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Here we are, in the preface of my 2nd text. I do not know exactly what to tell
you, the reader, other than this one is more dramatic and engaging than the
last. I do not want to leak too many details, but let’s just say that RSA has an
affair with SHA behinds MD5’s back. In all seriousness, let’s get down to busi-
ness now.

As I write this, nearly on the eve of the print date, I anticipate the final
product and hope that I have hit my target thesis for the text.This text is the
product of a year’s worth of effort, spanning from early 2006 to nearly
November of 2006. I spent many evenings writing after work; my only hope is
that this text reaches the target audience effectively. It certainly was an enter-
taining process, albeit at times laborious, and like my first text, well worth it.

First, I should explain who the authors are before I go into too much depth
about this text.This text was written mostly by me,Tom St Denis, with the
help of my co-author, Simon Johnson, as a technical reviewer. I am a computer
scientist from Ontario, Canada with a passion for all things cryptography
related. In particular, I am a fan of working with specialty hardware and
embedded systems.

My claim to fame and probably how you came to know about this text is
through the LibTom series of projects.These are a series of cryptographic and
mathematic libraries written to solve various problems that real-life developers
have.They were also written to be educational for the readers. My first project,
LibTomCrypt, is the product of nearly five years of work. It supports quite a few
useful cryptographic primitives, and is actually a very good resource for this
text. Continuing the line of cryptographic projects, I started LibTomMath in
2002. It is a portable math library to manipulate large integers. It has found a

xix
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home with LibTomCrypt as one of the default math providers, and is also inte-
gral to other projects such as Tcl and Dropbear.To improve upon LibTomMath, I
wrote TomsFastMath, which is an insanely fast and easy to port math library for
cryptographic operations.

I wrote all of these projects to be free, not only in the sense that people can
acquire them free of charge, but also in the sense that there are no strings
attached.They are, in fact, all public domain. For me, at least, it was not enough
just to provide code. I also provide documentation that explains how to use the
projects. Even that was not enough. I also document and clean the source code;
the code itself is of educational value.The first project to be used in this
manner was the LibTomMath project. In 2003, I wrote a text, BigNum Math:
Implementing Cryptographic Multiple Precision Arithmetic (ISBN:1597491128),
which Syngress Publishing published in 2006.The project literally inserts code
from the project into the text. Coupled with pseudo-code, the text teaches how
to manipulate large integers quite effortlessly.

The LibTom projects are themselves guided by a simple motto that I’ve
developed over the years.

“Open Source.  Open Academia.  Open Minds”

What this means is that, by providing source code along with useful docu-
mentation and supporting material, we can educate others and open their
minds to new ideas and techniques. It extends the typical open source philos-
ophy in an educational capacity. For instance, it is nice that the GNU Compiler
Collection (GCC) is open source, but it is hardly an educational project.
Enough of this though; this line of thinking is the subject of my next text (due
sometime in 2009).

I continue to work on my LibTom projects and am constantly vigilant so as
to promote them whenever possible. I regularly attend conferences such as
Toorcon to spread the word of the LibTom philosophy in hopes of recruiting
new open-source developers to the educational path.

So, who is Simon? Simon Johnson is a computer programmer from
England. He spends his days reading about computer security and crypto-
graphic techniques. Professionally, he is a security engineer working with C#
applications and the like. Simon and I met through the Usenet wasteland that is
sci.crypt, and have collaborated on various projects.Throughout this text,
Simon played the role of technical reviewer. His schedule did not quite afford

www.syngress.com
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Foreword xxi

www.syngress.com

him as much time to help on this project as he would have liked, but his help
was still crucial. It is safe to say we can expect a text or two from Simon in the
years to come.

So what is this book about? Cryptography for Developers. Sounds authorative
and independent: Right and wrong.This text is an essential guide for developers
who are not cryptographers. It is not, however, meant to be the only text on
the subject.We often refer to other texts as solid references. Definitely, you will
want a copy of “BigNum Math.” It is an essential text on implementing the
large integer arithmetic required by public key algorithms.Another essential is
The Guide to Elliptic Curve Cryptography (ISBN 038795273X), which covers, at a
nice introductory level, all that a developer requires to know about elliptic
curve algorithms. It is our stance that we do you, the reader, more good by
referring to well-read texts on the subject instead of trying to duplicate their
effort.There are also the standards you may want to pick up. For instance, if you
are to implement RSA cryptography, you really need a copy of PKCS #1
(which is free).While this text covers PKCS #1 operations, having the standard
handy is always nice. Finally, I strongly encourage the reader to acquire copies
of the LibTom projects to get first-hand experience working with crypto-
graphic software.

Who is this book for? I wrote this book for the sort of people who send
me support e-mail for my projects.That is not to say this text is about the pro-
jects, merely about the problems users seem to have when using them. Often,
developers tasked with security problems are not cryptographers.They are
bright people, who, with careful guidance, can implement secure cryptosystems.
This text aims to guide developers in their journey towards solving various
cryptographic problems. If you have ever sat down and asked yourself,“Just
how do I setup AES anyways?” then this text is for you.

This text is not for people looking at a solid academic track in cryptog-
raphy.This is not the Handbook of Applied Cryptography, nor is it the
Foundations of Cryptography. Simply put, if you are not tasked with imple-
menting cryptography, this book may not be for you.This is part of the
thinking that went into the design and writing of this text. We strived to
include enough technical and academic details as to make the discussions accu-
rate and useful. However, we omitted quite a few cryptographic discussions
when they did not fit well in the thesis of the text.
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Introduction
Computer security is an important field of study for most day-to-day transactions. It arises
when we turn on our cellular phones, check our voice mail and e-mail, use debit or credit
cards, order a pay-per view movie, use a transponder through EZ-Pass, sign on to online
video games, and even during visits to the doctor. It is also often used to establish virtual pri-
vate networks (VPNs) and Secure Shell connections (SSH), which allows employees to
telecommute and access computers remotely.

The use, and often misuse, of cryptography to solve security problems are driven by one
cause: the need for security. Simply needing security does not make it so, a lesson all too often
learned after the fact, or more importantly, after the exploits.

Notes from the Underground…

Known Exploit—Dark Age of Camelot
URL: http://capnbry.net/daoc/advisory20040323/daoc-advisory2.html

In March 2004, an exploit for the video game Dark Age of Camelot (Mythic
Entertainment) made use of the weak server authentication the game used to
perform secure billing transactions. It allowed attackers to intercept communica-
tion between a real server and client and read all the private billing data.

Even though the developers used a known and tested cryptographic library
to provide core algorithms, they had used the algorithms incorrectly. As a result,
the attackers did not have to break hard cryptographic algorithms such as RSA or
RC4, just the weak construction in which they were used.

The Mythic exploit is a classic example of not knowing how to use tools properly. It is
hard to fault the developer team.They are, after all, video game developers, not fulltime
cryptographers.They do not have the resources to bring a cryptographer on team, let alone
contract out to independent firms to provide the same services.

The circumstances Mythic was in at the time are very common for most software devel-
opment companies throughout the world.As more and more small businesses are created, the
fewer resources they have to pool on security staff. Security is not the goal of the end-user
product, but merely a requirement for the product to be useful.

For example, banking hardly requires cryptography to function; you can easily hand
someone $10 without first performing an RSA key exchange. Similarly, cell phones do not
require cryptography to function.The concept of digitizing speech, compressing it, encoding
the bits for transmission over a radio and the reverse process are done all the time without
one thought toward cryptography.
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Because security is not a core product value, it is either neglected or relegated to a sec-
ondary “desired” goal list.This is rather unfortunate, since cryptography and the deployment
of is often a highly manageable task that does not require an advanced degree in cryptog-
raphy or mathematics to accomplish. In fact, simply knowing how to use existing crypto-
graphic toolkits is all a given security task will need.

Threat Models
A threat model explicitly addresses venues of attack adversaries will exploit in their attempts
to circumvent your system. If you are a bank, they want credentials; if you are an e-mail ser-
vice, they want private messages, and so on. Simply put, a threat model goes beyond the
normal use of a system to examine what happens on the corner cases. If you expect a
response in the set X, what happens when they send you a response Y that does not belong
to that set? 

The simplest example of this modeling is the atoi() function in C, which is often used in
programs without regard to error detection.The program expects an ASCII encoded integer,
but what happens when the input is not an integer? While this is hardly a security flaw, it is
the exact sort of corner cases attackers will exploit in your system.

A threat model begins at the levels at which anyone, including insiders, can interact with
the system. Often, the insiders are treated as special users; with virtually unlimited access to
data they are able to commit rather obtuse mistakes such as leaving confidential data of
thousands of customers in a laptop inside a car (see, for instance, http://business.timesonline.
co.uk/article/0,,13129-2100897,00.html).

The model essentially represents the Use Cases of the system in terms of what they
potentially allow if broken or circumvented. For example, if the user must first provide a
password, attackers will see if the password is handled improperly.They will see if the system
prevents users from selecting easily guessable passwords, and so on.

The major contributing factor to development of an accurate threat model is to not
think of the use cases in terms of what a proper user will do. For example, if your program
submits data to a database, attackers may try an injection attack by sending SQL queries inside
the submitted data.A normal user probably would never do that. It is nearly impossible to
document the entire threat model design process, as the threat model is as complicated if not
more so than the system design itself.

This book does not pretend to offer a treatment of secure coding practices sufficient to
solve this problem. However, even with that said, there are simple rules of threat model
design developers should follow when designing their system:
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Simple Rules of Threat Model Design

1. How many ways can someone transition into this use case?

i. Think outside of the intended transitions.

ii. Are invalid contexts handled?

2. What components does the input interact with?

i. What would “invalid inputs” be?

3. Is this use case effective?

i. Is it explicitly weak? What are the assumptions?

ii. Does it accomplish the intended goal?

What Is Cryptography?
Cryptography is the automated (or algorithmic) method in which security goals are accom-
plished.Typically, when we say “crypto algorithm” we are discussing an algorithm meant to
be executed on a computer.These algorithms operate on messages in the form of groups 
of bits.

More specifically, people often think of cryptography as the study of ciphers; that is,
algorithms that conceal the meaning of a message. Privacy, the actual name of this said goal,
is all but one of an entire set of problems cryptography is meant to address. It is perhaps
most popular, as it is the oldest cryptography related security goal and feeds into our natural
desire to have secrets. Secrets in the form of desires, wants, faults, and fears are natural emo-
tions and thoughts all people have. It of course helps that modern Hollywood plays into this
with movies such as Swordfish and Mercury Rising.

Cryptographic Goals
However, there are other natural cryptographic problems to be solved and they can be
equally if not more important depending on who is attacking you and what you are trying
to secure against attackers.The cryptographic goals covered in this text (in order of appear-
ance) are privacy, integrity, authentication, and nonrepudiation.

Privacy
Privacy is the property of concealing the meaning or intent of a message. In particular, it is
to conceal it from undesired parties to an information transmission medium such as the
Internet, wireless network link, cellular phone network, and the like.

Privacy is typically achieved using symmetric key ciphers.These algorithms accept a secret
key and then proceed to encrypt the original message, known as plaintext, and turn it into
piece of information known as ciphertext. From a standpoint of information theory, cipher-
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text contains the same amount of entropy (uncertainty, or simply put, information) as the
plaintext.This means that a receiver (or recipient) merely requires the same secret key and
ciphertext to reconstruct the original plaintext.

Ciphers are instantiated in one of two forms, both having their own strengths and weak-
nesses.This book only covers block ciphers in depth, and in particular, the National Institute
for Standards and Technologies (NIST) Advanced Encryption Standard (AES) block cipher.
The AES cipher is particularly popular, as it is reasonably efficient in large and small proces-
sors and in hardware implementations using low-cost design techniques. Block ciphers are
also more popular than their stream cipher cousins, as they are universal.As we will see,AES
can be used to create various privacy algorithms (including one mode that resembles a
stream cipher) and integrity and authentication algorithms.AES is free, from an intellectual
property (IP) point of view, well documented and based on sound cryptographic theory
(Figure 1.1).

Figure 1.1 Block Diagram of a Block Cipher

NOTE

URL: http://csrc.nist.gov/CryptoToolkit/aes/rijndael/
The Advanced Encryption Standard is the official NIST recommended block

cipher. Its adoption is highly widespread, as it is the direct replacement for the
aging and much slower Data Encryption Standard (DES) block cipher.
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Integrity
Integrity is the property of ensuring correctness in the absence of an actively participating
adversary.That sounds more complicated than it really is. What this means in a nutshell is
ensuring that a message can be delivered from point A to point B without having the
meaning (or content) of the original message change in the process. Integrity is limited to
the instances where adversaries are not actively trying to subvert the correctness of the
delivery.

Integrity is usually accomplished using cryptographic one-way hash functions.These func-
tions accept as an input an arbitrary length message and produce a fixed size message digest.
The message digest, or digest for short, usually ranging in sizes from 160 to 512 bits, is meant
to be a representative of the message.That is, given a message and a matching digest, one
could presume that outside the possibility of an active attacker the message has been deliv-
ered intact. Hash algorithms are designed to have various other interesting properties such as
being one-way and collision resistance (Figure 1.2).

Figure 1.2 Block Diagram of a One-Way Hash Function

Hashes are designed to be one-way primarily because they are used as methods of
achieving password-based authenticators.This implies that given a message digest, you cannot
compute the input that created that digest in a feasible (less than exponential) amount of
time. Being one-way is also required for various algorithms such as the Hash Message
Authentication Code (see Chapter 5,“Hash Functions”) algorithm to be secure.

Hashes are also required to be collision resistant in two significant manners. First, a hash
must be a pre-image resistant against a fixed target (Figure 1.3).That is, given some value y it
is hard to find a message M such that hash(M) = y.The second form of resistance, often cited
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as 2nd pre-image resistance (Figure 1.4) is the inability to find two messages M1 (given) and
M2 (chosen at random) such that hash (M1) = hash(M2).Together, these imply collision 
resistance.

Figure 1.3 Pre-Image Collision Resistance

Figure 1.4 2nd Pre-Image Collision Resistance

Hashes are not keyed algorithms, which means there is no secret information to which
attackers would not be privy in the process of the algorithms workflow. If you can compute
the message digest of a public message, so can they. For this reason, in the presence of an
attacker the integrity of a message cannot be determined.

Even in light of this pitfall, they are still used widely in computing. For example, most
online Linux and BSD distributions provide a digest from programs such as md5sum as part
of their file manifests. Normally, as part of an update process the user will download both the
file (tarball, RPM, .DEB, etc.) and the digest of the file.This is used under the assumption
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that the threat model does not include active adversaries but merely storage and distribution
errors such as truncated or overwritten files.

This book discusses the popular Secure Hash Standard (SHS) SHA-1 and SHA-2 family of
hash functions, which are part of the NIST portfolio of cryptographic functions.The SHA-2
family in particular is fairly attractive, as it introduces a range of hashes that produce digests
from 224 to 512 bits in size.They are fairly efficient algorithms given that they require no
tables or complicated instructions and are fairly easy to reproduce from specification.

WARNING!
The MD5 hash algorithm has long been considered fairly weak. Dobbertin found
flaws in key components of the algorithm, and in 2005 researchers found full
collisions on the function. New papers appearing in early 2006 are discussing
faster and faster methods of finding collisions.

These researchers are mostly looking at 2nd pre-image collisions, but there
are already methods of using these collisions against IDS and distribution sys-
tems.

It is highly recommended that developers avoid the MD5 hash function. To
a certain extent, even the SHA-1 hash function should be avoided in favor of
the new SHA-2 hash functions. For those following the European standards,
there is also the Whirlpool hash function to choose from.

Authentication
Authentication is the property of attributing an identity or representative of the integrity of
a message.A classic example would be the wax seal applied to letters.The mark would typi-
cally be hard to forge at the time they were being used, and the presence of the unbroken
mark would imply the documents were authentic.

Another common form of authentication would be entering a personal identification
number (PIN) or password to authorize a transaction.This is not to be confused with nonre-
pudiation, the inability to refute agreement, or with authentication protocols as far as key
agreement or establishment protocols are concerned. When we say we are authenticating a
message, it means we are performing additional steps such that the recipient can verify the
integrity of a message in the presence of an active adversary.

The process of key negotiation and the related subject of authenticity are a subject of
public key protocols.They use much the same primitives but have different constraints and
goals.An authentication algorithm is typically meant to be symmetric such that all parties
can produce verifiable data.Authenticity with the quality of nonrepudiation is usually left to
a single producer with many verifiers.
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In the cryptographic world, these authentication algorithms are often called Message
Authentication Codes (MAC), and like hash functions produce a fixed sized output called a
message tag.The tag would be the information a verifier could use to validate a document.
Unlike hash functions, the set of MAC functions requires a secret key to prevent anyone
from forging tags (Figure 1.5).

Figure 1.5 Block Diagram for a MAC Function

The two most common forms of MAC algorithms are the CBC-MAC (now imple-
mented per the OMAC1 algorithm and called CMAC in the NIST world) and the HMAC
functions.The CBC-MAC (or CMAC) functions use a block cipher, while the HMAC
functions use a hash function.This book covers both NIST endorsed CMAC and HMAC
message authentication code algorithms.

Another method of achieving authentication is using public key algorithms such as RSA
using the PKCS #1 standard or the Elliptic Curve DSA (EC-DSA or ANSI X9.62) standard.
Unlike CMAC or HMAC, a public key based authenticator does not require both parties to
share private information prior to communicating. Public key algorithms are therefore not
limited to online transactions when dealing with random unknown parties.That is, you can
sign a document, and anyone with access to your public key can verify without first com-
municating with you.

Public key algorithms are used in different manners than MAC algorithms and as such
are discussed later in the book as a different subject (Table 1.1).
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Table 1.1 Comparing CMAC, HMAC and Public Key Algorithms

Characteristic CMAC HMAC RSA PKCS #1 EC-DSA

Speed Fast Fastest Slowest Slow
Complexity Simple Simplest Hard Hardest
Needs secret keys Yes Yes No No
Ease of deployment Harder Harder Simple Simple

The manner in which the authenticators are used depends on their construction. Public
key based authenticators are typically used to negotiate an initial greeting on a newly opened
communication medium. For example, when you first connect to that SSL enabled Web site,
you are verifying that the signature on the Web site’s certificate was really signed by a root
signing authority. By contrast, algorithms such as CMAC and HMAC are typically used after
the communication channel has been secured.They are used instead to ensure that commu-
nication traffic was delivered without tampering. Since CMAC and HMAC are much faster
at processing message data, they are far more valuable for high traffic mediums.

Nonrepudiation
Nonrepudiation is the property of agreeing to adhere to an obligation. More specifically, it is
the inability to refute responsibility. For example, if you take a pen and sign a (legal) contract
your signature is a nonrepudiation device.You cannot later disagree to the terms of the con-
tract or refute ever taking party to the agreement.

Nonrepudiation is much like the property of authentication in that their implementa-
tions often share much of the same primitives. For example, a public key signature can be a
nonrepudiation device if only one specific party has the ability to produce signatures. For
this reason, other MAC algorithms such as CMAC and HMAC cannot be nonrepudiation
devices.

Nonrepudiation is a very important property of billing and accounting that is more
often than not improperly addressed. For example, pen signatures on credit card receipts are
rarely verified, and even when the clerk glances at the back of the card, he is probably not a
handwriting expert and could not tell a trivial forgery from the real thing. Cell phones also
typically use MAC algorithms as resource usage authenticators, and therefore do not have
nonrepudiation qualities.

Goals in a Nutshell
Table 1.2 compares the four primary cryptographic goals.
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Table 1.2 Common Cryptographic Goals

Goal Properties

Privacy 1. Concerned with concealing the meaning of a message from
unintended participants to a communication medium.

2. Solved with symmetric key block ciphers.
3. Recipient does not know if the message is intact.
4. Output of a cipher is ciphertext.

Integrity 1. Concerned with the correctness of a message in transit.
2. Assumes there is no active adversary.
3. Solved with one-way hash functions.
4. Output of a hash is a message digest.

Authentication 1. Concerned with the correctness of a message in transit
2. Assumes there are active adversaries.
3. Solved with Message Authentication Functions (MAC).
4. Output of a MAC is a message tag.

Nonrepudiation 1. Concerned with binding transaction.
2. Goal is to prevent a party from refuting taking party to a

transaction.
3. Solved with public key digital signatures.
4. Output of a signature algorithm is a signature.

Asset Management
A difficult challenge when implementing cryptography is the ability to manage user assets
and credentials securely and efficiently.Assets could be anything from messages and files to
things such as medical information and contact lists; things the user possesses that do not
specifically identify the user, or more so, are not used traditionally to identify users. On the
other hand, credentials do just that.Typically, credentials are things such as usernames, pass-
words, PINs, two-factor authentication tokens, and RFID badges.They can also include
information such as private RSA and ECC keys used to perform signatures.

Assets are by and large not managed in any particularly secure fashion.They are rou-
tinely assumed authentic and rarely privacy protected. Few programs offer integrated security
features for assets, and instead assume the user will use additional tools such as encrypted file
stores or manual tools such as GnuPG.Assets can also be mistaken for credentials in very real
manners.

For instance, in 2005 it was possible to fly across Canada with nothing more than a
credit card.Automated check-in terminals allowed the retrieval of e-tickets, and boarding
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agents did not check photo identification while traveling inside Canada.The system assumed
possession of the credit card meant the same person who bought the ticket was also standing
at the check-in gate.

Privacy and Authentication
Two important questions concerning assets are whether the asset is private and whether it
has to be intact. For example, many disk encryption users apply the tool to their entire
system drive. Many system files are universally accessible as part of the install media.They are
in no way private assets, and applying cryptography to them is a waste of resources. Worse,
most systems rarely apply authentication tools to the files on disk (EncFS is a rare exception
to the lack of authentication rule. http://encfs.sourceforge.net/), meaning that many files,
including applications, that are user accessible can be modified. Usually, the worse they can
accomplish is a denial of service (DoS) attack on the system, but it is entirely possible to
modify a working program in a manner such that the alterations introduce flaws to the
system. With authentication, the file is either readable or it is not.Alterations are simply not
accepted.

Usually, if information is not meant to be public it is probably a good idea to authenti-
cate it.This provides users with two forms of protection around their assets. Seeing this as an
emerging trend, NIST and IEEE have both gone as far as to recommend combined modes
(CCM and GCM, respectively) that actually perform both encryption and authentication.
The modes are also of theoretical interest, as they formally reduce to the security of their
inherited primitives (usually the AES block cipher). From a performance point of view, these
modes are less efficient than just encryption or authentication alone. However, that is offset
by the stability they offer the user.

Life of Data
Throughout the life of a particular asset or credential, it may be necessary to update, add to,
or even remove parts of or the entire asset. Unlike simply creating an asset, the security
implications of allowing further modifications are not trivial. Certain modes of operation are
not secure if their parameters are left static. For instance, the CTR chaining mode (discussed
in Chapter 4,“Advanced Encryption Standard”) requires a fresh initial value (IV) whenever
encrypting data. Simply re-using an existing IV, say to allow an inline modification, is
entirely insecure against privacy threats. Similarly, other modes such as CCM (see Chapter 7,
“Encrypt and Authenticade Modes”) require a fresh Nonce value per message to assure both
the privacy and authenticity of the output.

Certain data, such as medical data, must also possess a lifespan, which in cryptographic
terms implies access control restrictions. Usually, this has been implemented with public key
digital signatures that specify an expiry date. Strictly speaking, access control requires a
trusted distribution party (e.g., a server) that complies with the rules set forth on the data
being distributed (e.g., strictly voluntary).
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The concept of in-order data flow stems from the requirement to have stateful commu-
nication. For example, if you were sending a banking request to a server, you’d like the
request to be issued and accepted only once—specially if it is a bill payment! A replay attack
arises when an attacker can re-issue events in a communication session that are accepted by
the receiving party.The most trivial (initially) solution to the problem is to introduce times-
tamps or incremental counters into the messages that are authenticated.

The concept of timestamps within cryptography and computer science in general is also
a thorny issue. For starters, what time is it? My computer likely has a different time than
yours (when measured in even seconds).Things get even more complicated in online proto-
cols where in real-time we must communicate even with skewed clocks that are out of sync
and may be changing at different paces. Combined with the out-of-order nature of UDP
networks, many online protocols can quickly become beastly. For these reasons, counters are
more desirable than timers. However, as nice as counters sound, they are not always appli-
cable. For example, offline protocols have no concept of a counter since the message they see
is always the first message they see.There is no “second” message.

It is a good rule of thumb to include a counter inside the authentication portion of data
channels and, more importantly, to check the counter. Sometimes, silent rejection of out of
order messages is a better solution to just blindly allowing all traffic through regardless of
order.The GCM and CCM modes have IVs (or nonces depending), which are trivial to use
as both as an IV and a counter.

TIP

A simple trick with IVs or nonces in protocols such as GCM and CCM is to use a
few bytes as part of a packet counter. For example, CCM accepts 13 byte nonces
when the packet has fewer than 65,536 plaintext bytes. If you know you will
have fewer than 4 billion packets, you can use the first four bytes as a packet
counter. 

For more information, see Chapter 7.

Common Wisdom
There is a common wisdom among cryptographers that security is best left to cryptogra-
phers; that the discussion of cryptographic algorithms will lead people to immediately use
them incorrectly. In particular, Bruce Schneier wrote in the abstract of his Secret and Lies
text:

I have written this book partly to correct a mistake.
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Seven years ago, I wrote another book: Applied Cryptography. In it, I
described a mathematical utopia: algorithms that would keep your
deepest secrets safe for millennia, protocols that could perform the
most fantastical electronic interactions—unregulated gambling, unde-
tectable authentication, anonymous cash—safely and securely. In my
vision, cryptography was the great technological equalizer; anyone
with a cheap (and getting cheaper every year) computer could have
the same security as the largest government. In the second edition of
the same book, written two years later, I went so far as to write, “It is
insufficient to protect ourselves with laws; we need to protect our-
selves with mathematics.”

Abstract. Secret and Lies, Bruce Schneier

In this quote, he’s talking abstractly about the concept that cryptography as a whole, on
its own, cannot make us “safe.”This is in practice perhaps at least a little true.There are many
instances where perfectly valid cryptography has been circumvented by user error or physical
attacks (card skimming, for example). However, the notion that the distribution of crypto-
graphic knowledge to the layperson is somehow something to be ashamed of or in anyway
avoid is just not valid.

While relying solely on security experts is likely a surefire method of obtaining secure
systems, it also is entirely impractical and inefficient. One of the major themes and goals of
this book is to dispel the notion that cryptography is harder (or needs to be harder) than it
really is. Often, a clear understanding of your threats can lead to efficient and easily designed
cryptosystems that address the security needs.There are already many seemingly secure prod-
ucts available in which the developers performed just enough research to find the right tools
for the job—software libraries, algorithms, or implementations—and a method of using them
that is secure for their task at hand.

Keep in mind what this book is meant to address. We are using standard algorithms that
already have been designed by cryptographers and finding out how to use them properly.
These are two very different tasks. First, a very strong background in cryptography and
mathematics is required. Second, all we have to understand is what they are meant to solve,
why they are the way they are, and how not to use them.

Upon a recent visit to a video game networking development team, we inspected their
cryptosystem that lies behind the scenes away from the end user. It was trivial to spot several
things we would personally have designed differently.After a few hours of staring at their
design, however, we could not really find anything blatantly wrong with it.They clearly had
a threat model in mind, and designed something to work within their computing power
limitations that also addressed the model. In short, they designed a working system that
allows their product to be effective in the wild. Not one developer on the team studied
cryptography or pursued it as a hobby.

It is true that simply knowing you need security and knowing that algorithms exist can
lead to fatally inadequate results.This is, in part, why this book exists: to show what algo-
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rithms exist, how to implement them in a variety of manners, and the perils of their deploy-
ment and usage.A text can both address the ingredients and cooking instructions.

Developer Tools
Throughout this book, we make use of readily access tools such as the GNU Compiler
Collection C compiler (GCC) for the X86 32-bit and 64-bit platforms, and ARMv4 proces-
sors.They were chosen as they are highly professional, freely accessible, and provide intrinsic
value for the reader.

The various algorithms presented in this book are implemented in portable C for the
most part to allow the listings to have the greatest and widest audience possible.The listings
are complete C routines the reader can take away immediately, and will also be available on
the companion Web site. Where appropriate, assembler listings as generated by the C com-
piler are analyzed. It is most ideal for the reader to be familiar with AT&T style X86 assem-
blers and ARM style ARMv4 assemblers.

For most algorithms or problems, there are multiple implementation techniques possible.
Multiplication, for instance, has three practical underlying algorithms and various actual
implementation techniques each. Where appropriate, the various configurations are com-
pared for size and efficiency on the listed platforms.The reader is certainly encouraged to
benchmark and compare the configurations on other platforms not studied in this book.

Some algorithms also have security trade-offs.AES, for instance, is fastest when using
lookup tables. In such a configuration, it is also possible to leak Side Channel information
(discussed in Chapter 4).This book explores variations that seek to minimize such leaks.The
analysis of these implementations is tied tightly to the design of modern processors, in par-
ticular those with data caches.The reader is encouraged to become familiar with how, at the
very least, X86 processors such as the Intel Pentium 4 and AMD Athlon64 operate a block
level.

Occasionally, the book makes reference to existing works of source code such as
TomsFastMath and LibTomCrypt.These are public domain open source libraries written in
C and used throughout industry in platforms as small as network sensors to as large as enter-
prise servers. While the code listings in this book are independent of the libraries, the reader
is encouraged to seek out the libraries, study their design, and even use them en lieu of re-
inventing the wheel.That is not to say you shouldn’t try to implement the algorithms your-
self; instead, where the circumstances permit the use of released source can speed product
development and shorten testing cycles. Where the users are encouraged to “roll their own”
implementations would be when such libraries do not fit within project constraints.The
projects are all available on the Internet at the www.libtomcrypt.com Web site.

Timing data on the X86 processors is gathered with the RDTSC instruction, which
provides cycle accurate timing data.The reader is encouraged to become familiar with this
instruction and its use.
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Summary
The development of professional cryptosystems as we shall learn is not a highly complicated
or exclusive practice. By clearly defining a threat model that encompasses the systems’ points
of exposures, one begins to understand how cryptography plays a role in the security of the
product. Cryptography is only the most difficult to approach when one does not understand
how to seek out vulnerabilities.

Construction of a threat model from all use of the use cases can be considered at least
partially completed when the questions “Does this address privacy?” and “Does this address
authenticity?” are answered with either a “yes” or “does not apply.”

Knowing where the faults lay is only one of the first steps to a secure cryptosystem.
Next, one must determine what cryptography has to offer toward a solution to the
problem—be it block ciphers, hashes, random number generators, public key cryptography,
message authentication codes or challenge response systems. If you design a system that
requires an RSA public key and the user does not have one, it will obviously not work.
Credential and asset management are integral portions of the cryptosystem design.They
determine what cryptographic algorithms are appropriate, and what you must protect.

The runtime constraints of a product determine available space (memory) in which pro-
gram code and data can reside, and the processing power available for a given task.These
constraints more often than not play a pivotal role in the selection of algorithms and the
subsequent design of the protocols used in the cryptosystem. If you are CPU bound, for
instance, ECC may be more suitable over RSA, and in some instances, no public key cryp-
tography is practical.

All of these design parameters—from the nature of the program to the assets and cre-
dentials the users have access to and finally to the runtime environment—must be constantly
juggled when designing a cryptosystem. It is the role of the security engineer to perform this
juggle and design the appropriate solution.This book addresses their needs by showing the
what, how, and why of cryptographic algorithms.

Organization
The book is organized to group problems categories by chapter. In this manner, each chapter
is a complete treatment of its respective areas of cryptography as far as developers are con-
cerned.This chapter serves as a quick introduction to the subject of cryptography in general.
Readers are encouraged to read other texts, such as Applied Cryptography, Practical
Cryptography, or The Handbook of Applied Cryptography if they want a more in-depth treat-
ment of cryptography particulars.

Chapter 2,“ASN.1 Encoding,” delivers a treatment of the Abstract Syntax Notation One
(ASN.1) encoding rules for data elements such as strings, binary strings, integers, dates and
times, and sets and sequences.ASN.1 is used throughout public key standards as a standard
method of transporting multityped data structures in multiplatform environments.ASN.1 is
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also useful for generic data structures, as it is a standard and well understood set of encoding
rules. For example, you could encode file headers in ASN.1 format and give your users the
ability to use third-party tools to debug and modify the headers on their own.There is a sig-
nificant “value add” to any project by using ASN.1 encoding over self-established standards.
This chapter examines a subset of ASN.1 rules specific to common cryptographic tasks.

Chapter 3,“Random Number Generation,” discusses the design and construction of
standard random number generators (RNGs) such as those specified by NIST. RNGs and
pseudo (or deterministic) random number generators (PRNGs or DRNGs) are vital por-
tions of any cryptosystem, as most algorithms are randomized and require material (such as
initial vectors or nonces) that is unpredictable and nonrepeating. Since PRNGs form a part
of essentially all cryptosystems, it is logical to start the cryptographic discussions with them.
This chapter explores various PRNG constructions, how to initialize them, maintain them,
and various hazards to avoid. Readers are encouraged to take the same philosophy to their
designs in the field.Always addressing where their “random bits” will come from first is
important.

Chapter 4,“Advanced Encryption Standard,” discusses the AES block cipher design,
implementation tradeoffs, side channel hazards, and modes of use.The chapter provides only
a cursory glance at the AES design, concentrating more on the key design elements impor-
tant to implementers and how to exploit them in various tradeoff conditions.The data cache
side channel attack of Bernstein is covered here as a design hazard.The chapter concludes
with the treatment of CBC and CTR modes of use for the AES cipher, specifically concen-
trating on what problems the modes are useful for, how to initialize them, and their respec-
tive use hazards.

Chapter 5,“Hash Functions,” discusses the NIST SHA-1 and SHA-2 series of one-way
hash functions.The designs are covered first, followed by implementation tradeoffs.The
chapter discusses collision resistance, provides examples of exploits, and concludes with
known incorrect usage patterns.

Chapter 6,“Message Authentication Code Algorithms,” discusses the HMAC and
CMAC Message Authentication Code (MAC) algorithms, which are constructed from hash
and cipher functions, respectively. Each mode is presented in turn, covering the design,
implementation tradeoffs, goals, and usage hazards. Particular attention is paid to replay pre-
vention using both counters and timers to address both online and offline scenarios.

Chapter 7,“Encrypt and Authenticate Modes,” discusses the IEEE and NIST encrypt
and authenticate modes GCM and CCM, respectively. Both modes introduce new concepts
to cryptographic functions, which is where the chapter begins. In particular, it introduces the
concept of “additional authentication data,” which is message data to be authenticated but
not encrypted.This adds a new dimension to the use of cryptographic algorithms.The
designs of both GCM and CCM are broken down in turn. GCM, in particular, due to its
raw mathematical elements possesses efficient table-driven implementations that are
explored. Like the MAC chapter, focus is given to the concept of replay attacks, and initial-
ization techniques are explored in depth.The GCM and LRW modes are related in that
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share a particular multiplication.The reader is encouraged to first read the treatment of the
LRW mode in Chapter 4 before reading this chapter.

Chapter 8,“Large Integer Arithmatic,” discusses the techniques behind manipulating
large integers such as those used in public key algorithms. It focuses on primarily the bottle-
neck algorithms developers will face in their routine tasks.The reader is encouraged to read
the supplementary “Multi-Precision Math” text available on the Web site to obtain a more
in-depth treatment.The chapter focuses mainly on fast multiplication, squaring, reduction
and exponentiation, and the various practical tradeoffs. Code size and performance compar-
isons highlight the chapter, providing the readers with an effective guide to code design for
their runtime constraints.This chapter lightly touches on various topics in number theory
sufficient to successfully navigate the ninth chapter.

Chapter 9,“Public Key Algorithms,” introduces public key cryptography. First, the RSA
algorithm and its related PKCS #1 padding schemes are presented.The reader is introduced to
various timing attacks and their respective counter-measures.The ECC public key algorithms
EC-DH and EC-DSA are subsequently discussed.They’ll make use of the NIST elliptic curves
while exploring the ANSI X9.62 and X9.63 standards.The chapter introduces new math in
the form of various elliptic curve point multipliers, each with unique performance tradeoffs.
The reader is encouraged to read the text “Guide to Elliptic Curve Cryptography” to obtain a
deeper understanding of the mathematics behind elliptic curve math.

Q: When should the development of a threat model begin?

A: Usually alongside the project design itself. However, concerns such as runtime con-
straints may not be known in advance, limiting the accuracy of the threat model solu-
tions.

Q: Is there any benefit to rolling our own cryptographic algorithms in place of using algo-
rithms such as AES or SHA-2?

A: Usually not, as far as security is concerned. It is entirely possible to make a more effi-
cient algorithm for a given platform. Such design decisions should be avoided, as they
remove the product from the realm of standards compliance and into the skeptic cate-
gory. Loosely speaking, you can also limit your liability by using best practices, which
include the use of standard algorithms.
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Q: What is certified cryptography? FIPS certification?

A: FIPS certification (see http://csrc.nist.gov/cryptval/) is a process in which a binary or
physical implementation of specific algorithms is placed through FIPS licensed validation
centers, the result of which is either a pass (and certificate) or failure for specific instance
of the implementation.You cannot certify a design or source code.There are various
levels of certification depending on how resistant to tampering the product desires to be:
level one being a known answer battery, and level four being a physical audit for side
channels.

Q: Where can I find the LibTomCrypt and TomsFastMath projects? What platforms do
they work with? What is the license?

A: They are hosted at www.libtomcrypt.com.They build with MSVC and the GNU CC
compilers, and are supported on all 32- and 64-bit platforms. Both projects are released
as public domain and are free for all purposes.
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Overview of ASN.1
Abstract Syntax Notation One (ASN.1) is an ITU-T set of standards for encoding and rep-
resenting common data types such as printable strings, octet strings, bit strings, integers, and
composite sequences of other types as byte arrays in a portable fashion. Simply put,ASN.1
specifies how to encode nontrivial data types in a fashion such that any other platform or
third-party tool can interpret the content.

For example, on certain platforms the literal character “a” would be encoded in ASCII
(or IA5) as the decimal value 97, whereas on other non-ASCII platforms it may have
another encoding.ASN.1 specifies an encoding such that all platforms can decode the string
uniformly. Similarly, large integers, bit strings, and dates are also platform sensitive data types
that benefit from standardization.

This is beneficial for the developer and for the client (or customer) alike, as it allows the
emitted data to be well modeled and interpreted. For example, the developer can tell the
client that the data the program they are paying for is in a format another developer down
the road can work with—avoiding vendor lock-in problems and building trust.

Formally, the ASN.1 specification we are concerned with is ITU-T X.680, which docu-
ments the common data types we will encounter in cryptographic applications.ASN.1 is
used in cryptography as it formally specifies the encodings down to the byte level of various
data types that are not always inherently portable and, as we will see shortly, encodes them in
a deterministic fashion. Being deterministic is particularly important for signature protocols
that require a single encoding for any given message to avoid ambiguity.

ASN.1 supports Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
the Distinguished Encoding Rules (DER) (Figure 2.1).These three modes specify how to
encode and decode the same ASN.1 types. Where they differ is in the choice of encoding
rules. Specifically, as we will see, various parameters such as field length, Boolean representa-
tion, and various other parameters can have multiple valid encodings.The DER and CER
rules are similar in that they specify fully deterministic encoding rules.That is, where mul-
tiple encoding rules are possible only one is actually valid.

Figure 2.1 The Set of ASN.1 Encoding Rules
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Basic encoding rules are the most liberal set of encoding rules, allowing a variety of
encodings for the same data. Effectively, any ASN.1 encoding that is either CER or DER
can be BER decoded, but not the opposite.All of the data types ASN.1 allows are first
described in terms of BER rules, and then CER or DER rules can be applied to them.The
actual complete ASN.1 specification is far more complex than that required by the average
cryptographic tasking. We will only be looking at the DER rules, as they are what most
cryptographic standards require. It should also be noted that we will not be supporting the
“constructed” encodings even though we will discuss them initially.

ASN.1 was originally standardized in 1994 and again in 1997 and 2002.The current
standard is ITU-T X.680, also filed as ISO/IEC 8824-1:2002, and is freely available on the
Internet (ASN.1 Reference: http://asn1.elibel.tm.fr/standards/).This chapter discusses the
implementation of ASN.1 encodings more than the theory behind the ASN.1 design.The
reader is encouraged to read the ITU-T documents for a deeper treatment.The standards we
are aiming to support by learning ASN.1 are the PKCS #1/#7 and ANSI X9.62/X9.63
public key cryptography standards.As it turns out, to support these standards your ASN.1
routines have to handle quite a bit of the ASN.1 types in the DER rule-set, resulting in
encoding routines usable for a broad range of other tasks.

While formally ASN.1 was defined for more than just cryptographic tasks, it has largely
been ignored by cryptographic projects. Often, custom headers are encoded in proprietary
formats that are not universally decodable (such as some of the ANSI X9.63 data), making
their adoption slower as getting compliant and interoperable software is much harder than it
needs be.As we explore at the end of this chapter,ASN.1 encoding can be quite easy to use
in practical software and very advantageous for the both the developer and the end users.

ASN.1 Syntax
ASN.1 grammar follows a rather traditional Backus-Naur Form (BNF) style grammar, which
is fairly loosely interpreted throughout the cryptographic industry.The elements of the
grammar of importance to us are the name, type, modifiers, allowable values, and containers.As
mentioned earlier, we are only lightly covering the semantics of the ASN.1 grammar.The
goal of this section is to enable the reader to understand ASN.1 definitions sufficient to
implement encoders or decoders to handle them.The most basic expression (also referred to
as a production in ITU-T documentation) would be

Name ::= type

which literally states that some element named “Name” is an instance of a given ASN.1
type called “type.” For example,

MyName ::= IA5String

which would mean that we want an element or variable named “MyName” that is of
the ASN.1 type IA5String (like an ASCII string).
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ASN.1 Explicit Values
Occasionally, we want to specify an ASN.1 type where subsets of the elements have pre-
determined values.This is accomplished with the following grammar.

Name ::= type (Explicit Value)

The explicit value has to be an allowable value for the ASN.1 type chosen and is the
only value allowed for the element. For example, using our previous example we can specify
a default name.

MyName ::= IA5String (Tom)

This means that “MyName” is the IA5String encoding of the string “Tom”.To give the
language more flexibility the grammar allows other interpretations of the explicit values.
One common exception is the composition vertical bar | . Expanding on the previous
example again,

MyName ::= IA5String (Tom|Joe)

This expression means the string can have either value “Tom” or “Joe.”The use of such
grammar is to expand on deterministic decoders. For example,

PublicKey ::= SEQUENCE {
KeyType BOOLEAN(0),
Modulus INTEGER,
PubExponent INTEGER

}

PrivateKey ::= SEQUENCE {
KeyType BOOLEAN(1),
Modulus INTEGER,
PubExponent INTEGER,
PrivateExponent INTEGER

}

Do not dwell on the structure used just yet.The point of this example is to show two
similar structures can be easily differentiated by a Boolean value that is explicitly set.This
means that as a decoder parses the structure, it will first encounter the “KeyType” element
and be able to decide how to parse the rest of the encoded data.

ASN.1 Containers
A container data type (such as a SEQUENCE or Set type) is one that contains other ele-
ments of the same or various other types.The purpose is to group a complex set of data ele-
ments in one logical element that can be encoded, decoded, or even included in an even
larger container.
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The ASN.1 specification defines four container types: SEQUENCE, SEQUENCE OF,
SET, and SET OF. While their meanings are different, their grammar are the same, and are
expressed as

Name ::= Container { Name Type [Name Type …] }

The text in square brackets is optional, as are the number of elements in the container.
Certain containers as we shall see have rules as to the assortment of types allowed within the
container.To simplify the expression and make it more legible, the elements are often speci-
fied one per line and comma separation.

Name ::= Container {
Name Type,
[Name Type, …]

}

This specifies the same element as the previous example. Nested containers are specified
in the exact same manner.

Name ::= Container {
Name Container {

Name Type,
[Name Type, …]

},
[Name Type, …]

}

A complete example of which could be

UserRecord ::= SEQUENCE {
Name SEQUENCE {

First IA5String,
Last IA5String

},
DoB UTCTIME

}

This last example roughly translates into the following C structure in terms of data it
represents.

struct UserRecord {
struct Name {

char *First;
char *Last;

};
time_t DoB;

}

As we will see, practical decoding routines for containers are not quite as direct as the
last example. However, they are quite approachable and in the end highly flexible.

It is, of course, possible to mix container types within an expression.
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ASN.1 Modifiers
ASN.1 specifies various modifiers such as OPTIONAL, DEFAULT, and CHOICE that can
alter the interpretation of an expression.They are typically applied where a type requires
flexibility in the encoding but without getting overly verbose in the description.

OPTIONAL
OPTIONAL, as the name implies, modified an element such that its presence in the
encoding is optional.A valid encoder can omit the element and the decoder cannot assume
it will be present.This can present problems to decoders when two adjacent elements are of
the same type, which means a look-ahead is required to properly parse the data.The basic
OPTIONAL modifier looks like

Name ::= Type OPTIONAL

This can be problematic in containers, such as 

Float ::= SEQUENCE {
Exponent INTEGER OPTIONAL,
Mantissa INTEGER,
Sign BOOLEAN

}

When the decoder reads the structure, the first INTEGER it sees could be the
“Exponent” member and at worse would be the “Mantissa.”The decoder must look-ahead
by one element to determine the proper decoding of the container.

Generally, it is inadvisable to generate structures this way. Often, there are simpler ways
of expressing a container with redundancy such that the decoding is determinable before
decoding has gone fully underway.This leads to coder that is easier to audit and review.
However, as we shall see, generic decoding of arbitrary ASN.1 encoded data is possible with
a flexible linked list decoding scheme.

DEFAULT
The DEFAULT modifier allows containers to have a value that is implied if absent.The stan-
dard specifies that “The encoding of a set value or sequence value shall not include an
encoding for any component value that is equal to its default value” (Section 11.5 of ITU-T
Recommendation X.690 International Standards 8825-1).This means quite simply that if
the data to be encoded matches the default value, it will be omitted from the data stream
emitted. For example, consider the following container.

Command ::= SEQUENCE {
Token IA5STRING(NOP) DEFAULT,
Parameter INTEGER

}
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If the encoder sees that “Token” is representing the string “NOP,” the SEQUENCE will
be encoded as if it was specified as 

Command ::= SEQUENCE {
Parameter INTEGER

}

It is the responsibility of the decoder to perform the look-ahead and substitute the
default value if the element has been determined to be missing. Clearly, the default value
must be deterministic or the decoder would not know what to replace it with.

CHOICE
The CHOICE modifier allows an element to have more than one possible type in a given
instance. Essentially, the decoder tries all the expected decoding algorithms until one of the
types matches.The CHOICE modifier is useful when a complex container contains other
containers. For instance,

UserKey ::= SEQUENCE {
Name IA5STRING,
StartDate UTCTIME,
Expire UTCTIME,
KeyData CHOICE {

ECCKey ECCKeyType,
RSAKey RSAKeyType

}
}

This last example is a simple public key certificate that presumably allows both ECC and
RSA key types.The encoding of this data type is the same as if one of the choices were
made; that is, one of the two following containers.

ECCUserKey ::= SEQUENCE {
Name IA5STRING,
StartDate UTCTIME,
Expire UTCTIME,
ECCKey ECCKeyType,

}

RSAUserKey ::= SEQUENCE {
Name IA5STRING,
StartDate UTCTIME,
Expire UTCTIME,
RSAKey RSAKeyType

}

The decoder must accept the original sequence “UserKey” and be able to detect which
choice was made during encoding, even if the choices involve complicated container struc-
tures of their own.
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ASN.1 Data Types
Now that we have a basic grasp of ASN.1 syntax, we can examine the data types and their
encodings that make ASN.1 so useful.ASN.1 specifies many data types for a wide range of
applications—most of which have no bearing whatsoever on cryptography and are omitted
from our discussions. Readers are encouraged to read the X.680 and X.690 series of specifi-
cations if they want to master all that ASN.1 has to offer.

Any ASN.1 encoding begins with two common bytes (or octets, groupings of eight bits)
that are universally applied regardless of the type.The first byte is the type indicator, which
also includes some modification bits we shall briefly touch upon.The second byte is the
length header. Lengths are a bit complex at first to decode, but in practice are fairly easy to
implement.

The data types we shall be examining consist of the following types.

■ Boolean

■ OCTET String

■ BIT String

■ IA5String

■ PrintableString

■ INTEGER

■ OBJECT Identifier (OID)

■ UTCTIME

■ NULL

■ SEQUENCE, SEQUENCE OF

■ SET

■ SET OF

This is enough of the types from the ASN.1 specifications to implement PKCS #1 and
ANSI X9.62 standards, yet not too much to overwhelm the developer.

ASN.1 Header Byte
The header byte is always placed at the start of any ASN.1 encoding and is divides into three
parts: the classification, the constructed bit, and the primitive type.The header byte is broken
as shown in Figure 2.2.
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Figure 2.2 The ASN.1 Header Byte

In the ASN.1 world, they label the bits from one to eight, from least significant bit to
most significant bit. Setting bit eight would be equivalent in C to OR’ing the value 0x80 to
the byte; similarly, a primitive type of value 15 would be encoded as {0, 1, 1, 1, 1} from bit
five to one, respectively.

Classification Bits
The classification bits form a two-bit value that does not modify the encoding but describes
the context in which the data is to be interpreted.Table 2.1 lists the bit configurations for
classifications.

Table 2.1 The ASN.1 Classifications

Bit 8 Bit 7 Class

0 0 Universal
0 1 Application
1 0 Context Specific
1 1 Private

Of all the types, the universal classification is most common. Picking one class over
another is mostly a cosmetic or side-band piece of information.A valid DER decoder
should be able to parse ASN.1 types regardless of the class. It is up to the protocol using the
decoder to determine what to do with the parsed data based on the classification.

Constructed Bit
The constructed bit indicates whether a given encoding is the construction of multiple sub-
encodings of the same type.This is useful in general when an application wants to encode
what is logically one element but does not have all the components at once. Constructed
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elements are also essential for the container types, as they are logically just a gathering of
other elements.

Constructed elements have their own header byte and length byte(s) followed by the
individual encodings of the constituent components of the element.That is, on their own,
the constituent component is an individually decodable ASN.1 data type.

Strictly speaking, with the Distinguished Encoding Rules (DER) the only constructed
data types allowed are the container class.This is simply because for any other data type and
given contents only one encoding is allowable. We will assume the constructed bit is zero for
all data types except the containers.

Primitive Types
The lower five bits of the ASN.1 header byte specify one of 32 possible ASN.1 primitives
(Table 2.2).

Table 2.2 The ASN.1 Primitives

Code ASN.1 Type Use Of

1 Boolean Type Store Booleans
2 INTEGER Store large integers
3 BIT STRING Store an array of bits
4 OCTET STRING Store an array of bytes
5 NULL Place holder (e.g., in a CHOICE)
6 OBJECT IDENTIFIER Identify algorithms or protocols
16 SEQUENCE and Container of unsorted elements

SEQUENCE OF
17 SET and SET OF Container of sorted elements
19 PrintableString ASCII Encoding (omitting several non-printable

chars)
22 IA5STRING ASCII Encoding
23 UTCTIME Time in a universal format

At first glance through the specifications, it may seem odd there is no CHOICE primi-
tive. However, as mentioned earlier, CHOICE is a modifier and not a type; as such, the ele-
ment chosen would be encoded instead. Each of these types is explained in depth later in
this chapter; for now, we will just assume they exist.
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ASN.1 Length Encodings
ASN.1 specifies two methods of encoding lengths depending on the actual length of the ele-
ment.They can be encoded in either definite or indefinite forms and further split into short
or long encodings depending on the length and circumstances.

In this case, we are only concerned with the definite encodings and must support both
short and long encodings of all types. In the Basic Encoding Rules, the encoder is free to
choose either the short or long encodings, provided it can fully represent the length of the
element.The Distinguished Encoding Rules specify we must choose the shortest encoding
that fully represents the length of the element.The encoded lengths do not include the
ASN.1 header or length bytes, simply the payload.

The first byte of the encoding determines whether short or long encoding was used
(Figure 2.3).

Figure 2.3 Length Encoding Byte

The most significant bit determines whether the encoding is short or long, while the
lower seven bits form an immediate length.

Short Encodings
In short encodings, the length of the payload must be less than 128 bytes.The immediate
length field is used to represent the length of the payload, which is where the restriction on
size comes from.This is the mandatory encoding method for all lengths less than 128 bytes.

For example, to encode the length 65 (0x41) we simply use the byte 0x41. Since the
value does not set the most significant bit, a decoder can determine it is a short encoding
and know the length is 65 bytes.

Long Encodings
In long encodings we have an additional level of abstraction on the encoding of the
length—it is meant for all payloads of length 128 bytes or more. In this mode, the immediate
length field indicates the number of bytes in the length of the payload.To clarify, it specifies
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how many bytes are required to encode the length of the payload.The length must be
encoded in big endian format.

Let us consider an example to show how this works.To encode the length 47,310
(0xB8CE), we first realize that it is greater than 127 so we must use the long encoding
format.The actual length requires two octets to represent the value so we use two immediate
length bytes. If you look at Figure 2.3, you will see the eighth bit is used to signify long
encoding mode and we need two bytes to store the length.Therefore, the first byte is 0x80 |
0x02 or 0x82. Next, we store the value in big endian format.Therefore, the complete
encoding is 0x82 B8 CE.

As you can see, this is very efficient because with a single byte we can represent lengths
of up to 127 bytes, which would allow the encoding of objects up to 21016 bits in length.
This is a truly huge amount of storage and will not be exceeded sometime in the next 
century.

That said, according to the DER rules the length of the payload length value must be
minimal.As a result, the all 1s byte (that is, a long encoding with immediate length of 127) is
not valid. Generally, for long encodings it is safe to assume that an immediate length larger
than four bytes is not valid, as few cryptographic protocols involve exchanging more than
four gigabytes of data in one packet.

TIP

Generally, it is a good idea to refuse ASN.1 long encoded lengths of more than
four bytes, as that would imply the payload is more than four gigabytes in size.
While this is a good initial check for safety, it is not sufficient. Readers are
encouraged to check the fully decoded payload length against their output
buffer size to avoid buffer overflow attacks.

Traditionally, such checks should be performed before payload decoding has
commenced. This avoids wasting time on erroneous encodings and is much sim-
pler to code audit and review.

ASN.1 Boolean Type
The Boolean data type was provided to encode simple Boolean values without significant
overhead in the encoder or decoder.

The payload of a Boolean encoding is either all zero or all one bits in a single octet.The
header byte begins with 0x01, the length byte is always short encoded as 0x01, and the con-
tents are either 0x00 or 0xFF depending on the value of the Boolean (Table 2.3).
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Table 2.3 ASN.1 Boolean Encodings

Value of Boolean Encoding

False 0x01 01 00
True 0x01 01 FF

According to BER rules, the true encoding may be any nonzero value; however, DER
requires that the true encoding be the 0xFF byte.

ASN.1 Integer Type
The integer type represents a signed arbitrary precision scalar with a portable encoding that
is platform agnostic.The encoding is fairly simple for positive numbers.

The actual number that will be stored (which is different for negative numbers as we
shall see) is broken up into byte-sized digits and stored in big endian format. For example, if
you are encoding the variable x such that x = 256k * xk + 256k-1 * xk-1 + … + 2560*x0,
then the octets {xk, xk-1, …, x0} are stored in descending order from xk to x0.The encoding
process stipulates that for positive numbers the most significant bit of the first byte must be
zero.

As a result, suppose the first byte was larger than 127 (say, the value 49,468 (0xC13C
and 0xC1 > 0x7F)), the obvious encoding would be 0x02 02 C1 3C; however, it has the
most significant bit set and would be considered negative.The simplest solution (and the
correct one) is to pad with a leading zero byte.That is, the value 49,468 would be encoded
as 0x02 03 00 C1 3C, which is valid since 2562*0x00 + 2561*0xC1 + 2560*0x3C is equal
to 49,468.

Encoding negative numbers is less straightforward.The process involves finding the next
power of 256 greater than the absolute value you want to encode. For example, if you want
to encode –1555, the next power of 256 greater than 1555 would be 2562 = 65536. Next,
you add the two values to get the two’s compliment representation—63,981 in this case.The
actual integer encoded is this sum.

So, in this case the value of –1555 would be ASN.1 encoded as 0x02 02 F9 ED.Two
additional rules are then applied to the encoding of integers to minimize the size of the
output.

The bits of the first octet and bit 8 of the second octet must

■ Not all be ones

■ Not all be zero

Decoding integers is fairly straightforward. If the first most significant bit is zero, the
value encoded is positive and the payload is the absolute scalar value. If the most significant
bit is one, the value is negative and you must subtract the next largest power of 256 from the
encoded value (Table 2.4).
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Table 2.4 Example INTEGER Encodings

Value Encoding

0 0x02 01 00
1 0x02 01 01
2 0x02 01 02
127 0x02 01 7F
128 0x02 02 00 80
–1 0x02 01 FF
–128 0x02 01 80
–32768 0x02 02 80 00
1234567890 0x02 04 49 96 02 D2

Note in particular the difference between 128 and –128 in this encoding.They both
evaluate to 0x80, but the positive value requires the 0x00 prefix to differentiate it.

ASN.1 BIT STRING Type
The BIT STRING type is used to represent an array of bits in a portable fashion. It has an
additional header beyond the ASN.1 headers that indicates padding as we’ll shortly see.

The bits are encoded by placing the first bit in the most significant bit of the first pay-
load byte.The next bit will be stored in bit seven of the first payload byte, and so on. For
example, to encode the bit string {1, 0, 0, 0, 1, 1, 1, 0}, we would set bit eight, four, three,
and two, respectively.That is, {1, 0, 0, 0, 1, 1, 1, 0} encodes as the byte 0x8E.

The first byte of the encoding specifies the number of padding bits required to complete
a full byte. Where bits are missing, we place zeroes. For example, the string {1, 0, 0, 1} would
turn into {1, 0, 0, 1, 0, 0, 0, 0} and the padding count would be four. When zero bits are in
the string, the padding count is zero. Valid padding lengths are between zero and seven
inclusively.

The length of the payload includes the padding count byte and the bits encoded.Table
2.5 demonstrates the encoding of the previous bit string.
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Table 2.5 Example BIT STRING Encoding

Code ASN.1 Type Use Of

1 Boolean Type Store Booleans
2 INTEGER Store large integers
3 BIT STRING Store an array of bits
4 OCTET STRING Store an array of bytes
5 NULL Place holder (e.g. in a CHOICE)
6 OBJECT IDENTIFIER Identify algorithms or protocols
16 SEQUENCE and SEQUENCE OF Container of unsorted elements
17 SET and SET OF Container of sorted elements
19 PrintableString ASCII Encoding (omitting several non-

printable chars)
22 IA5STRING ASCII Encoding
23 UTCTIME Time in a universal format

In Figure 2.4, we see the encoding of the BIT STRING {1, 0, 0, 1} as 0x03 02 04 90.
Note that the payload length is 0x02 and not 0x01, since we include the padding byte as
part of the payload.

The decoder knows the amount of bits to store as output by computing
8*payload_length – padding_count.

ASN.1 OCTET STRING Type
The OCTET STRING type is like the BIT STRING type except to hold an array of bytes
(octets). Encoding this type is fairly simple. Encode the ASN.1 header as with any other
type, and then copy the octets over.

For example, to encode the octet string {FE, ED, 6A, B4}, you would store the type 0x04
followed by the length 0x04 and the bytes themselves 0xFE ED 6A B4. It could not be simpler.

ASN.1 NULL Type
The NULL type is the de facto “placeholder” especially made for CHOICE modifiers
where you may want to have a blank option. For example, consider the following
SEQUENCE.

MyAccount ::= SEQUENCE {
Name IA5String,
Group IA5String,
Credentials CHOICE {

rsaKey RSAPublicKey,
passwdHash OCTET STRING,
none NULL

},
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LastLogin UTCTIME,
…

}

In this structure, the account could have an RSA key, a password hash, or nothing as cre-
dentials. If the NULL type did not exist, the encoder would have to pick one of the two and
have some other context specific “null” type.

The NULL type is encoded as 0x05 00.There is no payload in the DER encoding,
whereas technically with BER encoding you could have payload that is to be ignored.

ASN.1 OBJECT IDENTIFIER Type
The OBJECT IDENTIFIER (OID) type is used to represent standard specifications in a
hierarchical fashion.The identifier tree is specified by a dotted decimal notation starting with
the organization, sub-part, then type of standard and its respective sub-identifiers.

As an example, the MD5 hash algorithm has the OID 1.2.840.113549.2.5, which may
look long and complicated but can actually be traced through the OID tree to “iso(1)
member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) md5(5).” Whenever this OID is
found, the decoding application (but not the decoder itself ) can realize that this is the MD5
hash algorithm.

For this reason, OIDs are popular in public key standards to specify what hash algorithm
was bound to the certificate. OIDs are not limited to hashes, though.There are OID entries
for public key algorithms and ciphers and modes of operation.They are an efficient and
portable fashion of denoting algorithm choices in data packets without forcing the user (or
third-party user) to figure out the “magic decoding” of algorithm types.

The dotted decimal format is straightforward except for two rules:

■ The first part must be in the range 0 <= x <= 3.

■ If the first part is less than two, the second part must be less than 40.

Other than that, the rest of the parts can hold any positive unsigned value. Generally,
they are less than 32 bits in size but that is not guaranteed.

The encoding of parts is a little nontrivial but manageable just the same.The first two
parts if specified as x.y are merged into one word 40x + y, and the rest of the parts are
encoded as words individually.

Each word is encoded by first splitting it into the fewest number of seven-bit digits
without leading zero digits.The digits are organized in big endian format and packed one by
one into bytes.The most significant bit (bit eight) of every byte is one for all but the last
byte of the encoding per word. For example, the number 30,331 splits into the seven-bit
digits {1, 108, 123}, and with the most significant bit set as per the rules turn into {129,
236, 123}. If the word has only one seven-bit digit, the most significant bit will be zero.

Applying this to the MD5 OID, we first transform the dotted decimal form into the
array of words.Thus, 1.2.840.113549.2.5 becomes {42, 840, 113549, 2, 5}, and then further
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split into seven-bit digits with the proper most significant bits as {{0x2A}, {0x86, 0x48},
{0x86, 0xF7, 0x0D}, {0x02}, {0x05}}.Therefore, the full encoding for MD5 is 0x06 08 2A
86 48 86 F7 0D 02 05.

Decoding is rather straightforward except the first word must be split into two parts by
first finding the value of the first word modulo 40.The remainder will be the second part.
Subtracting that from the word and dividing by 40 will yield the first part.

ASN.1 SEQUENCE and SET Types
The SEQUENCE and SEQUENCE OF and corresponding SET and SET OF types are
known as “constructed” types or simply containers.They were provided as a simple method
of gathering related data elements into one individually decodable element.

As per the X.690 specification, a SEQUENCE has been defined as having the following
properties.

■ The encoding shall be constructed.

■ The contents of the encoding shall consist of the complete encoding of one data
value from each type listed in the ASN.1 definition of the sequence type, in order
of appearance, unless the type was referenced with the OPTIONAL or DEFAULT
keyword modifiers.

The fact that it is constructed means bit 6 must be set, which turns the SEQUENCE
header byte from 0x10 to 0x30.The constructed encoding is simply a nested encoding. For
example, consider the following SEQUENCE.

User ::= SEQUENCE {
ID INTEGER,
Active BOOLEAN

}

When encoding the values {32,TRUE}, we first emit the 0x30 byte to signal this is a
constructed SEQUENCE. Next, we emit the length of the payload; that is, the length of the
INTEGER and BOOLEAN encodings, which is six bytes so 0x06. Now the constructed
part begins. We emit the INTEGER as 0x02 01 20 and the BOOLEAN as 0x01 01 FF.The
entire encoding is therefore 0x30 06 02 01 20 01 01 FF. In ASN.1 documentation, they use
white space to illustrate the nature of the encoding.

0x30 06
02 01 20
01 01 FF

This notation is particularly useful if you have nested structures such as the following:

Account ::= SEQUENCE {
User SEQUENCE {

Name PrintableString,
Group PrintableString,
Credential SEQUENCE {
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PasswdHash OCTET STRING,
RSAKey RSAPublicKey OPTIONAL

}
},
LastOn UTCTIME,
Valid BOOLEAN

}

which, when given the sequence {{“tom”,“users”, {{0x01 02 03 04 05 06 07 08}},
“060416180000Z”,TRUE} would encode as 

Account 0x30 2C
User 30 18
Name 13 03 74 6F 6D
Group 13 05 75 73 65 74 75
Credential 30 0A
PasswdHash 04 08 01 02 03 04 05 06 07 08
LastOn 17 0D 30 36 30 34 31 36 31 38 30 30 30 30 30 5A
Valid 01 01 FF

In this example, we clearly see the nesting of the SEQUENCEs in the encoding. In par-
ticular, we see the omitted optional RSA key as part of the user credentials. Note that the
payload length is the length of all the parts that make up the SEQUENCE.

TIP

The openssl command that is installed with the OpenSSL library allows an easy
way to convert DER encoded files into human-readable indented print. This is
useful for debugging your ASN.1 routines against a known working third-party
tool. The following command will read a file and display the decodable ele-
ments

openssl asn1parse –inform der –in $INFILE –i
where $INFILE is the file you wish to read. You can omit “-in $INFILE” if you

want to read from a pipe.

tom@bigbox ~ $ openssl asn1parse -inform DER -in test.der -i

0:d=0 hl=3 l= 159 cons: SEQUENCE

3:d=1 hl=2 l= 13 cons: SEQUENCE

5:d=2 hl=2 l= 9 prim: OBJECT :rsaEncryption

16:d=2 hl=2 l= 0 prim: NULL

18:d=1 hl=3 l= 141 prim: BIT STRING

The first column specifies the offset in the file, “d” specifies the nesting
depth, “hl” specifies the header length, and “l” the payload length. The words
“cons” and “prim” specify whether it’s a constructed (container) or primitive
type (bit 6 of the header byte), and the final word specifies the primitive type. 
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From the indentation, we see that the SEQUENCE that starts at offset 3 is
an element within the first SEQUENCE. Similarly, the OBJECT and NULL elements
are elements within the second SEQUENCE. Here we also see that OpenSSL rec-
ognized the OBJECT as an “rsaEncryption” blob, in this case it is a public key.

SEQUENCE OF
A SEQUENCE OF is related to a SEQUENCE with the exception that it is a container of
one type.This is the ASN.1 equivalent of an array.The encoding of a SEQUENCE OF con-
tains zero or more encodings of the listed ASN.1 type in the order specified by the encoder
(as presented). SEQUENCE OF uses the same 0x30 header byte to signify its part of the
SEQUENCE family.This implies the decoder has to be able to read both SEQUENCE and
SEQUENCE OF types.

SET
A SET is a constructed type like a SEQUENCE with the exceptions that the header byte is
0x31 instead of 0x30 and the order of the encodings of the constituent members is not the
order specified by the SET definition. Strictly speaking, for BER encoding the order is
decidable by the sender.This means that the SET cannot contain two identical types without
first transmitting the SET order to the receiver. With DER encoding rules, the order is dic-
tated by order of the type values in ascending order. If two elements have the same type,
their original order in the submitted SET determines the tiebreaker.That is, the first occur-
rence of a repeated type is the winner.

Consider the previous SEQUENCE but instead encoded as a SET.

User ::= SET {
ID INTEGER,
Active BOOLEAN

}

When encoding the values {32,TRUE}, we first emit the 0x31 byte to signal this is a
constructed SET. We know the length is six bytes from before; this will not change for a set.
So, we now emit the 0x06 byte. Now, according to DER rules we sort the elements based
on their types first. Since BOOLEAN has a type of 0x01 and INTEGER the type 0x02, the
BOOLEAN comes first.Therefore, the complete encoding is 0x31 06 01 01 FF 02 01 20.

The SET listed here contains a collision.

User ::= SET {
ID INTEGER,
Active BOOLEAN,
LogCount INTEGER

}
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In this case, both ID and LogCount have the same type of INTEGER.The encoding of
the instance {32,TRUE, 1023} would start with the 0x31 header byte, followed by the
length byte; in this case, 0x0A. Next, we encode the BOOLEAN since its type is numeri-
cally lower to 0x01 01 FF. Both ID and LogCount have the same type, but ID occurred first
so it is stored next as 0x02 01 20. Finally, LogCount is stored as 0x02 02 3F FF.Therefore,
the complete encoding is 0x31 0A 01 01 FF 02 01 20 02 02 3F FF.

SET OF
The SET OF type is the SET analogous to a SEQUENCE OF.According to BER, the
order of the elements does not matter. In the case for DER rules, instead of sorting on the
type, we sort based on the ASN.1 DER encoding of the constituent elements in ascending
order. Consider the array INTEGERS {1, 10007, 0, 20, –300}; they are individually encoded
as shown in Table 2.6.

Table 2.6 Array of INTEGERs

Number Encoding

1 0x02 01 01
10007 0x02 02 27 17
0 0x02 00
20 0x02 01 14
–300 0x02 02 FE D4

When we sort the encodings from Table 2.6 in ascending order, we find the listing
shown in Table 2.7 as the order in which they are to be encoded.

Table 2.7 Sorted SET OF INTEGERs

Number Encoding

0 0x02 00
1 0x02 01 01
20 0x02 01 14
10007 0x02 02 27 17
–300 0x02 02 FE D4

The first thing to note about the sorted data is that for a given SET OF, the encodings
are always first sorted based on their length and then by their payload.This is by virtue of
the length encoding ASN.1 uses. Next, we note that the sorting does not always make log-
ical sense for the given data we are sorting.The value of –300 appears last even after the
value of zero, even though as an INTEGER it represents a lower number.
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The purpose of the sorting with DER is simply to ensure that the encoding is deter-
ministic (or distinguished as per ASN.1 specifications) regardless of the order of the inputs as
presented to the encoder.

The encoding of this array as a SET OF would therefore be 0x31 10 02 00 02 01 01 02
01 14 02 02 27 17 02 02 FE D4.

ASN.1 PrintableString and IA5STRING Types
The PrintableString and IA5STRING types define portable methods of encoding ASCII
strings readable on any platform regardless of the local code page and character set 
definitions.

PrintableString encodes a limited subset of the ASCII set including the values 32
(space), 39 (single quote), 40–41, 43–58, 61, 63, and 65–122.Anything outside those ranges is
invalid and should signal an error. PrintableString is meant for characters that can be printed
on most terminals without changing the flow of the text being displayed. For this reason, it
omits the values below 32.

IA5STRING encodes most of the ASCII set, including NUL, BEL,TAB, NL, LF, CR,
and the ASCII values from 32 through to 126 inclusive. Generally, IA5 is not safe to display
with a TTY without filtering, as it allows the encoded value to do things like blank the
screen, replace characters, and the like, depending on the terminal type used.

The encoding of both is similar to that of the OCTET STRING except for the restric-
tions and the different header byte. PrintableString uses 0x13 and IA5STRING uses 0x16
for the header byte. For example, the string “Hello World” would encode as 0x13 0B 48 65
6D 6D 6F 20 57 6F 72 6D 64.

Note that it is the responsibility of both the encoder and the decoder to verify the
values are within range for the specified data type.

ASN.1 UTCTIME Type
The UTCTIME defines a standard encoding of time (and date) relative to GMT. Earlier
drafts of ASN.1 allowed time offsets (zones) and collapsible encodings (such as omitting sec-
onds).This meant for DER at least, that there were six possible ways to encode a date pro-
vided the seconds were zero.As of the 2002 draft of X.690, all UTC encodings shall follow
the format “YYMMDDHHMMSSZ,” which is year, month (1–12), day (0–31), hour (0–23),
minute (0–59), and second (0–59).

The “Z” is legacy from the original UTCTIME where the absence of the “Z” would
allow two additional groups the “[+/-]hh’mm’,” which were the hours (hh’) and minutes
(mm’) offset from GMT (either positive or negative).The presence of “Z” means the time
was represented in Zulu or GMT time.

The encoding of the string follows the IA5STRING rules for character to byte conver-
sion (that is, using the ASCII character set), except the ASN.1 header byte is 0x17 instead of
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0x16. For example, the encoding of July 4, 2003 at 11:33 and 28 seconds would be
“030704113328Z” and be encoded as 0x17 0D 30 33 30 37 30 34 31 31 33 33 32 38 5A.

Implementation
Now we will consider how to implement ASN.1 encoders and decoders. Fortunately, most
ASN.1 types are primitive and fairly simple to process.The constructed types are slightly
harder to develop if the intent is to have a user-friendly API. In our case, we’re going to
strive for maximum effort while writing the ASN.1 routines such that the resulting code has
the maximal amount of use.

All of the ASN.1 routines are found in the “ch2” directory of the source code reposi-
tory.There is a collection of C source files, a single H header file to gather up the proto-
types, and a GNU Makefile that will build the collection into an archive using GCC.

The first routines we examine deal with getting, reading, and encoding the length of
ASN.1 encodings.The logic is shared by all other ASN.1 types, and as such, makes sense to
re-use the code where possible.

ASN.1 Length Routines
The first routine simply returns the length of an encoding, including the header, length
bytes, and payload.

der_length.c:
001 #include “asn1.h"
002 unsigned long der_length(unsigned long payload)
003 {
004 unsigned long x;
005
006 if (payload > 127) {
007 x = payload;
008 while (x) {
009 x >>= 8;
010 ++payload;
011 }
012 }
013
014 return payload + 2;
015 }

The function accepts as input the payload length and returns the size of the eventual
encoding.This function is suitable for all types where the payload length is known in
advance; that is, primitive (nonconstructed) types. Note that for the BIT STRING type the
calling function will have to add in the padding counter byte to the payload length for this
to work.

This function is useful for encoders, as it allows the caller to know the length of the
eventual output and report an error when a buffer overflow occurs.This simple check before
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encoding begins can save a lot of hassle down the road, provided the check has been consis-
tently applied.

Encoding an ASN.1 header is not hard, but we shall put a twist on the encoding. Since
the function will be used from encoders, it makes sense to make it something an encoder
can call with contextual data it will maintain during the encoding process.

der_put_header_length.c:
001 void der_put_header_length(unsigned char **out,
002 unsigned primitive_type,
003 unsigned long payload_length,
004 unsigned long *outlen)
005 {
006 unsigned char *ptr;
007 unsigned long x, y, pl;
008
009 ptr = *out;
010
011 /* store header */
012 *ptr++ = primitive_type;
013
014 /* encode payload length */
015 if (payload_length < 128) {
016 *ptr++ = payload_length;
017 } else {
018 /* determine length of length */
019 x = payload_length;
020 y = 0;
021 while (x) {
022 ++y;
023 x >>= 8;
024 }
025
026 /* store length of length */
027 *ptr++ = 0x80 | y;
028
029 /* align length on 32-bit boundary, we assume y < 5 */
030 x = y;
031 pl = payload_length;
032 while (x < 4) {
033 pl <<= 8;
034 ++x;
035 }
036
037 /* store it */
038 while (y--) {
039 *ptr++ = (pl >> 24) & 0xFF;
040 }
041 }
042
043 /* get stored size */
044 *outlen = (ptr - *out) + payload_length;
045
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This function will store the ASN.1 header and the length in a buffer specified by the
caller.The pointer to the buffer is actually passed as a pointer to a pointer.This allows this
function to update the output pointer and have the caller be able to resume encoding after
the header.

This function assumes the payload is less than four gigabytes, which is fairly practical.
The encoding of the length when it is larger than 127 bytes is performed by shifting the
nonzero most significant bytes out of the payload length (line 30).This makes extracting the
length in big endian format (line 36), as required by ASN.1 a simple matter of extracting the
most significant byte and then shifting the length up by eight bits.

Note that this function does not check the output buffer length and it is up to the caller
to ensure the output is large enough before calling this.The function maintains an internal
copy of the output pointer in ptr and copies it out before exiting.This was performed not
strictly for performance reasons, but to make the code simpler to read.

Now that we can encode headers, we will want to be able to decode them as well.The
decoder function should in theory have a similar prototype, as it is merely the opposite
direction as the encoder. In this function, we introduce our first function, which can have a
fail condition.

der_get_header_length.c:
001 unsigned long der_get_header_length(unsigned char **in,
002 unsigned long inlen,
003 unsigned *primitive_type,
004 unsigned long *payload_length)
005 {
006 unsigned long x, y;
007 unsigned char *ptr;
008
009 ptr = *in;
010
011 /* ensure inlen is at least two */
012 if (inlen < 2) {
013 return -1;
014 }
015
016 /* get the type and first length byte */
017 *primitive_type = *ptr++;
018 y = *ptr++;
019
020 if (y < 128) {
021 *payload_length = y;
022 } else {
023 y &= 0x7F; /* strip off bit 8 */
024
025 /* simple safety check */
026 if (y > 4 || (2 + y) > inlen) {
027 return -1;
028 }
029
030 /* read in the length */
031 x = 0;
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032 while (y--) {
033 x = (x << 8) | *ptr++;
034 }
035 *payload_length = x;
036 }
037
038 *in = ptr;
039 return 0;
040 }
041 }
042
043 /* get stored size */
044 *outlen = (ptr - *out) + payload_length;
045
046 /* update the output pointer */
047 *out = ptr;
048
049 }

This function decodes the ASN.1 header, and if successful will store the primitive type
and the payload length in the pointers passed to by the caller.This function introduces our
error signaling mechanism, which is to return nonzero when an error occurs.

This function also requires the caller to pass the length of the input as a parameter.This
is used to prevent buffer overruns, which are used by attackers to try to read data off the
stack (or heap depending on where this was read from). Besides checking the input length
for read errors, the function performs the sanity check and requires all payload lengths to be
less than four gigabytes.

We also note this function will store the final output length.This is useful as it ensures
that any encoder that uses this function will automatically have the output length set for the
caller (to the encoder).

Note that for the BIT STRING type, the payload length returned will include the
padding count byte.

ASN.1 Primitive Encoders
Now that we can parse the ASN.1 header, we can begin processing ASN.1 types. Each prim-
itive type will provide three routines: a length determination function, an encoder, and a
decoder.

The length determination functions are called der_XYZ_length() and accept as input
(where appropriate) the input to be encoded and return the entire encoding length.These
functions are useful for determining if an encoding can take place in the buffer provided. It
is also useful in processing constructed types.

The encoder and decoder are relatively self-explanatory; they are der_XYZ_encode()
and der_XYZ_decode(), respectively. Both the encoder and decoder can fail, so their return
values should be inspected by the caller.The encoder can fail if the input is invalid or the
output buffer too small.The decoder can fail for the same reasons as failing sanity checks.
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BOOLEAN Encoding
We start with the first ASN.1 types in the order of their type values. Fortunately for us, that
means BOOLEAN is the first type, which is also the simplest to deal with.

The length determination function is fairly trivial.

der_boolean_length.c:
001 unsigned long der_boolean_length(void)
002 {
003 return 3;
004 }

As we can see, this function has only four lines.All BOOLEAN encodings are three
bytes long regardless of whether they are true or false. It is important to note that the length
determination functions can fail. In such cases, we will use zero length as our error indicator.
In the case of BOOLEAN, all inputs are valid.

der_boolean_encode.c:
001 #include “asn1.h"
002 int der_boolean_encode(int bool,
003 unsigned char *out,
004 unsigned long *outlen)
005 {
006 /* check output size */
007 if (der_boolean_length() > *outlen) {
008 return -1;
009 }
010
011 /* store header and length */
012 der_put_header_length(&out, ASN1_DER_BOOLEAN, 1);
013
014 /* store payload */
015 *out = (bool == 0) ? 0x00 : 0xFF;
016
017 /* finished ok */
018 return 0;
019 }

This function will encode a BOOLEAN in the ASN.1 DER format. It accepts bool as
the boolean to encode.The value can be zero to indicate false, or any nonzero to indicate
true.

The function makes use of the der_boolean_length() function (line 7) to determine if
the output buffer is large enough to hold the encoding. Even though we know the encoding
is always three bytes, we still use the function, as it will be the pattern all other ASN.1
encoders will use. It is a habit worth getting into, especially considering this function will
not be a performance bottleneck.

After we check the length of the output buffer, we store the ASN.1 header using the
der_put_header_length() function (line 12).This line also uses the ASN1_DER_BOOLEAN
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symbol, which was defined in the “asn1.h” header file.This function call stores the ASN.1
header and length byte for us.

When we return from the function call to der_put_header_length(), the output pointer
will have been updated to point at the byte just past the end of the ASN.1 header.This
allows us to begin encoding the payload without having to know the length of the ASN.1
header.The payload in this case is simply 0x00 or 0xFF depending on whether the input is
false or true.

Now, to decode ASN.1 DER BOOLEANs, we proceed with a similarly “stock”
function.

der_boolean_decode.c:
001 #include “asn1.h"
002 int der_boolean_decode(unsigned char *in,
003 unsigned long inlen,
004 int *bool)
005 {
006 unsigned type;
007 unsigned long payload_length;
008 int ret;
009
010 /* decode header */
011 ret = der_get_header_length(&in, inlen,
012 &type, &payload_length);
013 if (ret < 0) {
014 return ret;
015 }
016
017 /* payload must be 1 byte and 0x00 or 0xFF */
018 if (type != ASN1_DER_BOOLEAN ||
019 payload_length != 1 ||
020 (in[0] != 0x00 && in[0] != 0xFF)) {
021 return -2;
022 }
023
024 /* decode payload */
025 *bool = (in[0] == 0xFF) ? 1 : 0;
026
027 return 0;
028 }

The first thing we attempt is to decode the ASN.1 header and make sure we can read a
payload length.The function call der_get_header_length() (line 11) does this all for us in one
function call.The return value is less than zero if the function failed, so we return any error
code directly to the caller.As in the encoder case, our input pointer was updated to point to
the first byte of the payload.

After we have parsed the ASN.1 header, we verify that the type, length, and payload are
all valid (lines 18 through 20). We will return –2 to signal a decoding error when the con-
tents are invalid. Once we have verified the packet, we store the boolean back in the pointer
passed by the caller.
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INTEGER Encoding
Encoding an integer is fairly straightforward when the numbers are positive. In the case of
positive numbers, the encoding is simply the byte encoding of the integer stored in big
endian format. For negative numbers, we need to be able to find a power of 256 larger than
the absolute value and encode the sum of the two.

The ASN.1 specification does not put a small limit on the size of the integer to be
encoded. So, long as the length can be encoded (less than 128 bytes of length), the integer is
within range. However, at this point we do not have any way of dealing with large integers.
Therefore, we are going to artificially limit ourselves to using the C long data type.The reader
is encouraged to take note of the limited functionality required to properly support the
INTEGER type.

Before we get into encoding and decoding, we must develop a few helper functions for
dealing with integers.These functions are commonplace in the typical large number library
and trivial to adapt.

int_help.c:
001 #include “asn1.h"
002
003 int count_bits(long num)
004 {
005 int x;
006 x = 0;
007 while (num) { ++x; num >>= 1; }
008 return x;
009 }

This function returns the number of bits in the integer. It assumes the integer is positive
(or at least not sign extended) and simply shifts the integer right until it is zero.

011 int count_lsbs(long num)
012 {
013 int x;
014 x = 0;
015 if (!num) return 0;
016 while (!(num&1)) { ++x; num >>= 1; }
017 return x;
018 }

This function counts the number of consecutive zero least significant bits in the integer.
It also assumes the integer has not been sign extended. Note that this function is one-based,
not zero-based. For example, if the number is 102, the returned value is one, 1002 returns 2,
and so on.

020 void store_unsigned(unsigned char *dst, long num)
021 {
022 int x, y;
023 unsigned char t;
024
025 x = y = 0;
026 while (num) {
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027 dst[x++] = num & 255;
028 num >>= 8;
029 }
030
031 /* reverse */
032 --x;
033 while (y < x) {
034 t = dst[x]; dst[x] = dst[y]; dst[y] = t;
035 --x; ++y;
036 }
037 }

This function stores a positive integer in big endian byte format.The first loop (line 26)
extracts the bytes from the number.At this point, the dst array holds the representation of the
integer in little endian format.This is because we were storing the least significant byte in
each of the iterations of the loop.

The next loop (line 33) swaps the bytes around so they are in big endian format.This is
accomplished by starting at both ends, swapping the bytes, and moving inward.

039 long read_unsigned(unsigned char *dst, unsigned long len)
040 {
041 long tmp;
042
043 tmp = 0;
044 while (len--) {
045 tmp = (tmp << 8) | *dst++;
046 }
047 return tmp;
048 }
049

This function reads bytes and stores them in an integer. Since it shifts upward, it will
always interpret the input in big endian format.There is no need to swap in this function.

These four functions are all we have to provide at this stage to properly handle ASN.1
INTEGER types inside the encoder and decoder. We shall begin with the length function.
In this case, we introduce a new function,“paylen,” which determines only the payload
length of the encoding and not the complete encoding length.

The paylen function will come in handy to judge the size of the final output and tell
the header encoder what payload length to use.

001 #include “asn1.h"
002 unsigned long der_integer_paylen(long num)
003 {
004 unsigned long x, y, pad, paylen;
005
006 if (num >= 0) {
007 /* it's positive */
008 /* count # of bits */
009 x = count_bits(num);
010
011 /* if the 8th bit is set we pad */
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012 if ((x & 7) == 0) {
013 pad = 1;
014 } else {
015 pad = 0;
016 }
017
018 /* round count up to the next byte */
019 x = x + ((8 - x) & 7);
020 paylen = (x >> 3) + pad;
021 } else {
022 /* it's negative */
023 x = count_bits(-num);
024 y = count_lsbs(-num);
025
026 /* round count up to the next byte */
027 paylen = x + ((7 - x) & 7);
028 paylen = (paylen >> 3) + 1;
029
030 /* if lsbs+1==bits and bits mod 8 == 0 reduce by 1 */
031 if ((y+1)==x && !(x & 7)) {
032 --paylen;
033 }
034 }
035 return paylen;
036 }

This function computes the payload length of the INTEGER. First, we determine if the
number is positive (line 6), and handle positive and negative numbers differently. In the case
of positive numbers, we simply count the number of bits in the representation, add padding
if required (line 12), and round up to the next byte (line 19).The padding required is for
when the most significant bit of the first byte is set. In this case, we must add a leading zero
byte to ensure the encoding will be interpreted as positive.

For negative numbers, we need both the count of bits and leading zero least significant
bits. First, we round upward to the next byte and add an additional byte.This additional byte
is required, as we are computing the addition of the next power of 256, which is one byte
too large.

This opens an exception for numbers of the form –(256k)/2, which would be redun-
dantly encoded with leading 0xFF 80 bytes, which is forbidden by the ASN.1 DER specifi-
cation.

039 unsigned long der_integer_length(long num)
040 {
041 /* get payload length */
042 return der_length(der_integer_paylen(num));
043 }

Now we simply return the entire DER encoding length by using the der_length() func-
tion on the payload length.

der_integer_encode.c:
001 #include “asn1.h"
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002 int der_integer_encode( long num,
003 unsigned char *out,
004 unsigned long *outlen)
005 {
006 /* check output size */
007 if (der_integer_length(num) > *outlen) {
008 return -1;
009 }
010
011 /* encode header */
012 der_put_header_length(&out, ASN1_DER_INTEGER,
013 der_integer_paylen(num), outlen);
014
015 /* store number */
016 if (num >= 0) {
017 /* leading msb? */
018 if ((count_bits(num) & 7) == 0) {
019 *out++ = 0x00;
020 }
021 store_unsigned(out, num);
022 } else {
023 /* find power of 256 greater than it */
024 int x, y, z;
025 long tmp;
026
027 x = count_bits(-num);
028 y = count_lsbs(-num);
029 z = ((x + ((7 - x) & 7)) >> 3) + 1;
030
031 /* handle special case */
032 if ((y+1)==x && !(x & 7)) {
033 --z;
034 }
035
036 /* get our constant */
037 tmp = 1L << (z << 3);
038
039 /* encoding */
040 store_unsigned(out, tmp + num);
041 }
042
043 return 0;
044 }

As in the case of the BOOLEAN encoder, we first check if we have enough space using
the der_integer_length() function and next encode the ASN.1 header.At this point, we split
the encoder into two paths based on whether the INTEGER to encode is negative or 
positive.

When the INTEGER is positive, we simply output any leading zero bytes required
(depending on the MSB of the first byte) and then store the INTEGER in byte format (line
21).
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When the INTEGER is negative, we have to find the next power of 256 larger than the
absolute value of the INTEGER.This is accomplished much as in the case of the
der_integer_length() function.To actually compute the power, we use a simple left shift (line
37). Finally, we store the sum by encoding it in twos complement format.

der_integer_decode.c:
001 #include “asn1.h"
002
003 int der_integer_decode(unsigned char *in,
004 unsigned long inlen,
005 long *num)
006 {
007 unsigned type;
008 unsigned long payload_length;
009 long tmp;
010 int ret;
011
012 /* decode header */
013 ret = der_get_header_length(&in, inlen,
014 &type, &payload_length);
015 if (ret < 0) {
016 return ret;
017 }
018
019 if (type != ASN1_DER_INTEGER) {
020 return -2;
021 }
022
023 /* read in the value */
024 tmp = read_unsigned(in, payload_length);
025
026 /* if the leading byte has 0x80 set it's negative */
027 if (in[0] & 0x80) {
028 /* it's negative */
029 *num = tmp - (1L << (payload_length << 3));
030 } else {
031 *num = tmp;
032 }
033
034 return 0;
035 }

This decodes the INTEGER type by first decoding the header, reading in the
INTEGER, and then parsing it based on the most significant bit of the first byte of payload.
If the bit is (line 27), the number is negative and we have to add the next leading power of
256 to the number.

BIT STRING Encoding
BIT STRINGs are arrays of bits encoded eight per byte from most significant bit to least
significant bit.There are up to seven padding bits to ensure the payload is a proper multiple
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of eight bits in length.As mentioned earlier, the payload length encoded in the ASN.1
header includes the single byte required to indicate the padding length.

der_bitstring_length.c:
001 #include “asn1.h"
002 unsigned long der_bitstring_length(unsigned long nbits)
003 {
004 unsigned long bytes;
005
006 /* get # of payload bytes */
007 bytes = 1 + (nbits >> 3) + ((nbits & 7) ? 1 : 0);
008
009 return der_length(bytes);
010 }

This function computes the length of the BIT STRING by rounding up the bit count
and adds the padding counte byte.

der_bitstring_encode.c:
001 #include “asn1.h"
002 int der_bitstring_encode(unsigned char *bits,
003 unsigned long nbits,
004 unsigned char *out,
005 unsigned long *outlen)
006 {
007 unsigned long bytes, bitbuf, bitcnt, tcnt;
008
009 /* check output size */
010 if (der_bitstring_length(nbits) > *outlen) {
011 return -1;
012 }
013
014 /* store header and length */
015 bytes = 1 + (nbits >> 3) + ((nbits & 7) ? 1 : 0);
016 der_put_header_length(&out, ASN1_DER_BITSTRING,
017 bytes, outlen);
018
019 /* store padding count */
020 *out++ = (8 - nbits) & 7;
021
022 /* accumulate bits */
023 tcnt = nbits;
024 bitbuf = bitcnt = 0;
025 while (tcnt--) {
026 bitbuf = (bitbuf << 1) | (*bits++ & 1);
027 if (++bitcnt == 8) {
028 *out++ = bitbuf;
029 bitbuf = bitcnt = 0;
030 }
031 }
032
033 /* pad any remaining bytes */
034 if (nbits & 7) {
035 bitbuf <<= ((8 - nbits) & 7);
036 *out++ = bitbuf;
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037 }
038
039 return 0;
040 }

After the initial formalities, the encoding proceeds by reading through all of the supplied
bits and packing them eight at a time into a byte (line 26). When a byte is full (line 27), it
will be stored to the output and the buffer reset (lines 28–29).

Any remaining bits are appropriately shifted upward (line 35), emulating the insertion of
padding bits and stored to the output.

der_bitstring_decode.c:
001 #include “asn1.h"
002 int der_bitstring_decode(unsigned char *in,
003 unsigned long inlen,
004 unsigned char *out,
005 unsigned long *outlen)
006 {
007 unsigned type;
008 unsigned long payload_length, nbits, bitbuf, bitcnt;
009 int ret;
010
011 /* decode header */
012 ret = der_get_header_length(&in, inlen,
013 &type, &payload_length);
014 if (ret < 0) {
015 return ret;
016 }
017
018 if (type != ASN1_DER_BITSTRING || payload_length < 1) {
019 return -2;
020 }
021
022 /* get # of bits */
023 nbits = ((payload_length - 1) << 3) - in[0];
024 ++in;
025
026 /* too many? */
027 if (nbits > *outlen) {
028 return -1;
029 }
030 *outlen = nbits;
031
032 /* start decoding */
033 bitbuf = *in++;
034 bitcnt = 8;
035
036 while (nbits--) {
037 *out++ = (bitbuf & 0x80) >> 7;
038 bitbuf <<= 1;
039 if (--bitcnt == 0) {
040 bitbuf = *in++;
041 bitcnt = 8;
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042 }
043 }
044 return 0;
045 }

As per usual, we decode the ASN.1 header to retrieve both the type and length. Next,
we verify the type is correct and the payload is at least one byte (line 18).The payload must
be at least one byte to accommodate the padding count byte.

Next, we compare the output length and store the number of bits in the caller supplied
output length (lines 27–30). We compute the number of output bits by multiplying the pay-
load by eight (shift left by three) and subtracting the padding count (in[0]).

Just like the encoder, we set up a bit buffer to process the input.The bitbuf variable
holds the current byte being processed, and bitcnt holds the number of bits left.The bits are
read from the most significant bit downward and stored into the output array (lines 36–42).

