattern 
b at the output of the bit permutation P is converted into a 32-bit selection 
pattern c at the output of the S-boxes by a simple linear function. The 32-bit 
selection pattern a at the input of the (linear) expansion E gives rise to a set 
a of 22£ 48-bit selection patterns after the expansion, where £ is the number 
of pairwise neighbouring S-box pairs that are addressed by a. 

On the assumption that the round key is all-zero, the correlation between 
c and a can now be calculated by simply adding the correlations correspond­
ing to c and all vectors in a. Since the S-boxes form a bricklayer function, 
these correlations can be calculated from the correlation matrices of the in­
dividual S-boxes . For £ > 0 the calculations can be greatly simplified by 
recursively reusing intermediate results in computing these correlations . The 
total number of calculations can be reduced to less than 16£ multiplications 
and additions of S-box correlations . 

The effect of a non-zero round key is the multiplication of some of these 
correlations by - 1 .  Hence, if £ > 0 the correlation depends on the value of 
2£ different linear combinations of round key bits. If £ = 0, a only contains a 
single vector and the correlation is independent of the key. 

7. 10 .2  Linear Hulls 

A theorem similar to Theorem 7.9 . 1  has been proved by K. Nyberg in [75] , 
in her treatment of so-called linear hulls. The difference is the following. 
Theorem 7.9 . 1  expresses the expected correlation potential between an input 
selection pattern and an output selection pattern, averaged over all values of 
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the expanded keys , as the sum of the correlation potentials Ci2 of the indi­
vidual trails between these selection patterns. It is valid for key-alternating 
ciphers. However, the theorem in [75} is proven for DES-like ciphers and does 
not mention key-alternating ciphers. As the DES is not a key-alternating ci­
pher , the correlation potential of a linear trail is in general not independent 
of the expanded key. In Theorem 7 .9 . 1 ,  the correlation potentials C? of the 
linear trails must be replaced by the expected correlation potentials of the 
trails E(Ci2 ) , i.e. , averaged over all values of the expanded key. In [75] the set 
of linear trails connecting the same initial selection pattern and final selection 
patterns is called an approximate linear hull. 

Unfortunately, the presentation. in [75] does not consider the effect of 
the key schedule and only cons,�ders the case of independent round keys. 
This is often misunderstood by cipher designers as an incentive to design 
heavy key schedules, in order to make the relations between round keys very 
complicated, or 'very random' .  As we have shown above, linear cryptanalysis 
does not suggest complicated key schedules as even in the case of a linear key 
schedule systematic constructive interference of linear trails is very rare. 

Extrapolating Theorem 7.9 . 1 to ciphers that are not key-alternating can 
be very misleading. First of all, in actual cryptanalysis it is not so much 
the maximum average correlation potential that is relevant but the maxi­
mum correlation potential corresponding to the given key under attack. We 
illustrate this with an example. 

Example 7. 1 0. 1 . vVe consider a cipher E that consists of the multiplication 
with an invertible binary matrix, where the matrix is the key: 

E [K] (x) = Kx. 

For each given key K, each input parity has a correlation of amplitude 1 with 
exactly one output parity and no correlation with all other output parities. 
A veraged over all possible keys K (i .e .  invertible matrices) , the expected cor­
relation potential between any pair of input-output parities as predicted by 
Theorem 7 .9 . 1 is exactly 2-nb • Unfortunately, despite this excellent prop­
erty with respect to average correlation amplitudes, the cipher is linear and 
trivially breakable. 

The following physical metaphor summarizes the problem with the ex­
trapolation. At any given time , on average half of the world 's populations is 
asleep . This does not mean that everyone is only half awake all the time. 

Even for key-alternating ciphers one must take care in interpreting ex­
pected values of the correlation potential. For example, take the case of a 
large correlation that is the result of one dominant trail with correlation 
C1 . The expected correlation potential is C12 and the required number of 
plaintext-ciphertext pairs for a given success rate of the linear attack is pro­
portional to C1 -2 . Now let us see what happens when another linear trail 
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i s  discovered with a correlation C2 of the same order of magnitude. The ex­
pected correlation potential now becomes C1 2 + C22 . One would expect that 
the required number of plaintext-ciphertext pairs for a given success rate 
would diminish. In fact , the required number of plaintext-ciphertext pairs 
for a given success rate is (C1 + C2 )-2 for half of the keys and (C1 - C2)-2 
for the other half of the keys . Hence, although the additional trail makes 
the expected correlation potential go up, the required number of plaintext­
ciphertext pairs for a given success rate increases in half of the cases . Even 
if the average is taken over the two cases, the expected �required number of 
plaintext-ciphertext pairs increases. It follows that expected correlation po­
tentials should be interpreted with caution. We think expected correlation 
potentials may have some relevance in the case where they result from many 
linear trails with correlation potentials that have the same order of magni­
tude. Still , we think that in design one should focus on worst-case behaviour 
and consider the possibility of constructive interference of (signed) correlation 
contributions (see Sect. 9 . 1 . 1 ) .  

7 . 11  Conclusions 

In this chapter we have provided a number of tools for describing and in­
vestigating the correlations in Boolean functions , iterated Boolean functions 
and block ciphers. This includes the concept of the correlation matrix and 
its properties and the systematic treatment of the silent assumptions made 
in linear cryptanalysis. We have compared our approach with the formalism 
usually adopted in cryptographic literature, and have argued why it is an 
improvement . An extension of our approach to functions and block ciphers 
operating on arrays of elements of GF(2n) is presented in Appendix A. 



8 .  Difference Propagation 

In this chapter we consider difference propagation in Boolean functions. Dif­
ference propagation plays an important role in cryptanalysis in general and 
in differential cryptanalysis in particular. 

We describe how differences propagate through several types of Boolean 
functions. We show that the difference propagation probabilities and the cor­
relation potentials of a Boolean function are related by a simple expression. 
This is followed by a treatment of difference propagation through iterated 
Boolean transformations and in key-alternating ciphers . Finally we apply 
our analysis to the differential cryptanalysis of the DES and compare it with 
the influential concept of Markov ciphers. 

8 .1  Difference Propagation 

Consider a couple of n-bit vectors a and a* with bitwise difference aEEla* = a' . 
Let b = h(a) ,  b* = h(a* ) and b' = b EEl b* . The difference a' propagates to 
the difference b' through h. In general, b' is not fully determined by a' but 
depends on the value of a (or a * )  . 
Definition 8. 1 . 1 .  A difference propagation probability Probh (a' , b') is de­
fined as 

Probh (a' , b' ) = 2-n L 6(b' EEl h(a EEl a' ) EEl h(a) ) .  (8. 1 )  
a 

For a pair chosen uniformly from the set of all pairs (a, a * )  where a EEl a * = a' , 
Probh (a' ,  b') is the probability that h(a) EElh (a* ) = b' . Difference propagation 
probabilities range between 0 and 1 .  Since 

h ( a EEl a') EEl h ( a) = h ( a) EEl h ( a EEl a' ) ,  (8 .2) 

their value must be an integer multiple of 2 1 -n .  We have: 

L Probh (a' , b' ) = 1 .  (8 .3) 
bl 
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The difference propagation from a' to b' occurs for a fraction of all possible 
input values a (and a * ) . This fraction is Probh (a' , b' ) . If Probh (a' , b') = 0, we 
say that the input difference a' and the output difference b' are incompatible 
through h. 

Definition 8 . 1 . 2 .  The weight of a difference propagation (a' , b') is the neg­
ative of the binary logarithm of the difference propagation probability) i . e . )  

(8 .4) 

The weight corresponds to the amount of information (expressed in bits) that 
the difference propagation gives about a. Equivalently, it is the loss in entropy 
[85] of a due to the restriction that a' propagates to b' . The weight ranges 
between 0 and n - 1 :  in the worst case the difference propagation gives no 
information on a, and in the best case it leaves only one bit of uncertainty 
on a and a* . 

If h is a linear function, a difference pattern at the input completely 
determines the difference pattern at the output : 

b' = b EEl b* = h(a) EEl h (a*) = h(a EEl a* ) = h(a' ) .  (8 .5)  

From wr (a' , b') = 0 it follows that this difference propagation does not give 
any information on a. 

8 .2  Special Functions 

8 .2 . 1  Affine Functions 

An affine function h from GF(2yn to GF(2)m is specified by 

b = Ma EEl k, (8 .6) 

where M is a m x n matrix and k is an m-dimensional vector. The difference 
propagation for this function is determined by 

b' = Ma' . (8 .7)  

8 .2 .2  Bricklayer Functions 

For a bricklayer function h,  the difference propagation probability is the prod­
uct of the difference propagation probabilities of the component functions: 

(8 . 8) 
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The ' weight is the sum o f  the weights o f  the difference propagation i n  the 
component functions : 

(8 .9)  

8.2 .3 Truncating Functions 

A Boolean function h from GF(2yn to GF(2)m can be converted into a 
Boolean function hs from GF(2yn to GF(2)m- l by discarding a single output 
bit as .  The difference propagation probabilities of hs can be expressed in 
terms of the difference propagation probabilities of h: 

(8 . 10) 

where b� = w? = wI for i i=- s and w; = 1 and w� = O. We generalise this 
to the situation in which only a number of linear combinations of the output 
are considered. Let A be a linear function corresponding to an m x g binary 
matrix M . The difference propagation probabilities of () 0 h are given by 

ProbAoh (a' , b' ) = L Probh (a' , w) .  
w lb'=Mw 

8.3 Difference Propagation Probabilities and 
Correlation 

(8 . 1 1 )  

The difference propagation probabilities of Boolean functions can b e  ex­
pressed in terms of their spectrum and their correlation matrix elements. 
The probability of difference propagation Prob! (a' , 0) is given by 

a 
� 1 � � 

= 2-n L "2 (1 + f (a)f (a EEl a' ) )  
a 

� 1  � 1 � � 

= 2-n L "2 + 2-n L "2 f (a)f (a EEl a' ) 
a a 

(8 . 12) 
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The component of the autocorrelation function T! (a/ ) corresponds to the 
amount that Prob! (aI , 0) deviates from 0.5 .  

For functions from GF(2t to GF(2)m , we denote the autocorrelation 
function of uTh (a) by Tu (a/ ) ,  i .e . , 

(8 . 13) 
a 

Now we can prove the following theorem that expresses the duality between 
the difference propagation and the correlation properties of a Boolean func­
tion. 

Theorem 8.3 . 1 .  The difference propagation probability table and correlation 
potential table of a Boolean function are linked by a (scaled) Walsh-Hadamard 
transform. We have 

u,W 

and dually 

Cu,w 2 = 2-n L (_ l) W
Ta'EBu

Tb'
Prob (a/ , hI ) . 

a' ,b' 

Proof. 

Prob (a/ , hI ) = 2-n L 15 (h (a) EEl h(a EEl a/ ) EEl hI ) 
a 

= 2-n L II � ( ( _ l )hi (a)EBhi (aEBa' )ffib� + 1 )  
a . 

a u 

a u 

u 

u 

u 

a 

W 
� T ,  Tb' 2 = 2-m L.) -1)w a ffiu Cu,w . 
u,w 

(8 . 14) 

(8. 15) 

o 
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8.4 Differential Trails 

In this section we apply the described formalism and tools to the propagation 
of differences in iterative Boolean transformations . 

8.4. 1 General Case 

Let f3 be an iterative Boolean transformation operating Qn n-bit vectors that 
is a sequence of r transformations: 

f3 = p(r) 0 p(r-I ) 0 . . .  0 p(2) 0 p(I) . (8 . 16) 

A differential trail Q over an iterative transformation consists of a sequence 
of r + 1 difference patterns: 

(8 . 17) 

A differential trail has a probability. The probability of a differential trail is the 
number of values a(O) for which the difference patterns follow the differential 
trail divided by the number of possible values for a(O) . This differential trail 
is a sequence of r differential steps (q(i- I ) , q(i) )  , which have a weight : 

pli)  ( (i- I ) (i) ) wr q , q , 
or w/i) for short. 

(8 . 18) 

Definition 8.4. 1 .  The weight of a differential trail Q is the sum of the 
weights of its differential steps, i. e . 

(8 . 19) 

The significance of the weight of a differential trail is explained in the follow­
ing section. 

8.4 .2 Independence of Restrictions 

A differential step (q(i- I) , q(i) )  imposes restrictions on the intermediate state 
a(i- I )  in the following way. The differential step imposes that the value of 
a(i-I) is in a set that contains a fraction 2-Wr (i) of all possible values . We de­
note this set as ai-I (i) : the set of possible values of a ( i- I) with the restrictions 
imposed by the ith step (q(i- I) , q(i) ) . As a(i-I) is completely determined by 
a(O) , we can consider the set ao ( i) as the set of possible values of a(O) with 
the restrictions imposed by the ith step. In the case that f3 is a permutation, 
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and hence all steps are also permutations, for each element in ai- I  (i) there 
is one element in ao (i) . Both have the same relative size: 2-Wr (i) . 

Now consider a two-round differential trail. The first step imposes that 
a(O) E ao (l )  and the second step that a(l) E al (2) . We can reduce this second 
restriction to a(O) E ao (2) . The joint restriction imposed by both steps now 
becomes : a(O) E ao ( l ,  2) where ao ( l ,  2) = ao ( l )  n ao (2 ) .  If 

Prob (x E ao (1 ) lx E ao (2) )  = Prob (x E ao ( l ) ) ,  (8 .20) 
the restrictions imposed by the first and the second step are independent. In 
that case, the relative size of ao ( l ,  2) is equal to 2- (wr (1 ) +Wr (2 ) ) . It turns out 
that for round transformations with ,a high diffusion and some non-linearity, 
restrictions due to the differential steps of a linear trails can be considered 
independent if the weight of the trail is below n - 1 .  The relative size of the 
set of values a (0) that satisfy the restrictions imposed by all the differential 
steps of a differential trail Q is by definition the probability of Q .  

While i t  i s  easy to  compute the weight of  a differential trail , computing 
its probability is in general difficult. If we neglect the correlations between 
the restrictions of the different steps, the probability of the differential trail 
is approximated by 

(8 .21  ) 
For actual ciphers the approximation in (8 .2 1 ) is generally very good if the 
weight of the trail is significantly below n - 1 . If Wr (Q ) is of the order n - l or 
larger, (8 .21 ) can no longer be a valid approximation. In this situation, the 
inevitable (albeit small) correlations between the restrictions come into play. 
The probability multiplied by 2n is the absolute number of inputs a(O) for 
which the initial difference pattern propagates along the specified differential 
trail. For this reason, it must therefore be an (even) integer. Of the differential 
trails Q with a weight wr (Q) above n - 1 ,  only a fraction 2n-1 -wr (O) can be 
expected to actually occur for some a (0) . 

Differential cryptanalysis exploits difference propagations (q(O) , q(r) ) with 
large probabilities. Since, for a given input value a(O) , exactly one differential 
trail is followed, the probability of difference propagation (a' , b') is the sum 
of the probabilities of all r-round differential trails with initial difference a' 
and terminal difference b' .  We have 

Prob (a' , b' ) = Prob (Q ) . (8 .22) 
q(O) =a' ,q(r) =b' 

8 .5  Key-Alternating Cipher 

As the round transformation is independent of the key, so is the weight of 
a differential step over a round. A key addition step has no impact on the 
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difference propagation pattern or the weight. Since the weight of a differential 
trail is the total of the weight of its differential steps, it is independent of the 
round keys and hence of the cipher key. 

The reduction of the restrictions imposed upon a(i- I) by (q(i- I ) , q(i) ) ,  
to restrictions on a(O) , involves the round keys . As the signs of the corre­
lations between the different restrictions do depend on the round keys , the 
probability of a differential trail is in general not independent of the cipher 
key. 

For a key-alternating cipher, the approximation given by (8 .21 ) is key 
independent. Therefore, in key-alternating ciphers with a high-diffusion round 
transformation, differential trails with weights significantly below n have a 
probability that is practically independent of the round keys. 

For differential trails Q with a weight wr (Q ) above n - 1 ,  only for an 
expected portion 2n- I-wr (O) of the cipher keys , there will exist a right pair . 

8 .6  The Effect of the Key Schedule 

If we use the total weight over all differential steps to predict the difference 
propagation probability, we make the assumption that the restrictions due 
to the steps are independent. If we make an assumption for the value of 
the round keys, we can reduce the restrictions of all differential steps to 
restrictions on a (0) . It may turn out that the different restrictions are not 
independent. The reduction of the restrictions from all differential steps to 
a(O) involves the round keys , that are in turn a function of the cipher key 
by the key schedule. Hence, the key schedule influences the reduction of 
restrictions of all differential steps to a(O) . 

8 .7  Differential Trails and Differential Cryptanalysis 
Literature 

In this section we match our formalism with the terminology of the original 
description of differential cryptanalysis and with the widely accepted concept 
of Markov ciphers. 

8 .7. 1 Differential Cryptanalysis of the DES Revisited 

In this section we match the elements of differential cryptanalysis as described 
in Sect . 6 .2  with those of our framework. 

The characteristics with their characteristic probability described in [9] 
correspond to what we call differential trails and the approximation of its 
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probability based on its weight. In the cryptanalysis of the DES , the differ­
ence propagation probability from the initial difference pattern to the final 
difference pattern is approximated by the probability of the differential trail. 
This is a valid approximation because of the low relative weight of the differ­
ential trail : 

1 .  The odd-round differential steps have a weight equal to 0 and do not 
impose any restrictions . 

2. The even-round differential steps only impose restrictions on few state 
bits. 

3 .  The state bits after round i + 2 depend on many state bits after round i . 
In other words, the correlation between the different restrictions is very 
weak, if there is any. 

For the DES round transformation the distribution of the differential steps 
and their weight are not independent of the round keys. This dependence was 
already recognized in [9] where in the analysis the weight of the differential 
steps are approximated by an average value. The two-round iterative differ­
ential trail with approximate probability 1/234 has in fact a probability that 
is either 1/146 or 1/585, depending on the value of a linear combination of 
round key bits. 

8.7 .2  Markov Ciphers 

In Sect . 8 .4 .2  we discussed the determination of the probability of a multiple­
round differential trail. This problem has been studied before. A commonly 
used approach was proposed by X. Lai, J. Massey and S .  Murphy in [56] . 
We briefly introduce their approach here, and explain why we prefer our own 
formalism. 

The most valuable contribution of [56] is that it is the first paper to make 
the difference between differentials and characteristics. A differential is a dif­
ference propagation from an input difference pattern to an output difference 
pattern. A characteristic is a differential trail along a number of rounds of a 
block cipher . In [56] it is shown that the probability of a differential over a 
sequence of rounds of a block cipher is equal to the sum of the probabilities 
of all characteristics (differential trails) over those rounds . 

However, we do not fully agree with the general approach taken in [56] . 
It is based on the following three concepts : 

1 .  Markov cipher. A Markov cipher is an iterative cipher whose round 
transformation satisfies the condition that the differential probability is 
independent of the choice of one of the component plaintexts under an 
appropriate definition of difference. 
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2 .  Hypothesis of stochastic equivalence. This hypothesis states that ,  
for virtually all values of  the cipher key, the probability of  a differential 
trail can be approximated by the expected value of the probability of the 
differential trail, averaged over all possible values of the cipher key. 

3 .  Hypothesis of independent round keys. The round keys of a cipher 
are derived from the cipher key by means of the key schedule. One can 
also study a cipher where all the round keys are specified independently. 
The hypothesis states that the expected probability of a differential trail , 
averaged over all possible values of the cipher key, cg,n be approximated 
by the expected probability of the differential trail, averaged over all 
independently specified round key values . 

Under the assumption of independent round keys, for a Markov cipher 
the sequence of round differences forms a Markov chain. From this it follows 
that the study of expected probabilities of differential trails in an r-round 
Markov cipher is reduced to the study of the transition probabilities created 
by its round transformation (assuming that it is an iterated cipher) . Under 
the hypothesis of stochastic equivalence, conclusions can be drawn about 
the probability of differential trails under a fixed key. We have two major 
objections against Markov cipher theory. 

As a first objection, we point out that the given conditions are sufficient, 
but not necessary. Similar to the theory of linear hulls (see Sect . 7. 10 .2 ) , the 
condition of independent round keys for the Markov cipher theory is often 
misunderstood by cipher designers as an incentive to design heavy key sched­
ules in order to make the relations between round keys very complicated, 
or '�ery random' . We have shown that for iterative Boolean transformations , 
independence of the differential steps can be defined even when there are no 
keys. In our discussion, we have shown that this independence does in no 
way require round keys that are supposed to be independent or , even worse, 
random. It is even quite meaningful to speak about the probability of differ­
ential trails in an iterative transformation with round keys that are fixed and 
known. 

For our second objection, let us consider the validity of the hypothesis of 
stochastic equivalence . For certain popular Markov ciphers, this hypothesis 
does not seem to hold. The first example is the block cipher IDEA, that has 
been shown to have 232 weak keys. For these weak keys , differential trails over 
the complete cipher exist that have a probability equal to 1 [19] . A second 
example is the AES candidate DFC [35] . The round transformation of DFC is 
based on a key-dependent linear transformation. For each given key, there are 
a few trails with probability I ,  and many trails with probability O .  Averaged 
over all keys, all trails have a low, non-zero probability. However , this property 
does not give the cipher the predicted resistance against differential attacks 
[54] . It seems that the hypothesis of stochastic equivalence seems to hold 
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best in the case of key-alternating ciphers as for these ciphers the weight of 
differential trails is independent of the values of the round keys. 

8 .  8 Conclusions 

We have described the propagation of differences in Boolean functions, in 
iterated Boolean transformations and in block ciphers in general. We have 
introduced the differential trail as the basic building block of difference prop­
agation in block ciphers. 

9 .  The Wide Trail Strategy 

In this chapter we explain the strategy that underlies many choices made in 
the design of Rijndael and its related ciphers . 

We start with a detailed explanation of how linear correlations and differ­
ence propagation probabilities are built up in key-alternating block ciphers. 
This is followed by an explanation of the basic principles of the wide trail 
strategy. Then we introduce an important diffusion measure, the branch num­
ber and describe how it is relevant in providing bounds for the probability of 
differential trails and the correlation of linear trails over two rounds . This is 
followed by a key-alternating cipher structure that combines efficiency with 
high resistance against linear and differential cryptanalysis . We apply the 
same principles to the Rijndael cipher structure and prove a theorem that 
provides a lower bound on the number of active S-boxes in any four-round 
trail for these ciphers. Finally we provide some concrete constructions for the 
components used in the described cipher structures, using coding theory and 
geometrical representations . 

9 . 1  Propagation in Key-alternating Block Ciphers 

In this section we describe the anatomy of correlations and difference propa­
gations in key-alternating block ciphers. This is used to determine the number 
of rounds required to provide resistance against linear and differential crypt­
analysis. In this section we assume that the round transformations do not 
exhibit correlations with an amplitude of 1 or difference propagations with a 
probability of l . 

Limiting ourselves to the key-alternating structure allows us to reason 
more easily about linear and differential trails, since the effect of a key addi­
tion on the propagation is quite simple. 

9. 1 . 1  Linear Cryptanalysis 

For a successful classical linear cryptanalysis attack, the cryptanalyst needs to 
know a correlation over all but a few rounds of the cipher with an amplitude 



1 24 9. The Wide Trail Strategy 

that is significantly larger than 2-nb/2 . To avoid this , we choose the number 
of rounds so that there are no such linear trails with a correlation contribution 
above nk1 2-nb/2 . 

This does not guarantee that there are no high correlations over r rounds . 
In Chap .  7 we have shown that each output parity of a Boolean function is 
correlated to a number of input parities. Parseval's theorem (7. 15)  states 
that the sum of the correlation potentials with all input parities is 1 .  In the 
assumption that the output parity is equally correlated to all 2nb possible 
input parities, the correlation to each of these input parities has amplitude 
2-nb/2 . In practice it is very unlikely that such a uniform distribution will be 
attained, and so correlations will exist that are orders of magnitude higher 
than 2-nb/2 . This also applies to the Boolean permutation formed by a cipher 
for a given value of the cipher key. Hence, the presence of high correlations 
over (all but a few rounds of) the cipher is a mathematical fact rather than 
something that may be avoided by design. 

However, when we impose an upper bound on the amplitude of the cor­
relation contributions of linear trials, high correlations can only occur as the 
result of constructive interference of many linear trails that share the same 
initial and final selection patterns. If this upper bound is nk1 2-nb/2 , any such 
correlation with an amplitude above 2-nb/2 must be the result of at least nk 
different linear trails. The condition that a linear trail in this set contributes 
constructively to the resulting correlation imposes a linear relation on the 
round key bits. From the point that more than nk linear trails are combined, 
it is very unlikely that all such conditions can be satisfied by choosing the 
appropriate cipher key value. 

The strong key-dependence of this interference makes it very unlikely that 
if a specific output parity has a high correlation with a specific input parity 
for a given key, this will also be the case for another value of the key. In other 
words, although it follows from Parseval 's theorem that high correlations over 
the cipher will exist whatever the number of rounds, the strong round key 
dependence of interference makes locating the input and output selection 
patterns for which high correlations occur practically infeasible. This is true 
if the key is known, and even more so if it is unknown. 

In the above discussion we have neglected possible linear trail clustering: 
the fact that sets of linear trails tend to propagate along common intermedi­
ate selection patterns. If linear trails tend to cluster, this must be taken into 
account in the upper bounds for the correlation contributions . Possible clus­
tering of linear trails in Rijndael and its relatives is treated in Appendix B .  
As  explained in  Sect . 7 .9 .4 ,  the key schedule has little relevance in  this dis­
cussion. In our opinion, linear cryptanalysis does not give much guidance on 
how to design a key schedule. 
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9 . 1 . 2  Differential Cryptanalysis 

For a successful classical differential cryptanalysis attack, the cryptanalyst 
needs to know an input difference pattern that propagates to an output dif­
ference pattern over all but a few (two or three) rounds of the cipher, with 
a probability that is significantly larger than 21-nb .  To avoid this , we choose 
the number of rounds so that there are no such differential trails with a weight 
below nb . 

This strategy does not guarantee that there are no slJ,ch difference propa­
gations with a high probability. For any Boolean function

'
, a difference pattern 

at the input must propagate to some difference pattern at the output , and the 
sum of the difference propagation probabilities over all possible output dif­
ferences is 1 .  Hence, there must be difference propagations with probabilities 
equal to or larger than 21-nb .  This also applies to the Boolean permutation 
formed by a cipher for a given value of the cipher key. Hence, similar to what 
we have for correlations, the presence of difference propagations with a high 
probability over (all but a few rounds of) the cipher is a mathematical fact 
that cannot be avoided by a careful design. 

Let us analyse how, for a given key value, a difference pattern at the 
input propagates to a difference pattern at the output with some probability 
y. By definition, there are exactly y2nb- 1  pairs with the given input difference 
pattern and the given output difference pattern. Each of these pairs follows 
a particular differential trail. 

Assuming that the pairs are distributed over the trails according to a 
Poisson distribution, the expected number of pairs that , for a given key value, 
follow a differential trail with weight z is 2nb - 1-z .  Consider a differential trail 
with a weight z larger than nb - 1 that is followed by at least one pair . The 
probability that this trail is followed by more than one pair is approximately 
2nb- 1-z .  It follows that if there are no differential trails with a weight below 
nb - 1 ,  the y2nb -1 pairs that have the correct input difference pattern and 
output difference pattern follow almost y2nb- 1 different differential trails. 

