
CRYPTOGRAPHY: A NEW

DIMENSION IN

COMPUTER DATA SECURITY

CRYPTOGRAPHY: A NEW
DIMENSION IN

COMPUTER DATA SECURITY

A Guide for the Design and
Implementation of Secure Systems

CARL H. MEYER
STEPHEN M. MATYAS
Cryptography Competency Center

IBM Corporation, Kingston, New York

1982

A Wiley-Interscience Publication

JOHN WILEY&SONS

New York l Chichester l Brisbane l Toronto l Singapore

TO

MARLIES v. AND SANDRA L.

Copyright @ 1982 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

This publication is designed to provide accurate and
authoritative information in regard to the subject
matter covered. It is sold with the understanding that
the publisher is not engaged in rendering legal, accounting,
or other professional service. If legal advice or other
expert assistance is required, the services of a competent
professional person should be sought. From a Declaration
of Principles jointly adopted by a Committee of the
American Bar Association and a Committee of Publishers.

Library of Congress Cataloging in Atblication Data:

Meyer, Carl, Ph.D.
Cryptography: A New Dimension in Computer

Data Security-A Guide for the Design and
Implementation of Secure Systems

Bibliography: p.
Includes index.
1. Cryptography-Handbooks, manuals, etc.

I. Matyas, Stephen. II. Title.

2103.M55 001.54’36 82-2831
ISBN 0-471-04892-S AACR2

Printed in the United States of America

10 9 8

Preface

This book deals with today’s cryptography. Unlike past classical schemes
used for the concealment of diplomatic and military secrets of monarchs and
government officials at all levels, today’s cryptography must provide cost-
effective, secure approaches for protecting the vast amounts of digital data
gathered and communicated with electronic data processing (EDP) systems.
Consequently, the material in this book is intended for the increasing number
of both technical and nontechnical people concerned with computer data
security and privacy.

Advances in cryptography appeared with unprecedented frequency in the
1970s as strong encryption-based protocols and new cryptographic appli-
cations emerged. On January 15, 1977, the National Bureau of Standards
adopted an encryption algorithm as a Federal standard-The Data Encryp-
tion Standard (DES)-marking a milestone in cryptographic research and
development. Subsequently, in December 1980, the American National
Standards Institute adopted the same algorithm for commercial use in
the United States. Another milestone was set by the proposal of a new con-
cept called Public Key Cryptography, an approach still being developed
and no standard algorithm yet agreed upon.

Many readers may find themselves unacquainted with cryptography, but
confronted with problems of cryptographic design or the implementation of
cryptographic protection at some level within a communications network
or EDP system. To meet the approaching challenges to the technical world,
full coverage of these aspects of cryptography is provided.

It is noteworthy that cryptography is the only known practical means
for protecting information transmitted through a large communications
network, be it telephone line, microwave, or satellite. A detailed discus-
sion of how cryptography can be used to achieve communications security
(COMSEC) is provided. Moreover, various attack scenarios are discussed so
that the engineer and systems designer can understand and appreciate the
problems and difficulties involved in providing a cryptographically secure
COMSEC solution.

Cryptography can be used to achieve file security. A protocol is developed
for the encryption of data stored on removable media. Enhanced authentica-
tion protocols, including personal verification, message authentication, and
digital signatures, can also be achieved through cryptographic techniques.
These subjects are of particular interest to those concerned with electronic
funds transfer and credit card applications within the banking and finance
industry, or any other area where the originator, timeliness, contents, and
intended receiver of a message must be verified.

The banking and finance industry has been the leader in promoting the
use of cryptography for protecting assets transferred via messages sent

V

vi PREFACE

through large networks of computers and terminals. To address this subject
properly, we have reprinted a significant portion of the PIN Manual, pre-
pared by the staff of MasterCard International, Inc., and previously available
only through MasterCard’s Security Department. This material is augmented
by our detailed analysis of EFT systems security. A set of EFT security re-
quirements is presented. It should be evaluated by those designing or plan-
ning EFT applications. Various implementations are discussed, including
design trade-offs and techniques for achieving superior security in future
systems.

Any key-controlled cryptographic algorithm, such as the DES, requires a
protocol for the management of its cryptographic keys. The details of a key
management scheme providing support for the protection of communications
between individual end users (end-to-end) and for the protection of data
stored or transported on removable media are given. Procedures for the safe
and secure generation, distribution, and installation of cryptographic keys
are also discussed.

Shannon’s treatment of cryptography (in his landmark paper on Secrecy
Systems) has been used as a starting point for the coverage of the subjects of
unicity distance and work factor. Both statistical and information theory
approaches are given, providing the reader with a more thorough understand-
ing of the approaches for achieving cryptographic strength.

This book is intended for those people interested in understanding the
role of cryptography in achieving high levels of computer data security. Per-
haps of even greater importance is the fact that cryptography is identified as
a complete solution to some data security problems. For others, it provides
only a partial solution, but this is equally important to an understanding of
what problems can and cannot be solved using cryptography. Engineers,
designers, planners, managers, academicians, and students can benefit from
one or more of the practical and theoretical subjects treated in the text.

The state-of-the-art material for this book was derived from our involve-
ment in research and development efforts in the field of cryptography, and
more generally from our work in the field of data security.

The views expressed in this book are those of the authors and not neces-
sarily those of the IBM Corporation.

Starting with the third printing, the function for generating redundant informa-
tion for a message integrity check has been changed from modulo two addition,
which was found to have certain undesirable properties, to modulo 264 addition.
The change affects pages 69, 79, 82-83, 101-105, 257-259, 361, 385, 399, 400-401,
411-415.

Carl H. Meyer
Stephen M. Matyas

Kingston, New York
July, 1982

Acknowledgments

We are indebted to David B. Mayer, whose early review of Chapters 1 through
3 was instrumental in setting the presentation format to enable this work to
appeal to a broader audience.

David Kahn reviewed Chapter 1 and provided many valuable criticisms
that redirected the chapter’s content and approach.

Stephen M. Lipton supplied the section Technical Implications of Privacy
Legislation in Chapter 1. He also assisted and shared his technical expertise
in the preparation of portions of Chapter 9 dealing with the legal significance
of digital signatures.

Miles Smid reviewed the material dealing with message authentication and
digital signatures. Several weaknesses and one subtle attack against one of
the authentication procedures uncovered by Smid are documented in Chap-
ter 9. Both Miles Smid and Carl Campbell reviewed and criticized early
versions of Chapter 11, which led to a more precise discussion of alternative
cryptographic methods in electronic funds transfer systems.

Jonathan Oseas reviewed the entire manuscript and provided valuable
comments, especially for Chapter 11. As our manager, he also made re-
sources available that accelerated the book’s completion.

Donald W. Davies and Dr. Wyn L. Price critically reviewed major portions
of the manuscript and were responsible for pointing out the existence of
semiweak keys.

We are indebted to Stanley A. Kurzban, who reviewed the entire manu-
script. His many excellent comments and suggestions improved the manu-
script both from a technical and editorial standpoint.

We are indebted also to Ronald K. Freeman for his careful editing skills and
his continued support and assistance in the preparation of this manuscript.

We especially wish to thank Richard E. Lennon for his collaboration and
suggestions with the material in Chapters 4 and 11. His tireless efforts with
the composition and editing of the manuscript are deeply appreciated.
Without his help, this book would have been delayed at least one year.

Many of our colleagues generously provided detailed criticism of differ-
ent portions of the manuscript: Dr. Willis H. Ware reviewed a large part of
the work; Robert H. Courtney reviewed Chapter 1; Professors Ronald L.
Rivest and Martin E. Hellman reviewed the section on public-key algorithms;
Dr. Don Coppersmith collaborated with us in developing a computer
procedure to solve simple substitution ciphers and reviewed Chapter 12 and
associated appendices; Charles C. Wood reviewed Chapters 1 and 4 and
provided many excellent comments; Dr. Glen G. Langdon, Jr. reviewed
Chapter 12; Frank S. Piedad, James B. Warner, Marvin Sendrow, and Jerry
Svigals reviewed Chapter 11 and associated appendices.

vii

. . .
VIII ACKNOWLEDGMENTS

Salim Akl, Stanley Benton, Professor G. R. Blakley, Frank Davis, Whittield
Diffie, William H. Ehrsam, Robert C. Elander, Ronald C. Gault, Horst Feistel,
John B. Gillett, Robert R. Jueneman, Dr. Stephen T. Kent, Edwin Lester, Michael
J. Martino, Dr. Christian Mueller-Schloer, Louise D. Nielsen, Paul N. Prentice,
Mok-Kong Shen, Robert E. Shuck, Albert A. Smith, Jr., Doltis G. Smith, and
Howard Zeidler all offered constructive criticism and ideas that significantly im-
proved this book.

Gracious assistance in the preparation of the manuscript was provided by many
of our colleagues. 0. Tom Thomas supplied the material from which Appendices C
and E were derived. Laura A. Wheatherly assisted by obtaining permission from
Mastercard International Inc. to reprint sections 1 through 4 of the PIN Manual.
Thomas E. Deuser and John T. Minick helped in the composition of the book. Fern
Franke, Frank Marquette, Sherry Collins, Jim Economos, and Susan Swiderski of
AGS Typography prepared the manuscript’s many excellent figures and tables.

We also owe a debt to Horst Feistel, who started the cryptographic effort at IBM
with his LUCIFER algorithm and thus laid the foundation for the DES.

Finally, we wish to thank Dr. Walter L. Tuchman, under whose direction the DES
algorithm was developed, and the IBM Corporation for making it possible for us to
write this book.

C. M.
S. M.

Contents

Abbreviations, XIX

1. THE ROLE OF CRYPTOGRAPHY IN ELECTRONIC DATA
PROCESSING

Cryptography, Privacy, and Data Security, 1
A ttack Scenarios, I
Technical Implications of Privacy Legislation, 4

The Data Encryption Standard, 6

Demonstrating Effective Cryptographic Security, 8

The Outlook for Cryptography, 10

References. 11

2. BLOCK CIPHERS AND STREAM CIPHERS

Cryptographic Algorithms, 14
Enciphering and Deciphering, 14
Work Factor, 18
Types of Attacks, 20
Designing an Algorithm, 20

Block Ciphers, 23
Conventional Algorithms, 26
Public-Key Algorithms, 32
RSA Algorithm, 33
Trapdoor Knapsack Algorithm, 48

Stream Ciphers, 53

Block Ciphers with Chaining, 62
Patterns Within Data, 62
Block Chaining Using a Variable Key, 6 7
Block Chaining Using Plaintext and Ciphertext Feedback, 69
A Self-Synchronizing Scheme Using Ciphertext Feedback, 71
Examples of Block Chaining, 73
Short Block Encryption, 73

Stream Ciphers with Chaining, 85
A Chaining Method with the Property of Error Propagation, 86
A Chaining Method with the Property of Self-Synchronization, 88
Cipher Feedback Stream Cipher, 91

Effects of Padding and Initializing Vectors, 98

13

X CONTENTS

3.

Cryptographic Message Authentication Using Chaining Techniques, 100

Comparison of Block Ciphers and Stream Ciphers, 105

References, 111

THE DATA ENCRYPTION STANDARD

Classes of Ciphers, 113

Design Criteria, 118
Breaking a System with Two Key-Tapes, 118
Breaking a Key Auto-Key Cipher Using Linear Shift Registers, 121
Breaking a Plaintext Au to-Key Cipher Using Linear Shift Registers, 129
Designing a Cipher, 137

Description of the Data Encryption Standard, 141
Generation of Key Vectors Used for Each Round of DES, I43
Weak and Semiweak Keys, 147
Details of the DES Algorithm, 153
Summary of the DES Procedure, 159
Numerical Example, 160
Some Remarks About the DES Design, 162
Implementation Considerations for the S-Box Design, I63

Analysis of Intersymbol Dependencies for the Data Encryption
Standard, 165

Interdependence Between Ciphertext and Plaintext, 168
Interdependence Between Ciphertext and Key, 178
Summary and Conclusions, 189

References, 189

4. COMMUNICATION SECURITY AND FILE SECURITY
USING CRYPTOGRAPHY

Networks, 192

Network Encryption Modes, 195

Fundamentals of Link Encryption, 201
Asynchronous, 203
Byte-Synchronous, 204
Bit-Synchronous, 206

An Overview of End-To-End Encryption, 206

Cipher Key Allocation, 208
Specification of Cipher Keys, 209
An Example of the Encryption of Transmitted Data, 219
An Example of the Encryption of a Data File, 222

The Cryptographic Facility, 222

113

192

CONTENTS xi

Cipher Key Protection, 226
Protection of Terminal Keys, 226
Protection of Host Keys, 228
Hierarchy of Cipher Keys, 232

The Host Cryptographic System, 234

Basic Cryptographic Operations, 237
Cryptographic Operations at a Terminal, 239
Cryptographic Operations at a Host, 243
Key Parity, 249
Partitioning of Cipher Keys, 250

Cipher Macro Instruction, 253

Key Management Macro Instructions, 260
GENKEY and-RETKEY Macros, 260
Using GENKEY and RETKEY, 265

The Cryptographic Key Data Set, 267

Summary, 269

References, 269

5. THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS 271

Single-Domain Communication Security Using Pregenerated
Primary Keys, 27 1

Single-Domain Communication Security Using Dynamically Generated
Primary Keys, 274

Two Master Keys, 2 75
Requirements, 278

Single-Domain Communication Security and File Security Using
Dynamically Generated Primary Keys, 278

Problems Associated with Storing Enciphered Data, 278
Three Master Keys, 280
An Example of File Encryption, 283
Requirements, 284

Multiple-Domain Encryption, 284
A Protocol for Communication Security, 285
A Protocol for File Security, 288
Transporting a New File, 288
Transporting an Existing File, 289

Additional Considerations, 291

Extended Cryptographic Operations, 292
Cryptographic Key Distribution Using Composite Keys, 293
A Composite Key Protocol, 294

Summary, 299

References, 299

xii CONTENTS

6. GENERATION, DISTRIBUTION, AND INSTALLATION OF
CRYPTOGRAPHIC KEYS 300

Generation of the Host Master Key, 301
Tossing Coins, 301
Throwing Dice, 302
Random Number Table, 303

Generation of Key-Encrypting Keys, 303
A Weak Key-Generating Procedure, 304
A Strong Key-Generating Procedure, 304
An Alternate Approach for Generating Key-Encrypting Keys, 307
Encipherment of Keys under the Master Key’s Variants, 308
Transforming Cryptographic Keys, 311

Generation of Data-Encrypting Keys, 3 14
An Approach for Generating Keys with the Cryptographic Facility, 315
An Alternate Approach for Generating Data-Encrypting Keys, 316

Entering a Master Key at the Host Processor, 3 17
Hard- Wired En try, 318
Indirect Entry, 321

Attack Via External Manipulations, 322

Master Key Entry at a Terminal, 323
On-Line Checking, 323
Off-Line Checking, 323

Distribution of Cryptographic Keys, 326

Lost Cryptographic Keys, 327

Recovery Techniques, 328

Summary, 329

References, 330

7. INCORPORATION OF CRYPTOGRAPHY INTO A
COMMUNICATIONS ARCHITECTURE

Session-Level Cryptography in a Single-Domain Network, 333
Transparent Mode of Operation, 333
Nontransparent Mode of Operation, 339

Private Cryptography in a Single-Domain Network, 339

Session-Level Cryptography in a Multidomain Network, 343

Application Program-to-Application Program Cryptography, 347

Padding Considerations, 349

References, 349

331

CONTENTS
. . .

XIII

8. AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

Fundamental Concepts, 350

Handshaking, 35 1

Message Authentication, 354
Authentication of a Message’s Origin, 354
Authentication of a Message’s Timeliness, 358
Authentication of a Message’s Contents, 359
Authentication of a Message’s Receiver, 364
A Procedure for Message Authentication, 364

Authentication of Time-Invariant Data, 367
Authentication of Passwords, 368
Authentication Using Test Patterns Generated from the Host
Master Key, 371
A Procedure for Authentication of Cryptographic Keys, 381
Another Authentication Method Using Test Patterns Generated from
the Host Master Key, 382

References, 385

9. DIGITAL SIGNATURES

Significance of Signatures, 386
Law of Acknowledgements, 387
Law of Agency, 388
Uniform Commercial Code, 388
Contributory Negligence, 389

Obtaining Digital Signatures, 390

Universal Signatures, 391
An Approach Using Public-Key Algorithms, 392
An Approach Using Conventional Algorithms, 396

Arbitrated Signatures, 409
An Approach Using the DES Algorithm, 410
An Example of Arbitrating a Signature, 412
A Weak Approach, 414
Additional Weaknesses, 416

Using DES to Obtain Public-Key Properties, 4 17
A Key Notarization System for Computer Networks, 417
A Method Using Variants of the Host Master Key, 421

Legalizing Digital Signatures, 423
Initial Written Agreement, 424
Choice of Law, 425
Judicial Notice Recognized, 426

References, 427

386

xiv CONTENTS

10. APPLYING CRYPTOGRAPHY TO PIN-BASED ELECTRONIC
FUNDS TRANSFER SYSTEMS 429

Introduction, 429

Section One-Basic PIN Concepts, 430
Why PINS?, 430
PIN Secrecy, 431
PIN Length, 432
Allowable PIN Entry Attempts, 433
PIN Issuance, 434
PIN Validation for Local Transactions, 440
PIN Validation for Interchange Transactions, 441
Conclusions, 443

Section Two-EFT Fraud Threats, 444
EFT Fraud Categories, 445
Passive Fraud Threats, 446
Relative Risks, 448
Active Fraud Threats, 449
Fraud and Liability, 451
Conclusions, 453

Section Three-Principles of Fraud Prevention, 454
Cryptography, The Tool for Fraud Prevention, 454
Preventing Passive Fraud Threats, 455
Preventing Active Fraud Threats, 457
Fraud Prevention in Interchange, 461
Conclusions, 463

Section Four-Implementation of Fraud Prevention Techniques, 464
Suggested Characteristics of Hardware Security Module
Implementation, 464
Suggested Capabilities, 465
PIN Validation, 467
Key Management, 468
MAC Generation, 469
Utilization, 469
Conclusions, 4 73

References, 473

11. APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS
TRANSFER SYSTEMS-PERSONAL IDENTIFICATION
NUMBERS AND PERSONAL KEYS 474

Background, 474

Security Exposures in EFT Systems, 478

CONTENTS xv

Communication Link Security, 478
Computer Security, 478
Terminal Security, 4 79
Bank Card Security, 481

Identification and Authentication of System Users, 482
Transferable User Characteristics, 482
Nontransferable User Characteristics, 482

Requirements for Personal Verification and Message Authentication, 483
Authentication Parameter, 484
Personal Authentication Code, 486
Personal Verification Using AP Only, 487
Personal Vertfication Using AP and PAC, 488
Message Authentication Using a MAC, 489
EFT Security Requirements, 490
Comments on the EFTSecurity Requirements, 499

Personal Verification in the On-Line Mode, 499
Personal Verification with Dependent PINS and Dependent
Personal Keys, 500
Personal Verification with Independent PINS and Independent
Personal Keys, 502
Minimizing Card Storage Requirements, 507

Personal Verification in the Off-Line and Off-Host Modes, 5 11
Personal Verification with System-Selected PINS Employing a
PIN Generating Key, 512
Personal Verification with User-Selected PINS Employing Offsets, 514
Personal Verification with User-Selected PINS Employing PACs, 514

Guidelines for Cryptographic Designs, 5 17
Threats to PIN Secrecy, 520
Key Management Requirements, 523
Threats to the Secrecy of a Key Stored on a Magnetic Stripe Card, 526

The PIN/System Key Approach, 530
Key Management Considerations for PIN/System Key Approach, 535
Defending Against the Misrouting Attack, 536
A PIN/System Key Approach for Noninterchange, 541
A PIN/System Key Approach for Interchange, 541
Disadvantages of the PIN/System Key Approach, 544
Advantages of the PIN/System Key Approach, 545

The PIN/Personal Key Approach, 546
Description of a PIN/Personal Key Approach Using a Magnetic
Stripe Card, 546
Key Management Considerations for PIN/Personal Key Approach, 548
Advantages of the PIN/Personal Key Approach, 548
Objections to the PIN/Personal Key Approach Using a Magnetic
Stripe Card, 549
Personal Key Approach with an Intelligent Secure Card, 551

xvi CONTENTS

The PIN/Personal Key/System Key (Hybrid Key Management) Approach
Using an Intelligent Secure Card, 557

Description of a Hybrid Key Management Approach, 558
Key Management Considerations for the Hybrid Approach, 561
Hybrid Key Management Approach for Noninterchange, 562
Hybrid Key Management Approach for Interchange, 566
Cryptographic Considerations for an Intelligent Secure Card, 569
Security Enhancements with Digital Signatures, 569
Advantages, 5 76

Key Management Considerations-Symmetric Versus Asymmetric
Algorithms, 577

Authentication With and Without Secrecy, 578
Secrecy Without Authentication, 583

A Cryptographic System Using an Intelligent Secure Card and a
Public-Key Algorithm, 588

Description of a Public Key Management Approach, 589
Key Management Considerations for Asymmetric Algorithms, 593
Off-Line Use, 594
On-Line Use in Interchange and Noninterchange, 596

Concluding Remarks, 604

Glossary, 604

References, 605

12. MEASURES OF SECRECY FOR CRYPTOGRAPHIC
SYSTEMS

Elements of Mathematical Cryptography, 608
Information Flow in a Conventional Cryptographic System, 608
A Cipher with Message and Key Probabilities, 609
The Random Cipher, 614
Number of Meaningful Messages in a Redundant Language, 615

Probabilistic Measures of Secrecy Using a Random Cipher, 618
Probability of Obtaining the Key When Only Ciphertext Is Available
for Analysis, 618
An Example of Simple Substitution on English (Ciphertext Only), 621
Probability of Obtaining the Key When Plaintext and Corresponding
Ciphertext Are Available for Analysis, 624
Probability of Obtaining the Plaintext, 625

An Expansion of Shannon’s Approach Using Information Theory, 627
Information Measures, 628
Unicity Distance for a Cipher When Only Ciphertext is Available
for Analysis, 629
Unicity Distance for a Cipher When Plaintext and Corresponding
Ciphertext Are Available for Analysis, 631

607

CONTENTS xvii

Relationships Among H(XIY), H(K IY), and H(K IX, Y), 632 --
Unicity Distance for the Data Encryption Standard, 635

Work Factor as a Measure of Secrecy, 636
The Cost and Time to Break a Cipher, 636
Simple Substitution on English-Some Preliminaries, 637
Empirical Results for Simple Substitution on English Using a
Digram Frequency Analysis, 640
Empirical Results for Simple Substitution on English Using
Single-Letter Frequency Analysis, 642
Comparison of Results, 642

References, 647

APPENDIX A. FIPS PUBLICATION 46 649

APPENDIX B. FURTHER COMPUTATIONS OF INTEREST 671

Time-Memory Trade-Off, 671

Birthday Paradox, 672

References, 673

APPENDIX C. PLASTIC CARD ENCODING PRACTICES AND
STANDARDS 675

General Physical Characteristics, 675

Track 1,675

Track 2,676

Track 3,677

References, 678

APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND
METHODS OF ATTACK 679

Further Discussion of Authentication Parameters, 679
One- Way Functions, 6 79
Attack Using Repeated Trials, 681

Further Discussion of Authentication Parameters and
Personal Authentication Codes, 687

Implementation Examples, 687
Attack Against a 16-Digit PIN, 688
Attack Against a 12-Digit PIN, 688
Proposals for Authentication Parameters and Personal

. . .
XVIII CONTENTS

Authentication Codes, 689
The Advantage of an AP that Depends on ID, 694

Increasing Exhaustive Attack Work.Factor by
Implementation Methods, 696

Multiple Encryption and Block Chaining, 696
Reduction of Exhaustion Work Factor for Selected Plaintext
Attack, 697
The Meet-in-the-Middle Attack Against Double Encryption. 705
Attack Against Triple Encryption with Three Independent
K,eys, 708
Attack Against Triple Encryption with Two Independent
Keys, 711

References, 7 12

APPENDIX E. CRYPTOGRAPHIC PIN SECURITY-PROPOSED
ANSI METHOD 713

Storage of PINS, 7 13

Transmission of PINS, 7 13
Reversible PIN Encryption, 714
Cleartext PIN Block Format, 714
Ciphertext PIN Format, 715
Received Ciphertex t PIN, 716

References, 7 16

APPENDIX F. ANALYSIS OF THE NUMBER OF MEANINGFUL
MESSAGES IN A REDUNDANT LANGUAGE 717

References, 727

APPENDIX G. UNICITY DISTANCE COMPUTATIONS

Transposition, 728

Simple Substitution, 73 1

Homophonic Substitution, 733

References, 740

APPENDIX H. DERIVATION OF p(u) AND p(SM)

728

741

747

References, 746

INDEX

Abbreviations

Cipher Modes and Associated Parameters:

CBC cipher block chaining
CE compressed encoding

CFB cipher feedback
ECB electronic codebook (see block cipher)
ICV initial chaining value

OCV output chaining value
OFB output feedback (see key auto-key cipher

X plaintext
Y ciphertext

Z initializing vector (synonymous with ICV)

DEA Data Encryption Algorithm (ANSI; synonymous with DES)
DES Data Encryption Standard (NBS)
PKC Public Key Cryptosystem
RSA Rivest, Shamir, Adelman(public key) algorithm

Cryptographic Keys:

K primary data-encrypting key
KA authentication key
KC primary communications key (synonymous with session key)
KF primary file key
KI interchange key

KMT terminal master key
KN secondary key

KNC secondary (node) communication key
KNF secondary node file key

KP personal key

KPG personal key-generating key used to generate KP from ID
KPN PIN generating key used to generate PIN from ID

KS session key
KSTR transaction session key

KT resident terminal key
KTR transaction key

xix

xx ABBREVIATIONS

PK public key in a public-key cryptosystem

PKb public bank key in a PKC
PKc public customer key in a PKC
PKu public universal key in a PKC

SK secret key in a PKC
SKb secret bank key in a PKC

SKc secret customer key in a PKC

SKu secret universal key in a PKC

Cryptographic Operations:

AF authenticate forward (host)

AR authenticate reverse (host)

ECPH encipher data (host)

EMK encipher under master key (host)

ENC encipher (terminal)

ENCO encipher only (host)

DCPH decipher data (host)

DEC decipher (terminal)

DECK decipher key (terminal)

DECO decipher only (host)

GKEY generate key (host)

GSKl generate session key 1 (host)

GSK2 generate session key 2 (host)

LKD load key direct (terminal)

MGK merge key (host)

RFMK reencipher from master key (host)

RTMK reencipher to master key (host)

SMK set master key (host)

WMK write master key (terminal)

Cryptographic Macros:

CIPHER
GENKEY
RETKEY

System Terminology:

ATM automated teller machine
BSC binary synchronous communication

CC communications controller
HPC host processing center
KDC key distribution center

ABBREVIATIONS xxi

LU logical unit

PLU primary logical unit
PU physical unit
RH request/response header
RU request/response unit

SDLC synchronous data link control

SLU secondary logical unit

SNA system network architecture

SSCP systems services control point

Organizations:

ANSI American National Standards Institute
CCITT Consultative Committee on International Telephone and Telegraph

IS0 International Standards Organization
NBS National Bureau of Standards
NSA National Security Administration

Parameters Associated with Verification and Authentication

AP authentication parameter
BID bank identifier

CRV cryptographic verification
DGS digital signature

ID user identifier
MAC message authentication code
PAC personal authentication code
PAN primary account number
PIN personal identification number
RN random number

Tcard time-variant information generated by bank card
TID terminal identifier

TOD time-of-day
TR transaction request

Tterm time-variant information generated by terminal
Rf reference
Z initializing vector

The Role of Cryptography in Electronic 1........
CRYPTOGRAPHY, PRIVACY, AND DATA 1........

Attack Scenarios 1..
Technical Implications of Privacy Legislatio 4...

THE DATA ENCRYPTION STANDARD 6............
DEMONSTRATING EFFECTIVE CRYPTOGRA 8
THE OUTLOOK FOR CRYPTOGRAPHY 10..........
REFERENCES 11..

Other Publications of Interest 12.........................

,-I CHAPTER ONE I-

The Role of Cryptography in Electronic
Data Processing

CRYPTOGRAPHY, PRIVACY, AND DATA SECURITY

Organizations in both the public and private sectors have become increasingly
dependent on electronic data processing. Vast amounts of digital data are
now gathered and stored in large computer data bases and transmitted be-
tween computers and terminal devices linked together in complex communi-
cations networks. Without appropriate safeguards, these data are susceptible
to interception (e.g., via wiretaps) during transmission, or they may be
physically removed or copied while in storage. This could result in unwanted
exposures of data and potential invasions of privacy. Data are also susceptible
to unauthorized deletion, modification, or addition during transmission or
storage. This can result in illicit access to computing resources and services,
falsification of personal data or business records, or the conduct of fraudulent
transactions, including increases in credit authorizations, modification of
funds transfers, and the issuance of unauthorized payments.

Legislators, recognizing that the confidentiality and integrity of certain
data must be protected, have passed laws to help prevent these problems.
But laws alone cannot prevent attacks or eliminate threats to data processing
systems. Additional steps must be taken to preserve the secrecy and integrity
of computer data. Among the security measures that should be considered
is cryptography, which embraces methods for rendering data unintelligible
to unauthorized parties.

Cryptography is the only known practical method for protecting informa-
tion transmitted through communications networks that use land lines,
communications satellites, and microwave facilities. In some instances it
can be the most economical way to protect stored data. Cryptographic
procedures can also be used for message authentication, digital signatures,
and personal identification for authorizing electronic funds transfer and
credit card transactions.

Attack Scenarios

The possibility exists that unauthorized individuals can intercept data by
eavesdropping. In fact, there are several methods of eavesdropping.

1

2 THE ROLE OF CRYPTOGRAPHY IN ELECTRONIC DATA PROCESSING

Wiretapping. Interception of individual transmissions over communica-
tion lines by using hardwire connections.
Electromagnetic Eavesdropping. Interception of wireless transmissions,
for example, radio and microwave transmissions, or information-bearing
electromagnetic energy emanating from electronic devices.
Acoustic Eavesdropping. Interception of sound waves created by the
human voice or by printing, punching, or transmitting equipment. (This
method of eavesdropping is listed for reference only. In almost all cases,
physical security measures rather than cryptography are effective against
this threat.)

Eavesdropping is completely passive: the opponent only listens to or records
information being transmitted.’ An attack involving only eavesdropping is
called a passive attack. If, in addition, the opponent modifies transmitted
information or injects information into the communication path, the attack
is called an active attack.

In a passive attack, a tape recording of digitial data intercepted from a
communication path is made. The data can be reconstructed by analyzing
the recording tape or playing it back into suitable receiving equipment
(e.g., a modem2 and terminal). In an active attack, a terminal and modem
compatible with the transmission line are necessary, and, in some cases, a
minicomputer that can quickly modify intercepted information may be
required.

Cables running between building offices and telephone company junc-
tion boxes located inside the user’s premises are particularly vulnerable to
wiretapping. The many lines of a telephone cable are separated at the boxes
and usually are labeled. A wiretap can be performed by almost anyone; no
special technical skills are required and the necessary equipment is relatively
inexpensive. However, once the lines are outside the building, and until they
reach telephone company switching facilities, access to selected lines becomes
more difficult.3 Effective attacks are nevertheless still possible.

Interception of radio and microwave transmissions poses a particularly
subtle threat because a physical connection (tap) to the transmission link is
not required. However, because microwave links, including those used in
satellite communications, can contain several thousand channels, sophisti-
cated and expensive equipment [11 may be required to intercept and separate
channel signals. Despite this cost, the reward for a successful attack can be
extremely great.

‘It is common practice to use the term wiretapping to refer to the interception of all
forms of voice and data communications, regardless of whether that information is
transmitted via communication lines, radio, or microwave.
‘A modem is a device used to link a terminal (or other transmitting device) and the com-
munication channel. It modulates and demodulates, i.e., converts digital signals to analog,
and vice versa.

3 Within telephone company switching facilities, interception may require collusion with
telephone company personnel.

CRYPTOGRAPHY, PRIVACY, AND DATA SECURITY 3

According to a July 1977 article in The New York Times [2] :

the Russians, using advanced scientific equipment, have been “plucking” from the
air many long-distance [telephone] calls transmitted by microwaves, or ultrahigh-
frequency radio signals. They then used massive high-speed computers to locate
sensitive information in the transmissions.4

The Russian Embassy in Washington, D.C. and at least five other locations
were purportedly used as listening posts to monitor many private and govern-
ment telephone calls.

Every operating electronic device emits electromagnetic energy. For those
devices handling data, it is important to know whether the energy level of
any information-bearing emanations is high enough (and distinct enough)
for an opponent to detect and interpret the data contained therein. Usually
the answer is no. When the equipment in question has integral shielding that
can reduce the information-bearing emissions to below threshold levels for
all but the most sophisticated detection equipment, such eavesdropping is
difficult and expensive [1] . However, for unshielded digital electronic devices
employing slow-speed serial data streams, the complexity and costs of
eavesdropping diminish.

In the absence of strong cryptographic protection, an eavesdropping op
ponent may learn enough about the operational procedures of the system,
including passwords, to defeat any security mechanisms.

In applications involving automated teller machines (ATMs) that have
the capacity to dispense cash, a passive wiretap may permit an opponent to
obtain information (personal identifier, password) needed to impersonate
legitimate ATM users. With an active wiretap, an opponent could inject
unauthorized messages to obtain funds illegally. In other applications in-
volving electronic funds transfer (EFT), the opponent, by masquerading as
one bank, could send a message to another bank specifying that money be
credited to an account previously established. The opponent could then
withdraw from the account before the deception could be detected through
normal auditing procedures.

Although there is little evidence publicly available to indicate how much
eavesdropping has actually taken place, the potential for such activity has
raised concerns about the confidentiality of personal affairs and business
transactions. It is reasonable to anticipate problems when eavesdropping is
the most practical means to achieve the desired result, especially when the
payoff is great enough and the nature of the punishment, if discovered, is
small enough to justify the crime!

EFT systems, which move many billions of dollars between financial
institutions linked together in a communications network, represent a
tempting target. Recognizing the threat, the Federal Reserve System has
begun to install cryptographic devices on some of its communication lines [31.

Cryptography is the only practical means for protecting the confidentiality

4Computers can locate certain words or sets of words, certain voice prints, and certain
dialed numbers for selection of which calls to monitor.

4 THE ROLE OF CRYPTOGRAPHY IN ELECTRONIC DATA PROCESSING

of information transmitted through potentially hostile environments, where
it is either impossible or impractical to protect the information by conven-
tional physical means. A cryptographic system properly implemented can
prevent much eavesdropping damage. Also, damage resulting from message
alteration, message insertion, and message deletion can be avoided. And in
some cases a cryptographic system can reduce the severity of problems
caused by the accidental exposure of misrouted information.

Administrative and physical security procedures often can provide ade-
quate protection for off-line data transport and storage. However, where
file security methods are either nonexistent or weak, encryption may provide
the most effective and economical protection.

A more complete treatment of eavesdropping techniques can be found in
James Martin’s Security, Accuracy and Privacy in Computer Systems [11.

Technical Implications of Privacy Legislation

Privacy, as it involves collections of personal data, relates to the right of
individuals to control or influence what information about them may be
collected and stored, and by whom, for what specific reasons, and to whom
that information may then be disclosed. Privacy also relates to the right of
individuals to know that information about them has been compiled and
that it is correct and complete enough for the intended uses. Furthermore,
individuals should be able to expect that information relating to them will
not be made available t9 others they have not authorized, and they should
have the right to challenge the accuracy of such information. (See Westin’s
Privacy and Freedom [4]).

From a technical viewpoint, the requirements of privacy legislation,
both enacted and pending, generally apply to the categories of data collec-
tion (record keeping, information manipulation, communication and storage)
and information controls (system accountability and integrity, and informa-
tion dissemination and presentation). Although privacy is a legal, social,
and moral concern, privacy legislation has specific technical implications.

To understand the technical, implications of privacy statutes, one must
review such legislation and look to concepts borrowed from existing law in
an attempt to foresee how courts may interpret and apply new legislation.
To date, the Privacy Act of 1974 [51 has been the most significant piece of
legislation enacted in the United States concerning computers and data
security. The act is prefaced by several congressional findings, such as:

The increasing use of computers and sophisticated information technology, while
essential to the efficient operation of the government, has greatly magnified the
harm to individual privacy that can occur from any collection, maintenance, use,
or dissemination of personal information.

In view of these findings, the act provides for certain safeguards concerning
information systems. Although it is limited to federal agencies and certain
government contractors, several provisions are pertinent to a discussion of data
security in all computer applications. Each federal agency must accurately

CRYPTOGRAPHY, PRIVACY, AND DATA SECURITY 5

record disclosures of certain types of information under that agency’s con-
trol. The act also requires each agency to establish “rules of conduct” for
persons involved in the design, development, operation, or maintenance of
any system of records involving personal data.

The act further requires that each agency take certain steps to maintain
the confidentiality of records held by that agency. Each agency must

establish appropriate administrative, technical, and physical safeguards to ensure
the security and confidentiality of records and to protect against any anticipated
threats or hazards to their security or integrity which could result in substantial
harm, embarrassment, inconvenience, or unfairness to any individual on whom
information is maintained. [6]

In July 1977, the Privacy Protection Study Commission established under
the act urged, in its final report to the President and to Congress, that certain
corrections be made to the act so that obligations imposed by the law would
be more realistic. For example, the commission recommended that federal
agencies should be required to

establish reasonable administrative, technical, and physical safeguards to assure
the integrity, confidentiality and security of its individually identifiable records so
as to minimize the risk of substantial harm, embarrassment, inconvenience, or un-
fairness to the individual to whom the information pertains. [8]

The question of what are reasonable safeguards depends on two factors:
standard of care and state of the art. The standard of care as applied by the
courts would be the so-called standard of reasonable care-the care that
reasonable persons, similarly situated, would take under similar circumstances.
In the case of The T. J. Hooper [9 I , a federal court declared

In most cases, reasonable prudence is in fact common prudence; but strictly it is
never its measure; a whole calling may have unduly lagged in the adoption of new
and available devices. It never may set its own test, however persuasive be its usages.
Courts must in the end say what is required; there are precautions so imperative
that even their universal disregard will not excuse their omission.

How then will the courts decide what is required? Reasonable care depends
on the probability and gravity of the harm balanced against the burden and
cost of taking sufficient precautions to prevent the harm. A common sense
cost/benefit analysis is thus one method of determining what is reasonable.

State of the art concerns itself with whether a certain technological device
or process is technically feasible and commercially available. While to a sci-
entist the question of technology may be a relatively objective one, to a court
it may necessarily involve policy considerations. A court might well consider
the question of technological feasibility along with economic and public
interest considerations. What, then, can be said with regard to cryptography?

Although its cost may still be significant, cryptography currently is the
only known practical method to achieve communication security. It repre-
sents the only mechanism that can meet the state of the art requirement in

6 THE ROLE OF ~RYPTOORA~HY IN ELECTRONIC DATA PROCESSING

providing such protection. Moreover, for some federal agencies and private
organizations, cryptography may be the only practical way to satisfy the
requirements of existing or proposed privacy legislation. With a strong en-
cryption procedure available to the general public, and with cryptographic
systems also publicly available, cryptographic protection of data has become
both technically feasible and commercially achievable.

Further incentive for the implementation of cryptography as a means of
protecting assets or data that represent assets may also come from the
Foreign Corrupt Practices Act of 1977 [lo] . This amendment to the Securities
and Exchange Act of 1934 requires every issuer of stock listed on a national
exchange to make and keep books, records, and accounts which, in reasonable
detail, accurately and fairly reflect the transaction and disposition of corpor-
ate assets. The act obliges the corporation and its management to devise and
maintain a system of internal accounting controls to provide reasonable
assurance that “access to assets is permitted only in accordance with manage-
ment’s . . . authorization” [11 I.

These provisions apply to all corporate transactions, whether or not they
are “foreign” or “corrupt.” In addition to corporate fines, criminal penalties
of fines and/or imprisonment may be imposed on officers and directors for
violations. Assuring that access to assets or data that represent assets is per-
mitted only with management’s authorization may require, in certain appli-
cations, the use of protective measures that cryptography can offer.

Since laws and regulations are constantly updated, specific applications
and security measures should be reviewed with one’s own legal counsel. For
additional reading material and references dealing with privacy legislation,
see Lance J. Hoffman’s Modern Methods for Computer Security and Privacy
[121.

THE DATA ENCRYPTION STANDARD

Martin [l] has stated, “If cryptography is worth using at all, it should be
used well.” In other words, high-quality cryptography must be the objective
of the algorithm designer. Less secure approaches, although attractive for
economic or performance reasons, can lead to a false sense of security. And
cryptography that is scarcely more than a nuisance to the opponent is there-
fore worse than no cryptography at all. Thus high-quality cryptography is
the best way to ensure effective cryptographic protection of data, even
though skilled and determined opponents will always present a threat.

Recognizing the need to adopt a standard algorithm5 for the encryption
of computer data, the National Bureau of Standards (NBS) published a notice
in the Federal Register on May 15, 1973, in which it solicited proposals for

’ An algorithm is a procedure for calculating the value of some quantity or for finding the
solution to some mathematical problem that frequently involves repetition. (See also
Cryptographic Algorithms, Chapter 2.) Note that references outside a chapter are designated
by the heading and chapter number, whereas references within a chapter are designated only
by the heading.

THE DATA ENCRYPTION STANDARD 7

“cryptographic algorithms for [the] protection of computer data during
transmission and dormant storage” [133 . In part, the notice read:

Over the last decade, there has been an accelerating increase in the accumula-
tions and communication of digital data by government, industry and by other
organizations in the private sector. The contents of these communicated and stored
data often have very significant value and/or sensitivity. It is now common to find
data transmissions which constitute funds transfers of several million dollars, pur-
chase or sale of securities, warrants for arrests or arrest and conviction records being
communicated between law enforcement agencies, airline reservations and ticketing
representing investment and value both to the airline and passengers, and health
and patient care records transmitted among physicians and treatment centers.

The increasing volume, value and confidentiality of these records regularly trans-
mitted and stored by commercial and government agencies has led to heightened
recognition and concern over their exposure to unauthorized access and use. This
misuse can be in the form of theft or defalcations of data records representing
money, malicious modification of business inventories or the interception and mis-
use of confidential information about people. The need for protection is then ap-
parent and urgent.

It is recognized that encryption (otherwise known as scrambling, enciphering or
privacy transformation) represents the only means of protecting such data during
transmission and a useful means of protecting the content of data stored on various
media, providing encryption of adequate strength can be devised and validated and
is inherently integrable into system architecture. The National Bureau of Standards
solicits proposed techniques and algorithms for computer data encryption. The
Bureau also solicits recommended techniques for implementing the cryptographic
function; for generating, evaluating, and protecting cryptographic keys; for main-
taining files encoded under expiring keys; for making partial updates to encrypted
files; and mixed clear and encrypted data to permit labeling, polling, routing, etc.
The Bureau in its role for establishing standards and aiding government and industry
in assessing technology, will arrange for the evaluation of protection methods in
order to prepare guidelines.

In a second notice on August 27, 1974, the NBS again solicited crypto-
graphic algorithms. Basically, the two notices stated that the NBS recognized
the “apparent and urgent” need for data protection within government and the
private sector, and that encryption is the “only means” for protecting commu-
nicated data, and a “useful means” for protecting stored data. The NBS there-
fore solicited “proposals for algorithms for the encryption of computer data”
and agreed to “arrange for the evaluation” of these algorithms in order to “se-
lect those algorithms suitable for commercial and non-defense goverment use.”

The requirements that NBS imposed for acceptable encryption algorithms
included the following.

1. They must be completely specified and unambiguous.
2. They must provide a known level of protection, normally expressed

in length of time or number of operations required to recover the key
in terms of the perceived threat.

8 THE ROLE OF CRYPTOGRAPHY IN ELECTRONIC DATA PROCESSING

3. They must have methods of protection based only on the secrecy of
the keys.

4. They must not discriminate against any user or supplier.

On August 6, 1974, International Business Machines Corporation (IBM)
submitted a candidate algorithm that had been jointly developed by person-
nel at the company’s research laboratory in Yorktown Heights, New York
and at its Kingston, New York development laboratory.

According to the NBS, only one algorithm (the one submitted by IBM)
was found acceptable. (Because cryptographic expertise within the govern-
ment is almost totally resident within the National Security Agency (NSA),
and NSA is the national com,munications security authority, NBS requested
and obtained assistance from NSA in assessing the strength of candidate
algorithms [141). This +&gorithm formed the basis for the proposed Data
Encryption Standard (DES). On March 17, 1975, the NBS published the
algorithm stating its intent to have it considered as a Federal Information
Processing Standard and requesting comments on the algorithm and its
submission as a standard. On July 15, 1977, the proposed DES became a
federal standard.

DES applies only to federal departments and agencies for the cryptographic
protection of computer data not classified according to the National Security
Act of 1974, as amended, or the Atomic Energy Act of 1954, as amended
[151 .6 However, since the standard may be adopted and used by organiza-
tions outside the federal government, the NBS has provided the private
sector with a cryptographic algorithm that has been found, after intensive
analysis,’ to be free from any known shortcut solution. DES has also been
adopted by the American National Standards Institute (ANSI), on the rec-
ommendation of the Committee on Computers and Information Processing
(X3), as the standard industry algorithm (“Data Encryption Algorithm,”
X3.92).

Incorporation of DES in computers and related peripheral devices can
eliminate cryptographic algorithm incompatability between different manu-
facturers’ equipment. Moreover, costs associated with the development and
validation of comparable cryptographic algorithms can be avoided.

For a more detailed history of DES, see Ruth M. Davis’ “The Data Encryp-
tion Standard in Perspective” [161.

DEMONSTRATING EFFECTIVE CRYPTOGRAPHIC SECURITY

Developing a strong cryptographic algorithm involves two endeavors: design
and validation. Algorithm design consists of specifying criteria and inventing

6Supplemental interpretation of the standard has allowed its use in selected classified
areas [17].
7Seventeen man-years of effort were expended by IBM personnel to design and validate
DES. Several consultants were employed by IBM to provide additional assistance and
analysis. Subsequently, an independent validation of the algorithm was initiated by the
NBS and performed by the NSA.

DEMONSTRATING EFFECTIVE CRYPTOGRAPHIC SECURITY 9

a candidate algorithm that satisfies those criteria. Algorithm validation con-
sists of subjecting the candidate algorithm to a thorough, intensive, and rig-
orous analysis (cryptanalysis).

Algorithm validation is performed by an “attack” team playing the role
of opponent or antagonist. Attempts are made to uncover weaknesses that
might lead to an attack against the algorithm, and to break the algorithm by
using all known methods of attack for that type of algorithm. In the absolute
sense, a cryptographic algorithm is attack-proof (perfectly strong) only if
there is no procedure or method that can be successfully used to attack
(break) it. Thus, to certify that an algorithm is attack-proof requires the
proof of a negative hypothesis: the nonexistence of a procedure for breaking
the algorithm. In general, such proofs are impossible.’

Since it is impossible to prove that an algorithm is attack-proof, a compro-
mise is necessary. The dilemma must be resolved (to an acceptable point)
by performing algorithm validation on a best-effort basis. An algorithm is
considered strong (resistant to certain types of attack) if no exploitable
weakness can be uncovered during the validation effort. Thus the basis for
developing or creating a strong cryptographic algorithm requires an extensive
knowledge of how to break cryptographic algorithms. The proper applica-
tion of this knowledge helps to build a strong algorithm. In turn, the quality
of this measure of strength depends on the knowledge and expertise of the
attack team, and the scope, intensity, and duration of the investigation.
Ideally, the two tasks-design and validation-are performed by two indepen-
dent, and possibly competitive, groups. In practice, however, the design
and validation groups may interact. Such interaction is intended to provide
the means to uncover flaws and defects, thereby permitting the algorithm’s
designers to incorporate any necessary improvements.

A properly validated cryptographic algorithm of demonstrated strength
is the foundation upon which more sophisticated encryption-based protec-
tion schemes (communication and file security, message authentication, and
so forth) can be implemented. With any nonsecret, key-controlled crypto-
graphic algorithm, such as DES, the protection achieved through encryption
ultimately depends on how well the secrecy of the cryptographic keys can
be maintained. An opponent who obtains the key(s), as well as the encrypted
data, does not need to perform a cryptanalysis; since the algorithm is publicly
available, the key will directly “unlock” the data. Thus a strong cryptographic
algorithm alone does not automatically guarantee protection. Effective secu-
rity requires both a strong algorithm and secure procedures for generating,
distributing, installing, and managing keys.

It is not surprising that the problems encountered in cryptographic
algorithm design are also encountered in the design of encryption-based
protection schemes. These schemes are designed and validated in the same
manner as cryptographic algorithms. A favorable validation leads to a conclu-

‘Such a proof is possible for the so-called one-time tape system (see Designing an
Algorithm, Chapter 2). A certifiably unbreakable cipher is obtained if a plaintext is
combined bit-by-bit or character-by-character with a truly random sequence of bits or
characters using a single, elementary, reversible operation (e.g., modulo 2 addition).

10 THE ROLE OF CRYPTOGRAPHY IN ELECTRONIC DATA PROCESSING

sion that penetration of the system, although not certifiably impossible, is
at least demonstrably difficult or unlikely.

THE OUTLOOK FOR CRYPTOGRAPHY

In the late 1960s and early 1970s data security began to be recognized as a
major design concern for data processing (DP) systems. During this period,
systems were designed to operate reliably only in environments subjected to
“random noise”-power line disturbances, spurious electromagnetic radiation,
equipment malfunction, programming errors, and the like. Few, if any,
precautions were taken to protect the secrecy of computer data, or to defend
it against “intelligent noise”-the deliberate actions of people intent on sub-
version. As a result, many systems were vulnerable to attack. Transmitted
data could be intercepted and data could be modified, deleted, or added to a
system. But today data processing system designers are more aware of these
threats, and cryptography is recognized as an important factor in the design
of secure systems.

Within the computer industry there is a movement toward more secure
systems. Cryptography is being used in selected high-risk applications. For
example, significant numbers of cash-issuing terminals employ DES to verify
the identity of customers. At IBM’s Thomas J. Watson Research Center at
Yorktown Heights, New York, a DES-based cryptographic system, known as
the Information Protection System (IPS), is used to protect stored computer
data [181. International Flavors and Fragrances, Inc., uses DES to protect
valuable formulas transmitted via voice-grade public telephone lines [191.
Other designs for new and better cryptographic applications are being devel-
oped. Therefore, those responsible for the security of computer operations
and data should be prepared to include cryptographic measures in their
security system. Although many companies might not feel the need to en-
crypt their data, and even if they do, they might not use DES, according to
a statement in the December 1979 issue of EDP Analyzer, “there is a fairly
good chance they would be making a mistake on both counts-and particu-
larly the second” [201.