OCTET STRING Encodings
OCTET STRING encoding is by far the simplest to process.There are no invalid inputs to
the encoder and the payload length is equal to the length of the input.

der_octetstring_length.c:
001 #include “asn1.h"
002 unsigned long der_octetstring_length(unsigned long noctets)
003 {
004 return der_length(noctets);
005 }

This rather simple looking function computes the DER encoded length of an OCTET
STRING with a given number of octets.

der_octetstring_encode.c:
001 #include “asn1.h"
002 int der_octetstring_encode(unsigned char *octets,
003 unsigned long noctets,
004 unsigned char *out,
005 unsigned long *outlen)
006 {
007 /* check output size */
008 if (der_octetstring_length(noctets) > *outlen) {
009 return -1;
010 }
011
012 /* store header and length */
013 der_put_header_length(&out, ASN1_DER_OCTETSTRING,
014 noctets, outlen);
015
016 /* store bytes */
017 memcpy(out, octets, noctets);
018
019 return 0;
020 }
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By far, this is the simplest of the nontrivial encoders. It checks the output length (line
8), emits a header (line 13), and then simply copies the input to the output (line 17).

TIP

Many innocent looking C functions such as memcpy, memcmp, malloc, and free
(among others) can be hazardous to embedded development platforms. In
many cross-compiler development environments, it is possible to not have a
complete standard C library, or a library at all.

The heap is another thorny issue. With many platforms, free memory space
is tightly regulated, which often means it will be managed by the application.

A relatively simple solution to this problem adopted by the LibTom projects
is to use C pre-processing macros for common functions. A definition such as
XMALLOC can be programmed to default to malloc with the following code.

#ifndef XMALLOC

#define XMALLOC malloc

#endif

In this case, if XMALLOC was defined before this is sent to the pre-pro-
cessor, it is possible to redirect XMALLOC “calls” to other functions. For
example,

CFLAGS="-DXMALLOC=mymalloc" gcc myprog.c –lmylib –o myprog

Now within the program instead of calling malloc() directly, you would
simply call XMALLOC. For example,

unsigned char *buffer = XMALLOC(buffer_size);

This technique can be applied to all other standard C functions within the
scope of the application.

For completeness, here is the OCTET STRING decoder.

der_octetstring_decode.c:
001 #include “asn1.h"
002 int der_octetstring_decode(unsigned char *in,
003 unsigned long inlen,
004 unsigned char *out,
005 unsigned long *outlen)
006 {
007 unsigned type;
008 unsigned long payload_length;
009 int ret;
010
011 /* decode header */
012 ret = der_get_header_length(&in, inlen,
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013 &type, &payload_length);
014 if (ret < 0) {
015 return ret;
016 }
017
018 if (type != ASN1_DER_OCTETSTRING) {
019 return -2;
020 }
021
022 /* check output size */
023 if (payload_length > *outlen) {
024 return -1;
025 }
026
027 /* copy out */
028 *outlen = payload_length;
029 memcpy(out, in, payload_length);
030
031 return 0;
032 }

NULL Encoding
The NULL type is the simplest of all encodings. It can only be represented in one method
and a fixed length. For completeness, here are the NULL routines.

der_null_length.c:
001 unsigned long der_null_length(void)
002 {
003 return 2;
004 }

der_null_encode.c:
001 #include “asn1.h"
002 int der_null_encode(unsigned char *out,
003 unsigned long *outlen)
004 {
005 if (*outlen < 2) return -1;
006
007 out[0] = ASN1_DER_NULL;
008 out[1] = 0x00;
009 *outlen = 2;
010
011 return 0;
012 }

der_null_decode.c:
001 #include “asn1.h"
002 int der_null_decode(unsigned char *in,
003 unsigned long inlen)
004 {
005 if (inlen != 2 || in[0] != ASN1_DER_NULL || in[1] != 0x00) {
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006 return -2;
007 }
008 return 0;
009 }

In both the encoder and decoder, we simply store or read the data directly without
using the helper functions. Normally, that is a bad coding practice and it certainly is a bad
habit to get into. In this case, though, calling the functions would actually take more lines of
code, so we make the exception.The reader should note that even though we know the type
of NULL is 0x05, we still use the symbol ASN1_DER_NULL.This is certainly a worth-
while practice to adhere to.

OBJECT IDENTIFIER Encodings
OBJECT IDENTIFIER (OID) types are encoded somewhat like positive INTEGERS,
except instead of using eight-bit digits we use seven-bit digits. OIDs are the collection of
several positive unsigned numbers (called words), so as far as encodings are concerned they
are back to back.The most significant bit of each byte represents whether this is the last
seven-bit digit of a given word from the OID.

The first two words of an OID specify which standards body the OID refers to.They
are special in that the first word must be in the range 0 to 3, and the second word must be
in the range 0 to 39. When we encode these, the first two words are encoded as one single
unsigned value by multiplying the first word by 40 and adding the second word.The rest of
the words are encoded individually.

der_oid_length.c:
001 #include “asn1.h"
002
003 unsigned long der_oid_paylen(unsigned long *in,
004 unsigned long inlen)
005 {
006 unsigned long wordbuf, y, z;
007
008 /* form first word */
009 wordbuf = in[0] * 40 + in[1];
010 z = 0;
011 for (y = 1; y < inlen; y++) {
012 if (wordbuf == 0) {
013 ++z;
014 } else {
015 /* count the # of 7 bit digits in wordbuf */
016 while (wordbuf) {
017 ++z;
018 wordbuf >>= 7;
019 }
020 }
021 if (y < inlen - 1)
022 wordbuf = in[y + 1];
023 }
024 return z;
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025 }

Here we see the introduction of the payload length function; this is because finding the
payload length is nontrivial and is best left to a separate function.The first word encoded is
actually the first two inputs joined together as previously mentioned.To keep a consistent
flow of logic we use a buffer wordbuf to hold the current word that would be encoded to
determine the number of seven-bit digits it contains.

We make an exception (line 12) for words that are zero, as they have no nonzero seven-
bit digits but still require at least one byte of output to be properly represented.After the
exception, we begin to extract seven-bit digits from the wordbuf variable. If this is not the last
loop of the algorithm (line 21), we fetch the next word and iterate.

SECURITY!
On line 21 of der_oid_paylen(), we check to see if we are at the end of the loop
before reading in the next word on line 22. On most platforms, the read on line
22 would not cause a problem even if we were at the last iteration. This can be
masked by being within a stack frame or a heap that is sufficiently larger than
the array being read.

There are occasions when this could cause problems, from a stability point
of view and security. In certain x86 models, a segment can be limited to very
small sizes, or reading past the end of the array could cross a page boundary
(causing a page fault). Therefore, it is entirely possible to crash a program from
a simple read operation.

There are also security problems if we performed the read. It is possible that
wordbuf is placed on the stack, which means whatever is passed the end of the
array (perhaps a secret key?) is also placed on the stack. While this function
alone would not directly leak a secret, another function that has not over-
written that part of the stack could easily leak the stack contents.

This security concept revolves around asset management, and while inno-
cent looking enough is very important for the developer to be constantly aware
of.

027 unsigned long der_oid_length(unsigned long *in,
028 unsigned long inlen)
029 {
030 if (in[0] > 3 || in[1] > 39) {
031 return 0;
032 }
033 return der_length(der_oid_paylen(in, inlen));
034 }
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This function is highly dependent on the payload length function. It initially checks the
first two words to make sure they are within range and then computes the DER encoded
length.

der_oid_encode.c:
001 #include “asn1.h"
002 int der_oid_encode(unsigned long *in,
003 unsigned long inlen,
004 unsigned char *out,
005 unsigned long *outlen)
006 {
007 unsigned long x, y, z, t, wordbuf, mask;
008 unsigned char tmp;
009 /* check output size */
010 x = der_oid_length(in, inlen);
011 if (x == 0 || x > *outlen) {
012 return -1;
013 }
014
015 /* store header and length */
016 der_put_header_length(&out, ASN1_DER_OID,
017 der_oid_paylen(in, inlen),
018 outlen);
019

So far, this is the standard encoding practice. Since the OID inputs can be invalid, we
check for an overflow and invalid input (line 11), which would be indicated by
der_oid_length() returning a zero. Note the usage of der_oid_paylen() here as well. Re-using
the functionality has saved quite a bit of trouble, as we do not have to re-invent the wheel.

020 /* encode words */
021 wordbuf = in[0] * 40 + in[1];
022 for (y = 1; y < inlen; y++) {

Here, the first word to be encoded (line 21) is the first two words joined into one word.
Also note our loop starts at one instead of zero as expected.

023 if (wordbuf) {
024 /* mark current spot and clear mask */
025 x = 0;
026 mask = 0x00;
027 while (wordbuf) {
028 out[x++] = (wordbuf & 0x7F) | mask;
029 wordbuf >>= 7;
030 mask |= 0x80;
031 }

At this point, if wordbuf was not originally zero, the array out[0..x-1] will contain the
encoding of the word in little endian.The use of mask allows us to set the most significant
bit of all but the first digit stored.

033 /* now swap x-1 bytes */
034 z = 0;
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035 t = x--;
036 while (z < x) {
037 tmp = out[z]; out[z] = out[x]; out[x] = tmp;
038 ++z; --x;
039 }

As with our INTEGER routines, we have swapped the endianess of the output to big
endian.The variable t holds the length of this word. We post decrement it since we are swap-
ping from 0 to x–1, not 0 to x.

041 /* move pointer */
042 out += t;
043 } else {
044 *out++ = 0x00;
045 }
046 if (y < inlen - 1) {
047 wordbuf = in[y+1];
048 }
049 }
050 return 0;
051 }

We also handle the zero case (line 44) by storing a single 0x00 byte. Since the most sig-
nificant bit is not set, the decoder will interpret it as a single byte for the word.After the
word has been encoded, we fetch the next word if we are not finished; otherwise, we return.

der_oid_decode.c:
001 #include “asn1.h"
002 int der_oid_decode(unsigned char *in,
003 unsigned long inlen,
004 unsigned long *out,
005 unsigned long *outlen)
006 {
007 unsigned type;
008 unsigned long payload_length, wordbuf, y;
009 int ret;
010
011 /* decode header */
012 ret = der_get_header_length(&in, inlen,
013 &type, &payload_length);
014 if (ret < 0) {
015 return ret;
016 }
017
018 /* check type and enforce a minimum output size of 2 */
019 if (type != ASN1_DER_OID || *outlen < 2) {
020 return -2;
021 }

So far, this is the fairly standard decoder logic. We also perform the initial size check for
the output. Since all OIDs must have at least the first two words, an output length cannot be
smaller than two.

www.syngress.com

ASN.1 Encoding • Chapter 2 61

404_CRYPTO_02.qxd  10/27/06  3:40 PM  Page 61



Note that we do not count the number of words prior to decoding.This is because we
are not allocating resources for every decoded word. In the event we have to allocate
resources (say heap), it is simpler to first count and allocate resources before decoding.This
helps prevents leaks, as the resource usage becomes all or nothing.

023 wordbuf = 0;
024 y = 0;
025 while (payload_length--) {
026 wordbuf = (wordbuf << 7) | (*in & 0x7F);

Like the INTEGER case, we read in bytes and shift them upward. In this case, we only
use the lower seven bits of every digit read.The while loop runs over all of the payload
bytes, and in theory, when this while loop terminates all of the OID words will have been
read in.

027 if (!(*in++ & 0x80)) {
028 /* last 7 bit digit */
029 if (y == 0) {
030 /* first words */
031 out[0] = wordbuf / 40;
032 out[1] = wordbuf % 40;
033 y = 2;
034 } else {
035 if (y < *outlen) {
036 out[y++] = wordbuf;
037 } else {
038 return -2;
039 }
040 }
041 wordbuf = 0;
042 }
043 }
044
045 /* store size */
046 *outlen = y;
047
048 return 0;
049 }

In the event the most significant bit is not set (see line 27), the byte read is the last byte
of the given word. In this implementation, the y variable is the count of words stored so far.
If it is zero, we know we have just decoded what will become the first two words of output.
We extract the two words (lines 31 and 32) and update the count. Otherwise, we check the
output length and store if possible.

While the ASN.1 specification does not say so, we have limited the words to be
unsigned long types.This means they cannot be larger than 232 – 1 in size. In practice, this
makes the code simpler and does not conflict with any known cryptographic standard.
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PRINTABLE and IA5 STRING Encodings
PRINTABLE and IA5 STRING encodings work much like the OCTET STRING encod-
ings, except their inputs are limited in range and must be converted through a portable
mechanism before being stored.This is because of the way various platforms handle code
pages. For example, where

char c = 'a';

may be equivalent to

char c = 97;

on most ASCII platforms (e.g., most English Linux and Windows installs), it is not so on
all other platforms.To facilitate this process, we need a table that can be interpreted by the C
compiler in the native code page and then converted to an integer type for encoding and
decoding.

For the sake of brevity, we shall demonstrate the PRINTABLE encoding from which
the IA5 encoding can be derived (IA5 routines are available on the book’s Web site).

der_printablestring_length.c:
001 #include “asn1.h"
002
003 static const struct {
004 int code, value;
005 } printable_table[] = {
006 { ' ', 32 }, { '\'', 39 }, { '(', 40 }, { ')', 41 },
007 { '+', 43 }, { ',', 44 }, { '-', 45 }, { '.', 46 },
008 { '/', 47 }, { '0', 48 }, { '1', 49 }, { '2', 50 },
009 { '3', 51 }, { '4', 52 }, { '5', 53 }, { '6', 54 },
010 { '7', 55 }, { '8', 56 }, { '9', 57 }, { ':', 58 },
011 { '=', 61 }, { '?', 63 }, { 'A', 65 }, { 'B', 66 },
012 { 'C', 67 }, { 'D', 68 }, { 'E', 69 }, { 'F', 70 },
013 { 'G', 71 }, { 'H', 72 }, { 'I', 73 }, { 'J', 74 },
014 { 'K', 75 }, { 'L', 76 }, { 'M', 77 }, { 'N', 78 },
015 { 'O', 79 }, { 'P', 80 }, { 'Q', 81 }, { 'R', 82 },
016 { 'S', 83 }, { 'T', 84 }, { 'U', 85 }, { 'V', 86 },
017 { 'W', 87 }, { 'X', 88 }, { 'Y', 89 }, { 'Z', 90 },
018 { 'a', 97 }, { 'b', 98 }, { 'c', 99 }, { 'd', 100 },
019 { 'e', 101 }, { 'f', 102 }, { 'g', 103 }, { 'h', 104 },
020 { 'i', 105 }, { 'j', 106 }, { 'k', 107 }, { 'l', 108 },
021 { 'm', 109 }, { 'n', 110 }, { 'o', 111 }, { 'p', 112 },
022 { 'q', 113 }, { 'r', 114 }, { 's', 115 }, { 't', 116 },
023 { 'u', 117 }, { 'v', 118 }, { 'w', 119 }, { 'x', 120 },
024 { 'y', 121 }, { 'z', 122 }, };

This is the mapping table that will convert characters from their native page to their (in
this case) ASCII numerical representation.The table has been marked as both static and const
to avoid having the table pollute the symbol namespace and sit in code space.
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TIP

The use of the const and static keywords is particularly helpful in embedded
development to manage symbol names and memory usage.

The const keyword will tell the compiler (in most cases) to keep the data in
the code section of the application. The default is to keep a copy in the code
section but to copy it from there to the memory (bss section with GNU tools) at
runtime. This means the table would occupy both RAM and ROM. 

The static keyword tells the compiler to not make the symbol global. This is
useful if you have common functions across similar algorithms that may collide.
It also helps keep pollution to a minimum, which is important when working
with third-party libraries.

026 int der_printable_char_encode(int c)
027 {
028 int x;
029 for (x = 0; x <
030 (int)(sizeof(printable_table) /
031 sizeof(printable_table[0])); x++) {
032 if (printable_table[x].code == c) {
033 return printable_table[x].value;
034 }
035 }
036 return -1;
037 }
038
039 int der_printable_value_decode(int v)
040 {
041 int x;
042 for (x = 0; x <
043 (int)(sizeof(printable_table) /
044 sizeof(printable_table[0])); x++) {
045 if (printable_table[x].value == v) {
046 return printable_table[x].code;
047 }
048 }
049 return -1;
050 }

These two functions convert to numerical and from numerical (respectively). If the
character or value is found, they return the encoding (or decoding), and in the case of a
failure they return –1.

052 unsigned long der_printablestring_length(unsigned char *in,
053 unsigned long inlen)
054 {
055 unsigned long x;
056
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057 for (x = 0; x < inlen; x++) {
058 if (der_printable_char_encode(in[x]) == -1) {
059 return 0;
060 }
061 }
062
063 return der_length(inlen);
064 }

This function is much like the der_octetstring_length() counterpart, except that it must
first ensure all of the input values are valid.

der_printablestring_encode.c:
001 #include “asn1.h"
002 int der_printablestring_encode(unsigned char *in,
003 unsigned long inlen,
004 unsigned char *out,
005 unsigned long *outlen)
006 {
007 unsigned long x;
008
009 /* check output size */
010 x = der_printablestring_length(in, inlen);
011 if (x == 0 || x > *outlen) {
012 return -1;
013 }
014
015 /* store header and length */
016 der_put_header_length(&out, ASN1_DER_PRINTABLESTRING,
017 inlen, outlen);
018
019 for (x = 0; x < inlen; x++) {
020 *out++ = der_printable_char_encode(*in++);
021 }
022
023 return 0;
024 }

We check the length and validity of the input (line 10) before encoding. It is important
that the length function checks the validity, as the rest of the code assumes the input is valid.
The encoding is performed by the simple translation function call (line 20).

der_printablestring_decode.c:
001 #include “asn1.h"
002 int der_printablestring_decode(unsigned char *in,
003 unsigned long inlen,
004 unsigned char *out,
005 unsigned long *outlen)
006 {
007 unsigned type;
008 unsigned long payload_length, x;
009 int ret;
010
011 /* decode header */
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012 ret = der_get_header_length(&in, inlen,
013 &type, &payload_length);
014 if (ret < 0) {
015 return ret;
016 }
017
018 if (type != ASN1_DER_PRINTABLESTRING) {
019 return -2;
020 }
021
022 if (payload_length > *outlen) {
023 return -1;
024 }
025 *outlen = payload_length;
026
027 for (x = 0; x < payload_length; x++) {
028 ret = der_printable_value_decode(*in++);
029 if (ret == -1) {
030 return -2;
031 }
032 *out++ = ret;
033 }
034 return 0;
035 }

Unlike the encoder, the decoder does not know if the input is valid before proceeding.
As it decodes each byte (line 28), it checks the return value. If it is –1, the input byte is
invalid and we must return an error code.

Now that we have seen PRINTABLE encoding, the IA5 encodings are essentially the
same.The only difference is we use a different table.

der_ia5string_length.c:
003 static const struct {
004 int code, value;
005 } ia5_table[] = {
006 { '\0', 0 },{ '\a', 7 }, { '\b', 8 }, { '\t', 9 },
007 { '\n', 10 }, { '\f', 12 }, { '\r', 13 }, { ' ', 32 },
008 { '!', 33 }, { '“', 34 }, { '#', 35 }, { '$', 36 },
009 { '%', 37 }, { '&', 38 }, { '\'', 39 }, { '(', 40 },
010 { ')', 41 }, { '*', 42 }, { '+', 43 }, { ',', 44 },
011 { '-', 45 }, { '.', 46 }, { '/', 47 }, { '0', 48 },
012 { '1', 49 }, { '2', 50 }, { '3', 51 }, { '4', 52 },
013 { '5', 53 }, { '6', 54 }, { '7', 55 }, { '8', 56 },
014 { '9', 57 }, { ':', 58 }, { ';', 59 }, { '<', 60 },
015 { '=', 61 }, { '>', 62 }, { '?', 63 }, { '@', 64 },
016 { 'A', 65 }, { 'B', 66 }, { 'C', 67 }, { 'D', 68 },
017 { 'E', 69 }, { 'F', 70 }, { 'G', 71 }, { 'H', 72 },
018 { 'I', 73 }, { 'J', 74 }, { 'K', 75 }, { 'L', 76 },
019 { 'M', 77 }, { 'N', 78 }, { 'O', 79 }, { 'P', 80 },
020 { 'Q', 81 }, { 'R', 82 }, { 'S', 83 }, { 'T', 84 },
021 { 'U', 85 }, { 'V', 86 }, { 'W', 87 }, { 'X', 88 },
022 { 'Y', 89 }, { 'Z', 90 }, { '[', 91 }, { '\\', 92 },
023 { ']', 93 }, { '^', 94 }, { '_', 95 }, { '`', 96 },
024 { 'a', 97 }, { 'b', 98 }, { 'c', 99 }, { 'd', 100 },
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025 { 'e', 101 }, { 'f', 102 }, { 'g', 103 }, { 'h', 104 },
026 { 'i', 105 }, { 'j', 106 }, { 'k', 107 }, { 'l', 108 },
027 { 'm', 109 }, { 'n', 110 }, { 'o', 111 }, { 'p', 112 },
028 { 'q', 113 }, { 'r', 114 }, { 's', 115 }, { 't', 116 },
029 { 'u', 117 }, { 'v', 118 }, { 'w', 119 }, { 'x', 120 },
030 { 'y', 121 }, { 'z', 122 }, { '{', 123 }, { '|', 124 },
031 { '}', 125 }, { '~', 126 } };

For the interested reader it is possible to save space both in the table and in the code
space. If a third parameter were added to the table to say which code type the symbol
belonged to (e.g., IA5 or PRINTABLE), a single encode/decoder could be written with an
additional input argument specifying which target code we are trying to use.

For the sake of simplicity, the routines demonstrated were implemented individually.
They are fairly small and in the grand scheme of things are not significant code size 
contributors.

UTCTIME Encodings
UTCTIME encoding has been simplified in the 2002 specifications to only include one
format.The time is encoded as a string in the format “YYMMDDHHMMSSZ” using two
digits per component.

The year is encoded by examining the last two digits. Nothing beyond the year 2069
can be encoded with this format as it will be interpreted as 1970 (of course, by that time we
can just reprogram the software to treat it as 2070). Despite the Y2K debacle, they still used
two digits for the date.

The actual byte encoding of the string is using the ASCII code, and fortunately, we have
to look no further than our PRINTABLE STRING routines for help.

To efficiently handle dates we require some structure to hold the parameters. We could
just pass all six of them as arguments to the function. However, a more useful way (as we
shall see when dealing with SEQUENCE types) is to have a structure.This structure is
stored in our ASN.1 header file.

asn1.h:
119 /* UTCTIME */
120 typedef struct {
121 int year,
122 month,
123 day,
124 hour,
125 min,
126 sec;
127 } UTCTIME;

We have made this a type so that we can simply pass UTCTIME instead of “struct
UTCTIME.”
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der_utctime_length.c:
001 #include “asn1.h"
002 unsigned long der_utctime_length(void)
003 {
004 return 15;
005 }

My thanks go to the revised ASN.1 specifications! ☺

der_utctime_encode.c:
001 #include “asn1.h"
002
003 static int putnum(int val, unsigned char **out)
004 {
005 unsigned char *ptr;
006 int h, l;
007
008 if (val < 0) return -1;
009
010 ptr = *out;
011 h = val / 10;
012 l = val % 10;
013
014 if (h > 9 || l > 9) {
015 return -1;
016 }
017
018 *ptr++ = der_printable_char_encode(“0123456789"[h]);
019 *ptr++ = der_printable_char_encode(“0123456789"[l]);
020 *out = ptr;
021
022 return 0;
023 }

This function stores an integer in a two-digit ASCII representation.The number must
be in the range 0–99 for this function to succeed. It updates the output pointer, which as we
shall see in the next function is immediately useful.

We are re-using the der_printable_char_encode() to convert our integers to the ASCII
code required.

025 int der_utctime_encode( UTCTIME *in,
026 unsigned char *out,
027 unsigned long *outlen)
028 {
029 /* check output size */
030 if (der_utctime_length() > *outlen) {
031 return -1;
032 }
033
034 /* store header and length */
035 der_put_header_length(&out, ASN1_DER_UTCTIME, 13, outlen);
036
037 /* store data */
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038 if (putnum(in->year % 100, &out) ||
039 putnum(in->month, &out) ||
040 putnum(in->day, &out) ||
041 putnum(in->hour, &out) ||
042 putnum(in->min, &out) ||
043 putnum(in->sec, &out)) {
044 return -1;
045 }
046
047 *out++ = der_printable_char_encode('Z');
048
049 return 0;
050 }

After the standard issue header encoding we then proceed to store the fields of the date
and time in order as expected. We make extensive use of the way the C language handles the
double-OR bars (||). Specifically, that is always implemented from left to right and will
abort on the first nonzero return value without proceeding to the next case.

This means, for example, that if after encoding the month the routine fails, it will not
encode the rest and will proceed inside to the braced statements directly.

der_utctime_decode.c:
001 #include “asn1.h"
002
003 static int readnum(unsigned char **in, int *dest)
004 {
005 int x, y, z, num;
006 unsigned char *ptr;
007
008 num = 0;
009 ptr = *in;
010 for (x = 0; x < 2; x++) {
011 num *= 10;
012 z = der_printable_value_decode(*ptr++);
013 if (z < 0) {
014 return -1;
015 }
016 for (y = 0; y < 10; y++) {
017 if (“0123456789"[y] == z) {
018 num += y;
019 break;
020 }
021 }
022 if (y == 10) {
023 return -1;
024 }
025 }
026
027 *dest = num;
028 *in = ptr;
029
030 return 0;
031 }
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This function decodes two bytes into the numerical value they represent. It borrows the
PRINTABLE STRING routines again to decode the bytes to characters. It returns the
number in the “dest” field and signals errors by the return code. We will use the same trick
in the decoder to cascade a series of reads, which is why storing the result to a pointer pro-
vided by the caller is important.

033 int der_utctime_decode(unsigned char *in,
034 unsigned long inlen,
035 UTCTIME *out)
036 {
037 unsigned type;
038 unsigned long payload_length;
039 int ret;
040
041 /* decode header */
042 ret = der_get_header_length(&in, inlen,
043 &type, &payload_length);
044 if (ret < 0) {
045 return ret;
046 }
047 if (type != ASN1_DER_UTCTIME || payload_length != 13) {
048 return -2;
049 }
050
051 if (readnum(&in, &out->year) ||
052 readnum(&in, &out->month) ||
053 readnum(&in, &out->day) ||
054 readnum(&in, &out->hour) ||
055 readnum(&in, &out->min) ||
056 readnum(&in, &out->sec)) {
057 return -1;
058 }
059
060 /* must be a Z here */
061 if (der_printable_value_decode(in[0]) != 'Z') {
062 return -2;
063 }
064
065 /* fix up year */
066 if (out->year < 70) {
067 out->year += 2000;
068 } else {
069 out->year += 1900;
070 }
071
072 return 0;
073 }

Here we use the cascade trick (lines 51 to 56) to parse the input and store the decoded
fields one at a time to the output structure.After we have decoded the fields, we check for
the required ‘Z’ (line 61) and then fix the year field to the appropriate century (lines 66 to
70).
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SEQUENCE Encodings
The SEQUENCE type along with the SET and SET OF types are by far the most encom-
passing types to develop.They require all of the ASN.1 functions including them as well!

We will demonstrate relatively simple SEQUENCE encodings and omit SET types for
brevity.The complete listing includes routines to handle SET types and the reader is encour-
aged to seek them out.

The first thing we need before we can encode a SEQUENCE is some way of repre-
senting it in the C programming language. In this case, we are going to use an array of a
structure to represent the elements of the SEQUENCE.

asn1.h:
138 typedef struct {
139 int type;
140 unsigned long length;
141 void *data;
142 } asn1_list;

This is the structure for a SEQUENCE element type (it will also be used for SET
types).The type indicates the ASN.1 type of the element, length the length or size of the
value, and data is a pointer to the native representation of the given data type.An array of
this type describes the elements of a SEQUENCE.

The length and data fields have different meanings depending on what the ASN.1 type
is.Table 2.8 describes their use.

Table 2.8 Definitions for the ASN.1_List Type

ASN.1 Type Meaning of “Data” Meaning of “Length”

BOOLEAN Pointer to an int Ignored
INTEGER Pointer to a long Ignored
BIT STRING Pointer to array of unsigned char Number of bits
OCTET STRING Pointer to array of unsigned char Number of octets
NULL Ignored Ignored
OBJECT IDENTIFIER Pointer to array of unsigned long Number of words in the OID
IA5 STRING Pointer to array of unsigned char Number of characters
PRINTABLE STRING Pointer to array of unsigned char Number of characters
UTCTIME Pointer to a UTCTIME structure Ignored
SEQUENCE Pointer to an array of asn1_list Number of elements in the

list

The use of the length field takes on a dual role depending on whether we are encoding
for decoding. For all but the SEQUENCE type where the length is not ignored, the length
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specifies the maximum output size when decoding. It will be updated by the decoder to the
actual length of the object decoded (in terms of what you would pass to the encoder).

For example, if you specify a length of 16 for a BIT STRING element and the decoder
places a 7 in its place, that means that the decoder read a BIT STRING of seven bits.

We will also define a macro that is handy for creating lists at runtime, but first let us
proceed through the SEQUENCE functions.

der_sequence_length.c:
001 #include “asn1.h"
002 unsigned long der_sequence_paylen(asn1_list *list,
003 unsigned long length)
004 {
005 unsigned long i, paylen, x;
006
007 for (i = paylen = 0; i < length; i++) {
008 switch (list[i].type) {

The crux of the SEQUENCE and SET routines is a huge switch statement for all the
types. Here, we are using the ASN1_DER_* values, which fortunately do map to the ASN.1
types. It is best, though, that you use ASN1_DER_* symbols instead of literals.

009 case ASN1_DER_BOOLEAN:
010 paylen += der_boolean_length();
011 break;
012 case ASN1_DER_INTEGER:
013 paylen +=
014 der_integer_length(*((long *)list[i].data));
015 break;

Here we see the use of the .data member of the structure to get access to what will
eventually be encoded. We make use of the fact that in C, the void pointer can be cast to
and from any other pointer type without violating the standard. What the data pointer actu-
ally points to changes based on what we are encoding. In this case, it is a long.

016 case ASN1_DER_BITSTRING:
017 paylen += der_bitstring_length(list[i].length);
018 break;

Here we see the use of the .length member of the structure.The length means the
number of units of a given type. In the case of BIT STRING, it means the number of bits
to be encoded, whereas, for example, in the case of OID, length means the number of words
in the OID encoding.

019 case ASN1_DER_OCTETSTRING:
020 paylen += der_octetstring_length(list[i].length);
021 break;
022 case ASN1_DER_NULL:
023 paylen += der_null_length();
024 break;
025 case ASN1_DER_OID:
026 x = der_oid_length(list[i].data, list[i].length);
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027 if (x == 0) return 0;
028 paylen += x;
029 break;
030 case ASN1_DER_PRINTABLESTRING:
031 x = der_printablestring_length(list[i].data,
032 list[i].length);
033 if (x == 0) return 0;
034 paylen += x;
035 break;
036 case ASN1_DER_IA5STRING:
037 x = der_ia5string_length(list[i].data,
038 list[i].length);
039 if (x == 0) return 0;
040 paylen += x;
041 break;
042 case ASN1_DER_UTCTIME:
043 paylen += der_utctime_length();
044 break;
045 case ASN1_DER_SEQUENCE:
046 x = der_sequence_length(list[i].data,
047 list[i].length);
048 if (x == 0) return 0;
049 paylen += x;
050 break;
051 default:
052 return 0;
053 }
054 }
055 return paylen;
056 }
057
058 unsigned long der_sequence_length(asn1_list *list,
059 unsigned long length)
060 {
061 return der_length(der_sequence_paylen(list, length));
062 }

der_sequence_encode.c:
001 #include “asn1.h"
002 int der_sequence_encode(asn1_list *list,
003 unsigned long length,
004 unsigned char *out,
005 unsigned long *outlen)
006 {
007 unsigned long i, x;
008 int err;
009
010 /* check output size */
011 if (der_sequence_length(list, length) > *outlen) {
012 return -1;
013 }
014
015 /* store header and length */
016 der_put_header_length(&out, ASN1_DER_SEQUENCE,
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017 der_sequence_paylen(list, length),
018 outlen);
019
020 /* now encode each element */
021 for (i = 0; i < length; i++) {
022 switch (list[i].type) {
023 case ASN1_DER_BOOLEAN:
024 x = *outlen;
025 err = der_boolean_encode(*((int *)list[i].data),
026 out, &x);
027 if (err < 0) return err;
028 out += x;
029 break;
030 case ASN1_DER_INTEGER:
031 x = *outlen;
032 err = der_integer_encode(*((long *)list[i].data),
033 out, &x);
034 if (err < 0) return err;
035 out += x;
036 break;
037 case ASN1_DER_BITSTRING:
038 x = *outlen;
039 err = der_bitstring_encode(list[i].data,
040 list[i].length,
041 out, &x);
042 if (err < 0) return err;
043 out += x;
044 break;
045 case ASN1_DER_OCTETSTRING:
046 x = *outlen;
047 err = der_octetstring_encode(list[i].data,
048 list[i].length,
049 out, &x);
050 if (err < 0) return err;
051 out += x;
052 break;
053 case ASN1_DER_NULL:
054 x = *outlen;
055 err = der_null_encode(out, &x);
056 if (err < 0) return err;
057 out += x;
058 break;
059 case ASN1_DER_OID:
060 x = *outlen;
061 err = der_oid_encode(list[i].data,
062 list[i].length, out, &x);
063 if (err < 0) return err;
064 out += x;
065 break;
066 case ASN1_DER_PRINTABLESTRING:
067 x = *outlen;
068 err = der_printablestring_encode(list[i].data,
069 list[i].length,
070 out, &x);
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071 if (err < 0) return err;
072 out += x;
073 break;
074 case ASN1_DER_IA5STRING:
075 x = *outlen;
076 err = der_ia5string_encode(list[i].data,
077 list[i].length,
078 out, &x);
079 if (err < 0) return err;
080 out += x;
081 break;
082 case ASN1_DER_UTCTIME:
083 x = *outlen;
084 err = der_utctime_encode(list[i].data, out, &x);
085 if (err < 0) return err;
086 out += x;
087 break;
088 case ASN1_DER_SEQUENCE:
089 x = *outlen;
090 err = der_sequence_encode(list[i].data,
091 list[i].length,
092 out, &x);
093 if (err < 0) return err;
094 out += x;
095 break;
096 default:
097 return -1;
098 }
099 }
100 return 0;
101 }

der_sequence_decode.c:
001 #include “asn1.h"
002 int der_sequence_decode(unsigned char *in,
003 unsigned long inlen,
004 asn1_list *list,
005 unsigned long length)
006 {
007 unsigned type;
008 unsigned long payload_length, i, z;
009 int ret;
010
011 /* decode header */
012 ret = der_get_header_length(&in, inlen,
013 &type, &payload_length);
014 if (ret < 0) {
015 return ret;
016 }
017
018 if (type != ASN1_DER_SEQUENCE) {
019 return -2;
020 }
021
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022 for (i = 0; i < length; i++) {
023 switch (list[i].type) {
024 case ASN1_DER_BOOLEAN:
025 ret = der_boolean_decode(in, payload_length,
026 ((int *)list[i].data));
027 if (ret < 0) return ret;
028 z = der_boolean_length();
029 break;
030 case ASN1_DER_INTEGER:
031 ret = der_integer_decode(in, payload_length,
032 ((long *)list[i].data));
033 if (ret < 0) return ret;
034 z = der_integer_length(*((long *)list[i].data));
035 break;
036 case ASN1_DER_BITSTRING:
037 ret = der_bitstring_decode(in, payload_length,
038 list[i].data,
039 &list[i].length);
040 if (ret < 0) return ret;
041 z = list[i].length;
042 break;
043 case ASN1_DER_OCTETSTRING:
044 ret = der_octetstring_decode(in, payload_length,
045 list[i].data,
046 &list[i].length);
047 if (ret < 0) return ret;
048 z = der_octetstring_length(list[i].length);
049 break;
050 case ASN1_DER_NULL:
051 ret = der_null_decode(in, payload_length);
052 if (ret < 0) return ret;
053 z = der_null_length();
054 break;
055 case ASN1_DER_OID:
056 ret =
057 der_oid_decode(in, payload_length,
058 ((unsigned long *)list[i].data),
059 &list[i].length);
060 if (ret < 0) return ret;
061 z =
062 der_oid_length(((unsigned long *)list[i].data),
063 list[i].length);
064 break;
065 case ASN1_DER_PRINTABLESTRING:
066 ret = der_printablestring_decode(in,
067 payload_length,
068 list[i].data,
069 &list[i].length);
070 if (ret < 0) return ret;
071 z = der_printablestring_length(list[i].data,
072 list[i].length);
073 break;
074 case ASN1_DER_IA5STRING:
075 ret = der_ia5string_decode(in, payload_length,
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076 list[i].data,
077 &list[i].length);
078 if (ret < 0) return ret;
079 z = der_ia5string_length(list[i].data,
080 list[i].length);
081 break;
082 case ASN1_DER_UTCTIME:
083 ret = der_utctime_decode(in, payload_length,
084 list[i].data);
085 if (ret < 0) return ret;
086 z = der_utctime_length();
087 break;
088 case ASN1_DER_SEQUENCE:
089 ret = der_sequence_decode(in, payload_length,
090 list[i].data,
091 list[i].length);
092 if (ret < 0) return ret;
093 z = der_sequence_length(list[i].data,
094 list[i].length);
095 break;
096 default:
097 return -1;
098 }
099 payload_length -= z;
100 in += z;
101 }
102 return 0;
103 }

From these routines, we can easily spot a few shortcomings of this implementation. First,
the routines here do not support modifiers such as OPTIONAL, DEFAULT, or CHOICE.
Second, the decoding structure must match exactly or the decoding routine will abort.
When we are encoding a structure, the calling application has to understand what it is
encoding.The lists being encoded are meant to be generated at runtime instead of at com-
pile time.This allows us a great level of flexibility as to how we interact with the modifiers.
One of the key aspects of the implementation is that it allows new ASN.1 types to be sup-
ported by adding a minimal amount of code to these three routines.

Despite the ability to generate encoding SEQUENCEs at runtime, decoding is still
problematic.The only way to use these functions to decode speculative SEQUENCEs is to
continuously update the list using decoding failures as feedback. For example, if an element
is listed as DEFAULT, then the de facto decoding list will have the element. If the decoding
fails, the next logical step is to attempt decoding without the default item present.

For simple SEQUENCEs this can work, but as they grow in size (such as an X.509 cer-
tificate), this approach is completely inappropriate. One solution to this would be to have a
more complete decoder that understands the modifiers and can perform the required ele-
ment lookahead (much like a parser in any programming language who lookahead for
tokens) to speculatively decode. However, this is actually much more work than the ideal
solution requires.
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ASN.1 Flexi Decoder
Our approach to this problem is to employ a Flexible Decoder (A.K.A.The Flexi Decoder),
which decodes the ASN.1 data on the fly and generates its own linked list of ASN.1 objects.
This allows us to decode essentially any ASN.1 data as long as we recognize the ASN.1 types
encoded.The linked list grows in two directions—left to right and parent to child.The left
to right links are for elements that are at the same depth level, and the parent to child links
are for depth changes (e.g., SEQUENCE).

asn1.h
171 /* Flexi Decoding */
172 typedef struct Flexi {
173 int type;
174 unsigned long length;
175 void *data;
176 struct Flexi *prev, *next,
177 *child, *parent;
178 } asn1_flexi;

This is our Flexi list, which resembles the asn1_list except that it has the doubly linked
list pointers inside it. From a caller’s point of view, they simply pass in an array of bytes and
get as output a linked list structure for all the elements decoded.

While this solution allows us to easily decode arbitrary ASN.1 data, it still does not
immediately yield a method of parsing it. First, we present the decoding algorithm, and in
the next section present how to parse with it.

der_flexi_decode.c:
001 #include “asn1.h"
002 #include <stdlib.h>
003 int der_flexi_decode(unsigned char *in,
004 unsigned long inlen,
005 asn1_flexi **out)
006 {
007 asn1_flexi *list, *tlist;
008 unsigned long len, x, y;
009 int err;
010
011 list = NULL;
012
013 while (inlen >= 2) {

We start with an empty list (line 11) and handle its construction later. We then proceed
to parse data as long as there are at least two bytes left.This allows us to soft error out when
we hit the end of the perceived ASN.1 data.

014 /* make sure list points to a valid node */
015 if (list == NULL) {
016 list = calloc(1, sizeof(asn1_flexi));
017 if (list == NULL) return -3;
018 } else {
019 list->next = calloc(1, sizeof(asn1_flexi));
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020 if (list->next == NULL) {
021 der_flexi_free(list);
022 return -3;
023 }
024 list->next->prev = list;
025 list = list->next;
026 }

Inside the loop, we always allocate at least one element of the linked list. If this is not
the first element, we make an adjacent node (line 19) and doubly link it (line 24) so we can
walk the list in any direction.

028 /* decode the payload length */
029 if (in[1] < 128) {
030 /* short form */
031 len = in[1];
032 } else {
033 /* get length of length */
034 x = in[1] & 0x7F;
035
036 /* can we actually read this many bytes? */
037 if (inlen < 2 + x) { return -2; }
038
039 /* load it */
040 len = 0;
041 y = 2;
042 while (x--) {
043 len = (len << 8) | in[y++];
044 }
045 }

We require the payload length for most types. For example, before we can decode an
OCTET STRING we need to know the length so we can allocate the required memory.
The encoded payload length immediately reveals this. For other types such as BIT STRING
and OID, their maximum size can be calculated from the payload length, which is good
enough for our purposes.

047 switch (in[0]) {
048 case ASN1_DER_BOOLEAN: /* BOOLEAN */
049 list->type = ASN1_DER_BOOLEAN;
050 list->length = 1;
051 list->data = calloc(1, sizeof(int));
052 if (list->data == NULL) { goto MEM_ERR; }
053
054 err = der_boolean_decode(in, inlen, list->data);
055 if (err < 0) { goto DEC_ERR; }
056
057 len = der_boolean_length();
058 if (len == 0) { goto LEN_ERR; }
059 break;
060 case ASN1_DER_INTEGER: /* INTEGER */
061 list->type = ASN1_DER_INTEGER;
062 list->length = 1;
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063 list->data = calloc(1, sizeof(long));
064 if (list->data == NULL) { goto MEM_ERR; }
065
066 err = der_integer_decode(in, inlen, list->data);
067 if (err < 0) { goto DEC_ERR; }
068
069 len = der_integer_length(*((long *)list->data));
070 if (len == 0) { goto LEN_ERR; }
071 break;
072 case ASN1_DER_BITSTRING: /* BIT STRING */
073 list->type = ASN1_DER_BITSTRING;
074 list->length = (len-1)<<3;
075 list->data =
076 calloc(list->length, sizeof(unsigned char));
077 if (list->data == NULL) { goto MEM_ERR; }
078
079 err = der_bitstring_decode(in, inlen,
080 list->data,
081 &list->length);
082 if (err < 0) { goto DEC_ERR; }
083
084 len = der_bitstring_length(list->length);
085 if (len == 0) { goto LEN_ERR; }
086 break;

The length for BIT STRING is estimated as 8*(len–1), which is the maximum size
required. We subtract one because the payload includes the padding count byte.At most, we
waste seven bytes of memory by allocating only in multiples of eight.

087 case ASN1_DER_OCTETSTRING: /* OCTET STRING */
088 list->type = ASN1_DER_OCTETSTRING;
089 list->length = len;
090 list->data = calloc(list->length,
091 sizeof(unsigned char));
092 if (list->data == NULL) { goto MEM_ERR; }
093
094 err = der_octetstring_decode(in, inlen,
095 list->data,
096 &list->length);
097 if (err < 0) { goto DEC_ERR; }
098
099 len = der_octetstring_length(list->length);
100 if (len == 0) { goto LEN_ERR; }
101 break;
102 case ASN1_DER_NULL: /* NULL */
103 list->type = ASN1_DER_NULL;
104 list->length = 0;
105 if (in[1] != 0x00) { goto DEC_ERR; }
106 len = 2;
107 break;
108 case ASN1_DER_OID: /* OID */
109 list->type = ASN1_DER_OID;
110 list->length = len;
111 list->data = calloc(list->length,
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112 sizeof(unsigned long));
113 if (list->data == NULL) { goto MEM_ERR; }
114
115 err = der_oid_decode(in, inlen,
116 list->data,
117 &list->length);
118 if (err < 0) { goto DEC_ERR; }
119
120 len = der_oid_length(list->data, list->length);
121 if (len == 0) { goto LEN_ERR; }
122 break;

Similar as for the BIT STRING, we have to estimate the length here. In this case, we
use the fact that there cannot be more OID words than there are bytes of payload (the
smallest word encoding is one byte).The wasted memory here can be several words, which
for most circumstances will require to a trivial amount of storage.

The interested reader may want to throw a realloc() call in there to free up the unused
words.

123 case ASN1_DER_PRINTABLESTRING: /* PRINTABLE STRING */
124 list->type = ASN1_DER_PRINTABLESTRING;
125 list->length = len;
126 list->data = calloc(list->length,
127 sizeof(unsigned char));
128 if (list->data == NULL) { goto MEM_ERR; }
129
130 err = der_printablestring_decode(in, inlen,
131 list->data,
132 &list->length);
133 if (err < 0) { goto DEC_ERR; }
134
135 len = der_printablestring_length(list->data,
136 list->length);
137 if (len == 0) { goto LEN_ERR; }
138 break;
139 case ASN1_DER_IA5STRING: /* IA5 STRING */
140 list->type = ASN1_DER_IA5STRING;
141 list->length = len;
142 list->data = calloc(list->length,
143 sizeof(unsigned char));
144 if (list->data == NULL) { goto MEM_ERR; }
145
146 err = der_ia5string_decode(in, inlen,
147 list->data,
148 &list->length);
149 if (err < 0) { goto DEC_ERR; }
150
151 len = der_ia5string_length(list->data,
152 list->length);
153 if (len == 0) { goto LEN_ERR; }
154 break;
155 case ASN1_DER_UTCTIME: /* UTC TIME */
156 list->type = ASN1_DER_UTCTIME;

www.syngress.com

ASN.1 Encoding • Chapter 2 81

404_CRYPTO_02.qxd  10/27/06  3:40 PM  Page 81



157 list->length = 1;
158 list->data = calloc(1, sizeof(UTCTIME));
159 if (list->data == NULL) { goto MEM_ERR; }
160
161 err = der_utctime_decode(in, inlen, list->data);
162 if (err < 0) { goto DEC_ERR; }
163
164 len = der_utctime_length();
165 if (len == 0) { goto LEN_ERR; }
166 break;
167 case ASN1_DER_SEQUENCE: /* SEQUENCE */
168 list->type = ASN1_DER_SEQUENCE;
169 list->length = len;
170
171 /* we know the length of the objects in
172 the sequence, it's len bytes */
173 err = der_flexi_decode(in+2, len, &list->child);
174 if (err < 0) { goto DEC_ERR; }
175 list->child->parent = list;
176
177 /* len is the payload length, we have
178 to add the header+length */
179 len += 2;
180 break;
181 default:
182 /* invalid type, soft error */
183 inlen = 0;
184 len = 0;
185 break;
186 }
187 inlen -= len;
188 in += len;

When we encounter a type we do not recognize (line 181), we do not give a fatal error;
we simply reset the lengths, terminate the decoding, and exit. We have to set the payload
length to zero (line 184) to avoid having the subtraction of payload (line 187) going below
zero.

We use the der_*_length() function to compute the length of the decoded type and
store the value back into len. By time we get to the end (line 187), we know how much to
move the input pointer up by and decrease the remaining input length by.

189 }
190
191 /* we may have allocated one more than we need */
192 if (list->type == 0) {
193 tlist = list->prev;
194 free(list);
195 list = tlist;
196 list->next = NULL;
197 }
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At this point, we may have added one too many nodes to the list.This is determined by
having a type of zero, which is not a valid ASN.1 type. If this is the case, we get the previous
link, free the leaf node, and update the pointer (lines 193 through 196).

198
199 /* rewind */
200 while (list->prev) {
201 list = list->prev;
202 }
203
204 *out = list;
205 return 0;
206 MEM_ERR:
207 der_flexi_free(list);
208 return -3;
209 DEC_ERR:
210 der_flexi_free(list);
211 return -2;
212 LEN_ERR:
213 der_flexi_free(list);
214 return -1;
215 }

Putting It All Together
At this point, we have all the code we require to implement public key (PK) standards such
as PKCS or ANSI X9.62.The first thing we must master is working with SEQUENCEs. No
common PK standard will use the ASN.1 types (other than SEQUENCE) directly.

Building Lists
Essentially container ASN.1 type is an array of the asn1_list type. So let us examine how we
convert a simple container to code these routines can use.

RSAKey ::= SEQUENCE {
N INTEGER,
E INTEGER

}

First, we will begin with defining a list.

asn1_list RSAKey[2];

Next, we need two integers to hold the values. Keep in mind that these are the C long
type and not a BigNum as we actually require for secure RSA.This is for demonstration
purposes only.

long N, E;

Now we must actually assign the elements of the RSAKey.

RSAKey[0].type = ASN1_DER_INTEGER;
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RSAKey[0].length = 1;
RSAKey[0].data = &N;

This triplet of code is fairly awkward and makes ASN.1 coding a serious pain.A simpler
solution to this problem is to define a macro to assign the values in a single line of C.

asn1.h:
144 #define asn1_set(list, index, Type, Length, Data) \
145 do { \
146 asn1_list *ABC_list; \
147 int ABC_index; \
148 \
149 ABC_list = list; \
150 ABC_index = index; \
151 \
152 ABC_list[ABC_index].type = Type; \
153 ABC_list[ABC_index].length = Length; \
154 ABC_list[ABC_index].data = Data; \
155 } while (0);

The macro for those unfamiliar with the C preprocessor looks fairly indirect. First, we
make a copy of the list and index parameters.This allows them to be temporal. Consider the
invocation as follows.

asn1_set(mylist, i++, type, length, data);

If we did not first make a copy of the index, it would be different in every instance it
was used during the macro. Similarly, we could have

asn1_set(mylist++, 0, type, length, data);

The use of the do-while loop, allows us to use the macro as a single C statement. For
example:

if (x > 0)
asn1_set(mylist, x, type, length, data);

Now we can reconsider the RSAKey definition.

asn1_set(RSAKey, 0, ASN1_DER_INTEGER, 1, &N);
asn1_set(RSAKey, 1, ASN1_DER_INTEGER, 1, &E);

This is much more sensible and pleasant to the eyes.
Now suppose we have the RSA key with a modulus N=17*13=221 and E=7 and want

to encode this. First, we need a place to store the key.

unsigned char output[100];
unsigned char output_length;

Now we can encode the key. Let us put the entire example together.

asn1_list RSAKey[2];
unsigned char output[100];
unsigned char output_length;
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int err;
long N, E;

/* Set the key and list */
N = 221;
E = 7;
asn1_set(RSAKey, 0, ASN1_DER_INTEGER, 1, &N);
asn1_set(RSAKey, 1, ASN1_DER_INTEGER, 1, &E);

/* Encode it */
output_length = sizeof(output);
err = der_sequence_encode(&RSAKey, 2, output, &output_length);
if (err < 0) {

printf("SEQUENCE encoding failed: %d\n", err);
exit(EXIT_FAILURE);

}

printf("We encoded a SEQUENCE into %lu bytes\n", output_length);

At this point the array output[0..output_length – 1] contains the DER encoding of the
RSAKey SEQUENCE.

Nested Lists
Handling SEQUENCEs within a SEQUENCE is essentially an extension of what we
already know. Let us consider the following ASN.1 construction.

User := SEQUENCE {
Name PRINTABLE STRING,
Age INTEGER,
Credentials SEQUENCE {

passwdHash OCTET STRING
}

}

As before, we build two lists. Here is the complete example.

asn1_list User[3], Credentials;
unsigned char output[100];
unsigned char output_length;
int err;

long Age;
unsigned char Name[MAXLEN+1], passwdHash[HASHLEN];

/* build the first list */
asn1_set(User, 0, ASN1_DER_PRINTABLESTRING, strlen(Name), Name);
asn1_set(User, 1, ASN1_DER_INTEGER, 1, &Age);
asn1_set(User, 2, ASN1_DER_SEQUENCE, 1, &Credentials);

/* build second list */
asn1_set(Credentials, 0, ASN1_DER_OCTETSTRING, HASHLEN, passwdHash);

/* encode it */
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output_length = sizeof(output);
err = der_sequence_encode(User, 3, output, &output_length);
if (err < 0) { printf("Error encoding %d\n", err); exit(EXIT_FAILURE); }

When building the first list we pass a pointer to the second list (the third entry in the
User array).The corresponding “1” marked in the length field for the third entry is actually
the length of the second list.That is, if the Credentials list had two items we would see a two
in place of the one.

Note that we encode the entire construction by invoking the encoder once with the
User list.The encoder will follow the pointer to the second list and encode it in turn as
well.

Decoding Lists
Decoding a container is much the same as encoding except that where applicable the length
parameter is the size of the destination. Let us consider the following SEQUENCE.

User ::= SEQUENCE {
Name PRINTABLE STRING,
Age INTEGER,
Flags BIT STRING

}

For this SEQUENCE, we will require two unsigned char arrays and a long. Lets get
those out of the way.

long Age;
unsigned char Name[MAXNAMELEN+1], Flags[MAXFLAGSLEN];
asn1_list User[3];

Now we have to setup the list.
asn1_set(User, 0, ASN1_DER_PRINTABLESTRING, sizeof(Name)-1, Name);
asn1_set(User, 1, ASN1_DER_INTEGER, 1, &Age);
asn1_set(User, 2, ASN1_DER_BITSTRING, sizeof(Flags), Flags);

Note that we are using sizeof(Name)-1 and not just the size of the object.This allows us
to have a trailing NUL byte so that the C string functions can work on the data upon
decoding it.

Let us put this entire example together:

long Age;
unsigned char Name[MAXNAMELEN+1], Flags[MAXFLAGSLEN];
asn1_list User[3];
int err;

asn1_set(User, 0, ASN1_DER_PRINTABLESTRING, sizeof(Name)-1, Name);
asn1_set(User, 1, ASN1_DER_INTEGER, 1, &Age);
asn1_set(User, 2, ASN1_DER_BITSTRING, sizeof(Flags), Flags);

memset(Name, 0, sizeof(Name));
err = der_sequence_decode(input, input_len, &User, 3);
if (err < 0) {
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printf("Error decoding the sequence: %d\n", err);
exit(EXIT_FAILURE);

}

printf("Decoded the sequence\n");
printf("User Name[%lu] == [%s]\n", User[0].length, Name);
printf("Age == %ld\n", Age);

This example assumes that some array of unsigned char called input has been provided
and its length is input_len. Upon successful decoding, the program output will display the
user name and the age. For instance, the output may resemble the following.

Decoded the sequence
User Name[3] == [Tom]
Age == 24

As see the User array is updated for specific elements such as the STRING types.
User[0].length will hold the length of the decoded value. Note that in our example we first
memset the array to zero.This allows us to use the decoded array as a valid C string regard-
less of the length.

FlexiLists
As we discussed in the previous section the SEQUENCE decoder is not very amenable to
speculative encodings.The flexi decoder allows us to decode ASN.1 data without knowing
the order or even the types of the elements that were encoded.

While the flexi decoder allows for speculative decoding, it does not allow for speculative
parsing. What we are given by the decoder is simply a multi-way doubly linked list. Each
node of the list contains the ASN.1 type, its respective length parameter and a pointer (if
appropriate) to the decoding of the data (in a respective format).

The encodings do not tell us which element of the constructed type we are looking at.
For example, consider the following SEQUENCE.

RSAKey ::= SEQUENCE {
D INTEGER OPTIONAL,
E INTEGER
N INTEGER

}

In this structure, we can easily differentiate a public and private RSA key by the pres-
ence of the D INTEGER in the encoding. When we use the flexi decoder to process this
we will get two depths to the list.The first depth will contain just the SEQUENCE and the
child of that node will be a list of up to three items (see Figure 2.4).
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Figure 2.4 Organization of the Flexi Decoding of RSAKey

Suppose we store the outcome in MyKey such as the following:

asn1_flexi *MyKey;
der_flexi_decode(keyPacket, keyPacketLen, &MyKey);

In this instance, MyKey would point to the SEQUENCE node of the list. Its next and
prev pointers will be NULL and it will have a pointer to a child node.The child node will be
the “D” INTEGER, if it is present, and it will have a pointer to the “E” INTEGER through
the next pointer.

Given the MyKey pointer, we can move to the child node with the following code:

MyKey = MyKey->child;

We do not have to worry about losing the parent pointer as we can walk back to the
parent with the following code.

MyKey = MyKey->parent;

Note that only the first entry in the child list will have a parent pointer. If we walked to
the “E” INTEGER then we could not move directly to the parent:

MyKey = MyKey->child;
MyKey = MyKey->next; /* now we point to "E" */
MyKey = MyKey->parent; /* this is invalid */

Now how do we know if we have a private or public key? The simplest method in this
particular case is to count the number of children:

int x = 0;
while (MyKey->next) {

++x;
MyKey = MyKey->next;

}

If the x variable is two, it is a public key; otherwise, it is a private key. This approach
works well for simple OPTIONAL types but only if there is one OPTIONAL element.
Similarly, for CHOICE modifiers we cannot simply look at the length but need also the
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types and their contents.The simple answer is to walk the list and stop once you see a differ-
ence or characteristic that allows you to decide what you are looking at.

Fortunately for us, the only real PK based need for the flexi decoder is for X.509 certifi-
cates, which have many OPTIONAL components.As we will see later, the PKCS and ANSI
public key standards have uniquely decodable SEQUENCEs that do not require the flexi
decoder.

Other Providers
The code in this chapter is loosely based on that of the LibTomCrypt project. In fact, the
idea for the flexi decoder is taken directly from it where it is used by industry developers to
work with X.509 certificates.The reader is encouraged to use it where appropriate as it is a
more complete (and tested) ASN.1 implementation which also sports proper support for
INTEGER, SET and SET OF types.
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Q: What is ASN.1 and why do I care?

A: ASN.1 defines portable methods of storing and reading various common data types such
that various programs can interoperate. It is a benefit for customers and developers as it
allows third party tools to interpret data created by a host program. In many cases, it is a
highly valuable selling point for customers as it assures them their data is not part of a
proprietary encoding scheme. It avoids vendor lock-in problems.

Q: Why isn’t a format like XML used?

A: The standards were written nearly a decade before XML was even a twinkle in the Tim
Bray’s eye. Despite the fact that ASN.1 predates XML, it is still not the only reason that
ASN.1 is preferred over XML. XML is huge in comparison to its ASN.1 equivalent.
This makes it less well adapted to use in hardware where memory constraints are tight.
Since a lot of cryptography is done on devices with very little memory (smart-cards are
a good example of this), it makes sense to use a compact format. It’s funny that many
people are clamoring for a binary version of XML with the view to speeding up parsing
and reducing size when a perfectly good standard that meets these requirements has
been in place since the 80s.

Q: What standards define ASN.1?

A: The ITU-T X.680 and X.690 series of standards.

Q: Who uses ASN.1?

A: ASN.1 is part of the PKCS (#1 and #7 for example),ANSI X9.62, X9.63 and X.509
series of standards.

Q: What pre-built cryptographic libraries support ASN.1?

A: The OpenSSL and LibTomCrypt projects both support ASN.1 DER encoding and
decoding.The code presented in this book has been loosely based on that in the
LibTomCrypt library.The reader is encouraged to use it where possible as it is well inte-
grated into the rest of the LibTomCrypt library and also properly supports the
INTEGER type (as well as SET and SET OF types).
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The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in 
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. 
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Introduction
In this chapter, we begin to get into actual cryptography by studying one of the most crucial
but often hard to describe components of any modern cryptosystem: the random bit 
generator.

Many algorithms depend on being able to collect bits or, more collectively, numbers that
are difficult for an observer to guess or predict for the sake of security. For example, as we
shall see, the RSA algorithm requires two random primes to make the public key hard to
break. Similarly, protocols based on (say) symmetric ciphers require random symmetric keys
an attacker cannot learn. In essence, no cryptography can take place without random bits.
This is because our algorithms are public and only specific variables are private.Think of it
as solving linear equations: if I want to stop you from solving a system of four equations, I
have to make sure you only know at most three independent variables. While modern cryp-
tography is more complex than a simple linear system, the idea is the same.

Throughout this chapter, we refer to both random bit generators and random number
generators. For all intents and purposes, they are the same.That is, any bit generator can have
its bits concatenated to form a number, and any number can be split into at least one bit if
not more.

When we say random bit generator, we are usually talking about a deterministic algo-
rithm such as a Pseudo Random Number Generator (PRNG) also known as a
Deterministic Random Bit Generator (DRBG in NIST terms).These algorithms are deter-
ministic because they run as software or hardware (FSM) algorithms that follow a set of rules
accurately. On the face of it, this sounds rather contradictory to the concept of a random bit
generator to be deterministic. However, as it turns out, PRNGs are highly practical and pro-
vide real security guarantees in both theory and practice. On the upside, PRNGs are typi-
cally very fast, but this comes at a price.They require some outside source to seed them with
entropy.That is, some part of the PRNG deterministic state must be unpredictable to an out-
side observer.

This hole is where the random bit generators come into action.Their sole purpose is to
kick-start a PRNG so it can stretch the fixed size seed into a longer size string of random
bits. Often, we refer to this stretching as bit extraction.

Concept of Random 
We have debated the concept and existence of true randomness for many years. Something,
such as an event, that is random cannot be predicted with more probability than a given
model will allow.There has been a debate running throughout the ages on randomness.
Some have claimed that some events cannot be fully modeled without disturbing the state
(such as observing the spin of photons) and therefore can be random, while others claim at
some level all influential variables controlling an event can be modeled.The debate has
pretty much been resolved. Quantum mechanics has shown us that randomness does in fact
exist in the real world, and is a critical part of the rules that govern our universe. (For
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interest, the Bell Inequality gives us good reason to believe there are no “deeper” systems
that would explain the perceived randomness in the universe. Wikipedia is your friend.)

It is not an embellishment to say that the very reason the floor is solid is direct proof
that uncertainty exists in the universe. Does it ever strike you as odd that electrons are never
found sitting on the surface of the nucleus of the atom, despite the fact opposite charges
should attract? The reason for this is that there is a fundamental uncertainty in the universe.
Quantum theory says that if I know the position on an electron to a certain degree, I must
be uncertain of its momentum to some degree.

When you take this principle to its logical conclusion, you are able to justify the exis-
tence of a stable atom in the presence of attractive charges.The fact you are here to read this
chapter, as we are here to write it, is made possible by the fundamental uncertainty present
in the universe.

Wow, this is heavy stuff and we are only on the second page of this chapter. Do not
despair; the fact that there is real uncertainty in the world does not preclude us trying to
understand it in a scientific and well-contained way.

Claude Shannon gave us the tools to do this in his groundbreaking paper published in
1949. In it, he said that being uncertain of a result implied there was information to be had
in knowing it.This offends common sense, but it is easy to see why it is true.

Consider there’s a program that has printed a million “a”s to the screen. How sure are
you that the next letter from the program will be “a?” We would say that based on what
you’ve seen, the chances of the next letter being “a” are very high indeed. Of course, you
can’t be truly certain that the next letter is “a” until you have observed it. So, what would it
tell us if there was another “a?” Not a lot really; we already knew there was going to be an
“a” with very high probability.The amount of information that “a” contains, therefore, is not
very much.

These arguments lead into a concept called entropy or the uncertainty of an event—
rather complicated but trivial to explain. Consider a coin toss.The coin has two sides, and
given that the coin is symmetric through its center (when lying flat), you would expect it to
land on either face with a probability of 50%.The amount of entropy in this event is said to
be one bit, which comes from the equation E = –log2(p), or in this case –log2(0.5) = 1.This
is a bit simplistic; the amount of entropy in this event can be determined using a formula
derived by Bell Labs’ Claude Shannon in 1949.The event (the coin toss) can have a number
of outcomes (in this case, either heads or tails).The entropy associated with each outcome is
–log2(p)1, where p is the probability of that particular outcome.The overall entropy is just
the weighted average of the entropy of all the possible outcomes. Since there are two pos-
sible outcomes, and their entropy is the same, their average is simply E = –log2(0.5) = 1 bit.
Entropy in this case is another way of expressing uncertainty.That is, if you wrote down an
infinite stream of coin toss outcomes, the theory would tell us that you could not represent
the list of outcomes with anything less than one bit per toss on average.The reader is
encouraged to read up on Arithmetic Encoding to see how we can compress binary strings
that are biased.
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This, however, assumes that there are influences on the coin toss that we cannot predict
or model. In this case, it is actually not true. Given an average rotational speed and height, it
is possible to predict the coin toss with a probability higher than 50%.This does not mean
that the coin toss has zero entropy; in fact, even with a semi-accurate model it is likely still
very close to one bit per toss.The key concept here is how to model entropy.

So, what is “random?” People have probably written many philosophy papers on that
question. Being scientists, we find the best way to approach this is from the computer sci-
ence angle: a string of digits is random if there is no program shorter than it that can
describe its form.

This is called Kolmogorov complexity, and to cover this in depth here is beyond the
scope of this text.The interested reader should consult The Quest for Omega by G. J. Chaitin.
The e-book is available at www.arxiv.org/abs/math.HO/0404335.

What is in scope is how to create nondeterministic (from the software point of view)
random bit generators, which we shall see in the upcoming section. First, we have to deter-
mine how we can observe the entropy in a stream of events.

Measuring Entropy
The first thing we need to be able to do before we can construct a random bit generator is
have a method or methods that can estimate how much entropy we are actually generating
with every bit generated.This allows us to use carefully the RNG to seed a PRNG with the
assumption that it has some minimum amount of entropy in the state.

Note clearly that we said estimate, not determine.There are many known useful RNG
tests; however, there is no short list of ways of modeling a given subset of random bits.
Strictly speaking, for any bit sequence of length L bits, you would have to test all generators
of length L–1 bits or less to see if they can generate the sequence. If they can, then the L bits
actually have L–1 (or less) bits of entropy.

In fact, many RNG tests do not even count entropy, at least not directly. Instead, many
tests are simply simulations known as Monte Carlo simulations.They run a well-studied sim-
ulation using the RNG output at critical decision points to change the outcome. In addition
to simulations, there are predictors that observe RNG output bits and use that to try to sim-
ulate the events that are generating the bits.

It is often much easier to predict the output of a PRNGs than a block cipher or hash
doing the same job.The fact that PRNGS typically use fewer operations per byte than a
block cipher means there are less operations per byte to actually secure the information. It is
simplistic to say that this, in itself, is the cause of weakness, but this is how it can be under-
stood intuitively. Since PRNGS are often used to seed other cryptographic primitives, such
as block ciphers or message authentication codes, it is worth pointing out that someone who
breaks the PRNG may well be able to take down the rest of the system.

Various programs such as DIEHARD and ENT have surfaced on the Internet over the
years (DIEHARD being particularly popular—www.arxiv.org/abs/math.HO/0404335) that
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run a variety of simulations and predictors. While they are usually good at pointing out
flawed designs, they are not good at pointing out good ones.That is, an algorithm that passes
one, or even all, of these tests can still be flawed and insecure for cryptographic purposes.
That said, we shall not dismiss them outright and explore some basic tests that we can apply.

A few key tests are useful when designing a RNG.These are by no means an exhaustive
list of tests, but are sufficient to quickly filter out RNGs.

Bit Count
The “bit count” test simply counts the number of zeroes and ones. Ideally, you would expect
an even distribution over a large stream of bits.This test immediately rules out any RNG
that is biased toward one bit or another.

Word Count
Like the bit count, this test counts the number of k-bit words. Usually, this should be applied
for values of k from two through 16. Over a sufficiently large stream you should expect to
see any k-bit word occurring with a probability of 1/2k.This test rules out oscillations in the
RNG; for example, the stream 01010101… will pass the bit count but fail the word count
for k=2.The stream 001110001110… will pass both the bit count and for k=2, but fail at
k=3 and so on.

Gap Space Count
This test looks for the size of the gaps between the zero bits (or between the one bits
depending how you want to look at it). For example, the string 00 has a gap of zero, 010 has
a gap of one, and so on. Over a sufficiently large stream you would expect a gap of k bits to
occur with a probability of 1/2k+1.This test is designed to catch RNGs that latch (even for a
short period) to a given value after a clock period has finished.

Autocorrelation Test
This test tries to determine if a subset of bits is related to another subset from the same
string. Formally defined for continuous streams, it can be adopted for finite discrete signals as
well.The following equation defines the autocorrelation.

R(j) = ∑n xnxn-j

Where x is the signal being observed and R(j) is the autocorrelation coefficient for the lag j.
Before we get too far ahead of ourselves, let us examine some terminology we will use in
this section.Two items are correlated if they are more similar (related) than unlike. For
example, the strings 1111 and 1110 are similar, but by that token, so are 1111 and 0000, as
the second is just the exact opposite of the first.Two items are uncorrelated if they have
equal amounts of distinction and similarity. For example, the strings 1100 and 1010 are per-
fectly uncorrelated.
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In the discrete world where samples are bits and take on the values {0, 1}, we must
map them first to the values {–1, 1} before applying the transform. If we do not, the auto-
correlation function will tend toward zero for correlated samples (which are the exact 
opposites).

There is another more hardware friendly solution, which is to sum the XOR difference
of the two.The new autocorrelation function becomes

R(j) = ∑n xn XOR xn-j

This will tend toward n/2 for uncorrelated streams and toward 0 or n for correlated
streams.Applying this to a finite stream now becomes tricky. What are the samples values
below the zero index? The typical solution is to start summation from j onward and look to
have a summation close to (n–j)/2 instead.

autocorrelate.c:
001 #include <stdio.h>
002 #include <stdlib.h>
003 #include <time.h>
004 #include <math.h>
005 void printauto(int *bits, int size, int maxj)
006 {
007 int x, j, sum;
008 for (j = 1; j <= maxj; j++) {
009 for (x = j, sum = 0; x < size; x++) {
010 sum += (bits[x] ^ bits[x-j]);
011 }
012 printf("Lag[%4d] = %5d (expected %5d)\n",
013 j, sum, (size - j)/2);
014 }
015 }

This function prints the autocorrelation coefficients for an array of samples up to a
maximum lag. Let’s consider a simple biased PRNG.

l = 0;
for (x = 0; x < SIZE; x++) {

if (rand()&1) {
bits[x] = l;

} else {
l = bits[x] = rand()&1;

}
}

This generator will output the last bit with a probability of 50%, and otherwise will
output a random bit. Let’s examine the data through the autocorrelation test.

Lag[ 1] = 262638 (expected 524287)
Lag[ 2] = 393784 (expected 524287)
Lag[ 3] = 459840 (expected 524286)
Lag[ 4] = 492175 (expected 524286)
Lag[ 5] = 508232 (expected 524285)
Lag[ 6] = 515917 (expected 524285)
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Lag[ 7] = 520401 (expected 524284)
Lag[ 8] = 521771 (expected 524284)

This was over 1048576 samples (220). We can see that we are far from ideal in the first
eight lags listed. Now consider the test on just rand() & 1.

Lag[ 1] = 524999 (expected 524287)
Lag[ 2] = 525284 (expected 524287)
Lag[ 3] = 524638 (expected 524286)
Lag[ 4] = 525564 (expected 524286)
Lag[ 5] = 524480 (expected 524285)
Lag[ 6] = 523917 (expected 524285)
Lag[ 7] = 524692 (expected 524284)
Lag[ 8] = 524081 (expected 524284)

As we can see, the autocorrelation values are closer to the expected mean than before.
The conclusion from this is experiment would be that the former is a bad bit generator and
the latter is more appropriate. Keep in mind this test does not mean the latter is ideal for use
as a RNG.The rand() function from glibc is certainly not a secure PRNG and has a very
small internal state.This is a common mistake; do not make it.

One downside to this trivial implementation is that it requires a huge buffer and cannot
be run on the fly. In particular, it would be nice to run the test while the RNG is active to
ensure it does not start producing correlated outputs. It turns out a windowed correlation
test is fairly simple to implement as well.

wincor.c:
001 /* windowed autocorrelation */
002 #define MAXLAG 16
003 int window[MAXLAG], correlation[MAXLAG];
004
005 void wincor_add_bit(int bit)
006 {
007 int x;
008 /* compute lags */
009 for (x = 0; x < MAXLAG; x++) {
010 correlation[x] += window[x] ^ bit;
011 }
012
013 /* shift */
014 for (x = 0; x < MAXLAG-1; x++) {
015 window[x] = window[x + 1];
016 }
017 window[MAXLAG-1] = bit;
018 }

In this case, we defined 16 taps (MAXLAG), and this function will process one bit at a
time through the autocorrelation function. It does not output a result, but instead updates
the global correlation array.This is essentially a shift register with a parallel summation opera-
tion. It is actually well suited to both hardware implementation and SIMD software (espe-
cially with longer LAG values).This test functions best only on longer streams of bits.The
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default window will populate with zero bits, which may or may not correlate to the bits
being added. In general, avoid applying the autocorrelation test to strings fewer than at least
a couple thousand bits.

How Bad Can It Be?
In all the tests mentioned previously, you know the “correct” answer, but you won’t often get
it. For example, if you toss a perfect coin 20 times, you expect 10 heads. But what if you get
11, or only 9? Does that mean the coin was biased? In fact, of all the 220 (1048576) possible
(and equally likely) outcomes of your 20 coin tosses, only 184756, about 18%, actually have
exactly 10 heads.

Statistics texts can tell us just how (un)likely a particular set of output bits is, based on
the assumption that the generator is good. In practice, though, a little common sense will
often be enough; while even 8 heads isn’t that unlikely, 2 is definitely unexpected, and 20
pretty much convinces you it was a two-headed coin.The more data you use for the test, the
more reliable your intuition should be.

RNG Design
Most RNGs in practice are designed around some event gathering process that follows the
pipeline described in Figure 3.1.There are no real standards for RNG design, since the stan-
dards bodies tend to focus more on the deterministic side (e.g., PRNGs). Several classic
RNGs such as the Yarrow and Fortuna designs (which we will cover later) are flexible and
designed by some of the best cryptographers in the field. However, what we truly want is a
simple yet effective RNG.

For this task, we will borrow from the Linux kernel RNG. It is a particularly good
model, as it is integrated inside the kernel as opposed to an external entity sitting in user
space.As such, it has to behave itself with respect to stack, heap, and CPU time resource
usage.

Figure 3.1 RNG Flow Diagram
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The typical RNG workflow can be broken into the following discrete steps: events,
gathering, processing, and output feedback. Not all RNGs follow this overall design concept,
but it is fairly common.

The first misconception people tend to have is to assume that RNGs feed off some
random source like interrupt timers and return output directly. In reality, most entropy
sources are, at least from an information theoretic viewpoint, less than ideal.The goal of the
RNG is to extract the entropy from the input events (the seed data) and return only as many
random bits to the caller as entropy bits with which it had been seeded.This is actually the
only key difference in practice between an RNG and a PRNG.

An RNG also differs from a PRNG in that it is supposed to be fed constantly seeding
entropy.A PRNG is meant to be seeded once (or seldom) and then outputs many more bits
than the entropy of its internal state.This key difference limits the use of an RNG in situa-
tions where seeding events are hard to come by or are of low entropy.

RNG Events
An RNG event is what the RNG will be observing to try to extract entropy from.They are
events in systems that do not occur with highly predictable intervals or states.The goal of
the RNG is then to capture the event, gather the entropy available, and pass it on to be pro-
cessed into the RNG internal state.

Events come in all shapes and sizes. What events you use for an RNG depends highly
on for what the platform is being developed.The first low-hanging fruit in terms of a
desktop or server platform are hardware interrupts, such as those caused by keyboard, mouse,
timer (drift), network, and storage devices. Some, if not all, of these are available on most
desktop and server platforms in one form of another. Even on embedded platforms with
network connections, they are readily available.

Other typical sources are timer skews, analogue-to-digital conversion noise, and diode
leakage. Let us first consider the desktop and server platforms.

Hardware Interrupts
In virtually all platforms with hardware interrupts, the process of triggering an interrupt is
fairly consistent. In devices capable of asserting an interrupt, they raise a signal (usually a
dedicated pin) that a controller (such as the Programmable Interrupt Controller (PIC))
detects, prioritizes, and then signals the processor.The processor detects the interrupt, stops
processing the current task, and swaps to a kernel handler, which then acknowledges the
interrupt and processes the event.After handling the event the interrupt handler returns con-
trol to the interrupted task and processing resumes as normal.

It is inside the handler where we will observe and gather the entropy from the event.
This additional step raises a concern, or it should raise a concern for most developers, since
the latency of the interrupt handler must be minimal to maintain system performance. If a 1
kHz timer interrupt takes 10,000 cycles to process, it is effectively stealing 10,000,000 cycles
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every second from the users’ tasks (that is, dropping 10 MHz off your processor’s speed).
Interrupts have to be fast, which implies that what we do to “gather” the entropy must be
trivial, perhaps at most a memory copy.This is why there are distinct gather and process steps
in the RNG construction.The processing will occur later, usually as a result of a read from
the RNG from a user task.

The first piece of entropy we can gather from the interrupt handler is which interrupt
this is; that (say) a timer interrupt occurred is not highly uncertain, that it occurred between
(say) two different interrupts is, especially in systems under load. Note that timers are tricky
to use in RNG construction, which we shall cover shortly.

The next piece of entropy is the data associated with event. For example, for a keyboard
interrupt the actual key pressed, for a network interrupt the frame, for a mouse interrupt the
co-ordinates or input stream, and so on. (Clearly, copying entire frames on systems under
load would be a significant performance bottleneck. Some level of filtering has to take place
here.)

The last useful piece of entropy is the capturing of a high-resolution free running
counter.This is extremely useful for systems where the load is not high enough for combi-
nations of interrupts to have enough entropy. For example, that a network interrupt
occurred may not have a lot of entropy.The exact clock tick at which it occurred can be in
doubt and therefore have entropy.This is particularly practical where the clock being read is
free running and not tied to the task scheduling or interrupt scheduling process. On x86
processors, the RDTSC instruction can be used for this process as it is essentially a very
high-precision free running counter not affected by bus timing, device timing, or even the
processor’s instruction flow.This last source of entropy is a form of timer skew, which we
shall cover in the next section.

WARNING

It is useful for cryptographic purposes to include a high-resolution timer as part
of the event to increase the entropy collected. However, on certain platforms
capturing the timer can add significant instruction cycle penalties to the pro-
cess.

On the x86 Intel and AMD platforms, the RDTSC instruction can take from a
dozen cycles to a hundred cycles (depending on model and processor state).
RDTSC is also a serialization operation, which means the processor must first
retire all opcodes before the count is read. It is also very likely atomic on most
processors, which means the processor cannot be interrupted.

In the grand scheme of things, a 100 cycle spent is not horrible depending
on the frequency of the interrupt. A keyboard interrupt may trigger ~300 times
per minute; at 2 GHz, this would mean the user loses 0.00025 milliseconds per
second of CPU time to calling the RDTSC instruction. 
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TIP

On certain platforms, such as the PowerPC found in G3 and G4 Apple com-
puters, the CPU timer is actually just post-scaled off the bus timer. All other
devices connected to the FSB and off the Northbridge use the bus timer. In
these platforms, tying the CPU timer in along with interrupts is not a bad idea;
it simply is not specifically a good thing either. That is, it won’t hurt, but it also
may not help.

All three pieces of information alone may yield very little entropy, but together will usu-
ally have a nonzero amount of entropy sufficient for gathering and further processing.

Timer Skew
Timer skew occurs when two or more circuits are not phase locked; they may oscillate at the
same frequency, but the start and stop of a period may shift depending on many factors such
as voltage and temperature, to name two. In digital equipment, this usually is combated with
the use of reducing the number of distinct clocks, PLL devices, and self-clocking (such as the
HyperTransport bus).

In software, it is usually hard to come by timers that are distinct and not locked to one
another. For example, the PCI clock should be in sync with every device on the PCI bus. It
should also be locked to that of the Southbridge that connects to the PCI controllers, and
so on.

In the x86 world, it turns out there is at least one sufficiently useful (albeit slow) source.
Yet again, the RDTSC instruction is used.The processor’s timer, at least for Intel and AMD,
is not directly tied to the PIT or ACPI timers. Entropy therefore can be extracted with a
fairly simple loop.

timer_bit.c:
001 #include <signal.h>
002 #include <stdio.h>
003
004 volatile int x, quit, capture;
005 void sighandle(int signo) { capture = x; quit = 1; }
006 int main(void)
007 {
008 int y;
009 signal(SIGALRM, sighandle);
010 for (y = 0; y < 16; y++) {
011 quit = 0;
012 alarm(1);
013 while (!quit) { x ^= 1; }
014 printf("%d", capture);
015 fflush(stdout);
016 }
017 printf("\n");
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018 return 0;
019 }

This example displays 16 bits and then returns to the shell. In this example, the
XOR’ing of the x variable with one produces a high frequency clock oscillating between 0
and 1 as fast as the processor can decode, schedule, execute, and retire the operation.The
exact frequency of this clock for a given one-second period depends on many factors,
including cache contents, other interrupts, other tasks pre-empting this task, and where the
processor is in executing the loop when the alarm signals.

On the x86 platform, the while loop would essentially resemble

top:
mov eax, [x]
xor eax, 1
mov [x], eax
mov eax, [quit]
test eax,eax
jz top

At first, it may seem odd that the compiler would produce three opcodes for the XOR
operation when a single XOR with a memory operand would suffice. However, the “x ^=

1” operation actually defines three atomic operations since x is volatile, a load, an XOR, and
a store. From the program’s point of view, even with a signal by time we exit the while loop
the entire XOR statement has executed.This is why the signal handler will capture the value
of x before setting the quit flag.

The interrupt (or in this case a signal) can stop the program flow before any one of the
instructions. Only one of them actually updates the value of x in memory where the signal
handler can see it. Figure 3.2 shows some sample outputs produced on an Opteron 
workstation.

Figure 3.2 Sample Output of the timer_bit Routine

0010001010111010
0101000110111100
1000101110111111

If we continued, we would likely see that there is some form of bias, but at the very
least, the entropy is not zero. One problem, however, is that this generator is extremely slow.
It takes one second per bit, and the entropy per output is likely nowhere close to one bit per
bit.A more conservative estimate would be that there is at most 0.1 bits of entropy per bit
output.This means that for a 128-bit sequence, it would take 1280 seconds, or nearly 22
minutes.

One solution would be to decrease the length of the delay on the alarm. However, if we
sample for too short a period the likelihood of a frequency shift will be decreased, lowering
the entropy of the output.That is, it is more likely that two free running counters remain in
synchronization for a shorter period of time than a longer period of time.
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Fine tuning the delay is beyond the goal of this text. Every platform, even in the x86
world, and every implementation is different.The power supply, location, and quality of the
onboard components will affect how much and how often phase lock between clocks is lost.

In hardware, such situations can be recreated for profit but are typically hard to incorpo-
rate.Two clocks, fed from the same power source (or rail), will be exposed to nearly the same
voltage provided they are of the same design and have equal length power traces. In effect,
you would not expect them to be in phase lock, but would also not expect them to experi-
ence a large amount of drift, certainly over a short period of time. It is true that no two
clocks will be exactly the same; however, for the purposes of an RNG they will most likely
be similar enough that any uncertainty in their states is far too little to be useful. Hardware
clocks must be fed from different power rails, such as two distinct batteries.This alone makes
them hard to incorporate on a cost basis.

The most practical form of this entropy collection would be with interrupts alongside
with a high-resolution free running timer. Even the regularly scheduled system timer inter-
rupt should be gathered with this high precision timer.

Analogue to Digital Errors
Analogue to Digital converts (ADC) capture an input waveform and then quantize and digi-
tize the signal.The result is usually a Pulse Code Modulation stream where groups of bits
represent the signal strength at a discrete moment in time.These are typically found in
soundcards as microphone or line-in components, on TV tuner decoders, and in wireless
radio devices.

As in the case of the timer skews, we are trying to exploit any otherwise perceivable
failings in the circuit to extract entropy.The most obvious source is the least significant bit of
the samples, which can settle on one value or another depending on when the sample as
latched, the comparative voltage going to the ADC, and other environmental noises. In fact,
timer skew (signaling when to latch the sample) can add entropy to the retrieved samples.

As an experiment, consider playing a CD and recording the output from a microphone
while sitting in a properly isolated sound studio.The chances are very high that the two bit
streams will not agree exactly.The cross-correlation between the two will be very strong,
especially if the equipment is of high quality. However, even in the best of situations there is
still limited entropy to be had.

Another experiment that is easier to attempt is to record on your desktop with (or
without) a microphone attached the ambient noise where your machine is located. Even
without a microphone, the sound codec on a Tyan 2877 will detect low levels of noise
through the ADC.The samples are extremely small, but even in this extreme case there is
entropy to be gathered. Ideally, it is best if a recording device such as a microphone is
attached so it can capture environmental ambient noise as well.

In practice,ADCs are harder to use in desktop and server setups.They are more likely to
be available in custom embedded designs where such components can be used without con-
flicting with the user. For example, if your OS started capturing audio while you were trying
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to use the sound card, it may be bothersome. In terms of the data we wish to gather, it is
only the least significant bit.This reduces the storage requirement of the gathering process
significantly.

RNG Data Gathering
Now that we know a few sources where entropy is to be had, we must design a quick way
of collecting it.The goal of the gathering step is to reduce the latency of the event stage
such that interrupts are serviced in a reasonably well controlled amount of time.

Effectively, the gathering stage collects entropy and feeds it to the processing stages when
not servicing an interrupt. We are pushing when we have to do something meaningful with
the entropy not removing the step altogether.

The logical first step is to have a block of memory pre-allocated in which we can dump
the data. However, this yields a new problem.The block of memory will be a fixed size,
which means that when the block is full, new inputs must either be ignored or the block
must be sent to processing. Simply dropping new (or older) events to ensure the buffer is not
overflowed is not an option.

An attacker who knows that entropy can be discarded will simply try to trigger a series
of low entropy events to ensure the collected data is of low quality.The Linux kernel
approaches this problem by using a two-stage processing algorithm. In the first stage, they
mix the entropy with an entropy preserving Linear Feedback Shift Register (LFSR). An
LFSR is effectively a PRNG device that produces outputs as a linear combination of its
internal state. (Why use an LFSR? Suppose we just XORed the bits that came off the
devices and there was a bias.The bias would tend to collect on distinct bits in the dumping
area.The LFSR, while not perfect, is quick way to make sure the bias is spread across the
memory range.) In the Linux kernel, they step the LFSR but instead of just updating the
state of the LFSR with a linear combination of itself, they XOR in bits from the events
gathered.

The XOR operation is particularly useful for this, as it is what is known as entropy pre-
serving, or simply put, a balanced operation. Obviously, your entropy cannot exceed the size
of the state. However, if the entropy of the state is full, it cannot be decreased regardless of
the input. For example, consider the One Time Pad (OTP). In an OTP, even if the plaintext
is of very low entropy such as English text, the output ciphertext will have exactly one bit of
entropy per bit.
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LFSR Basics
LFSRs are also particularly useful for this step as they are fast to implement.The basic LFSR
is composed of an L-bit register that is shifted once and the lost bit is XOR’ed against select
bits of the shifted register.The bits chosen are known as “tap bits”. For example,

unsigned long clock_lfsr(unsigned long state)
{

return (state >> 1) ^ ((state & 1) ? 0x800000C5 : 0x00);
}

This function produces a 32-bit LFSR with a tap pattern 0x800000C5 (bits 31, 7, 6, 2,
and 0). Now, to shift in RNG data we could simply do the following,

unsigned long feed_lfsr(unsigned long state, int seed_bit)
{

state ^= seed_bit;
return clock_lfsr(state);

}

This function would be called for every bit in the gathering block until it is empty.As
the LFSR is entropy preserving, at most this construction will yield 32 bits of entropy in the
state regardless of how many seed bits you feed—far too little to be of any cryptographic
significance and must be added as part of a larger pool.

Table-based LFSRs
Clocking an LFSR one bit at a time is a very slow operation when adding several bytes. It is
far too slow for servicing an interrupt. It turns out we do not have to clock LFSRs one bit a
time. In fact, we can step them any number of bits, and in particular, with lookup tables the
entire operation can be done without branches (the test on the LSB). Strictly speaking, we
could use an LFSR over a different field such as extension fields of the form GF(pk)m[x].
However, these are out of the scope of this book so we shall cautiously avoid them.

The most useful quantity to clock by is by eight bits, which allows us to merge a byte of
seed data a time. It also keeps the table size small at one kilobyte.

lfsr32.c:

001 static unsigned long shiftab[256];
002 unsigned long step_one(unsigned long state)
003 {
004 return (state >> 1) ^ ((state & 1) ? 0x800000C5 : 0x00);
005 }

This is our familiar 32-bit step function which clocks the LFSR once.

007 void make_tab(void)
008 {
009 unsigned long x, y, state;
010
011 /* step through all 8-bit sequences */

www.syngress.com

Random Number Generation • Chapter 3 105

404_CRYPTO_03.qxd  10/30/06  12:48 PM  Page 105



012 for (x = 0; x < 256; x++) {
013 state = x;
014 /* clock it 8 times */
015 for (y = 0; y < 8; y++) {
016 state = step_one(state);
017 }
018 /* store it */
019 shiftab[x] = state;
020 }
021 }

This function creates the 256 entry table shiftab. We run through all 256 lower eight bits
and clock the register eight times.The final product of this (line 19) is what we would have
XORed against the register.

023 /* clock the LFSR 8 times */
024 unsigned long step_eight(unsigned long state)
025 {
026 return (state >> 8) ^ shiftab[state & 0xFF];
027 }
028
029 /* seed 8 bits of entropy at once */
030 unsigned long feed_eight(unsigned long state,
031 unsigned char seed)
032 {
033 state ^= seed;
034 return step_eight(state);
035 }

The first function (line 24) steps the LFSR eight times with no more than a shift,
lookup, and an XOR. In practice, this is actually more than eight times faster, as we are
moving the conditional XOR from the code path.

The second function (line 30) seeds the LFSR with eight bits in a single function call. It
would be exactly equivalent to feeding one bit (from least significant to most significant)
with a single stepping function.

037 #include <stdio.h>
038 #include <stdlib.h>
039 #include <time.h>
040 int main(void)
041 {
042 unsigned long x, state, v;
043
044 make_tab();
045 srand(time(NULL));
046 v = rand();
047
048 state = v;
049 for (x = 0; x < 8; x++) state = step_one(state);
050 printf("%08lx stepped eight times: %08lx\n", v, state);
051
052 state = step_eight(v);
053 printf("%08lx stepped eight times: %08lx\n", v, state);
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054 return 0;
055 }

If you don’t believe this trick works, consider this demo program over many runs. Now
that we have a more efficient way of updating an LFSR, we can proceed to making it larger.

Large LFSR Implementation
Ideally, from an implementation point of view, you want the LFSR to have two qualities: be
short and have very few taps.The shorter the LFSR, the quicker the shift is and the smaller
the tables have to be.Additionally, if there are few taps, most of the table will contain zero
bits and we can compress it.

However, from a security point of view we want the exact opposite.A larger LFSR can
contain more entropy, and the higher number of taps the more widespread the entropy will
be in the register.The job of a cryptographer is to know how and where to draw the line
between implementation efficiency and security properties.

In the Linux kernel, they use a large LFSR to mix entropy before sending it on for
cryptographic processing.This yields several pools that occupy space and pollute the pro-
cessor’s data cache. Our approach to this is much simpler and just as effective. Instead of
having a large LFSR, we will stick with the small 32-bit LFSR and forward it to the pro-
cessing stage periodically.The actual step of adding the LFSR seed to the processing pool
will be as trivial as possible to keep the latency low.

RNG Processing and Output
The purpose of the RNG processing step is to take the seed data and turn it into something
you can emit to a caller without compromising the internal state of the RNG.At this point,
we’ve only linearly mixed all of our input entropy into the processing block. If we simply
handed this over to a caller, they could solve the linear equations for the LFSR and know what
events are going on inside the kernel. (Strictly speaking, if the entropy of the pool is the size of
the pool this is not a problem. However, in practice this will not always be the case.)

The usual trick for the processing stage is to use a cryptographic one-way hash function
to take the seed data and “churn” it into an RNG state from which entropy can be derived.
In our construction, we will use the SHA-256 hash function, as it is fairly large and fairly
efficient.

The first part of the processing stage is mixing the seed entropy from the gathering
stage. We note that the output of SHA-256 is effectively eight 32-bit words. Our processing
pool is therefore 256 bits as well. We will use a round-robin process of XOR’ing the 32-bit
LFSR seed data into one of the eight words of the state. We must collect at least eight words
(but possibly more will arrive) from the gathering stage before we can churn the state to
produce output.

Actually churning the data is fairly simple. We first XOR in a count of how many times
the churn function has been called into the first word of the state.This prevents the RNG
from falling into fixed points when used in nonblocking mode (as we will cover briefly).
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Next, we append the first 23 bytes of the current RNG pool data and hash the 55-byte
string to form the new 256-bit entropy pool from which a caller can read to get random
bytes.The hash output is then XOR’ed against the 256-bit gather state to help prevent
backtracking attacks.

The first odd thing about this is the use of a churn counter. One mode for the RNG to
work in is known as “non-blocking mode.” In this mode, we act like a PRNG rather than as
an RNG. When the pool is empty, we do not wait for another eight words from the gath-
ering stage; we simply re-churn the existing state, pool, and churn counter.The counter
ensures the input to the hash is unique in every churning, preventing fixed points and short
cycles. (A fixed point occurs when the output of the hash is equal to the input of the hash,
and a short cycle occurs when a collision is found. Both are extremely unlikely to occur, but
the cost of avoiding them is so trivial that it is a good safety measure.)