Hence, if there are no differential trails with a low weight , difference prop­
agations with a large probability are the result of multiple differential trails 
that happen to be followed by a pair in the given circumstances , i .e .  for 
the given key value. For another key value, each of these individual differ­
ential trails may be followed by a pair or may not . This makes predicting 
the input difference patterns and output difference patterns that have large 
difference propagation probabilities practically infeasible. This is true if the 
key is known, and even more so if it is unknown. 

In the above discussion we have neglected possible differential trail clus­
tering: the fact that sets of differential trails tend to propagate along common 
intermediate difference patterns. If differential trails tend to cluster, this must 
be taken into account in the lower bounds for the weight of the differential 
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trails. Possible clustering of differential trails in Rijndael and its relatives is 
treated in Appendix B .  

9 .1 .3  Differences between Linear Trails and Differential Trails 

Linear and differential trails propagate in a very similar way. Still , when they 
are combined to form correlations and difference propagations, respectively, 
there are a number of very important differences. 

The impact of a linear trail is its correlation contribution. The correlation 
contribution can easily be computed and its amplitude is independent of the 
value of the key. The problem with computing correlations over many rounds 
is that a correlation may be the result of many linear trails whose interference 
- constructive or destructive - is strongly key-dependent . 

The impact of a differential trail is its probability, that is in general infea­
sible to compute precisely. However, it can be approximated using the weight 
of the differential trail. Unlike the probability, the weight of a differential trail 
is easy to compute. However, the approximation is only valid for differential 
trails in which the restrictions imposed by the differential steps are mutually 
independent and hence that have a weight below nb - 1 .  If the probability 
of the individual differential trails would be known for a given key, difference 
propagation probabilities would be easy to compute. For differential trails, 
destructive interference does not exist. 

9 .2  The Wide Trail Strategy 

The wide trail strategy is an approach used to design the round transforma­
tions of key-alternating block ciphers that combine efficiency and resistance 
against differential and linear cryptanalysis. In this book we describe the 
strategy for key-alternating block ciphers, but it can also be extended to 
more general block cipher structures . 
We build the round transformations as a sequence of two invertible steps : 

1 .  , .  A local non-linear transformation. By local, we mean that any output 
bit depends on only a limited number of input bits and that neighbouring 
output bits depend on neighbouring input bits . 

2 .  A. A linear mixing transformation providing high diffusion. What is 
meant by high diffusion will be explained in Sect . 9 . 2 . 3 .  

Hence we have a round transformation p :  

p = A O ,. (9 . 1 ) 
and refer to this as a I A round transformation. 
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9 .2 . 1  The /,A Round Structure in Block Ciphers 

In block cipher design I is a bricklayer permutation consisting of a number 
of S-boxes . The state bits of a are partitioned into nt m-bit bundles ai E Zr 
with i E I according to the so-called bundle partition. I is called the index 
space. The block size of the cipher is given by nb = mnt . 

Example 9. 2. 1 .  Let Xl be a cipher with a block
'
length of 48 bits . Let the 

input be divided into six 8-bit bundles. !', 

The index space is I = { 1 , 2 , 3 , 4 , 5 , 6} .  

Figure 9 . 1  illustrates the different steps of a round and a key addition for 
a simple example. The block cipher example has a block size of 27 bits. The 
non-linear S-boxes operate on m = 3 bits at a time. The linear transformation 
mixes the outputs of the nt = 9 S-boxes . Figure 9 .2  gives a more schematic 
representation, which we will use in the remainder of this chapter. 

Fig. 9 . 1 .  Steps of an example block cipher. 

a(r) I I I I I I I I I I 
DDDDDDDDD 

EBEBEBEBEBEBEBEBEB 
a(r+l) I I I I I I I I I I 
Fig. 9 . 2 .  Schematic representation of the different steps of a block cipher. 
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The step r is a bricklayer permutation composed of S-boxes: 

(9 .2) 

where Sy is an invertible non-linear m-bit substitution box. For the purpose 
of this analysis, Sy does not need not to be specified. Clearly, the inverse of r 
consists of applying the inverse substitution 8:;1 to all bundles. The results 
of this chapter can easily be generalized to include non-linear permutations 
that use different S-boxes for different bundle positions. However , this does 
not result in a plausible improvement of the resistance against known at­
tacks. The use of different S-boxes also increases the program size in software 
implementations and the required chip area in hardware implementations. 

The step ,\ combines the bundles linearly: each bundle at its output is a 
linear function of bundles at its input . ' ,\  can be specified at the bit level by 
a simple nb x nb binary matrix M .  We have 

,\ : b = ,\ (a) ¢:} b = Ma. (9 .3) 

,\ can also be specified at the bundle level. For this purpose the bundles 
are assumed to code elements in GF (2m ) with respect to some basis . In its 
most general form, we have : 

,\ : b = '\ (a) ¢:} bi = EB EB (i,j ,£a/e . (9 .4) j O�£<m 
In most instances a more simple linear function is  chosen that is  a special 
case of (9.4) : 

,\ : b = '\ (a) ¢:} b'i = EB e,jaj . (9 .5) j 
If we consider the state as an array of bundles, this can be expressed as a 
matrix multiplication: 

,\ : b = '\ (a) ¢:} b = ( . a (9 .6) 

where ( is an nt x n t  matrix with elements in GF (2m ) . The jth column of ( 
is denoted by (j . The inverse of ,\ is specified by the matrix (- 1 . 

Example 9.2.2. In Xl ,  ,\ could be defined as 

,\ ( [  al a2 a3 a4 a5 a6 ] )  = 

[ 2 . al a1 EEl a2 a2 EEl a3 EEl a4 E9 a5 a4 EEl a5 EEl a6 a3 EEl a5 EEl a6 a2 EEl a3 ] . 

The ( matrix is then given by 

( = 

2 0 0 0 0 0  
1 1 0 0 0 0  
1 0 1 1 1 0 
0 0 0  1 1 1 
o 0 1 0 1  1 
0 1 1 0 0 0  

9 .2 .2  Weight of a Trail 
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r is a bricklayer permutation consisting of S-boxes . Hence, as explained in 
Sect . 7 .4 .3 ,  the correlation over r is the product of the correlations over the 
different S-box positions for the given input and output selection patterns. We 
define the weight of a correlation as the negative logarithm of its amplitude. 
The correlation weight for an input selection pattern and output selection 
pattern is the sum of the correlation weights of the different S-box positions . 
If the output selection pattern is non-zero for a particular S-box position or 
bundle, we call this S-box or bundle active. 

Similarly, the weight of the difference propagation over r is the sum of 
the weights of the difference propagations of the S-box positions for the given 
input difference pattern and output difference pattern . If the input difference 
pattern is non-zero for a particular S-box position or bundle, we call this 
S-box or bundle active. 

We take S-boxes that have good non-linearity properties. For linear crypt­
analysis , the relevant property is the maximum amplitude of correlations over 
the S-box. For differential cryptanalysis, the relevant property is the maxi­
mum difference propagation probability. Once a single S-box has been found 
with good properties , this can be used for all S-box positions in the non-linear 
permutation. 

A linear trail is defined by a series of selection patterns. The weight of 
such a trail is the sum of the weights of the selection patterns of the trail. As 
the weight of the selection patterns is the sum of the weight of its active S-box 
positions , the weight of a linear trail is the sum of that of its active S-boxes . 
An upper bound to the correlation is a lower bound to the weight per S-box. 
Hence, the weight of a linear trail is equal to or larger than the number of 
active bundles in all its selection patterns times the minimum (correlation) 
weight per S-box. We call the number of active bundles in a pattern or a trail 
its bundle weight. 

A differential trail is defined by a series of difference patterns. The weight 
of such a trail is the sum of the weights of the difference patterns of the 
trail . Completely analogous to linear trails, the weight of a differential trail 
is equal to or larger than the number of active S-boxes times the minimum 
( differential) weight per S-box. 
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This suggests two possible Inechanisms of eliminating low-weight trails: 

1 .  Choose S-boxes with high minimum differential and correlation weight . 

2. Design the round transformation(s) in such a way that there are no rel­
evant trails with a low bundle weight . 

The maximum correlation amplitude of an m-bit invertible S-box is above 
2-m/2 , yi�lding a� upper bound for the minimum (correlation) weight of m/2. 
The maXImum dIfference propagation probability is at least 22-m , yielding 
an upper bound for the minimum (differential) weight of m - 2 .  This seems 
to suggest that one should take large S-boxes. 

Instead of spending most of its resources on large S-boxes , the wide trail 
strategy aims at designing the round transformation(s) such that there are no 
trails ,:ith a low bundle weight. In ciphers designed by the wide trail strategy, 
a

. 
relatIvel� large amount of resources are spent in the linear step to provide 

hIgh multIple-round diffusion. 

9.2.3 Diffusion 

Di�usion is
.
the term used by C. Shannon to denote the quantitative spreading 

of mformatIOn [86] . The exact meaning of the term diffusion depends strongly 
on the context in which it is used. In this section we will explain what we 
mean by diffusion in the context of the wide trail strategy. 

Inevitably, the non-linear step I provides some interaction between the 
different bits within the bundles that may be referred to as diffusion . However 
it does not provide any inter-bundle interaction: difference propagation and 
correlation over I stays confined within the bundles. In the context of the 
wide trail strategy, it is not this kind of diffusion we are interested in. We use 
the term diffusion to indicate properties of a Boolean function that increase 
the minimum bundle weight of linear and differential trails. In this sense all 
diffusion is realized by A ;  I does not provide any diffusion at all . 

' 

Let us start by considering single-round trails. Obviously, the bundle 
weight of a single round trail - differential or linear - is equal to the num­
ber o� active bundles at its input. It follows that the minimum bundle weight 
of a smgle-round trail is 1 ,  independent of A .  

In two-round trails, the bundle weight is  the sum of the number of active 
bundles in the (selection or difference) patterns in the state at the input 
of the first and at the second round. The state at the input of the second 
round is equal to the XOR of the output of the first and a round key. This 
key addition has no impact on the selection or difference pattern and hence 
does not impact on their bundle weight. In this context a relevant diffusion 
measure of p is the minimum number of active bundles at the input and 
output of p. We call this the (bundle) branch number of p. Basically, this 
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branch number provides a lower bound for the minimum bundle weight of 
any . two-round trail. The bundle branch number ranges between two ( 'no 
diffusion at all' ) and the total number of bundles in the state nt plus one . 

In trails of more than two rounds , the desired diffusion properties of p 
are less trivial. It is clear that any 2n-round trail is a sequence of n two­
round trails and hence that its bundle weight is lower bounded by n times 
the branch number of p. One approach would be to design a round transfor­
mation with a maximum branch number . However , similar to large S-boxes , 
transformations that provide high branch numbers have 8f,tendency to have 
a high implementation cost. More efficient designs can be achieved using a 
round structure with a limited branch number but with some other particular 
propagation properties . 

For this purpose, A can be built as a sequence of two steps: 

1. (). A step that provides high local diffusion. 
2. 1r. A step that provides high dispersion. 

In block cipher design, the mixing step () is a linear bricklayer permutation. 
Its component each permutations operate on a limited number of bundles 
and have a branch number that is high with respect to their dimensions. The 
step 7r takes care of dispersion. By dispersion we mean the operation by which 
bits or bundles that are close to each other in the context of () are moved to 
positions that are distant . 

Jointly, () and 7r have a spectacular effect on patterns with a low Hamming 
weight : through () this propagates to a localized pattern with high Hamming 
weight that is dispersed all over the state by 7r. There are several approaches 
on how () and 7r are selected. One of these approaches has lead to Rijndael 
and its relatives. 

9 .3  Branch Numbers and Two-Round Trails 

In this section we formally define the branch number of a Boolean transfor­
mation with respect to a bundle partition . 

The bundle weight of a state is equal to the number of non-zero bundles . 
This is denoted by wb (a) . If this is applied to a difference pattern a' , wb (a' ) 
is the number of active bundles in a' . Applied to a selection pattern v, Wb (V) 
is the number of active bundles in v .  We make a distinction between the 
differential and the linear branch number of a transformation. 

Definition 9.3 . 1 .  The differential branch number of a transformation ¢ is 
given by 

(9 .7) 
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For a linear transformation A(a) EEl A(b) = A(a EEl b) , and (9 .7) reduces to: 

(9 .8) 

Analogous to the differential branch number, we can define the linear 
branch number. 

Definition 9 .3 .2 .  The linear branch number of a transformation cP is given 
by 

(9 .9) 

If cP is  a linear transformation denoted by A ,  here exists a matrix M such 
that A (X) = M . x. Equation (9 .9) can then be simplified to (see Sect . 7.4) . 

(9 . 10) 

It follows that the linear branch number of the linear transformation spec­
ified by the matrix M is equal to the differential branch number of the linear 
transformation specified by the matrix MT . Many of the following discussions 
are valid both for differential and linear branch numbers , and both Bd and 
BI are denoted simply by B.  

An upper bound for the (differential or  linear) branch number of  a Boolean 
transformation cP is given by the total number of bundles in the state, denoted 
by ncr. ' For the output difference or selection pattern corresponding to an 
input difference or selection pattern with a single non-zero bundle can have 
a maximum weight of ncr. . Hence, the branch number of cP is upper bounded 
by 

(9 . 1 1 )  

In general, the linear and differential branch number o f  a transformation 
with respect to a partition are not equal. This is illustrated in Example 9 .3 . 1 .  
However, if the step A satisfies certain conditions it can b e  shown that the dif­
ferential and linear branch numbers are equal. An obvious sufficient condition 
is the requirement that M be symmetric. Also, if a Boolean transformation has 
the maximal possible differential or linear branch number, then both branch 
numbers are equal. This is proven for the case of linear transformations in 
Sect . 9 .6  and for the general case in Appendix B .  

Example 9. 3. 1 .  Consider the transformation A :  x 1-7 A · x over GF(4) , where [ 1 1 1 1 ] 
A = 0 1 0 1  . 0 0 1  1 

° 1 1 ° 

(9 . 1 2) 

9 . 3  Branch Numbers and Two-Round Trails 133 

Since A ·  (i , O , O , O )T = ( i , O , O , O )T , it follows that Bd (()) :::; 2 .  However, sim­
ple enumeration shows that there is no ex for which Wb (ex) + wb (ATex) :::; 2 .  
Therefore, Bl  (()) � 3 .  

9.3.1 Derived Properties 

From the symmetry of Definitions 9 .3 . 1 and 9 .3 .2  �t follows that the branch 
number of a transformation and that of its inverse are the same. Moreover, 
we have the following properties : 

1 .  a (differential or selection) pattern a is not affected by a key addition 
and hence its bundle weight wb (a) is not affected. 

2. a bricklayer permutation operating on individual bundles cannot turn an 
active bundle into a non-active bundle or vice versa. Hence, it does not 
affect the bundle weight Wb . 

Assume that we have a transformation cP that is a sequence of a trans­
formation CPl and a bricklayer transformation CP2 operating on bundles, i .e .  
cP = CP2 0 CPl . As CP2 does not affect the number of active bundles in a prop­
agation pattern, the branch number of cP and CPl are the same. More gener­
ally, if propagation of patterns is analysed at the level of bundles (columns) ,  
bricklayer transformations operating on individual bundles (or columns) may 
be ignored as they leave the difference patterns and selection patterns un­
changed. 

If we apply this to the bundle weight of a "'fA round transformation p, it 
follows immediately that the (linear or differential) bundle branch number of 
p is that of its linear part A.  

9 .3 .2 A Two-Round Propagation Theorem 

The following theorem relates the value of B (A) to a bound on the number 
of active bundles in a trail . The proof is valid both for linear and differential 
trails: in the case of linear trails B stands for Bl and in the case of differential 
trails B stands for Bd . 

Theorem 9 .3 . 1  (Two-Round Propagation Theorem) . 
For a key-alternating block cipher with a "'fA round structure, the number of 
active bundles of any two-round trail is lower bounded by the (bundle) branch 
number of A .  

Proof. Figure 9 . 3  depicts two rounds. Since the steps "'f and cr[k] operate 
on each bundle individually, they do not affect the propagation of patterns. 
Hence it follows that wb (al ) + wb (a2 ) is only bounded by the properties of 
the linear step A of the first round. Definitions 9 .3 . 1 and 9 .3 . 2  imply that 



134 9. The Wide Trail Strategy 

the sum of the active bundles before and after .-\ of the first round is lower 
bounded by B(.-\) . D 

a(1) I I I I I I I I I I 
DDDDDDDDD r 

.. 

EBEBEBEBEBEBEBEBEB a [k(l) ] 
a(2) I I I I I I I I I I 

DDDDDDDDD r 
.. 

Fig. 9 . 3 .  Steps relevant in the proof of Theorem 9 . 3 . 1 .  

9 .4  An Efficient Key-Alternating Structure 

Theorem 9 .3 . 1 seems to suggest that to obtain high lower bounds on the 
bundle weight of multiple round trails , a transformation .-\ must be used 
with a high branch number . However , realizing a high branch number has its 
computational cost . In this section we elaborate on a cipher structure that is 
more efficient in providing lower bounds . 

We build a key-alternating block cipher that consists of an alternation of 
two different round transformations defined by 

pa = 8 0 ,  and 

l = 8 o f. 
The step , is defined as before and operates on nt m-bit bundles. 

9.4. 1 The Diffusion Step () 

(9 . 13) 
(9 . 14) 

With respect to 8, the bundles of the state are grouped into a number of 
columns by a partition S of the index space I. We denote a column by � and 
the number of columns by nE . The column containing an index i is denoted 
by � ( i ) ,  and the number of indices in a column � by n� . The size of the 
col umns relates to the block length by 
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8 is a bricklayer permutation with component permutations that each operate 
on a column. Within each column, bundles are linearly combined. We have: 

8 : b = 8 (a) {::} bi = ffi Ci,jaj . 
jE� (i) 

I -+-#+- I I -+-#+- " -+-#+- 1 e 
b l  I I I I I I I I I 
Fig. 9.4.  The diffusion step () . 

If the array of bundles with indices in � is denoted by a� , we have 

8 : b = 8 ( a) {::} b� = C�a� 

(9 . 1 5) 

(9 . 1 6) 

where C� is an n� x n� matrix. The jth column of C� is denoted by C� lj ' 
The inverse of 8 is specified by the partition S and the matrices C� l . The 
bricklayer transformation 8 only needs to realize diffusion within the columns 
and hence has an implementation cost that is much lower . 

Similar to active bundles, we can speak of active columns. The number 
of active columns of a propagation pattern a is denoted by ws (a) . 

The round transformation /a) = 8 0 ,  is a bricklayer transformation op­
erating independently on a number of columns. Taking this bricklayer struc­
ture into account, we can extend the result of Sect . 9 .3 slightly. The branch 
number of 8 is given by the minimum branch number of its component trans­
formations. Applying (9 . 1 1 ) to the component permutations defined by the 
matrices C� results in the following upper bound: 

B(8) :::; min n� + 1 .  � (9 . 1 7) 

Hence, the smallest column imposes the upper limit for the branch number. 
The two-round propagation theorem (Theorem 9.3 . 1 ) implies the follow­

ing lemma. 

Lemma 9.4. 1 .  The bundle weight of any two-round trail in which the first 
round has a ,8 round transformation is lower bounded by NB( 8) , where N 
is the number of active columns at the input of the second round. 

Proof. Theorem 9 .3 . 1 can be applied separately to each of the component 
transformations of the bricklayer transformation p(a) .  For each active column 
there are at least B(8) active bundles in the two-round trail . If the number 
of active columns is denoted by N, we obtain the proof. D 
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Example 9.4 . 1 . In ;\:'2 , the partition :5 has two elements. () can be defined as ( [al a3 ] ) [2a1 EEl a2 a3 EEl . . . a4 EEl a5 ] 
() a2 a4 = al EEl a2 a4 EEl a5 EEl a6 

a5 a3 EEl a5 EEl a6 
a6 a3 EEl a4 EEl a6 

In this case there are two matrices C� : 

and 
o 1 1 1 [ 1 1 1 0 ] 

C�(2) = 1 0 1 1 . 
9.4 .2 The Linear Step e 

8 mixes bundles across columns: 

8 : b = 8 (a) {:} bi = EB Ci,j aj 
j 

1 1 0 1 
(9 . 18) 

The goal of 8 is to provide inter-column diffusion. Its design criterion is to 
have a high branch number with respect to the column partition. This is 
denoted by BC ( 8) and called its column branch number. 

9 .4.3 A Lower Bound on the Bundle Weight of Four-Round Trails 

The combination of the bundle branch number of () and the column branch 
number of 8 allows us to prove a lower bound on the bundle weight of any 
trail over four rounds starting with p(a) .  

Theorem 9 .4 .1  {Four-Round Propagation Theorem for ()8 Con­
struction) . For a key-alternating block cipher with round transformations 
as defined in (9. 13) and (9. 14), the bundle weight of any trail over p(b) 0 
p(a) 0 p(b) 0 p(a) is lower bounded by B( ()) x BC ( 8) . 

Proof. Figure 9 .5  depicts four rounds with the key addition steps and the 
nonlinear steps removed, since these play no role in the trail propagation. It 
is easy to see that the linear step of the fourth round plays no role. The sum 
of the number of active columns in a(2) and a(3) is lower bounded by BC (8) . 
According to Lemma 9 .4. 1 ,  for each active column in a(2) there are at least 
B(()) active bundles in the corresponding columns of a(l ) and a(2) . Similarly, 
for each active column in a (3) there are at least B( ()) active bundles in the 
corresponding columns of a(3) and a(4) . Hence the total number of active 
bundles is lower bounded by B(()) x BC (8) . 0 
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-+-#+- " -+-#+- " -+-#+- 1  e 
a(2) I I I I I I I I I 

e 

-+-#+- I I -+-#+- " -+-#+- 1 e 
a(4) I I I I I I I I I 

e 
Fig. 9 . 5 .  Steps relevant in the proof of Theorem 9 .4 . 1 .  

9.4.4 An Efficient Construction for e 

1 37 

As opposed to (), 8 does not operate on different columns independently 
and hence may have a much higher implementation cost. In this section we 
present a construction of 8 in terms of () and bundle transpositions denoted 
by 'if . We have 

8 = 'if 0 () 0 'if .  (9 . 19) 

In the following we will define 'if ,  and prove that if 'if is  well chosen the column 
branch number of 8 can be made equal to the bundle branch number of () .  

The bundle transposition 7r .  The bundle transposition 'if i s  defined as 

(9 .20) 

where p( i) is a permutation of the index space I. The inverse of 'if is defined 
by p-l (i) .  

Example 9.4 . 2. In the cipher ;\:'2 , we define 'if as the transformation that 
leaves the first row unchanged and shifts the second row one place to the 
right : 

Observe that a bundle transposition 'if does not affect the bundle weight of 
a propagation pattern and hence that the branch number of a transformation 
is not affected if it is composed with 'if .  

As opposed to () , 'if provides inter-column diffusion. Intuitively, good dif­
fusion for 'if would mean that it distributes the different bundles of a column 
to as many different columns as possible . 
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We say 7r is diffusion optimal if the different bundles in each column are 
distributed over all different columns. More formally, we have: 

Definition 9 .4. 1 .  7r is diffusion optimal iff 

\li , j  E I, i -j= j : (�(i) = �(j) )  =? (�(p( i ) )  -j= �(p(j ) ) ) .  (9 .21 )  

It i s  easy to see that this implies the same condition for 7r-1 . A diffusion 
optimal bundle transposition 7r implies ws (7r (a) )  2: max� (wb (a� ) ) . Therefore 
a diffusion optimal transformation can only exist if ns 2: max'i (n�i ) .  In words, 
7r can only be diffusion optimal if there are at least as many columns as there 
are bundles in the largest column. 

If 7r is diffusion optimal, we can prove that the column branch number of 
the transformation e is equal to the branch number of () .  

Lemma 9.4 .2 .  If 7r i s  a diffusion optimal transposition of bundles, the col­
umn branch number of 7r 0 cp 0 7r is equal to the bundle branch number of 
cp 

Proof. We refer to Fig. 9 .6 for the notation used in this proof. Firstly, we 
demonstrate that 

(9 . 22) 

For any active column in b ,  the number of active bundles in that column and 
the corresponding column of c is at least B ( cP ) . 7r moves all active bundles 
in an active column of c to different columns in d, and 7r-1 moves all active 
bundles in an active column of b to different columns in a. It follows that 
the sum of the number of active columns in a and in d is lower bounded by 
the bundle branch number of cp. 
N ow we only have to prove that the sum of the number of active columns in a 
and in d is upper bounded by the bundle branch number of cp. Assume that b ,  
and equivalently c, only have one active column and that cp restricted to  this 
column has branch number B(cp) . In that case, there exists a configuration in 
which the sum of the number of active bundles in b and c is equal to B(cp) . 
7r moves the active bundles in the active column of c to different columns in 
d, and 7r-1 moves the active bundles in the active column of b to different 
columns in a, and hence the total number of active columns in a and d is 
equal to B(cp) . D 

9 .5  The Round Structure of Rijndael 

9.5 . 1  A Key-Iterated Structure 

The efficient structure described in Sect . 9 .4 uses two different round transfor­
mations. It is possible to define a block cipher structure with only one round 

a l  I I I I I I I I 

I I  � I 'if 

h i  I 
I � I I � I I � ¢ 

c I I I I I I I I I 

I I  � I I  'if 

d l I I I 

9 . 5  The Round Structure of Rijndacl 

Fig. 9 . 6 .  Steps relevant in the proof of Lemma 9 . 4 . 2 .  
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transformation that achieves the same bound. This is the round structure 
used in Rijndael and most of the related ciphers . The advantage of having a 
single round transformation is a reduction in program size in software imple­
mentations and chip area in dedicated hardware implementations . For this 
purpose, A can be built as the sequence of two steps: 

1. (). The linear bricklayer transformation that provides high local diffusion, 
as defined in Sect . 9.4. 1 .  

2 . 7r .  the bundle transposition that provides high dispersion, as defined in 
Sect . 9 .4 .4. 

Hence we have the following for the round transformation: 

(9 . 23) 

Figure 9.7 gives a schematic representation of the different steps of a round. 
The steps of the round transformation are defined in such a way that they 

a(i) I I I I I I I I I I 
DDDDDDDDD r 

I I � I I  'if 

I � I I � I I � I 
EBEBEBEBEBEBEBEBEB 

a (i+l ) I I I I I I I I I I 
Fig. 9 . 7. Sequence of steps of a ,7re round transformation, followed by a key 
addition. 
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impose strict lower bounds on the number of active S-boxes in four-round 
trails. 

For two-round trails the number of active bundles is lower bounded by 
B(p) = B()") = B(e) . For four rounds , we can prove the following important 
theorem: 

Theorem 9 .5 . 1  (Four-Round Propagation Theorem) . 
For a key-iterated block cipher with a ,7re round transformation and diffusion 
optimal 7r) the number of active S-boxes in a four-round trail is lower bounded 
by (B(e) ? 