However, to derive the maximum benefits from cryptography, significant
planning is required to integrate it into system architectures properly, and
standards are necessary to assure cryptographic compatibility within applica-
tions and among devices implementing DES. In addition to establishing the
standard for computer data encryption [151, the NBS has published a stan-
dard on modes of DES operation [211 and is investigating file encryption
in order to issue yet another standard for this cryptographic application.

Efforts by the Technical Committee on Encryption (X3.Tl) on behalf of
the American National Standards Institute (ANSI) have resulted in the adop-
tion of DES as an ANSI standard [22]. In addition, the committee is de-
veloping standards for DES modes of operation and DES devices operating at
the communications link level. Work is in progress to develop additional
cryptographic standards for higher levels of communication protection as
well as for removable file media.

REFERENCES 11

ANSI technical committees involved with the finance industry are devel-
oping application standards to address the broad subject of electronic funds
transfer systems, including methods using DES for consumer-initiated elec-
tronic financial transactions as well as transaction data authentication.

Other government agencies besides the NBS have drafted additional
application standards involving DES and DES equipment. Proposed Federal
Standard 1026 [231 specifies the interoperability and security requirements
for use of DES. Proposed Federal Standard 1027 [24] specifies the minimum
physical and electrical security features of devices implementing DES.

The development of cryptographic standards is a lengthy process. Pro-
posed Federal Standard 1026, for example, represents more than three years
of work. ANSI adopted DES more than three years after its adoption by the
U.S. Federal Government. The time necessary to draft and adopt crypto-
graphic standards is relative to the time necessary to design, test, manufacture,
and install cryptographic computer equipment. Thus to meet the challenges
and demands in the emerging field of system security, data processing people
should begin their cryptographic education, research, and planning now.

1.

2.

3.

4.
5.
6.
7.
8.

9.
10.
11.
12.

13.

14.

15.

16.

REFERENCES

Martin, J. T., Security, Accuracy and Privacy in Computer Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1973.
Bumham, D., and Horrock, N. M., “Administration Maps Secret Plan to Fight
Telephone Intrusion,” The New York Times, pp. 1, 34 (July 10, 1977).
O’Toole, T., “Fed Is Testing ‘Unbreakable’ Code System,” Washington Post, p. A10
(August 13, 1978).
Westin, A. F., Privacy and Freedom, Atheneum, New York, 1968.
Privacy Act of 1974, Public Law 93-579, 5 U.S.C. 552a(e) (10).
5 U.S.C. 552(a), Sec. 3(E) (10).
5 U.S.C. 552(a), Sec. 5(B) (l), (2).
Personal Privacy in an Information Society-The Report of the Privacy ProteCtion
Study Commission, p. 527 (July 1977).
The T. J. Hooper, 60F. 2d 737 N2d Cir. (1932), cert. den 287 U.S. 662 (1933).
Public Law 95-213, Title I S102, 91 Stat. 1494.
15 U.S.C. 78m(b)(2).
Hoffman, L. J., Modern Methods for Computer Security and Privacy, Prentice-Hall,
Englewood Cliffs, NJ, 1977.
“Cryptographic Algorithms for Protection of Computer Data During Transmission
and Dormant Storage,” FederuZ Register 38, No. 93 (May 15, 1973).
Report of the Workshop on Cryptography in Support of Computer Security, NBSIR
77-l 291, Held at the National Bureau of Standards, September 21-22, 1976, National
Bureau of Standards, U.S. Department of Commerce, Washington, D.C. (September
1977).
Data Encryption Standard, Federal Information Processing Standard (FIPS) Publica-
tion 46, National Bureau of Standards, U.S. Department of Commerce, Washington,
D.C. (January 1977).
Davis, R. M., “The Data Encryption Standard in Perspective,” IEEE Communica-
tions Society Magazine 16, No. 6, 5-9 (1978).

12 THE ROLE OF CRYPTOGRAPHY IN ELECTRONIC DATA PROCESSING

17. Inman, B. R., “The NSA perspective on Telecommunications Protection in the Non-
Governmental Sector,” Signal 33, No. 6, 7-13 (1979).

18. Konheim, A. G., Mack, M. H., McNeill, R. K., Tuckerman, B., and Waldbaum, G.,
“The IPS Cryptographic Programs,” ZBMSystems Journal 19, No. 2,253-283 (1980).

19. “With Data Encryption, Scents Are Safe at IFF,” DP Dialogue, Data Processing
Division, IBM Corporation, printed in Compuferworld 14, No. 21, 95 (1980).

20. “Data Encryption: Is It for You?,” EDPAnaZyzer 16,No. 12, 1-13 (1978).
21. DES Modes of Operation, Federal Information Processing Standards (FIPS) Publica-

tion 8 1, National Bureau of Standards, U.S. Department of Commerce, Washington,
D.C. (1981).

22. ANSI X3.92-l 981, Data Encryption Algorithm, American National Standards
Institute, New York (December 3 1, 1980).

23. Proposed Federal Standard 1026, Telecommunicafions: Interoperability and Security Re-
quirementsfor Use of the Data Encryption Standard in the Physical andData Link Layers of
Data Communications, General Services Administration, Washington, D.C., Draft (Janu-
ary 21, 1982).

24. Federal Standard 1027, Telecommunications: General Security Requirements for Equip-
ment Using the Data Encryption Standard, General Services Administration, Washington,
D.C. (April 14, 1982).

Other Publications of Interest

25. Parker, D. B., Crime by Computer, Scribner, New York, 1976.
26. Kahn, D., “Cryptology Goes Public,” Foreign Affairs 58, No. 1, 141-l 59 (1979).

Block Ciphers and Stream Ciphers 13..............
Enciphering And Deciphering 14......................

Figure 2-1. 15...
Figure 2-2. 19...

Types of Attacks 20..
Designing an Algorithm 20................................

Figure 2-3. 23...
Table 2-1. 25..

Conventional Algorithms 26..............................
Figure 2.4 27...
Figure 2.5 27...
Figure 2-6. 28...
Figure 2-7. 29...
Figure 2-7 (cont�d). 31..

Public-Key Algorithms 30..................................
Table 2-2. 36..

The Distribution of Primes 41...........................
Table 2-3. 42..

Testing for Primality 42.....................................
Table 2-4. 45..

Cryptographic Strength Considerations 45.......
Trapdoor Knapsack AlgorithmI 48....................

Figure 2.8 54...
Figure 2.9 54...

1. Random. 56...
2. Pseudo-random. 56.......................................
3. Nonrepeating. 56...

Figure 2.10 57...
Figure 2-11. 59...

Patterns Within Data 62....................................
Block Chaining Using a Variable Key 67..........
Block Chaining Using Plaintext and 69..............
A Self-Synchronizing Scheme Using 71............

Figure 2-17. 72...
Examples of Block Chaining 73........................
Short Block Encryption 73................................

Figure 2-18. 7 4..
Figure 2-19. 74...

Figure 2-20. 76...
Figure 2-21. 76...
Figure 2-22. 77...

A Chaining Method with the Property of 86.......
Figure 2-28. 87...

A Chaining Method with the Property of 88.......
Figure 2-29. 89...

Cipher Feedback Stream Cipher 91.................
An Example of Seed Generation 91.................

Figure 2.30 92...
Figure 2-31. 93..
Figure 2-32. 96...

Examples of Cipher Feedback 97.....................
Figure 2-33. 97...
Figure 2-34. 98..
Figure 2-35 99..
Figure 2-35. 99...
Figure 2-37. 101...
Figure 2-39. 104...

Message Authentication - Method 2 104.............
Figure 2-40. 105...
Table 2-5. 105...
Initializing Vector Z Not mandatory, but 105.............
Figure 2-41. 110...
Figure 2-42. 111..

Other Publications of Interest 112......................

CHAPTER TWO

Block Ciphers and Stream Ciphers

A basic problem in cryptography is devising procedures to transform mes-
sages @Z&text) into cryptograms (ciphertext) that can withstand intense
cryptanalysis-the techniques used by opponents to penetrate encrypted
communications and recover the original information.

The procedures used to accomplish such transformations involve either a
code system or a cipher system. Code systems require a code book or dic-
tionary that translates words, phrases, and sentences of plaintext vocabulary
into their equivalent ciphertext code groups. However, the number of plain-
text groups that can be converted depends on the size of the code book.
Therefore, not every message can be encoded, and the versatility of these
code systems is limited.

On the other hand, cipher systems are versatile. They require two basic
elements: a cryptographic algorithm (a procedure, or a set of rules or steps
that are constant in nature); and a set of variable cryptographic keys. A key
is a relatively short, secret sequence of numbers or characters selected by
the user.

After introducing several concepts relevant to ciphers, this chapter dis-
cusses two particularly useful ciphers: block ciphers and stream ciphers.
Both conventional algorithms (e.g., DES) and public-key algorithms (e.g.,
the RSA algorithm and the trapdoor knapsack algorithm) are covered under
the subject of block ciphers.

Both block and stream ciphers can be used in communications and data
processing systems: With a block cipher, data are encrypted and decrypted
in blocks, whose length are predetermined by the algorithm’s designer. With
a stream cipher, the algorithm’s user determines the length of data to be en-
crypted and decrypted. This flexibility requires that stream ciphers, in addi-
tion to the algorithm and key, employ another parameter defined as an
initializing vector.

Different modes of encryption can be obtained with block and stream
ciphers by employing feedback methods (chaining), which establish depen-
dencies to past i,nformation. Chaining not only strengthens a cipher, but can
also be used to authenticate data even when privacy is not required. At the
end of the chapter, a comparison is made between block and stream ciphers.
Their relative strengths and ease of implementation are discussed.

13

14 BLOCK CIPHERS AND STREAM CIPHERS

CRYPTOGRAPHIC ALGORITHMS

The cryptographic algorithm can be thought of as an extremely large number
of transformations, the particular transformation in effect depending on the
cryptographic key being used. Each transformation changes sequences of
intelligible data (plaintext) into sequences of apparently random data
(cipher-text). The transformation from plaintext to ciphertext is known as
encipherment or encryption. Each transformation must have a unique in-
verse operation, also identified by a cryptographic key. The inverse trans-
formation from ciphertext to plaintext is called decipherment or decryption.
(The term that encompasses both enciphering and deciphering operations is
ciphering.)

There are two types of cryptographic algorithms, conventional and public-
key. With a conventional cryptographic algorithm, the enciphering and de-
ciphering keys are either identical, or, if different, are such that each key can
be easily computed from the other. Thus knowledge of the enciphering key
is equivalent to knowledge of the deciphering key-when you have one, you
also have the other.’

A public-key algorithm, on the other hand, permits many users or nodes
within a communications system to encipher data using the same public key,
but only the specific user or node possessing the secret deciphering key can
“unlock” or recover the data. In contrast, a conventional cryptographic
algorithm provides effective data security between two users or nodes within
a communications system only if these users or nodes have knowledge of the
same secret key.*

A parameter of a cryptographic algorithm that provides security because
of its secrecy is defined as a cryptographic variable. The cryptographic key
used in a conventional cryptographic algorithm and the private key used in a
public-key algorithm are examples of cryptographic variables. They are anal-
ogous to the secret combination for a safe.

Enciphering And Deciphering

Consider a representation for the process of enciphering and deciphering
with a cryptographic algorithm. (Boldface capital letters are used to define
sets, whereas set members are identified by either the corresponding lower-
case letters or in some cases the same capital letter not in boldface.) Let P
represent the collection of all possible plaintext combinations, and C the col-

’ In a conventional cryptographic algorithm it is common to treat the enciphering key and
corresponding deciphering key as identical quantities, even though they may differ.

2 The assumption is made here that the algorithm is known to the opponent and therefore
that the strength of the system depends on the key. Moreover, to be useful, the ap-
proaches described above must be based on a cryptographic algorithm of validated
strength (e.g., DES). The public-key concept is relatively new, and even though several
public-key algorithms have recently evolved, their strength has yet to be validated. There-
fore, emphasis is given here to encryption schemes based on conventional algorithms such
as DES.

CRYPTOGRAPHIC ALGORITHMS 15

lection of all possible ciphertext combinations. The sets P and C are de-
scribed by displaying their members inside braces.

p = {Pi, P2, * * * 9 Pn)
c=k~,c*,...,c,l

The notation lP(represents the number of elements contained in the set P.
Hence JPl = n and ICI = m.

The enciphering process (Figure 2-l) can be described by a rule (E for en-
cipher) that associates with each element pin Pa single element, c = E(p), in C.
Each plaintext combination is assigned to a single ciphertext combination.

The deciphering process is described by another rule (D for decipher) that
relates each ciphertext element E(p) in C with its original plaintext, thus
assuring that the plaintext is correctly recovered from the ciphertext. It is
assumed here that the number of ciphertext combinations (six in Figure 2-1,
i.e., cl through c6) is larger than the number of plaintext combinations

P

WP,)

Set P contains all
plaintext combinations

Set C contains all
ciphertext combinations

Rule E (encryption process, solid lines) assigns to each element in P one ele-
ment in C.

Rule D (decryption process, broken lines) assigns to each of the elements in
C previously selected by Rule E, one element in P, such that the correct
plaintext combination is recovered.

Figure 2-1. The Ciphering Process

16 BLOCK CIPHERS AND STREAM CIPHERS

(three in Figure 2-1, i.e., pi through pa). This situation can be illustrated
with a trivial example where plaintext consists of 26 alphabetic characters
and ciphertext consists of 26 alphabetic and 10 numeric characters. Thus
any one of the 36 ciphertext symbols can be used as a substitute for any one
of the 26 plaintext symbols.

The ideas discussed so far can be expressed in mathematical terms by
using the concept of a function. A function may also be called a transforma-
tion, an operator, or a mapping. This concept can be explained in terms of
the ciphering operation illustrated in Figure 2-l. The function is defined by
the following:

1. A set P called the domain of the function.
2. A set C called the co-domain of the function.
3. A rule E which associates with each element p of P a single element c

of c.

The function that describes the encipher operation is defined by two sets
(P and C) and a rule which assigns to each element in P one element in C.
Hence the encipher operation can be described by the notation (P, C, E). It
is customary to use the same symbol for the function and its rule. Hence, if
(P, C, E) is a function, then it is said that E is a function from P to C. This
statement can be written as

E:P+C

If p is an element in P and c the element in C that correponds to it under the
transformation (function) E, then one writes

E(P) = c

The set of all E(p) in P, also expressed as E(P), is defined as the range (or
image) of E. Hence the range E(P) is a subset of C. In Figure 2-1, the domain
of E is P, whereas the range of E is the set of elements {cl, c3, c,}.

There are two properties of functions that need to be distinguished at this
point. A function f : P + C is called one-to-one whenever no two different
elements in P are represented by the same element in C; that is, whenever
pi # pj for pi and pj in P implies that f(pJ # f(pJ. An equivalent statement is
that if f(pJ = f(pj), then pi = pj if f is a one-to-one function. Since plaintext
can be recovered correctly only if each ciphertext element represents one
and only one plaintext element, all functions representing a cryptographic
algorithm must be one-to-one. Otherwise, upon decipherment there would
be more than one possible recovered plaintext, thus introducing ambiguity
into the decipherment process.

The number of possible one-to-one functions from the set of plaintext
elements (P) to the set of ciphertextelements (C) is determined as follows.
The first plaintext element may be transformed to any of ICI elements, the
second plaintext element to ICI - 1 elements, whereas the last plaintext ele-

CRYPTOGRAPHIC ALGORITHMS 17

ment may be mapped to any of (ICI - [PI) + 1 elements. Therefore, the
total number of one-to-one functions is equal to the product of the number
of elements in C available to each plaintext element, namely

ICI l (ICI - 1) ’ f. . l (ICI - IPI + 1) = (,c,lc’/pl),

where

n!=1*2.3*..:n (called n factorial)

(Note that O! = 1.) In the example shown in Figure 2-1, where IPI = 3 and
ICI = 6, there are 120 possible one-to-one functions (6 * 5 * 4 = 120), of
which only one is shown.

If S denotes the set of possible one-to-one functions from P to C, then
there are I SI such functions, any one of which is a candidate to be used for
ciphering. Specifying a cipher key is the same as selecting one of these func-
tions. (How this is achieved in an actual design is explained in Chapter 3).
Since the cryptographic key is a cryptographic variable, the symbol v is used
to denote a key and the symbol V to denote a set of keys. (The symbols V
and v are used here to avoid conflicts with the symbols K and k, which are
used below to denote specific keys.) Since the total number of possible keys
is equal to r = IVI, the set V can be expressed as

Let

V={v1,v*,...,v,}

E = {Cl, Ev2,. . . J&J

specify the corresponding set of functions defining the encipherment pro-
cedure, and let

D = {Dvl, Dv2,. . . , &,I

specify the corresponding set of functions defining the decipherment pro-
cedure. Thus the algorithm consists of enciphering (E) and deciphering (D)
procedures, where E represents the set of all possible enciphering functions
(or transformations) and D represents the set of all possible deciphering
functions.

If the number of keys which can be independently specified exceeds the
number of one-to-one functions (i.e., I VI > I Sl) there must be cases where
all plaintext-to-ciphertext correspondences are identical even though different
keys are used (i.e., Eyi = Evj, even though Vi # vj). Such keys are called
equivalent keys. Even if the number of keys is less than the number of one-
to-one functions, IV1 < ISI, equivalent keys may exist. In fact, for highly
complex algorithms, it may be too difficult to prove or disprove the exis-
tence of equivalent keys.

18 BLOCK CIPHERS AND STREAM CIPHERS

Nevertheless, a good design principle that reduces the likelihood of equiv-
alent keys is to ensure that the number of possible keys is much less than the
number of possible one-to-one functions, (i.e., the condition JVI Q ISI is
satisfied). For DES, the following conditions hold.

IPI = ICI = 264 (64 binary digits of data are enciphered at a time)

IV1 = 256 (56 binary digits uniquely identify a key)

ISI = (264>!

Since 2(64- 56) = 256, it follows that

iSI = 256 l IV1 . (264 - l)!

and therefore it can be seen that IV1 < ISI for DES.
A function f : P + C is called onto if the range of f is all of C (i.e., for

any given c in C there exists at least one p in P such that f(p) = c). The func-
tion shown in Figure 2-l is not onto, since some ciphertext combinations
cc*, C4, and cg) will not be generated as a result of enciphering all possible
plaintext combinations.

It has been established that all functions associated with a cryptographic
algorithm must be one-to-one. If they are also onto, then the number of ele-
ments in the sets P and C will be equal (i.e., the number of plaintext combin-
ations is equal to the number of ciphertext combinations). Figure 2-2 shows
two such cases, where there are 3 * 2 l 1 = 3! functions that are one-to-one
and onto. In general, there are IPI! such functions if IPI = ICI. In mathemat-
ical terms, this implies that each function f, has an inverse function, f,-’ :

c = f”(P)

and

p = f,-‘(c)

Work Factor

To implement a cryptographic algorithm conveniently, the key must be
fixed in length, relatively short, and capable of being used repeatedly without
weakening security. However, an algorithm that uses a finite key can, theo-
retically, always be broken (if by no other means than trial and error using
every possible key). The only question concerns how much work and resources
the opponent must expend. Fortunately, it is not necessary to implement
unbreakable algorithms provided that the work (or work factor) required to
break the algorithm is sufficiently great to discourage an opponent from
attacking it.

Work factor measures what is needed to carry out a specific analysis or
attack against a cryptographic algorithm. The attack is conducted under a
given set of assumptions which includes the information available to achieve

CRYPTOGRAPHIC ALGORITHMS 19

Encipherment: denoted by a solid line
Decipherment: denoted by a broken line

Figure 2-2. Examples of Functions that are One-To-One and Onto

a predetermined goal such as the recovery of the plaintext or key.3 A good
cryptographic algorithm design maximizes the amount of work that an
opponent must expend to break it. Thus, for a given algorithm and set of
assumptions, the work factor is an expression of the minimum amount of
work necessary for a successful attack.

In practice, there is no universally accepted, fixed set of parameters used
to express the work factor. However, it is frequently measured in one or
more of the following: cryptanalyst hours, number of mathematical or
logical operations, computing resources (such as data storage and processing
requirements), special hardware, and calendar time. To be useful, the work
factor should be expressed using parameters which can be translated for the
purpose of comparison into a common base, such as cost in dollars.

3With some cryptographic attacks, there may only be a probability of success associated
with the recovery of the plaintext or key.

20 BLOCK CIPHERS AND STREAM CIPHERS

Types of Attacks

In an exhaustive attack, an attempt is made to recover the plaintext or key
by using direct search methods. For example, in key exhaustion, a known
plaintext is enciphered with a trial key and the result is compared for equality
with the known corresponding ciphertext. 4 If only ciphertext is available, it
can be decrypted with the trial key and the resulting plaintext can be in-
spected to see if it makes any sense. In this way, it can be determined if the
trial key is a candidate for the unknown key or not.

Exhaustive attacks can be thwarted by making the number of required
trials very large. However, the work factor of an exhaustive attack, which is
directly proportional to the number of trials, is easily determined even when
the number of trials is so large that the attack is not feasible. This is not the
case with some other attacks.

In an analytical attack, a set of mathematical equations (obtained from a
definition of the cryptographic algorithm)5 is solved for the variable or vari-
ables representing the unknown message or key. One way to thwart this
purely mathematical attack is to construct the algorithm so that each plain-
text bit is a sufficiently complex mathematical function of the ciphertext
and key, and each key bit is a sufficiently complex mathematical function of
the ciphertext and plaintext. If the mathematical equations describing the
algorithm’s operation are so complex that an analytical attack cannot be
successful, then a work factor for this method cannot be calculated. In that
case, one usually says that the work factor is very large, implying that the
algorithm cannot be broken in the practical sense.

Designing an Algorithm

It is possible to design unbreakable ciphers [11. To do so, the key must
be randomly selected (i.e., each key must have the same chance of being
chosen) and used only once. Furthermore, the length of the key must be
equal to or greater than the length of the plaintext to be enciphered.6 Un-
fortunately, long keys of this type, known as one-time tapes, are impractical
for most applications where there is considerable message traffic, since a
large number of keys must be transported and stored before communications
can be established.

There are two ways to design a strong cryptographic algorithm [2]. First,
one can study the possible methods of solution available to the cryptanalyst
-describing them in the most general terms possible-and then define a set
of design rules to thwart any one of these methods. An algorithm is then
constructed which can resist these general methods of solution. Second,
one can construct an algorithm in such a way that breaking it requires the

4 This attack method assumes that the opponent knows the cryptographic algorithm and
possesses a fragment of plaintext and corresponding ciphertext.

‘The attack assumes that the opponent has knowledge of the cryptographic algorithm.
6The cipher is unbreakable because every message of the same length is equally likely
to have yielded the given ciphertext.

CRYPTOGRAPHIC ALGORITHMS 21

solution of some known problem, but one that is difficult to solve. The
DES algorithm was designed using the first approach (Chapter 3), whereas
some public-key algorithms have been designed using the second approach
(Chapter 2).

Any procedure for attacking a cryptographic algorithm requires that
certain cryptographic information (such as ciphertext, plaintext and cor-
responding ciphertext) be available to carry out the attack. Therefore, the
set of procedures that can be used to attack an algorithm depends on the
information available to an opponent. Knowing the cryptographic informa-
tion an opponent might reasonably be able to obtain is thus the basis for de-
termining the class of attacks that the algorithm must be designed to resist.

The cryptographic algorithm, as well as the key, could be kept secret-an
approach employed by the military where tight security measures can be
enforced. (However, even here, it is ordinarily assumed during threat analyses
that attackers have everything except keys and, where applicable, sequencing
variables.) In nonmilitary sectors, however, where comparable security mea-
sures are impractical or unenforceable, it is unlikely that the secrecy of an
algorithm installed at many locations with differing levels of physical security
can be maintained for an extended period of time. Moreover, where there are
many competing organizations and businesses, a policy of keeping the algo-
rithm secret would promote the widespread use of differing and therefore
incompatible algorithms with varying levels of cryptographic strength. An
approach that overcomes these difficulties is to adopt a single standard algo-
rithm whose strength has been carefully validated. Such an algorithm would
be in the public domain, and its security would depend only on the secrecy
of the cryptographic key. This strategy was used by the NBS in adopting the
DES algorithm.

Data useful in attacking cryptographic algorithms can be categorized as
follows.

1. Ciphertext only.
2. Unselected plaintext and corresponding ciphertext.
3. Selected plaintext and corresponding ciphertext.
4. Selected ciphertext and corresponding plaintext.

Encrypted messages (ciphertext) can be intercepted by wiretapping during
transmission; encrypted data files can be copied or stolen from their storage
locations (see Attack Scenarios, Chapter 1).

A fragment of plaintext can usually be deduced from some intercepted
ciphertext because of the highly formatted text present in most messages
and data files. On the other hand, an opponent who could obtain the use of
a cryptographic device containing a secret key might (depending on the par-
ticular implementation) be able to encipher selected plaintext or decipher
selected ciphertext. However, proper physical security and access control
procedures are an effective means to prevent unauthorized use of crypto-
graphic devices.

While an opponent’s access to certain information (such as ciphertext)

22 BLOCK CIPHERS AND STREAM CIPHERS

cannot be denied, other information may become known as a result of one
or more of the following:

1. A deliberate act that depends on the opponent’s skill, daring, and
persistence.

2. An unintentional act involving carelessness or ignorance on the part
of a cryptographic system’s user.

3. An unknown and hence unanticipated event for which no present
defense exists.

Except in rare cases, it is impossible to state absolutely that certain informa-
tion will never become available to an opponent under all operating conditions
and environments in which the algorithm may be implemented. Therefore,
a conservative approach must be used in algorithm design. It is assumed that
the opponent has a wide range of information that might be useful in attack-
ing the algorithm. The algorithm is then designed to resist all known attacks
made possible by this information.

Also, it is impossible to state absolutely that an algorithm is free from all
possible attacks. Therefore, a conservative approach must likewise be used in
the design of a system, such as a communication or file security system, which
implements a cryptographic algorithm. It is assumed that the opponent has
knowledge of a wide range of attacks that might be capable of breaking the
algorithm. The system is then designed to deny the opponent the information
needed to carry out the attacks.

In summary, the design of a strong cryptographic algorithm must satisfy
the following conditions:

1.

2.

The mathematical equations describing the algorithm’s operation are
so complex that, for all practical purposes, it is not possible to solve
them using analytical methods.
The cost or time required to recover the message or key is too great
when using methods that are mathematically less complicated, because
either too many computational steps are required (as in the case of
message or key exhaustion), or too much data storage is required (as
in the case of attacks requiring large accumulations of information
such as frequency tables and dictionaries).

Furthermore, it is assumed that the above conditions are satisfied even when
the opponent has the following advantages:

1. Relatively large amounts of plaintext (specified by the opponent, if
he so desires) and corresponding ciphertext are available.

2. Relatively large amounts of ciphertext (specified by the opponent)
and corresponding plaintext are available.

3. All details of the algorithm are available. (It is not assumed that

BLOCK CIPHERS 23

cryptographic strength depends on maintaining the secrecy of the
algorithm.)

4. A number of large high-speed computers (determined by the resources
available to the opponent) can be used for cryptanalysis.

The distinction between strong and unbreakable should be apparent. While
in theory a strong algorithm can always be broken, in the practical sense it
cannot. Unbreakable is an absolute attribute and means that even with an
unlimited amount of computational power, data storage, and calendar time,
there is no way to obtain the message or key through cryptanalysis. So to
speak, strong is a variable, and unbreakable is its maximum value.

Block ciphers and stream ciphers are two fundamentally different ap-
proaches which can be used to achieve strong encryption-based protection
schemes. The study of these two approaches is thus basic to an understanding,
and even a full appreciation, of the direction in which cryptography is cur-
rently moving.

Since the main thrust here is to show how cryptography can be used in
computer systems, all cryptographic discussion will assume that information
is expressed in binary form. The treatment is still general, since any characters
can be encoded into binary equivalents.

BLOCK CIPHERS

A bZock cipher (Figure 2-3) transforms a string of input bits of fixed length
(an input block) into a string of output bits of fixed length (an output block).
The enciphering and deciphering functions are such that every bit in the out-
put block depends jointly on every bit in the input block and on every bit
in the key.

A cipher’s blocksize (the number of bits in a block) is determined by
considerations of cryptographic strength, and it must be large enough to

Input Block Input Block
(Plaintext) (Ciphertext)

(Enciphering $)+$I (Deciphering ::;)+$I

Output Block Output Block
(Ciphertext) (Recovered Plaintext)

(a) (b)

Figure 2-3. Block Cipher

24 BLOCK CIPHERS AND STREAM CIPHERS

foil simple message exhaustion attacks. For example, by enciphering all
possible plaintext combinations with a given key, an opponent could build
a dictionary of ciphertext (sorted into sequence) and corresponding plain-
text. A message could then be recovered by searching the dictionary and
relating each intercepted ciphertext block to its corresponding plaintext
block. However, if the blocksize is large enough, the dictionary will be too
large to construct or store.

In the method of message exhaustion described above, the opponent
must be able to encipher data with a key being used by the cryptographic
system. In a public-key cryptographic system, the public enciphering-key (or
enciphering-transformation) is available to anyone. In a conventional crypto-
graphic system, a conservative assumption is made that the opponent has
access to a cryptographic device containing a secret key, even though proper
physical security and access control are effective measures against such un-
authorized access.’ (While the opponent can encipher data using the crypto-
graphic device, the key remains unknown.)

Other attacks must also be considered before arriving at an acceptable
blocksize. For example, advantage could be taken of the fact that some data
blocks are more likely to occur than others. Therefore, the frequency of
occurrence should be taken into account. This type of attack is called block
frequency analysis and uses statistical methods. It is similar to an analysis
which could be performed on a simple substitution cipher by taking into
account letter frequencies.

By expressing cipher operations in purely mathematical form as a set of
equations, it may be possible to solve for the unknown variables directly
using analytical methods. This approach is called a deterministic attack. To
foil deterministic attacks, every bit in the output block must be a sufficiently
complex mathematical function of every bit in the input block and key, This
property is defined as strong intersymbol dependence. From the discussion
of work factor, it thus follows that a complex mathematical function must
be one for which it is computationally infeasible to solve for the key, even if
plaintext and corresponding ciphertext are known (i.e., the work factor is
too high).

As part of a mathematical structure for further analysis, several terms use-
ful in a discussion of block ciphers and stream ciphers are defined below.

X: Input (plaintext)
Y: Output (ciphertext)
K: Cryptographic (or cipher) key
Z: Initializing vector (seed value)
U: Intermediate initializing vector
R: Cryptographic bit-stream

‘Another form of message exhaustion does not require access to the cryptographic device.
Instead, each possible plaintext combination is enciphered with each possible key. The
opponent then builds a dictionary of plaintext and corresponding ciphertext for each
possible key. Later, interception of plaintext and corresponding ciphertext allows the
unknown key to be determined.

BLOCK CIPHERS 25

Since computer data are in binary format, vector notation is used to express
such quantities. An input block (X) of b bits is thus denoted by

x = (XI,%, . . * , XlJ)

where xi is a 0 or 1 for each i = 1, 2, . . . , b. Using, as before, the notation
I* 1 to represent the number of elements in *, the number of elements in the
vector X is denoted [Xl. Note that in the example above, the length of X is b,
(i.e., 1x1 = b). In some situations, it is helpful to speak of a sequence or time-
sequence of vectors. Here, a sequence of n input blocks is denoted by

(X(l), X(2), . . . , X(n)>

and specifies the time sequence or relative order of encipherment of each
block. If each input block contains b bits, then the vector of input bits at
time i is denoted by

X(i) = (xl(i), x2(i), . . . , xtdi))

and IX(i)1 = b.
In describing a block cipher, it is not necessary to distinguish between the

encipherment of block X at time i and the encipherment of the same block
X at time j. Simply, encipherment of block X at any time will result in the
same block Y. Of course, it is assumed that the same cryptographic key is
used. This independence with regard to the order of encipherment does not
hold when block chaining is used (a concept discussed later).

Before further details are introduced, a frequently used operation, modulo
2 addition or Exclusive OR (symbol o), is defined (Table 2-l).

A BA@B

00 0

01 1

10 1

11 0

Table 2-1. Modulo 2 Addition

From the rules for modulo 2 addition, it follows that

A@A= 0

A@O=A

A@ 1 =A

26 BLOCK CIPHERS AND STREAM CIPHERS

where A is the complement of A. A is obtained by inverting the bits in A,
that is, 0 becomes 1 and 1 becomes 0. It follows that if

A@B=C

then

A=C@B

B=CoA

(Note that A 0 B @ B = A @ 0 = A = C @ B.)
Let K be a key in the set {Kl , K2, . . . , Kn} of possible keys and let fk be

a function in the set {fki, fK2, . . . , fk,,} of one-to-one functions correspond-
ing to these keys that transforms an input block (X) of b bits into an output
block (Y) of b bits, (i.e., lY1 = 1x1 = b). Hence there are 2b possible plaintext
combinations and 2b possible ciphertext combinations within the domain
and co-domain of each function fk, respectively. In general, only the condi-
tion IY 1 > 1 Xl need be satisfied to yield an unambiguous system (a system
where no two plaintext combinations map to the same ciphertext combina-
tion). For engineering reasons, however, the choice 1 Y 1 = 1 Xl is usually made.
In that case, the function fk is one-to-one as well as onto, and hence the in-
verse function (ff;l) also exists (Figure 2-2).

Conventional Algorithms

A block-cipher design similar to that used in DES algorithm is now considered.
The operations of encipherment and decipherment are described as follows
(Figure 2-4).

fk(X) = Y

for encipherment, and

f&Y) = x

for decipherment. Subscript K designates which particular key (and hence
function, fx) is selected out of the set of all possible keys (and hence functions).

Although fk must be one-to-one for decipherment to be possible, it is
interesting that a one-to-one function fk can in the most simple case be con-
structed from a many-to-one function (a function that produces the same
output for several different inputs). Let such a many-to-one function be
defined as gk. The idea here is to exercise g in the encipherment as well as
in the decipherment process.

To achieve this, the input block (X) consisting of b bits is split into two
blocks, L(0) (left) and R(0) (right), each consisting of b/2 bits. Hence X can
be expressed as a concatenation of L(0) and R(0):

X = L(O),R(O)

BLOCK CIPHERS 27

Encipherment: Decipherment:
Plaintext Vector X Ciphertext Vector Y
x=6$, x2, xb) y =(Y,, Yp -a-, Yb)

Key Vector K--j+ Key Vector K j+

Ciphertext Vector Y Plaintext Vector X
y=(Y,, Y,9 *-*s Yb) x=(x,, 3, xb)

I

Figure 2-4. Block Cipher (Conventional Cryptographic Algorithm)

g transforms R(0) into gK(R(0)) under control of cipher key K; as indi-
cated in Figure 2-5. L(0) is brought into play by adding it modulo 2 to
gK(R(0)) to obtain R(1):

R(1) = L(0) o g,(R(O))

The operation is completed by setting L(1) equal to R(0).
If L(l),R(l) represents the ciphertext or scrambled version of L(O),R(O),

then the question arises how this ciphertext could be unscrambled without
introducing an inverse operation for function gx. With this goal in mind, the
reader should observe that since the ciphertext contains L(1) and since L(1)

X = L(O), R(0)

Figure 2-5. Transformation of Input Block (L(O), R(0))

28 BLOCK CIPHERS AND STREAM CIPHERS

I R(1) = L(O) 8 gKM-9) I L(l)=R(O)
I

I R(1) @ @R(O)) = L(o)

Figure 2-6. Recovery of L(0)

equals R(O), half of the original plaintext is immediately recovered. The
remaining half, L(O), can also be recovered, as indicated in Figure 2-6, by
recreating g,(R(O)) from R(0) and adding g,(R(O>> modulo 2 to R(1):

R(1) @ gK(R(o)) = L(o) @ g,(R(O)) @ gK(R(o>)
= L(0)

However, to use the procedure in Figure 2-5 for encipherment as well as
decipherment, the left and right halves of the output are interchanged. That
is, the ciphertext (Y) is defined as

Y = [L(O) @ gK(R(o>>l , NO)

This scheme is, of course, extremely weak, since half of the input block,
namely R(O), remains unenciphered in the output block. However, crypto-
graphic strength can be obtained by repeating the process (exercising g) n
times, where n is called the number of rounds, and by using a different key
for each round. The basic idea for a two-round system is illustrated in
Figure 2-7. The reader should understand that deciphering in such a system
is possible only if the internal keys, K(1) and K(2) in Figure 2-7, are exercised
in the order K(l), K(2) for encipherment and K(2), K(1) for decipherment.
In general, the plaintext can be recovered in an n-round system by exercising
the internal keys in the order K(l), K(2), . . . , K(n - l), K(n) for encipher-
ment and K(n), K(n - l), . . . , K(2), K(1) for decipherment.

So far it has been assumed that the same key had to be used for encipher-
ment and decipherment, that is,

fK(X) = Y (for encipherment)

f&Y) = x (for decipherment)

BLOCK CIPHERS 29

where the internal keys are derived from the external key K (the key supplied
by the user). However, in the n-round system, the following relations also
hold :

fk(X) = Y

f,(Y) = X

The external keys, K and K’, are defined to have the following schedule of
internal keys:

round: 1, 2, . . . > n-l, n

K: K(l), K(2), . . . , K(n - 11, K(n)
K’: K(n), JUn - I>, . . . , K(2), K(l)

(2-l)

(2-2)

Hence, it follows that fii is equivalent to fk’.
As discussed earlier, the ciphering process can in general be described by a

set of functions, namely

E = CEvl, Ev2,. . . , E,&

for encipherment, and

D = {Dvl> DvZ, . . . , &,I

for decipherment. Selecting a common key (K) for encipherment and de-
cipherment thus determines the enciphering transformation (Ek) as well as
the deciphering transformation (Dk). A cryptographic system using the
approach shown in Figure 2-7 could, however, be described by defining only
one set of functions, that is, by defining only E. The set of functions for the
deciphering process does not have to be separately specified, since for each
key K that is used for enciphering with function (Ek) there is a key K’ that
can be used for deciphering with function (Ek’). In the former case, a com-
mon key is used together with the sets of enciphering and deciphering func-
tions (E and D, respectively) and in the latter case two different keys are
used for enciphering and deciphering together with one set of enciphering
functions, E. It follows, therefore, that

E.@,(X)) = EK@K’(~)) = x

for all possible plaintext (X). And, if K and K’ were to have a much more
complex relationship than the one indicated by Equations 2-l and 2-2, the
cryptographic scheme shown in Figure 2-7 could be used as a public-key
cryptographic algorithm.

(Encipherment)
X

Figure 2-7. A Two-Round Block Cipher

(Decipherment)
Y

Figure 2-7 (cont’d). A Two-Round Block Cipher

31

BLOCK CIPHERS AND STREAM CIPHERS

Public-Key Algorithms

Public-key cryptography [33 uses an enciphering key (PK) which is in the
public domain and a deciphering key (SK) which is kept secret. Anyone
can encipher data using the public key of another user, but only those users
with knowledge of the secret key can decipher enciphered data. The enci-
phering algorithm (E) and the deciphering algorithm (D) might be different,
though it is possible for E and D to be identical. (In the discussion that
follows, it is assumed that E and D are made public.)

To be used privately, or for private data communications, a public-key
algorithm must have the following properties:

1. Users must be able to compute a pair of public and private keys,
PK and SK, efficiently.

2. Knowledge of PK must not permit SK to be computed efficiently.
(Note: There is no requirement that knowledge of SK prevent PK
from being computed efficiently.)

3. Encipherment followed by decipherment causes the original message
(X) to be recovered, that is,

DSK (EPK (W> = X

for all X in the domain of Erk .

If, in addition to meeting conditions (1) and (2), the public-key algorithm
is such that decipherment followed by encipherment causes the original
message (X) to be recovered, that is,

&K (DSK W> = X
for all X in the domain of Ds, , then the algorithm can be used to generate a
digital signature’ that authenticates the message’s sender (see Chapter 9).

Greater design restrictions are placed on a public-key algorithm than on a
conventional algorithm because the public key represents additional informa-
tion which the opponent can use to attack the algorithm. A public-key algo-
rithm must be designed to withstand attacks made possible by this additional
information. (See Cryptographic Strength Considerations.)

In a conventional algorithm, such as DES, the designer has complete free-
dom to choose the substitutions, permutation, number of rounds, and key
schedule (i.e., key bits used in each round) without considering whether the
enciphering process reveals the deciphering process. In DES, the deciphering
process can be automatically determined if the enciphering key is known,
since all steps taken in the enciphering process can easily be retraced to
obtain the deciphering process.

On the other hand, in a public-key algorithm it must not be possible to

8 Merkle and Hellman [4] have shown that digital signatures can be obtained if
EPK(DsK(X)) = X holds for only a fraction of the set of possible Xs.

BLOCK CIPHERS 33

retrace the steps in the enciphering process to determine the deciphering
process. Enciphering follows one path and deciphering follows a different
path, and knowledge of the former must not reveal the latter.

There are other notable differences between conventional and public-key
algorithms. The public-key algorithms invented thus far [4-61 are easily
described in mathematical terms, and rely for their strength on the under-
lying assumption that a particular, known mathematical problem is difficult
to solve. On the other hand, a conventional algorithm like DES is designed so
that the mathematical equations describing its operation are so complex that
for all practical purposes it is not possible to solve them using analytical
methods.

Another difference relates to the disciplines needed to attack an algorithm.
With a public-key algorithm, these disciplines appear to be few in number
and fixed by the algorithm’s mathematical description. With a conventional
algorithm, on the other hand, the designer has the freedom to ensure that
many (possibly chosen) disciplines are required.

Also, the manner in which keys are generated is different for conventional
and public-key algorithms. In a conventional algorithm, the key can be
randomly selected in a straightforward way, since knowledge of the enci-
phering key is equivalent to knowledge of the deciphering key, and vice
versa. However, in a public-key algorithm, the relationship between the
public and private keys is purposely made obscure (i.e., knowledge of the
public key does not reveal the private key). Thus, a special procedure is
needed to compute the public and private keys, and this procedure must also
be computationally efficient.

RSA Algorithm

The RSA algorithm [51 (named for the algorithm’s inventors: Rivest, Shamir,
and Adleman) is based on the fact that in the current computing art factori-
zation of composite numbers with large prime factors involves overwhelm-
ing computations. Indeed, cumulative experience has shown this prob-
lem to be intractable [7] . (For more details, see Cryptographic Strength
Considerations.)

Anumberp(p= 1,2,3,...) ‘is called prime if its only divisors are the
trivial ones, +l and +p, otherwise it is called composite. The primes below
100 are

2 13 31 53 73
3 17 37 59 79
5 19 41 61 83
7 23 43 67 89

11 29 47 71 97

All primes are odd except for the number 2. Every composite number can
be factored uniquely into prime factors. For example, 6 is a composite num-
ber whose factors are 2 and 3 (i.e., 6 = 2 l 3). The composite number 999,999

34 BLOCK CIPHERS AND STREAM CIPHERS

on the other hand is factored by the prime numbers 3, 7, 11, 13, and 37 (i.e.,
999,999 = 33 -70 11 l 13.37).

To describe the RSA algorithm, the following quantities are defined.

1. p and q are primes (secret)
2. r=p*q (nonsecret)

3. 46-l = (p- l)(q-- 1) (secret)
4. SK is the private key (secret)
5. PK is the public key (nonsecret)
6. X is the message (plaintext) (secret)
7. Y is the cipher-text (nonsecret)

Because the suggested approach involves modulo arithmetic, congruences are
defined in the way they were first introduced by Gauss. Two integers a and b
are congruent for the modulus m if their difference a - b is divisible by the
integer m.9 This is expressed in the symbolic statement

aEb(modm)

When a and b are not congruent, they are called incongruent for the modulus
m, and this is written

af;b(modm)

For any pair of integers a and b, one or the other alternative holds (i.e., a
and b are either congruent or incongruent). For example,

16 = 1 (mod 5)

-7 = 15 (mod 11)

-7 $15 (mod 3)

One can state the congruence a E b (mod m) slightly differently by saying
that b is congruent to a when it differs from a by some multiple (c) of m.

b=a+cm

The RSA algorithm is based on an extension of Euler’s theorem [71, which
states that

a@(*) = 1 (mod r)

9Congruent means agreeing with or corresponding to while modulus (shortened to mod)
signifies “little measure.”

BLOCK CIPHERS 35

where

1. a must be relatively prime to r. (Integers a and b are relatively prime if
their greatest common divisor, gcd, is one.)

2. 40) = r(l - l/plMl - l/pz)...(l-- l/p,),wherep,,pz,.,.,pn are
the prime factors of r.

4(r) is Euler’s $-function of r (also called indicator or totient) which deter-
mines how many of the numbers 1, 2, . . . , r are relatively prime to r.

For example, the composite number 20 = 22 l 5 has two prime factors, 2
and 5. Thus there are $420) = 20(1 - i)(1 - 5) = 8 integers which are rela-
tively prime to 20 (i.e., which have neither 2 or 5 as a factor):

1,3,7,9, 11, 13,17, 19

In the discussion that follows, the reader is expected to be familiar with ele
mentary number theory [7 I .

To obtain the mathematical relationship between the public and private
keys, PK and SK, Euler’s result is extended as follows. First, it is shown that
a z b (mod r) implies that a” z bm (mod r) for any exponent m [71. Thus
Euler’s formula a@‘(‘) - 1 (mod r) can be rewirtten as

am W) E 1 (mod r) (2-3

where, as before, a is relatively prime to r. From the fact that a E b (mod r)
implies that ac E bc (mod r) for any integer c, and from Equation 2-3, it
follows that

X” dr) + 1 z X (mod r) (2-4)

where plaintext X is relatively prime to r (a restriction that is removed below).
Let the public key (PK) and the secret key (SK) be chosen so that

SK.PK = m$(r) + 1 (2-5)

or, equivalently,

SK*PK - 1 (mod 4(r)) O-6)

(A method for finding SK and PK satisfying this equation is discussed below.)
Equation 2-4 can therefore be rewritten as

XSKsrK E X (mod r)

which holds true for any plaintext (X) that is relatively prime to the modulus
(r). (Actually, as shown below, the relation holds for any plaintext (X), and
thus the restriction can be removed.)

36 BLOCK CIPHERS AND STREAM CIPHERS

Encipherment and decipherment can now be interpreted as follows:

EpK(X) = Y z XPK (mod r)

DsK (Y) f YSK (mod r) s XPK ’ SK (mod r) G X (mod r)

(2-7)

(2-8)

Moreover, because multiplication is a commutative operation (i.e., SK*PK =
PK.SK), it follows that encipherment followed by decipherment is equiva-
lent to decipherment followed by encipherment:

DsK@PK(~)) = EPK(DsK(X)) G X (mod r) (2-9)

As mentioned above, this property is useful for generating digital signatures
(see Digital Signatures, Chapter 10).

Because XPK (mod r) = (X + mr)PK (mod r) for any integer m, each plain-
text X, X+r, X+2r,. . . , results in the same ciphertext. Thus the transforma-
tion from plaintext to ciphertext is many-to-one. But restricting X to the set
to, 1,. . . , r - 1 I makes the transformation one-to-one, and thus encipher-
ment and decipherment can be achieved as described in Equations 2-7 and 2-8.

Consider the example in which r equals 2 * 3 = 6 and 4(r) therefore equals
1 * 2 = 2. As predicted by Euler’s theorem, X4@) s 1 (mod r) for values of X
in the set (0, 1, . . . , 5 1 which are relatively prime to r = 6. However, one
observes that X@@) + r =X (mod r) for all values of X in the set (0, 1, . . . , 5 1, as
shown in Table 2-2. A proof is now given that the relationship X” @@) + r E X

X

0

Xt@) (mod r) X4@) + 1 (mod r)

0 0

1 1 1

2 4 2

3 3 3

4 4 4

5 1 5

Legend:
p=2, q=3, r=6, +(r)=2
Set of Xs relatively prime to r: { 1, 5}
Set of Xs relatively prime to p: { 1, 3, 5)
Set of Xs relatively prime to q: {l, 2, 4, S}

Table 2-2. Evaluation of X+(‘)+ ’ (mod r)

BLOCK CIPHERS 37

(mod r) holds for any plaintext, X, where r = pq is the product of two prime
factors and X is restricted to the set { 0, 1, . . . , r - 11-a condition which is
necessary for encipherment and decipherment.

The theorem holds trivially for X = 0, and so only the case X > 0 must be
considered. If X is not relatively prime to r = pq, then X must contain
either p or q as a factor. Suppose p is a factor of X, so that the relation
X = cp holds for some positive integer c. Since X is restricted to the set
IO, 1,. ‘.) r - 11, and r equals pq, it follows that X must be relatively prime
to q. Otherwise, X would also contain q as a factor, in which case it would
exceed r - 1. Using Euler’s theorem, we have

x@(q) = 1 (mod q)

where 4(q) = q - 1. But

p(p-‘)@(q) G l”(P-1) s 1 (mod q)

for any integer m, and (p - 1)4(q) = (p - l)(q - 1) = 4(r), so that

or, for some integer n

1 = X”@C’) + nq

Multiplying each side by X = cp results in

X = Xm@(*) + 1 + (nq)(cp)
= p@(r) + 1 + ncr

or,

xmd+) + 1 G X(mod r)

The case in which q is a factor of X can be handled in the same manner, thus
completing the proof.

Procedures are now discussed for using the proposed algorithm. In particu-
lar it is shown how a user can create a pair of keys: public key (PK) and
secret key (SK).

The user selects two prime numbers, p and q, where p # q. The product
r = pq is made public, but p and q are kept secret. Note, for example, that
the choice p = q is unacceptable, since p could then be obtained by taking
the square root of the publicly known modulus (r). Even if the difference
d = (p - q) is nonzero, d must still be unpredictable, since otherwise p and q
could be determined from r. Note that (p + q) is the square root of (p - q)2 +
4r, and q is half the difference of (p + q) and (p - q).

38 BLOCK CIPHERS AND STREAM CIPHERS

The public and secret keys must now be selected such that they satisfy
Equation 2-6, that is,

PK * SK = 1 (mod 4(r))

In addition, it must be easy to compute PK and SK. The question thus arises
as to how PK and SK can be chosen to satisfy these requirements. The fol-
lowing theorem [71 provides the answer.

Let the notation d = (a, n) be used to indicate that d is the greatest com-
mon divisor (gcd) of a and n. Then the congruence aX G b (mod n) is solvable
(i.e., an integer X can be found that satisfies the congruence) only if the gcd
of a and n divides b, and when this is the case there are d solutions [7 1.