Another oddity is that we only use 23 bytes of the pool instead of all 32. In theory, there
is no reason why we cannot use all 32.This choice is a performance concern more than any
other. SHA-256 operates (see Chapter 5,“Hash Functions,” for more details) on blocks of 64
bytes at once.A message being hashed is always padded by the hash function with a 0x80
byte followed by the 64-bit encoding of the length of the message.This is a technique
known as MD-Strengthening.All we care about are the lengths. Had we used the full 64
bytes, the message would be padded with the nine bytes and require two blocks (of 64 bytes)
to be hashed to create the output. Instead, by using 32 bytes of state and 23 bytes of the
pool, the 9 bytes of padding fits in one block, which doubles the performance.

You may wonder why we include bytes from the previous output cycle at all.After all,
they potentially are given to an attacker to observe.The reason is a matter of more practical
security than theoretic. Most RNG reads will be to private buffers for things like RSA key
generation or symmetric key selection.The output can still contain entropy.The operation of
including it is also free since the SHA-256 hash would have just filled the 23 bytes with
zeros. In essence, it does not hurt and can in some circumstances help. Clearly, you still need
a fresh source of entropy to use this RNG securely. Recycling the output of the hash does
not add to the entropy, it only helps prevent degradation.

Let us put this all together now:

rng.c:
001 /* our SHA256 function we need */
002 void sha256_memory(const unsigned char *in, unsigned long len,
003 unsigned char *out);
004
005 /* the LFSR table */
006 static const unsigned long shiftab[256] = {
007 0x00000000, 0x1700001c, 0x2e000038, 0x39000024, 0x5c000070,
008 0x4b00006c, 0x72000048, 0x65000054, 0xb80000e0, 0xaf0000fc,
009 0x960000d8, 0x810000c4, 0xe4000090, 0xf300008c, 0xca0000a8,
010 0xdd0000b4, 0x7000004b, 0x67000057, 0x5e000073, 0x4900006f,
<snip>
056 0x9b0000d3, 0xa20000f7, 0xb50000eb, 0x6800005f, 0x7f000043,
057 0x46000067, 0x5100007b, 0x3400002f, 0x23000033, 0x1a000017,
058 0x0d00000b
059 };
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This is the table for the 32-bit LFSR with the taps 0x800000C5. We have trimmed the
listing to save space.The full listing is available online.

061 /* portably load and store 32-bit quantities as bytes */
062 #define STORE32L(x, y) \
063 { (y)[3] = (unsigned char)(((x)>>24)&255); \
064 (y)[2] = (unsigned char)(((x)>>16)&255); \
065 (y)[1] = (unsigned char)(((x)>>8)&255); \
066 (y)[0] = (unsigned char)((x)&255); }
067
068 #define LOAD32L(x, y) \
069 { x = ((unsigned long)((y)[3] & 255)<<24) | \
070 ((unsigned long)((y)[2] & 255)<<16) | \
071 ((unsigned long)((y)[1] & 255)<<8) | \
072 ((unsigned long)((y)[0] & 255)); }

These two macros are new to us, but will come up more and more in subsequent chap-
ters.These macros store and load little endian 32-bit data (resp.) in a portable fashion.This
allows us to avoid compatibility issues between platforms.

074 /* our RNG state */
075 static unsigned long LFSR, state[8], word_count,
076 bit_count, churn_count;

This is the RNG internal state. LFSR is the current 32-bit word being accumulated.
state is the array of 32-bit words that forms the gathering pool of entropy. word_count counts
the number of words that have been added to the state from the LFSR. bit_count counts the
number of bits that have been added to the LFSR, and churn_count counts the number of
times the churn function has been called.

The bit_count variable is interpreted as a .4 fixed point encoded value.This means that
we split the integer into two parts: a 28-bit (on 32-bit platforms, 60 bit on 64-bit platforms)
integer and a 4-bit fraction.The value of bit_count literally equates to (bit_count >> 4) +
(bit_count/16.0) using C syntax.This allows us to add fractions of bits of entropy to the
pool.

For example, a mouse interrupt may occur, and we add the X,Y buttons and scroll posi-
tions to the RNG. We may say all of them have 1 bit of entropy or 0.25 bits per sample fed
to the RNG. So, we pass 0.25 * 16 = 4 as the entropy count.

078 /* pool the RNG data comes out of */
079 static unsigned char pool[32];
080 static unsigned long pool_len, pool_idx;

This is the pool state from the RNG. It contains the data that is to be returned to the
caller.The pool array holds up to 32 bytes of RNG output, pool_len indicates how many bytes
are left, and pool_idx indicates the next byte to be read from the array.

082 /* add a byte of entropy to the RNG */
083 void rng_add_byte(unsigned char seed, unsigned entropy)
084 {
085 /* update the LFSR */
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086 LFSR ^= seed;
087 LFSR = (LFSR >> 8) ^ shiftab[LFSR & 0xFF];
088
089 /* credit the bits */
090 bit_count += entropy;
091
092 /* we use a .4 fixed point representation for entropy */
093 if (bit_count >= (32 << 4)) {
094 state[word_count++ & 7] ^= LFSR;
095 bit_count = 0;
096 }
097 }

This function adds a byte of entropy from some event to the RNG state. First, we mix
in the entropy (line 86) and update the LFSR (line 87). Next, we credit the entropy (line 90)
and then check if we can add this LFSR word to the state (line 93). If the entropy count is
equal to or greater than 32 bits, we perform the mixing.

099 static void rng_churn_data(void)
100 {
101 unsigned char buf[64];
102 unsigned long x, y;
103
104 /* update churn count and mix in */
105 state[0] ^= churn_count++;
106
107 /* store the state */
108 for (x = 0; x < 8; x++) {
109 STORE32L(state[x], buf + (x << 3));
110 }
111
112 /* copy the output pool as well (only 23 bytes) */
113 for (x = 0; x < 23; x++) {
114 buf[x+32] = pool[x];
115 }

At this point, the local array buf contains 55 bytes of data to be hashed. We recall from
earlier that we chose 55 bytes to make this routine as efficient as possible.

117 /* hash it */
118 sha256_memory(buf, 55, pool);

Here we invoke the SHA-256 hash, which hashes the 55 bytes of data in the buf array
and stores the 32-byte digest in the pool array. Do not worry too much about how SHA-256
works at this stage.

120 /* mix the output directly into the state */
121 for (x = 0; x < 8; x++) {
122 LOAD32L(y, pool + (x << 3)); state[x] ^= y;
123 }

Note that we are XOR’ing the hash output against the state and not replacing it.This
helps prevent backtracking attacks.That is, if we simply left the state as is, an attacker who
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can determine the state from the output can run the PRNG backward or forward.This is
less of a problem if the RNG is used in blocking mode.

124
125 /* reset states */
126 pool_len = 32;
127 pool_idx = 0;
128 word_count = 0;
129 }
130
131 unsigned long rng_read(unsigned char *out,
132 unsigned long len,
133 int block)
134 {
135 unsigned long x, y;
136
137 x = 0;
138 while (len) {
139 /* can we read? */
140 if (pool_len > 0) {
141 /* copy upto pool_len bytes */
142 for (y = 0; y < pool_len && y < len; y++) {
143 *out++ = pool[pool_idx++];
144 }
145 pool_len -= y;
146 len -= y;
147 x += y;
148 } else {
149 /* can we churn? (or are non-blocking?) */
150 if (word_count >= 8 || !block) {
151 rng_churn_data();
152 } else {
153 /* we can't so lets return */
154 return x;
155 }
156 }
157 }
158 return x;
159 }

The read function rng_read() is what a caller would use to return random bytes from the
RNG system. It can operate in one of two modes depending on the block argument. If it is
nonzero, the function acts like a RNG and only reads as many bytes as the pool has to offer.
Unlike a true blocking function, it will return partial reads instead of waiting to fulfill the read.
The caller would have to loop if they required traditional blocking functionality.This flexibility
is usually a source of errors, as callers do not check the return value of the function.
Unfortunately, even an error code returned to the caller would not be noticed unless you sig-
nificantly altered the code flow of the program (e.g., terminate the application).

If the block variable is zero, the function behaves like a PRNG and will rechurn the
existing state and pool regardless of the amount of additional entropy. Provided the state has

www.syngress.com

Random Number Generation • Chapter 3 111

404_CRYPTO_03.qxd  10/30/06  12:48 PM  Page 111



enough entropy in it, running it as a PRNG for a modest amount of time should be for all
purposes just like running a proper RNG.

WARNING

The RNG presented in this chapter is not thread safe, but is at least real-time
compatible. This is particularly important to note as it cannot be directly
plugged into a kernel without causing havoc.

The functions rng_add_byte() and rng_read() require locks to prevent more
than one caller from being inside the function. The trivial way to solve this is to
use a mutex locking device. However, keep in mind in real-time platforms you
may have to drop rng_add_byte() calls if the mutex is locked to keep latency at
a minimum.

TIP

If you ran a RNG event trapping system based on the rng_add_byte() mecha-
nism alone, the state could have been fed more than 256 bits of entropy and
you would never have a way to get at it.

A simple solution is to have a background task that calls rng_read() and
buffers the data in a larger buffer from which callers can read from. This allows
the system to buffer a useful amount of entropy beyond just 32 bytes. Most
cryptographic tasks only require a couple hundred bytes of RNG data at most. A
four-kilobyte buffer would be more than enough to keep things moving
smoothly.

RNG Estimation
At this point, we know what to gather, how to process it, and how to produce output. What
we need now are sources of entropy trapped and a conservative estimate of their entropy. It
is important to understand the model for each source to be able to extract entropy from it
efficiently. For all of our sources we will feed the interrupt (or device ID) and the least sig-
nificant byte of a high precision timer to the RNG.After those, we will feed a list of other
pieces of data depending on the type of interrupt.

Let us begin with user input devices.

www.syngress.com

112 Chapter 3 • Random Number Generation

404_CRYPTO_03.qxd  10/30/06  12:48 PM  Page 112



Keyboard and Mouse
The keyboard is fairly easy to trap. We simply want the keyboard scan codes and will feed
them to the RNG as a whole. For most platforms, we can assume that scan codes are at most
16 bits long.Adjust accordingly to suit your platform. In the PC world, the keyboard con-
troller sends one byte if the key pressed was one of the typical alphanumeric characters.

When a less frequent key is pressed such as the function keys, arrow keys, or keys on the
number pad, the keyboard controller will send two bytes.At the very least, we can assume
the least significant byte of the scan code will contain something and upper may not.

In English text, the average character has about 1.3 bits of entropy, taking into account
key repeats and other “common” sequences; the lower eight bits of the scan code will likely
contain at least 0.5 bits of entropy.The upper eight bits is likely to be zero, so its entropy is
estimated at a mere 1/16 bits. Similarly, the interrupt code and high-resolution timer source
are given 1/16 bits each as well.

rng_src.c:
004 /* KEYBOARD */
005 void rng_keyboard(int INT, unsigned scancode, unsigned hrt)
006 {
007 rng_add_byte(INT, 1); /* 1/16 bits */
008 rng_add_byte(scancode & 0xFF, 8); /* 1/2 bits */
009 rng_add_byte((scancode >> 8) & 0xFF, 1); /* 1/16 bits */
010 rng_add_byte(hrt, 1); /* timer */
011 }

This code is callable from a keyboard, which should pass the interrupt number (or
device ID), scancode, and the least significant byte of a high resolution timer. Obviously,
where PC AT scan codes are not being used the logic should be changed appropriately.A
rough guide is to take the average entropy per character in the host language and divide it
by at least two.

For the mouse, we basically use the same principle except instead of a scan code we use
the mouse position and status.

rng_src.c:
013 /* MOUSE */
014 void rng_mouse(int INT, int x, int y, int z,
015 int buttons, unsigned hrt)
016 {
017 rng_add_byte(INT, 1); /* 1/16 bits */
018 rng_add_byte(x & 255, 2); /* 1/8 bits */
019 rng_add_byte(y & 255, 2); /* 1/8 bits */
020 rng_add_byte(z & 255, 1); /* 1/16 bits */
021 rng_add_byte(buttons & 255, 1); /* 1/16 bits */
022 rng_add_byte(hrt, 1); /* timer */
023 }

Here we add the lower eight bits of the mouse x-, y-, and z-coordinates (z being the
scroll wheel). We estimate that the x and y will give us 1/8th of a bit of entropy since it is
only really the least significant bit in which we are interested. For example, move your
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mouse in a vertical line (pretend you are going to the File menu); it is unlikely that your x-
coordinate will vary by any huge amount. It may move slightly left or right of the upward
direction, but for the most part it is straight.The entropy would be on when and where the
mouse is, and the “error” in the x-coordinate as you try to move the mouse upward.

We assume in this function that the mouse buttons (up to eight) are packed as booleans
in the lower eight bits of the button argument. In reality, the button’s state contains very little
entropy, as most mouse events are the user trying to locate something on which to click.

Timer
The timer interrupt or system clock can be tapped for entropy as well. Here we are looking
for the skew between the two. If your system clock and processor clock are locked (say they
are based on one another), you ought to ignore this function.

rng_src.c:
025 /* TIMER */
026 void rng_timer(int INT, unsigned timer, unsigned hrt)
027 {
028 rng_add_byte(INT, 1); /* 1/16 bits */
029 rng_add_byte(timer^hrt, 1); /* 1/16 bits */
030 }

We estimate that the entropy is 1/16 bits for the XOR of the two timers.

Generic Devices
This last routine is for generic devices such as storage devices or network devices where
trapping all of the user data would be far too costly. Instead, we trap the ID of the device
that caused the event and the current high-resolution time.

rng_src.c:
032 /* DEVICE */
033 void rng_device( int INT, unsigned minor,
034 unsigned major, unsigned hrt)
035 {
036 rng_add_byte(INT, 1); /* 1/16 bits */
037 rng_add_byte(minor, 1); /* 1/16 bits */
038 rng_add_byte(major, 1); /* 1/16 bits */
039 rng_add_byte(hrt, 1); /* timer */
040 }

We assume the devices have some form of major:minor identification scheme such as
that used by Linux. It could also the USB or PCI device ID if a major/minor is not avail-
able, but in that case you would have to update the function to add 16 bits from both major
and minor instead of just the lower eight bits.
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RNG Setup
A significant problem most platforms face is a lack of entropy when they first boot up.There
is not likely to be many (if at all any) events collected by time the first user space program
launches.

The Linux solution to this problem is to gather a sizable block of RNG output and
write it to a file. On the next bootup, the bits in the file are added to the RNG a rate of
one bit per bit. It is important not to use these bits directly as RNG output and to destroy
the file as soon as possible.

That approach has security risks since the entire entropy of the RNG can possibly be
exposed to attackers if they can read the seed file before it is removed. Obviously, the file
would have to be marked as owned by root with permissions 0400.

On platforms on which storage of a seed would be a problem, it may be more appro-
priate to spend a few seconds reading a device like an ADC.At 8 KHz, a five-second
recording of audio should have at least 256 bits of entropy if not more.A simple approach to
this would be to collect the five seconds, hash the data with SHA-256, and feed the output
to the RNG at a rate of one bit of entropy per bit.

PRNG Algorithms
We now have a good starting point for constructing an RNG if need be. Keep in mind that
many platforms such as Windows, the BSDs, and Linux distributions provide kernel level
RNG functionality for the user. If possible, use those instead of writing your own.

What we need now, though, are fast sources of entropy. Here, we change entropy from a
universal concept to an adversarial concept. From our point of view, it is ok if we can pre-
dict the output of the generator, as long as our attackers cannot. If our attackers cannot pre-
dict bits, then to them, we are effectively producing random bits.

PRNG Design
From a high-level point of view, a PRNG is much like an RNG. In fact, most popular
PRNG algorithms such as Fortuna and the NIST suite are capable of being used as RNGs
(when event latency is not a concern).

The process diagram (Figure 3.3) for the typical PRNG is much like that of the RNG,
except there is no need for a gather stage.Any input entropy is sent directly to the (higher
latency) processing stage and made part of the PRNG state immediately.

The goal of most PRNGs differs from that of RNGs.The desire for high entropy
output, at least from an outsider’s point of view, is still present. When we say “outsider,” we
mean those who do not know the internal state of the PRNG algorithm. For PRNGs, they
are used in systems where there is a ready demand for entropy; in particular, in systems
where there is not much processing power available for the output stage. PRNGs must gen-
erate high entropy output and must do so efficiently.
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Figure 3.3 PRNG Process Diagram

Bit Extractors
Formal cryptography calls PRNG algorithms “bit extractors” or “seed lengtheners.”This is
because the formal model (Oded Goldreich, Foundations of Cryptography, Basic Tools,
Cambridge University Press, 1st Edition) views them as something that literally takes the seed
and stretches it to the length desired. Effectively, you are spreading the entropy over the
length of the output.The longer the output, the more likely a distinguisher will be able to
detect the bits as coming from an algorithm with a specific seed.

Seeding and Lifetime
Just like RNGs, a PRNG must be fed seed data to function as desired. While most PRNGs
support re-seeding after they have been initialized, not all do, and it is not a requirement for
their security threat model. Some PRNGs such as those based on stream ciphers (RC4,
SOBER-128, and SEAL for instance) do not directly support re-seeding and would have to
be re-initialized to accept the seed data.

In most applications, the PRNG usefulness can be broken into one of two classifications
depending on the application. For many short runtime applications, such as file encryption
tools, the PRNG must live for a short period of time and is not sensitive to the length of the
output. For longer runtime applications, such as servers and user daemons, the PRNG has a
long life and must be properly maintained.

On the short end, we will look at a derivative of the Yarrow PRNG, which is very easy
to construct with a block cipher and hash function. It is also relatively quick producing
output as fast as the cipher can encrypt blocks. We will also examine the NIST hash based
DRBG function, which is more complex but fills the applications where NIST crypto is a
must.
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On the longer end, we will look at the Fortuna PRNG. It is more complex and difficult
to set up, but better suited to running for a length of time. In particular, we will see how the
Fortuna design defends against state discovery attacks.

PRNG Attacks
Now that we have what we consider a reasonable looking PRNG, can we pull it apart and
break it?

First, we have to understand what breaking it means.The goal of a PRNG is to emit
bits (or bytes), which are in all meaningful statistical ways unpredictable.A PRNG would
therefore be broken if attackers were able to predict the output more often then they ought
to. More precisely, a break has occurred if an algorithm exists that can distinguish the PRNG
from random in some feasible amount of time.

A break in a PRNG can occur at one of several spots. We can predict or control the
inputs going in as events in an attempt to make sure the entropy in the state is as low as pos-
sible.The other way is to backtrack from the output to the internal state and then use low
entropy events to trick a user into reading (unblocked) from the PRNG what would be low
entropy bytes.

Input Control
First, let us consider controlling the inputs.Any PRNG will fail if its only inputs are from an
attacker. Entropy estimation (as attempted by the Linux kernel) is not a sound solution since
an attacker may always use a higher order model to generate what the estimator thinks is
random data. For example, consider an estimator that only looks at the 0th order statistics; that
is, the number of one bits and number of zero bits.An attacker could feed a stream of
01010101… to the PRNG and it would be none the wiser.

Increasing the model order only means the attacker has to be one step ahead. If we use a
1st order model (counting pair of bits), the attacker could feed 0001101100011011… and so
on. Effectively, if your attacker controls all of your entropy inputs you are going to success-
fully be attacked regardless of what PRNG design you choose.

This leaves us only to consider the case where the attacker can control some of the
inputs.This is easily proven to be thwarted by the following observation. Suppose you send
in one bit of entropy (in one bit) to the PRNG and the attacker can successfully send in the
appropriate data to the LFSR such that your bit cancels out. By the very definition of
entropy, this cannot happen as your bit had uncertainty. If the attacker could predict it, then
the entropy was not one for that bit. Effectively, if there truly is any entropy in your inputs,
an attacker will not be able to “cancel” them out regardless of the fact a LFSR is used to mix
the data.
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Malleability Attacks
These attacks are like chosen plaintext attacks on ciphers except the goal is to guide the
PRNG to given internal state based on chosen inputs. If the PRNG uses any data-depen-
dant operations in the process stage, the attacker could use that to control how the algorithm
behaves. For example, suppose you only hashed the state if there was not an even balance of
zero and one bits.The attacker could take advantage of this and feed inputs that avoided 
the hash.

Backtracking Attacks
A backtracking attack occurs when your output data leaks information about the internal
state of the PRNG, to the point where an attacker can then step the state backward.The
goal would be to find previous outputs. For example, if the PRNG is used to make an RSA
key, figuring out the previous output gives the attacker the factors to the RSA key.

As an example of the attack, suppose the PRNG was merely an LFSR.The output is a
linear combination of the internal state.An attacker could solve for it and then proceed to
retrieve any previous or future output of the PRNG.

Even if the PRNG is well designed, learning the current state must not reveal the pre-
vious state. For example, consider our RNG construction in rng.c; if we removed the XOR
near line 122 the state would not really change between invocations when being used as a
PRNG.This means, if the attacker learns the state and we had not placed that XOR there,
he could run it forward indefinitely and backward partially.

Yarrow PRNG
The Yarrow design is a PRNG that originally was meant for a long-lived system wide
deployment. It achieved some popularity as a PRNG daemon on various UNIX like plat-
forms, but mostly with the advent of Fortuna it has been relegated to a quick and dirty
PRNG design.

Essentially, the design hashes entropy along with the existing pool; this pool is then used
a symmetric key for a cipher running in CTR mode (see Chapter 4,“Advanced Encryption
Standard”).The cipher running in CTR mode and produces the PRNG output fairly effi-
ciently.The actual design for Yarrow specifies how and when reseeding should be issued,
how to gather entropy, and so on. For our purposes, we are using it as a PRNG so we do
not care where the seed comes from.That is, you should be able to assume the seed has
enough entropy to address your threat model.

Readers are encouraged to read the design paper “Yarrow-160: Notes on the Design
and Analysis of the Yarrow Cryptographic Pseudorandom Number Generator” by John
Kelsey, Bruce Schneier, and Niels Ferguson to get the exact details, as our description here is
rather simplistic.
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Design
From the block diagram in Figures 3.4 and 3.5, we see that the existing pool and seed are
hashed together to form the new pool (or state).The use of the hash avoids backtracking
attacks. Suppose the hash of the seed data was simply XOR’ed into the pool; if an attacker
knows the pool and can guess the seed data being fed to it, he can backtrack the state.

Figure 3.4 Block Diagram of the Simplified Yarrow PRNG

Figure 3.5 Algorithm: Yarrow Reseed
Input:

pool:The current pool

seed:The seed to add to the pool

Output:

pool:The newly updated pool

1. W = pool || seed

2. pool = Hash(W)

3. return pool

The hash of both pieces also helps prevent degradation where the existing entropy pool
is used far too long.That is, while hashing the pool does not increase the entropy, it does
change the key the CTR block uses. Even though the keys would be related (by the hash), it
would be infeasible to exploit such a relationship.The CTR block need not refer to a cipher
either; it could be a hash in CTR mode. For performance reasons, it is better to use a block
cipher for the CTR block.
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In the original Yarrow specification, the design called for the SHA-1 hash function and
Blowfish block cipher (or only a hash). While these are not bad choices, today it is better to
choose SHA-256 and AES, as they are more modern, more efficient, and part of various
standards including the FIPS series. In this algorithm (Figure 3.6) we use the pool as a sym-
metric key and then proceed to CTR encrypt a zero string to produce output.

Figure 3.6 Algorithm: Yarrow Generate
Input:

pool:The current pool

IV:The current IV value.

outlen:The number of bytes to read

Output:

output:The random bytes

IV:The new value for the IV

1. K = Schedule pool as a cipher key (see Chapter 4)

2. D = CTR(0x00outlen, K, IV)

3. Return D, IV.

The notation 0x00outlen indicates a string of length outlen bytes of all zeroes. In step 2, we
invoke the CTR routine for our cipher, which has not been defined yet.The parameters are
<plaintext, key, IV>, where the IV is initially zeroed and then preserved through every call to
the reseed and generate functions. Replaying the IV for the same key is dangerous, which is
why it is important to keep updating it.The random bytes are in the string D, which is the
output of encrypting the zero string with the CTR block.

Reseeding
The original Yarrow specification called for system-wide integration with entropy sources to
feed the Yarrow PRNG. While not a bad idea, it is not the strong suit of the Yarrow design.
As we shall see in the discussion of Fortuna, there are better ways to gather entropy from
system events.

For most cryptographic tasks that are short lived, it is safe to seed Yarrow once from a
system RNG.A safe practical limit is to use a single seed for at most one hour, or for no more
than 2(w/4) CTR blocks where w is the bit size of the cipher (e.g., w=128 for AES). For AES,
this limit would be 232 blocks, or 64 gigabytes of PRNG output. (On AMD Opteron proces-
sors, it is possible to generate 232 outputs in far less than one hour (would take roughly 500 sec-
onds). So, this limitation is actually of practical importance and should be kept in mind.)
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Technically, the limit for CTR mode is dictated by the birthday paradox and would be
2(w/2); using 2(w/4) ensures that no distinguisher on the underlying cipher is likely to be pos-
sible. Currently, there are no attacks on the full AES faster than brute force; however, that can
change, and if it does, it will probably not be a trivial break. Limiting ourselves to a smaller
output run will prevent this from being a problem effectively indefinitely.

These guidelines are merely suggestions.The secure limits depend on your threat model.
In some systems, you may want to limit a seed’s use to mere minutes or to single outputs. In
particular, after generating long-term credentials such as public key certificates, it is best to
invalidate the current PRNG state and reseed immediately.

Statefulness
The pool and the current CTR counter value can dictate the entire Yarrowstate (see
Chapter 4). In some platforms, such as embedded platforms, we may wish to save the state,
or at least preserve the entropy it contains for a future run.

This can be a thorny issue depending on if there are other users on the system who
could be able to read system files.The typical solution, as used by most Linux distributions, is
to output random data from the system RNG to a file and then read it at startup.This is cer-
tainly a valid solution for this problem.Another would be to hash the current pool and store
that instead. Hashing the pool itself directly captures any entropy in the pool.

From a security point of view, both techniques are equally valid.The remaining threat
comes from an attacker who has read the seed file.Therefore, it is important to always intro-
duce a fresh seed whenever possible upon startup.The usefulness of a seed file is for the occa-
sions when local users either do not exist or cannot read the seed file.This allows the system to
start with entropy in the PRNG state even if there are few or no events captured yet.

Pros and Cons
The Yarrow design is highly effective at turning a seed into a lengthy random looking string.
It relies heavily on the one-wayness and collision resistance of the hash, and the behavior of
the symmetric cipher as a proper pseudo-random permutation. Provided with a seed of suffi-
cient entropy, it is entirely possible to use Yarrow for a lengthy run.

Yarrow is also easy to construct out of basic cryptographic primitives.This makes imple-
mentation errors less likely, and cuts down on code space and memory usage.

On the other hand,Yarrow has a very limited state, which always runs the risk of state
discovery attacks. While they are not practical, it does run this theoretical risk.As such, it
should be avoided for longer term or system-wide deployment.

Yarrow is well suited for many short-lived tasks in which a small amount of entropy is
required. Such tasks could be things like command-line tools (e.g., GnuPG), network sen-
sors, and small servers or clients (e.g., DSL router boxes).

www.syngress.com

Random Number Generation • Chapter 3 121

404_CRYPTO_03.qxd  10/30/06  12:48 PM  Page 121



Fortuna PRNG
The Fortuna design was proposed by Niels Ferguson and Bruce Schneier2 as effective an
upgrade to the Yarrow design. It still uses the same CTR mechanism to produce output, but
instead has more reseeding elements and a more complicated pooling system. (See Niels
Ferguson and Bruce Schneier, Practical Cryptography, published by Wiley in 2003.)

Fortuna addresses the small PRNG state of Yarrow by having multiple pools and only
using a selection of them to create the symmetric key used by the CTR block. It is more
suited for long-lived tasks that have periodic re-seeding and need security against malleability
and backtracking.

Design
The Fortuna design is characterized mostly by the number of entropy pools you want gathering
entropy.The number depends on how many events and how frequently you plan to gather
them, how long the application will run, and how much memory you have.A reasonable
number of pools is anywhere between 4 and 32; the latter is the default for the Fortuna design.

When the algorithm is started (Figure 3.7), all pools are effectively zeroed out and emp-
tied.A pool counter, pool_idx, indicates which pool we are pointing at; pool0_cnt indicates the
number of bytes added to the zero’th pool; and reset_cnt indicates the number of times the
PRNG has been reseeded (reset the CTR key).

Figure 3.7 Algorithm: Fortuna Init
Input:

Numpools: Number of Entropy pools to use.
Output:

pool:Array of pools

pool_idx:The pool index

pool0_cnt:The number of bytes in pool zero

reset_cnt:The number of reseedings

IV:The current cipher IV

K:The symmetric key
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1. For j from 0 to NUMPOOLS – 1 do

1. pool[j] = null

2. pool_idx = 0

3. pool0_cnt = 0

4. reset_cnt = 0

5. IV = 0

6. K = null

7. return <pool, pool_idx, pool0_cnt, reset_cnt, IV, K>

The pools are not actually buffers for data; in practice, they are implemented as hash
states that accept data. We use hash states instead of buffers to allow large amounts of data to
be added without wasting memory.

When entropy is added (Figures 3.8 and 3.9), it is prepended with a two-byte header
that contains an ID byte and length byte.The ID byte is simply an identifier the developer
chooses to separate between entropy sources.The length byte indicates the length in bytes of
the entropy being added.The entropy is logically added to the pool_idx’th pool, which as we
shall see amounts to adding it the hash of the pool. If we are adding to the zero’th pool, we
increment pool0_cnt by the number of bytes added. Next, we increment pool_idx and wrap
back to zero when needed. If during the addition of entropy to the zero’th pool it exceeds a
minimal size (say 64 bytes), the reseed algorithm should be called.

Note that in our figures we use a system with four pools. Fortuna is by no means lim-
ited to that. We chose four to make the diagrams smaller.

Figure 3.8 Algorithm: Fortuna Add Entropy
Input:

pool:The current pools

seed:The entropy to add

seedID:The application (and event) specific seed identifier

pool0_cnt:The number of bytes in the zero’th pool

pool_idx:The current pool index

Output:

pool:The updated pool

pool0_cnt: Current number of bytes in the zero’th pool

pool_idx: New pool index

1. W = seedID || length(seed) || seed

2. Add W to the pool[pool_idx]
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3. If pool_idx = 0 then pool0_cnt = pool0_cnt + length(seed)

4. If pool0_cnt >= 64 call reseed algorithm.

5. pool_idx = (pool_idx + 1) mod NUMPOOLS

6. return <pool, pool0_cnt, pool_idx>

Figure 3.9 Fortuna Entropy Addition Diagram

Reseeding will take entropy from select pools and turn it into a symmetric key (K) for
the cipher to use to produce output (Figures 3.10 and 3.11). First, the reset_cnt counter is
incremented.The value of reset_cnt is interpreted as a bit mask; that is, if bit x is set, pool x
will be used during this algorithm.All selected pools are hashed, all the hashes are concate-
nated to the existing symmetric key (in order from first to last), and the hash of the string of
hashes is used as the symmetric key.All selected pools are emptied and reset to zero.The
zero’th pool is always selected.

Figure 3.10 Algorithm: Fortuna Reseed

Input:

pool:The current pools

K:The current symmetric key

reset_cnt: Current reset counter
Output:

pool:The updated pool

K:The new symmetric key

reset_cnt: updated reset counter
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1. reset_cnt = reset_cnt + 1

2. W = K

3. for j from 0 to NUMPOOLS – 1

1. if (j = 0) OR (((1<<j) AND reset_cnt) > 0) then

i. W = W || hash(pool[j])

ii. pool[j] = null

4. K = Hash(W)

5. return <pool, K, reset_cnt>

Figure 3.11 Fortuna Reseeding Diagram

Extracting entropy from Fortuna is relatively straightforward. First, if a given amount of
time has elapsed or a number of reads has occurred, the reseed function is called.Typically, as
a system-wide PRNG the time delay should be short; for example, every 10 seconds. If a
timer isn’t available or this isn’t running as a daemon, you could use every 10 calls to the
function.

After the reseeding has been handled, the cipher  in CTR mode, can generate as many
bytes as the caller requests.The IV for the cipher is initially zeroed when the algorithm
starts, and then left running throughout the life of the algorithm.The counter is handled in a
little-endian fashion incremented from byte 0 to byte 15, respectively.

After all the output has been generated, the cipher is clocked twice to re-key itself for
the next usage. In the design of Fortuna they use an AES candidate cipher; we can just use
AES for this (Fortuna was described before the AES algorithm was decided upon).Two
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clocks produce 256 bits, which is the maximally allowed key size.The new key is then
scheduled and used for future read operations.

Reseeding
Fortuna does not perform a reseed operation whenever entropy is being added. Instead, the
data is simply concatenated to one of the pools (Figure 3.5) in a round-robin fashion.
Fortuna is meant to gather entropy from pretty much any source just like our system RNG
described in rng.c.

In systems in which interrupt latency is not a significant problem, Fortuna can easily
take the place of a system RNG. In applications where there will be limited entropy addi-
tions (such as command-line tools), Fortuna breaks down to become Yarrow, minus the re-
keying bit). For that reason alone, Fortuna is not meant for applications with short life spans.

A classic example of where Fortuna would be a cromulent choice is within an HTTP
server. It gets a lot of events (requests), and the requests can take variable (uncertain) amounts
of time to complete. Seeding Fortuna with these pieces of information, and from a system
RNG occasionally, and other system resources, can produce a relatively efficient and very
secure userspace PRNG.

Statefulness
The entire state of the Fortuna PRNG can be described by the current state of the pools,
current symmetric key, and the various counters. In terms of what to save when shutting
down it is more complicated than Yarrow.

Simply emitting a handful of bytes will not use the entropy in the later pools that have
yet to be used.The simplest solution is to perform a reseeding with reset_cnt equal to the all
ones pattern subtracted by one; all pools will get affected the symmetric key.Then, emit 32
bytes from the PRNG to the seed file.

If you have the space, storing the hash of each pool into the seed file will help preserve
longevity of the PRNG when it is next loaded.

Pros and Cons
Fortuna is a good design for systems that have a long lifetime. It provides for forward secrecy
after state discovery attacks by distributing the entropy over long bit extractions. It is based
on well-thought-out design concepts, making its analysis a much easier process.

Fortuna is best suited for servers and daemon style applications where it is likely to
gather many entropy events. By contrast, it is not well suited for short-lived applications.The
design is more complicated than Yarrow, and for short-lived applications, it is totally unneces-
sary.The design also uses more memory in terms of data and code.
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NIST Hash Based DRBG
The NIST Hash Based DRBG (deterministic random bit generator) is one of three newly
proposed random functions under NIST SP 800-90. Here we are only talking about the
Hash_DRBG algorithm described in section 10.1 of the specification.The PRNG has a set
of parameters that define various variables within the algorithm (Table 3.1).

Table 3.1 Parameters for Hash_DRBG

SHA-1 SHA- SHA- SHA- SHA-
224 256 384 512

Supported Security Strengths 80 112 128 192 256
highest_supported_security_ 80 112 128 192 256
strength
Output Block length (outlen) 160 224 256 384 512
Required minimum entropy for 
instantiate and reseed
Minimum entropy input length security_ strength
(min_length)
Maximum entropy input length < 235 bits
(max_length)
Seed Length (seedlen) for 440 440 440 888 888
Hash_DRBG
max_personalization_ < 235

string_length
max_additional_input_length < 235

max_number_of_bits_per_request < 219

reseed_interval < 218

Design
The internal state of Hash_DRBG consists of:

■ A value V of seedlen bits that is updated during each call to the DRBG.

■ A constant C of seedlen bits that depends on the seed.

■ A counter reseed_counter that indicates the number of requests for pseudorandom
bits since new entropy_input was obtained during instantiation or reseeding.

The PRNG is initialized through the Hash_DRBG instantiate process (section 10.1.1.2
of the specification).
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This algorithm returns a working state the rest of the Hash_DRBG functions can work
with (Figure 3.12). It relies on the function hash_df() (Figure 3.13), which we have yet to
define. Before that, let’s examine the reseed algorithm.

Figure 3.12 Algorithm: Hash_DRBG Instantiate

Input:

entropy_input:The string of bits obtained from an entropy source.

nonce:A second entropy source (or non-repeating source from a PRNG)
Output:

The working state of <V, C, reseed_counter>

1. seed_material = entropy_input || nonce

2. seed = Hash_df(seed_material, seedlen)

3. V = seed

4. C = Hash_df((0x00 || V), seedlen)

5. reseed_counter = 1

6. Return V, C, reseed_counter

Figure 3.13 Algorithm: Hash_DRBG Reseed

Input:
<V, C, reseed_counter>:The current working state

entropy_input: String of new bits to add to state

additional_input: String of bits identifying the application (can be null)
Output:

New working state: <V, C, reseed_counter>

1. seed_material = 0x01 || V || entropy_input || additional_input

2. seed = Hash_df(seed_material, seedlen)

3. V = seed

4. C = Hash_df((0x00 || V), seedlen)

5. reseed_counter = 1

6. Return <V, C, reseed_counter>
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This algorithm (Figure 3.14) takes new entropy and mixes it into the state of the
DRBG. It accepts additional input in the form of application specific bits. It can be null
(empty), and generally it is best to leave it that way.This algorithm is much like Yarrow in
that it hashes the existing pool (V) in with the new entropy.The seed must be seedlen bits
long to be technically following the specification.This alone can make the algorithm rather
obtrusive to use.

Figure 3.14 Algorithm: Hash_DRBG Generate

Input:

<V, C, reseed_counter>:The current working state

requested_number_of_bits:The number of bits to be returned

additional_input:Application specific input
Output:

status: status of whether the call was successful

returned_bits:The number of bits returned

New working state: <V, C, reseed_counter>

1. If reseed_counter > reseed_internal, then return an indication that a reseed is required.

2. If (additional_input is not null) then do

1. w = Hash(0x02 || V || additional_input)

2. V = (V + w) mod 2seedlen

3. returned_bits = Hashgen(requested_number_of_bits,V)

4. H = Hash(0x03 || V)

5. V = (V + H + C + reseed_counter) mod 2seedlen

6. reseed_counter = reseed_counter + 1

7. Return success, returned_bits, and the new values of <V, C, reseed_counter>

This function takes the working state and extracts a string of bits. It uses a hash function
denoted by Hash() and a new function Hashgen(), which we have yet to present. Much like
Fortuna, this algorithm modifies the pool (V) before returning (step 5).This is to prevent
backtracking attacks.

This function performs a stretch of the input string to the desired number of bits of
output (Figure 3.15). It is similar to algorithm Hashgen (Figure 3.16) and currently it is not
obvious why both functions exist when they perform similar functions.
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Figure 3.15 Algorithm: Hash_df
Input:

input_string:The string to be hashed.

no_of_bits_to_return: The number of bits to return.
Output:

status: Status of whether the call was successful

requested_bits:The number of bits returned

1. If (no_of_bits_to_return > max_number_of_bits) then return an error.

2. temp = null string

3. len = no_of_bits_to_return / outlen (rounded up)

4. counter = 0x01

5. for j = 1 to len do

temp = temp || Hash(counter || no_of_bits_to_return || input_string)

counter = counter + 1

6. requested_bits = leftmost(no_of_bits_to_return) of temp

7. Return success and requested_bits

Figure 3.16 Algorithm: Hashgen

Input:

requested_no_of_bits: Number of bits to return

V:The current value of V

Output:

returned_bits:The number of bits returned

1. m = requested_no_of_bits / outlen (rounded up)

2. data = V

3. W = null

4. for j = 1 to m do

1. w[j] = Hash(data)

2. W = W || w[j]

3. data = (data + 1) mod 2seedlen

5. returned_bits = leftmost(requested_no_of_bits) of W

6. return returned_bits
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This function performs the stretching of the input seed for the generate function. It effec-
tively is similar enough to Hash_df (Figure 3.15) to be confused with one another.The notable
difference is that the counter is added to the seed instead of being concatenated with it.

Reseeding
Reseeding Hash_DRBG should follow similar rules as for Yarrow. Since there is only one
pool, all sourced entropy is used immediately.This makes the long-term use of it less advis-
able over, say, Fortuna.

Statefulness
The state of this PRNG consists of the V, C, and reseed_counter variables. In this case, it is best
to just generate a random string using the generate function and save that to your seedfile.

Pros and Cons
The Hash_DRBG function is certainly more complicated than Yarrow and less versatile than
Fortuna. It addresses some concerns that Yarrow does not, such as state discovery attacks.
However, it also is fairly rigid in terms of the lengths of inputs (e.g., seeds) and has several
particularly useless duplications. We should note that NIST SP 800-90, at the time of
writing, is still a draft and is likely to change.

On the positive side, the algorithm is more robust than Yarrow, and with some fine
tuning and optimization, it could be made nearly as simple to describe and implement.This
algorithm and the set of SP 800-90 are worth tracking. Unfortunately, at the time of this
writing, the comment period for SP 800-90 is closed and no new drafts were available.

Putting It All Together

RNG versus PRNG
The first thing to tackle in designing a cryptosystem is to figure out if you need an RNG or
merely a well-seeded PRNG for the generation of random bits. If you are making a com-
pletely self-contained product, you will definitely require an RNG. If your application is
hosted on a platform such as Windows or Linux, a system RNG is the best choice for
seeding an application PRNG.

Typically, an RNG is useful under two circumstances: lack of nonvolatile storage and the
requirement for tight information theoretic properties. In circumstances where there is no
proper nonvolatile storage, you cannot forward a seed from one runtime of the device (or
application) to another.You could use what are known as fuse bits to get an initial state for
the PRNG, but re-using it would result in an insecure process. In these situations, an RNG
is required to at least seed the PRNG initially at every launch.
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In other circumstances, an application will need to remove the assumption that the
PRNG produces bits that are indistinguishable from truly random bits. For example, a cer-
tificate signing authority really ought to use an RNG (or several) as its source of random
bits. Its task is far too important to assume that at some point the PRNG was well seeded.

Fuse Bits
Fuse bits are essentially a form of ROM that is generated after the masking stage of tape-out
(tape-out is the name of the final stage of the design of an integrated circuit; the point at
which the description of a circuit is sent for manufacture). Each instance of the circuit
would have a unique random pattern of bits literally fused into themselves.These bits would
serve as the initial state of the PRNG and allow traceability and diagnostics to be performed.
The PRNG could be executed to determine correctness and a corresponding host device
could generate the same bits (if need be).

Fuse bits are not modifiable.This means your device must never power off, or must have
a form of nonvolatile storage where it can store updated copies of the PRNG state.There
are ways to work around this limitation. For example, the fuse bits could be hashed with a
real-time clock output to get a new PRNG working state.This would be insecure if the
real-time clock cannot be trusted (e.g., rolled back to a previous time), but otherwise secure
if it was left alone.

Use of PRNGs
For circumstances where an RNG is not a strict requirement, a PRNG may be a more suit-
able option. PRNGs are typically faster than RNGs, have lower latencies, and in most cases
provide the same effective security as an RNG would provide.

The life of a PRNG within an application always begins with at least one reseed opera-
tion. On most platforms, a system-wide RNG is available.A short read of at least 256 bits
provides enough seed material to start a PRNG in an unpredictable (from an adversary’s
point of view) state.

Although you need at least one reseed operation, it is not inadvisable to reseed during
the life of an application. In practice, even seeds of little to no entropy should be safe to feed
to any secure PRNG reseed function. It is ideal to force a reseed after any event that has a
long lifetime, such as the generation of user credentials.

When the application is finished with the cryptographic services it’s best to either save
the state and/or wipe the state from memory. On platforms where an RNG is available, it
does not always make sense to write to a seedfile—the exception being applications that
need entropy prior to the RNG being available to produce output (during a boot up, for
example). In this case, the seedfile should not contain the state of the PRNG verbatim; that
is, do not write the state directly to the seedfile. Instead, it should either be the result of
calling the PRNG’s generate function to emit 256 bits (or more) or be a one-way hash of
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the current state.This means that an attacker who can read the saved state still can’t go back-
ward to recover previous outputs.

Notes from the Underground… 

Seeding Do’s and Don’ts
Do’s

■ Do reseed at least once with at least 256 bits from an RNG you trust.
■ Do reseed often if possible.
■ Do reseed after generating long-term credentials.
■ Do hash the state or generate bits for a seedfile.
■ Do wipe the state after use.

Don’ts

■ Don’t reseed with constants.
■ Don’t reseed with less than 256 bits of RNG entropy.
■ Don’t always trust user input for entropy (like capturing keystrokes).
■ Don’t use the same PRNG state for extended periods of time without

reseeding.
■ Don’t leak the PRNG state at anytime.
■ Don’t use the PRNG state as a seedfile for future use.

Example Platforms

Desktop and Server
Desktop and Server platforms are often similar in their use of base components. Servers are
usually differentiated by their higher specification and the fact they are typically multiway
(e.g., multiprocessor).They tend to share the following components:

■ High-resolution processor timers (e.g., RDTSC)

■ PIT,ACPI, and HPET timers

■ Sound codec (e.g., Intel HDA or AC’97 compatible)

www.syngress.com

Random Number Generation • Chapter 3 133

404_CRYPTO_03.qxd  10/30/06  12:48 PM  Page 133



■ USB, PS/2, serial and parallel ports 

■ SATA, SCSI, and IDE ports (with respective storage devices attached)

■ Network interface controllers

The load on most servers guarantees that a steady stream of storage and network inter-
rupts is available for harvesting. Desktops typically will have enough storage interrupts to get
an RNG going.

In circumstances where interrupts are sparse, the timer skew and ADC noise options are
still open. It would be trivial as part of a boot script to capture one second of audio and feed
it to the RNG.The supply of timer interrupts would ensure there is at least a gradual stream
of entropy.

We mentioned the various ports readably available on any machine such as USB, PS/2,
serial and parallel ports because various vendors sell RNG devices that feed the host random
bits. One popular device is the SG100 (www.protego.se/sg100_en.htm ) nine-pin serial port
RNG. It uses the noise created by a diode at threshold.They also have a USB variant
(www.protego.se/sg200_d.htm) for more modern systems.There are others, such as the
RPG100B IC from FDK (www.fdk.co.jp/cyber-e/pi_ic_rpg100.htm), which is a small 32-
pin chip that produces up to 250Kbit/sec of random data.

Seedfiles are often a requirement for these platforms, as immediately after boot there is
usually not enough entropy to seed a PRNG.The seedfile must be either updated or
removed during the shutdown process to avoid re-using the same seed.A safe way to pro-
ceed is to remove the seedfile upon boot; that way, if the machine crashes there is no way to
reuse the seed.

Consoles
Most video game consoles are designed and produced well before security concerns are
thought of.The Sony PS2 brought the broadband adapter without an RNG, which meant
that most connections would likely be made in the clear. Similarly, the Sony PSP and
Nintendo DS are network capable without any cryptographic facilities.

In these cases, it is easy to say,“just use an RNG,” except that you do not have one
readily available. What you do have is a decent source of interrupts and interaction, and non-
volatile space to store seed data. Entropy on these platforms comes in the form of the user
input, usually from a controller of some sort combined with timer data.The RNG presented
earlier would be quick enough to minimize the performance impact of such operations. In
the case of the Nintendo DS, a microphone is available that also can supply a decent amount
of entropy from ADC noise.

For performance reasons, it is not ideal to leave the RNG running for the entire lifetime
of the game. Users may tolerate some initial slowdown while the RNG gets fed, but will not
tolerate slowdown during gameplay. In these cases, it is best to seed a PRNG with the RNG
and use it for any entropy the game requires. Often, entropy is only required to establish
connections, after which the cryptosystem is running and requires no further entropy.
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Seed management is a bit tricky on these platforms. Ideally, you would like to save
entropy for the next run, as the user would like to start playing quickly and ensure the trans-
action is secure.All popular consoles available as of June 2006 have the capability of storing
data, whether an internal hard drive, an external flash memories, or internal to the game car-
tridge (like in the Nintendo DS cartridges).The trick with these platforms is to save a new
seed when you have enough entropy and before the user randomly turns the power off. On
most platforms, the power button is software driven and can signal an interrupt. However,
we may have to deal with power outages or other shutdowns such as crashes.

In these cases, it is best to invalidate the seed after booting to avoid using it twice.As the
program runs, the RNG will gather data, and as soon as enough entropy is available should
initialize the PRNG.The PRNG generate function can then be used to generate a new
seedfile.

Typically, data written locally is safe from prying eyes.That is, you can write the seed
and then use it as your sole source of entropy in future runs. However, the entropy of the
seed can degrade, and this process does not work for rentals (such as Nintendo DS games). It
is always best to gather at least 256 bits of additional entropy in the RNG before seeding the
PRNG and writing the new seedfile.

Network Appliances
Network appliances face the same battle as consoles.They usually do not have a lot of
storage and are not in well-conditioned states upon first use.A typical network appliance
could be something like a DSL router, probe, camera, or access devices (like RFID locks).
They require cryptography to authenticate and encrypt data between some client or server
and itself. For example, you may log in via SSL to your DSL router, your remote camera
may SFTP files to your desktop, and your RFID door must authenticate an attempt with a
central access control server.

These applications are better suited for hardware RNGs than software RNGs, as they
are typically custom designs. It is much easier to design a diode RNG into the circuit than a
complete finite state machine that requires a one-way hash function. Even worse, most net-
work devices do not have enough interrupts to generate any measurable entropy.
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Q: What is entropy?

A: Entropy is the measure of uncertainty in an observable event, and is typically expressed
in terms of bits since it is usually mapped on to binary decision graphs. For example, a
perfect coin toss is said to have one bit of entropy since the outcome will be heads or
tails with equal probability

Q: What is an event?

A: An event is something the RNG or PRNG algorithm can observe, such as hardware
interrupts. Data related to the event such as which event and when it occurred can be
extracted for their entropy.

Q: Where do I find a standard RNG design?

A: Unfortunately, there is no (public) RNG design mandated by public governments. What
they do standardize on are the RNG tests.Your design must pass them to be FIPS 140-2
certified. In fact, even this isn’t enough.To pass certification, it must test itself every time
it is started.This is to ensure the hardware hasn’t failed.

Q: It seems like black art?

A: Yes, RNG design is essentially science and guestimation. How many bits of entropy are
there in your mouse movements? It’s hard to say exactly, which is why it is suggested to
estimate conservatively.

Q: Why should I not just use an RNG all the time?

A: RNGs tend to be slower and block more often than PRNG algorithms (which rarely if
ever use blocking).This means it is harder to use an RNG during the runtime of an
application. For most purposes, the fact that the PRNG is guaranteed to return a result
straight away is better.
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Q: What is the practical significance between the short and long lifetime PRNGs?

A: Yarrow, at least as presented in this text, is safe to use for both short and long lifetimes
provided it has been seeded frequently. Fortuna spreads its input entropy over a longer
runtime, which makes it more suitable for longer run applications. In practice, however,
provided the PRNG was well seeded, and you do not generate large amounts of bits, the
output would be safe to use.

Q: What other PRNG standards are there?

A: NIST SP 800-90 specifies a cipher, HMAC and Elliptic Curve based PRNGs.ANSI
X9.31 specifies a triple-DES bit generator, which has since been amended to include
AES support.

Q: Is there anything that’s truly random?

A: Yes, the standard model of quantum mechanics allows for processes that are truly
random.The most commonly cited example of this is radioactive decay of elements.

It is possible to extract a great deal of entropy from radioactive decay by hooking up
a Geiger-counter to a computer. Entropy is extracted by measuring the length of time
between pairs of decays. If the time between the first pair of decays is shorter than the
second pair, record a zero. If the time between the second pair of decays is longer than
the second pair, record a one. Random bits generated in this way have an entropy very
close to 1-bit per bit.

It is highly unlikely that there is an underlying pattern to radioactive decay. If there
was, Quantum Mechanics as we know it would not be possible. Weigh this against the
fact that Quantum Mechanics has been verified to a factor of one in many million. If
one of the fundamental tenants of Quantum Mechanics were wrong, it would be deeply
surprising.

Aside from quantum mechanics, it is quite possible to have entropy in systems that
are deterministic. Consider a particle traveling at a speed exactly equal to the square root
of five meters per second. We can never compute all the decimal places of the square
root of five, because it is irrational.That means that for any finite expansion, there is
always a small degree of entropy in the value. (Of course, we can always do more calcu-
lations to obtain the next decimal place, so such expansions are not suitable for cryptog-
raphy.)
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Introduction
The Advanced Encryption Standard (AES) began in 1997 with an announcement from
NIST seeking a replacement for the aging and insecure Data Encryption Standard (DES).At
that point, DES has been repeatedly shown to be insecure, and to inspire confidence in the
new standard they asked the public to once again submit new designs. DES used a 56-bit
secret key, which meant that brute force search was possible and practical.Along with a
larger key space,AES had to be a 128-bit block cipher; that is, process 128-bit blocks of
plaintext input at a time.AES also had to support 128-, 192-, and 256-bit key settings and be
more efficient than DES.

Today it may seem rather redundant to force these limitations on a block cipher. We
take AES for granted in almost every cryptographic situation. However, in the 1990s, most
block ciphers such as IDEA and Blowfish were still 64-bit block ciphers. Even though they
supported larger keys than DES, NIST was forward looking toward designs that had to be
efficient and practical in the future.

As a result of the call, 15 designs were submitted, of which only five (MARS,Twofish,
RC6, Serpent, and Rijndael) made it to the second round of voting.The other 10 were
rejected for security or efficiency reasons. In late 2000, NIST announced that the Rijndael
block cipher would be chosen for the AES.The decision was based in part on the third-
round voting where Rijndael received the most votes (by a fair margin) and the endorse-
ment of the NSA.Technically, the NSA stated that all five candidates would be secure
choices as AES, not just Rijndael.

Rijndael is the design of two Belgian cryptographers Joan Daemen and Vincent
Rijmen. It was actually a revisit of the Square block cipher and re-designed to address
known attacks. It was particularly attractive during the AES process because of its efficiencies
(it is one of the most commonly efficient designs) and the nice cryptographic properties.
Rijndael is a substitution-permutation network that follows the work of Daemens Ph.D. wide-trail
design philosophy. It was proven to resist both linear and differential cryptanalysis (attacks
that broke DES) and has very good statistical properties in other regards. In fact, Rijndael
was the only one of the five finalists to be able to prove such claims.The other security
favorite, Serpent, was conjectured to also resist the same attacks but was less favored because
it is much slower.

Rijndael (or simply AES now) is patent free, and the creators have given out various ref-
erence implementations as public domain.Their fast implementation is actually the basis of
most software AES implementations, including those of OpenSSL, GnuPG, and
LibTomCrypt.The fast and semi-fast implementations in this text are based off the Rijndael
reference code.

Block Ciphers
Before we go ahead into the design of AES, we should discuss what block ciphers are and
the role they fill in cryptography.
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The term block cipher actually arose to distinguish said algorithms from the normal
stream ciphers that were commonplace.A cipher is simply a process to conceal the meaning
of a message. Originally, these were in the form of simple substitution ciphers followed by
stream ciphers, which would encode individual symbols of a message. In terms of practical
use, this usually involved rotors and later shift registers (like LFSRs).The theory seemed to
be to find a well-balanced generator of a provably long period, and filter the output through
a nonlinear function to create a keystream. Unfortunately, many relatively recent discoveries
have made most LFSR-based ciphers insecure.

A block cipher differs from a stream cipher in that it encodes a grouping of symbols in
one step.The mapping from plaintext to ciphertext is fixed for a given secret key.That is,
with the same secret key the same plaintext will map to the same ciphertext. Most com-
monly used block ciphers have block sizes of either 64 or 128 bits.This means that they pro-
cess the plaintext in blocks of 64 or 128 bits. Longer messages are encoded by invoking the
cipher multiple times, often with a chaining mode such as CTR to guarantee the privacy of
the message. Due to the size of the mapping, block ciphers are implemented as algorithms as
opposed to as a large lookup table (Figure 4.1).

Figure 4.1 Block Cipher Diagram

Early block ciphers include those of the IBM design team (DES and Lucifer) and even-
tually a plethora of designs in the 1980s and early 1990s.After AES started in 1997, design
submissions to conferences drastically died off. The early series of block ciphers encoded 64-
bit blocks and had short keys usually around 64 bits in length.A few designs such as IDEA
and Blowfish broke the model and used much larger keys.The basic design of most ciphers
was fairly consistent: find a somewhat nonlinear function and iterate it enough times over
the plaintext to make the mapping from the ciphertext back to plaintext difficult without
the key. For comparison, DES has 16 rounds of the same function, IDEA had 8 rounds, RC5
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originally had 12 rounds, Blowfish had 16 rounds, and AES had 10 rounds in their respective
designs, to name a few ciphers. (The current consensus is that RC5 is only secure with 16
rounds or more. While you should usually default to using AES, RC5 can be handy where
code space is a concern.) By using an algorithm to perform the mapping, the cipher could
be very compact, efficient, and used almost anywhere.

Technically speaking, a block cipher is what cryptographers call a Pseudo Random
Permutation (PRP).That is, if you ran every possible input through the cipher, you would
get as the output a random permutation of the inputs (a consequence of the cipher being a
bijection).The secret key controls the order of the permutation, and different keys should
choose seemingly random looking permutations.

Loosely speaking, a “good” cipher from a security point of view is one where knowing
the permutation (or part of it) does not reveal the key other than by brute force search; that
is, an attacker who gathers information about the order of the permutation does not learn
the key any faster than trying all possible keys. Currently, this is believed to be the case for
AES for all three supported key sizes.

Despite the fact that a block cipher behaves much like a random permutation, it should
never be used on its own. Since the mapping is static for a given key the same plaintext
block will map to the same ciphertext block.This means that a block cipher used to
encrypted data directly leaks considerable data in certain circumstances.

Fortunately, it turns out since we assume the cipher is a decent PRP we can construct
various things with it. First, we can construct chaining modes such as CBC and CTR (dis-
cussed later), which allow us to obtain privacy without revealing the nature of the plaintext.
We can also construct hybrid encrypt and message authentication codes such as CCM and
GCM (see Chapter 7,“Encrypt and Authenticate Modes”) to obtain privacy and authenticity
simultaneously. Finally, we can also construct PRNGs such as Yarrow and Fortuna.

Block ciphers are particularly versatile, which makes them attractive for various prob-
lems.As we shall see in Chapter 5,“Hash Functions,” hashes are equally versatile, and
knowing when to tradeoff between the two is dependent on the problem at hand.

AES Design
The AES (Rijndael) block cipher (see http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf ) accepts a 128-bit plaintext, and produces a 128-bit ciphertext under the control of
a 128-, 192-, or 256-bit secret key. It is a Substitution-Permutation Network design with a
single collection of steps called a round that are repeated 9, 11, or 13 times (depending on the
key length) to map the plaintext to ciphertext.

A single round of AES consists of four steps:

1. SubBytes

2. ShiftRows

3. MixColumns

4. AddRoundKey
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Each round uses its own 128-bit round key, which is derived from the supplied secret key
through a process known as a key schedule. Do not underestimate the importance of a prop-
erly designed key schedule. It distributes the entropy of the key across each of the round
keys. If that entropy is not spread properly, it causes all kinds of trouble such as equivalent
keys, related keys, and other similar distinguishing attacks.

AES treats the 128-bit input as a vector of 16 bytes organized in a column major (big
endian) 4x4 matrix called the state.That is, the first byte maps to a0,0, the third byte to a3,0,
the fourth byte to a0,1, and the 16th byte maps to a3,3 (Figure 4.2).

Figure 4.2 The AES State Diagram

The entire forward AES cipher then consists of 

1. AddRoundKey(round=0)

2. for round = 1 to Nr-1 (9, 11 or 13 depending on the key size) do

1. SubBytes

2. ShiftRows

3. MixColumns

4. AddRoundKey(round)

3. SubBytes

4. ShiftRows

5. AddRoundKey(Nr)
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Finite Field Math
The AES cipher can actually be fully specified as a series of scalar and vector operations on
elements of the field GF(2). It is not strictly important to master totally the subject of Galois
fields to understand AES; however, a brief understanding does help tweak implementations.
Do not fret if you do not understand the material of this section on the first read. For the
most part, unless you are really optimizing AES (especially for hardware), you do not have to
understand this section to implement AES efficiently.

GF(p) means a finite field of characteristic p.What does that mean? First, a quick tour of
algebraic groups. We will cover this in more detail in the discussion of GCM and public key
algorithms.A group is a collection of elements (elements can be numbers, polynomials, points
on a curve, or anything else you could possibly place into an order with a group operator)
with at least one well-defined group operation that has an identity, a zero, and an inverse.

A ring is a group for which addition is the group operation; note that this does not
strictly mean integer addition.An example of a ring is the ring of integers denoted as �.
This group contains all the negative and positive whole numbers. We can create a finite ring
by taking the integers modulo an integer, the classic example of which is clock arithmetic—
that is, the integers modulo 12. In this group, we have 12 elements that are the integers 0
through 11.There is an identity, 0, which also happens to be the zero. Each element a has an
inverse—a.As we shall see with elliptic curve cryptography, addition of two points on a
curve can be a group operation.

A field is a ring for which there also exists a multiplication operator.The field elements
of a group are traditionally called units.An example of a field would be the field of rational
numbers (numbers of the form a/b).A finite field can be created, for example, by taking the
integers modulo a prime. For example, in the integers modulo 5 we have five elements (0
through 4) and four units (1 through 4). Each element follows the rules for a finite ring.
Additionally, every unit follows the rules for a finite field.There exists a multiplicative iden-
tity, namely the element 1. Each unit a has a multiplicative inverse defined by 1/a modulo 5.
For instance, the inverse of 2 modulo 5 is 3, since 2*3 modulo 5 = 1.

Consicely, this means we have a group of elements that we can add, subtract, multiply,
and divide. Characteristic p means a field of p elements (p–1 units since zero is not a unit)
modulo the prime p. GF(p) is only defined when p is prime, but can be extended to exten-
sion fields denoted as GF(pk). Extension fields are typically implemented in some form of
polynomials basis; that is to say, an element of GF(pk) is a polynomial of degree k–1 with
coefficients from GF(p).

AES uses the field GF(2), which effectively is the field of integers modulo 2. However, it
extends it to the field of polynomials, usually denoted as GF(28), and at times treats it as a
vector, denoted as GF(2)8.As the smallest unit,AES deals with 8-bit quantities, which is often
written as GF(28).This is technically incorrect, as it should be written as GF(2)[x] or GF(2)8.
This representation indicates a vector of eight GF(2) elements, or simply, eight bits.

Things get a bit messy for the newcomer with the polynomial representation denoted
by GF(2)[x].This is the set of polynomials in x with coefficients from GF(2).This represen-
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tation means that we treat the vector of eight bits as coefficients to a seventh degree polyno-
mial (e.g., <a0,a1,a2,a3,a4,a5,a6,a7> turns into the polynomial p(x) = a0x

0 + a1x
1 + … + a7x

7).
To create a field, we have to use a polynomial that is not divisible by any lower degree

polynomial from the same basis (GF(2)).Typically, such polynomials are known as irreducible
polynomials. We define the entire field as GF(2)[x]/v(x), where v(x) is the irreducible poly-
nomial. In the case of AES, the polynomial v(x) = x8 + x4 + x3 + x + 1 was chosen. When
the bits of v(x) are stored as an integer, it represents the value 0x11B.The curious reader may
have also heard of the term primitive polynomial, which means that the polynomial g(x) = x
would generate all units in the field. By generate, we mean that there is some value of k such
that g(x)k = y(x) for all y(x) in GF(2)[x]/v(x). In the case of AES, the polynomial v(x) is not
primitive, but the polynomial g(x) = x + 1 is a generator of the field.

Addition in this field is a simple XOR operation. If both inputs are of degree 7 or less,
no reduction is required. Otherwise, the result must be reduced modulo v(x). Multiplication
is just like multiplying any other polynomial. If we want to find c(x) = a(x)b(x), we simply
find the vector <c0, c1, c2, …, c15>, where cn is equal to the sum of all the products for that
coefficient. In C, the multiplication is

/* return ab mod v(x) */
unsigned gf_mul(unsigned a, unsigned b)
{

unsigned res;
res = 0;
while (a) {
/* if bit of a is set add b */
if (a & 1) res ^= b;

/* multiply b by x */
b <<= 1;

/* reduce it modulo 0x11B which is the AES poly */
if (b & 0x100) b ^= 0x11B;

/* get next bit of a */
a >>= 1;

}
return res;

}

This algorithm is a trivial double-and-add algorithm (analogous to square-and-multiply
as we shall see with RSA), which computes the product ab in the field that AES uses. In the
loop, we first test if the least significant bit of a is set. If so, we add the value of b to res. Next,
we multiply b by x with a shift. If a vector of bits represents the polynomial, then inserting a
zero bit on the right is equivalent. Next, we reduce b modulo the AES polynomial.
Essentially, if the eighth bit is set, we subtract (or XOR) the modulus from the value.
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This polynomial field will be used both in the SubBytes and MixColumn stages. In
practice, at least in software, we do not implement the multiplication this way, as it would be
too slow.

AddRoundKey
This step of the round function adds (in GF(2)) the round key to the state. It performs 16
parallel additions of key material to state material.The addition is performed with the XOR
operation (Figure 4.3).

Figure 4.3 AES AddRoundKey Function

The k matrix is a round key and there is a unique key for each round. Since the key
addition is a simple XOR, it is often implemented as a 32-bit XOR across rows in 32-bit
software.

SubBytes
The SubBytes step of the round function performs the nonlinear confusion step of the SPN.
It maps each of the 16 bytes in parallel to a new byte by performing a two-step substitution
(Figure 4.4).

The substitution is composed of a multiplicative inversion in GF(2)[x]/v(x) followed by
an affine transformation (Figure 4.5) in GF(2)8.The multiplicative inverse of a unit a is
another unit b, such that ab modulo the AES polynomial is congruent (equivalent to, or
equal to when reduced by v(x)) to the polynomial p(x) = 1. For AES, we make the excep-
tion that the inverse of a(x) = 0 is itself.
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Figure 4.4 AES SubBytes Function

Figure 4.5 AES Affine Transformation

There are several ways to find the inverse. Since the field is small, brute force requiring
on average 128 multiplications can find it. With this approach we simply multiply a by all
units in the field until the product is one.

unsigned gf_inv_brute(unsigned x)
{

unsigned y;
if (x == 0) return 0;
for (y = 1; y < 256; y++) {

if (gf_mul(x, y) == 1) return y;
}

}
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It can also be found using the power rules.The order of the field GF(28) is 28 – 1 = 255
and a(x)254 = a(x)–1. Computing a(x)254 can be accomplished with eight squarings and seven
multiplications. We list them separately, since squaring in GF(2) is a O(n) time operation (as
opposed to the O(n2) that multiplication requires).

unsigned gf_inv_power(unsigned x)
{

unsigned y, z;
y = 1;
for (z = 0; z < 7; z++) {

y = gf_mul(gf_mul(y, y), x);
}
return gf_mul(y, y);

}

Here we used gf_mul to perform the squarings. However, there are faster and more
hardware friendly ways of accomplishing this task. In GF(2)[x] the squaring operation is a
simple bit shuffle by inserting zero bits between the input bits. For example, the value 11012
becomes 101000102.After the squaring, a reduction would be required. In software, for AES
at least, the code space used to perform the function would be almost as large as the
SubBytes function itself. In hardware, squaring comes up in another implementation trick
we shall discuss shortly.

It can also be found by the Euclidean algorithm and finally by using log and anti-log
(logarithm) tables. For software implementations, this is all overkill. Either the SubBytes step
will be rolled into ShiftRows and MixColumns (as we will discuss shortly), or is imple-
mented entirely as a single 8x8 lookup table.

After the inversion, the eight bits are sent through the affine transformation and the
output is the result of the SubBytes function.The affine transform is denoted as 

Where the vector <x0, x1, x2, …, x7> denotes the eight bits from least to most signifi-
cant. Combined, the SubByte substitution table for eight bit values is as shown if Figure 4.6.

Figure 4.6 The AES SubBytes Table

|x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
0x |63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1x |ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2x |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3x |04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4x |09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5x |53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6x |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7x |51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8x |cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9x |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
Ax |e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
Bx |e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
Cx |ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
Dx |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
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Ex |e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
Fx |8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

The inverse of SubBytes is the inverse of the affine transform followed by the multi-
plicative inverse. It can be easily derived from the SubBytes table with a short loop.

int x;
for (x = 0; x < 256; x++) InvSubBytes[SubBytes[x]] = x;

Hardware Friendly SubBytes
This section discusses a trick for hardware implementations1 that is not useful for software
(information thanks to Elliptic Semiconductor—www.ellipticsemi.com). We include it here
since the information is not that widespread and tends to be very handy if you are in the
hardware market.

The hardware friendly SubBytes implementation takes advantage of the fact that you
can compute the multiplicative inverse by computing a much smaller inverse and then
applying some trivial GF(2) math to the output.This allows the circuit to be smaller and in
most cases faster than an 8x8 ROM table implementation.

The general flow of this algorithm is the following.

1. Apply a forward linear mapping to the 8-bit input.

2. Split the 8-bit result into two 4-bit words b and c (b being the most significant
nibble).

3. Compute d = ((b2 * r(x)) XOR (c*b) XOR c2)–1.

4. p = b * d.

5. q = (c XOR b) * d.

1. Alternatively, you can use q = (c * d) XOR p.

6. Apply the inverse linear mapping to the 8-bit word p || q.

Where the multiplications are GF(2)[x]/t(x) multiplications modulo t(x) = x4 + x1 + 1,
the value of r(x) is x3 + x2 + x, and the modular inversion (step 3) is a 4-bit inversion
modulo t(x).The forward linear mapping is defined as the following 8x8 matrix (over
GF(2)).

1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 0 0 0 0 1 0
1 0 0 1 1 1 0 0
1 0 0 0 1 0 1 1
1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 1
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The inverse linear mapping is the inverse matrix transform over GF(2).The inverse
mapping follows.

1 0 0 0 0 0 0 0
0 0 1 1 1 0 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 0
1 1 1 1 1 1 1 1
0 1 1 1 1 1 0 1
0 0 0 1 0 0 0 0
0 1 1 0 1 0 1 1

This trick takes advantage of the fact that squaring is virtually a free operation. If the
input to the squaring is the vector <x0,x1,x2,x3> (x0 being the least significant bit), then
these four equations can specify the output vector.

y0 = x0 XOR x2

y1 = x2

y2 = x1 XOR x3

y3 = x3

The output vector <y0,y1,y2,y3> is the square of the input vector modulo the polyno-
mial t(x).You can implement the 4-bit multiplications in parallel since they are very small.
The multiplication by r(x) is constant so it does not have to be implemented as a full
GF(2)[x] multiplier.The 4-bit inversion can either be performed by a ROM lookup, decom-
posed (using this trick recursively), or let the synthesizer attempt to optimize it.

After applying the six-step algorithm to the 8-bit input, we now have the modular
inverse.Applying the AES affine transformation completes the SubBytes transformation.

ShiftRows
The ShiftRows step cyclically shifts each row of the state to the left by 0, 1, 2, and 3 posi-
tions (respectively). It’s entirely linear (Figure 4.7).

In practice, we will see this is implemented through renaming rather than an actual shift.
That is, instead of moving the bytes around, we simply change from where we fetch them.
In 32-bit software, we can combine shift rows fairly easily with SubBytes and MixColumns
without having to swap bytes around.
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Figure 4.7 The AES ShiftRows Function

MixColumns
The MixColumns step multiplies each column of the state by a 4x4 transform known as a
Maximally Distance Separable (MDS).The purpose of this step is to spread differences and
make the outputs linearly dependant upon other inputs.That is, if a single input byte changes
(and all other input bytes remain the same) between two plaintexts, the change will spread to
other bytes of the state as fast as possible (Figure 4.8).

Figure 4.8 The AES MixColumns Function

In the case of AES, they chose an MDS matrix to perform this task.The MDS trans-
forms actually form part of coding theory responsible for things such as error correction codes
(Reed-Solomon).They have a unique property that between two different k-space inputs the
sum of differing input and output co-ordinates is always at least k+1. For example, if we flip
a bit of one of the input bytes between two four-byte inputs, we would expect the output to
differ by at least (4+1)–1 bytes.
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MDS codes are particularly attractive for cipher construction, as they are often very effi-
cient and have nice cryptographic properties. Currently, several popular ciphers make use of
MDS transforms, such as Square, Rijndael,Twofish,Anubis and Kazhad (the latter two are
part of the NESSIE standardization project).

The SubBytes function provides the nonlinear component of the cipher, but it only
operates on the bytes of the state in parallel.They have no affect on one another. If AES had
MixColumns removed, the cipher would be trivial to break and totally useless.

The MDS matrix is generated by the vector <2,3,1,1>, which is expressed in Figure
4.9.

Figure 4.9 The AES MDS Matrix

The multiplications involved are performed in the field GF(2)[x]/v(x), which is where
the SubBytes step is performed.The actual values of 1, 2, and 3 map directly to polynomials.
For instance, 2 = x and 3 = x + 1.

The MixColumns step can be implemented in various manners depending on the target
platform.The simplest implementation involves a function that performs a multiplication by
x, traditionally called xtime.

unsigned xtime(unsigned x)
{

/* multiply by x */
x <<= 1;
/* reduce */
if (x & 0x100) x ^= 0x11B;
return x;

}

void MixColumn(unsigned char *col)
{

unsigned char tmp[4], xt[4];
xt[0] = xtime(col[0]);
xt[1] = xtime(col[1]);
xt[2] = xtime(col[2]);
xt[3] = xtime(col[3]);
tmp[0] = xt[0] ^ xt[1] ^ col[1] ^ col[2] ^ col[3];
tmp[1] = col[0] ^ xt[1] ^ xt[2] ^ col[2] ^ col[3];
tmp[2] = col[0] ^ col[1] ^ xt[2] ^ xt[3] ^ col[3];
tmp[3] = xt[0] ^ col[0] ^ col[1] ^ col[2] ^ xt[3];
col[0] = tmp[0];
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col[1] = tmp[1];
col[2] = tmp[2];
col[3] = tmp[3];

}

The function accesses data offset by four bytes, which corresponds to the width of the
AES state matrix.The function would be called four times with col offset by one byte each
time. In practice, the state would be placed in alternating buffers to avoid the double
buffering required (copying from tmp[] to col[], for instance). In typical hardware implemen-
tations, this direct approach is often the method chosen, as it can be implemented in parallel
and has a short critical path.

There is another way to implement MixColumn in software that actually allows us to
combine SubBytes, ShiftRows, and MixColumns into a single set of operations. First, con-
sider the round function without ShiftRows or SubBytes.

The MixColumn function is a 32x32 linear function, which can be implemented with
four 8x32 lookup tables. We create four 8x32 tables where each byte of the output (for all
256 words) represents the product of MixColumn if the other three input bytes were zero.
The following code would generate the table for us using the MixColumn() function.

unsigned char mc_tab[4][256][4];
void gen_tab(void)
{

unsigned char col[16];
int x, y, z;

for (y = 0; y < 4; y++) {
for (x = 0; x < 256; x++) {
for (z = 0; z < 16; z++) col[z] = 0;
col[y] = x;
MixColumn(col);
for (z = 0; z < 4; z++) {

mc_tab[y][x][z] = col[z];
}

}
}

}

Now, if we map mc_tab to an array of 4*256 32-bit words by loading each four-byte
vector in little endian format, we can compute MixColumn as 

unsigned long MixColumn32(unsigned long col)
{

return mc_tab[0][col&255] ^
mc_tab[1][(col>>8)&255] ^
mc_tab[2][(col>>16)&255] ^
mc_tab[3][(col>>24)&255];

}

Note that we now assume mc_tab is an array of 32-bit words.This works because
matrix algebra is commutative.Assume the MixColumns transform is the matrix C, and we
have an input vector of <a,b,c,d>; what this optimization is saying is we can compute the
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product C<a,b,c,d> as C<a,0,0,0> + C<0,b,0,0> + … + C<0,0,0,d>. Effectively,
mc_tab[0][a] is equivalent to [2, 1, 1, 3]*a for all 256 values of a. Since each component of
the vector is only an eight-bit variable, we can simply use a table lookup.That is, we pre-
compute C<a,0,0,0> for all possible values of a (and call this mc_tab[0]). We then do the
same for C<0,b,0,0>, C<0,0,c,0>, and C<0,0,0,d>.This approach requires one kilobyte of
storage per table, and a total of four kilobytes to hold the four tables.

There is tradeoff in this approach. Due to the nature of the matrix, the words in
mc_tab[1] are actually equal to the words in mc_tab[0] cyclically rotated by eight bits to the
right. Similarly, the words in mc_tab[2] are rotated 16 bits, and mc_tab[3] are rotated 24 bits.
This allows us to compress the table space to one kilobyte by trading time for memory. (This
also will help against certain forms of timing attacks as discussed later.) 

The inverse of MixColumns is the transform shown in Figure 4.10.

Figure 4.10 The AES InvMixColumns Matrix

void InvMixColumn(unsigned char *col)
{

unsigned char tmp[4];
tmp[0] = gf_mul(col[0], 14) ^ gf_mul(col[1], 11) ^

gf_mul(col[2], 13) ^ gf_mul(col[3], 9);
tmp[1] = gf_mul(col[1], 14) ^ gf_mul(col[2], 11) ^

gf_mul(col[3], 13) ^ gf_mul(col[0], 9);
tmp[2] = gf_mul(col[2], 14) ^ gf_mul(col[3], 11) ^

gf_mul(col[0], 13) ^ gf_mul(col[1], 9);
tmp[3] = gf_mul(col[3], 14) ^ gf_mul(col[0], 11) ^

gf_mul(col[1], 13) ^ gf_mul(col[2], 9);
col[0] = tmp[0];
col[1] = tmp[1];
col[2] = tmp[2];
col[3] = tmp[3];

}

As we can see, the forward transform has simpler coefficients (fewer bits set), which
comes into play when choosing how to use AES in the field.The inverse transform can also
be implemented with tables, and the same compression trick can also be applied to the
implementation. In total, only two kilobytes of tables are required to implement the com-
pressed approach. On eight-bit platforms, the calls to gf_mul() can be replaced with table
lookups. In total, one kilobyte of memory would be required.
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Last Round
The last round of AES (round 10, 12, or 14 depending on key size) differs from the other
rounds in that it applies the following steps:

1. SubBytes

2. ShiftRow

3. AddRoundKey

Inverse Cipher
The inverse cipher is composed of the steps in essentially the same order, except we replace
the individual steps with their inverses.

1. AddRoundKey(Nr)

2. for round = Nr-1 downto 1 do

1. InvShiftRow

2. InvSubBytes

3. AddRoundKey(round)

4. InvMixColumns

3. InvSubBytes

4. InvShiftRow

5. AddRoundKey(0)
In theses steps, the “Inv” prefix means the inverse operation.The key schedule is slightly

different depending on the implementation. We shall see that in the fast AES code, moving
AddRoundKey to the last step of the round allows us to create a decryption routine similar
to the encryption routine.

Key Schedule
The key schedule is responsible for turning the input key into the Nr+1 required 128-bit
round keys.The algorithm in Figure 4.11 will compute the round keys.
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Figure 4.11 The AES Key Schedule

Input:
Nk Number of 32-bit words in the key (4, 6 or 8)
w Array of 4*(Nk+1) 32-bit words

Output:
w Array setup with key

1. Preload the secret key into the first Nk words of w in big endian fashion.

2. i = Nk

3. while (i < 4*(Nr+1)) do

1. temp = w[i – 1]

2. if (i mod Nk = 0)

i. temp = SubWord(RotWord(temp)) XOR Rcon[i/Nk]

3. else if (Nk > 6 and i mod Nk = 4)

i. temp = SubWord(temp)

4. w[i] = w[i-Nk] xor temp

5. i = i + 1

The key schedule requires two additional functions. SubWord() takes the 32-bit input
and sends each byte through the AES SubBytes substitution table in parallel. RotWord()
rotates the word to the right cyclically by eight bits.The Rcon table is an array of the first
10 powers of the polynomial g(x) = x modulo the AES polynomial stored only in the most
significant byte of the 32-bit words.

Implementation
There are already many public implementations of AES for a variety of platforms. From the
most common reference, implementations are used on 32-bit and 64-bit desktops to tiny 8-
bit implementations for microcontrollers.There is also a variety of implementations for hard-
ware scenarios to optimize for speed or security (against side channel attacks), or both.
Ideally, it is best to use a previously tested implementation of AES instead of writing your
own. However, there are cases where a custom implementation is required, so it is important
to understand how to implement it.

We are going to focus on a rather simple eight-bit implementation suitable for compact
implementation on microcontrollers. Second, we are going to focus on the traditional 32-bit
implementation common in various packages such as OpenSSL, GnuPG, and LibTomCrypt.
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An Eight-Bit Implementation
Our first implementation is a direct translation of the standard into C using byte arrays.At
this point, we are not applying any optimizations to make sure the C code is as clear as pos-
sible.This code will work pretty much anywhere, as it uses very little code and data space
and works with small eight-bit data types. It is not ideal for deployment where speed is an
issue, and as such is not recommended for use in fielded applications.

aes_small.c:
001 /* The AES Substitution Table */
002 static const unsigned char sbox[256] = {
003 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
004 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
<snip>
033 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
034 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
035
036 /* The key schedule rcon table */
037 static const unsigned char Rcon[10] = {
038 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36 };

These two tables form the constant tables.The first is the SubBytes function imple-
mented as a single table called sbox.The second table is the Rcon table for the key schedule,
which is the first 10 powers of g(x) = x.

040 /* The *x function */
041 static unsigned char xtime(unsigned char x)
042 {
043 if (x & 0x80) { return ((x<<1)^0x1B) & 0xFF; }
044 return x<<1;
045 }

This function computes the xtime required for MixColumns. One possible tradeoff
would be to implement this as a single 256-byte table. It would avoid the XOR, shift and
branch, making the code faster at a cost of more fixed data usage.

047 /* MixColumns: Processes the entire block */
048 static void MixColumns(unsigned char *col)
049 {
050 unsigned char tmp[4], xt[4];
051 int x;
052
053 for (x = 0; x < 4; x++, col += 4) {
054 xt[0] = xtime(col[0]);
055 xt[1] = xtime(col[1]);
056 xt[2] = xtime(col[2]);
057 xt[3] = xtime(col[3]);
058 tmp[0] = xt[0] ^ xt[1] ^ col[1] ^ col[2] ^ col[3];
059 tmp[1] = col[0] ^ xt[1] ^ xt[2] ^ col[2] ^ col[3];
060 tmp[2] = col[0] ^ col[1] ^ xt[2] ^ xt[3] ^ col[3];
061 tmp[3] = xt[0] ^ col[0] ^ col[1] ^ col[2] ^ xt[3];
062 col[0] = tmp[0];
063 col[1] = tmp[1];
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064 col[2] = tmp[2];
065 col[3] = tmp[3];
066 }
067 }

This is the MixColumn function we saw previously, except it has now been modified to
work on all 16 bytes of the state.As previously noted, this function is also doubled buffered
(copying to tmp[]) and can be optimized to avoid this. We are also using an array xt[] to
hold copies of the xtime() output. Since it is used twice, caching it saves time. However, we
do not actually need the array. If we first add all inputs, then the xtime() results, we only
need a single byte of extra storage.

069 /* ShiftRows: Shifts the entire block */
070 static void ShiftRows(unsigned char *col)
071 {
072 unsigned char t;
073
074 /* 2nd row */
075 t = col[1]; col[1] = col[5]; col[5] = col[9];
076 col[9] = col[13]; col[13] = t;
077
078 /* 3rd row */
079 t = col[2]; col[2] = col[10]; col[10] = t;
080 t = col[6]; col[6] = col[14]; col[14] = t;
081
082 /* 4th row */
083 t = col[15]; col[15] = col[11]; col[11] = col[7];
084 col[7] = col[3]; col[3] = t;
085 }

This function implements the ShiftRows function. It uses a single temporary byte t to
swap around values in the rows.The second and fourth rows are implemented using essen-
tially a shift register, while the third row is a pair of swaps.

087 /* SubBytes */
088 static void SubBytes(unsigned char *col)
089 {
090 int x;
091 for (x = 0; x < 16; x++) {
092 col[x] = sbox[col[x]];
093 }
094 }

This function implements the SubBytes function. Fairly straightforward, not much to
optimize here.

096 /* AddRoundKey */
097 static void AddRoundKey(unsigned char *col,
098 unsigned char *key, int round)
099 {
100 int x;
101 for (x = 0; x < 16; x++) {
102 col[x] ^= key[(round<<4)+x];
103 }
104 }
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This functions implements AddRoundKey function. It reads the round key from a single
array of bytes, which is at most 15*16=240 bytes in size. We shift the round number by four
bits to the left to emulate a multiplication by 16.

This function can be optimized on platforms with words larger than eight bits by
XORing multiple key bytes at a time.This is an optimization we shall see in the 32-bit
code.

106 /* Encrypt a single block with Nr rounds (10, 12, 14) */
107 void AesEncrypt(unsigned char *blk, unsigned char *key, int Nr)
108 {
109 int x;
110
111 AddRoundKey(blk, key, 0);
112 for (x = 1; x <= (Nr - 1); x++) {
113 SubBytes(blk);
114 ShiftRows(blk);
115 MixColumns(blk);
116 AddRoundKey(blk, key, x);
117 }
118
119 SubBytes(blk);
120 ShiftRows(blk);
121 AddRoundKey(blk, key, Nr);
122 }

This function encrypts the block stored in blk in place using the scheduled secret key
stored in key.The number of rounds used is stored in Nr and must be 10, 12, or 14
depending on the secret key length (of 128, 192, or 256 bits, respectively).

This implementation of AES is not terribly optimized, as we wished to show the dis-
crete elements of AES in action. In particular, we have discrete steps inside the round.As we
shall see later, even for eight-bit targets we can combine SubBytes, ShiftRows, and
MixColumns into one step, saving the double buffering, permutation (ShiftRows), and
lookups.

124 /* Schedule a secret key for use.
125 * outkey[] must be 16*15 bytes in size
126 * Nk == number of 32-bit words in the key, e.g., 4, 6 or 8
127 * Nr == number of rounds, e.g., 10, 12, 14
128 */
129 void ScheduleKey(unsigned char *inkey,
130 unsigned char *outkey, int Nk, int Nr)
131 {
132 unsigned char temp[4], t;
133 int x, i;
134
135 /* copy the key */
136 for (i = 0; i < (4*Nk); i++) {
137 outkey[i] = inkey[i];
138 }
139
140 i = Nk;
141 while (i < (4 * (Nr + 1))) {
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142 /* temp = w[i-1] */
143 for (x = 0; x < 4; x++) temp[x] = outkey[((i-1)<<2) + x];
144
145 if (i % Nk == 0) {
146 /* RotWord() */
147 t = temp[0]; temp[0] = temp[1];
148 temp[1] = temp[2]; temp[2] = temp[3]; temp[3] = t;
149
150 /* SubWord() */
151 for (x = 0; x < 4; x++) {
152 temp[x] = sbox[temp[x]];
153 }
154 temp[0] ^= Rcon[(i/Nk)-1];
155 } else if (Nk > 6 && (i % Nk) == 4) {
156 /* SubWord() */
157 for (x = 0; x < 4; x++) {
158 temp[x] = sbox[temp[x]];
159 }
160 }
161
162 /* w[i] = w[i-Nk] xor temp */
163 for (x = 0; x < 4; x++) {
164 outkey[(i<<2)+x] = outkey[((i-Nk)<<2)+x] ^ temp[x];
165 }
166 ++i;
167 }
168 }

This key schedule is the direct translation of the AES standard key schedule into C using
eight-bit data types. We have to emulate RotWords() with a shuffle, and all of the loads and
stores are done with a four step for loop.

The obvious optimization is to create one loop per key size and do away with the
remainder (%) operations. In the optimized key schedule, we shall see shortly a key can be
scheduled in roughly 1,000 AMD64 cycles or less.A single division can take upward of 100
cycles, so removing that operation is a good starting point.

As with AddRoundKey on 32- and 64-bit platforms, we will implement the key
schedule using full 32-bit words instead of 8-bit words.This allows us to efficiently imple-
ment RotWord() and the 32-bit XOR operations.

170 /** DEMO **/
171
172 #include <stdio.h>
173 int main(void)
174 {
175 unsigned char blk[16], skey[15*16];
176 int x, y;
177 static const struct {
178 int Nk, Nr;
179 unsigned char key[32], pt[16], ct[16];
180 } tests[] = {
181 { 4, 10,
182 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
183 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
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184 { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
185 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
186 { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
187 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
188 }, {
189 6, 12,
190 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
191 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
192 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
193 { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
194 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
195 { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
196 0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
197 }, {
198 8, 14,
199 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
200 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
201 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
202 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
203 { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
204 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
205 { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
206 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
207 }
208 };

These three entries are the standard AES test vectors for 128, 192, and 256 key sizes.

210 for (x = 0; x < 3; x++) {
211 ScheduleKey(tests[x].key, skey, tests[x].Nk, tests[x].Nr);
212
213 for (y = 0; y < 16; y++) blk[y] = tests[x].pt[y];
214 AesEncrypt(blk, skey, tests[x].Nr);

Here we are encrypting the plaintext (blk == pt), and are going to test if it equals the
expected ciphertext.

Notes from the Underground…

Cipher Testing
A good idea for testing a cipher implementation is to encrypt the provided plain-
text more than once; decrypt one fewer times and see if you get the expected
result. For example, encrypt the plaintext, and then that ciphertext 999 more
times. Next, decrypt the ciphertext repeatedly 999 times and compare it against
the expected ciphertext.
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Often, pre-computed table entries can be slightly off and still allow fixed
vectors to pass. Its unlikely, but in certain ciphers (such as CAST5) it is entirely
possible to pull off.

This test is more applicable to designs where tables are part of a bijection,
such as the AES MDS transform. If the tables has errors in it, the resulting imple-
mentation should fail to decrypt the ciphertext properly, leading to the incorrect
output.

Part of the AES process was to provide test vectors of this form. Instead of
decrypting N–1 times, the tester would simply encrypt repeatedly N times and
verify the output matches the expected value. This catches errors in designs
where the elements of the design do not have to be a bijection (such as in Feistel
ciphers).

216 for (y = 0; y < 16; y++) {
217 if (blk[y] != tests[x].ct[y]) {
218 printf("Byte %d differs in test %d\n", y, x);
219 for (y = 0; y < 16; y++) printf("%02x ", blk[y]);
220 printf("\n");
221 return -1;
222 }
223 }
224 }
225 printf("AES passed\n");
226 return 0;
227 }

This implementation will serve as our reference implementation. Let us now consider
various optimizations.

Optimized Eight-Bit Implementation
We can remove several hotspots from our reference implementation.

1. Implement xtime() as a table.

2. Combine ShiftRows and MixColumns in the round function.

3. Remove the double buffering.

The new xtime table is listed here.

aes_small_opt.c:
040 static const unsigned char xtime[256] = {
041 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e,
042 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
043 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e,
<snip>
070 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
071 0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5,
072 0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5 };
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This lookup table will return the same result as the old function. Now we are saving on
a function call, branch, and a few trivial logical operations.

Next, we mix ShiftRows and MixColumns into one function.

aes_small_opt.c:
074 static void ShiftMix(unsigned char *col, unsigned char *out)
075 {
076 unsigned char xt;
077
078 #define STEP(i,j,k,l) \
079 out[0] = col[j] ^ col[k] ^ col[l]; \
080 out[1] = col[i] ^ col[k] ^ col[l]; \
081 out[2] = col[i] ^ col[j] ^ col[l]; \
082 out[3] = col[i] ^ col[j] ^ col[k]; \
083 xt = xtime[col[i]]; out[0] ^= xt; out[3] ^= xt; \
084 xt = xtime[col[j]]; out[0] ^= xt; out[1] ^= xt; \
085 xt = xtime[col[k]]; out[1] ^= xt; out[2] ^= xt; \
086 xt = xtime[col[l]]; out[2] ^= xt; out[3] ^= xt; \
087 out += 4;
088
089 STEP(0,5,10,15);
090 STEP(4,9,14,3);
091 STEP(8,13,2,7);
092 STEP(12,1,6,11);
093
094 #undef STEP
095 }

We did away with the double buffering tmp array and are outputting to a different desti-
nation. Next, we removed the xt array and replaced it with a single unsigned char.

The entire function has been unrolled to make the array indexing faster. In various pro-
cessors (such as the 8051), accessing the internal RAM by constants is a very fast (one cycle)
operation. While this makes the code larger, it does achieve a nice performance boost.
Implementers should map tmp and blk to IRAM space on 8051 series processors.

The indices passed to the STEP macro are from the AES block offset by the appropriate
amount. Recall we are storing values in column major order. Without ShiftRows, the selec-
tion patterns would be {0,1,2,3}, {4,5,6,7}, and so on. Here we have merged the ShiftRows
function into the code by renaming the bytes of the AES state. Now byte 1 becomes byte 5
(position 1,1 instead of 1,0), byte 2 becomes byte 10, and so on.This gives us the following
selection patterns {0,5,10,15}, {4,9,14,3}, {8, 13, 2, 7}, and {12, 1, 6, 11}.