Proof. Firstly, we show that the transformation consisting of four rounds pC 
as defined in (9 .23) is equivalent to four rounds of the construction with pa 

and pb as defined in (9 . 13) and (9 . 14) . For simplicity, we leave out the key 
addition steps,  but the proof works in the same way if the key addition steps 
are present . Let A be defined as 

A = pC 0 pc 0 pc 0 pC 

= (e 0 7r O ,) 0 (e 0 7r O ,) 0 (e 0 7r O ,) 0 (e 0 7r O ,) .  

, is a bricklayer permutation, operating on every bundle separately and op­
erating independently of the bundle 's position. Therefore , commutes with 
7r, which only moves the bundles to different positions . We get 

A = (e 0 ,) 0 (7r 0 e 0 7r 0 ,) 0 (e 0 ,) 0 (7r 0 e 0 7r 0 ,) 

= pa 0 pb 0 pa 0 pb , 

where e of pb is defined exactly as in (9 . 19) . Now we can apply Lemma 9 .4. 2  
and Theorem 9 .4 . 1 to  finish the proof. 0 

The following is an alternative proof of Theorem 9 .5 . 1 .  It does not use the 
results of the previous sections . In order to clarify the discussion, the steps , 
and CT [k] have been left out of the picture . 

Proof. Figure 9 .8  depicts four rounds . It is easy to see that the linear steps of 
the fourth round play no role . By applying Lemma 9 .4 .2 on a(2) and b(3) , it 
follows that the sum of the number of active columns in a(2) and b(3) is lower 
bounded by B( e) . As the number of active columns in b(3) and the number 
of active columns in a4 are equal, we have 

By applying Lemma 9 .4 .1  to b(l ) and a(2) we obtain 

9 . 5  The Round Structure of Rijndacl 

a(1) I I I I I I I I I 
I � I I 'if 

b(1) I I 
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I ·� I 'if 

b(2) I I 

-+--#+- I I -+--#+- II -+--#+- e 
a(3) I I I I I I I I 

I � I  'if 

b(3) I 

-+--#+- I I -+--#+- I I -+--#+- e 
a(4) I I I I I I I I 

I � I  'if 

b(4) I 

-+--#+- I I -+--#+- I I -+--#+- e 
Fig. 9 . 8 .  Steps relevant in the proof of Theorem 9 .5 . 1 .  
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and applying Lemma 9 .4 . 1 to b(3) and a(4) we obtain 

Combining the three equations yields 

Wb (b(l ) ) + Wb (a(2) )  + Wb (b(3) ) + Wb (a(4) ) 
� (ws (a(2 ) )  + ws (a(4) ) )  B((}) 

� (B ((}) ) 2 (9 .24) 

As a bundle transposition does not affect the bundle weight , we have 
Wb (b(l ) )  = Wb (a(1) ) and Wb (b (3) ) = Wb (a(3) ) . Substitution into (9 .24) 
yields 

proving the theorem. o 

In a four-round trail there can be only 4nt active bundles . One may wonder 
how the lower bound of Theorem 9 . 5 . 1  relates to this upper bound. From 
(9 . 1 1 )  we have that B2 :::; min(n� + 1 ) 2  = min n� + 2 min n� + 1 .  Diffusion­
optimality implies that min( n� + 1 )  2 :::; min n�ns + 2 min n� + 1 :::; nt + 2nt + 
nt = 4nt . Hence , the lower bound of Theorem 9 . 5 . 1  is always below the upper 
bound of 4nt . 

9 .5 .2  Applying the Wide Trail Strategy to Rijndael 

To provide resistance against differential and linear cryptanalysis, Rijndael 
has been designed according to the wide trail strategy: the four-round prop­
agation theorem is applicable to Rijndael. It exhibits the key-iterated round 
structure described above: 

1 .  SubBytes :  the non-linear step " operating on the state bytes in parallel. 

2 . ShiftRows :  the transposition step 7r. 

3. MixColurnns :  the mixing step (), operating on columns of four bytes each. 

The coefficients of MixColurnns have been selected in such a way that both 
the differential branch number and the linear branch number (see Defini­
tions 9 .3 . 1 and 9 .3 .2) of MixColurnns are equal to 5. Since ShiftRows moves 
the bytes of each column to four different columns, it is diffusion optimal (see 
Definition 9 .4 . 1 ) .  Hence, the four-round propagation theorem (Theorem 9 .5 . 1 )  
proves that the number of  active S-boxes in  a four-round differential trail or 
linear trail is lower bounded by 25 .  
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SRD has been selected in such a way that the maximum correlation over 
it is at most 2-3 , and that the difference propagation probability is at most 
2-6 , in other words, that the weight of any difference propagation is at least 
6 .  

This gives a minimum weight of 150 for any four-round differential trail 
and a maximum of 2-75 for the correlation contribution for any four-round 
linear trail. These results hold for all block lengths of Rijndael and are in­
dependent of the value of the round keys. Hence there are no eight-round 
trails with a weight below 300 or a correlation contributiQn above 2- 150 . We 
consider this sufficient to resist differential and linear attacks. 

9 .6  Constructions for () 

For memory-efficient implementations, all columns preferably have the same 
size. The fact that the branch number is upper bounded by the smallest 
column (see Eq. (9 . 1 1 ) )  points in the same direction. Hence we will consider 
in the following only the case where all columns have the same size. 

Additionally we can reduce program and chip size by imposing the re­
quirement that () acts in the same way on each column. In this case the same 
matrix C� is used for all columns. 

Imposing additional symmetry conditions on the matrix C� can lead to 
even more compact implementations . For instance, C� can be defined as a 
circulant matrix. 

Definition 9 .6 . 1 .  An n x n matrix A is circulant if there exist n constants al , . . .  , an and a istep ) c =f=. 0 such that for all i , j (0 :::; i , j < n) 

(9 .25) 

If gcd(c, n) = 1 it can be proven that B1 (A) = Bd (A) . 
We can construct matrices Cs giving rise to a maximum branch number 

from an MDS code . 
The branch numbers of linear functions can be studied using the frame­

work of linear codes over GF (2P ) . Codes can be associated with Boolean 
transformations in the following way. 

Definition 9 .6 .2 .  Let () be a transformation from GF (2P )n to GF (2p )n . The 
associated code of (}) Ce ) is the code that has codewords given by the vectors 
(x,  (} (x) )T . The code Ce has 2n codewords and has length 2n. 

If () is defined as (} (x) = A . x, then Ce is a linear [2n , n, d] code. Code Ce 
consists of the vectors (x,  A . x)T , where x takes all possible input values . 
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Equivalently, the generator matrix Ge of Ce is given by 

Ge = [I A] , (9 . 26) 

and the parity-check matrix He is given by 

(9 .27) 

It follows from Definition 9 .3 . 1 that the differential branch number of a trans­
formation 8 equals the minimal distance between two different codewords of 
its associated code Ce . The theory of linear codes addresses the problems 
of determining the distance of a linear code and the construction of linear 
codes with a given distance. The relations between linear transformations 
and linear codes allow us to construct efficiently transformations with high 
branch numbers. As a first example, the upper bound on the differential 
branch number given as in (9 . 1 1 )  corresponds to the Singleton bound for 
codes (Theorem 2 .2 . 1 ) .  Theorem 2 .2 . 2  states that a linear code has distance 
d if and only if every d - 1 columns of the parity-check matrix H are linearly 
independent and there exists some set of d columns that are linearly depen­
dent . Reconsidering the matrix A of Example 9 .3 . 1 ,  all sets of two columns in 
H = [_At I] are independent, but no set of three independent columns exists. 
Therefore the differential branch number equals two. Theorem 2 .2 .3  states 
that a linear code with maximal distance requires that every square subma­
trix of A is nonsingular. An immediate consequence is that transformations 
can have maximal branch numbers only if they are invertible. Furthermore, 
a transformation with maximal linear branch number has also maximal dif­
ferential branch number, and vice versa. Indeed, if all submatrices of A are 
non-singular, then this holds also for AT . 

The following theorem relates the linear branch number of a linear trans­
formation to the dual of the associated code: 

Theorem 9 .6 . 1 .  If Ce is the associated code of the linear transformation 8 ,  
then the linear branch number of 8 i s  equal to  the distance of the dual code 
of Ce · 

Proof. We give the proof for binary codes only. If 8 is specified by the matrix 
A, then [ I  A] is a generator matrix for Ce , and [AT IJ is a generator matrix for 
the dual of Ce o It follows from (9 . 10) that the minimal distance of the code 
generated by [AT IJ equals the linear branch number of 8 .  0 

It follows that transformations that have an associated code that is MDS 
have equal differential and linear branch numbers. 

' 
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9 .7  Choices for the Structure of I and 'IT 

In this section we present several concrete constructions for 7r and the impli­
cations with respect to trails. 

We present two general structures for I and 7r. In the first structure the 
different bundles of a state are arranged in a multidimensional regular array 
or hypercube of dimension d and side nf, . Ciphers constructed in this way 
have a block size of mn� . In the second structure the bundles of a state are 
arranged in a rectangle with one side equal to nf, . This ;'gives more freedom 
for the choice of the block size of the cipher. 

9 .7 .1  The Hypercube Structure 

In this construction the columns � are arranged in a hypercube. The step 7r 
corresponds to a rotation of the hypercube around a diagonal axis (called the 
p-axis) .  

The indices i E I are represented by a vector of length d and elements ij 
between 0 and nf, - 1 .  We have 

The columns � are given by 

j E �(i) if j1 = i 1 , j2 = i2 , · · ·  and jd- 1 = id- 1 . 

p(i ) , defining 7r, is given by 

(9 .28) 

(9 .29 )  

(9 .30) 

Clearly, 7r is diffusion optimal (if d > 1 ) .  We will briefly illustrate this for d 
equal to 1 ,  2 and 3 .  

Dimension 1 . .  Dimension 1 i s  a degenerate case because the partition 
counts only one column, and 7r cannot be diffusion optimal. S HARK [81 ]  
is  an example where n t  = nf, = 8 and m = 8 ,  resulting in a block size of 64 
bits. 

Dimension 2 . . Figure 9 .9 shows the two-dimensional array, the transposi­
tion 7r, and the partition S .  

The two-dimensional structure i s  adopted in  Square [21] , with m = 8 and 
nf, = 4, resulting in a block cipher with a block size of 1 28 bits in which every 
four-round trail has at least 82 = 25 active S-boxes. 

Crypt on [59] (see Sect . 1 1 . 5 . 1 )  has the same structure and transposition 
7r as SQUARE, but it uses a different step 8. Since for Crypton 8(8) = 4, 
there are at least 16 active S-boxes in every four-round trail. 
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p 

Fig. 9 . 9 .  Example of the hypercube structure with d = 2 and nt; = 3. The p-axis 
is indicated on the left . 

Dimension 3 . .  For dimension three , with nf, = 2 and m = 8 ,  we get a 64-
bit cipher that has some similarity to the block cipher SAFER designed by 
J .  Massey [64] , however the round transformation of SAFER actually looks 
more like a triple application of () 0 7r for every application of ,. Therefore 
SAFER also can (almost) be seen as an example of a cipher with a diffusion 
layer of dimension 1 .  

Theorem 9 . 5 . 1  guarantees for our constructions a lower bound on  the 
number of active S-boxes per four rounds of 9. For trails of more than four 
rounds , the minimum number of active S-boxes per round rises significantly: 
after six rounds for instance there are already minimum 18 active S-boxes. 
Figure 9 . 10 shows an example for the arrangement of the bundles and the 
columns. 

p 

BBDJDD / 
Fig. 9 . 1 0 .  Example for t�e hypercube structure with d = 3 and nt; = 3 .  The 
bundles are shown on the left and the colunms are shown on the right. 
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9.7 .2  The Rectangular Structure 

In this construction the columns � are arranged in a rectangle. The other 
dimensions of the array are determined from the required block size of the 
cipher. Figure 9 . 1 1  shows the arrangement of the bundles and the columns 
for an example where nf, = 3 and ns = 5. The step 7r leaves the first row 
invariant , shifts the second row by one position, and the third row by two 
positions . 

Generally, if the step 7r shifts every row by a different;:,number of bundles , 
the diffusion of 7r is optimal. (Note that this is only possible if ns 2': nf" i .e . 
if the number of rows is at most the number of columns. )  

I f  a bundle has m = 8 bits and every column contains nf, = 4 bundles , 
then setting the number of columns ns to 4, 5, 6, 7 or 8 gives a block size 
of 128,  160, 192 ,  224 or 256 bits , respectively. This is exactly the structure 
adopted in Rijndael [26] . BKSQ [25] is a cipher tailored for smart cards. 
Therefore its dimensions are kept small: m = 8, nf, = 3 and ns = 4 to give a 
block length of 96 bits . 

DDDDD 
�DDD 
[2J[]DDD - '---------' '-------' - '---

Fig. 9 . 1 1 .  Example of the rectangular structure. The bundles are shown on the 
left and the columns are on the right. 

9 .8  Conclusions 

In this chapter we have given the design strategy that is the fundament of the 
Rijndael structure. The proposed cipher structure allows us to give provable 
bounds on the correlation of linear trails and the weight of differential trails , 
while at the same time allowing efficient implementations . 

Finally, we show that Rijndael and its related ciphers are instances of a 
cipher family that allows a large flexibility in block length without losing the 
properties of efficiency and high resistance against cryptanalysis. 



1 0 .  Cryptanalysis 

The resistance of Rijndael against linear and differential cryptanalysis has 
been treated extensively in Chaps . 7 to 9 . In this chapter we discuss the 
resistance of Rijndael against various other cryptanalytic attacks . None of 
these attacks poses a threat to Rijndael, not in an academic, theoretical 
sense, and certainly not in a practical sense. We also touch briefly on the 
topic of implementation attacks . 

10 .1  Truncated Differentials 

The concept of truncated differentials was described by L. Knudsen in [53] . 
The corresponding class of attacks exploit the fact that in some ciphers, 
differential trails (see Chap. 8) tend to cluster. We refer to Appendix B for a 
treatment in depth. In short , clustering takes place if for certain sets of input 
difference patterns and output difference patterns , the number of differential 
trails is exceedingly large. The expected probability that a differential trail 
stays within the boundaries of the cluster can be computed independently 
of the probabilities of the individual differential trails. Ciphers in which all 
steps operate on the state in bundles are prone to be susceptible to this type 
of attack. Since this is the case for Rijndael, with all steps operating on bytes 
rather than individual bits, we investigated its resistance against truncated 
differentials . For six rounds or more , no attacks faster than exhaustive key 
search have been found. 

10 .2  Saturation Attacks 

In the paper presenting the block cipher Square [21] , a dedicated attack 
by L. Knudsen on reduced versions of Square is described. The attack is 
often referred to as the 'Square ' attack. The attack exploits the byte-oriented 
structure of Square, and is also applicable to reduced versions of Rijndael. 
N. Ferguson et al. [31] proposed some optimizations that reduce the work 
factor of the attack. In [61 ] , S. Lucks proposes the name 'saturation attack ' for 
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this type of attack. More recently, these attacks have been called ' Structural 
attacks' by A. Biryukov and A. Shamir [1 1] . 

. .  
The saturation attack is a chosen-plaintext attack on ciphers with the 

RIJndael round structure. It can be mounted independently of the choice 
of the S-box in the non-linear step and the key schedule. The version we 
descri�e here is for the case that the columns of mixing step MixColumns have 
a maXImum branch number and that the byte transposition MixColumns is 
diffusion optimal. If one of these two conditions is not fulfilled the attack is 
slightly different but has comparable complexity. In this secti;n we describe 
the attack on a cipher in which the bundles are bytes. Generalizing the attack 
to other bundle sizes is trivial. 

Applied to Rijndael, the saturation attack is faster than an exhaustive 
key sea�ch for reduced-round versions of up to six rounds . After describing 
the basIc attack on four rounds , we will show how it can be extended to five 
and six rounds . 

10 .2 .1  Preliminaries 

Let a A-set be a set of 256 states that are all different in some of the state 
bytes (the active bytes) and all equal in the other state bytes (the passive 
bytes) We have 

V x, y E A : { Xi '� = y� ,j if (i , j )  
. 
active 

. x�,] - y� ,j otherwIse ( 10 . 1 )  

Since the bytes of  a A-set are either constant or  range over all possible values 
� h� 

, 

EB Xi,j = 0, V i , j . ( 10 .2 )  
x E A  

Application of the steps SubBytes  or AddRoundKey on the states of  a A-set 
resul�s i� a different A-set with the positions of the active bytes unchanged. 
ApplIcatIOn of the step ShiftRows results in a A-set in which the active bytes 
are transposed by ShiftRows .  Application of the step MixColumns to a A-set 
d�es not nec�ssari�y result in a A-set . However , since every output byte of 
MlxColumns IS a lmear combination with invertible coefficients of the four 
i�put ?ytes in the same column, an input column with a single active byte 
gl

.
ves nse to �n output column with all four bytes active. Hence, the output of 

MlxColumns IS a A-set if the A-set at its input has a maximum of one active 
byte per column. 

10 .2 .2  The Basic Attack 

Consider a A-set in which only one byte is active. We will now trace the 
evolution of the positions of the active bytes through three rounds. In the 

1 0 . 2  Saturation Attacks 1 5 1  

first round, MixColumns converts the active byte to a complete column of 
active bytes. In the second round, the four active bytes of this column are 
spread over four distinct columns by ShiftRows . Subsequently, MixColumns 
of the second round converts this to 4 columns of only active bytes . The 
set stays a A-set until the MixColumns in the third round . Let the inputs 
of MixColumns in the third round be denoted by ai , and the outputs by bl . 
Then we have for all values of i ,  j that : 

ffi bZ, . = ffi MixColumns (al 
. ) W �,] W � ,] 

I I 

= EB (02 . aL EEl 03 · a�+l ,j EEl a�+2 ,j EEl a�+3 ,j )  
I 

= 02 . ffi az' . EEl 03 . ffi aZ,+l  . EEl ffi al'+2 . EEl ffi al+3 . W � ,] W � ,] W � ,] W � ,.1 
I I I I 

= 0 EEl 0 EEl 0 EEl 0 = O .  

Hence, all bytes at the input of  the fourth round sum to  zero. This property 
is in general destroyed by the subsequent application of SubBytes .  

We assume that the fourth round i s  a FinalRound, i .e . i t  does not include 
a MixColumns operation. Every output byte of the fourth round depends on 
only one input byte of the fourth round. Let the input of the fourth round 
be denoted by c, the output by d and the round key of the fourth round by 
k. We have: 

d = AddRoundKey (ShiftRows (SubBytes (c) ) , k) 

di ,j = SRD [Ci ,j+CJ EEl ki ,j , V i ,  j 

Ci,j = SRD -1 [di ,j -Ci EEl ki,j-cJ , V i , j ,  

( 10 .3) 

( 10 .4) 

( 10 .5) 

where the operations on the column index are, as always , performed in mod­
ulo Nb . Using (10 .5) , the value of Ci ,j can be calculated from the ciphertexts 
for all elements of the A-set by assuming a value for ki,j -ci '  If the assumed 
value for ki,j-ci is equal to the correct round key byte, the following equa-
tions must hold: 

EB C�,j = 0, V i , j .  (10 .6 )  
I 

If ( 10 .6) does not hold, the assumed value for the key byte must be wrong. 
This is expected to eliminate all but approximately 1 key value. This can 
be repeated for the other bytes of k. Since checking ( 10 .6) for a single A-set 
leaves only 1/256 of the wrong key assumptions as possible candidates , the 
cipher key can be found with overwhelming probability with only two A-sets . 
The work factor of the attack is determined by the processing of the first 
set of 28 plaintexts .  For all possible values of one round key byte , (10 .6 )  has 
to be evaluated. This means 216 XOR operations and S-box look-ups. This 
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corresponds to roughly 210 executions of the four-round cipher. A negligible 
amount of possible values for the round key byte has to be checked against 
the second set of plaintexts. In order to recover a full round key, the attack 
needs �o be repeated 16 times . This results in a total complexity of 214 cipher 
executlons . 

10 .2 .3  Influence of the Final Round 

At first sight, it seems that the removal of the operation MixColumns in the 
final round of Rijndael makes the cipher weaker against the saturation attack. 
We will now show that adding a Mi'xColumns operation in the last round 
would not increase the resistance. Let the input of the fourth round still be 
denoted by c, and the output of a 'full ' fourth round (including MixColumns ) 
by e . We have: 

e = AddRoundKey (MixColumns (ShiftRows (SubBytes ( c) ) )  , k) ( 10 .7) 
ei ,j = 02 · SRD [Ci ,j+CJ EB 03 · SRD [Ci+1 ,j+Ci+ l ] EB SRD [Ci+2 ,j+Ci+2 ] EB SRD [Ci+3 ,j+Ci+3 ] EB ki,j , V i ,  j .  ( 10 .8 )  

There are 4Nb equations ( 10 .8) : one for each value of i , j .  The equations can 
be solved for the bytes of c, e.g. , for co ,o : 

co ,o = SRD -1 rOE . (eo ,o EB ko,o ) EB OB . (e1 ,-c1 EB k1 ,-cJ EB OD · (e2 ,-c2 EB k2 , -C2 ) EB 09 ·  (e3 ,-c3 EB k3 ,-C3 ) ]  ( 10 .9) 
= SRD - 1 rOE . eo ,o EB OB . e1 , -C1 EB OD . e2 ,-C2 EB 09 . e3, -C3 EB kb ,o] ,  ( 10 . 10)  

where the equivalent key k' is  defined as 

k' = InvMixColumns (InvShiftRows (k) ) . ( 10 . 1 1 )  

Similar equations hold for the other bytes o f  c .  The value of Co 0 in all elements 
of the A-set can be calculated from the value of the ciphert�xt by assuming 
a value for one byte of the equivalent key k' , and the same attack as before 
can be applied in order to recover the bytes of the equivalent key k' . When 
all bytes of k' have been determined, ( 10 . 1 1 )  can be used to determine k. 

We conclude that the removal of the MixColumns step in the final round 
does not weaken Rijndael with respect to the four-round saturation attack. 
This conclusion agrees with the results of Sect . 3 .7. 2 .  Since the order of 
the steps MixColumns and AddRoundKey in the final round can be inverted 
MixCol umns can be moved after the last key addition and thus a crYPtanalys� 
can easily factor it out , even if he does not know the round key. 
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10 .2 .4 Extension at the End 

If a round is added, we have to calculate the value of Ci ,j+Ci from (10 .5)  using 
the output of the fifth round instead of the fourth round. This can be done 
by additionally assuming a value for a set of 4 bytes of the fifth round key. As 
in the case of the four-round attack, wrong key assumptions are eliminated 
by verifying ( 10 .6) . 

In this five-round attack, 240 key values must be checked, and this must be 
repeated four times. Since checking (10 .6)  for a single A-set leaves only 1/256 
of the wrong key assumptions as possible candidates, the cipher key can be 
found with overwhelming probability with only five A-sets. The complexity 
of the attack can be estimated at four runs x 240 possible values for five 
key bytes x 28 ciphertexts in the set x five S-box look-ups per test , or 246 
five-round cipher executions . 

10 .2 .5  Extension at the Beginning 

The basic idea of this extension is to work with sets of plaintexts that result 
in a A-set with a single active byte at the output of the first round. 

We consider a set of 232 plaintexts ,  such that one column of bytes at 
the input of MixColumns in the first round ranges over all possible values 
and all other bytes are constant. Since MixColumns and AddRoundKey are 
invertible and work independently on the four columns , this property will 
be conserved: at the output of the first round the states will have constant 
values for 3 columns, and the value of the fourth column will range over all 232 
possibilities . This set of 232 plaintexts can be considered as a union of 224 A­
sets, where each A-set has one active byte at the output of the first round. It 
is not possible to separate the plaintexts of the different A-sets , but evidently, 
since (10 .6 )  must hold for every individual A-set , it must also hold when the 
sum goes over all 232 values. Therefore, the round key of the final round can 
be recovered byte by byte, in the same way as for the 4-round attack. This 
five-round attack requires two structures of 232 chosen plaintexts . The work 
factor of this attack can be estimated at 16 runs x 232 ciphertexts in the 
set x 28 possible values for the key byte x one S-box look-up per test , or 238 
five-round cipher executions . 

10 .2 .6  Attacks on Six Rounds 

Combining both extensions results in a 6-round attack. The work factor can 
be estimated at four runs x 232 ciphertexts in the set x 240 possible values for 
5 key bytes x 5 S-box look-ups per test, or 270 six-round cipher executions. 
N. Ferguson et al . explain in [31] a way to do the required calculations more 
efficiently. In this way, the work factor of the six-round attack can be further 
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reduced to 246 six-round cipher executions. The work factor and memory re­
quirements are summarized in Table 10 . 1. S. Lucks observes that for Rijndael 
with key lengths of 192 or 256, the six-round attack can be extended with 
one more round by guessing an additional round key [62] . The work factor of 
the attack increases accordingly. 

Table 1 0 . 1 .  Complexity of saturation attacks applied to Rijndael. 

Attack No . of No. of Memory 
plaintexts cipher executions 

Basic (four rounds) 2Si 214 small 
Extension at end 21 1  246 small 
Extension at beginning 233 238 232 
Both extensions 235 246 232 

10 .2 .7  The Herds Attack 

N. Ferguson et al . describe in [31 ] a further extension of the saturation at­
tack, known as the herds attack. Because of the attack's complexity, we did 
not verify its correctness. We simply copy here the attack's requirements. 
The authors describe a seven-round attack that requires 2128 - 21 19 chosen 
plaintexts and 264 bits of memory. The attack has a workload comparable to 
2120 encryptions. 

The attack can be extended into an eight-round attack with the same 
plaintext requirements and using 2104 bits of memory. The workload is too 
large to be applicable to the case of 128-bit keys. For 192-bit keys, the work­
load is comparable to 2 188 encryptions . For 256-bit keys , this becomes 2204 
encryptions. 

10 .3  Gilbert-Minier Attack 

The saturation attack on Rijndael reduced to six rounds is based on the fact 
that three rounds of Rijndael can be distinguished from a random permu­
tation. H. Gilbert and M. Minier developed a four-round distinguisher that 
allows an attack on Rijndael that is reduced to seven rounds [36] . Due to the 
increased work factor of the attack, it is more efficient than exhaustive key 
search for only some of the key lengths. 

10 .3 .1  The Four-Round Distinguisher 

Let the input of the first round be denoted by a, the input of the second round 
by b, the input of the third round by c, the input of the fourth round by d and 
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the output of the fourth round by e . Let R4k denote the action of Rijndael, 
reduced to four rounds , under the unknown key k. We will investigate the 
behaviour of a family of functions j uvw,k ,  that is parameterised by three bytes 
u, v and w and a key k. The functions take a byte value x as input and have 
a byte value y as output . The functions j uvw,k are defined as follows: 1 ao ,O = x ,  al ,O = u , a2 ,0 = v, a3 ,0 = w,  

j ( ) _ 

the other ai,j are unknown, but constant, ( 10 12) uvw k x - y {:} R4 ( ) . . , k a = e , 
y = OEeo ,o EEl OBe1 ,0 EEl ODe2,0 EEl ,0ge3 ,0 

It can be shown that the inherent structure in the transformation Round 

imposes restrictions on the family of functions juvw,k :  if 216 different values 
for the parameters u, v and w are selected, with large probability at least two 
sets of parameters will result in the same function j. This property holds for 
all values of the key k and can be used to distinguish R4k from a random 
permutation. Note that the distinguisher does not work with probability 1 .  
More information on the construction of this four-round distinguisher can be 
found in [36] . 