If a and n are respectively defined as SK and 4(r), then gcd (SK, 4(r))
divides 1 if and only if gcd (SK, 4(r)) = 1, that is, if and only if SK is rela-
tively prime to G(r). And so, the congruence SK * X E 1 (mod 4(r)), where X
is defined as PK, has a solution only if SK is relatively prime to $(r). (Note
that if a = PK, the solution X would be SK.) Moreover, because Euclid’s al-
gorithm (discussed below) provides an efficient method both to test whether
a randomly chosen SK is relatively prime to 4(r) and to find the solution (X)
of the congruence SK l X z 1 (mod 4(r)), the theorem above provides an
efficient means of finding PK and SK.

For example, let p = 47 and q = 61. (Methods for generating prime num-
bers are treated separately. See Testing for Primality.) Thus r = pq = 2867
and 4(r) = (p - l)(q - 1) = 2760.

The method for determining the gcd of two integers, and therefore, a test
as to whether two integers are relatively prime, is based on the Euclidean
algorithm (from Euclid’s Elementa, seventh book, circa 300 B.C.); namely,
if a = bn + c, then the gcd of a and b equals the gcd of b and c. Thus, one
can solve for gcd (a, b) by progressively reducing the size of the numbers
whose gcd we are trying to find. For purposes of illustration, let a = 38 =
2 * 19 and b = 26 = 2 * 13. Observe that 19 and 13 are primes, and there-
fore that 2 is the greatest common divisor of a and b. The same result is ob-
tained with Euclid’s algorithm.

1. 38=26- l+ 12 26 divides 38 one time with a remainder of 12
2. 26= 12*2+2 12 divides 26 two times with a remainder of 2
3. 12=2*6

The last nonvanishing remainder (the value of 2 in the above example) is the
gcd of a = 38 and b = 26. Even for very large integers, the Euclidean algorithm
requires only a small number of steps to find the gtd.

With the aid of Euclid’s algorithm, it can now be shown (for the example
p = 47, q = 61, and $(r) = 2760) that SK = 167 is a candidate for the secret
key.

2760= 167. 16+88 (2-10a)
167=88- 1 +79 (2-lob)

BLOCK CIPHERS 39

88=79*1+9 (2-1Oc)

79=9*8+7 (2-10d)

9=7*1+2 (2-1Oe)

7=2*3+1 (1 is the last nonvanishing remainder) (2-1of)

2=1*2 (2-l@)

The value of PK can be found by using a variation of Euclid’s algorithm,
which has already been used in computing the gcd of SK and 4(r). The goal
is to rewrite Equations 2-10a through 2-log in such a way that the final
result is in the form

(factor, l SK) + (factor, l G(r)) = 1

in which case, factor, is interpreted as PK. (Note that this expression is
equivalent to PK * SK E 1 (mod G(r)).)

Let SK = 167 and @(r) = 2760, where p = 47 and q = 61. The public
key can be computed using Equation 2- 1 Of.

1=7--2.3 (2-1 la)

Substituting 2 = 9 - 7 * 1 (Equation 2-1 Oe) into Equation 2-1 la results in

1=7-9.3+7*3=7*4-9.3 (2-1 lb)

Substituting 7 = 79 - 9 * 8 (Equation 2-1 Od) into Equation 2-1 lb results in

1=79*4-9*32-9*3=79*4-9.35 (2-1 lc)

Substituting 9 = 88 - 79 l 1 (Equation 2-10~) into Equation 2-1 lc results in

1=79*4-888.35+79*35=79*39-88.35 (2-1 Id)

Substituting 79 = 167 - 88 l 1 (Equation 2-l Ob) into Equation 2-l Id results in

1 = 167. 39-88. 39-88 l 35 = 167 * 39-88 * 74 (2-lle)

Finally, substituting 88 = 2760 - 167 * 16 (Equation 2-1Oa) into Equation
2-11 e results in

1 = 167 l 1223 - 2760 - 74 (2-l If)

From Equation 2-1 lf, it can be seen that 1223 is the multiplicative inverse
of 167 modulo 2760, and therefore that PK = 1223 is the public key cor-
responding to SK = 167.

40 BLOCK CIPHERS AND STREAM CIPHERS

In summary, the following numerical values were obtained in the example.

p = 47 (chosen)

q= 61 (chosen)

r = pq = 47 * 61 = 2867 (derived)

4(r) = (p - l)(q - 1) = 46 * 60 = 2760 (derived)

SK = 167 (chosen)

PK = 1223 (derived)

A message to be enciphered is first divided into a series of blocks such that
the value of each block does not exceed r - 1. (Otherwise, a unique plain-
text representation is not possible.) This could be achieved by substituting a
two-digit number for each letter of the message). For example, blank = 00,
A = 01, B = 02, . . . , Z = 26. Thus, the message “RSA ALGORITHM”
would be written in blocks as

1819 0100 0112 0715 1809 2008 1300

The first plaintext block, 18 19, is enciphered by raising it to the power PK =
1223, dividing by r = 2867, and taking the remainder, 2756, as the cipher-
text. Likewise, 2756 is deciphered by raising it to the power SK = 167,
dividing by r = 2867, and taking the remainder, 18 19, as the recovered plain-
text. The total ciphertext of the example is as follows:

2756 2001 0542 0669 2347 0408 1815

Since PK = 10011000111 in binary (or 21° + 2’ + 26 + 22 + 2l + 2’ or
1024 + 128 + 64 + 4 + 2 + l), the first plaintext block, 18 19, is enciphered
as:

18191223 = - 1819102“ . 1819128 - 181964 - 18194 * 18192 - 1819r
= 2756 (mod 2867)

Since PK contains 11 bits, there are 10 repeated squaring operations needed
to compute the intermediate quantities: 18192, 18194, 1819’, . . . , 18191024.
The cumulative total is then multiplied by each intermediate result if there is
a corresponding 1 bit in the key. lo Except for the value of the exponent, the
operations of encipherment and decipherment are the same.

The following summary describes the procedure for selecting keys and
performing the steps of encipherment and decipherment:

1. Two secret prime numbers, p and q, are selected randomly.

“The computation is easier than it may seem, since the mod r can be applied to each
intermediate result with the same end result.

BLOCK CIPHERS 41

2. The public modulus, r = pq, is calculated.
3. The secret Euler totient function, 4(r) = (p - l)(q - l), is calculated.
4. A quantity, K, is selected, which is relatively prime to G(r). K is de-

fined as either the secret key, SK, or the public key, PK.
5. The multiplicative inverse of K modulo 9(r) is calculated using Euclid’s

algorithm, and this quantity is defined to be either the public key, PK,
or the secret key, SK, depending on the choice made in (4).

6. Encipherment is performed by raising the plaintext, X (whose value is
in the range 0 to r - l), to the power of PK modulo r, thus producing
the ciphertext, Y (whose value is also in the range 0 to r - 1).

7. Decipherment is performed by raising the cipher-text, Y, to the power
of SK modulo r.

The Distribution of Primes

To thwart an opponent using exhaustive methods to obtain the secret primes,
one must choose p and q from a sufficiently large set. But at the same time
the method used to find p and q must be computationally efficient.

The largest tables of prime numbers ordinarily contain only a few thousand
entries and are too small to be of use. On the other hand, computing and
storing a table of prime numbers large enough to provide adequate security is
clearly out of the question.

At the present, the most practical method of selecting primes suitable for
use in the RSA algorithm is to test randomly selected integers until the re-
quired number of primes have been found. The approach works only because
the proportion of primes to nonprimes is high enough.

By actual count, one finds that each group of 100 numbers from 1 to 1000
(1 to 100, 101 to 200, etc.) contains respectively, the following number of
primes:

25, 21, 16, 16, 17, 14, 16, 14, 15, 14

In each group of 100 numbers from 1 ,OOO,OO 1 to l,OOl,OOO, the correspond-
ing frequency of primes is

6, 10,8,8,7,7, 10, 5, 6,8

and from 1 O,OOO,OO 1 to 10,OO 1,000 the corresponding frequency is

2,6,6,6,5,4,7, 10, 9, 6

A computation by M. Kraitchik [7] shows that for each group of 100 num-
bers in the interval from 1Or2 + 1 to 1012 + 1000 the corresponding frequency
of primes is

4,6,2,4,2,4,3,5, 196

42 BLOCK CIPHERS AND STREAM CIPHERS

Even though the prime numbers gradually become more scarce as the num-
bers within the groups become larger, there are still infinitely many primes.

According to the prime number theorem, the ratio of n(x), the number of
primes in the interval from 2 to x, and x/in(x) approaches 1 as x becomes
very large, that is,

lim n(x) ~ =
X + w x/in(x)

1

where In(x) is the (natural) logarithm of x to the base e = 2.71828 . . . For
different intervals, a comparison of the actual number of primes [7] to the
estimated number of primes (given by x/in(x)) is shown in Table 2-3.”

X

1,ooo
10,000

100,000
1,~,~

10,000,000
100,000,000

I,~,~,~

a b
= 6) x/ 1 n(x)

168 145
1,229 1,086
9,592 8,686

78,498 72,382

664,579 620,421
5,761,455 5,428,681

50,847,478 48,254,942

a/b

1.159
1.132
1.104
1.084
1.071
1.061
1.054

Table 2-3. Number of Primes in Interval 2 to x

The probability that a randomly selected value in the interval from 2 to x
is prime is approximately equal to a(x)/(x - l), that is, the ratio of the num-
ber of primes (a(x)> to the total number of integers (x - 1). It can be shown
that on the average about (x - 1)/n(x) * In(x) values must be tested before a
prime is found. l2 For example, if the magnitude of p and q were on the
order of 2200, then about ln(2200) = 140 trials (or 70 trials using odd numbers) would
be needed to find a prime. (See Cyptographic Strength Considerations for a discus-
sion of the magnitude of r.)

Testing for Primality

Several methods can be used to test a randomly selected number for primality.
However, the most straightforward approaches are not computationally

“A better approximation of n(x) can be obtained by evaluating the integral $z dt/ln(t).
‘*If the probability of finding a prime number is equal to p at each trial, then it takes on
the average l/p trials to find a prime number, assuming that the trials are statistically in-
dependent.

BLOCK CIPHERS 43

feasible. For example, a test could be based on Wilson’s theorem [7], which
states that

(p- l)!~--1 (modp) ifpisprime

where

In all other cases (except n = 4), it can be shown that

(n - l)! = 0 (mod n) if n is not prime

Several examples are shown below.

(2 - l)! ~-1 (mod 2) (7 - l)! E-1 (mod 7)
(3-l)!~-l(mod3) (8 - l)! = 0 (mod 8)
(4- l)! f 2 (mod 4) (9 - l)! 5 0 (mod 9)
(5 - l)! ~-1 (mod 5) (lo- l)! E 0 (mod 10)
(6- l)! E 0 (mod 6) (11 - l)! ~-1 (mod 11)

It should be obvious, however, that a test based on Wilson’s theorem is use-
less for large values of p, since too many multiplications would be required
to compute (p - l)!.

A different test could be based on the simple fact that if a number n is not
prime, then n must contain a factor less than or equal to the square root of n.
But even here the test is useless for large primes p, since to show that p is not
divisible by any number between 2 and fi, and thus prove that p is prime,
would still require too many computations.

The methods described thus far will determine with absolute certainty
whether a number is prime or composite. However, adopting a procedure
that is less reliable permits a favorable trade-off between computation time
and the risk of accepting a number as prime when it is really composite.
(Efficient procedures for testing a large number for primality are given in
references 8 through 11.) To test a large number n for primality, one could
use the elegant “probabilistic” algorithm of Solovay and Strassen [8] . It
picks a random number a from a uniform distribution (1, 2, . . . , n - 1) and
tests whether

gcd (a, n) = 1 and J(a, n) F a(” - ‘)I* (mod n) (2-l 2)

where J(a, n) is the Jacobi symbol [121. If n is prime, then Equation 2-l 2
always holds. If n is composite, the Equation 2- 12 will be false with prob-
ability of at least l/2.

The number n can now be tested for primality by using a set of integers,
A = {al, a2,. . . , a,,, 1, where each a in A is less than n. The test requires that,

44 BLOCK CIPHERS AND STREAM CIPHERS

for each value of a in A, Equation 2-l 2 holds. Thus n is found to be compoc
ite if there is an a in A for which Equation 2-12 does not hold; otherwise n is
accepted as prime.

The procedure does not guarantee that a selected number is prime, but
only that it has not failed the test of primality. The greater the number of
integers in A, the greater the probability that a selected number is prime.
This can be argued as follows. If A contains m randomly selected integers
from 1 to n - 1, then the probability that Equation 2-12 holds when n is
composite is less than 0.5 for each value of a in A. So for a composite num-
ber, the probability that Equation 2-12 holds for all m values in A is less
than 0.5”. In other words, the probability that a composite number will
pass the primality test is less than 0.5m. If m is large, then the chance for
error is small. For example, 0.5m is 0.00098 and 0.00000095 for m = 10
and m = 20, respectively.

When n is odd, a < n, and gcd (a, n) = 1, the Jacobi symbol, J(a, n), has
a value in C-1, 11 and can be efficiently computed by the following recursive
procedure 153 :

J(a, n) = if a = 1 then 1 else

if a is even then J(a/2, n)(-l)(“’ - ‘)I8

else J(n (mod a), a>(-l)ca - ‘Nn - 1)14

A simple numerical example of testing a number for primality illustrates a
different approach, one based on Euler’s theorem. (The method is not rec-
ommended, but is given here because it is easy to understand.) Recall that
Euler’s theorem states that if p is prime, then

ape1 E 1 (modp)

where a and p are relatively prime.
The number p is tested for primality by using a set of integers A = {al, a*,

. . .) a, } where each a in A is less than p. The test consists of ensuring that
for each value of a in A, 1 is the remainder obtained when ap - ’ is divided
by p. (The procedure for evaluating ap - i (mod p) is the same as that de
scribed earlier for enciphering and deciphering data with the RSA algorithm.)
Thus p is found to be composite if there is an a in A for which 1 is not the
remainder obtained when ap - ’ is divided by p; otherwise p is accepted as
prime.

A further example illustrates the procedure’s result when a prime number
(p = 115 1) and a composite number (n = 1147) are tested for primality
using the set of integers A = {106,750,479,808, 1111, 223,55,848, 378,
729) (Table 24). If the test for primality was based on the set A = (750,
1111, 2231, then an incorrect conclusion would have been reached for the
value n = 1147 (i.e., one would have said that the composite number 1147
is prime).

BLOCK CIPHERS 45

a aP- 1 (mod p) an - 1 (mod n)

106 1 915
750 1 1

479 1 566

808 1 591

1111 1 1

223 1 1

55 1 841

848 1 1120

378 1 776

729 1 667

Table 2-4. Test of a Prime Number (p = 1151) and a Composite Number
(n = 1147) for Primality

Cryptographic Strength Considerations

One approach that enables an opponent to break the RSA algorithm is to
factor r. Once p and q are known, (p - 1) and (q - 1) can be used to com-
pute 44-I = (p - 1 X9 - 11, and then SK could be calculated from $(r) and
PK by using Euclid’s algorithm.

However, in the proposed scheme, each user chooses a pair of secret
primes (p and q) which are large enough so that factorization of the non-
secret modulus (r = pq) is not feasible, even with the help of high-speed
computers, and given the fastest known method of factoring. It is there-
fore absolutely essential that r is large enough to make the work needed to
factor r sufficiently great.

The fastest known factoring algorithm is that of Richard Schroeppel [5 1.
It can factor r in approximately ln(r)sq”(l”(‘)““(l”(‘))) steps. (In denotes the
natural logarithm function.) As a first order approximation, assume that the
computation time needed to perform one step in the Schroeppel algorithm is
the same as that to search one key in a hypothetical exhaustive attack
against DES. In this case a blocksize of 388 bits would mean that the work
needed to factor r is equivalent to the work needed to exhaust 256 DES keys.
Instead, if the computation time required to perform a step in the Schroeppel
algorithm were 1000 (1 million) times greater than that required to search a
single key in DES, then a blocksize of 280 (186) bits would be required to
maintain equivalency.

According to the algorithm’s inventors [51, additional protection against
sophisticated factoring algorithms can be achieved by ensuring that the
following conditions are met:

1. p and q differ in length by only a few bits.

46 BLOCK CIPHERS AND STREAM CIPHERS

2. Each number (p - 1) and (q - 1) contains a large prime factor, p’
and q’, respectively.

3. Thegcdof(p- l)and(q- 1)issmall.

Moreover, it has also been pointed out that further protection is possible
by ensuring that (p’ - 1) and (q’ - 1) have large prime factors, p” and q”,
respectively [13,141.

To find a suitable p, first find a large prime p” and let p’ be the first prime
in the sequence i . p” + 1, for i = 2, 4, 6, . . . , etc. Repeating the process,
let p be the first prime in the sequence i * p’ + 1, for i = 2,4, 6, . . . , and so
on. (A value for q can be found in a similar fashion.)

Without regard for the usual methods of factoring composite numbers, it
is noteworthy that r could easily be factored if either 4(r) or SK were
available. The significance of this fact is that it is just as hard to determine
4(r) or SK as it is to factor r. By way of an illustration, if 4(r) were available,
then r could be obtained by the following steps:

1. Obtain(p+q)fromrand$(r)=r-(p+q)+ 1.
2. Obtain (p -9) from the equation (p + q)2 = p* + 2r + q2 = (p - q)2 i- 4r

by taking the square root of (p + q)2 - 4r.
3. Obtain q as half the difference of (p + q) and (p - q).

On the other hand, having SK would permit SK * PK - 1 to be computed,
which is a multiple of 4(r). But an efficient method of factoring r is available
if a multiple of 4(r) is known [91.

It should be obvious that finding a number (X) not relatively prime to r
would be equivalent to breaking the algorithm. This is because the gcd of X
and r would be equal to either p or q, and its value could be easily computed
using Euclid’s algorithm. However, in the practical sense, there is no need to
be concerned that the algorithm will be broken by finding such a number
(X), provided that r is sufficiently large. In the interval from 1 to r there are

numbers relatively prime to r, and

r-Hr)=(p+q)--1

numbers not relatively prime to r. The probability of accidentally discovering
a number having p or q as a factor is therefore equal to

r - 4(r) =l-@(r)=P+q-l
r r Pq

++;

which is extremely small for large values of p and q.
Factoring large numbers is a well-known problem that has engaged mathe

maticians for many hundreds of years. Experience has shown it to be an in-

BLOCK CIPHERS 47

tractable problem. Yet this evidence does not prove that the cryptographic
approach is strong. In fact, until the advent of high-speed computers, mathe-
maticians weren’t looking for methods that might require very complicated
tests. Furthermore, the general problem of factoring and the special case of
factoring associated with the RSA algorithm are different. The classical
problem of factoring, not yet solved despite a considerable effort, can be
stated as follows:

Factor a composite number r, where r may be any product of two or more prime
factors.

The cryptographic problem, which must take into account attacks using
selected ciphertext and is not yet sufficiently investigated, can be stated as
follows:

Factor a composite number r, where r is the product of two prime factorsI (r = pq)
and where there exists a public key PK and a secret key SK that satisftes the relation

PK.SK=l (mod(p-l)(q-1))

such that the opponent has knowledge of chosen ciphertext, Yr, Y,, . . . , and corre-
sponding recovered plaintext, Xl, X2, . . . (without having knowledge of SK) which
satisfy the relation

Yy E Xi (mod r)

In the cryptographic problem, knowledge of PK (i.e., a value relatively prime
to (p - l)(q - 1)) does not provide an opponent with much information
beyond that present in the classical problem. This is because in the classical
problem it would be a simple matter to select a large prime (i.e., a value
relatively prime to (p - 1)(q - 1)) that could be used as a public key to
carry out a chosen plaintext attack. However, in the cryptographic problem,
the public key can be used in conjunction with a chosen ciphertext attack to
produce quantities that are functions of both PK and SK. In this sense, the
public key is potentially of greater value in the cryptographic problem than
it is in the classical problem.

As yet there is no evidence to support a claim that the additional informa-
tion available to the opponent in the cryptographic problem will allow the
modulus to be factored. However, one cannot conclude that the problem of
factoring in the cryptographic problem is hard merely on the basis that the
classical problem of factoring is known to be hard. And while factoring the
modulus in the RSA algorithm leads to breaking the algorithm, there is no
proof that breaking the algorithm is the same as solving the classical problem
of factoring.

It is entirely possible that the proposed RSA algorithm is cryptographically
strong. However, this conclusion cannot be reached from previous work
done to solve the theoretic problems of factoring composite numbers. It can
only be reached by taking into account the requirements that must be satis-

131n a more general approach, the RSA algorithm could specify that r is the product of
more than two prime factors.

48 BLOCK CIPHERS AND STREAM CIPHERS

fied for strong algorithms and by performing a thorough validation. Since
the algorithm is in the public domain and has become a topic of great interest
among academicians and cryptologists [15-2 11, it is only fair to say that a
validation effort of sorts has already begun. Nevertheless, in addition to such
an effort, a well-organized approach by a group of dedicated people whose
only task is to uncover weaknesses in the algorithm is needed. Finally, it
would be highly desirable for the National Security Agency, where significant
cryptographic expertise resides, to certify the algorithm’s strength. This cer-
tification would be based on a similar government-organized validation effort.

Trapdoor Knapsack AlgorithmI

A public-key algorithm can also be based on the classical problem in number
theory known as the knapsack problem [4] . The following is an introduction
to this approach. Let A be a nonsecret (published) vector of n integers (ai , a2,
. . .) a,) and let X be a secret vector of n binary digits (OS and 1s) whose
components are designated (x,, x2, . . . , x,), that is,

A = (a,, a?, . . . , a,)

x = (Xl, x2, * * - , J&l)

Defining Y to be the dot product of A and X results, by definition, in

n

Y = A . X = alxl + a2x2 + . . . + a,x, = c aiXi
i=l

Calculation of Y is simple, involving only a sum of at most n integers. How-
ever, finding X from Y and A is generally difficult when n is large and A is
properly chosen. This is called the knapsack problem.

Let the knapsack problem be illustrated by the following simple example:
If

X=(1, 0, 1, 1, 0, 0, 0, 1)

A = (2453,6394,941, 1076,4791,4404,9549,6639)

then

Y = A * X = 2453 + 941 + 1076 + 6639 = 11109

In the knapsack problem, one is asked to find X such that A l X = Y, where
A and Y are given. In the most general case, one would like to have a function
g to calculate X from A and Y such that g satisfies the relation X = g(A, Y).

One way to find X is by the method of direct search. (In the above ex-
ample, there are 28 = 256 values for X.) This consists of computing A * X

14At the time of publication of this book, the trapdoor knapsack algorithm reportedly
has been broken [221.

BLOCK CIPHERS 49

for each enumerated value of X, and comparing the result with Y for equal-
ity. Function g, in this case, is a procedure to test all possibilities for X, and
select the first which works. However, if the number of elements in A (and
thus in X) is large, and A is properly chosen, then such an exhaustive ap
preach is not practical. A different method of solution would be required.

In the described public-key algorithm, A represents the public key. Anyone
can produce ciphertext Y from plaintext X by the equation Y = A . X. But
for this approach to be cryptographically strong, it must not be computa-
tionally feasible to obtain X from information assumed to be known to the
cryptanalyst, thus preventing the process from being inverted by discovery
of function g.

An example of a cryptographically weak approach (since it allows the
process to be easily inverted) is a public key A whose elements satisfy the
following conditions:

ai.1 >a1 + a2 + . . . + ai = aj; i=l,2,...,n-1

Using the notation

Y, = xlal

Y, = xlal + x2a2

Y, = xlal + x2a2 + . . . + x,a,

where Y = Y, is the ciphertext, one can recover X from Y, and A as follows.
If Y, is less than a,.,, then x, is set equal to 0 and Y, - i is set equal to Y,.
Otherwise, x, is set equal to 1 and Y,- i is set equal to Y, - a,. Now, using
the computed value of Y, - r, one can compute the values of x, - i and
Y,-, in a similar manner. The procedure continues until X = (xi, x2, . . . ,
x,) has been recovered.

The recovery of X can be illustrated by the following example:

A = (15,92, 108,279,563, 1172, 2243,4468) (2-l 3)
Y = A * X = 4870

Thus

x,3 = 1, Since Y8(= 4870) > a8(= 4468)
x7 = 0, Since Y7(= 402) < a,(= 2243)

x6 = 0, since Y6(= 402) < a6(= 1172)
X 5- - 0, since Y,(= 402) < aS(= 563)
x4 = 1, since Y4(= 402) > a4(= 279)

50 BLOCK CIPHERS AND STREAM CIPHERS

xg = 1, since Y3(= 123) > a,(= 108)
X 2- - 0, since Y2(= 15) < a,(= 92)

x1 = 1, since Yr(= 15) = ar(= 15)

andthevalueofXis(1,0,l,1,0,0,0, 1).
A trapdoor knapsack [4] is one in which the careful choice of vector A

allows the designer to recover X from Y easily using the secret trapdoor
(identified by the secret key), but which makes it difficult for anyone else
to find the solution. The introduction of a secret quantity makes it possible
to find a transformation such that X = g’ (A, Y, secret quantity), where the
function g’ is easily calculated. The way the problem is solved here is to
transform Y to Y’ by the following method:

1. Choose secret integers, r and t, which are relatively prime.
2. Calculate another quantity, s (also kept secret) from r and t, which is

the multiplicative inverse oft modulo r.

In that case, the relations

Y’=Ys(modr)

Y’ = A’X

exist which allow easy recovery of X, since A’ falls into the class of knapsack
problems which have easy solutions. In other words, a trapdoor is introduced
(identified by the secret parameters r and t) that transforms a hard knapsack
problem (vector A) into a trivial knapsack problem (vector A’).

To construct a trapdoor knapsack, let A’ = (a;, a;, . . . , a;) be a secret
vector of n integers such that af > a; + a; + . . . + af - r for all i. The vector

A’ = (15,92,108,279,563, 1172,2243,4468)

used in the last example (Equation 2-13) satisfies this condition. Now choose
secret integers r and t such that these three conditions hold:

1. r>a’,+a;+...+ak
2. r>t
3. r and t are relatively prime (i.e., gcd (r, t) = 1)

The choice r = 9291 and t = 2393 satisfies the necessary conditions. That
they are relatively prime can be shown as follows, using Euclid’s algorithm:

9291 =2393*3+2112

2393=2112 * 1 +281

2112 = 281 * 7 + 145

BLOCK CIPHERS 51

281 = 145 l 1 + 136

145 = 136 * 1 + 9

136=9*15+1

9=1-9

The last nonvanishing remainder (the value 1 in the above computation) is
the gcd of 9291 and 2393.

The easily solved knapsack vector A’ is now transformed into a trapdoor
knapsack vector A via the relation

ai E aft (mod r)

Since

Y = A * X = aixi
i=l

it follows that

yr ” c [aft (mod r)] xi
i=l

n . . = - c afxit (mod r)
i=l

Defining

y’ = 2 &xi = A’ - X
i=l

to be the transformed ciphertext from which X can be easily recovered,
since A’ is chosen that way, one obtains

Y E Y’t (mod r) (2-14)

The idea here is to use the secret quantities t and r to transform Y to Y’ and
thus transform the hard knapsack problem into an easy one. To achieve this
let a quantity s be defined such that

st G 1 (mod r)

Hence s is the multiplicative inverse of t modulo r. If one defines t and r to
be relatively prime (as stated in condition 3), there is a unique solution for s.

52 BLOCK CIPHERS AND STREAM CIPHERS

(This was discussed before in conjunction with the RSA algorithm. See
Equations 2-10a through 2-log.) Furthermore, to assure a unique relation
between plaintext and ciphertext, choose a value of r that exceeds the maxi-
mum value of Y, that is,

n

r> c ai
i=l

which satisfies condition 1.
Multiplying Y by s (see Equation 2-14) results in

Ys = Y’st (mod r) G Y’ (mod r)

or equivalently

Y’s Ys (mod r)

which is the desired result.
In the current example, a, = 8022 s 15 l 2393 (mod 929 l), a2 = 6463 z 92 l

2393 (mod 9291), and so on, and therefore vector A can be computed to be

A = (8022,6463,7587,7986,64,8005,6592,7274)

Vector A (the public key) is published by the user. Anyone desiring to com-
municate a message (X) to the user enciphers the message using vector A. The

cipher-text (Y) is obtained via the relation Y = A . X = 2 aixi. TO recover
i=l

the original message (X) from the ciphertext (Y), Y is transformed into Y’
using s, namely

Y’=Y l smodr

and the solution is obtained using the knapsack vector A’.
In the present example, the value of s is computed by rewriting the equa-

tions previously obtained with Euclid’s algorithm:

1 = 136-90 15

1 = 16 l 136- 16 l 145

1 = 16 l 281 -31 l 145

1 = 233 l 281 -31 l 2112

1 = 233 l 2393 -264 l 2112

1 = 1025 * 2393 -264 . 9291

Thus s = 1025 is the multiplicative inverse oft = 2393 modulo r = 9291.

STREAM CIPHERS 53

The trapdoor knapsack public-key algorithm is illustrated by the follow-
ing example :

A’ = (15,92, 108, 279, 563,
1172,2243,4468)

r = 9291

t = 2393

s= 1025

A = (8022,6463,7587,7986,
65,8005,6592,7274)

(secret, chosen)

(secret, chosen)

(secret, chosen)

(secret, derived)

(nonsecret, derived)

A message

x=(1,0,1,1,0,0,0,1)

is enciphered using vector A, as follows.

Y = A l X = (8022 + 7587 + 7986 + 7274) = 30869

Multiplying Y by the secret value of s results in

Y’ = Y l s (mod r) = 30869 . 1025 (mod 9291) = 4870

Subsequently, X = (1, 0, 1, 1, 0, 0, 0, 1) is recovered from Y’ = 4870 and
vector A’, as previously shown in Equation 2-13.

STREAM CIPHERS

A stream cipher (Figure 2-8) employs a bit-stream generator to produce a
stream of binary digits called a cryptographic bit-stream, l5 which is then
combined either with plaintext (via the f~ operator) to produce ciphertext,
or with cipher-text (via the q -’ operator) to recover plaintext.

Vernam [23] was the first to recognize the merit of a cipher in which
ciphertext (Y) is produced from plaintext (X) by combining it with a secret
bit-stream (R) via a simple and efficient operation. In his cipher, Vernam
used an Exclusive-OR operation, or modulo 2 addition (Table 2-l), to com-
bine the bit-streams. Thus encipherment and decipherment are defined by
X @ R = Y and Y Q R = X, respectively, and the condition H = q -l = @ is
satisfied. Since in most stream cipher designs modulo 2 addition is used as
the combining operation, it will be used in the remainder of the discussion
on stream ciphers.

“Traditionally, the term key-stream has been used to denote the output of the bit-stream
generator. Instead, the term cryptographic bit-stream is used here to avoid possible
confusion with a fixed-length cryptographic key in cases where a cryptographic algorithm
is used as the bit-stream generator.

54 BLOCK CIPHERS AND STREAM CIPHERS

Figure 2-8. Stream Cipher Concept

If the bit-stream generator were truly random, an unbreakable cipher
could be obtained by Exclusive-ORing the plaintext and cryptographic bit-
stream. (See the discussion of one-time tape systems, Cryptographic Algo-
rithms.) In that case, the cryptographic bit-stream is used directly as the key
and is equal in length to the message. But because the cryptographic bit-
stream is random, it must be provided to the users in advance via some
independent and secure channel. This, of course, introduces insurmountable
logistical problems if the intended data traffic is very large. Hence, for
practical reasons, the bit-stream generator must be implemented as an
algorithmic procedure, so that the cryptographic bit-stream can be produced
by both users. In such an approach (Figure 2-9), the bit-stream generator is a
key-controlled algorithm and must produce a cryptographic bit-stream which
is cryptographically strong.

When modulo 2 addition is used as the combining operation, each bit in the
output ciphertext (recovered plaintext), is dependent upon the corresponding
bit in the input plaintext (ciphertext), but not upon any other bits in the
input plaintext (ciphertext). This is in marked contrast to the block cipher
which exhibits a much more complex relationship between bits in the plain-
text (ciphertext) and bits in the ciphertext (recovered plaintext). Both ap-
proaches, however, have comparable strength.

In a stream cipher, the ciphering algorithm (G) uses a cipher key (v) to

fiGi!? cip~g!!ify P,aintext
W) (Xl

Figure 2-9. Stream Cipher Using an Algorithmic Bit-Stream Generator
and Modulo 2 Addition

STREAM CIPHERS 55

generate a cryptographic bit-stream (R). If the set of keys is represented, as
before, by

v = {Vl, v2, * * * 9 &I

it follows that the set of enciphering and deciphering functions (G) can be
expressed as follows.

G = {gv,, gv2, - . - , g,,l

where g, represents a key-selected transformation which generates a par-
ticular bit-stream. Function g should not be confused with the function
introduced earlier for the block cipher design (Figure 2-7).

In a stream cipher, the algorithm may generate its bit-stream on a bit-hy-
bit basis, or in blocks of bits. This is of no real consequence. All such systems
are stream ciphers, or variations thereof. Some variations, however, have
important characteristics. Moreover, since bit streams can be generated in
blocks, it is always possible for a block cipher to be used to obtain a stream
cipher. However, in a communications system, because both the sender and
receiver must produce cryptographic bit-streams that are equal and secret,
their keys must also be equal and secret. In effect, this means that a public-
key algorithm can be used to obtain a stream cipher only if it is used as a
conventional algorithm. That is, both sender and receiver use the same algo-
rithm (E or D) and the same key. But the key must be kept secret.

Consider the general case where an input block (X) of b bits is enciphered
by generating a cryptographic bit-stream (R) of b bits and Exclusive-ORing
R with X to produce b bits of ciphertext (Y).

Y=X@R

From the rules of modulo 2 addition (Table 2-l), it follows that X can be
recovered by adding the same cryptographic bit-stream (R) to the cipher-
text (Y).

X=Y@R

The ciphering procedure using modulo 2 addition is thus extremely simple
and easy to implement. However, care must be taken to achieve a crypto-
graphically strong design. If, for example, the opponent knows that modulo 2
addition has been performed, and plaintext (X) and corresponding ciphertext
(Y) become available, he then could add both quantities together (modulo 2)
and recover the cryptographic bit-stream.

X@Y=Xe(XeR)=R

Since the cryptographic key (K) is a constant quantity, it follows that the
cryptographic bit-stream (R), or block of bits produced at each iteration of

56 BLOCK CIPHERS AND STREAM CIPHERS

the ciphering algorithm, will not change if it depends only on K. In this case,
once the opponent has obtained R, he can decipher any intercepted cipher-
text without ever knowing the key (K). This, of course, is unacceptable.

The stream cipher must not start from the same initial conditions in a
predictable way, and thereby regenerate the same cryptographic bit-stream
at each iteration of the algorithm. In other words, the stream cipher must
not reoriginate. l6

Since the key, even though it is secret, does not ensure an unpredictable
cryptographic bit-stream, another quantity, defined as the initializing vector
(Z), must be introduced into the ciphering process. (Other terms used are
seed and fill.) In effect, different initializing vectors cause different crypto-
graphic bit-streams to be generated. And the cryptographic bit-stream is
unpredictable as long as the initializing vector satisfies one of the following
conditions.

1. Random. Z is produced by some natural phenomenon whose statistics
have been demonstrated to be random, and Z has enough combina-
tions so that the probability of repeating is extremely small.

2. Pseudo-random. Z is produced by a deterministic process whose
period (the interval between equal recurring values) is extremely large
compared to the length of Z, and whose values have the statistical
properties of randomness.

3. Nonrepeating. Under certain conditions, Z can be produced by a
process that may be predictable, but whose period before repeating
is so large that for practical purposes it is of no concern. A 64-bit non-
resettable counter would satisfy this condition. Even if the opponent
obtains the cryptographic bit-stream associated with one counter
setting, he cannot determine what the bit-stream will be for a differ-
ent counter setting.

In contrast to the cipher key, which must be kept secret, the initializing
vector may be a nonsecret quantity. This is because the initializing vector
either does not repeat, or else repeats with only a small probability (de-
termined by the length of the initializing vector).

The cryptographic bit-stream R generated by the function g can now be
expressed by

R=gK(Z)

The encipher and decipher operations are thus defined by

Y=X@R=X@g,(Z)

X = Y @ R = Y d gk(Z)

‘?his is not a requirement for the block cipher, since knowledge of plaintext and cor-
responding ciphertext does not permit an opponent to decipher without knowledge of
the key.

STREAM CIPHERS 57

It follows that the set of functions G, which determines the cryptographic
bit stream, does not have to be a collection of one-to-one functions since an
inverse operation is never needed. On the other hand, a set of functions
F = {fK,z} does exist which relates plaintext and ciphertext using the keys
and initializing vector as parameters

y = fK,Z(x)

x = fK;z(Y)

where fK,z is, of course, a one-to-one function. Since the length of the
ciphertext is equal to the length of the plaintext, the number of plaintext
combinations is equal to the number of ciphertext combinations. Hence
fK z is also an onto function. (Note that the domain of fK z is the Set of all
plaintext combinations, the co-domain is the set of all ciphertext combi-
nations.) The basic idea of a stream cipher is shown in Figure 2-l 0.

In a stream cipher, Z is used not only for providing cryptographic strength
but also for establishing synchronization between communicating crypto-
graphic devices. It assures that the same cryptographic bit-streams are

Z Z

K--+ g K g

X

Input
Data Bit-Stream

(Plaintext)

Cryptographic
Bit-Stream

3,

R

Y=X @ R

output
Data Bit-Stream

After Encipherment
(Ciphertext)

+ X

Output
Data Bit-Stream

After Decipherment
(Plaintext)

Legend: example of encipherment and decipherment

e Plaintext 0101
Cryptographic Bit-StreamO 0 1 1
CiphertextO 1 10

e CiphertextO 1 1 0
Cryptographic Bit-StreamO 0 1 1
Recovered Plaintext.O 1 0 1

Figure 2-10. Stream Cipher

5% BLOCK CIPHERS AND STREAM CIPHERS I

generated for the sender and the receiver. This may be accomplished by
generating Z at the sending device and transmitting it in clear form to the
receiver. An alternative method is for the receiver to determine Z by trans-
mitting it to the sender. But this requires an additional initialization message,
and hence is less efficient. However, it does provide a way to introduce a
time-dependent parameter controlled by the receiver.

Recall that for a strong cryptographic algorithm it is assumed that the
opponent has the advantage of relatively large amounts of selected plain-
text and corresponding ciphertext. However, when the algorithm is a stream
cipher this means that the opponent also has knowledge of large portions of
the cryptographic bit-stream, since the cryptographic bit-stream can be recon-
structed by modulo 2 addition of known plaintext and corresponding
ciphertext. (Note that if Y = X @ R, then Y @ X = R.) It is important,
therefore, that knowledge of part of the cryptographic bit-stream does not
allow portions of the remaining cryptographic bit-stream to be determined.
Hence, a necessary, although insufficient condition to achieve cryptographic
strength with the stream cipher is for the bit-stream produced by the algorithm
to be pseudo-random.

A bit-stream is considered to be pseudo-random if on statistical grounds
one cannot reject the hypothesis that it is random (i.e., it passes all con-
ceivable tests of randomness). Pseudo-randomness assures that it will be
difficult for an opponent to use statistical attacks successfully against the
cryptographic algorithm.

In addition to the opponent knowing relatively large amounts of selected
plaintext and corresponding ciphertext, it is assumed for a strong stream’
cipher that the opponent knows the initializing vectors corresponding to
the given plaintext and ciphertext.

Cryptographic systems usually treat initializing vectors as nonsecret quanti-
ties. Thus in a communications system, initializing vectors are no more difficult
to intercept than ciphertext. Since the algorithm and cryptographic key are
fixed, a variable cryptographic bit-stream is obtained by varying the initial-
izing vector. One way to do this is to use a new initializing vector for each
iteration of the ciphering algorithm (i.e., for each new block of bits produced
in the cryptographic bit-stream). However, in a communications system, this
has the disadvantage of increasing the amount of transmitted data, since the
initializing vector bits are now added to each block of ciphertext bits. A
more efficient approach is to use a single initializing vector for each message.
(In general, a message consists of several blocks.) At the first iteration of the
ciphering algorithm, the initializing vector is used (as before) to produce a
block of bits in the cryptographic bit-stream, and these bits are then used to
encipher the first block of plaintext. At all subsequent iterations of the
ciphering algorithm, the initializing vector is altered by or determined from
information obtained using feedback techniques. In this case, the bit-streams
available at time i are used to produce an intermediate initializing vector,
U, which is then used in the ciphering process at time i + 1.

A feedback can be obtained from several places: the cryptographic bit-
stream, the plaintext, the ciphertext, or some combination thereof. Each of
these approaches can give rise to a cryptographic system with differing char-

STREAM CIPHERS 59

X(1) by(l)

Note: The cryptographic bit-stream used to encipher the first block of
plaintext bits depends only on the secret key and the non-secret
initializing vector.

Figure 2-11. Encipherment of First Block of Plaintext Using a Stream
Cipher

acteristics with respect to recovery from ciphertext errors. But regardless of
what feedback technique is used, the first block of plaintext, X(l), is en-
ciphered by a cryptographic bit-stream, R(l), which depends only on an
initializing vector, Z, and a cipher key, K (Figure 2-l 1).

In the most general case, the length of the intermediate initializing vector
(U) may not equal the length of the initializing vector (Z). For example,
U(1) might be obtained by concatenating zero bits to Z. To accommodate
such situations, a function h* is introduced to define how U(1) is obtained
from Z:

U(1) = h*(Z)

where encipherment of the first block of plaintext is given by

y(1) = x(1)'gK(u(l))

A method for generating the initial condition U(2) is considered next. Let
the intermediate initializing vector at time i, U(i), be a function h of the
previous initializing vector, U(i - l), as well as an additional feedback
quantity:

U(i) = h[U(i - l), feedback quantity]

However, since U(1) equals h*(Z), it follows that U(2) is given by

U(2) = h[h*(Z), feedback quantity]

as shown in Figure 2-l 1. It should be understood that the intermediate

60

STREAM CIPHERS 61

initializing vectors must satisfy the same conditions as the initializing vector
Z. The function h must therefore not introduce a bias into the ciphering
process that could make the U values predictable.

The special case where the feedback is obtained from the cryptographic
bit-stream is shown in Figure 2-12 and is defined as the key auto-key cipher.
One property of this cipher is that an error in the ciphertext produces an
error only in the corresponding bit positions of the recovered plaintext (i.e.,
there is no error expansion due to the ciphering process).

There are many ways to design a key auto-key cipher. The component
common to all of these designs is that the feedback must be obtained from
the cryptographic bit-stream. In general, the following relationships hold for
a key auto-key cipher:

Y(i) = X(i) @ R(i)

X(i) = Y(i) @ R(i)

where

R(i) = gK(U(i)); l<i<t

h”(Z); i= 1
U(i) =

h[U(i - l), R(i - 1); i>l

where U(1) = h*(Z) is the initial seed value, U(i) is the new seed at iteration
i > 1, and h is a simple function of two arguments.

Some of the differences between block and stream ciphers can now be
stated.

1. The block cipher enciphers a single block of data at one time. It re-
quires a minimum blocksize determined by considerations of crypto-
graphic strength. The stream cipher requires no minimum blocksize;
it can be used to encipher, in the extreme case, on a bit-by-bit basis.

2. In the block cipher, every ciphertext bit is a complex function of
every plaintext bit in the corresponding input block. In the stream
cipher, every ciphertext bit y(i) is related to its corresponding plain-
text bit x(i) by the relationship y(i) = x(i) @ r(i).

3. The block cipher may or may not require an initializing vector (Z);
it is allowed to reoriginate. This is because knowledge of plaintext
and corresponding ciphertext does not reveal information in the same
way that it would in the case of the stream cipher.17 A cryptograph-
ically strong stream cipher must not reoriginate, and thus requires an
initializing vector (Z).

“Although an initializing vector is not always a requirement for a block cipher, it is
nevertheless used in block chaining. But even there the block cipher may reoriginate,
since the initializing vector could be reused for a limited period of time.

62 BLOCK CIPHERS AND STREAM CIPHERS

BLOCK CIPHERS WITH CHAINING

The overall strength of a cryptographic system can be enhanced by using a
technique known as chaining. Chaining is a procedure used during the
ciphering process which makes an output block dependent not only on the
current input block and key, but also on earlier input and/or output.

In certain applications, data to be enciphered may contain patterns that
are longer than the cipher’s blocksize. Such patterns in the plaintext may
result in similar patterns in the ciphertext which could be exploited by an
opponent. Chaining significantly reduces the presence of repetitive patterns
in the ciphertext, because with chaining two identical blocks of plaintext
will, upon encipherment, result in different ciphertext blocks.

Patterns Within Data

Patterns within data may occur because of a definite arrangement or inter-
relation between the characters or strings of characters that span a data
record, that is, because of the data’s structure. Patterns may also occur
within data because only relatively few of the possible characters or strings
of characters tend to repeat, that is, because of the data’s redundancy.

The structural relationship that may exist within data is illustrated by an
example of several assembler language statements punched onto 80-column
cards (Figure 2-l 3). When this plaintext is enciphered using DES (no chaining),
patterns within the ciphertext are still discernible (Figure 2-14).

Similarly, data intended for visual display may also contain patterns be-
cause of a rigidly defined format. For example, a format for medical records
might well include such displayed keywords as name, age, height, weight,
and the like. These constant portions of the displayed data could allow its
overall structure to be determined, even though enciphered. Once this under-
lying structure is known, variable portions of the data may be further
exposed to analysis.

If data are highly redundant, then encryption with a block cipher may not
prevent cryptanalysis using block frequency analysis. Block frequency analy-
sis determines the frequency of each ciphertext block from a large sample of
intercepted ciphertext. By relating the observed frequencies of the ciphertext
blocks to the expected frequencies of the plaintext blocks, an opponent may
be able to draw certain inferences concerning the nature of the plaintext
corresponding to a given ciphertext.

Data redundancy can be exploited to attack a cryptographic system by
the method illustrated in the following example. Assume that a cryptographic
system uses a block cipher (no chaining) to protect messages transmitted
among the nodes of a communication network. Assume further that each
pair of nodes shares a different cipher key for messages transmitted between
them.

At each node, the cipher keys are managed by the system and the user is
not aware of the ciphering operations. Most importantly, the cipher keys
are kept secret from users, even though users may request that messages be
enciphered and deciphered using cipher keys.

00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
rn~~~~~~or~rn~~~~~~or~rn~~~~~~o~~rn~~~~
ooooooorrrrrrrrrr~~~~~~~~~~mmmmmmmm
88888888888888888888888888888888888
0000’0000000000000000000000000000000

63

n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!iJa-

68 < hWa-

nrwa-
n!Wa-

3 Wb s
n.Wa-

GB < hWa- n!Wa- n!Wa- n!Wa- n!Wa- n!Wa-
Spaces represent nonprintable characters

n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!wa-
n!Wa-
n!Wa-
m&-
niWa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa- _

n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-

rWa-
n!Wa-
C

n!Wa-
8B Wa-

n!Wa-
C

n!Wa-

n !Wa-
n !Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n !Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-
n!Wa-

g;u s d
5P _- -

n!oyS O-
n!E l E

n!# !X BO!

n! H z
n!Wa-

CH vb
n!
n! i-l”,
n!

C NH :b
n!Wa-

K = Hex ‘85CDCBlC9BDO851A ’ is the parity-adjusted key used for encipherment. Hexadecimal, or “Hex” for short,
is a base-sixteen system for representing numbers. The numbers 0 through 15 are represented by digits 0 through 9, and
letters A through F, respectively.
Figure 2-14. Ciphertext Obtained when Plaintext in Figure 2-13 is Encrypted Using the DES
(No Chaining)

BLOCK CIPHERS WITH CHAINING 65

Although the cryptographic system described above protects users from
outsiders, it does not necessarily protect one user from another. For example,
a large amount of known plaintext could be transmitted between any two
selected nodes by one of the system’s users. This user could then recover his
own ciphertext, if necessary, by performing a wiretap. A dictionary of
equivalent plaintext and cipher-text blocks could then be constructed. This
dictionary would permit the user to recover portions of intercepted cipher-
text transmitted by another system’s user between the same pair of com-
munication nodes.

If the data normally transmitted in the communications network have
enough redundancy, then the number of possible meaningful plaintext
blocks will be small enough to permit a dictionary to be constructed. For
example, 1 million different eight-character groups can be transmitted over a
4800 bit-per-second (baud) line in about four hours. And a dictionary of
1 million plaintext and cipher-text equivalents could easily be stored within
most computer systems. Even with a dictionary of 1 million entries, it is
likely that some blocks of intercepted ciphertext could be recovered directly
from the dictionary. Once a few plaintext blocks have been correctly re-
covered, new suppositions concerning the content of adjacent blocks can be
made. These hypotheses could be tested by transmitting additional blocks of
plaintext and intercepting the corresponding ciphertext to determine if the
suppositions were correct. Therefore, through a process of trial and error, it
may be possible for additional portions of an intercepted message to be
recovered.

One way to eliminate the undesirable effects of redundancy and structure
within data is by Exclusive-ORing a different random or pseudo-random bit
pattern Z with each block of plaintext prior to its encryption. In effect, the
previously existing patterns within the data (should they occur) are canceled
as a result of the noise vector Z.

However, if the values of Z (chaining values) are selected using a process
that cannot be duplicated at the time decipherment takes place, then each
chaining value must also be transmitted or stored with each block of cipher-
text so that recovery of the plaintext is possible. This requirement is most
disadvantageous since it causes the amount of information that must be
transmitted or stored to be doubled.

Chaining eliminates the problem of transmitting or storing a separate Z-
value for each block of ciphertext, since at each step in the ciphering process
an equivalent chaining value is computed from information used within the
ciphering process (such as prior plaintext, ciphertext, or key). The chaining
value used at the first step in the ciphering process is called the initial chaining
value or initializing vector (Z), and if it is to be used it must be supplied as
input to the ciphering process.

In effect, the chaining value permits noise to be introduced into the
ciphering process. The way in which this chaining value is derived and ap-
plied determines the type of chaining used. Several different block chaining
techniques are discussed below.

.

.

.

I

I

s 1 SC

2 1 z

66

BLOCK CIPHERS WITH CHAINING 67

Block Chaining Using a Variable Key

One way to obtain block chaining is to change cipher keys internally at each
step in the ciphering process. This could be accomplished by using a feed-
back from some intermediate value derived within the ciphering function
(Figure 2-15).

It must be possible to derive the same intermediate value used for feed-
back during both encipherment and decipherment. For example, if DES
were used, then such an intermediate value could be obtained after the
eighth round of encipherment/decipherment. (See Chapter 3 for a discus-
sion of the DES algorithm.)