We can roll up the loop as

for (x = 0; x < 16; x += 4) {
STEP((x+0)&15,(x+5)&15,(x+10)&15,(x+15)&15);

}

This achieves a nearly 4x compression of the code when the compiler is smart enough
to use CSE throughout the macro. For various embedded compilers, you may need to help
it out by declaring i, j, k, and l as local ints. For example,
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for (x = 0; x < 16; x += 4) {
int i, j, k, l;
i = (x+0)&15; j = (x+5)&15; k = (x+10)&15; l = (x+15)&15);
STEP(i, j, k, l)

}

Now when the macro is expanded, the pre-computed values are used. Along with this
change, we now need new SubBytes and AesEncrypt functions to accommodate the sec-
ondary output buffer.

aes_small_opt.c:
115 /* SubBytes */
116 static void SubBytes(unsigned char *col, unsigned char *out)
117 {
118 int x;
119 for (x = 0; x < 16; x++) {
120 out[x] = sbox[col[x]];
121 }
122 }
123
<snip>
133
134 /* Encrypt a single block with Nr rounds (10, 12, 14) */
135 void AesEncrypt(unsigned char *blk, unsigned char *key, int Nr)
136 {
137 int x;
138 unsigned char tmp[16];
139
140 AddRoundKey(blk, key, 0);
141 for (x = 1; x <= (Nr - 1); x++) {
142 SubBytes(blk, tmp);
143 ShiftMix(tmp, blk);
144 AddRoundKey(blk, key, x);
145 }
146
147 SubBytes(blk, blk);
148 ShiftRows(blk);
149 AddRoundKey(blk, key, Nr);
150 }

Here we are still using a double buffering scheme (akin to page flipping in graphics pro-
gramming), except we are not copying back the result without doing actual work. SubBytes
stores the result in our local tmp array, and then ShiftMix outputs the data back to blk.

With all these changes, we can now remove the MixColumns function entirely.The code
size difference is fairly trivial on x86 processors, where the optimized copy requires 298 more
bytes of code space. Obviously, this does not easily translate into a code size delta on smaller,
less capable processors. However, the performance delta should be more than worth it.

While not shown here, decryption can perform the same optimizations. It is recom-
mended that if space is available, tables for the multiplications by 9, 11, 13, and 14 in
GF(2)[x]/v(x) be performed by 256 byte tables, respectively.This adds 1,024 bytes to the
code size but drastically improves performance.
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TIP

When designing a cryptosystem, take note that many modes do not require the
decryption mode of their underlying cipher. As we shall see in subsequent chap-
ters, the CMAC, CCM, and GCM modes of operation only need the encryption
direction of the cipher for both encryption and decryption.

This allows us to completely ignore the decryption routine and save consid-
erable code space. 

Key Schedule Changes
Now that we have merged ShiftRows and MixColumns, decryption becomes a problem. In
AES decryption, we are supposed to perform the AddRoundKey before the InvMixColumns
step; however, with this optimization the only place to put it afterward2. (Technically, this is
not true. With the correct permutation, we could place AddRoundKey before
InvShiftRows.) However, the presented solution leads into the fast 32-bit implementation. If
we let S represent the AES block, K represent the round key, and C the InvMixColumn
matrix, we are supposed to compute C(S + K) = CS + CK. However, now we are left with
computing CS + K if we add the round key afterward.

The solution is trivial. If we apply InvMixColumn to all of the round keys except the
first and last, we can add it at the end of the round and still end up with CS + CK. With
this fix, the decryption implementation can use the appropriate variation of ShiftMix() to
perform ShiftRows and MixColumns in one step.The reader should take note of this fix, as
it arises in the fast 32-bit implementation as well.

Optimized 32-Bit Implementation
Our 32-bit optimized implementation achieves very high performance given that it is in
portable C. It is based off the standard reference code provided by the Rijndael team and is
public domain.To make AES fast in 32-bit software, we have to merge SubBytes, ShiftRows,
and MixColumns into a single shorter sequence of operations. We apply renaming to achieve
ShiftRows and use a single set of four tables to perform SubBytes and MixColumns at once.

Precomputed Tables
The first things we need for our implementation are five tables, four of which are for the
round function and one is for the last SubBytes (and can be used for the inverse key
schedule).

The first four tables are the product of SubBytes and columns of the MDS transform.

1. Te0[x] = S(x) * [2, 1, 1, 3]
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2. Te1[x] = S(x) * [3, 2, 1, 1]

3. Te2[x] = S(x) * [1, 3, 2, 1]

4. Te3[x] = S(x) * [1, 1, 3, 2]

Where S(x) is the SubBytes transform and the product is a 1x1 * 1x4 matrix operation.
From these tables, we can compute SubBytes and MixColumns with the following code:

unsigned long SubMix(unsigned long x)
{

return Te0[x&255] ^
Te1[(x>>8)&255] ^
Te2[(x>>16)&255] ^
Te3[(x>>24)&255];

}

The fifth table is simply the SubBytes function replicated four times; that is,Te4[x] =
S(x) * [1, 1, 1, 1].

We note a space optimization (that also plays into the security of the implementation) is
that the tables are simply rotated versions of each other’s. For example,Te1[x] =
RotWord(Te0[x]),Te2[x] = RotWord(Te1[x]), and so on.This means that we can compute
Te1,Te2, and Te3 on the fly and save three kilobytes of memory (and possibly cache).

In our supplied code, we have Te0 and Te4 listed unconditionally. However, we provide
the ability to remove Te1,Te2, and Te3 if desired with the define SMALL_CODE.

aes_tab.c:
016 static const unsigned long TE0[256] = {
017 0xc66363a5UL, 0xf87c7c84UL, 0xee777799UL, 0xf67b7b8dUL,
018 0xfff2f20dUL, 0xd66b6bbdUL, 0xde6f6fb1UL, 0x91c5c554UL,
019 0x60303050UL, 0x02010103UL, 0xce6767a9UL, 0x562b2b7dUL,
020 0xe7fefe19UL, 0xb5d7d762UL, 0x4dababe6UL, 0xec76769aUL,
021 0x8fcaca45UL, 0x1f82829dUL, 0x89c9c940UL, 0xfa7d7d87UL,
<snip>
077 0x038c8c8fUL, 0x59a1a1f8UL, 0x09898980UL, 0x1a0d0d17UL,
078 0x65bfbfdaUL, 0xd7e6e631UL, 0x844242c6UL, 0xd06868b8UL,
079 0x824141c3UL, 0x299999b0UL, 0x5a2d2d77UL, 0x1e0f0f11UL,
080 0x7bb0b0cbUL, 0xa85454fcUL, 0x6dbbbbd6UL, 0x2c16163aUL,
081 };
082
083 static const unsigned long Te4[256] = {
084 0x63636363UL, 0x7c7c7c7cUL, 0x77777777UL, 0x7b7b7b7bUL,
085 0xf2f2f2f2UL, 0x6b6b6b6bUL, 0x6f6f6f6fUL, 0xc5c5c5c5UL,
086 0x30303030UL, 0x01010101UL, 0x67676767UL, 0x2b2b2b2bUL,
087 0xfefefefeUL, 0xd7d7d7d7UL, 0xababababUL, 0x76767676UL,
<snip>
143 0xcecececeUL, 0x55555555UL, 0x28282828UL, 0xdfdfdfdfUL,
144 0x8c8c8c8cUL, 0xa1a1a1a1UL, 0x89898989UL, 0x0d0d0d0dUL,
145 0xbfbfbfbfUL, 0xe6e6e6e6UL, 0x42424242UL, 0x68686868UL,
146 0x41414141UL, 0x99999999UL, 0x2d2d2d2dUL, 0x0f0f0f0fUL,
147 0xb0b0b0b0UL, 0x54545454UL, 0xbbbbbbbbUL, 0x16161616UL,
148 };
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These two tables are our Te0 and Te4 tables. Note that we have named it TE0 (upper-
case), as we shall use macros (below) to access the tables.

150 #ifdef SMALL_CODE
151
152 #define Te0(x) TE0[x]
153 #define Te1(x) RORc(TE0[x], 8)
154 #define Te2(x) RORc(TE0[x], 16)
155 #define Te3(x) RORc(TE0[x], 24)
156
157 #define Te4_0 0x000000FF & Te4
158 #define Te4_1 0x0000FF00 & Te4
159 #define Te4_2 0x00FF0000 & Te4
160 #define Te4_3 0xFF000000 & Te4
161
162 #else
163
164 #define Te0(x) TE0[x]
165 #define Te1(x) TE1[x]
166 #define Te2(x) TE2[x]
167 #define Te3(x) TE3[x]
168
169 static const unsigned long TE1[256] = {
170 0xa5c66363UL, 0x84f87c7cUL, 0x99ee7777UL, 0x8df67b7bUL,
171 0x0dfff2f2UL, 0xbdd66b6bUL, 0xb1de6f6fUL, 0x5491c5c5UL,
172 0x50603030UL, 0x03020101UL, 0xa9ce6767UL, 0x7d562b2bUL,
173 0x19e7fefeUL, 0x62b5d7d7UL, 0xe64dababUL, 0x9aec7676UL,
<snip>

Here we see the definitions for our four tables. We have also split Te4 into four tables in
the large code variation.This saves the logical AND operation required to extract the desired
byte.

In the small code variation, we do not include TE1,TE2, or TE3, and instead use our
cyclic rotation macro RORc (defined later) to emulate the tables required. We also construct
the four Te4 tables by the required logical AND operation.

Decryption Tables
For decryption mode, we need a similar set of five tables, except they are the inverse.

1. Td0[x] = S-1(x) * [14, 9, 13, 12];

2. Td1[x] = S-1(x) * [12, 14, 9, 13];

3. Td2[x] = S-1(x) * [13, 12, 14, 9];

4. Td3[x] = S-1(x) * [9, 13, 12, 14];

5. Td4[x] = S-1(x) * [1, 1, 1, 1];

Where S–1(x) is InvSubBytes and the row matrices are the columns of InvMixColumns.
From this, we can construct InvSubMix() using the previous technique.
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unsigned long InvSubMix(unsigned long x)
{

return Td0[x&255] ^
Td1[(x>>8)&255] ^
Td2[(x>>16)&255] ^
Td3[(x>>24)&255];

}

Macros
Our AES code uses a series of portable C macros to help work with the data types. Our first
two macros, STORE32H and LOAD32H, were designed to help store and load 32-bit
values as an array of bytes.AES uses big endian data types, and if we simply loaded 32-bit
words, we would not get the correct results on many platforms. Our third macro, RORc,
performs a cyclic shift right by a specified (nonconstant) number of bits. Our fourth and last
macro, byte, extracts the n’th byte out of a 32-bit word.

aes_large.c:
001 /* Helpful macros */
002 #define STORE32H(x, y) \
003 { (y)[0] = (unsigned char)(((x)>>24)&255); \
004 (y)[1] = (unsigned char)(((x)>>16)&255); \
005 (y)[2] = (unsigned char)(((x)>>8)&255); \
006 (y)[3] = (unsigned char)((x)&255); }
007
008 #define LOAD32H(x, y) \
009 { x = ((unsigned long)((y)[0] & 255)<<24) | \
010 ((unsigned long)((y)[1] & 255)<<16) | \
011 ((unsigned long)((y)[2] & 255)<<8) | \
012 ((unsigned long)((y)[3] & 255)); }
013
014 #define RORc(x, y) \
015 (((((unsigned long)(x)&0xFFFFFFFFUL)>> \
016 (unsigned long)((y)&31)) | \
017 ((unsigned long)(x)<< \
018 (unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
019
020 #define byte(x, n) (((x) >> (8 * (n))) & 255)

These macros are fairly common between our cryptographic functions so they are
handy to place in a common header for your cryptographic source code.These macros are
actually the portable macros from the LibTomCrypt package. LibTomCrypt is a bit more
advanced than this, in that it can autodetect various platforms and use faster equivalent
macros (loading little endian words on x86 processors, for example) where appropriate.

On the ARM (and similar) series of processors, the byte() macro is not terribly efficient.
The ARM7 (our platform of choice) can perform byte loads and stores into 32-bit registers.
The previous macro can be safely changed to

#define byte(x, n) (unsigned long)((unsigned char *)&x)[n]
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on little endian platforms. On big endian platforms, replace [n] with [3–n].

Key Schedule
Our key schedule takes advantage of the fact that you can easily unroll the loop. We also
perform all of the operations using (at least) 32-bit data types.

aes_large.c:
027 static unsigned long setup_mix(unsigned long temp)
028 {
029 return (Te4_3[byte(temp, 2)]) |
030 (Te4_2[byte(temp, 1)]) |
031 (Te4_1[byte(temp, 0)]) |
032 (Te4_0[byte(temp, 3)]);
033 }

This computes the SubWord() function of the key schedule. It applies the SubBytes
function to the bytes of temp in parallel.The Te4_n arrays are values from the Te4 array with
all but the n’th byte masked off. For example, all of the words in Te4_3 only have the top
eight bits nonzero.

This function performs RotWord() as well to the input by renaming the bytes of temp.
Note, for example, how the byte going into Te4_3 is actually the third byte of the input (as
opposed to the fourth byte).

034
035 void ScheduleKey(const unsigned char *key, int keylen,
036 unsigned long *skey)
037 {
038 int i, j;
039 unsigned long temp, *rk;

This function differs from the eight-bit implementation in two ways. First, we pass the
key length (keylen) in bytes, not 32-bit words.That is, valid values for keylen are 16, 24, and
32.The second difference is the output is stored in an array of 15*4 words instead of 15*16
bytes.

041 /* setup the forward key */
042 i = 0;
043 rk = skey;
044 LOAD32H(rk[0], key );
045 LOAD32H(rk[1], key + 4);
046 LOAD32H(rk[2], key + 8);
047 LOAD32H(rk[3], key + 12);

We always load the first 128 bits of the key regardless of the actual key size.

048 if (keylen == 16) {
049 j = 44;
050 for (;;) {
051 temp = rk[3];
052 rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
053 rk[5] = rk[1] ^ rk[4];
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054 rk[6] = rk[2] ^ rk[5];
055 rk[7] = rk[3] ^ rk[6];
056 if (++i == 10) {
057 break;
058 }
059 rk += 4;
060 }

This loop computes the round keys for the 128-bit key mode. It is fully unrolled to pro-
duce one round key per iteration and avoids division completely.

061 } else if (keylen == 24) {
062 j = 52;
063 LOAD32H(rk[4], key + 16);
064 LOAD32H(rk[5], key + 20);
065 for (;;) {
066 temp = rk[5];
067 rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
068 rk[ 7] = rk[ 1] ^ rk[ 6];
069 rk[ 8] = rk[ 2] ^ rk[ 7];
070 rk[ 9] = rk[ 3] ^ rk[ 8];
071 if (++i == 8) {
072 break;
073 }
074 rk[10] = rk[ 4] ^ rk[ 9];
075 rk[11] = rk[ 5] ^ rk[10];
076 rk += 6;
077 }
078 } else if (keylen == 32) {
079 j = 60;
080 LOAD32H(rk[4], key + 16);
081 LOAD32H(rk[5], key + 20);
082 LOAD32H(rk[6], key + 24);
083 LOAD32H(rk[7], key + 28);
084 for (;;) {
085 temp = rk[7];
086 rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
087 rk[ 9] = rk[ 1] ^ rk[ 8];
088 rk[10] = rk[ 2] ^ rk[ 9];
089 rk[11] = rk[ 3] ^ rk[10];
090 if (++i == 7) {
091 break;
092 }
093 temp = rk[11];
094 rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8));
095 rk[13] = rk[ 5] ^ rk[12];
096 rk[14] = rk[ 6] ^ rk[13];
097 rk[15] = rk[ 7] ^ rk[14];
098 rk += 8;
099 }
100 } else {
101 /* this can't happen */
102 return;
103 }
104 }
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The last two compute the 192- and 256-bit round keys, respectively.At this point, we
now have our round keys required in the skey array. We will see later how to compute keys
for decryption mode.The rest of the AES code implements the encryption mode.

TIP

The AES key schedule was actually designed to be efficient to compute in envi-
ronments with limited storage. For example, if you look at the key schedule for
128-bit keys, the unrolled loop we only use rk[0...7]. Where rk[0...3] is the cur-
rent round key, rk[4...7] would be the round key for the next round.

In fact, the key schedule can be computed in place; once we overwrite rk[4]
for instance, we no longer need rk[0]. We can just allow rk[4] to be rk[0]. The
same is true for rk[5,6,7]. This allows us to integrate the key schedule with the
encryption process using only 4*4 = 16 bytes of memory instead of the default
minimum of 11*4*4 = 176 bytes. 

The same trick applies to the 192- and 256-bit key schedules. 

106 void AesEncrypt(const unsigned char *pt,
107 unsigned char *ct,
108 unsigned long *skey, int Nr)
109 {

Again, we deviate from the eight-bit code in that we read the plaintext from the pt array
and store the ciphertext in the ct array.This implementation allows pt == ct so they can
overlap if the caller chooses.

110 unsigned long s0, s1, s2, s3, t0, t1, t2, t3, *rk;
111 int r;
112
113 rk = skey;
114
115 /*
116 * map byte array block to cipher state
117 * and add initial round key:
118 */
119 LOAD32H(s0, pt ); s0 ^= rk[0];
120 LOAD32H(s1, pt + 4); s1 ^= rk[1];
121 LOAD32H(s2, pt + 8); s2 ^= rk[2];
122 LOAD32H(s3, pt + 12); s3 ^= rk[3];

Here we load the block into the array [s0, s1, s2, s3] and then apply the first
AddRoundKey at the same time.

124 /*
125 * Nr - 1 full rounds:
126 */
127 r = Nr >> 1;
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128 for (;;) {
129 t0 =
130 Te0(byte(s0, 3)) ^
131 Te1(byte(s1, 2)) ^
132 Te2(byte(s2, 1)) ^
133 Te3(byte(s3, 0)) ^
134 rk[4];
135 t1 =
136 Te0(byte(s1, 3)) ^
137 Te1(byte(s2, 2)) ^
138 Te2(byte(s3, 1)) ^
139 Te3(byte(s0, 0)) ^
140 rk[5];
141 t2 =
142 Te0(byte(s2, 3)) ^
143 Te1(byte(s3, 2)) ^
144 Te2(byte(s0, 1)) ^
145 Te3(byte(s1, 0)) ^
146 rk[6];
147 t3 =
148 Te0(byte(s3, 3)) ^
149 Te1(byte(s0, 2)) ^
150 Te2(byte(s1, 1)) ^
151 Te3(byte(s2, 0)) ^
152 rk[7];

This is one complete AES round; we are encrypting the data in [s0,s1,s2,s3] into the set
[t0,t1,t2,t3]. We can clearly see the four applications of SubBytes and MixColumns in the
pattern of four Te array lookups and XORs.

The ShiftRows function is accomplished with the use of renaming. For example, the
first output (for t0) is byte three of s0 (byte zero of the AES input), byte two of s1 (byte five
of the AES input), and so on.The next output (for t1) is the same pattern but shifted by four
columns.

This same pattern of rounds is what we will use for decryption. We will get into the
same trouble as the optimized eight-bit code in that we need to modify the round keys so
we can apply it after MixColumns and still achieve the correct result.

154 rk += 8;
155 if (--r == 0) {
156 break;
157 }

This “break” allows us to exit the loop when we hit the last full round. Recall that AES
has 9, 11, or 13 full rounds. We execute this loop up to Nr/2–1 times, which means we have
to exit in the middle of the loop, not the end.

158
159 s0 =
160 Te0(byte(t0, 3)) ^
161 Te1(byte(t1, 2)) ^
162 Te2(byte(t2, 1)) ^
163 Te3(byte(t3, 0)) ^
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164 rk[0];
165 s1 =
166 Te0(byte(t1, 3)) ^
167 Te1(byte(t2, 2)) ^
168 Te2(byte(t3, 1)) ^
169 Te3(byte(t0, 0)) ^
170 rk[1];
171 s2 =
172 Te0(byte(t2, 3)) ^
173 Te1(byte(t3, 2)) ^
174 Te2(byte(t0, 1)) ^
175 Te3(byte(t1, 0)) ^
176 rk[2];
177 s3 =
178 Te0(byte(t3, 3)) ^
179 Te1(byte(t0, 2)) ^
180 Te2(byte(t1, 1)) ^
181 Te3(byte(t2, 0)) ^
182 rk[3];

This code handles the even rounds. We are using [t0,t1,t2,t3] as the source and feeding
back into [s0,s1,s2,s3].The reader may note that we are using rk[0,1,2,3] as the round keys.
This is because we enter the loop offset by 0 but should be by 4 (the first AddRoundKey).
So, the first half of the loop uses rk[4,5,6,7], and the second half uses the lower words.

A simple way to collapse this code is to only use the first loop and finish each iteration
with

s0 = t0; s1 = t1; s2 = t2; s3 = t3;

This allows the implementation of the encryption mode to be roughly half the size at a
slight cost in speed.

183 }
184
185 /*
186 * apply last round and
187 * map cipher state to byte array block:
188 */
189 s0 =
190 (Te4_3[byte(t0, 3)]) ^
191 (Te4_2[byte(t1, 2)]) ^
192 (Te4_1[byte(t2, 1)]) ^
193 (Te4_0[byte(t3, 0)]) ^
194 rk[0];
195 STORE32H(s0, ct);
196 s1 =
197 (Te4_3[byte(t1, 3)]) ^
198 (Te4_2[byte(t2, 2)]) ^
199 (Te4_1[byte(t3, 1)]) ^
200 (Te4_0[byte(t0, 0)]) ^
201 rk[1];
202 STORE32H(s1, ct+4);
203 s2 =
204 (Te4_3[byte(t2, 3)]) ^
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205 (Te4_2[byte(t3, 2)]) ^
206 (Te4_1[byte(t0, 1)]) ^
207 (Te4_0[byte(t1, 0)]) ^
208 rk[2];
209 STORE32H(s2, ct+8);
210 s3 =
211 (Te4_3[byte(t3, 3)]) ^
212 (Te4_2[byte(t0, 2)]) ^
213 (Te4_1[byte(t1, 1)]) ^
214 (Te4_0[byte(t2, 0)]) ^
215 rk[3];
216 STORE32H(s3, ct+12);
217 }

Here we are applying the last SubBytes, ShiftRows, and AddRoundKey to the block. We
store the output to the ct array in big endian format.

Performance
This code achieves very respectable cycles per block counts with various compilers,
including the GNU C and the Intel C compilers (Table 4.1).

Table 4.1 Comparisons of AES on Various Processors (GCC 4.1.1)

Processor Cycles per block encrypted [128-bit key]

AMD Opteron 247
Intel Pentium 540J 450
Intel Pentium M 396
ARM7TDMI 3300 (Measured on a Nintendo GameBoy, which

contains an ARM7TDMI processor at 16MHz. We put
the AES code in the internal fast memory (IWRAM)
and ran it from there.)

ARM7TDMI + Byte Modification 1780

Even though the code performs well, it is not the best. Several commercial implementa-
tions have informally claimed upward of 14 cycles per byte (224 cycles per block) on Intel
Pentium 4 processors.This figure seems rather hard to achieve, as AES-128 has at least 420
opcodes in the execution path.A result of 224 cycles per block would mean an instruction
per cycle count of roughly 1.9, which is especially unheard of for this processor.

x86 Performance
The AMD Opteron achieves a nice boost due to the addition of the eight new general-pur-
pose registers. If we examine the GCC output for x86_64 and x86_32 platforms, we can see
a nice difference between the two (Table 4.2).
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Table 4.2 First Quarter of an AES Round

x86_64 x86_32

movq %r10, %rdx movl    4(%esp), %eax
movq %rbp, %rax movl    (%esp), %edx
shrq $24, %rdx movl    (%esp), %ebx
shrq $16, %rax shrl $16, %eax
andl $255, %edx shrl $24, %edx
andl $255, %eax andl $255, %eax
movq TE1(,%rax,8), %r8 movl TE1(,%eax,4), %edi
movzbq %bl,%rax movzbl %cl,%eax
xorq TE0(,%rdx,8), %r8 xorl TE0(,%edx,4), %edi
xorq TE3(,%rax,8), %r8 xorl TE3(,%eax,4), %edi
movq %r11, %rax movl    8(%esp), %eax
movzbl %ah, %edx movzbl %ah, %edx
movq (%rdi), %rax movl (%esi), %eax
xorq TE2(,%rdx,8), %rax xorl TE2(,%edx,4), %eax
movq %rbp, %rdx movl    4(%esp), %edx
shrq $24, %rdx shrl $24, %edx
andl $255, %edx xorl %eax, %edi
xorq %rax, %r8

Both snippets accomplish (at least) the first MixColumns step of the first round in the
loop. Note that the compiler has scheduled part of the second MixColumns during the first
to achieve higher parallelism. Even though in Table 4.2 the x86_64 code looks longer, it exe-
cutes faster, partially because it processes more of the second MixColumns in roughly the
same time and makes good use of the extra registers.

From the x86_32 side, we can clearly see various spills to the stack (in bold). Each of
those costs us three cycles (at a minimum) on the AMD processors (two cycles on most Intel
processors).The 64-bit code was compiled to have zero stack spills during the main loop of
rounds.The 32-bit code has about 15 stack spills during each round, which incurs a penalty
of at least 45 cycles per round or 405 cycles over the course of the 9 full rounds.

Of course, we do not see the full penalty of 405 cycles, as more than one opcode is
being executed at the same time. The penalty is also masked by parallel loads that are also on
the critical path (such as loads from the Te tables or round key).Those delays occur anyways,
so the fact that we are also loading (or storing to) the stack at the same time does not add to
the cycle count.

In either case, we can improve upon the code that GCC (4.1.1 in this case) emits. In the
64-bit code, we see a pairing of “shrq $24, %rdx” and “andl $255,%edx”.The andl operation
is not required since only the lower 32 bits of %rdx are guaranteed to have anything in
them.This potentially saves up to 36 cycles over the course of nine rounds (depending on
how the andl operation pairs up with other opcodes).

With the 32-bit code, the double loads from (%esp) (lines 2 and 3) incur a needless
three-cycle penalty. In the case of the AMD Athlon (and Opterons), the load store unit will
short the load operation (in certain circumstances), but the load will always take at least three
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cycles. Changing the second load to “movl %edx,%ebx” means that we stall waiting for %edx,
but the penalty is only one cycle, not three.That change alone will free up at most 9*2*4 =
72 cycles from the nine rounds.

ARM Performance
On the ARM platform, we cannot mix memory access opcodes with other operations as we
can on the x86 side.The default byte() macro is actually pretty slow, at least with GCC 4.1.1
for the ARM7.To compile the round function, GCC tries to perform all quarter rounds all
at once.The actual code listing is fairly long. However, with some coaxing, we can approxi-
mate a quarter round in the source.

Oddly enough, GCC is fairly smart.The first attempt commented out all but the first
quarter round. GCC correctly identified that it was an endless loop and optimized the func-
tion to a simple 

.L2: b .L2

which endlessly loops upon itself.The second attempt puts the following code in the loop.

if (--r) break;

Again, GCC optimized this since the source variables s0, s1, s2, and s3 are not modified.
So, we simply copied t0 over them all and got the following code, which is for exactly one
quarter round.

mov r3, lr, lsr #16
ldr lr, [sp, #32]
mov r0, r0, lsr #24
ldr r2, [lr, r0, asl #2]
ldr r0, [sp, #36]
mov r1, r4, lsr #8
and r3, r3, #255
ldr lr, [r0, r3, asl #2]
and ip, r5, #255
and r1, r1, #255
ldr r0, [r8, ip, asl #2]
ldr r3, [r7, r1, asl #2]
eor r2, r2, lr
eor r2, r2, r0
eor r3, fp, r3
eor sl, r2, r3

Here is an AES quarter round with the byte code optimization we mentioned earlier in
the text.

ldrb r1, [r5, #0]
ldrb r2, [sp, #43]
ldrb ip, [r9, #0]
ldr r0, [r6, r1, asl #2]
ldr r3, [r7, r2, asl #2]
ldrb r2, [sp, #33]
ldr r1, [r4, ip, asl #2]
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eor r3, r3, r0
ldr ip, [r8, r2, asl #2]
eor r3, r3, r1
ldr r2, [lr, #32]
eor r3, r3, ip
eor r3, r3, r2

We can see the compiler easily uses the “load byte” ldrb instruction to isolate bytes of
the 32-bit words to get indexes into the tables. Since this is ARM code, it can make use of
the inline “asl #2”, which multiplies the indices by four to access the table. Overall, the opti-
mized code has three fewer opcodes per quarter round. So, why is it faster? Consider the
number of memory operations per round (Table 4.3).

Table 4.3 Memory Operations with the ARM7 AES Code

Load Store Total Memory Operations

Normal C Code 30 65 95
Optimized C Code 36 6 42

Even though we have placed our data in the fast 32-bit internal memory on the
GameBoy (our test platform), it still takes numerous cycles to access it.According to the var-
ious nonofficial datasheets covering this platform, a load requires three cycles if the access are
not sequential, and a store requires two cycles. The memory operations alone contribute
100 cycles per round above the optimized code; this accounts for 1000 cycles over the entire
enciphering process.

The code could, in theory, be made faster by using each source word before moving on
to the next. In our reference code, we compute whole 32-bit words of the round function at
a time by reading bytes from the four other words in a row. For example, consider this
quarter round

t0 = rk[4];
t1 = rk[5];
t2 = rk[6];
t3 = rk[7];
t1 ^= Te3(byte(s0,0));
t2 ^= Te2(byte(s0,1));
t3 ^= Te1(byte(s0,2));
t0 ^= Te0(byte(s0,3));

Ideally, the compiler aliases t0, t1, t2, and t3 to ARM processor registers. In this
approach, we are accessing the bytes of the words sequentially.The next quarter round would
use the bytes of s1 in turn. In this way, all memory accesses are sequential.
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Performance of the Small Variant
Now we consider the performance using the smaller tables and a rolled up encrypt function.
This code is meant to be deployed where code space is at a premium, and works particularly
well with processors such as the ARM series (Table 4.4).

Table 4.4 Comparison of AES with Small and Large Code on an AMD
Opteron

Mode Cycles per block encrypted (128-bit key)

Large Code 247
Small Code 325

An interesting thing to point out is how GCC treats our rotations. With the aes_large.c
code and the SMALL_CODE symbol defined, we get the following quarter round.

aes_large.s:
821 movq %rbp, %rax
822 movq %rdi, %rcx
823 shrq $16, %rax
824 andl $255, %eax
825 movq TE0(,%rax,8), %rdx
826 movzbl %ch, %eax
827 movq TE0(,%rax,8), %rsi
828 movzbq %bl,%rax
829 movq TE0(,%rax,8), %rcx
830 movq %r11, %rax
831 movq %rdx, %r10
832 shrq $24, %rax
833 salq $24, %rdx
834 andl $4294967295, %r10d
835 andl $255, %eax
836 shrq $8, %r10
837 orq %rdx, %r10
838 andl $4294967295, %r10d
839 xorq TE0(,%rax,8), %r10
840 movq %rcx, %rax
841 andl $4294967295, %eax
842 salq $8, %rcx
843 shrq $24, %rax
844 orq %rcx, %rax
845 andl $4294967295, %eax
846 xorq %rax, %r10

As we can see, GCC is doing a 32-bit rotation with a 64-bit data type.The same code
compiled in 32-bit mode yields the following quarter round.

aes_large.s (32-bit):
1083 movl 4(%esp), %eax
1084 movl (%esp), %ebx
1085 shrl $16, %eax
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1086 shrl $24, %ebx
1087 andl $255, %eax
1088 movl TE0(,%eax,4), %esi
1089 movzbl %cl,%eax
1090 movl TE0(,%eax,4), %eax
1091 rorl $8, %esi
1092 xorl TE0(,%ebx,4), %esi
1093 movl %ebp, %ebx
1094 rorl $24, %eax
1095 xorl %eax, %esi
1096 movzbl %bh, %eax
1097 movl 4(%esp), %ebx
1098 movl TE0(,%eax,4), %eax
1099 shrl $24, %ebx
1100 rorl $16, %eax
1101 xorl (%edx), %eax
1102 xorl %eax, %esi

Here we can clearly see that GCC picks up on the rotation and uses a nice constant
“rorl” instruction in place of all the shifts,ANDs, and ORs.The solution for the 64-bit case
is simple; use a 32-bit data type.At least for GCC, the symbol __x86_64__ is defined for 64-
bit x86_64 mode. If we insert the following code at the top and replace all “unsigned long”
references with “ulong32,” we can support both 32- and 64-bit modes.

#if defined(__x86_64__) || (defined(__sparc__) && defined(__arch64__))
typedef unsigned ulong32;

#else
typedef unsigned long ulong32;

#endif

We have also added a common define combination for SPARC machines to spruce up
the code snippet. Now with the substitutions in place, we see that GCC has a very good
time optimizing our code.

aes_large_mod.s:
073 movl %ebp, %eax
074 movl %edi, %edx
075 movq %rdi, %rcx
076 shrl $16, %eax
077 shrl $24, %edx
078 movzbl %al, %eax
079 movzbl %dl, %edx
080 movq TE0(,%rax,8), %rax
081 movl %eax, %r8d
082 movzbl %bl, %eax
083 rorl $8, %r8d
084 movq TE0(,%rax,8), %rax
085 xorl TE0(,%rdx,8), %r8d
086 movq %r11, %rdx
087 rorl $24, %eax
088 xorl %eax, %r8d
089 movzbl %dh, %eax
090 movl %ebp, %edx
091 movq TE0(,%rax,8), %rax
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092 shrl $24, %edx
093 movzbl %dl, %edx
094 rorl $16, %eax
095 xorl (%r10), %eax
096 xorl %eax, %r8d

Notes from the Underground…

Know Your Data Types
We saw in the aes_large.c example that using the wrong data type can lead to
code that performs poorly. So, how do you know when you fall into this trap?

For starters, it is good to know how your platform compares against the C
reference. For example, “unsigned long” is at least 32-bits long. It does not have
to be that small, and indeed, on many 64-bit platforms it is actually 64-bits long. 

The second way to know your code is using the wrong type is to examine
the assembler output. By invoking GCC (for example) with the –S option, the
compiler will emit assembler that you can audit and examine for performance
traps. A surefire sign that you are using the wrong type is if you are getting calls
to internal helper routines (working with 64-bit values on a 32-bit target).

However, internal functions are not always a catch-all, as GCC is smart
enough to inline many simple operations, such as 64-bit additions on a 32-bit
host. In our case, we noted that GCC was using shifts, ORs, and ANDs to accom-
plish what it can (and knows how to) with a single x86 opcode.

Inverse Key Schedule
So far, we have only considered the forward mode.The inverse cipher looks exactly the
dame, at least for this style of implementation.The key difference is that we substitute the
forward tables with the inverse.This leaves us with the key schedule.

In the standard AES reference code, the key schedule does not change for the inverse
cipher, since we must apply AddRoundKey before InvMixColumns. However, in this style of
implementation, we are performing the majority of the round function in a single short
sequence of operations. We cannot insert AddRoundKey in between so we must place it
afterward.

The solution is to perform two steps to the forward round keys.

1. Reverse the array of round keys.

1. Group the round keys into 128-bit words.

2. Reverse the list of 128-bit words.
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3. Ungroup the round keys back into 128-bit words.

2. Apply InvMixColumns to all but the first and last round keys.

To reverse the keys, we do not actually form 128-bit words; instead, we do the swaps
logically with 32-bit words.The following C code will reverse the keys in rk to drk.

rk += 10*4; /* last 128-bit round key for AES-128 */
for (x = 0; x < 11; x++) {

drk[0] = rk[0];
drk[1] = rk[1];
drk[2] = rk[2];
drk[3] = rk[3];
rk -= 4; drk += 4;

}

Now we have the keys in the opposite order in the drk array. Next, we have to apply
InvMixColumns.At this point, we do not have a cheap way to implement that function. Our
tables Td0, Td1, Td2, and Td3 actually implement InvSubBytes and InvMixColumns.
However, we do have a SubBytes table handy (Te4). If we first pass the bytes of the key
through Te4, then through the optimized inverse routine, we end up with 

drk[x] := InvMixColumns(InvSubWord(SubWord(drk[x]))
drk[x] := InvMixColumns(drk[x])

which can be implemented in the following manner.

for (x = 4; x < 10*4; x++) {
drk[x] = Td0(255 & Te4[byte(drk[x], 3)]) ^

Td1(255 & Te4[byte(drk[x], 2)]) ^
Td2(255 & Te4[byte(drk[x], 1)]) ^
Td3(255 & Te4[byte(drk[x], 0)]);

}

Now we have the proper inverse key schedule for AES-128. Substitute “10*4” by
“12*4” or “14*4” for 192- or 256-bit keys, respectively.

Practical Attacks
As of this writing, there are no known breaks against the math of the AES block cipher.That
is, given no other piece of information other than the traditional plaintext and ciphertext
mappings, there is no known way of determining the key faster than brute force.

However, that does not mean AES is perfect. Our “classic” 32-bit implementation, while
very fast and efficient, leaks considerable side channel data.Two independent attacks devel-
oped by Bernstein and Osvik (et al.) exploit this implementation in what is known as a side
channel attack.
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Side Channels
To understand the attacks we need to understand what a side channel is.When we run the
AES cipher, we produce an output called the ciphertext (or plaintext depending on the direc-
tion). However, the implementation also produces other measurable pieces of information.The
execution of the cipher does not take fixed time or consume a fixed amount of energy.

In the information theoretic sense, the fact that it does not take constant time means
that the implementation leaks information (entropy) about the internal state of the algorithm
(and the device it is running on). If the attacker can correlate runtimes with the knowledge
of the implementation, he can, at least in theory, extract information about the key.

So why would our implementation not have a constant execution time? There are two
predominantly exploitable weaknesses of the typical processor cache.

Processor Caches
A processor cache is where a processor stores recently written or read values instead of
relying on main system memory. Caches are designed in all sorts of shapes and sizes, but have
several classic characteristics that make them easy to exploit. Caches typically have a low set
associativity, and make use of bank selectors.

Associative Caches
Inside a typical processor cache, a given physical (or logical depending on the design) address
has to map to a location within the cache.They typically work with units of memory
known as cache lines, which range in size from small 16-byte lines to more typical 64- and
even 128-byte lines. If two source addresses (or cache lines) map to the same cache address,
one of them has to be evicted from the cache.The eviction means that the lost source address
must be fetched from memory the next time it is used.

In a fully associated cache (also known as a completely associated memory or CAM), a
source address can map anywhere inside the cache.This yields a high cache hit rate as evic-
tions occur less frequently.This type of cache is expensive (in terms of die space) and slower
to implement. Raising the latency of a cache hit is usually not worth the minor savings in
the cache miss penalties you would have otherwise.

In a set-associative cache, a given source address can map to one of N unique locations;
this is also known as a N-way associative cache.These caches are cheaper to implement, as
you only have to compare along the N ways of the cache for a cache line to evict.This
lowers the latency of using the cache, but makes a cache eviction more likely.

The cheapest way to compute a cache address in the set-associative model is to use con-
secutive bits of the address as a cache address.These are typically taken from the middle of
the address, as the lower bits are used for index and bank selection.These details depend
highly on the configuration of the cache and the architecture in general.
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Cache Organization
The organization of the cache affects how efficiently you can access it. We will consider the
AMD Opteron cache design (AMD Software Optimization Guide for AMD64 Processors,
#25112, Rev 3.06, September 2005) for this section, but much of the discussion applies to
other processors.

The AMD Opteron splits addresses into several portions:

1. Index is addr[14:6] of the address

2. Bank is addr[5:3] of the address

3. Byte is addr[2:0] of the address

These values come from the L1 cache design, which is a 64-kilobyte two-way set-asso-
ciative cache.The cache is actually organized as two linear arrays of 32 kilobytes in two ways
(hence 64 kilobytes in total).The index value selects which 64 byte cache line to use, bank
selects which eight-byte group of the cache line, and byte indicates the starting location of
the read inside the eight-byte group.

The cache is dual ported, which means two reads can be performed per cycle; that is,
unless a bank conflict occurs.The processor moves data in the cache on parallel busses.This
means that all bank 0 transactions occur on one bus, bank 1 transactions on another, and so
on.A conflict occurs when two reads are from the same bank but different index. What that
means is you are reading from the same bank offset of two different cache lines. For
example, using AT&T syntax, the following code would have a bank conflict.

movl (%eax),%ebx
movl 64(%eax),%ecx

Assuming that both addresses are in the L1 cache and %eax is aligned on a four-byte
boundary, this code will exhibit a bank conflict penalty. Effectively, we want to avoid reads
that a proper multiple of 64 offsets, which, as we will see, is rather unfortunate for our
implementation.

Bernstein Attack
Bernstein was the first to describe a complete cache attack against AES3 (although it is seem-
ingly bizarre, it does in fact work) using knowledge of the implementation and the platform
it was running on. (He later wrote a follow-up paper at http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf.) His attack works as follows.

1. Pick one of the 16 plaintext bytes, call that pt[n].

2. Go through all 256 possible values of pt[n] and see which takes the longest to
encrypt.

This attack relies on the fact that pt[n] XOR key[n] will be going into the first round
tables directly.You first run the attack with a known key.You deduce a value T = pt[n] XOR
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key[n], which occurs the most often.That is, you will see other values of T, but one value
will eventually emerge as the most common. Now, you run the attack against the victims by
having them repeatedly encrypt plaintexts of your choosing.You will end up with a value of
pt[n] for which the delay is the longest and then can deduce that pt[n] XOR T = key[n].

The attack seems like it would not work and indeed it is not without its flaws. However,
over sufficiently long enough runs it will yield a stable value of T for almost all key bytes. So
why does the attack work? There are two reasons, which can both be true depending on the
circumstances.

■ A cache line was evicted from the cache, causing a load from L2 or system
memory.

■ A(n additional) bank conflict occurred in the first round.

In the first case, one of our tables had a cache line evicted due to another process com-
peting for the cache line.This can arise due to another task (as in the case of the Osvik
attack) or kernel process interrupting the encryption. Most processors (including the
Pentium 4 with its small 8-16KB L1 cache) can fit the entire four kilobytes of tables in the
L1 cache.Therefore, back-to-back executions should have few cache line evictions if the OS
(or the calling process) does not evict them.

The more likely reason the attack succeeds is due to a bank conflict, changing the value
of pt[n] until it conflicts with another lookup in the same quarter round of AES.All of the
tables are 1024 bytes apart, which is a proper multiple of 64.This means that, if you access
the same 32-bit word (or its neighbor) as another access, you will incur the stall.

Bernstein proposed several solutions to the problem, but the most practical is to serialize
all loads. On the AMD processors are three integer pipelines, each of which can issue a load
or store per cycle (a maximum of two will be processed, though).The fix is then to bundle
instructions in groups of three and ensure that the loads and stores all occur in the same
location within the bundles.This fix also requires that instructions do not cross the 16-byte
boundary on which the processor fetches instructions. Padding with various lengths of no
operation (NOP) opcodes can ensure the alignment is maintained.

This fix is the most difficult to apply, as it requires the implementer to dive down in to
assembler. It is also not portable, even across the family of x86 processors. It also is not even
an issue on certain processors that are single scalar (such as the ARM series).

Osvik Attack
The Osvik (Dag Arne Osvik,Adi Shamir, and Eran Tromer: Cache Attacks and
Countermeasures: the Case of AES) attack is a much more active attack than the Bernstein
attack. Where in the Bernstein attack you simply try to observe encryption time, in this
attack you are actively trying to evict things out of the cache to influence timing.

Their attack is similar to the attack of Colin Percival (Colin Percival: Cache Missing For
Fun and Profit ) where a second process on the victim machine is actively populating specific
cache lines in the hopes of influencing the encryption routine.The goal is to know which
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lines to evict and how to correlate them to key bits. In their attack, they can read 47 bits of
key material in one minute.

Countering this attack is a bit harder than the Bernstein attack. Forcing serialized loads
is not enough, since that will not stop cache misses. In their paper, they suggest a variety of
changes to mitigate the attack; that is, not to defeat the attack but make it impractical.

Defeating Side Channels
Whether these side channels are even a threat depends solely on your application’s threat
model and use cases. It is unwise to make a blanket statement we must defend against all side
channels at all times. First, it’s impractically nonportable to do so. Second, it’s costly to defend
against things that are not threats, and often you will not get the time to do so. Remember,
you have customers to provide a product to.

The attacks are usually not that practical. For example, Bernstein’s attack, while effective
in theory, is hard to use in practice, as it requires the ability to perform millions of chosen
queries to an encryption routine, and a low latency channel to observe the encryptions on.
As we will see with authenticated channels, requesting encryptions from an unauthorized
party can easily be avoided. We simply force the requestors to authenticate their requests, and
if the authentication fails, we terminate the session (and possibly block the attackers from
further communication).The attack also requires a low latency channel so the timings
observed are nicely correlated.This is possible in a lab setting where the two machines
(attacker and victim) are on the same backplane. It is completely another story if they are
across the Internet through a dozen hops going from one transmission medium to another.

The Osvik attack requires an attacker to have the ability to run processes locally on the
victim machine.The simplest solution if you are running a server is not to allow users to
have a shell on the machine.

NOTE

The significance of these attacks has stirred debate in various cryptographic cir-
cles. While nobody debates whether the attacks work, many question how
effective the attacks are in realistic work situations. Bernstein’s attack requires
an application to process millions of un-authorized encryption requests. Osvik’s
attack requires an attacker to load applications on the victim machine.

The safest thing to do with this information is be aware of it but not espe-
cially afraid of it. 

Little Help from the Kernel
Suppose you have weeded out the erroneous threat elements and still think a cache smashing
attack is a problem.There is still a feasible solution without designing new processors or

www.syngress.com

Advanced Encryption Standard • Chapter 4 185

404_CRYPTO_04.qxd  10/30/06  9:42 AM  Page 185



other impractical solutions. Currently, no project provides this solution, but there is no real
reason why it would not work.

Start with a kernel driver (module, device driver, etc.) that implements a serialized AES
that preloads the tables into L1 before processing data.That is, all accesses to the tables are
forced into a given pipeline (or load store unit pipeline).This is highly specific to the line of
processor and will vary from one architecture to another.

Next, implement a double buffering scheme where you load the text to be processed
into a buffer that is cacheable and will not compete with the AES tables. For example, on
the AMD processors all you have to do is ensure that your buffer does not have an overlap
with the tables modulo 32768. For example, the tables take 5 kilobytes, leaving us with 27
kilobytes to store data.

Now to process a block of data, the kernel is passed the data to encrypt (or decrypt), and
locks the machine (stopping all other processors). Next, the processor crams as much as pos-
sible into the buffer (looping as required to fulfill the request), preloads it into the L1, and
then proceeds to process the data with AES (in a chaining mode as appropriate).

This approach would defeat both Bernstein’s and Osvik’s attacks, as there are no bank
conflicts and there is no way to push lines out of the L1. Clearly, this solution would lead to
a host of denial of service (DoS) problems, as an attacker could request very large encryp-
tions to lock up the machine.A solution to that problem would be to either require certain
users’ identifiers to use the device or restrict the maximum size of data allowed.A value as
small as 4 to 16 kilobytes would be sufficient to make the device practical.

Chaining Modes
Ciphers on their own are fairly useless as privacy primitives. Encrypting data directly with the
cipher is a mode known as Electronic Codebook (ECB).This mode fails to achieve privacy, as
it leaks information about the plaintext.The goal of a good chaining mode is therefore to pro-
vide more privacy than ECB mode. One thing a good chaining mode is not for is authenticity.
This is a point that cannot be stressed enough and will be repeated later in the text.

Repeatedly, we see people write security software where they implement the privacy
primitive but fail to ensure the authenticity—either due to ignorance or incompetence.
Worse, people use modes such as CBC and assume it provides authenticity as well.

ECB mode fails to achieve privacy for the simple fact that it leaks information if the
same plaintext block is ever encrypted more than once.This can occur within the same ses-
sion (e.g., a file) and across different sessions. For example, if a server responds to a query
with a limited subset of responses all encrypted in ECB mode, the attacker has a very small
mapping to decode to learn the responses given out.

To see this, consider a credit-card authorization message.At its most basic level, the
response is either success or failure; 0 or 1. If we encrypted these status messages with ECB,
it would not take an attacker many transactions to work out what the code word for success
or failure was.
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Back in the days of DES, there were many popular chaining modes, from Ciphertext
Feedback (CFB), Output Feedback (OFB), and Cipher Block Chaining (CBC).Today, the
most common modes are cipher block chaining and counter mode (CTR).They are part of
the NIST SP 800-38A standard (and OFB and CFB modes) and are used in other protocols
(CTR mode is used in GCM and CCM, CBC mode is used in CCM and CMAC).

Cipher Block Chaining
Cipher block chaining (CBC) mode is most common legacy encryption mode. It is simple
to understand and trivial to implement around an existing ECB mode cipher implementa-
tion. It is often mistakenly attributed with providing authenticity for the reason that “a
change in the ciphertext will make a nontrivial change in the plaintext.” It is true that
changing a single bit of ciphertext will alter two blocks of plaintext in a nontrivial fashion. It
is not true that this provides authenticity.

We can see in Figure 4.12 that we encrypt the plaintext blocks P[0,1,2] by first XORing a
value against the block and then encrypting it. For blocks P[1,2], we use the previous cipher-
text C[0,1] as the chaining value. How do we deal with the first block then, as there is no pre-
vious ciphertext? To solve this problem, we use an initial value (IV) to serve as the chaining
value.The message is then transmitted as the ciphertext blocks C[0,1,2] and the IV.

Figure 4.12 Cipher Block Chaining Mode

What’s in an IV?
An initial value, at least for CBC mode, must be randomly chosen but it need not be secret. It
must be the same length of the cipher block size (e.g., 16 bytes for AES).
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There are two common ways of dealing with the storage (or transmission) of the IV.The
simplest method is to generate an IV at random and store it with the message.This increases
the size of the message by a single block.

The other common way of dealing with the IV is to make it during the key negotiation
process. Using an algorithm known as PKCS #5 (see Chapter 5), we can see that from a
randomly generated shared secret we can derive both encryption keys and chaining IVs.

Message Lengths
The diagram (Figure 4.12) suggests that all messages have to be a proper multiple of the
cipher block size.This is not true.There are two commonly suggested (both equally valid)
solutions. FIPS 81 (which is the guiding doctrine for SP 800-38A) does not mandate a solu-
tion, unfortunately.

The first common solution is to use a technique known as ciphertext stealing. In this
approach, you pass the last ciphertext block through the cipher in ECB mode and XOR the
output of that against the remaining message bytes (or bits).This avoids lengthening the mes-
sage (beyond adding the IV).

The second solution is to pad the last block with enough zero bits to make the message
length a proper multiple of the cipher block size.This increases the message size and really
has no benefits over ciphertext stealing.

In practice, no standard from NIST mandates one solution over the other.The best prac-
tice is to default to ciphertext stealing, but document the fact you chose that mode, unless
you have another standard to which you are trying to adhere.

Decryption
To decrypt in CBC mode, pass the ciphertext through the inverse cipher and then XOR the
chaining value against the output (Figure 4.13).

Figure 4.13 Cipher Block Chaining Decryption
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Performance Downsides
CBC mode suffers from a serialization problem during encryption.The ciphertext C[n] cannot
be computed until C[n–1] is known, which prevents the cipher from being invoked in parallel.
Decryption can be performed in parallel, as the ciphertexts are all known at that point.

Implementation
Using our fast 32-bit AES as a model, we can implement CBC mode as follows.

cbc.c:
009 void AesCBCEncrypt(const unsigned char *IV,
010 unsigned char *pt,
011 unsigned char *ct,
012 unsigned long size,
013 unsigned long *skey, int Nr)
014 {
015 unsigned char buf[16];
016 unsigned long x;
017
018 for (x = 0; x < 16; x++) buf[x] = IV[x];
019 while (size--) {
020 /* create XOR of pt and chaining value */
021 for (x = 0; x < 16; x++) buf[x] ^= pt[x];
022
023 /* encrypt it */
024 AesEncrypt(buf, buf, skey, Nr);
025
026 /* copy it out */
027 for (x = 0; x < 16; x++) ct[x] = buf[x];
028
029 /* advance */
030 pt += 16; ct += 16;
031 }
032 }

This code performs the CBC updates on a byte basis. In practice, it’s faster and mostly
portable to perform the XORs as whole words at once. On x86 processors, it’s possible to
use 32- or 64-bit words to perform the XORs (line 21).This dramatically improves the per-
formance of the CBC code and reduces the overhead over the raw ECB mode.

Decryption is a bit trickier if we allow pt to equal ct.

cbc.c:
034 void AesCBCDecrypt(const unsigned char *IV,
035 unsigned char *ct,
036 unsigned char *pt,
037 unsigned long size,
038 unsigned long *skey, int Nr)
039 {
040 unsigned char buf[16], buf2[16], t;
041 unsigned long x;
042
043 for (x = 0; x < 16; x++) buf[x] = IV[x];
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044 while (size--) {
045 /* decrypt it */
046 AesDecrypt(ct, buf2, skey, Nr);
047
048 /* copy current ct, create pt and then update buf */
049 for (x = 0; x < 16; x++) {
050 t = ct[x];
051 pt[x] = buf2[x] ^ buf[x];
052 buf[x] = t;
053 }
054
055 /* advance */
056 pt += 16; ct += 16;
057 }
058 }

Here we again use buf as the chaining buffer. We decrypt through AES ECB mode to
buf2, since at this point we cannot write to pt directly. Inside the inner loop (lines 49 to 53),
we fetch a byte of ct before we overwrite the same position in pt.This allows the buffers to
overlap without losing the previous ciphertext block required to decrypt in CBC mode.

Counter Mode
Counter mode (CTR) is designed to extract the maximum efficiency of the cipher to
achieve privacy. In this mode, we make use of the fact that the cipher should be a good
pseudo random permutation (PRP). Instead of encrypting the message by passing it through
the cipher, we encrypt it as we would with a stream cipher.

In CTR mode, we have an IV as we would for CBC, except it does not have to be
random, merely unique.The IV is encrypted and XORed against the first plaintext block to
produce the first ciphertext.The IV is then incremented (as if it were one large integer), and
then the process is repeated for the next plaintext block (Figure 4.14).

Figure 4.14 Counter Cipher Mode
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The “increment” function as specified by SP800-38A is a simple binary addition of the
value “1.”The standard does not specify if the string is big or little endian. Experience shows
that most standards assume it is big endian (that is, you increment byte 15 of the chaining
value and the carries propagate toward byte 0).

The standard SP800-38A allows permutation functions other than the increment. For
example, in hardware, a LFSR stepping (see Chapter 3) would be faster than an addition
since there are no carries.The standard is clear, though, that all chaining values used with the
same secret key must be unique.

Message Lengths
In the case of CTR, we are merely XORing the output of the cipher against the plaintext.
This means there is no inherit reason why the plaintext has to be a multiple of the cipher
block size. CTR mode is just as good for one-bit messages as it is terabit messages.

CTR mode requires that the IV be transmitted along with the ciphertext—so there is
still that initial message expansion to deal with. In the same way that CBC IVs can be
derived from key material, the same is true for CTR mode.

Decryption
In CTR mode, encryption and decryption are the same process.This makes implementations
simpler, as there is less code to deal with.Also, unlike CBC mode, only the forward direction
of the cipher is required.An implementation can further save space by not including the
ECB decryption mode support.

Performance
CTR mode allows for parallel encryption or decryption.This is less important in software
designs, but more so in hardware where you can easily have one, two, or many cipher
“cores” creating a linear improvement in throughput.

Security
CTR mode strongly depends on the chaining values being unique.This is because if you re-
use a chaining value, the XOR of two ciphertext blocks will be the XOR of the plaintext
blocks. In many circumstances, for example, when encrypting English ASCII text, this is suffi-
cient to learn the contents of both blocks. (You would expect on average that 32 bytes of
English ASCII have 41.6 bits of entropy, which is less than the size of a single plaintext block.)

The simplest solution to this problem, other than generating IVs at random, is never to
reuse the same key.This can be accomplished with fairly modest key generation protocols
(see Chapter 5).
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Implementation
Again, we have used the 32-bit fast AES code to construct another chaining mode; this time,
the CTR chaining mode.

ctr.c:
006 void AesCTRMode(unsigned char *IV,
007 unsigned char *in,
008 unsigned char *out,
009 unsigned long size,
010 unsigned long *skey, int Nr);
011 {
012 unsigned char buf[16];
013 unsigned long x, y;
014 int z;
015
016 while (size) {
017 /* encrypt counter */
018 AesEncrypt(IV, buf, skey, Nr);
019
020 /* increment it */
021 for (z = 15; z >= 0; z--) {
022 if (++IV[z] & 255) break;
023 }
024
025 /* process input */
026 y = (size > 16) ? 16 : size;
027 for (x = 0; x < y; x++) {
028 *in++ = *out++ ^ buf[x];
029 }
030 size -= y;
031 }
032 }

In this implementation, we are again working on the byte level to demonstrate the
mode.The XORs on line 28 could more efficiently be accomplished with a set of XORs
with larger data types.The increment (lines 21 through 23) performs a big endian increment
by one.The increment works because a carry will only occur if the value of (++IV[z] &
255) is zero.Therefore, if it is nonzero, there is no carry to propagate and the loop should
terminate.

Here we also deviate from CBC mode in that we do not have specific plaintext and
ciphertext variables.This function can be used to both encrypt and decrypt. We also update
the IV value, allowing the function to be called multiple times with the same key as need be.

Choosing a Chaining Mode
Choosing between CBC and CTR mode is fairly simple.They are both relatively the same
speed in most software implementations. CTR is more flexible in that it can natively support
any length plaintext without padding or ciphertext stealing. CBC is a bit more established in
existing standards, on the other hand.

A simple rule of thumb is, unless you have to use CBC mode, choose CTR instead.
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Putting It All Together
The first thing to keep in mind when using ciphers, at least in either CTR or CBC mode, is
to ignore the concept of authenticity. Neither mode will grant you any guarantee.A
common misconception is that CBC is safer in this regard.This is not true. What you will
want to use CBC or CTR mode for is establishing a private communication medium.

Another important lesson is that you almost certainly do need authenticity.This means
you will be using a MAC algorithm (see Chapter 6) along with your cipher in CBC or
CTR mode.Authentication is vital to protect your assets, and to protect against a variety of
random oracle attacks (Bernstein and Osviks attacks).The only time authenticity is not an
issue is if there is no point at which an attacker can alter the message.That said, it is a nice
safety net to ensure authenticity for the user and in the end it usually is not that costly.

Now that we have that important lesson out of the way, we can get to deploying our
block cipher and chaining mode(s).The first thing we need to be able to do is key the cipher,
and to do so securely.Where and how we derive the cipher key is a big question that depends
on how the application is to be used.The next thing we have to be able to do is generate a
suitable IV for the chaining mode, a step that is often tied to the key generation step.

Keying Your Cipher
It is very important that the cipher be keyed with as much entropy as possible.There is little
point of using AES if your key has 10 bits of entropy. Brute force would be trivial and you
would be providing no privacy for your users.Always use the maximum size your applica-
tion can tolerate.AES mandates you use at least a 128-bit key. If your application can tolerate
the performance hit, you are better off choosing a larger key.This ensures any bias in your
PRNG (or RNG) will still allow for a higher amount of entropy in the cipher key.

Forget about embedding the key in your application. It just will not work.
The most common way of keying a cipher is from what is known as a master key, but is

also known as a shared secret. For example, a salted password hash (see Chapter 4) can provide a
master key, and a public key encrypted random key (see Chapter 9) can provide a shared secret.

Once we have this master key, we can use a key derivation algorithm such as PKCS #5
(see Chapter 4) to derive a key for our cipher and an IV. Since the master key should be
random for every session (that is, each time a new message is to be processed), the derived
cipher key and IV should be random as well (Figure 4.15).
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Figure 4.15 Key Derivation Function

It is important that you do not derive your cipher key (session key) from something as
trivial as a password directly. Some form of key derivation should always be in your cryp-
tosystems pipeline.

ReKeying Your Cipher
Just as important as safely keying your cipher is the process of rekeying it. It is generally not
a safe practice to use the same cipher key for a significant length of time. Formally, the limi-
tations fall along the birthday paradox boundaries (264 blocks for AES). However, the value of
all the secrets you can encrypt in that time usually outweighs the cost of supporting secure
rekeying.

Rekeying can take various forms depending on if the protocol is online or offline. If the
protocol is online, the rekeying should be triggered both on a timed and traffic basis; that is,
after an elapsed time and after an elapsed traffic volume count has been observed.All signals
to rekey should be properly authenticated just like any other message in the system. If the
system is offline, the process is much simpler, as only one party has to agree to change keys.
Reasonable guidelines depend on the product and the threat vectors, especially since the
threat comes not from the cipher being broken but the key being determined through other
means such as side channel attacks or protocol breaks.

Once the decision to rekey has been accepted (or just taken), it is important to properly
rekey the cipher.The goal of rekeying is to mitigate the damages that would arise if an
attacker learned the cipher key. This means that the new key cannot be derived from the
previous cipher key. However, if you are clever and derived your cipher key from a master
key, your world has become much easier.

At this point, an attacker would have at most a short amount of key derivation output,
very unlikely to be enough to break the key derivation function. Using the key derivation
function to generate a new cipher key at given intervals solves our problem nicely.
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Bi-Directional Channels
A useful trick when initiating bi-directional channels is to have two key and IV pairs gener-
ated (ideally from a suitable key derivation function). Both parties would generate the same
pair of keys, but use them in the opposite order.This has both cryptographic and practical
benefits to it.

On the practical side, this allows both parties to send at once and to keep the IVs syn-
chronized. It also makes dealing with lost packets (say from a UDP connection) easier.

On the cryptographic side, this reduces the traffic used under a given symmetric key.
Assuming both sides transmit roughly an equal amount of traffic, the attacker now has half
the ciphertext under a given key to look at.

Lossy Channels
On certain channels of communication such as UDP, packets can be lost, or worse, arrive out
of order. First, let’s examine how to deal with packet data.

In the ideal protocol, especially when using UDP, the protocol should be able to cope
with a minor amount of traffic loss, either by just ignoring the missing data or requesting re-
transmissions. In cases where latency is an issue, UDP is usually the protocol of choice for
transmitting data. Don’t be mistaken that TCP is a secure transport protocol. Even though it
makes use of checksums and counters, packets can easily be modified by an attacker.All data
received should be suspect.To cope with loss, each packet must be independent.This means
that each packet should have its own IV attached to it.

If we are using CBC mode, this means that each packet needs a fresh random IV. Since
the IV is random, we will have to also attach a counter to it.The counter would be unique
and incremented for every packet. It allows the receiver to know if it has seen the packet
before, and if not, where in the stream of packets it belongs.At the very least, this implies a
packet overhead of at least 20 bytes (for AES) per packet; that is, 16 bytes for the IV and 4
bytes (say) for the counter.

If we are using CTR mode, each packet needs a unique IV.There is no reason why the
IV itself cannot be the packet counter.There is also no reason why the IV needs to be large
if the key was chosen at random. For example, if we know we are going to send less than 232

packets, we could use a 4 byte counter, leaving the lower 12 bytes of the counter as implic-
itly zero (to be incremented during the encryption of the packet).This would add an over-
head of only four bytes per packet. For more details on streaming protocols, see Chapter 6.

Now that we have counters on all of our packets, we can do two things with them. We
can reject old or replayed packets, and we can sort out-of-order packets.There are two log-
ical ways of dealing with out-of-order packets.The first is to just bump the counter up to
the highest valid packet (disregarding any packets with lower counter values).This is the sim-
plest solution and in many applications totally feasible. (Despite the bad reputation, UDP
packets rarely arrive out of order.) So, in the rare event that it does occur, tolerating the
error should be minor.The more difficult solution is to maintain a sliding window.The
window would count upward from a given base, sliding the base as the situation arises.
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For example, consider the following code:

static unsigned long window, window_base
int isValidCtr(unsigned long ctr)
{

/* below the window? */
if (ctr < window_base) return 0;

/* out of the window? */
if (ctr - window_base > 31) { window_base = ctr; window = 0; return 1; }

/* already seen? */
if (window & (1UL << (ctr - window_base))) { return 0; }

/* not seen */
window |= 1UL << (ctr – window_base);

/* shift window */
while (window & 1) { window >>= 1; ++window_base; }
return 1;

}

The preceding code allows the caller to keep track up to 32 numbered packets at once.
It rejects old and previously seen packets, adjusts to bumps in the counter, and slides the
window when possible.The caller would pass this function a counter from an otherwise
valid function (a packet that has been authenticated; see Chapter 6), and it would return 0 if
the counter is valid or 1 if not.

Myths
Here are some popular myths about block ciphers.

■ CBC provides authenticity (or integrity).

■ CBC requires only a unique IV, not a random one.

■ CTR mode is not secure because the plaintext does not pass through the cipher
itself.

■ You can use data hidden in the application as a cipher key.

■ Modifying the algorithm (to make the details obfuscated) makes it more secure.

■ Using the largest key size is “more secure.”

■ Encrypting multiple times is “safer.”

CBC mode does not provide authenticity (sorry for the repetition, but this is a point
many people get it wrong). If you want authenticity (and you usually do), apply a MAC to
the message (or ciphertext) as well. CBC mode also requires unpredictable IVs, not merely
unique ones.
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CTR mode provably reduces the security of the block cipher.That is, if CTR mode is
insecure so, are the CBC, OFB, and CFB modes.

Embedding a cipher key in the application is a trick people seem to like. Diebold was
one of these types; except the source code was leaked and the key was found (and put on
display, it was “F2654hD4” btw). Do not do this.

Modifying the cipher to achieve some proprietary tweak is another faux pas. It frustrates
users by disallowing interoperability, can make the algorithm less secure, and in the end
someone is going to reverse engineer it anyway.

Using the largest key size is not always “more secure” or better practice. It is a good
idea, at least in theory. For example, if your RNG has a slight bias, then a 256-bit string it
generates will have more entropy (at least on average) than a 128-bit string. However, 256-
bit keys are slower in AES (14 rounds versus 10 rounds), and often RNGs or PRNGs are
working as desired. Brute forcing a 128-bit key remains out of the realm of possibility for
the foreseeable future.

The key reason why bigger is not always better is because it is easier to find attacks
faster than brute-force for ciphers with larger keys. Consider using AES with a 64-bit key.To
break the algorithm, you have to find an attack that works faster than 264 encryptions.This is
a much harder proposition than breaking the full-length key.The key length of the cipher
sends an expectation of how much security the designer claims the algorithm can offer.

Encrypting multiple times, possibly with different ciphers, does not create a safer mix; it
just makes a slower design.The same logic that says “different ciphers applied multiple times
makes it more secure” can also say,“The specific combination of these ciphers makes it inse-
cure.”There is no reason to believe one argument over the other, and in the end you just
create more proprietary junk.

Again, this is a easy to see.A block cipher is just shorthand notation for a huge substitu-
tion table. Given any particular substitution, it is always possible to find another complement
substitution such that when applied one after another together will result in a linear trans-
form.This construction is trivially breakable.

Providers
There are many readily available providers of AES encryption and decryption. In general,
unless your application has very specific needs, you are better served (and serving your users)
by not dwelling on the implementation. LibTomCrypt and OpenSSL are common providers
in C callable applications. We shall use the former to create a simple CTR mode example.

The reader is encouraged to read the user manual that comes with LibTomCrypt to
fully appreciate what the library has to offer. What follows is a simple program that will
encrypt and decrypt a short string with AES in CTR mode.

ctr_example.c:
001 #include <tomcrypt.h>
002
003 int main(void)
004 {
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005 symmetric_CTR ctr;
006 unsigned char secretkey[16], IV[16], plaintext[32],
007 ciphertext[32], buf[32];
008 int x;
009
010 /* setup LibTomCrypt */
011 register_cipher(&aes_desc);

This statement tells LibTomCrypt to register the AES plug-in with its internal tables.
LibTomCrypt uses a modular plug-in system to allow the developer to substitute one imple-
mentation with another (say for added hardware support). In this case, we are using the
built-in AES software implementation.

013 /* somehow fill secretkey and IV ... */
014

Obviously, we left this section blank.The key and IV can be derived in many ways, most
of which we haven’t shown you how to use yet. Chapter 5 shows how to use PKCS #5 as a
key derivation function, and Chapter 9 shows how to use a public key algorithm to dis-
tribute a shared secret.

015 /* start CTR mode */
016 assert(
017 ctr_start(find_cipher("aes"), IV, secretkey, 16, 0,
018 CTR_COUNTER_BIG_ENDIAN, &ctr) == CRYPT_OK);
019

This function call initializes the ctr structure with the parameters for an AES-128 CTR
mode encryption with the given IV. We have chosen a big endian counter to be nice and
portable.This function can fail, and while there are many ways to deal with errors (such as
more graceful reporting), here we simply used an assertation. In reality, this code should never
fail, but as you put code like this in larger applications, it is entirely possible that it may fail.

020 /* create a plaintext */
021 memset(plaintext, 0, sizeof(plaintext));
022 strncpy(plaintext, "hello world how are you?",
023 sizeof(plaintext));
024

We zero the entire buffer plaintext before copying our shorter string into it.This ensures
that we have zero bytes in the eventual decryption we intend to display to the user.

025 /* encrypt it */
026 ctr_encrypt(plaintext, ciphertext, 32, &ctr);

This function call performs AES-128 CTR mode encryption of plaintext and stores it in
ciphertext. In this case, we are encrypting 32 bytes. Note, however, the CTR mode is not
restricted to dealing with multiples of the block size. We could have easily resized the buffers
to 30 bytes and still call the function (substituting 30 for 32).
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The ctr_encrypt function can be called as many times as required to encrypt the plaintext.
Each time the same CTR structure is passed in, it is updated so that the next call will pro-
ceed from the point the previous call left off. For example,

ctr_encrypt("hello", ciphertext, 5, &ctr);
ctr_encrypt(" world", ciphertext+5, 6, &ctr);

and

ctr_encrypt("hello world", ciphertext, 11, &ctr);

perform the same operation.

028 /* reset the IV */
029 ctr_setiv(IV, 16, &ctr);
030
031 /* decrypt it */
032 ctr_decrypt(ciphertext, buf, 32, &ctr);

Before we can decrypt the text with the same CTR structure, we have to reset the IV.
This is because after encrypting the plaintext the chaining value stored in the CTR structure
has changed. If we attempted to decrypt it now, it would not work.

We use the ctr_decrypt function to perform the decryption from ciphertext to the buf array.
For the curious, ctr_decrypt is just a placeholder that eventually calls ctr_encrypt to perform the
decryption.

034 /* print it */
035 for (x = 0; x < 32; x++) printf("%c", buf[x]);
036 printf("\n");
037
038 return EXIT_SUCCESS;
039 }

At this point, the user should be presented with the string “hello world how are you?”
and the program should terminate normally.
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Q: What is a cipher?

A: A cipher is an algorithm that transforms an input (plaintext) into an output (ciphertext)
with a secret key.

Q: What is the purpose of a cipher?

A: The first and foremost purpose of a cipher is to provide privacy to the user.This is
accomplished by controlling the mapping from plaintext to ciphertext with a secret key.

Q: What standards are there for ciphers?

A: The Advanced Encryption Standard (AES) is specified in FIPS 197.The NIST standard
SP 800-38A specifies five chaining modes, including CBC and CTR mode.

Q: What about the other ciphers?

A: Formally, NIST still recognizes Skipjack (FIPS 185) as a valid cipher. It is slower than
AES, but well suited for small 8- and 16-bit processors due to the size and use of 8-bit
operations. In Canada, the CSE (Communication Security Establishment) formally rec-
ognizes CAST4 (CSE Web site of approved ciphers is at www.cse-
cst.gc.ca/services/crypto-services/crypto-algorithms-e.html) in addition to all NIST
approved modes. CAST5 is roughly as fast as AES, but nowhere near as flexible in terms
of implementation. It is larger and harder to implement in hardware. Other common
ciphers such as RC5, RC6, Blowfish,Twofish, and Serpent are parts of RFCs of one
form or another, but are not part of official government standards. In the European
Union, the NESSIE project selected Anubis and Khazad as its 128-bit and 64-bit block
ciphers. Most countries formally recognize Rijndael (or often even AES) as their offi-
cially standardized block cipher.

Q: Where can I find implementations of ciphers such as AES?

A: Many libraries already support vast arrays of ciphers. LibTomCrypt supports a good mix
of standard ciphers such as AES, Skipjack, DES, CAST5, and popular ciphers such as
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Blowfish,Twofish, and Serpent. Similarly, Crypto++ supports a large mix of ciphers.
OpenSSL supports a few, including AES, CAST5, DES, and Blowfish.

Q: What is a pseudo random permutation (PRP)?

A: A pseudo random permutation is a re-arrangement of symbols (in the case of AES, the
integers 0 through 2128 – 1) created by an algorithm (hence the pseudo random bit).The
goal of a secure PRP is such that knowing part of the permutation is insufficient to have
a significant probability of determining the rest of the permutation.

Q: How do I get authenticity with AES?

A: Use the CMAC algorithm explained in Chapter 6.

Q: Isn’t CBC mode an authentication algorithm?

A: It can be, but you have to know what you are doing. Use CMAC.

Q: I heard CTR is insecure because it does not guarantee authenticity.

A: You heard wrong.

Q: Are you sure?

A: Yes.

Q: What is an IV?

A: The initial vector (IV) is a value used in chaining modes to deal with the first block.
Usually, previous ciphertext (or counters) is used for every block after the first. IVs must
be stored along with the ciphertext and are not secret.

Q: Does my CBC IV have to be random, or just unique, or what?

A: CBC IVs must be random.

Q: What about the IVs for CTR mode?

A: CTR IVs must only be unique. More precisely, they must never collide.This means that
through the course of encrypting one message, the intermediate value of the counter
must not equal the value of the counter while encrypting another message.That is,
assuming you used the same key. If you change keys per message, you can re-use the
same IV as much as you wish.
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Q: What are the advantages of CTR mode over CBC mode?

A: CTR is simpler to implement in both hardware and software. CTR mode can also be
implemented in parallel, which is important for hardware projects looking for gigabit
per second speeds. CTR mode also is easier to set up, as it does not require a random
IV, which makes certain packet algorithms more efficient as they have less overhead.

Q: Do I need a chaining mode? What about ECB mode?

A: Yes, you most likely need a chaining mode if you encrypt messages longer than the
block size of the cipher (e.g., 16 bytes for AES). ECB mode is not really a mode. ECB
means to apply the cipher independently to blocks of the message. It is totally insecure,
as it allows frequency analysis and message determination.

Q: What mode do you recommend?

A: Unless there is some underlying standard you want to comply with, use CTR mode for
privacy, if not for the space savings, then for the efficiency of the mode in terms of over-
head and execution time.

Q: What are Key Derivation Functions?

A: Key Derivation Functions (KDF) are functions that map a secret onto essential parame-
ters such as keys and IVs. For example, two parties may share a secret key K and wish to
derive keys to encrypt their traffic.They might also need to generate IVs for their
chaining modes.A KDF will allow them to generate the keys and IVs from a single
shared secret key.They are explained in more detail in Chapter 5.
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Introduction
Secure one-way hash functions are recurring tools in cryptosystems just like the symmetric
block ciphers. They are highly flexible primitives that can be used to obtain privacy, integrity
and authenticity. This chapter deals solely with the integrity aspects of hash functions.

A hash function (formally known as a pseudo random function or PRF) maps an arbitrary
sized input to a fixed size output through a process known as compression. This form of com-
pression is not your typical data compression (as you would see with a .zip file), but a nonin-
vertible mapping. Loosely speaking, checksum algorithms are forms of “hash functions,” and
in many independent circles they are called just that. For example, mapping inputs to hash
buckets is a simple way of storing arbitrary data that is efficiently searchable. In the crypto-
graphic sense, hash functions must have two properties to be useful: they must be one-way
and must be collision resistant. For these reasons, simple checksums and CRCs are not good
hash functions for cryptography.

Being one-way implies that given the output of a hash function, learning anything
useful about the input is nontrivial. This is an important property for a hash, since they are
often used in conjunction with RNG seed data and user passwords. Most trivial checksums
are not one-way, since they are linear functions. For short enough inputs, deducing the
input from the output is often a simple computation.

Being collision resistant implies that given an output from the hash, finding another
input that produces the same output (called a collision) is nontrivial. There are two forms of
collision resistance that we require from a useful hash function. Pre-image collision resis-
tance (Figure 5.1) states that given an output Y, finding another input M’ such that the hash
of M’ equals Y is nontrivial. This is an important property for digital signatures since they
apply their signature to the hash only. If collisions of this form were easy to find, an attacker
could substitute one signed message for another message. Second pre-image collision resis-
tance (Figure 5.2) states that finding two messages M1 (given) and M2 (chosen at random),
whose hatches match is nontrivial.

Figure 5.1 Pre-Image Collision Resistance
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Figure 5.2 Second Pre-Image Collision Resistance

Throughout the years, there have been multiple proposals for secure hash functions. The
reader may have even heard of algorithms such as MD4, MD5, or HAVAL. All of these
algorithms have held their place in cryptographic tools and all have been broken.

MD4 and MD5 have shown to be fairly insecure as they are not collision resistant.
HAVAL is suffering a similar fate, but the designers were careful enough to over design the
algorithm. So far, it is still secure to use. NIST has provided designs for what it calls the
Secure Hash Standard (FIPS 180-2), which includes the older SHA-1 hash function and
newer SHA-2 family of hashes (SHA stands for Secure Hash Algorithm). We will refer to
these SHS algorithms only in the rest of the text.

SHA-1 was the first family of hashes proposed by NIST. Originally, it was called SHA,
but a flaw in the algorithm led to a tweak that became known as SHA-1 (and the old stan-
dard as SHA-0). NIST only recommends the use of SHA-1 and not SHA-0.

SHA-1 is a 160-bit hash function, which means that the output, also known as the
digest, is 160 bits long. Like HAVAL, there are attacks on reduced variants of SHA-1 that can
produce collisions, but there is no attack on the full SHA-1 as of this writing. The current
recommendation is that SHA-1 is not insecure to use, but people instead use one of the
SHA-2 algorithms.

SHA-2 is the informal name for the second round of SHS algorithms designed by
NIST. They include the SHA-224, SHA-256, SHA-384, and SHA-512 algorithms. The
number preceding SHA indicates the digest length. In the SHA-2 series, there are actually
only two algorithms. SHA-224 uses SHA-256 with a minor modification and truncates the
output to 224 bits. Similarly, SHA-384 uses SHA-512 and truncates the output. The cur-
rent recommendation is to use at least SHA-256 as the default hash algorithm, especially if
you are using AES-128 for privacy (as we shall see shortly).

Hash Digests Lengths
You may be wondering where all these sizes for hash digests come from. Why did SHA-2
start at 256 bits and go all the way up to 512 (SHA-224 was added to the SHS specification
after the initial release)?  

It turns out the resistance of a hash to collision is not as linear as one would hope. For
example, the probability of a second pre-image collision in SHA-256 is not 1/2256 as one may
think; instead, it is only at least 1/2128. An observation known as the birthday paradox states
(roughly) that the probability of 23 people in a room sharing a birthday is roughly 50 percent.
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This is because there are 23C2 = 253 (that is read as “23 choose 2”) unique pairs. Each
pair has a chance of 364/365 that the birthday is not the same.The chance that all the pairs
are not the same is given by raising the fraction to the power of 253. Noticing the proba-
bility of an event and its negation must sum to one, we take this last result and deduct it
from one to get a decent estimate for the probability that any birthdays match. It turns out
to be fractionally over 50 percent.

As the number n grows, the nC2 operation is closely approximated by n2, so with 2128

hashes we have 2256 pairs and expect to find a collision.
In effect, our hashes have half of their digest size in strength. SHA-256 takes 2128 work to

find collisions; SHA-512 takes 2256 work; and so on. One important design guideline is to
ensure that all of your primitives have equal “bit strength.” There is no sense using AES-256
with SHA-1 (at least directly), as the hash only emits 160 bits; birthday paradoxes play less
into this problem. They do, however, affect digital signatures, as we shall see.

SHA-1 output size of 160 bits actually comes from the (then) common use of RSA-
1024 (see Chapter 9,“Public Key Algorithms”). Breaking a 1024-bit RSA key takes roughly
286 work, which compares favorably to the difficulty of finding a hash collision of 280 work.
This means that an attacker would spend about as much time trying to find another docu-
ment that collides with the victim’s document, then breaking the RSA key itself.

What one should avoid is getting into a situation where you have a mismatch of
strength. Using RSA-1024 with SHA-256 is not a bad idea, but you should be clearly aware
that the strength of the combination is only 86 bits and not 128 bits. Similarly, using RSA-
2048 (112 bits of strength) with SHA-1 would imply the attacker would only have to find a
collision and not break the RSA key (which is much harder).

Table 5.1 indicates which standards apply to a given bit strength desired. It is important
to note that the column indicating which SHS to use is only a minimum suggestion. You
can safely use SHA-256 if your target is only 112 bits of security. The important thing to
note is you do not gain strength by using a larger hash. For instance, if you are using ECC-
192 and choose SHA-512, you still only have at most 96 bits of security (provided all else is
going right). Choose your primitives wisely.

Table 5.1 Bit Strength and Hash Standard Matching

Bit Strength ECC Strength RSA Strength SHS To Use

80 ECC-192* RSA-1024 SHA-1
112 ECC-224 RSA-2048 SHA-224
128 ECC-256 SHA-256
192 ECC-384 SHA-384
256 ECC-521 SHA-512

*Technically, ECC-192 requires 296 work to break, but it is the smallest standard ECC
curve NIST provides.
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Many (smart) people have written volumes on what key size to strive for. We will sim-
plify it for you. Aim for at least 128 bits and use more if your application can tolerate it.
Usually, larger keys mean slower algorithms, so it is important to take timing constraints in
consideration. Smaller keys just mean you are begging for someone to put a cluster together
and break your cryptography. In the end, if you are worried more about the key sizes you
use and less about how the entire application works together, you are not doing a good job
as a cryptographer.

Notes from the Underground…

MD5CRK Attack of the Hashes
A common way to find a collision in a fixed function without actually storing a
huge list of values and comparing is cycle finding.  The attack works by iterating
the function on its output.  You start with two or more different initial values and
cycle until two of them collide; for example, if user A starts with A[–1] and user
B starts with B[–1] such that A[–1] does not equal B[–1], we compute

A[i] = Hash(A[i-1])
B[i] = Hash(B[i-1])
Until A[i] equals B[i].  Clearly, comparing online is annoying if you want to

distribute this attack.  However, storing the entire list of A[i] and B[i] for com-
parison is very inefficient.  A clever optimization is to store distinguished points.
Usually, they are distinguished by a particular bit pattern.  For example, only store
the hash values for which the first l-bits are zero.  

Now, if they collide they will produce colliding distinguished points as well.
The value of l provides a tradeoff between memory on the collection side and
efficiency.  The more bits, the smaller your tables, but the longer it takes users to
report distinguished points.  The fewer bits you use, the larger the tables, and the
slower the searches.

Designs of SHS and Implementation
As mentioned earlier, SHS FIPS 180-2 is comprised of three distinct algorithms: SHA-1,
SHA-256, and SHA-512. From the last two, the alternate algorithms SHA-224 and SHA-
384 can be constructed. We will first consider the three unique algorithms.

All three algorithms follow the same basic design flow. A block of the message is
extracted, expanded, and then passed through a compression function that updates an
internal state (which is the size of the message digest). All three algorithms employ padding
to the message using a technique known as MD strengthening.
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In Figure 5.3, we can see the flow of how the hash of the two block message M[0,1] is
computed. M[0] is first expanded, and then compressed along with the existing hash state.
The output of this is the new hash state. Next, we apply the Message Digest (MD) strength-
ening padding to M[1], expand it, and compress it with the hash state. Since this was the last
block, the output of the compression is the hash digest.

Figure 5.3 Hash of a Two-Block Message

All three hashes are fairly easy to describe in terms of block cipher terminology. The
message block (key) is expanded to a set of round keys. The round keys are then used to
encrypt the current hash state, which performs a compression of the message to the smaller
hash state size. This construction can turn a normal block cipher into a hash as well. In
terms of AES, for example, we have

S[i] := S[i-1] xor AES(M[I], S[i-1])

where AES(M[i], S[i–1]) is the encryption of the previous state S[i–1] under the key
M[i]. We use a fixed known value for S[–1], and by padding the message with MD
strengthening we have constructed a secure hash. The problem with using traditional ciphers
for this is that the key and ciphertext output are too small. For example, with AES-256 we
can compress 32 bytes per call and produce a 128-bit digest. SHA-1, on the other hand,
compresses 64 bytes per call and produces a 160-bit digest.

MD Strengthening
The process of MD strengthening was originally invented as part of the MD series of hashes
by Dr. Rivest. The goal was to prevent a set of prefix and suffix attacks by encoding the
length as part of the message.

www.syngress.com

208 Chapter 5 • Hash Functions

M [0] M [1]

Expand ExpandCompress Compress

Padding

Digest

StateInitial State

404_CRYPTO_05.qxd  10/30/06  10:35 AM  Page 208



The padding works as follows.

1. Append a single one bit to the message.

2. Append enough zero bits so the length of the message is congruent to w-l modulo
w.

3. Append the length of the message in big endian format as an l-bit integer.

Where w is the block size of the hash function and l is the number of bits to encode the
maximum message size. In the case of SHA-1, SHA-224, and SHA-256, we have w = 512
and l = 64. In the case of SHA-384 and SHA-512, we have w = 1024 and l = 128.

SHA-1 Design
SHA-1 is by far the most common hash function next to the MD series. At the time when
it was invented, it was among the only hashes that provided a 160-bit digest and still main-
tained a decent level of efficiency. We will break down the SHA-1 design into three com-
ponents: the state, the expansion function, and compression function.

SHA-1 State
The SHA-1 state is an array of five 32-bit words denoted as S[0...4], which hold the initial
values of 

S[0] = 0x67452301;
S[1] = 0xefcdab89;
S[2] = 0x98badcfe;
S[3] = 0x10325476;
S[4] = 0xc3d2e1f0;

Each invocation of the compression function updates the SHA-1 state. The final value
of the SHA-1 state is the hash digest.

SHA-1 Expansion
SHA-1 processes the message in blocks of 64 bytes. Regardless of which block we are
expanding (the first or the last with padding), the expansion process is the same. The expan-
sion makes use of an array of 80 32-bit words denoted as W[0...79]. The first 16 words are
loaded in big endian fashion from the message block.

The next 64 words are produced with the following code.

for (x = 16; x < 80; x++) {
W[i] = ROL(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1);

}

Where ROL(x, 1) is a left cyclic 32-bit rotation by 1 bit. At this point, we have fully
expanded the 64-byte message block into round keys required for the compression function.
The curious reader may wish to know that SHA-0 was defined without the rotation.
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Without the rotation, the hash function does not have the desired 80 bits’ worth of strength
against collision searches.

SHA-1 Compression
The compression function is a type of Feistel network (do not worry if you do not know
what that is) with 80 rounds. In each round, three of the words from the state are sent
through a round function and then combined with the remaining two words. SHA-1 uses
four types of rounds, each iterated 20 times for a total of 80 rounds.

The hash state must first be copied from the S[] array to some local variables. We shall
call them {a,b,c,d,e}, such that a = S[0], b = S[1], and so on. The round structure resembles
the following.

FFx(a,b,c,d,e,x) \
e = (ROL(a, 5) + Fx(b,c,d) + e + W[x] + Kx); b = ROL(b, 30);

where Fx(x,y,z) is the round function for the x’th grouping. After each round, the
words of the state are swapped such that e becomes d, d becomes c, and so on. Kx denotes
the round constant for the x’th round. Each group of rounds has its own constant. The four
round functions are given by the following code.

#define F0(x,y,z) (z ^ (x & (y ^ z)))
#define F1(x,y,z) (x ^ y ^ z)
#define F2(x,y,z) ((x & y) | (z & (x | y)))
#define F3(x,y,z) (x ^ y ^ z)

The round constants are the following.

K0...19 = 0x5a827999
K20...39 = 0x6ed9eba1
K40...59 = 0x8f1bbcdc
K60...79 = 0xca62c1d6

After 20 rounds of each type of round, the five words of {a,b,c,d,e} are added (as inte-
gers modulo 232) to their counterparts in the hash state. Another view of the round function
is in Figure 5.4.

Figure 5.4 SHA-1 Round Function

210 Chapter 5 • Hash Functions

A B ROL30 C D E

ROL5 F (x, y, z)

W Kx x

www.syngress.com

404_CRYPTO_05.qxd  10/30/06  10:35 AM  Page 210



SHA-1 Implementation
Our SHA-1 implementation is a direct translation of the standard and avoids a couple
common optimizations that we will mention inline with the source.

sha1.c:
001 #if defined(__x86_64__)
002 typedef unsigned ulong32;
003 #else
004 typedef unsigned long ulong32;
005 #endif
006
007 /* Helpful macros */
008 #define STORE32H(x, y) \
009 { (y)[0] = (unsigned char)(((x)>>24)&255); \
010 (y)[1] = (unsigned char)(((x)>>16)&255); \
011 (y)[2] = (unsigned char)(((x)>>8)&255); \
012 (y)[3] = (unsigned char)((x)&255); }
013
014 #define LOAD32H(x, y) \
015 { x = ((ulong32)((y)[0] & 255)<<24) | \
016 ((ulong32)((y)[1] & 255)<<16) | \
017 ((ulong32)((y)[2] & 255)<<8) | \
018 ((ulong32)((y)[3] & 255)); }
019
020 #define ROL(x, y) \
021 ((((ulong32)(x)<<(ulong32)((y)&31)) | \
022 (((ulong32)(x)&0xFFFFFFFFUL)>> \
023 (ulong32)(32-((y)&31)))) & 0xFFFFFFFFUL)

Our familiar macros come up again in this implementation. These macros are a lifesaver
in portable coding, as they totally eliminate any endianess issues we may have had.

025 #define F0(x,y,z) (z ^ (x & (y ^ z)))
026 #define F1(x,y,z) (x ^ y ^ z)
027 #define F2(x,y,z) ((x & y) | (z & (x | y)))
028 #define F3(x,y,z) (x ^ y ^ z)

These are the SHA-1 round functions.

030 typedef struct {
031 unsigned char buf[64];
032 unsigned long buflen, msglen;
033 ulong32 S[5];
034 } sha1_state;

This structure holds an SHA-1 state. It allows us to process messages with multiple calls
to sha1_process. For example, if we are hashing a message that is streaming or too large to
fit in memory at once, we can use multiple calls to the process function to handle the entire
message.

036 void sha1_init(sha1_state *md)
037 {
038 md->S[0] = 0x67452301;
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039 md->S[1] = 0xefcdab89;
040 md->S[2] = 0x98badcfe;
041 md->S[3] = 0x10325476;
042 md->S[4] = 0xc3d2e1f0;
043 md->buflen = md->msglen = 0;
044 }

This function initializes the SHA-1 state to the default state. We set the S[] array to the
SHA-1 defaults and set the buffer and message lengths to zero. The buffer length (buflen)
variable counts how many bytes in the current block we have so far. When it reaches 64, we
have to call the compression function to compress the data. The message length (msglen)
variable counts the size of the entire message. In our case, we are counting bytes, which
means that this routine is limited to 232–1 byte messages.

046 static void sha1_compress(sha1_state *md)
047 {
048 ulong32 W[80], a, b, c, d, e, t;
049 unsigned x;
050
051 /* load W[0..15] */
052 for (x = 0; x < 16; x++) {
053 LOAD32H(W[x], md->buf + 4 * x);
054 }

This function expands and compresses the message block into the state. This first loop
loads the 64-byte block into W[0..15] in big endian format using the LOAD32H macro.

056 /* compute W[16...79] */
057 for (x = 16; x < 80; x++) {
058 W[x] = ROL(W[x-3] ^ W[x-8] ^ W[x-14] ^ W[x-16], 1);
059 }

This loop produces the rest of the W[] array entries. Like the AES key schedule (see
Chapter 4,“Advanced Encryption Standard”), it is a form of shift register.

TIP

Like the AES key schedule, we can optimize SHA-1 in limited memory environ-
ments.  By running the expansion on the fly, we only need 16 32-bit words (64
bytes) and not the full 80 32-bit words (320 bytes).  The optimization takes
advantage of the fact that W[x] and W[x-16] can overlap in memory.

061 /* load a copy of the state */
062 a = md->S[0]; b = md->S[1]; c = md->S[2];
063 d = md->S[3]; e = md->S[4];
064
065 /* 20 rounds */
066 for (x = 0; x < 20; x++) {
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067 e = (ROL(a, 5) + F0(b,c,d) + e + W[x] + 0x5a827999);
068 b = ROL(b, 30);
069 t = e; e = d; d = c; c = b; b = a; a = t;
070 }

This loop implements the first 20 rounds of the SHA-1 compression function. Here we
have rolled the loop up to save space. There are two other common ways to implement it.
One is partially to unroll it by copying the body of the loop five times. This allows us to use
register renaming instead of the swaps (line 69). With a macro such as 

#define FF0(a,b,c,d,e,i) \
e = (ROLc(a, 5) + F0(b,c,d) + e + W[i] + 0x5a827999UL); \
b = ROLc(b, 30);

the loop could be implemented as follows.

for (x = 0; x < 20; ) {
FF0(a,b,c,d,e,x++);
FF0(e,a,b,c,d,x++);
FF0(d,e,a,b,c,x++);
FF0(c,d,e,a,b,x++);
FF0(b,c,d,e,a,x++);

}

This saves on all of the swaps and is more efficient (albeit five times larger) to execute.
The next level of optimization is that we can unroll the entire loop replacing the “x++”
with the constant round numbers. This level of unrolling rarely produces much benefit on
modern processors (with good branch prediction) and solely serves to pollute the instruction
cache.