10 .3 .2  The Attack on Seven Rounds 

In the same way as the six-round saturation attack, the seven-round attack is 
mounted by adding one round before the distinguisher and two rounds after 
it . 

By assuming a value for 4 key bytes of the first round key, it is possible 
to determine a set of plaintexts such that the inputs of the second round 
are constant in three columns. This set is divided into subsets with constant 
values for the 'parameters' u, v and w at the input of the second round. 
There should be 216 subsets, with 16 plaintexts in each subset . 16 values 
for x suffices to determine whether two sets of parameters result in identical 
functions, with negligible false-alarm probability. It can be shown that the 
required plaintexts for all 232 values of the 4 bytes of the first round key can 
be drawn from a set of 232 plaintexts. 

Each of the bytes ei ,j can be expressed as a function of 4 ciphertext 
bytes and 5 key bytes. Hence the y values depend on 20 key bytes, that have 
to be guessed in order to perform the attack. The work complexity of the 
attack can be estimated at about 2192 executions of the round transformation, 
which is below the complexity of an exhaustive search for a 256-bit key, and 
approximately equal to the complexity of an exhaustive search for a 192-bit 
key. 

A variant of this attack works only for 128-bit keys, and is claimed to be 
marginally faster than an exhaustive search for a 128-bit key. 
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10.4 Interpolation Attacks 

In [46] T. Jakobsen and L. Knudsen introduced a new attack on block ciphers . 
In this attack, the attacker constructs polynomials using cipher input/output 
pairs . This attack is feasible if the components in the cipher have a compact 
algebraic expression and can be combined to give expressions with manage­
able complexity. The basis of the attack is that if the constructed polynomials 
have a small degree, only a few cipher input/output pairs are necessary to 
solve for the (key-dependent) coefficients of the polynomial. 

SRD takes bytes as input and produces bytes as output . Like any other 
transformation with this input size and output size, it can be expressed as a 
polynomial over GF(28 ) .  The polynomial expression of SRD can, for example, 
be found by means of the Lagrange interpolation technique. The polynomial 
expression for SRD is given by 

SRD [X] = 63 EB 8Fx127 EB B5x191 EB 0 1x223 EB F4x239 

EB 25x247 EB F9x251 EB 09x253 EB 05x254 . ( 10 . 13 )  

This complicated expression of SRD in GF(28 ) ,  in combination with the effect 
of the mixing and transposition steps , prohibits interpolation attacks on more 
than a few rounds of Rijndael. 

The techniques in [46] can be extended to use rational expressions or in 
fact any other type of expression. We found no simple rational expression 
for SRD but it seems impossible to prove that no usable expression can be 
found. A second possible extension of this attack is the use of approximate 
expressions, as proposed by T. Jakobsen in [45] . It remains an open problem 
whether any useful expression can be derived in this way. 

N. Ferguson et al. describe how one can derive an algebraic expression for 
ten-round Rijndael [32] . The expression would count 250 terms. Although this 
is certainly an interesting result, the authors are not aware of ways to use this 
expression in an actual attack. Another interesting and as yet unanswered 
question is how this compares with other block ciphers. 

10 .5  Symmetry Properties and Weak Keys as in the 
DES 

Despite the large amount of symmetry, care has been taken to eliminate 
symmetry in the behaviour of the cipher. This is obtained by the round 
constants that are different for each round. The fact that the cipher and its 
inverse use different transformations practically eliminates the possibility for 
weak and semi-weak keys, as described by D .  Davies for the DES [28]. The 
non-linearity of the key expansion practically eliminates the possibility of 
equivalent keys. 
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10 .6  Weak keys as in IDEA 

The weak keys discussed in this subsection are keys that result in a permu­
tation with detectable weaknesses . The best-known case of this type of weak 
keys are those of IDEA [19] . Typically, this weakness occurs when a cipher 
depends heavily on the key application for its non-linearity. Rijndael is a key­
iterated cipher with all non-linearity provided by a key-independent S-box, 
and hence does not exhibit this type of weak keys (see Sect. 5 . 7) . 

10 .7  Related-Key Attacks 

In [6] , E. Biham introduced a related-key attack. Later it was demonstrated 

by J. Kelsey et al. that several ciphers have related-key weaknesses [49] . 

In related-key attacks, the cryptanalyst is assumed to have access to the 

ciphertexts that result from encryptions using different (unknown or partly 

unknown) keys with a chosen relation. The key schedule of Rijndael, with its 

high diffusion and non-linearity, makes it difficult to mount attacks of this 

type. N. Ferguson et al. describe a related-key attack on Rijndael reduced to 

nine rounds [31] . The attack works for a Rijndael version with 128-bit blocks 

and a 256-bit key. It requires 272 chosen plaintexts and has a work factor 

of 2227 encryptions , which indeed is faster than an exhaustive search for the 

key. 

10 .8  Implementation Attacks 

Implementation attacks are based not only on mathematical properties of 
the cipher, but also on physical characteristics of the implementation. Typical 
examples are timing attacks [50] , introduced by P. Kocher, and power analysis 
[5 1] , introduced by P. Kocher et al . In timing attacks, measuring the total 
execution time of the encryption algorithm is used to derive key information. 
In power analysis attacks, measurements of the power consumption of the 
device executing the encryption algorithm is used to derive key information. 
Power analysis attacks can be generalized to other measurable quantities such 
as radiation or heat dissipation emanating from the device. 

10.8 . 1 Timing Attacks 

A timing attack can be mounted if the execution time of the encryption algo­
rithm depends on the value of the key. Let us illustrate this by an example. 
Assume that we have a cipher implementation in which an instruction is ex­
ecuted on the condition that a certain key-dependent intermediate result b 
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takes a specific value. If no special precautions are taken, the total execution 
time of the cipher will vary depending on whether or not the conditional 
instruction is executed. Hence, it is possible to deduce the value of b from 
carefully measuring the execution time. It suffices to compare the encryption 
time for different values of b, while taking care that all other parameters 
influencing the encryption time are kept constant or averaged out . 

An implementation can be protected against timing attacks by ensuring 
that the encryption time is independent of the value of the key. For condi­
tional instructions, this can be done by inserting dummy instructions in the 
shortest path until all paths take the same time. However , this solution might 
leave the cipher unprotected against power analysis attacks. 

In Rijndael, the only possible weakness with respect to timing attacks is 
the implementation of the finite field multiplications in MixColumns , namely 
the subroutine xtirne . All other operations in Rijndael are implemented nat­
urally by instructions that take a constant time. The weakness in xtirne can 
easily be eliminated by defining a 256-byte table and using a look-up table 
to implement xtirne (see Sect . 4. 1 . 1 ) .  

10 .8 .2  Power Analysis 

Simple power analysis (SPA) is an attack where the attacker obtains mea­
surements of the power consumption of the device during the execution of 
one encryption. Typically, this type of attack is applicable to devices that 
depend on external power supplies, e .g .  smart cards . If the power consump­
tion pattern of the hardware depends on the instruction being executed, the 
attacker can deduce the sequence of instructions. If the sequence or the type 
of instructions depends on the value of the key, then the power consumption 
pattern leaks information about the key. Rijndael can easily be implemented 
with a fixed sequence of instructions, which prevents this type of attack. 

In most processors, the power consumption pattern of an instruction de­
pends on the value of the operands. For example, setting a bit in a register 
might consume more power than clearing it . Usually, the variation in the 
power consumption due to the difference in operand value is so small that it 
is buried in noise and is not revealed in power consumption measurements. 
However , by combining measurements of many encryptions , the attacker can 
average out the noise and obtain information about the value of the operand. 
This class of attack are called differential power analysis (D P A) . Protect­
ing implementations against these sophisticated attacks is much harder than 
for timing attacks and SPA, especially if the signal-to-noise ratio is high. 
Proposed countermeasures can be divided into three classes. 

Protection of individual instructions. It is possible to reduce the vul­
nerability of each individual instruction against power analysis . A first ex­
ample is load balancing which was proposed in [27] . Load balancing can be 
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achieved by a redesign of the hardware to minimize or eliminate completely 
the dependency of the power consumption on the value of the operands . This 
redesign can also be simulated by changing the software in such a way that 
all data words contain at all times the complement of each of the data bits as 
well as the data bits themselves . In this way, the correlation between power 
consumption and input values can be diminished. It seems unlikely that the 
dependency can be eliminated completely since there will always be small 
physical variations in the devices . 

Masking of operands is another technique. In this approach, instructions 
on the operand x are replaced by instructions on operands x' and x" , where 
x' and x" are unpredictable for the attacker. Only the joint knowledge of x' 
and x" reveals information on the value of x. Several approaches have been 
proposed [2 , 16 ,  23, 39, 69] . 

Protection of individual instructions has the disadvantage that it has to be 
repeated for each instruction that the algorithm uses . The fact that Rijndael 
can be implemented using only the XOR instruction and look-up tables is 
definitely an advantage here . This is illustrated by T. Messerges in [69] , where 
the performance decrease for protected implementations of the five AES fi­
nalists is compared. It is shown that the performance penalty for Rijndael 
is very modest. M.-L. Akkar and C. Giraud present in [2] another masking 
technique, which uses the mathematical structure of Rijndael to generate 
masks. 

Desynchronization. Instead of focussing on the protection of individual in­
structions separately, one can also try to limit the impact of the weaknesses of 
the individual instructions. A first approach is desynchronization: by chang­
ing the instruction sequence for every encryption, or part of the encryption, 
it becomes more difficult for the attacker to obtain meaningful statistics. The 
parallelism in the round transformation of Rijndael allows for some variation 
in the instruction sequence. However, the number of sequences is limited. 

Key schedule complexity. In [15] S. Chari et al . argue that a complex 
key expansion scheme helps to increase the resistance against power attacks. 
If the knowledge of a round key does not allow reconstruction the cipher 
key, an attacker will have to recover more - or all - round keys in order 
to be able to forge or read new messages. It is argued that the simple key 
expansion of Rijndael is a disadvantage in this respect . However, it should be 
clear to the reader that if one round key can be recovered, the other round 
keys can be recovered with a similar effort . Furthermore, it is extremely likely 
that the extra effort to recover more round keys will only be computational 
effort - the number of required power measurements, which is the limiting 
factor in this class of attacks, will not increase significantly. Moreover , the 
computations of the key schedule by themselves are a target of power analysis 
attacks. In this respect, it is a disadvantage to have a complex key schedule. 
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10.9 Conclusion 

Resistance against linear and differential attacks was a design criterion of 
Rijndael . From the number of publications alone, we can conclude that dur­
ing the AES selection process , Rijndael attracted a significant amount of at­
tention from the cryptographic community. SQUARE, the direct predecessor 
of Rijndael, has also been scrutinized vigorously for weaknesses. The com­
plexity of the published attacks on reduced versions of Rijndael indicate that 
with the current state-of-the-art cryptographic techniques, no attacks can be 
mounted on a full version of Rijndael. 

In order to resis� implementation attacks, care has to be taken when 
implementing the algorithm. Because of its simplicity, Rijndael has a number 
of advantages when it comes to protecting its implementation against this 
kind of attack. 

1 1 .  Related Block Ciphers 

We did not design Rijndael from scratch. In fact , prior to the design of 
Rijndael, we had already published three block ciphers that are similar to 
Rijndael . Each of these ciphers inherits properties from its predecessor and 
enriches them with new ideas . Moreover, since the publication of Rijndael and 
its predecessors, a substantial number of cryptographers have based block ci­
pher designs on ideas that were introduced in the Rijndael family. Hence , 
Rijndael can be seen as a step in an evolution, with predecessors and succes­
sors . 

In this chapter, we discuss the similarities and differences between Rijndael 
and its different predecessors, and discuss briefly some of the recent block ci­
pher designs that are based on Rijndael or use some elements of its round 
transformation. 

1 1 . 1  Overview 

The design of Rijndael is only one step in a long process of our research on 
the design of secure and efficient block ciphers using the wide trail design 
strategy. In this section, we present the different ciphers that we designed 
along the way. We also discuss common elements of the round transformation 
structure, and the differences in the first or the last round. 

1 1 . 1 . 1  Evolution 

SHARK. The first cipher in the series was SHARK, which was published in 
[81] . In this cipher , we first used MDS codes to build a mixing step. The mix­
ing step of SHARK has the one-dimensional structure described in Sect . 9 .7. 1 .  
The round transformation o f  SHARK is modular and in  principle easily ex­
tendible to any block length that is a multiple of 8. However, for a block 
length of 8n bits, an efficient implementation of the round transformation 
uses tables that require n2 x 256 bytes of memory. For block lengths of 1 28 
bits, this becomes inefficient on most common processors. 



162 1 1 . Related Bl ock Ciphers 

Square. The cipher Square was published in [21] . It has a block length of 
128 bits, yet requires only sixteen 8-bit to 32-bit table look-ups per round, 
whereas an extension of SHARK to this block length would require sixteen 
8-bit to 128-bit table look-ups per round . The increased efficiency is achieved 
by using a two-dimensional structure, as discussed in Sect. 9 .7 . 1 ,  and the 
introduction of a transposition step . The round transformation of Square 
uses tables that require n x 256 bytes in total ,  for a block length of 8n. Note 
that n has to be a square number. For Square, n has been fixed to 16 .  

Another improvement in Square concerns the implementations on pro­
cessors with limited RAM. These processors typically have no space for the 
extended tables. By restricting the coefficients in the mixing step to small 
values , the performance on these limited processors becomes acceptable for 
practical applications . 

A fourth improvement in Square is the introduction of an efficient and 
elegant key schedule. 

BKSQ. The cipher BKSQ was published in [25] . In this cipher, the round 
transformation structure of Square is further generalized. The state is no 
longer 'square ' ,  but can become 'rectangular ' .  This allows defining ciphers 
with block lengths of 8nI n2 bits. 

A second modification with respect to Square is the introduction of non­
linearity in the key schedule. 

1 1 . 1 . 2  The Round Transformation 

SHARK, Square, BKSQ and Rijndael are key-iterated block ciphers : they 
consist of the alternation of a key-independent round transformation P with a 
key addition, here denoted by a [k] . The round transformation is the sequence 
of a non-linear bricklayer permutation, here denoted by ,{, and a linear step, 
here denoted by A..  The three operations a rk] , '( and A. can be ordered in six 
different ways in the round transformation. However, we will show that with 
respect to security, all the orderings are equivalent . 

Equivalence of orderings. Firstly, we recall from Sect . 3 . 7.2  that 

a [A. (k)] 0 A. == A. 0 a [k] . ( 1 l . 1 )  

Both orderings can be  chosen in the definition o f  the cipher 's round transfor­
mation, without making a difference in the security analysis or performance 
of the cipher. 

Secondly, consider the following key-dependent round transformations 
that are rotated versions of one another: 

PI = a [k] 0 A. 0 '{ 

P2 = A. 0 '( 0 a [k ] .  

( 1 1 . 2 )  

( 1 1 .3 )  
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A cipher defined as the iteration of R PI round transformations can also be 
described as an iteration of P2 round transformations , with a special definition 
for the first round and the last round. 

We conclude that the same ordering of operations in the cipher can fol­
low from different definiti0l1s of the round transformation. In fact , from the 
previous arguments it follows that all six orderings of the operations in the 
round transformation result in equivalent ciphers, except for the definition of 
the key schedule and for the definition of the first and the last round. 

" 
Boundary effects .  The first and/or the last round of the ciphers can differ 
from the other rounds in several ways . Firstly, operations performed before 
the first key application or after the last key application can usually be fac­
tored out by the cryptanalyst and hence do not contribute to the security of 
the cipher. The only exception to this rule are the modes of operation where 
only a part of the state may be output , e.g. in the CFB mode. Therefore , if 
in the definition of the cipher, the round transformation does not start (end) 
with a round key application, an extra round key application has to be added 
to the beginning (end) of the cipher. 

Secondly, because of ( 1 l . 1 )  it is usually possible to leave out one applica­
tion of A. in the first or the last round, since it does not improve the security 
of the cipher. Removing one application of A. usually helps to give the inverse 
of the cipher the same structure as the cipher. 

1 1 .2 SHARK 

Both the block length and the key length of SHARK can easily be varied. In 
[8 1] it is proposed to use a block length of 8 bytes, or 64 bits. Let the number 
of bytes in the input be denoted by n. For a block length of 64 bits, n = 8 .  

The structure. The round transformation of  SHARK has the simple '{A. 
structure, as  defined in Sect . 9 .2 . l .  The elements of  a state a are denoted by 
ai , 0 ::; i < n. The cipher consists of eight rounds . 
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The linear transformation. The mixing step of SHARK is derived from a 
linear code over GF(28 ) with length 2n, dimension n and minimal distance n+ 
1. This construction corresponds to the one-dimensional structure discussed 
in Sect . 9 . 7. 1 .  The transformation is denoted by A. For n = 8, we have 

The branch number of A is 9 (= n + 1 ) .  

CE 9 5  5 7  8 2  8A  19 B O  0 1  
E 7  FE 05 D 2  5 2  C1  8 8  F1  
B9 DA  4D  D 1 9E  17 83  86 
DO 9D 26 2C 5D 9F 6D 75 
52 A9 07 6C B9 8F 70 17 
87 28 3A 5A F4 33 OB 6C 
74 51 15 CF 09 A4 62 09 
OB 31 7F 86 BE 05 83 34 

( 1 1 .4) 

As explained in Chap . 4 ,  A can be implemented efficiently by extending 
the tables that specify the substitution boxes . In SHARK, there are n tables, 
requiring n x 256 bytes of memory each. When n = 8, this gives a total of 1 6  
kB . 

The non-linear transformation. The non-linear transformation is a brick­
layer permutation of S-boxes operating on bytes, denoted by "(. The same 
S-box is used for all byte positions . We have 

( 1 1 .5 )  

where SI' is  an invertible 8-bit substitution table or S-box. 

As in Rijndael, the S-box of SHARK is based on the function F(x) = X-I  
over GF(28 ) ,  as proposed by K.  Nyberg in  [74] . An affine transformation 
is added in order to make the description of the S-boxes less simple. This 
transformation is not equivalent to the transformation that is applied in the 
S-boxes of Rijndael. 

The round key application. In [81] , two alternative ways to introduce 
the round key in the round transformation are proposed. The first is a key 
addition in the form of a bitwise XOR of the state with a round key, the 
second version uses a key-controlled affine transform. 

XOR. In the first alternative, the 64 state bits are modified by means of 
an XOR with a 64-bit round key. This operation is denoted CTEf:dk(r) ] . The 
resulting cipher is a key-iterated cipher with all its advantages, see Chap. 9 .  
A limitation o f  the simple scheme i s  that the entropy of  the round key is 
'only ' 64 bits. 
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Affine transformation. Let K,(t) be a key dependent invertible 8 x 8 matrix 
over GF(28 ) .  The second alternative for the key application is then denoted 
by CT AT [K,(t) , k(t) ] and defined as 

CTAT [K,(t) , k(t) ] : b = CTAT [K,(t) , k(t) ] (a) {:} b = K,(t) x a E9 k(t) . ( 1 1 .6) 

The resulting operation on the state is linear. Since the operation has to be 
invertible, it must be ensured that all K,(t) are invertible matrices. Each round 
now introduces more key material, increasing the amount of round key bits 
introduced in the key application to 9 x 64 bits. The computational overhead 
of this operation is very large. We can restrict the K,(t) to a certain subspace, 
for instance by letting the K,(t) be diagonal matrices. The amount of round 
key bits introduced in the key application then becomes close to 2 x 64 bits . 

The cipher. The round transformation, denoted by p, consists of a sequence 
of two steps: 

( 1 1 .  7) 

SHARK is defined with seven rounds , followed by a final round where the 
mixing step is absent. The applications of the round transformation are in­
terleaved with nine round key applications. 

The key schedule. The key schedule expands the key K to the round keys 
K(t) . The key schedule of SHARK operates in the following way. The cipher 
key is concatenated with itself until it has a length of 9 x 64 bits , or 9 x 128 
bits for the extended version. This string is encrypted with S HA RK in CFB 
mode, using a fixed key. The first 448 bits of the output form the round 
keys k(t) . For the extended version, the next 448 bits are used to form the 
diagonal elements of the matrices K,(t) .  If one of these elements is zero, then 
it is discarded and all the following values are shifted down one place. An 
extra encryption of the all-zero string is added at the end to provide the extra 
diagonal elements. The fixed key used during the key schedule is formed in 
the following way. The matrices K,(t) are equal to the identity matrix. The 
vectors k(t) are taken from an expanded substitution table, that is used in 
the combined implementation of the non-linear step and the mixing step . 

While this mechanism for round key generation in principle makes it pos­
sible to use a key of 64 x 9 (  x 2) bits, it is suggested that the key length should 
not exceed 128 bits . 

1 1 . 3  Square 

Square can be considered as an extension of the simple SHARK variant where 
the mixing step is changed, a byte transposition step has been introduced, 
and an efficient and elegant key schedule has been introduced. Square has a 
block length of 128 bits and a key length of 128 bits . 
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The structure. The round transformation of Square is almost identical to 
the round transformation of Rijndael when the block length equals 1 28 bits. 
The round transformation consists of a sequence of three distinct steps that 
operate on the state: a 4 x 4 array of bytes. The element of a state a in row 
i and column j is specified as ai ,j . Both indexes start from O. The steps are 
illustrated in Fig. 1 1 . 1 .  

The mixing step. The mixing step () is similar t o  MixColumns in Rijndael , 
except that it operates on the rows of the state instead of the columns. We 
have 

(} (
a
) = [ �� :� ��: � ��:� ��:� l x [ �� �� �� ��l a2 ,O a2 , 1 a2 , 2  a2 ,3 0 1  03 02 0 1  ' 

a3 ,O a3, 1 a3, 2  a3 ,3 01 01 03 02 

( 1 1 .8)  

where the multiplication is in GF(28 ) .  The coefficients have been chosen to 
maximise the branch number of (), and to facilitate the implementation on 
8-bit processors. 

The byte transposition. The byte transposition Jr interchanges rows and 
columns of a state. If the state is considered as a matrix, it corresponds to 
the matrix transposition operation. We have 

( 1 1 .9 )  

Jr is  an involution, hence Jr-1 = Jr .  

The non-linear step. The non-linear step '"'( is  a bricklayer permutation 
operating on bytes. We have 

( 1 1 . 10) 

where S, is an invertible 8-bit substitution table or S-box. The S-box of 
Square is exactly the same as the S-box of SHARK. 

The key addition. The key addition with round key k(t) is denoted by 
cr [k(t) ] .  It is identical to the key addition in Rijndael , and the simple key 
application of SHARK. 

The cipher. The round transformation p is a sequence of three steps: 

( 1 1 . 1 1 ) 

Square is defined as eight rounds interleaved with nine key addition steps. 
These transformations are preceded by an initial application of (}- l . Note 
that the (}-l before cr [k (O) ] can be incorporated in the first round. The initial 
(}-l can be discarded by omitting () in the first round and applying (} (k (O) ) 
instead of k (O) . The same simplification can be applied to the algorithm for 
decryption. 

ID D D D  
ID D D D  
ID D D D  
ID D D D  

0 D D D  
D D D D  
D D D D  
D D D D  

() 
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ID D D D  
ID O D D  
ID D D D  
ID D D D  

I S[al l 0IJ 0IJ 0IJ 
0IJ 0IJ 0IJ 0IJ  
0IJ 0IJ 0IJ 0IJ  
0IJ 0IJ 0IJ 0IJ  

1 6 7  

Fig.  1 1 . 1 . The basic operations o f  Square. () i s  a mixing step with 4 parallel linear 
transformations. I consists of 16 separate substitutions. 'if is a transposition. 
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The key schedule. The key schedule is linear. It is defined in terms of the 
rows of the key. We can define a left byte .. ,rotation operation rot l (ai )  on a row 
as 

rot l [a ·  oa ' 1 a ' ?a '  3] = [a · 1 a '  2 a '  3 a '  0] �, �, � , - � ,  � , � , � , � ,  

and a right byte-rotation rotr( ai ) as its inverse. 

( 1 1 . 12)  

The round keys k(t) are derived from the cipher key K in the following 
way. k(O) equals the cipher key K. The other round keys are derived itera­
tively by means of an invertible affine transformation, called 'the round key 
evolution' and denoted by W .  

The round key evolution w and i s  defined by 

k�t+1 ) = k�t) EB rot l (k�t) ) EB C(t) 
k(t+1 ) _ k(t) CD k(t+1 ) 
1 - 1 1J7 0 

k�t+1 ) = k�t) EB kit+1 ) 
k�t+1) = 

k�t) EB k�t+1 ) 

( 1 1 . 13) 

( 1 1 . 14) 

The round constants C(t) are also defined iteratively. We have C(O) = 1 and 
C(t) = 2 . C(t- 1) . 

11 .4 BKSQ 

BKSQ i s  an  iterated block cipher with a block length of  96 bits and a key 
length of 96, 144 or 192 bits. It is especially suited to be implemented on 
a smart card. Its block length of 96 bits allows it to be used as a (second) 
pre-image resistant one-way function. Most available block ciphers have block 
lengths of 64 or 128 bits . A block length of 64 bits is currently perceived as 
being too small for a secure one-way function. Using a block cipher with a 
block length of 128 bits often leads to one-way functions that are significantly 
slower. BKSQ is tailored towards these applications . Still, it can also be used 
for efficient MACing and encryption on a smart card. 

The structure. Let the input of the cipher be denoted by a string of 12  
bytes: POP1 . . .  Pl l .  These bytes can be rearranged into a 3 x 4 array, or  state 
a. 

a = r ��:� ��:� ��:� ��:: 1 = r �� �� �� �:o 1 l a2 ,0 a2 , 1 a2 , 2 a2 ,3 lp2 P5 P8 Pll 

( 1 1 . 15) 

The basic building blocks of the cipher operate on this array. Figure 11 . 2 
gives a graphical illustration of the building blocks . 

D O D D  
D O D D  
D O D D  

8 D D D  
D D D D  
D D D D  

18 0 8 01 
I[CJ IT] 0 [1]1 
ID 0 0 CDi 

e 

1T 

1 1 . 4  BK�Q 

D O D D  
D O D D  
D O D D  

I S[a] I @I] @I] @I] 
@I] @I] @I] @I] 
@I] @I] @I] @I]  

18 0 8 01 
1[1] [CJ IT] 01 
10 CD D 01 
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Fig. 1 1 .2 .  The basic operations of BKS Q .  e is a mixing step with 4 parallel linear 
transformations . I consists of 12 separate substitutions. 1T is a shift of the rows. 
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The linear transformations. BKSQ uses two linear transformations . The 
first transformation is similar to MixColumns in Rijndael, except that it op­
erates on columns of length 3 instead of length 4. This transformation is 
denoted by e .  We have r 03 02 021 

e (a) = 02 03 02 02 02 03 ( 1 1 . 16)  

This choice for the coefficients makes it possible to implement e very effi­
ciently on an 8-bit processor with limited working memory. 

The second linear transformation is a byte permutation, denoted by 7f .  
The effect of 7f is  a shift of the rows of a state. Every row is shifted a different 
amount. We have 

( 1 1 . 1 7) 

The effect of 7f is that for every column of a, the three elements are moved 
to three different columns in 7f ( a) . 
The non-linear transformation. The non-linear transformation is a brick­
layer permutation operating on bytes , denoted by 1'. It operates on all bytes 
in the same way. We have 

( 1 1 . 18 )  

where Sf' i s  an invertible 8-bit substitution table or S-box. The inverse of l' 
consists of the application of the inverse substitution S::; l to all bytes of a 
state. The S-box of BKSQ is exactly the same as the S-box of Rijndael. 