The cryptographic function f defines the relationship between plaintext
and ciphertext. Since the length of plaintext X equals the length of cipher-
text Y, function f is one-to-one as well as onto. Function h defines how the
cipher keys are changed or altered through the introduction of the initializing
vector Z or the feedback vectors U(l), U(2), . . . , U(n - 1). Note that func-
tion h may be a many-to-one function since identical inputs to this function
will be available during both encipherment and decipherment.

From Figure 2-15, it follows that

K(i) = h(K(i - l), U(i - 1)); i>l (2-15)

where

an intermediate result of the ciphering
U(i) = operation that is identical during both i>O

enciphering and deciphering operations;

U(0) = z

K(0) = K

and = denotes “identically equal to.” Hence, encipherment and decipher-
ment are expressed as

Y(i) = fK(i)Wi)); i>l (2-16a)

and

X(i) = fKfi$Y(i)); i>l (2- 16b)

respectively. Even if the initializing vector (Z) is held constant, patterns in
the input data will be eliminated. This is because cipher key K(i) is different
from cipher key K(j) so that cipher-text Y(i) is different from ciphertext
Y(j), even if plaintext X(i) equals plaintext X(j). In contrast, stereotyped
messages (such as may occur in a terminal-to-computer inquiry system where
frequent yes and no responses are transmitted) are not masked when Z is
constant, since identical messages will always result in identical cryptograms.

68 BLOCK CIPHERS AND STREAM CIPHERS

To eliminate the problem of stereotyped data records, a variable initializing
vector (Z) must be used.

Since U(i) is an intermediate result of the encipherment of block X(i),
it can be expressed as a function hi of K(i) and X(i):

U(i) = h,(K(i), X(i)); i 2 1 (2-17a)

Similarly, U(i) is an intermediate result of the decipherment of block Y(i),
and so it can also be expressed as a function hz of K(i) and Y(i):

U(i) = h,(K(i), Y(i)); i>l (2-17b)

But, by the recursive nature of Equations 2-l 5 and 2-l 7a, it follows that
there exist functions $ i , &, . . . , $i such that

K(i) = $i(K, X(O), X(l), . . . , X(i - 1)); i>,l (2-18a)

where X(0) = Z. Likewise from Equations 2-15 and 2-17b, it follows that
there exist functions $ r, J/*, . . . , $i such that

K(i) = $i(K, Y(O), Y(l), . . . , Y(i - 1)); i a 1 (2-18b)

where Y(0) G Z.
But from Equations 2-16a and 2-18a, it follows that there exist functions

HI,~,..., Hi such that the generated ciphertext, Y(i), is given by

Y(i) = Hi(K, X(O), X(l), . . . , X(i)); iQ1 (2-19a)

and from Equations 2-16b and 2-17b, it follows that there exist functions
GI, (32,. . . , Gi such that the recovered plaintext, X(i), is given by

X(i) = Gi(K, Y(O), Y(l), . . . , Y(i)); i>l (2-19b)

where X(0) = Y(0) G Z.
Equation 2-19a enables us to determine the most general block cipher.

Since the ciphering process is entirely deterministic, an output ciphertext
block at time i, Y(i), can depend only on the inputs to the ciphering process
from time 1 through time i, namely the cipher key (K), the initializing vector
(Z), and all plaintext blocks X(1) through X(i). It follows, therefore, that
Equation 2-19a represents the most general relation that could be established
for a block cipher. Moreover, since cipher-text block Y(i) depends on the
initial conditions established at the beginning of the ciphering process, namely
at time 1, it is said that Y(i) is origin-dependent.

For similar reasons, it follows that a recovered plaintext block at time i,
X(i), can depend only on the cipher key (K), the initializing vector (Z), and
all cipher-text blocks Y(1) through Y(i). Equation 2-19b, therefore, repre-
sents the most general relation that could be established for a block cipher.
In like manner, X(i) is also origin-dependent.

BLOCK CIPHERS WITH CHAINING 69

A block cipher which satisfies the general relations expressed in Equations
2-19a and 2-l 9b is defined as a general block cipher. A block cipher for
which every bit in the recovered plaintext block X(i) is a function of every bit
in ciphertext blocks Y(1) through Y(i) is said to have the property of error
propagation. Since the corruption of only a single bit of ciphertext may cause
each subsequent bit of recovered plaintext to be in error, error propagation
can be used as a means for detecting the occurrence of such errors (see
Cryptographic Message Authentication Using Chaining Techniques).

Since strong intersymbol dependence is one property of a block cipher, it
follows that error propagation is automatically achieved in a general block
cipher. However, since a bit in output block (i) does not depend on bits
within input blocks (i + l), (i + 2), . . . , the dependence is not defined as
strong intersymbol dependence but rather as intersymbol dependence.

Block Chaining Using Plaintext and Ciphertext Feedback

Another way to obtain block chaining is to hold the cipher key constant and
modify the input plaintext by making it a function of both the previous
block of plaintext and the previous block of ciphertext (Figure 2-16). In
this case, encipherment and decipherment are given by

Y(i) = fK(X(i) @ U(i)); l>l (2-20a)

and

X(i) = fKl(Y(i)) @ U(i); i > 1 (2-20b)

respectively, where

U(i) =
z; i= 1

h(X(i - l), Y(i - 1)); i>l
(2-21)

Suppose that h is simple addition modulo 2”.

U(i) = X(i - 1) + Y(i - 1) mod 2@; i > 1

Then, from Equation 2-20a, it follows that

Y(i) = f,(X(i) @ (X(i - 1) + Y(i - 1) mod 29); i>l

and so, there exist functions HI, Hz, . . . , Hi such that

Y’(i) = Hr(K, X(O), X(l), . . . , X(i)); i> 1 (2-22a)

where X(0) s Z. Similarly, from Equation 2-20b, it follows that

X(i) =
f,‘(Y(i)) @ Z; i= 1

f,‘(Y(i)) @ (Y,(i - 1) + X(i - 1) mod 2@) i > 1

.

.

.

.

.

.

W

70

BLOCK CIPHERS WITH CHAINING 71

and so, there exist functions Gi, G?, . . . , Gi such that

X(i) = Gi(K, Y(O), Y(l), . . . , Y(i)); i> 1 (2-22b)

where Y(0) G Z. From Equations 2-22a and 2-2217, it can be seen that origin-
dependence has been achieved for X(i) and Y(i), and that Equations 2-19a
and 2-19b have been satisfied for the general block cipher.

A Self-Synchronizing Scheme Using Ciphertext Feedback

A cryptographic procedure or device is said to be self-synchronizing if after
an error has occurred the ciphering operation automatically corrects itself
(i.e., all plaintext can be recovered correctly except the portion affected by
the error). Consider the case of two cryptographic devices that produce
identical outputs for identical inputs. Suppose that an error is now intro-
duced into the ciphering process of one device, so that the outputs of the
two devices are different. If after some period of time the outputs again be-
come equal, then the devices are said to be self-synchronizing.

A self-synchronizing block chaining scheme can be obtained by omitting
the plaintext feedback in Figure 2-16 (referred to as Cipher Block Chaining,
CBC [26]). Mathematically, this can be expressed by defining function h in
Equation 2-2 1 as follows.

h(X(i - l), Y(i - 1)) = Y(i - 1); i>l

Hence, encipherment and decipherment can be expressed by

Y(i) = fk(X(i) @ Y(i - 1)); i> 1

and

X(i) = fk’(Y(i)) @ Y(i - 1); i>l

where X(0) G Y(0) E Z (see Figure 2-l 7).
Again, it follows that there exist functions Hi, Hz, . . . , Hi and Gi, Gz,

. . .) Gi such that

Y(i) = Hi(K, X(O), X(l), . . . , X(i)); i>l (2-22c)

and

X(i) = Gi(K, Y(i - l), Y(i)); i>l (2-22d)

From Equations 2-22~ and 2-22d, it follows that patterns within the input
data are masked since cipher-text block Y(i) depends on plaintext blocks
X(l), xc& * . * , X(i). However, since the recovered plaintext block X(i)
does not depend on all ciphertext blocks Y(l), Y(2), . . . , Y(i), the scheme
is not a general block cipher.

72 BLOCK CIPHERS AND STREAM CIPHERS

Encipherment:

Decipherment:

t $
K+ f-’ K+ f-’

L x(n)
Figure 2-17. Block Cipher with Block Chaining
(Block Chaining Using Ciphertext Feedback)

An error occurring in ciphertext block Y(i - 1) can affect every bit in the
recovered plaintext block X(i - I), but it will affect only the corresponding
bit positions in the recovered plaintext block X(i). In other words, if the
seventh and thirteenth bits in Y(i - 1) are in error, then the seventh and
thirteenth bits in X(i) are in error. None of the bits in the recovered plain-
text blocks X(i + l), X(i + 2), and so forth, will be affected by an error
occurring in ciphertext block Y(i - 1). Since most of the plaintext can be
recovered, even when an error occurs in the ciphertext, the scheme is said to
be self-synchronizing.

However, since an error in ciphertext does not propagate, the scheme can-
not be directly used for message authentication (see Cryptographic Message
Authentication Using Chaining Techniques). Hence the choice of a block
chaining method must involve the weighing of the benefit of direct crypto-
graphic authentication against that of self-synchronization.

BLOCK CIPHERS WITH CHAINING 73

A practical application for the self-synchronizing approach is the protec-
tion of stored data. When cryptography is used for communication security,
one can recover from an error in transmission simply by retransmitting the
original message. When a file is encrypted, recovery from an error must be
effected with ciphertext alone. If a ciphering procedure with error propaga-
tion is used for file security, subsequent inability to read a portion of the
ciphertext, because of damage either to the physical medium or to the
recorded bits, may prevent all following ciphertext from being deciphered.
In certain applications for cryptography, therefore, a self-synchronizing
approach may be the most desirable.

Examples of Block Chaining

To illustrate how block chaining can be used to eliminate patterns within
data, the plaintext in Figure 2-13 was enciphered using block chaining with
ciphertext feedback (Figure 2-17). Figure 2-l 8 illustrates the situation where
each 80-character line or 80-column card is enciphered as a separate data
record so that only the blocks within each line or card are chained together.
Figure 2-19 illustrates the case where the entire text is enciphered as a single
data record so that all blocks are chained together.

Short Block Encryption

Since a block cipher enciphers and deciphers only blocks of bits at a time, it
is important to know how a block cipher can cope with data whose length
is not an integral multiple of the cipher’s blocksize. A block whose length is
less than the cipher’s blocksize is called a short block, whereas a block whose
length is equal to the blocksize is called a block or standard block.

A short block will always occur as the last block of data when the data’s
length is not an integral multiple of the cipher’s blocksize. A short block
will also occur as the first (and only) block of data when the data’s length is
less than the cipher’s blocksize.

If a short block is first padded with enough additional bits to produce
a standard block, it is always possible to encipher a short block in a secure
way using a block cipher (see Effects of Padding and Initializing Vectors).
Padding is the operation of appending additional data bits (or bytes) to
plaintext so that its length becomes a multiple of the cipher’s blocksize. For
security purposes, it is best if pad characters are produced by a random
process, although in most cases a pseudo-random process is sufficient. If
pad characters could be predicted by an opponent, then, in terms of the
work factor, the blocksize would be effectively reduced. The technique of
short block encryption using padding is illustrated below (Figure 2-20).

Generally, when cryptography is used for communication security, pad-
ding is an acceptable solution for handling messages that may be variable in
length. This, however, is not always the case when cryptography is used for
file security, because padding bits may cause overflow of secondary storage.

When ciphering operations are not length-preserving, it may no longer be
convenient, practical, or even possible to substitute ciphertext freely for

Spaces represent nonprintable characters.

Z = Hex ‘5555555555555555 ’ is the constant initializing vector, which is the same for each line of plaintext to be
encrypted.

K = Hex ‘85CDCBlC9BDO851A ’ is the parity-adjusted key used for encipherment.

Figure 2-18. Ciphertext Obtained when the Plaintext in Figure 2-13 is Encrypted Line-By-Line
Using the DES Block Cipher with Ciphertext Feedback

Spaces represent nonprintable characters.

Z = Hex ’ 5555555555555555 ’ is the initializing vector.

K= Hex ’ 85CDCBlC9BDO851A ’ is the parity-adjusted key used for encipherment.

Figure 2-19. Ciphertext Obtained when the Plaintext in Figure 2-13 is Encrypted as a Single
Aggregate Message Using the DES Block Cipher with Ciphertext Feedback

76 BLOCK CIPHERS AND STREAM CIPHERS

j Bits b-j Bits

Figure 2-20. Encipherment of a Short Data Block Using
Block Cipher Mode

plaintext within a computer data base. Expanded ciphertext may cause a
file to overflow the physical boundaries of the recording medium. Encipher-
ment of selected fields within records, or of selected records within files may
require that record formats be redefined and may in turn require existing
files to be restructured. Such dependencies between the encryption algorithm
and stored data are undesirable.

j Bits

Ciphertext

Figure 2-21. Encipherment of a Short Data Block Using Stream
Cipher Mode

One way to avoid data expansion would be to use the stream cipher mode
of operation to handle the special situations of short blocks (Figure 2-21). In
this mixed mode of operation, the block cipher mode is used for ciphering
standard blocks and the stream cipher mode is used for ciphering short
blocks. One way to implement the stream cipher mode is to generate the
cryptographic bit-stream by reenciphering the previous block of ciphertext
or, in the case of the first block, by enciphering the initializing vector. This
scheme is shown in Figure 2-22.

Consider the following plaintext whose length is greater than, but not an
integral multiple of, the cipher’s blocksize.

b Bits b Bits j Bits

Encipherment:

X(n- 1) 7
K

4

f

4 1
K--+ f

1

I
*

BLOCK CIPHERS WITH CHAINING 77

I3 Y(n- 1)

Decipherment:

L4 X(n - 1)

+1 Y(n)
Y (n)

P + *
6 x(n)

* 1 X(n)) bits are used to encipher X(n), where 1 X(n) 1 is the length of
X(n) in bits. If n = 1, then the initializing vet tor (Z) is enciphered under
K to produce the cryptographic bit-stream.

Figure 2-22. Stream Cipher Mode for Encipherment of Short Blocks

where

b = blocksize

l<j<b

Instead of using a mixed mode of operation (i.e., a block cipher for standard
blocks and a stream cipher for short blocks) one can use a block cipher to
encipher short blocks provided that the data’s length is greater than the
cipher’s blocksize.

Another approach for enciphering a short block, X(n), is to make use of a
technique called ciphertext-stealing mode (Figure 2-23). In this mode, the
short block, X(n), is first padded by stealing (removing) just enough bits
from the ciphertext Y(n - 1) to make the length of X(n) equal to the
cipher’s blocksize. This results in Y(n - 1) becoming a short block and Y(n)

76 BLOCK CIPHERS AND STREAM CIPHERS

Encipherment:

I3 Y(n-1) IA Y(n)
Decipherment:

K f-l

4
X(n- 1)

K f-l

3 B 1 x(n)

I3 x(n)
Figure 2-23. Ciphertext-Stealing Mode for Encipherment
of Short Blocks

becoming a standard block. Since the number of bits removed from Y(n - 1)
equals the number of bits added to X(n), no expansion occurs. The encipher-
ing process is reversed by deciphering Y(n) prior to Y(n - 1) and recovering
the original stolen bits from Y(n - 1). The reconstructed value of Y(n - 1)
is then deciphered.

Both the stream cipher mode and the cipher-text-stealing mode display a
certain awkwardness in the manner in which short blocks are handled. With
the stream cipher mode, the cryptographic bit-stream is generated by en-
cipherment of Y(n - 1) regardless of whether encipherment or decipherment
is taking place. Complete symmetry between encipherment and decipher-
ment is therefore lost. With the ciphertext-stealing mode, the serial fashion
in which blocks are normally enciphered or deciphered is not preserved. Here,

BLOCK CIPHERS WITH CHAINING 79

the two trailing ciphertext blocks are deciphered in reverse order. Again,
complete symmetry between encipherment and decipherment is lost.

The encryption of short blocks also affects error propagation. In the
stream cipher mode (Figure 2-22) a bit change in Y(n - 1) will affect all
bits in the recovered plaintext, (X(n - l), X(n)), whereas a bit change in Y(n)
will cause only a corresponding bit change in the recovered plaintext, X(n).
Hence the error propagation property discussed earlier for the general block
cipher is lost as far as the last short block of ciphertext is concerned. (There
is no strong intersymbol dependence between plaintext and ciphertext in
the last block.) In the ciphertext-stealing mode (Figure 2-23), any bit change
in the short ciphertext block Y(n - 1) will affect only the recovery of plain-
text block X(n - l), but will not affect the recovery of plaintext short block
X(n). Hence, any error in ciphertext block Y(n - 1) will not propagate, and
again the error propagation property is affected.

When implemented properly, the stream cipher and ciphertext-stealing
modes provide equivalent cryptographic strength, although a somewhat
unlikely set of circumstances can be found in which these two techniques are
not equivalent. Suppose that these two techniques are implemented in a
cryptographic system which uses a block cipher with no chaining. Assume
further that it is possible for an opponent to request enciphering operations
but not deciphering operations, and that the cipher keys are managed by the
system (i.e., unknown to the system’s users). If the stream cipher mode is
used, the short block X(n) can be recovered by intercepting Y(n - 1) and
Y(n) via a wiretap, retransmitting Y(n - 1) as text in a second message,
intercepting the ciphered version of Y(n - 1) via a second wiretap, and
finally, Exclusive-ORing Y(n) with the ciphered version of Y(n - 1). This
attack could be prevented either by using X(n - 1) + Y(n - 1) mod 2” instead of
Y(n - 1) as the value to be ciphered, or by using chaining.

Figures 2-24 through 2-27 illustrate how the stream cipher and ciphertext-
stealing modes can be used in conjunction with the block chaining schemes
previously discussed. Without loss of generality, only two full blocks are
shown, X(1) and X(2), respectively. Block X(3) is a short block. Generally
speaking, all of these schemes are equivalent in cryptographic strength
provided that the basic cryptographic algorithm is strong (i.e., an algorithm
comparable in strength to DES is used).

In each case (Figure 2-24 and 2-26), the stream cipher mode is imple-
mented in such a way that it is not possible for an opponent to recover X(3)
by intercepting Y(2) and Y(3) via a wiretap, retransmitting Y(2) as data,
intercepting the encipherment of Y(2) via a second wiretap, and finally
Exclusive-ORing the enciphered version of Y(2) with Y(3). In Figure 2-24,
the attack is not possible because Y(2) is enciphered with a variable key that
is chained back to the origin. In Figure 2-26, the attack is not possible be-
cause the cryptographic bit-stream used to encipher X(3) via the Exclusive-OR
operation is a function of both plaintext and ciphertext.

For all practical purposes, the ciphertext-stealing mode is implemented in
such a way that a frequency analysis on the short block is not possible. In
Figure 2-25, observe that the variable key K(2) used to encipher X(2) is the
same key used to encipher the quantity fl concatenated with X(3), and that

*

+‘I-

t

+

NM

80

Encinherment:

. T
f0 f

I I

Decipherment: 1 1 L--J 1

Note: Function h could be an Exclusive-OR operation in an actual imple-
mentation. A change in Y(2) affects only the recovery of X(2), and
hence the error does not propagate in that case. A change of any
other ciphertext bit is propagated, and the effect on the recovered
plaintext is unpredictable.

Figure 2-25. Block Cipher with Block Chaining (Block Chaining Using
Variable Key, and Ciphertext-Stealing Mode for Short Blocks)

81

(i -

3
3

+
?-+k J

N x

(r-

3
3

82

Encipherment: Encipherment:

1 X(l)

zqy&qq
Z

K K+ f

0

f K

0

f K-, f

I

Decipherment:

1 Y(l)

T ,

K--* f-’

Note: (1) C is a constant, say all zero bits.
(2) Function h could be addition modulo 2@ in an actual implementa-

tion; or a self-synchronizing system could be obtained by making
h depend only on the ciphertext feedback.
A change in Y(2) affects only the recovery of X(2), and hence the
error does not propagate in that case. A change of any other
ciphertext bit is propagated, and the effect on the recovered
plaintext is unpredictable.

Figure 2-27. Block Cipher with Block Chaining (Block Chaining Using
Plaintext-Ciphertext Feedback and Ciphertext-Stealing Mode for Short
Blocks)

83

84 BLOCK CIPHERS AND STREAM CIPHERS

K(2) is chained to the origin. Since X(2) is enciphered prior to X(3) and
Y(3) is deciphered prior to Y(2), the same cipher key, K(2), is used for both
the encipherment and decipherment of the second and third blocks of plain-
text and ciphertext, respectively. In Figure 2-27, observe that the short
block is chained using only a ciphertext feedback. Since the last two blocks
must be treated in reverse order, using a feedback from the plaintext would
prevent recovery.

Observe that the method for implementing the ciphertext-stealing mode in
Figure 2-27 is slightly different from that shown in Figure 2-23. In
addition to stealing ciphertext and concatenating it with short block X(3),
ciphertext is also stolen and Exclusive-ORed with X(3). This extra step is
important because for all practical purposes it prevents a successful block
frequency analysis on Y(3). With the technique shown in Figure 2-23, this
is not necessarily true when the number of bits concatenated to X(n) is small,
(e.g., if p were only one bit and the number of plaintext combinations for
X(n) were small).

As pointed out in Figure 2-22, the encipherment of data consisting of a
single short block of j < b bits can be accomplished by Exclusive-ORing the
first j bits of the encipherment of the initializing vector Z. However, such a
procedure would be weak if the same Z were used repeatedly to encipher a
sequence of short blocks, e.g., a file of records in which each record consists
of a single short block. In effect, each short block would be protected using
the same cryptographic bit-stream, which would thus allow the plaintext
associated with these short blocks to be recovered via a simple cryptanalysis.

In the case of file security, a strong procedure for the encipherment of
data records consisting of repeated short blocks is to use a method of record
chaining [24,25]. Here, the value of Z is a variable that changes for each
record to be enciphered. In the recommended approach, Zi (the initializing
vector for the ith record) is specified as the rightmost 64 bits (“right64”) of
the concatenation (II) of Zi- r and the just-constructed ciphertext (the
ciphertext of record i - l), i.e.,

Zi = right64[Zi- r]I ciphertext of record i - 1]

Thus, the first record is enciphered using the initial value of Z (defined as
Z,). All subsequent records are enciphered using a computed value of Z, as
described above.

With record chaining, the chaining process continues across record bound-
aries. To correctly decipher a record (given the key), only that record and
the preceding 64 bits of ciphertext (and possibly the initial value of Z if
less than 64 bits of ciphertext are present) are required. Record chaining is
ideally suited for sequentially organized files. For nonsequential files, block
chaining is best suited. But for block chaining to be strong, each record must
have its own (unique or randomly selected) 64-bit initializing vector, Z.

The inherent cryptographic weaknesses associated with the encryption of
groups of short data blocks in a sequentially organized tile can also be
avoided via the implementation. For example, data blocks (of any length)

STREAM CIPHERS WITH CHAINING 85

can be temporarily joined (concatenated) into an “artificial” data unit (or
cipher unit) which is then enciphered as if it were one, large record or col-
lection of data.

In the case of communication security, padding is the preferred technique
for short block encryption. Here, the physical boundary limitations that can
lead to data overflow, which apply to file security, do not exist.

STREAM CIPHERS WITH CHAINING

In a block cipher, chaining can be used to acquire two important properties.
First, it can mask repetitive patterns within data by making each block of
ciphertext, Y(i), dependent upon all prior blocks of plaintext, X(l), X(2),
. . .) X(i - l), as well as on the present plaintext block X(i). In a sense, this
chaining technique extends the effective blocksize of the cipher. Second,
it can extend error propagation across block boundaries by making each
block of recovered plaintext, X(i), dependent upon all prior blocks of cipher-
text, Y(l), Y(2), . . . , Y(i - l), as well as on the present ciphertext block,
Y(i).

In a stream cipher, patterns occurring within the input plaintext are
automatically eliminated as a consequence of Exclusive-ORing the plain-
text with the cryptographic bit-stream (Figure 2-10). The cryptographic
bit-stream introduces pseudo-random noise into the ciphering process and
hence eliminates exploitable statistics associated with the plaintext. The
changing initializing vector Z assures that stereotyped messages (if they
occur) will result in different ciphertext. Thus chaining is not needed in a
stream cipher to mask patterns within the data or to mask stereotyped mes-
sages. It can, however, be useful in a stream cipher to achieve either the pro-
perty of error propagation, if one desires secrecy and authentication in one
operation, or self-synchronization, in which case the system does not have to
be reinitialized after an error condition occurs.

In the stream cipher, it can be assumed that the cryptographic bit-stream
is produced as a series of blocks:

R(l), R(2), . . . , R(t)

where

R(i) = O-l(i), rz(i>, . . . , rdi))

is a block of b bits generated at iteration i, and b is the blocksize. Encipher-
ment and decipherment are defined as

Y(i) = X(i) @ R(i); i> 1 (2-23a)

and

X(i) = Y(i) @ R(i); i>l (2-23b)

86 BLOCK CIPHERS AND STREAM CIPHERS

A Chaining Method with the Property of Error Propagation

Error propagation is present in a block cipher whenever each bit in the
recovered plaintext block X(i) is a function of every bit in ciphertext blocks
Y(1) through Y(i). In a stream cipher, however, because of the modulo 2
addition shown in Equation 2-23b, the jth bit in the recovered plaintext
block X(i) depends on the jth bit in the ciphertext block Y(i), but not on
any other bits in ciphertext block Y(i). At best, a scheme could be devised
where the jth bit in X(i) is a function of every bit in Y(1) through Y(i - 1).
If this were the case, then an error occurring in any of the ciphertext blocks
Y(1) through Y(i - 1) could propagate to the recovered plaintext block X(i).

To achieve this dependence, a feedback could be provided from either the
plaintext X, the initializing vector Z, or a combination of both, in addition
to the feedback from the ciphertext. A stream cipher with the property of
error propagation is shown in Figure 2-28.

Note, however, that error propagation due to corruption of the cipher-text
could be obtained by providing a feedback only from the plaintext. That is,
encipherment is expressed by

Y(1) = X(1) @ &c(Z); i=l

Y(i) = X(i) @ gx(X(i - 1)); i>l

and decipherment is expressed by

X(l)=Y(l)@gK(Z); l=l (2-24)

X(i) = Y(i) @ gx(X(i - 1)); i>l

It follows that each bit in the recovered plaintext block X(i) depends on
each bit in the initializing vector (Z) and on each bit in the ciphertext blocks
Y(1) through Y(i - l), by the recursive relation shown in Equation 2-24.

If a feedback from plaintext were used, patterns in the plaintext would result
in patterns in the ciphertext. This is because Y(i) is not origin-dependent.
Recall that patterns were destroyed in the key auto-key cipher (Figure 2-12)
because the feedback was taken from the cryptographic bit-stream.

From Figure 2-28 it follows that encipherment and decipherment can be
expressed as

Y(i) = X(i) @ gx(U(i)); i>l (2-25a)

and

X(i) = Y(i) @ gx(U(i)); l>l (2-25b)

respectively, where

h*(Z); i= 1
U(i) =

h(U(i - l), Y(i - 1)); i>l
(2-26)

U(1) 1 K

.
U

x (2)

Y(2)

Legend: encipherment mode: + , decipherment mode: -+

Note: Z, U, R, X and Y are blocks of n bits; h could be an Exclusive-OR function

Figure 2-28. Stream Cipher with Error Propagation

X(n) +
-;P

Y(n)

88 BLOCK CIPHERS AND STREAM CIPHERS

Function h* is again introduced to allow Z to be different in length from U.
From the recursive nature of Equation 2-26, it follows that there exist

functions Gi, G,, . . . , Gi and H,, Hz, . . . , Hi such that

Y(i) = X(i) @ Hi(K, X(O), X(l), . . . , X(i - 1)); i Z 1 (2-27a)

and

X(i) = Y(i) @ Gi(K, Y(O), Y(l), . . . , Y(i - 1)); i > 1 (2-27b)

where X(0) c Y(0) s Z.
Using the same arguments that led to the definition of a general block

cipher (see Block Chaining Using a Variable Key), the reader can see that
Equations 2-27a and 2-27b represent the most general relation that can be
established for a stream cipher. Whenever such relations hold for a stream
cipher, it is called a general stream cipher.

It follows (Equation 2-27a) that the jth bit in ciphertext block Y(i) is
affected by only the jth bit in plaintext block X(i), whereas it is potentially
affected by every bit in plaintext blocks X(1) through X(i - 1). In like
manner, it follows (Equation 2-27b) that the jth bit in the recovered plain-
text block X(i) is affected by only the jth bit in ciphertext block Y(i),
whereas it is potentially affected by every bit in ciphertext blocks Y(1)
through Y(i - 1).

Since the recovered plaintext block X(i) is potentially affected by every
bit in ciphertext blocks Y(1) through Y(i - l), error propagation is achieved.
However, because the jth bit in the recovered plaintext block X(i) depends
only on the jth bit in ciphertext block Y(i), the following statements may be
made. For thegeneral stream cipher, intersymbol dependence can be achieved
for all but the final block. For the general block cipher, there is intersymbol
dependence throughout all blocks. This is an important difference between
block ciphers and stream ciphers.

A Chaining Method with the Property of Self-Synchronization

A self-synchronizing stream cipher can be obtained from Figure 2-28 by
defining function h as

h(U(i - l), Y(i - 1)) = Y(i - 1); i>l

that is, by feeding back the ciphertext as input to the algorithm. By defining
Y(0) z Z, it follows that gK(U(i)) = gKcy(i - l>>; i>l

and so, from Equations 2-25a and 2-25b, encipherment and decipherment
can be expressed as

Y(i) = X(i) @ gx(Y(i - 1)); i>,l (2-28a)

STREAM CIPHERS WITH CHAINING 89

and

X(i) = Y(i) @ gx(Y(i - 1)); i>l (2-28b)

respectively.
It follows (Equation 2-28b) that an error in ciphertext block Y(i - 1)

can potentially affect every bit in the computed quantity gx(Y(i - l)), and
hence can cause every bit in the recovered plaintext block X(i) to be in
error. Moreover, it follows (Equation 2-28b) that an error in ciphertext
block Y(i - 1) will cause the corresponding bit positions in the recovered
plaintext block X(i - 1) to be in error. That is, if the third, fifth, and eleventh
ciphertext bits in Y(i - 1) are in error, then the third, fifth, and eleventh re-
covered plaintext bits in X(i - 1) will be in error. Finally, it follows (Equa-
tion 2-28b) that an error in ciphertext block Y(i - 1) will at most affect
only the recovery of plaintext blocks X(i - 1) and X(i), but it will not affect
the recovery of subsequent plaintext blocks X(i + l), X(i + 2), and so forth.
Hence the scheme is self-synchronizing.

A specific example of a self-synchronizing stream cipher, the ciphertext
auto-key cipher, is shown in Figure 2-29. The cryptographic bit-stream is
produced in blocks of 64 bits by enciphering the contents of a 64-bit input
register, denoted by Y for the sender and Y’ for the receiver, and storing the
result in a 64-bit output register, denoted by R for the sender and R’ for the

Sender Receiver

Plaintext Ciphertext Deciphered Text

Att=l: X(t)=Z;Y(t-l)#Y’(t-1)

At t > 1: Y (t - 1) = Y ’ (t - 1) implies in synchronization
Y (t - 1) #Y ’ (t - 1) implies out of synchronization

Figure 2-29. Ciphertext Auto-Key Cipher

90 BLOCK CIPHERS AND STREAM CIPHERS

receiver. The contents of registers Y, Y’, R, and R’ at time t are denoted by
Y(t), Y’(t), R(t), and R’(t), respectively.

Before communication within the system is possible, the sender and
receiver must be synchronized. This is necessary since registers Y and Y’
are assumed to be volatile (i.e., stored information is lost when power to
the cryptographic device is turned off). Therefore, it is assumed that at time
t=o

Y(0) # Y’(0)

At time t = 1, synchronization is accomplished by transmitting a 64-bit
initializing vector Z, instead of the usual block of plaintext. This causes
the same block of ciphertext to be gated into registers Y and Y’ so that Y(1)
equals Y’(1), and hence synchronization is achieved. However, unlike sub-
sequent blocks of transmitted plaintext, the first block (the initializing
vector) is not presented to the user at the receiving end.

At time t > 0, the input Y(t - 1) is enciphered using key K to obtain

R(t) = fx(Y(t - 1))

R(t) is Exclusive-ORed with the data block X(t) to obtain

Y(t) = R(t) o X(t)

Y(t) is then transmitted to the receiving end where the input Y’(t - 1) is
enciphered using key K to obtain

R’(t) = fx(Y’(t - 1))

R’(t) is Exclusive-ORed with the ciphertext block Y(t) to obtain the re-
covered plaintext, X’(t).

x’(t) = Y(t) @ f,(Y’(t - 1))

If the first data block X(1) is defined as the initializing vector (Z) (i.e.,
X(1) E Z) then the following may be said:

1. At t = 1, Y(0) # Y’(0) implies that X(1) f X’(1) even though X’(1)
is not presented to the user. However, if Y(1) is received without
error, then the sender and receiver are in synchronization.

2. At t > 1, Y(t - 1) # Y’(t - 1) implies that X(t) #X’(t), (i.e., the re-
ceiver obtains incorrect plaintext). However, if Y(t) is received without
error, then the sender and receiver are in synchronization. Y(t - 1) =
Y’(t - 1) implies that X(t) = X’(t) (i.e., the receiver obtains correct
plaintext).

If errors on the transmission line (bit changes, but not bit additions or
deletions) cause sender and receiver to get out of synchronization (Y(t) #

STREAM CIPHERS WITH CHAINING 91

Y’(t)), then error-free transmission of another block of ciphertext will cause
sender and receiver to come back into synchronization (Y(t + 1) = Y’(t + 1)).
Generally, the ciphertext blocksize can be less than 64 bits in length if
desired. In this case, only the necessary bits from R are Exclusive-ORed with
plaintext, and the feedback will affect fewer bits in Y.

For all practical purposes, a 48-bit initializing vector is enough to provide
adequate cryptographic strength. If the sender and receiver are able to
sense when they are resynchronizing, a protocol can be established whereby
only a 48-bit block of ciphertext is sent for this purpose. Both sender and
receiver pad this 48-bit block of ciphertext with a designated constant (all
zeros), so that the values placed into registers Y and Y’ are the same. Further-
more, attacks on initializing vectors should be prevented by generation of
these quantities within the secure area of the cryptographic device.

Cipher Feedback Stream Cipher

By definition, a ciphertext auto-key cipher produces its cryptographic bit-
stream using feedback from ciphertext. The various algorithms differ in the
way this ciphertext is manipulated before being used. One such algorithm,
mentioned in the proposed U.S. Federal Standard 1026 [26 1, is called cipher
feedback (Figure 2-30). In this approach,, the leftmost n bits of the DES out-
put are Exclusive-ORed with n bits of plaintext to produce n bits of cipher-
text, where n is the number of bits enciphered at one time (1 < n < 64).
These n bits of ciphertext are fed back into the algorithm by shifting the cur-
rent DES input n bits to the left, and then appending the n bits of ciphertext
to the right side of the shifted input to produce a new DES input used for
the next interaction of the algorithm.

A seed value, which must be the same for both sender and receiver, is
used as an initial input to DES in order to generate the cryptographic bit-
stream. Standard 1026 allows seed length to vary from 8 to 64 bits, but to
ensure compatability among users it requires that all cipher feedback imple-
mentations must be capable of using a 48-bit seed. Both the sender and re-
ceiver are synchronized by right justification of the seed in the input to DES
and setting the remaining bits equal to 0.

An Example of Seed Generation

One method of producing seed values is to use the DES algorithm as a gen-
erator of pseudo-random numbers. (See Stream Ciphers for a discussion of
requirements for initializing vectors, or seed values.) The seed values are un-
predictable because the key used by DES to produce the cryptographic bit-
stream is also used to produce the seed values.

During an initialization phase, a nonsecret quantity, such as the ID of
the device in which the algorithm is installed, is placed in a nonvolatile
storage that can be accessed (read) only by the cryptographic algorithm.
A seed is produced by enciphering this initial quantity with the installed
cryptographic key and using the leftmost m bits (m < 64) from the DES
output. The entire 64-bit DES output, however, is used to replace the
initial quantity in nonvolatile storage. The content of this nonvolatile

92 BLOCK CIPHERS AND STREAM CIPHERS

Sender

Discarded
-

I DES Input

K

Receiver

K

IX(t)1 = IRWI = IYWI =n
lGnG64

Figure 2-30. Cipher Feedback

storage continually changes and, in addition, cannot be manipulated by
external means.

Let IC, be the starting value supplied by the user and placed in non-
volatile storage, where IC stands for initial condition. During the first seed
generation, ICi is produced by encrypting ICO

fx(ICe) = ICI

and ICr replaces IC,. During the second seed generation, I& is produced by
encrypting ICi and I& replaces IC, . The process continues in this manner.
The method of generating and using a seed in cipher feedback is illustrated
in Figure 2-31.

The Cipher Feedback approach is self-synchronizing, since any bit change
occurring in the ciphertext during transmission gets shifted out of the DES
input after 64 additional ciphertext bits are sent and received. If, for example,
8 bits are enciphered at one time, as shown in Figure 2-30, and a bit is altered
in Y(ti), changing it to Y*(ti), then the DES inputs at sender and receiver
are as shown in Figure 2-32, where the 5-byte seed is defined as S 1, S2, . . . ,
S5. In this case, the blocks of ciphertext, given by Y*(ti), Y(tz), . . . , Y(ts),

_ Send To Receiver

Sender
DES
Input

K----+ f

Receiver

K

-0

f

DES
output

Figure 2-31. Cipher Feedback with a 40-bit Seed and B-bit Plaintext

93

94

t
Y

r

95

Iteration DES Input At Sender

0 0 0 0 Sl s2 s3 s4 s5

1 0 0 Sl s2 s3 s4 ss Y(q)

2 0 Sl s2 s3 s4 ss Y(q) Y($)

3 Sl s2 s3 s4 s5 Y($) Y(Q) Y($)

4 s2 s3 s4 s5 Y(Q) Y&) W,) Y@,)

5 s3 s4 s5 W,) W,) W,) W,) W,)

6 s4 s5 W,) W,) W,) W,) W,) W,)

7 s5 W,) W,) W,) y&J W,) W,) W,)

8 W,) W,) W,) W,) W,) Y&j) W,) Wg)

9 W,) W,) W,) W,) Y&j) W,) Wg) y&J

Figure Z-32. Self-Synchronizing Feature in Cipher Feedback

DES Input At Receiver

0 0 0 Sl s2 s3 s4 s5

0 0 Sl s2 s3 s4 s5 Y&,)

0 Sl s2 s3 s4 s5 Yit,) Y($)

Sl s2 s3 s4 s5 Ylt,) Y(t,) Y(t,)

s2 s3 s4 s5 Yft,) Y&) Y($) Y(Q

s3 s4 s5 Y?t,) Y($) Y(t,) YO,) Y@,)

s4 s5 Yb,) W,) W,) W,) W,) W(j)

s5 Ytt,) WZ) W,) W,) W,) W,) W,)

Yb,) W,) W,) W,) W,) Y&j) W,) Y @g)

W,) W,) W,) W,) W,) W,) W,) W,)

STREAM CIPHERS WITH CHAINING 97

will be correctly deciphered at the receiver only by chance, since the DES
input in each case is incorrect. After eight blocks of uncorrupted ciphertext
have been received, given by Y(t*), . . . , Y(t,), both the sender’s and re-
ceiver’s cryptographic devices will have equal DES inputs again.

In general, any bit change in an n-bit block of ciphertext can cause a
change in any of the corresponding n bits of recovered plaintext and in any
of the 64 bits of recovered plaintext immediately following. However, one
should realize that a permanent out-of-synch condition will result if a
ciphertext bit is added or dropped, since the integrity of the block boundary
is lost. To recover from such an error, the sender and receiver would have to
have a way to establish the beginning and end of blocks of bits that are
enciphered at one time (n = 8 bits in the given example). On the other hand,
if enciphering takes place on a bit-by-bit basis (n = l), then the property of
self-synchronization is maintained even when bits are lost or added. This is
because blocks are bits, and therefore the block boundary cannot be dis-
turbed. (Note that in the example where n = 8, self-synchronization would
be maintained if bits were dropped or added in blocks of 8 bits.)

Examples of Cipher Feedback

Figures 2-33 and 2-34 illustrate two examples of cipher feedback using 8-bit
blocks and the described method of seed generation.

Key(external)= 133457799BBCDFFl

Key(internal)=FOCCAAF556678F

Ici-l =5454545454545454

ICi =99ADF94D9CE630C7

Plaintext =0123456789ABCDEF

Seed Length Seed (underlined) Followed by Ciphertext

16 bits 99AD19OE35C419F818AA

24 bits 99ADF938B80C2CFlElF7CC

32 bits 99ADF94DB347FC9DSF21D142

40 bits 99ADF94D9C8C266744C539AA59

48 bits 99ADF94D9CE6E88A57084C7AOE57

Figure 2-33. Cipher Feedback-Example 1

98 BLOCK CIPHERS AND STREAM CIPHERS

Key(external)=49BC26469EBA7304

Key(internal)=32496677C9E332

Ici-l

ICi

Plaintext

Seed Length

16 bits

24 bits

32 bits

40 bits

48 bits

=285BC74684BCD734

=73B35D20EE034A73

=FEDCBA9876543210

Seed (underlined) Followed by Ciphertext

Figure 2-34. Cipher Feedback-Example 2

EFFECTS OF PADDING AND INITIALIZING VECTORS

When the block cipher is used for communication security, padding is
generally the easiest and most straightforward way to handle short blocks.
The small amount of message expansion which results from padding can
normally be tolerated within the communication network.

When padding is used, an additional character called the pad count must
be included as part of the pad characters. The pad count specifies the number
of pad characters, including itself, which have been appended to the block.
This procedure works well for short blocks, but it creates a problem for
standard blocks. Strictly speaking, an extra block of pad characters must be
appended to a message whenever its length is a multiple of the blocksize.
This allows the procedure to be applied uniformly to all transmissions.

The problem of performance degradation, which may result from adding
an extra block of pad characters when the block is already a multiple of the
cipher’s blocksize, can be greatly reduced by using a pad indicator bit. (For
example, a 0 indicates no padding and a 1 indicates padding.) The pad indi-
cator bit is transmitted with each message as part of the message’s header.

As a measure of the amount of message expansion caused by padding, the
cryptographic throughput factor (t) is defined as

EFFECTS OF PADDING AND INITIALIZING VECTORS 99

where

N, = the length in bits of message X

NY = the length in bits of cryptogram Y
(Y is enciphered from X)

If NY = nb, where n represents the number of blocks in Y and b the block-
size in bits, and np represents the number of required bits of padding, then

t=(nb-nP)=l- np
nb nb

Figure 2-35 shows a plot of F versus message length (in characters), when the
DES block cipher is used.

When the stream cipher is used for communication security, practically
no throughput degradation results from transmission of the initializing
vector Z, provided that this is done only at sign-on or power-up time. In
most situations, however, this assumption is not justified. In practice, each
communication node is required to multiplex its transmissions among several
different nodes which are all competing for the right to transmit data. This
requires that the last initial state be stored and saved for each temporarily
inactive session. Generally speaking, this procedure is less desirable than
transmitting a new initializing vector each time communication is reactivated.
In addition to multiplexing problems, line errors may create an out-of-synch
condition between a pair of communicating nodes. This problem appears to

E
A

l.O- 0 0 0 0 0 0

Note: If the message block specified by communication system is an
integer multiple of the block cipher width (indicated by Q),
there is no performance degradation due to the cryptographic
system (l= 1).
N,=Message length in bits

Figure 2-35. Degradation of Throughput in Block Ciphers due to Padding

100 BLOCK CIPHERS AND STREAM CIPHERS

Initializing bytes sent at start of each Initializing bytes sent at start of each
transmission transmission

Nx = Message length in bits N, = Message length in bits

nz = Initializing vector length in bytes nz = Initializing vector length in bytes
(8 bits per byte) (8 bits per byte)

new

I I I I
10 20 30 40

+ N,/8

Figure 2-36. Degradation of Throughput in Stream Ciphers due to
Initializing Vector

be best resolved by sending another initializing vector. Let n, represent the
number of bytes in Z. Figure 2-36 shows several plots (n, = 1, 2, . . . , 6) of
g versus message length (in characters) when the stream cipher is used.

CRYPTOGRAPHIC MESSAGE AUTHENTICATION
USING CHAINING TECHNIQUES

The authentication technique described below permits one to determine
with a high level of confidence whether a string of text (plaintext or cipher-
text) has been altered (accidentally or intentionally). When enciphered data
are transmitted or stored within a computing system, either the ciphertext or
the recovered plaintext may be authenticated, depending on which is more
convenient for the particular application. For example, in the case of en-
ciphered keys used by a cryptographic system’s key manager, it may be
impractical to decipher these keys to authenticate them. In contrast, authen-
ticating plaintext may be useful in situations where the data are not confi-
dential (i.e., where data are transmitted or stored within the computing
system in unenciphered form).

Authentication is accomplished by verifying a bit pattern, called the
authentication code (AC), that has been computed and appended to the
text (plaintext or ciphertext) at a prior time when the data was assumed or
known to be correct (see Figure 2-37).

The AC must be a function (4) of the text (TXT), and should have the
following properties.

1. It should be computationally infeasible for an opponent to compute
4(TXT’) for a different text, TXT’ # TXT. Otherwise, an opponent
could replace TXT and 4(TXT) with TXT’ and 4(TXT’), respectively.

CRYPTOGRAPHIC MESSAGE AUTHENTICATION USING CHAINING TECHNIQUES 101

ACCept Text + Reject Text

Figure 2-37. Text Checking Procedure Using an Authentication Code

2. It should be computationally infeasible for an opponent to find a
different text, TXT’, such that 4(TXT’) equals 4(TXT). Otherwise,
an opponent could replace TXT with TXT’, while leaving G(TXT)
unchanged.

3. $(TXT) should be uniformly distributed in the sense that for TXT’ #
TXT, the probability that 4(TXT’) = $(TXT) is l/2’, where c is the
number of bits in AC. In that case, there is only a small chance (l/2”)
that a different text (changed either deliberately or accidentally) will
be accepted as genuine when C is chosen large enough.

One way to implement an authentication scheme is to exploit the error
propagation property obtained with certain chaining techniques. This idea
can be explained by reference to the block chaining method that incorporates
a plaintext and ciphertext feedback (Figure 2-16). It has the advantage that
secrecy and authentication can be achieved in one operation.

For purposes of discussion, function h is assumed to be addition modulo 264, and
the length of the initializing vector Z is equal to the cipher’s blocksize. (Using an
Exclusive-OR for function h has been shown to be weak, see Authentication by an
Encryption Method Without the Property of Error Propagation, Chapter 8.) Let
X(l), X(2), * * * , X(n) denote plaintext blocks to be enciphered with key K and
initializing vector Z, and let Y(l), Y(2), . . . , Y(n) denote the resulting ciphertext.

Y(1) = fx(X(1) @ Z)

Y(2) = fx(X(2) @ (Y(1) + X(1) mod 29)

Y(n) = fk(X(n) @ (Y(n - 1) + X(n - 1) mod 29)

The AC could then be defined as follows.

AC = fx(Z @ (Y(n) + X(n) mod 2”))

Note that an additional plaintext block, X(n + l), is appended to the end of
the text to permit the computation of Y(n + 1) = AC. In the example, the
additional block is defined to be equal to the initializing vector Z. In another

102 BLOCK CIPHERS AND STREAM CIPHERS

approach it could be a designated’constant, say all zero bits, or it could be a
repetition of the first block, X(1).

Assume that the length of the AC equals the cipher’s blocksize. Upon de-
cipherment, the recovered plaintext is given by

X(1) = fx-i(Y(1)) @ z

X(2) = fx-‘(Y(2)) @ (Y(1) + X(1) mod 2@)

X(n) = fx-l (Y(n)) @ (Y(n - 1) + X(n - 1) mod 2@)

X(n + 1) = fx-‘(Y(n + 1)) @(Y(n) + X(n) mod 261)

where X(n + 1) was originally defined to be equal to the initializing vector Z.
By comparing X(n + 1) and Z for equality, a decision can be made to ac-

cept or reject the message (Figure 2-38). The receiver accepts the message if
X(n + 1) equals Z, since only the sender who knows the secret key K could
have properly created Y(n + 1) in the first place. Otherwise, the message is
rejected.

It is also possible to authenticate a message by reconstructing the AC
(Figure 2-39) instead of deciphering Y(n + 1) and recovering Z. In that case,
Y(1) through Y(n) are deciphered as before, but then Z, X(n), and Y(n) are
combined to form Z (X(n) + Y(n) mod 2W) and this quantity is enciphered with
the secret key K to produce AC. The receiver accepts the message if Y(n + 1)
equals AC, otherwise, the message is rejected.

The latter method has the advantage that the AC does not have to be a
full block (i.e., one could use c bits for AC, where c < b and b is the number
of bits in a block). The probability of accepting a message as genuine when it
is not is in that case l/2’ (provided that no error cancellation occurs). Thus,
the value of c depends on the risk one is willing to take in accepting a forged
or corrupted message as genuine.

To analyze the effects of error propagation, let ciphertext block Y(i) be
the last corrupted block. The decipherment of ciphertext block Y(i) is
shown in Figure 2-40. If Y(i) is the only ciphertext block in error, then the
following is true. The only case in which the error is iiot propagated all the
way through to the recovered plaintext block X(n + 1) occurs when the
corrupted ciphertext block Y(i)’ and the deciphered value of Y(i)’ under
key K are such that

Y(i)’ + (f;‘(Y(i)‘) @ Q) =Y(i) + (f;‘(Y(i)) o Q)

where Q is the value produced at point 2 (i.e., the feedback value at point 1 in Figure
2-40 is unchanged). (Note that the input at point 2 in Figure 2-40 is unchanged and
hence cancelled out.) Assuming that an error in Y(i) causes each bit in f;‘(Y(i)‘) to
differ from its corresponding bit in f;‘(Y(i)) with a probability approximately equal
to 0.5, it follows that the probability of the event that error cancellation occurs is
approximately equal to 1/2b.

I .
.
.

103

pr-j pE-J Ed Y(n)

Sender:

= LEFTc [Y(n+ I)]

Receiver:

LEFTc (x) denotes the leftmost c bits of x

AC* = LEFTc [Y (n + I)]

Figure 2-39. Message Authentication - Method 2 Accept Message

104

COMPARISON OF BLOCK CIPHERS AND STREAM CIPHERS 105

Figure 2-40. Decipherment of Ciphertext Block Y(i)

If, in addition, there are also errors in blocks of ciphertext preceding cipher-
text block Y(i), then the following is true. The only case in which the error
is not propagated all the way through to the recovered plaintext block X(n + 1)
occurs when the corrupted ciphertext block Y(i)’ is such that the deciphered
value of Y(i)’ under key K cancels the errors both in Y(i)’ and in the feed-
back value at point 2 in Figure 2-40 (i.e., the feedback value at point 1 is
unchanged).