072 /* 20 rounds */
073 for (; x < 40; x++) {
074 e = (ROL(a, 5) + F1(b,c,d) + e + W[x] + 0x6ed9eba1);
075 b = ROL(b, 30);
076 t = e; e = d; d = c; c = b; b = a; a = t;
077 }
078
079 /* 20 rounds */
080 for (; x < 60; x++) {
081 e = (ROL(a, 5) + F2(b,c,d) + e + W[x] + 0x8f1bbcdc);
082 b = ROL(b, 30);
083 t = e; e = d; d = c; c = b; b = a; a = t;
084 }
085
086 /* 20 rounds */
087 for (; x < 80; x++) {
088 e = (ROL(a, 5) + F3(b,c,d) + e + W[x] + 0xca62c1d6);
089 b = ROL(b, 30);
090 t = e; e = d; d = c; c = b; b = a; a = t;
091 }

These three loops implement the last 60 rounds of the SHA-1 compression. We can
unroll them with the same style of code as the first round for extra performance.
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093 /* update state */
094 md->S[0] += a;
095 md->S[1] += b;
096 md->S[2] += c;
097 md->S[3] += d;
098 md->S[4] += e;
099 }

This last bit of code updates the SHA-1 state by adding the copies of the state to the
state itself.The additions are meant to be modulo 232. We do not have to reduce the results,
as are rotate macros explicitly mask bits in the 32-bit range.

101 void sha1_process( sha1_state *md,
102 const unsigned char *buf,
103 unsigned long len)
104 {

This function is what the caller will use to add message bytes to the SHA-1 hash. The
function copies message bytes from buf to the internal buffer and then proceeds to compress
them when 64 bytes have accumulated.

105 unsigned long x, y;
106
107 while (len) {
108 x = (64 - md->buflen) < len ? 64 - md->buflen : len;
109 len -= x;

Our buffer is only 64 bytes long, so we must prevent copying too much into it. After
this point, x contains the number of bytes we have to copy to proceed.

111 /* copy x bytes from buf to the buffer */
112 for (y = 0; y < x; y++) {
113 md->buf[md->buflen++] = *buf++;
114 }
115
116 if (md->buflen == 64) {
117 sha1_compress(md);
118 md->buflen = 0;
119 md->msglen += 64;
120 }
121 }
122 }

After copying the bytes, we check if our buffer has 64 bytes, and if so we call the com-
pression function. After compression, we reset the buffer length and update the message
length. There is an optimization we can apply to this process function, which is a method of
performing zero-copy compression.

Suppose you enter the function with buflen equal to zero and you want to hash more
than 63 bytes of data. Why does the data have to be copied to the buf[] array before the
hash compresses it?  By hashing out of the user supplied buffer directly, we avoid the costly
double buffering that would otherwise be required. The optimization can be applied further.
Suppose buflen was not zero, but we were hashing more than 64 bytes. We could double
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buffer until we fill buflen; then, if enough bytes remain we could zero-copy as many 64 byte
blocks as remained.

This trick is fairly simple to implement and can easily give a several percentage point
boost in performance.

124 void sha1_done( sha1_state *md,
125 unsigned char *dst)
126 {

This function terminates the hash and outputs the digest to the caller in the dst buffer.

127 ulong32 l1, l2, i;
128
129 /* compute final length as 8*md->msglen */
130 md->msglen += md->buflen;
131 l2 = md->msglen >> 29;
132 l1 = (md->msglen << 3) & 0xFFFFFFFF;

Technically, SHA-1 supports messages up to 264–1 bits; however, as a matter of practi-
cality we limit ourselves to 232–1 bytes. Before we can encode the length, however, we have
to encode it as the number of bits. We extract the upper bits of the message length (line
131) and then shift up by three, emulating a multiplication by 8. At this point, the 64-bit
value l2*232 + l1 represents the message length in bits as required for the padding scheme.

134 /* add the padding bit */
135 md->buf[md->buflen++] = 0x80;

This is the leading padding bit. Since we are dealing with byte units, we are always
aligned on a byte boundary. SHA-1 is big endian, so the one bit turns into 0x80 (with
seven padding zero bits).

137 /* if the current len > 56 we have to finish this block */
138 if (md->buflen > 56) {
139 while (md->buflen < 64) {
140 md->buf[md->buflen++] = 0x00;
141 }
142 sha1_compress(md);
143 md->buflen = 0;
144 }

If our current block is too large to accommodate the 64-bit length, we must pad with
zero bytes until we hit 64 bytes. We compress and reset the buffer length counter.

146 /* now pad until we are at pos 56 */
147 while (md->buflen < 56) {
148 md->buf[md->buflen++] = 0x00;
149 }

At this point, buflen < 56 is guaranteed. We pad with enough zero bytes until we hit
position 56.

151 /* store the length */
152 STORE32H(l2, md->buf + 56);
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153 STORE32H(l1, md->buf + 60);

We store the length of the message as a 64-bit big endian number. We are emulating
this by performing two big endian 32-bit stores.

155 /* compress */
156 sha1_compress(md);

A final compression including the padding terminates the hash.

158 /* extract the state */
159 for (i = 0; i < 5; i++) {
160 STORE32H(md->S[i], dst + i*4);
161 }
162 }

Now we extract the digest, which is the five 32-bit words of the SHA-1 state. At this
point, dst[0...19] contains the message digest of the message that was hashed.

164 void sha1_memory(const unsigned char *in,
165 unsigned long len,
166 unsigned char *dst)
167 {
168 sha1_state md;
169 sha1_init(&md);
170 sha1_process(&md, in, len);
171 sha1_done(&md, dst);
172 }

This function is a nice helper function to have around. It hashes a complete message
and outputs the digest in a single function call. This is useful if you are hashing small buffers
that can fit in memory—for example, for hashing passwords and salts.

174 #include <stdio.h>
175 #include <stdlib.h>
176 #include <string.h>
177 int main(void)
178 {
179 static const struct {
180 char *msg;
181 unsigned char hash[20];
182 } tests[] = {
183 { "abc",
184 { 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
185 0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
186 0x9c, 0xd0, 0xd8, 0x9d }
187 },
188 { "abcdbcdecdefdefgefghfghighi"
189 "jhijkijkljklmklmnlmnomnopnopq",
190 { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
191 0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
192 0xE5, 0x46, 0x70, 0xF1 }
193 }
194 };
195 int i;
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196 unsigned char tmp[20];
197
198 for (i = 0; i < 2; i++) {
199 sha1_memory((unsigned char *)tests[i].msg,
200 strlen(tests[i].msg), tmp);
201 if (memcmp(tests[i].hash, tmp, 20)) {
202 printf("Failed test %d\n", i);
203 return EXIT_FAILURE;
204 }
205 }
206 printf("SHA-1 Passed\n");
207 return EXIT_SUCCESS;
208 }

Our demo program uses two standard SHA-1 test vectors to try to determine if our
code actually works. There are a few corner cases we are missing from the test suite (which
are not part of the FIPS standard anyway). They:

1. A zero length (null) message.

1. That is: da39a3ee5e6b4b0d3255bfef95601890afd80709

2. A message that is exactly 64 bytes long.

1. 64 zero bytes: c8d7d0ef0eedfa82d2ea1aa592845b9a6d4b02b7

3. A message that is exactly 56 bytes long.

1. 56 zero bytes: 9438e360f578e12c0e0e8ed28e2c125c1cefee16

4. A message that is a proper multiple of 64 bytes long.

1. 128 zero bytes: 0ae4f711ef5d6e9d26c611fd2c8c8ac45ecbf9e7

The FIPS 800-2 standard provides three test vectors, two of which we used in our
example. The third is a million a’s, which should result in the digest 34aa973c d4c4daa4
f61eeb2b dbad2731 6534016f.

As we will see with other NIST standards, it is not uncommon for their test vectors to
lack thoroughness. As an aside, how much do FIPS validation certificates cost these days
anyway?

SHA-256 Design
SHA-256 follows a similar design (overall) as SHA-1. It uses a 256-bit state divided into
eight 32-bit words denoted as S[0...7]. While it has the same expansion and compression
feel as SHA-1, the actual operations are more complicated. SHA-256 uses a single round
function that is repeated 64 times.

SHA-256 makes use of a set of eight simple functions defined as follows.

#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
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These are the nonlinear functions used within the SHA-256 round function. They pro-
vide the linear complexity to the design required to ensure the function is one way and dif-
ferences are hard to control. Without these functions, SHA-256 would be entirely linear
(with the exception of the integer additions we will see shortly) and collisions would be
trivial to find.

#define S(x, n) ROR((x),(n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))

These are a right cyclic shift and a right logical shift, respectively. A curious reader may
note that the S() macro performs a rotation and the R() macro performs a shift. These were
macros based off the early drafts of the SHA-256 design. We left them like this partially
because it’s amusing and partially because it is what LibTomCrypt uses.

#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))

These two functions are used within the round function to promote diffusion. They
replace the rotations by 5 and 30 bits used in SHA-1. Now, a single bit difference in the
input will spread to two other bits in the output. This helps promote rapid diffusion
through the design by being placed at just the right spot. If we examine the SHA-256 block
diagram (Figure 5.5), we can see that the output of Sigma0 and Sigma1 eventually feeds
back into the same word of the state the input came from. This means that after one round,
a single bit affects three bits of the neighboring word. After two rounds, it affects at least
nine bits, and so on. This feedback scheme has so far proven very effective at making the
designs immune to cryptanalysis.

#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))

Figure 5.5 SHA-256 Compression Diagram
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These two functions are used within the expansion phase to promote collision resis-
tance. Within the SHA-256 (and FIPS 180-2 in general) standard, they use the upper- and
lowercase Greek sigma  for the Sigma and Gamma functions. We renamed the lowercase
sigma functions to Gamma to prevent confusion in the source code.

SHA-256 State
The initial state of SHA-256 is 8 32-bit words denoted as S[0...7], specified as follows.

S[0] = 0x6A09E667;
S[1] = 0xBB67AE85;
S[2] = 0x3C6EF372;
S[3] = 0xA54FF53A;
S[4] = 0x510E527F;
S[5] = 0x9B05688C;
S[6] = 0x1F83D9AB;
S[7] = 0x5BE0CD19;

SHA-256 Expansion
Like SHA-1, the message block is expanded before it is used. The message block is expanded
to 64 32-bit words.The first 16 words are loaded in big endian format from the 64 bytes of
the message block. The next 48 words are computed with the following recurrence.

for (i = 16; i < 64; i++) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] +

Gamma0(W[i - 15]) + W[i - 16];
}

SHA-256 Compression
Compression begins by making a copy of the SHA-256 state from S[0...7] to {a,b,c,d,e,f,g,h}.
Next, 64 identical rounds are executed. The x’th round structure is as follows.

t0 = h + Sigma1(e) + Ch(e, f, g) + K[x] + W[x];
t1 = Sigma0(a) + Maj(a, b, c);
d += t0;
h = t0 + t1;

After each round, the words are rotated such that h becomes g, g becomes f, f becomes e,
and so on.The K array is a fixed array of 64 32-bit words (see the Implementation section).
After the 64th round, the words {a,b,c,d,e,f,g,h} are added to the hash state in their respective
locations.The hash state of after compressing the last message block is the message digest.

Comparing this diagram to that of SHA-1 (Figure 5.4), we can see that they apply two
parallel nonlinear functions, two more complicated diffusion primitives (Sigma0 and
Sigma1), and more feedback (into the A and E words). These changes make the new SHS
algorithms have much higher diffusion and are less likely to be susceptible to the same class
of attacks that are plaguing the MD5 and SHA-1 algorithms currently.
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SHA-256 Implementation
Our SHA-256 implementation is directly adopted from the framework of the SHA-1 imple-
mentation. In a way, it highlights the similarities between the two hashes. It also highlights
the fact that we did not want to write two different hash interfaces, partly out of laziness and
partly because it would make the code harder to use.

001 #if defined(__x86_64__)
002 typedef unsigned ulong32;
003 #else
004 typedef unsigned long ulong32;
005 #endif
006
007 /* Helpful macros */
008 #define STORE32H(x, y) \
009 { (y)[0] = (unsigned char)(((x)>>24)&255); \
010 (y)[1] = (unsigned char)(((x)>>16)&255); \
011 (y)[2] = (unsigned char)(((x)>>8)&255); \
012 (y)[3] = (unsigned char)((x)&255); }
013
014 #define LOAD32H(x, y) \
015 { x = ((ulong32)((y)[0] & 255)<<24) | \
016 ((ulong32)((y)[1] & 255)<<16) | \
017 ((ulong32)((y)[2] & 255)<<8) | \
018 ((ulong32)((y)[3] & 255)); }
019
020 #define ROR(x, y) \
021 ((((ulong32)(x)>>(ulong32)((y)&31)) | \
022 (((ulong32)(x)&0xFFFFFFFFUL)<< \
023 (ulong32)(32-((y)&31)))) & 0xFFFFFFFFUL)

So far, very familiar with the exception we use a right cyclic rotation, not left.

025 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
026 #define Maj(x,y,z) (((x | y) & z) | (x & y))
027 #define S(x, n) ROR((x),(n))
028 #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
029 #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
030 #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
031 #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
032 #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))

These are our SHA-256 macros for the expansion and compression phases.

034 typedef struct {
035 unsigned char buf[64];
036 unsigned long buflen, msglen;
037 ulong32 S[8];
038 } sha256_state;

Our SHA-256 state with the longer S[] array. The variables otherwise have the same
purposes as in the SHA-1 code.

040 static const ulong32 K[64] = {
041 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
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042 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
043 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
044 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
045 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
046 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
047 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
048 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
049 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
050 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
051 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
052 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
053 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
054 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
055 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
056 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
057 };

This is the complete K[] array required by the compression function. NIST states they
are the 32 bits of the fractional part of the cube root of the first 32 primes. For example, 21/3

truncated to just the fractional part is 0.2599210498948731647672106072782, which when
multiplied by 232 is 1116352408.8404644807431890114033, and rounded down produces
our first table entry 0x428A2F98.

We guess NIST never thought it may be a good idea to be able to generate the K[]
values on the fly. In their defense, they chose such an odd table generation function so they
could claim there are no “trap doors” in the table.

059 void sha256_init(sha256_state *md)
060 {
061 md->S[0] = 0x6A09E667UL;
062 md->S[1] = 0xBB67AE85UL;
063 md->S[2] = 0x3C6EF372UL;
064 md->S[3] = 0xA54FF53AUL;
065 md->S[4] = 0x510E527FUL;
066 md->S[5] = 0x9B05688CUL;
067 md->S[6] = 0x1F83D9ABUL;
068 md->S[7] = 0x5BE0CD19UL;
069 md->buflen = md->msglen = 0;
070 }

This initializes the state to the default SHA-256 state.

072 static void sha256_compress(sha256_state *md)
073 {
074 ulong32 W[64], a, b, c, d, e, f, g, h, t, t0, t1;
075 unsigned x;
076
077 /* load W[0..15] */
078 for (x = 0; x < 16; x++) {
079 LOAD32H(W[x], md->buf + 4 * x);
080 }
081
082 /* compute W[16...63] */
083 for (x = 16; x < 64; x++) {
084 W[x] = Gamma1(W[x - 2]) + W[x - 7] +

www.syngress.com

Hash Functions • Chapter 5 221

404_CRYPTO_05.qxd  10/30/06  10:35 AM  Page 221



085 Gamma0(W[x - 15]) + W[x - 16];
086 }

At this point, we have fully expanded the message block to W[0...63] and can begin
compressing the data. Note that the additions are modulo 232, but as it turns out, we do not
have to explicitly reduce them, as the round function only uses the rotation macros. Like
SHA-1, we can expand the block on the fly and in place if memory is tight.

088 /* load a copy of the state */
089 a = md->S[0]; b = md->S[1]; c = md->S[2];
090 d = md->S[3]; e = md->S[4]; f = md->S[5];
091 g = md->S[6]; h = md->S[7];
092
093 /* perform 64 rounds */
094 for (x = 0; x < 64; x++) {
095 t0 = h + Sigma1(e) + Ch(e, f, g) + K[x] + W[x];
096 t1 = Sigma0(a) + Maj(a, b, c);
097 d += t0;
098 h = t0 + t1;
099
100 /* swap */
101 t = h; h = g; g = f; f = e; e = d;
102 d = c; c = b; b = a; a = t;
103 }

Like the SHA-1 implementation, we have fully rolled the loop. We can unroll it either
eight times or fully to gain a boost in speed. Unrolling it fully also allows us to embed the
K[] constants in the code, which avoids a table lookup during the round function. The ben-
efits of fully unrolling depend on the platform. On most x86 platforms, the gains are slight
(if any) and the code size increase can be dramatic.

By defining a round macro, we could perform the unrolling nicely.

#define RND(a,b,c,d,e,f,g,h,i) \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;

for (i = 0; i < 64; ) {
RND(a,b,c,d,e,f,g,h,i); ++i;
RND(h,a,b,c,d,e,f,g,i); ++i;
RND(g,h,a,b,c,d,e,f,i); ++i;
RND(f,g,h,a,b,c,d,e,i); ++i;
RND(e,f,g,h,a,b,c,d,i); ++i;
RND(d,e,f,g,h,a,b,c,i); ++i;
RND(c,d,e,f,g,h,a,b,i); ++i;
RND(b,c,d,e,f,g,h,a,i); ++i;

}

This will perform the SHA-256 compression without performing all of the swaps of the
previous routine. Note that we increment i after the macro, as it is used multiple times
before we hit a sequence point in the source.
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105 /* update state */
106 md->S[0] += a;
107 md->S[1] += b;
108 md->S[2] += c;
109 md->S[3] += d;
110 md->S[4] += e;
111 md->S[5] += f;
112 md->S[6] += g;
113 md->S[7] += h;
114 }

Like SHA-1, we add the copies to the SHA-256 state to terminate the compression
function.

116 void sha256_process( sha256_state *md,
117 const unsigned char *buf,
118 unsigned long len)
119 {
120 unsigned long x, y;
121
122 while (len) {
123 x = (64 - md->buflen) < len ? 64 - md->buflen : len;
124 len -= x;
125
126 /* copy x bytes from buf to the buffer */
127 for (y = 0; y < x; y++) {
128 md->buf[md->buflen++] = *buf++;
129 }
130
131 if (md->buflen == 64) {
132 sha256_compress(md);
133 md->buflen = 0;
134 md->msglen += 64;
135 }
136 }
137 }

This is a direct copy of the SHA-1 function, with the sha1_compress function swapped
for sha256_compress.

NOTE

The “process” functions of most popular hashes such as MD4, MD5, SHA-1,
SHA-256, and so on are so similar that it is possible to use a single macro to
expand out to the required process function for the given hash.

This technique is used in the LibTomCrypt library so that optimizations
applied to the macro (such as zero-copy hashing) apply to all hashes that use
the macro.  
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139 void sha256_done( sha256_state *md,
140 unsigned char *dst)
141 {
142 ulong32 l1, l2, i;
143
144 /* compute final length as 8*md->msglen */
145 md->msglen += md->buflen;
146 l2 = md->msglen >> 29;
147 l1 = (md->msglen << 3) & 0xFFFFFFFF;
148
149 /* add the padding bit */
150 md->buf[md->buflen++] = 0x80;
151
152 /* if the current len > 56 we have to finish this block */
153 if (md->buflen > 56) {
154 while (md->buflen < 64) {
155 md->buf[md->buflen++] = 0x00;
156 }
157 sha256_compress(md);
158 md->buflen = 0;
159 }
160
161 /* now pad until we are at pos 56 */
162 while (md->buflen < 56) {
163 md->buf[md->buflen++] = 0x00;
164 }
165
166 /* store the length */
167 STORE32H(l2, md->buf + 56);
168 STORE32H(l1, md->buf + 60);
169
170 /* compress */
171 sha256_compress(md);
172
173 /* extract the state */
174 for (i = 0; i < 8; i++) {
175 STORE32H(md->S[i], dst + i*4);
176 }
177 }

This function is also copied from the SHA-1 implementation with the function name
changes and we store eight 32-bit words instead of five.

179 void sha256_memory(const unsigned char *in,
180 unsigned long len,
181 unsigned char *dst)
182 {
183 sha256_state md;
184 sha256_init(&md);
185 sha256_process(&md, in, len);
186 sha256_done(&md, dst);
187 }
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Our helper function.

189 #include <stdio.h>
190 #include <stdlib.h>
191 #include <string.h>
192 int main(void)
193 {
194 static const struct {
195 char *msg;
196 unsigned char hash[32];
197 } tests[] = {
198 { "abc",
199 { 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
200 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
201 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
202 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
203 },
204 { "abcdbcdecdefdefgefghfghighijhi"
205 "jkijkljklmklmnlmnomnopnopq",
206 { 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
207 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
208 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
209 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
210 },
211 };
212 int i;
213 unsigned char tmp[32];
214
215 for (i = 0; i < 2; i++) {
216 sha256_memory((unsigned char *)tests[i].msg,
217 strlen(tests[i].msg), tmp);
218 if (memcmp(tests[i].hash, tmp, 32)) {
219 printf("Failed test %d\n", i);
220 return EXIT_FAILURE;
221 }
222 }
223 printf("SHA-256 Passed\n");
224 return EXIT_SUCCESS;
225 }

Our test program to ensure our SHA-256 implementation is working correctly.

SHA-512 Design
SHA-512 was designed after the SHA-256 algorithm. It differs in the message block size,
round constants, number of rounds, and the Sigma/Gamma functions. It has a state com-
prised of eight 64-bit words and follows the same expansion and compression workflow as
the other hashes. SHA-512 uses 128-byte blocks instead of the 64-byte blocks SHA-1 and
SHA-256 use. The new macros are the following.

#define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
#define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
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These are the round function macros; note that the rotations and shifts are of 64-bit
words, not 32-bit words as in the case of SHA-256.

#define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
#define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))

These are the expansion function macros; again, they are 64-bit operations.

SHA-512 State
The SHA-512 state is eight 64-bit words denoted as S[0...7], initially set to the following
values.

S[0] = 0x6a09e667f3bcc908;
S[1] = 0xbb67ae8584caa73b;
S[2] = 0x3c6ef372fe94f82b;
S[3] = 0xa54ff53a5f1d36f1;
S[4] = 0x510e527fade682d1;
S[5] = 0x9b05688c2b3e6c1f;
S[6] = 0x1f83d9abfb41bd6b;
S[7] = 0x5be0cd19137e2179;

SHA-512 Expansion
SHA-512 expansion works the same as SHA-256 expansion, except it uses the 64-bit macros
and we must produce 80 words instead. The first 16 64-bit words are loaded from the 128-
byte message block as big endian format. The next 64 words are generated with the fol-
lowing recurrence.

for (i = 16; i < 80; i++) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] +

Gamma0(W[i - 15]) + W[i - 16];
}

SHA-512 Compression
SHA-512 compression is similar to SHA-256 compression. It uses the same pattern for the
round function, except there are 80 rounds instead of 64. It also uses 80 64-bit constant
words denoted K[0...79], which are derived in much the same manner as the 64 words used
in the SHA-256 algorithm.

SHA-512 Implementation
Following is our implementation of SHA-512 derived from the SHA-256 source code. It
has the same calling conventions as the SHA-1 and SHA-256 implementation, with the
exception that it produces a 64-byte message digest instead of a 20- or 32-byte message.

sha512.c:
001 #ifdef _MSC_VER
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002 #define CONST64(n) n ## ui64
003 typedef unsigned __int64 ulong64;
004 #else
005 #define CONST64(n) n ## ULL
006 typedef unsigned long long ulong64;
007 #endif

First, we need a way to use 64-bit data types. SHA-512 is for the most part an adapta-
tion of SHA-256 with 64-bit words instead of 32-bit words. In C99, a data type that is at
least 64-bits was defined to be unsigned long long, which works well with most UNIX CC
and the GNU CC. Unfortunately, Microsoft’s compiler does not support C99 and imple-
ments this differently.

Our CONST64 macro gives us a reasonably portable manner of defining 64-bit con-
stants. Our ulong64 typedef allows us to use 64-bit words in an efficient fashion.

009 /* Helpful macros */
010 #define STORE64H(x, y) \
011 { (y)[0] = (unsigned char)(((x)>>56)&255); \
012 (y)[1] = (unsigned char)(((x)>>48)&255); \
013 (y)[2] = (unsigned char)(((x)>>40)&255); \
014 (y)[3] = (unsigned char)(((x)>>32)&255); \
015 (y)[4] = (unsigned char)(((x)>>24)&255); \
016 (y)[5] = (unsigned char)(((x)>>16)&255); \
017 (y)[6] = (unsigned char)(((x)>>8)&255); \
018 (y)[7] = (unsigned char)((x)&255); }
019
020 #define LOAD64H(x, y) \
021 { x = (((ulong64)((y)[0] & 255))<<56)| \
022 (((ulong64)((y)[1] & 255))<<48)| \
023 (((ulong64)((y)[2] & 255))<<40)| \
024 (((ulong64)((y)[3] & 255))<<32)| \
025 (((ulong64)((y)[4] & 255))<<24)| \
026 (((ulong64)((y)[5] & 255))<<16)| \
027 (((ulong64)((y)[6] & 255))<<8)| \
028 (((ulong64)((y)[7] & 255))); }
029
030 #define ROR(x, y) \
031 ((((ulong64)(x)>>(ulong64)((y)&63)) | \
032 (((ulong64)(x)&CONST64(0xFFFFFFFFFFFFFFFF))<< \
033 (ulong64)(64-((y)&63)))) & CONST64(0xFFFFFFFFFFFFFFFF))

These are our friendly macros adapted for 64-bit data types. Best to place these
in a shared header.

035 #define Ch(x,y,z) (z ^ (x & (y ^ z)))
036 #define Maj(x,y,z) (((x | y) & z) | (x & y))
037 #define S(x, n) ROR((x),(n))
038 #define R(x, n) (((x)&CONST64(0xFFFFFFFFFFFFFFFF)) \
039 >>((ulong64)n))
040 #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
041 #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
042 #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
043 #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
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These are the SHA macros for the 512-bit hash. Note that we are performing 64-bit
operations here (including the shifts and rotations).

045 typedef struct {
046 unsigned char buf[128];
047 unsigned long buflen, msglen;
048 ulong64 S[8];
049 } sha512_state;

This is our SHA-512 state. Note that SHA-512 uses a 128-byte block so our buffer is
now larger. There are still eight chaining variables, but they are now 64 bits.

051 static const ulong64 K[80] = {
052 CONST64(0x428a2f98d728ae22), CONST64(0x7137449123ef65cd),
053 CONST64(0xb5c0fbcfec4d3b2f), CONST64(0xe9b5dba58189dbbc),
054 CONST64(0x3956c25bf348b538), CONST64(0x59f111f1b605d019),
055 CONST64(0x923f82a4af194f9b), CONST64(0xab1c5ed5da6d8118),
056 CONST64(0xd807aa98a3030242), CONST64(0x12835b0145706fbe),
057 CONST64(0x243185be4ee4b28c), CONST64(0x550c7dc3d5ffb4e2),
058 CONST64(0x72be5d74f27b896f), CONST64(0x80deb1fe3b1696b1),
059 CONST64(0x9bdc06a725c71235), CONST64(0xc19bf174cf692694),
060 CONST64(0xe49b69c19ef14ad2), CONST64(0xefbe4786384f25e3),
061 CONST64(0x0fc19dc68b8cd5b5), CONST64(0x240ca1cc77ac9c65),
062 CONST64(0x2de92c6f592b0275), CONST64(0x4a7484aa6ea6e483),
063 CONST64(0x5cb0a9dcbd41fbd4), CONST64(0x76f988da831153b5),
064 CONST64(0x983e5152ee66dfab), CONST64(0xa831c66d2db43210),
065 CONST64(0xb00327c898fb213f), CONST64(0xbf597fc7beef0ee4),
066 CONST64(0xc6e00bf33da88fc2), CONST64(0xd5a79147930aa725),
067 CONST64(0x06ca6351e003826f), CONST64(0x142929670a0e6e70),
068 CONST64(0x27b70a8546d22ffc), CONST64(0x2e1b21385c26c926),
069 CONST64(0x4d2c6dfc5ac42aed), CONST64(0x53380d139d95b3df),
070 CONST64(0x650a73548baf63de), CONST64(0x766a0abb3c77b2a8),
071 CONST64(0x81c2c92e47edaee6), CONST64(0x92722c851482353b),
072 CONST64(0xa2bfe8a14cf10364), CONST64(0xa81a664bbc423001),
073 CONST64(0xc24b8b70d0f89791), CONST64(0xc76c51a30654be30),
074 CONST64(0xd192e819d6ef5218), CONST64(0xd69906245565a910),
075 CONST64(0xf40e35855771202a), CONST64(0x106aa07032bbd1b8),
076 CONST64(0x19a4c116b8d2d0c8), CONST64(0x1e376c085141ab53),
077 CONST64(0x2748774cdf8eeb99), CONST64(0x34b0bcb5e19b48a8),
078 CONST64(0x391c0cb3c5c95a63), CONST64(0x4ed8aa4ae3418acb),
079 CONST64(0x5b9cca4f7763e373), CONST64(0x682e6ff3d6b2b8a3),
080 CONST64(0x748f82ee5defb2fc), CONST64(0x78a5636f43172f60),
081 CONST64(0x84c87814a1f0ab72), CONST64(0x8cc702081a6439ec),
082 CONST64(0x90befffa23631e28), CONST64(0xa4506cebde82bde9),
083 CONST64(0xbef9a3f7b2c67915), CONST64(0xc67178f2e372532b),
084 CONST64(0xca273eceea26619c), CONST64(0xd186b8c721c0c207),
085 CONST64(0xeada7dd6cde0eb1e), CONST64(0xf57d4f7fee6ed178),
086 CONST64(0x06f067aa72176fba), CONST64(0x0a637dc5a2c898a6),
087 CONST64(0x113f9804bef90dae), CONST64(0x1b710b35131c471b),
088 CONST64(0x28db77f523047d84), CONST64(0x32caab7b40c72493),
089 CONST64(0x3c9ebe0a15c9bebc), CONST64(0x431d67c49c100d4c),
090 CONST64(0x4cc5d4becb3e42b6), CONST64(0x597f299cfc657e2a),
091 CONST64(0x5fcb6fab3ad6faec), CONST64(0x6c44198c4a475817)
092 };
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These are the 80 64-bit round constants for the compression function. Note we are
using our CONST64 macro for portability.

094 void sha512_init(sha512_state *md)
095 {
096 md->S[0] = CONST64(0x6a09e667f3bcc908);
097 md->S[1] = CONST64(0xbb67ae8584caa73b);
098 md->S[2] = CONST64(0x3c6ef372fe94f82b);
099 md->S[3] = CONST64(0xa54ff53a5f1d36f1);
100 md->S[4] = CONST64(0x510e527fade682d1);
101 md->S[5] = CONST64(0x9b05688c2b3e6c1f);
102 md->S[6] = CONST64(0x1f83d9abfb41bd6b);
103 md->S[7] = CONST64(0x5be0cd19137e2179);
104 md->buflen = md->msglen = 0;
105 }

This function initializes our SHA-512 state to the default state.

107 static void sha512_compress(sha512_state *md)
108 {
109 ulong64 W[80], a, b, c, d, e, f, g, h, t, t0, t1;
110 unsigned x;
111
112 /* load W[0..15] */
113 for (x = 0; x < 16; x++) {
114 LOAD64H(W[x], md->buf + 8 * x);
115 }
116
117 /* compute W[16...80] */
118 for (x = 16; x < 80; x++) {
119 W[x] = Gamma1(W[x - 2]) + W[x - 7] +
120 Gamma0(W[x - 15]) + W[x - 16];
121 }

At this point, we have expanded the 128 bytes of message input into 80 64-bit words.
Just like the SHA-1 and SHA-256 functions, we can compute the expanded words on the
fly.

123 /* load a copy of the state */
124 a = md->S[0]; b = md->S[1]; c = md->S[2];
125 d = md->S[3]; e = md->S[4]; f = md->S[5];
126 g = md->S[6]; h = md->S[7];
127
128 /* perform 80 rounds */
129 for (x = 0; x < 80; x++) {
130 t0 = h + Sigma1(e) + Ch(e, f, g) + K[x] + W[x];
131 t1 = Sigma0(a) + Maj(a, b, c);
132 d += t0;
133 h = t0 + t1;
134
135 /* swap */
136 t = h; h = g; g = f; f = e; e = d;
137 d = c; c = b; b = a; a = t;
138 }
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This performs the compression round functions. We can unroll this either eight times
or fully. Usually, eight times will net a sizeable performance boost, while unrolling fully will
not pay off as much. On the AMD64 series, unrolling fully does not improve performance
and wastes cache space.

140 /* update state */
141 md->S[0] += a;
142 md->S[1] += b;
143 md->S[2] += c;
144 md->S[3] += d;
145 md->S[4] += e;
146 md->S[5] += f;
147 md->S[6] += g;
148 md->S[7] += h;
149 }
150
151 void sha512_process( sha512_state *md,
152 const unsigned char *buf,
153 unsigned long len)
154 {
155 unsigned long x, y;
156
157 while (len) {
158 x = (128 - md->buflen) < len ? 128 - md->buflen : len;
159 len -= x;
160
161 /* copy x bytes from buf to the buffer */
162 for (y = 0; y < x; y++) {
163 md->buf[md->buflen++] = *buf++;
164 }
165
166 if (md->buflen == 128) {
167 sha512_compress(md);
168 md->buflen = 0;
169 md->msglen += 128;
170 }
171 }
172 }

The process function resembles the process functions from SHA-1 and SHA-256, with
the exception that we use 128-byte blocks. As in the other algorithms, we can use a zero-
copy mechanism here as well, and it is highly recommended.

174 void sha512_done( sha512_state *md,
175 unsigned char *dst)
176 {
177 ulong64 l1, l2, i;
178
179 /* compute final length as 8*md->msglen */
180 md->msglen += md->buflen;
181 l2 = md->msglen >> 29;
182 l1 = (md->msglen << 3) & 0xFFFFFFFF;
183
184 /* add the padding bit */
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185 md->buf[md->buflen++] = 0x80;
186
187 /* if the current len > 112 we have to finish this block */
188 if (md->buflen > 112) {
189 while (md->buflen < 128) {
190 md->buf[md->buflen++] = 0x00;
191 }
192 sha512_compress(md);
193 md->buflen = 0;
194 }
195
196 /* now pad until we are at pos 112 */
197 while (md->buflen < 112) {
198 md->buf[md->buflen++] = 0x00;
199 }
200
201 /* store the length */
202 STORE64H(l2, md->buf + 112);
203 STORE64H(l1, md->buf + 120);
204
205 /* compress */
206 sha512_compress(md);
207
208 /* extract the state */
209 for (i = 0; i < 8; i++) {
210 STORE64H(md->S[i], dst + i*8);
211 }
212 }

This function terminates the hash and outputs the digest. Note we have to store a 128-
bit length. Since our block size is 128 bytes, we have to pad until our message is 112
modulo 128 bytes long.

214 void sha512_memory(const unsigned char *in,
215 unsigned long len,
216 unsigned char *dst)
217 {
218 sha512_state md;
219 sha512_init(&md);
220 sha512_process(&md, in, len);
221 sha512_done(&md, dst);
222 }

This is our familiar helper function to perform a SHA-512 compression of an in-
memory buffer.

224 #include <stdio.h>
225 #include <stdlib.h>
226 #include <string.h>
227 int main(void)
228 {
229 static const struct {
230 char *msg;
231 unsigned char hash[64];
232 } tests[] = {
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233 { "abc",
234 { 0xdd, 0xaf, 0x35, 0xa1, 0x93, 0x61, 0x7a, 0xba,
235 0xcc, 0x41, 0x73, 0x49, 0xae, 0x20, 0x41, 0x31,
236 0x12, 0xe6, 0xfa, 0x4e, 0x89, 0xa9, 0x7e, 0xa2,
237 0x0a, 0x9e, 0xee, 0xe6, 0x4b, 0x55, 0xd3, 0x9a,
238 0x21, 0x92, 0x99, 0x2a, 0x27, 0x4f, 0xc1, 0xa8,
239 0x36, 0xba, 0x3c, 0x23, 0xa3, 0xfe, 0xeb, 0xbd,
240 0x45, 0x4d, 0x44, 0x23, 0x64, 0x3c, 0xe8, 0x0e,
241 0x2a, 0x9a, 0xc9, 0x4f, 0xa5, 0x4c, 0xa4, 0x9f }
242 },
243 { "abcdefghbcdefghicdefghijdefghijkefghijklfghijkl"
244 "mghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopq"
245 "rsmnopqrstnopqrstu",
246 { 0x8e, 0x95, 0x9b, 0x75, 0xda, 0xe3, 0x13, 0xda,
247 0x8c, 0xf4, 0xf7, 0x28, 0x14, 0xfc, 0x14, 0x3f,
248 0x8f, 0x77, 0x79, 0xc6, 0xeb, 0x9f, 0x7f, 0xa1,
249 0x72, 0x99, 0xae, 0xad, 0xb6, 0x88, 0x90, 0x18,
250 0x50, 0x1d, 0x28, 0x9e, 0x49, 0x00, 0xf7, 0xe4,
251 0x33, 0x1b, 0x99, 0xde, 0xc4, 0xb5, 0x43, 0x3a,
252 0xc7, 0xd3, 0x29, 0xee, 0xb6, 0xdd, 0x26, 0x54,
253 0x5e, 0x96, 0xe5, 0x5b, 0x87, 0x4b, 0xe9, 0x09 }
254 },
255 };
256 int i;
257 unsigned char tmp[64];
258 for (i = 0; i < 2; i++) {
259 sha512_memory((unsigned char *)tests[i].msg,
260 strlen(tests[i].msg), tmp);
261 if (memcmp(tests[i].hash, tmp, 64)) {
262 printf("Failed test %d\n", i);
263 return EXIT_FAILURE;
264 }
265 }
266 printf("SHA-512 Passed\n");
267 return EXIT_SUCCESS;
268 }

This is our demo application that tests the implementation. We have only implemented
the first two of three NIST standard test vectors.

SHA-224 Design
SHA-224 is a hash that produces a 224-bit message digest and uses SHA-256 to perform the
hashing. SHA-224 begins by initializing the state with eight different words listed here.

S[0] = 0xc1059ed8;
S[1] = 0x367cd507;
S[2] = 0x3070dd17;
S[3] = 0xf70e5939;
S[4] = 0xffc00b31;
S[5] = 0x68581511;
S[6] = 0x64f98fa7;
S[7] = 0xbefa4fa4;
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SHA-224 uses the SHA-256 expansion and compression function on all the message
blocks. The final digest as produced by SHA-256 is truncated by copying the first 28 bytes
to the caller.

From a performance point of view, SHA-224 is no faster than SHA-256, and from a
security standpoint, it is less secure. There are times when truncating a hash is a good idea,
as we will see with digital signatures, but there are simpler ways to accomplish it than modi-
fying an existing hash.

SHA-224 is a useful choice if your application is working with ECC-224, as it produces
an output that has roughly the same size as the order of the curve—a property that will be
shown to be useful in Chapter 9.

For completeness, here are the test vectors for SHA-224 similar to those from SHA-256.

static const struct {
char *msg;
unsigned char hash[28];

} tests[] = {
{ "abc",
{ 0x23, 0x09, 0x7d, 0x22, 0x34, 0x05, 0xd8,
0x22, 0x86, 0x42, 0xa4, 0x77, 0xbd, 0xa2,
0x55, 0xb3, 0x2a, 0xad, 0xbc, 0xe4, 0xbd,
0xa0, 0xb3, 0xf7, 0xe3, 0x6c, 0x9d, 0xa7 }

},
{ "abcdbcdecdefdefgefghfghighijh"
"ijkijkljklmklmnlmnomnopnopq",
{ 0x75, 0x38, 0x8b, 0x16, 0x51, 0x27, 0x76,
0xcc, 0x5d, 0xba, 0x5d, 0xa1, 0xfd, 0x89,
0x01, 0x50, 0xb0, 0xc6, 0x45, 0x5c, 0xb4,
0xf5, 0x8b, 0x19, 0x52, 0x52, 0x25, 0x25 }

},
};

SHA-384 Design
Like SHA-224, SHA-384 was designed after an SHS algorithm. In this case, SHA-384 is
based on SHA-512. Like SHA-224, we begin with a modified state.

S[0] = CONST64(0xcbbb9d5dc1059ed8);
S[1] = CONST64(0x629a292a367cd507);
S[2] = CONST64(0x9159015a3070dd17);
S[3] = CONST64(0x152fecd8f70e5939);
S[4] = CONST64(0x67332667ffc00b31);
S[5] = CONST64(0x8eb44a8768581511);
S[6] = CONST64(0xdb0c2e0d64f98fa7);
S[7] = CONST64(0x47b5481dbefa4fa4);

SHA-384 uses the SHA-512 algorithm to perform the actual message hashing. The
output of SHA-384 is the output of SHA-512 truncated by copying the first 48 bytes of the
output to the caller. SHA-384 is a useful choice of hash when working with the ECC-384
curve.
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For completeness, here are the test vectors for SHA-384.

static const struct {
char *msg;
unsigned char hash[48];

} tests[] = {
{ "abc",
{ 0xcb, 0x00, 0x75, 0x3f, 0x45, 0xa3, 0x5e, 0x8b,
0xb5, 0xa0, 0x3d, 0x69, 0x9a, 0xc6, 0x50, 0x07,
0x27, 0x2c, 0x32, 0xab, 0x0e, 0xde, 0xd1, 0x63,
0x1a, 0x8b, 0x60, 0x5a, 0x43, 0xff, 0x5b, 0xed,
0x80, 0x86, 0x07, 0x2b, 0xa1, 0xe7, 0xcc, 0x23,
0x58, 0xba, 0xec, 0xa1, 0x34, 0xc8, 0x25, 0xa7 }

},
{ "abcdefghbcdefghicdefghijdefghi"
"jkefghijklfghijklmghijklmnhijk"
"lmnoijklmnopjklmnopqklmnopqrlm"
"nopqrsmnopqrstnopqrstu",
{ 0x09, 0x33, 0x0c, 0x33, 0xf7, 0x11, 0x47, 0xe8,
0x3d, 0x19, 0x2f, 0xc7, 0x82, 0xcd, 0x1b, 0x47,
0x53, 0x11, 0x1b, 0x17, 0x3b, 0x3b, 0x05, 0xd2,
0x2f, 0xa0, 0x80, 0x86, 0xe3, 0xb0, 0xf7, 0x12,
0xfc, 0xc7, 0xc7, 0x1a, 0x55, 0x7e, 0x2d, 0xb9,
0x66, 0xc3, 0xe9, 0xfa, 0x91, 0x74, 0x60, 0x39 }

},
};

Zero-Copying Hashing
Earlier we alluded to a zero-copying technique to boost hash algorithm throughput. We
shall now present this technique as applied to the SHA-1 process function. We shall only pre-
sent the modified code to save space.

sha1zc.c:
046 static void sha1_compress( sha1_state *md,
047 const unsigned char *buf)
048 {
049 ulong32 W[80], a, b, c, d, e, t;
050 unsigned x;
051
052 /* load W[0..15] */
053 for (x = 0; x < 16; x++) {
054 LOAD32H(W[x], buf + 4 * x);
055 }

We first have to modify the compression function to accept the message block from the
caller, instead of implicitly from the SHA-1 state.

102 void sha1_process( sha1_state *md,
103 const unsigned char *buf,
104 unsigned long len)
105 {
106 unsigned long x, y;
107
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108 while (len) {
109 /* zero copy 64 byte chunks */
110 while (len >= 64 && md->buflen == 0) {
111 sha1_compress(md, buf);
112 buf += 64;
113 md->msglen += 64;
114 len -= 64;
115 }
116
117 x = (64 - md->buflen) < len ? 64 - md->buflen : len;
118 len -= x;
119
120 /* copy x bytes from buf to the buffer */
121 for (y = 0; y < x; y++) {
122 md->buf[md->buflen++] = *buf++;
123 }
124
125 if (md->buflen == 64) {
126 sha1_compress(md, md->buf);
127 md->buflen = 0;
128 md->msglen += 64;
129 }
130 }
131 }

This is our newly modified process function. Inside the inner loop, we perform the
zero-copy optimization by passing 64-byte blocks directly to the compression function
without first copying it to the internal state. We can only do this if the SHA-1 state is empty
(buflen is zero) and there are at least 64 bytes of message bytes left to process.

This optimization may not seem like much on a processor like the AMD Opteron with
its huge L1 data cache. However, on much more compact processors such as the ARM
series, extra data movement over, say, a 16-MHz data bus can mean a real performance loss.

133 void sha1_done( sha1_state *md,
134 unsigned char *dst)
135 {
136 ulong32 l1, l2, i;
137
138 /* compute final length as 8*md->msglen */
139 md->msglen += md->buflen;
140 l2 = md->msglen >> 29;
141 l1 = (md->msglen << 3) & 0xFFFFFFFF;
142
143 /* add the padding bit */
144 md->buf[md->buflen++] = 0x80;
145
146 /* if the current len > 56 we have to finish this block */
147 if (md->buflen > 56) {
148 while (md->buflen < 64) {
149 md->buf[md->buflen++] = 0x00;
150 }
151 sha1_compress(md, md->buf);
152 md->buflen = 0;
153 }
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154
155 /* now pad until we are at pos 56 */
156 while (md->buflen < 56) {
157 md->buf[md->buflen++] = 0x00;
158 }
159
160 /* store the length */
161 STORE32H(l2, md->buf + 56);
162 STORE32H(l1, md->buf + 60);
163
164 /* compress */
165 sha1_compress(md, md->buf);
166
167 /* extract the state */
168 for (i = 0; i < 5; i++) {
169 STORE32H(md->S[i], dst + i*4);
170 }
171 }

For completeness, this is the modified done function with the new calls to the compres-
sion function.

PKCS #5 Key Derivation
Hash functions can be used for many different problems, from integrity and authenticity (see
Chapter 6,“Message Authentication Code Algorithms”) to pseudo random number genera-
tion (see Chapter 3,“Random Number Generation”) and key derivation. Now we shall
explore the latter property.

Key derivation functions (KDF) derive key material from another source of entropy
while preserving the entropy of the input and being one-way. Key derivation is often used
for more than generating key material. It is also used to derive initial values (IV) and nonces
(see Chapter 6) for cryptographic sessions. The typical usage of a key derivation function is
to take a secret such as a password or a shared secret (see Chapter 9) and a salt to produce a
key and IV. The salt is generated at random when the session is first created to prevent dic-
tionary attacks. It’s not as important when a random shared secret is being used, as a dictio-
nary attack will not apply.

PKCS #5 (ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf ) is a standard
put forth by the former RSA Data Security Corporation as one of a series of standards of
public key cryptography. It defines two KDF algorithms called PBKDF1 and PBKDF2. The
former is an old standard that was originally meant to be used with DES, and as such has
fixed size inputs. PBKDF2 is more flexible and the recommended KDF from the PKCS #5
standard

The algorithm we are going to present uses an algorithm known as HMAC (hash mes-
sage authentication code), which we have not discussed yet. Confused readers are encour-
aged to read the discussion of HMAC in Chapter 6 first before coming back to this
algorithm (Figure 5.6).
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Figure 5.6 PKCS #5 PBKDF2 Algorithm

Input:
secret: The secret used as a master key to derive into a session key
salt: The random nonsecret string used to prevent dictionary attacks
iterations The number of iterations in the main loop
w: The digest size of the hash being used
outlen: The desired amount of KDF data requested

Output:
out: The KDF data

1. for blkNo from 1 to ceil(outlen/w) do

1. T = HMAC(secret, salt || blkNo)

2. U = T

3. for i from 1 to iterations do

i. T  = HMAC(secret,T)

ii. U = U xor T

4. out = out || U

2. Truncate out to outlen bytes

The value of blkNo is appended to the salt as a 32-bit big endian number. The algo-
rithm begins by computing the HMAC of the salt with the blkNo value appended. This
gives us our starting value for this pass of the algorithm. We make a copy of this value into
U and then repeatedly HMAC the value of T, XORing the output to U in each iteration.
The purpose of the iterations count is to make dictionary and exhaustive search attacks even
slower. For example, if it is set to 1024, we are effectively adding 10 bits to our secret key.

The data generated by this function is meant to be used as both cipher keys and session
initial values such as IVs and nonces. For example, to use AES-128 in CTR mode, the caller
would use this KDF to generate 32 bytes of data. The first 16 bytes could be the AES key,
and the second 16 bytes could be the CTR initial value. If we used SHA-256 as the hash
for the HMAC, we would loop only once, as at step 4 we would have generated the
required 32 bytes. Had we used SHA-1, for example, we would have to loop twice, pro-
ducing 40 bytes that would then be truncated to 32 bytes.

The function requires that the secret be unpredictable from an attacker. The salt should
be random, but cannot be a secret, as the recipient will need to know it to generate the same
session values. The salt can be any length. In practice, it should be no larger than secret and
no smaller than eight bytes.

A curious reader may wish to use the often mistaken construction of hash (secret||data)
as a message authentication like primitive. However, as we shall see in Chapter 6, this is not
a secure construction and should be avoided. As it applies to PKCS #5, it may very well be
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secure; however, for the purposes of interoperability, one should choose to use a proper
HMAC construction.

Putting It All Together
As we have seen, the SHS algorithms are easy to implement, and as we have hinted at, are
convenient to have around. What we will now consider are more concrete examples of
using hashes in fielded systems. What not to use them for, how to optimize them for space
and time, and finally give a concrete example of using PKCS #5 with our previous AES
CTR example (see Chapter 4).

It is easy to use a hash as the tool it was meant to be if we simply keep in mind it is a
pseudo-random function (PRF). Just as how ciphers are pseudo random permutations
(PRP) and have their own usage limitations, so do hashes.

What Hashes Are For
Hashes are pseudo-random functions. What this means is that they pseudo randomly map
the input to the output. Unlike ciphers, which are PRPs, the input (domain) and output
(co-domain) are not the same size. The typical hash algorithm can allow inputs as large as
264–1 bits and produce fixed size outputs of hundreds of bits. The pseudo-random mapping
suggests one useful feature, one-wayness. It also suggests the capability of being collision
resistant if the mapping is hard to control.

One-Wayness
A function is considered one-way if computing the function is trivial in one sense and non-
trivial in the reverse sense. In terms of hash functions, this means that the message digest is
trivial to compute. Finding the message given only the message digest is nontrivial.

Passwords
Working with user passwords and pass phrases is one example of using this property. Ideally,
a network application that requires users to authenticate themselves will ask for a credential
such as a password. Sending the password in the clear would mean attackers could read it.
Similarly, a password list for a multi-user environment (e.g., school network) would need to
store something to compare against user credentials. Hash algorithms provide a way of
proving ownership of the credential without leaking the credential itself.

Random Number Generators
Another useful task that takes advantage of this property is random number generators, and
the pseudo random variety. By hashing seeding data, the output does not leak the seed data
the generator is privy to. This seed data often will contain private information such as net-
work traffic or keystrokes.
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Collision Resistance
Hashes must also be collision resistant to be cryptographically useful. Often, this property is
exploited in the process of performing digital signatures (see Chapter 9). Typical public key
signature algorithms are slower by magnitudes of cycles than the typical hash function. To
optimize the signature process, a cryptosystem could choose to sign a hash of the message
instead of the full message itself.

This procedure can be as effectively secure as signing the message, provided the hash
algorithm has two properties. It must be collision resistant and it must produce a digest of
respective size. Recall the discussion of the birthday paradox earlier in this chapter. If you
are using a public key algorithm that takes, say, 280 work (“work” often refers to the number
of operations required; in this sense, work could mean public key operations or hash opera-
tions) to break, your hash should produce no less than 160 bits of message digest.

File Manifests
Collision resistance is useful for integrity tasks as well. In the most innocent of cases, com-
puting the message digest of files offered for download helps ensure users download the file
correctly. This assumes, of course, the absence of an attacker. There is an often cited defense
that because the message digest would be stored on a secure server, the attackers would have
to modify it there. This is not correct. An attacker would only have to get between the
client and server to perform the attack. This is typically far easier than breaking into a
secured server.

Intrusion Detection
Hashes are also in intrusion detection software (IDS), which scans for modifications to files
as a sign of an intruder. They compute the message digest of executables and compare on
the fly against the cached value. This works well provided the IDS software itself has not
been exploited. However, one can never be too vigilant. In 2005, MD5 (the most common
hash for this task) was broken. Various people, including Dan Kaminsky, championed the
Trojan payload attack.

Their attack is both clever and effective. They produce a program that has two payloads
attached. Then, they insert a block of data that will collide with MD5. They can then swap
the block out depending on whether they want to activate the payload. The program works
by first checking which block was included and acting differently accordingly. The two files
would have the same MD5 message digest, but they would act very differently.

Many Linux distributions have moved to using multiple hashes as a result. Gentoo
Linux, for example, checks MD5, RMD-160, and SHA-256 checksums on all files in their
Portage repository. While this is at best as strong as a perfect 256-bit hash (we will not
assume SHA-256 is perfect), it has the durability that in case SHA-256 is broken, at least
checking the RMD-160 hash is a good fallback. ((RMD (also RIPEMD) stands for RIPE-
Message Digest, where RIPE (RACE Integrity Primitives Evaluation) is a European stan-
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dards process. The original RIPEMD algorithm was generally not considered strong and was
broken in 2004. The RIPEMD-160, 256, and 320 algorithms are mostly based off of the
MD4 design and are not competitively efficient.)

What Hashes Are Not For
We have seen some clear examples of what hashes can be safely used for. There is also a
variety of tasks that crop up and are mistakenly used in fielded systems. Part of the problem
stems from the fact that people think that hashes are universally magical random functions.
They often forget that we can prefix data, append data, and pre-compute things.

Unsalted Passwords
This is one of the cases where a little salt is healthy (sorry, we could not resist the pun).As
we will see in more detail shortly (we are almost there), password hashing is a tricky busi-
ness. Suppose we want to store your password for future comparison.

Clearly, we cannot store the password on its own, as an attacker who can see the pass-
word list will own the system. The logical solution that pops to mind is to hash the pass-
words. After all, it is one-way. What could possibly go wrong?

Hashes Make Bad Ciphers
It’s often tempting to turn a hash into a cipher. Hashes are actually ciphers in disguise if you
look at them. For example, SHACAL is a 160-bit block cipher that uses SHA-1. It treats
the W[] array as the cipher key and the state as the plaintext (or ciphertext). You can also
just use a hash in CTR mode to create a stream cipher.

While technically sound and most likely secure, neither construction is part of a stan-
dard. They are also slower than block ciphers. For example, MD5 routinely clocks in at
eight cycles per byte hashes on an AMD Opteron. That means eight cycles per byte of input
not output. MD5 has 64-byte blocks; therefore, the compression takes at least 512 cycles,
which would produce a CTR key stream at a rate of 32 cycles per byte. AES CTR requires
slightly over 17 cycles per byte.

It gets no better for the other hashes. SHA-512 requires 12 cycles per byte of input on
the Opteron, which translates into 24 cycles per byte of output. SHA-1 requires 18 cycles
per byte on an Intel Pentium 4 (to give examples from other processors), which translates
into 58 cycles per byte of output (over twice as slow as AES on this processor).

The lack of standards and the fact it is inefficient to do so makes ciphering with a hash a
bad idea in general.About the only place it would make sense is where you are limited for
software or hardware space.

Hashes Are Not MACs
Hashes are not message authentication code algorithms. The most common construction
that is not actually secure is to make the MAC as follows.
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tag := hash(key || message)

The attack takes advantage of the fact that an attacker does not have to start with the
same initial value as the standard specifies. In the preceding case, we are effectively hashing
the message blocks: key, message, MD-strengthening. This produces a tag that is effectively
the hash state after hashing all the data. An attacker could append a block (and then another
MD-strengthening block) and use the tag as the initial state. The computed hash would
appear to be a valid message from a victim with the key.

The fix is often to use the following combination:

tag := hash(hash(key || message))

which does not leak the internal state of the inner hash. However, it violates one of the
goals of MAC algorithms. It is attackable in an offline sense, as we will see in the discussion
of HMAC in Chapter 6.

Hashes Don’t Double
A common trick to double the size of the message digest is to concatenate two message
digests of slightly different messages. For instance,

digest := hash(1 || message) || hash(2 || message)

The problem with this technique is that a collision in the first message block will imme-
diately make any following blocks collide. For example, consider the input as 1 || block ||
message, where 1 || block fits in one message block in the hash (e.g., 64 bytes for SHA-1). If
we can find a block for which hash(1 || block) equals hash(2 || block), we would only have to
find two message values that collide through the remainder of the hash.

Hashes Don’t Mingle
Failing the double-up trick, the next idea is to concatenate two message digests from dif-
ferent hashes. For instance,

digest := hash1(message) || hash2(message)

Unfortunately, this is no better than the strongest hash in the mix—at least not with the
typical hash construction. Suppose M and M’ collide in hash1. Then, M || Q and M’ || Q
will collide since their hash states collide after M (M’, respectively). Thus, an attacker would
only have to find a pair M and M’ and proceed to attack the second hash. It is conceivable
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that two properly constructed hashes offer more security as a pair; however, with the
common MD style hash this is not believed to be the case.

Working with Passwords
As we have mentioned, hashes are good when working with passwords. They do not allow
determining the input from the output and are collision resistant. In effect, if users can pro-
duce the correct message digest, chances are they know the correct input.

Using this nice property securely is a tricky challenge. First, let us consider the offline
world, and then we shall explore the online world.

Offline Passwords
Offline password verification is what you may find on an account login (say, locally to your
machine). The goal is to compare what you produce against a proof stored locally. The proof
is essentially producible only by someone in possession of the credential required.

In the offline world, we are typically dealing with a privileged process such as login
(typical to UNIX-like platforms), so the proof generation process is tamper safe.

If we simply stored the hash of the password, we would prevent an attacker from directly
finding out the password. Unfortunately, we do not stop a practical and often fruitful
attack—the dictionary attack. Users tend to pick passwords and pass phrases that are easy to
memorize. This means they pick dictionary words, and occasionally mix two or more
together. A dictionary attack literally runs through a dictionary, hashes the generated strings,
and compares it against the password list.

If we simply hash the passwords, if two or more users choose the same password this will
immediately be revealed. What is worse is that an attacker could pre-compute a hash list
(another use of the word hash) that associates hashes with passwords. The entire “attack”
could take only seconds on the victim’s machine.

Salts
The most common and satisfactory solution (letting aside educating the users) is to salt the
passwords. Salting means we “add flavor” to the hash specific for the user. In terms of cryp-
tography, it means we add random digits to the string we hash. Those random digits, the
salt, become associated with the user for the given credential proof list. If a user moves to
another system, he should have a different salt totally unrelated to the previous instance.
What the salt prevents the attacker from doing is pre-computing a dictionary list. The
attacker would to compute it only after learning the user’s salt, and would have to re-com-
pute it for every user he chooses to attack.

Salt Sizes
Now that we are salting our passwords, what size should the salt be?  Typically, it does not
have to be large. It should be unique for all the users in the given credential list.A safe
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guideline is to use salts no less than 8 bytes and no larger than 16 bytes. Even 8 bytes is
overkill, but since it is not likely to hurt performance (in terms of storage space or computa-
tion time), it’s a good low bound to use.

Technically, you need at least the square of the number of credentials you plan to store.
For example, if your system is meant to accommodate 1000 users, you need a 20-bit salt.
This is due to the birthday paradox.

Our suggestion of eight bytes would allow you to have slightly over four billion creden-
tials in your list.

Rehash
Another common trick is to not use the hash output directly, but instead re-apply the hash
to the hash output a certain number of times. For example:

proof := hash(hash(hash(hash(...(hash(salt||password)))))...)

While not highly scientific, it is a valid way of making dictionary attacks slower. If you
apply the hash, say 1024 times, then you make a brute force search 1024 times harder. In
practice, the user will not likely notice. For example, on an AMD Opteron, 1024 invoca-
tions of SHA-1 will take roughly 720,000 CPU cycles. At the average clock rate of
2.2GHz, this amounts to a mere 0.32 milliseconds. This technique is used by PKCS #5 for
the same purpose.

Online Passwords
Online password checking is a different problem from the offline word. Here we are not
privileged, and attackers can intercept and modify packets between the client and server.

The most important first step is to establish an anonymous secure session. An SSL ses-
sion between the client and server is a good example. This makes password checking much
like the offline case. Various protocols such as IKE and SRP (Secure Remote Passwords:
http://srp.stanford.edu/) achieve both password authentication and channel security (see
Chapter  9).

In the absence of such solutions, it is best to use a challenge-response scheme on the
password. The basic challenge response works by having the server send a random string to
the client. The client then must produce the message digest of the password and challenge
to pass the test. It is important to always use random challenges to prevent replay attacks.
This approach is still vulnerable to meet in the middle attacks and is not a safe solution.

Two-Factor Authentication
Two-factor authentication is a user verification methodology where multiple (at least two in
this case) different forms of credentials are used for the authentication process.
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A very popular implementation of this are the RSA SecurID tokens. They are small,
keychain size computers with a six-to-eight digit LCD. The computer has been keyed to a
given user ID. Every minute, it produces a new number on the LCD that only the token
and server will now. The purpose of this device is to make guessing the password insuffi-
cient to break the system.

Effectively, the device is producing a hash of a secret (which the server knows) and time.
The server must compensate for drift (by allowing values in the previous, current, and next
minutes) over the network, but is otherwise trivial to develop.

Performance Considerations
Hashes typically do not use as many table lookups or complicated operations as the typical
block cipher. This makes implementation for performance (or space) a rather nice and 
short job.

All three (distinct) algorithms in the SHS portfolio are subject to the same performance
tweaks.

Inline Expansion
The expanded values (the W[] arrays) do not have to be fully computed before compression.
In each case, only 16 of the values are required at any given time. This means we can save
memory by only storing them and compute 16 new expanded values as required.

In the case of SHA-1, this saves 256 bytes; SHA-256 saves 192 bytes; and SHA-512 saves
512 bytes of memory by using this trick.

Compression Unrolling
All three algorithms employ a shift register like construction. In a fully rolled loop, this
requires us to manually shift data from one word to another. However, if we fully unroll the
loops, we can perform renaming to avoid the shifts. All three algorithms have a round count
that is a multiple of the number of words in the state. This means we always finish the com-
pression with the words in the same spot they started in.

In the case of SHA-1, we can unroll each of the four groups either 5-fold or the full 20-
fold. Depending on the platform, the performance gains of 20-fold can be positive or nega-
tive over the 5-fold unrolling. On most desktops, it is not faster, or faster by a large enough
margin to be worth it.

In SHA-256 and SHA-512, loop unrolling can proceed at either the 8-fold or the full
64-fold (80, resp.) steps. Since SHA-256 and SHA-512 are a bit more complicated than
SHA-1, the benefits differ in terms of unrolling. On the Opteron, process unrolling SHA-
256 fully usually pays off better than 8-fold, whereas SHA-512 is usually better off unrolled
only 8-fold.

Unrolling in the latter hashes also means the possibility of embedding the round con-
stants (the K[] array) into the code instead of performing a table lookup. This pays off less
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on platforms like the ARM, which cannot embed 32-bit (or 64-bit for that matter) constants
in the instruction flow.

Zero-Copy Hashing
Another useful optimization is to zero-copy the data we are hashing. This optimization basi-
cally loads the message block directly from the user-passed data instead of buffering it inter-
nally. This hash is most important on platforms with little to no cache. Data in these cases is
usually going over a relatively slower data bus, often competing for system devices for traffic.

For example, if a 32-bit load or store requires (say) six cycles, which is typical for the
average low power embedded device, then storing a message block will take 96 cycles. A
compression may only take 1000 to 2000 cycles, so we are adding between 4.5% and 9 per-
cent more cycles to the operation that we do not have to.

This optimization usually adds little to the code size and gives us a cheap boost in per-
formance.

PKCS #5 Example
We are now going to consider the example of AES CTR from Chapter 4. The reader may
be a bit upset at the comment “somehow fill secretkey and IV ...” found in the code with
that section missing. We now show one way to fill it in.

The reader should keep in mind that we are putting in a dummy password to make the
example work. In practice, you would fetch the password from the user, or by first turning
off the console echo and so on.

Our example again uses the LibTomCrypt library. This library also provides a nice and
handy PKCS #5 function that in one call produces the output from the secret and salt.

pkcs5ex.c:
001 #include <tomcrypt.h>
002
003 void dumpbuf(const unsigned char *buf,
004 unsigned long len,
005 unsigned char *name)
006 {
007 unsigned long i;
008 printf("%20s[0...%3lu] = ",name, len-1);
009 for (i = 0; i < len; i++) {
010 printf("%02x ", *buf++);
011 }
012 printf("\n");
013 }

This is a handy debugging function for dumping arrays. Often in cryptographic proto-
cols, it is useful to see intermediate outputs before the final output. In particular, in multi-
step protocols, it will let us debug at what point we deviated from the test vectors. That is,
provided the test vectors list such things.
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015 int main(void)
016 {
017 symmetric_CTR ctr;
018 unsigned char secretkey[16], IV[16], plaintext[32],
019 ciphertext[32], buf[32], salt[8];
020 int x;
021 unsigned long buflen;

Similar list of variables from the CTR example. Note we now have a salt[] array and a
buflen integer.

023 /* setup LibTomCrypt */
024 register_cipher(&aes_desc);
025 register_hash(&sha256_desc);

Now we have registered SHA-256 in the crypto library. This allows us to use SHA-256
by name in the various functions (such as PKCS #5 in this case). Part of the benefit of the
LibTomCrypt approach is that many functions are agnostic to which cipher, hash, or other
function they are actually using. Our PKCS #5 example would work just as easily with
SHA-1, SHA-256, or even the Whirlpool hash functions.

027 /* somehow fill secretkey and IV ... */
028 /* read a salt */
029 rng_get_bytes(salt, 8, NULL);

In this case, we read the RNG instead of setting up a PRNG. Since we are only
reading eight bytes, this is not likely to block on Linux or BSD setups. In Windows, it will
never block.

031 /* invoke PKCS #5 on our password "passwd" */
032 buflen = sizeof(buf);
033 assert(pkcs_5_alg2("passwd", 6,
034 salt, 8,
035 1024, find_hash("sha256"),
036 buf, &buflen) == CRYPT_OK);

This function call invokes PKCS #5. We pass the dummy password “passwd” instead of a
properly entered one from the user. Please note that this is just an example and not the type
of password scheme you should employ in your application.

The next line specifies our salt and its length—in this case, eight bytes. Follow by the
number of iterations desired. We picked 1024 simply because it’s a nice round nontrivial
number.

The find_hash() function call may be new to some readers unfamiliar with the
LibTomCrypt library. This function searches the tables of registered hashes for the entry
matching the name provided. It returns an integer that is an index into the table. The func-
tion (PKCS #5 in this case) can then use this index to invoke the hash algorithm.

The tables LibTomCrypt uses are actually an array of a C “struct” type, which contains
pointers to functions and other parameters. The functions pointed to implement the given
hash in question. This allows the calling routine to essentially support any hash without
having been designed around it first.
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The last line of the function call specifies where to store it and how much data to read.
LibTomCrypt uses a “caller specified” size for buffers. This means the caller must first say
the size of the buffer (in the pointer to an unsigned long), and then the function will update
it with the number of bytes stored.

This will become useful in the public key and ASN.1 function calls, as callers do not
always know the final output size, but do know the size of the buffer they are passing.

038 /* copy out the key and IV */
039 memcpy(secretkey, buf, 16);
040 memcpy(IV, buf+16, 16);

At this point, buf[0..31] contains 32 pseudo random bytes derived from our password
and salt. We copy the first 16 bytes as the secret key and the second 16 bytes as the IV for
the CTR mode.

042 /* start CTR mode */
043 assert(
044 ctr_start(find_cipher("aes"), IV, secretkey, 16, 0,
045 CTR_COUNTER_BIG_ENDIAN, &ctr) == CRYPT_OK);
046
047 /* create a plaintext */
048 memset(plaintext, 0, sizeof(plaintext));
049 strncpy(plaintext, "hello world how are you?",
050 sizeof(plaintext));
051
052 /* encrypt it */
053 ctr_encrypt(plaintext, ciphertext, 32, &ctr);
054
055 printf("We give out salt and ciphertext as the 'output'\n");
056 dumpbuf(salt, 8, "salt");
057 dumpbuf(ciphertext, 32, "ciphertext");
058
059 /* reset the IV */
060 ctr_setiv(IV, 16, &ctr);
061
062 /* decrypt it */
063 ctr_decrypt(ciphertext, buf, 32, &ctr);
064
065 /* print it */
066 for (x = 0; x < 32; x++) printf("%c", buf[x]);
067 printf("\n");
068
069 return EXIT_SUCCESS;
070 }

The example can be built, provided LibTomCrypt has already been installed, with the
following command.

gcc pkcs5ex.c -ltomcrypt -o pkcs5ex
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The example output would resemble the following.

We give out salt and ciphertext as the 'output'

salt[0... 7] = 58 56 52 f6 9c 04 b5 72
ciphertext[0... 31] = e2 3f be 1f 1a 0c f8 96 0c e5 50 04 c0 a8 f7 f0

c4 27 60 ff b5 be bb bc f4 dc 88 ec 0e 0a f4 e6
hello world how are you?

Each run should choose a different salt and respectively produce a different ciphertext.
As the demonstration states, we would only have to be given the salt and ciphertext to be
able to decrypt it (provided we knew the password). We do not have to send the IV bytes
since they are derived from the PKCS #5 algorithm.

Q: What is a hash function?

A: A hash function accepts as input an arbitrary length string of bits and produces as output
a fixed size string of bits known as the message digest. The goal of a cryptographic hash
function is to perform the mapping as if the function were a random function.

Q: What is a message digest?

A: A message digest is the output of a hash function. Usually, it is interpreted as a repre-
sentative of the message.

Q: What does one-way and collision resistant mean?

A: A function that is one-way implies that determining the output given the input is a hard
problem to solve. In this case, given a message digest, finding the input should be hard.
An ideal hash function is one-way. Collision resistant implies that finding pairs of
unique inputs that produce the same message digest is a hard problem. There are two
forms of collision resistance. The first is called pre-image collision resistance, which
implies given a fixed message we cannot find another message that collides with it. The
second is simply called second pre-image collision resistance and implies that finding
two random messages that collide is a hard problem.
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Q: What are hash functions used for?

A: Hash functions form what are known as Pseudo Random Functions (PRFs). That is,
the mapping from input to output is indistinguishable from a random function. Being a
PRF, a hash function can be used for integrity purposes. Including a message digest
with an archive is the most direct way of using a hash. Hashes can also be used to create
message authentication codes (see Chapter 6) such as HMAC. Hashes can also be used
to collect entropy for RNG and PRNG designs, and to produce the actual output from
the PRNG designs.

Q: What standards are there?

A: Currently, NIST only specifies SHA-1 and the SHA-2 series of hash algorithms as stan-
dards. There are other hashes (usually unfortunately) in wide deployment such as MD4
and MD5, both of which are currently considered broken. The NESSIE process in
Europe has provided the Whirlpool hash, which competes with SHA-512.

Q: Where can I find implementations of these hashes?

A: LibTomCrypt currently supports all NIST standard hashes (including the newer SHA-
224), and the NESSIE specifies Whirlpool hash. LibTomCrypt also supports the older
hash algorithms such as RIPEMD, MD2, MD4, and so on, but generally users are
warned to avoid them unless they are trying to implement an older standard (such as the
NT hash). OpenSSL supports SHA-1 and RIPEMD, and Crypto++ supports a variety
of hashes including the NIST standards.

Q: What are the patent claims on these hashes?

A: SHA-0 (the original SHA) was patented by the NSA, but irrevocably released to the
public for all purposes. SHA-2 series and Whirlpool are both public domain and free for
all purposes.

Q: What length of digest should I use?  What is the birthday paradox?

A: In general, you should use twice the number of bits in your message digest as the target
bit strength you are looking for. If, for example, you want an attacker to spend no less
than 2128 work breaking your cryptography, you should use a hash that produces at least a
256-bit message digest. This is a result of the birthday paradox, which states that given
roughly the square root of the message digest’s domain size of outputs, one can find a
collision. For example, with a 256-bit message digest, there are 2256 possible outcomes.
The square root of this is 2128, and given 2128 pairs of inputs and outputs from the hash
function, an attacker has a good probability of finding a collision among the entries of
the set.
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Q: What is MD strengthening?

A: MD (Message Digest) strengthening is a technique of padding a message with an
encoding of the message length to avoid various prefix and extension attacks.

Q: What is key derivation?

A: Key derivation is the process of taking a shared secret key and producing from it various
secret and public materials to secure a communication session. For instance, two parties
could agree on a secret key and then pass that to a key derivation function to produce
keys for encryption, authentication, and the various IV parameters. Key derivation is
preferable over using shared secrets directly, as it requires sharing fewer bits and also mit-
igates the damages of key discovery. For example, if an attacker learns your authentica-
tion key, he should not learn your encryption key.

Q: What is PKCS #5?

A: PKCS #5 is the RSA Security Public Key Cryptographic Standard that addresses pass-
word-based encryption. In particular, their updated and revised algorithm PBEKDF2
(also known as PKCS #5 Alg2) accepts a secret salt and then expands it to any length
required by the user. It is very useful for deriving session keys and IVs from a single
(shorter) shared secret. Despite the fact that the standard was meant for password-based
cryptography, it can also be used for randomly generated shared secrets typical of public
key negotiation algorithms.
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Introduction
Message Authentication Code (MAC) algorithms are a fairly crucial component of most
online protocols.They ensure the authenticity of the message between two or more parties to
the transaction.As important as MAC algorithms are, they are often overlooked in the design
of cryptosystems.

A typical mistake is to focus solely on the privacy of the message and disregard the
implications of a message modification (whether by transmission error or malicious attacker).

An even more common mistake is for people to not realize they need them. Many
people new to the field assume that not being sure of the contents of a message means you
cannot change it.The logic goes,“if they have no idea what is in my message, how can they
possibly introduce a useful change?”

The error in the logic is the first assumption. Generally, an attacker can get a very good
idea of the rough content of your message, and this knowledge is more than enough to mess
with the message in a meaningful way.To illustrate this, consider a very simple banking pro-
tocol.You pass a transaction to the bank for authorization and the bank sends a single bit
back: 0 for declined, 1 for a successful transaction.

If the transmission isn’t authenticated and you can change messages on the communica-
tion line, you can cause all kinds of trouble.You could send fake credentials to the merchant
that the bank would duly reject, but since you know the message is going to be a rejection,
you could change the encrypted zero the bank sends back to a one—just by flipping the
value of the bit. It’s these types of attacks that MACs are designed to stop.

MAC algorithms work in much the same context as symmetric ciphers.They are fixed
algorithms that accept a secret key that controls the mapping from input to the output (typi-
cally called the tag). However, MAC algorithms do not perform the mapping on a fixed
input size basis; in this regard, they are also like hash functions, which leads to confusion for
beginners.

Although MAC functions accept arbitrary large inputs and produce a fixed size output,
they are not equivalent to hash functions in terms of security. MAC functions with fixed
keys are often not secure one-way hash functions. Similarly, one-way functions are not secure
MAC functions (unless special care is taken).

Purpose of A MAC Function
The goal of a MAC is to ensure that two (or more) parties, who share a secret key, can com-
municate with the ability (in all likelihood) to detect modifications to the message in transit.
This prevents an attacker from modifying the message to obtain undesirable outcomes as dis-
cussed previously.

MAC algorithms accomplish this by accepting as input the message and secret key and
producing a fixed size MAC tag.The message and tag are transmitted to the other party, who
can then re-compute the tag and compare it against the tag that was transmitted. If they
match, the message is almost certainly correct. Otherwise, the message is incorrect and
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should be ignored, or drop the connection, as it is likely being tampered with, depending on
the circumstances.

For an attacker to forge a message, he would be required to break the MAC function.
This is obviously not an easy thing to do. Really, you want it be just as hard as breaking the
cipher that protects the secrecy of the message.

Usually for reasons of efficiency, protocols will divide long messages into smaller pieces
that are independently authenticated.This raises all sorts of problems such as replay attacks.
Near the end of this chapter, we will discuss protocol design criteria when using MAC algo-
rithms. Simply put, it is not sufficient to merely throw a properly keyed MAC algorithm to
authenticate a stream of messages.The protocol is just as important.

Security Guidelines
The security goals of a MAC algorithm are different from those of a one-way hash function.
Here, instead of trying to ensure the integrity of a message, we are trying to establish the
authenticity.These are distinct goals, but they share a lot of common ground. In both cases, we
are trying to determine correctness, or more specifically the purity of a message.Where the
concepts differ is that the goal of authenticity tries also to establish an origin for the message.

For example, if I tell you the SHA-1 message digest of a file is the 160-bit string X and
then give you the file, or better yet, you retrieve the file yourself, then you can determine if
the file is original (unmodified) if the computed message digest matches what you were
given.You will not know who made the file; the message digest will not tell you that. Now
suppose we are in the middle of communicating, and we both have a shared secret key K. If
I send you a file and the MAC tag produced with the key K, you can verify if the message
originated from my side of the channel by verifying the MAC tag.

Another way MAC and hash functions differ is in the notion of their bit security. Recall
from Chapter 5,“Hash Functions,” that a birthday attack reduces the bit security strength of
a hash to half the digest size. For example, it takes 2128 work to find collisions in SHA-256.
This is possible because message digests can be computed offline, which allows an attacker to
pre-compute a huge dictionary of message digests without involving the victim. MAC algo-
rithms, on the other hand, are online only. Without access to the key, collisions are not pos-
sible to find (if the MAC is indeed secure), and the attacker cannot arbitrarily compute tags
without somehow tricking the victim into producing them for him.

As a result, the common line of thinking is that birthday attacks do not apply to MAC
functions.That is, if a MAC tag is k-bits long, it should take roughly 2k work to find a colli-
sion to that specific value. Often, you will see protocols that greatly truncated the MAC tag
length, to exploit this property of MAC functions.

IPsec, for instance, can use 96-bit tags.This is a safe optimization to make, since the bit
security is still very high at 296 work to produce a forgery.
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MAC Key Lifespan
The security of a MAC depends on more than just on the tag length. Given a single message
and its tag, the length of the tag determines the probability of creating a forgery. However, as
the secret key is used to authenticate more and more messages, the advantage—that is, the
probability of a successful forgery—rises.

Roughly speaking, for example, for MACs based on block ciphers the probability of a
forgery is 0.5 after hitting the birthday paradox limit.That is, after 264 blocks, with AES an
attacker has an even chance of forging a message (that’s still 512 exabytes of data, a truly stu-
pendous quantity of information).

For this reason, we must think of security not from the ideal tag length point of view, but
the probability of forgery.This sets the upper bound on our MAC key lifespan. Fortunately for
us, we do not need a very low probability to remain secure. For instance, with a probability of
2–40 of forgery, an attacker would have to guess the correct tag (or contents to match a fixed
tag) on his first try.This alone means that MAC key lifespan is probably more of an academic
discussion than anything we need to worry about in a deployed system

Even though we may not need a very low probability of forgery, this does not mean we
should truncate the tag.The probability of forgery only rises as you authenticate more and
more data. In effect, truncating the tag would save you space, but throw away security at the
same time. For short messages, the attacker has learned virtually nothing required to com-
pute forgeries and would rely on the probability of a random collision for his attack vector
on the MAC.

Standards
To help developers implement interoperable MAC functions in their products, NIST has
standardized two different forms of MAC functions.The first to be developed was the hash-
based HMAC (FIPS 198), which described a method of safely turning a one-way collision
resistant hash into a MAC function.Although HMAC was originally intended to be used
with SHA-1, it is appropriate to use it with other hash function. (Recent results show that
collision resistance is not required for the security of NMAC, the algorithm from which
HMAC was derived (http://eprint.iacr.org/2006/043.pdf for more details). However,
another paper (http://eprint.iacr.org/2006/187.pdf ) suggests that the hash has to behave
securely regardless.)

The second standard developed by NIST was the CMAC (SP 800-38B) standard. Oddly
enough, CMAC falls under “modes of operations” on the NIST Web site and not a message
authentication code.That discrepancy aside, CMAC is intended for message authenticity.
Unlike HMAC, CMAC uses a block cipher to perform the MAC function and is ideal in
space-limited situations where only a cipher will fit.
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Cipher Message Authentication Code
The cipher message authentication code (CMAC, SP 800-38B) algorithm is actually taken
from a proposal called OMAC, which stands for “One-Key Message Authentication Code”
and is historically based off the three-key cipher block chaining MAC.The original cipher-
based MAC proposed by NIST was informally known as CBC-MAC.

In the CBC-MAC design, the sender simply chooses an independent key (not easily
related to the encryption key) and proceeds to encrypt the data in CBC mode.The sender
discards all intermediate ciphertexts except for the last, which is the MAC tag. Provided the
key used for the CBC-MAC is not the same (or related to) the key used to encrypt the
plaintext, the MAC is secure (Figure 6.1).

Figure 6.1 CBC-MAC

That is, for all fixed length messages under the same key. When the messages are packets
of varying lengths, the scheme becomes insecure and forgeries are possible; specifically, when
messages are not an even multiple of the cipher’s block length.

The fix to this problem came in the form of XCBC, which used three keys. One key
would be used for the cipher to encrypt the data in CBC-MAC mode.The other two
would be XOR’ed against the last message block depending on whether it was complete.
Specifically, if the last block was complete, the second key would be used; otherwise, the
block was padded and the third key used.

The problem with XCBC was that the proof of security, at least originally, required
three totally independent keys. While trivial to provide with a key derivation function such
as PKCS #5, the keys were not always easy to supply.
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After XCBC mode came TMAC, which used two keys. It worked similarly to XCBC,
with the exception that the third key would be linearly derived from the first.They did trade
some security for flexibility. In the same stride, OMAC is a revision of TMAC that uses a
single key (Figures 6.2 and 6.3).

Figure 6.2 OMAC Whole Block Messages

Figure 6.3 OMAC Partial Block Messages
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Security of CMAC
To make these functions easier to use, they made the keys dependent on one another.This
falls victim to the fact that if an attacker learns one key, he knows the others (or all of them
in the case of OMAC). We say the advantage of an attacker is the probability that his forgery
will succeed after witnessing a given number of MAC tags being produced.

1. Let AdvMAC represent the probability of a MAC forgery.

2. Let AdvPRP represent the probability of distinguishing the cipher from a random
permutation.

3. Let t represent the time the attacker spends.

4. Let q represent the number of MAC tags the attacker has seen (with the corre-
sponding inputs).

5. Let n represent the size of the block cipher in bits.

6. Let m represent the (average) number of blocks per message authenticated.

The advantage of an attacker against OMAC is then (roughly) no more than:

AdvOMAC < (mq)2/2n-2 + AdvPRP(t + O(mq), mq + 1)

Assuming that mq is much less than 2n/2, then AdvPRP() is essentially zero.This leaves us
with the left-hand side of the equation.This effectively gives us a limit on the CMAC algo-
rithm. Suppose we use AES (n = 128), and that we want a probability of forgery of no more
than 2-96.This means that we need 

2-96 > (mq)2/2126

If we simplify that, we obtain the result
230 > (mq)2

215 > mq
What this means is that we can process no more than 215 blocks with the same key,

while keeping a probability of forgery below 2–96.This limit seems a bit too strict, as it means
we can only authenticate 512 kilobytes before having to change the key. Recall from our
previous discussion on MAC security that we do not need such strict requirements.The
attacker need only fail once before the attack is detected. Suppose we use the upper bound
of 2–40 instead.This means we have the following limits:

2–40 > (mq)2/212

286 > (mq)2

243 > mq

This means we can authenticate 243 blocks (1024 terabytes) before changing the key.An
attacker having seen all of that traffic would have a probability of 2-40 of forging a packet,
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which is fairly safe to say not going to happen. Of course, this does not mean that one
should use the same key for that length of traffic.

Notes from the Underground…

Online versus Offline Attacks
It is important to understand the distinction between online and offline attack
vectors. Why is 40 bits enough for a MAC and not for a cipher key?

In the case of a MAC function, the attacks are online. That is, the attacker
has to engage the victim and stimulate him to give information. We call the
victim an oracle in traditional cryptographic literature. Since all traffic should be
authenticated, an attacker cannot easily query the device. However, he may see
known data fed to the MAC. In any event, the attack on the MAC is online. The
attacker has only one shot to forge a message without being detected. A suffi-
ciently low probability of success such as 2-40 means that you can safely mitigate
that issue.

In the case of a cipher, the attacks are offline. The attacker can repeatedly
perform a given computation (such as decryption with a random key) without
involving the victim. A 40-bit key in this sense would provide barely any lasting
security at all. For instance, an AMD Opteron can test an AES-128 key in roughly
2,000 processor cycles. Suppose you used a 40-bit key by zeroing the other 88
bits. A 2.2-GHz Opteron would require 11.6 days to find the key. A fully comple-
mented AMD Opteron 885 setup (four processors, eight cores total at 2.6 GHz)
could accomplish the goal in roughly 1.23 days for a cost less than $20,000. 

It gets even worse in custom hardware. A pipelined AES-128 engine could
test one key per cycle, and depending on the FPGA and to a larger degree the
expected composition of the plaintext (e.g., ASCII) at rates approaching 100
MHz. That turns into a search time of roughly three hours. Of course, this is a bit
simplistic, since any reasonably fast filtering on the keys will have many false pos-
itives. A secondary (and slower) screening process would be required for them.
However, it too can work in parallel and since there are fewer false positives than
keys, to test would not become much of a bottleneck.

Clearly, in the offline sense, bit security matters much more.

CMAC Design
CMAC is based off the OMAC design; more specifically, off the OMAC1 design.The
designer of OMAC designed two very related proposals. OMAC1 and OMAC2 differ only
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in how the two additional keys are generated. In practice, people should only use OMAC1 if
they intend to comply with the CMAC standard.

CMAC Initialization
CMAC accepts as input during initialization a secret key K. It uses this key to generate two
additional keys K1 and K2. Formally, CMAC uses a multiplication by p(x) = x in a
GF(2)[x]/v(x) field to accomplish the key generation. Fortunately, there is a much easier way
to explain it (Figure 6.4).

Figure 6.4 CMAC Initialization
Input

K: Secret key
Output

K1, K2: Additional CMAC keys

1. L = EncryptK(0)

2. If MSB(L) = 0, then K1 = L << 1
else K1 = (L << 1) XOR Rb

3. If MSB(K1) = 0, then K2 = K1 << 1
else K2 = (K1 << 1) XOR Rb

4. Return K1, K2

The values are interpreted in big endian fashion, and the operations are all on either 64-
or 128-bit strings depending on the block size of the block cipher being used.The value of
Rb depends on the block size. It is 0x87 for 128-bit block ciphers and 0x1B for 64-bit block
ciphers.The value of L is the encryption of the all zero string with the key K.

Now that we have K1 and K2, we can proceed with the MAC. It is important to keep
in mind that K1 and K2 must remain secret.Treat them as you would a ciphering key.

CMAC Processing
From the description, it seems that CMAC is only useful for packets where you know the
length in advance. However, since the only deviations occur on the last block, it is possible to
implement CMAC as a streaming MAC function without advanced knowledge of the data
size. For zero length messages, CMAC treats them as incomplete blocks (Figure 6.5).
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Figure 6.5 CMAC Processing

Input
K: Secret Key
K1, K2: Additional CMAC keys
M: Message
L: Number of bits in the message
Tlen: Desired length of the MAC tag
w: Bits per block

Output
T: The tag

1. If L = 0, let n = 1, else n = ceil(L/w)

2. Let M1, M2, M3, ..., Mn represent the blocks of the message.

3. If L > 0 and L mod w = 0 then 

1. Mn := Mn XOR K1

4. if L = 0 or L mod w > 0 then

1. Append a ‘1’ bit then enough ‘0’ bits to fill w bits

2. Mn := Mn XOR K2

5. C0 = 0

6. for i from 1 to n do

1. Ci = EncryptK(Ci-1 XOR Mi)

7. T = MSBTlen(Cn)

8. Return T

It may look tempting to give out Ci values as ciphertext for your message. However,
that invalidates the proof of security for CMAC.You will have to encrypt your plaintext
with a different (unrelated) key to maintain the proof of security for CMAC.

CMAC Implementation
Our implementation of CMAC has been hardcode to use the AES routines of Chapter 4
with 128-bit keys. CMAC is not limited to such decisions, but to better demonstrate the
MAC we decided to simplify it.The CMAC routines in LibTomCrypt (under the OMAC
directory) demonstrate how to write a very flexible CMAC routine that can accept any 64-
or 128-bit block cipher.

cmac.c:

001   /* poor linker for AES code */

002   #include “aes_large_mod.c”
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We copied the AES code to our directory for Chapter 6.At this stage, we want to keep
the code simple, so to this end, we simply include the AES code directly in our application.

Obviously, in the field the best practice would be to write an AES header and link the
two files against each other properly.

004   typedef struct {

005      unsigned char L[2][16],

006                    C[16];

007      ulong32       AESkey[15*4];

008      unsigned      buflen;

009      int           first;

010   } cmac_state;

This is our CMAC state function. Our implementation will process the CMAC message
as a stream instead of a fixed sized block.The L array holds our two keys K1 and K2, which
we compute in the cmac_init() function.The C array holds the CBC chaining block. We
buffer the message into the C array by XOR’ing the message against it.The buflen integer
counts the number of bytes pending to be sent through the cipher.

012   void cmac_init(const unsigned char *key, cmac_state *cmac)

013   {

014      int i, m;

This function initializes our CMAC state. It has been hard coded to use 128-bit AES
keys.

016      /* schedule the key */

017      ScheduleKey(key, 16, cmac->AESkey);

First, we schedule the input key to the array in the CMAC state.This allows us to
invoke the cipher on demand throughout the rest of the algorithm.

019      /* encrypt 0 byte string */

020      for (i = 0; i < 16; i++) {

021         cmac->L[0][i] = 0;

022      }

023      AesEncrypt(cmac->L[0], cmac->L[0], cmac->AESkey, 10);

At this point, our L[0] array (equivalent to K1) contains the encryption of the zero byte
string. We will multiply this by the polynomial x next to compute the final value of K1.

025      /* now compute K1 and K2 */

026         /* multiply K1 by x */

027         m = cmac->L[0][0] & 0x80 ? 1 : 0;

028         

029         /* shift */

030         for (i = 0; i < 15; i++) {
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031            cmac->L[0][i] = ((cmac->L[0][i] << 1) | 

032                             (cmac->L[0][i+1] >> 7)) & 255;

033         }

034         cmac->L[0][15] = (cmac->L[0][15] << 1) ^ (m ? 0x87 : 0);

We first grab the MSB of L[0] (into m) and then proceed with the left shift.The shift is
equivalent to a multiplication by x.The last byte is shifted on its own and the value of 0x87
XORed in if the MSB was nonzero.

036         /* multiple K2 by x */

037         for (i = 0; i < 16; i++) {

038             cmac->L[1][i] = cmac->L[0][i];

039         }          

040         m = cmac->L[1][0] & 0x80 ? 1 : 0;

041         

042         /* shift */

043         for (i = 0; i < 15; i++) {

044            cmac->L[1][i] = ((cmac->L[1][i] << 1) | 

045                             (cmac->L[1][i+1] >> 7)) & 255;

046         }

047         cmac->L[1][15] = (cmac->L[1][15] << 1) ^ (m ? 0x87 : 0);

This copies L[0] (K1) into L[1] (K2) and performs the multiplication by x again.At this
point, we have both additional keys required to process the message with CMAC.

049       /* setup buffer */

050       cmac->buflen = 0;  

051       cmac->first  = 1;    

052   

053       /* CBC buffer */

054       for (i = 0; i < 16; i++) {

055           cmac->C[i] = 0;

056       }        

057   }

This final bit of code initializes the buffer and CBC chaining variable. We are now ready
to process the message through CMAC.

059   void cmac_process(const unsigned char *in, unsigned inlen, 

060                              cmac_state *cmac)

061   {

Our “process” function is much like the process functions found in the implementations
of the hash algorithms. It allows the caller to send in an arbitrary length message to be han-
dled by the algorithm.
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062      while (inlen—) {

063         cmac->first = 0;

This turns off the first block flag telling the CMAC functions that we have processed at
least one byte in the function.

065         /* we have 16 bytes, encrypt the buffer */

066         if (cmac->buflen == 16) {

067            AesEncrypt(cmac->C, cmac->C, cmac->AESkey, 10);

068            cmac->buflen = 0;

069         }

If we have filled the CBC chaining block, we must encrypt it and clear the counter. We
must do this for every 16 bytes we process, since we assume we are using AES, which has a
16-byte block size.

071         /* xor in next byte */

072         cmac->C[cmac->buflen++] ^= *in++;

073      }

074   }

The last statement XORs a byte of the message against the CBC chaining block.
Notice, how we check for a full block before we add the next byte.The reason for this
becomes more apparent in the next function.

This loop can be optimized on 32- and 64-bit platforms by XORing larger words of
input message against the CBC chaining block. For example, on a 32-bit platform we could
use the following:

if (cmac->buflen == 0) {

while (inlen >= 16) {

*((ulong32*)&cmac->C[0]) ^= *((ulong32*)&in[0]);

*((ulong32*)&cmac->C[4]) ^= *((ulong32*)&in[4]);

*((ulong32*)&cmac->C[8]) ^= *((ulong32*)&in[8]);

*((ulong32*)&cmac->C[12]) ^= *((ulong32*)&in[12]);

if (inlen > 16) AesEncrypt(cmac->C, cmac->C, cmac->AESKey, 10);

inlen -= 16;

in    += 16;

}

}

This loop XORs 32-bit words at a time, and for performance reasons assumes that the
input buffer is aligned on a 32-bit boundary. Note that it is endianess neutral and only
depends on the mapping of four unsigned chars to a single ulong32.That is, the code is not
entirely portable but will work on many platforms. Note that we only process if the CMAC
buffer is empty, and we only encrypt if there are more than 16 bytes left.
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The LibTomCrypt library uses a similar trick that also works well on 64-bit platforms.
The OMAC routines in that library provide another example of how to optimize CMAC.