The key addition. The key addition with key k(t) is denoted by CT [k(t) ] .  It 
is defined analogously to the key addition of Square and Rijndael. 

The cipher. The round transformation denoted by p is a sequence of three 
steps: 

( 1 1 . 19) 

BKSQ is defined as R times the round operation, interleaved with R + 1 
applications of the key addition and preceded by e-I : 

( 1 1 . 20) 

The number of rounds R depends on the key length that is used. For 96-
bit keys, there are 10 rounds ; for 144-bit keys, there are 14 rounds; and for 
192-bit keys , the number of rounds is 18 .  

1 1 . 5 Children o f  Rijnclael 1 7 1  

The key schedule. The derivation of  the round keys k(t) from the cipher 
key K is very similar to the key schedule of Rijndael. The round keys k(t) 
are extracted from an expanded key array, denoted by W: 

k(t) = W[·] [4t] I I  W[· ] [4t + 1] I I  W[ · ] [4t + 2] I I  W [· ] [4t + 3] .  ( 1 1 . 21  ) 

As in Rijndael, the expansion of the cipher key K into the expanded key 
array W depends on the length of the cipher key. Let L denote the key 
length divided by 24. The array is constructed by repeated application of an 
invertible non-linear transformation 'IjJ:  the first L colunIns are the columns 
of K, the next L are given by 'IjJ (K) , the following columns are given by 
'IjJ( 'IjJ (K) ) ,  etc .  The transformation '1/) operates on blocks of L columns and is 
defined in terms of the XOR operation, a byte-rotation rot that rotates the 
bytes of a column, and a non-linear substitution 1" that operates in exactly 
the same way as 1', but takes as argument column vectors instead of arrays . 
For a detailed description of the key schedule, we refer to [25] . 

1 1 . 5  Children of Rijndael 

The design principles of Square and,  more recently, Rijndael have been in­
corporated in other block cipher designs. We list here some recently designed 
block ciphers that are based on Square and Rijndael, or that have inherited 
some features from them. 

11 . 5 . 1  Crypt on 

Crypton was designed by C. Lim [59 ,  60] . It is one of the 15 block ciphers that 
was accepted as an AES candidate. The round transformation of Crypton 
resembles to a large extent the round transformation of Square. Different 
versions of Crypton have been published. We discuss here the version that 
was submitted to the AES process. The differences between Crypton and 
Square are the following: 

1 .  non-linear step. Crypt on uses an S-box that is constructed from a 
three-round Feistel structure with three different 4 x 4 S-boxes.  Both in 
encryption and decryption operation, eight state bytes are transformed 
with the S-box, and eight with the inverse S-box. 

2 .  transposition step. Crypton keeps the transposition from Square (de­
noted by 7f in this book) , 
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3. mixing step. Crypton replaces e by two different linear transformations : 
one for use in even-numbered rounds and one for use in odd-numbered 
rounds. These mixing steps have branch number 4, where Square and 
Rijndael use a mixing step with branch number 5. As opposed to Rijndael 
and its predecessors, the mixing steps of Crypton are specified by means 
of mask and XOR operations, and cannot be described by a simple matrix 
multiplication over GF(28 ) .  

4 .  number of rounds. Crypt on uses 1 2  rounds, whereas Square uses eight. 

5. key schedule. The key schedule of Crypton is more complex than that 
of Square. A disadvantage is the existence of 232 weak keys, as described 
by J. Borst in [13] . 

1 1 . 5 . 2  Twofish 

Twofish was designed by N. Ferguson et al. [83] . It is one of the five finalists in 
the AES evaluation process. Its round transformation is based on the Feistel 
structure. The designers of Twofish used elements and ideas from several 
other block ciphers. From Square, they used the idea to mix the outputs of 
4 non-linear S-boxes by means of a linear transformation that is based on an 
lIIDS code. 

1 1 . 5 . 3  ANUBIS 

ANUBIS [4] is one of the block ciphers that has been submitted to the NESSIE 
process [73] . Its structure is very similar to that of Rijndael, but different 
choices have been made for various modules. The most important differences 
are the following: 

1 .  The involutional structure. All steps of the round transformation of 
ANUBIS are involutions . This should in principle reduce the program size 
in software or chip area in hardware applications that implement both 
encryption and decryption. 

2. The different S-box. The S-box of A NUBIS is constructed by con­
necting five 4-bit S-boxes . This choice makes it easier to design efficient 
implementations in hardware. Furthermore, the polynomial expression 
for the S-box becomes more complex. An expected disadvantage is the 
suboptimal behaviour with respect to differential and linear cryptanaly­
sis . 

3. A more complex key schedule. The expected advantage is the im­
proved resistance against key-based attacks, in particular the shortcuts 
for long keys. The disadvantage is the higher cost : slower execution, a 
reduced key agility, a longer program or a higher gate count . 
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1 1 . 5 . 4  GRAND C RU 

GRAND CRU was designed by J .  Borst [14] . It is one of the block ciphers that 
have been submitted to the NESSIE process [73] . Its structure is very similar 
to that of Rijndael: 

1 .  The transformations SubBytes , AddRoundKey and MixColumns are copied 
unchanged. 

2. The transformation ShiftRows is replaced by a transf<;>rmation that shifts 
the rows and the columns over amounts that depend on the value of the 
round key. 

3 .  A keyed byte-wise rotation is added, rotating each byte of the state by 
an amount that depends on the value of the round key. 

4. Extra initial and final key addition are added, using bytewise modular 
addition. An extra non-linear transformation is added at the beginning 
of the cipher, and its inverse is added at the end. 

1 1 . 5 . 5  Hierocrypt 

Hierocrypt-3 and Hierocrypt-L1 are block ciphers that have been submitted 
to the NESSIE process [88 ,  89] . The round transformation of the ciphers 
incorporates two different linear transformations to mix the outputs of the 
non-linear S-boxes .  One of the linear transformations is based on an MDS 
code over GF(28 ) ,  and the other one is based on an MDS code over GF(232 ) .  

11 .6  ConcI usion 

Rijndael is the result of a long design process with continuous improvements 
along the way. The earliest related design, SHARK, dates back to 1995 .  Most 
of the predecessors of Rijndael have been scrutinized intensively by crypt an­
alysts looking for security flaws, and by programmers interested in efficient 
implementations . The result of all this work has been taken into account in 
the design of Rijndael. 

The design approach we used for Square and Rijndael has been adopted 
enthusiastically by a number of cipher designers all over the world. This 
demonstrates a worldwide belief that the strategy used is sound. 
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In the specification of Rijndael, we have extensively used operations in a finite 
field, where the bytes of the state and key represent elements of GF(28 ) .  Still, 
as for most block ciphers, Rijndael operates on plaintext blocks, ciphertext 
blocks and keys that are strings of bits. Apart from some exceptions such as 
interpolation attacks, cryptanalysis of ciphers is also generally conducted at 
the bit level. For example, linear cryptanalysis (see Chap. 7) exploits high cor­
relations between linear combinations of bits of the state in different stages of 
the encryption process . D ifferential cryptanalysis (see Chap. 8) exploits high 
propagation probabilities between bitwise differences in the state in different 
stages of the encryption. 

Later in this appendix we demonstrate how Rijndael can be specified 
completely with operations in GF(28 ) .  How the elements of GF(28 ) are rep­
resented in bytes can be seen as a detail of the specification. Addressing this 
representation issue in the specifications is important for different implemen­
tations of Rijndael to be interoperable, but not more so than for instance the 
ordering of the bits within the bytes, or the way the bytes of the plaintext and 
ciphertext blocks are mapped onto the state bytes. It may well be possible 
that taking a different finite field representation may lead to more efficient 
implementations . 

We can make abstraction from the representation of the elements of 
GF(28 ) and consider a block cipher that operates on strings of elements of 
GF(28 ) .  We call this generalisation RIJNDAEL-GF .  Rijndael can be seen as 
an instance of RIJNDAEL-G F ,  where the representation of the elements has 
been specified. In principle, this can be applied to most block ciphers. Each 
block cipher for which the block length and the key length are a multiple of 
n can in principle be generalized to operate on strings of elements of GF(2n ) .  
However, unlike for Rijndael, the specification of these generalized ciphers 
may become quite complicated. 



176 A .  P ropagation Analysis in Galois Fields 

Intuitively, it seems obvious that if Rijndael has a cryptographic weak­
ness, this is inherited by RIJNDAEL- G F and any instance of it , whatever the 
representation of the elements of GF(28 ) .  Still, in the propagation analysis 
as described in Chap. 7 and 8, we work at the bit level and must assume a 
specific representation to study the propagation properties. In this appendix 
we demonstrate how to conduct differential and linear propagation analysis 
at the level of elements of GF(2n ) ,  without having to deal with representation 
issues . 

This appendix is mainly devoted to functions over fields with a charac­
teristic of two. However, some of the properties and theorems are valid for 
any finite field. In those cases , we have treated the more general case; the 
fields with characteristic two are just a particular case. We start by describing 
difference propagation and correlation properties of functions over GF(2n ) ,  
with the focus on linear functions . This is further generalized t o  functions over 
GF(2n)£ . We then discuss representations and bases in GF (p t . Subsequently 
we show how propagation in functions over GF(2n) maps to propagation in 
Boolean functions by the choice of a basis . Subsequently, we prove two theo­
rems that relate representations of linear functions in GF(pt and functions 
in GF(pn) that are linear over GF(p) . We illustrate this with an example of 
a function over GF(23 ) .  We conclude by specifying RIJNDAEL- G F .  

For readability, the notation we use in  this appendix differs slightly from 
the notation in the rest of the book. The addition in a finite field is denoted 
by the symbol + and the corresponding summation by I:. 

A.1 Functions over G F (2n ) 

In this section we study the differential propagation and correlation properties 
of the functions over GF(2n ) :  

(A. 1 )  

All functions over GF(2n) can be expressed as a polynomial over GF(2n) of 
degree at most 2n - 1 :  

271. - 1 

f (a) = L Ciai . (A.2) 
i=O 

Given a table specification where the output value f (a) is given for the 2n 
different input values a, the 2n coefficients of this polynomial can be found 
by applying Lagrange interpolation [58, p. 28] . On the other hand, given a 
polynomial expression, the table specification can be found by evaluating the 
polynomial for all values of a .  
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A .I . 1  Difference Propagation 

As for Boolean functions (see Sect. 8 . 1 ) , we have difference propagation prob­
abilities over f :  

Prob! (a' , b' ) = 2-n L 5(b' + f (a EB a' ) + f (a) ) , (A.3) 
a 

where + denotes the addition in GF(2n ) .  A difference a' propagates to a 
difference b' through f iff: 

f ( a) + f (a + a' ) = b' . (A.4) 

The difference propagation probability Prob! (a' ,  b' ) is equal to the total num­
ber of values a that satisfy this equation, divided by 2n . By using the poly­
nomial expression for f, Equation (A.4) becomes : 

(A.5)  

This is  a polynomial equation in a. For certain special cases, the number of 
solutions of these polynomials can be analytically determined providing prov­
able bounds for difference propagation probability. Examples can be found 
in the paper of K. Nyberg on S-boxes [74] . 

A.I .2  Correlation 

In Boolean functions , correlation is defined between parities (see Chap. 7) . 
Parities are linear combinations of bits, as determined by a selection pattern. 
For a function over GF(2n) ,  individual bits cannot be distinguished without 
adopting a representation, and hence speaking about parities does not make 
sense. A parity is a function that maps GF(2t to GF (2) , which is linear over 
GF (2) . In GF(2n ) ,  we can find functions with the same properties . For that 
purpose, we first must introduce the trace function in a finite field . 

Definition A. I . I .  Let x be an element of GF(pn) . The trace of x over 
GF(p) is defined by 

2 3 71. - 1  
Tr ( x) = x + xP + xP + xP + . . . + xP . 

The trace is linear over GF (p) (see Sect. 2 . 1 . 2 ) : 

v x, Y E GF(pn) : Tr(x + y) = Tr(x) + Tr (y) 
V a E GF(p) , V x E GF(pn) : Tr (ax) = aTr(x) . 

(A.6) 

(A. 7) 
(A.8) 
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From (A.6) we can derive 

and 

(Tr(x) )P = Tr(xP) = Tr(x) 

t t (Tr(x) )P = Tr(xP ) = Tr(x) , t = 2, . . .  , n. 

(A.9) 

(A. I0) 

It follows that the trace of x has an order that divides p and hence is an 
element of GF (p) . In the field GF(2n ) ,  the trace of an element is in GF(2) . 
As the trace map is linear over GF (2) ,  it follows that all functions of the form 

f (a) = Tr( wa) (A. l l )  

are two-valued functions o f  GF(2n ) ,  which are linear over GF(2) . There are 
exactly 2n such functions , one for each value of w .  We call the function 
Tr( wa) a trace parity, and the corresponding value w a trace pattern. In the 
analysis of correlation properties of functions over G F (2n ) ,  trace parities play 
the role that is played by the parities in the correlation analysis of Boolean 
functions (see Chap.  7) . When a representation is chosen, these functions can 
be mapped one-to-one to parities (see Sect . A.4 .2 ) . 

By working with trace patterns, it is possible to study correlation prop­
erties in functions over GF(2n) without having to specify a basis. Hence, the 
obtained results are valid for all choices of basis. Once a basis is chosen, trace 
patterns can be converted to selection patterns (see Theorem A.4 . 1 ) .  

For a function f over GF (2n ) , we denote the correlation between an input 
trace parity Tr(wa) and an output trace parity Tr(uf (a) ) by cL,w . We have 

(A. 12)  

(A. 13) 
a 

(A. 14) 
a 

The value of this correlation is determined by the number of values a that 
satisfy 

Tr(wa + uf(a) )  = O .  (A. 15) 

If this equation is satisfied by r values a, the correlation cL w is equal to 
21-nr. If it has no solutions, the correlation is - 1 ;  if it is s�tisfied by all 
values a, the correlation is 1 ;  and if it is satisfied by exactly half of the 
possible values a, the correlation is O. By using the polynomial expression for 
f ,  (A. 15 )  becomes a polynomial equation in a :  

(A. 1 6) 
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As in the case for differential propagation, for some cases the number of solu­
tions of these polynomials can be analytically determined providing provable 
bounds for correlation properties [74] . 

Example A . 1 . 1 . Let us consider the following operation: 

b = f(a) = a + c, (A. 17) 

where c is a constant . A difference in a fully determines, the difference in b : 

b' = f (a) + f (a + a' ) = (a + c) + (a + a' + c) = a' . (A. 18) 

Hence the addition of a constant has no effect on the difference pattern. For 
the correlation we can find the number of solutions of 

Tr(wa + uf (a) ) = 0, (A. 19) 

which is equivalent to 

Tr(wa + ua + uc) = Tr( (w + u)a + uc) = O .  (A.20) 

If w + u is different from 0, the trace is zero for exactly half of the values of 
a, and the correlation is O .  If w = u this becomes 

Tr(uc) = O .  (A .2l ) 

This equation is true for all values of a if Tr( uc) = 0, and has no solutions 
if Tr ( uc) = 1 .  It follows that the addition of a constant has no effect on the 
trace pattern and that the sign of the correlation is equal to (_I)Tr(uc) . 

A.1 .3  Functions that are Linear over GF (2n) 

The functions of GF(2n) that are linear over GF (2n) are of the form 

f (a) = l (O) a , (A.22) 
where l (O) is an element of GF (2n ) . Hence, there are exactly 2n functions over 
GF(2n) that are linear over GF (2n ) .  A difference in a fully determines the 
difference in b : 

(A.23) 
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For the correlation we can find the number of solutions of 

Tr(wa + uf (a) )  = 0 ,  (A.24) 

which is equivalent to 

Tt(wa + uZ (O) a) = Tt( (w + uZ (O) ) a) = 0 .  (A.25) 
If the factor of a is different from 0, the correlation is 0 .  The correlation 
between Tr(wa) and Tt(ub) is equal to 1 if 

(A.26) 

A.I .4 Functions that are Linear over GF(2)  

A function over GF(2n) i s  linear over GF(2 )  i f  i t  satisfies the following 

'V x , Y E GF(2n ) :  f (x + y) = f (x) + f (y) 
'V a E GF(2) , 'V x E GF(2n) :  Tr (ax) = aTt(x) . 

(A. 27) 

(A.28) 

Observe that a function that is linear over GF(2n) is also linear over GF (2) , 
but a function that is linear over GF(2) is not necessarily linear over GF(2n ) .  
Moreover, a function that satisfies (A.27) automatically satisfies (A.28) . For 
example, the function f(x) = x2 is linear over GF (2) , but not over GF(2n ) :  

f (x + y) = (x + y) 2 = x2 + xy + yx + y2 = x2 + y2 
= f(x) + f(y) 

f (ax) = a2 f (x) i- af(x) if a rt. GF(2) . 

This can be extended to all functions of the form f (x) = x2t . Moreover, any 
linear combination of these functions is linear over GF(2) . It follows that all 
functions of the form 

n-l 
f(a) = L Z (t) a2t , with Z (t ) E GF(2n ) , (A . 29) 

t=o 
are linear over GF(2) . Moreover, all functions of GF(2n) that are linear over 
GF(2) can be represented in this way. 

From (A.27) it follows that a difference in a fully determines the difference 
in b by: 

n-l 
b' = L Z (t) a' 2

t . (A.30) 
t=O 

The relation between the trace pattern at the input and the trace pattern at 
the output is less trivial. 

A.2  Functions over (GF (2n ) ) € 1 8 1  

Theorem A.I . I .  For a function b = ��==-O
l l (t) a2t an output trace parity 

Tr( ub) is correlated to input trace parity Tt( wa) with a correlation of 1 iff 

n- l 
W = L(l (n-t mod n)u) 2t . (A .31  ) 

t=O 

Proof. We will prove that Tr(wa) = Tt(ub) and hence that Tr(wa + ub) = ° 
for all values of a if w is given by (A.31 ) . All computatisms with variables t ,  s 
and r are performed in modulo n, and all summations "are from ° to n - 1 .  

Tt(wa) = Tr(ub) 

Tr ( � )I (n-t) u) 2' a) � Tr ( U � 1 (t) a2') 
28 2s � (� I (n-t) 2' u2' a) � � (� I (t) ua2') 

L L l(n_t) 2S+t u2s+t a2s = L L Z (t)
2S u2s a2s+t 

s t s t 

L L l (n_t) 2S+t u2s+t a28 = L L Z (t)
2T"- t u2T"-t a2T" 

t r=s+t t 

L L l(r) 2S- T" U28- T" a2s = L L Z (t)
2s - t u2s-t a2s 

s r=n-t t 

L L l (t)
2s- t u2s-t a2s = L L Z (t)

2s - t u2s- t a2s . 
s t s 

A.2  Functions over (GF(2n) )£ 

D 

In this section we treat the difference propagation and correlation properties 
of functions that operate on arrays of I: elements of GF(2n) . We denote the 
arrays by 

A = [al a2 a3 . . .  a£ ]T . (A .32) 

where the elements ai E GF(2n) . We have 

(A.33) 
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A.2 .1  Difference Propagation 

A difference A' propagates to a difference B' through F iff 

F(A) + F(A + A') = B/ . (A . 34) 

The difference propagation probability ProbF (A' , B/) is equal to the total 
number of values A that satisfy this equation, divided by 2n£ . 

A.2 .2  Correlation 

The trace parities can be extended to vectors. We can define a trace pattern 
vector as 

(A . 35) 

where the elements Wi E GF(2n ) .  The trace parities for a vector are of the 
form 

(A .36) 

We can define a correlation between an input trace parity Tr (WT A) and an 
output trace parity Tr(UT A) : 

ct;,w = 2-n£ L(_ 1)Tr(wTA) (_ 1 )Tr(wTF(A) ) 
A 

= 2-n£ L(_1)Tr(wTA)+Tr(wTF(A) ) 
A 

= 2-n£ L(  -1 ) Tr(wTA+wT F(A) ) . 
A 

A.2 .3  Functions that are Linear over GF (2n) 

(A.37) 

(A . 38 ) 

(A .39) 

If F is linear over GF(2n) , it can be denoted by a matrix multiplication. We 
' have 

b1 h, l  h ,2 h ,3 . . .  h ,£ a1 
b2 l2 , l l2 ,2 l2 ,3 . . . l2 ,£ a2 
b3 l3 , l l3 ,2 l3 ,3 . . .  l3 ,£ x a3 (A .40) 

b£ l£ , l  l£ ,2 l£ ,3 ' "  l£ ,£ a£ 

The elements of the matrix are elements of GF(2n ) .  

A.2 Functions over (GF(2n ) ) € 

Or 

B = LA 

for short . A difference in A fully determines the difference in B:  

B/ = LA' 

For the correlation, we have: 

Tr(WT A + UT LA) = Tr(WT A + ( LTU)TA) 

= Tr ( (W + LTU)T A) . 
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(A.41 ) 

(A.42) 

(A.43) 

(A.44) 

Hence , the correlation between Tr (WT A) and Tr(UTB) is equal to 1 if 

W =  LTU. 

A.2.4 Functions that are Linear over GF(2) 

Generalizing equation (A.29) to vectors of GF(2n) yields 

bi = L L l��] af 0 � i < n .  
j t 

If we introduce the following notation: 

this can be written as 

(A .45) 

(A.46) 

(A.47) 

(A.48) 

An example of such a linear function is the mixing transformation in the AES 
candidate Crypton [59] . 

From (A .27) it follows that a difference in A fully determines the difference 
in B by 

(A .49) 

For the relation between the input trace pattern and the output trace pattern, 
it can be proven that 

(A. 50) 
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A.3  Representations of GF (pn) 

In this section we treat different representations of GF(pn ) . We first describe 
the cyclic representation that simplifies the operation of multiplication. This 
is followed by a treatment of vector representations of GF(pn ) and dual bases . 
These play an essential role in the mapping of propagation properties from 
functions over GF(2n ) to those of Boolean functions . 

A.3 . 1  Cyclic Representation of GF (pn ) 

It can be proven that the multiplicative group of GF(pn ) is cyclic. The ele­
ments of this group (different from'O) can be represented as the pn - 1 powers 
of a generator a E G F (pn) : 

(A.51 ) 
In this representation, multiplication of two non-zero elements correspoi1ds 
to addition of their powers modulo pn - 1 :  

(A.  52) 
Operations such as taking the multiplicative inverse and exponentiation are 
trivial in this representation. For addition, however, the vector representation 
(see Sect . A .3 .2) is more appropriate. In computations involving both addition 
and multiplication, one may switch between the two different representations 
by means of conversion tables . The table used for conversion from the vector 
representation to the cyclic representation is called a log table, and the table 
for the inverse conversion is called an alog table. We have used this principle 
in our reference implementation (see Appendix E) . 

A.3.2  Vector Space Representation of GF (pn) 

The elements of a finite field GF (pn ) can be represented as vectors that are 
elements of an n-dimensional vector space over GF(p) , commonly denoted 
by GF (p t. The addition of vectors in this vector space corresponds to the 
addition in GF (pn) . We can choose a basis consisting of n elements e (i) E 
GF (pn) . We depict a basis e by a column vector that has as elements the 
elements of the basis: 

e = [e (l ) e (2) . . .  e (n) ] T (A. 53) 
The elements of GF (pn )can be represented by their coordinates with respect 
to this basis. We have 

(A.54) 
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where ai is the coordinates of a with respect to the basis e and where a is the 
column vector consisting of coordinates ai . The coordinates are elements of 
G F (p) . Given a basis, there is a one-to-one correspondence between field ele­
ments in GF(pn ) and their coordinates . The zero element of the field GF(pn ) ,  
denoted by 0 ,  has coordinates all equal to the zero element of the field G F (p) : 

0 =  [0 0 . . .  0] . (A. 55) 
The coordinates of the sum of two vectors are given by the vector sum of 

the coordinates of the two vectors : 

(A. 56) 
Here, the summing of the coefficients occurs in the field GF(p) . It follows that 
the coordinates of the inverse element of b can be calculated by replacing ev­
ery coordinate by its inverse in GF (p) . In a finite field with a characteristic of 
2 ,  each coordinate is its own inverse element with respect to addition. Hence, 
this holds for each element of the field as well. The polynomial representa­
tion is a special case of the vector representation. The basis is of the form 
I ,  x, x2 , x3 , . . .  , xn- 1 . 

A.3.3  Dual Bases 

Coordinates of a field element with respect to a basis can be expressed in 
terms of the dual basis and the trace map . 

Definition A.3 . 1 .  Two bases e and d are called dual bases if for all i and 
j with 1 � i and j � n, it holds that 

(A.57) 
Every base has exactly one dual base. Let e and d be dual bases . Then we 
have 

(A.58) 

Hence the coordinates with respect to basis e can be expressed in an elegant 
way by means of the trace map and the dual basis d :  

a =  [Tr(d( l ) a) Tr(d(2) a) . . .  Tr (d(n) a)] . (A. 59) 
Applying (A.54) gives: 

n n 
(A.60) 

i=l i=l 
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A.4 Boolean Functions and Functions in GF(2n) 

Functions of  GF(2n)  can be mapped to functions of  GF(2t by choosing a 
basis e in GF(2n ) .  Given 

we can define a Boolean function ¢: 

¢ : GF(2t � GF(2t : a r---+ b = ¢( a) 

where 

and 

a = [al a2 . . .  anl 
b = [b1 b2 . . .  bnl , 

ai = Tr( ad(i) ) 
bi = Tr(bd(i) ) .  

(A.61 ) 

(A.62) 

On the other hand, given a Boolean function ¢, a function over GF(2n )  can 
be defined as 

(A.63) 

(A.64) 

This can be extended to functions operating on vectors of elements of GF(2n ) .  

A.4. 1 Differences in GF (2)n and GF (2n) 

Now we can consider how a difference pattern in GF(2t maps to a difference 
pattern in GF(2n ) . Thanks to the linearity of the trace map, the mapping 
between a difference pattern a' in GF(2n) and a difference pattern a' in 
GF(2t is given by 

(A.65) 

where 

(A.66) 

and 

a' = a,Te .  (A.67) 
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A.4.2 Relationship Between Trace Patterns and Selection 
Patterns 
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In the following theorem we prove that for every selection pattern a cor­
responding trace pattern exists . Hence , when studying the propagation of 
correlations , we can use trace patterns. In this way we avoid the specification 
of a basis , which is necessary when using selection patterns. 

Let the coordinates of a with respect to e be denoted by a, and the 
coordinates of w with respect to d be denoted by Wd , where d and e are dual 
bases . 

Theorem A.4. 1 .  The relationship between a trace pattern and the corre­
sponding selection pattern is given by 

Tr(wa) = Wd T a. (A.68) 

Proof. Applying (A.60) to w and a, we get 

Since the output of the trace map lies in GF(2 ) ,  and since the trace map is 
linear over GF(2 ) ,  we can convert this to: 

Tr(wa) = � Tr(e (i)w ) � Tr(d(j ) a)Tr(d(i) e(j ) ) 
j 

= � Tr(e (i)w ) � Tr(d(j) a)5 (i ffi j ) 
j 

Applying (A. 59) twice completes the proof. 