Y(i)’ + X(i)’ = Y(i) + X(i) Mod 2”

Again, for all practical purposes, the probability that Y(i)’ will give rise to a
fx- ‘(Y(i)‘) that in turn produces an X(i)’ that is self-canceling is approxima-
tely equal to 1/2b.

Properties one and two for authentication, given above, are satisfied be-
cause, under normal conditions an opponent will not know the secret cipher
key K, and without knowledge of this key it is computationally infeasible to
compute the authentication code or to make systematic changes to the
ciphertext that would escape detection. Property three is satisfied if the
length c of the AC is large enough.

So far, examples have been given to authenticate messages enciphered
with a block cipher. Similar techniques exist for stream ciphers but are not
shown here.

COMPARISON OF BLOCK CIPHERS AND STREAM CIPHERS

In the discussion on block ciphers, it was shown that a block cipher need not
use an initializing vector (the block cipher could reoriginate). It was also
shown that cryptographic strength depends on a minimum required block-
size (the blocksize for DES is 64 bits).

106 BLOCK CIPHERS AND STREAM CIPHERS

The discussion on stream ciphers showed that a stream cipher must always
use an initializing vector (the stream cipher must not reoriginate). A mini-
mum blocksize is not required for the stream cipher, although it was shown
that (if desired) the cryptographic bit-stream could be generated in blocks of
bits (up to 64 bits per block for DES), and that encipherment could be per-
formed on a block-by-block basis.

In certain applications where highly redundant or structured data are en-
ciphered using a block cipher, patterns in the input stream can be masked or
hidden through the use of chaining techniques (block chaining). Stereotyped
messages are also masked if an initializing vector is used in conjunction with
block chaining. Again, by way of contrast, chaining is not needed in a stream
cipher to mask patterns in the input stream, since this is automatically ac-
complished by the cryptographic bit-stream. Stereotyped messages are also
masked, since initializing vectors are always required in a stream cipher.

In certain applications involving authentication, it is desirable for the
ciphering technique to have the property of error propagation, that is, an
error in the ciphertext causes the recovered plaintext (measured from the
point of the error to the end of the recovered plaintext) to be in error. Error
propagation can be achieved within block ciphers and stream ciphers through
the use of chaining techniques.

A block cipher for which there exist functions G1, Gz, . . . , Gi and Hr,
Hz,..., Hi such that

Y(i) = Hi(K, X(O), X(l), . . . , X(i)); i>l

and

X(i) = Gi(K, Y(O), Y(l), . . . , Y(i)); i>l

where

X(0) 3 Y(0) = z

was defined to be a general block cipher. Two examples of general block ciphers
are the block cipher using a variable key (Figure 2-15), and the block cipher
using plaintext-ciphertext feedback (Figure 2-l 6). The self-synchronizing
scheme using ciphertext feedback (Figure 2-l 7) is not a general block cipher.
This is because the general relation for X(i) is given by X(i) = Gr(K, Y(i - l),
Y(i)) (see equation 2-22d) rather than X(i) = G,(K, Y(O), Y(l), . . . , Y(i)),
as shown above.

A stream cipher for which there exist functions G1, Gz, . . . , Gi and H,,
Hz,..., Hi such that

Y(i) = X(i) @ Hi(K, X(O), X(I), . . . , X(i - 1)); i>,l

and

X(i) = Y(i) @ G&K, Y(O), Y(l), . . . , Y(i - 1)); i>l

COMPARISON OF BLOCK CIPHERS AND STREAM CIPHERS 107

where

X(0) = Y(0) -z

was defined to be a general stream cipher. An example of the general stream
cipher is shown in Figure 2-28. The self-synchronizing scheme using cipher-
text feedback (Figure 2-29) is not a general stream cipher. This is because
the general relation for X(i) as derived from Equation 2-25b is given by
X(i) = Y(i) @ Gi(K, Y(i - 1)) rather than X(i) = Y(i) @ Gi(K, Y(O), Y(l),
. . . , Y(i - l)), as shown above.

There are two important differences between the general block cipher and
the general stream cipher.

1. In the general block cipher, an intersymbol dependence can exist for
all blocks. In the general stream cipher, an intersymbol dependence
can only exist for all but the last block.

2. The initializing vectors used with the general block cipher need not
be frequently changed. They could, for example, be held constant for
the duration of a terminal-to-computer communication session lasting
the entire day. Hence, the block cipher reoriginates during that session.
Since stream ciphers must not reoriginate,the initializing vectors used
with the general stream cipher can only be used once.

Instead of frequent generation and transmission of initializing vectors within
a communication system, the initializing vectors, or their equivalent condi-
tion, could be stored within each system node. Recall that in the key auto-
key cipher (Figure 2-12), the vectors U(l), U(2), . . . , U(t) represent states
that could be used for the purpose of initialization. This is true of stream
ciphers in general. The initializing vector Z determines the initial state of the
system (Z z U(1)). Once the initial state of the system has been set, only the
current state of the system need be remembered to maintain synchroniza-
tion. For example, suppose at the beginning of a session, node A sends vec-
tor Z to node B. Transmission of message X from node A to node B leaves
both node A and node B in the same state, say U(i). Hence at this point
either node A or node B can continue to transmit using U(i) as the initializa-
tion vector. A new Z is not required. Although this method works very well
in a system with two communication nodes, it becomes extremely complex
when several nodes are involved. In practice, this is avoided by generating a
new initializing vector each time a cryptographic device changes from a
decryption mode into an encryption mode.

A block cipher has the problem of coping with a short block. A record
whose length is less than the cipher’s blocksize can be enciphered only after
it has been padded with enough bits to make it a standard blocksize. How-
ever, the last short block within a record whose length is greater than the
cipher’s blocksize can be enciphered with no data expansion using a tech-
nique known as ciphertext-stealing mode.

With a stream cipher, there is no problem enciphering a short block
since only as many bits from the cryptographic bit-stream are used as are

General Block Cipher General Stream Cipher

Encipherment Y(i)=Hi(K, X(O), X(i)) Y(i)=X(i) d q(K, X(O), X(i- 1))

Decipherment X(i)=Gi(K, Y(O), Y(i)) X(i)=Y(i) @ Gi(K, Y(O), Y(i-1))

The jth bit of Y(i) depends

Intersymbol Dependence on every bit in
Within Ciphertext X(l), X(2), X(i)

only on the jth bit in X(i),
but, on every bit in

X(l), X(2), X(i- 1)

The jth bit of X(i) depends

Intersymbol Dependence
Within Recovered
Plaintext

on every bit in
Y(l), Y(2), Y(i)

only on the jth bit in Y(i),
but, on every bit in

Y(l), Y(2), Y(i- 1)

Table 2-5. Comparison between a General Block Cipher and a General Stream Cipher

General Block Cipher General Stream Cipher

Initializing Vector Z Not mandatory, but highly
desirable. If used, Z can
be constant over a session.
Z should be 64 bits for DES.

Required for all applications.
In the practical case, Z must
be frequently changed. To achieve
maximum security, Z should contain
48 bits for the DES.

Number of bits which
may be enciphered at
a single time

Equal to the blocksize of the
block cipher (64 bits for the
DES). It is not possible to
encipher short blocks in a
secure way. A short block preceded
by a complete block can be
enciphered securely, but this will
affect error propagation.

Any number from 1 to the maximum
determined by design (64 if the DES
is used).

Implementation
Considerations

Straightforward when Z is not
used. Slightly more compli-
cated if Z is infrequently
generated.

More complicated because of the
frequent generation of Z.

Table 2-5 (cont’d). Comparison between a General Block Cipher and a General Stream Cipher

110 BLOCK CIPHERS AND STREAM CIPHERS

needed to encipher the plaintext. Hence as an alternative to enciphering
short blocks using block cipher mode, these special cases could be handled
using stream cipher mode.

When the length of a data record is less than the cipher’s blocksize, en-
ciphering the record causes data expansion-regardless of whether block
cipher mode or stream cipher mode is used. In a block cipher, these extra
bits are used for padding, while in a stream cipher they manifest them-
selves in the form of a required initializing vector.

With a stream cipher, an initializing vector of 48 bits is sufficient for most
applications whenever DES is used. If a weaker system can be tolerated,
a 40-bit initializing vector may be sufficient. With fewer than 40 bits, how-
ever, the system may be considerably weakened as far as the protection of
the first part of the enciphered message is concerned, and an analysis should
be performed to determine if this situation can be tolerated. (In applications
where data travel over low-speed communication lines, it could very well
happen that 16 bits are sufficient.)

Table 2-5 summarizes the similarities and differences between block
ciphers and stream ciphers. Figure 2-41 illustrates the effect that a single bit
change in ciphertext can have on recovered plaintext, when several different
ciphering protocols are considered. Figure 2-42 illustrates the effect that a
single bit change in the plaintext can have on the resulting ciphertext (during

Ciphertext

General Stream Cipher
(e.g., Figure 2-28)

General Block Cipher
(e.g., Figures 2-15 and 2-16)

Key Auto-Key Cipher
(Figure 2- 12)

Block Cipher
(Figure 2-4)

Ciphertext Auto-Key Cipher
(Figure 2-29)

Block Cipher (Ciphertext Feedback)
(Figure 2-l 7)

n Dependence on ciphertext bit change

0 No dependence

Figure 2-41. Effect on Recovered Plaintext for a One-Bit
Ciphertext Change

REFERENCES 111

Plaintext

General Stream Cipher
(e.g., Figure 2-28)

General Block Cipher
(e.g., Figures 2-15 and 2-16)

Key Auto-Key Cipher
(Figure 2-12)

Block Cipher
(Figure 2-4)

Ciphertext Auto-Key Cipher
(Figure 2-29)

Block Cipher (Ciphertext Feedback)
(Figure 2-17)

n Dependence on plaintext bit change

0 No dependence

Figure 2-42. Effect on Produced Ciphertext for a One-Bit
Plaintext Change

REFERENCES

1. Kahn, D., The Codebreakers, Macmillan, New York, 1972.
2. Shannon, C. E., “Communication Theory of Secrecy Systems,” Bell System Tech-

nical Journal, 28,656-7 15 (1949).
3. Diffie, W., and Hellman, M., “New directions in cryptography,” IEEE Transactions

on Information Theory, 22,644-645 (November 1976).
4. Merkle, R., and Hellman, M., “Hiding Information and Receipts in Trap Door Knap-

sacks,” IEEE Transactions on Information Theory, 24, 525-530 (September 1978).
5. Rivest, R. L., Shamir, A., and Adleman, L., “A Method for Obtaining Digital Signa-

tures and Public-Key Cryptosystems,” Communications of the ACM, 21, No. 2,
120-126 (1978).

6. McEliece, R. J., “A Public-Key Cryptosystem Based on Algebraic Coding Theory,”
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, DSN
Progress Report, 42-44, 114-l 16 (January-February 1978).

7. Ore, O., Number Theory and its History, McGraw-Hill, New York, 1948.
8. Solovay, R., and Strassen, V., “A Fast Monte-Carlo test for primality, SIAM Journal

on Computing, 6,84-85 (March 1977).
9. Miller, G. L., “Reimann’s hypothesis and tests for primality,” Proceedings Seventh

Annual ACM Symposium on the Theory of Computing, Albuquerque, New Mexico,
234-239, May 1975. Extended version available as Research Report CS-75-27, De-
partment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
(October 1975).

10. Rabin, M. O., “Probabilistic algorithms,” In J. F. Traub, Ed., Algorithms and Com-
plexity, Academic Press, New York, 21-40 (1976).

112 BLOCK CIPHERS AN0 STREAM CIPHERS

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Pollard, J. M., “Theorems on factorization and primality testing,” Cambridge Philo-
sophical Society Proceedings, 76, 521-528 (1974).
Niven, I., and Zuckerman, H. S., An Introduction to the Theory of Numbers, Wiley,
New York, 1972.
Simmons, G. J., and Norris, .I. N., “Preliminary comments on the M.I.T. public-key
cryptosystem,” Cryptologia, 1, No. 4,406-414 (1977).
Rivest, R. L., “Remarks on a proposed cryptanalytic attack on the M.I.T. Public-
Key Cryptosystem,” Cryptologia, 2, No. 1,62-65 (1978).
Williams, H. C., and Schmid, B., “Some Remarks Concerning the M.I.T. Public-Key
Cryptosystem,” Science Report No. 91, Department of Computer Science, University
of Manitoba, Winnipeg, Manitoba, Canada (1979).
Davies, D. W., Price, W. L., and Parkin, G. I., “An Evaluation of Public-Key Crypto-
systems,” NPL Report CTU 1, National Physical Laboratory, Teddington, Middle-
sex TWl 1 OLW, UK (1979).
Herlestam, T., “Critical Remarks on Some Public-Key Cryptosystems,” BIT, 18,
493-496 (1978).
Rivest, R. L., “Critical Remarks on ‘Some Critical Remarks on Public-Key Crypto-
systems’ by Tore Herlestam,“BZT, 19, l-3 (1978).
Blakley, B., and Blakley, G. R., “Security of Number Theoretic Public Key Crypto-
systems Against Random Attack, I,” Cryptologia, 2, No. 4, 305-321 (1978).
Blakely, B., and Blakley, G. R., “Security of Number Theoretic Public Key Crypto-
systems Against Random Attack, II,” Cryptologia, 3, No. 1, 29-42 (1979).
Blakley, B., and Blakley, G. R., “Security of Number Theoretic Public Key Crypto-
systems Against Random Attack, III,” Cryptologia, 3, No. 2, 105-l 18 (1979).
Shamir, A., “A Polynomial Time Algorithm for Breaking Merkle-Hellman Crypto-
systems,” (extended abstract) Applied Mathematics, The Weizmann Institute,
Rehovot, Israel (April 1982).
Vernam, G. S., “Cipher Printing Telegraphy Systems for Secret Wire and Radio
Telegraphic Communications,” Journal of the AIEE, 45, 109-I 15 (February 1926).
Matyas, S. M., Meyer, C. H., and Tuckerman, L. B., “Method and Apparatus for En-
ciphering Blocks Which Succeed Short Blocks in a Key-Controlled Block-Cipher
Cryptographic System,” U.S. Patent No. 4,229,818 (October 21, 1980).
Konheim, A. G., Mack, M. H., McNeil& R. K., Tuckerman, B., and Waldbaum, G.,
“The IPS Cryptographic Programs,” IBM Systems Journal, 19, No. 2, 253-283
(1980).

26. Proposed Federal Standard 1026, Telecommunications: Znteroperability and Security Re-
quirementsfor Use of the Data Encryption Standard in the Physical andData Link Layers of
Data Communications, General Services Administration, Washington, D.C., Draft (Janu-
ary 21, 1982).

Other Publications of Interest

27. Ryska, N. and Herda, S., Kryptographische Verfahren in der Datenverarbeitung,
Springer Verlag, Berlin, also New York, 1980.

28. Denning, D. E., Cryptography and Data Security, Addison-Wesley, Reading, 1982.

The Data Encryption Standard 113.......................
CLASSES OF CIPHERS 113...............................

Figure 3-1. 114..
Figure 3.2 114...
Figure 3.3 115...
Figure 3-4. 117..

DESIGN CRITERIA 118.......................................
Breaking a System with Two Key-Tapes 118.............
Breaking a Key Auto-Key Cipher Using Linear 121....

Figure 3-5. 122..
Figure 3-6. 123...
Table 3-1. Analysis of a Key Auto-Key 124............
Table 3-3. Pseudo-Random Bit Streams 126........
Table 3-5. Solution of Feedback Switch 128..........
Table 3-2. Solutions for the Key in a Key 126........
Table 3-3. Pseudo-Random Bit Streams 126........
Table 3-4. Output from the First Stage of a 127.....
Table 3-5. Solution of Feedback Switch 128..........

Breaking a Plaintext Auto-Key Cipher Using 129.......
Figure 3-7. 130...
Figure 3-8. 130...
Figure 3-9. 134...
Figure 3-10. 134...
Table 3-6. Chosen Plaintext Attack Against 137....

Designing a Cipher� 137...
Shortcut Methods 138...
Brute Force Methods 139...
Classified Design Principles 140................................

DESCRIPTION OF THE DATA ENCRYPT 141....
Figure 3-11. 142...
Table 3-7. Shift Schedule for Encipherment 143........
Generation of Key Vectors Used for Each 143...........

Table 3-8. Key Bits Stored in Register (C) 149......
Table 3-9. Key Bits Stored in Register (D) 149......

Weak and Semiweak Keys 149..................................
Table 3-10. First Set of 24 Key Bits in 149.............
Table 3-11. Second Set of 24 Key Bits in 153.......
Table 3-12. Example of an Enciphering 151..........
Table 3-13. List of Semiweak Keys 152.................
Table 3-13. List of Semiweak Keys 152.................

Table 3-14. Pairs of Semiweak Keys (K, K�) 152...
Table 3-15. Example of an Enciphering 153..........

Details of the DES Algorithm 153...............................
Table 3-16. Partial List of (Parity-Adjusted 153......
Figure 3-12. Details of Enciphering 157.................

Summary of the DES Procedure 159.........................
Numerical Example 160..
Some Remarks about the DES Design 162...............
Implementation Considerations for the S-Box 163.....

Figure 3-14. Basic Block Cipher Design 166.........
Table 3-17. Distribution of Minterms for a 164.......
Table 3-18. Distribution of Minterms for 165..........

ANALYSIS OF INTERSYMBOL DEPENDE 165..
Interdependence between Ciphertext and 168...........

Table 3-19. Functional Relationships 169..............
Figure 3-15. Functional Dependence of R(i) 170...
Figure 3-16. Functional Dependence of R(i) 171...
Figure 3-17. Functional Relationship 172..............
Figure 3-18. Evaluation of Functional 173.............

Summary of the Procedure 174..................................
Figure 3-19. Functional Dependence of R(i + 175.
Figure 3-20. Functional Dependence of 4th 176....

Minimum Number of Rounds Required to 176...........
Figure 3-21. Graphical Presentation of Proof 177..
Table 3-20. CiphertexUPlaintext 178.....................

Interdependence Between Cipher-text and 178.........
Table 3-21. Functional Relationships 181..............
Figure 3-22. Functional Dependence of R(i) 181...
Figure 3-23. Functional Dependence of R(i) 182...
Figure 3-24. Functional Dependence of 183..........
Figure 3-27. Funtional Dependence of R(2) 186....
Figure 3-28. Functional Dependence of 4th 187....
Figure 3-29. Functional Dependence of 187..........
Table 3-22. Ciphertext/Key Intersymbol 188..........

Summary and Conclusions 189..................................
REFERENCES 189...

Other Publications that Treat Cryptanalysis 190........

-1 CHAPTER THREE I-

The Data Encryption Standard

Generally, all ciphers are substitution ciphers since in a cipher a set of plain-
text messages is always uniquely transformed into a set of ciphertext mes-
sages for a given key, and in effect this constitutes substitution of ciphertext
for plaintext. However, three classes of ciphers are ordinarily distinguished:
transposition ciphers, substitution ciphers, and a combination of both called
product ciphers.

The chapter begins with a short discussion of these three classes of ciphers.
Next, ciphers using a linear feedback approach are shown to be breakable by
expressing the relationship between keys, ciphertext, and plaintext as a set
of mathematical equations, and then using analytical techniques to solve
them. Although the attacks are elementary in nature, they do provide good
background information to discuss broad principles followed in cipher design.

A detailed discussion of the Data Encryption Standard (DES) is presented
in the second half of the chapter, including the generation procedures for
DES’s internal keys. Also, there is a simple numerical example that allows
the DES’s operation to be followed using only paper and pencil. Finally,
there is a demonstration, both mathematically and pictorially, of how com-
plexity in the ciphering process builds up with the number of iterations-a
process involving substitution and permutation.

CLASSES OF CIPHERS

Transposition ciphers, consisting of rearrangements of plaintext letters, were
used by the Greeks as early as 400 B.C. They represent the oldest known
method of encryption. To encipher messages, the ancient Greeks used a
device called a scytale (Figure 3-l). It consisted of a long narrow strip of
papyrus wrapped around a cylinder (the diameter determined the key), with
the plaintext written horizontally (row-by-row). When the strip was un-
wound, the letters were rearranged to conceal the message. To read the mes-
sage, the recipient merely rewrapped the strip around a cylinder whose
diameter was the same as the original.

A substitution cipher replaces plaintext letters, without changing their
sequence, with one or more letters, figures, or symbols. An example of an
early substitution cipher is the Julius Caesar cipher illustrated in Figure 3-2.

113

114 THE DATA ENCRYPTION STANDARD

Plaintext: The Scytale is a transposition cipher.

Figure 3-1. The Scytale

For encipherment, each plaintext letter was replaced by the letter obtained
when the alphabet was shifted three positions to the left (i.e., A would be
replaced by D, B by E, and so forth). In decipherment, the process was
simply reversed (i.e., D would be replaced by A, E by B, and so forth).

A product cipher involves the steps of both substitution and transposition.
The ADFGVX product cipher illustrated in Figure 3-3 was used by the
German Army during World War I. It employed a table having six rows and
six columns labeled with the letters A, D, F, G, V, X. The table contained 26
letters (A, B, . . . , Z) and 10 digits (0, 1, . . . , 9) inserted in a random order.
Encipherment was accomplished by replacing each plaintext letter with
the pair of letters that described its position (row and column) within the
ADFGVX table. This intermediate text was then written (row-by-row) into
a transposition rectangle, and the columns read according to a numerical key.
For example, the sorted alphabetical order for the key DEUTSCH became
CDEHSTU, since letter C is ranked lowest or first in alphabetical sequence,
letter D is ranked next, and so forth. Thus, to obtain the ciphertext, the col-
umn under C is read first, the column under D is read second, and so forth.

Decipherment is accomplished by writing the ciphertext back into the
transposition rectangle (column-by-column) according to the same numerical
key, reading the transposition rectangle (row-by-row) to obtain the inter-
mediate text, and then finding each plaintext letter by using each pair of
letters in the intermediate text as coordinates in the ADFGVX table.

Key:

Plaintext Letter: ABCDEFGHIKLMNOPQRSTVXYZ

Ciphertext Letter: DEFGHIKLMNOPQRSTVXYZABC

(In Latin the letters J, U, and W were not used.)

Message: E PLVRIBVS VNVM

Cryptogram: H SOZVMEZX ZQZP

Figure 3-2. Substitution Cipher Used by Julius Caesar

CLASSES OF CIPHERS 115

ADFGVX

AKZWR

DEUTSCH DEUTSCH

2376514 2376514

Ptaintext

PRODUCT

CIPHERS

Intermediate Text

FG AG VD VF XA DG XV

DG XF FG VG GA AG XG

Key

Sorted Order

Ciphertext

DXGX FFDG GXGG VVVG

VGFG GDFA AAXA

Figure 3-3. The ADFGVX Cipher-an Example of a Product Cipher

Cryptographic research conducted during World War II showed that strong
encryption algorithms could be obtained using alternate steps of substitution
and transposition, resulting in a product cipher. In his classic paper on secrecy
systems, Shannon [11 pointed out that mixing functions-functions obtained
as the product of two simple noncommutative operations-could be used to
achieve cryptographic strength. Although based on the principle of mixing
functions, the ADFGVX cipher is actually a weak algorithm, since substitu-
tion and transposition are used only once and the substitution is not under
control of a key.

By the late 1960s threats to computer data began to be viewed as real
problems. The need for a strong method of encryption in the private sector
was at last apparent. At the same time, large scale integration (LSI) techno-
logy permitted a highly complex cryptographic algorithm to be implemented
on a single chip, thus achieving the high-speed encryption essential to data
processing.

Research into the development of strong product ciphers was undertaken
by private industry between 1968 and 1975. A block product cipher designed
by Feistel [21 was implemented in a cryptographic system known as LUCIFER
[3]. A new cryptographic algorithm based on the LUCIFER design was de-
veloped shortly thereafter at IBM under the leadership of Dr. W. L. Tuchman
141. The new algorithm consisted of 16 alternate steps (or rounds) of key-

116 THE DATA ENCRYPTION STANDARD

controlled substitution and fixed permutation. This algorithm, approved by
the NBS, was embodied in a federal standard that became effective on
July 15, 1977.

Known as the Data Encryption Standard (DES) [5] the algorithm en-
ciphers a 64bit block of plaintext into a 64bit block of ciphertext under
the control of a 56-bit cryptographic key. The process of encryption consists
of 16 separate rounds of encipherment, each round using a product cipher
approach, or cipher function. The interaction of data, cryptographic key K,
and cipher function g is illustrated in Figure 3-4. The externally supplied key
K consists of 64-bits: 56 bits are used by the algorithm and eight bits may be
used for parity checking. A different subset of 48 key bits from the 56bit
key is used in each round. The subsets of key bits used for encipherment are
denoted K(l), K(2), . . . , K(16). During decipherment, the keys are used in
reverse order (K(16) in round one, K(15) in round two, and so forth). The
initial and inverse initial permutations allow the algorithm to be implemented
more easily on a single chip, provided that the data and key are serially loaded.

DES can be thought of as a huge key-controlled substitution box (S-box)
with a 64-bit input and output. With such an S-box, a total of (264)! different
transformations or functions from plaintext to cipher-text are possible. The
56-bit key used with DES thus selects only a small subset (256) of the total
set’s possible functions.

A single huge S-box is impossible to construct. Therefore, DES is imple-
mented by using several smaller S-boxes (6-bit input and 4-bit output) and
permuting their concatenated outputs. By repeating the substitution and
permutation process several times, cryptographic strength increases.

When referring to the cryptographic transformations of encipherment
and decipherment, E denotes encipherment and D denotes decipherment.
The notation used to express these operations is

Ex(X) = Y

which means that ciphertext Y is produced by the encipherment of plain-
text X under key K, and

D,(Y) = X

which means that plaintext X is produced by the decipherment of ciphertext
Y under key K.

In DES, a cryptographic relationship exists among the plaintext, cipher-
text, and cryptographic keys on the one hand and the complements of those
quantities on the other hand. That relationship, called the complementary
property of DES, can be expressed as

Ex(X) = ER(X)

where the bars represent complementation, or bit inversion. (This property can
be used advantageously for testing purposes, as demonstrated in Chapter 6.)

I Input X=x1, x2, xH
I

4
Initial

Permutation
I

4 4

I
w-9=11(o), ..*, ‘jJ0) R(O)=r,(O), r&O)

I

I
L(1) = 1,(l), /32(l) R(l) = r#), r32(l)

I

K (2)

1 L(2)=11(2),&(2) R(2)= r,(2), r&9 I
0 0
0 0
0 0

R(15) = r1(15), r&15)

R(16)=r1(16), r3-J16)

Inverse Initial
Permutation

4

I
Output Y=Y,, Yz, me*, Y(j4

I

Figure 3-4. Enciphering Computation

117

118 THE DATA ENCRYPTION STANDARD

Because of the complementary property of DES, if an analyst could ob-
tain Ek(X) and Ek(X) for an arbitrary X, he could reduce the size of the key
space he must search from 2 56 to 2”. Therefore, the key space could be ex-
hausted in 255 trials instead of 256 trials. However, depending on the imple-
mentation, it may not be possible for an opponent to obtain plaintext X and
its complement X enciphered under the unknown cipher key. Moreover, it
has been suggested that in special cases, when more security is desired, mul-
tiple encryption methods can be used as a means of increasing the work fao
tor associated with breaking the system (see also Appendix D). At this writ-
ing, the authors are unaware of any demonstrated method of using DES-
ciphered data to solve for a single key bit, other than by key exhaustion
(trying each possible key).

DESIGN CRITERIA

Generally, the steps of substitution and permutation in the DES algorithm
have the following relationship to the algorithm’s strength. Deterministic
attacks (purely mathematical and nonstatistical in nature) are deterred
mainly by the use of nonlinear functions in the substitution process. Statis-
tical attacks are deterred mainly by the permutation of bits after each step
of substitution (smoothing out the statistics). In the strict sense, both deter-
ministic and statistical attacks are deterred by a combination of substitution
and permutation.

Why nonlinear substitution functions are essential to strong product ciphers
is illustrated by a cryptanalysis of three different encryption algorithms that
make use of linear functions. Such an analysis is useful in arriving at design
criteria for strong cryptographic algorithms. For example, a common pitfall
in the design of a stream cipher is the assumption that a strong algorithm
can be achieved merely by ensuring that the bit stream, which is added to
the plaintext using modulo 2 addition, is a long sequence of pseudo-random
bits (perhaps on the order of billions of bits). Even so, if there is a linear
relationship among the bits in the pseudo-random bit stream, then the
algorithm can easily be broken.

Breaking a System with Two Key-Tapes

In 1926, Vernam [6] suggested an approach for enciphering large amounts
of plaintext using two relatively short key-tapes. His idea was to use the two
original key-tapes to produce a very long bit stream. This key, or bit stream,
could then be added to the plaintext, using modulo 2 addition, to produce
the ciphertext.

However, Vernam’s method of producing the bit stream from two key-
tapes is weak and is easily broken. Let the bits on the two key-tapes be de-
noted by

u = Ul, u2,. . .) upl, Ul, uz,. . .) UPI,. . .
v = Vl, v2,. . .) VP2’ VI, v2,. . . , VP2’. . .

DESIGN CRITERIA 119

The periods (intervals between equal recurring values) of U and V are pl and
p2, respectively. If p, and p2 are chosen to be relatively prime, the bit stream
resulting from the modulo 2 addition of U and V will have a period p = plp2.
Let

R = rl, r2, . . . , r,, rl, r2,. . .

denote the resulting bit stream. Assume that the number of enciphered plain-
text bits is less than or equal to p, thus avoiding repetition of bits in the
cryptographic bit-stream R. The operations of encipherment and decipher-
ment are represented, as in the case of the key auto-key cipher (Chapter 2),
by the following.

Y(i) = X(i) @ R(i)

X(i) = Y(i) @ R(i) (3-l)

where @ represents modulo 2 addition, and

X(i) = xi(i), x2(i), . . . , x,(i) denotes an n-bit plaintext

Y(i) = Yl(i), YZ(~), . . . , Y,(i) denotes the resulting n-bit cipher-text

R(i) = r,(i), r2(i), . . . , r,(i) denotes the ith subset of bits from R
that is used to encipher the ith block
of plaintext.

At first glance, this scheme may appear to employ a one-time tape, thus
satisfying the conditions for an unbreakable cipher. In an unbreakable cipher
(see Chapter 2), the key (or the bit stream R in the present case) must be
randomly selected and used only once. But the bits denoted by R in the
present example are not random-at best, they are only pseudorandom. And
because the bits in R can be represented by a set of linear equations, the
scheme can be broken by solving for the unknown key tapes U and V.
While p equations can be written to describe the bits in R, the analyst must
cope with no more than p1 + p2 - 1 equations to break the system, as shown
below.

Let the period of the first tape be 3 and the period of the second tape be
2, and let one bit be enciphered at a time. In that case, R(i) = r(i), and
hence

r(1) = u1 @ v1 (3-2a)

r(2) = u2 @ v2 (3-2b)

r(3) = u3 @ vl (3-2~)

r(4) = ul @v2 (3-2d)

r(5) = u2 @ vl (3-2e)

r(6) = u3 e v2 U-20

120 THE DATA ENCRYPTION STANDARD

where it is assumed, without loss of generality, that r(1) coincides with the
start of the tape. The period of R is 2 * 3 = 6.

If the opponent has a fragment of plaintext and corresponding ciphertext
available for analysis (see Chapter 2), he can recover a fragment of the bit
stream R by adding the plaintext to the ciphertext using modulo 2 addition.
The problem then is to calculate the p1 + p2 bits comprising tapes U and V
by knowing only a _porti_n of the plp2 bits from R.

Since ui @ vj = ui 8 vj, it follows that the unknown key tapes U and V
always have two solutions:

and

u$i2,.. . ,up1;v1,v2,. . . jp2

Thus a single bit in one of the two key-tapes can be assigned an arbitrary
value (either 0 or 1). The remaining unknown bits in U and V are expressed
in terms of a subset of the bits in R and the arbitrarily assigned bit in U or V.
Let ul be the choice for the independent bit.

In the example (pi = 3, p2 = 2), the dependent variables vl, v2, u2, and
u3 can be represented as follows.

v1 = r(1) @ u1 from 3-2a

v2 = r(4) 8 u1 from 3-2d

U 2- - r(2) @ v2 = r(2) @ r(4) @ ul from 3-2b

u3=r(3)@vl =r(3)@r(l)@u, from 3-2~

This shows that the arbitrary assignment of u1 = 0 or ul = 1 and knowledge
of four bits in R, namely r(l), r(2), r(3), and r(4), are enough to permit the
unknown bits in U and V to be calculated. Thus to solve a pair of key-tapes,
U and V, the analyst must have knowledge of as many bits in R as there are
unknown bits in U and V. And the number of unknown bits in U and V is
p1 + p2 - 1, since one bit can be arbitrarily assigned to either 0 or 1. U and
V can then be used to calculate the remaining unknown bits in R.

With matrix notation, the set of linear equations (3-2a through 3-2f) is
expressed as follows.

-10 0 1 G

01001

00110

10001

01010

-0 0 1 0 l-

Ul

U2

[!I u3 =

Vl

V

(3-3)

DESIGN CRITERIA 121

In the present example, the rank [7] of the (0, 1) matrix, as well as the
augmented matrix [7], is four. Therefore, there are only four independent
variables and only four bits in R are needed to solve for the unknown bits
in U and V. In general, it can be shown that the rank of these matrices is
equal to pl + ~2 - 1, which means that pl + p2 - 1 bits in R are needed to
solve for U and V.

Breaking a Key Auto-Key Cipher Using Linear Shift Registers

A linear shift register is a hardware circuit that can produce a stream of
pseudo-random bits. It consists of a sequence of flip-flops’ (Figure 3-5), de-
noted by FFl, FF2, . . . , FF,, and n initial switch settings which are the
secret key, denoted by k1 , k2, . . . , k,, where

kj = 0 if the jth switch is open

kj= I if the jth switch is closed

At each clock pulse of the circuit, a single bit in the pseudo-random bit
stream is generated, so that r(l), r(2), . . . , r(t) denotes the bits produced
by the linear shift register at clock times 1, 2, . . . , t. The mathematical
equations defining the operation of a 3-stage shift register and used foi
calculating r(1) through r(t) are given below.

The operations of encipherment and decipherment are represented, as in
the case of the key auto-key cipher (Chapter 2), by the following..

y(i) = x(i) @ r(i) encipherment

x(i) = y(i) @ r(i) decipherment

where x(i) and y(i) denote the ith plaintext and ciphertext bits, respectively.
The output from the jth shift register stage (FFj) at time t is denoted by sj(t).
The initial conditions at clock time t = 1 are given by Zj = sj(l), for j from
1 ton.

It might seem that linear shift registers would give rise to strong crypto-
graphic algorithms. A 61-stage linear shift register, for example, produces
261 - 1 different bit streams, whose period is 261 - 1 bits.2 A communication
terminal operating at a rate of 2400 bits per second would take over 30 mil-
lion years to use up the entire bit system.

While the period is very long, the linear relationship among the generated
bits represents a fundamental weakness. In an n-stage shift register, the bit
stream is uniquely determined by the n initial conditions and n switch posi-
tions (see Figure 3-5). Thus to break the cipher, all that an opponent has to
do is solve 2n independent equations involving the initial conditions and the

‘A flip-flop is an electronic circuit having two stable states, 0 and 1, and the ability to
change from one state to the other on application of a signal in a specified manner.
‘The period of every bit stream is 26’ - 1, because 61 is a Mersenne prime [8,9]. The maximum
period of the bit stream is 2” - 1 when n is not a Mersenne prime.

I

+ FFn

A ’ S,(t)

FFn- 1 FF2 FFl . e .r(t)

A Sn- 1 Ct) 4 9 (9 A Sl (t)

Clock Pulses

The initial conditions at clock time t = 1 are represented by zj = ~~(1) for j = 1, 2, n.

n = number of stages (flip-flops); k,, k,, . . ., k, are switches where k = 0 if the jth switch is open and k = 1 if the jth
switch is closed; sj(t) is the output from the jth flip-flop at time t.

Figure 3-5. Key Auto-Key Cipher Design Using an n-Stage Linear Shift Register

DESIGN CRITERIA 123

positions of the feedback switches. For all practical purposes, this could be
accomplished here if 122 bits of plaintext and corresponding ciphertext
were available for analysis.

To appreciate how the cipher under discussion is implemented, consider
a 3-stage shift register (Figure 3-6). An analysis of the operation of the shift
register at clock times t = 1, 2, . . . , 6 is given in Table 3-1. Since sr(t) =
r(t), it follows that

r(1) = z1

r(2) = z2 @ k,r(l)

r(3) = z3 @ k,r(1) @ k,r(2)

r(4) = k,r(1) @ k,r(2) 8 krr(3)

r(5) = k,r(2) @ k,r(3) @ krr(4)

r(6) = k,r(3) @ k,r(4) @ krr(5)

This can be expressed in matrix notation as

0 0 0 0 0 0 100 100 k, k,

r(1) r(1) 0 0 0 0 010 010 k, k,

69 69 r(l) r(l) 0 0 001 001 k3 k3

= = r(3) r(3) r(2) r(2) r(1) r(1) 0 0 0 0 0 0 z1 z1

r(4) r(4) r(3) r(3) r(2) r(2) 0 0 0 0 0 0 z2 z2

r(5) r(5) r(4) r(4) r(3) r(3) 0 0 0 0 0 0 z3 z3

- r(t)

(3-4)

A

Clock Pulses
*

For t = 1, the initial conditions hold: zr = s,(l), z2 = s*(l), z3 = ~~(1)

Figure 3-6. Key Auto-Key Cipher Design Using a 3-Stage Linear Shift Register

124 THE DATA ENCRYPTION STANDARD

t s3 (t) s3 Wk2rW s,(t)

1 z3 z3@k2r(l) z2
2 k3r(l) k3r(lW2W z3@k2r(l)
3 k3r(2) k3r(2Pk2r(3) k3r(lW2W
4 k,rU) k3r(Wk2rW k3r(2W2r(3)
5 k3W) k3r(4W2r(5) k3rW@k2W
6 k,rU) k3rWk2r(6) k3rGWk2W

t s2(tPk,r(t) s, (t)

1 z,@k,r(l)
2 z3@k2r(l)@k,r(2)
3 k3r(l)@k2r(2)@klr(3)
4 k3r(2)@k2r(3)ek,r(4)
5 k3r(3)ek2r(4)@klr(5)
6 k3r(4)ek2r(5)@k,r(6)

z3ek2r(l)@k,r(2)
k3r(l)@k2r(2)@k,r(3)
k3r(2)@k2r(3)ek,r(4)
k3r(3)@k2r(4)ek,r(5)

Initial conditions: z, = sI (l), z2 = s2 (l), z3 = s3 (1)

Table 3-1. Analysis of a Key Auto-Key Cipher that Uses
a 3-Stage Linear Shift Register

While it is possible to solve the kr, k2, k,, zl, z2, and z3 in terms of bits r(1)
through r(6) by using the matrices above, generally, one is not interested in
the initial conditions zl, z2, and z3. Thus, the key can be found using the re-
duced form:

(3-5)

Although the approach seems straightforward, it should be noted that a
solution may not exist for certain values of r(1) through r(6). Before elabo-
rating on this idea, assume (without loss of generality) that k3 = 1.

When k3 = 1, only r(1) through r(5) must be known before one can solve
for kI and k2 (i.e., only five independent equations are needed). Hence
Equation 3-5 can be reduced to the following:

I U-6)

DESIGN CRITERIA

Solving for kr and k2 using Cramer’s Rule, one obtains

125

I
r(4) @ r(l) r(2)

k 1 = r(5) Q r(2) r(3)
r(3) r(2)

I I r(4) r(3)
r(3) r(4) @ r(l)

k I = r(4) r(5) @r(2) I
2

r(3) 69

I I r(4) r(3)

r(2)[r(5) @ rG91 @ rWM4) @ r(l)1 =
rCW(4) @ r(3)

r(3M5) @ $91 @ r(4)tr(4) @ r(l)1 =-
@b-(4) @ r(3)

provided that r(2)r(4) @ r(3) # 0. The denominator of the two expressions
above is zero if either

1. r(3) = 0 and r(2)r(4) = 00,O 1, or 10
2. r(3) = 1 and r(2)r(4) = 11

However, even in the situation where r(2)r(3)r(4) = 001 or 100, a solution
can still be found. When r(2)r(3)r(4) = 001, Equation 3-6 is written as

which results in

k, = r(5) and k2 = any value (i.e., k2 has no unique solution,
denoted no solution)

When r(2)r(3)r(4) = 100, Equation 3-6 is written as

which results in

kr = any value and k2 = r(1)

A summary of these results is given in Table 3-2.
Table 3-3 shows the bit streams produced by the 3-stage linear shift regis-

ter (calculated in terms of the initial conditions, zl, z2, and z3, by using Equa-
tion 3-4), where k3 = 1 and k, and k2 are variables. The maximum period of
23 - 1 = 7 is obtained for keys (switch positions) 101 and 110, while keys
111 and 100 result in bit streams with periods of 4 and 3, respectively.

126 THE DATA ENCRYPTION STANDARD

r(2) r(3) r(4) r(2) r(3) r(4)

010 011 101 110 ooo 001 100 111

D = r (2)r (4)er (3)#0 D=r(2)r(4)er(3)=0

Expression
For k, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * r(5) * *

Expression
For k, (l/D)[rW [r(Wr(2WrW [r WWlNl * * r(l) *

Note: It was assumed that k, = 1; * denotes no solution

Table 3-2. Solutions for the Key in a Key Auto-Key Cipher
Using a 3-Stage Linear Shift Register

Numerical values for the output bits r(1) through r(5) in Table 3-3 can be
calculated by assigning zl, z2, and z3 each of their possible values of 0 and 1.
The results of such a calculation, where the five output bits are expressed in
decimal notation for ease of presentation, are shown in Table 3-4. Out of the
32 possible values for bits r(1) through r(5), the values 1, 2, 3, 8, 15, 16, 17,
24, and 30 do not occur. The values 0,9,14, l&25, and 3 1 occur respectively,
4, 2, 2, 2, 2, and 2 times. As the number of stages is increased, the frequency
of each value, r(1) through r(5), will be about the same, and hence the dis-
tribution will become more uniform.

r(t) I Switch Position Combinations: k,, k,, k,

I 100 101 110 111

r(l)
r(2)
r(3)
r (4)
r(5)
r(6)
r(7)

It is assumed that k, = 1; the periods for the bit streams produced by the
keys 100, 101, 110, and 111 are 3, 7, 7, and 4, respectively.

Table 3-3. Pseudo-Random Bit Streams Produced by a 3-Stage Linear Shift
Register for Different Switch Positions (Keys)

DESIGN CRITERIA 127

Initial
Conditions

Feedback Switch Position (k,, k2)

00 01 10 11

zI z2 z3 I
Output r(1) through r(5) for given values of k’s and z’s

0 0 0 0 0 0 0
001 4 5 7 6
0 1 0 9 11 14 12
0 1 1 13 14 9 10
100 18 23 29 25
1 0 1 22 18 26 31
1 10 27 28 19 21
1 1 1 31 25 20 19

Note: the value of r(l), r(2), r(5) for z,z2z3=100 and k,k,=Ol is
010111 in base 2 and 23 in base 10

Table 3-4. Output from the First Stage of a 3-Stage Linear Shift Register

The mathematical equations for kr and k2 given in Table 3-2 are next
evaluated for each of the output values, r(1) through r(5), given in Table 3-4.
From this, one gets a rough idea of the number of times that these equations
either have a solution (identified by 0 or l), or have no solution (identified
by an *), as shown in Table 3-5. Since the row and column headings in
Table 3-5 were chosen to match those in Table 3-4, one can estimate the
probability of successfully solving for the key.

Consider the output value (r(l)r(2) l l l r(5) = 00100 (equivalent to
decimal 4), which is produced by feedback switch positions k,k2 = 00 and
initial conditions zlz2z3 = 001 (see Table 3-4). Using only the output value
00100 and the equations in Table 3-2, it follows that

D=(O*O)@l=l

and therefore that a unique solution fork, and k, can be obtained as

kl = (l/l)[O(O @ 0) o l(o CB o)] = o

kz =(1/1)[1(O~O)~o(o~o)] =o

Hence the entry in Table 3-5 corresponding to column 00 (k,k, = 00) and
row001 (ZlZ2Z3 = 001) is 00. Now consider the output value r(l)r(2) l l l r(5)
= 10011 (equivalent to decimal 19), which is produced by feedback switch . . posrtrons klk2 = 10 and initial conditions ~1~2~3 = 110, or by krk, = 11
and ~1~2~3 = 111 (see Table 34). The output value 10011 and the equa-
tions in Table 3-2 lead to

D=(O* l)@O=O

128 THE DATA ENCRYPTION STANDARD

and therefore the equations for k, and k2, as given by

k, = (l/O)[O(l @ 0) @ 0(1 @ l)] = O/O

k2 = (l/O)[O(l @ 0) @ l(1 @ l)] = O/O

are indeterminate forms. This condition can be resolved for kl, since r(2)r(3)
r(4) = 001 and thus k, = r(5) = 1 (see Table 3-2). However, there is no solu-
tion for k,. Hence, the entries in Table 3-5 corresponding to column 10 and
row 110, and column 11 and row 111, are labeled 1%.

By repetition of this approach for each entry in Table 3-4, a solution for
kl is obtained in 22 out of 32 cases, for k2 in 17 cases, and for both k1 and
k2 in 14 cases (see Table 3-5). The probability of obtaining a solution is there
fore about 0.5. The values of k,k2 that cause the output bits r(l)r(2) * * * r(5)
to be equal to 00000 or 11111 (decimal 0 or 3 1) should not be used, since the
plaintext and ciphertext are forced to be either identical or complements
of each other. If those instances are excluded from Table 3-4, a solution for
k, is obtained in 21 out of 26 cases, k2 in 17 cases, and both k1 and k2 in
14 cases.

Initial
Conditions
for which
r(1) through r(5)
are Evaluated

z1 z2 23

Feedback Switch Positions (k,, k2)
for which r(1) through r(5) are
Evaluated

00 01 10 11

Evaluated Values of (k,, k2) Based
, on Knowledge of r (1) through r (5)

k, k2 kl k2 kl k2 kl k2

000
001
0 10
0 1 1
100
10 1
1 10
1 1 1

* *
0 0
* 0
0 0
0 *
0 *
0 *
* *

* *

0 1
0 1
* *

0 1
0 *
0 *
* 1

* *

1 0
* *
* 0
1 0
1 0
1 *
1 0

* *

1 1
1 1
1 1
1 1
1 *
1 1
1 *

P [solution for k,] = 22132; (21126) (see footnote 3)
P [solution for kz] = 17132; (17126) (see footnote 3)
P [solution for k, and k2] = 14/32; (14126) (see footnote 3)

* denotes no solution

Table 3-5. Solution of Feedback Switch Positions for a 3-Stage Linear
Shift Register

3 Instances where r(1) * - - r(5) = 00000 or 11111 are excluded from the calculation.

DESIGN CRITERIA 129

The calculation of keys-based on knowledge of r(l)r(2) l l l r(2n),
where n is the number of stages-is successful in about 50 percent of the
cases. The likelihood that a key can be solved for is increased if the number
of bits available for analysis is greater than 2n. For example, if 2n + 9 bits
are available, and consecutive bit streams of 2n bits are used, then 10 sets of
2n output bits would be available for analysis. Now, for each set of 2n out-
put bits, assume that the probability of obtaining no solution for the key is
0.5-an assumption that is reasonable for the previous example. Thus the
probability that no solution is obtained for all 10 sets of 2n output bits is
0.5r” = l/ 1024, and so the probability of a successful attack is 1023/ 1024.

When two or more linear shift registers are used one after another, the
resulting algorithm still employs linear functions, and an identical method
of analysis can be applied.

Breaking a Plaintext Auto-Key Cipher Using Linear Shift Registers4

The key auto-key cipher analyzed in the previous section does not employ
feedback from either plaintext or ciphertext, but rather uses only internal
feedback. To show that a similar analysis also applies to a cipher (based on
linear shift registers) that uses an external feedback, a plaintext auto-key
cipher is analyzed.

To reduce the number of required calculations, but still provide enough
insight into the problem, the analysis is limited to a S-stage linear shift
register (n = 5), whose key is klkz * l l k5 = 00101. Enciphering and de-
ciphering with the shift register is shown in Figures 3-7 and 3-8, respectively.

The shift-register circuits in Figures 3-7 and 3-8 can be represented ana-
lytically by the delay operator (D). If r represents the delay of one shift
register, then the transfer function of n shift register stages can be repre-
sented by D”r. The input and output sequences are represented by x(t - nr)
and y(t - nr), respectively.

All additions are done with Exclusive-ORs and therefore obey modulo 2
rules. All operations are linear. From Figure 3-7, it follows that

y(t) = x(t)[(D2r CB 1)D3r d 11

= x(t)(D5 @ D3 @ 1)
(3-7)

where the r notation is dropped for purposes of convenience. Similarly,
analysis of the circuit in Figure 3-8 shows that

w(t) = [w(t)[(D’ @ 1)D2] @ y(t)]D

= w(t)(D5 @ D3> @ y(t)D

and so

y(t)D = w(t)(D5 d D3 @ 1) (3-W

4@ 1972 Hayden Publishing Co. The text describing the method to be used is reprinted
from Electronic Design, November 9, 1972 [lo].

Input x(t)
L v

- FF5 __+ FFq FF3 __) FF2 _I, FF1 -b(

l

4

. r(t)

v

Clock Pulses

Y(t) = x(WW

Figure 3-7. Plaintext Auto-Key Cipher Operating in Encipher Mode

output

c
y(t)

Input
h

Y(t)

AL
, * output

FF3 + FF2 FFl -
w(t)

+ A A

Clock Pulses

A I

Figure 3-8. Plaintext Auto-Key Cipher Operating in Decipher Mode

Input Encipher ((7

Deciphe‘;Y
-- - P

Clock Pulses

Switch SW is shown set in decipher mode.

-4
, output

F--+

Figure 3-9. Plaintext Auto-Key Cipher Using Linear Shift Registers

DESIGN CRITERIA 133

Multiplying Equation 3-7 by D results in

y(t)D = x(t)D(D5 @ D3 8 1)

and so, from Equation 3-8 it follows that

w(t) = x(t)D

Thus the final output of the pair of cascaded circuits shown in Figures 3-7
and 3-8 equals the input delayed by 1 bit. The original input text x(t) is
correctly recovered as w(t) delayed by 1 bit.