NOTE

The x86-based platforms tend to create “slackers” in terms of developers. The
CISC instruction set makes it fairly effective to write decently efficient programs,
especially with the ability to use memory operands as operands in typical RISC
like instructions—whereas on a true RISC platforms you must load data before
you can perform an operation (such as addition) on it.

Another feature of the x86 platform is that unaligned are tolerated. They are
sub-optimal in terms of performance, as the processor must issue multiple
memory commands to fulfill the request. However, the processor will still allow it. 

On other platforms, such as MIPS and ARM, word memory operations must
always be word aligned. In particular, on the ARM platform, you cannot actually
perform unaligned memory operations without manually emulating them, since
the processor zero bits of the address. 

This causes problems for C applications that try to cast a pointer to another
type. As in our example, we cast an unsigned char pointer to a ulong32 pointer.
This will work well on x86 platforms, but only work on ARM and MIPS if the
pointer is 32-bit aligned. The C compiler will not detect this error at compile
time and the user will only be able to tell there is an error at runtime.

076   void cmac_done(   cmac_state *cmac, 

077                  unsigned char *tag, unsigned taglen)

078   {

079      unsigned i;

This function terminates the CMAC and outputs the MAC tag value.

081      /* do we have a partial block? */

082      if (cmac->first || cmac->buflen & 15) {

083          /* yes, append the 0x80 byte */

084          cmac->C[cmac->buflen++] ^= 0x80;

085          

086          /* xor K2 */

087          for (i = 0; i < 16; i++) {

088              cmac->C[i] ^= cmac->L[1][i];

089          }
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If we have zero bytes in the message or an incomplete block, we first append a one bit
follow by enough zero bits. Since we are byte based, the padding is the 0x80 byte followed
by zero bytes. We then XOR K2 against the block.

090      } else {

091          /* no, xor K1 */

092          for (i = 0; i < 16; i++) {

093              cmac->C[i] ^= cmac->L[0][i];

094          }

095      }

Otherwise, if we had a complete block we XOR K1 against the block.

097      /* encrypt pad */

098      AesEncrypt(cmac->C, cmac->C, cmac->AESkey, 10);

We encrypt the CBC chaining block one last time.The ciphertext of this encryption
will be the MAC tag.All that is left is to truncate it as requested by the caller.

100      /* copy tag */

101      for (i = 0; i < 16 && i < taglen; i++) {

102          tag[i] = cmac->C[i];

103      }

104   }

105   

106   void cmac_memory(const unsigned char *key,

107                    const unsigned char *in, unsigned inlen,

108                          unsigned char *tag, unsigned taglen)

109   {

110      cmac_state cmac;  

111      cmac_init(key, &cmac);

112      cmac_process(in, inlen, &cmac);

113      cmac_done(&cmac, tag, taglen);

114   }   

This simple function allows the caller to compute the CMAC tag of a message with a
single function call. Very handy to have.

117   #include <stdio.h>

118   #include <string.h>

119   

120   int main(void)

121   {

122       static const struct { 

123           int keylen, msglen;

124           unsigned char key[16], msg[64], tag[16];
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125       } tests[] = {

126       { 16, 0,

127         { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 

128           0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c },

129         { 0x00 },

130         { 0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28,

131           0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46 }

132       },

133       { 16, 16, 

134         { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 

135           0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c },

136         { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,

137           0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a },

138         { 0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44, 

139           0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c }

140       },

141       { 16, 40, 

142         { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 

143           0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c },

144         { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,

145           0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

146           0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 

147           0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

148           0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11 },

149         { 0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30,

150           0x30, 0xca, 0x32, 0x61, 0x14, 0x97, 0xc8, 0x27 }

151       },

152       { 16, 64, 

153         { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 

154           0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c },

155         { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,

156           0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,

157           0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 

158           0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,

159           0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,

160           0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,

161           0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,

162           0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 },

163         { 0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92, 

164           0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe }

165       }

166       };
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These arrays are the standard test vectors for CMAC with AES-128.An implementation
must at the very least match these vectors to claim CMAC AES-128 compliance.

168       unsigned char tag[16];

169       int i;

170       

171       for (i = 0; i < 4; i++) {

172           cmac_memory(tests[i].key, tests[i].msg, 

173                       tests[i].msglen, tag, 16);

174           if (memcmp(tag, tests[i].tag, 16)) {

175               printf(“CMAC test %d failed\n”, i);

176               return -1;

177          }

178       }

179       printf(“CMAC passed\n”);

180       return 0;

181   }

This demonstration program computes the CMAC tags for the test messages and com-
pares the tags. Keep in mind this test program only uses AES-128 and not the full AES suite.
Although, in general, if you can comply to the AES-128 CMAC test vectors, you should
comply with the AES-192 and AES-256 vectors as well.

CMAC Performance
Overall, the performance of CMAC depends on the underlying cipher. With the feedback
optimization for the process function (XORing words of data instead of bytes), the overhead
can be minimal.

Unfortunately, CMAC uses CBC mode and cannot be parallelized.This means in hard-
ware, the best performance will be achieved with the fastest AES implementation and not
many parallel instances.

Hash Message Authentication Code
The Hash Message Authentication Code standard (FIPS 198) takes a cryptographic one-way
hash function and turns it into a message authentication code algorithm. Remember how
earlier we said that hashes are not authentication functions? This section will tell you how to
turn your favorite hash into a MAC.

The overall HMAC design was derived from a proposal called NMAC, which turns any
pseudo random function (PRF) into a MAC function with provable security bounds. In par-
ticular, the focus was to use a hash function as the PRF. NMAC was based on the concept of
prefixing the message with a key smf then hashing the concatenation. For example,
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tag = hash(key || message)

However, recall from Chapter 5 that we said that such a construction is not secure. In
particular, an attacker can extend the message by using the tag as the initial state of the hash.
The problem is that the attacker knows the message being hashed to produce the tag. If we
could somehow hide that, the attacker could not produce valid tag, Effectively, we have

tag = hash(key || PRF(message))

Now an attacker who attempts to extend the message by using tag as the initial hash state,
the result of the PRF() mapping will not be predictable. In this configuration, an attacker can
no longer use tag as the initial state.The only question now is how to create a PRF? It turns
out that the original construction is a decent PRF to use.That is, hash functions are by defini-
tion pseudo random functions that map their inputs to difficult to otherwise predict outputs.
The outputs are also hard to invert (that is, the hash is one-way). Keying the hash function by
pre-pending secret data to the message should by definition create a keyed PRF.

The complete construction is then

tag = hash(key1 || hash(key2 || message))

Note that NMAC requires two keys, one for in the inner hash and one for the outer hash.
While the constructions is simple, it lacks efficiency as it requires two independent keys.

The HMAC construction is based on NMAC, except that the two keys are linearly
related.The contribution of HMAC was to prove that the construction with a single key is
also secure. It requires that the hash function be a secure PRF, and while it does not have to
be collision resistant (New Proofs for NMAC and HMAC: Security without Collision
Resistant: http://eprint.iacr.org/2006/043.pdf ), it must be resistant to differential cryptanal-
ysis (On The Security of HMAC and NMAC Based on HAVAL, MD4, MD5, SHA-0, and
SHA-1: http://eprint.iacr.org/2006/187.pdf ).

HMAC Design
Now that we have a general idea of what HMAC is, we can examine the specifics that make
up the FIPS 198 standard. HMAC, like CMAC, is not specific to a given algorithm under-
neath. While HMAC was originally intended to be used with SHA-1 it can safely be used
with any otherwise secure hash function, such as SHA-256 and SHA-512.

HMAC derives the two keys from a single secret key by XORing two constants against
it. First, before we can do this we have to make sure the key is the size of the hashes com-
pression block size. For instance, SHA-1 and SHA-256 compress 64-byte blocks, whereas
SHA-512 compresses 128-byte blocks.
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If the secret key is larger than the compression block size, the standard requires the key
to be hashed first.The output of the hash is then treated as the secret key.The secret key is
padded with zero bytes to ensure it is the size of the compression block input size.

The result of the padding is then copied twice. One copy has all the bytes XORed with
0x36; this is the outer key.The other copy has all its bytes XORed with 0x5C; this is the
inner key. For simplicity we shall call the string of 0x36 bytes the opad, and the string of
0x5C bytes the ipad.

You may wonder why the key is padded to be the size of a compression block.
Effectively, this turns the hash into a keyed hash by making the initial hash state key depen-
dent. From a cryptographic standpoint, HMAC is equivalent to picking the hashes initial
state at random based on a secret key (Figures 6.6 and 6.7).

Figure 6.6 HMAC Block Diagram
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Figure 6.7 HMAC Algorithm
Input

K: Secret key
message: Message to determine the MAC for
w: Compression block size
Tlen: Desired MAC tag length

Output
Tag: The MAC Tag

1. if length(K) > w then

1. K = hash(K)

2. Pad K with zeros until it is w bytes long

3. Tag = hash((opad XOR K) || hash((ipad XOR K) || message))

4. Truncate Tag to Tlen bytes by keeping only the first Tlen bytes.

5. Return Tag.

As we can see, HMAC is a simple algorithm to describe. With a handy hash function
implementation, it is trivial to implement HMAC. We note that, since the message is only
hashed in the inner hash, we can effectively HMAC a stream on the fly without the need
forthe entire message at once (provided the hash function does not require the entire 
message at once).

Since this algorithm uses a hash as the PRF, and most hashes are not able to process
message blocks in parallel, this will become the significant critical path of the algorithm in
terms of performance. It is possible to compute the hash of (opad XOR K) while computing
the inner hash, but this will save little time and require two parallel instances of the hash. It is
not a worthwhile optimization for messages that are more than a few message blocks in
length.

HMAC Implementation
Our implementation of HMAC has been tied to the SHA-1 hash function. Like CMAC, we
decided to simplify the implementation to ensure the implementation is easy to absorb.

hmac.c:

001   /* poor linker */

002   #include “sha1.c”

We directly include the SHA-1 source code to provide our hash function. Ideally, we
would include a proper header file and link against SHA-1. However, at this point we just
want to show off HMAC working.

004   typedef struct {

005      sha1_state    hash;
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006      unsigned char K[64];

007   } hmac_state;

This is our HMAC state. It is fairly simple, since all of the data buffering is handled
internally by the SHA-1 functions. We keep a copy of the outer key K to allow the HMAC
implementation to apply the outer hash. Note that we would have to change the size of K
to suit the hash. For instance, with SHA-512 it would have to be 128 bytes long. We would
have to make that same change to the following function.

009   void hmac_init(const unsigned char *key,

010                             unsigned  keylen,

011                           hmac_state *hmac)

012   {

013      unsigned char K[64];

014      unsigned i;

This function initializes the HMAC state by processing the key and starting the inner
hash.

016      /* if keylen > 64 hash it */

017      if (keylen > 64) {

018         sha1_memory(key, keylen, K);

019         i = 20;

020      } else {

021         /* copy key */

022         for (i = 0; i < keylen; i++) {

023             K[i] = key[i];

024         }

025      }

If the secret key is larger than 64 bytes (the compression block size of SHA-1), we hash
it using the helper SHA-1 function. If it is not, we copy it into our local K array. In either
case, at this point i will indicate the number of bytes in the array that have been filled in.
This is used in the next loop to pad the key.

027      /* pad with zeros */

028      for (; i < 64; i++) {

029          K[i] = 0x00;

030      }

This pads the keys with zero bytes so that it is 64 bytes long.

032      /* copy key to structure, this is out outer key */

033      for (i = 0; i < 64; i++) {

034         hmac->K[i] = K[i] ^ 0x5C;

035      }
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036   

037      /* XOR inner key with 0x36 */

038      for (i = 0; i < 64; i++) {

039         K[i] ^= 0x36;

040      }

The first loop creates the outer key and stores it in the HMAC state.The second loop
creates the inner key and stores it locally. We only need it for a short period of time, so there
is no reason to copy it to the HMAC state.

042      /* start hash */

043      sha1_init(&hmac->hash);

044      

045      /* hash key */

046      sha1_process(&hmac->hash, K, 64);

047   

048      /* wipe key */

049      for (i = 0; i < 64; i++) {

050         K[i] = 0x00;

051      }

052   }

At this point we have initialized the HMAC state. We can process data to be authenti-
cated with the following function.

054   void hmac_process(const unsigned char *in,

055                                unsigned  inlen,

056                              hmac_state *hmac)

057   {

058      sha1_process(&hmac->hash, in, inlen);

059   }

This function processes data we want to authenticate.Take a moment to appreciate the
vast complexity of HMAC. Done? This is one of the reasons HMAC is a good standard. It is
ridiculously simple to implement.

061   void hmac_done(   hmac_state *hmac,

062                  unsigned char *tag,

063                       unsigned  taglen)

064   {

This function terminates the HMAC and outputs the tag.

065       unsigned char T[20];

066       unsigned      i;

067   
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The T array stores the message digest from the hash function.You will have to adjust it
to match the output size of the hash function.

068       /* terminate inner hash */

069       sha1_done(&hmac->hash, T);

070   

071       /* start outer hash */

072       sha1_init(&hmac->hash);

073   

074       /* hash the outer key */

075       sha1_process(&hmac->hash, hmac->K, 64);

076   

077       /* hash the inner hash */

078       sha1_process(&hmac->hash, T, 20);

079   

080       /* get the output (tag) */

081       sha1_done(&hmac->hash, T);

082   

083       /* copy out */

084       for (i = 0; i < 20 && i < taglen; i++) {

085          tag[i] = T[i];

086       }

087   }

At this point, we have all the prerequisites to begin using HMAC to process data. We
can borrow from our hash implementations a bit to help out here.

089   void hmac_memory(const unsigned char *key,

090                               unsigned  keylen,

091                    const unsigned char *in, unsigned inlen,

092                          unsigned char *tag, unsigned taglen)

093   {

094      hmac_state hmac;  

095      hmac_init(key, keylen, &hmac);

096      hmac_process(in, inlen, &hmac);

097      hmac_done(&hmac, tag, taglen);

098   } 

As in the case of CMAC, we have provided a simple to use HMAC function that pro-
duces a tag with a single function call.

100   #include <stdio.h>

101   #include <stdlib.h>

102   #include <string.h>

103   
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104   int main(void)

105   {

106       static const struct {

107           unsigned char key[128];

108           unsigned long keylen;

109           unsigned char data[128];

110           unsigned long datalen;

111           unsigned char tag[20];

112       } tests[] = {

113       {

114         {0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 

115          0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 

116          0x0c, 0x0c, 0x0c, 0x0c}, 20,

117         “Test With Truncation”, 20,

118         {0x4c, 0x1a, 0x03, 0x42, 0x4b, 0x55, 0xe0, 0x7f, 

119          0xe7, 0xf2, 0x7b, 0xe1, 0xd5, 0x8b, 0xb9, 0x32, 

120          0x4a, 0x9a, 0x5a, 0x04} },

121       { 

122         {0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

123          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

124          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

125          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

126          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

127          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

128          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

129          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

130          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 

131          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa}, 80,

132         “Test Using Larger Than Block-Size Key - “

133         “Hash Key First”, 54,

134         {0xaa, 0x4a, 0xe5, 0xe1, 0x52, 0x72, 0xd0, 0x0e,

135          0x95, 0x70, 0x56, 0x37, 0xce, 0x8a, 0x3b, 0x55, 

136          0xed, 0x40, 0x21, 0x12} },

137      { 

138         {0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

139          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

140          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

141          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

142          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

143          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

144          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

145          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
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146          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,

147          0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa}, 80,

148         “Test Using Larger Than Block-Size Key and Larger “

149         “Than One Block-Size Data”, 73,

150         {0xe8, 0xe9, 0x9d, 0x0f, 0x45, 0x23, 0x7d, 0x78, 

151          0x6d, 0x6b, 0xba, 0xa7, 0x96, 0x5c, 0x78, 0x08, 

152          0xbb, 0xff, 0x1a, 0x91} } };

153      unsigned char tag[20];

154      unsigned i;

155   

156      for (i = 0; i < 3; i++) {

157         hmac_memory(tests[i].key, tests[i].keylen, 

158                     tests[i].data, tests[i].datalen,

159                     tag, 20);

160         if (memcmp(tag, tests[i].tag, 20)) {

161            printf(“HMAC-SHA1 Test %u failed\n”, i);

162            return -1;

163         }

164      }

165      printf(“HMAC-SHA1 passed\n”);

166      return 0;

167   }

The test vectors in our implementation are from RFC 22021 published in 1997 (HMAC
RFC: www.faqs.org/rfcs/rfc2104.html, HMAC Test Cases: www.faqs.org/rfcs/rfc2202.html).
The Request for Comments (RFC) publication was the original standard for the HMAC
algorithm. We use these vectors since they were published before the test vectors listed in
FIPS 198. Strictly speaking, FIPS 198 is not dependent on RFC 2104; that is, to claim stan-
dard compliance with FIPS 198, you must pass the FIPS 198 test vectors.

Fortunately, RFC 2104 and FIPS 198 specify the same algorithm. Oddly enough, in the
NIST FIPS 198 specification they claim their standard is a “generalization” of RFC 2104. We
have not noticed any significant difference between the standards. While HMAC was origi-
nally intended to be used with MD5 and SHA-1, the RFC does not state that it is limited in
such a way. In fact, quoting from the RFC,“This document specifies HMAC using a generic
cryptographic hash function (denoted by H),” we can see clearly the intended scope of the
standard was not limited to a given hash function.

Putting It All Together
Now that we have seen two standard MAC functions, we can begin to work on how to use
the MAC functions to accomplish useful goals in a secure manner. We will first examine the
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basic tasks MAC functions are for, and what they are not for. Next, we will compare CMAC
and HMAC and give advice on when to use one over the other.

After that point, we will have examined which MAC function to use and why we want
you to use them. We will then proceed to examine how to use them securely. It is not
enough to simply apply the MAC function to your data; you must also apply it within a
given context for the system to be secure.

What MAC Functions Are For?
First and foremost, MAC functions were designed to provide authenticity between parties on
a communication channel. If all is working correctly, all of the parties can both send and
receive (and verify) authenticated messages between one another—that is, without the signif-
icant probability that an attacker is forging messages.

So, what exactly do we use MACs for in real-world situations? Some classic examples
include SSL and TLS connections on the Internet. For example, HTTPS connections use
either TLS or SSL to encrypt the channel for privacy, and apply a MAC to the data being
sent in either direction to ensure its authenticity. SSH is another classic example. SSH
(Secure Shell) is a protocol that allows users to remotely log in to other machines in much
the same way telnet would. However, unlike telnet, SSH uses cryptography to ensure both
the privacy and authentication of the data being sent in both directions. Finally, another
example is the GSM cellular standard. It uses an algorithm known as COMP128 to authen-
ticate users on the network. Unlike SSL and SSH, COMP128 is used to authenticate the
user by providing a challenge for which the user must provide the correct MAC tag in
response. COMP128 is not used to authenticate data in transit.

Consequences
Suppose we had not used MAC authenticators in the previous protocols, what threats would
the users face?

In the typical use case of TLS and SSL, users are trying to connect to a legitimate host
and transfer data between the two points.The data usually consists of HTTPS traffic; that is,
HTML documents and form replies.The consequences of being able to insert or modify
replies depends on the application. For instance, if you are reading e-mail, an attacker could
re-issue previous commands from the victim to the server.These commands could be
innocuous such as “read next e-mail,” but could also be destructive such as “delete current e-
mail.” Online banking is another important user of TLS cryptography. Suppose you issued an
HTML form reply of “pay recipient $100.”An attacker could modify the message and
change the dollar amount, or simpler yet, re-issue the command depleting the bank account.

Modification in the TLS and SSL domains are generally less important, as the attacker is
modifying ciphertext, not plaintext.Attackers can hardly make modifications in a protocol
legible fashion. For instance, a user connected to SMTP through TLS must send properly
formatted commands to have the server perform work. Modifying the data will likely
modify the commands.

www.syngress.com

276 Chapter 6 • Message -  Authentication Code Algorithms

404_CRYPTO_06.qxd  10/30/06  10:20 AM  Page 276



NOTE

One of the consequences of not using a MAC with protocols such as TLS is that
the attacker could modify the ciphertext. With ciphering modes such as CTR, a
single bit change of ciphertext leads to only one bit changed in the plaintext.

CBC is not a forgery resistant mode of operation. An attacker who knows
plaintext and ciphertext pairings, and who can control the CBC IV used, can
forge a message that will decrypt sensibly. 

If you need authentication, and chances are good that you do, CBC mode is
not the way to get it.

In the SSH context, without a MAC in place, an attacker could re-issue many com-
mands sent by the users.This is because SSH uses a Nagle-like protocol to buffer out going
data. For instance, if SSH sent a packet for every keystroke you made, it would literally be
sending kilobytes of data to simply enter a few paragraphs of text. Instead, SSH, like the
TCP/IP protocol, buffers outgoing data until a reply is received from the other end. In this
way, the protocol is self-clocking and will only give as low latency as the network will allow
while using an optimal amount of bandwidth.

With the buffering of input comes a certain problem. For instance, if you typed “rm –f
*” at your shell prompt to empty a directory, chances are the entire string (along with the
newline) would be sent out as one packet to the SSH server.An attacker who retrieves this
packet can then replay it, regardless of where you are in your session.

In the case of GSM’s COMP128 protocol, if it did not exist (and no replacement was
used), a GSM client would simply pop on a cellular network, say “I’m Me!” and be able to
issue any command he wanted such as dialing a number or initiating a GPRS (data) session.

In short, without a MAC function in place, attackers can modify packets and replay old
packets without immediate and likely detection. Modifying packets may seem hard at first;
however, on various protocols it is entirely possible if the attacker has some knowledge of
the likely characteristics of the plaintext. People tend to think that modifications will be
caught further down the line. For instance, if the message is text, a human reading it will
notice. If the message is an executable, the processor will throw an exception at invalid
instructions. However, not all modifications, even random ones (without an attacker), are that
noticeable.

For instance, in many cases on machines with broken memory—that is, memory that is
either not storing values correctly, or simply failing to meet timing specifications—errors
received by the processor go unnoticed for quite some time.The symptoms of problematic
memory could be as simple as a program terminating, or files and directories not appearing
correctly. Servers typically employ the use of error correcting code (ECC) based memory,
which sends redundant information along with the data.The ECC data is then used to cor-
rect errors on the fly. Even with ECC, however, it’s possible to have memory failures that are
not correctable.
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Message replay attacks can be far more dangerous. In this case, an attacker resends an old
valid packet with the hopes of causing harm to the victim.The replayed packets are not
modified so the decryption should be valid, and depending on the current context of the
protocol could be very dangerous.

What MAC Functions Are Not For?
MAC functions usually are not abused in cryptographic applications, at least not in the same
way hash and cipher functions are. Sadly, this is not because of the technical understanding of
MAC functions by most developers. In fact, most amateur protocols omit authentication
threats altogether.As an aside, that is usually a good indicator of snake oil products. MAC
functions are not usually abused by those who know about them, mostly because MAC
functions are made out of useful primitives like ciphers and hashes. With that said, we shall
still briefly cover some basics.

MACs are not meant to be used as hash functions. Occasionally, people will ask about
using CMAC with a fixed key to create a hash function.This construction is not secure
because the “compression” function (the cipher) is no longer a PRP. None of the proofs
applies at that point.There is a secure way of turning a cipher into a hash:

1. H[0] = Encrypt0(0)

2. Pad the message with MD Strengthening and divide into blocks M[1], M[2], ...,
M[n]

3. for i from 1 to n do

1. H[i] = EncryptH[i-1](M[i]) XOR M[i]

4. Return H[n] as the message digest

In this mode, EncryptK(P) means to encrypt the plaintext P with key K.The initial
value, H[0], is chosen by encrypting the zero string to make the protocol easier to specify.
This method of hashing is not part of any NIST standard, although it has been used in a
variety of products. It is secure, provided the cipher itself is immune to differential attacks
and the key schedule is immune to related key attacks.

MACs are also not meant for RNG processing or even to be turned into a PRNG.
With a random secret key, the MAC function should behave as a PRF to an attacker.This
implies that it could be used as a PRNG, which is indeed true. In practice, a properly keyed
MAC could make a secure PRNG function if you ran a counter as the input and used the
output as the random numbers. However, such a construction is slow and wastes resources.A
properly keyed cipher in CTR mode can accomplish the same goal and consume fewer
resources.
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CMAC versus HMAC
Comparing CMAC against HMAC for useful comparison metrics depends on the problem
you are trying to solve, and what means you have to solve it. CMAC is typically a good
choice if you already have a cipher lying around (say, for privacy).You can re-use the same
code (or hardware) to accomplish authentication. CMAC is also based on block ciphers,
which while having small inputs (compared to hashes) can return an output in short order.
This reduces the latency of the operation. For short messages, say as small as 16 or 32 bytes,
CMAC with AES can often be faster and lower latency than HMAC.

Where HMAC begins to win out is on the larger messages. Hashes typically process data
with fewer cycles per byte when compared to ciphers. Hashes also typically create larger
outputs than ciphers, which allows for larger MAC tags as required. Unfortunately, HMAC
requires you to have a hash function implemented; however, on the upside, the HMAC code
that wraps around the hash implementation is trivial to implement.

From a security standpoint, provided the respective underlying primitives (e.g., the
cipher or the hash) are secure on their own (e.g., a PRP or PRF, respectively), the MAC
construction can be secure as well. While HMAC can typically put out larger MAC tags
than CMAC (by using a larger hash function), the security advantage of using larger tags is
not significant.

Bottom line: If you have the space or already have a hash, and your messages are not
trivially small, use HMAC. If you have a cipher (or want a smaller footprint) and are dealing
with smaller messages, use CMAC.Above all, do not re-invent the wheel; use the standard
that fits your needs.

Replay Protection
Simply applying the MAC function to your message is not enough to guarantee the system
as a whole is safe from replays.This problem arises due to a need for efficiency and necessity.
Instead of sending a message as one long chunk of data, a program may divide it into
smaller, more manageable pieces and send them in turn. Streaming applications such as SSH
essentially demand the use of data packets to function in a useful capacity.

The cryptographic vulnerabilities of using packets, even individually authenticated
packets, is that they are meant to form, as a whole, a larger message.That is, the individual
packets themselves have to be correct but also the order of the packets over the entire ses-
sion.An attacker may exploit this venue by replaying old packets or modifying the order of
the packets. If the system has no way to authenticate the order of the packets, it could accept
the packets as valid and interpret the re-arrangement as the entire message.

The classic example of how this is a problem is a purchase order. For example, a client
wishes to buy 100 shares of a company. So he packages up the message M = “I want to buy
100 shares.”The client then encrypts the message and applies a MAC to the ciphertext. Why
is this not secure? An attacker who sees the ciphertext and MAC tag can retransmit the pair.
The server, which is not concerned with replay attacks, will read the pair, validate the MAC,
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and interpret the ciphertext as valid. Now an attacker can deplete the victim’s funds by re-
issuing the purchase order as often as he desires.

The two typical solutions to replay attacks are timestamps and counters. Both solutions
must include extra data as part of the message that is authenticated.They give the packets a
context, which helps the receiver interpret their presence in the stream.

Timestamps
Timestamps can come in various shapes and sizes, depending on the precision and accuracy
required.The goal of a timestamp is to ensure that a message is valid only for a given period
of time. For example, a system may only allow a packet to be valid for 30 seconds since the
timestamp was applied.Timestamps sound wonderfully simple, but there are various problems.

From a security standpoint, they are hard to get narrow enough to avoid replay attacks
within the window of validity. For instance, if you set the window of validity to (say) five
minutes, an attacker can replay the message during a five-minute period. On the other hand,
if you make the window only three seconds, you may have a hard time delivering the packet
within the window; worse yet, clock drift between the two end points may make the system
unusable.

This last point leads to the practical problems with timestamps. Computers are not ter-
ribly accurate time keepers.The system time can drift due to inaccuracies in the timing
hardware, system crashes, and so on. Usually, most operating systems will provide a mecha-
nism for updating system time, usually via the Network Time Protocol (NTP). Getting two
computers, especially remotely, to agree on the current time is a difficult challenge.

Counters
Counters are the more ideal solution against replay attacks.At its most fundamental level,
you need a concept of what the “next” value should be. For instance, you could store a
LFSR state in one packet and expect the clocked LFSR in the next packet. If you did not
see the clocked LFSR value, you could assume that you did not actually receive the packet
desired.A simpler approach that is also more useful is to use an integer as the counter.As
long as the counter is not reused during the same session (without first changing the MAC
key), they can be used to put the packets in to context.

Counter values are agreed upon by both parties and do not have to be random or
unique if a new MAC key is used during the session (for example, a MAC key derived from
a key derivation function). Each packet sent increments the counter; the counter itself is
included in the message and is part of the MAC function input.That is, you MAC both the
ciphertext and the counter.You could optionally encrypt the counter, but there is often little
security benefit in doing so.The recipient checks the counter before doing any other work.
If the counter is less than or equal to the newest packet counter, chances are it is a replay
and you should act accordingly. If it is equal, you should proceed to the next step.
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Often, it is wise to determine the size of your counter to be no larger than the max-
imum number of packets you will send. For example, it is most certainly a waste to use a 16-
byte counter. For most applications, an 8-byte counter is excessive as well. For most
networked applications, a 32-bit counter is sufficient, but as the situation varies, a 40- or 48-
bit counter may be required.

Another useful trick with counters in bidirectional mediums is to have one counter for
each direction.This makes the incoming counter independent of the outgoing counter. In
effect, it allows both parties to transmit at the same time without using a token passing
scheme.

Encrypt then MAC?
A common question regarding the use of both encryption and MAC algorithms is which
order to apply them in? Encrypt then MAC or MAC then Encrypt? That is, do you MAC
the plaintext or ciphertext? Fundamentally, they seem they would provide the same level of
security, but there are subtle differences.

Regardless of the order chosen, it is very important that the ciphering and MAC keys
are not easily related to one another.The simplest and most appropriate solution is to use a
key derivation function to stretch a shared (or known) shared secret into ciphering and
MAC keys.

Encrypt then MAC
In this mode, you first encrypt the plaintext and then MAC the ciphertext (along with a
counter or timestamp). Since the encryption is a proper random mapping of the plaintext
(requires an appropriately chosen IV), the MAC is essentially of a random message.This
mode is generally preferred on the basis that the MAC does not leak information about the
plaintext.Also, one does not have to decrypt to reject invalid packets.

MAC then Encrypt
In this mode, you first MAC the plaintext (along with a counter or timestamp) and then
encrypt the plaintext. Since the input to the MAC is not random and most MAC algorithms
(at least CMAC and HMAC) do not use IVs, the output of the MAC will be nonrandom—
that is, if you are not using replay protection.The common objection is that the MAC is
based on the plaintext, so you are giving an attacker the ciphertext and the MAC tag of the
plaintext. If the plaintext remained unchanged, the ciphertext may change (due to proper
selection of an IV), but the MAC tag would remain the same.

However, one should always include a counter or timestamp as part of the MAC func-
tion input. Since the MAC is a PRF, it would defeat this attack even if the plaintext
remained the same. Better yet, there is another way to defeat this attack altogether: simply
apply the encryption to the MAC tag as well as the plaintext.This will not prevent replay

www.syngress.com

Message -  Authentication Code Algorithms • Chapter 6 281

404_CRYPTO_06.qxd  10/30/06  10:20 AM  Page 281



attacks (you still need some variance in the MAC function input), but will totally obscure
the MAC tag value from the attacker.

The one downside to this mode is that it requires a victim to decrypt before he can
compare the MAC tag for a forgery. Oddly enough, this downside has a surprisingly useful
upside. It does not leak, at least on its own, timing information to the attacker.That is, in the
first mode we may stop processing once the MAC fails.This tells the attacker when the
forgery fails. In this mode, we always perform the same amount of work to verify the MAC
tag. How useful this is to an attacker depends on the circumstances.At the very least, it is an
edge over the former mode.

Encryption and Authentication
We will again draw upon LibTomCrypt to implement an example system.The example is
meant for bidirectional channels where the threat vectors include privacy and authenticity
violations, and stream modifications such as re-ordering and replays.

The example code combats these problems with the use of AES-CTR for privacy,
HMAC-SHA256 for authenticity, and numbered packets for stream protection.The code is
not quite optimal, but does provide for a useful foundation upon which to improve the code
as the situation warrants. In particular, the code is not thread safe.That is, if two treads
attempt to send packets at the same time, they will corrupt the state.

encmac.c:

001   #include <tomcrypt.h>

We are using LibTomCrypt to provide the routines. Please have it installed if you wish
to attempt to run this demonstration.

003   #define ENCKEYLEN    16

004   #define MACKEYLEN    16

These are our encryption and MAC key lengths.The encrypt key length must be a valid
AES key length, as we have chosen to use AES.The MAC key length can be any length, but
practically speaking, it might as well be no larger than the encryption key.

006   /* Our Per Packet Sizes, CTR len and MAC len */

007   #define CTRLEN       4

008   #define MACLEN       12

009   #define OVERHEAD     (CTRLEN+MACLEN)

These three macros define our per packet sizes. CTRLEN defines the size of the packet
counter.The default, four bytes, allows one to send 232 packets before an overflow occurs and
the stream becomes unusable. On the upside, this is a simple way to avoid using the same
key settings for too long.

www.syngress.com

282 Chapter 6 • Message -  Authentication Code Algorithms

404_CRYPTO_06.qxd  10/30/06  10:20 AM  Page 282



MACLEN defines the length of the MAC tag we wish to store. The default, 12 bytes
(96 bits), should be large enough to make forgery difficult. Since we are limited to 232

packets, the advantage of a forger will remain fairly minimal.
Together, both values contribute OVERHEAD bytes to each packet in addition to the

ciphertext. With the defaults, the data expands by 16 bytes per packet. With a typical packet
size of 1024 bytes, this represents a 1.5-percent overhead.

011   /* errors */

012   #define MAC_FAILED    -3

013   #define PKTCTR_FAILED -4

MAC_FAILED indicates when the message MAC tag does not compare to what the
recipient generates; for instance, if an attacker modifies the payload or the counter (or both).
PKTCTR_FAILED indicates when a counter has been replayed or out of order.

015   /* our nice containers */

016   typedef struct {

017      unsigned char PktCTR[CTRLEN],

018                    enckey[ENCKEYLEN],

019                    mackey[MACKEYLEN];

020      symmetric_CTR skey;                 

021   } encauth_channel;

This structure contains all the details we need about a single unidirectional channel. We
have the packet counter (PktCTR), encryption key (enckey), and MAC key (mackey). We
have also scheduled a key in advance to reduce the processing latency (skey).

023   typedef struct {

024      encauth_channel channels[2];

025   } encauth_stream;

This structure simply encapsulates two unidirectional streams into one structure. In our
notation, channel[0] is always the outgoing channel, and channel[1] is always the incoming
channel.We will see shortly how we can have two peers communicating with this convention.

028   void register_algorithms(void)

029   {

030      register_cipher(&aes_desc);

031      register_hash(&sha256_desc);

032   }

This function registers AES and SHA256 with LibTomCrypt so we can use them in the
plug-in driven functions.

034   int init_stream(const unsigned char *masterkey,

035                              unsigned  masterkeylen,

036                   const unsigned char *salt,
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037                              unsigned  saltlen,

038                        encauth_stream *stream,

039                                   int  node)

040   {

This function initiates a bi-directional stream with a given master key and salt. It uses
PKCS #5 key derivation to obtain a pair of key for each direction of the stream.

The node parameter allows us to swap the meaning of the streams.This is used by one
of the parties so that their outgoing stream is the incoming stream of the other party (and
vice versa for their incoming).

041      unsigned char tmp[2*(ENCKEYLEN+MACKEYLEN)];

042      unsigned long tmplen;

043      int           err;

044      encauth_channel tmpswap;

045   

046      /* derive keys */

047      tmplen = sizeof(tmp);

048      if ((err = pkcs_5_alg2(masterkey, masterkeylen,

049                             salt, saltlen,

050                             16, find_hash(“sha256”),

051                             tmp, &tmplen)) != CRYPT_OK) {

052         return err;

053      }

This call derives the bytes required for the two pairs of keys. We use only 16 iterations
of PKCS #5 since we will make the assumption that masterkey is randomly chosen.

055      /* copy keys */

056      memcpy(stream->channels[0].enckey, 

057             tmp, ENCKEYLEN);

058      memcpy(stream->channels[0].mackey, 

059             tmp + ENCKEYLEN, MACKEYLEN);

060      memcpy(stream->channels[1].enckey, 

061             tmp + ENCKEYLEN + MACKEYLEN, ENCKEYLEN);

062      memcpy(stream->channels[1].mackey, 

063             tmp + ENCKEYLEN + MACKEYLEN + ENCKEYLEN, MACKEYLEN);

This snippet extracts the keys from the PKCS #5 output buffer.

065      /* reset counters */

066      memset(stream->channels[0].PktCTR, 0, 

067             sizeof(stream->channels[0].PktCTR));

068      memset(stream->channels[1].PktCTR, 0, 

069             sizeof(stream->channels[1].PktCTR));
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With each new session, we start the packet counters at zero.

071      /* schedule keys+setup mode */

072      /* clear an IV */

073      memset(tmp, 0, 16);

074      if ((err = ctr_start(find_cipher(“aes”), tmp, 

075                           stream->channels[0].enckey, ENCKEYLEN,

076                           0, CTR_COUNTER_BIG_ENDIAN, 

077                           &stream->channels[0].skey))!= CRYPT_OK) {

078         return err;

079      }

080   

081      if ((err = ctr_start(find_cipher(“aes”), tmp, 

082                           stream->channels[1].enckey, ENCKEYLEN,

083                           0, CTR_COUNTER_BIG_ENDIAN, 

084                           &stream->channels[1].skey))!= CRYPT_OK) {

085         return err;

086      }

At this point, we have scheduled the encrypt keys for use.This means as we process keys,
we do not have to run the (relatively slow) AES key schedule to initialize the CTR context.

088      /* do we swap? */

089      if (node != 0) {

090          tmpswap             = stream->channels[0]; 

091          stream->channels[0] = stream->channels[1]; 

092          stream->channels[1] = tmpswap;

093          zeromem(&tmpswap, sizeof(tmpswap));

094      }

If we are not node 0, we swap the meaning of the streams.This allows two parties to
talk to one another.

096      zeromem(tmp, sizeof(tmp));

Wipe the keys off the stack. Note that we use the LTC zeromem() function, which will
not be optimized by the compiler (well at least, very likely will not be) to a no-operation
(which would be valid for the compiler).

098      return 0;

099   }

100   

101   int encode_frame(const unsigned char *in,

102                               unsigned  inlen,

103                          unsigned char *out,

104                         encauth_stream *stream)
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105   {

This function encodes a frame (or packet) by numbering, encrypting, and applying the
HMAC. It stores inlen+OVERHEAD bytes in the out buffer. Note that in and out may not
overlap in memory.

106      int           x, err;

107      unsigned char IV[16];

108      unsigned long maclen;

109   

110      /* increment counter */

111      for (x = CTRLEN-1; x >= 0; x—) {

112          if (++(stream->channels[0].PktCTR[x])) break;

113      }

We increment our packet counter in big endian format.This coincides with how we
initialized the CTR sessions previously and will shortly come in handy.

115      /* construct an IV */

116      for (x = 0; x < CTRLEN; x++) {

117          IV[x] = stream->channels[0].PktCTR[x];

118      }

119      for (; x < 16; x++) {

120          IV[x] = 0;

121      }

122   

123      /* set IV */

124      if ((err = ctr_setiv(IV, 16, 

125                           &stream->channels[0].skey)) != CRYPT_OK) {

126         return err;

127      }

Our packet counter is only CTRLEN bytes long (default: 4), and an AES CTR mode
IV is 16 bytes. We pad the rest with 0 bytes, but what does that mean in this context?

Our CTR counters are in big endian mode.The first CTRLEN bytes will be most sig-
nificant bytes of the CTR IV.The last bytes (where we store the zeroes) are the least signifi-
cant bytes.This means that while we are encrypting the text, the CTR counter is
incremented only in the lower portion of the IV, preventing an overlap.

For instance, if CTRLEN was 15 and inlen was 257 * 16 = 4112, we would run into
problems.The last 16 bytes of the first packet would be encrypted with the IV
00000000000000000000000000000100, while the first 16 bytes of the second packet would
be encrypted with the same IV.
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As we recall from Chapter 4, CTR mode is as secure as the underlying block cipher
(assuming it has been keyed and implemented properly) only if the IVs are unique. In this
case, they would not be unique and an attacker could exploit the overlap.

This places upper bounds on implementation. With CTRLEN set to 4, we can have
only 232 packets, but each could be 2100 bytes long. With CTRLEN set to 8, we can have 264

packets, each limited to 268 bytes. However, the longer the CTRLEN setting, the larger the
overhead. Longer packet counters do not always help; on the other hand, short packet coun-
ters can be ineffective if there is a lot of traffic.

129      /* Store counter */

130      for (x = 0; x < CTRLEN; x++) {

131          out[x] = IV[x];

132      }

133   

134      /* encrypt message */

135      if ((err = ctr_encrypt(in, out+CTRLEN, inlen, 

136                             &stream->channels[0].skey)) != CRYPT_OK) {

137         return err;

138      }

At this point, we have stored the packet counter and the ciphertext in the output buffer.
The first CTRLEN bytes are the counter, followed by the ciphertext.

140      /* HMAC the ctr+ciphertext */

141      maclen = MACLEN;

142      if ((err = hmac_memory(find_hash(“sha256”), 

143                             stream->channels[0].mackey, MACKEYLEN,

144                             out, inlen + CTRLEN,

145                             out + inlen + CTRLEN, &maclen)) != CRYPT_OK)
{

146         return err;

147      }

Our ordering of the data is not haphazard. One might wonder why we did not place
the HMAC tag after the packet counter.This function call answers this question. In one fell
swoop, we can HMAC both the counter and the ciphertext.

LibTomCrypt does provide a hmac_memory_multi() function, which is similar to
hmac_memory() except that it uses a va_list to HMAC multiple regions of memory in a
single function call (very similar to scattergather lists).That function has a higher caller over-
head, as it uses va_list functions to retrieve the parameters.

149      /* packet out[0...inlen+CTRLEN+MACLEN-1] now 

150         contains the authenticated ciphertext */

151      return 0;

152   }
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At this point, we have the entire packet ready to be transmitted.All packets that come in
as inlen bytes in length come out as inlen+OVERHEAD bytes in length.

154   int decode_frame(const unsigned char *in,

155                               unsigned  inlen,

156                          unsigned char *out,

157                         encauth_stream *stream)

158   {

This function decodes and authenticates an encoded frame. Note that inlen is the size of
the packet created by encode_frame() and not the original plaintext length.

159      int           err;

160      unsigned char IV[16], tag[MACLEN];

161      unsigned long maclen;

162   

163      /* restore our original inlen */

164      if (inlen < MACLEN+CTRLEN) { return -1; }

165      inlen -= MACLEN+CTRLEN;

We restore the plaintext length to make the rest of the function comparable with the
encoding.The first check is to ensure that the input length is actually valid. We return –1 if
it is not.

167      /* first compute the mactag */

168      maclen = MACLEN;

169      if ((err = hmac_memory(find_hash(“sha256”), 

170                             stream->channels[1].mackey, MACKEYLEN,

171                             in, inlen + CTRLEN,

172                             tag, &maclen)) != CRYPT_OK) {

173         return err;

174      }

175      

176      /* compare */

177      if (memcmp(tag, in+inlen+CTRLEN, MACLEN)) {

178         return MAC_FAILED;

179      }

At this point, we have verified the HMAC tag and it is valid. We are not out of the
woods yet, however.The packet could be a replay or out of order.

There is a choice of how the caller can handle a MAC failure. Very likely, if the medium
is something as robust as Ethernet, or the underlying transport protocol guarantees delivery
such as TCP, then a MAC failure is a sign of tampering.The caller should look at this as an
active attack. On the other hand, if the medium is not robust, such as a radio link or water-
mark, a MAC failure could just be the result of noise overpowering the signal.
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The caller must determine how to proceed based on the context of the application.

181      /* compare CTR */

182      if (memcmp(in, stream->channels[1].PktCTR, CTRLEN) <= 0) {

183         return PKTCTR_FAILED;

184      }

This memcmp() operation performs our nice big endian packet counter comparison. It
will return a value <= 0 if the packet counter in the packet is not larger than the packet
counter in our stream structure. We allow out of order packets, but only in the forward
direction. For instance, receiving packets 0, 3, 4, 7, and 8 (in that order) would be valid; how-
ever, the packets 0, 3, 4, 1, 2 (in that order) would not be.

Unlike MAC failures, a counter failure can occur for various legitimate reasons. It is
valid for UDP packets, for instance, to arrive in any order. While they will most likely arrive
in order (especially over traditional IPv4 links), unordered packets are not always a sign of
attack. Replayed packets, on the other hand, are usually not part of a transmission protocol.

The reader may wish to augment this function to distinguish between replay and out of
order packets (such as using the sliding window trick).

186      /* good to go, decrypt and copy the CTR */

187      memset(IV, 0, 16);

188      memcpy(IV, in, CTRLEN);

189      memcpy(stream->channels[1].PktCTR, in, CTRLEN);

190   

191      /* set IV */

192      if ((err = ctr_setiv(IV, 16, 

193                           &stream->channels[1].skey)) != CRYPT_OK) {

194         return err;

195      }

196   

197      /* encrypt message */

198      if ((err = ctr_decrypt(in+CTRLEN, out, inlen, 

&stream->channels[1].skey)) != CRYPT_OK) {

199         return err;

200      }

201      return 0;

202   }

Our test program will initialize two streams (one in either direction) and proceed to try
to decrypt the same packet three times. It should work the first time, and fail the second and
third times. On the second attempt, it should fail with a PKTCTR_FAILED error as we
replayed the packet. On the third attempt, we have modified a byte of the payload and it
should fail with a MAC_FAILED error.
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204   int main(void)

205   {

206      unsigned char  masterkey[16], salt[8];

207      unsigned char  inbuf[32], outbuf[32+OVERHEAD];

208      encauth_stream incoming, outgoing;

209      int            err;

210   

211      /* setup lib */

212      register_algorithms();

This sets up LibTomCrypt for use by our demonstration.

214      /* pick master key */

215      rng_get_bytes(masterkey, 16, NULL);

216      rng_get_bytes(salt, 8, NULL);

Here we are using the system RNG for our key and salt. In a real application, we need
to get our master key from somewhere a bit more useful.The salt should be generated in this
manner.

Two possible methods of deriving a master key could be by hashing a user’s password, or
sharing a random key by using a public key encryption scheme.

218      /* setup two streams */

219      if ((err = init_stream(masterkey, 16,

220                             salt, 8,

221                             &incoming, 0)) != CRYPT_OK) {

222         printf(“init_stream error: %d\n”, err);

223         return EXIT_FAILURE;

224      }

This initializes our incoming stream. Note that we used the value 0 for the node 
parameter.

226         /* other side of channel would use this one */

227      if ((err = init_stream(masterkey, 16,

228                             salt, 8,

229                             &outgoing, 1)) != CRYPT_OK) {

230         printf(“init_stream error: %d\n”, err);

231         return EXIT_FAILURE;

232      }

This initializes our outgoing stream. Note that we used the value 1 for the node param-
eter. In fact, it does not matter which order we pick the node values in; as long as we are
consistent, it will work fine.
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Note also that each side of the communication has to generate only one stream structure
to both encode and decode. In our example, we generate two because we are both encoding
and decoding data we generate.

234      /* make a sample message */

235      memset(inbuf, 0, sizeof(inbuf));

236      strcpy((char*)inbuf, “hello world”);

Our traditional sample message.

238      if ((err = encode_frame(inbuf, sizeof(inbuf),

239                              outbuf, &outgoing)) != CRYPT_OK) {

240         printf(“encode_frame error: %d\n”, err);

241         return EXIT_FAILURE;

242      }

At this point, outbuf[0...sizeof(inbuf )+OVERHEAD-1] contains the packet. By trans-
mitting the entire buffer to the other party, they can authenticate and decrypt it.

244      /* now let’s try to decode it */

245      memset(inbuf, 0, sizeof(inbuf));

246      if ((err = decode_frame(outbuf, sizeof(outbuf),

247                              inbuf, &incoming)) != CRYPT_OK) {

248         printf(“decode_frame error: %d\n”, err);

249         return EXIT_FAILURE;

250      }

251      printf(“Decoded data: [%s]\n”, inbuf);

We first clear the inbuf array to show that the routine did indeed decode the data. We
decode the buffer using the incoming stream structure.At this point we should see the string

Decoded data: [hello world]

on the terminal.

253      /* now let’s try to decode it again (should fail) */

254      memset(inbuf, 0, sizeof(inbuf));

255      if ((err = decode_frame(outbuf, sizeof(outbuf),

256                              inbuf, &incoming)) != CRYPT_OK) {

257         printf(“decode_frame error: %d\n”, err);

258         if (err != PKTCTR_FAILED) {

259             printf(“We got the wrong error!\n”);

260             return EXIT_FAILURE;

261         }

262      }
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This represents a replayed packet. It should fail with PKTCTR_FAILED, and we should
see

decode_frame error: -4

on the terminal.

264      /* let’s modify a byte and try again */

265      memset(inbuf, 0, sizeof(inbuf));

266      outbuf[CTRLEN] ^= 0x01;

267      if ((err = decode_frame(outbuf, sizeof(outbuf),

268                              inbuf, &incoming)) != CRYPT_OK) {

269         printf(“decode_frame error: %d\n”, err);

270         if (err != MAC_FAILED) {

271             printf(“We got the wrong error!\n”);

272             return EXIT_FAILURE;

273         }

274      }

This represents both a replayed and forged message. It should fail the MAC test before
getting to the packet counter check. We should see

decode_frame error: -3

on the terminal.

276      return EXIT_SUCCESS;

277   }

This demonstration represents code that is not entirely optimal.There are several
methods of improving it based on the context it will be used.

The first useful optimization ensures the ciphertext is aligned on a 16-byte boundary.
This allows the LibTomCrypt routines to safely use word-aligned XOR operations to per-
form the CTR encryption.A simple way to accomplish this is to pad the message with zero
bytes between the packet counter and the ciphertext (include it as part of the MAC input).

The second optimization involves knowledge of how LibTomCrypt works; the CTR
structure exposes the IV nicely, which means we can directly set the IV instead of using
ctr_setiv() to update it.

The third optimization is also a security optimization. By making the code thread safe,
we can decode or encode multiple packets at once.This combined with a sliding window
for the packet counter can ensure that even if the threads are executed out of order, we are
reasonable assured that the decoder will accept them.
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Q: What is a MAC function?

A: A MAC or message authentication code function is a function that accepts a secret key
and message and reduces it to a MAC tag.

Q: What is a MAC tag?

A: A tag is a short string of bits that is used to prove that the secret key and message were
processed together through the MAC function.

Q: What does that mean? What does authentication mean?

A: Being able to prove that the message and secret key were combined to produce the tag
can directly imply one thing: that the holder of the key produced vouches for or simply
wishes to convey an unaltered original message.A forger not possessing the secret key
should have no significant advantage in producing verifiable MAC tags for messages. In
short, the goal of a MAC function is to be able to conclude that if the MAC tag is cor-
rect, the message is intact and was not modified during transit. Since only a limited
number of parties (typically only one or two) have the secret key, the ownership of the
message is rather obvious.

Q: What standards are there?

A: There are two NIST standards for MAC functions currently worth considering.The
CMAC standard is SP 800-38B and specifies a method of turning a block cipher into a
MAC function.The HMAC standard is FIPS-198 and specifies a method of turning a
hash function into a MAC.An older standard, FIPS-113, specifies CBC-MAC (a pre-
cursor to CMAC) using DES, and should be considered insecure.

Q: Should I use CMAC or HMAC?

A: Both CMAC and HMAC are secure when keyed and implemented safely. CMAC is
typically more efficient for very short messages. It is also ideal for instances where a
cipher is already deployed and space is limited. HMAC is more efficient for larger mes-
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sages, and ideal when a hash is already deployed. Of course, you should pick whichever
matches the standard you are trying to adhere to.

Q: What is advantage?

A: We have seen the term advantage several times in our discussion already. Essentially, the
advantage of an attacker refers to the probability of forgery gained by a forger through
analysis of previously authenticated messages. In the case of CMAC, for instance, the
advantage is roughly approximate to (mq)2/2126 for CMAC-AES—where m is the
number of messages authenticated, and q is the number of AES blocks per message.As
the ratio approaches one, the probability of a successful forgery approaches one as well.

Advantage is a little different in this context than in the symmetric encryption con-
text.An advantage of 2–40 is not the same as using a 40-bit encryption key.An attack on
the MAC must take place online.This means, an attacker has but one chance to guess
the correct MAC tag. In the latter context, an attacker can guess encryption keys offline
and does not run the risk of exposure.

Q: How do key lengths play into the security of MAC functions?

A: Key lengths matter for MAC functions in much the same way they matter in symmetric
cryptography.The longer the key, the longer a brute force key determination will take. If
an attacker can guess a message, he can forge messages.

Q: How does the length of the MAC tag play into the security of MAC functions?

A: The length of the MAC tag is often variable (at least it is in HMAC and CMAC) and
can limit the security of the MAC function.The shorter the tag, the more likely a forger
is to guess it correctly. Unlike hash functions, the birthday paradox attack does not apply.
Therefore, short MAC tags are often ideally secure for particular applications.

Q: How do I match up key length, MAC tag length, and advantage?

A: Your key length should ideally be as large as possible.There is often little practical value
to using shorter keys. For instance, padding an AES-128 key with 88 bits of zeroes,
effectively reducing it to a 40-bit key, may seem like it requires fewer resources. In fact,
it saves no time or space and weakens the system. Ideally, for a MAC tag length of w-
bits, you wish to give your attacker an advantage of no more than 2-w. For instance, if
you are going to send 240 blocks of message data with CMAC-AES, the attacker’s advan-
tage is no less than 2–46. In this case, a tag longer than 46 bits is actually wasteful as you
approach the 240 th block of message data. On the other hand, if you are sending a trivial
amount of message blocks, the advantage is very small and the tag length can be cus-
tomized to suit bandwidth needs.
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Q: Why can I not use hash(key || message) as a MAC function?

A: Such a construction is not resistant to offline attacks and is also vulnerable to message
extension attacks. Forging messages is trivial with this scheme.

Q: What is a replay attack?

A: A replay attack can occur when you break a larger message into smaller independent
pieces (e.g., packets).The attacker exploits the fact that unless you correlate the order of
the packets, the attacker can change the meaning of the message simply by re-arranging
the order of the packets. While each individual packet may be authenticated, it is not
being modified.Thus, the attack goes unnoticed.

Q: Why do I care?

A: Without replay protection, an attacker can change the meaning of the overall message.
Often, this implies the attacker can re-issue statements or commands.An attacker could,
for instance, re-issue shell commands sent by a remote login shell.

Q: How do I defeat replay attacks?

A: The most obvious solution is to have a method of correlating the packets to their overall
(relative) order within the larger stream of packets that make up the message.The most
obvious solutions are timestamp counters and simple incremental counters. In both
cases, the counter is included as part of the message authenticated. Filtering based on
previously authenticated counters prevents an attacker from re-issuing an old packet or
issuing them out of stream order.

Q: How do I deal with packet loss or re-ordering?

A: Occasionally, packet loss and re-ordering are part of the communication medium. For
example, UDP is a lossy protocol that tolerates packet loss. Even when packets are not
lost, they are not guaranteed to arrive in any particular order (this is often a warning that
does not arise in most networks). Out of order UDP is fairly rare on non-congested
IPv4 networks.The meaning of the error depends on the context of the application. If
you are working with UDP (or another lossy medium), packet loss and re-ordering are
usually not malicious acts.The best practice is to reject the packet, possibly issue a syn-
chronization message, and resume the protocol. Note that an attacker may exploit the
resynchronization step to have a victim generate authenticated messages. On a relatively
stable medium such as TCP, packet loss and reordering are usually a sign of malicious
interference and should be treated as hostile.The usual action here is to drop the con-
nection. (Commonly, this is argued to be a denial of service (DoS) attack vector.
However, anyone with the ability to modify packets between you and another host can
also simply filter all packets anyways.) There is no added threat by taking this precaution.
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In both cases, whether the error is treated as hostile or benign, the packet should be
dropped and not interpreted further up the protocol stack.

Q: What libraries provide MAC functionality?

A: LibTomCrypt provides a highly modular HMAC function for C developers. Crypto++
provides similar functionality for C++ developers. Limited HMAC support is also found
in OpenSSL. LibTomCrypt also provides modular support for CMAC.At the time of
this writing, neither Crypto++ or OpenSSL provide support for CMAC. By “modular,”
we mean that the HMAC and CMAC implementations are not tied to underlying algo-
rithms. For instance, the HMAC code in LibTomCrypt can use any hash function that
LibTomCrypt supports without changes to the API.This allows future upgrades to be
performed in a more timely and streamlined fashion.

Q: What patents cover MAC functions?

A: Both HMAC and CMAC are patent free and can be used for any purpose. Various other
MAC functions such as PMAC are covered by patents but are also not standard.
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Introduction
In Chapter 6,“Message Authentication Code Algorithms,” we saw how we could use mes-
sage authentication code (MAC) functions to ensure the authenticity of messages between
two or more parties.The MAC function takes a message and secret key as input and pro-
duces a MAC tag as output.This tag, combined with the message, can be verified by any
party who has the same secret key.

We saw how MAC functions are integral to various applications to avoid various attacks.
That is, if an attacker can forge messages he could perform tasks we would rather he could
not. We also saw how to secure a message broken into smaller packets for convenience.
Finally, our example program combined both encryption and authentication into a frame
encoder to provide both privacy and authentication. In particular, we use PKCS #5, a key
derivation function to accept a master secret key, and produce a key for encryption and
another key for the MAC function.

Would it not be nice, if we had some function F(K, P) that accepts a secret key K and
message P and returns the pair of (C,T) corresponding to the ciphertext and MAC tag
(respectively)? Instead of having to create, or otherwise supply, two secret keys to accomplish
both goals, we could defer that process to some encapsulated standard.

Encrypt and Authenticate Modes
This chapter introduces a relatively new set of standards in the cryptographic world known
as encrypt and authenticate modes.These modes of operations encapsulate the tasks of
encryption and authentication into a single process.The user of these modes simply passes a
single key, IV (or nonce), and plaintext.The mode will then produce the ciphertext and
MAC tag. By combining both tasks into a single step, the entire operation is much easier to
implement.

The catalyst for these modes is from two major sources.The first is to extract any per-
formance benefits to be had from combining the modes.The second is to make authentica-
tion more attractive to developers who tend to ignore it.You are more likely to find a
product that encrypts data, than to find one that authenticates data.

Security Goals
The security goals of encrypt and authenticate modes are to ensure the privacy and authen-
ticity of messages. Ideally, breaking one should not weaken the other.To achieve these goals,
most combined modes require a secret key long enough such that an attacker could not
guess it.They also require a unique IV per invocation to ensure replay attacks are not pos-
sible.These unique IVs are often called nonces in this context.The term nonce actually comes
from Nonce, which means to use N once and only once.

We will see later in this chapter that we can use the nonce as a packet counter when the
secret key is randomly generated.This allows for ease of integration into existing protocols.
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Standards
Even though encrypt and authenticate modes are relatively new, there are still a few good
standards covering their design. In May 2004, NIST specified CCM as SP 800-38C, the first
NIST encrypt and authenticate mode. Specified as a mode of operation for block ciphers, it
was intended to be used with a NIST block cipher such as AES. CCM was selected as the
result of a design contest in which various proposals were sought out. Of the more likely
contestants to win were Galois Counter Mode (GCM), EAX mode, and CCM.

GCM was designed originally to be put to use in various wireless standards such as
802.16 (WiMAX), and later submitted to NIST for the contest. GCM is not yet a NIST
standard (it is proposed as SP 800-38D), but as it is used through IEEE wireless standards it is
a good algorithm to know about. GCM strives to achieve hardware performance by being
massively parallelizable. In software, as we shall see, GCM can achieve high performance
levels with the suitable use of the processor’s cache.

Finally, EAX mode was proposed after the submission of CCM mode to address some of
the shortcomings in the design. In particular, EAX mode is more flexible in terms of how it
can be used and strives for higher performance (which turns out to not be true in practice).
EAX mode is actually a properly constructed wrapper around CTR encryption mode and
CMAC authentication mode.This makes the security analysis easier, and the design more
worthy of attention. Unfortunately, EAX was not, and is currently not, considered for stan-
dardization. Despite this, EAX is still a worthy mode to know about and understand.

Design and Implementation
We shall consider the design, implementation, and optimization of three popular algorithms.
We will first explore the GCM algorithm, which has already found practical use in the IEEE
802 series of standards.The reader should take particular interest in this design, as it is also
likely to become a NIST standard.After GCM, we will explore the design of CCM, the
only NIST standardized mode at the time of this writing. CCM is both efficient and secure,
making it a mode worth using and knowing about. `

Additional Authentication Data
All three algorithms include an input known as the additional authentication data (AAD, also
known as header data in CCM).This allows the implementer to include data that accompa-
nies the ciphertext, and must be authenticated but does not have to be encrypted; for
example, metadata such as packet counters, timestamps, user and host names, and so on.

AAD is unique to these modes and is handled differently in all three. In particular, EAX
has the most flexible AAD handling, while GCM and CCM are more restrictive.All three
modes accept empty AAD strings, which allows developers to ignore the AAD facilities if
they do not need them.
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Design of GCM
GCM (Galois Counter Mode) is the design of David McGraw and John Viega. It is the
product of universal hashing and CTR mode encryption for security.The original motiva-
tion for GCM mode was fast hardware implementation.As such, GCM employs the use of
GF(2128) multiplication, which can be efficient in typical FPGA and other hardware imple-
mentations.

To properly discuss GCM, we have to unravel an implementer’s worst nightmare—bit
ordering.That is, which bit is the most significant bit, how are they ordered, and so on. It
turns out that GCM is not one of the most straightforward designs in this respect. Once we
get past the Galois field math, the rest of GCM is relatively easy to specify.

GCM GF(2) Mathematics
GCM employs multiplications in the field GF(2128)[x]/v(x) to perform a function it calls
GHASH. Effectively, GHASH is a form of universal hashing, which we will discuss next.The
multiplication we are performing here is not any different in nature than the multiplications
used within the AES block cipher.The only differences are the size of the field and the irre-
ducible polynomial used.

GCM uses a bit ordering that does not seem normal upon first inspection. Instead of
storing the coefficients of the polynomials from the least significant bit upward, they store
them backward. For example, from AES we would see that the polynomial p(x) = x7 + x3 +
x + 1 would be represented by 0x8B. In the GCM notation, the bits are reversed. In GCM
notation, x7 would be 0x01 instead of 0x80, so our polynomial p(x) would be represented as
0xD1 instead. In effect, the bytes are in little endian fashion.The bytes themselves are
arranged in big endian fashion, which further complicates things.That is, byte number 15 is
the least significant byte, and byte number 0 is the most significant byte.

The multiplication routine is then implemented with the following routines:

static void gcm_rightshift(unsigned char *a)
{

int x;
for (x = 15; x > 0; x--) {

a[x] = (a[x]>>1) | ((a[x-1]<<7)&0x80);
}
a[0] >>= 1;

}

This performs what GCM calls a right shift operation. Numerically, it is equivalent to a left
shift (multiplication by 2), but since we order the bits in each byte in the opposite direction,
we use a right shift to perform this. We are shifting from byte 15 down to byte 0.

static const unsigned char mask[] = {
0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01

};
static const unsigned char poly[] = { 0x00, 0xE1 };
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The mask is a simple way of masking off bits in the byte in reverse order.The poly array
is the least significant byte of the polynomial, the first element is a zero, and the second ele-
ment is the byte of the polynomial. In this case, 0xE1 maps to p(x) = x128 + x7 + x2 + x + 1
where the x128 term is implicit.

void gcm_gf_mult(const unsigned char *a,
const unsigned char *b,

unsigned char *c)
{

unsigned char Z[16], V[16];
unsigned x, y, z;

memset(Z, 0, 16);
memcpy(V, a, 16);
for (x = 0; x < 128; x++) {

if (b[x>>3] & mask[x&7]) {
for (y = 0; y < 16; y++) {

Z[y] ^= V[y];
}

}
z = V[15] & 0x01;
gcm_rightshift(V);
V[0] ^= poly[z];

}
memcpy(c, Z, 16);

}

This routine accomplishes the operation c = ab in the Galois field chosen by GCM. It
effectively is the same algorithm we used for the multiplication in AES, except here we are
using an array of bytes to represent the polynomials. We use Z to accumulate the product as
we produce it. We use V as a copy of a, which we can double and selectively add to Z based
on the bits of b.

This multiplication routine accomplishes numerically what we require, but is horribly
slow. Fortunately, there is more than one way to multiply field elements.As we shall see during
the implementation phase, a table-based multiplication routine will be far more profitable.

The curious reader may wish to examine the GCM source of LibTomCrypt for the
variety of tricks that are optionally used depending on the configuration. In addition to the
previous routine, LibTomCrypt provides an alternative to gcm_gf_mult() (see src/encauth/
gcm/gcm_gf_mult.c in LibTomCrypt) that uses a windowed multiplication on whole words
(Darrel Hankerson,Alfred Menezes, Scott Vanstone,“Guide to Elliptic Curve Cryptography,”
p. 50,Algorithm 2.36).This becomes important during the setup phase of GCM, even when
we use a table-based multiplication routine for bulk data processing. Before we can show you
a table-based multiplication routine, we must show you the constraints on GCM that make
this possible.
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Universal Hashing
Universal hashing is a method of creating a function f(x) such that for distinct values of x
and y, the probability of f(x) = f(y) is that of any proper random function.The simplest
example of such a universal hash is the mapping

f(x) = (ax + b mod p) mod n

for random values of a and b and random primes p and n (n < p). Universal MAC functions,
such as those in GCM (and other algorithms such as Daniel Bernstein’s Poly1305) use a
variation of this to achieve a secure MAC function

H[i] = (H[i – 1] * K) + M[i]

where the last H[i] value is the tag, K is a unit in a finite field and the secret key, and M[i] is
a block of the message.The multiplication and addition must be performed in a finite field
of considerable size (e.g., 2128 units or more). In the case of GCM, we will create the MAC
functionality, called GHASH, with this scheme using our GF(2128) multiplication routine.

GCM Definitions
The entire GCM algorithm can be specified by a series of equations. First, let us define the
various symbols we will be using in the equations (Figure 7.1).

■ Let K represent the secret key.

■ Let A represent the additional authentication data, there are m blocks of data in A.

■ Let P represent the plaintext, there are n blocks of data in P.

■ Let C represent the ciphertext.

■ Let Y represent the CTR counters.

■ Let T represent the MAC tag.

■ Let E(K, P) represent the encryption of P with the secret key K and block cipher
E (e.g., E = AES).

■ Let IV represent the IV for the message to be processed.
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Figure 7.1 GCM Data Processing
Input

P: Plaintext
K: Secret Key
A: Additional Authentication Data
IV: GCM Initial Vector

Output
C: Ciphertext
T: MAC Tag

1. H = E(K, 0)

2. If length(IV) = 96

1. Y0 = IV || 0311

else

2. Y0 = GHASH(H, {}, IV)

3. Yi = Yi-1 + 1, for i = 1, ..., n

4. Ci = Pi XOR E(K, Yi), for i = 1, ..., n – 1

5. Cn = Pn XOR E(K, Yn), truncated to the length of Pn

6. T = GHASH(H, A, C) XOR E(K, Y0)

7. Return C and T.

The first step is to generate the universal MAC key H, which is used solely in the
GHASH function. Next, we need an IV for the CTR mode. If the user-supplied IV is 96
bits long, we use it directly by padding it with 31 zero bits and 1 one bit. Otherwise, we
apply the GHASH function to the IV and use the returned value as the CTR IV.

Once we have H and the initial Y0 value, we can encrypt the plaintext.The encryption
is performed in CTR mode using the counter in big endian fashion. Oddly enough, the bits
per byte of the counter are treated in the normal ordering.The last block of ciphertext is
not expanded if it does not fill a block with the cipher. For instance, if Pn is 32 bits, the
output of E(K,Yn) is truncated to 32 bits, and Cn is the 32-bit XOR of the two values.

Finally, the MAC tag is produced by performing the GHASH function on the additional
authentication data and ciphertext.The output of GHASH is then XORed with the encryp-
tion of the initial Y0 value. Next, we examine the GHASH function (Figure 7.2).
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Figure 7.2 GCM GHASH Function
Input

H: Secret Parameter (derived from the secret key)
A: Additional Authentication Data (m blocks)
C: Ciphertext (also used as an additional input source, n blocks)

Output
T: GHASH Output

1. X0 = 0

2. For i from 1 to m do

1. Xi = (Xi-1 XOR Ai) * H

3. For i from 1 to n do

1. Xi+m = (Xi+m-1 XOR Ci) * H

4. T = (Xm+n XOR (length(A)||length(C)) * H

5. Return T

The GHASH function compresses the additional authentication data and ciphertext to a
final MAC tag.The multiplication by H is a GF(2128)[x] multiplication as mentioned earlier.
The length encodings are 64-bit big endian strings concatenated to one another.The length
of A stored in the first 8 bytes and the length of C in the last 8.

Implementation of GCM
While the description of GCM is nice and concise, the implementation is not. First, the
multiplication requires careful optimization to get decent performance. Second, the flexibility
of the IV,AAD, and plaintext processing requires careful state transitions. Originally, we had
planned to write a GCM implementation from scratch for this text. However, we later
decided our readers would be better served if we simply used an existing optimized imple-
mentation.

To demonstrate GCM, we used the implementation of LibTomCrypt.This implementa-
tion is public domain, freely accessible on the project’s Web site, optimized, and easy to
follow. We will omit various administrative portions of the code to reduce the size of the
code listings. Readers are strongly encouraged to use the routines found in LibTomCrypt (or
similar libraries) instead of rolling their own if they can get away with it.

Interface
Our GCM interface has several functions that we will discuss in turn.The high level of
abstraction allows us to use the GCM implementation to the full flexibility warranted by the
GCM specification.The functions we will discuss are:
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1. gcm_gf_mult() Generic GF(2128)[x] multiplication

2. gcm_mult_h() Multiplication by H (usually optimized since H is fixed
after setup)

3. gcm_init() Initialize a GCM state

4. gcm_add_iv() Add IV data to the GCM state

5. gcm_add_aad() Add AAD to the GCM state

6. gcm_process() Add plaintext to the GCM state

7. gcm_done() Terminate the GCM state and return the MAC tag

These functions all combine to allow a caller to process a message through the GCM
algorithm. For any message, the functions 3 through 7 are meant to be called in that order to
process the message.That is, one must add the IV before the AAD, and the AAD before the
plaintext. GCM does not allow for processing the distinct data elements in other orders. For
example, you cannot add AAD before the IV.The functions can be called multiple times as
long as the order of the appearance is intact. For example, you can call gcm_add_iv() twice
before calling gcm_add_aad() for the first time.

All the functions make use of the structure gcm_state, which contains the current
working state of the GCM algorithm. It fully determines how the functions should behave,
which allows the functions to be fully thread safe (Figure 7.3).

Figure 7.3 GCM State Structure

typedef struct {
symmetric_key K;
unsigned char H[16], /* multiplier */

X[16], /* accumulator */
Y[16], /* counter */
Y_0[16], /* initial counter */
buf[16]; /* buffer for stuff */

int cipher, /* which cipher */
ivmode, /* Which mode is the IV in? */
mode, /* mode the GCM code is in */
buflen; /* length of data in buf */

ulong64 totlen, /* 64-bit counter used for IV and AAD */
pttotlen; /* 64-bit counter for the PT */

#ifdef GCM_TABLES
unsigned char PC[16][256][16]; /* 16 tables of 8x128 */

#endif
} gcm_state;

As we can see, the state has quite a few members.Table 7.1 explains their function.
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Table 7.1 gcm_state Members and Their Functions

Member Name Purpose

K Scheduled cipher key, used to encrypt counters.
H GHASH multiplier value.
X GHASH accumulator.
Y CTR mode counter value (incremented as text is processed).
Y_0 The initial counter value used to encrypt the GHASH output.
buf Used in various places; for example, holds the encrypted counter

values.
cipher ID of which cipher we are using with GCM.
ivmode Specifies whether we are working with a short IV.  It is set to

nonzero if the IV is longer than 12 bytes.
mode Current mode GCM is in.  Can be one of the following:

GCM_MODE_IV
GCM_MODE_AAD
GCM_MODE_TEXT

buflen Current length of data in the buf array.
totlen Total length of the IV and AAD data.
pttotlen Total length of the plaintext.
PC A 16x256x16 table such that PC[i][j][k] is the kth byte of H * j * x8i

in GF(2128)[x]
This table is pre-computed by gcm_init() based on the secret H
value to accelerate the multiplication by H required by the GHASH
function.

The PC table is an optional table only included if GCM_TABLES was defined at build
time.As we will see shortly, it can greatly speed up the processing of data through GHASH;
however, it requires a 64 kilobyte table, which could easily be prohibitive in various
embedded platforms.

GCM Generic Multiplication
The following code implements the generic GF(2128)[x] multiplication required by GCM. It
is designed to work with any multiplier values and is not optimized to the GHASH usage
pattern of multiplying by a single value (H).

gcm_gf_mult.c:
001 /* this is x*2^128 mod p(x) ... the results are 16 bytes
002 * each stored in a packed format. Since only the
003 * lower 16 bits are not zero'ed I removed the upper 14 bytes */
004 const unsigned char gcm_shift_table[256*2] = {
005 0x00, 0x00, 0x01, 0xc2, 0x03, 0x84, 0x02, 0x46,
006 0x07, 0x08, 0x06, 0xca, 0x04, 0x8c, 0x05, 0x4e,
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007 0x0e, 0x10, 0x0f, 0xd2, 0x0d, 0x94, 0x0c, 0x56,
008 0x09, 0x18, 0x08, 0xda, 0x0a, 0x9c, 0x0b, 0x5e,
<snip>
065 0xb5, 0xe0, 0xb4, 0x22, 0xb6, 0x64, 0xb7, 0xa6,
066 0xb2, 0xe8, 0xb3, 0x2a, 0xb1, 0x6c, 0xb0, 0xae,
067 0xbb, 0xf0, 0xba, 0x32, 0xb8, 0x74, 0xb9, 0xb6,
068 0xbc, 0xf8, 0xbd, 0x3a, 0xbf, 0x7c, 0xbe, 0xbe };

This table contains the residue of the value of k * x128 mod p(x) for all 256 values of k.
Since the value of p(x) is sparse, only the lower two bytes of the residue are nonzero.As
such, we can compress the table. Every pair of bytes are the lower two bytes of the residue
for the given value of k. For instance, gcm_shift_table[3] and gcm_shift_table[4] are the value
of the least significant bytes of 2 * x128 mod p(x).

This table is only used if LTC_FAST is defined.This define instructs the implementa-
tion to use a fast parallel XOR operations on words instead of on the byte level. In our case,
we can exploit it to perform the generic multiplication much faster.

070 #ifndef LTC_FAST
071 /* right shift */
072 static void gcm_rightshift(unsigned char *a)
073 {
074 int x;
075 for (x = 15; x > 0; x--) {
076 a[x] = (a[x]>>1) | ((a[x-1]<<7)&0x80);
077 }
078 a[0] >>= 1;
079 }

This function performs the right shift (multiplication by x) using GCM conventions.

081 /* c = b*a */
082 static const unsigned char mask[] =
083 { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
084 static const unsigned char poly[] =
085 { 0x00, 0xE1 };
086
087
088 /**
089 GCM GF multiplier (internal use only) bitserial
090 @param a First value
091 @param b Second value
092 @param c Destination for a * b
093 */
094 void gcm_gf_mult(const unsigned char *a,
095 const unsigned char *b,
096 unsigned char *c)
097 {
098 unsigned char Z[16], V[16];
099 unsigned x, y, z;
100
101 zeromem(Z, 16);
102 XMEMCPY(V, a, 16);
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103 for (x = 0; x < 128; x++) {
104 if (b[x>>3] & mask[x&7]) {
105 for (y = 0; y < 16; y++) {
106 Z[y] ^= V[y];
107 }
108 }
109 z = V[15] & 0x01;
110 gcm_rightshift(V);
111 V[0] ^= poly[z];
112 }
113 XMEMCPY(c, Z, 16);
114 }

This is the slow bit serial approach. We use the LibTomCrypt functions zeromem (sim-
ilar to memset) and XMEMCPY (defaults to memcpy) for portability issues. Many small C
platforms do not have full C libraries.These functions (and macros) allow developers to
work around such limitations in a safe manner.

116 #else
117
118 /* map normal numbers to "ieee" way ... e.g. bit reversed */
119 #define M(x) (((x&8)>>3) | ((x&4)>>1) | ((x&2)<<1) | ((x&1)<<3))
120 #define BPD (sizeof(LTC_FAST_TYPE) * 8)
121 #define WPV (1 + (16 / sizeof(LTC_FAST_TYPE)))

These are some macros we use in the faster generic multiplier.The M() macro maps a
four-bit nibble to the GCM convention (e.g., reverse).

The LTC_FAST_TYPE symbol refers to a data type defined in LibTomCrypt that rep-
resents an optimal data type that is a multiple of eight bits in length. For example, on 32-bit
platforms, it is a unsigned long.The data type has to overlap perfectly with the unsigned char
data type. It is used to allow parallel XOR operations.

The BPD macro is the number of bytes per LTC_FAST_TYPE. Clearly, this only works
if CHAR_BIT is 8, which is why LTC_FAST is not enabled by default.The WPV macro is
the number of words per 128-bit value plus a word.

123 /**
124 GCM GF multiplier (internal use only) word oriented
125 @param a First value
126 @param b Second value
127 @param c Destination for a * b
128 */
129 void gcm_gf_mult(const unsigned char *a,
130 const unsigned char *b,
131 unsigned char *c)
132 {
133 int i, j, k, u;
134 LTC_FAST_TYPE B[16][WPV],
135 tmp[32 / sizeof(LTC_FAST_TYPE)],
136 pB[16 / sizeof(LTC_FAST_TYPE)],
137 zz, z;
138 unsigned char pTmp[32];
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The B array contains the computed values of ka for k=0...15. It allows us to perform a
4x128 multiplication with a table lookup.The tmp array contains the product (before it has
been reduced).The pB array contains the loaded and converted copy of b with the appro-
priate treatment for the GCM order of the bits.

140 /* create simple tables */
141 zeromem(B[0], sizeof(B[0]));
142 zeromem(B[M(1)], sizeof(B[M(1)]));
143
144 #ifdef ENDIAN_32BITWORD
145 for (i = 0; i < 4; i++) {
146 LOAD32H(B[M(1)][i], a + (i<<2));
147 LOAD32L(pB[i], b + (i<<2));
148 }
149 #else
150 for (i = 0; i < 2; i++) {
151 LOAD64H(B[M(1)][i], a + (i<<3));
152 LOAD64L(pB[i], b + (i<<3));
153 }
154 #endif

The preceding code loads the bytes of a and b into their respective arrays.A curious reader
may note that we load a with a big endian macro and b with a little endian macro.The a value
is loaded in big endian fashion to adhere to the GCM specs.The b value is loaded in the oppo-
site fashion so we can use a more straightforward digit extraction expression.

In fact, we could load both as big endian, and merely rewrite the order in which we
fetch nibbles to compensate.

156 /* now create 2, 4 and 8 */
157 B[M(2)][0] = B[M(1)][0] >> 1;
158 B[M(4)][0] = B[M(1)][0] >> 2;
159 B[M(8)][0] = B[M(1)][0] >> 3;
160 for (i = 1; i < (int)WPV; i++) {
161 B[M(2)][i] =(B[M(1)][i-1] << (BPD-1)) | (B[M(1)][i] >> 1);
162 B[M(4)][i] =(B[M(1)][i-1] << (BPD-2)) | (B[M(1)][i] >> 2);
163 B[M(8)][i] =(B[M(1)][i-1] << (BPD-3)) | (B[M(1)][i] >> 3);
164 }

This block of code creates the entries for ax, ax2, and ax3. Note that we do not perform
any reductions.This is why WPV has an extra word appended to it, since we are dealing
with values that have more than 128 bits in them.

166 /* now all values with two bits which are
167 * 3, 5, 6, 9, 10, 12 */
168 for (i = 0; i < (int)WPV; i++) {
169 B[M(3)][i] = B[M(1)][i] ^ B[M(2)][i];
170 B[M(5)][i] = B[M(1)][i] ^ B[M(4)][i];
171 B[M(6)][i] = B[M(2)][i] ^ B[M(4)][i];
172 B[M(9)][i] = B[M(1)][i] ^ B[M(8)][i];
173 B[M(10)][i] = B[M(2)][i] ^ B[M(8)][i];
174 B[M(12)][i] = B[M(8)][i] ^ B[M(4)][i];
175
176 /* now all 3 bit values and the only 4 bit value:
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177 * 7, 11, 13, 14, 15 */
178 B[M(7)][i] = B[M(3)][i] ^ B[M(4)][i];
179 B[M(11)][i] = B[M(3)][i] ^ B[M(8)][i];
180 B[M(13)][i] = B[M(1)][i] ^ B[M(12)][i];
181 B[M(14)][i] = B[M(6)][i] ^ B[M(8)][i];
182 B[M(15)][i] = B[M(7)][i] ^ B[M(8)][i];
183 }

These two blocks construct the rest of the entries word per word. We first construct the
values that only have two bits set (3, 5, 6, 9, 10, and 12), and then from those we construct
the values that have three bits set. Note the use of the M() macro, which evaluates to a con-
stant at compile time.

185 zeromem(tmp, sizeof(tmp));
186
187 /* compute product four bits of each word at a time */
188 /* for each nibble */
189 for (i = (BPD/4)-1; i >= 0; i--) {
190 /* for each word */
191 for (j = 0; j < (int)(WPV-1); j++) {
192 /* grab the 4 bits recall the nibbles are
193 backwards so it's a shift by (i^1)*4 */
194 u = (pB[j] >> ((i^1)<<2)) & 15;

Here we are extracting a nibble of b to multiply a by. Note the use of (i^1) to extract
the nibbles in reverse order since GCM stores bits in each byte in reverse order.

196 /* add offset by the word count the table
197 looked up value to the result */
198 for (k = 0; k < (int)WPV; k++) {
199 tmp[k+j] ^= B[u][k];
200 }
201 }

This loop multiplies each nibble of each word of b by a, and adds it to the appropriate offset
within tmp.The product of the ith nibble of the jth word is added to tmp[j...j+WPV-1].

202 /* shift result up by 4 bits */
203 if (i != 0) {
204 for (z=j=0; j < (int)(32 / sizeof(LTC_FAST_TYPE)); j++) {
205 zz = tmp[j] << (BPD-4);
206 tmp[j] = (tmp[j] >> 4) | z;
207 z = zz;
208 }
209 }
210 }

After we have added all of the products regarding the ith nibbles of each word, we shift
the entire product (tmp) up by four bits.

212 /* store product */
213 #ifdef ENDIAN_32BITWORD
214 for (i = 0; i < 8; i++) {
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215 STORE32H(tmp[i], pTmp + (i<<2));
216 }
217 #else
218 for (i = 0; i < 4; i++) {
219 STORE64H(tmp[i], pTmp + (i<<3));
220 }
221 #endif
222
223 /* reduce by taking most significant byte and adding the
224 appropriate two byte sequence 16 bytes down */
225 for (i = 31; i >= 16; i--) {
226 pTmp[i-16] ^= gcm_shift_table[((unsigned)pTmp[i]<<1)];
227 pTmp[i-15] ^= gcm_shift_table[((unsigned)pTmp[i]<<1)+1];
228 }

This reduction makes use of the fact that for any j > 15, the value of kxj mod p(x) is
congruent to (kx16)xj–16. Since we have a nice table for kx16 mod p(x), we can compute
(kx16)xj–16 by a table look up and shift.This routine adds the residue of the product from the
high byte to the lower bytes.

Each loop of the preceding for loop removes one byte from the product at a time. We
perform the shift inline by adding the lookup values to pTmp[i–16] and pTmp[i–15].

230 for (i = 0; i < 16; i++) {
231 c[i] = pTmp[i];
232 }
233
234 }
235
236 #endif

Both implementations of gcm_gf_mult() accomplish the same goal and are numerically
equivalent.The latter implementation is much faster on 32- and 64-bit processors but is not
100-percent portable. It requires a data type that is a multiple of a unsigned char data type in
size, which is not always guaranteed.

Now that we have a generic multiplier, we have to implement an optimized multiplier
to be used by GHASH.

GCM Optimized Multiplication
The following multiplication routine is optimized solely for performing a multiplication by the
secret H value. It takes advantage of the fact we can precompute tables for the multiplication.

gcm_mult_h.c:
001 /**
002 GCM multiply by H
003 @param gcm The GCM state which holds the H value
004 @param I The value to multiply H by
005 */
006 void gcm_mult_h(gcm_state *gcm, unsigned char *I)
007 {
008 unsigned char T[16];
009 #ifdef GCM_TABLES
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010 int x, y;
011 XMEMCPY(T, &gcm->PC[0][I[0]][0], 16);

If GCM_TABLES has been defined, we will use the tables approach.The PC table con-
tains 16 8x128 tables, one for each byte of the input and for each of their respective possible
values.The first thing we must do is copy the 0th entry to T (our accumulator).The rest of
the lookups will be XORed into this value.

012 for (x = 1; x < 16; x++) {
013 #ifdef LTC_FAST
014 for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
015 *((LTC_FAST_TYPE *)(T + y)) ^=
016 *((LTC_FAST_TYPE *)(&gcm->PC[x][I[x]][y]));
017 }
018 #else
019 for (y = 0; y < 16; y++) {
020 T[y] ^= gcm->PC[x][I[x]][y];
021 }
022 #endif

Here we see the use of LTC_FAST to optimize parallel XOR operations. For each byte
of I, the input, we look up the 128-bit value and XOR it against the accumulator. Since the
entries in the table have already been reduced, our accumulator never grows beyond 128 bits
in size.

023 }
024 #else
025 gcm_gf_mult(gcm->H, I, T);
026 #endif
027 XMEMCPY(I, T, 16);
028 }

If we are not using tables, we use the slower gcm_gf_mult() to achieve the operation.
Now that we have both of our multipliers out of the way, we can move on to the rest of

the GCM algorithm starting with the initialization routine.

GCM Initialization
The first function is gcm_init(), which accepts a secret key and initializes the GCM state.

gcm_init.c:
001 /**
002 Initialize a GCM state
003 @param gcm The GCM state to initialize
004 @param cipher The index of the cipher to use
005 @param key The secret key
006 @param keylen The length of the secret key
007 @return CRYPT_OK on success
008 */
009 int gcm_init(gcm_state *gcm, int cipher,
010 const unsigned char *key, int keylen)
011 {
012 int err;
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013 unsigned char B[16];
014 #ifdef GCM_TABLES
015 int x, y, z, t;
016 #endif
017
018 LTC_ARGCHK(gcm != NULL);
019 LTC_ARGCHK(key != NULL);
020
021 #ifdef LTC_FAST
022 if (16 % sizeof(LTC_FAST_TYPE)) {
023 return CRYPT_INVALID_ARG;
024 }
025 #endif

This is a simple sanity check to make sure the code will actually work with LTC_FAST
defined. It does not catch all error cases, but in practice is enough.

027 /* is cipher valid? */
028 if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
029 return err;
030 }
031 if (cipher_descriptor[cipher].block_length != 16) {
032 return CRYPT_INVALID_CIPHER;
033 }
034
035 /* schedule key */
036 if ((err = cipher_descriptor[cipher].setup(key, keylen,
037 0, &gcm->K)) !=
038 CRYPT_OK) {
039 return err;
040 }

This code schedules the secret key to be used by the GCM code.

042 /* H = E(0) */
043 zeromem(B, 16);
044 if ((err =
045 cipher_descriptor[cipher].ecb_encrypt(B, gcm->H,
046 &gcm->K)) !=
047 CRYPT_OK) {
048 return err;
049 }

We encrypt the zero string to compute our secret multiplier value H.

051 /* setup state */
052 zeromem(gcm->buf, sizeof(gcm->buf));
053 zeromem(gcm->X, sizeof(gcm->X));
054 gcm->cipher = cipher;
055 gcm->mode = GCM_MODE_IV;
056 gcm->ivmode = 0;
057 gcm->buflen = 0;
058 gcm->totlen = 0;
059 gcm->pttotlen = 0;
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This block of code initializes the GCM state to the default empty and zero state.After
this point, we are ready to process IV,AAD, or plaintext (provided GCM_TABLES was not
defined).

061 #ifdef GCM_TABLES
062 /* setup tables */
063
064 /* generate the first table as it has no shifting
065 * (from which we make the other tables) */
066 zeromem(B, 16);
067 for (y = 0; y < 256; y++) {
068 B[0] = y;
069 gcm_gf_mult(gcm->H, B, &gcm->PC[0][y][0]);
070 }

If we are using tables, we first compute the lowest table, which is simply yH mod p(x)
for all 256 values of y. We use the slower multiplier, since at this point we do not have tables
to work with.

072 /* now generate the rest of the tables
073 * based the previous table */
074 for (x = 1; x < 16; x++) {
075 for (y = 0; y < 256; y++) {
076 /* now shift it right by 8 bits */
077 t = gcm->PC[x-1][y][15];
078 for (z = 15; z > 0; z--) {
079 gcm->PC[x][y][z] = gcm->PC[x-1][y][z-1];
080 }
081 gcm->PC[x][y][0] = gcm_shift_table[t<<1];
082 gcm->PC[x][y][1] ^= gcm_shift_table[(t<<1)+1];
083 }
084 }

This code block generates the 15 other 8x128 tables. Since the only difference between
the 0th 8x128 table and the 1st 8x128 table is that we multiplied the values by x8, we can per-
form this with a simple shift and XOR with the reduction table values (as we saw with the
fast gcm_gf_mult() function). We can repeat the process for the 2nd, 3rd, 4th, and so on tables.

Using this shift and reduce trick is much faster than naively using gcm_gf_mult() to pro-
duce all 16 * 256 = 4096 multiplications required.

086 #endif
087
088 return CRYPT_OK;
089 }

At this point, we are good to go with using GCM to process IV,AAD, or plaintext.

GCM IV Processing
The GCM IV controls the initial value of the CTR value used for encryption, and indirectly
the MAC tag value since it is based on the ciphertext. Each packet should have a unique IV
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if the same key is being used. It is safe to use a packet counter as the IV, as long as it never
repeats while using the same key.

gcm_add_iv.c:
001 /**
002 Add IV data to the GCM state
003 @param gcm The GCM state
004 @param IV The initial value data to add
005 @param IVlen The length of the IV
006 @return CRYPT_OK on success
007 */
008 int gcm_add_iv(gcm_state *gcm,
009 const unsigned char *IV, unsigned long IVlen)
010 {
011 unsigned long x, y;
012 int err;
013
014 LTC_ARGCHK(gcm != NULL);
015 if (IVlen > 0) {
016 LTC_ARGCHK(IV != NULL);
017 }

This is a bit odd, but we do allow null IVs, which can also have IV == NULL.

019 /* must be in IV mode */
020 if (gcm->mode != GCM_MODE_IV) {
021 return CRYPT_INVALID_ARG;
022 }

We must be in IV mode to call this function. If we are not, this means we have called
the AAD or process function (to handle plaintext).

024 if (gcm->buflen >= 16 || gcm->buflen < 0) {
025 return CRYPT_INVALID_ARG;
026 }
027
028 if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) {
029 return err;
030 }
031
032
033 /* trip the ivmode flag */
034 if (IVlen + gcm->buflen > 12) {
035 gcm->ivmode |= 1;
036 }

If we have more than 12 bytes of IV, we set the ivmode flag.The processing of the IV
changes based on whether this flag is set.

038 x = 0;
039 #ifdef LTC_FAST
040 if (gcm->buflen == 0) {
041 for (x = 0; x < (IVlen & ~15); x += 16) {
042 for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
043 *((LTC_FAST_TYPE*)(&gcm->X[y])) ^=
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044 *((LTC_FAST_TYPE*)(&IV[x + y]));
045 }
046 gcm_mult_h(gcm, gcm->X);
047 gcm->totlen += 128;
048 }
049 IV += x;
050 }
051 #endif

If we can use LTC_FAST, we will add bytes of the IV to the state a word at a time. We
only use this optimization if there are 16 or more bytes of IV to add. Usually, IVs are short,
so this should not be invoked, but it does allow a user to base the IV on a larger string if
desired.

053 /* start adding IV data to the state */
054 for (; x < IVlen; x++) {
055 gcm->buf[gcm->buflen++] = *IV++;
056
057 if (gcm->buflen == 16) {
058 /* GF mult it */
059 for (y = 0; y < 16; y++) {
060 gcm->X[y] ^= gcm->buf[y];
061 }
062 gcm_mult_h(gcm, gcm->X);
063 gcm->buflen = 0;
064 gcm->totlen += 128;
065 }
066 }

This block of code handles adding any leftover bytes of the IV to the state. It adds one
byte at a time; once we accumulate 16, we XOR them against the state and call
gcm_mult_h().

068 return CRYPT_OK;
069 }

This function handles add IV data to the state. Note carefully that it does not actually
terminate the GHASH or compute the initial counter value.That is handled in the next
function, gcm_add_aad().