A.4.3 Relationship Between Linear Functions in GF(p) n and 
GF (pn ) 

o 

A linear function of GF(pt is completely specified by an n x n matrix M :  

b = M a. (A.69) 

A linear function of GF(pn) is specified by the n coefficients l (t ) E GF(pn) in 

n- l 
b = � l (t) aPt . (A.70)  

t=O 

After choosing a basis e over GF(pn ) ,  these two representations can be con­
verted to one another. 
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Theorem A.4.2 .  Given the coefficients l (t) and a basis e ,  the elements of 
the matrix M are given by 

(A.71 )  

Proof. We will derive an expression of bi as a linear combination of aj in 
terms of the factors l (t) . For a component bi we have 

bi = Tr(bd(i) ) 

� Tr ( � Z (t) aP' d(i)) 
= L Tr(l (t) apt d(i) ) .  

The powers of a can b e  expressed in terms of the components aj : 

= L aj e (j) pt , 
j 

(A.72)  

(A.73)  

where we use the fact that exponentiation bypt is  linear over GF(p) to obtain 
(A. 73) . Substituting (A.73)  in (A.72) yields 

bi � � Tr (z«) � aj eW' d(i) ) 
� � � Tr (z (t) eU)P' ii) aj) 

� � ( � Tr(Z(t) eW' d(i) )) aj 
It follows that 

Mi,; � 2:= Tr (Z (t) eU)P' d(i) )  ; 

t 
proving the theorem. 

(A. 74) 

o 
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Theorem A.4.3 .  Given matrix M and a basis e ,  the elements l (t ) are given 
by 

n n t 
Z (t) = L L Mijd(j)P e(i) . 

i=l j=l 
(A.75) 

Proof. We will express b as a function of powers of a in terms of the elements 
of the matrix M .  We have 

and 

bi = L Mijaj 
j 

= L MijTr(ad(j) ) 
j 

= L Mij L apt d(j)Pt . 
j 

Substituting (A.77) into (A.76) yields 

j 

It follows that 
t 

l (t) = L L Mijd(j )P e(i) , 
j 

proving the theorem. 

(A.76) 

(A.77) 

(A.78)  

o 
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a 

b 

(A. 3 1 )  
.. .. 

Tr (wa) 

Tr(ub) 

1): 1): w = wJ d 
choice of basis e and its dual basis d 

u =  uJd 

a wJa 
(7.35) 

b =  M a  .. 

b 

Fig. A .1 .  The linear trail propagation through a linear function. 

A.4.4 Illustration 

Figure A. 1 and Example A.4 . 1  illustrate the results for the propagation of 
linear trails through linear functions of G F (pn ) . Remember that we always 
express the input pattern w as a function of the output pattern u. 

Example A .4 . 1 . We consider the field GF(23 ) .  Let a be a root of x3 + x + 1 = 

o .  Then the elements of GF(23 ) can be denoted by 0, 1 ,  a, a+ 1 ,  a2 , a2 + 1 ,  a2 +  
a and a2 + a + 1 .  We consider two transformations f and g ,  defiried by 

f (a) = aa 
g (a) = a4 + (a2 + a + 1 )a2 . 

(A.79) 

(A.80) 

For both functions , we want to derive a general expression that for any output 
trace pattern u gives the input trace pattern w it correlates with. We will 
denote these expressions by fd and gd , respectively, where the superscript 
'd '  stands for 'dual' . We can derive fd and gd without having to consider 
representation issues by applying Theorem A. 1 . 1 .  For f (a) we have 

l (O) = a, Z ( l ) = Z (2) = 0 ,  (A.81 ) 

and hence 

w = fd (U) = au. (A.82) 
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For g (a) we have 

Z (O) = 0 ,  Z ( l) = a2 + a + 1 ,  Z (2) = 1 ,  (A.83) 

and hence 

(A.84) 

Alternatively, we can apply the formulas derived in Chap. 7 by choosing 
a basis and going via the vector space representation. We start by choosing 
the basis : 

' 

(A.85) 

Table A.1 shows the coordinates of the elements of GF(23 ) ,  as well as the 
coordinates of the images of f and 9 with respect to this basis . 

Table A.1 .  Coordinates of the field elements, and the images of f and 9 with 
respect to the basis e .  

x x Y = f (x) Y = g (x) 
0 000 000 000 
1 001 011  101 

a + 1  010  101  001 
a 011  1 10  100 

a2 + a + 1 100 1 1 1  100 
a2 + a  101 100 001 

a2 1 10 010  101  
a2 + 1 1 1 1  001 000 

Once the coordinates of the inputs and outputs of f and 9 have been 
determined, we can derive the matrices M and N that describe the functions 
f and 9 in the vector space: [ 1 1 0

J 
[ 1 0 1

J M =  1 0 1  , N = 0 0 0  . 
1 1 1  0 1 1  

(A.86) 

Using (7. 36) , the transformations to derive input selection patterns from 
output selection patterns are determined by MT and NT : 

fd ( Ud ) = MT ud 
gd ( Ud )  = NT ud .  

(A.87) 

(A.88) 

Table A.2 shows the coordinates of the elements of GF(23 ) ,  as well as the 
coordinates of the images of fd and gd calculated according to (A.87) and 
(A. 88) . 
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Table A.2 .  The functions jd and gd .  
Ud Wd = jd (Ud ) Wd = gd (Ud) 

000 000 000 
001 1 1 1  a l l  
010 101 000 
a l l 010 a l l  
1 00 1 1 0 101 
1 0 1  001 1 10 
1 1 0 a l l  101 
1 1 1  100 1 10 

The dual basis of e can be determined by solving (A.57) . It is given by 

(A.89) 

It can now be verified that the coordinates in Table A.2 correspond to 
the definitions of fd and gd of (A.82)-(A.84) , provided that the coordinates 
of the variables u and w are determined with respect to basis d .  

A.5  Rijndael-GF 

The Rijndael round transformation operates on a state in GF(2) 8nt where 
nt E {16 ,  20,  24, 28, 32} .  We will now describe how each of its steps can be 
generalized to operations in GF(28 )nt • The non-linear step SubBytes  operates 
on the individual elements of the state. It is composed of two steps. The first 
step is taking the multiplicative inverse in GF(2n ) :  

(A.90) 

where the bytes represent polynomials. K.  Nyberg has studied the non­
linearity properties of this and similar functions over GF(2n) in [74] . 

The second step is an affine function defined by a matrix multiplication 
and the subsequent addition of a constant. If we apply Theorem A.4. 3 ,  we 
obtain the following expression for the affine function: 

f(x) = 05 · x  + 09 · x2 + F9 · x22 + 

25 . X23 + F4 · X24 + 0 1 . X25 + 

B5 . x26 + SF · x27 + 63.  (A.91 ) 
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Composing (A.90) and (A.91 )  yields the expression of the RUNDAEL- GF 
S-box: 

fRD (X) = 05 · x254 + 09 · x253 + F9 . x251 + 
25 . X247 + F4 · X239 + 0 1 . X223 + 

B5 . x19 1 + SF · X127 + 6 3 .  (A.92) 

In this expression the coefficients are elements of GF(28 ) .  We will denote this 
polynomial by fRD (X) . For the generalisation of SubBytes  we then have that 
it replaces each element of the state ai by fRD (ai ) .  

The step ShiftRows is a byte transposition that does not modify the val­
ues of the bytes but merely changes their order. Hence, also its generalization 
merely changes the order of the elements ai of the state without changing 
their order. The mixing step MixColumns operates independently on 4-byte 
columns and mixes them linearly. It has been defined as a matrix multipli­
cation operating on vectors of 4 elements of GF(28 ) which fully defines the 
generalization. The addition of a round key AddRoundKey consists of a simple 
bitwise XOR, which corresponds to the addition in all vector representations 
of GF(28 ) .  

The key expansion only makes use of bitwise XOR, byte transpositions, 
the Rijndael S-box and the bitwise XOR with round constants. For the first 
three operations we have explained how they can be generalized. The round 
constants have in turn been defined in terms of elements in GF(28 ) .  

RIJNDAEL- G F ,  together with the choice of a representation of the ele­
ments of GF(28 ) as bytes constitutes a block cipher. For example , Rijndael is 
the representation of RIJNDAEL- G F  where the elements of GF(28 ) are coded 
as bytes denoting binary polynomials of degree less than eight where the field 
multiplication is defined modulo the following irreducible polynomial: 

(A.93) 



B .  Trail Clustering 

In Chaps . 7 and 8 we explain how tlle correlation and the difference propa­
gation over a number of rounds :Van iterative block cipher is composed of a 
number of linear trails or differ ntial trails respectively. We show that in key­
alternating ciphers the correl .tion contribution of linear trails and the weight 
of a differential trail are both ·ndependent of the value of the key. Section 9 . 1  
explains how to  choose the nu ' ber of rounds of a key-alternating cipher to 
offer resistance against linear and differential cryptanalysis . Although the ex­
istence of high correlations and difference propagation probabilities cannot be 
avoided, taking a number of rounds so that the contributions of the individ­
ual trails are below some limit, makes the values of the patterns that exhibit 
large difference propagation probabilities or correlations very key-dependent . 
We count on this key-dependence to make the exploitation of these high cor­
relations and difference propagation probabilities in cryptanalysis infeasible. 

In our analysis in Sect . 9 . 1 ,  we have neglected possible trail clustering: the 
fact that sets of trails tend to propagate along common intermediate patterns. 
If clustering of trails occurs, the small contributions of the individual trails 
may be compensated by the fact that there are so many trails between an 
input pattern and an output pattern. The structure of Rijndael , and any 
cipher that operates on bundles rather than bits, can be suspected of trail 
clustering. 

In this appendix, we prove some properties of Boolean transformations 
with a maximum branch number. Subsequently, we give provable upper 
bounds for the expected difference propagation probability and correlation 
potential for two rounds and four rounds of ciphers with the Rijndael struc­
ture. Finally, we study a particular case of differential and linear propagation 
over two rounds of Rijndael, and illustrate these with some experimental 
results. 
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B . 1  Transformations with Maximum Branch Number 

Consider a Boolean transformation ¢ operating on vectors of nt bundles, and 
let the number of bits per bundle be denoted by v. We have 

(B . 1 )  

Figure B . 1  illustrates this with an example. 

Fig. B . 1 .  Boolean transformation ¢ operating on 5-bundle vectors. 

Consider the following equation: 

¢(X ( 1 ) , X(2) , X (3) , ' "  , X (nt ) ) = [X (nt+ 1 )  x(nt+2) X(nt+3) ' "  X (2nd ] T (B .2 )  

Clearly, (B . 2) has exactly 2vnt solutions, one for each choice of the vector 
[x (1 ) X(2) X(3) . . .  x(ndl · 

. 

We consider a partition 2 of the set { I ,  2, 3, . . .  , 2nd that divides the set 
of indices in two equally sized subsets � and [. We denote the vector with 
components Xi with i E � by x� . Given such a partition and a value for x� , 
we define the following set of equations: 

{ ¢(Y(1 ) , Y(2) , . . .  , Y(nt ) ) = [Y(nt+ 1 )  Y(nt+2) . . .  Y(2nt ) ] T 
. 

y� = x� 
(B .3 )  
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Theorem B .1 . 1 .  A Boolean transformation ¢ has a maximum differential 
branch number, i. e .  B(¢) = nt + 1 ,  iff any set of equations of the form (B. 3) 
has exactly one solution, whatever the choice of � (with #� = nt) and x� . 

Proof. 

=?- Assume that B( ¢) = nt + 1 ,  and that there is a choice of � and a value 
of x� for which (B.3)  has more than one solution. The solutions can only 
differ in at most nt bundles, since the nt components of y� are fixed by 
y � = x� . However , if ¢ has a differential branch number equal to nt + 1 ,  
(B .2)  cannot have two solutions that differ in less than nt + 1 bundles. 
Hence, (B .3)  has at most one solution. 
Now consider the 2ntV solutions of (B .2 ) . For some given choice of �, 
each of these solutions a is also a solution of exactly one set of equations 
of type (B .3) , i .e .  the one with x� = a� . As each set of equations (as 
in Eq. B .3) has at most one solution and as the total number of sets of 
equations of type (B.3)  for a given � is 2ntV , each of these sets has exactly 
one solution. 

-¢= Assume the Boolean transformation ¢ has a differential branch number 
that is smaller than nt + l .  This implies that there must exist at least 
two solutions of (B .2 )  that differ in at most nt bundles . We can now 
construct a set of equations ( as in Eq. B .3) that has two solutions as 
follows . We choose � to contain only bundle positions in which the two 
solutions are the same, and x� the vector containing the value of those 
bundles for the two solutions . This contradicts the premise and hence our 
initial hypothesis is proven to be false . 0 

Corollary B . 1 . 1 .  For a Boolean transformation operating on nt -bundle vec­
tors and with a maximum branch number, any set of nt input and/or output 
bundles determines the remaining nt output and/or input bundles completely. 

Hence, if we have a Boolean transformation ¢ with a maximum branch 
number , any partition 2 that divides the input and output bundles into 
two sets with an equal number of elements � and [ also defines a Boolean 
transformation. We call this function ¢� . This is illustrated with an example 
in Fig. B .2 .  As for any value of � both ¢� and ¢� are Boolean tranformations, it 
follows that all ¢� are Boolean permutations. Note that with this convention, 
the permutation ¢ corresponds to ¢� with � = { I ,  2, 3, . . .  , nd ,  and its inverse 
¢-l with ¢� with � = {nt + 1 ,  nt + 2, nt + 3 ,  . . .  , 2nd .  

In [90] , S .  Vaudenay defines the similar concept of multipermutations. 
An (r, n)-multipermutation is a function that maps a vector of r bundles 
to n bundles with a differential branch number that is larger than r. A 
Boolean transformation ¢ with maximum differential branch number is hence 
a (nt , nt )-multipermutation. The name multipermutation is very appropriate 
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for such a transformation, since it defines a permutation from any set of nt 
input and/or output bundles to the complementary set . 

Y(2) Y(4) Y(5) 

¢t; with � = { I ,  3 ,  6 , 7, 8} 

X(6) Y(9) Y(lO) 

Fig. B.2. Boolean function ¢ 

Theorem B . 1 .2 .  A Boolean transformation cP has a maximum differential 
branch number iff it has a maximum linear branch number. 

Proof. 

=} Assume that cp has a maximum differential branch number and not a 
maximum linear branch number. Consider now (B.2) . If cp does not have 
a maximum linear branch number , there is a selection pattern w with a 
bundle weight of less than nt + 1 such that the parity w 

T x ·  is correlated 
to 0. If we now consider CPt;, with only positions in � for which Wi = 0, this 
implies that a parity of output bits of CPt;, is correlated to 0, or in other 
words , is unbalanced. As cp has a maximum differential branch number, 
any CPt;, must be a permutation and hence according to Theorem 7. 5 . 1  
all its output parities must be balanced. It follows that cp cannot have a 
maximum differential branch number and a non-maximum linear branch 
number . 

-¢= Assume that cp has a maximum linear branch number and not a maximum 
differential branch number. If cp does not have a maximum difFerential 
branch number, (B .2)  has at least two solutions that differ in at most 
nt bundles. If we choose � such that the bundle positions in which these 
two solutions differ are all in �, this means that the function CPt;, has two 
inputs with the same output and hence is no permutation. According 
to Theorem 7.5 . 1 ,  this CPt;, must have output parities W[T x[ that are not 
balanced. Hence, cp must have a linear branch number that is maximally 
nt . It follows that cp cannot have a maximum linear branch number and 
a non-maximum differential branch number. 0 
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B.2  Bounds for Two Rounds 

For a cipher with a "A-round structure we can prove upper bounds for the 
expected difference propagation probability and the expected correlation po­
tential (see Sect . 7 .9 .3 )  over two rounds . 

In Fig. B .3  we have depicted the sequence of steps in two rounds of a 
cipher with the "A-structure. We study the probability of propagation of a 
difference in a(l) to a difference in a(3) . The difference pattern in a(3) com­
pletely determines the difference pattern in b(2) . Hence for this study we only 
have to consider the first round and the non-linear step of the second round. 
For the correlation potentials , we study the correlation between parities of 
a (3) and parities of a (1 ) .  A parity of a (3) is correlated to exactly one parity of 
b(2) with a correlation of 1 or -1  depending on the value of a parity of round 
key k(2) . As we are not interested in the sign, again we can limit ourselves to 
studying the first round and the non-linear step of the second round. 

a(1) I I I I I I I I I I 
DDDDDDDDD r 

b(l) I I 
I � -»' .. A 

C(l ) I 
EBEBEBEBEBEBEBEBEB 0- [k(l ) ]  

a(2) I I I I I I I I I I 
DDDDDDDDD r 

b(2) I I 
I � -»' .. A 

C (2) 1.-1 --'-......:........-'--.:.....-.....;'----'---'----'---' 
EBEBEBEBEBEBEBEBEB 0-[k(2) ] 

a(3) I I I I I I I I I I 
Fig. B . 3 .  Two rounds of a cipher with the ,A-structure. 

Fig. B .4 depicts the sequence of steps relevant in our analysis of difference 
and linear propagation over two rounds. In the remainder of this section 
we denote the difference pattern and selection patterns in the state at the 
different intermediate stages by a, b, c and d. 
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a / / / / / / / / / I 
DDDDDDDDD 

lJ l  I 
.. 77' 

EBEBEBEBEBEBEBEBEB U [k(l ) ] 
c l  / / / I I I I I I 

DDDDDDDDD ! 
d l  I 

Fig. B . 4 .  Steps relevant in the study of two-round difference propagation. 

B.2 . 1  Difference Propagation 

In this section we will denote the difference propagation probabilities of the l' 
S-box by Ps (x, y) . Moreover, we will assume that these difference propagation 
probabilities are below an upper bound, denoted Pm . 

Consider now a differential trail from a difference pattern a to a difference 
pattern d. We denote the set of positions with active bundles in a by ex, and 
the set of positions with active bundles in d by o. The number of active 
bundles in a is denoted by #ex,  and the number of active bundles in d is 
denoted by #0 .  The active bundles of a propagate to active bundles in b 
through the l' S-boxes. The difference pattern b fully determines c by c = 
.\ (b) . The difference pattern c propagates to d through the l' S-boxes. The 
difference patterns c and d have active bundles in the same positions. As b 
completely determines the trail, together with a and d ,  we denote this trail 
by (a, b, d) . The weight wr (a , b, c) of this differential trail is the sum of the 
weights of the difference propagation over active S-boxes corresponding to the 
active bundles in a (or equivalently b) and c (or equivalently d) . The sum of 
the number of active bundles in b and c is lower bounded by B('\ ) .  Since a and 
d have active bundles at the same positions as b and c, respectively, it follows 
that #ex+#o is lower bounded by B('\) . An approximation for the probability 
of a differential trail is 2-wr (a,b ,d) . We will denote this approximation by 
Probe(a, b ,  d) . These approximations should be interpreted with care, as they 
are made under the assumption that the restrictions are independent (see 
Sect . 8 .4 .2) . We have: 

Probe (a, b, d) = II ps (ai , bi ) II Ps (Cj , dj ) .  
iEa J E O  

(B .4) 
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The expected probability that a propagates to d is denoted by Probe (a, d) 
and it is given by the sum of the expected probabilities of all differential trails 
between a and d:  

Probrme (a, d) = '2.= Probrme (a, b ,  d ) . 
b 

(B .5)  

Example B. 2. 1 .  Consider the propagation from a difference pattern a with a 
single active bundle, in position 1 .  Equation (B .4) simplifies to 

Probe (a, b , d ) = ps (al , bd II Ps (ci , di ) . (B .6)  
J E O  

By using the upper bound for the difference propagation probability for the 
S-box, Ps (x , y) :::; Pm, this can be reduced to 

Substitution into (B .5 )  yields 

Probe (a, d) :::; '2.= Ps (al , b1 )Pm#0 . 
b 1  

By using the fact that Ly Ps (x, y) = 1, we obtain 

Probe (a, d) :::; Pm #0 . 

(B . 7) 

(B .8)  

(B .9)  

Since #0 + 1 is  the sum of the number of active S-boxes of b and c ,  it  is 
lower bounded by B('\) . It follows that 

(B. 10) 

We can now prove the following theorem: 

Theorem B .2 . 1 .  If .\ has a maximum branch number) the expected maxi­
mum difference propagation probability over two rounds is upper bounded by 
psnt . 

Proof. Clearly #ex + #0 is lower bounded by nt + 1 .  Let us now partition 
the bundle positions of b and c in two equally sized sets � and �, such that 
� has only active bundles. This is always possible as there must at least be 
nt + 1 active bundles in b and c together . We have c = .\ (b) ,  and that .\ has 
a maximum differential branch number. Hence according to Theorem B . 1 . 1 ,  
the values of the bundles of b and c that are in positions in � completely 
determine the values of the bundles with positions in �. 
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We can convert (B.4) to 

Probe (a, b, d) � II ps (ai ,  bi ) II Ps (Cj ,  dj ) X 
iEan� jEon� 
II ps (ai ,  bi ) II Ps (Cj , dj ) .  

iEan� 

(B . I I )  

(B. 12) 

Since all bundles in positions in � are active, the factor (B. 12) is upper 

bounded by Pm� ' We obtain 

Probe (a, b, d) � Pm nt II ps (ai ,  bi ) II Ps (Cj , dj ) .  
iEan� jEon� 

(B . 13) 

The expected difference propagation probability from a to d can be found by 

summing over all possible trails. In this case, this implies summing over all 

possible values of the active bundles in b and c that have positions in �. We 

have 

(B. 14) 

We can apply 2:= Ps (x ,  y )  = I to the factors 2:=b . Ps (ai , bi ) ·  Moreover, as the 
Y , 

S-box is invertible , we also have 2:=x Ps (x , y )  = 1 . This can be applied to the 
factors 2:=Cj Ps (Cj ,  dj ) .  We obtain 

proving the theorem. o 

B.2 .2  Correlation 

In this section we will denote the input-output correlation potentials of the I 
S-box by cs (x ,  y) . We will assume that these correlation potentials are below 

an upper bound, denoted cm . For an introduction to correlation potentials 

we refer to Chap. 7. 
Consider now a linear trail from a selection pattern a to a selection pat­

tern d. We denote the set of positions with active bundles in a by a, and 
the set of positions with active bundles in d by O. The active bundles of a 
propagate to active bundles in b through the I S-boxes . Since A is linear, the 
selection pattern b fully determines c .  The selection pattern c propagates to 
d through nt S-boxes. The selection patterns c and d have active bundles in 
the same positions. The correlation potential of this linear trail is the product 
of the correlation potentials of the active S-boxes corresponding to the active 
bundles in a (or equivalently b) and c (or equivalently d) . The sum of the 
number of active bundles in b and c is lower bound�d by B(A) . Since a and d 
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have active bundles at the same positions as b and c ,  respectively, it follows 
that #a + #0 is lower bounded by B(A) . We have 

c (a , b ,  d) = II cs (ai ' bi ) II cs (Cj ,  dj ) .  (B. 15 ) 
iEa jEo 

The expected potential of  the correlation between a selection pattern a 
and a selection pattern d is denoted by Ce (a, d) and it is given by the sum of 
the correlation potentials of all linear trails between a and d: 

ce (a , d) = � c (a , b ,  d) . (B . 16) 

We can now prove the following theorem: 

Theorem B.2 .2 .  If A has a maximum branch number) the expected correla­
tion potential over two rounds is upper bounded by Cs nt . . 

Proof. Clearly #a + #0 is lower bounded by nt + 1 . Let us now partition 
�he bundle positions of b and c into two equally sized sets � and � such that 
� has only active bundles. This is always possible as there must at least be 
nt + I active bundles in b and c together. As A is a linear transformation 
with a maximum branch number , according to Theorem B. 1 . 1 the values of 
the bundles of b and c that are in positions in � completely determine the 
values of the bundles with positions in �. We can convert (B. 15 ) to 

c (a , b, d) � II cs (ai ' bi ) II cs (Cj ,  dj ) X 
iEan� jEon� 
II cs (ai ' bi ) II cs (Cj ,  dj ) .  

iEan� 

(B. 17) 

(B . IS) 

As all bundles in positions in � are active, the factor (B. IS) is upper bounded 
by cm� . We obtain 

c (a , b, d) � Cm nt II cs (ai ' bi ) II cs (Cj ,  dj ) .  
iEan� jEon� 

(B. 19) 

The expected potential of the correlation between a to d can be found by 
summing over all possible trails. In this case, this implies summing over all 
possible values of the active bundles in b and c that have positions in ( We 
have 

ce (a , d) � Cm nt II � cs (ai ' bi ) II � cs (Cj ,  dj ) .  
iEan� bi j Eon� Cj 

(B .20) 

Applying Parseval's theorem to the I S-box yields 2:= cs (x ,  y) = I and ap­
plying it to the inverse of the I' S-box yields 2:=x cs (x ,  t) = 1 . Using this, we 
obtain 
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proving the theorem. o 

B.3 Bounds for Four Rounds 

For key-iterated ciphers with a 1'7rt9-structure, we can prove similar bounds 
for four rounds . In Theorem 9 . 5 . 1  we have shown that the analysis of such 
a cipher can be reduced to the analysis of a key-alternating cipher with two 
round transformations. In this section, we will study this key-alternating 
cipher structure. 

a I I  I I  
D D D  D D D  D D D  
I � I I � I I � I  
E9 E9 E9 E9 E9 E9 E9 E9 E9 r 

D D D  D D D  D D D  
b I I  I I  

OIl / � e 
E9 E9 E9 

c I I  I I  
D D D  D D D  D D D  
I � I I � I I � I 
E9 E9 E9 E9 E9 E9 E9 E9 E9 r 

D D D  D D D  D D D  
d L...--_---II L-I _-'I IL-__ ---' 

Fig. B . 5 .  Steps relevant in the study of upper bounds for four rounds . 

As illustrated in Fig. B .5 ,  the relevant steps of four rounds can be grouped 
into a number of supersteps. The first step and last step consists of an appli­
cation of 1', (), key addition and again 1'. This step operates independently on 
the columns of the state and can be considered as a l' step with big S-boxes. 
If () has a maximum branch number at the level of the columns, the theorems 
of Sect . B .2  provide upper bounds for the big S-box. The expected differ­
ence propagation probability is upper bounded by Pm 8- 1  and the expected 
correlation potential is upper bounded by cm 8-1 . 

In the four-round structure, the two steps in-between are a linear mixing 
step and a key addition. If the mixing step has a maximum branch number at 
the level of the columns, the theorems of Sect . B . 2  are also applicable at this 
level, giving upper bounds for four rounds . The expected difference propaga­
tion probability and correlation potential is upper bounded by Pm,8' - 1 and 

I 
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the expected correlation potential is upper bounded by Cm,H' - l . In these ex­
pressions H' is the branch number of 8,  and Pm' and cm' refer to the S-boxes 
of r. By substituting the values for the r S-boxes , we obtain upper limits of (8' - 1 ) (8-1)  d (8' - 1 ) (8-1)  I Pm an cm . n the case where the branch number of 8 
and () are the same, this is reduced to Pm (8-1)2  and cm (8-1 )2 . This applies 
to Rijndael with a block length of 128 bits. 