A generalized combined encipher/decipher circuit is shown in Figure 3-9.
In general, the scheme with arbitrary feedback-with switches k, to k,
arbitrarily set (see Figure 3-9)-can be broken with any 2n bits of clear and
corresponding ciphertext. Breaking the cipher involves determining the switch
settings and the initial states of the flip-flop stages. Once these conditions are
known, the complete text can be deciphered.

Consider the n&age circuit in Figure 3-9. Assume that the plaintext data
consisting of bits x(l), x(2), . . . , x(2n) and the corresponding ciphertext
data YW, y(2), . . . , y(2n) are known. The most important information-the
cryptographic key-is represented by the states (open and closed) of the
various switches kr, kz, . . . , k,.

An open switch at point i is specified by ki = 0, whereas a closed switch at
point i is specified by ki = 1. The initial states of the shift register stages are
designated by zl, z2, . . . , z,, where each Zi can assume the values of 1 or 0.

An analysis of the 5stage linear shift register scheme indicates that the
cipher can be represented by

x(l) @Y(l) = Zl

x(2) @ y(2) = k,x(1) 8 z2

x(6) @ y(6) = k,x(5) @ k,x(4) @ k,x(3) @ l l l @ k,x(l)

x(10) @ ~(10) = k,x(9) @ k2x(8) d k,x(7) @ l - - d k,x(5)

and is also represented in matrix form in Figure 3-10. All additions and
multiplications are performed modulo 2.

Let the switch settings of k, , k,, . . . , k5 correspond to the configuration
of Figure 3-7. Therefore, the ratio of y(t) to x(t) within the circuit, as previ-
ously derived in Equation 3-7, is

For example, the input signal

x(l), x(2), . * . ,x(10) = 1011100001

134 THE DATA ENCRYPTION STANDARD

is represented by delay operators as

(1 @ D2 @ D3 @ D4 8 D9)

Multiplying

(Ds @ D3 @ l)(l d D2 @ D3 @ D4 @ D9)

and noting that in modulo 2 addition D” @ D” = 0 and ignoring values where
n > 10 results in

Y(l), Y(2), * * * ,y(lO)= leD2@D4@D6@D8

= 1010101010

and

r(l), r(2), . . . , r(lO) = 0001001011

Although the 10 unknowns, ki through k5 and z1 through zs, can be derived
from the 10 equations represented by the matrix shown in Figure 3-10, to
simplify the computation it is assumed that all register stages are initially
reset (zi = z2 = . . . = z5 = 0). In this case, only the entries in the lower left
quarter of the matrix equation must be derived. This results in

Substituting values for x and y, one obtains

0

1

0 =

1

1

‘1 1 10 1

01110

. 1

00111

00011

00001

which results in

ki Q k2 @ k3 @ k, = 0

kz @ k3 @ k4 = 1

ka @ k4 @ kS = 0

k4 @ k, = 1

k, = 1

k,
kz
k3
k4
k5

I

JN)@YU)
x (2)@Y (2)
X(3)@Y (3)
x (4)@Y (4)
X(5)@Y(5) ----m--
X(6)@Y(6)
X(7)@Y (7)
X@)@Y (8)
XP)@Y (9)

wB@Yw3

=

0 0 0 0 0 11 0 0 0 0
x(1) 0 0 0 0 lo 1 0 0 0
x(2) x(1) 0 0 0 10 0 1 0 0
x(3) x(2) x(1) 0 0 10 0 0 1 0
x(4) x(3) x(2) x(1) 0 to 0 0 0 1 .----------------+--------------
x(5) x(4) x(3) x(2) x(1) to 0 0 0 0
x(6) x(5) x(4) x(3) x(2) 10 0 0 0 0
x(7) x(6) x(5) x(4) x(3) 10 0 0 0 0
x(8) x(7) x(6) x(5) x(4) 10 0 0 0 0
x(9) x(8) x(7) x(6) x(5)10 0 0 0 0

By arranging the enciphering circuit’s variables and constants in a matrix, the established-rules- of matrix
maniputation can be used to crack the cipher with only (2n) bits of plaintext and corresponding ciphertext
(n = flip,flop stages).

Figure 3-10. Matrix Representation of the Variables and Constants for a 5-Stage Linear Shift Register Enciphering
Circuit Using Plaintext Feedback

136 THE DATA ENCRYPTION STANDARD

Solving these five simultaneous equations yields

k, =0

k2 = 0

k3 = 1

k4 = 0

k5 = 1

Instead of this procedure, a more elegant approach is to calculate the inverse
of the 5 X 5 matrix:

‘k,’ 11010 d

k2 01101 1

k3
= 00110 0 =

k4 00011 1

F5 I. 00001 1

In the previous section, it was noted that some randomly chosen sets of 2n
bits of plaintext and corresponding ciphertext will not provide the informa-
tion needed to solve the 2n unknowns. These same considerations apply to
the present situation. Hence to increase the likelihood of a solution more
than 2n bits are required (an additional 9 bits will suffice in most situations).

For those applications where an accomplice can be used to send a prede-
termined message, a shortcut for obtaining the key can be employed. First,
enough zero bits are sent to reset all the shift register stages to zero. (This
has been achieved when the ciphertext consists of all zeros.) Next, any con-
venient message (at least n + 1 bits long) starting with a 1 bit is sent. The
key can then be determined by a simple tabular approach.

Since all initial conditions are represented by zeros, the following general
relationship holds:

x(t) @ y(t) = 2 kiX(t - ir)
i=l

Initially, it is assumed that all possible feedback paths are used. The input
message X = 10 11100001 is used as before and delayed step by step, one
unit at a time, up to 5 units (see Table 3-6). (Note that Y = 1010101010.)
Because all shift register stages are reset to 0, zeros can be inserted to fill out
the locations in front of the delayed input message. Asterisks indicate the
zeros that are appended to the front of the message (see Table 3-6).

Bits in position 2 show that there are zeros in the plaintext and ciphertext.
Because x(t -7) shows a 1 in bit position 2, it can be concluded that x(t - r)
cannot contribute to the output. Hence it follows that k1 = 0.

DESIGN CRITERIA 137

Bit Position 1 2 3 4 5 6 7 8 9 10 Conclusion

Input X(t) 1011100001

X(t-T) *101110000 k, =0

x(t - 2T) * * 10111000 k,=O

X(t-37) * * * 1011100 k, = 1

X(t-4T) * * * * 101110 k,=O

X(t--ST) * * * * * 1 0 1 1 1 k, = 1

output Y(t) 1010101010

Table 3-6. Chosen Plaintext Attack Against a Plaintext Auto-Key Cipher

In a similar manner, x(t - 27) and x(t - 47) cannot contribute. Therefore,
k2 = k4 = 0. Finally, it can be concluded that k3 = k5 = 1, a result that
agrees (again) with the actual switch positions. It should be observed that
only n + 1 bits of plaintext and corresponding ciphertext were needed in
this case to determine the key.

Designing a Cipher’

The methods for attacking a cryptographic algorithm fall into two categories:
cryptanalysis and “brute force,” or exhaustive, methods. Exhaustive methods
can be further divided into two subcategories: key exhaustion and message
exhaustion.

Exhaustive attacks are easily thwarted either by adjusting certain param-
eters in the algorithm, such as blocksize (if a block cipher is used) and key
length, and/or by restricting the way a cryptographic procedure or system
uses the algorithm, such as requiring the use of initializing vectors and
chaining. The major challenge in algorithm design is to devise a procedure
that can withstand determined efforts at cryptanalysis.

A successful method of cryptanalysis is often called a shortcut solution.
A shortcut solution is defined here as a cryptanalytic break to distinguish it
from an exhaustive break. In the former case the algorithm must be rede-
signed, whereas in the latter case the problem may be remedied by the way
the algorithm is implemented (e.g., by using block chaining, multiple encryp
tion, and the like).

‘0 1978 IEEE. Reprinted from Proceedings COMPCON 78 [1 I].

138 THE DATA ENCRYPTION STANDARD

Shortcut Methods

Cryptanalytic or shortcut methods can be divided into two subcategories:
deterministic or analytical methods, and statistical methods. In a determin-
istic approach, the cryptanalyst first attempts to express a desired unknown
quantity (such as the key or message) in terms of some other known quantity
or quantities (such as given cipher-text, or given plaintext and corresponding
ciphertext) whose relationship to the unknown quantity depends on the
nature of the algorithm. Then the cryptanalyst solves for the unknown
quantity.

Let Y denote the ciphertext produced by enciphering plaintext X with
cryptographic key K, and let fk represent the function that relates X and Y:

Y = fx(X)

In a deterministic attack against the key, the opponent tries to find a funo
tion F, where

K = F(X, Y)

such that F can be represented by an easily computed procedure.
In a poorly designed algorithm, it may be possible to solve for the key by

decoupling F into a set of equations

kl = F,(Y, X)
kz = F,O’, X, k,)

.

k,=F,(Y,X,kl,...,k,-1)

and then to solve for the key bits ki, k2, . . . , k,, one at a time. While ana-
lytical methods will generally succeed in breaking an algorithm that uses
linear functions, this method of attack can be effectively thwarted if the
algorithm makes use of nonlinear functions of sufficient complexity.

In a statistical approach, the cryptanalyst attempts to exploit statistical
relationships between plaintext, ciphertext, and key. Consider a simple sub-
stitution cipher on English text. It can be shown (Chapter 12) that about
100,000 characters of ciphertext are required to deduce the key when only
letter frequency statistics are used in the analysis. However, only about 300
characters of ciphertext are required to recover the key when digram statistics
are used [121. It can be shown that the theoretical limit is about 25 charac-
ters (Chapter 12).

To thwart statistical attacks, the algorithm’s output (ciphertext) should be
pseudo-random. In other words, for a large set of plaintext and key inputs,
one must not be able, on the basis of statistical analysis, to reject the hypoth-
esis that the output bit stream is random.

During the validation of DES, no shortcut solution could be found by its
investigators, including the NSA [131. This same conclusion was reaffirmed

DESIGN CRITERIA 139

in September 1977 at a workshop conducted by the National Bureau of
Standards, Institute for Computer Sciences and Technology (ICST), to in-
vestigate the complexity of the DES algorithm [141. Though additional
attempts to break DES have been made, the authors are unaware of any
shortcut method that can solve for even a single bit in the key.

Brute Force Methods

In a brute force approach, one attempts to find a desired unknown quantity
(such as the message or key) by using a method of direct search, trial and
error, or exhaustion. In key exhaustion, a known plaintext is enciphered
with a trial key and the output is compared for equality with a given cipher-
text. (The attack assumes that the cryptographic algorithm is known to the
opponent, and that plaintext and corresponding ciphertext are available for
analysis.) If the comparison is favorable, then the trial key is a candidate for
the unknown key. While in theory the correct key can always be found by
repeated trials, in practice the attack is thwarted if the computational and
data storage requirements are too great, or if the cost of the attack is too
great.

In August 1976, ICST sponsored .a workshop to determine the feasibility
of building a machine that could recover a 56-bit DES key from a given
fragment of plaintext and corresponding ciphertext [151. The workshop
participants were asked to design a hypothetical key-exhaustion machine
using their own specialized knowledge and taking full advantage of anticipated
technical advances. Factors to be considered were the architecture of such
machines, types of circuitry, speed of operation, reliability and maintain-
ability, size, power, and cooling requirements.

The members of the workshop, which included 20 representatives from
industry, research organizations, universities, and government agencies,
together with a number of ICST staff members, reached the following
conclusion:

A machine which finds, on the average, one key per day could probably not be built
until 1990 and the probability factor of it being available even then is estimated to
be between .l and .2. In addition, the cost of such a machine would be several
tens of millions of dollars.

While it is important to determine the work factor for key exhaustion,
and therefore to establish how vulnerable the algorithm is to this method of
attack, it is far more important to establish that the algorithm has no short-
cut solution. When the algorithm has no shortcut solution, its effective key
length, and hence the work factor to perform key exhaustion, is determined
by the way the algorithm is implemented in a particular cryptographic pro-
cedure or system.

By using multiple encryption methods, DES’s effective key length can be
increased to any desired value [161. And there are efficient ways to expand
the key in a migratable way. This, in effect, allows strong DES-based crypto-
graphic procedures and systemi to be used for an indefinite period (as long
as no shortcut solution is found).

140 THE DATA ENCRYPTION STANDARD

Under the assumption that an opponent can exercise the cryptographic
device containing an unknown key, it is possible in theory to build a dic-
tionary of plaintext and corresponding ciphertext-by enciphering all pos-
sible plaintext combinations-that would then allow the opponent to recover
messages without ever solving for or knowing the key. But in practice this
form of message exhaustion is thwarted if the computational and data stor-
age requirements to build and store the dictionary are too great.

To improve efficiency, exhaustive methods may use a combination of pre-
computed tables together with a method of direct search, although the con-
struction of such tables may also take days, months, or even years.

Effective countermeasures to thwart exhaustive methods are obtained by

1. Making both the effective key length and blocksize (if a block cipher
is used) large enough, and/or

2. “Whitening” the plaintext and/or ciphertext by adding pseudo-random
“noise” to the message. In a block cipher, this can be achieved by the
use of initializing vectors combined with block chaining techniques,
whereas in a stream cipher, it is automatically achieved as a result of
the required initializing vector (see Chapter 2).

For some applications, whitening may be necessary even if the algorithm’s
key length and blocksize are large. For example, if “buy” and “sell” are the
only possible messages ever sent by the application, then a dictionary with
only two entries would be enough to defeat the intended security, and
therefore some type of whitening would be mandatory.

In summary, a well-designed cryptographic algorithm is one that will
withstand all known shortcut and brute force methods of solution. But it
should also be realized that if an algorithm has no shortcut solution, then it
can always be implemented in such a way that the minimum work factor of
all brute force attacks is larger than any desired value.

Classified Design Principles

History has shown that many supposedly strong ciphers were broken using
cryptanalysis (e.g., the Japanese PURPLE cipher and the German Enigma
cipher used during World War II). These ciphers were cracked despite the
fact that the design principles and the methods of analysis to validate the
algorithm’s strength were not available to the cryptanalyst. In fact, it can
be argued that a cryptanalyst would be better off unprejudiced by knowl-
edge of the design principles and methods of analysis used to validate the
algorithm’s strength.

Some of the methods of analysis used by IBM to validate the DES, and all
such methods used by NSA, have been classified by the U.S. government.
Therefore, some critics of DES have inferred that one cannot be sure that
statements by IBM and NSA about DES are as claimed. To answer this
criticism, the Senate Committee on Intelligence conducted an investiga-
tion into the matter. The following summarizes the conclusions that were
reached [13] .

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 141

1. DES is more than adequate for its intended applications.

2. IBM invented and designed DES.

3. NSA did not tamper with the design.

4. NSA certified that the DES was free of any known statistical/maths
matical weakness.

5. NSA recommended that the Federal Reserve Board use DES for
electronic funds transfer applications.

DESCRIPTION OF THE DATA ENCRYPTION STANDARD

Although a complete description of the DES algorithm has been published
[51, the reader may find that treatment difficult to follow. For this reason,
a more detailed description of the algorithm is given here, providing the
reader with a greater insight and understanding of DES’s operation. A nu-
merical example of a one-round encryption is also given. (Frequent references
are made to the description of the DES, which is reprinted in its entirety,
including original page numbers, in Appendix A.)

A block cipher design consisting of n rounds of encipherment/decipherment
is described in Chapter 2. The steps performed at each round are summarized
below.

1. The input block is split into two parts, a left half and a right half.

2. The right half (step 1) is then operated on using a cipher function g
(see Figures 2-5 and 2-6).

3. This output (step 2) is combined (via an Exclusive-OR operation)
with the left half (step 1).

The particular design has the property that the ciphering process can be re-
versed regardless of the nature of function g. This is accomplished merely by
reversing the order in which the keys are exercised at each round in the
ciphering process. For example, if during encipherment the keys are exer-
cised in the order K(1) through K(n), then during decipherment they must
be exercised in the order K(n) through K(1).

The block cipher design described above is also used in DES, where n = 16
and K(1) through K(16) are 4%bit keys. For reasons of security, all of these
keys should be different. This is achieved by selecting, at each round, a dif-
ferent subset of 48 bits from the 56-bit key supplied to the algorithm. This
procedure (key schedule calculation) is based on a simple shifting and bit-
selection algorithm. Figure 3-11 illustrates the key schedule calculation used
for encipherment. For decipherment, left shifts become right shifts, except
for the shift performed between (C,, Do) and (C,, Di), which is not required.
(See the discussion below.)

The key schedule calculation begins with an initial permutation defined
by permuted choice 1, PC-1 (see page 16 of [5 I). PC-l, which is the same for
encipherment and decipherment, selects 56 of the 64 external key bits (in

I Key I

I
K(l)

.

.

I
K(n)

I
KW)

Figure 3-11. Key Schedule Calculation for Encipherment

142

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 143

Iteration
Number i

Number of
Left Shifts

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1

10 2
11 2
12 2
13 2
14 2
15 2
16 1

Table 3-7. Shift Schedule for Encipherment

effect stripping off the parity bits) and loads them into two 28-bit shift
registers (C and D). Thus parity checking of the external key must be per-
formed prior to PC-l.

During an enciphering operation, the contents of registers Ci- 1 and Di- 1
are shifted one or two positions to the left, according to the schedule of left
shift operations (page 18 of [5 I), as shown in Table 3-7. K(i) is then de-
rived from (C, DJ via a second permutation defined by permuted choice 2,
PC-2 (page 18 of 151). Moreover, the shift schedule is such that Cl6 = CO
and Dr6 = D,,.

During a decipher operation, K(16) must be used in round one, K(15)
in round two, and so forth. But the contents of registers C,, and Da are the
same for enciphering and deciphering, since the external key is loaded in
both cases via PC-I. This means that K(16) can be created at round one
merely by omitting the first shift operation, K(15) can be created at round
two by shifting CO (C,,) and D,(D16) one bit to the right, and the remainder
of the internal keys can be created in the same manner using the shift
schedule in Table 3-7, except that left shifts are changed to right shifts.

Generation of Key Vectors Used for Each Round of DES

Let the externally entered key K (including parity bits stripped off before
the key is used by DES) be defined as

K = k,, k,, . . . , kb4

144 THE DATA ENCRYPTION STANDARD

The permuted choice PC-l (page 16 of [51) determines how 56 of these ini-
tial 64 bits are loaded into two 28-bit registers, C,-, and Do:

co = b 9 km, k,l, k,, , kzs, ki, , k, ,

kl,kss,kso,k42,k34,k26,k1s,

k 10, kz,k59,k5i,k43,ks5, k2,,

k,g >ku, k3>k6o,kmkd%s,

Do = ka, ks, k4, , k,, , k3r, k,, , k,, ,

k,,k62,k54,k46,k3s,k30,k22,

k 14, k6,k61,k53,k45,k3,,k29,

kz > kn 3 k, 3 km, ho, kn , k4

It can be seen that bits 57, 49, and 41 of K are the first, second, and third
bits of register Co, respectively, while bits 63, 55, and 47 of K are the first,
second, and third bits of register Do, respectively. It can also be observed
that the 64 input bits have been reduced to 56 bits, because the parity bits
kg, ki6, k24, k32, k40, k4s, ks6, and kM have been systematically removed as
part of the initial loading process.

The key vectors K(l), K(2), . . . , k(16), which consist of 48 key bits
each, cannot be created until the vectors C1 through Cl6 and Di through Di6
(Figure 3-1 l), which consist of 28 key bits, have been formed. These vectors
are derived by using the schedule given on page 18 of [5] and Table 3-7.

Let (Ci, Di) denote the concatenation of registers Ci and Die In general,
(Ci+ 1, Di+ 1) is produced from (Ci, Di) by shifting the bits in Ci and Di,
respectively, one or two positions to the left. The shifting employs wrap-
around (i.e., bits shifted off the left side of the register are reinserted at the
right side of the register). The results are shown in Tables 3-8 and 3-9. As an
example, it can be seen that Ci, Dr) is derived from (Co, Do) by shifting the
bits in Co and Do one position to the left.

Permuted choice 2 (PC-2) is the rule (page 18 of [53) that defines how the
48-bit key vectors K(l), K(2), . . . , K(16) are derived from the vectors
(C,, Di), CC,, Dz), . . . , (CM, Did, respectively. The bit patterns stored in
registers Ci and Di are referred to here also as vectors Ci and Dip respectively.
Specifically, K(i) is derived from (C, Di) by taking the key bits located in
positions

14,17,11,24, 1,5, 3,28,15, 6,21,10

23, 19, 12, 4,26,8, 16, 7, 27, 20, 13, 2
(3-9a)

from vector Ci and concatenating them with the key bits located in positions

41, 52,31,37,47,55,30,40, 51, 45, 33, 48

44,49,39,56,34,53,46,42, 50, 36, 29, 32
(3-9b)

from vector Die

Round Index of Elements in Vector Ci Round

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 (1)

1 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 57 1
2 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 57 49 2
3 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 57 49 41 33 3
4 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 57 49 41 33 25 17 4
5 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 57 49 41 33 25 17 9 1 5
6 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 57 49 41 33 25 17 9 1 58 50 6
7 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 57 49 41 33 25 17 9 1 58 50 42 34 7
8 10 2 59 51 43 35 27 19 11 3 60 52 44 36 57 49 41 33 25 17 9 1 58 50 42 34 26 18 8
9 2 59 51 43 35 27 19 11 3 60 52 44 36 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 9

10 51 43 35 27 19 11 3 60 52 44 36 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 10
11 35 27 19 11 3 60 52 44 36 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 11
12 19 11 3 60 52 44 36 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 12
13 3 60 52 44 36 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 13
14 52 44 36 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 14
15 36 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 15
16 57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59 51 43 35 27 19 11 3 60 52 44 36 16

k,,, k,,, k,,, etc. are the lst, 2nd, 3rd, etc. key bits in C,, i.e., in register C during the 1st round.

Table 3-8. Key Bits Stored in Register (C) for Each lndividual Round

Round Index of Elements in Vector Di Round

(i) 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 (i)

1 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 63 1

2 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 63 55 2

3 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 63 55 47 39 3

4 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 63 55 47 39 31 23 4
5 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 63 55 47 39 31 23 15 7 5

6 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 63 55 47 39 31 23 15 7 62 54 6

7 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 63 55 47 39 31 23 15 7 62 54 46 38 7

8 14 6 61 53 45 37 29 21 13 5 28 20 12 4 63 55 47 39 31 23 15 7 62 54 46 38 30 22 Z
9 6 61 53 45 37 29 21 13 5 28 20 12 4 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 9

10 53 45 37 29 21 13 5 28 20 12 4 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 10
11 37 29 21 13 5 28 20 12 4 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 11
12 21 13 5 28 20 12 4 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 12

13 5 28 20 12 4 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 13
14 20 12 4 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 14
15 4 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 15
16 63 55 47 39 31 23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21 13 5 28 20 12 4 16

Table 3-9. Key Bits Stored in Register (D) for Each Individual Round

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 147

This rule used in conjunction with the Cr and Di vectors given in Tables
3-8 and 3-9 allows the evaluation of key vector K(i). The first 24 bits of
K(i) which are derived from Ci are shown in Table 3-l 0. The second 24 bits of
K(i) which are derived from Di are shown in Table 3-l 1. The total key vector
K(i) associated with the ith round is thus obtained by concatenating row i from
Table 3-10 with row i from Table 3-l 1. The entries in Tables 3-10 and 3-l 1
correspond to the indices of the associated key bits within the key ki, kz,
. . . , ka which are to be used. For example, from Tables 3-10 and 3-l 1, it
can be seen that

K(l) = klo, k51, . . - , k41, km bs, . . . > k31

K(2) = kz, k43, . . . , k33, km ho, - - . , k23

K(l6) = km, km . . . , km kso, ks, . . . , kw

Observe that Cl6 = Co and D,, = Do. This results in the following differ-
ence between encipherment and decipherment. Since the externally supplied
key is the same for encipherment and decipherment, the bit patterns in regis-
ters Co and Do are independent of the chosen operation. During encipherment,
the process starts with K(1). This requires that (C,, Di) be created from
(Co, Do) by one left shift, and K(1) be created from (C,, Di). During deci-
pherment, the process starts with K(16). However, since (Ci6, Di6) equals
(Co, Do), it follows that K(16) can be created from (Co, Do) directly (i.e., an
initial left shift is not required). The shift schedule is, of course, traced then
in reverse order, left shifts becoming right shifts.

Weak and Semiweak Keys

It must be realized that the mathematical complexity of the DES algorithm,
and hence its cryptographic strength, would be reduced if the internal keys
at each round were the same. For this reason, the condition K(1) = K(2) =
. . . = K(16) should be avoided.

There is, however, a set of weak keys within DES which satisfy the above
condition. This occurs whenever the bits in register C are all ones or zeros,
and the bits in register D are all ones or zeros. In this case, C1 and D, are,
respectively (see Tables 3-8 and 3-9),

ke9 = k4i = . . . = ks7 = 0 or 1

and

ks5 = k4, = . . . = kh3 = 0 or 1

Round Index of Elements in Vector K(i) Round

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (i)

1 10 51 34 60 49 17 33 57 2 9 19 42 3 35 26 25 44 58 59 1 36 27 18 41 1

2 2 43 26 52 41 9 25 49 59 1 11 34 60 27 18 17 36 50 51 58 57 19 10 33 2

3 51 27 10 36 25 58 9 33 43 50 60 18 44 11 2 1 49 34 35 42 41 3 59 17 3

4 35 11 5949 94258 17273444 2576051 5033 18 1926255243 1 4

5 19 60 43 33 58 26 42 1 11 18 57 51 41 44 35 34 17 2 3 10 9 36 27 50 5

6 3 44 27 17 42 10 26 50 60 2 41 35 25 57 19 18 1 51 52 59 58 49 11 34 6

7 52 57 11 1 26 59 10 34 44 51 25 19 9 41 3 2 50 35 36 43 42 33 60 18 7

8 36 41 60 50 10 43 59 18 57 35 9 3 58 25 52 51 34 19 49 27 26 17 44 2 8

9 57 33 52 42 2 35 51 10 49 27 1 60 50 17 44 43 26 11 41 19 18 9 36 59 9

10 41173626511935593311504434 15727106025 3 2584943 10

11 25 1 49 10 35 3 19 43 17 60 34 57 18 50 41 11 59 44 9 52 51 42 33 27 11

12 9 50 33 59 19 52 3 27 1 44 18 41 2 34 25 60 43 57 58 36 35 26 17 11 12

13 58 34 17 43 3 36 52 11 50 57 2 25 51 18 9 44 27 41 42 49 19 IO 1 60 13

14 4218 12752493660344151 935 2585711252633 3595044 14

15 26 2 50 11 36 33 49 44 18 25 35 58 19 51 42 41 60 9 10 17 52 43 34 57 15
16 18 59 42 3 57 25 41 36 10 17 27 50 11 43 34 33 52 1 2 9 44 35 26 49 16

Index of Selected Element in Vector Ci (Obtained from PC-2)

14 17 11 24 1 5 3 28 15 6 21 10 23 19 12 4 26 8 16 7 27 20 13 2

Table J-10. First Set of 24 Key Bits in K(i), the Key Used at Round (i)

Round Index of Elements in Vector K(i) Round

(i) 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 (i)

Index of Selected Element in Vector Di (Obtained from PC-2)

41 52 31 37 47 55 30 40 51 45 33 48 44 49 39 56 34 53 46 42 50 36 29 32

1 22 28 39 54 37 4 47 30 5 53 23 29 61 21 38 63 15 20 45 14 13 62 55 31 1
2 14 20 31 46 29 63 39 22 28 45 15 21 53 13 30 55 7 12 37 6 5 54 47 23 2

3 61 4 15 30 13 47 23 6 12 29 62 5 37 28 14 39 54 63 21 53 20 38 31 7 3
4 45 55 62 14 28 31 7 53 63 13 46 20 21 12 61 23 38 47 5 37 4 22 15 54 4

5 29 39 46 61 12 15 54 37 47 28 30 4 5 63 45 7 22 31 20 21 55 6 62 38 5
6 13 23 30 45 63 62 38 21 31 12 14 55 20 47 29 54 6 15 4 5 39 53 46 22 6
7 28 7 14 29 47 46 22 5 15 63 61 39 4 31 13 38 53 62 55 20 23 37 30 6 7
8 12 54 61 13 31 30 6 20 62 47 45 23 55 15 28 22 37 46 39 4 7 21 14 53 8
9 4 46 53 5 23 22 61 12 54 39 37 15 47 7 20 14 29 38 31 63 62 13 6 45 9

10 55 30 37 20 7 6 45 63 38 23 21 62 31 54 4 61 13 22 15 47 46 28 53 29 10
11 39 14 21 4 54 53 29 47 22 7 5 46 15 38 55 45 28 6 62 31 30 12 37 13 11
12 23 61 5 55 38 37 13 31 6 54 20 30 62 22 39 29 12 53 46 15 14 63 21 28 12
13 7 45 20 39 22 21 28 15 53 38 4 14 46 6 23 13 63 37 30 62 61 47 5 12 13
14 54 29 4 23 6 5 12 62 37 22 55 61 30 53 7 28 47 21 14 46 45 31 20 63 14
15 38 13 55 7 53 20 63 46 21 6 39 45 14 37 54 12 31 5 61 30 29 15 4 47 15
16 30 5 47 62 45 12 55 38 13 61 31 37 6 29 46 4 23 28 53 22 21 7 63 39 16

Table 3-11. Second Set of 24 Key Bits in K(i), the Key Used at Round (i)

150 THE DATA ENCRYPTION STANDARD

Thus there are four weak keys altogether and they are represented by the
following (parity-adjusted) external keys:

01 01 01 01 01 01 01 01
1F 1F 1F 1F OE OE OE OE
EO EO EO EO Fl Fl Fl Fl
FE FE FE FE FE FE FE FE

Weak keys also have the property that there is no difference between the
operations of encipherment and decipherment. Whereas, in general, the rela-
tions DxEx(X) = X and ExDk(X) = X hold for any key K and plaintext X,
the special relation EkEk(X) = X also holds for weak keys. Moreover, since
DkDxExEk(X) = X, the relation DkDx(X) = X also holds.

There is another set of keys defined as semiweak. These have the property
that only two different internal keys are produced, each occurring eight
times. A semiweak key occurs whenever

1. Register C or D contains bit pattern 0101 . . . 0101 or 1010. . . 1010.

2. The other register (D or C) contains bit pattern 0000 . . . 0000, 1111
. . . 1111,0101.. .OlOl,or 1010.. . 1010.

An alternating sequence of 0 and 1 bits has the interesting property that no
matter how the sequence is shifted only two bit patterns are produced in
registers C and D, namely, 0101 . . . 0101 and 1010. . . 1010.

By way of illustration, let register Co contain 1010 . . . 1010 and register
De contain 0101 . . . 0 10 1. The bit patterns shown in Table 3- 12, from which
the internal keys are derived, are produced in registers Ci and Die

In the above example, Ci and D1 (see Tables 3-8 and 3-9) are, respectively,

kg, k4,, . . . , kJ6, k5, = 01 . . . 01

and

kS5, k4,, . . . , k4, kb3 = 10.. . 10

which results in (parity-adjusted) external key

K ol,lo = 1F EO 1F EO OE Fl OE Fl

where the subscripts (01 and 10) indicate the repeating bit patterns in C,
and D,.

Let K denote Kol,io. Note that one can recover plaintext also by applying
the encipher operation, since there is a K’ (where K’ # K) whose internal
keys satisfy the relation

K’(i) = K(17 - i) fori=1,2,...,16

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 151

Index Number of Content of Register Content of Register
i Left Shifts Ci (28 bits) Di (28 bits)

0 1010...1010 0101...0101
1 1
2 1

0101...0101 1010...1010

3 2
1010...1010 0101...0101
1010...1010 0101...0101

4 2
5 2

1010...1010 0101...0101
1010...1010 0101 . ..OlOl

6 2
2

1010...1010 0101 . ..OlOl
7 1010...1010 0101 . ..OlOl
8 2

1
1010...1010 0101 . ..OlOl

9 0101...0101 1010...1010
10 2 0101...0101 1010...1010
11 2 0101 . ..OlOl 1010...1010
12 2

2
0101...0101 1010...1010

13 0101 . ..OlOl 1010...1010
14 2

2
0101 . ..OlOl 1010...1010

15
1

0101...0101 1010...1010
16 1010...1010 0101...0101

Table 3-12. Example of an Enciphering Key Which Produces Only TWO

Different Internal Keys

(a fact pointed out by D. W. Davies and W. L. Price of the National Physical
Laboratory, Teddington, Middlesex, England). In the example, (C, , D1) =
(C16, D,,) = (1010.. . 1010,0101 . . .
Tables 3-8 and 3-9) are, respectively,

OlOl), and therefore C, and D, (see

km k41, . . . , kS6, k,, = 10.. . 10

and

kss, b, - . .,k4,k63=01...01

which results in (parity-adjusted) external key

K 10,01 = EO 1F EO 1F Fl OE Fl OE

Note that Kmol is also a semiweak key, and K,-,r r,, can be used in an enci-
pher operation to recover plaintext enciphered with Krc cr. In general, it
can be shown that for any semiweak key (K) there is another semiweak key
(K’ # K) such that

&EKG) = X and ExrEx(X) = X (3-10)

152 THE DATA ENCRYPTION STANDARD

for any X. Altogether there are 12 semiweak keys. They are represented by
the (parity-adjusted) external keys shown in Table 3-13. The six pairs of
semiweak keys shown in Table 3-14 satisfy Equation 3-l 0.

There are other keys which exhibit the property of having some identical internal
keys. For example, this occurs when

1. Register C or D contains bit pattern 0011 . . . 0011, 0110 . . . 0110,
1001 . . . 1001,or 1100.. . 1100.

2. The other register (D or C) contains bit pattern 0000 . . . 0000, 0011
ibio, 0011, i loo. 0101 . . llOO,or . . . 0101, 1111.. 0110 . . 1111. . . 0110, 1001 . . . 1001, 1010.. .

Again, by way of illustration, let register Co contain 1100 . . . 1100 and
register D, contain 0011 . . . 0011. The bit patterns produced in registers Ci

K 00,Ol

K
00,lO

K
01,Oo

K
01.01

K
Ol,lO

K 01,11

K 10,OO

K
10.01

K
10,lO

K
10.11

K
11,Ol

K
11.10

= EO FE EO FE Fl FE Fl FE

= FE EO FE EO FE Fl FE Fl

= 1F FE 1F FE OE FE OE FE

= 01 FE 01 FE 01 FE 01 FE

z 1F EO 1F EO OE Fl OE Fl

= 01 EO 01 EO 01 Fl 01 FI

= FE 1F FE 1F FE OE FE OE

= EO 1F EO 1F Fl OE Fl OE

= FE 01 FE 01 FE 01 FE 01

= EO 01 EO 01 Fl 01 Fl 01

= 01 1F 01 1F 01 OE 01 OE

= 1F 01 1F 01 OE 01 OE 01

Table 3-13. List of Semiweak Keys Represented as (Parity-Adjusted)
External Keys

(Koo,ol ’ Koo, 10)
(KOl 00’ K,o,,)
(Kol:ol 3 K1o,lo)

(Ko,,,o, K,o,oJ
(KOl,w K,o,ll)
tK Kll,,o) 11.01'

Table 3-14. Pairs of Semiweak Keys (K, K’) that
Satisfy the Relation EKEKt(X) = E,fE,(X) = X for
all X

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 153

Index Number of Content of Register Content of Register
i Left Shifts Ci (28 bits) Di (28 bits)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1
1
2
2
2
2
2
2
1
2
2
2
2
2
2
1

1100...1100
1001...1001
0011...0011
1100...1100
0011...0011
1100...1100
0011...0011
1100...1100
0011...0011
0110...0110
1001...1001
0110...0110
1001...1001
0110...0110
1001...1001
0110...0110
1100...1100

0011...0011
0110...0110
1100...1100
0011...0011
1100...1100
0011...0011
1100...1100
0011...0011
1100...1100
1001...1001
0110...0110
1001...1001
01 10...0110
1001...1001
01 10...0110
1001...1001
0011...0011

Table 3-15. Example of an Enciphering Key which Produces Only Four
Different Internal Keys

and Di, from which the internal keys are derived, are shown in Table 3-15.
Each of the bit patterns-(1 100, OOll), (1001, OllO), (0011, llOO), and
(0110, lOOl)-occurs four times in the registers (Ci, Di), i = 1, 2, . . . , 16.
Moreover, the pattern of recurrence is such that the same internal key never
occurs twice in succession, although it will occur alternately. 48 (parity-,
adjusted) external keys whose internal keys recur in the manner described
are listed in Table 3-16.

Finally, the reader should realize that the described set of keys (weak,
semiweak, etc.) pose no threat to the algorithm’s security. This is be-
cause the number of such keys is small in comparison to the total set of
72,057,594,037,927,936 possible different keys. And, provided that keys
are randomly selected, the likelihood of selecting such a key in the first
place is therefore very small. However, these keys could easily be avoided
during key generation (e.g., if they were intended to be installed in a system
for relatively long periods of time).

Details of the DES Algorithm

The basic scheme for encipherment used by DES is shown in Figure 3-4.
The initial permutation (IP) and the enciphering function (g) are discussed
in more detail at this point.

Indices

(i,j)

External Key Ki,j

(Parity-Adjusted)

0011

0101

0110

0011
0110
1001
1100

0011
OlO!
0110
1001
1010
1100
1111

0011
0110
1001
1100

0011
0101
0110
1001
1010
1100
1111

IF 1F 01 01 OE OE 01 01
01 1F 1F 01 01 OE OE 01
1F 01 01 IF OE 01 01 OE
01 01 1F 1F 01 01 OE OE

EO EO 01 01 Fl Fl 01 01
FE FE 01 01 FE FE 01 01
FE EO 1F 01 FE Fl OE 01
EO FE 1F 01 Fl FE OE 01
FE EO 01 IF FE Fl 01 OE
EO FE 01 1F Fl FE 01 OE
EO EO 1F 1F Fl Fl OE OE
FE FE 1F IF FE FE OE OE

FE 1F EO 01 FE OE Fl 01
EO 1F FE 01 Fl OE FE 01
FE 01 EO IF FE 01 Fl OE
EO 01 FE 1F Fl 01 FE OE

01 EO EO 01 01 Fl Fl 01
1F FE EO 01 OE FE Fl 01
1F EO FE 01 OE Fl FE 01
01 FE FE 01 01 FE FE 01
IF EO EO 1F OE Fl Fl OE
01 FE EO 1F 01 FE Fl OE
01 EO FE 1F 01 Fl FE OE
1F .FE FE 1F OE FE FE OE

Indices

(i,j)

External Key Ki,j

(Parity-Adjusted)

1001 0000
0011
0101
0110
1001
1010
1100
1111

1010 0011
0110
1001
1100

1100 0000
0011
0101
0110
1001
1010
1100
1111

1111 0011
0110
1001
1100

EO 01 01 EO Fl 01 01 Fl
FE 1F 01 EO FE OE 01 Fl
FE 01 1F EO FE 01 OE Fl
EO 1F IF EO Fl OE OE Fl
FE 01 01 FE FE 01 01 FE
EO 1F 01 FE Fl OE 01 FE
EO 01 1F FE Fl 01 OE FE
FE 1F 1F FE FE OE OE FE

1F FE 01 EO OE FE 01 Fl
01 FE 1F EO 01 FE OE Fl
1F EO 01 FE OE Fl 01 FE
01 EO 1F FE 01 Fl OE FE

01 01 EO EO 01 01 Fl Fl
1F 1F EO EO OE OE Fl Fl
1F 01 FE EO OE 01 FE Fl
01 1F FE EO 01 OE FE Fl
IF 01 EO FE OE 01 Fl FE
01 1F EO FE 01 OE Fl FE
01 01 FE FE 01 01 FE FE
1F IF FE FE OE OE FE FE

FE FE EO EO FE FE Fl Fl
EO FE FE EO Fl FE FE Fl
FE EO EO FE FE Fl Fl FE
EO EO FE FE Fl Fl FE FE

Table 3-16. Partial List of (Parity-Adjusted) External Keys that Produces Four Equally Recurring Internal Keys

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 155

The 64bit input block of data to be enciphered,

x = x1, x2, . . . , x64

is first subjected to an initial permutation IP. This results in

L(o) = x58, x50, x42, x34, x26, x18, x10, x2,

x60, x52, x44, x36, x28, x20, x12, x4,

x62, x54, x46, x38, x30, x22, x14, x6,

x64~ x56, x48, x4O, x32, x24~ x16, x8

R(O) = x57, x49, x41, x33, x25, x17, x9, xl,

x59, x51, x43, x35, x27, xl9, x11, x3,

x61, x53, x45, x37, x29, x21~ x13, x5>

x63, x55~ x47, x39, x31, x23, x15> x7

(3-1 la)

(3-l lb)

L(0) and R(0) can be used in conjunction with the derived key vectors
K(1) through K(16) to produce L(16) and R(16), as shown in Figure 3-4.
This 64bit block of pre-output data

UlQ, Ml@ = 11(16), 12(16), - - - , ~32(16),

rl(16), r2(16), . . . , r32W)

(3-12)

is then subjected to an inverse initial permutation (IP-‘), which reverses the
effect of the initial permutation, as follows:

y = Yl, Y2, * * * > Y64

= IS, r8, h6, r16, 124, r24y 132, r32,

Ii-1 7, 7, 15~ r 15, 1 23, r 1 r 23, 31, 31,

16, r6p 114, r14, 122, r22, 130, r30,

15, r5,113, r13, 1 21, r21p 129, r29,

lrl 4~ 4, 12~ r 12, 1 20, r 1 r 20, 28, 28~

13, r3y h rll, 119, r19p 127, r27,

12, r2p 110, r10, 118, r18, 126, r26,

1, , rl , h, r9, II,, r17, 125, r25

(3-13)

where the indices, which refer to a particular round, have been dropped for
convenience of representation. The reader should observe that the inverse
initial permutation described above is different from that described on page 9
of [51. This is because the pre-output in Figure 3-4 is defined as L(16),
R(16) whereas the pre-output on page 8 of [5 1 is defined as R(16), L(16).

156 THE DATA ENCRYPTION STANDARD

It remains now only to discuss the enciphering function (g). The kernel
of this operation (i.e., a one-round operation) is shown in Figure 3-12. First,
the right half of the input to round i, denoted by

R(i - 1) = r,(i - l), rz(i - I), . . . , r,,(i- 1)

is expanded from 32 bits to 48 bits, denoted by E(R(i - l)), using the E Bit-
Selection Table (page 11 of [51). The result is

NW- 1)) r32, rl, r2, r3, r4, r5,

r4 y r5, r63 r7, r8F r9,

r8, r9y hO~rll~ r12, r13,

r12, r13y r14, r15p r16p r17T

r16y r17, r18, r19, r20, r21,

r20, r2h r22, r23, r24, r25,

r24, r25, r26, r27, r28, r29,

r28y r29p r30F r31, r32, rl

(3-14)

where the indices again have been dropped for convenience of representation.
The expansion scheme is shown in Figure 3- 13. The purpose of using the E
expansion is to achieve a dependence of each bit of ciphertext on all plain-
text and key bits in as few rounds as possible.

Once E(R(i - 1)) is generated, it is added modulo 2 to K(i). This results in
a 48-bit vector A.

A = E(R(i - 1)) @ K(i)
(3-15)

= al, a2,. . . , a48

(Although A is different for each round, and hence should be indexed by i,
to avoid confusion this is not done here. In Figure 3-12, the elements of
vector A are used as arguments in the substitution operations (S-boxes)
Sl through S8 (pages 15 and 16 of [S]). Each S-box is described as a matrix
of four rows (labeled 00, 01, 10, 11) and 16 columns (labeled 0000, 0001,
. . .) 1111).

Each S-box can now be represented by four substitution functions,
Sy”, SF’, St”, S:’ for S-box Sip where the superscript identifies the row of
the matrix, each mapping four input bits (which determine the column of
the matrix) to four output bits given by the element of the matrix. The first
and last of the six entries to DES substitution box Si in Figure 3- 12 determine
which of the four substitution functions in Si are selected. Because these
bits are derived from input bits as well as key bits, the selection of substitu-
tion functions depends not only on the key but also on the input data. Thus
the E expansion, in effect, introduces an autoclave or self-keying feature. Be-
cause i ranges from 1 to 8, 32 functions are obtained with the eight S-boxes.

I L(i- 1) I

32 bits

48 bits

(

Bit-By-Bit
Modulo 2 Addition 1

K(i)

I E(R(i - l))@K(i) = A

Permutation

I L(i)=R(i- 1) 1
32 bits 32 bits

Figure 3-12. Details of Enciphering Function (g)

157

. .

. .

. .

158

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 159

With al through a6 being the inputs to the first S-box,

WYa2, a3, a4, a51

represents the first four bits of B (i.e., bits bi through b4). The last four bits,
from Ss, (i.e., bZ9 through b3*) are given by

Knowledge of the 48 bits represented by vector A therefore allows one to
determine the 32 bits represented by vector B. By permuting the elements of
B (page 12 of [5]), one obtains P(B), where P stands for permutation.

bl~bls,bm,b6, bs,bia,b3r,bl,,,

‘32, bd’24,bl4,b32,b2,, b,, b,,

b19 3 b23 3 b,,, b6 , b22, bll , b,, bzs

(3-16)

The output of round i thus becomes

L(i), R(i) = R(i - l), P(B) @ L(i - 1)

By recognizing that P(B) is a function g of K(i) and R(i
relationship can be established:

L(i) = R(i - 1)

Initialization:

R(i) = L(i - 1) @ g[K(i), R(i - l)]

Summary of the DES Procedure

l), the following

(3-17)

(3-18)

1. Specify the 64-bit, externally supplied, cryptographic key, ki, k2,
. . .) k64 (composed of 56 key bits and 8 nonkey bits).

2. From kr, kz, . . . , k@, construct 16 key vectors, K(1) through
K(16), of 48 bits each, which are used in rounds 1 through 16, re-
spectively. (K(1) through K(16) are expressed in terms of the ex-
ternal key bits via Tables 3-10 and 3-l 1.)

3. Specify the 64-bit, externally supplied, input (plaintext), xi, x2,
. . .) x64.

4. From x1, x2, . . . , x64, construct the 32-bit vectors L(0) and R(O),
as shown in Equations 3-l 1 a and 3-l 1 b.

5. Set iteration counter to i = 1.

160 THE DATA ENCRYPTION STANDARD

Iteration i:

6. Derive E(R(i - 1)) from R(i - 1) using the expansion function E
given by Equation 3-l 4.

7. Use K(i) if encipherment is being performed, otherwise use K(17 - i)
for decipherment.

8. Add (modulo 2) the results of steps 6 and 7, and define the result to
be the 4%bit vector A = a,, a2, . . . , a48.

9. Form Sajiya6(a2, a3, a4, as) and define the 4-bit result as bi, b2, b3,
b4. Repeat this process for

Si7ya 12(a8, a9, alo, a,i) through Si439a4s(a44, a45, a46, a47)

defining the result as b5, b6, . . . , b32. The result of this step is the
32-bit vector B.

10. Derive P(B) by permuting B according to the permutation function
(P) given by Equation 3-l 6.

11. Add (modulo 2) P(B) to L(i - 1) and define the result to be R(i).

12. Define L(i) = R(i - 1).

13. Increment the iteration counter i by 1.

14. If iteration counter is 16 or less, then repeat steps 6 through 14,
otherwise derive the output from L(16), R(16), as shown in Equa-
tions 3-l 2 and 3-13.

Numerical Example

In the numerical example presented here, the value L(l), R(1) is derived for
a one-round encipherment. It is assumed that

X=K=O I2 3 4 5 6 7 8 9 A B C D E F

in hexadecimal notation, or

X=K=OOOO 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

in binary notation. From Tables 3-10 and 3-11, it follows that

K(l)=0000 1011 0000 0010 0110 0111

1001 1011 0100 1001 1010 0101 (binary)

=OB02679B49A5 (hexadecimal)

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 161

From Equations 3-l la and 3-l lb, it follows that

L(O)= 1100 1100 0000 0000 1100 1100 1111 1111

= C C 0 0 C C F F

and

R(O)= 1111 0000 1010 1010 1111 0000 1010 1010

= FOAAFOAA

Expanding R(0) with the aid of Equation 3-14 yields

E(R(O))=OllllO 100001 010101 010101

011110 100001 010101 010101

Modulo 2 addition of this with K(1) yields

A = E(R(0)) @ K(1)

=011100 010001 011100 110010

111000 010101 110011 110000

Grouping these 48 bits into sets of 6 bits allows the convenient evaluation of
the subs&ution operation (page 15 of [51).

s~O(lllo) = $714) = 0 (base 10)

S;‘(lOOO) = S:(8) = 12

s~O(lllo) = S$j(14) = 2

s~O(lool) = s:(9) = 1

S;“(llOO) = S:(12) = 6

s0,‘(1010) = $(lO) = 13

s:‘(lool) = s;(9) = 5

Si”(lOOO) = S;(S) = 0

Concatenating all of these results yields

= 0000 (base 2)

= 1100

= 0010

= 0001

= 0110

= 1101

= 0101

= 0000

B=OOOO 1100 0010 0001 0110 1101 0101 0000

= 0 C 2 1 6 D 5 0

Applying the permutation P according to Equation 3-l 6, the result

P(B) = 1001 0010 0001 1100 0010 0000 1001 1100

= 9 2 1 c 2 0 9 c

162 THE DATA ENCRYPTION STANDARD

is obtained. Modulo 2 addition of P(B) with L(0) yields

R(l)=0101 1110 0001 1100 1110 1100 0110 0011

= 5 E 1 C E C 6 3

and hence the right half output after round one is obtained. Furthermore,

L(1) = R(0) = F 0 A A F 0 A A

which completes the one-round sample computation.

Some Remarks about the DES Design

Methods of analysis (attacks), including heuristic approaches, were gathered
during an initial study phase. These techniques were then used to obtain a
set of design principles, or criteria, that govern the design of the algorithm.
By requiring that the candidate algorithm meet all design criteria, the previ-
ously defined methods of attack were rendered ineffective.

The initial study phase for DES extended over a 5-year period. The result-
ant design criteria were then used to design DES’s permutation (P-box),
substitutions (S-boxes), and key schedules (see Description of the Data
Encryption Standard). For example, one design criterion for DES was that
the permutation schedule must ensure that each output (ciphertext) bit is a
function of all input (plaintext and key) bits after a minimum number of
rounds. (See also Analysis of Intersymbol Dependencies for the Data En-
cryption Standard.)