GCM AAD Processing
Additional Authentication Data (AAD) is metadata you can add to the stream being authen-
ticated that is not encrypted. It must be added after the IV and before the plaintext (or
ciphertext) has been processed.The AAD step can be skipped if there is no data to add to
the stream.Typically, the AAD would be nonprivacy, but stream or packet related data such as
unique identifiers or placement markers.

gcm_add_aad.c:
001 /**
002 Add AAD to the GCM state
003 @param gcm The GCM state
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004 @param adata The AAD to add to the GCM state
005 @param adatalen The length of the AAD data.
006 @return CRYPT_OK on success
007 */
008 int gcm_add_aad( gcm_state *gcm,
009 const unsigned char *adata,
010 unsigned long adatalen)
011 {
012 unsigned long x;
013 int err;
014 #ifdef LTC_FAST
015 unsigned long y;
016 #endif
017
018 LTC_ARGCHK(gcm != NULL);
019 if (adatalen > 0) {
020 LTC_ARGCHK(adata != NULL);
021 }
022
023 if (gcm->buflen > 16 || gcm->buflen < 0) {
024 return CRYPT_INVALID_ARG;
025 }
026
027 if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) {
028 return err;
029 }

So far, this is all the same style of error checking.The only reason we do not place this
in another function is to make sure the LTC_ARGCHK macros report the correct function
name (they work much like the assert macro).

031 /* in IV mode? */
032 if (gcm->mode == GCM_MODE_IV) {
033 /* let's process the IV */

This block of code finishes processing the IV, if any.

034 if (gcm->ivmode || gcm->buflen != 12) {

If we have tripped the IV flag or the IV accumulated length is not 12, we have to apply
GHASH to the IV data to produce our starting Y value.

035 for (x = 0; x < (unsigned long)gcm->buflen; x++) {
036 gcm->X[x] ^= gcm->buf[x];
037 }
038 if (gcm->buflen) {
039 gcm->totlen += gcm->buflen * CONST64(8);
040 gcm_mult_h(gcm, gcm->X);
041 }

At this point, we have emptied the IV buffer and multiplied the GCM state by the
secret H value.

043 /* mix in the length */
044 zeromem(gcm->buf, 8);
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045 STORE64H(gcm->totlen, gcm->buf+8);
046 for (x = 0; x < 16; x++) {
047 gcm->X[x] ^= gcm->buf[x];
048 }
049 gcm_mult_h(gcm, gcm->X);

Next, we append the length of the IV and multiply that by H.The result is the output
of GHASH and the starting Y value.

051 /* copy counter out */
052 XMEMCPY(gcm->Y, gcm->X, 16);
053 zeromem(gcm->X, 16);
054 } else {
055 XMEMCPY(gcm->Y, gcm->buf, 12);
056 gcm->Y[12] = 0;
057 gcm->Y[13] = 0;
058 gcm->Y[14] = 0;
059 gcm->Y[15] = 1;
060 }

This block of code handles the case that our IV is 12 bytes (because the flag has not
been tripped and the buflen is 12). In this case, processing the IV means simply copying it to
the GCM state and setting the last 32 bits to the big endian version of “1”.

Ideally, you want to use the 12-byte IV in GCM since it allows fast packet processing. If
your GCM key is randomly derived per session, the IV can simply be a packet counter.As
long as they are all unique, we are using GCM properly.

061 XMEMCPY(gcm->Y_0, gcm->Y, 16);
062 zeromem(gcm->buf, 16);
063 gcm->buflen = 0;
064 gcm->totlen = 0;
065 gcm->mode = GCM_MODE_AAD;
066 }
067
068 if (gcm->mode != GCM_MODE_AAD || gcm->buflen >= 16) {
069 return CRYPT_INVALID_ARG;
070 }

At this point, we check that we are indeed in AAD mode and that our buflen is a legal
value.

072 x = 0;
073 #ifdef LTC_FAST
074 if (gcm->buflen == 0) {
075 for (x = 0; x < (adatalen & ~15); x += 16) {
076 for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
077 *((LTC_FAST_TYPE*)(&gcm->X[y])) ^=
078 *((LTC_FAST_TYPE*)(&adata[x + y]));
079 }
080 gcm_mult_h(gcm, gcm->X);
081 gcm->totlen += 128;
082 }
083 adata += x;
084 }
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085 #endif

If we have LTC_FAST enabled, we will process AAD data in 16-byte increments by
quickly XORing it into the GCM state.This avoids all the manual single-byte XOR 
operations.

088 /* start adding AAD data to the state */
089 for (; x < adatalen; x++) {
090 gcm->X[gcm->buflen++] ^= *adata++;
091
092 if (gcm->buflen == 16) {
093 /* GF mult it */
094 gcm_mult_h(gcm, gcm->X);
095 gcm->buflen = 0;
096 gcm->totlen += 128;
097 }
098 }

This is the default processing of AAD data. In the event LTC_FAST has been enabled, it
handles any lingering bytes. It is ideal to have AAD data that is always a multiple of 16 bytes
in length.This way, we can avoid the slower manual byte XORs.

100 return CRYPT_OK;
101 }

GCM Plaintext Processing
Processing the plaintext is the final step in processing a GCM message after processing the
IV and AAD. Since we are using CTR to encrypt the data, the ciphertext is the same length
as the plaintext.

gcm_process.c:
001 /**
002 Process plaintext/ciphertext through GCM
003 @param gcm The GCM state
004 @param pt The plaintext
005 @param ptlen The plaintext length
006 @param ct The ciphertext
007 @param direction Encrypt or Decrypt mode
008 @return CRYPT_OK on success
009 */
010 int gcm_process( gcm_state *gcm,
011 unsigned char *pt, unsigned long ptlen,
012 unsigned char *ct,
013 int direction)
014 {
015 unsigned long x, y;
016 unsigned char b;
017 int err;
018
019 LTC_ARGCHK(gcm != NULL);
020 if (ptlen > 0) {
021 LTC_ARGCHK(pt != NULL);
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022 LTC_ARGCHK(ct != NULL);
023 }
024
025 if (gcm->buflen > 16 || gcm->buflen < 0) {
026 return CRYPT_INVALID_ARG;
027 }
028
029 if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) {
030 return err;
031 }

Same error checking code. We can call this function with an empty plaintext just like
we can call the previous two functions with empty IV and AAD blocks. GCM is valid with
zero length plaintexts and can be used to produce a MAC tag for the AAD data. It is not a
good idea to use GCM this way, as CMAC is more efficient for the purpose (and does not
require huge tables for efficiency). In short, if all you want is a MAC tag, do not use GCM.

033 /* in AAD mode? */
034 if (gcm->mode == GCM_MODE_AAD) {
035 /* let's process the AAD */
036 if (gcm->buflen) {
037 gcm->totlen += gcm->buflen * CONST64(8);
038 gcm_mult_h(gcm, gcm->X);
039 }

At this point, we have finished processing the AAD. Note that unlike processing the IV,
we do not terminate the GHASH.

041 /* increment counter */
042 for (y = 15; y >= 12; y--) {
043 if (++gcm->Y[y] & 255) { break; }
044 }
045 /* encrypt the counter */
046 if ((err =
047 cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y,
048 gcm->buf,
049 &gcm->K))
050 != CRYPT_OK) {
051 return err;
052 }

We increment the initial value of Y and encrypt it to the buf array.This buffer is our
CTR key stream used to encrypt or decrypt the message.

054 gcm->buflen = 0;
055 gcm->mode = GCM_MODE_TEXT;
056 }
057
058 if (gcm->mode != GCM_MODE_TEXT) {
059 return CRYPT_INVALID_ARG;
060 }

At this point, we are ready to process the plaintext. We again will use a LTC_FAST trick
to handle the plaintext efficiently. Since the GHASH is applied to the ciphertext, we must
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handle encryption and decryption differently.This is also because we allow the plaintext and
ciphertext buffers supplied by the user to overlap.

062 x = 0;
063 #ifdef LTC_FAST
064 if (gcm->buflen == 0) {
065 if (direction == GCM_ENCRYPT) {
066 for (x = 0; x < (ptlen & ~15); x += 16) {

Again, we attempt to process the plaintext 16 bytes at a time. For this reason, ensuring
your plaintext is a multiple of 16 bytes is a good idea.

067 /* ctr encrypt */
068 for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
069 *((LTC_FAST_TYPE*)(&ct[x + y])) =
070 *((LTC_FAST_TYPE*)(&pt[x+y])) ^
071 *((LTC_FAST_TYPE*)(&gcm->buf[y]));
072 *((LTC_FAST_TYPE*)(&gcm->X[y])) ^=
073 *((LTC_FAST_TYPE*)(&ct[x+y]));
074 }

This loop XORs the CTR key stream against the plaintext, and then XORs the cipher-
text into the GHASH accumulator.The loop may look complicated, but GCC does a good
job to optimize the loop. In fact, the loop is usually fully unrolled and turned into simple
load and XOR operations.

075 /* GMAC it */
076 gcm->pttotlen += 128;
077 gcm_mult_h(gcm, gcm->X);

Since we are processing 16-byte blocks, we always perform the multiplication by H on
the accumulated data.

078 /* increment counter */
079 for (y = 15; y >= 12; y--) {
080 if (++gcm->Y[y] & 255) { break; }
081 }
082 if ((err =
083 cipher_descriptor[gcm->cipher].ecb_encrypt(
084 gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK){
085 return err;
086 }

We next increment the CTR counter and encrypt it to generate another 16 bytes of
key stream.

087 }
088 } else {
089 for (x = 0; x < (ptlen & ~15); x += 16) {
090 /* ctr encrypt */
091 for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
092 *((LTC_FAST_TYPE*)(&gcm->X[y])) ^=
093 *((LTC_FAST_TYPE*)(&ct[x+y]));
094 *((LTC_FAST_TYPE*)(&pt[x + y])) =

www.syngress.com

Encrypt and Authenticate Modes • Chapter 7 321

404_CRYPTO_07.qxd  10/30/06  11:51 AM  Page 321



095 *((LTC_FAST_TYPE*)(&ct[x+y])) ^
096 *((LTC_FAST_TYPE*)(&gcm->buf[y]));
097 }
098 /* GMAC it */
099 gcm->pttotlen += 128;
100 gcm_mult_h(gcm, gcm->X);
101 /* increment counter */
102 for (y = 15; y >= 12; y--) {
103 if (++gcm->Y[y] & 255) { break; }
104 }
105 if ((err =
106 cipher_descriptor[gcm->cipher].ecb_encrypt(
107 gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK){
108 return err;
109 }
110 }
111 }
112 }
113 #endif

This second block handles decryption. It is similar to encryption, but since we are
shaving cycles, we do not merge them.The code size increase is not significant, especially
compared to the time savings.

115 /* process text */
116 for (; x < ptlen; x++) {

This loop handles any remaining bytes for both encryption and decryption. Since we are
processing the data a byte at a time, it is best to avoid needing this section of code in perfor-
mance applications.

117 if (gcm->buflen == 16) {

Every 16 bytes, we must accumulate them in the GHASH tag and update the CTR key
stream.

118 gcm->pttotlen += 128;
119 gcm_mult_h(gcm, gcm->X);
120
121 /* increment counter */
122 for (y = 15; y >= 12; y--) {
123 if (++gcm->Y[y] & 255) { break; }
124 }
125 if ((err=cipher_descriptor[gcm->cipher].ecb_encrypt(
126 gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) {
127 return err;
128 }
129 gcm->buflen = 0;
130 }
131
132 if (direction == GCM_ENCRYPT) {
133 b = ct[x] = pt[x] ^ gcm->buf[gcm->buflen];
134 } else {
135 b = ct[x];
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136 pt[x] = ct[x] ^ gcm->buf[gcm->buflen];
137 }
138 gcm->X[gcm->buflen++] ^= b;

This last bit is seemingly overly complicated but done so by design. We allow ct = pt,
which means we cannot overwrite the buffer without copying the ciphertext byte. We could
move line 138 into the two cases of the if statement, but that enlarges the code for no sav-
ings in time.

139 }
140
141 return CRYPT_OK;
142 }

At this point, we have enough functionality to start a GCM state, add IV, add AAD, and
process plaintext. Now we must be able to terminate the GCM state to compute the final
MAC tag.

Terminating the GCM State
Once we have finished processing our GCM message, we will want to compute the
GHASH output and retrieve the MAC tag.

gcm_done.c:
001 /**
002 Terminate a GCM stream
003 @param gcm The GCM state
004 @param tag [out] The destination for the MAC tag
005 @param taglen [in/out] The length of the MAC tag
006 @return CRYPT_OK on success
007 */
008 int gcm_done( gcm_state *gcm,
009 unsigned char *tag, unsigned long *taglen)
010 {
011 unsigned long x;
012 int err;
013
014 LTC_ARGCHK(gcm != NULL);
015 LTC_ARGCHK(tag != NULL);
016 LTC_ARGCHK(taglen != NULL);
017
018 if (gcm->buflen > 16 || gcm->buflen < 0) {
019 return CRYPT_INVALID_ARG;
020 }
021
022 if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) {
023 return err;
024 }
025
026
027 if (gcm->mode != GCM_MODE_TEXT) {
028 return CRYPT_INVALID_ARG;
029 }
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This is again the same sanity checking. It is important that we do this in all the GCM
functions, since the context of the state is important in using GCM securely.

031 /* handle remaining ciphertext */
032 if (gcm->buflen) {
033 gcm->pttotlen += gcm->buflen * CONST64(8);
034 gcm_mult_h(gcm, gcm->X);
035 }
036
037 /* length */
038 STORE64H(gcm->totlen, gcm->buf);
039 STORE64H(gcm->pttotlen, gcm->buf+8);
040 for (x = 0; x < 16; x++) {
041 gcm->X[x] ^= gcm->buf[x];
042 }
043 gcm_mult_h(gcm, gcm->X);

This terminates the GHASH of the AAD and ciphertext.The length of the AAD and
the length of the ciphertext are added to the final multiplication by H.The output is the
GHASH final value, but not the MAC tag.

045 /* encrypt original counter */
046 if ((err =
047 cipher_descriptor[gcm->cipher].ecb_encrypt(
048 gcm->Y_0, gcm->buf, &gcm->K)) != CRYPT_OK) {
049 return err;
050 }
051 for (x = 0; x < 16 && x < *taglen; x++) {
052 tag[x] = gcm->buf[x] ^ gcm->X[x];
053 }
054 *taglen = x;

We encrypt the original Y value and XOR the output against the GHASH output.
Since GCM allows truncating the MAC tag, we do so.The user may request any length of
MAC tag from 0 to 16 bytes. It is not advisable to truncate the GCM tag.

055
056 cipher_descriptor[gcm->cipher].done(&gcm->K);
057
058 return CRYPT_OK;
059 }

The last call terminates the cipher state. With LibTomCrypt, the ciphers are allowed to
allocate resources during their initialization such as heap or hardware tokens.This call is
required to release the resources if any. Upon completion of this function, the user has the
MAC tag and the GCM state is no longer valid.

GCM Optimizations
Now that we have seen the design of GCM, and a fielded implementation from the
LibTomCrypt project, we have to specifically address how to best use GCM.
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The default implementation in LibTomCrypt with the GCM_TABLES macro defined
uses 64 kilobytes per GCM state.This may be no problem for a server or desktop applica-
tion; however, it does not serve well for platforms that may not have 64 kilobytes of memory
total.There exists a simple compromise that uses a single 8x128 table, which is four kilobytes
in size. In fact, it uses the zero’th table from the 64-kilobyte variant, and we produce a 32-
byte product and reduce it the same style as our fast variant of the gcm_gf_mult() function.

void gcm_mult_h(gcm_state *gcm, unsigned char *I)
{

unsigned char T[32];
int i, j;

/* produce 32 byte product */
for (i = 0; i < 32; i++) T[i] = 0;
for (i = 0; i < 16; i++)

for (j = 0; j < 16; j++)
T[i+j] ^= gcm->PC[I[i]][j];

/* reduce it */
for (i = 31; i >= 16; i--) {
T[i-16] ^= gcm_shift_table[((unsigned)T[i]<<1)];
T[i-15] ^= gcm_shift_table[((unsigned)T[i]<<1)+1];

}

/* copy out result */
for (i = 0; i < 16; i++) I[i] = T[i];

}

We can optimize the nested loop by using word-oriented XOR operations.The final
reduction is less amenable to optimization, unfortunately.The fallback position from this
algorithm is to use the LTC_FAST variant of gcm_gf_mult(), the generic GF(2) multiplier,
to perform the multiply by H function.

Use of SIMD Instructions
Processors such as the recent x86 series and Power PC based G4 and G5 have instructions
known as Single Instruction Multiple Data (SIMD).These allow developers to perform mul-
tiple parallel operations such as 128-bit wide XORs.This comes in very handy, indeed. For
example, consider the function gcm_mult_h() with SSE2 support.

gcm_mult_h.c: (From LibTomCrypt v1.14)
001 void gcm_mult_h(gcm_state *gcm, unsigned char *I)
002 {
003 unsigned char T[16];
004 #ifdef GCM_TABLES
005 int x, y;
006 #ifdef GCM_TABLES_SSE2
007 asm("movdqa (%0),%%xmm0"::"r"(&gcm->PC[0][I[0]][0]));
008 for (x = 1; x < 16; x++) {
009 asm("pxor (%0),%%xmm0"::"r"(&gcm->PC[x][I[x]][0]));
010 }
011 asm("movdqa %%xmm0,(%0)"::"r"(&T));
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<snip>
030 XMEMCPY(I, T, 16);
031 }
032 #endif

As we can see, the loop becomes much more efficient. Particularly, we are issuing fewer
load operations and consuming fewer decoder resources. For example, even though the
Opteron FPU issues the 128-bit operations as two 64-bit operations behind the scenes, since
we only decode one x86 opcode, the processor can pack the instructions more effectively.
Table 7.2 compares the performance of three implementations of GCM on an Opteron and
Intel P4 Prescott processors.

Table 7.2 GCM Implementation Performance Observations

Cycles per message Cycles per message 
byte (4KB blocks) byte (4KB blocks) 

Implementation Opteron P4 Prescott

LTC_FAST only 69
LTC_FAST and GCM_TABLES 27 53
LTC_FAST and GCM_TABLES_SSE2 25 49

Design of CCM
CCM is the current NIST endorsed combined mode (SP 800-38C) based on CBC-MAC
and CTR chaining mode.The purpose of CCM is to use a single secret key K and block
cipher, to both authenticate and encrypt a message. Unlike GCM, CCM is much simpler
and only requires the block cipher to operate. For this reason, it is often a better fit where
GF(2) multiplication is too cumbersome.

While CCM is simpler than GCM, it does carry several disadvantages. In hardware,
GF(2) multiplication is usually faster than an AES encryption (AES being the usual block
cipher paired with GCM). CCM can process AAD (which they call header data), but is less
flexible with the order of operations. Where in GCM you can process arbitrary length AAD
and plaintext data, CCM must know in advance the length of these elements before initial-
izing the state.This means you cannot use CCM for streaming calls. Fortunately, in practice
this is usually not a problem.You simply apply CCM to your individual packets of a known
or computable length and everything is fine.

The design of CCM can be split into three distinct phases. First, we must generate a B0
block, which is built out of the user supplied nonce and message length.The B0 block is
used as the IV for the CBC-MAC and counter for the CTR chaining mode. Next, the
MAC tag generation, which is the CBC-MAC of B0, the header (AAD) data, and finally the
plaintext, is performed. Unlike GCM, CCM authenticates the plaintext, which is why a
unique nonce is important for security. Finally, the plaintext is encrypted with the CTR
chaining mode using a modified B0 block as the counter.
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CCM B0 Generation
The B0 block is a special block in CCM mode that is prefixed to the message (before the
header data) that is derived from the user supplied nonce value.The layout of the B0 block
depends on the length of the plaintext, especially the length of the encoding of the length.
For example, if the plaintext is 129 bytes long, it will require one byte to encode the length
of the length. We call this length q and the value of the length Q. For example, in our pre-
vious example, we would have q=1 and Q=129.

The nonce data can be up to 13 bytes in length and its contents are represented by N.
The length of the desired MAC tag is represented by t, and must be even and larger than 2
(Figure 7.4).

Figure 7.4 CCM B0 Format

Octet Number 0 1 ... 15–q 16–q ...   15

Contents Flags N Q

Note how the nonce (N) is truncated due to the length of the plaintext. Usually, this is
not a problem in most network protocols where Q is typically smaller than 65536 (leaving
us with up to a 13-byte nonce).The flags require a single byte and are packed as shown in
Figure 7.5.

Figure 7.5 CCM Flags Format

Bit Number 7 6 5 4 3 2 1 0

Contents Reserved Adata (t–2)/2 q–1

The Adata flag is set when there is header (AAD) data present. We encode the MAC tag
length by subtracting 2 and dividing it by 2, and t must be an element of the set {4, 6, 8, 10,
12, 14, 16}. MAC lengths that short are usually not a good idea. If you really want to shave a
few bytes per packet, try using a MAC tag length no shorter than 12 bytes.The plaintext
length is encoded by subtracting one from the length of the plaintext. q must be a member
of the set {2, 3, 4, 5, 6, 7, 8}. Zero is not a valid value for either (t–2)/2 or q–1.

CCM MAC Tag Generation
The CCM MAC Tag is generated by the CBC-MAC of B0, any header data (if present), and
the plaintext (if any). We prefix the header data with its length. If the header data is less than
65,280 bytes in length, the length is simply encoded as a big endian two-byte value. If the
length is larger, the value 0xFF FE is inserted followed by the big endian four-byte encoding
of the header length.Technically, CCM supports larger header lengths; however, if you are
using more than four gigabytes for your header data, you ought to rethink your application’s
used of cryptography.
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The header data is padded to a multiple of 16 bytes by inserting zero bytes at the end.
The plaintext is similarly padded as required.

After the CBC-MAC output has been generated, it will be pre-pended to the plaintext
and encrypted in CTR mode along with the plaintext.

CCM Encryption
Encryption is performed in CTR mode using the B0 block as the counter.The only differ-
ence here is that the B0 block will be modified by zeroing the flags and Q parameters
(leaving only the nonce).The last q bytes of the B0 block are incremented in big endian
fashion for each 16-byte block of Tag and plaintext.The ciphertext is the same length as the
plaintext and not padded.

CCM Implementation
We use the CCM implementation from LibTomCrypt as reference. It is a compact and effi-
cient implementation of CCM that performs the entire CCM encoding with a single func-
tion call. Since it accepts all the parameters in a single call, it has quite a few parameters.
Table 7.3 matches the implementation names with the design variable names.

Table 7.3 CCM Implementation Guide

Design Name Implementation Name Function

cipher Index into LTC tables for 128-bit cipher to
use, makes CCM agnostic to the cipher
choice

K key Secret key
keylen Length of key in octets
uskey Previously scheduled key, used to save time

by not using key schedule
N none The CCM nonce

noncelen Length of nonce in octets
header The header or AAD data
headerlen Length of header in octets

P pt Plaintext
Q ptlen Length of plaintext in octets
C ct Ciphertext
T tag The MAC tag
t taglen The length of the MAC tag desired
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ccm_memory.c:
001 /**
002 CCM encrypt/decrypt and produce an authentication tag
003 @param cipher The index of the cipher desired
004 @param key The secret key to use
005 @param keylen The length of the secret key (octets)
006 @param uskey A previously scheduled key [can be NULL]
007 @param nonce The session nonce [use once]
008 @param noncelen The length of the nonce
009 @param header The header for the session
010 @param headerlen The length of the header (octets)
011 @param pt [out] The plaintext
012 @param ptlen The length of the plaintext (octets)
013 @param ct [out] The ciphertext
014 @param tag [out] The destination tag
015 @param taglen [in/out] The max size of the
016 authentication tag
017 @param direction Encrypt or Decrypt direction (0 or 1)
018 @return CRYPT_OK if successful
019 */
020 int ccm_memory(int cipher,
021 const unsigned char *key, unsigned long keylen,
022 symmetric_key *uskey,
023 const unsigned char *nonce, unsigned long noncelen,
024 const unsigned char *header, unsigned long headerlen,
025 unsigned char *pt, unsigned long ptlen,
026 unsigned char *ct,
027 unsigned char *tag, unsigned long *taglen,
028 int direction)
029 {
030 unsigned char PAD[16], ctr[16], CTRPAD[16], b;
031 symmetric_key *skey;
032 int err;
033 unsigned long len, L, x, y, z, CTRlen;
034
035 if (uskey == NULL) {
036 LTC_ARGCHK(key != NULL);
037 }

We allow the caller to schedule a key prior to the call.This is a good idea in practice, as
it shaves a fair chunk of cycles per call. Even if you are not using LibTomCrypt, you should
provide or use this style of optimization in your code.

038 LTC_ARGCHK(nonce != NULL);
039 if (headerlen > 0) {
040 LTC_ARGCHK(header != NULL);
041 }

We allow empty headers so in those cases header can have the value of NULL.

042 LTC_ARGCHK(pt != NULL);
043 LTC_ARGCHK(ct != NULL);
044 LTC_ARGCHK(tag != NULL);
045 LTC_ARGCHK(taglen != NULL);
046
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047 #ifdef LTC_FAST
048 if (16 % sizeof(LTC_FAST_TYPE)) {
049 return CRYPT_INVALID_ARG;
050 }
051 #endif

We provide a word-oriented optimization later in this implementation.This check is a
simple sanity check to make sure it will actually work.
053 /* check cipher input */
054 if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
055 return err;
056 }
057 if (cipher_descriptor[cipher].block_length != 16) {
058 return CRYPT_INVALID_CIPHER;
059 }
060
061 /* make sure the taglen is even and <= 16 */
062 *taglen &= ~1;
063 if (*taglen > 16) {
064 *taglen = 16;
065 }

We force the tag length to even and truncate it if it is larger than 16 bytes. We do not
error out on excessively long tag lengths, as the caller may simply have passed something
such as 

unsigned char tag[MAXTAGLEN];
unsigned long taglen;

taglen = sizeof(tag);
ccm_memory(..., &taglen, ...);

In which case, MAXTAGLEN could be larger than 16 if they are supporting more than
one algorithm.

067 /* can't use < 4 */
068 if (*taglen < 4) {
069 return CRYPT_INVALID_ARG;
070 }

We must reject tag lengths less than four bytes per the CCM specification. We have no
choice but to error out, as the caller has not indicated we can store at least four bytes of
MAC tag.

072 /* is there an accelerator? */
073 if (cipher_descriptor[cipher].accel_ccm_memory != NULL) {
074 return cipher_descriptor[cipher].accel_ccm_memory(
075 key, keylen,
076 uskey,
077 nonce, noncelen,
078 header, headerlen,
079 pt, ptlen,
080 ct,
081 tag, taglen,
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082 direction);
083 }

LibTomCrypt has the capability to “overload” functions—in this case, CCM. If the
pointer is not NULL, the computation is offloaded to it automatically. In this way, a devel-
oper can take advantage of accelerators without re-writing their application.This technically
is not part of CCM, so you can avoid looking at this chunk if you want.

085 /* let's get the L value */
086 len = ptlen;
087 L = 0;
088 while (len) {
089 ++L;
090 len >>= 8;
091 }
092 if (L <= 1) {
093 L = 2;
094 }

Here we compute the value of L (q in the CCM design). L was the original name for
this variable and is why we used it here. We make sure that L is at least 2 as per the CCM
specification.

096 /* increase L to match the nonce len */
097 noncelen = (noncelen > 13) ? 13 : noncelen;
098 if ((15 - noncelen) > L) {
099 L = 15 - noncelen;
100 }
101 if (15 < (noncelen + L)) noncelen = 15 – L;

This resizes the nonce if it is too large and the L parameter as required.The caller has to
be aware of the tradeoff. For instance, if you want to encrypt one-megabyte packets, you will
need at least three bytes to encode the length, which means the nonce can only be 12 bytes
long. One could add a check to ensure that L is never too small for the plaintext length.

102 /* allocate mem for the symmetric key */
103 if (uskey == NULL) {
104 skey = XMALLOC(sizeof(*skey));
105 if (skey == NULL) {
106 return CRYPT_MEM;
107 }
108
109 /* initialize the cipher */
110 if ((err =
111 cipher_descriptor[cipher].setup(
112 key, keylen, 0, skey)) != CRYPT_OK) {
113 XFREE(skey);
114 return err;
115 }
116 } else {
117 skey = uskey;
118 }
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If the caller does not supply a key, we must schedule one. We avoid placing the sched-
uled key structure on the stack by allocating it from the heap.This is important for
embedded and kernel applications, as the stacks can be very limited in size.

120 /* form B_0 == flags | Nonce N | l(m) */
121 x = 0;
122 PAD[x++] = ((headerlen > 0) ? (1<<6) : 0) |
123 (((*taglen - 2)>>1)<<3) |
124 (L-1);
125
126 /* nonce */
127 for (y = 0; y < (16 - (L + 1)); y++) {
128 PAD[x++] = nonce[y];
129 }
130
131 /* store len */
132 len = ptlen;
133
134 /* shift len so the upper bytes of len are
135 * the contents of the length */
136 for (y = L; y < 4; y++) {
137 len <<= 8;
138 }
139
140 /* store l(m) (only store 32-bits) */
141 for (y = 0; L > 4 && (L-y)>4; y++) {
142 PAD[x++] = 0;
143 }
144 for (; y < L; y++) {
145 PAD[x++] = (len >> 24) & 255;
146 len <<= 8;
147 }

This section of code creates the B0 value we need for the CBC-MAC phase of CCM.
The PAD array holds the 16 bytes of CBC data for the MAC, while CTRPAD, which we
see later, holds the 16 bytes of CTR output.

The first byte (line 122) of the block is the flags. We set the Adata flag based on
headerlen, encode the tag length by dividing taglen by two, and finally the length of the plain-
text length is stored.

Next, the nonce is copied to the block. We use 16 – L + 1 bytes of the nonce since we
must store the flags and L bytes of the plaintext length value.

To make things a bit more practical, we only store 32 bits of the plaintext length. If the
user specifies a short nonce, the value of L has to be increased to compensate. In this case,
we pad with zero bytes before encoding the actual length.

149 /* encrypt PAD */
150 if ((err =
151 cipher_descriptor[cipher].ecb_encrypt(
152 PAD, PAD, skey)) != CRYPT_OK) {
153 goto error;
154 }

www.syngress.com

332 Chapter 7 • Encrypt and Authenticate Modes

404_CRYPTO_07.qxd  10/30/06  11:51 AM  Page 332



We are using CBC-MAC effectively with a zeroed IV, so the first thing we must do is
encrypt PAD.The ciphertext is now the IV for the CBC-MAC of the rest of the header and
plaintext data.

156 /* handle header */
157 if (headerlen > 0) {
158 x = 0;

We only get here and do any of the following code if there is header data to process.

160 /* store length */
161 if (headerlen < ((1UL<<16) - (1UL<<8))) {
162 PAD[x++] ^= (headerlen>>8) & 255;
163 PAD[x++] ^= headerlen & 255;
164 } else {
165 PAD[x++] ^= 0xFF;
166 PAD[x++] ^= 0xFE;
167 PAD[x++] ^= (headerlen>>24) & 255;
168 PAD[x++] ^= (headerlen>>16) & 255;
169 PAD[x++] ^= (headerlen>>8) & 255;
170 PAD[x++] ^= headerlen & 255;
171 }

The encoding of the length of the header data depends on the size of the header data. If
it is less than 65,280 bytes, we use the short two-byte encoding. Otherwise, we emit the
escape sequence 0xFF FE and then the four-byte encoding. CCM supports larger header
sizes, but you are unlikely to ever need to support it.

Note that instead of XORing the PAD (as an IV) against another buffer, we simply
XOR the lengths into the PAD.This avoids any double buffering we would otherwise have
to use.

173 /* now add the data */
174 for (y = 0; y < headerlen; y++) {
175 if (x == 16) {
176 /* full block so let's encrypt it */
177 if ((err =
178 cipher_descriptor[cipher].ecb_encrypt(
179 PAD, PAD, skey)) != CRYPT_OK) {
180 goto error;
181 }
182 x = 0;
183 }
184 PAD[x++] ^= header[y];
185 }

This loop processes the entire header data. We do not provide any sort of LTC_FAST
optimizations, since headers are usually empty or very short. Every 16 bytes of header data,
we encrypt the PAD to emulate CBC-MAC properly.

187 /* remainder? */
188 if (x != 0) {
189 if ((err =
190 cipher_descriptor[cipher].ecb_encrypt(
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191 PAD, PAD, skey)) != CRYPT_OK) {
192 goto error;
193 }
194 }
195 }

If we have leftover header data (that is, headerlen is not a multiple of 16), we pad it with
zero bytes and encrypt it. Since XORing zero bytes is a no-operation, we simply ignore that
step and invoke the cipher.

197 /* setup the ctr counter */
198 x = 0;
199
200 /* flags */
201 ctr[x++] = L-1;
202
203 /* nonce */
204 for (y = 0; y < (16 - (L+1)); ++y) {
205 ctr[x++] = nonce[y];
206 }
207 /* offset */
208 while (x < 16) {
209 ctr[x++] = 0;
210 }

This code creates the initial counter for the CTR encryption mode.The flags only con-
tain the length of the plaintext length.The nonce is copied much as it is for the CBC-MAC,
and the rest of the block is zeroed.The bytes after the nonce are incremented during the
encryption.

212 x = 0;
213 CTRlen = 16;
214
215 /* now handle the PT */
216 if (ptlen > 0) {
217 y = 0;
218 #ifdef LTC_FAST
219 if (ptlen & ~15) {
220 if (direction == CCM_ENCRYPT) {
221 for (; y < (ptlen & ~15); y += 16) {

If we are encrypting, we handle all complete 16-byte blocks of plaintext we have.

222 /* increment the ctr? */
223 for (z = 15; z > 15-L; z--) {
224 ctr[z] = (ctr[z] + 1) & 255;
225 if (ctr[z]) break;
226 }

The CTR counter is big endian and stored at the end of the ctr array.This code incre-
ments it by one.

227 if ((err =
228 cipher_descriptor[cipher].ecb_encrypt(
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229 ctr, CTRPAD, skey)) != CRYPT_OK) {
230 goto error;
231 }

We must encrypt the CTR counter before using it to encrypt plaintext.

233 /* xor the PT against the pad first */
234 for (z = 0; z < 16; z += sizeof(LTC_FAST_TYPE)) {
235 *((LTC_FAST_TYPE*)(&PAD[z])) ^=
236 *((LTC_FAST_TYPE*)(&pt[y+z]));
237 *((LTC_FAST_TYPE*)(&ct[y+z])) =
238 *((LTC_FAST_TYPE*)(&pt[y+z])) ^
239 *((LTC_FAST_TYPE*)(&CTRPAD[z]));
240 }

This loop XORs 16 bytes of plaintext against the CBC-MAC pad, and then creates 16
bytes of ciphertext by XORing CTRPAD against the plaintext. We do the encryption
second (after the CBC-MAC), since we allow the plaintext and ciphertext to point to the
same buffer.

241 if ((err =
242 cipher_descriptor[cipher].ecb_encrypt(
243 PAD, PAD, skey)) != CRYPT_OK) {
244 goto error;
245 }
246 }

Encrypting the CBC-MAC pad performs the required MAC operation for this 16-byte
block of plaintext.

247 } else {
248 for (; y < (ptlen & ~15); y += 16) {
249 /* increment the ctr? */
250 for (z = 15; z > 15-L; z--) {
251 ctr[z] = (ctr[z] + 1) & 255;
252 if (ctr[z]) break;
253 }
254 if ((err =
255 cipher_descriptor[cipher].ecb_encrypt(
256 ctr, CTRPAD, skey)) != CRYPT_OK) {
257 goto error;
258 }
259
260 /* xor the PT against the pad last */
261 for (z = 0; z < 16; z += sizeof(LTC_FAST_TYPE)) {
262 *((LTC_FAST_TYPE*)(&pt[y+z])) =
263 *((LTC_FAST_TYPE*)(&ct[y+z])) ^
264 *((LTC_FAST_TYPE*)(&CTRPAD[z]));
265 *((LTC_FAST_TYPE*)(&PAD[z])) ^=
266 *((LTC_FAST_TYPE*)(&pt[y+z]));
267 }
268 if ((err =
269 cipher_descriptor[cipher].ecb_encrypt(
270 PAD, PAD, skey)) != CRYPT_OK) {
271 goto error;
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272 }
273 }
274 }
275 }

We handle decryption similarly, but distinctly, since we allow the plaintext and cipher-
text to point to the same memory. Since this code is likely to be unrolled, we avoid having
redundant conditional code inside the main loop where possible.

276 #endif
277
278 for (; y < ptlen; y++) {
279 /* increment the ctr? */
280 if (CTRlen == 16) {
281 for (z = 15; z > 15-L; z--) {
282 ctr[z] = (ctr[z] + 1) & 255;
283 if (ctr[z]) break;
284 }
285 if ((err =
286 cipher_descriptor[cipher].ecb_encrypt(
287 ctr, CTRPAD, skey)) != CRYPT_OK) {
288 goto error;
289 }
290 CTRlen = 0;
291 }
292
293 /* if we encrypt we add the bytes to the MAC first */
294 if (direction == CCM_ENCRYPT) {
295 b = pt[y];
296 ct[y] = b ^ CTRPAD[CTRlen++];
297 } else {
298 b = ct[y] ^ CTRPAD[CTRlen++];
299 pt[y] = b;
300 }
301
302 if (x == 16) {
303 if ((err =
304 cipher_descriptor[cipher].ecb_encrypt(
305 PAD, PAD, skey)) != CRYPT_OK) {
306 goto error;
307 }
308 x = 0;
309 }
310 PAD[x++] ^= b;
311 }

This block performs the CCM operation for any bytes of plaintext not handled by the
LTC_FAST code.This could be because the plaintext is not a multiple of 16 bytes, or that
LTC_FAST was not enabled. Ideally, we want to avoid needing this code as it is slow and
over many packets can consume a fair amount of processing power.

313 if (x != 0) {
314 if ((err =
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315 cipher_descriptor[cipher].ecb_encrypt(
316 PAD, PAD, skey)) != CRYPT_OK) {
317 goto error;
318 }
319 }
320 }

We finish the CBC-MAC if there are bytes left over.As in the processing of the header,
we implicitly pad with zeros by encrypting the PAD as is.At this point, the PAD now con-
tains the CBC-MAC value but not the CCM tag as we still have to encrypt it.

322 /* setup CTR for the TAG */
323 for (z=15;z>15-L;z++) ctr[z] = 0x00;
324 if ((err =
325 cipher_descriptor[cipher].ecb_encrypt(
326 ctr, CTRPAD, skey)) != CRYPT_OK) {
327 goto error;
328 }

The CTR pad for the CBC-MAC tag is computed by zeroing the last L bytes of the
CTR counter and encrypting it to CTRPAD.

330 if (skey != uskey) {
331 cipher_descriptor[cipher].done(skey);
332 }

If we scheduled our own key, we will now free any allocated resources.

334 /* store the TAG */
335 for (x = 0; x < 16 && x < *taglen; x++) {
336 tag[x] = PAD[x] ^ CTRPAD[x];
337 }
338 *taglen = x;

CCM allows a variable length tag, from 4 to 16 bytes in length in 2-byte increments. We
encrypt and store the CCM tag by XORing the CBC-MAC tag with the last encrypted
CTR counter.

340 #ifdef LTC_CLEAN_STACK
341 zeromem(skey, sizeof(*skey));
342 zeromem(PAD, sizeof(PAD));
343 zeromem(CTRPAD, sizeof(CTRPAD));
344 #endif

This block zeroes memory on the stack that could be considered sensitive. We hope the
stack has not been swapped to disk, but this routine does not make this guarantee. By
clearing the memory, any further potential stack leaks will not be sharing the keys or CBC-
MAC intermediate values with the attacker. We only perform this operation if the user
requested it by defining the LTC_CLEAN_STACK macro.
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TIP

In most modern operating systems, the memory used by a program (or process)
is known as virtual memory. The memory has no fixed physical address and can
be moved between locations and even swapped to disk (through page invalida-
tion). This latter action is typically known as swap memory, as it allows users to
emulate having more physical memory than they really do.

The downside to swap memory, however, is that the process memory could
contain sensitive information such as private keys, usernames, passwords, and
other credentials. To prevent this, an application can lock memory. In operating
systems such as those based on the NT kernel (e.g., Win2K, WinXP), locking is
entirely voluntary and the OS can choose to later swap nonkernel data out.

In POSIX compatible operating systems, such as those based on the Linux
and the BSD kernels, a set of functions such as mlock(), munlock(), mlockall(),
and so forth have been provided to facilitate locking. Physical memory in most
systems can be costly, so the polite and proper application will request to lock
as little memory as possible. In most cases, locked memory will span a region
that contains pages of memory. On the x86 series of processors, a page is four
kilobytes. This means that all locked memory will actually lock a multiple of four
kilobytes. 

Ideally, an application will pool its related credentials to reduce the number
of physical pages required to lock them in memory. 

345 error:
346 if (skey != uskey) {
347 XFREE(skey);
348 }
349
350 return err;
351 }

Upon successful completion of this function, the user now has the ciphertext (or plain-
text depending on the direction) and the CCM tag. While the function may be a tad long, it
is nicely bundled up in a single function call, making its deployment rather trivial.

Putting It All Together
This chapter introduced the two standard encrypt and authenticate modes as specified by
both NIST and IEEE.They are both designed to take a single key and IV (nonce) and pro-
duce a ciphertext and message authentication code tag, thereby simplifying the process for
developers by reducing the number of different standards they must support, and in practice
the number of functions they have to call to accomplish the same results.
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Knowing how to use these modes is a matter of properly choosing an IV, making ideal
use of the additional authentication data (AAD), and checking the MAC tag they produce.
Neither of these two modes will manage any of these properties for the developer, so they
must look after them carefully.

For most applications, it is highly advisable to use these modes over an ad hoc combina-
tion of encryption and authentication, if not solely for the reason of code simplicity, then
also for proper adherence to cryptographic standards.

What Are These Modes For?
We saw in the previous chapter how we could accomplish both privacy and authentication
of data through the combined use of a symmetric cipher and chaining mode with a MAC
algorithm. Here, the goal of these modes is to combine the two.This accomplishes several
key goals simultaneously.As we alluded to in the previous chapter, CCM and GCM are also
meant for small packet messages, ideal for securing a stream of messages between parties.
CCM and GCM can be used for offline tasks such as file encryption, but they are not meant
for such tasks (especially CCM since it needs the length of the plaintext in advance).

First, combining the modes makes development simpler—there is only one key and one
IV to keep track of.The mode will handle using both for both tasks.This makes key deriva-
tion easier and quicker, as less session data must be derived. It also means there are fewer
variables floating around to keep track of.

These combined modes also mean it’s possible to perform both goals with a single func-
tion call. In code where we specifically must trap error codes (usually by looking at the
return codes), having fewer functions to call means the code is easier to write safely. While
there are other ways to trap errors such as signals and internal masking, making threadsafe
global error detection in C is rather difficult.

In addition to making the code easier to read and write, combined modes make the
security easier to analyze. CCM, for instance, is a combination of CBC-MAC and CTR
encryption mode. In various ways, we can reduce the security of CCM to the security of
these modes. In general, with a full length MAC tag, the security of CCM reduces to the
security of the block cipher (assuming a unique nonce and random key are used).

What we mean by reduce is that we can make an argument for equivalence. For example,
if the security of CTR is reducible to the security of the cipher, we are saying it is as secure
as the latter. By this reasoning, if one could break the cipher, he could also break CTR
mode. (Strictly speaking, the security of CTR reduces to the determination of whether the
cipher is a PRP.)

So, in this context, if we say CCM reduces to the security of the cipher in terms of
being a proper pseudo-random permutation (PRP), then if we can break the cipher (by
showing it is not a PRP), we can likely break CCM. Similarly, GCM reduces to the security
of the cipher for privacy and to universal hashing for the MAC. It is more complicated to
prove that it can be secure.
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Choosing a Nonce
Both CCM and GCM require a unique nonce (N used once) value to maintain their pri-
vacy and authenticity goals. In both cases, the value need not be random, but merely unique
for a given key.That is, you can safely use the same nonce (only once, though) between two
different keys. Once you use the nonce for a particular key, you cannot use it again.

GCM Nonces
GCM was designed to be most efficient with 12-byte nonce values.Any longer or shorter
and GHASH is used to create an IV for the mode. In this case, we can simply use the 12-
byte nonce as a packet counter. Since we have to send the nonce to the other party anyway,
this means we can double up on the purpose of this field. Each packet would get its own
12-byte nonce (by incrementing it), and the receiver can check for replays and out of order
packets by checking the nonce as if it were a 96-bit number.

You can use the 12-byte number as either a big or little endian value, as GCM will not
truncate the nonce.

CCM Nonces
CCM was not designed as favorably to the nonces as GCM was. Still, if you know all your
packets will be shorter than 65,536 bytes, you can safely assume your nonce is allowed to be
up to 13 bytes. Like GCM, you can use it as a 104-bit counter and increment it for every
packet you send out.

If you cannot determine the length of your packets ahead of time, it is best to default to a
shorter nonce (say 11 bytes, allowing up to four-gigabyte packets) as your counter. Remember,
there is no magic property to the length of the nonce other than you have to have a long
enough nonce to have unique values for every packet you send out under the same key.

CCM will truncate the nonce if the packet is too long (to have room to store the
length), so in practice it is best to treat it as a little endian counter.The most significant bytes
would be truncated. It is even better to just use a shorter nonce than worry about it.

Additional Authentication Data
Both CCM and GCM support a sort of side channel known as additional authentication
data (AAD).This data is meant to be nonprivate data that should influence the MAC tag
output.That is, if the plaintext and AAD are not present together and unmodified, the tag
should reflect that.

The usual use for AAD is to store session metadata along with the packet.Things such as
username, session ID, and transaction ID are common.You would never use a user credential,
since it would not really be something you need on a per-packet basis.

Both protocols support empty AAD strings. Only GCM is optimized to handle AAD
strings that are a multiple of 16 bytes long. CCM inserts a four- or six-byte header that off-
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sets the data and makes it harder to optimize for. In general, if you are using CCM, try to
have very short AAD strings, preferably less than 10 bytes, as you can cram that into a single
encrypt invocation. For GCM, try to have your AAD strings a multiple of 16 bytes even if
you have to pad with zero bytes (the implementation cannot do this padding for you, as it
would change the meaning of the AAD).

MAC Tag Data
The MAC tag produced by both implementations is not checked internally.The typical
usage would involve transmitting the MAC tag with the ciphertext, and the recipient would
compare it against the one he generated while decrypting the message.

In theory at least, you can truncate the MAC tag to short lengths such as 80 or 96 bits.
However, some evidence points to the contrary with GCM, and in reality the savings are
trivial.As the research evolves, it would be best to read up on the latest analysis papers of
GCM and CCM to see if short tags are still in fact secure.

In practice, you can save more space if you aggregate packets over a stable channel. For
example, instead of sending 128-byte packets, send 196- or 256-byte packets.You will send
fewer nonces (and protocol data), and the difference can allow you to use a longer MAC tag.
Clearly, this does not work in low latency switching cases (e.g., VoIP), so it is not a bullet-
proof suggestion.

Example Construction
For our example, we will borrow from the example of Chapter 6, except instead of using
HMAC and CTR mode, we will use CCM.The rest of the demo works the same.Again, we
will be using LibTomCrypt, as it provides a nice CCM interface that is very easy to use in
fielded applications.

encmac.c:
001 #include <tomcrypt.h>
002
003 #define KEYLEN 16

We only have one key and its 16 bytes long.

005 /* Our Per Packet Sizes, Nonce len and MAC len */
006 #define NONCELEN 4
007 #define MACLEN 12
008 #define OVERHEAD (NONCELEN+MACLEN)

As in the previous example, we have a packet counter length (the length of our nonce),
MAC tag length, and the composite overhead. Here we have a 32-bit counter and a 96-bit
MAC.

010 /* errors */
011 #define MAC_FAILED -3
012 #define PKTCTR_FAILED -4
013
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014 /* our nice containers */
015 typedef struct {
016 unsigned char PktCTR[NONCELEN],
017 key[KEYLEN];
018 symmetric_key skey;
019 } encauth_channel;

Our encrypted and authenticated channel is similar to the previous example.The differ-
ences here are that we are using a generic scheduled key, and we do not have a MAC key.

021 typedef struct {
022 encauth_channel channels[2];
023 } encauth_stream;
024
025
026 void register_algorithms(void)
027 {
028 register_cipher(&aes_desc);
029 register_hash(&sha256_desc);
030 }
031
032 int init_stream(const unsigned char *masterkey,
033 unsigned masterkeylen,
034 const unsigned char *salt,
035 unsigned saltlen,
036 encauth_stream *stream,
037 int node)
038 {
039 unsigned char tmp[2*KEYLEN];
040 unsigned long tmplen;
041 int err;
042 encauth_channel tmpswap;
043
044 /* derive keys */
045 tmplen = sizeof(tmp);
046 if ((err = pkcs_5_alg2(masterkey, masterkeylen,
047 salt, saltlen,
048 16, find_hash("sha256"),
049 tmp, &tmplen)) != CRYPT_OK) {
050 return err;
051 }
052
053 /* copy keys */
054 memcpy(stream->channels[0].key,
055 tmp, KEYLEN);
056 memcpy(stream->channels[1].key,
057 tmp + KEYLEN, KEYLEN);
058
059 /* reset counters */
060 memset(stream->channels[0].PktCTR, 0,
061 sizeof(stream->channels[0].PktCTR));
062 memset(stream->channels[1].PktCTR, 0,
063 sizeof(stream->channels[1].PktCTR));
064
065 /* schedule keys+setup mode */
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066 if ((err = rijndael_setup(stream->channels[0].key,
067 KEYLEN, 0,
068 &stream->channels[0].skey))
069 != CRYPT_OK) {
070 return err;
071 }
072
073 if ((err = rijndael_setup(stream->channels[1].key,
074 KEYLEN, 0,
075 &stream->channels[1].skey))
076 != CRYPT_OK) {
077 return err;
078 }
079
080 /* do we swap? */
081 if (node != 0) {
082 tmpswap = stream->channels[0];
083 stream->channels[0] = stream->channels[1];
084 stream->channels[1] = tmpswap;
085 zeromem(&tmpswap, sizeof(tmpswap));
086 }
087
088 zeromem(tmp, sizeof(tmp));
089
090 return 0;
091 }

This initialization function is essentially the same. We only change how much PKCS #5
data is to be generated.

093 int encode_frame(const unsigned char *in,
094 unsigned inlen,
095 unsigned char *out,
096 encauth_stream *stream)
097 {
098 int x, err;
099 unsigned long taglen;
100
101 /* increment counter */
102 for (x = NONCELEN-1; x >= 0; x--) {
103 if (++(stream->channels[0].PktCTR[x]) & 255) break;
104 }
105
106 /* store counter */
107 for (x = 0; x < NONCELEN; x++) {
108 out[x] = stream->channels[0].PktCTR[x];
109 }

We use our packet counter PktCTR as the a method of keeping the packets in order.
We also use it as a nonce for the CCM algorithm.The output generated will first consist of
the nonce, followed by the ciphertext, and then the MAC tag.

111 /* encrypt it */
112 taglen = MACLEN;
113 if ((err = ccm_memory(

www.syngress.com

Encrypt and Authenticate Modes • Chapter 7 343

404_CRYPTO_07.qxd  10/30/06  11:51 AM  Page 343



This function call will generate the ciphertext and MAC tag for us. Libraries are nice.

114 find_cipher("aes"),

First, we need the index of the cipher we want to use. In this case,AES with CCM. We
could otherwise use any other 128-bit block cipher such as Twofish,Anubis, or Serpent.

115 stream->channels[0].key, KEYLEN,

This is the byte array of the key we want to use and the key length.

116 &stream->channels[0].skey,

This is the pre-scheduled key. Our CCM routine will use this instead of scheduling the
key on the fly. We pass the byte array for completeness (accelerators may need it).

117 stream->channels[0].PktCTR, NONCELEN,

This is the nonce for the packet.

118 NULL, 0,

This is the AAD; in this case, we are sending none. We pass NULL and 0 to signal this
to the library.

119 (unsigned char*)in, inlen, out + NONCELEN,
120 out+inlen+NONCELEN, &taglen, CCM_ENCRYPT))

These are the plaintext and ciphertext buffers.The plaintext is always specified first
regardless of the direction we are using. It may get a bit confusing for those expecting an
“input” and “output” order of arguments.

121 != CRYPT_OK) {
122 return err;
123 }
124 return CRYPT_OK;
125 }

The ccm_memory() function call produces the ciphertext and MAC tag.The format of
our packet contains the nonce, followed by the ciphertext, and then the MAC tag. From a
security standpoint, this function provides for the same security goals as the previous
chapter’s incarnation of this function.The improvement in this case is that we have short-
ened the code and removed a few variables from our structure.

127 int decode_frame(const unsigned char *in,
128 unsigned inlen,
129 unsigned char *out,
130 encauth_stream *stream)
131 {
132 int err;
133 unsigned char tag[MACLEN];
134 unsigned long taglen;
135
136 /* restore our original inlen */
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137 if (inlen < MACLEN+NONCELEN) { return -1; }
138 inlen -= MACLEN+NONCELEN;

As before, we assume that inlen is the length of the entire packet and not just the plain-
text. We first make sure it is a valid length, and then subtract the MAC tag and nonce from
the length.

140 /* decrypt it */
141 taglen = sizeof(tag);
142 if ((err = ccm_memory(
143 find_cipher("aes"),
144 stream->channels[1].key, KEYLEN,
145 &stream->channels[1].skey,
146 (unsigned char*)in, NONCELEN,
147 NULL, 0,
148 out, inlen, (unsigned char*)in + NONCELEN,
149 tag, &taglen, CCM_DECRYPT))
150 != CRYPT_OK) {
151 return CRYPT_OK;
152 }

For both encryption and decryption, the ccm_memory() function is used. In decrypt
mode, it is used much the same, except our out buffer goes in the plaintext argument posi-
tion.Therefore, it appears before the input, which seems a bit awkward.

Note that we store the MAC tag locally since we need to compare it next.

154 /* compare */
155 if (memcmp(tag, in+inlen+NONCELEN, MACLEN)) {
156 return MAC_FAILED;
157 }
158
159 /* compare CTR */
160 if (memcmp(in, stream->channels[1].PktCTR, NONCELEN) <= 0) {
161 return PKTCTR_FAILED;
162 }

These checks are the same as they were in the previous incarnation.The first avoids
alterations, and the second avoids replay attacks. We still do not handle out of order packets
(e.g., with a window), but that should be trivial to accommodate.

164 /* copy the pktctr */
165 memcpy(stream->channels[1].PktCTR, in, NONCELEN);

At this point, our packet is valid, so we copy the nonce out and store it locally, thus pre-
venting future replay attacks.

167 return CRYPT_OK;
168 }
169
<snip>

The rest of our demonstration program is the same as our previous incarnation, as we
have not changed the function interfaces.

www.syngress.com

Encrypt and Authenticate Modes • Chapter 7 345

404_CRYPTO_07.qxd  10/30/06  11:51 AM  Page 345



Q: What is an Encrypt and Authenticate algorithm?

A: These are algorithms designed to accept a single key and IV, and allow the caller to both
encrypt and authenticate his message. Unlike distinct encrypt and authenticate protocols,
these modes do not require two independent keys for security.

Q: What are the benefits of these modes over the distinct modes?

A: There are two essential benefits to these modes. First, they are easier to incorporate into
cryptosystems, as they require fewer keys, and perform two functions at the same time.
This means a developer can accomplish two goals with a single function call. It also
means they are more likely to start authenticating traffic.The second benefit is that they
are often reducible to the security of the underlying cipher or primitive.

Q: What does reducible mean?

A: When we say one problem is reducible to another, we imply that solving the former
involves a solution to the latter. For instance, the security of CTR-AES reduces to the
problem of whether AES is a true pseudo random permutation (PRP). If AES is not a
PRP, CTR-AES is not secure.

Q: What Encrypt and Authenticate modes are standardized?

A: CCM is specified in the NIST publication SP 800-38C. GCM is an IEEE standard and
will be specified in the NIST publication SP 800-38D in the future.

Q: Should I use these modes over distinct modes such as AES-CTR and SHA1-HMAC?

A: That depends on whether you are trying to adhere to an older standard. If you are not,
most likely GCM or CCM make better use of system resources to accomplish equiva-
lent goals.The distinct modes can be just as secure in practice, but are generally harder
to implement and verify in fielded applications.They also rely on more security assump-
tions, which poses a security risk.
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Q: What is a nonce and what is the importance of it?

A: A nonce is a parameter (like an initial value) that is meant to be used only once. Nonces
are used to introduce entropy into an otherwise static and fully deterministic process
(that is, after the key has been chosen). Nonces must be unique under one key, but may
be reused across different keys. Usually, they are simply packet counters. Without a
unique nonce, both GCM and CCM have no provable security properties.

Q: What is additional authentication data? AAD? Header data?

A: Additional authentication Data (AAD), also known as header data and associated data (in
EAX), is data related to a message, that must be part of the MAC tag computation but
not encrypted.Typically, it is simple metadata related to the session that is not private but
affects the interpretation of the messages. For instance, an IP datagram encoder could
use parts of the IP datagram as part of the header data.That way, if the routing is
changed it is detectable, and since the IP header cannot be encrypted (without using
another IP standard), it must remain in plaintext form.That is only one example of
AAD; there are others. In practice, it is not used much but provided nonetheless.

Q: Which mode should I use? GCM or CCM?

A: That depends on the standard you are trying to comply with (if any). CCM is cur-
rently the only NIST standard of the two. If you are working with wireless standards,
chances are you will need GCM. Outside of those two cases, it depends on the plat-
form. GCM is very fast, but requires a huge 64-kilobyte table to achieve this speed (at
least in software). CCM is a slight bit slower, but is much simpler in design and imple-
mentation. CCM also does not require huge tables to achieve its performance claims.
If you removed the tables from GCM, it would be much slower than CCM.

Q: Are there any patents on these modes?

A: Neither of GCM and CCM is patented.They are free for any use.

Q: Where can I find implementations?

A: Currently, only LibTomCrypt provides both GCM and CCM in a library form.
Brian Gladman has independent copyrighted implementations available. Crypto++
has neither, but the author is aware of this.

Q: What do I do with the MAC tag?

A: If you are encrypting, transmit it along with your ciphertext and AAD data (if any).
If you are decrypting, the decryption will generate a MAC tag; compare that with
the value stored along with the ciphertext. If they do not compare as equal, the
message has been altered or the stored MAC tag is invalid.
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Introduction
So far, we have been examining symmetric key algorithms that rely solely on secret keys for
security. Now we are going to explore the realm of public key cryptography, but before we
can do this, we have a significant piece of mathematics to cover.

Most standard public key algorithms are based on problems that are hard to solve in
general. For example, the RSA algorithm is (loosely speaking) as secure as factoring is hard.
That is, if factoring is hard, breaking RSA is, too (in practice). Similarly, elliptic curve algo-
rithms are as hard to break as inverting point multiplication on the given curve.

In both cases, the “problem” becomes harder as you increase the size of the problem. In
the case of RSA, as you increase the composite (public key), factoring becomes harder.
Similarly, as you increase the order of the elliptic curve (do not worry if you do not know
what that means at this point), the difficulty of inverting point multiplication increases.

To accommodate these larger parameters, we must deploy algorithms known collectively
as BigNum algorithms.

What Are BigNums?
As developers, you are most likely aware of the size limitations of your preferred data types.
In C, for example, the int data type can represent only up to 32767 in a portable fashion.
Even though on certain platforms it may be 32 or even 64 bits in length, you cannot always
count on that.

Most programming languages at best have a 64-bit data type at their disposal. If we had
to live within these constraints directly, we would have very insecure public key algorithms.
Factoring 64-bit numbers is a trivial task, for instance.

To work around these limitations, we use algorithms typically known as either multiple
or fixed precision algorithms. These algorithms construct representations of larger integers
using the supported data type (such as unsigned long) as a digit—much like we construct
larger numbers in decimal by appending more digits in the range 0–9.

The digits (also known as limbs in various libraries) form the basis of all arithmetic.
They are typically chosen to be efficient on the target platform. For example, if your
machine can perform operations on unsigned long data types efficiently, that will likely be
your digit type. The math we must perform works much the same as was taught in school
with decimal. The only difference being that instead of using 10 as our radix we use a
power of 2, such as 232.

Fixed and multiple precision algorithms differ little in theory, and mostly in implementa-
tion. In multiple precision algorithms, we seek to accommodate any size integer by allo-
cating new memory as required to represent the result of an operation. This is nice to have
if we are dealing with numbers of unknown dimensions. However, it has the overhead of
performing heap operations in the middle of calculations, which tend to be rather slow.
Fixed precision algorithms only have a limited (fixed) space to store the representation of a
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number. As such, there is no need for heap operations in the middle of a calculation. Fixed
precision is well suited for tasks where the dimensions of the inputs are known in advance.
For example, if you are implementing ECC P-192, you know your largest number will be
384 bits (2*192) and you can adjust accordingly.

In this text, we focus on fixed precision implementation details, as they are more effi-
cient. We dispense with much of the discussion of BigNum math and instead defer the
reader to various sources.

Further Resources
For the curious reader, various other sources cover BigNum mathematics in greater depth.
The book BigNum Math covers the topic by presenting the development of a public domain
math library, LibTomMath. It is certainly worth a read for those new to the subject. The
text The Art of Computer Programming Volume 2 also covers the topic from a theoretical angle,
presenting key mathematical concepts behind efficient algorithms.

The reader should also examine the freely available source code for the LibTomMath
and TomsFastMath packages, which implement multiple and fixed (respectively) precision
arithmetic. The source codes for both are well documented and free to use for any purpose.

Key Algorithms
Certain key algorithms when implemented correctly can make a BigNum library perform
very well. Even though there are dozens of algorithms involved in something like an elliptic
curve point addition, there are only four algorithms of critical importance: multiplication,
squaring, reduction, and modular inversion.

When performing typical public key operations, the processor time usage can usually
broken down from most to least to reduction, multiplication, squaring, and modular inver-
sion—which gives you a good idea of where to spend the most amount of time when 
optimizing.

In practice, we are talking about the same algorithms that are taught to young children
for things like multiplication. The key difference is how they are implemented. Things like
accumulator structure, loop unrolling, and opcode selection can make all the difference. We
will present the four algorithms using code suitable for x86, PPC, and ARM processors using
GCC as our development tool of choice.

The Algorithms

Represent!
Before we can dive into the algorithms required for efficient public key cryptography, we
must discuss the structure we will use to represent these integers. For our purposes, we will
borrow from the TomsFastMath package, which uses a structure similar to the following:
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typedef struct {
fp_digit dp[FP_SIZE];
int used,

sign;
} fp_int;

where fp_digit is a type for a single digit, usually equivalent to unsigned long but can change
to suit the platform. Along with that type is an fp_word type that we have not seen yet. It is
required to be twice the size of an fp_digit and be able to hold the product of two maximum
valued fp_digit variables. The FP_SIZE macro is the default maximum size of an integer. It
is based on the size of a digit and the number of bits required. For instance, if fp_digit is a
32-bit type and you wish to represent up to 384-bit integers, FP_SIZE must be at least 12.

The used flag indicates how many digits of the dp array are nonzero. This allows us to
manipulate shorter integers more efficiently. For example, just because your integers can be
up to (say) 12 digits does not mean they all are going to be that big. Performing 12-digit
operations on numbers that may only be 6 digits long wastes time and resources.

The sign flag denotes the sign of the integer. It is 0 for non-negative, and nonzero for
negative. This means that our integers are always unsigned and only this flag controls the
behavior.

The digits of the fp_int type are used in little endian order fashion. For example, with a
32-bit fp_digit if the dp array contained {1, 2, 3, 4, 0, 0, 0, ..., 0}, that would represent the
integer 1 + 2*232 + 3*264 + 4*296.

Multiplication
Multiplication, much like most BigNum problems, can be solved with a variety of algo-
rithms. Algorithms such as Karatsuba and Toom-Cook linearized multiplication claim effi-
cient asymptotic time requirements, but are in fact not that useful in practice—at least, not
with typical software platforms. They do come in handy with hardware platforms, however.

It turns out the most profitable way to multiply two numbers of the size we use in
public key algorithms is to use the basic O(n2) long-hand algorithm. That is, if we are multi-
plying A by B, we would multiply every digit of B by every digit of A and accumulate (add
up) all of the products. Assuming that A and B have the same number of digits, n, this pro-
cess requires n2 single precision multiplications (that is, multiplications of fp_digit types)
(Figure 8.1).
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Figure 8.1 Multiplication Algorithm
Input

A, B: Integers
Output

C: Product of A and B

1. Zero C

2. pa = A.used + B.used

3. if pa >= FP_SIZE then 

1. pa = FP_SIZE – 1

4. {c0, c1, c2} = {0, 0, 0}

5. for ix from 0 to pa – 1 do

1. ty = MIN(ix, B.used – 1)

2. tx = ix – ty

3. iy = MIN(A.used – tx, ty + 1)

4. for iz from 0 to iy – 1 do

i. {c0, c1, c2} = {c0, c1, c2} + A.dp[tx + iz] * B.dp[ty – iz]

5. C.dp[ix] = c0

6. {c0, c1, c2} = {c1, c2, 0}

6. C.sign = A.sign XOR B.sign

7. C.used = pa

8. Return C

This algorithm produces one digit of the product per iteration of the loop (started on
step 5). We use a three-digit accumulator {c0, c1, c2} to accumulate the products inside the
inner loop. This is accomplished by adding the two-digit product to the accumulator, and
then propagating the carry to the third digit. It may sound complicated but, as we will see
shortly, it is entirely efficient.

Outside of the inner loop, the lowest digit of the accumulator holds the digit of the
product in question. We store c0 to C and then shift the accumulator down—c1 becomes
c0, c2 becomes c1, and then c2 is zeroed.

The MIN() macro is used to determine the smallest of the two operands. Using it in
the loop may seem like a branch hazard, and in practice, it is. However, as we will see, loop
unrolling can remove this from our code. The performance of the implementation depends
mostly on the ability to perform the single inner loop step efficiently.
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Lets examine the generic multiply from TomsFastMath before we look at the macros
that make this feasible.

Ripped from fp_mul_comba.c:
001 /* generic PxQ multiplier */
002 void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C)
003 {
004 int ix, iy, iz, tx, ty, pa;
005 fp_digit c0, c1, c2, *tmpx, *tmpy;
006 fp_int tmp, *dst;
007
008 COMBA_START;
009 COMBA_CLEAR;

These two macros start our accumulator and get the rest of the algorithm ready. On
platforms on which we use special registers (such as XMM with x86-sse2), we may need to
do something special (save them) before executing this code. It is entirely possible that
COMBA_START is an empty macro.

011 /* get size of output and trim */
012 pa = A->used + B->used;
013 if (pa >= FP_SIZE) {
014 pa = FP_SIZE-1;
015 }
016
017 if (A == C || B == C) {
018 fp_zero(&tmp);
019 dst = &tmp;
020 } else {
021 fp_zero(C);
022 dst = C;
023 }

So far, this is much like our pseudo code (which was actually derived from this code).

025 for (ix = 0; ix < pa; ix++) {
026 /* get offsets into the two bignums */
027 ty = MIN(ix, B->used-1);
028 tx = ix - ty;
029
030 /* setup temp aliases */
031 tmpx = A->dp + tx;
032 tmpy = B->dp + ty;
033
034 /* this is the number of times the loop will iterrate
035 while (tx++ < a->used && ty-- >= 0) { ... }
036 */
037 iy = MIN(A->used-tx, ty+1);

At this point, our inner loop is ready to execute. We use pointer aliases tmpx and tmpy to
point to the digits of A and B, respectively. This makes our inner loop simpler.

039 /* execute loop */
040 COMBA_FORWARD;
041 for (iz = 0; iz < iy; ++iz) {

www.syngress.com

354 Chapter 8 • Large Integer Arithmetic

404_CRYPTO_08.qxd  10/30/06  11:53 AM  Page 354



042 MULADD(*tmpx++, *tmpy--);
043 }

COMBA_FORWARD performs the operation of shifting the accumulator. MULADD
performs the operation of {c0, c1, c2} += *tmpx * *tmpy. At this point, we have no idea
how this will be done. The point of showing this coding technique is to illustrate the power
of macros.

045 /* store term */
046 COMBA_STORE(dst->dp[ix]);

COMBA_STORE stores the least significant digit of the accumulator. It is a macro,
since the accumulator could be in a special register that GCC cannot easily see.

047 }
048 COMBA_FINI;

COMBA_FINI is a macro that lets us clean up. For example, if we had used MMX, we
would have to put an EMMS opcode here. Like COMBA_START, it can be an empty
macro.

050 dst->used = pa;
051 dst->sign = A->sign ^ B->sign;
052 fp_clamp(dst);
053 fp_copy(dst, C);
054 }

Multiplication Macros
At this point, we have C code for multiplication, but we have no idea how the most vital
portions of the code actually work. We have cleverly hidden their details in a series of C
preprocessor macros. Why would we do this?  To make the code harder to follow?  To make
it harder for others to use?  The answer is diversity.

Our macro scheme is the basis of a library known as TomsFastMath. It currently targets
four different architectures without re-writing significant portions of the code. Our macros
are flexible enough to allow us to work with x86 in 32- and 64-bit mode (as well with
SSE2), 32 and 64-bit PPC, and ARMv4 platforms—even though the instruction sets of the
x86, PPC, and ARM do not resemble one another.

First, let’s examine the portable C implementation of these macros just to get a good
idea of what they are supposed to accomplish.

#define COMBA_START

This macro has no use inside the logic of the multiplication other than to make it easier
to support various platforms.

#define COMBA_CLEAR \
c0 = c1 = c2 = 0;
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This macro zeros the accumulator.
#define COMBA_FORWARD \

do { c0 = c1; c1 = c2; c2 = 0; } while (0);

This macro shifts the accumulator to the right and inserts a zero in the most significant
digits place.

#define COMBA_STORE(x) \
x = c0;

#define COMBA_STORE2(x) \
x = c1;

These two macros store values out of the accumulator. We have seen
COMBA_STORE, but not COMBA_STORE2, as it is part of the unrolled code.

#define COMBA_FINI

COMBA_FINI is here for support only and not required. In this case, it is simply an
empty macro.

#define MULADD(i, j) \
do { fp_word t; \
t = (fp_word)c0 + ((fp_word)i) * ((fp_word)j); c0 = t; \
t = (fp_word)c1 + (t >> DIGIT_BIT);c1 = t; c2 += t >> DIGIT_BIT; \
} while (0);

This performs the inner loop multiplication and accumulate. We use a double precision
fp_word to hold the product and then add it to the accumulator. By using double precision
types, we avoid the otherwise required test for overflow. This is because the C language lacks
an “add with carry” operation otherwise required to propagate carry bits.

So far, of all the platforms we support with our code, the only macro that changes is
MULADD. Table 8.1 lists various platforms and their respective macros.

Table 8.1 MULADD Macros for Various Platforms

x86_32 #define MULADD(i, j)\

asm(\
"movl %6,%%eax \n\t"\
"mull %7 \n\t"\
"addl %%eax,%0 \n\t"\
"adcl %%edx,%1 \n\t"\
"adcl $0,%2 \n\t"\
:"=r"(c0), "=r"(c1), "=r"(c2)
:"0"(c0),"1"(c1),"2"(c2),"m"(i),"m"(j)
:"%eax","%edx","%cc");
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Table 8.1 continued MULADD Macros for Various Platforms

x86_64 #define MULADD(i, j)\

asm(\
"movq %6,%%rax \n\t"\
"mulq %7 \n\t"\
"addq %%rax,%0 \n\t"\
"adcq %%rdx,%1 \n\t"\
"adcq $0,%2 \n\t"\
:"=r"(c0), "=r"(c1), "=r"(c2)
:"0"(c0),"1"(c1),"2"(c2),"m"(i),"m"(j)
:”%rax”,”%rdx”,”%cc”);

x86_32 + SSE2 #define MULADD(i, j)\
asm(\
"movd %6,%%mm0 \n\t"\
"movd %7,%%mm1 \n\t"\
"pmuludq %%mm1,%%mm0\n\t"\
"movd %%mm0,%%eax \n\t"\
"psrlq $32,%%mm0 \n\t"\
"addl %%eax,%0 \n\t"\
"movd %%mm0,%%eax \n\t"\
"adcl %%eax,%1 \n\t"\
"adcl $0,%2 \n\t"\
:"=r"(c0), "=r"(c1), "=r"(c2)
:"0"(c0),"1"(c1),"2"(c2),"m"(i),"m"(j)
:"%eax","%cc");

PPC32 #define MULADD(i, j)\
asm(\
" mullw 16,%6,%7 \n\t" \
" addc %0,%0,16 \n\t" \
" mulhwu 16,%6,%7 \n\t" \
" adde %1,%1,16 \n\t" \
" addze %2,%2 \n\t" \
:"=r"(c0), "=r"(c1), "=r"(c2)
:"0"(c0),"1"(c1),"2"(c2),"r"(i),"r"(j)
:"16");
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Table 8.1 MULADD Macros for Various Platforms

ARMv4 #define MULADD(i, j)\

asm(\
"UMULL r0,r1,%6,%7 \n\t"\
"ADDS %0,%0,r0 \n\t"\
"ADCS %1,%1,r1 \n\t"\
"ADC %2,%2,#0 \n\t"\
:"=r"(c0), "=r"(c1), "=r"(c2)
:"0"(c0),"1"(c1),"2"(c2),"r"(i),"r"(j)
:"r0", "r1", "%cc");

All five macros accomplish the same goal, but with different architectures in mind. They
all multiply i by j and accumulate the product in {c0, c1, c2}.

The x86_32 and x86_64 macros use the MUL instruction from the x86 instruction set.
They load the i operand into the EAX (RAX, resp.) register and then perform a multiply
against the fp_digit pointed to by j. The product in the x86 instruction set is always stored in
the EDX:EAX (RDX:RAX resp.) registers. This product is then accumulated into the
three-digit accumulator {c0, c1, c2}, which we ask GCC to alias to processor registers. When
GCC has parsed this macro, it turns into assembler output resembling the following.

movq (%rsp),%rax
mulq 8(%rsp)
addq %rax,%rcx
adcq %rdx,%rsi
adcq $0,%rdi

For those who cannot read x86_64 assembler, GCC has assigned {c0, c1, c2} to {rcx, rsi,
rdi}, three processor registers. This is partly what makes the code so efficient. The products
are accumulated without additional memory access.

The x86_32 SSE2 code is meant for Pentium 4 Northwood (before Prescott) processors.
In these processors, the FPU is used for all integer MUL instructions, which means that if
you simply use the FPU directly, you can get the product faster. Intel later improved their
cores and this is no longer the case. This code is not efficient on AMD processors, at least
not compared to the integer multiplier AMD has.

It would seem that using SSE2 to perform two 32-bit multiplications in parallel would
be a faster way to perform multiplication. This is not true, however. The AMD64 (and
Opteron) series of processors can perform a single 64-bit multiplication in roughly five pro-
cessor cycles. You would need four times as many 32-bit multiplications to accomplish what
you could with 64-bit multiplications. Therefore, even if you are doing two at once, you
have to accomplish them in less than half the time to become faster. Currently, the SSE2
multiplication is not a single cycle on AMD64 processors, nor will it be in the near future.
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The PPC32 code is another straight adaptation to the instruction set. The PPC differs
from other instruction sets in that only half of the product is produced per opcode. The
mullw instruction produces the lower 32 bits of the product, while the mulhwu produces
higher 32 bits. We could place both multiplications back to back; however, we want to avoid
clobbering1 as many registers as possible (clobbering is the GCC term for destroying the con-
tents of a register inside an assembler macro). This macro clobbers only one register and
requires three others for the accumulator.

The PPC64 instruction set has similar opcodes; for instance, mulld and mulhdu perform
the equivalent 64-bit multiplications. Those are currently not in the project due to lack of
access to a PPC64 machine.

The ARMv4 code requires a v4 core with the M features (e.g.,ARM7TDMI) or a v5
core or higher. It is perhaps the most elegant of all the code. We store the product in r0
and r1 and then accumulate it. The astute reader may notice we do not use the ARMv4
“multiply and accumulate” instruction. This is because it does not set the carry flag.
Therefore, we could not pack 32 bits per digit if we used it.

Code Unrolling
So, now we have the general technique, and macros to plug into the code. Now we need to
organize the code for real raw performance. The real boost comes from unrolling the entire
inner and outer loops. If we know in advance what size numbers we are multiplying, this
can pay off big.

Now, instead of unrolling a multiply by hand, or telling GCC implicitly the size of our
numbers, we will craft a routine that is fully explicitly unrolled. To do this, we will write a
program that emits C source code for a multiplier. For reference, we will use another source
file from the TomsFastMath project. This program accepts a single dimension N as input and
produces the C source code for a N-by-N multiply.

ripped from comba_mult_gen.c:
011 /* program emits a NxN comba multiplier */
012 #include <stdio.h>
013
014 int main(int argc, char **argv)
015 {
016 int N, x, y, z;
017 N = atoi(argv[1]);
018
019 /* print out preamble */
020 printf(
021 "void fp_mul_comba%d(fp_int *A, fp_int *B, fp_int *C)\n"

We will name the routine after how many digits it handles. For instance,
fp_mul_comba16() would perform a 16-by-16 multiplication.

022 "{\n"
023 " fp_digit c0, c1, c2, at[%d];\n"
024 "\n"
025 " memcpy(at, A->dp, %d * sizeof(fp_digit));\n"
026 " memcpy(at+%d, B->dp, %d * sizeof(fp_digit));\n"
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We copy both inputs into a single array, an optimization that is not always required but
is a nice way to lower the number of registers used on 32-bit x86 platforms (since offsetting
into the second half of at is free).

027 " COMBA_START;\n"
028 "\n"
029 " COMBA_CLEAR;\n", N, N+N, N, N, N);
030
031 /* now do the rows */
032 for (x = 0; x < (N+N-1); x++) {
033 printf(
034 " /* %d */\n", x);

This out loop controls the construction of the inner loop for the x’th digit of the
product.

035 if (x > 0) {
036 printf(
037 " COMBA_FORWARD;\n");
038 }

If we are not on the first product, we will shift the accumulator, an optimization only
really possible with a fully unrolled loop.

039 for (y = 0; y < N; y++) {
040 for (z = 0; z < N; z++) {
041 if ((y+z)==x) {
042 printf(" MULADD(at[%d], at[%d]); ", y, z+N);
043 }
044 }
045 }

This constructs the inner loop in a brute force fashion. Fortunately, we only have to
execute this once to create the source code. Essentially, we step through both inputs, and
whenever their location adds to x, we perform a MULADD.

046 printf(
047 "\n"
048 " COMBA_STORE(C->dp[%d]);\n", x);
049 }
050 printf(
051 " COMBA_STORE2(C->dp[%d]);\n"
052 " C->used = %d;\n"
053 " C->sign = A->sign ^ B->sign;\n"
054 " fp_clamp(C);\n"
055 " COMBA_FINI;\n"
056 "}\n\n\n", N+N-1, N+N);
057
058 return 0;
059 }

This preamble closes off the function and we are finished. The output of this program
resembles the following.
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tom@box ~/libtom/tomsfastmath $ ./comba_mult_gen 2
void fp_mul_comba2(fp_int *A, fp_int *B, fp_int *C)
{

fp_digit c0, c1, c2, at[4];
memcpy(at, A->dp, 2 * sizeof(fp_digit));
memcpy(at+2, B->dp, 2 * sizeof(fp_digit));
COMBA_START;

COMBA_CLEAR;
/* 0 */
MULADD(at[0], at[2]);
COMBA_STORE(C->dp[0]);
/* 1 */
COMBA_FORWARD;
MULADD(at[0], at[3]); MULADD(at[1], at[2]);
COMBA_STORE(C->dp[1]);
/* 2 */
COMBA_FORWARD;
MULADD(at[1], at[3]);
COMBA_STORE(C->dp[2]);
COMBA_STORE2(C->dp[3]);
C->used = 4;
C->sign = A->sign ^ B->sign;
fp_clamp(C);
COMBA_FINI;

}

This function performs a 2-by-2 multiplication in a fully unrolled fashion. The payoff of
unrolling the code depends on the size of the numbers and the platform in question. On
the AMD64 and Opteron processors, it always pays off, especially since memory is usually in
abundance. For example, compare the figures for the Opteron in Table 8.2.

Table 8.2 AMD Opteron Cycle Counts for Integer Multiplication

Size (bits) Unrolled (cycles) Looped (cycles)

128 53 229
256 104 346
512 272 876
1024 934 2,248

From Table 8.2, we can see that the unrolled code behaves very nicely on the Opteron.
In fact, it works so well that the processor is executing more than one opcode per cycle
overall, which is a nice property to have. For example, the 1024-bit multiplication requires
256 64-bit multiplications, which should on their own require 1280 cycles to process. The
reason for the quicker return time is that the Opteron multiplier is pipelined, allowing it to
process more than one product at once.

On platforms such as the PPC and ARM, memory typically is not abundant and one
must measure carefully. While the unrolled code will always win over in terms of perfor-
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mance, due to the lack of control structure (e.g., the for loops) it is often difficult to pack
the code. For example, a 6-by-6 multiplier, something you may use for ECC P-192, requires
1088 bytes when fully unrolled on the ARMv4 processors (tested with GCC 4.1.1 on an
ARM7TDMI platform).This may not seem like a lot in most cases; however, the growth of
the function is quadratic. For example, a 12-by-12 multiplier, twice the dimension, requires
four times the space (4036 bytes).

The RSA algorithm (see Chapter 9,“Public Key Algorithms”) requires numbers starting
in the 32-digit (on 32-bit platforms) range. A 32-by-32 multiplier on the ARM when fully
unrolled requires 27,856 bytes. This is very likely far too much memory for most environ-
ments. Fortunately, algorithms such as ECC (see Chapter 9) use small numbers, making loop
unrolling for multiplication tractable.

As a general rule of thumb, on most efficient RISC cores, if you are dealing 10 or fewer
digits it is a good tradeoff to fully unroll the loop. Of course, if you have the memory to
spare and require performance, it is almost always a good tradeoff.

Squaring
Squaring is a special case of multiplication that arises often in public key operations. To the
casual observer, squaring is nothing more than multiplying a number against itself. However,
there is a very simple optimization to be performed.

Suppose we are multiplying two two-digit numbers ab and cd. To compute the product,
we need to find the products ac, ad, bc, and bd. Seems simple. Now, what if cd equals ab?
Then we are computing the products aa, ab, ba, and bb. From this, we can see that ab and ba
are the same value and only need to be computed once. Overall, for any n-digit squaring,
(n2 + n)/2 unique products have to be computed. This makes squaring roughly twice as fast
as multiplying for equal length integers.

Like the multiplication algorithms, we use a set of portable macros to make the code
more versatile. Squaring is a bit more complicated than multiplication, so we will use more
macros. First, let us examine the rolled generic squaring code (taken from TomsFastMath).

ripped from fp_sqr_comba_generic.c:
011 /* generic comba squarer */
012 void fp_sqr_comba(fp_int *A, fp_int *B)
013 {
014 int pa, ix, iz;
015 fp_digit c0, c1, c2;
016 fp_int tmp, *dst;
017 #ifdef TFM_ISO
018 fp_word tt;
019 #endif
020
021 /* get size of output and trim */
022 pa = A->used + A->used;
023 if (pa >= FP_SIZE) {
024 pa = FP_SIZE-1;
025 }
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Here we are computing the number of digits in the final product. We truncate as
required as to not overflow the destination.

027 /* number of output digits to produce */
028 COMBA_START;
029 CLEAR_CARRY;

As before, we have macros to initialize the routine (COMBA_START), and another to
clear the accumulator (CLEAR_COMBA). We are using the same three register accumu-
lator as before, except this time we are putting a slight twist on the usage.

031 if (A == B) {
032 fp_zero(&tmp);
033 dst = &tmp;
034 } else {
035 fp_zero(B);
036 dst = B;
037 }
038
039 for (ix = 0; ix < pa; ix++) {
040 int tx, ty, iy;
041 fp_digit *tmpy, *tmpx;
042
043 /* get offsets into the two bignums */
044 ty = MIN(A->used-1, ix);
045 tx = ix - ty;
046
047 /* setup temp aliases */
048 tmpx = A->dp + tx;
049 tmpy = A->dp + ty;
050
051 /* this is the number of times the loop will iterrate,
052 while (tx++ < a->used && ty-- >= 0) { ... }
053 */
054 iy = MIN(A->used-tx, ty+1);
055
056 /* now for squaring tx can never equal ty
057 * we halve the distance since they approach
058 * at a rate of 2x and we have to round because
059 * odd cases need to be executed
060 */
061 iy = MIN(iy, (ty-tx+1)>>1);

At this point, we know we have to step iy times to produce the ix’th digit of the squaring.

063 /* forward carries */
064 CARRY_FORWARD;

This macro forwards the carry by shifting the three-register accumulator to the right by
one register.

066 /* execute loop */
067 for (iz = 0; iz < iy; iz++) {
068 SQRADD2(*tmpx++, *tmpy--);
069 }
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This is a similar inner loop to the MULADD we saw previously, except in this case, the
product of *tmpx and *tmpy are added twice to the accumulator. This loops handles all the
duplicate terms in the final product by performing the multiplication once and doubling the
outcome.

The astute reader may notice that we could keep separate accumulators and double out-
side the loop. This will arise shortly.

071 /* even columns have the square term in them */
072 if ((ix&1) == 0) {
073 SQRADD(A->dp[ix>>1], A->dp[ix>>1]);
074 }

Even digit outputs have a single square term included in the product. This is effectively
the MULADD macro from before.

076 /* store it */
077 COMBA_STORE(dst->dp[ix]);

This macro stores the least significant digit of the accumulator. It does not shift the
accumulator.

078 }
079
080 COMBA_FINI;

This macro cleans up the machine state (e.g., if you were using MMX).

082 /* setup dest */
083 dst->used = pa;
084 fp_clamp (dst);
085 if (dst != B) {
086 fp_copy(dst, B);
087 }
088 }

This function is our generic rolled squaring code. It can be very compact when com-
piled without loop unrolling, and as such is useful for memory limited embedded platforms.
It is, however, none too speedy. Simply unrolling it through a compiler switch will not get
us the full speed we are seeking. Again, we will write a simple C source generator for
squaring.

ripped from comba_sqr_gen.c:
011 #include <stdio.h>
012
013 int main(int argc, char **argv)
014 {
015 int x, y, z, N, f;
016 N = atoi(argv[1]);
017
018 printf(
019 "void fp_sqr_comba%d(fp_int *A, fp_int *B)\n"
020 "{\n"
021 " fp_digit *a, b[%d], c0, c1, c2, sc0, sc1, sc2;\n"
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022 "\n"
023 " a = A->dp;\n"
024 " COMBA_START; \n"
025 "\n"
026 " /* clear carries */\n"
027 " CLEAR_CARRY;\n"
028 "\n"
029 " /* output 0 */\n"
030 " SQRADD(a[0],a[0]);\n"
031 " COMBA_STORE(b[0]);\n", N, N+N);
032
033 for (x = 1; x < N+N-1; x++) {
034 printf(
035 "\n /* output %d */\n"
036 " CARRY_FORWARD;\n ", x);
037
038 for (f = y = 0; y < N; y++) {
039 for (z = 0; z < N; z++) {
040 if (z != y && z + y == x && y <= z) {
041 ++f;
042 }
043 }
044 }
045
046 if (f <= 2) {
047 for (y = 0; y < N; y++) {
048 for (z = 0; z < N; z++) {
049 if (y<=z && (y+z)==x) {
050 if (y == z) {
051 printf("SQRADD(a[%d], a[%d]); ", y, y);
052 } else {
053 printf("SQRADD2(a[%d], a[%d]); ", y, z);
054 }
055 }
056 }
057 }
058 } else {
059 // new method
060 /* do evens first */
061 f = 0;
062 for (y = 0; y < N; y++) {
063 for (z = 0; z < N; z++) {
064 if (z != y && z + y == x && y <= z) {
065 if (f == 0) {
066 // first double
067 printf("SQRADDSC(a[%d], a[%d]); ", y, z);
068 f = 1;
069 } else {
070 printf("SQRADDAC(a[%d], a[%d]); ", y, z);
071 }
072 }
073 }
074 }
075 // forward the carry
076 printf("SQRADDDB; ");
077 if ((x&1) == 0) {
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078 // add the square
079 printf("SQRADD(a[%d], a[%d]); ", x/2, x/2);
080 }
081 }
082 printf("\n COMBA_STORE(b[%d]);\n", x);
083 }
084 printf(" COMBA_STORE2(b[%d]);\n", N+N-1);
085
086 printf(
087 " COMBA_FINI;\n"
088 "\n"
089 " B->used = %d;\n"
090 " B->sign = FP_ZPOS;\n"
091 " memcpy(B->dp, b, %d * sizeof(fp_digit));\n"
092 " fp_clamp(B);\n"
093 "}\n\n\n", N+N, N+N);
094
095 return 0;
096 }

This program generates fully unrolled squaring routines for various input sizes. We can
see some of the same macro names as from the rolled squaring code. There are a few new
ones now, though.

Recall how we earlier noted that we are doubling all the products we accumulate?
Well, it turns out we can optimize that out in certain circumstances. The loop on line 38
counts the number of multiplications required for the given output digit (the counting
method is brute force; fortunately, our inputs are small so brute force is a sensible approach
given the simplicity). If there are more than two, we accumulate all of the double products,
and then double them once afterward.

To accomplish this, we added new macros. SQRADDSC performs a multiplication and
the product in a second accumulator (zeroing the third register at the same time).
SQRADDAC does what MULADD does, except adds the product to the second accumu-
lator. Finally, SQRADDDB doubles the second accumulator and adds the outcome to the
first accumulator.

Let us examine the output for an eight-digit squaring.

void fp_sqr_comba8(fp_int *A, fp_int *B)
{

fp_digit *a, b[16], c0, c1, c2, sc0, sc1, sc2;
a = A->dp;
COMBA_START;

/* clear carries */
CLEAR_CARRY;

/* output 0 */
SQRADD(a[0],a[0]);
COMBA_STORE(b[0]);

/* output 1 */
CARRY_FORWARD;
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SQRADD2(a[0], a[1]);
COMBA_STORE(b[1]);

<snip>
/* output 5 */
CARRY_FORWARD;
SQRADDSC(a[0], a[5]); SQRADDAC(a[1], a[4]); SQRADDAC(a[2], a[3]); SQRADDDB;
COMBA_STORE(b[5]);

<snip>

As we can see from code, the program recognizes that the 5th output requires three prod-
ucts and uses the secondary registers. You may wonder why we only perform this optimiza-
tion for three or more terms. This is because we always have to perform at least two
additions—one to double the second accumulator, and another to add it to the first accumu-
lator. Recall, we cannot simply double the first accumulator, as it has the square terms (even
columns, using SQRADD) that must not be doubled.

Let us compare rolled and unrolled code in Table 8.3.

Table 8.3 AMD Opteron Cycle Counts for Integer Squaring

Size (bits) Unrolled Looped

128 40 223
256 78 338
512 231 722
1024 652 2,145

Again, there is a huge savings in cycle counts by using code unrolling. There is also
quadratic growth in code size. In this case, the code growth follows n2/2; that is, with an n-
fold increase in input size, you expect roughly an n2/2-fold increase in code size (Table 8.4).

Table  8.4 Unrolled Squaring Code Size for 64-bit x86

Number of Digits Code Size (bytes)

4 458
8 1,169
16 3,490
32 13,138

Table 8.4 shows that the growth of the squaring code size is still close to quadratic in
practice.

Squaring Macros
Our macros for squaring are trivial to derive from the multiplication macros. In the interest
of saving trees, we will refer the reader to the free TomsFastMath package. Within the file
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fp_sqr_comba.c, the reader will find the equivalent macros for all the platforms supported.
However, for completeness, we will show the ISO C implementation of these macros.

#define CLEAR_CARRY \
c0 = c1 = c2 = 0;

This clears the three accumulator registers (in this case, they are variables on the stack).

#define COMBA_STORE(x) \
x = c0;

This stores the least significant register of the accumulator.

#define COMBA_STORE2(x) \
x = c1;

This stores the middle register of the accumulator.

#define CARRY_FORWARD \
do { c0 = c1; c1 = c2; c2 = 0; } while (0);

This shifts the accumulator to the right by one register, inserting a zero in the most sig-
nificant register position. Note the use of the do-while construction to make the macro safe
to insert anywhere.

/* multiplies point i and j, updates carry "c1" and digit c2 */
#define SQRADD(i, j) \

do { fp_word t; \
t = c0 + ((fp_word)i) * ((fp_word)j); c0 = t; \
t = c1 + (t >> DIGIT_BIT); c1 = t; c2 += t >> DIGIT_BIT; \
} while (0);

This multiplies i by j and adds the result to the accumulator once.

/* for squaring some of the terms are doubled... */
#define SQRADD2(i, j) \

do { fp_word t; \
t = ((fp_word)i) * ((fp_word)j); \
tt = (fp_word)c0 + t; c0 = tt; \
tt = (fp_word)c1 + (tt >> DIGIT_BIT); c1 = tt; \
c2 += tt >> DIGIT_BIT; \
tt = (fp_word)c0 + t; c0 = tt; \
tt = (fp_word)c1 + (tt >> DIGIT_BIT); c1 = tt; \
c2 += tt >> DIGIT_BIT; \
} while (0);

This performs the same operation as SQRADD, but instead of adding the produce once,
it does it twice. We do not double the product, since it would not fit in an fp_word vari-
able. We are forced to add twice instead.

#define SQRADDSC(i, j) \
do { fp_word t; \

t = ((fp_word)i) * ((fp_word)j); \
sc0 = (fp_digit)t; \
sc1 = (t >> DIGIT_BIT); sc2 = 0; \

} while (0);
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This macro performs multiplies the inputs and stores it in a new second accumulator.
We use the variables {sc0, sc1, sc2} instead of the defaults, since we want to accumulate prod-
ucts individually before doubling it.