B.4 Two Case Studies 

If we apply Theorems B .2 . 1  and B .2 .2  to Rijndael, we find that the expected 
difference propagation probability and correlation potential over two rounds 
is upper bounded by 2-24 ,  and over four rounds is upper bounded by 2-96 . 
These upper bounds are, however , very seldomly attained. In this section 
we will illustrate this with a quantitative description of difference and linear 
propagation over two rounds for a configuration in which there are only 5 
active S-boxes. 

B.4. 1 Differential Trails 

a l I - I  I I 
DODD r 

b l I - I  I 
I � I A 
DODD a [k(l ) ]  

c l _ I _ I _ I _ 1 
DODD r 

d l - I - I - I - I 
Fig. B . 6 .  Difference propagation over two rounds of Rijndael . Active bytes are 
indicated with bullets .  

In SRD , each non-zero input difference can propagate to exactly 127 out­
put differences . For the propagation to 126 of these output differences the 
probability is 2-7 ,  and for one it is 2-6 . In the former case, there is exactly 
one pair of input values for which the outputs have the given difference. In 
the latter case, there are two pairs of input values . 
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Let us now consider a difference propagation over two rounds of Rijndael, 
where the difference pattern a at the input of the first round has a single 
active byte a2 . We restrict ourselves to a single column, as illustrated in 
Fig. B .6 .  The difference pattern a propagates to a difference pattern b with 
a single active byte b2 . The number of possible values of b2 is 127. As the 
branch number of MixColumns is 5, b propagates to a difference pattern c 
with 4 active bytes. These values of these bytes are completely determined 
by the value of b2 . Each of these bytes of Ci can propagate to 127 possible 
values di . In total, there are 1275 possible trails starting from the given a. 
There are only 231 possible input pairs, hence at most 231 of these 1275 trails 
will be followed for a given key. The fact that a certain trail will be followed 
depends on the value of the key. the probability that a certain trail will be 
followed depends on the weight of the trail. 

The weight of a differential trail is the sum of the weights of its active S­
boxes . In the S-box a given input propagates to one output difference pattern 
with a weight of 6 and to 126 other output differences with a weight of 7. 
Hence, the weight of the differential trails described above ranges between 
30 and 35.  This depends on the number of S-boxes f! in which there is a 
difference propagation with probability 2-7 .  The distribution of the number 
of trails as described above as a function of f! is given in Table B . 1 .  

Let us now consider the set of trails that may be  followed for some given 
value of the key. For a trail with a weight of 30, we expect it to be followed for 
exactly two pairs of inputs .  However, in general the inputs to the S-boxes in 
the two subsequent rounds are not independent: we expect to have no trails 
for some key values, while there will be some more trails for other key values . 
The trails with a weight of 31 are all expected to be followed once. We expect 
that about half of the trails of weight 32,  one-fourth of the trails with weight 
33, 1/8 of the trails with weight 34 and 1/16  of the trails with weight 35 to 
be followed. Except for the single trail a with of weight 30, all of the trails 
only occur for a single pair of inputs. for the trails with higher weight, the 
part of the trails that are followed depends on the value of the round key. 

Table B . l o  Differential trail statistics 

£ Wr No. existing Prob. of being followed: No. followed 

30 + £  G) 126£ 21-£ 2 G) 63£ 

0 30 1 2 2 
1 31 630 1 630 
2 32 2.4 x 105 2-1 1 . 2  X 105 
3 33 3 x 108 2- 2 7 .5  X 107 
4 34 1.2 x 109 2 -3 1 . 5  X 108 
5 35 3 x 1010 2-4 2 X 109 

All 1275 231 
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B .4.2 Linear Trails 

a l - I - I - I - I  
DODD r 

b l - I - I - I - I 
I -+-rT+- I A 
DODD cr[k(l ) ]  

c l I I - I  I 
DODD r 

d l I - I  I 
Fig. B . 7. Correlation over two rounds of Rijndael. Active bytes are indicated with 
bullets . 

In SRD , each non-zero output selection pattern is correlated to exactly 
239 input selection patterns. The amplitude of these correlations ranges from 
2-6 to 8 X 2-6 = 2-3 . 

Let us now consider a selection pattern d with a single active byte d2 and 
see to which selection patterns in c ,  b and a there is a non-zero correlation. 
Again, we restrict ourselves to a single column, as illustrated in Fig .  B .7 .  
The parity defined by d2 is  correlated to 239 different parities defined by a 
selection pattern c with a single active byte C2 . As the branch number of 
MixColumns is 5, the parity defined by C2 is correlated with a parity defined 
by a selection pattern b with 4 active bytes . The values of these bytes are 
completely determined by the value of C2 . The parities corresponding to the 
selection patterns bi are each correlated with the parities corresponding with 
239 different values for di . In total, there are 2395 linear trails arriving in 
d. These linear trails all start from a selection pattern in a with four active 
bytes. As there are 2554 such selection patterns, given a particular selection 
pattern a we expect there to be 2395 /2554 :=:::: 184 linear trails between a and 
d. The correlation contribution of such a linear trail is the product of the 
correlations for its active S-boxes . This ranges between (2-3 ) 5 = 2-15 and 
(2-6 ) 5 = 2-3° .  The sign of these linear trails depends on the value of k�1 ) , 
and hence the fact that the trails interfere constructively or destructively 
depends on the value of this key byte. 

We have conducted a series of experiments in which we measured correla­
tion values for linear trails of the type described above . We have summarized 
the results of these experiments in a Tables B .2  to B.4 .  
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Table B . 2  lists the distribution of the number of trails between given pairs 
of input/output selection patterns of the type described above. Observe that 
the distribution is centered around 184 trails per pair, as predicted by the 
computations above. The maximum number of linear trails (a, b, d) for a 
single pair of input/output selection patterns a and d we have observed is 
210 .  

Table B .3  lists the distribution of the expected correlation potentials. For 
a given input selection pattern a and output selection pattern d we have 
computed the expected correlation potential as the sum of the correlation 
potentials of all trails between a and d. The average value for this expected 
correlation potential is 2-32 , the value one would expect for a random map­
ping. The maximum value that we observed was 2-29 .  This is a factor of 25 
smaller than the upper bound given by Theorem B.2 .2 .  

Table B .4  lists the distribution of  the amplitude of  measured correlations 
between a and d for given values of the key. These correlations were computed 
by adding the correlation contributions of the linear trails between a and d. 
More than 64% of the correlations have a value below 2-16 .  The maximum 
correlation we observed has value 2- 13 . 5 . 
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Table B . 2 .  Distribution of the number of trails between a and d. 

Value Proportion Value Proportion Value Proportion 

175 0.0014% 187 8 .69% 199 0.039% 
176 0.02% 188 5 .49% 200 0.022% 
177 0. 12% 189 3 .07% 201 0 .01% 

178 0 .50% 190 1 . 53% 202 0.0044% 

179 1 . 54% 191 0.69% 203 0 .0016% 

180 3 .63% 192 0.29% 204 0/.0006% 
181 6 .88% 193 0 . 12% 205 0.0002% 
182 10 .7% 194 0.07% 206 0.00006% 

183 14.0% 195 0 .07% 207 0.00002% 
184 15 .5% 196 0 .08% 208 0.000004% 
185 14.7% 197 0 .07% 209 0. 000002% 
186 12. 1% 198 0 .06% 210 0.0000005% 

Table B . 3 .  Distribution of expected correlation potentials. 

Value Proportion Value Proportion Value Proportion 

2-29 .0 0.0000043% 2-31 . 0  2 .0% 2-33 .0 1 .0% 

2-29 .2  0 .000031% 2-31 . 2  4 .4% 2-33 .2 0 .26% 

2-29.4 0.00018% 2-31 .4  8 .0% 2-33.4 0 .051% 

2-29 .6 0.00084% 2-31 .6 12 .4% 2-33 .6 0.007% 

2-29 .8 0 .00333% 2-31 .8 16 .3% 2-33.8 0 .0007% 

2-30 .0 0 .012% 2-32.0 17 .7% 2-34.0 0.00005% 

2-30 . 2  0 .038% 2-32 .2 15 .7% 2-34.2 0 .000003% 

2-30 .4 0 . 1 1% 2-32.4 1 1 .3% 2-34.4 0.0000002% 

2-30.6 0.32% 2-32. 6 6 .5% 
2-30.8 0 .86% 2-32. 8 2 .9% 

Table B. 4 .  Distribution of measured correlation amplitudes. 

Value Proportion Value Proportion Value Proportion 

2-13.5 0.0001% 2- 14.4 0 .24% 2- 15 .3 2 . 52% 

2-13. 6 0.0007% 2-14.5 0 .40% 2- 15 .4 2 . 79% 

2-13 .7  0 .0005% 2- 14. 6 0 . 59% 2- 15 .5 2 .95% 

2- 13 .8 0 .0036% 2- 14 . 7 0 .81% 2- 15 .6 3 . 13% 

2-13 . 9 0 .0078% 2-14.8 1 .06% 2-15 .7  3 .21% 

2-14.0 0.018% 2-14. 9 1 .38% 2-15 . 8 3 .35% 

2-14 . 1  0 .038% 2-15 . 0  1 . 67% 2-15 . 9 3 .33% 

2- 14 .2  0.079% 2-15 . 1  1 .96% 2-16 .0 3 .39% 

2-14 .3 0 . 15% 2-15 . 2  2 .26% < 2- 16 64. 7% 
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In this appendix, we list some tables that represent various mappings used 
in Rijndael. 

C.l  SRD 

This section includes several representations of SRD and related mappings. 
More explanation about the alternative representations for the mappings used 
in the definition of SRD can be found in Sect . 3 .4. 1 .  Tabular representations 
of SRD and SRD -1 are given in Tables C . l  and C .2 .  

Table C. l .  Tabular representation of  SRD (XY) .  

y 
0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 

1 CA 82 C9 7D FA 59 47 FO AD D4 A2 AF 9C A4 72 CO 

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 1 5  

3 04 C7 23 C3 18 96 05 9A 07 1 2  8 0  E2 EB 27 B2 75 

4 09 83 2C 1A 1B 6E 5A AO 52 3B D6 B3 29 E3 2F 84 

5 53 D 1  0 0  ED 20 FC B 1  5B 6A CB BE 39 4A 4C 58 CF 

6 DO EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 

7 5 1  A3 40 8F 92 9D 38 F5 BC B6 DA 21 1 0  FF F3 D2 

x 8 CD OC 1 3  EC 5F 97 44 1 7  C 4  A 7  7E 3D 64 5D 1 9  7 3  

9 60 8 1  4F DC 22 2A 90 88 46 EE B8 14 DE 5E OB DB 

A EO 32 3A OA 49 06 24 5C C2 D3 AC 62 9 1  95 E4 79 

B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 

C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 iF 4B BD 8B 8A 

D 70 3E B5 66 48 03 F6 OE 6 1  35 57 B9 86 C 1  1 D  9E 

E E1 F8 98 1 1  69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 

F 8C A i  8 9  OD BF E6 42 68 4 1  99 2D OF BO 54 BB 16 

For hardware implementations , it might be useful to use the following 
decomposition of SRD : 

SRD [a] = f (g (a) ) ,  

where g (a) is the mapping 

a --+ a- I  in GF(28 ) ,  

(C . l )  

(C.2)  
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Table C . 2 .  Tabular representation of SRD -1 (xy) . 
y 

0 1 2 3 4 5 6 7 8 9 a b e d e 
0 52 09 6a d5 30 36 a5 38 bf 40 a3 ge 81 f3 d7 
1 7 e  e 3  3 9  8 2  9b 2f ff 87 34 8e 43 44 e4 de e9 
2 54 7b 94 32 a6 e2 23 3d ee 4e 95 Ob 42 fa e3 
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 
4 72 f 8  f 6  64 86 68 98 16 d4 a4 5e e e  5 d  65 b6 
5 6e 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 
6 90 d8 ab 00 8e be d3 Oa f 7  e 4  58 05 b8 b3 45 
7 dO 2e 1 e  8f ea 3f Of 02 c 1  af bd 03 0 1  1 3  8 a  

x 8 3a 91 1 1  4 1  4f 67 de ea 97 f2 cf ee f O  b4 e6 
9 96 ae 74 22 e7 ad 35 85 e2 f 9  3 7  e 8  1 e  75 df 
A 47 f 1  1 a  7 1  1d 29 e5 89 6f b7 62 Oe aa 18 be 
B f e  5 6  3e 4b e6 d2 79 20 9a db cO fe 78 cd 5a 
C if dd a8 33 88 07 e7 3 1  b 1  12 1 0  5 9  27 80 ee 
D 60 5 1  7f a9 19 b5 4a Od 2d e5 7a 9f 93 e9 ge 
E aO eO 3b 4d ae 2 a  f 5  b O  e 8  eb bb 3e 83 53 99 
F 1 7  2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 Oe 

and f (a) is an affine mapping. Since g (a) is self-inverse , we have 

SRD -1 [a] = g-l ( f-l (a) ) = g (f- l (a) ) .  

f 

fb 

eb 

4e 

25 

92 

84 

06 

6b 

73 

6e 

1b 

f4 

5f 

ef 

6 1  

7d 

(C .3)  

The tabular representations of f, f-1 and 9 are given in Tables C .3-C .5 .  
Algebraic representations of  SRD have also received a lot of  attention in 

the literature, specially in cryptanalytic literature. Mappings over a finite 
domain can always be represented by polynomials functions with a finite 
number of terms. As a consequence, mappings from GF (28 ) to GF(28 ) can 
always be represented by a polynomial function over GF(28 ) .  A general way to 
derive this polynomial representation is given by the Lagrange interpolation 
formula. Applying Lagrange interpolation to SRD gives the following result : 

SRD [X] = 05 · X254 + 09 · x253 + F9 . x251 + 25 . x247 
+ F4 . X239 + 0 1  . x223 + B5 . x191 + SF . x127 + 63. 

The coefficients are elements of G F (28 ) .  

C . 2  Other Tables 

C.2 . 1  xtime 

(C .4) 

More explanation about the mapping xtime can be found in Sect . 4. 1 . 1 . The 
tabular representation is given in Table C.6 .  

C.2.2 Round Constants 

The key expansion routine uses round constants. Further explanation can be 
fou:ld in Sect . 3 .6 .  Table C .7  lists the first 30 round constants. Note that 
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Table C . 3 .  Tabular representation of  f (xy) . 
y 

0 1 2 3 4 5 6 7 8 9 a b e d e f 

0 63 7C 5D 42 iF 00 21 3E 9B 84 A5 BA E7 FS D9 C6 

1 92 8D AC B3 EE F1 DO CF 6A 75 54 4B 1 6  0 9  2 8  37 

2 80 9F BE A i  F C  E3 C2 DD 78 67 46 59 04 1B 3A 25 

3 7 1  6E 4F 50 OD 12 33 2C 89 96 B7 A8 F5 EA CB D4 

4 A4 BB 9A 85 D8 C7 E6 F9 5C 43 62 7D 20 3F 1E 0 1  

5 55 4A 6B 74 29 36 17 08 AD B2 93 8C D1 CE EF FO 

6 47 58 79 66 3B 24 05 1 A  BF AO 8 1  9E C3 DC FD E2 

7 B6 A9 88 97 CA D5 F4 EB 4E 5 1  7 0  6F 32 2D OC 13 

x 8 EC F3 D2 CD 90 8F AE B 1  1 4  OB 2A 35 '68 77 56 49 

9 1 D  0 2  2 3  3C 6 1  7E 5F 40 E5 FA DB C4 99 86 A7 B8 

A OF 1 0  3 1  2E 73 6C 4D 52 F7 E8 C9 D6 8B 94 B5 AA 

B FE E 1  CO DF 82 9D BC A3 06 19 38 27 7A 65 44 5B 

C 2B 34 1 5  OA 57 48 69 7 6  D 3  C C  ED F2 AF BO 9 1  8E 

D DA C5 E4 FB A6 B9 98 87 22 3D 1 C  0 3  5 E  4 1  60 7F 

E C8 D7 F6 E9 B4 AB 8A 95 30 2F OE 1 1  4C 53 72 6D 

F 39 26 07 18 45 5A 7B 64 C1 DE FF EO BD A2 83 9C 

Table C . 4 .  Tabular representation of f-1 (xy) . 
y 

0 1 2 3 4 5 6 7 8 9 a b e d e f 

0 05 4F 9 1  DB 2C 66 B8 F2 57 1D C3 89 7E 34 EA AO 

1 A i  EB 35 7F 88 C2 1C 56 F3 B9 67 2D DA 90 4E 04 

2 4C 06 D8 92 65 2F F 1  BB 1E 54 8A CO 37 7D A3 E9 

3 E8 A2 7C 36 C1 8B 55 iF BA FO 2E 64 93 D9 07 4D 

4 97 DD 03 49 BE F4 2A 60 C5 8F 5 1  1 B  EC A6 78 32 

5 33 79 A7 ED 1A 50 8E C4 61 2B F5 BF 48 02 DC 96 

6 DE 94 4A 00 F7 BD 63 29 8C C6 18 52 A5 EF 3 1  7B 

7 7A 30 EE A4 53 19 C7 8D 28 62 BC F6 01 4B 95 DF 

x 8 20 6A B4 FE 09 43 9D D7 72 38 E6 AC 5B 1 1  CF 85 

9 84 CE 1 0  5A AD E7 39 73 D6 9C 42 08 FF B5 6B 2 1  

A 69 23 FD B7 40 OA D4 9E 3B 7 1  AF E5 12 58 86 CC 

B CD 87 5 9  1 3  E4 AE 70 3A 9F D5 OB 4 1  B 6  FC 22 68 

C B2 F8 26 6C 9B D 1  OF 45 EO AA 74 3E C9 83 5D 1 7  

D 1 6  5C 82 C8 3F 75 AB E 1  44 OE DO 9A 6D 27 F9 B3 

E FB B 1  6F 25 D2 98 46 OC A9 E3 3D 77 80 CA 14 5E 

F 5F 1 5  CB 8 1  76 3C E2 A8 OD 47 99 D3 24 6E BO FA 

Table C . 5 .  Tabular representation of g (xy) . 
y 

0 1 2 3 4 5 6 7 8 9 a b e d e f 

0 00 0 1  8D F6 CB 52 7B D 1  E 8  4F 29 CO BO E1 E5 C7 

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2 

2 3A 6E 5A F1 55 4D A8 C9 C 1  OA 98 1 5  3 0  44 A2 C2 

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19 

4 1 D  FE 37 67 2D 3 1  F 5  69 A7 64 AB 13 54 25 E9 09 

5 ED 5C 05 CA 4C 24 87 BF 18 3E 22 FO 5 1  EC 6 1  1 7  

6 1 6  5E AF D3 49 A6 36 43 F4 47 9 1  DF 33 93 21 3B 

7 79 B7 97 85 1 0  B 5  BA 3C B6 70 DO 06 Ai FA 8 1  82 

x 8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4 

9 DE 6A 32 6D D8 8A 84 72 2A 1 4  9F 88 F9 DC 89 9A 

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62 

B OC EO iF EF 1 1  75 78 7 1  A 5  8E 76 3D BD BC 86 57 

C OB 28 2F A3 DA D4 E4 OF A9 27 53 04 1B FC AC E6 

D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B 

E B 1  O D  D 6  EB C6 OE CF AD 08 4E D7 E3 5D 50 1E B3 

F 5B 23 38 34 68 46 03 8C DD 9C 7D AO CD 1A 41 1C 
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Table C . 6 .  Tabular representation of xtime (xy) . 

y 
0 1 2 3 4 5 6 7 · 8  9 

0 00 02 04 06 08 OA OC OE 10 12 

1 20 22 24 26 28 2A 2C 2E 30 32 

2 40 42 44 46 48 4A 4C 4E 50 52 

3 60 62 64 66 68 6A 6C 6E 70 72 

4 80 82 84 86 88 8A 8C 8E 90 92 

5 AO A2 A4 A6 A8 AA AC AE BO B2 

6 CO C2 C4 C6 C8 CA CC CE DO D2 

7 EO E2 E4 E6 E8 EA EC EE FO F2 

x 8 1B 19 1F 1D 13 1 1  1 7  1 5  OB 09 

9 3B 39 3F 3D 33 3 1  37 35 2B 29 

A 5B 59 5F 5D 53 5 1  57 55 4B 49 

B 7B 79 7F 7D 73 7 1  77 75 6B 69 

C 9B 99 9F 9D 93 9 1  97 95- 8B 89 

D BB B9 BF BD B3 B1 B7 B5 AB A9 

E DB D9 DF DD D3 D 1  D 7  D 5  CB C9 

F FB F9 FF FD F3 F 1  F7 F5 EB E9 

a b c d e f 
14 1 6  1 8  1 A  1 C  1E 

34 36 38 3A 3C 3E 

54 5 6  5 8  5A 5C 5E 

74 76 78 7A 7C 7E 

94 96 98 9A 9C 9E 

B4 B6 B8 BA BC BE 

D4 D6 D8 DA DC DE 

F4 F6 F8 FA FC FE 

OF OD 03 0 1  07 05 

2F 2D 23 2 1  27 25 

4F 4D 43 4 1  4 7  4 5  

6 F  6 D  6 3  6 1  6 7  6 5  

8F 8D 83 81 87 85 

AF AD A3 A 1  A7 A5 

CF CD C3 C 1  C7 C5 

EF ED E3 E1 E7 E5 

RC [O] is never used. In the unlikely case that more values are required, they 
should be generated according to (3 . 19) . 

Table C . 7. Round constants for the key generation. 

1 2 3 4 5 6 
01  02 04 08 10 20 

i 8 9 10 1 1  12 13  14  15  I 
RC[i] 80 1B 36 6C D8 AB 4D 9A I 

i 16  17  18  19 20 21  22  23 I 
RC[i] 2F 5E BC 63 C6 97 35 6A I 

i I 24 25 26 27 28 29 30 31  I 
RC['i] I D4 B3 7D FA EF C5 9 1  39 I 

D .  Test Vectors 

D . l  KeyExpans ion 

In this section we give test vectors for the key expansion in the case where 
both block length and key length are equal to 128. The all-zero key is ex­
panded into the following: 

o 00000000000000000000000000000000 
1 62636363626363636263636362636363 
2 9B9898C9F9FBFBAA9B9898C9F9FBFBAA 
3 90973450696CCFFAF2F457330BOFAC99 
4 EE06DA7B876A1581759E42B27E91EE2B 
5 7F2E2B88F8443E098DDA7CBBF34B9290 
6 EC614B851425758C99FF09376AB49BA7 
7 217517873550620BACAF6B3CC61BF09B 
8 OEF903333BA9613897060A045 1 1DFA9F 
9 B1D4D8E28A7DB9DA1D7BB3DE4C664941 

10 B4EF5BCB3E92E21123E95 1CF6F8F188E 

D . 2  Rijndael( l28, l28) 

In this section we gives test vectors for all intermediate steps of  one encryp­
tion. A 1 28-bit plaintext is encrypted under a 1 28-bit key. These test vectors 
are a subset of the extensive set of test vectors generated by Brian Gladman. 

LEGEND - round r = 0 to 10  
input : c ipher input 
start : 
s_box : 
s_row : 
m_col : 
k_sch : 
output : 

PLAINTEXT : 
KEY : 

state at start of round er] 
state after s_box substitut ion 
state after shift row transf ormation 
state after mix column transformation 
key s chedule value for round er] 
cipher output 

3243f6a8885a308d313198a2e0370734 
2b7e151628aed2a6abf7158809cf4f3c 
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ENCRYPT 
R [OOJ . input 
R [OOJ . k_sch 
R [O lJ  . start 
R [OlJ  . s_box 
R [O lJ . s_row 
R [Ol J  . m_col 
R [OlJ  . k_sch 
R [02J . start 
R [02J . s_box 
R [02J . s_row 
R [02J . m_col 
R [02J . k_sch 
R [03J . start 
R [03J . s_box 
R [03J . s_row 
R [03J . m_col 
R [03J . k_sch 
R [04J . start 
R [04J . s_box 
R [04J . s_row 
R [04J . m_col 
R [04J . k_sch 
R [05J . start 
R [05J . s_box 
R [05J . s_row 
R [05J . m_col 
R [05J . k_sch 
R [06J . start 
R [06J . s_box 
R [06J . s_row 
R [06J . m_col 
R [06J . k_sch 
R [07J . start 
R [07J . s_box 
R [07J . s_row 
R [07J . m_col 
R [07J . k_sch 
R [08J . start 
R [08J . s_box 
R [08J . s_row 
R [08J . m_col 
R [08J . k_sch 
R [09J . start 
R [09J . s_box 
R [09J . s_row 
R [09J . m_col 
R [09J . k_sch 
R [10J . start 
R [ 10J . s_box 
R [10J . s_row 
R [10J . k_sch 
R [10J . output 

16 byte block , 16 byte key 
3243f6a8885a308d3 13198a2e0370734 
2b7e 151628aed2a6abf7158809cf4f3c 
193de3beaOf4e22b9ac68d2ae9f84808 
d4271 1 aeeObf98f 1b8b45de51e415230 
d4bf5d30eOb452aeb841 1 1f l 1e2798e5 
046681e5eOcb199a48f8d37a2806264c 
aOfafe1788542cb123a339392a6c7605 
a49c7ff2689f352b6b5bea43026a5049 
49ded28945db96f 17f39871a7702533b 
49db873b453953897f02d2f 177de961a  
584dcaf 1 1b4b5aacdbe7caa81b6bbOe5 
f2c295f27a96b9435935807a7359f67f 
aa8f5f0361dde3ef82d24ad26832469a 
ac73cf7befc l l ldf 13b5d6b545235ab8 
acc 1d6b8efb55a7b1323cfdf45731 1b5 
75ec0993200b633353cOcf7cbb25dOdc 
3d80477d4716fe3e1e237e446d7a883b 
486c4eee671d9dOd4de3b138d65f58e7 
52502f2885a45ed7e3 1 1c807f6cf6a94 
52a4c89485 1 16a28e3cf2fd7f6505e07 
Ofd6daa9603138bf6fc0106b5eb31301 
ef44a541a8525b7fb671253bdbObadOO 
e0927fe8c86363cOd9b1355085b8be01 
e 14fd29be8fbfbba35c89653976cae7c 
e 1fb967ce8c8ae9b356cd2ba974ffb53 
25d1a9adbd1 1d168b63a338e4c4ccObO 
d4d1c6f87c839d87caf2b8bc 1 1f915bc 
fl006f55c 1924cef7cc88b325db5d50c 
a163a8fc784f29df 10e83d234cd503fe 
a14f3dfe78e803fc 10d5a8df4c632923 
4b868d6d2c4a8980339df4e837d2 18d8 
6d88a37a110b3efddbf98641ca0093fd 
260e2e173d41b77de86472a9fdd28b25 
f7ab31f02783a9ff9b4340d354b53d3f 
f783403f27433df09bb53 1ff54aba9d3 
1415b5bf461615ec274656d7342ad843 
4e54f70e5f5fc9f384a64fb24ea6dc4f 
5a4142b1 1949dclfa3e019657a8c040c 
be832cc8d43b86cOOae 1d44dda64f2fe 
be3bd4fed4e 1f2c80a642ccOda83864d 
005 12fdlb1c889ff54766dcdfa1b9gea 
ead27321b58dbad2312bf5607f8d292f 
ea835cf00445332d655d98ad8596bOc5 
87ec4a8cf26ec3d84d4c46959790e7a6 
876e46a6f24ce78c4d904ad897ecc395 
473794ed40d4e4a5a3703aa64c9f42bc 
ac7766f319fadc2128d12941575c006e 
eb40f21e592e38848ba1 13e71bc342d2 
e9098972cb31075f3d327d94af2e2cb5 
e9317db5cb322c723d2e895faf090794 
d014f9a8cgee258ge13fOcc8b6630ca6 
3925841d02dc09fbdc 1 18597196aOb32 
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D .3 Other Block Lengths and Key Lengths 