Since it is common for statisticians to employ randomization techniques
in the design of experiments (procedures for collecting, analyzing, and inter-
preting data), mathematicians, or people with strong mathematical back-
grounds, frequently suggest that parameters such as permutation, substitution,
and key schedule should be randomly chosen. This indeed was the first
thought of the designers of DES. However, realization early in the develop-
ment process that random parameter selection introduced weaknesses into
the algorithm led to abandonment of these random approaches.

In the actual design process, parameters were randomly generated and
then tested against the design criteria. A significant portion of the random
designs were rejected in this process. For example, S-box functions were
selected on the basis of strength and ease of implementation (see Imple-
mentation Considerations for the S-Box Design). Thus it should not be sur-
prising that the final solutions contain some structural properties different
from those expected to result from use of purely random selection. However,
let it again be stated that the results of the DES design effort showed that
carefully selected S-box functions will produce a much stronger algorithm
than one based on random designs.

The question of S-box structure is an issue that was raised as part of an
independent analysis of DES [171, and was also dealt with as part of the

DESCRIPTION OF THE DATA ENCRYPTION STANDARD 163

second ICST workshop to investigate the complexity of DES [141. The
members of the ICST workshop concluded that these structures offer no
known shortcut solutions.

Implementation Considerations for the S-Box Design

An interesting result, which appears to relate cryptographic strength to the
number of logic circuits describing an S-box, was encountered in the design
of DES’s S-box functions. The minimum number of logic circuits needed to
implement the final (nonrandom) S-box design was significantly greater than
that required for a preliminary (nearly random) design. This result suggests
that the number of logic circuits can be used as an indicator or heuristic to
reject weak S-box functions. For example, if an S-box function is selected
using a different set of design criteria and the minimum number of logic
circuits falls below an established threshold, then the cryptographic strength
of the S-box functions is highly suspect.

The measurements upon which this heuristic is based are given below.
However, before discussing the measurements, a few preliminaries are neces-
sary. An S-box is a function that maps 6 input bits (xi, x2, . . . , x6) into 4
output bits (yi, y2, . . . , y4). Moreover, each output bit (yr) can be represented
as a boolean expression of the 6 input bits, that is, yi can be represented as
one or more min terms that are combined using a logical OR operation [181.
In the example, each of the 6 input bits is either 0 or 1, and so there are
26 = 64 minterms, as shown:

1. xl l x2 ’ . . . ’ x6

2. x1 ’ x2 l . . . - x6

3. x,*&‘...‘x6

4. fl,-&‘...‘&j
.
.

64. X1 l i2 l . . . l F6

where “0 ” denotes here the logical AND operation and 51 denotes the com-
plement of x.

To see how to determine the boolean expression for a given S-box func-
tion, consider the following example (toy system) in which an S-box has
three inputs (x 1, x 2, and x3) and two outputs (yi and y2), where

(xp x,1

0 1 2 3

(x3) : (:]

“Toy” S-box Function

164 THE DATA ENCRYPTION STANDARD

The outputs (y2, yi) can be expressed in terms of the inputs (x3, x2, xi) as
follows:

X3 x2 xl y2 y1

000 01
001 11
010 10
011 00
100 10
101 01
110 00
111 11

For example, the boolean expression for y1 is

where “-t” denotes here the logical OR operation, A minterm is included in
the boolean expression if the corresponding output bit (y i) is equal to 1.
For example, note that y1 = 1 when x1 = 0, x2 = 0, and x3 = 0.

A derived boolean expression would normally be reduced to find an equiv-
alent expression that would be better with respect to some measure. In the
case of the DES algorithm, a single chip design was desired, and therefore it
was important at that time (about 1974) to reduce the number of logic
circuits needed to implement the S-box functions. The S-boxes were de
signed using a multidimensional approach in which the boolean expressions
for each output bit were reduced jointly [191.

For an early design of the S-box, with only a few design criteria, the dis-
tribution of minterms after reduction (based on a sample of 18 S-boxes) was
found to be as shown in Table 3-17. However, as more and more design criteria
were added, making the design less and less random, a corresponding increase
in the number of required minterms was observed. For example, in the final

No. of Minterms
per S-box

No. of S-boxes

40 1
41 1
44 3
45 3
46 4
41 2
48 4

Table 3-17. Distribution of Minterms for a Preliminary Design of the S-box

ANALYSIS OF INTERSYMBOL DEPENDENCIES 165

No. of Minterms
per S-box

No. of S-boxes

52 3
53 7
54 9
55 22
56 16
57 20
58 4
59 2

Table 3-18. Distribution of Minterms for Final Design of S-box

S-box design, the distribution of minterms after reduction (based on a
sample of 83 S-boxes) was found to be as shown in Table 3-18. Therefore,
introducing more stringent design criteria caused the required number of
minterms to shift significantly, from about 45 to 55, toward the maximum
number of 64.

To make it as easy as possible for an LSI logic designer to implement the
design on a single chip, the left tail of the distribution was chosen (52 and
53). (Many cryptographic applications that have been proposed require a
single chip design for economic and performance reasons.)

ANALYSIS OF INTERSYMBOL DEPENDENCIES
FOR THE DATA ENCRYPTION STANDARD6

One property of DES is that each bit of ciphertext is a complex function of
all plaintext bits and all key bits. A method is developed later which evaluates
how fast this dependence (defined as intersymbol dependence) builds up as a
function of repeated mathematical operations called rounds. With the DES
algorithm, the minimum number of rounds needed to achieve intersymbol
dependence for plaintext as well as key is five.

To analyze the intersymbol dependence, consider the basic design approach
shown in Figure 3-14. It is not necessary to take into account the initial per-
mutation IP and final permutation IP-’ (Figure 3-4). Some of the relations
already developed are repeated in this section to make the analysis easier to
understand and independent of other sections.

For strength, DES relies on the complexity of the function g, which in-
corporates substitution as well as transposition (or permutation), and exer-
cising the function g a number of times (defined as rounds).

After 16 rounds have been employed by DES, the 64 bits of plaintext

6@ 1978 AFIPS press. The material describing the analysis is reprinted in part from
AFIPS Conference Proceedings, 1978 National Computer Conference [201.

166 THE DATA ENCRYPTION STANDARD

Input = L(O), R(0)

L(l)=R(O) Output After

X(1) = L(l), R(1)

L(2)=R(l) Output After

X(2)= L(2), R(2)

L(3)=R(2)

0
0

L(l5) = R;l4)

Output After

0
0 X(3) = L(3), R(3)

0
R(l5) Output After

L(16)= R(15)

I I X(16)= L(16), R(16)

+
Output= R(16), L(16)

Figure 3-14. Basic Block Cipher Design Used by the Data Encryption Standard

are transformed into 64 bits of ciphertext under the control of a 5Gbit key.
During each round a subset of the key (defined as K(i) for round i; i = 1, 2,
. . .) 16) is used. The input to round i, X(i - l), is expressed as the concaten-
ation of two 32-bit quantities. L(i - 1) represents the 32 input bits of the
left half of the one-round cipher operation (Figure 3-l 3), and R(i - 1) repre-
sets the 32 input bits of the right half:

ANALYSIS OF INTERSYMBOL DEPENDENCIES 167

L(i - l)=~l(i-l),IZ(i-l),...,I~Z(i-l)

R(i-l)=ri(i-l)),rz(i-l),...,r,,(i-1)

Hence the input to round i is defined as

X(i- 1) = L(i- I), R(i- 1)

whereas the output from round i is defined as

X(i) = L(i), R(i)

Thus each bit of the cipher-text produced by DES is a complex function of
all 64 plaintext bits and all 56 key bits.

The following example illustrates the marked change producedin a recovered
plaintext when only one bit is changed in the ciphertext or key. Hexadecimal
notation is used. If the plaintext 1000000000000001 is enciphered with a
(56-bit) key 30000000000000, then the cipher-text 958E6E627A05557B is
produced. The original plaintext is recovered if 958E6E627A05557B is deci-
phered with 30000000000000. However, if the first 9 in the ciphertext is
changed to 8 (a l-bit change) and the cipher-text 858E6E627A05557B is
now deciphered with key 30000000000000, the recovered plaintext is
8D4893C2966CC211, not 1000000000000001. On the other hand, if the
first 3 in the key is changed to 1 (another l-bit change) and the ciphertext
958E6E627A05557B is now deciphered with key 10000000000000, the
recovered plaintext is 6D4B945376725395. (The same effect is also ob-
served during encipherment.)

The dependence of each ciphertext bit on all bits of the plaintext and key
is defined as intersymbol dependence. Many applications can take advantage
of this. Two applications, discussed in Chapter 2 and again here, effectively
expand the block size of DES by using chaining methods. When block en-
cryption is used, each 64-bit block of data is enciphered separately. In chained
block encryption, on the other hand, the encipherment of each block is
made dependent on prior information (plaintext, ciphertext, or the like)
available when the block is enciphered. Two techniques for block chaining,
ciphertext feedback and plaintext-ciphertext feedback, are defined below.

Let X1, X2, . . . , X, denote blocks of plaintext to be chained using key K,
let Ye be a nonsecret quantity defined as the initializing vector, and let
Y1, Y*, * - * , Y, denote the blocks of cipher-text produced. When cipher-
text feedback is used, the following relationship holds:

Y, = Ex(Xi @ Yi- 1) for i > 1

where 8 represents modulo 2 addition. When plaintext-ciphertext feedback
is used, the following relationships hold:

Y, = &(X1 Q Yo)

168

and

THE DATA ENCRYPTION STANDARD

Yi=Ex(XioYi_i @Xi_,) for i > 2.

With block chaining, a cipher-text bit in block i depends not only on all
plaintext bits in block i, but also on the plaintext bits of block 1 through
(i - 1). Thus chained block encryption (or block chaining) can be used to
extend the intersymbol dependence between cipher-text and plaintext.

Plaintext-ciphertext feedback has the additional property of error propa-
gation. Corruption of a single bit of cipher-text will cause each subsequent bit
of recovered plaintext to be in error with a probability approximately equal
to 0.5. Appending a known pattern of bits to the end of the plaintext prior
to encryption, and comparing that value to the value recovered, allows the
error propagation feature to be used for checking the true content of a mes-
sage. Chaining techniques are useful for encrypting data, and the block cipher
(with no chaining) is useful for key transformation (see Chapters 4 and 5).

In the analysis below, a method is developed which shows how fast the
intersymbol dependence builds up as a function of the number of rounds.
A basic assumption is made that the substitution functions are nonaffine,’
such that cancellation of dependencies does not occur. Since, in the design
of DES, great care was taken to select S-boxes with the nonaffine property,
it is assumed in the analysis that the assumption stated above holds for DES.

At each step, the analysis considers whether or not an output bit depends
upon an input bit. Although the degree of complexity is not measured, a
distinction is made among three kinds of functional relationships. Details of
g (the kernel of the DES cryptographic approach), as illustrated in Figure
3-l 2, must be considered in a discussion of these relationships.

For DES, the right half of the input is expanded from 32 bits to 48 bits
(see Figures 3-12 and 3-13, and Equation 3-14), an S-box has six input bits
and four output bits. The first and last input of the six entries to the DES
substitution box Si in Figure 3-l 2 determine which of the four substitution
functions in Si is selected. Because these bits are derived from the 32 input
bits (i.e., message bits if the input is interpreted as a message) as well as
key bits due to the modulo 2 addition of K(i) and E(R(i - l)), the selection
of substitution functions not only depends on the key but also on the input
data. This, in effect, introduces a self-keying feature, or autoclave.

In the following two analyses, the dependencies of output X(i) on plain-
text X(0) and on the key are treated separately.

Interdependence between Ciphertext and Plaintext

To investigate the functional relationship between the input to round i + 1
(which is equal to the output of round i, i = 1, 2, 3, . . . , 16) and the input
to the first round, a matrix is defined. It consists of 64 rows and 64 columns
and is referred to as Gr,j. Its element al,, in row 1 and column m shows the

7A function is nonaffine if, for an operator 0, the condition f(x o Y) # f(x) q f(y) q c
holds, where c is not dependent on x and y.

ANALYSIS OF INTERSYMBOL DEPENDENCIES 169

type of relationship which exists between the Ith bit of X(i) and the mth
bit of X(i). In particular, al,, is blank if a dependency does not exist between
xl(i) and x, (j). If there is a dependency via message bits only, al,, is set to
x . If the dependency is via autoclave, al m is set to -. If message bits as well
as autoclave bits influence the output, a,,‘, is set to *.

In a well designed system, an output bit depends on more and more input
bits as the number of rounds increases. These input bits come into play via
message dependence (x), autoclave dependence (-), or both (*). The design
goal is to have each output bit depend on each input bit after only a few
rounds, with autoclave as well as message dependence being achieved.

It is advantageous to partition matrix Gi,j into four submatrices of 32 rows
and 32 columns each:

Using the definition of Gi,j, one can see that the elements of the submatrices
express the relationships shown in Table 3-l 9. Let the relationships between
the output and the input of one round (Gi,i _ I) be evaluated first. The de-
pendence of the output bits from the substitution operation (vector B in
Figure 3-12) on the input bits R(i - 1) is shown in Figure 3-15. (Note that
the dependence of B on R(i - 1) is identical to the dependence of R(i) on
R(i - 1) if the permutation is not present.)

The selection of the substitution function (S-function) in the first S-box,
S1, depends on bits 32 and 5 of R(i - 1). This follows from the fact that
the first and sixth input bits to S1 select the S-function, and the first and
sixth bits of the expanded version of R(i - I), which are determined by
E(R(i - l)), are equal to r32 (i - 1) and r5 (i - l), respectively, according to
Equation 3-14 and Figure 3-13. Therefore, all output bits from S1 (b, through
b4) depend on r3& - 1) and r,(i - 1) via autoclave. ‘However, they depend
on r,(i - 1) through r4(i - 1) via message. R(i - 1) is considered to be the
second 32 bits of input message in this case. Hence the entries in rows 1

Submatrix Relationship Expressed in Submatrix

(+,L)
'.J L(i) vs. L(j)

L(i) vs. R(j)

R(i) vs. L(j)

G(P,.R)
',J R(i) vs. R(j)

Table 3-19. Functional Relationships

170 THE DATA ENCRYPTION STANDARD

R(i - 1)

l-XXXX-
-xxxx-
-xxxx-
--xxxx-

5 - -xxxx-
-xxxx-
-xxxx-
-xxxx-

-xxxx-
10 - -xxxx-

-xxxx-
-xxxx-

-xxxx-
-xxxx-

R(i) I5 -
-xxxx-
-xxxx-

-xxxx-
(or B) -xxxx-

-xxxx-
20 - -xxxx-

-xxxx-
-xxxx-
-xxxx-
-xxxx-

25 - -xxxx-
-xxxx-
-xxxx-
-xxxx-

- x x x x
30 - - - x x x x

- x x x x
- x x x x

I I I I I, I1 I I I II 1 I I I II I I II 11 I II 11 I I
1 5 10 IS 20 25 30

Figure 3-15. Functional Dependence of R(i) on R(i- 1) without
Permutation

through 4, columns 32 and 5 in Figure 3-15, are equal to -. The correspond-
ing entries in columns 1 through 4 are equal to x. All other entries of rows 1
through 4 are blank since br through b4 only depend on six input bits. Re
peating this analysis for S2 through S8 results in the matrix of Figure 3-15.

Taking permutation into account, the matrix rows have to be rearranged
according to the permutation schedule given by P(B) in Equation 3-16. The
result is shown in Figure 3-16 and represents the type of relationship that
exists between R(i) and R(i - 1); thus, G$,y’R)1 is obtained (see Table 3-19).

Since L(i) = R(i - 1) (Equation 3-17), one can see that L(i) does not
depend on L(i - 1) but has a linear dependence on R(i - 1). Hence the
elements of G$‘L)1 are blank since they express the relationship between
L(i) and L(i - 1).

The relationship between L(i) and R(i - 1) is expressed by the elements
of GSkf1). Due to the linear relationship between L(i) and R(i - l), the ele-
men;; located on the diagonal are set to x as shown in Figure 3-17. Equation
3-18 shows the relationship among R(i), L(i - l), K(i), and R(i - 1). Since
the dependence on K(i) is not of interest here, the expression

R(i) = L(i - 1) @ h[R(i - l)] (3-19)

is used henceforth. The relationship between R(i) and L(i - 1) is also linear.

ANALYSIS OF INTERSYMBOL DEPENDENCIES 171

R(i- 1)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

I -xxxx-
2 -xxxx-
3 -xxxx-
4 -xxxx-
5 - - 7. x
6

x x
-xxxx-

7 -xxxx-
8 -xxxx-
9 x x x x -

10 -xxxx-
11 -xxxx-
12 -xxxx-
13 -xxxx-

R(i) :f: -
-xxxx-

- x
16

x x x
-xxxx-

17 x x x x -
18 -xxxx-
19 -xxxx-
20 -xxxx-
21 -
22

- x x x x

23
-xxxx-

x x x x -
24 -xxxx-
25 -xxxx-
26 -xxxx-
27 -
28

- x x x x
-xxxx-

29 -xxxx-
30 -xxxx-
31 x x x x -
32 -xxxx-

Figure 3-16. Functional Dependence of R(i) on R(i - l), Matrix G(r;“l

Hence the diagonal elements of G{,;?),, which relate R(i) and L(i - I), are
set to x, whereas the remaining elements are blank (Figure 3-17). Since
G!%!!), through G. L
c:kpletely defined.?t is shown in Figure 3-17.

(v R] have now been evaluated, the matrix Gi,i _ 1 is

Let G. 1 + 1, i _ 1 be expressed next in terms of Gi, i _ 1. From Equation 3-17,
the relation L(i + 1) = R(i) can be established. Thus the functional depen-
dence of L(i + 1) on X(i - 1) is identical to the functional dependence of
R(i) on X(i - 1). Since the dependence of L(i + 1) on X(i - 1) = [L(i - I),
R(i - l)] is given by GiL;i)i_ 1, G!L’R) , + 1, i _ 1, and the dependence of R(i) on
X(i - 1) is given by G!,y?{, G$!!!R,) , according to Table 3-19, it follows that

and

G&L’ l+l,i-l=G{,ql_LI) (3-20)

(3-21)

Before the derivation of GcRYL) I + 1. i _ 1 and G(t*p) _ 1, a more general case is
considered, the evaluation of GjR+‘\’ i _ 1 and Gp+ltT i _ 1 from Gj i _ 1 (i > i)
(Note that for j = i the special case’described above is obtained.) ’ *

172 THE DATA ENCRYPTION STANDARD

L(i- 1) R(i- 1)

L(i)(

R(i)

-V
r
I ‘\\\\

\

Elements Equal I ‘l\
to “Blank” \

j ‘l\
‘\

&L,
I,1 - 1 I

G(\J) ‘\\
I,,- 1 ‘\

I

‘\
‘\ \ \ _-----_-_------_---------

\
‘\ \ I

i @A)
,,I- I

!
I Elements Shown

!
in Figure 3-16

Elements of CJ??~) I I _ 1 and Gtq”,) located on the indicated diagonal are
equal to “x” ihereas the iemaining elements are equal to blank.

Figure 3-17. Functional Relationship between
X(i)=L(i), R(i)andX(i-l)=L(i-l), R(i-l), MatrixGii_,

The elements of row s of G$F*IL)_ 1 g ive the relationship between bit s
of R(j + 1) (i.e., r,(j + 1)) and L(i - l), whereas the elements of row s of
Gj(“+9c) _ 1 give the relationship between bit s of R(j + 1) and R(i - 1). To
evaluate these elements, one must first obtain the relationship between
r&j + 1) and X(j) = [L(j), R(j)] by using Figures 3-16 and 3-17. Bit s of
R(j + 1) linearly depends on L(j), as shown in Figure 3-l 7 (i.e., on bit s of L(j)
via message dependence (x)). From Figure 3-16, it follows that bit s of
R(j + 1) depends on R(j) via -xxxx- (i.e., bit s depends on two bits of R(j)
via autoclave and on four bits of R(j) via a message relationship). Let the
columns of these entries in G~,~~~ (equal to GftPF{ if i = j +l) be designated
as m,(s) through m6(s). For example (Figure 3-16), the following is obtained
for s = 4: m,(s) = 20, mz(s) = 21, m3(s) = 22, ma(s) = 23, m,(s) = 24, and
m6(s) = 25. Since the dependence of X(j) on X(i - 1) is given by Gj,i_ 1
and the dependence of bit s of R(j + 1) on X(j) is known, the relationship
between R(j + 1) and X(i - l), given by rows 33 to 64 of matrix Gj + 1, i _ 1
can be determined by properly combining elements of row s, ml(s) + 32,
- * - , m6(s) + 32 of Gj, i _ 1. This method is indicated in Figure 3-l 8.

ANALYSIS OF INTERSYMBOL DEPENDENCIES 173

The rule that should be used to combine the rows of matrix Gj r _ r so
that the dependence of x s + 32(j + 1) on X(i - 1) can be evaluated s&l must
be decided. Since the main objective of this analysis is to determine how fast
the functional dependence between output and input builds up, it would be
sufficient simply to indicate if a functional relationship between an output
bit and an input bit exists. However, to provide more insight on the influ-
ence of autoclave, a rule is derived which highlights autoclave influence.
Thus all elements of Gj, i _ 1 for rows ml(s) -!- 32 and m6(s) + 32 are set to -,
indicating an autoclave relationship. Note that the elements of row s -I- 32 of
Gj+ l,i-1 describe the dependence of x s + a2(j + 1) on X(i - 1). Since
x, + &j + 1) depends on ~,,,r(~) + 32(j) and x m6(sI+ 32(j) via autoclave, the de-
pendence of x ml(s) + 32(j) and x m,,(s)+ 32(j) on X(i - 1) is changed from -,
x, or * to an autoclave dependence -. Adoption of this rule permits the

L(j) 1
z

R(j) I

L(i- 1) R(i- 1)

ly=y==l

I ---_-\a--_ I -- ,-~+---____ &L, : G&R, -I z J,‘- 1 J,I- 1

-m-B- --~++-~~___--_--

G(‘z,L,

I

J,‘- 1
@,R)

J.i - 1
-z

m,(s) - - - -4\- I-++ - - - - -

m2(s) - - - -\\- ++_-_-_

m&s) - - - --$t- ;-++- --- -

m4(s) - _ - _\\--_ !_+t_ _ __ _ _

m5(s) - - - -\$--_ : ,~--)@-__--__--_

m&s) - - - -4$-- i_++---_

Note: X(j + 1) = [L(j + l), R(j + l)] vs. X(i - 1) is obtained by combining

the elements of row s, ml(s) through m6(s), where m,(s) through m6(s)

are the columns in which the elements in row s of GfylR/ occur.

(19~632.) G(RVR) ’ i I_, 1s defined in Figure 3-16.

Figure 3-18. Evaluation of Functional Dependence of
X(j + 1) vs. X(i - 1) from X(j) vs. X(i - 1).

174 THE DATA ENCRYPTION STANDARD

elimination of previous history as far as the autoclave entry to an S-box is
concerned, thereby increasing the emphasis on the last autoclave dependence.

In order to take into account previous history for the entries to an S-box
not associated with autoclave, the elements of Gj, i _ i are left unchanged for
rows s, mz(s) + 32, mJs) + 32, ma(s) + 32, and m5(s) + 32.

When the proper rows of Cl, i _ r are combined, one or more entries can
occur in the same column. Only if entries are either all x or all - will the
final dependence be correspondingly set. If mixed entries (x and -) occur,
the final dependence is set to *. If the entry * occurs at least once, then the
final dependence is set to *, regardless of the other entries.

Summary of the Procedure

The elements of row s + 32 of matrix Gj + r, i _ 1, for 1 < s < 32, can be
generated from matrix G, i _ I by determining ml(s) through m6(s) from the

(R*R) given matrix Gi j _ i. They are the columns in which the nonblank elements
in row s of G!,:>!l are located. (Figure 3-16 shows these entries.) Take
matrix Gj, i _ 1 and select row s, ml(s) + 32 through m6(s) + 32. The entries
in row s + 32 of matrix Gj+r,i-1 are now obtained by combining the ele-
ments in the indicated rows using the established rules.
As a corollary, the following can be stated. Elements in row s of G(jR+\,)i - 1

are obtained by combining row s of GiL;k)i with rows ml(s) through me(s)
of G!E?‘)

@ R;’
Elements in row s of Gj(t>t\ _ 1 are obtained by combining row s

of Gj, i’- 1 with rows ml(s) through m6(s) of GfpiY_“i.
Consider now the special case j = i (i.e., let Gi + r, i _ 1 be evaluated from

Gi, i _ 1 >. The submatrix G$‘r,)i _ 1 can be derived by using the stated rules.
The result is shown in Figure 3-l 9.

For ease of understanding, the detailed steps for obtaining the elements
of row s (for s = 4) of G$;‘pi_ 1 from Gi, i _ 1 are shown in Figure 3-20.
Note that for s = 4, one obtains (from Figure 3-16) m,(s), . . . , ms(s) equal
to 20,21,22,23,24,25, as stated above.

G$R;t)i- 1 can now be computed. According to the established rule, ele-
ments of row s of G$,_!)r and of rows ml(s) through mg(s) of Gi,:Y?)I must
be combined. But the elements of G$,\?), are all blank, so that it does not
come into play. Elements of row ml(s) through m6(s) at G$qYk4), are equal to
x at columns ml(s) through mg(s). (See Figure 3-17.) According to the estab-
lished rule, the entries at columns ml(s) and m6(s) are changed to -before
all entries are combined to obtain the elements of row s in G(IR<\ji _ r. These
entries are then equal to -xxxx- at columns ml(s) through m6(s), that is,
identical to the ones in G~,~~>~.

Therefore, it can be concluded that

Combining this result with Equation 3-21 yields the following relationship:

(3-22)

Equation 3-20 permits the evaluation of Gi + 1, i _ 1 in terms of Gr, i _ 1.

ANALYSIS OF INTERSYMBOL DEPENDENCIES 175

R(i- 1)
I 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1 l ---*xx**xxx- -xXxX- _____*XX*

2 _ l - - _ -xxxx- -xxx*----*xx**xx*
3 l XX***X.____*XXX_ -XXYX-
4 *xxx- _XXX*-__-_-_-_ -XXX**XX*
5 X~X**_-_*~~*_-_-_ -xxx**xxx-
6 xxx*_*___ _XXX*-_-_‘XX**XXX- -

7 - -xxx*_---*x~**~~.--_-- - x x x x
8 l XX.*XX*-___*XXX_ -xXxX- -----
9 - -XXXX* _XXX*.XX**XX*-_______

10 ----•xx**xxx- -xxxx- * x x l

11 *XXX- _~x~*-_-_-_-__ -XXX’*XX*
12 - _XXX*___**XX**XX*___-_ -xXxX
13 ----- -xXxX’ _XXX*-_--*XX**XX*

R(i+ 1)::
l XX.*XX*_-__*XXX_ -xXxX_ -----
XXX*-___*XX*-_*_- -XXX**XXX_

16 XXX*---__ _XXX*___-*XX*.XXX-
17 - -xxxx- -XXX**XXI*XX*________
18 ---_- -xxxx- _~~**__-_*~~**~~*

19 ‘xxx- -~xx.-__-_-*__ -XXX**XX*
20 ---_*XX**XXX- -xXxX- -----*xx*

21 XXX*-__-*XX*___-_ -XXX’*XXX-

22 - _XXX*-___.XX**X**-.___ - x x x x
23 - -xxxx- _XXX**XX**XX*________
24 XXX._--__ -XXX*____*XX**XXX_ -

25 l XX**XX*-__-*XXX_ -xXxX’
26 -- __*XX** x x x - -xXxX- __*__*XX*

27 XXX*-_-_*XX*_---_ -xxx**xxx- -
28 ---_- -xxxx- _y.XX*__-_*XX**XX*

29 * x x x - -axe*_-___--_- -XXX**XX”
30 xxx*_____ _XXX*____*XX**XXX_X _
31 - -xxxx- _~~~.*~~**~~*_-_-__*_

32 - -~XX*--__*X~**~X*-__-_ - x x x x

Figure 3-19. Functional Dependence of R(i + 1) on R(i - l), Matrix Gf”+fi_ 1

The proof by induction is used next to show that the following general
rule (for j 2 i) holds:

&,L)
J+ l,i-1

= G!n’L)1
1, 1 (3-23)

G&R) J+~,i_.-~=G”~_.F~ 1, 1 (3-24)

(3-25)

The first stage of the proof-the demonstration that these statements are
correct for the smallest value of j, j = i-is given above. (See Equations
3-20, 3-21, and 3-22.)

From the relationship (Equation 3-l 7)

L(j + 1) = R(j)

it can be determined that L(j + 1) depends on X(i - 1) in the same way R(j)
depends on X(i - 1). Thus

G&L)
J+ I,i-1

= G$k”‘J

G&R)
J+ l,i-1

= G&F)1
1, 1

which proves Equations 3-23 and 3-24.

176 THE DATA ENCRYPTION STANDARD

$I[
7 r

Contribution from G(rtR) i,l- 1

1 -
2 -
3 -
4 - x
5 1

Contribution from G!41R’
l,l- 1

?y,

Entries to be combined

1 5 10 15 20 25 30
1IILIIIIIIIIIIIIIIIIIIIIIIII1III

4 ‘xxx- _xxx*___-____- - x x x **xx*

Combined entries,resulting in row four of Gi(:; 5’ 1

Figure 3-20. Functional Dependence of 4th Bit of R(i+ 1) on R(i - 1)

The results stated in the corollary are used to prove Equation 3-25 as
follows. Giyk,)i _ 1 is obtained by combining the elements of G’j>k’, (row s)
and G$:9?‘I (rows ml(s) through m6(s)). But G’j,Li’fi’, = G$R.k,)i _ r, GjpiPk’l =
G!K-y,)i _ r, if the stated rule holds. G(IL; F,)i _ 1 = G$:*_“\ is obtained by com-
bining the elements of Gpy,)r _ 1 (row s) and G{!?9y,)i _ 1 (rows ml(s) through
me(s)). But G{L_IT,)i _ I = Gi!Yk,)i _ r if the stated rule holds. Hence, GjR,‘k,)i _ 1

is obtained just as Gi,y7!1) was and, likewise, G$L+y,)i _ 1 is obtained. Therefore,
G&L)

J+ l,i-1 = GjL; F,‘i _ 1. That completes the proof. (See Figure 3-2 1.)

Minimum Number of Rounds Required to Achieve
Ciphertext/Plaintext I ntersymbol Dependence

For each output bit to depend on all plaintext bits after round j, no element
of Gj,o can be blank. When this condition is satisfied, it follows from the
relationships developed between Gj,o and Gj_ 1,o and Gj -z2,0 that no ele-

ANALYSIS OF INTERSYMBOL DEPENDENCIES 177

Specific Form of
Matrices I -------

i _----_-_ I L_-A---_

_---_I---_

Figure 3-21. Graphical Presentation of Proof that Gi:‘F{ _ , = Gi”;k) _ 1

ment of G~!L’:)~ = Gj>\),
blank. ’

, can be blank and no element of G$>t,b can be

If all row entries of the matrices were independent, an approximate result
for the minimum number of rounds could be obtained as shown below. (In
actuality, the elements of eight sets of four rows each of Gi.:P!] are highly
correlated. Therefore, the increase of intersymbol dependence will be slower
than predicted by the approximation.) Since G(,ybR) has six entries in each
row (Figure 3-16) and G iLbR’ has one entry in each row (Figure 3-17), then
GrgR’ can have at most 1 k 6 - 6 or 37 entries. (Note that GiRbR) is obtained
from G(,kbR) and G iRbR)) There are, however, only 32 columns in GiRbR). .

Therefore, it is possible that none of the elements of G$ybR) are blank. Thus
it is possible to fill all 32* entries of G$FbR’, GiLbR) = G’,RbL’, GiRbR) after
rounds 2, 3, and 4, respectively. Hence all 64j entries of G4,e ‘could be
filled after four rounds.

The approximate analysis shows that four is the minimum number of
rounds needed to achieve intersymbol dependence between ciphertext
and plaintext. The accurate analysis below shows that after four rounds
complete interdependence has not been achieved and for the specific design
of DES five rounds are required.

From the evaluation of G$“;t’r _ 1 (Figure 3-19) one can see that there
are 28 nonblank elements in each row, except for row 30 which contains 29
elements. It can also be shown that all entries of G[?k!_ 1 are equal to *.

178 THE DATA ENCRYPTION STANDARD

Round I Output/Input Relation

j I L(j)vs.L(O) L(j)vs.R(O) R(j)vs.L(O) R(j)vs.R(O) X(j)vs.X(O)

1 0.00 3.13 3.13 18.75 6.25
2 3.13 18.75 18.75 87.60 32.06
3 18.75 87.60 87.60 100.00 73.49
4 87.60 100.00 100.00 100.00 96.90
5 100.00 100.00 100.00 100.00 100.00

Note: Table entries express the degree of intersymbol dependence, i.e.,
the percentage of nonblank elements in the appropriate relation.

Table 3-20. CiphertexUPlaintext Intersymbol Dependence

Thus after round 4 each output bit of L(4), except bit 30, depends on 28
bits of L(0) and all 32 bits of R(0). Bit 30 of L(4) depends on 29 bits of
L(0) and all 32 bits of R(0). Each bit of R(4), on the other hand, individu-
ally depends on the 32 plaintext bits of L(0) and R(0).

Let the degree of intersymbol dependence be measured by a factor t,
which is obtained by evaluating the percentage of nonblank elements. Re-
spectively, for G{tbL) through G, , C, (R9 R) (Figures 3-16 and 3-17), t is 0%;
100 l 32/322 = 3.125%; 3.125%; and 100 l 32 l 6/32* = 18.75%. With the
total GI,,,, [is equal to (0 + 3.125 + 3.125 + 18.75)/4 or 6.25%. Using
either the results above or Figure 3-19, E = 100[322 - ((31 * 4) + 3)1/322

(R3R) = 87.60% for G2,0 . Hence according to the rules for obtaining G3, e from
G r,a, the values of E associated with G$bbL) through G$TbR’ are 3.13, 18.75,
18.75, and 87.60%, respectively, whereas 5 for G2,0 is equal to $ (3.125 +
18.75 + 18.75 + 87.60) or 32.06%. Because none of the elements of GiybR)
are blank (they are actually all *), &!, as associated with G$:bR’, is equal to
100%. The results are summarized in Table 3-20.

Interdependence Between Cipher-text and Key

For the investigation of the functional relationship between the input to the
(i + 1)th round (equal to the output of the (i)th round, i = 1, 2, . . . 16) and
the key, a matrix Fi of 64 rows and 56 columns is defined. The elements of
the matrix, al,,, for row 1 and column m show the type of relationship
which exists between the Zth bit of X(i) and the mth bit of U where

u = ul, u2,. . . , u-56

is a vector whose elements are related to the externally entered key

K = kr, kz, . . . , k64

ANALYSIS OF INTERSYMBOL DEPENDENCIES 179

as follows:

U = bkdh,k2s,k1,, kg, k,,

k 58 7 km > k42, k34, k26, km, kl,,

k2,ks9,ksl,k43,k35,k2,,kl9,

k 11, k3,k60,ks2,k44,k36,ks,,

kss,k4,,k39,k31,k23,k15, k,,

k62 9 ks4 3 be, kxt, km, k,, , ki4,

k6 9 k,, , k53 , k45, k37, k,9, k,, ,

k 13, k5>k2s,k2o,kl2, k4,k63

(3-26)

The vector U represents the key obtained by loading the external key of 64
bits into two 28-bit shift registers after the parity bits k8, ki6, k24, k32,
k4e, k4s, k 56, and k64 have been systematically removed as part of the
loading procedure (Tables 3-8 and 3-9). Of the 56 register positions, 48 are
connected to the Exclusive-OR circuits which perform the modulo 2 addi-
tion between R(i - 1) and K(i) (Figure 3-12). If the register positions are
labeled 1 through 56, it follows that K(i) is obtained by taking the key bits
located in positions

14, 17, 11,24, 1,5,3,28, 15,6,21, 10,

23, 19, 12,4,26,8, 16,7,27,20, 13,2

of the first register, and positions

41, 52,31, 37,47, 55,30,40,51, 45, 33,48,

44,49,39,56,34,53,46,42,50, 36, 29, 32

of the second register. (See Equations 3-9a and 3-9b.)
Since U represents the key stored in the register at the start of the enci-

phering process, K(1) is related to U as follows:

K(l) = u14, u17, ull, u24, ul, u5, u3, u28, ul5, u6, u21, ulo,

u23~u19>u12, u4,u26, u8,ul6, u7,u27,u2O,ul3,u29,
(3-27)

‘41 > US2 > u31 , u37, u47, u55, u30, u40, u51 , u45, u33, u48,

%4 3 u49 3 u39 3 US6 P u34 3 u53 9 u46, u42, u50, u36, u29, u32

After each round, the key bits located in the shift register are shifted to the
left by either one or two positions. The shifting employs wraparound (i.e.,
bits shifted off the left side of the registers are reinserted at the right side of
the registers).

180 THE DATA ENCRYPTION STANDARD

K(2) is obtained by shifting the contents of each register 1 bit to the left,
whereas K(3) is obtained by a 2-bit shift to the left. (See Reference 5 or
Tables 3-8 and 3-9.) Hence with K(1) specified, the relationship of the other
keys, K(2) and K(3), to U can be expressed as follows:

K(2) = u15,“18,~12,~25, u2, u6, u4, ul,

u16~ u7~“22,u11,~24,~20,~13, US,

u27, u9>u17, u8,u28,u2l,u14, u3,
(3-28)

u42 9 u53 7 u32, u38, u48, uS6, u31 , u41 ,

uS2 > u46 9 u34 3 u4g > u45 , US0 > u40, u2g,

u35 3 u54 3 u47 P u43, u51 , u37, u30, u33

K(3) = u17,~20,~14,~27, u4, u8, u6, u3,

ul~“ll~ulg,ulO, u2,u23,u16, u5,
(3-29)

~44~~55,~34,~40,~50,~30,u33,u43,

u54 9 u48 Y u36 P us1 3 u47 Y US2 P u42, u31 ,

u37 7 uS6 9 u49 2 u4S 3 US3 3 u39, u32, u35

The functional relations can be seen if Fi is partitioned into two matrices of
32 rows and 56 columns:

where the elements in the submatrices express the relations shown in Table
3-21.

Evaluate Fr first. From Equation 3-l 7, it follows that

L(1) = R(0)

hence L(1) does not depend on any key bits. Define the elements of the
matrix Fi to be blank, as before, if no dependence on U exists. The elements
of F’,L) are thus blank.

Similarly, from Equation 3-18,

R(l) = L(O) @ g[K(l), R(O)1

hence R(1) depends on U via K(1) since L(0) and R(0) do not depend on U.
As a first step in obtaining Fl (R), the dependence of the output bits from the
substitution operation, vector B in Figure 3-12, on the key bits K(i) is evalu-
ated in Figure 3-22. (Note that the dependence of B on K(i) is identical to

ANALVSIS OF INTERSYMBOL DEPENDENCIES 181

Submatrix Relationship Expressed in Submatrix

F?’
I

L(i) vs. U

F!R’ I R(i) vs. U

Table 3-21. Functional Relationships

the dependence of R(i) on K(i) if the permutation is not present.) The selec-
tion of the substitution function in the first S-box, Si, depends on the first
and sixth bits of K(i) because the values of these bits are ExclusiveORed
with the first and sixth input bits to the S-box. The result of this operation
in turn determines which of the four S-functions in Sr is selected. Key bits
1 and 6 of K(i) therefore affect the output bits from S1(bl through b4) by
influencing the selection of an S-function. This functional relationship is
indicated by -. The other four key bits (bits 2, 3, 4, and 5 of K(i)) affect
bi through b4 by influencing the arguments of the S-function. This kind of
dependence is indicated by the symbol x. If a bit from the key affects the

10 20 30 40

I I I, I I II I I I I I I I II 1 I fi II 1 L

-xxxx-

- -xxxx-

-xxxx-

- -xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

IO- -xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

R(i) -xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

zo- -xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

-xxxx-

30- -xxxx-

-xxxx-

-xxxx-

Figure 3-22. Functional Dependence of R(i) on K(i) without Permutation

THE DATA ENCRYPTION STANDARD

R(i)

20

i

-xxxx-

-xxxx-
-xxxx-

-xxxx

-xxxx

-xxxx

I
-xxxx-

-xxxx-

-xxxx-

-xxxx-
30 -xxxx-

-xxxx-

xxxx

xxxx

xxxx

-xxxx-

-xxxx-

-xxxx-

-xxxx-

-1 -xxxx-

Figure 3-23. Functional Dependence of R(i) on K(i)

output by selecting an S-function as well as by selecting an argument, the
symbol * is used. If the out&t does not depend on the key, a blank is used.
This approach, used for all other bits of K(i), leads to Figure 3-22.

Because of this permutation, the rows of Figure 3-22 must be rearranged
according to the relation given by P(B) in Equation 3-l 6. The result is shown
in Figure 3-23 and represents the type of relationship that exists between
R(i) and K(i). The dependence of R(1) on U can be determined, in order to
construct F iR’, by using q E uation 3-27, which relates each bit of K(1) to
each bit of U. Figure 3-24 is constructed by replacing each bit of K(1) with
the appropriate bit of U, and thus Fy) is obtained.

Evaluate F2 next. From Equation 3-17, it follows that L(2) = R(1) and
hence L(2) depends on U in the same way R(1) does. Since the dependence
of L 2 on U is shown by F(2L),

(3 by FrR
and the dependence of R(1) on U is shown

, according to Table 3-21 it follows that

F$L) = F(,R) (3-30)

From Equation 3-l 8, one obtains

R(2) = L(1) @ g K(2), R(l)1

ANALYSIS OF INTERSYMBOL DEPENDENCIES 183

U

IO 20 30 40 50

III1 I I I I I I I I I I III III III I II I I_

x

x

- x

-x -

IO-- x

x

R(l) - - x

--x -

x

20-- x

x- x x

x x x

x x - x x -

x x x - x

x- x x x

x x x

x x x -x

x x - x x -

x - x x

x- x x

x x x - x

x x x x

x x x

x x x x -

x- x x - x

x x -x

x - x x

x x x

- x x x - x

x- x x

x- x x - x

x x x x

x - x x

x x x

x x x x -

x- x x

x- x x x

x x x

x x x - x

30- x - x x x

--x - x - x 7.

x x x x

--x

- x

x

x

Figure 3-24. Functional Dependence of R(1) on U, Matrix FIR)

The relationship between R(2) and R(1) was already established with the
evaluation of G$,y’?,) (see Figures 3-16 and 3-17 for i = 2), whereas the rela-
tionship between R(1) and U is given by F, (R) (see Figure 3-24). The relation-
ship between R(2) and L(1) was also established before with the evaluation
of G$,yY?)I (see Figure 3-17 for i = 2). But since L(1) does not depend on U,
it can be ignored here. By the reasoning which led to Figure 3-l 8, it can be
concluded that row s of FiR) can be constructed from Fr by:

1. Combining rows ml(s) through me(s) of FIR) with row s of FF) (the
elements of which are blank),

2. Taking into account the influence of K(2).

The impact of K(2) can be evaluated by using the entries of row s of Figure
3-23 and translating the elements of K(2) into the appropriate U-values via
Equation 3-28. The method illustrated is by the construction of the fourth
row of FiR). From Figure 3-23, it follows that the dependence of R(2) on
K(2) is indicated by -xxxx- for bits 3 1 through 36 of K(2). The bits corre-
spond to U31, u41, u52y u46, U34, and U49, respectively, according to Equation
3-28. The appropriate entries are shown in Figure 3-25. From Figure 3-16,
one observes that for s = 4, ml (s) through me(s) are equal to 20 through 25,

- x

5:-

- x

3- x

- x

I

o,-

8-

s-

r: H

x

x

8-g

I

x

0,

x

I

I
x

x
x

x

x

x

x
x

x

I

K

x

x

X
I

X

X

I

X
X

I

I

X

X

184

-X

z-
I

-X

x

s-

-X

I

o,-

8-

0,

x

I

x
x

I

I

x

x

x

x

I

x

x

x
I

x

x

I

x
x

I

I

x

x

-

- x
I

I

- *

z- x *

I

- +

I

- x
*

$-
x

I

- x

- x

I

I

0 m-
x

I

- x

- x
I

8- 1
x

x
I

I

I

- x
x

O_

I
I

I
- x

I

x

d

185

186 THE DATA ENCRYPTION STANDARD

respectively. Hence rows 20 through 25 of Figure 3-24 must be used to obtain
the contribution of R(1) to U. Details are shown in Figure 3-25. Due to rules
similar to the ones established above for the ciphertext/plaintext dependence,
the entries in the rows ml(s) and me(s) of FIR) are changed to -, yielding
the entries shown in Figure 3-26. The selection of an S-function is similar to
autoclave-dependence, whereas the selection of an argument was treated like
message-dependence above. By the same rules for combining several elements
that were used above, the final result of the functional dependence of the
fourth bit of R(2) on U is obtained as shown in Figure 3-26. Repetition of
this procedure for 1 < s < 32 yields Figure 3-27 and hence Fp) is obtained.
Since FiL) = FIR), as shown before, the matrix Fz is thus obtained by com-
bining Figure 3-24 and Figure 3-27. Let F3 be evaluated next. The steps
followed to obtain the functional dependence of the fourth bit of R(3) on
U are shown in Figure 3-28. The final result (also shown in Figure 3-28) is
obtained by following the same rules that led to the combination of Figure
3-25 and Figure 3-26. Repeating this procedure, all rows of FCR) shown in
Figure 3-29 can be obtained. By using the relation F, (L) = FI”) the matrix
F3 is then obtained by combining Figure 3-27 and Figure 3-29.

U

10 20 30 40 50
I I I I Ill II I II I I I I II I I I I II II l l

- -x-x * __x *x - xx--x xx x- - xx - -x - -x -x x- --
- *_ x_ _x - x_ x x__ x x-x--x xx x--x ---x-xx-x- -x
x--_-xx_ -x-x-x-x -xx -x -xx-_ 'x _ xx- x-*-xx -

_ x_ x- -- xx-_ -x x_ _x x- x -- x x- x *x - *- *X l - -x

x--x-___ -xx----x x__ _x x_- * *x x xx x-x --x x - x
_ x-- l -X --x x-_-x x_ * x- _- xx - xx- _x --x x-- _x

xx- - -x x- -xx - -xxx-x-- xxx *-x __x- x-x -_
_ x--_-xx_ -x-x-x-x -xx -x -xx-- *x - xx- x-*-xx -

*- *x - xx *- x xx x xx--x-x_ -x -x-- -~_~_--~~_ __
,O_ - -x-x l --x *x - x x -- x xx x- - xx - -x - -x -x x- --

x_ x- _- xx_- _x x_ _x x_ x -- x x- x *y, - *- *x *- _x

xx- - -x x- -xx - -xxx-x-- xxx 1-x --x- x-x --
- *_ x_ _x - x- x x__ x x-x--x xx x--x -__x_xx_x_ -x

_ x-_--xx_ _x_x_x-x -xx -x -xx__ *x - x x - x- * _x x -

x--x---_ -xx_---x x__ _x x-_ * 1X x xx x-x --x x - x
R(2) - ";: *;; --x "-;;" x- * x- -- xx - xx- -x --x x-- -x

- xx *xx x ,y--x-x- _x _x_- _x-x-__,yx_ --

x- -x - x- x x-- x x-x--x xx x--x ---x-xx-x- -x
x_ x_ -- xx-_ _x x_ _y, x_ x -- x x- x *x - *- l x *- _x

20_ _ -x-x * -_x *x - x x __ x xx x_ _ xx _ -x - _x _x x_ _-

x--x---_ _xx____x x__ _x x__ l *x x xx x-x --x x - x
xx- - -x x- -xx - -xxx-x-- xxx l _x _-x_ x_x __

*_ *x - xx *_ xxx x ~~__~_~- _x _x-- -x-x-_-xx- --

- x-- *-x __x *_--x x_ * x_ -- xx - xx- _x --x x_- _x

x--_-xx- _~_~_~_~ -xx _x -xx-_ *x _ xx- x-*-xx -
- -x-x * __x *x - x x _- x xx x- - xx - -x - -x -x x- --
x-_x---_ -xx_-__x x__ _x x__ * l x x xx x-x __x x - x

- *_ x_ _x - x_ x x__ x x-x--x xx x--x ---x-xx-x- -x
x_ x- _- xx_- _x x_ _x x- x -- x x_ x *x - *_ l x *_ -x

30_ x__ *_x __x x---x x_ * x_ -- xx - XX_ _x --x x__ _x

*- l x - xx l - x xx x ~~--~-~- _x _x_- _~_~__-~~- --

xx- - -x x- -xx - -xxx-x-- xxx *-x --x- x-y, -_

Figure 3-27. Funtional Dependence of R(2) on U, Matrix FzCR)

Contribution from K(3) obtained from R(3) vs. K(3). Figure 3-23, and relation between K(3) and U, Equation 3-29.

20

21

22

23

24

25

Contribution from FqR). (Entries in row 20 and 25 must be set equal to - before combining.)

10 20 30 40 50

4 **_**.*___ **l_._*X*.* _*X**t*t*_**X**_ **_*X_*_*.**t*_t_*~

Combined entries resulting in row four of FjR)

Figure 3-28. Functional Dependence of 4th Bit of R(3) on U

U
10 20 30 40 50

lll1llllllllllllllllllllllll,

*~_**t*__**t*_***_***~**_*********_**~~*_*~_*_*****~*__*
- *_**t**_*_***_*_***** _*_*********X**X**_*x_*_*******__* -

*t_*_***__*X*I***XX**~_*~****_*_** ** ***t__***_****_ **
- **_ ****___***_*_***** _********_**X**_**_*x_*_******_*_* -

_*.___,**_~_*x*I*__~~*..*_*.*.~~* .*I* _***_**I*___*
- **_*_*** _***t*_*X****_*X****_*_**x**_**** _***_t***___* -

l __*_***__******* *t*,%_* ********* **X**_*X_*_******t **
- l *_*_***__*X*****XX**x_*x****_*_** ** ****__***_****_ ** -

l * _***** _I****** **lx_* ****_****_**X****__*********__*
IO- t*_****__rt**_**r~***Xll_rrrtrtttr_rtXltr~_*_*******._* -

_**___***_*_****t _********_**X*t_**_*X_*_******_*_*

t***** **.x_* ********* **X**_*X_*-**t**** ** -

*_****t_*_***_*_***** _*_*********X**X**_*X_*_*******_.*

R(3) ::::;::I::.::I:I:::::l:::::::I:r::,:: ::::-::::I:::::_::
- **_._**. _*II**_*X.I**_.Xl*t*_*_**~**_**~. _***_I***__ 1 -

** _****t _******* ***X_* ****_****_*tx****__*********__*
- *_*****_*_***_*_*t*** _*_*********X**X**_*X_*_*******__* -

_**___***_t_***** _********_**X**_**_*X_*_******_*_*
20- *r_****__****_***_*r*~**_*********_**~**_*~_*_*******_.* -

l *_****___***_*_*X***__*x****_****x** 11,. _t**_****___*

*** **lx_* ********* **X**_*X_*_******* ** -

** _***** _******* **Ix_* ****_****_*tX**t*__*********~~*

- *t_*_*** ~****t_*X****_*X**t*~*_**x**_**** _*I*_****___* -

* *__*X*****XX**X_*X****_*_** it I***__***_****_ **

- **_****__****_***_*t*~**_*********_**~**~*~_*_*******__* -

_*~___***_*_~~I*~__*~.***~****~*. .*** _t**_***.___*

- *_*****_*_***_*_****I _*_********tX**X**_*x_*_*******~~* -

_**___***_*_***t* _********_**X**_**_*X_*_******_*_*

30- I;*_*_*** _t****_*X****_*X****_*_**x**_**** _***_***.___t -
t* _***** _******* ***,._I ****_****_**X****__*********__*

** ***x_* ********* **X**_*X_*_******* ** -

Figure 3-29. Functional Dependence of R(3) on U, Matrix Fy)

187

188 THE DATA ENCRYPTION STANDARD

Minimum Number of Rounds Required to Achieve
Ciphertext/Key I ntersymbol Dependence

For each output bit to depend on all bits of the key after round j, no ele-
ment of Fj must be blank. If this condition is satisfied, then it follows from
Equation 3-30 that no element of Ff!?jl is blank.