#define SQRADDAC(i, j) \
do { fp_word t; \
t = sc0 + ((fp_word)i) * ((fp_word)j);\
sc0 = t; \
t = sc1 + (t >> DIGIT_BIT); \
sc1 = t; \
sc2 += t >> DIGIT_BIT; \
} while (0);

This macro performs the SQRADD macro, but adds the product to the second 
accumulator.

#define SQRADDDB \
do { fp_word t; \
t = ((fp_word)sc0) + ((fp_word)sc0) + c0; \
c0 = t; \
t = ((fp_word)sc1) + ((fp_word)sc1) + c1 + (t >> DIGIT_BIT); \
c1 = t; \
c2 = c2 + ((fp_word)sc2) + ((fp_word)sc2) + (t >> DIGIT_BIT); \
} while (0);

Finally, this macro doubles the second accumulator and adds it to the first. These sec-
ondary macros allow us to accumulate the double products without doubling them 
redundantly.

Montgomery Reduction
The last performance critical algorithm we need for a competent BigNum library is
Montgomery reduction. Modular reduction refers to the process of computing the
remainder of a division; specifically, we are looking for the remainder of one integer divided
by another called the modulus.

In the case of public key algorithms, we are going to have special circumstances on our
side. The numbers we are dividing are always no larger than the square of the modulus.
From this fact, we can construct various optimized reduction algorithms. In this case, we
will examine Montgomery reduction, as it is efficient and versatile. The following code is
taken from TomsFastMath and performs generic rolled Montgomery reduction.

001 /* computes x/R == x (mod N) via Montgomery Reduction */
002 void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp)
003 {
004 fp_digit c[FP_SIZE], *_c, *tmpm, mu;
005 int oldused, x, y, pa;
006
007 /* bail if too large */
008 if (m->used > (FP_SIZE/2)) {
009 return;
010 }

www.syngress.com

Large Integer Arithmetic • Chapter 8 369

404_CRYPTO_08.qxd  10/30/06  11:53 AM  Page 369



Since we are working with fixed precision, we limit the input modulus length to half of
the maximum BigNum length.

012 pa = m->used;
013
014 /* copy the input */
015 oldused = a->used;
016 for (x = 0; x < oldused; x++) {
017 c[x] = a->dp[x];
018 }
019 for (; x < 2*pa+1; x++) {
020 c[x] = 0;
021 }

At this point, we have copied the lower half of the input we want to find the residue of.
This is equivalent to reducing the input modulo a power of two, which is the first step of
Montgomery reduction.

022 MONT_START;

This macro allows us to do any initialization required for the inner loop.

024 for (x = 0; x < pa; x++) {
025 fp_digit cy = 0;
026 /* get Mu for this round */
027 LOOP_START;

The LOOP_START macro multiplies c[x] by mp to create the Mu digit for this itera-
tion of the loop. It can be done by assembler code, but as we will see, it is simpler to just
use C on most platforms.

028 _c = c + x;
029 tmpm = m->dp;
030 y = 0;
031
032 for (; y < pa; y++) {
033 INNERMUL;
034 ++_c;
035 }

Our inner loop performs a simple single-digit multiply and accumulate. We can unroll
it on x86_64 platforms somewhat by deferring memory loads; for now, though, we will leave
it simple.

036 LOOP_END;

The LOOP_END macro is used only to fetch the cy register. That is, if LOOP_START
and INNERMUL alias cy to a machine register the C compiler cannot see, this macro will
fetch it. After this statement, the cy variable must be in sync with the machine register con-
tents (if any).

037 while (cy) {
038 PROPCARRY;
039 ++_c;
040 }
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This loop propagates the carry upward. The PROPCARRY macro performs the job of
propagating the carry of cy into _c[0]. The _c pointer is incremented and the loop re-iter-
ated as long as cy is not zero.

041 }
042
043 /* now copy out */
044 _c = c + pa;
045 tmpm = a->dp;
046 for (x = 0; x < pa+1; x++) {
047 *tmpm++ = *_c++;
048 }
049
050 for (; x < oldused; x++) {
051 *tmpm++ = 0;
052 }

At this point, we have copied out the residue and zeroed the high numbers.

054 MONT_FINI;

This macro is placed to clear up the machine state as required.

056 a->used = pa+1;
057 fp_clamp(a);
058
059 /* if A >= m then A = A - m */
060 if (fp_cmp_mag (a, m) != FP_LT) {
061 s_fp_sub (a, m, a);
062 }
063 }

The final bit of code clamps the BigNum to remove unused digits and subtracts the
modulus for the “off by one” case that is possible with Montgomery reduction.

Montgomery Reduction Unrolling
It turns out that this code coupled with optimal platform macros does not yield favorable
results with code unrolling. That is, the performance gains rarely warrant the code size
increase. However, if you are dead set on performance, you can examine the source for
TomsFastMath, which has unrolled Montgomery reduction to edge out that last 2 percent of
performance.

Montgomery Macros
Table 8.5 lists the Montgomery reduction macros for x86,ARM, and PPC. All of them use
a C-based LOOP_START macro defined as follows.

#define LOOP_START \
mu = c[x] * mp
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The only exception so far is the x86_32 SSE2 code, which uses a SSE2 multiplication
instead of the standard integer ALU multiplication.

Table 8.5 Montgomery Reduction Macros for x86

INNERMUL #define INNERMUL \

asm( \
"movl %5,%%eax \n\t" \
"mull %4 \n\t" \
"addl %1,%%eax \n\t" \
"adcl $0,%%edx \n\t" \
"addl %%eax,%0 \n\t" \
"adcl $0,%%edx \n\t" \
"movl %%edx,%1 \n\t" \

:"=g"(_c[LO]), "=r"(cy) \
:"0"(_c[LO]), "1"(cy), "g"(mu), "g"(*tmpm++) \
:"%eax", "%edx", "%cc")

PROPCARRY #define PROPCARRY \
asm( \

"addl %1,%0 \n\t" \
"setb %%al \n\t" \
"movzbl %%al,%1 \n\t" \

:"=g"(_c[LO]), "=r"(cy) \
:"0"(_c[LO]), "1"(cy) \
:"%eax", "%cc")

Our x86 code makes use of the setb and movzbl instructions to perform a branchless
carry store into cy. The first instruction, setb, will set the al register to 1 if the carry flag was
set, or 0 otherwise. The second instruction, movzbl, will zero extend the byte register al
into the register holding a copy of the variable cy. These instructions are very useful, as they
allow us to avoid branching, which leaks side channel information and hinders performance
(Table 8.6).

Table 8.6 Montgomery Reduction Macros for ARMv4

INNERMUL #define INNERMUL \

asm( \
" LDR r0,%1 \n\t" \
" ADDS r0,r0,%0 \n\t" \
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Table 8.6 continued Montgomery Reduction Macros for ARMv4

" MOVCS %0,#1 \n\t" \

" MOVCC %0,#0 \n\t" \
" UMLAL r0,%0,%3,%4 \n\t" \
" STR r0,%1 \n\t" \

:"=r"(cy),"=m"(_c[0])
:"0"(cy),"r"(mu),"r"(*tmpm++),"1"(_c[0])
:"r0","%cc");

PROPCARRY #define PROPCARRY \
asm( \

" LDR r0,%1 \n\t" \
" ADDS r0,r0,%0 \n\t" \
" STR r0,%1 \n\t" \
" MOVCS %0,#1 \n\t" \
" MOVCC %0,#0 \n\t" \

:"=r"(cy),"=m"(_c[0])
:"0"(cy),"1"(_c[0])
:"r0","%cc");

Like the x86 case, we use conditional move instructions MOVCS and MOVCC to
avoid branches in the code.This pair works much like the CMOV class of x86 instructions.
MOVCS will perform the move if the carry flag is set, while MOVCC will perform the
move if the carry flag is unset. While branching is less of a hazard on the ARM processors,
it still leaks side channel data and ought to be avoided.

As a performance note, we make use of the UMLAL instruction to perform a 32x32
=> 64 multiply and accumulate operation. It allows us to combine three instructions into
one and save a few cycles along the way. We could not have used this in our multiplying
and squaring code, as UMLAL will not set the carry flag—which is rather unfortunate as it
would speed up ARM BigNum math operations (Table 8.7).

Table 8.7 Montgomery Reduction Macros for PPC

INNERMUL #define INNERMUL \

asm( \
" mullw 16,%3,%4 \n\t" \
" mulhwu 17,%3,%4 \n\t" \
" addc 16,16,%0 \n\t" \
" addze 17,17 \n\t" \
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Table 8.7 continued Montgomery Reduction Macros for PPC

" lwz 18,%1 \n\t" \

" addc 16,16,18 \n\t" \
" addze %0,17 \n\t" \
" stw 16,%1 \n\t" \

:"=r"(cy),"=m"(_c[0])
:"0"(cy),"r"(mu),"r"(tmpm[0]),"1"(_c[0])
:"16", "17", "18","%cc"); ++tmpm;

PROPCARRY #define PROPCARRY \
asm( \

" lwz 16,%1 \n\t" \
" addc 16,16,%0 \n\t" \
" stw 16,%1 \n\t" \
" xor %0,%0,%0 \n\t" \
" addze %0,%0 \n\t" \

:"=r"(cy),"=m"(_c[0])
:"0"(cy),"1"(_c[0])
:"16","%cc");

Putting It All Together

Core Algorithms
We have only explored three core algorithms that occupy the dominant amount of processor
time when performing public key operations. They by no means form an exhaustive list of
all functions required to perform the public key operations.

Aside from the basic addition, subtraction, and comparisons, operations such as multi-
plicative inversion, modular exponentiation, and greatest common divisor are required.
These algorithms are less platform specific and well covered in several texts.

There are several algorithms for multiplicative inversion, such as those based on the
extended Euclidean algorithm and the almost inverse. The Euclidean algorithm is by far the
most versatile and commonplace. It is however, not the fastest. The almost inverse algo-
rithm is optimal for cases where the modulus is odd (specifically has the least significant bit),
and is ideal for hardware implementations. Usually credited to Kaliski as the “Almost
Montgomery Inversion,” it was also part of a 1995 Crypto paper2 whereby they presented an
algorithm that quickly computes a value that is roughly congruent to the true modular
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inverse (Richard Schroeppel, Hilarie Orman, Sean O’Malley, Oliver Spatscheck,“Fast Key
Exchange with Elliptic Curve Systems,” 1995,Advances in Cryptology—Crypto ‘95, Edited
by Don Coppersmith, Springer-Verlag). The final inversion is computed from the rough
estimate efficiently with shifts and additions.

Modular exponentiation is another problem best solved with a variety of algorithms
depending on the situation. The Handbook of Applied Cryptography outlines several, such as
basic left-to-right exponentiation, windowed exponentiation, and vector chain exponentia-
tion. These are also covered in a more academic setting in The Art Of Computer Programming
Volume 2 by Knuth. His text discusses the asymptotic behaviors of various exponentiation
algorithms; this knowledge is fundamental to properly develop a math library of versatile use.
A more practical treatment of exponentiation is explored in the text BigNum Math:
Implementing Cryptographic Multiple Precision Arithmetic by Tom St Denis. The latter text
includes a vast array of source code useful for implementing independent BigNum libraries.

Size versus Speed
Aside from picking platform suitable algorithms, one is often presented with the choice of
how to best use code and data memory. As we have seen, loop unrolling can greatly accel-
erate integer multiplication and squaring. However, this added speed comes at a price of
size. The algorithms we use for multiplication and squaring are quadratic in nature3 (e.g.,
O(n2)) and the tradeoff follows this. (Technically, algorithm such as Karatsuba and Toom-
Cook multiplication are not quadratic. However, they are completely inefficient with the
size of numbers we will be using.)

Various algorithms such as those for addition, subtraction, and shifting are linear by
nature (e.g., O(n)) and can be sped up relatively cheaply with code unrolling. On the whole,
this will save cycles when performing public key operations. However, the savings (like the
cost) will be minimal at best with most algorithms. Where unrolling these algorithms does
pay off is with algorithms like the almost inverse that use no multiplications and perform a
O(n2) amount of shifts and additions. A good sign if unrolling the linear operations is a good
idea is to count the time spent in modular inversion. If it is significant by comparison, obvi-
ously unrolling them is a good idea.

A general rule of thumb is if you have 10 or fewer digits in your numbers (e.g., 320-bit
numbers on a 32-bit platform), strongly consider loop unrolling as a good performance
tradeoff. Usually at this point, the setup code required for multiplication (e.g., before and
after the inner loop) eats into the cycles actually spent performing the multiplications.
Keeping small multipliers rolled will save space, but the efficiency of the process will
decrease tremendously. Of course, this still depends on the available memory, but experience
shows it is usually a good starting point. Above 10 digits and the unrolled code usually
becomes far too large to manage on embedded platforms, and you will be spending more
time in the inner loop than setting it up.

Roughly speaking, if we let c represent the cycles spent managing the inner loop, and n
represent the number of digits, the performance loss of rolling the loop follows nc/n2, or
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simply c/n. This does not take into account the performance loss due to actually performing
the loop (e.g., branching, decrementing counters, etc.).

Performance BigNum Libraries
Fortunately, for most developers there are a score of performance math libraries available. In
all but the most extreme cases there is already a library or two to pick from, as developers are
strongly discouraged from writing their own for anything other than academic exercises.

Writing a complete and functional math library takes experience and is a tricky proposi-
tion, as there are many corner cases to test for in each routine. As performance demands
rise, the code usually suffers from being less direct than desired, especially when assembler is
introduced to the equation.

GNU Multiple Precision Library
The GNU Multiple Precision (GMP) library is by far the oldest and most well known
library for handling arbitrary length integers, rationals, and floating point numbers. The
library is released under the GPLv2 license and is hosted at www.swox.com/gmp/.

This library was designed for a variety of tasks, few of which are cryptographic by
nature. The goal of GMP is to efficiently, in turns of asymptotic bounds, handle as wide
variety of input sizes as possible. It has algorithms that only become useful when the input
size approaches tens of thousands of bits in length.

Even with the flexibility in hand, the library still performs well on cryptographic sized
numbers. It has well-optimized multiplication, squaring, and exponentiation code that make
it highly competitive. It has also been ported to a wide variety of machines, making it more
platform independent.

The most notable failing of GMP is size. The library weighs in at a megabyte and is
hard to hand tune for size.Another glaring omission is the lack of a publicly accessible
Montgomery reduction function. This makes the implementation of elliptic curve cryptog-
raphy harder, as one has to write his own reduction function to perform point operations.

LibTomMath Library
LibTomMath is a fairly well established library in its own right. It was designed with
teaching in mind and was written using portable ISO C syntax. While it is not the fastest
math library in the world, it is very platform independent and compact. It achieves roughly
30 to 50 percent of the performance of libraries such as GMP and TomsFastMath depending
on the size of numbers and operation in question.

The LibTomMath package is hosted at http://math.libtomcrypt.com and is public
domain. That is, it is free for all purposes and there are no license arrangements required to
use the library. Due to the ISO C compliance of the library, it forms integral parts of var-
ious portable projects, including, for example, the Tcl scripting language.
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LibTomMath has fewer functions than GMP, but has enough functions that constructing
most public key algorithms is practical. The code uses multiple precision representations like
GMP, which allows it to address a variety of tasks by accommodating sizes of numbers not
known at compile time.

TomsFastMath Library
TomsFastMath is a newer math library designed by the author of LibTomMath. It features a
very similar API but has been trimmed down and optimized solely for fast cryptographic
mathematics. The library uses considerable code unrolling, which makes it both fast and
large. Fortunately, it is configurable at build time to suit a given problem (e.g., RSA-1024 or
ECC P-192) in memory limited platforms.

The TomsFastMath package is hosted at http://tfm.libtomcrypt.com and is public
domain. It features optimizations for 32- and 64-bit x86 and PPC platforms andARMv4
and above processors. The package can be built in ISO C mode, but is not very fast in that
mode. This project does not strive for as much portability as LibTomMath, but makes up for
this failing with raw speed.

Unlike LibTomMath and GMP,TomsFastMath is not a generic purpose library. It was
designed solely for cryptographic tasks, and as such makes various design decisions such as
using fixed precision representations. This means, for instance, you must know in advance
the largest number you will be working with before you compile the library. Moreover,
routines such as the modular exponentiation and inversion only accept odd moduli values.
This is because even moduli are not used in any standard public key algorithm and as such
are not worth spending time thinking about in this project.
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Q: What is BigNum mathematics?

A: Multiple or fixed precision mathematics is the set of algorithms that allow the represen-
tation and manipulation of large integers, typically designed to compensate for the lack
of intrinsic support for large integers. These algorithms use the smaller, typically fixed,
integers (usually called limbs or digits) to represent large integers.

Q: Why is knowing about BigNum mathematics important?

A: Large integers form the basis of public key algorithms such as RSA, ElGamal, and
Elliptic Curve Cryptography. These algorithms require large numbers to make attacks
such as factoring and discrete logarithms ineffective. RSA, for example, requires num-
bers that are at least in the 1024-bit range, while ECC requires numbers in at least the
192-bit range. These values are not possible with the typical built-in variables supported
by languages such as C, C++, and Java.

Q: What sort of algorithms are the most important to optimize?

A: The answer to this question depends on the type of public key algorithm you are using.
In most case, you will need fast Montgomery reduction, multiplication, and squaring.
Where the optimizations differ is in the size of the numbers. Algorithms such as ECC
benefit from small unrolled algorithms, while algorithms such as RSA and ElGamal ben-
efit from large unrolled algorithms when the memory is available. In the case of ECC,
we will want to use fast fixed point algorithms, whereas with RSA, we will use sliding
window exponentiation algorithms (see Chapter 9).

Q: What libraries provide the algorithms required for public key algorithms?

A: GNU MP (GMP) provides a wide variety of mathematical algorithms for a wide range
of input sizes. It is provided under the GPL license at the Web site
www.swox.com/gmp/. LibTomMath provides a variety of cryptography related algo-
rithms for a variable range of input sizes. It is not as general purpose as GMP, designed
mostly for cryptographic tasks. It is provided as public domain at the Web site
http://math.libtomcrypt.com. TomsFastMath provides a more limited subset of crypto-
graphic related algorithms designed solely for speed. It is much faster than LibTomMath
and usually on par with or better than GMP in terms of speed. It is provided as public
domain at the Web site http://tfm.libtomcrypt.com.
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Introduction
So far, we have been discussing symmetric key algorithms such as AES, HMAC, CMAC,
GCM, and CCM.These algorithms are known as symmetric (or shared secret) algorithms,
since all parties share the same key values. Revealing this key would compromise the security
of the system.This means we have been assuming that we somehow shared a key, and now
we are going to answer the how part.

Public key algorithms, also known as asymmetric key algorithms, are used (primarily) to
solve two problems that symmetric key algorithms cannot: key distribution and nonrepudia-
tion.The first helps solve privacy problems, and the latter helps solve authenticity problems.

Public key algorithms accomplish these goals by operating asymmetrically; that is, a key
is split into two corresponding parts, a public key and a private key.The public key is so
named as it is secure to give out publicly to all those who ask for it.The public key enables
people to encrypt messages and verify signatures.The private key is so named as it must
remain private and cannot be given out.The private key is typically owned by a single
person or device in most circumstances, but could technically be shared among a trusted set
of parties.The private key allows for decrypting messages and the generation of signatures.

The first publicly disclosed public key algorithm was the Diffie-Hellman key exchange,
which allowed, at least initially, only for key distribution between known parties. It was
extended by ElGamal to a full encrypt and signature public key scheme, and is used for ECC
encryption, as we will see shortly. Shortly after Diffie-Hellman was published, another algo-
rithm known as RSA (Rivest Shamir Adleman) was publicly presented. RSA allowed for
both encryption and signatures while using half of the bandwidth as ElGamal. Subsequently,
RSA became standardized in various forms.

Later, in the 1980s, elliptic curves were proposed as an abelian group over which
ElGamal encryption and DSA (variant of ElGamal) could be performed, and throughout the
1990s and 2000s, various algorithms were proposed that make elliptic curve cryptography an
attractive alternative to RSA and ElGamal.

For the purposes of this text, we will discuss PKCS #1 standard RSA and ANSI stan-
dard ECC cryptography.They represent two of the three standard algorithms specified by
NIST for public key cryptography, and in general are representative of the commercial sector
demands.

Goals of Public Key Cryptography
Public key cryptography is used to solve various problems that symmetric key algorithms
cannot. In particular, it can be used to provide privacy, and nonrepudiation. Privacy is usually
provided through key distribution, and a symmetric key cipher.This is known as hybrid encryp-
tion. Nonrepudiation is usually provided through digital signatures, and a hash function.
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Privacy
Privacy is accomplished with public key algorithms in one of two fashions.The first method
is to only use the public key algorithm to encode plaintext into ciphertext (Figure 9.1). For
example, RSA can accept a short plaintext and encrypt it directly.This is useful if the appli-
cation must only encrypt short messages. However, this convenience comes at a price of
speed.As we will see shortly, public key operations are much slower than their symmetric
key counterparts.

Figure 9.1 Public Key Encryption

The second useful way of accomplishing privacy is in a mode known as hybrid-encryption
(Figure 9.2).This mode leverages the key distribution benefits of public key encryption, and
the speed benefits of symmetric algorithms. In this mode, each encrypted message is pro-
cessed by first choosing a random symmetric key, encrypting it with the public key algo-
rithm, and finally encrypting the message with the random symmetric key.The ciphertext is
then the combination of the random public key and random symmetric key ciphertexts.

Figure 9.2 Hybrid Encryption

Nonrepudiation and Authenticity
Nonrepudiation is the quality of being unable to deny or refuse commitment to an agree-
ment. In the paper world, this is accomplished with hand signatures on contracts.They have
the quality that in practice they are nontrivial to forge, at least by a layperson. In the digital
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world, they are produced with public key signatures using a private key.The corresponding
public key can verify the signature. Signatures are also used to test the authenticity of a mes-
sage by verifying a signature from a trusted party.

In the Public Key Infrastructure (PKI) commonly deployed in the form of X.509 certifi-
cates (SSL,TLS), and PGP keys, a public key can be signed by an authority common to all users
as a means of guaranteeing identity. For example,VeriSign is one of many root certificate authori-
ties in the SSL and TLS domains.Applications that use SSL typically have the public key from
VeriSign installed locally so they can verify other public keys VeriSign has vouched for.

Regardless of the purpose of the signature, they are all generated in a common fashion.
The message being authenticated is first hashed with a secure cryptographic hash function,
and the message digest is then sent through the public key signature algorithm (Figure 9.3).

Figure 9.3 Public Key Signatures

This construction of public key signatures requires the hash function be collision resis-
tant. If it were easy to find collisions, signatures could be forged by simply producing docu-
ments that have the same hash. For this reason, we usually match the hash size and strength
with the strength of the underlying public key algorithm.There is, for instance, no point in
using a public key algorithm that takes only 264 operations to break with SHA-256.An
attacker could just break the public key and produce signatures without finding collisions.

RSA Public Key Cryptography
RSA public key cryptography is based on the problem of taking e’th roots modulo a com-
posite. If you do not know what that means, that is ok; it will be explained shortly. RSA is
unique among public key algorithms in that the message (or message digest in the case of
signatures) is transformed directly by the public key primitive.As difficult as inverting this
transform is (this is known as the trapdoor), it cannot be used directly in a secure fashion.

To solve this problem, RSA Security (the company) invented a standard known as
Public Key Cryptographic Standards (PKCS), and their very first standard #1 details how to
use RSA.The standard includes how to pad data such that you can apply the RSA transform
in a secure fashion.There are two popular versions of this standard: v1.5 and the current
v2.1.The older version is technically still secure in most circumstances, but is less favorable as
the newer version addresses a couple of cases where v1.5 is not secure. For this reason, it is
not recommended to implement v1.5 in new systems. Sadly, this is not always the case. SSL
still uses v1.5 padding, as do a variety of PKI based applications.
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RSA used to fall under a U.S. patent, which has since expired.The original RSA,
including the PKCS #1 padding, are now entirely patent free.There are patents on variants
of RSA such as multiprime RSA; however, these are not as popularly deployed and often are
avoided for various security concerns.

RSA in a Nutshell
We will now briefly discuss the mathematics behind RSA so the rest of this chapter makes
proper sense.

Key Generation
Key generation for RSA is conceptually a simple process. It is not trivial in practice, espe-
cially for implementations seeking speed (Figure 9.4).

Figure 9.4 RSA Key Generation

Input:
e: Public exponent
n: Desired bit length of the modulus

Output:
n: Public modulus
d: Private exponent

1. Choose a random prime p of length n/2 bits, such that gcd(p-1, e) = 1

2. Choose a random prime q of length n/2 bits, such that gcd(q-1, e) = 1

3. Let n = pq

4. Compute d = e-1 mod (p – 1)(q – 1)

5. Return n, d

The e exponent must be odd, as p – 1 and q – 1 will both have factors of two in them.
Typically, e is equal to 3, 17, or 65537, which are all efficient to use as a power for exponen-
tiation.The value of d is such that for any m that does not divide n, we will have the prop-
erty that (me)d is congruent to m mod n; similarly, (md)e is also congruent to the same value.

The pair e and n form the public key, while the pair d and n form the private key.A
party given e and n cannot trivially compute d, nor trivially reverse the computation c = me

mod n.
For details on how to choose primes, one could consider reading various sources such as

BigNum Math, (Tom St Denis, Greg Rose, BigNum Math—Implementing Cryptographic Multiple
Precision Arithmetic, Syngress, 2006), which discuss the matters in depth.That text also dis-
cusses other facets required for fast RSA operations such as fast modular exponentiation.The
reader could also consider The Art Of Computer Programming” (Donald Knuth, The Art of
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Computer Programming, Volume 2, third edition,Addison Wesley) as another reference on the
subject matter.The latter text treats the arithmetic from a very academic view point and is
useful for teaching students the finer points of efficient multiple precision arithmetic.

RSA Transform
The RSA transform is performed by converting a message (interpreted as an array of octets)
to an integer, exponentiating it with one of the exponents, and finally converting the integer
back to an array of octets.The private transform is performed using the d exponent and is
used to decrypt and sign messages.The public transform is performed using the e exponent
and is used to encrypt and verify messages.

PKCS #1
PKCS #1 is an RSA standard1 that specifies how to correctly encrypt and sign messages
using the RSA transform as a trapdoor primitive (PKCS #1 is available at
www.rsasecurity.com/rsalabs/node.asp?id=2125).The padding applied as part of PKCS #1
addresses various vulnerabilities that raw RSA applications would suffer.

The PKCS #1 standard is broken into four parts. First, the data conversion algorithms
are specified that allow for the conversion from message to integer, and back again. Next are
the cryptographic primitives, which are based on the RSA transform, and provide the trap-
door aspect to the public key standard. Finally, it specifies a section for a proper encryption
scheme, and another for a proper signature scheme.

PKCS #1 makes very light use of ASN.1 primitives and requires a cryptographic hash
function (even for encryption). It is easy to implement without a full cryptographic library
underneath, which makes it suitable for platforms with limited code space.

PKCS #1 Data Conversion
PKCS #1 specifies two functions, OS2IP and I2OSP, which perform octet string and integer
conversion, respectively.They are used to describe how a string of octets (bytes) is trans-
formed into an integer for processing through the RSA transform.

The OS2IP function maps an octet string to an integer by loading the octets in big endian
fashion.That is, the first byte is the most significant.The I2OSP functions perform the opposite
without padding.That is, if the input octet string had leading zero octets, the I2OSP output
will not reflect this.We will see shortly how the PKCS standard addresses this.

PKCS #1 Cryptographic Primitives
The PKCS #1 standard specifies four cryptographic primitives, but technically, there are only
two unique primitives.The RSAEP primitive performs the public key RSA transform by
raising the integer to e modulo n.

The RSADP primitive performs a similar operation, except it uses the d exponent
instead. With the exception of leading zeros and inputs that divide the modulus n, the
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RSADP function is the inverse of RSAEP.The standard specifies how RSADP can be per-
formed with the Chinese Remainder Theorem (CRT) to speed up the operation.This is not
technically required for numerical accuracy, but is generally a good idea.

The standard also specifies RSASP1 and RSAVP1, which are equivalent to RSADP and
RSAEP, respectively.These primitives are used in the signature algorithms, but are otherwise
not that special to know about.

PKCS #1 Encryption Scheme
The RSA recommended encryption scheme is known as RSAES-OAEP, which is simply the
combination of OAEP padding and the RSAEP primitive.The OAEP padding is what pro-
vides the scheme with security against a variety of active adversarial attacks.The decryption
is performed by first applying RSADP followed by the inverse OAEP padding (Figure 9.5).

Figure 9.5 RSA Encryption Scheme with OAEP

Input:
(n, e): Recipients public key, k denotes the length of n in octets.
M: Message to be encrypted of mLen octets in length
L: Optional label (salt), if not provided it is the empty string
hLen: Length of the message digest produced by the chosen hash

Output:
C: Ciphertext

1. If mLen > k – 2*hLen – 2 then output “message too long” and return

2. lHash = hash(L)

3. Let PS be a string of k – mLen – 2*hLen – 2 zero octets

4. Concatenate lHash, PS, the single octet 0x01, and M into DB

5. Generate a random string seed of length hLen octets

6. dbMask = MGF(seed, k – hLen – 1)

7. maskedDB = DB XOR dbMask

8. seedMask = MGF(maskedDB, hLen)

9. maskedSeed = seed XOR seedMask

10. Concatenate the single octet 0x00, maskedSeed, and maskedDB into EM

11. m = OS2IP(EM, k)

12. c = RSAEP((e, n), m)

13. C = I2OSP(c, k)

14. return C
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The hash function is not specified in the standard, and users are free to choose one.The
MGF function is specified as in Figure 9.6.

Figure 9.6 MGF

Input:
mgfSeed: The mask generation seed data
maskLen: The length of the mask data required

Output:
mask: The output mask

1. Let T be the empty string

2. For counter from 0 to ceil(maskLen / hLen) – 1 do

1. C = I2OSP(counter, 4)

2. T = T || hash(mgfSeed || C)

3. Return the leading maskLen octets of T

RSA decryption is performed by first applying RSADP, and then the inverse of the
OAEP padding scheme. Decryptions must be rejected if they are missing any of the constant
bytes, the PS string, or the lHash string.

NOTE

The RSA OAEP padding places limits on the size of the plaintext you can
encrypt. Normally, this is not a problem, as hybrid mode is used; however, it is
worthy to know about it. The limit is defined by the RSA modulus length and
the size of the message digest with the hash function chosen.

With RSA-1024—that is, RSA with a 1024-bit modulus—and SHA-1, the pay-
load limit for OAEP is 86 octets. With the same modulus and SHA-256, the limit
is 62 bytes. The limit is generically stated as k – 2*hLen – 2.

For hybrid mode, this poses little problem, as the typical largest payload
would be 32 bytes corresponding to a 256-bit AES key.

PKCS #1 Signature Scheme
Like the encryption scheme, the signature scheme employs a padding algorithm before using
the RSA primitive. In the case of signatures, this padding algorithm is known as PSS, and the
scheme as EMSA-PSS.

The EMSA-PSS signature algorithm is specified as shown in Figure 9.7.
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Figure 9.7 RSA Signature Scheme with PSS
Input:

(n, d): RSA Private Key
M: Message to be signed

emBits: The size of the modulus in bits
emLen: Equal to ceil(embits/8)
sLen: Salt length

Output:
S: Signature

1. mHash = hash(M)

2. If emLen < hLen + sLen + 2, output “encode error”, return.

3. Generate a random string salt of length sLen octets.

4. M’ = 0x00 00 00 00 00 00 00 00 || mHash || salt

5. H = Hash(M’)

6. Generate an octet string PS consisting of emLen – sLen – hLen – 2 zero octets.

7. DB = PS || 0x01 || salt

8. dbMask = MGF(H, emLen – hLen – 1)

9. maskedDB = DB XOR dbMask

10. Set the leftmost 8*emLen – emBits of the leftmost octet of maskedDB to zero

11. EM = maskedDB || H || 0xBC

12. s = OS2IP(EM, emLen)

13. s’ = RSASP1((d, n), s)

14. S = I2OSP(s’, emLen)

15. return 15

The signature is verified by first applying RSAVP1 to the signature, which returns the
value of EM. We then look for the 0xBC octet and check if the upper 8*emLen – emBits bits
of the leftmost octet are zero. If either test fails, the signature is invalid.At this point, we
extract maskedDB and H from EM, re-compute dbMask, and decode maskedDB to DB. DB
should then contain the original PS zero octets (all emLen – sLen – hLen – 2 of them), the
0x01 octet, and the salt. From the salt, we can re-compute H and compare it against the H
we extracted from EM. If they match, the signature is valid; otherwise, it is not.
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SECURITY

It is very important that you ensure the decoded strings after performing the
RSA primitive (RSADP or RSAVP1) are the size of the modulus and not shorter.
The PSS and OAEP algorithms assume the decoded values will be the size of the
modulus and will not work correctly otherwise. A good first test after decoding
is to check the length and abort if it is incorrect.

PKCS #1 Key Format
PKCS #1 specifies two key formats for RSA keys; one is meant for public keys, and the
other is meant for private keys.The public key format is the following.

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, — n
publicExponent INTEGER, — e

}

While the private key format is the following.

RSAPrivateKey ::= SEQUENCE {
version Version,
modulus INTEGER, — n
publicExponent INTEGER, — e
privateExponent INTEGER, — d
prime1 INTEGER, — p
prime2 INTEGER, — q
exponent1 INTEGER, — d mod (p – 1)
exponent2 INTEGER, — d mod (q – 1)
coefficient INTEGER, — (1/q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL

}
Version ::= INTEGER { two-prime(0), multi(1) }
OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo
OtherPrimeInfo ::= SEQUENCE {

prime INTEGER, — ri
exponent INTEGER, — di, d mod prime
coefficient INTEGER, — ti

}

The private key stores the CRT information used to speed up private key operations. It
is not optional that it be stored in the SEQUENCE, but it is optional that you use it.The
format also allows for what is known as multi-prime RSA by specifying a Version of 1 and
providing OtherPrimeInfos.This is optional to support and generally is a good idea to
ignore, as it is covered by a patent owned by HP.
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RSA Security
The security of RSA depends mostly on the inability to factor the modulus into the two
primes it is made of. If an attacker could factor the modulus, he could compute the private
exponent and abuse the system.To this end, extensive research has been undertaken in the
field of algebraic number theory to discover factoring algorithms.The first useful algorithm
was the quadratic sieve invented in 1981 by Carl Pomerance.

The quadratic sieve had a running time of O(exp(sqrt(log n log log n))) for an integer n.
For example, to factor a 1024-bit number, the expected average runtime would be on the
order of 298 operations.The quadratic sieve works by gathering relations of the form X2 = Y
(mod n) and then factoring Y using a small set of primes known as a factor bound.These
relations are gathered and analyzed by looking for combinations of relations such that their
product forms a square on both sides; for instance, if X1

2 * X2
2 = Y1Y2 (mod n) and Y1Y2 is

a square, then the pair can be used to attempt a factorization. If we let P = X1
2 * X2

2 and Q
= Y1Y2, then if x1 * x2 is not congruent to sqrt(Q) modulo n, we can factor n. If P = Q
(mod n), then P – Q = 0 (mod n), and since P and Q are squares, it may be possible to factor
n with a difference of squares.

A newer factoring algorithm known as the Number Field Sieve attempts to construct
the same relations but in a much different fashion. It was originally meant for numbers of a
specific (non-RSA) form, and was later improved to become the generalized number field
sieve. It has a running time of O(exp(64/9 * log(n))1/3 * log(log(n))2/3)). For example, to
factor a 1024-bit number the expected average runtime would be on the order of 286 opera-
tions (Table 9.1).

Table 9.1 RSA Key Strength

RSA Modulus Size (bits) Security from Factoring (bits)

1024 86
1536 103
1792 110
2048 116
2560 128
3072 138
4096 156

This implies if you want your attacker to expend at least 2112 work breaking your key,
you must use at least a 2048-bit RSA modulus. In practice, once you pass the 2048-bit mark
the algorithm becomes very inefficient, often impossible to implement in embedded systems.
There is also no practical RSA key size that will match AES-256 or SHA-512 in terms of
bit strength.To obtain 256 bits of security from RSA, you would require a 13,500-bit RSA
modulus, which would tax even the fastest desktop processor. One of the big obstacles in
making factoring more practical is the size requirements. In general, the number field sieve
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requires the square root of the work effort in storage to work. For example, a table with 243

elements would be required to factor a 1024-bit composite. If every element were a single
bit, that would be a terabyte of storage, which may not seem like a lot until you realize that
for this algorithm to work efficiently, it would have to be in random access memory, not
fixed disk storage.

In practice, RSA-1024 is still safe to use today, but new applications should really be
looking at using at least RSA-1536 or higher—especially where a key may be used for sev-
eral years to come. Many in the industry simply set the minimum to 2048-bit keys as a way
to avoid eventual upgrades in the near future.

RSA References
There are many methods to make the modular exponentiation step faster.The first thing the
reader will want to seek out is the use of the Chinese Remainder Theorem (CRT), which
allows the private key operation to be split into two half-size modular exponentiations.The
PKCS #1 standard explains how to achieve CRT exponentiation with the RSADP and
RSAVP1 primitives.

After that optimization, the next optimization is to choose a suitable exponentiation
algorithm.The most basic of all is the square and multiply (Figure 7.1, page 192 of BigNum
Math), which uses the least amount of memory but takes nearly the maximum amount of
time.Technically, square and multiply is vulnerable to timing attacks, as it only multiplies
when there is a matching bit in the exponent.A Montgomery Powering Ladder approach can
remove that vulnerability, but is also the slowest possible exponentiation algorithm (Marc
Joye and Sung-Ming Yen,“The Montgomery Powering Ladder,” Hardware and Embedded
Systems, CHES 2002, vol. 2523 of Lecture Notes in Computer Science, pp. 291–302,
Springer-Verlag, 2003). Unlike blinded exponentiation techniques, the Montgomery powering
ladder is fully deterministic and does not require entropy at runtime to perform the opera-
tion.The ladder is given by the algorithm in Figure 9.8.

Figure 9.8 The Montgomery Powering Ladder
Input:

g: The base
k: The exponent, bits denoted as (kt-1, ..., k0)2

Output:
y: y = gk

1. R0 = 1, R1 = g

2. for j = t – 1 downto 0 do

1. if (kj = 0) then

R1 = R0 * R1, R0 = R0
2
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else

R0 = R0 * R1, R1 = R1
2

3. Return R0

This algorithm performs the same operations, at least at the high level, regardless of the
bits of the exponent—which can be essential for various threat models given adversaries
who can gather side channel information. It can be sped up by realizing that the two opera-
tions per iteration can be performed in parallel.This allows hardware implementations to
reclaim some speed at a significant cost in area.This observation pays off better with elliptic
curve algorithms, as we will see shortly, as the numbers are smaller, and as a consequence, the
hardware can be smaller as well.

A simple blinding technique is to pre-compute g-r for a random r, and compute gk as gk+r

* g-r.As long as you never re-use r, it is random, and it is the same length as k the technique
blinds timing information that would have been leaked by k.

If memory is abundant, windowed exponentiation is a possible alternative (Figure 7.4, page
196 of BigNum Math). It allows the combination of several multiplications into one step at an
expense of pre-compute time and storage. It can also be made to run in fixed time by careful
placement of dummy operations.

Elliptic Curve Cryptography
Over the last two decades, a different form of public key cryptography has been gaining
ground—elliptic curve cryptography, or ECC. ECC encompasses an often hard to comprehend
set of algebraic operations to perform cryptography that is faster than RSA, and more secure.

ECC makes use of the mathematical construct known as an elliptic curve to construct a
trapdoor in a manner not vulnerable to sub-exponential attacks (as of yet).This means that
every bit used for ECC goes toward the end security of the primitives more than it would
with RSA. For this reason, the numbers (or polynomials) used in ECC are smaller than those
in RSA.This in turn allows the integer operations to be faster and use less memory.

For the purposes of this text, we will discuss what are known as the prime field ECC
curves as specified by NIST and used in the NSA Suite B protocol. NIST also specifies a set
of binary field ECC curves, but are less attractive for software. In either case, an excellent
resource on the matter is the text Guide to Elliptic Curve Cryptography (Darrel Hankerson,
Alfred Menezes, Scott Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004).That
text covers the software implementation of ECC math for both binary and prime field
curves in great depth. Readers are strongly encouraged to seek out that text if they are inter-
ested in implementing ECC, as it will give them pointers not included here toward high
optimization and implementation ease.
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What Are Elliptic Curves?
An elliptic curve is typically a two-space graph defined by the square roots of a cubic equa-
tion. For instance, y2 = x3 – x is an elliptic curve over the set of real numbers. Elliptic curves
can also be defined over other fields such as the field of integers modulo a prime, denoted as
GF(p), and over the extension field of various bases, such as GF(2k) (this is known as binary
field ECC).

Given an elliptic curve such as Ep : y2 = x3 – 3x + b (typical prime field definition)
defined in a finite field modulo p, we can compute points on the curve.A point is simply a
pair (x, y) that satisfies the equation of the curve. Since there is a finite number of units in
the field, there must be a finite number of unique points on the curve.This number is
known as the order of the curve. For various cryptographic reasons, we desire that the order
be a large prime, or have a large prime as one of its factors.

In the case of the NIST curves, they specify five elliptic curves with fields of sizes 192,
224, 256, 384, and 521 bits in length.All five of the curves have orders that are themselves
large primes.They all follow the definition of Ep listed earlier, except they have unique b
values.The fact that they have the same form of equation for the curve is important, as it
allows us to use the same basic mathematics to work with all the curves.The only difference
is that the modulus and the size of the numbers change (it turns out that you do not need b
to perform ECC operations).

From our elliptic curve, we can construct an algebra with operations known as point
addition, point doubling, and point multiplication.These operations allow us to then create a trap-
door function useful for both DSA signatures and Diffie-Hellman-based encryption.

Elliptic Curve Algebra
Elliptic curves possess an algebra that allows the manipulation of points along the curve in
controlled manners. Point addition takes two points on the curve and constructs another. If
we subtract one of the original points from the sum, we will have computed the other orig-
inal point. Point doubling takes a single point and computes what would amount to the
addition of the point to itself. Finally, point multiplication combines the first two operations
and allows us to multiply a scalar integer against a point.This last operation is what creates
the trapdoor, as we shall see.

Point Addition
Point addition is defined as computing the slope through two points and finding where it
strikes the curve when starting from either point.This third point is negated by negating the
y portion of the point to compute the addition. Given P = (x1, y1) and Q = (x2, y2), two dif-
ferent points on the curve, we can compute the point addition with the following.

P + Q = (x3, y3)

x3 = ((y2 – y1) / (x2 – x1))2 – x1 – x2
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y3 = ((y2 – y1) / (x2 – x1)) * (x1 – x3) – y1

All of these operations are performed in the finite field; that is, modulo some prime.The
equations are only defined for the case where P and Q do not lie at the same x co-ordinate.

Point Doubling
Point doubling is defined as computing the tangent of a point on the curve and finding
where it strikes the curve.There should be only one unique answer, and it is the double of
the point. Point doubling can be thought of as adding a point to itself. By using the tangent
instead of the slope, we can obtain well-defined behavior. Given P = (x1, y1), the point
double is computed as follows.

2P = (x3, y3)

x3 = ((3x1
2 + a) / (2y1))2 – 2x1

y3 = ((3x1 + a) / (2y1)) * (x1 – x3) – y1

Again, all of these operations are performed in a finite field.The a value comes from the
definition of the curve, and in the case of the NIST curves is equal to –3.

Point Multiplication
Point multiplication is defined as adding a point to itself a set number of times, typically
denoted as kP where k is the scalar number of times we wish to add P to itself. For instance,
if we wrote 3P, that literally is equivalent to P + P + P, or specifically, a point double and
addition.

TIP

It is very easy to be confused by elliptic curve mathematics at first. The notation
is typically very new for most developers and the operations required are even
stranger. To this end, most authors of elliptic curve material try to remain some-
what consistent in their notation.

When someone reads “kG”, the lowercase letter is almost always the scalar
and the uppercase letter the point on the curve. The letter k is occasionally
reserved for random scalars; for instance, as required by the Diffie-Hellman pro-
tocol. The letter G is occasionally reserved for the standard base point on the
curve. 

The order of the curve plays an important role in the use of point multiplication.The
order specifies the maximum number of unique points that are possible given an ideal fixed
point G on the curve.That is, if we cycle through all possible values of k, we will hit all of
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the points. In the case of the NIST curves, the order is prime; this has a neat side effect that
all points on the curve have maximal order.

Elliptic Curve Cryptosystems
To construct a public key cryptosystem from elliptic curves, we need a manner of creating a
public and private key. For this, we use the point multiplier and a standards specified base
point that lies on the curve and is shared among all users. NIST has provided one base point
for each of the five different curves they support (on the prime field side of ECC).

Elliptic Curve Parameters
NIST specifies five prime field curves for use with encryption and signature algorithms.A
PDF copy of the standard is available through NIST and is very handy to have around
(NIST recommended curves: http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/
NISTReCur.pdf ).

NIST specifies five curves with the sizes 192, 224, 256, 384, and 521 bits, respectively.
When we say size, we really mean the order of the curve. For instance, with the 192-bit curve
(also known as P-192), the order is a 192-bit number. For any curve over the prime fields, four
parameters describe the curve. First is the modulus, p, which defines the field in which the
curve lies. Next is the b parameter, which defines the curve in the finite field. Finally is the
order of the curve n and the base point, G, on the curve with the specified order.The tuple of
(p, n, b, G) is all a developer requires to implement an elliptic curve cryptosystem.

For completeness, following is the P-192 curve settings so you can see what they look
like. We will not list all five of them, since printing a page full of random-looking numbers is
not useful. Instead, consider reading the PDF that NIST provides, or look at LibTomCrypt
in the file src/pk/ecc/ecc.c.That file has all five curves in an easy to steal format to include in
other applications (LibTomCrypt is public domain).The following is a snippet from that file.

#ifdef ECC192
{

24,
“ECC-192”,
“FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF”,
“64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1”,
“FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831”,
“188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012”,
“7192B95FFC8DA78631011ED6B24CDD573F977A11E794811”,

},
#endif

The first line of the structure describes the field size in octets.The second line is a nice
string literal name of the curve (for diagnostic support). Next are p, b, r, and finally the base
point (x, y).All the numbers are stored in hexadecimal format.
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Key Generation
The algorithm in Figure 9.9 describes the key generation process.

Figure 9.9 ECC Key Generation

Input:
G: Standard base point
n: Order of the curve (NIST provides this)

Output:
Y: Public key (ECC point)
x: Private key (integer)

1. Pick a random integer x in the range of 1 < x < n – 1

2. Compute Y = xG

3. Return (x, Y)

We can now give out Y to anyone we want, and the recipient can use this to encrypt
messages for us, or verify messages we sign.The format—that is, byte format of how we store
this public key—is specified as part of ANSI X9.63 (Section 4.3.6); however, there are better
formats. For the benefit of the reader, we will show the ANSI method.

ANSI X9.63 Key Storage
An elliptic curve point can be represented in one of three forms in the ANSI standard.

■ Compressed 

■ Uncompressed 

■ Hybrid 

When storing P = (x, y), first convert x to an octet string X. In the case of prime
curves, this means store the number as a big endian array of octets.

1. If using the compressed form, then

1. Compute t = compress(x, y)

2. The output is 0x02 || X if t is 0; otherwise, the output is 0x03 || X

2. If using the uncompressed form

1. Convert y to an octet string Y

2. The output is 0x04 || X || Y

3. If using the hybrid form
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1. Convert y to an octet string Y

2. Compute t = compress(x, y)

3. The output is 0x04 || X || Y if t is 0; otherwise, the output is 0x05 || X ||
Y

The compression function is computing which of the square roots y is.Taking from
ANSI X9.63 (Section 4.2.1), we can compress a point (x, y) by taking the rightmost bit of y
and returning that as the output. Decompressing the point is fairly simple, given x and the
compressed bit t, the decompression is:

1. Compute a, the square root of x3 – 3x + b (mod p)

If the rightmost bit of a is equal to t, then return a; otherwise, return p – a

NOTE

Readers should be careful around point compression. Certicom holds U.S.
patent #6,141,420, which describes the method of compressing a full point
down to the x co-ordinate and an additional bit. For this reason alone, it is usu-
ally a good idea to avoid point compression.

Generally, ECC keys are so small that point compression is not required. However, if you
still want to compress your points, there is a clever trick you can use that seems to avoid the
Certicom patent (Figure 9.10).

Figure 9.10 Elliptic Curve Key Generation with Point Compression

Input:
G: Standard base point
p: Modulus
n: Order of curve

Output:
k: Secret key (integer)
x: Public key (only x co-ordinate of public key, integer)

1. Pick a random integer k in the range of 1 < k < n – 1

2. Compute Y = kG = (x, y)

3. Compute z = sqrt(x3 – 3x + b) (mod p)

4. If z does not equal y, goto step 1

5. return (k, x)
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This method of key generation is roughly twice as slow as the normal key generation,
but generates public keys you can compress and avoids the Certicom patent. Since the com-
pressed bit will always be 0, there is no requirement to transmit it.The user only has to give
out his x co-ordinate of his public key and he is set. What is more, this key generation pro-
duces keys compatible with other algorithms such as EC-DH and EC-DSA.

Elliptic Curve Encryption
Encryption with elliptic curves uses a variation of the ElGamal algorithm, as specified in sec-
tion 5.8 of ANSI X9.63.The algorithm is as shown in Figure 9.11).

Figure 9.11 Elliptic Curve Encryption

Input:
Y: The recipients public key
EncData: Plaintext of length encdatalen
mackeylen: The length of the desired MAC key

Output:
c: The ciphertext

1. Generate a random key Q = (kq, (xq, yq))

2. Compute the shared secret, z, the x co-ordinate of kqY

3. Use the key derivation (ANSI X9.63 Section 5.6.3, equivalent to PKCS #1 MGF)
to transform z into string KeyData of length encdatalen + mackeylen bits

4. Split KeyData into two strings, EncKey and MacKey of encdatalen and mackeylen
bits in length, respectively

5. MaskedEncData = EncData XOR EncKey

6. MacTAG = MAC(MacKey, MaskedEncData) using an ANSI approved MAC (such
as X9.71, which is HMAC)

7. Store the public key (xq, yq) using the key storage algorithm, call it QE

8. Return c = QE || MaskedEncData || MacTag

ANSI allows for additional shared data in the encryption, and it is optional.The key
derivation function is, without this optional shared data, equivalent to the recommended
mask generation function (MGF) from the PKCS #1 standard.The MAC required (step 6)
must be an ANSI approved MAC with a security level of at least 80 bits.They recommend
X9.71, which is the ANSI standard for HMAC. HMAC-SHA1 would provide the minimum
security required for X9.63.

Decryption is performed by computing z as the x co-ordinate of k(xq, yq), where k is
the recipient’s private key. From z, the recipient can generate the encryption and MAC keys,
verify the MAC, and decrypt the ciphertext.
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Elliptic Curve Signatures
Elliptic curve signatures use an algorithm known as EC-DSA, which is derived from the
NIST standard digital signature algorithm (DSA, FIPS-186-2), and from ElGamal. Signatures
are in section 7.3 of ANSI X9.62 (Figure 9.12).

Figure 9.12 Elliptic Curve Signatures

Input:
k: Private key (integer)
n: Order of the curve
M: Message to be signed

Output:
(r, s): The signature

1. Generate a random key Q = (kq, (xq, yq)).

2. Convert xq to an integer j.This step is omitted for prime curves since xq is already
an integer.

3. r = j mod n, if r = 0, go to step 1.

4. H = hash(M)

5. Truncate H to the leftmost ceil(log2n) bits. For instance, with P-192, truncate H to
192 bits.

6. Convert H to an integer e by loading it in big endian fashion.

7. Compute s = kq
-1(e + kr) mod n; if s = 0, go to step 1.

8. Return (r, s).

The signature is actually two integers of the size of the order. For instance, with P-192,
the signature would be roughly 384 bits in size.ANSI X9.62 specifies that the signatures be
stored with the following ASN.1 SEQUENCE when transporting them (Section E.8):

ECDSA-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER

}

which is a welcome change from the X9.63 key storage format given that it is uniquely decod-
able. Verification is given as shown in Figure 9.13 (ANSI X9.62 Section 7.4).
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Figure 9.13 Elliptic Curve Signature Verification

Input:
Y: Signers public key
G: Base point for the curve
M: Signed message
n: Order of the curve
(r, s): The signature

Output:
Validity of signature

1. If r and s are both not in the interval [1, n – 1], then return invalid.

2. H = hash(M)

3. Truncate H to the leftmost ceil(log2n) bits. For instance, with P-192, truncate H to
192 bits.

4. Convert H to an integer e by loading it in big endian fashion.

5. u1 = e/s mod n

6. u2 = r/s mod n

7. R = u1G + u2Y = (xr, yr)

8. Convert xr to an integer j.This step is omitted for prime curves since xr is already
an integer.

9. r’ = j mod n

10. If r equals r’ return valid; otherwise, return invalid.

For clarification, step 7 performs a point addition of the two point multiplications.

TIP

There are two methods to speed up verification. The first is to compute R using
what is known as “Shamir’s Trick.” You can find a description on page 109 of
the “Guide to Elliptic Curve Cryptography,” algorithm 3.48. This allows you to
adhere to the standards but compute the R point in much less time.

If you will be performing verifications on a resource starved platform and
can tolerate a slight deviation from the standard, you can create the signatures
as (r, 1/s) instead. This will omit the slow modular inversion required during ver-
ification by making signature generation slower. This is not ANSI compliant,
however.
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Elliptic Curve Performance
So far, we have been only looking at the very basics of elliptic curve operations such as point
addition and doubling using affine co-ordinates. If we implemented a cryptosystem using the
functions as so far described, we would have a very slow cryptosystem.The reason being that
modular inversions—that is, computing 1/x modulo a prime—is a very slow operation, often
comparable to dozens of field multiplications.

To solve this problem, various projective systems have been described that map the two-
space operations to three-space or more.The goal is to trade off the inversions with field
multiplications. Ideally, if you minimize the field multiplications, you can break even and
achieve the point addition and doubling faster. In turn, this makes point multiplication faster,
and finally the dependent operations such as encryption and signatures.

Another important optimization is how we perform the point multiplication itself. If we
simply added the point to itself the requisite number of times, it would take forever to per-
form a point multiplication.There are various windowed and fixed point algorithms useful
for this as well.

Jacobian Projective Points
In the Jacobian projective co-ordinate system, we represent a standard point with three vari-
ables.The mapping is fairly simple going into projective format.The forward mapping turns
(x, y) into (x, y, z), with z = 1 to start with.To map back from projective, we compute (x/z2,
y/z3, 1), where the division is performed in the finite field.Typically, one would compute
1/z first, and from this derive 1/z2 and 1/z3, using only one inversion.

For example, point doubling then becomes the algorithm in Figure 9.14 (taken from
page 91,“Guide to Elliptic Curve Cryptography,” algorithm 3.21). Point addition is on the
same page, and listed as algorithm 3.22.

Figure 9.14 Jacobian Projective Point Doubling

Input:
P: (x1, y1, z1) in Jacobian co-ordinates

Output:
(x3, y3, z3): The value of 2P

1. t1 = z1
2

2. t2 = z1 - t1
3. t1 = x1 + t1
4. t2 = t2 * t1
5. t2 = 3 * t2
6. y3 = 2 * y1
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7. z3 = y3 * z1

8. y3 = y3
2

9. t3 = y3 * x1

10. y3 = y3
2

11. y3 = y3/2

12. x3 = t2
2

13. t1 = 2 * t3
14. x3 = x3 – t1
15. t1 = t3 – x3

16. t1 = t1 * t2
17. y3 = t1 – y3

18. Return (x3, y3, z3)

The division by two require the value to be even; otherwise, you must first add the
modulus (forcing it to be even) and then perform the division (usually by performing the
right shift).As we can see, this doubling has a fair bit more steps than the original point
double algorithm. In fact, there are more field multiplications as well. However, there are no
inversions, and most of the operations are trivial additions or subtractions.

The point addition algorithm assumes the second input is in affine co-ordinates (z = 1).
This is important to keep in mind when performing the point multiplication. If you would
rather not map to affine, you can use the algorithm from section 4.2 of the “A Practical
Implementation of Elliptic Curve Cryptosystems over GF(p) on a 16-bit Microprocessor,” by
T. Hasegawa, J. Nakajima, and M. Matsui. It describes both the Jacobian-Jacobian and the
Jacobian-affine addition techniques. Mixed additions are slightly faster and consume less
memory (as your 2nd operand only needs two co-ordinates of storage), but cost more to set
up initially.

Point Multiplication Algorithms
There are a variety of useful manners in which one could accomplish point multiplication,
the most basic being the double and add method. It is essentially the square and multiply
technique for exponentiation converted to point multiplication (Algorithm 3.27 of the
Guide, page 97).

That method works, but is not typically used because it is too slow. Instead, most devel-
opers opt instead for a sliding window approach (Algorithm 3.38 of the Guide, page 101). It
has fewer point additions and consumes little memory.This algorithm is similar to the expo-
nentiation trick listed in Figure 7.7, page 198 of BigNum Math.

Another approach for when the point is known (or fixed) is the fixed point technique.A
variation of this algorithm is described as algorithm 3.41 on page 104 of the Guide. It was
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also recently added to LibTomCrypt, but as a slightly different variation.This technique leads
to very fast point multiplication but at a cost in memory. It is also only useful for encryp-
tion, signature generation, and verification. It cannot be used for decryption, as the points are
always random. It is therefore important to always have a fast random point multiplier (when
decryption is required) before spending resources on a fast fixed point multiplier.

The Guide describes various methods based on nonadjacent forms (NAF) encodings
(Algorithm 3.31, page 99), which seem ideal for limited memory platforms. In practice, they
often are not faster than the normal windowed approach. It is worth the investigation,
though, if memory is a problem.

Putting It All Together
There are two competent public key algorithms in the standards bodies: RSA, which is older
and more traditionally used throughout the industry, and ECC, which is slightly newer, more
efficient, and making quite a few new appearances in the wild.

The choice between RSA or ECC is often easy given no logistical restrictions such as
standards compliance.

ECC versus RSA

Speed
ECC with Jacobian co-ordinates and a proper point multiplier leads to much faster private key
operations when compared to RSA.The fact that RSA uses larger integers and must perform a
slow modular exponentiation make any private key operation very slow. ECC, by using smaller
integers, can perform its primitive operations such as field multiplications much faster.

Where RSA wins over ECC is with public key operations (such as encryption and verifi-
cation). Since the public exponent, e, is typically small, the modular exponentiation can be
computed very efficiently. For instance, with e = 65537, only 16 field squarings and 1 field
multiplication are required to compute the power. Granted, the field is larger, but it still wins
out.

In Table 9.2, we see that RSA-1024 encryption on the AMD Opteron requires 131,176
cycles, while encryption with ECC-192 (the closest ECC match in terms of bit strength)
requires two point multiplications and would consume at least 780,000 cycles. On the other
hand, signature generation would require at least 1.2 million cycles with RSA-1024, and
only 390,000 cycles with ECC-192.

www.syngress.com

402 Chapter 9 • Public Key Algorithms

404_CRYPTO_09.qxd  10/30/06  2:57 PM  Page 402



Ta
b

le
 9

.2
Pu

bl
ic

 K
ey

 P
er

fo
rm

an
ce

 (
cy

cl
es

 p
er

 o
pe

ra
ti

on
)

R
SA

 T
es

ts
 

(E
n

cr
yp

t/
D

ec
ry

p
t)

A
M

D
 O

p
te

ro
n

In
te

l P
en

ti
u

m
 4

In
te

l P
en

ti
u

m
 M

In
te

l C
o

re
 2

 D
u

o

RS
A

-1
02

4
13

1,
17

6/
1,

24
3,

53
0

69
4,

26
2/

7,
87

5,
96

0
46

7,
33

0/
4,

85
1,

95
9

14
6,

02
0/

1,
54

9,
78

1
RS

A
-1

53
6

22
5,

19
1/

3,
56

2,
01

0
1,

09
0,

84
2/

13
,4

70
,7

11
93

3,
84

3/
13

,8
16

,1
29

25
4,

74
1/

4,
31

4,
16

1
RS

A
-2

04
8

34
8,

00
6/

6,
14

4,
91

8
2,

14
3,

43
3/

47
,1

24
,1

61
1,

49
5,

34
4/

29
,7

05
,6

22
39

6,
46

8/
8,

29
4,

76
2

EC
C

 T
es

ts
 (

Fi
xe

d 
Po

in
t 

M
ul

ti
pl

ic
at

io
n)

EC
C

-1
92

39
0,

61
5

1,
47

0,
55

1
98

9,
93

8
36

7,
87

9
EC

C
-2

24
46

8,
68

5
1,

95
2,

34
4

1,
28

0,
31

2
45

4,
99

6
EC

C
-2

56
58

3,
72

3
2,

46
4,

94
7

1,
54

7,
88

7
58

6,
79

7
EC

C
-3

84
1,

12
3,

15
2

5,
91

6,
61

6
3,

57
2,

75
5

1,
24

0,
03

4
EC

C
-5

21
1,

98
6,

75
7

12
,8

77
,9

97
7,

74
3,

30
1

2,
30

4,
23

9

www.syngress.com

Public Key Algorithms • Chapter 9 403

404_CRYPTO_09.qxd  10/30/06  2:57 PM  Page 403



Size
ECC uses smaller numbers (the reason for which will become apparent shortly), which
allows it to use less memory and storage when transmitting data.

For example, while aiming for 80 bits of security, ECC would only have to use a 160-
bit curve, whereas RSA would have to use a 1024-bit modulus.This means our ECC public
key is only 320 bits in size. It also means our EC-DSA signature is only 320 bits, compared
to the 1024 bits required for RSA-PSS.

It also pays off during the implementation phase. In the same space required for a single
RSA sized integer, one could store roughly eight or more ECC sized parameters. We saw
from the Jacobian point doubling algorithm that we require 11 integers (one for the mod-
ulus, one for overflow, three for the input, three for the output, and three temporaries).This
would mean that for ECC-192, we would require 264 bytes of storage for that operation,
and 360 for point addition. RSA-1024 with a simple square and multiply would require at
least four integers, requiring 512 bytes of storage. (In practice, to get any sort of speed out of
RSA, you would require a few more integers.The size estimates are just that—estimates.)

Security
The security of RSA for the most part rests on the difficulty of factoring.While this is not
entirely true, it is the current only line of attack against RSA public keys that works. On the
other hand, ECC is not vulnerable to factoring or other attacks in the sub-exponential range.

The only known attack against the current elliptic curves chosen by NIST is a expo-
nential cycle finding attack known as Pollard-Rho; that is, assuming the order of the curve is
prime. If the order of a curve is n, then it would require roughly O(n1/2) operations to break
the ECC public key and find the secret key. For example, with P-192, an attacker would
have to expend roughly 296 time breaking the key on average.This means that P-192 is actu-
ally about 1024 times harder to break than RSA-1024 when mounting offline attacks on the
public key. In practice, RSA-1024 pairs with ECC P-192, RSA-2048 with ECC P-224, and
RSA-3072 with ECC P-256.

This is where ECC really shines.At the 112 bits of security level (RSA-2048), the ECC
operations are not much harder than from P-192. On the other hand, RSA-2048 is much
harder to work with.The field operations are four times slower and there are twice as many
of them. On the AMD Opteron when moving from RSA-1024 to RSA-2048, the private
key operations become roughly 600-percent slower, whereas when moving from ECC P-
192 to P-224, the point multiplication only becomes 20-percent slower.

Standards
Both IEEE and ANSI specify standards for elliptic curve cryptography.The IEEE P1363a is
the current IEEE standard, while X9.62 and X9.63 are the current ANSI standards. NIST
specifies the use of the ANSI X9.62 EC-DSA as part of the digital signature standard (DSS,
FIPS 180-2).
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While ANSI specifies RSA standards (X9.31), the PKCS #1 standard is the reference
most other standards default to. In particular, quite a few older systems use v1.5 of PKCS
#1, which should be avoided.This is not because v1.5 of PKCS #1 is entirely insecure; it is
simply less optimal from a security standpoint than v2.1. New applications should avoid both
X9.31 (which is very similar to v1.5 of PKCS #1) and v1.5 of PKCS #1 in favor of v2.1.

References

Text References
When implementing RSA, the PKCS #1 standard (v2.1) is by far the most important
resource. It describes the OAEP and PSS padding techniques, CRT exponentiation, and the
ASN.1 definitions required for interoperability.
For FIPS 180-2 DSS compliance, the ANSI X9.31 standard must be used.

When implementing ECC, the ANSI X9.62 standard specifies EC-DSA and is used by
FIPS 180-2 DSS.The ANSI X9.63 standard specifies ECC encryption, key storage, and a few
authentication schemes (a couple of which have patents). Currently, NIST is working on
SP800-56A, which specifies ANSI X9.42 using discrete logarithm systems (like ElGamal),
and X9.63 using ECC.An additional specification SP800-56B specifies ANSI X9.44 (RSA
encryption). It is more likely that SP800-56A will become more popular in the future, as it
uses ECC as oppose to RSA.

A good reference for the large integer operations is BigNum Math (Tom St Denis, Greg
Rose, BigNum Math: Implementing Cryptographic Multiple Precision Arithmetic, Syngress, 2006,
ISBN 1-59749-112-8), which discusses the creation of a portable and efficient multiple pre-
cision large integer operations.That book uses both pseudo code and real production C
source code to demonstrate the math to the reader. It is by no means a hard read and is well
suited for the target audience of this text.

For implementing ECC math, the reader is strongly encouraged to obtain a copy of the
Guide to Elliptic Curve Cryptography (D. Hankerson,A. Menezes, S. Vanstone, Guide to Elliptic
Curve Cryptography, Springer, 2004, ISBN 0-387-95273-X).That text discusses both binary
and prime field ECC operations, and detailed explanations of point operations and multipli-
cation. It spends less time on the field operations (such as integer multiplication), but a good
deal of time on the binary field operations (which are typically harder to understand at first
for most). It is an invaluable resource on point multiplication techniques.

Source Code References
The LibTomCrypt package provides PKCS #1 compliant RSA and ANSI X9.62 compliant
EC-DSA. It uses a modified key derivation function and key storage that is incompatible
with X9.63. LibTomCrypt employs the use of CRT exponentiation for RSA. It uses
Jacobian-affine co-ordinates for the ECC math. It provides both a sliding window random
point multiplier and a fixed point multiplier. Since the code is well commented and public
domain, it is a valuable source of implementation insight.
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The Crypto++ package also provides PKCS #1, and ANSI X9.62 and X9.63 support.
Its code base is larger than LibTomCrypt and is not public domain. It includes a variety of
patented algorithms as well, such as EC-MQV.The reader should be careful when exploring
this code base, as it is not all free and clear to use.

Q: What are public key algorithms?

A: Public key algorithms are algorithms where a key can be split into a public and private
portion.This then allows the holder of the private key to perform operations that are
not possible with the public key. For example, the private key can sign messages while
the public key can only verify them.

Q: What else are they good for?

A: Public key cryptography solves, or at least, offers a solution to, the key distribution
problem that plagues symmetric algorithms. For example, one may encrypt a message
with a public key, and only the private key can decrypt it. In this way, without first
securing a shared secret, we can still transmit encrypted data.

Q: What public key algorithms are out there?

A: There are many, from Diffie-Hellman, ElGamal, RSA, ECC, and NTRU. Most standards
focus on RSA, and recently more often on ECC. ElGamal is still considered secure; it is
merely too inefficient to contend with RSA (which is now patent free).

Q: What standards are out there?

A: ANSI X9.62 specifies ECC signatures, while ANSI X9.63 specifies ECC encryption.
PKCS #1 specifies RSA encryption and signatures.ANSI X9.31 specifies RSA signa-
tures, and X9.42 specifies RSA encryption.The FIPS 180-2 specifies X9.62 for ECC
and X9.31 for RSA, along with its own DSA (over integers).

Q: What is good/bad about RSA?
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A: Conceptually, RSA is very simple. It is fairly easy to develop against, and PKCS #1 is
not too painful to digest. RSA public key operations (encrypt and verify) are typically
very fast. On the other hand, RSA private key operations are very slow. RSA also
requires large keys for typically demanded bit security. For example, for 112 bits of secu-
rity, one must use a 2048-bit RSA key.This can make RSA very inefficient very quickly.

Q: What is good/bad about ECC?

A: The security of ECC is much better than that of RSA. With smaller parameters, ECC
provides more security than RSA.This means that ECC math can be both memory effi-
cient and fast. ECC public key operations are slower than their private key counterparts,
but are still typically faster than RSA at the nontrivial bit security levels. ECC is also
more complicated than RSA to implement and more prone to implementation errors.
It’s conceptually hard to get going very fast and requires more time to complete than
RSA.

Q: Are there libraries I can look at?

A: Both LibTomCrypt and Crypto++ implement public key algorithms.The latter imple-
ments many more algorithms than just RSA and ECC. LibTomCrypt does not fully
adhere to the X9.63 standard, as it deviates to solve a few problems X9.63 has. It does,
however, implement X9.62, and PKCS #1 for RSA.

Q: Why should I buy Guide to Elliptic Curve Cryptography, if I just bought this book?

A: The Guide was written by some of the best minds in cryptography, from Certicom, and
are essentially the professionals in elliptic curve mathematics.The book also fully covers
the NIST suite of ECC curves with algorithms that are efficient, patent free, and easy to
implement. Duplicating the content of that book here seems like a waste of time and
does not serve the audience well.Trust us, it’s worth the purchase.

www.syngress.com
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Index
A
AAD (additional authentication data),

299, 316–319, 340–341, 347
Abstract Syntax Notation One. See

ASN.1 (Abstract Syntax
Notation One)

ADCs (analogue-to-digital
converters), 103–104

Addition in ECC (elliptic curve
cryptography), 392–393

Additional authentication data
(AAD), 299, 316–319, 340–341,
347

AddRoundKey function, 146
Advances in Cryptology (Coppersmith,

ed.), 375
Advantage, 254, 257, 283, 294
AES (Advanced Encryption Standard)

block cipher
AddRoundKey function, 146
attacks on, 140, 182
Bernstein attack, 183–184
bi-directional channels, 195
cipher testing, 161–162
ciphers, keying, 193–194
design, 142–143
embedding cipher keys, 193, 197
finite field math, 144–146
inverse cipher, 155
key schedule, 155–156, 165
last round, 155
lossy channels, 195–196
MixColumns function, 151–154
myths, 196
Osvik attack, 184–185

performance on x86-based
platforms, 174–176

processor caches, 182–183
providers, 197–199
Rijndael, 140
ShiftRows function, 150–151
side channels, 15, 182
SubBytes function, 146–150
See also AES implementation, 8-bit;

AES implementation, 32-bit
AES implementation, 8-bit

C code, 157–162
description, 156–157
key schedule, 165
optimized version, 162–165
See also AES (Advanced Encryption

Standard) block cipher
AES implementation, 32-bit

decryption tables, 167–168
inverse key schedule, 180–181
key schedule, 169–174
macros, 168–169
optimization, 165
performance, 174–175
performance,ARM, 176–177
performance, small variant, 178–180
performance, X86, 174–176
precomputed tables, 165–167
See also AES (Advanced Encryption

Standard) block cipher
Albegra in ECC (elliptic curve

cryptography). See Point algebra
AMD Opteron cache design, 183
Analogue-to-digital converters

(ADCs), 103–104
Apple computers’ CPU timers, 101
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Appliances, network, 135
Applied Cryptography (Schneier), 14,

16
Arithmetic encoding, 93
Array end, reading past, 59
Arrays of bits in ASN.1(BIT

STRING type), 30, 34–35, 45,
52–55

The Art Of Computer Programming
Volume 2 (Knuth), 375

ASN.1 (Abstract Syntax Notation
One)

CHOICE modifier, 27
classification bits, 29
constructed bit, 29–30
containers, 24–25
data types, list of, 28
data types, primitive, 30
DEFAULT modifier, 26–27
description, 22–23, 90
explicit values, 24
header bytes, 28–30
key length encodings, 31–32
libraries, 90
modifiers, 26–27
overview of, 22-23
OPTIONAL modifier, 26
standards, 90
syntax, 23–27
See also ASN.1 encoders and

decoders
ASN.1 encoders and decoders

BIT STRING encoding, 52–55
BOOLEAN encoding, 46–47
description, 42
flexible decoder, 78–83, 87–89
IA5STRING encoding, 63–67
INTEGER encoding, 48–52

length routines, 42–45
OBJECT IDENTIFIER (OID)

encoding, 58–62
OCTET STRING encoding,

55–57
primitive encoders, 45
PrintableString encoding, 63–67
SEQUENCE (OF) encoding,

71–77
UTCTIME encoding, 67–70

Asset management, 11–13
Associative caches, 182
Asymmetric key algorithms, 380
Attacks

on AES, 182
Bernstein attack, 183–184
online and offline, 258
Osvik attack, 184–185
on PRNGs, 117–118

Authentication
asset management, 12
goal of cryptography, 8–10
MACs (message authentication

codes), 282–292, 293
two-factor, 243–244

Autocorrelation test, 95–98

B
Backtracking attacks, 118
Basic Encoding Rules (BER), 22–23
Bernstein attack, 183–184
Bi-directional channels, 195
BigNum algorithms

books, 351
definition, 378
key algorithms, 351
Montgomery reduction, 369–374
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multiplication, 352–362
need for, 350–351, 378
performance math libraries, 376
squaring, 362–369
structure, 351–352

BigNum Math: Implementing
Cryptographic Multiple Precision
Arithmetic (St. Denis, Rose), 375,
390, 405

Birthday attacks, 253
Birthday paradox, 249
Bit-count test, 95
Bit extractors, 116
BIT STRING type in ASN.1, 30,

34–35, 45, 52–55, 71
Blinded exponentiation techniques,

390–391
Block ciphers

description, 5, 140–142
myths, 196

Block levels and X86 processors, 15
Blowfish block cipher, 140–142
Books, 16

Advances in Cryptology book
(Coppersmith, ed.), 375

Applied Cryptography, 16
The Art Of Computer Programming

Volume 2 book (Knuth), 375
BigNum algorithms, 351
BigNum Math: Implementing

Cryptographic Multiple Precision
Arithmetic book (St. Denis,
Rose), 375, 390, 405

Guide to Elliptic Curve Cryptography
book (Hankerson, Menezes,
Vanstone), 391, 399, 405, 407

Handbook of Applied Cryptography
book, 16, 375

Practical Cryptography, 16

BOOLEAN type in ASN.1, 30,
32–33, 46–47, 71

C
C functions memcpy, memcmp,

malloc, and free, 56
Cache

AMD Opteron design, 183
eviction from, 182
organization, 183

Caches 
associative, 182
processor, 182–183

Canonical Encoding Rules (CER),
22–23

CBC (cipher block chaining),
186–190, 201

See also CCM (Counter with CBC
MAC)

CCM (Counter with CBC MAC)
13-byte nonces, 13, 327
B0 block, 327
combined use with GCM, 339–445
design, 326
encryption, 328
implementation, 328–338
MAC tag, 327–328
nonces, 340
patents, 347
selection as standard, 299

CER (Canonical Encoding Rules),
22–23

Certification, FIPS, 19, 217
Chaining modes

choosing, 192
cipher block chaining (CBC),

186–190, 201
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counter mode (CTR), 190–192,
201

decryption, 188
description, 186–187
implementation, 189–190
initial values (IV), 187–188
message lengths, 188
myths, 196
need for, 201
performance downsides, 189

Channels
bi-directional, 195
lossy, 195–196
side, 15, 182

CHOICE modifier in ASN.1, 27
“Choose” notation, 206
Cipher block chaining (CBC),

186–190, 201
See also CCM (Counter with CBC

MAC)
Cipher keys, embedding in

applications, 193, 197
Cipher testing, 161–162
Ciphers, block

description, 5, 200
hash functions, 240
keying, 193–194
symmetric, 4

Classification bits in ASN.1, 29
Clocks, system, 114
CMAC algorithms

description, 9–10, 254, 255–256
design, 258–259
HMACs (hash message

authentication codes), 279,
293–294

implementation, 260–267

initialization, 259–260
performance, 267
security, 257–258
XCBC, 255

Collision resistance
description, 6–7, 239, 248
pre-image, 6–8, 204–205, 248

Collisions, 204
Combining CCM with GCM,

339–445
Compression

description, 204
SHA-1 family of hash functions,

210
SHA-256 hash functions, 219
SHA-512 hash functions, 226
unrolling, 244–245
zero-copying, 214, 234–236, 245

Compression, point, 396
Console platforms, 134–135
const keyword, 64
Constructed bit in ASN.1, 29–30
Containers in ASN.1, 24–25
Counter mode (CTR), 190–192, 201
Counters, 280–281
Counters in authentication portion,

13
CPU timers, 101
Crypto++ package, 406, 407
Cryptography, elliptic curve (ECC).

See ECC (elliptic curve
cryptography)

Cryptography, goals of, 4–11
CTR (counter mode), 190–192, 201
Cycle finding, 207
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Daemen, Joan, 140
Dark Age of Camelot video game, 2
Data

lifespan of, 12–13
types, list of, 28
types, primitive, 30
types and AES, 180

Data Encryption Standard (DES)
block cipher, 5, 140–141

Date encoding in ASN.1, 30, 41–42,
67–70

Decoders. See ASN.1 encoders and
decoders

Decryption in CBC, 188
Decryption tables, 167–168
DEFAULT modifier in ASN.1, 26–27
DER (Distinguished Encoding

Rules), 22–23
DES (Data Encryption Standard)

block cipher, 5, 140–141
Desktop platforms, 133–134
Deterministic random bit generators

(DRBGs). See DRBGs
Developer tools, 15
DIEHARD program, 94
Diffie-Hellman key exchange, 380
Digests, hash, 205, 249
Digests, message. See Message digests

(MDs)
Distinguished Encoding Rules

(DER), 22–23
Doubling hash functions, 241
Doubling in ECC (elliptic curve

cryptography), 393
DRBGs (deterministic random bit

generators)
description, 92

NIST hash-based, 127–131

E
ECC (elliptic curve cryptography)

comparison with RSA, 402–404
description, 391–392
encryption, 397
fixed-point technique, 401–402
good and bad, 407
Jacobian projective points, 400–401
key generation and storage,

395–397
parameters (field curves), 394
performance, 400–402
point albegra, 392–394
point compression, 396
prime field ECC curves, 391
signatures, 398–399
standards, 404–405

ElGamal, 380
Elliptic curve cryptography (ECC).

See ECC (elliptic curve
cryptography)

Embedding cipher keys in
applications, 193, 197

EncFS Web site, 12
Encoders. See ASN.1 encoders and

decoders
Encrypt and authenticate modes

additional authentication data
(AAD), 299, 316–319, 340–341,
347

description, 298, 346
security goals, 298
standards, 299
See also CCM (Counter with CBC

MAC); GCM (Galois Counter
Mode)

404_CRYPTO_Index.qxd  10/30/06  3:22 PM  Page 413



414 Index

Encryption
ECC (elliptic curve cryptography),

397
HMACs, 281–292
hybrid, 380–381
RSAES-OAEP scheme, 385–386

ENT program, 94
Entropy

absence of, 115
collecting, 100–107
description, 5, 93, 136
measuring, 94–95

Estimation of RNGs, 112–114
Events, 99–104, 136
Evicting from cache, 182
Expansion, inline, 244
Explicit values in ASN.1, 24
Exploits

Dark Age of Camelot video game, 2
Mythic, 2

Exponentiation, blinded, 390–391

F
Ferguson, Niels, 118, 122
Field curves, 394
Fields (mathematical), 144
File manifests, 239
FIPS certification, 19, 217
Fixed-point technique, 401–402
Flexible decoder, 78–83, 87–89
Fortuna PRNGs

description, 122
design, 122–124
pros and cons, 126
reseeding, 124–126
statefulness, 126

Free function in C, 56
Fuse bits, 132

G
Galois Counter Mode. See GCM

(Galois Counter Mode)
Game consoles, 134–135
Game Dark Age of Camelot, 2
Gap-space test, 95
GCM (Galois Counter Mode)

additional authentication data
(AAD) processing, 316–319

combined use with CCM, 339–345
definitions, 302–304
generic multiplication, 306–311
GF(2) mathematics, 300–301
GHASH function, 303–304
history, 300
implementation, 304
initialization, 312–314
interface, 304–306
IV processing, 314–316
nonces, 340
optimizations, 324–326
optimized multiplication, 311–312
patents, 347
plaintext processing, 319–323
Single Instruction Multiple Data

(SIMD) instructions, 325–326
state, 305–306
state, terminating, 323–324
universal hashing, 302

Generic devices, trapping, 114
GHASH function, 303–304
GMP (GNU Multiple Precision)

library, 376
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GNU Multiple Precision (GMP)
library, 376

Goals of cryptography, 4–11
Group theory, 144
Guide to Elliptic Curve Cryptography

(Hankerson, Menezes,
Vanstone), 391, 399, 405, 407

H
Handbook of Applied Cryptography, 16,

375
Hankerson, Darrel, 391
Hardware interrupts, 99–101
Hasegawa,T., 401
Hash-based DRBG (deterministic

random bit generator), 127
Hash buckets, 204
Hash digests, 205, 249
Hash functions

ciphers, 240
compression unrolling, 244–245
description, 204–205, 248
doubling, 241
file manifests, 239
implementations, 249
inline expansion, 244
intrusion detection software (IDS),

239
message authentication codes

(MACs), 240–241
mingling, 241–242
one-way, 6, 204, 238, 248
passwords, 238
patents, 249
performance considerations,

244–245
purpose, 238

random number generators
(RNGs), 108, 238

re-applied, 243
standards, 249
unsalted passwords, 240
uses, 249
See also Collision resistance; SHA-1

family of hash functions; SHA-2
family of hash functions

Hash message authentication code.
See HMACs

Hashing, universal, 302
Header bytes in ASN.1, 28–30
Heaps in C, 56
HMACs (hash message

authentication codes)
CMAC algorithms, 279
consequences, 276–278
counters, 280–281
description, 9–10, 236–238
design, 268–270
encryption, 281–292
history, 254
implementation, 270–275
one-way requirement, 6
purpose, 276
replay protection, 279–280, 295

Hollywood movies, 4
Hybrid encryption, 380–381

I
IA5 STRING type in ASN.1, 30, 41,

63–67, 71
IDEA block cipher, 140–141
IDS (intrusion detection software),

239–240
Implementation

CCM, 328–338

404_CRYPTO_Index.qxd  10/30/06  3:22 PM  Page 415



416 Index

chaining modes, 189–190
CMAC algorithms, 260–267
counter mode (CTR), 190–192
GCM (Galois Counter Mode), 304
hash functions, 249
HMACs (hash message

authentication codes), 270–275
public key (PK) standards, 83–89
SHA-1 family of hash functions,

211–217
SHA-256 hash functions, 220–225
SHA-512 hash functions, 226–232
See also AES implementation, 8-bit;

AES implementation, 32-bit;
Public key (PK) standards,
implementing

Implied values, 26–27
Initial values (IV), 12–13, 187–188,

201
Inline expansion of hash functions,

244
INTEGER type in ASN.1, 30,

33–34, 48–52, 71
Integers, very large. See BigNum

algorithms
Integrity as goal of cryptography, 6–8
Interrupt handler, 99
Interrupts, hardware, 99–101
Intrusion detection software (IDS),

239–240
Inverse cipher in AES, 155
Inverse key schedule, 180–181
Inversion, multiplicative, 374
IVs (initial values), 12–13, 187–188,

201, 314–316

J
Jacobian projective points, 400–401
Joye, Marc, 390

K
K[] array, 223
Kaliski, Burton S., 374
KDFs (key derivation functions), 201,

236
Kelsey, John, 118
Key algorithms, 351
Key ciphers, symmetric, 4
Key derivation functions (KDFs),

201, 236
Key generation in ECC (elliptic

curve cryptography), 395–396
Key lengths, 31–32, 294, 389
Key schedule, 180–181
Key schedule in AES, 155–156, 165,

169–174
Keyboards, trapping, 113
Keying ciphers, 193–194
Keys, embedding in applications, 193,

197
Knuth, Donald, 375
Kolmogorov complexity, 94

L
Large numbers. See BigNum

algorithms
Lengths

encodings in ASN.1, 31–32
hash digests, 205–207
keys, 31–32, 294, 389
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messages, 188
LFSRs (Linear Feedback Shift

Registers)
description, 104–105
large, 107
table-based, 105–107

Libraries, public-domain open-
source, 15, 19, 90

LibTomCrypt library, 15, 19, 90, 378
LibTomMath library, 376
Lifespan of data, 12–13
Lifetimes of PRNGs, 116–117, 137
Linear Feedback Shift Registers. See

LFSRs
Locking memory, 338
Loop unrolling, 244, 353, 362, 375
Loss of packets, 295
Lossy channels, 195–196

M
MACs (message authentication codes)

advantage, 254, 257, 283, 294
authentication, 282–293
birthday attacks, 253
description, 9, 240–241, 252, 293
hash functions, 278
key lifespan, 254
patents, 296
purpose, 252–253
RNG processing, 278
security goals, 253
standards, 254
tags, 293, 327–328, 341
See also CCM (Counter with CBC

MAC)
Maleability attacks, 118

Malloc function in C, 56
MARS block cipher, 140
Matsui, M., 401
McGraw, David, 300
MD5 hash algorithm, 8
MD5CRK, 207
MDs. See Message digests (MDs)
memcmp function in C, 56
memcpy function in C, 56
Memory, virtual and swap, 338
Menezes,Alfred, 391
Message authentication codes. See

MACs
Message digests (MDs)

description, 6, 248
strengthening, 207–208, 250

Message lengths, 188
Mice, trapping, 113–114
Mingling hash functions, 241–242
Mismatch of strength, 206
MixColumns function, 151–154
Modeling threats, 3–4, 18
Modifiers in ASN.1, 26–27
Monte Carlo simulations, 94
“The Montgomery Powering

Ladder” (Yen and Joye), 390
Montgomery reduction, 369–374
Movies, 4
Multi-prime RSA, 388
Multiplication

BigNums, 352–362
ECC (elliptic curve cryptography),

393–394
Multiplicative inversion, 374
Mythic exploit, 2
Myths about block ciphers, 196
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Nakajima, J., 401
Network appliances, 135
NIST (National Institute for

Standards and Technologies)
AES selection, 140
cryptographic functions, 9
encrypt and authenticate standard,

299
hash-based DRBGs, 127–131
K[] array, 223
MAC standards, 293
PRNG standards, 137
Secure Hash Standard, 205
test vectors lacking thoroughness,

217
See also AES (Advanced Encryption

Standard) block cipher; CCM
(Counter with CBC MAC)

Nonces
13 bytes in CCM, 13, 327
CCM design and implementation,

326–332
choosing, 340
definition, 298, 347
importance for security, 326

Nonrepudiation
as goal of cryptography, 10
public-key cryptography, 380–381

Notation,“choose,” 206
NULL type in ASN.1, 30, 35–36,

57–58, 71
Number Field Sieve algorithm,

389–390
Numbers, very large. See BigNum

algorithms

O
OBJECT IDENTIFIER (OID) type

in ASN.1, 30, 36–37, 58–62, 71
OCTET STRING type in ASN.1,

30, 35, 55–57, 71
Offline passwords, 242
OID (OBJECT IDENTIFIER) type

in ASN.1, 30, 36–37, 58–62, 71
OMAC, 256
One-way hash functions, 6, 204, 238,

248
Online passwords, 243
Open-source libraries, 15, 19, 90
openssl command, 38
Optimization

AES implementation, 32-bit, 165
GCM (Galois Counter Mode),

324–326
GCM (Galois Counter Mode)

multiplication, 311–312
public-key cryptography, 390–391
SHA-1 family of hash functions,

212
OPTIONAL modifier in ASN.1, 26
Osvik attack (Dag Arne Osvik),

184–185

P
Packet loss and re-ordering, 295
Paradox, birthday, 249
Passwords

hash functions, 238
offline, 242
online, 243
re-applied hash functions, 243
salts, 242–243
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two-factor authentication, 243–244
unsalted, 240

Patents
CCM and GCM, 347
hash functions, 249
MACs (message authentication

codes), 296
Percival, Colin, 184
Performance of AES

ARM, 176–177
general, 174–175
small variant, 178–180
X86, 174–176

PIC (Programmable Interrupt
Controller), 99

PK standards. See Public key (PK)
standards, implementing

PKCS #1 standard
cryptographic primitives, 384–385
data conversion, 384
description, 384
key formats, 388
multi-prime RSA, 388
RSAES-OAEP encryption scheme,

385–386
signature scheme, 386–388

PKCS #5
description, 250
example, 245–248
key derivation, 236–238

Platforms
console, 134–135
desktop and server, 133–134
X86. See X86-based platforms

Point algebra
addition, 392–393
doubling, 393
multiplication, 393–394

notation, 393
PowerPC processors’ CPU timers,

101
Practical Cryptography (Ferguson and

Schreier), 16, 122
“A Practical Implementation of

Elliptic Curve Cryptosystems
over GF(p) on a 16-bit
Microprocessor” (Hasegawa,
Nakajima, and Matsui), 401

Pre-image collision resistance, 6–8,
204–205, 248

Precomputed tables, 165–167
PRFs (pseudo random functions). See

Hash functions
Prime field ECC curves, 391
Primitive encoders in ASN.1, 45
Primitive types in ASN.1, 30
Printable String type in ASN.1, 30,

41, 63–67, 71
Privacy

asset management, 12
goal of cryptography, 4–5

PRNGs (pseudo random number
generators)

attacks on, 117–118
bit extractors, 116
comparison with RNGs, 131–132
description, 92
design, 115–116
Fortuna design, 122–126
fuse bits, 132
lifetime, 116–117, 137
seeding, 116–117, 133
uses, 132–133
Yarrow design, 118–121

Processor caches, 182–183
Processors, X86. See X86-based

platforms
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Programmable Interrupt Controller
(PIC), 99

Projective points, Jacobian, 400–401
Providers,AES, 197–199
PRP (pseudo random permutation),

142, 201
Pseudo random functions (PRFs). See

Hash functions
Pseudo random number generators.

See PRNGs
Pseudo random permutation (PRP),

142, 201
Public-domain open-source libraries,

15, 19, 90
Public-key cryptography

authenticity, 380–381
description, 10, 380, 406
nonrepudiation, 380–381
Number Field Sieve algorithm,

389–390
privacy, 380
RSA optimization, 390–391
RSA security, 389–390
standards, 406
See also ECC (elliptic curve

cryptography); PKCS #1
standard; RSA public key
cryptography

Public-key (PK) standards,
implementing

building lists, 83–85
decoding lists, 86–87
flexible decoding, 87–89
nested lists, 85–86

Public-key signatures, 381

R
Random bit generators, 92
Random number generators (RNGs)

comparison with PRNGs, 131–132
design, 98–99
estimation, 112–114
events, 99–104, 136
gathering data, 104–107
generic devices, trapping, 114
hardware interrupts, 99–101
hash functions, 108, 238
keyboards, trapping, 113
mice, trapping, 113–114
output, 108–112
platforms, console, 134–135
platforms, desktop and server,

133–134
processing stage, 107–108
RPG100B IC RNG, 134
setup, 115
SG100 nine-pin serial-port RNG,

134
timer interrupts, 114
timer skew, 101–103
See also DRBGs (Deterministic

Random Bit Generators);
PRNGs (pseudo random
number generators)

Random permutation, 142
Randomness

description, 92–94
tests for, 95–98
true, 92–94

RC5 block cipher, 141–142
RC6 block cipher, 140
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Re-applied hash functions for
passwords, 243

Re-ordering of packets, 295
Reducible problems, 339, 346
Reduction, Montgomery, 369–374
Replay protection, 279–280, 295
Reseeding. See Seeding
Resistance, pre-image, 6–8, 204–205,

248
Right shift operation, 300
Rijmen, Vincent, 140
Rijndael block cipher, 140
Rings (mathematical), 144
Rivest, Dr., 208
RNGs. See Random number

generators (RNGs)
Rose, Greg, 405
RPG100B IC RNG, 134
RSA public key cryptography

comparison with ECC, 402–404
good and bad, 407
history, 382
key generation, 383–384
mathematics, 383–384
optimization, 390–391
PKCS #1 standard, 384–389
RSA transform, 384
security, 389–390

RSA (Rivest Shamir Adleman)
algorithm, 380

RSAES-OAEP encryption scheme,
385–386

S
Salts, 242–243
Schneier, Bruce, 13–14, 118, 122

Secret and Lies (Bruce Schneier),
13–14

Secure Hash Algorithm. See SHA-1
family of hash functions; SHA-2
family of hash functions

Secure Hash Standard (SHS) hash
functions, 8

Security problems: reading past array
end, 59

Seeding
Fortuna PRNGs, 124–126
management of, 135
PRNGs, 116–117, 133
Yarrow PRNGs, 120–121

SEQUENCE (OF) type in ASN.1,
30, 37–39, 71–77

Serial-port RNG, 134
Serpent block cipher, 140
Server platforms, 133–134
SET (OF) type in ASN.1, 30, 37–41
SG100 nine-pin serial-port RNG,

134
SHA-1 family of hash functions

compression, 210
description, 8, 205–208
design, 209–217
expansion, 209–210
implementation, 211–217
optimization, 212
round function, 210
state, 209
zero-copy compression, 214

SHA-2 family of hash functions
description, 8
SHA-256 design, 217–225

SHA-224 hash functions, 232–233
SHA-256 hash functions
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compression, 219
expansion, 219
implementation, 220–225
state, 219

SHA-384 hash functions, 233–234
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