The values in this section correspond to the ciphertexts obtained by encrypt­

ing the all-zero string with the all-zero key (values on the first lines) , and 

by encrypting the result again with the all-zero key (values on the second 

lines) . The values are given for the five different block lengths and the five 

different key lengths. The values were generated with the program listed in 

Appendix E. 

block length 128 key length 128 
66E94BD4EF8A2C3B884CFA59CA342B2E 
F795BD4A52E29ED713D313FA20E98DBC 

block length 160 key length 128 
9E38B8EB 1D2025A1665AD4B1F5438BB5CAE1AC3F 
939C167E7F916D45670EE21BFC939E1055054A96 

block length 192 key length 128 
A92732EB488D8BB98ECD8D95DC9C02E052F250AD369B3849 
106F34179C3982DDC6750AA01936B7A180E6BOB9D8D690EC 

block length 224 key length 128 
0623522D88F7B9C63437537157F625DD5697AB628A3B9BE2549895C8 
93F93CBDABE23415620E6990B0443D621F6AFBD6EDEFD6990A1965A8 

block length 256 key length 128 
A693B288DF7DAE5B1757640276439230DB77C4CD7A871E24D6162E54AF434891 
5F05857C80B68EA42CCBC759D42C28D5CD490F1D180C7A9397EE585BEA770391 

block length 128 key length 160 
94B434F8F57B9780FOEFF1A9EC4C1 12C 
35AOOEC955DF43417CEAC2AB2B3F3E76 

block length 160 key length 160 
33B12AB81DB7972E8FDC529DDA46FCB529B31826 
97F03EB018COBB9195BF37C6AOAECE8E4CB8DE5F 

block length 192 key length 160 
528E2FFF6005427B67BB1ED31ECC09A69EF41531DF5BA5B2 
7 1C7687A4C93EBC35601E3662256E10115BEED56A410D7AC 

block length 224 key length 160 
58AOC53F3822A32464704D409C2FD0521F3A93E1F6FCFD4C87F1C55 1 
D8E93EF2EB49857049D6F6EOF40B67516D2696F94013C065283F7F01 

block length 256 key length 160 
938D36EOCB6B7937841DAB7F1668E47B485D3ACD6B3F6D598BOA9F923823331D 
7B44491D 1B24A93B904D171F074AD69669C2B70B134A4D2D773250A4414D78BE 

block length 128 key length 192 
AAE06992ACBF52A3E8F4A96EC9300BD7 
52F674B7B9030FDAB13D18DC214EB331 
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block length 160 key length 192 
33060F9D4705DDD2C7675F0099140E5A98729257 
012CAB64982156A5710E790F85EC442CE13C520F 

block length 192 key length 192 
C6348BE20007BAC4A8BD62890C8147A2432E760E9A9F9AB8 
EB9DEF13C253F81C1FC2829426ED166A65A105C6A04CA33D 

block length 224 key length 192 
3856B17BEA77C461 1E3397066828AADDA004706A2C8009DF40A81 1FE 
160AD76A97AE2C1E05942FDE3DA2962684A92CCC74B8DC23BDE4F469 

block length 256 key length 192 
F927363EF5B3B4984A9EB9 109844152EC167F08 102644E3F9028070433DF9F2A 
4E03389C68B2E3F623AD8F7F6BFC88613B86F334F4148029AE25F5ODB144B80C 

block length 128 key length 224 
73F8DFF62A36F3EBF3 1D6F73A56FF279 
3A72F2 1E10B6473EA9FF14A232E675B4 

block length 160 key length 224 
E9F5EAOFA39BB6AD7339F28E58E2E7535F26 1827 
06EF9BC82905306D45810E12D0807796A3D338F9 

block length 192 key length 224 
ECBE9942CD6703E16D358A829D542456D71BD3408EB23C56 
FD10458ED034368A34047905165B78A6F0591FFEEBF47CC7 

block length 224 key length 224 
FE1CFOC8DDAD24E3D75 1933 100E8E89B61CD5D31C96ABFF7209C495C 
5 15D8E2F2B9C5708Fl 12C6DE3 1CACA47AFB86838B716975A24A09CD4 

block length 256 key length 224 
BC18BF6D369C955BBB271CBCDD66C368356DBA5B33C0005550D232OB1C617E21 
60ABA1D2BE45D8ABFDCF97BCB39F6C17DF29985CF321BAB75E26A26100ACOOAF 

block length 128 key length 256 
DC95C078A2408989AD48A21492842087 
08C374848C228233C2B34F332BD2E9D3 

block length 160 key length 256 
30991844F72973B3B2 161F1F1 1E7F8D9863C5 1 18 
EEF8B7CC9DBEOF03A1FE9D82E9A759FD281C67EO 

block length 192 key length 256 
17004E806FAEF168FC9CD56F98F070982075C70C8132B945 
BED33BOAF364DBF15F9C2F3FB24FBDF1D36129C586EEA6B7 

block length 224 key length 256 
9BF26FAD5680D56B572067EC2FE162F449404C86303F8BE38FAB6E02 
658F144A34AF44AAE66CFDDAB955C483DFBCB4EE9A19A6701F158A66 

D.3  Other Block Lengths and Key Lengths 

block length 256 key length 256 
C6227E7740B7E53B5CB77865278EAB0726F62366D9AABAD908936123A1FC8AF3 
9843E807319C32AD1EA3935EF56A2BA96E4BF19C30E47D88A2B97CBBF2E159E7 
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1* Rijndael code August ' 0 1 
* 
* author : Vincent Rijmen , 

* This code is based on the official reference code 
* by Paulo Barreto and Vincent Rijmen 
* 
* This  code is placed in the public domain . 
* Without any warranty of f itness f or any purpose . 
*1  

#include <stdio . h> 

typedef unsigned char word8 ; 
typedef unsigned int word32 ; 

1* The tables Logtable and Alogtable are used to perform 
* mult iplications in GF (256) 
*1 

word8 Logtable [256] = { 
0 ,  0 ,  25 , 1 ,  50 , 2 ,  26 , 198 , 75 , 199 , 27 , 104 , 51 , 238 , 223 , 3 ,  

100 , 4 , 224 , 14 , 52 , 141 , 129 , 239 , 76 , 1 13 , 8 , 200 , 248 , 105 , 28 , 193 , 
125 , 194 , 29 , 18 1 , 249 , 185 , 39 , 106 , 77 , 228 , 166 , 114 , 154 , 201 , 9 , 120 , 
101 , 47 , 138 , 5 ,  33 , 15 , 225 , 36 , 18 , 240 , 130 , 69 , 53 , 147 , 218 , 142 , 
150 , 143 , 2 19 , 189 , 54 , 208 , 206 , 148 , 19 , 92 , 210 , 241 , 64 , 70 , 131 , 56 , 
102 , 221 , 253 , 48 , 191 , 6 , 139 , 98 , 179 , 37 , 226 , 152 , 34 , 136 , 145 , 16 , 
126 , 1 10 , 72 , 195 , 163 , 182 , 30 , 66 , 58 , 107 , 40 , 84 , 250 , 133 , 6 1 , 186 , 
43 , 121 , 10 , 21 , 155 , 159 , 94 , 202 , 78 , 2 12 , 172 , 229 , 243 , 1 1 5 , 167 , 87 , 

175 , 88 , 168 , 80 , 244 , 234 , 214 , 1 16 , 79 , 174 , 233 , 2 13 , 231 , 230 , 173 , 232 , 
44 , 2 15 , 1 17 , 122 , 235 , 22 , 1 1 , 245 , 89 , 203 , 95 , 176 , 156 , 169 , 8 1 , 160 , 

127 ,  12 , 246 , 1 1 1 , 23 , 196 , 73 , 236 , 216 , 67 , 31 , 45 , 164 , 1 18 , 123 , 183 , 
204 , 187 , 62 , 90 , 251 , 96 , 177 , 134 , 59 , 82 , 16 1 , 108 , 170 , 85 , 41 , 157 , 
15 1 , 178 , 135 , 144 , 97 , 190 , 220 , 252 , 188 , 149 , 207 , 205 , 55 , 63 , 9 1 , 209 , 
83 , 57 , 132 , 60 , 65 , 162 , 109 , 71 , 20 , 42 , 158 , 93 , 86 , 242 , 21 1 , 17 1 , 
68 , 17 , 146 , 2 17 , 35 , 32 , 46 , 137 , 180 , 124 , 184 , 38 , 1 19 , 153 , 227 , 165 , 

103 , 74 , 237 , 222 , 197 , 49 , 254 , 24 , 13 , 99 , 140 , 128 , 192 , 247 , 1 12 , 7} ; 
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word8 Alogtable [256J = { 
1 ,  3 ,  5 ,  15 , 17 , 51 , 85 , 255 , 26 , 46 , 1 14 , 150 , 161 , 248 , 19 , 53 , 

95 , 225 , 56 , 72 , 2 16 , 1 1 5 , 149 , 164 , 247 , 2 ,  6 ,  10 , 30 , 34 , 102 , 170 , 
229 , 52 , 92 , 228 , 55 , 89 , 235 , 38 , 106 , 190 , 217 , 1 12 , 144 , 171 , 230 , 49 , 

83 , 245 , 4 ,  12 , 20 , 60 , 68 , 204 , 79 , 209 , 104 , 184 , 2 1 1 , 1 10 , 178 , 205 , 
76 , 2 12 , 103 , 169 , 224 , 59 , 77 , 2 15 , 98 , 166 , 241 , 8 ,  24 , 40 , 120 , 136 , 

131 , 158 , 185 , 208 , 107 , 189 , 220 , 127 , 129 , 152 , 179 , 206 , 73 , 2 19 , 1 18 , 154 , 
181 , 196 , 87 , 249 , 16 , 48 , 80 , 240 , 1 1 , 29 , 39 , 105 , 187 , 214 , 97 , 163 , 
254 , 25 , 43 , 125 , 135 , 146 , 173 , 236 , 47 , 1 13 , 147 , 174 , 233 , 32 , 96 , 160 , 
251 , 22 , 58 , 78 , 210 , 109 , 183 , 194 , 93 , 231 , 50 , 86 , 250 , 21 , 63 , 65 , 
195 , 94 , 226 , 6 1 ,  71 , 201 , 64 , 192 , 91 , 237 , 44 , 1 16 , 156 , 191 , 218 , 1 17 , 
159 , 186 , 2 13 , 100 , 172 , 239 , 42 , 126 , 130 , 157 , 188 , 223 , 122 , 142 , 137 , 128 , 
155 , 182 , 193 , 88 , 232 , 35 , 101 , 175 , 234 , 37 , 1 1 1 , 177 , 200 , 67 , 197 , 84 , 
252 , 31 , 33 , 99 , 165 , 244 , 7 ,  9 ,  27 , 45 , 1 19 , 153 , 176 , 203 , 70 , 202 , 

69 , 207 , 74 , 222 , 121 , 139 , 134 , 145 , 168 , 227 , 62 , 66 , 198 , 81 , 243 , 14 , 
18 , 54 , 90 , 238 , 41 , 123 , 141 , 140 , 143 , 138 , 133 , 148 , 167 , 242 , 13 , 23 , 
57 , 75 , 221 , 124 , 132 , 15 1 , 162 , 253 , 28 , 36 , 108 , 180 , 199 , 82 , 246 , 1} ; 

word8 S [256J = { 
99 , 124 , 1 19 , 123 , 242 , 107 , 1 1 1 , 197 , 48 , 1 , 103 , 43 , 254 , 2 15 , 171 , 1 18 , 

202 , 130 , 201 , 125 , 250 , 89 , 71 , 240 , 173 , 2 12 , 162 , 175 , 156 , 164 , 1 14 , 192 , 
183 , 253 , 147 , 38 , 54 , 63 , 247 , 204 , 52 , 165 , 229 , 241 , 1 13 , 2 16 , 49 , 21 , 

4 , 199 , 35 , 195 , 24 , 1 50 , 5 , 154 , 7 ,  18 , 128 , 226 , 235 , 39 , 178 , 1 17 , 
9 , 131 , 44 , 26 , 27 , 1 10 , 90 , 160 , 82 , 59 , 2 14 , 179 , 41 , 227 , 47 , 132 , 

83 , 209 , 0 , 237 , 32 , 252 , 177 , 9 1 , 106 , 203 , 190 , 57 , 74 , 76 , 88 , 207 , 
208 , 239 , 170 , 251 , 67 , 77 , 5 1 , 133 , 69 , 249 , 2 , 127 , 80 , 60 , 159 , 168 , 

8 1 , 163 , 64 , 143 , 146 , 157 , 56 , 245 , 188 , 182 , 2 18 , 33 , 16 , 255 , 243 , 210 , 
205 , 12 , 19 , 236 , 95 , 151 , 68 , 23 , 196 , 167 , 126 , 6 1 , 100 , 93 , 25 , 1 15 , 

96 , 129 , 79 , 220 , 34 , 42 , 144 , 136 , 70 , 238 , 184 , 20 , 222 , 94 , 1 1 , 219 , 
224 , 50 , 58 , 10 , 73 , 6 ,  36 , 92 , 194 , 2 11 , 172 , 98 , 145 , 149 , 228 , 12 1 ,  
231 , 200 , 55 , 109 , 141 , 213 , 78 , 169 , 108 , 86 , 244 , 234 , 101 , 122 , 174 , 8 ,  
186 , 120 , 37 , 46 , 28 , 166 , 180 , 198 , 232 , 221 , 1 16 , 31 , 75 , 189 , 139 , 138 , 
1 12 , 62 , 181 , 102 , 72 , 3 , 246 , 14 , 97 , 53 , 87 , 185 , 134 , 193 , 29 , 158 , 
225 , 248 , 152 , 17 , 105 , 2 17 , 142 , 148 , 155 , 30 , 135 , 233 , 206 , 85 , 40 , 223 , 
140 , 161 , 137 , 13 , 19 1 , 230 , 66 , 104 , 65 , 153 , 45 , 15 , 176 , 84 , 187 , 22} j 

word8 Si [256J = { 
82 , 9 , 106 , 2 13 , 48 , 54 , 165 , 56 , 19 1 , 64 , 163 , 158 , 129 , 243 , 2 15 , 25 1 , 

124 , 227 , 57 , 130 , 155 , 47 , 255 , 135 , 52 , 142 , 67 , 68 , 196 , 222 , 233 , 203 , 
84 , 123 , 148 , 50 , 166 , 194 , 35 , 61 , 238 , 76 , 149 , 1 1 ,  66 , 250 , 195 , 78 , 

8 ,  46 , 161 , 102 , 40 , 217 , 36 , 178 , 1 18 , 91 , 162 , 73 , 109 , 139 , 209 , 37 , 
1 1 4 , 248 , 246 , 100 , 134 , 104 , 152 , 22 , 2 12 , 164 , 92 , 204 , 93 , 101 , 182 , 146 , 
108 , 1 12 , 72 , 80 , 253 , 237 , 185 , 2 18 , 94 , 21 , 70 , 87 , 167 , 141 , 157 , 132 , 
144 , 2 16 , 171 , 0 , 140 , 188 , 2 1 1 , 10 , 247 , 228 , 88 , 5 , 184 , 179 , 69 , 6 ,  
208 , 44 , 30 , 143 , 202 , 63 , 15 , 2 , 193 , 175 , 189 , 3 ,  1 ,  19 , 138 , 107 , 

58 , 145 , 17 , 65 , 79 , 103 , 220 , 234 , 15 1 , 242 , 207 , 206 , 240 , 180 , 230 , 1 15 , 
150 , 172 , 1 16 , 34 , 231 , 173 , 53 , 133 , 226 , 249 , 55 , 232 , 28 , 1 17 , 223 , 1 10 , 
71 , 241 , 26 , 1 13 , 29 , 41 , 197 , 137 , 1 1 1 , 183 , 98 , 14 , 170 , 24 , 190 , 27 , 

252 , 86 , 62 , 75 , 198 , 2 10 , 121 , 32 , 154 , 2 19 , 192 , 254 , 120 , 205 , 90 , 244 , 
31 , 22 1 , 168 , 51 , 136 , 7 , 199 , 49 , 177 , 18 , 16 , 89 , 39 , 128 , 236 , 95 , 
96 , 8 1 , 127 , 169 , 25 , 181 , 74 , 13 , 45 , 229 , 122 , 159 , 147 , 201 , 156 , 239 , 

160 , 224 , 59 , 77 , 174 , 42 , 245 , 176 , 200 , 235 , 187 , 60 , 131 , 83 , 153 , 97 , 
23 , 43 , 4 , 126 , 186 , 1 19 , 214 , 38 , 225 , 105 , 20 , 99 , 85 , 33 , 12 , 125} ; 
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word32 RC [30J = { 
OxOO , OxOl , Ox02 , Ox04 , Ox08 , Ox10 , Ox20 , Ox40 , Ox80 , 
OxlB , Ox36 , Ox6C , OxD8 , OxAB , Ox4D , Ox9A , Ox2F , Ox5E , 
OxBC , Ox63 , OxC6 , Ox97 , Ox35 , Ox6A , OxD4 , OxB3 , Ox7D , 
OxFA , OxEF , OxC5} j 

#def ine MAXBC 8 
#def ine MAXKC 8 
#define MAXROUNDS 14 

static  word8 shifts [5J [4J { 
0 ,  1 ,  2 ,  3 ,  
0 ,  1 ,  2 ,  3 ,  
0 ,  1 ,  2 ,  3 ,  
0 ,  1 ,  2 ,  4 ,  
0 ,  1 ,  3 ,  4} j 

static  int numrounds [5J [5J { 
10 , 1 1 ,  12 , 13 , 14 , 
1 1 , 1 1 , 1 2 ,  13 , 14 , 
12 , 12 , 12 , 13 , 14 , 
13 , 13 , 13 , 13 , 14 , 
14 , 14 , 14 , 1 4 ,  14} ; 

int BC , KC , ROUNDS ; 

word8 mul (word8 a ,  word8 b) { 
/* multiply two elements of GF (256) 

* required for MixColumns and InvMixColumns 
*/ 
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if (a && b) return Alogtable [ (Logtable [aJ + Logtable [bJ ) %255J ; 
else return 0 ;  

} 

void AddRoundKey (word8 a [4J [MAXBCJ , word8 rk [4J [MAXBCJ ) { 
/* XOR corresponding text input and round key input bytes 
*/ 

int i ,  j ;  

f or ( i  = 0 ;  i < 4 ;  i++) 
for Cj  = 0 ;  j < BC ; j ++) a [iJ [j J � rk [iJ [j J ; 

} 

void SubBytes (word8 a [4J [MAXBCl ,  word8 box [256J ) { 

} 

/* Replace every byte of the input by the byte at that place 
* in the non-linear S-box 
*/ 

int i ,  j ;  

f or ( i = O J  i < 4 ;  i++) 
for (j = 0 ;  j < BC ; j ++) a [iJ �J = box [a [iJ � J J 
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void ShiftRows (wordS a [4] [MAXBC] , wordS d) { 
/* Row 0 remains unchanged 

} 

* The other three rows are shifted a variable amount 
*/ 

wordS tmp [MAXBC] ; 
int i ,  j ;  

if (d == 0) { 

} 

for ( i  = 1 ;  i < 4 ;  i++) { 
for (j  = 0 ;  j < BC ; j ++) 

tmp [j ] = a [i] [ ( j + shifts  [BC-4] [i] ) % BC] ; 

} 
for (j  = 0 ;  j < BC ; j ++) a [i] [j ] = tmp [j ] ; 

else { 

} 

for (i  = 1 ;  i < 4 ;  i++) { 
for (j  = 0 ;  j < BC ; j ++) 

tmp [j ] = a [i] [ (BC + j - shifts [BC-4] [iJ ) % BC] ; 

} 
for (j = 0 ;  j < BC ; j ++) a [i] [j ] = tmp [j ] ; 

void MixColumns (wordS a [4] [MAXBC] ) { 

} 

/* Mix the four bytes  of every column in a linear way 
*/ 

wordS b [4] [MAXBC] ; 
int i ,  j ;  

for ( j  = 0 ;  j < BC ; j ++) 
for ( i  = 0; i < 4; i++) 

b [i] [j ] = mul ( 2 ,  a [i] [j ] ) 
� mul (3 , a [ ( i  + 1 )  % 4] [j ] )  
� a [ ( i  + 2) % 4] [j ] 
� a [ ( i  + 3) % 4] [j ] ; 

for ( i  = 0 ;  i < 4 ;  i++) 
f or (j  = 0; j < BC ; j ++) a [i] [j ] b [i] [j ] ; 

vo.id InvMixCol umns (wordS a [4] [MAXBC] ) { 
/* Mix the four bytes of every column in a linear way 
* This is the opposite operation of Mixcolumns 
*/ 

wordS b [4] [MAXBC] ; 
int i ,  j ;  

f or (j  = 0 ;  j < BC ; j ++)  
for ( i  = 0 ;  i < 4 ;  i++) 

b [i] [j ] = mul (Oxe , a [i] [j ] ) 
� mul (Oxb , a [ ( i + 1 )  % 4] [j ] ) 
� mul (Oxd , a [ ( i + 2) % 4] [j ] ) 
� mul (Ox9 , a [ ( i + 3) % 4] [j ] ) ;  

E. Reference Code 

f or ( i  = 0 ;  i < 4 ;  i++) 
for (j = 0 ;  j < BC ; j ++) a [i] [j ] = b [i] [j ] ; 

} 

int KeyExpansion (wordS k [4] [MAXKC] , 

} 

wordS W [MAXROUNDS+1] [4] [MAXBC] ) { 
/* Calculate the required round keys 

*/ 
int i ,  j ,  t ,  RCpointer = 1 ;  
wordS tk [4] [MAXKC] ; 

f or (j = 0 ;  j < KC ; j ++) 
for ( i  = 0; i < 4; i++) 

tk [i] [j ] = k [i] [j ] ; 
t = 0 ;  
/ *  copy values into round key array */  
for ( j  = 0 ;  ( j  < KC)  & &  (t < (ROUNDS+1 ) *BC) ; j ++ ,  t++) 

for ( i  = 0; i < 4; i++) W et / BC] [i] [t % BC] = tk [i] [j ] ; 

while (t < (ROUNDS+1 ) *BC) { 

} 

/* while not enough round key material calculated , 
* calculate new values 
*/  

for ( i  = 0 ;  i < 4 ;  i++) 
tk [i] [0] �= S [tk [ ( i + 1 )  %4] [KC-1] ] ; 

tk [O] [0] �= RC [RCpointer++] ; 

if (KC <= 6)  
f or ( j  = 1 ;  j < KC ; j ++) 

for ( i  = 0; i < 4; i++) tk [i] [j ] � tk [i] [j -1] ; 
else { 

for (j  = 1 ;  j < 4 ;  j ++)  
f or ( i = 0 ;  i < 4 ;  i++)  tk [i] [j ] �= tk [i] [j -1] ; 

for ( i = 0 ;  i < 4 ;  i++) tk [i] [4] �= S [tk [i] [3] ] ; 
f or (j = 5 ;  j < KC ; j ++) 

for ( i  = 0; i < 4; i++) tk [i] [j ] � =  tk [i] [j - 1] ; 

/* copy values into round key array */  
for (j  = 0 ;  ( j  < KC)  & &  (t < (ROUNDS+1) *BC) ; j ++ ,  t++) 

for ( i  = 0 ;  i < 4; i++) W et / BC] [i] [t % BC] = tk [i] [j ] ; 
} 

return 0 ;  

int Encrypt (wordS a [4] [MAXBC] , wordS rk [MAXROUNDS+1] [4] [MAXBC] ) 
{ 

/* Encryption of one block . 
*/ 

int r ;  

/ *  begin with a key addition 
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*/ 
AddRoundKey (a , rk [O] ) ;  

/*  RDUNDS-1 ordinary rounds 
*/  

for (r = 1 ;  r < ROUNDS ; r++) { 
SubBytes ( a , S ) ; 
ShiftRows (a , O) ; 
MixColumns (a) ; 
AddRoundKey (a , rk [r] ) ;  

} 

/* Last round is special : t�ere is no MixColumns 
*/  

SubBytes ( a , S) ; 
ShiftRows (a , O) ; 
AddRoundKey (a , rk [RDUNDS] ) ;  

return 0 ;  

int Decrypt (word8 a [4] [MAXBC] , word8 rk [MAXRDUNDS+1] [4] [MAXBC] ) 
{ 

int r ;  

/ *  To decrypt : 
* apply the inverse operations of the encrypt routine , 
* in opposite order 
* 
* - AddRoundKey is equal to its inverse)  
* - the inverse of SubBytes with table S is  
* SubBytes with 
* - the inverse of Shiftrows 
* a suitable distance )  
*/  

/*  First the special round : 
* without InvMixColumns 
* with extra AddRoundKey 
*/  

AddRoundKey ( a , rk [RDUNDS] ) ;  
SubBytes (a , Si) ; 
ShiftRows (a , 1 ) ; 

/* RDUNDS-1 ordinary rounds 
*/  

the 
is  

f or (r = ROUNDS-1 ; r > 0 ;  r--) { 
AddRoundKey ( a , rk [r] ) ;  
InvMixColumns (a) ; 
SubBytes ( a , Si) ; 
ShiftRows ( a , 1 ) ; 

} 

inverse table 
Shiftrows over 

of S )  

} 

/* End with the extra key addition 
*/ 

AddRoundKey (a , rk [O] ) ;  

return 0 ;  
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int main O { 

} 

int i ,  j ;  
word8 a [4] [MAXBC] , rk [MAXROUNDS+1] [4] [MAXBC] , sk [4] [MAXKC] ; 

for (KC = 4 ;  KC <= 8 ;  KC++) 
for (BC = 4 ;  BC <= 8 ;  BC++) { 

ROUNDS = numrounds [KC-4] [BC-4] ; 
for (j  = 0 ;  j < BC ; j ++)  

} 

for ( i  = 0 ;  i < 4 ;  i ++) a [i] [j ] = 0 ;  
for ( j  = 0 ;  j < KC ; j ++) 

for ( i = 0 ;  i < 4; i++) sk [i] [j ] = 0 ;  
KeyExpansion (sk , rk) ; 
Encrypt ( a , rk) ; 
printf ( "block length %d key length %d\n " , 32*BC , 32*KC) ; 
for ( j  = 0 ;  j < BC ; j ++) 

for ( i = 0; i < 4; i++) printf ( I %02X " , a [i] [j ] ) ;  
printf ( " \n" ) ; 

Encrypt ( a , rk) ; 
for (j  = 0 ;  j < 4 ;  j ++)  

for ( i  = 0 ;  i < 4;  i++)  printf ( "%02X " , a [i] [j ] ) ;  
printf ( " \n" ) ; 
printf ( " \n" ) ; 

return 0 ;  
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