An approximate calcull.tion of the minimum number of rounds can be
performed as follows. Figure 3-23 shows that K(j) always affects six columns
in each row of FfR). Since L(0) and R(0) do not depend on the key, there
are six nonblank entries in each row of F$’ (see also Figure 3-24), whereas
all entries of FIL) are blank as shown before. Six rows of FiR) of six nonblank
entries each and one row of FiR) (entries all blank) are combined to obtain
FiR) to take into account the relationship between R(2) and X(l), whereas
K(2) is taken into account in deriving six entries in each row (see also Figure
3-25). The maximum possible number of nonblank entries in each row of
Fp) is thus (6 - 6) + 6 = 42. (In the accurate analysis for DES shown in
Figure 3-26, only 36 entries of the fourth row of matrix Fr) are nonblank
since there is an overlap between elements of the rows to be combined.) Six
rows of FiR) of at most 42 nonblank entries each, one row of F(,R) of six
nonblank entries each and six entries determined by the relationship be-
tween R(3) and K(3) are combined to obtain FF). Since the total, (6 l 42) +
6 + 6, exceeds the maximum number of possible entries (56) it is concluded
that all rows of F(2R)
ments of FiL)

could be nonblank, which implies that at most all ele-
could be nonblank. (In the accurate analysis for DES shown

in Figure 3-28, there is still one nonblank entry, in row four of matrix F(3R),
again due to overlap between entries to be combined.) The conclusion of
this approximate analysis is therefore that all 64 - 56 entries of F4 could
be nonblank after four rounds.

If an accurate analysis to calculate the percentage of nonblank elements,
t, is performed, it is seen from Figures 3-24, 3-27, and 3-29 that Fy), Fy),

Round
I

Output/Input Relation

j I L(j) vs. U R(j) vs. U X(j) vs. U

1 0.00 10.71 5.36
2 10.71 79.02 44.87
3 79.02 96.43 87.72
4 96.43 100.00 98.21
5 100.00 100.00 100.00

Note: Table entries express the degree of intersymbol dependence, i.e.,
the percentage of nonblank elements in the appropriate relations.

Table 3-22. Ciphertext/Key Intersymbol Dependence

REFERENCES 189

F(32) have 1600, 376, and 64 blank entries, respectively. With this informa-
tion and the fact that F{‘) = Ff!?, the values of [shown in Table 3-22 can
be obtained. Since U is directly related to the supplied key (ignoring parity
bits) according to Equation 3-26, the table entries do not change when U is
replaced by K. Hence the relationships shown in Table 3-22 also indicate
how the intersymbol dependence between cipher-text and key build up.

Summary and Conclusions

One property of DES is that each bit of ciphertext is a function of all plain-
text bits and all cipher key bits. This property, defined as intersymbol de-
pendence, has been analyzed above by evaluating how fast intersymbol
dependence was achieved as a function of repeated mathematical operations
defined as rounds. Each of these operations consists basically of substitution
and transposition.

Three different forms of dependencies were considered:

1. If an input bit affects the selection of a substitution function in one
round, the corresponding output was said to have an autoclave de-
pendence on the input.

2. If an input bit affects the argument of a substitution function in one
round, the corresponding output was said to have a message depen-
dence on the input.

3. Finally, since the basic operation involving substitution and transposi-
tion is repeated several times, the functional relation between a cipher-
text bit and a plaintext bit can be a combination of both of the
relations defined above.

It has been shown that after five rounds each ciphertext bit depends on all
plaintext bits via message- as well as autoclave-dependence. In addition, a
similar analysis has revealed that each ciphertext bit depends on all key bits
after five rounds.

The method applied to DES is, in general, applicable to ciphers which split
up the input into two parts, operate on one part first, and combine the
results of that operation with the other part using modulo 2 addition. In
addition, the assumption is made that the S-box functions are nonaffine such
that cancellation of dependencies does not occur.

REFERENCES

1. Shannon, C. E., “Communication Theory of Secrecy Systems,” Bell System Techni-
cal Journal, 28,656-715 (1949).

2. Feistel, H., “Block Cipher Cryptographic System,” U.S. Patent No. 3,798,359
(March 19, 1974).

3. IBM Research Reports, 7, No. 4, IBM Research, Yorktown Heights, NY (1971).

190 THE DATA ENCRYPTION STANDARD

4.

5.

6.

7.
8.
9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Ehrsam, W. F., Meyer, C. H., Powers, R. L., Smith, J. L., and Tuchman, W. L.
“Product Block Cipher System for Data Security,” U.S. Patent No. 3,962,539
(June 8, 1976).
Data Encryption Standard, Federal Information Processing Standard (FIPS) Publica-
tion 46, National Bureau of Standards, U.S. Department of Commerce, Washington,
DC (January 1977).
Vernam, G. S., “Cipher Printing Telegraph Systems for Secret Wire and Radio Tele-
graphic Communications,” Journal of the AZEE, 45, 109-l 15 (February 1926).
Kolman, B., Elementary Linear Algebra, Macmillan, London, 1971.
Golomb, S. W., Szift Register Sequences, Holden-Day, San Francisco, 1967.
Oystein, O., Number Theory and Its History, McGraw-Hill, New York, 1948.
Meyer, C. H. and Tuchman, W. L., “Pseudorandom Codes can be Cracked,” Elec-
tronic Design, 23, 74-76 (November 9, 1972).
Tuchman, W. L. and Meyer, C. H., “Efficacy of the Data Encryption Standard in
Data Processing,” Proceedings COMPCON, 78,340-347 (September 1978).

Bahl, L., “An Algorithm for Solving Simple Substitution Cryptograms,” Znterna-
tional Symposium on Information Theory, Ithaca, NY (October 1977).

Unclassified Summary, Involvement of NSA in the Development of the Data En-
cryption Standard, United States Senate Select Committee on Intelligence, Washing-
ton, DC (April 1978).
Branstad, D., Gait, J., and Katzke, S., Report of the Workshop on Cryptography in
Support of Computer Security, Held at the National Bureau of Standards, NBSIR
77-1291, Systems and Software Division Institute for Computer Sciences and Tech-
nology, National Bureau of Standards, Washington, DC 29234 (September 1977).
Meissner, P., Report of the 1976 Workshop on Estimation of Significant Advances in
Computer Technology, Held at the National Bureau of Standards, August 3@31,
1976 NBSIR 76-1199, Computer Systems Engineering Division, Institute for Com-
puter Sciences and Technology, National Bureau of Standards, Washington, DC
29234 (December 1976).
Hoffman, L. J., Modern Methods for Computer Security and Privacy, Prentice-Hall,
Englewood Cliffs, NJ, 1977.
Hellman, M., Merkle, R., Schroeppel, R., Washington, L., Diffie, W., Pohlig, S., and
Schweitzer, P., Results of an Znitial Attempt to Cryptanalyze the NBS Data Encryp-
tion Standard, Information Systems Laboratory Report, Stanford University (Sep
tember 9, 1976) (Revised November 10, 1976.)
Harrison, M. A., Introduction to Switching and Automata Theory, McGraw-Hill,
New York, 1965.

Hong, S. J., Cain, R. G., and Ostapko, D. L., “MINI: A Heuristic Approach for Logic
Minimization,” IBM Journal of Research and Development, 18, No. 5, 445-458
(September 1974).
Meyer, C. H., “Ciphertext/Plaintext and Ciphertext/Key Dependence vs. Number of
Rounds for the Data Encryption Standard,” AFZPS Conference Proceedings, 47,
1119-l 126 (June 1978).

Other Publications that Treat Cryptanalysis

Coppersmith, D., and Grossman, E., “Generators for Certain Alternating Groups
with Applications to Cryptography,” SIAM Journal on Applied Mathematics, 29,
624-627 (December 1975).
Grossman, E., “Group Theoretic Remarks on Cryptographic Systems Based on Two
Types of Addition,” IBM T. J. Watson Research Center, Yorktown Heights, NY, RC
4742 (February 1974).

REFERENCES 191

23. Tuckerman, B., “A Study of the Vigenere-Vernam Single and Multiple Loop En-
ciphering Systems,” IBM T. J. Watson Research Center, Yorktown Heights, NY,
RC 2879 (May 1970).

24. Tuckerman, B., “Solution of a Substitution Fractionation Transposition Cipher,”
IBM T. J. Watson Research Center, Yorktown Heights, NY, RC 4537 (September
1973).

25. Konheim, A. G., Cryptography: A Primer, John Wiley, New York, 1981.

Communication Security and File Security 192....
NETWORK ENCRYPTION MODES 195...............

Figure 4-1. Data Processing Network 194....................
Figure 4-2. Link Encryption 195....................................
Figure 4-3. Node Encryption 196..................................
Figure 4-5. Message and Header Encryption 200........

FUNDAMENTALS OF LINK ENCRYPTION 201...
Figure 4-6a. DTE/DCE and Link Control 202................
Figure 4-6b. DEE Placement-Link Encryption 202........
Asynchronous 203..
Byte-Synchronous 204..

Figure 4-7. Example of Extent of Encryption, 205....
Bit-Synchronous 206..

AN OVERVIEW OF END-TO-END 206..................
Cryptographic Key Data Set 208..................................

CIPHER KEY ALLOCATION 208...........................
Specification of Cipher Keys 209..................................

Figure 4-8. Terminal End User 209..........................
Figure 4-9. Host End Users 210...............................
Figure 4-10. Cryptographic Facility-General 211......
Figure 4-11. Transmission of Enciphered 212..........
Figure 4-12. Shorthand Notation Representin 213...
Figure 4-13. Shorthand Notation Representin 213...
Figure 4-15. Communication Phase 214..................
Figure 4-16. Allocation of Secondary Keys 215.......
Figure 4-17. Allocation of Secondary 216................
Figure 4-18. Allocation of Secondary 217................
Figure 4-19. Allocation of Secondary File 218..........
Figure 4-20. Allocation of Secondary File 218..........

An Example of the Encryption of Transmitted 219........
Figure 4-21. Initial Configuration 220.......................
Figure 4-22. Session Key Generation/Encrypt 220..
Figure 4-23. Session Key Transformation-Hos 221.
Figure 4-24. Session Key Recovery at 221..............
Figure 4-25. Initial Configuration 222.......................

An Example of the Encryption of a Data File 222.........
THE CRYPTOGRAPHIC FACILITY 222................

Figure 4-26. File Key Generation and Encipher 223.....
Figure 4-27. File Key Recovery and Decipher 223.......
Figure 4-28. Cryptographic Facility 224........................

Figure 4-29. �Primitive� Operations of 225....................
CIPHER KEY PROTECTION 226..........................

Protection of Terminal Keys 226...................................
Figure 4-30. Session Key Recovery at the 227........

Multiple Master Keys 229..
Protection of Host Keys 228..
The Master Key Concept 228.......................................
Encrypted vs. Unencrypted Primary Keys 228..............
Master Key Variants 230...

Figure 4-31. An Implementation Using 230..............
Figure 4-32. Implementation in which 231................
Figure 4-33. Derivation of Variants within 232..........

Hierarchy of Cipher Keys 232.......................................
Figure 4-34. Host Cipher Key Protection-Su 233.....
Figure 4-35. Hierarchy of Key Protection 234..........

THE HOST CRYPTOGRAPHIC SYSTEMI� 234....
Figure 4-36. Summary of Cipher Keys 235...................

BASIC CRYPTOGRAPHIC OPERATIONS 237....
Figure 4-37. Host Cryptographic System 237...............

Cryptographic Operations at a Terminal 239..........
LOAD KEY DIRECT 239...
WRITE MASTER KEY 239...

Figure 4-38. Load Key Direct Operation at 240........
DECIPHER KEY 240..
ENCIPHER 240...

Figure 4-39. Write Master Key Operation at 241......
DECIPHER 241...

Cryptographic Operations at a Host 243.................
Figure 4-40. Decipher Key Operation at 242................
Figure 4-41. Encipher Operation at Terminal 243.........
Figure 4-42. Decipher Operation at Terminal 244.........
ENCIPHER DATA 244..

Figure 4-43. Encipher Data Operation at 245...........
DECIPHER DATA 245..

Key Management Operations 246............................
SET MASTER KEY 246..
ENCIPHER UNDER MASTER KEY 246.........................
Figure 4-45. Set Master Key Operation at Host 247.......
Figure 4-46. Encipher Under Master Key 247.................

Figure 4-44. Decipher Data Operation at 246..........
REENCIPHER FROM MASTER KEY 248....................
REENCIPHER TO MASTER KEY 248.........................

Partitioning of Cipher Keys 250.....................................
Figure 4-47. Reencipher From Master Key 248.......
Figure 4-48. Reencipher To Master Key 249...........
Figure 4-49. Encipherment and Decipherment 251..
Figure 4-50. Hypothetical Scheme for the 252.........
Figure 4-51. Correct and Incorrect Use of 252.........

CIPHER MACRO INSTRUCTION 253....................
Figure 4-52. Ciphering Operation Using the 255..........
Figure 4-53. Ciphering Operation,Using the 256..........
Figure 4-54. Ciphering Operation Using the 258..........
Figure 4-55. Procedure for Computing OCV 258..........
Figure 4-56. Padding of Short Blocks 259....................
Figure 4-57. Ciphering a Short Block Using 259...........
Key Parity 249...
Partitioning of Cipher Keys 250.....................................

Figure 4-49. Encipherment and Decipherment 251..
Figure 4-50. Hypothetical Scheme for the 252.........
Figure 4-51. Correct and Incorrect Use of 252.........

CIPHER MACRO INSTRUCTION 253....................
Figure 4-52. Ciphering Operation Using the 255..........
Figure 4-53. Ciphering Operation,Using the 256..........
Figure 4-54. Ciphering Operation Using the 258..........
Figure 4-55. Procedure for Computing OCV 258..........
Figure 4-56. Padding of Short Blocks 259....................
Figure 4-57. Ciphering a Short Block Using 259...........

KEY MANAGEMENT MACRO INSTRUCTIO 260..
GENKEY and RETKEY Macros 260.......................

Figure 4-60. Session Key Translation at Host j 267......
Table 4-1. Resources, Keys, and Key Storage 262......
Table 4-2. Valid and Invalid Parameter 263..................
Table 4-3. Valid and Invalid Parameter 264..................
Using GENKEY and RETKEY 265................................

Figure 4-58. Initial Configuration 266.......................
Figure 4-59. Session Key Generation at Host 266...
Figure 4-60. Session Key Translation at Host 267...

THE CRYPTOGRAPHIC KEY DATA SET 267......
Table 4-4. CKDS Record Format ?...........................
Figure 4-62. CKDS Entries ?.....................................

SUMMARY 269..
REFERENCES 269..
Other Publications that Treat Key 270....................

--{ CHAPTER FOUR I-

Communication Security and File Security
Using Cryptography’

Previous chapters have introduced the reader to the fundamentals of cryp-
tography from a conceptual and, at times, abstract viewpoint. The discussion
has centered around the types of cryptographic algorithms in use today, their
salient properties, and some pririciples used in designing strong algorithms.

Beginning with this chapter and continuing throughout most of the book,
cryptographic applications are described that provide data privacy, data integ-
rity, or both. Communication security (COMSEC), file security (FILESEC),
personal verification, message authentication, and digital signatures are dis-
cussed. This chapter deals mainly with methods for incorporating a conven-
tional cryptographic algorithm, such as DES, in a data processing network to
provide communication security. Also described are methods of using DES to
secure data stored on removable media, such as tapes and disks. Methods for
implementing public-key algorithms are not described, although some of the
material may be applied to the design of public-key cryptographic systems.

For COMSEC, end-to-end encryption-the encipherment of data at their
point of origin and decipherment only at their final destination-is emphasized
because it provides the most security. When properly implemented, a host
processor’s encryption capability can be used for communication security,
file security, and other applications involving cryptography. Before a step-
by-step discussion of how end-to-end encryption can be implemented in a
data processing network, an overview of network configurations and the vari-
ous ways that cryptography can be implemented is appropriate.

NETWORKS

Soon after the first computers were developed for scientific data processing
applications, people realized that they might be applied to accounting tasks.
System designers and manufacturers then tried to extend the benefits of the

‘The material contained in this chapter elaborates and extends the ideas contained in
References 1 and 2.

192

NETWORKS 193

computer to more people and businesses. The application of computers to
communications was inevitable.2

At first, typewriter-like devices were designed and attached to the computer
in the same way that punched card readers, magnetic tape devices, and line
printers were. Through the keyboard the user could request programming
services without punching cards. Similarly, program execution was performed
immediately, or in real time, as opposed to the delay normally experienced
between submission of a job for batch processing and receiving the output,
or results. Systems programs called operating systems made program execu-
tion in real time possible. Useful results and reports of errors were returned
to the user with almost no noticeable delay.

While such devices were satisfactory for users near the computer, they did
not serve remote users. This problem was solved when it became possible to
send computer data over voice-grade analog telephone lines.

The development of the transmission control unit, a device capable of
controlling the telephone line and attached devices, contributed to this break-
through. System programming at the computer formatted data and managed
the control unit and device through standardized protocols: the agreements
reached between two parties on the format and meaning of control messages
and the sequence of control messages to be exchanged between the two parties.
Unfortunately, application development was inhibited by the need for device-
dependent support in each application program for each type of device.
Architectures were subsequently developed to unify network operations (see
Incorporation of Cryptography into a Communications Architecture,
Chapter 7).

At the same time, advances in technology, specifically the development of
microprocessors, led to the introduction of programmable communications
control units and programmable device control units. These units assumed line
and device control functions previously performed by application programs.
As a result, a major portion of the network management responsibility was
relocated to various network devices thus allowing the host processor to per-
form other functions. Gradually, data communications between hosts as well
as between a host and its attached devices (terminals, printers, facsimile
machines, etc.), over switched (public) or nonswitched (dedicated) lines,
became generalized such that any node (terminal, communications controller,
or host processor) could communicate with any other node.

The microprocessor revolution also had an effect on the computational
capability of terminals and control units. In addition to the fixed functions
of line and device control, particular applications could be performed by
specialized devices because sufficient computing power was available for addi-
tional functions. As the capacity of microprocessors increased, additional
functions were off-loaded from host processors and performed by various
microprocessor-driven devices. Systems evolved wherein data processing
functions were performed by devices situated in different places and connected
by transmission facilities. Thus data could be partially or wholly processed

‘A short history of this development can be found in Reference 3.

194 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

at any number of network nodes-a concept that became known as distributed
data processing. The common element in this development was the network
architecture which established the basis for device attachment and specified
the protocols necessary for device interaction.

A data processing network (Figure 4-1) is a configuration of data processing
devices, such as processors, control units, and terminals, which normally are
connected by data links for the purpose of data processing and information
exchange. The links may be processor channels, satellite and microwave links,
or switched and nonswitched communications lines. A network may be de-

1 ----- Switched
- Leased

Communication
Control Unit

Communication Communication

Communication

Figure 4-1. Data Processing Network

NETWORK ENCRYPTION MODES 195

scribed, in terms of the patterns formed by its links, as a star, loop, tree, or
mesh. In any case, the network’s basic function is to provide access paths by
which a user (person or program) at one location can communicate with
another user at some other location [41.

As more network facilities are used to process and transmit data, there is
an increased dependency on communication facilities provided by a commu-
nication common carrier for hire by the general public. Likewise, the oppor-
tunity and ease with which data can be intercepted increase. An architecture
for networks must therefore provide a capability to implement appropriate
security measures should they be required.

NETWORK ENCRYPTION MODES

There are three ways to incorporate cryptography into a communications
system: link, node, and end-to-end encryption.

Link encryption (Figure 4-2) protects data between adjacent network
nodes. The algorithm is implemented in cryptographic devices that bracket
(i.e., are situated at opposite ends of) a communication line between two
network nodes. The two devices are positioned between their respective
nodes and associated modems (modulators/demodulators) and are equipped
with identical keys.

Node encryption (Figure 4-3) is similar to link encryption in that each pair
of nodes shares a key to protect data communicated between them. However,
data passing through an intermediate node are not in the clear, as would be
the case with link encryption. Rather, at an intermediate node, the enciphered
data are transformed from encipherment under one key to encipherment
under another key (deciphered and reenciphered) within a security module
or protected peripheral device attached to the node. (Node encryption is
defined solely for completeness and discussed only in this section.)

End-to-end encryption (Figure 4-4) continuously protects data during
transmission between users. Unlike link and node encryption, end-to-end
encryption permits each user to have several keys, one key for each user who
uses encryption. Data are deciphered only at their final destination-they
never appear in clear form at intermediate nodes or their associated security
modules.

With link and node encryption, the user is normally not aware that mes-
sages are receiving cryptographic protection (i.e., the cryptographic function
is provided by the network, and is transparent to the user). A user-transparent
form of end-to-end encryption occurs if the cryptographic function is pro-
vided automatically through system services. If the user makes specific re-
quests for cryptography, its use is not transparent. This latter case is referred
to as private cryptography.3

One system service required to support transparent end-to-end encryption
involves the selection or assignment of a cryptographic key for enciphering

3Private cryptography is not the opposite of, nor should it be confused with, cryptography
using a public-key algorithm. For a description of public-key algorithms, see Cryptographic
Algorithms and Public-Key Algorithms, Chapter 2.

%z+
4 b

Yz-+
4 b

Enciphered Data Enciphered Data %z?
Owl) (key2)

r
Key1 Key1 Key2 Key2

Node - - Node - - Node
a , l l l

t I
I

Data

l Denotes Cryptographic Capability

Figure 4-2. Link Encryption

Data+ Node L

Enciphered Data
. Weal)

Data

l Node r
Enciphered Data

(W2)

l Node + Data

Data

I Key1

l
(Security Module)

l Denotes Cryptographic Capability

Figure 4-3. Node Encryption

(Security Module)

t cd
8
1

x
w
6
$
W

n’ w

198

NETWORK ENCRYPTION MODES 199

and deciphering data between communicating users (or the network nodes at
which the users are located). If one or more nodes in the system cannot use
encryption, or if encryption of only selected messages is desired, an additional
system mechanism is required to enable and disable the encryption function.
In either case, if cryptography is to be used by a network node, then the
encryption capability must be integrated (logically or physically) into the
node. In effect, this means that key management for end-to-end encryption
is not affected by the way a node is attached to the communication channel.

A host processor’s encryption capability can be integrated into the central
processing unit (CPU), into a front-end processor, or into a separate unit
attached to a CPU’s channel-a device that connects the CPU and main
storage with input/output control units. There are many trade-offs between
cost and performance that must be considered in selecting an approach.
However, the latter approach, being compatible with many CPU designs, has
the advantage that only a single device need be designed.

With link encryption, every node in the selected path over which encrypted
data pass must have a standalone cryptographic device connected to its input
and output ports. With node encryption, every node in the selected path
over which encrypted data pass must have its own security module (integrated
or attached). With end-to-end encryption, only those nodes that originate or
receive encrypted messages require an encryption capability; this can signifi-
cantly reduce the places where cryptography, or cryptographic devices, must
be used in the network.

In general, the information communicated between network nodes consists
of a message, or the data to be exchanged between users, and a message
header. Generally, a header contains routing information; for example, the
intended destination, the message’s sequence number, the identity of the
message’s source, indicators denoting the start and end of text, the classi-
fication of the message (i.e., whether it contains control commands, data, or
both), and possibly its format.

With link encryption, both a message and its header could be encrypted
(Figure 4-5). With either end-to-end or node encryption, only the message,
but not the routing information, can be encrypted. This is because each inter-
mediate node in the communications path must examine the routing infor-
mation in order to direct the message to its intended destination. Of course,
if link encryption and either end-to-end or node encryption were implemented
in the same network, messages would be doubly encrypted and headers would
therefore be encrypted on a link basis.

If clear and encrypted messages are intermixed, a mechanism must exist to
separate them. In one approach, a bit in the message’s header is used to indi-
cate whether the message is encrypted. In another approach, consistent with
some line protocols, special control messages specify when to start and stop
encryption. Finally, a high security mode of operation is possible if the mech-
anism for turning encryption on and off is ignored and all message traffic is
encrypted.

Since with end-to-end and node encryption, and in some cases with link
encryption, the header is in clear form, data communications are susceptible
to a form of traffic analysis wherein an opponent obtains statistics related to

200 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

End-to-End Encryption/Node Encryption

pi2l-j Message

(Must Not be Enciphered) (Can be Enciphered)

Link Encryption

pi-z-j -

(Can be Enciphered)

Message

(Can be Enciphered)

Figure 4-5. Message and Header Encryption

the number of messages transmitted to or from a given node. Other forms of
traffic analysis are possible when headers are encrypted. Used by the military,
traffic analysis has often given advance warning of enemy activity in a partic-
ular sector or combat zone. Traffic analysis can be prevented easily (at the
expense of efficiency) by deliberately keeping a line active with bogus message
traffic, thus masking the occasions when an unusual amount of meaningful
traffic is transmitted. However, since traffic analysis is less of a threat in
commercial applications, it is not discussed.4

In terms of cost, flexibility, and security, end-toend encryption appears
most attractive for systems requiring many protected links. Thus a cryp-
tographic architecture-the definition and allocation of keys, cryptographic
operations, macro instructions, and the like-for end-to-end encryption in a
communications network is the subject of most of the remainder of this
chapter. Based on this architecture, methods are also developed for the en-
cryption of data files. (The communication architecture to support such a
system is discussed in Chapter 7.)

However, link encryption may be more attractive than end-to-end encryp-
tion for certain networks and teleprocessing configurations. For example,
where the number of links requiring protection is small, only a few link
encryption devices are necessary, and therefore the cost of protection is low.
Link encryption devices operate transparent to existing programs, and they
require no operator action. Moreover, most link encryption devices operate
at line speed, thus causing no noticeable degradation in transmission perfor-
mance. Finally, some teleprocessing devices, because of their design or the
way they are managed by programming, will not support end-to-end encryp-
tion. For these reasons, link encryption is discussed in greater detail before
developing the subject of end-to-end encryption.

4The interested reader may wish to consult Baran [5] and Chaum [6], who address the
traffic analysis problem.

FUNDAMENTALS OF LINK ENCRYPTION 201

FUNDAMENTALS OF LINK ENCRYPTION

Whereas the objective of end-to-end encryption is to protect data over the
entire path it must traverse from a source node to a destination node, the
objective of link encryption is to protect only the portion of the total path,
or link(s), where the opportunity for interception exists or is the greatest.5
The definition of link includes terrestrial (telephone wires, microwave, optical
fiber, cable television, etc.) and satellite communication services which (1)
accept a signal from a portion of a data processing system (or business ma-
chine), (2) transport that signal to a distant point, and (3) deliver the signal
with exactly the same bit sequence it had when it was received. Such services
are provided by communication common carriers (Western Union Telegraph
Co., American Telephone and Telegraph Co., General Telephone and Elec-
tronics Co., and numerous independent telephone companies), specialized
carriers, satellite carriers in the United States, and the Postal Telephone and
Telegraph Administrations (PTTs) in many other countries. Excluded from
the definition are the CPU’s channel and the input/output (I/O) bus used to
attach I/O control units (i.e., devices not connected to a communication
channel).

From a practical point of view, an encryption device operating indepen-
dently of the communication channel is independent of, and does not require
redesign of, existing data processing and communications equipment (Figure
4-2). However, the placement of the encryption device need not be external
to a terminal or its modem. Encryption apparatus could, in fact, be included
“under the covers,” along with a modem (should the design of either piece
of equipment so specify). The ultimate decision rests with the manufacturer
of the equipment and is based on the requirements of the market.

Regardless of implementation, however, the data encryption equipment
(DEE) must conform to the established interface between system components,
generally called data terminal equipment (DTE) and data circuit-terminating
equipment (DCE).6 (This terminology has been accepted by the International
Consultative Committee for Telegraph and Telephone (CCITT), the Interna-
tional Organization for Standardization (ISO), the American National Stan-
dards Institute (ANSI), and the Electronic Industries Association (EIA).)
Included are the electrical signal characteristics, interface mechanical charac-
teristics, and the functional description of interchange circuits needed to
establish, maintain, and disconnect the physical connection between a DTE
and DCE or between two DTEs.

In some cases, improved link efficiency can be realized if the DEE is de-
signed to a specific data link control protocol. These rules regulate the initia-
tion, checking, and retransmission (if any) of each data unit presented to the
link for transmission, and are independent of the media used. This improves
the DEE’s ability to determine when to start and stop encrypting/decrypting.

’ Much of the information in this section regarding link protocols was taken from Chapter
11 in Reference 7. Interested readers are referred to this text for supplemental reading.
6A DTE corresponds to a data terminal or communications controller. A DCE corresponds
to a modem or its functional equivalent in a public data network.

D
a
t
a

-w-------,
Network
Interface
Functions

---w----m
Data Link

Control
Functions I Link Control ----

---B----D Protocol
Electrical
Interface
Circuits

Sending DTE Receiving DTE

User
Functions

User
Functions

m---w-----
Network
Interface
Functions

Data Link

Control
Functions

---------.
Electrical
Interface
Circuits

I

I--+- DCE DCE -1

I

I
Communication

I
I

I Channel I
I ------------DTE/DCEInterface ----- --_-- -,,I

Figure 4-6a. DTE/DCE and Link Control Interface

Sender Receiver

D
a
t
a

F
1
0
W

1

DTE

I

Link Control Link Control ,---- e-m- e-m-
Protocol Protocol

i

DTE

D
a
t
a

D
a
t
a

r r
+ + DCE DCE DCE DCE e-1 e-1

I I Communication Communication I I

I I
Channel Channel I I

I I DEE - DEE - - DEE - DEE I I

: ’ : ’
f f

L L
I I

------------- DTE/DCE Interface ------------- DTE/DCE Interface ------------A ------------A

Figure 4-6b. DEE Placement-Link Encryption

FUNDAMENTALS OF LINK ENCRYPTION 203

Implementations which are not link protocol-dependent also exist. In these
cases every bit is cryptographically processed without consideration by the
DEE as to the format of the data unit being transmitted. Figure 4-6a illus-
strates the DTE/DCE interface and the arrangement of functions within
DTEs.

DTE/DCE interfaces between data processing equipment and communica-
tion equipment are standardized in the United States through the efforts of
the EIA, and worldwide through CCITT. Almost all manufacturers adhere to
the EIA and CCITT standards so that products of different manufacturers
can communicate with one another.

For the same reason, link protocols are standardized in the United States
by ANSI, and worldwide through ISO. Practically then, link encryption
devices must be implemented in conformance with these standards. Thus the
presence of the DEE, residing on the DTE/DCE interface (Figure 4-6b), is
transparent to both DTE and DCE.

Link protocols applicable to character-coded information generally fall
into two broad classes: asynchronous and synchronous. The difference is
related to the mechanism used to provide (bit) synchronization of the trans-
mitted data character(s).

With an asynchronous protocol, the bits within each character, or block of
characters, are sent at distinct time intervals as determined by clock pulses
generated by the DTE. The receiving DTE receives the transmitted bits at the
same rate, having the ability to produce clock pulses identical to those of the
sender. But the first bit of each character, or block of characters, can be sent
at any time. By contrast, the time of occurrence of each bit or byte trans-
mitted synchronously, including the start bit or start character, is related to
clock pulses synchronized between the sending and receiving DTEs. The
protocols commonly used for asynchronous and synchronous transmissions
are discussed below. A method for incorporating cryptography in each is
suggested.

Asynchronous

With this protocol, each data character is preceded by a start bit and followed
by at least one stop bit (popularly referred to as start/stop protocol). The
start and stop bits delimit each character being sent. Depending on the char-
acter code/set in use, a character could be represented by 5, 6, 7, or 8 bits.

The start bit must always be sent in the clear. Encryption can, and usually
does, begin with the first data bit and normally ends with the last data bit.
The stop bit may or may not be enciphered, although in most present designs
it is sent in the clear. A DEE supporting this protocol could be designed to
operate with a specific character code, for example, 7-bit ASCII (American
National Standard Code for Information Interchange), or with multiple codes.
In this latter case, the device must be initialized via some external input to
operate with one code during one period and then be reinitialized to operate
with another code during a different period. Implementation options, such
as these, may vary from one manufacturer to another.

204 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Byte-Synchronous

This protocol is suitable for 7- and 8-bit ASCII and 8-bit EBCDIC (Extended
Binary-Coded Decimal Interchange Code). Characters entered at a keyboard
are first collected in a buffer. The entire message is then transmitted at inter-
vals determined by the clocking mechanism supported by the two DTEs.
Rather than rely on start and stop bits for character synchronization, the DTE
uses a different source of timing. For example, some DCE’s maintain a master
clock signal (referred to as modem clocking). However, it is still desirable (as
in the start/stop protocol) to derive the bit-synchronizing signal from the O-
to-l and l-to-0 transitions in the bit-stream itself. This is accomplished in
the DTE with a bit-clock, the primary component of a business machine
clock, since this avoids the consequences of any tendency of the DCE’s
clock to drift. In binary synchronous communication (BSC), for example,
sufficiently frequent O-to-l bit transitions are provided through the use of
the special PAD and SYN characters.

The PAD character (a set of alternating 1s and OS) helps establish bit
synchronization between the DTE and DCE. The SYN character, which may
repeatedly appear in the data, helps the receiving DTE maintain character
(byte) synchronization with the sending DTE. For example, initial synchroni-
zation, following a line turnaround, is assisted by the control-character se-
quence of PAD SYN SYN. Additional synchronizing (SYN) characters in
the data stream not only ensure that the receiving DTE stays in bit synchroni-
zation but also establish which bits are the first and last in each character
(i.e., they provide character synchronization as well). The content of the
message is delineated by the following additional control characters:

SOH (start of header)
STX (start of text)
ETX (end of text)

With this very brief explanation, the use of cryptography to protect a mes-
sage can now be understood. In one approach, intended to protect only the
text portion of the message, the DEE scans the data stream for an STX char-
acter, used to signal the beginning of encryption/decryption. Encryption/
decryption terminates when a corresponding ETX character is encountered.
(ETX may or may not be encrypted.) Alternatively, the SOH character could
signal the DEE to begin encrypting/decrypting, if it was desired to protect
header information. But note that in this case the entire message is encrypted/
decrypted. Therefore, throughput is adversely affected since encryption is
always applied, even for messages containing no text. (In BSC, control mes-
sages are used to convey link commands.)

Ordinarily, a group of bits (called the block check character) is added to
the message after the ETX. These bits, which are a function of all the bits in
the message (including the header), are used to detect errors that can occur
during transmission. When encryption is employed, the block check character
can and may be encrypted, in which case its recomputation by the receiver
is performed after decryption.

Start-Stop: Encrypts Evervthing but Start and Stop Bits

BSC: Encrypts Only Text and Ending Characters

SDLC: Encrypts Everything but the Initial Flag

Text III ETX BCC

Information (Text) Bits

= “In the Clear”

Figure 4-7. Example of Extent of Encryption, by Protocol

Reprinted by permission from IBM 3845 Data Encryption Device IBM 3846 Data Encryption Device General
Information. 0 1977 by International Business Machines Corporation.

206 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Bit-Synchronous

Some link protocols are bit-oriented, rather than character-oriented.’ There-
fore, the bit pattern of a particular character is ignored by the DTE and the
protocol is said to be character-code independent. Each transmission is syn-
chronized by a unique delimiter called a flag (F). Transmitted data are iden-
tified by leading and trailing flags, and a unit of transmission is referred to as
a frame. The generalized format of a frame is:

[Link Header] [Information] [Link Trailer]

or

IF1 [Information1 IF1

When a series of frames is sent as a group, the trailing flag of one frame is
also the leading flag of the next frame (i.e., the frames are separated by a
single flag). By convention, sequences of eight or more consecutive l-bits are
never transmitted except to indicate an idle line condition.

Even though the discussion above is brief, a generalized approach to en-
cryption can be inferred therefrom by means of an example using IBM’s
Synchronous Data Link Control (SDLC). Because link encryption is effected
between two adjacent nodes, in which case routing information must be un-
encrypted at the nodes but not on the link, SDLC encryption can commence
with the detection of a leading F (where F is the bit string 01111110) and
terminate after the trailing F (F followed by eight or more l-bits). Decryp-
tion follows the same rule. Of course, the trailing flag would have to be
identified after decryption to delimit the frame. Calculation and comparison
of the block check character, which is included in the information segment
of the frame, likewise is performed after decryption. Figure 4-7 illustrates
one of many possible encryption implementations to achieve link data pro-
tection and serves to summarize this subject.

AN OVERVIEW OF END-TO-END ENCRYPTION

In a data communications network, assume that a person (end user) at a ter-
minal is communicating with an application program (also an end user)
through a processor of some type. These communicating end users share a
common key, which may be a personal (private) key provided by and agreed
upon by the users in advance or, for transparent cryptographic data protec-
tion, a key dynamically generated and assigned to these users by the system.
This latter data-encrypting (or data-decrypting)’ key is active only for the

‘Several bit-synchronous protocols have evolved from ANSI’s Advanced Data Commu-
nications Control Procedure (ADCCP), and the IS0 equivalent, High Level Data Link
Control (HDLC).
‘Recall that a conventional algorithm is assumed.

AN OVERVIEW OF END-TO-END ENCRYPTION 207

duration of a single communications session, and therefore is called a session
key.

For file security, applications programs are the participants (end users that
encipher or decipher files). The data-encrypting key used to protect a file
is called a file key. And a different file key, which is provided by either the
end user or the system, may be assigned to each file. Subsequently, an en-
crypted file may be decrypted (recovered) at any host with an encryption
capability, including the one at which it was created, provided that the file
key is made available to that host.

For communication security, session keys are generated at a host and then
transmitted to a receiving node (terminal or host) via a communications net-
work (assumed nonsecure). The session key is kept secret by enciphering
it under another key, defined a key-encrypting (or key-decrypting) key,
which has been installed in advance at the receiving node. This approach
allows each receiving node to have a unique key-encrypting key. Therefore,
if a key-encrypting key at a terminal is compromised, the security exposure
is localized to that specific terminal and does not jeopardize the security of
the entire network-a highly desirable feature.

In the particular system under consideration, one set of key-encrypting
keys is used to encipher session keys transmitted from host to host, and
another set of key-encrypting keys is used to encipher session keys transmitted
from host to terminal. Each host must therefore store the key-encrypting
keys of each host and terminal that it communicates with. Potentially, many
key-encrypting keys may be required. A terminal, on the other hand, is re-
quired to store only one key-encrypting key, called a terminal master key.
Session keys are sent from a host to a terminal enciphered under the terminal’s
master key.

The terminal master key’s secrecy is achieved by storing it in a protected
area called the cryptographic facility. The cryptographic facility is a secure
implementation containing the cryptographic algorithm (DES is assumed),
and a nonvolatile memory where the master key is stored. It can be accessed
only through inviolate interfaces (secure against intrusion, circumvention,
and deception), which allow processing requests, key, and data parameters to
be presented, and transformed output to be received. A similar cryptographic
facility is available at the host.

Key-encrypting keys stored at a host processor are kept secret by encipher-
ing them under a host master key. This method of protecting keys is referred
to as the master key concept. The host master key, like the terminal master
key, is kept secret by storing it in the host’s cryptographic facility.

Because of the large number of cipher keys used at a host processor, auto-
mated procedures are required to generate and manage these keys. The key
generator and the key manager are two host programs provided for this
purpose. The key generator generates the key-encrypting keys that are re-
quired by the host. However, key-encrypting keys can also be specified by
installation personnel (e.g., personal keys that have been created by individual
users, or keys that have been generated at some other location by another
key generator). In any case, the key-encrypting keys used by a host are stored
in a key table. A second copy of each key-encrypting key is transmitted

208 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

securely (by courier or some other means) and installed in the respective
terminal or host.

Due to the large number of keys required at a host, it is customary to
store the key table on a disk or drum (i.e., in secondary storage rather than
in the computers main memory). In this discussion the key table is called
the Cryptographic Key Data Set (CKDS). It resides on secondary storage and
is assumed to be accessible during normal system operation. The key generator
has exclusive write privilege to this data set to add, change, and delete keys.
The key manager and key generator have exclusive read privilege to the data
set to accomplish the tasks of translating keys. Access to the CKDS is denied
to all other programs.

The translation function of the key manager involves reenciphering a key
from encipherment under one key to encipherment under another key. Re-
quests for key translation are made via GENKEY (Generate Key) and
RETKEY (Retrieve Key), two programming calls used to invoke the key
manager function.

Another programming call, denoted CIPHER, invokes the encipher and
decipher data function. It also provides a way for the calling program to
specify extended options, such as block chaining (see Block Ciphers with
Chaining, Chapter 2).

Six basic cryptographic operations are defined to the host’s cryptographic
facility. These operations, either alone or in combination, provide the cryp-
tographic services requested by the GENKEY, RETKEY, and CIPHER calls,
and all other key management functions required by the system. The imple-
mentation of the basic operations is such that a clear key cannot be recovered
outside the cryptographic facility, regardless of the order in which the basic
operations are exercised. Since this property is a requirement for the cryp-
tographic system to be secure, let it be restated in a stronger form:

It must not be possible to recover keys in the clear outside a designated physi-
cally secure area, such as a cryptographic facility, regardless of the inherent security
of the supporting host operating system.

CIPHER KEY ALLOCATION

The formal treatment of end-to-end encryption begins with a discussion of
cipher key allocation. To provide good overall security, different cryptog-
raphic applications require different types of cipher keys. (This will be dem-
onstrated later when analyzing a particular implementation.) Thus an
important step in the design of any cryptographic system is the initial specifi-
cation of its cipher keys. This includes a statement or declaration of the
intended purpose and use of each class or type of key and the procedures for
their protection.

Technically, cryptographic keys are data. However, it is useful in a discus-
sion involving cryptography to distinguish between keys (key data) and data
that are not keys (nonkey data, or simply data).

CIPHER KEY ALLOCATION 209

Specification of Cipher Keys

The designer of a cryptographic system must answer the following questions:

1. What nodes in the system require cipher keys and how are these keys
initialized or set into the nodes?

2. How often are cipher keys changed, that is, what is the expected life
of a key?

3. Where in the system, and under what conditions, are cipher keys
created?

4. How are data and cipher keys protected?

In the system to be described, both terminals and host processors can have
encryption capabilities. The encryption capability (a facility capable of per-
forming encryption and decryption) is invoked by a user located at the ter-
minal or host processor.

For terminals capable of input and output operations, the end user is
a human being (Figure 4-8). It is assumed that only one end user can be active
at any given time. Terminal control units (also called cluster control units)
that can support several terminals and their respective end users concurrently
are, for simplicity, not specifically identified in this discussion. However, the
developed key management scheme would support these devices, provided
that the control unit’s cryptographic operations were designed differently
to accommodate several enciphered session keys.

At the host processor, end users are application programs. Because of mul-
tiprogramming (concurrent execution of two or more programs by a host
processor), many application programs can contend for the use of the host’s
cryptographic service at the same time (Figure 4-9).

For the encryption capability in a node to function, it must have a copy of
the cryptographic algorithm (DES is assumed) and the specific cryptographic
key to be used for ciphering data. The key that is in use at any given time
is defined as the working key. To prevent the working key and intermediate
rounds of encipherment from being probed by an opponent (since knowledge
of intermediate rounds reduces the work factor associated with the algorithm),
the cryptographic algorithm and working key are maintained or stored in a

Human Terminal

Figure 4-8. Terminal End User

210 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Host

Application
Programs

Figure 4-9. Host End Users

protected area defined as the cryptographic facility (Figure 4-10; see also
The Cryptographic Facility).

It may be helpful for the reader to think of the cryptographic facility as a
physical object, for example, a standalone hardware device or security module
with its own protective covers [8]. Or one can think of the cryptographic
facility as a special component integrated into another device, such as a ter-
minal or computer. In either case, the security of the cryptographic facility
is a function of the protection features associated with or provided by its
physical embodiment and/or the device within which it is integrated; for
example, probe resistant packaging, automatic tamper-proof detection fea-
tures, covers, and the like, and the access control measures (administrative
controls, locks and keys, badges, guards, fences, and so forth) that are present
to limit access to the cryptographic facility or its embodying cryptographic
device. The cryptographic facilities shown in Figures 4-8 and 4-9 are integrated
into their respective devices.

When implemented in software, the boundaries of the cryptographic facility
are not well-defined. In such cases, the physical protection achieved in hard-
ware must now be achieved logically through programming. Ultimately, the
degree of protection will depend on a processor’s hardware protection features
as utilized by the resident operating system (e.g., store and fetch protection,
privileged operations, program execution modes, and the like). Thus the
security of software implementations is no better than that of the underlying
operating system.

To be initialized, at least one cipher key must be inserted into the cryp-
tographic facility in clear form. This initial key must be transmitted to the
facility in a secure manner, without compromising its secrecy. Subsequently,
other keys can be introduced into the cryptographic facility by the system
automatically. A key can be transmitted to a cryptographic facility over a
nonsecure path as long as it is first enciphered under a key already present
in the receiving cryptographic facility.

CIPHER KEY ALLOCATION 211

Operation Code:

I

Input output

I t

Set of ‘I Operations “‘I
; Control
I I I I I I I,-- P-l Cryptographic

Alenrithm - --P---------
(Encipher/Decipher)

1

I Key
4

(Working Key)

Figure 4-10. Cryptographic Facility-General Concept

The cryptographic facility provides the means for inserting data or keys to
be ciphered. A control line is provided to activate the desired operation. The
results of the operation are provided as output, except when an enciphered
key is deciphered to produce a working key. In this case, the result is retained
within the cryptographic facility.

The initial key may be a personal key associated with a particular user, or
a system-supplied key associated with a particular node. In either case, the
key is manually entered into the node’s cryptographic facility. A personal
key is normally entered by the user at the time ciphering is required. Con-
versely, a key supplied by the system is entered by installation personnel at
the time the system is first initialized.

The described method of key management allows keys to be managed
entirely by the system and its operating personnel, thus achieving cryptog-
raphic transparency. As indicated earlier, transparency is a highly desirable
feature. However, the design does allow for user-supplied keys, and users
have the option to manage keys and invoke the system’s cryptographic opera-
tions themselves.

Nodes at which data encryption is desired must be equipped with identical
encryption algorithms, and each node must have a copy of the same cipher

212 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Location 1 Location 2

Data jTYiTb Data

Figure 4-11. Transmission of Enciphered Data from
Location 1 to Location 2

key K (Figure 4-l 1). Though two nodes must always share a common data-
encrypting (or data-decrypting)’ key to permit enciphered communications,
greater security is achieved if different data-encrypting keys are used by each
pair of communicating nodes. Such a design minimizes the resulting damage
if a key should become compromised.

Using different data-encrypting keys for enciphered communications be-
tween each pair of communicating nodes has other advantages. Information
intended for one node cannot be surreptitiously decrypted at another node,
and misdirected messages cannot be accidentally deciphered by unintended
recipients.‘O

The cryptographic system being described uses a different key for encipher-
ing the data transmitted or transferred between each pair of end users. These
data may be transmitted electronically or they may be magnetically encoded
on a removable storage medium and transported from one location to another.
Subsequent diagrams will use the following notation to differentiate between
nodes and end users:

Circle: Denotes a network node (terminal or host)
Square: Denotes an end user (human being or application program)

In this discussion, a key used to protect (encipher and decipher) data is called
a primary key (K). A primary key is also called a data-encrypting (or data-
decrypting) key. When a primary key is used directly to provide communica-
tion security, it is called a primary communication key (KC), or simply, a
communication key. The primary communication key used to protect data
during a communications session is called asession key (KS). When a primary
key is used directly to provide file security, it is called a primary file key (KF),
or simply, a file key. A primary key (K) that protects data between end users 1
and 2 can be represented by the following diagram (Figure 4-12).

Primary keys are automatically generated by the system at the request of
an end user, although primary keys can be supplied by end users as well.
During periods of storage outside the cryptographic facility, these primary

9A conventional algorithm is assumed so that the enciphering and deciphering keys are
equal.

“This is also true for a public-key algorithm.

CIPHER KEY ALLOCATION 213

K

Figure 4-12. Shorthand Notation Representing
Data Protection Between Users 1 and 2 Using
Primary Key K

keys are protected by encipherment under another key, a key-encrypting (or
key-decrypting) key. Keys must be kept secret for the period of their existence
or until the data they protect are deemed no longer of value.

A secondary key (KN), where N stands for node, is one type of key-
encrypting key used to protect primary keys (Figure 4-13). A second type of
key-encrypting key, defined master key, is described below. When a secondary
key is used to provide key protection in a communications environment, it
is called a secondary communication key (KNC). When a secondary key is
used to provide key protection in a data base environment, it is called a
secondary file key (KNF).

Secondary keys are ordinarily introduced into the system at the request of
installation personnel via the key generator, although secondary keys can be
specified by installation personnel as well. Secondary keys, as a rule, remain
unchanged for relatively long periods of time-months or perhaps years. With
the benefit of physical protection, the risk of compromise is reduced.

Once the secondary keys have been manually set in their respective net-
work nodes, data-encrypting keys can be sent from one node to another by
encipherment under the secondary key of the receiving node. Similarly,
data communicated between end users can be protected by encipherment
under an established data-encrypting key.

Both COMSEC and FILESEC subscribe to the same concept of data pro-
tection: cryptography is used to protect data in an uncontrolled and pre-
sumably hostile environment by encipherment under a data-encrypting key.
There are, however, differences in the expected life of the keys.

In a communications environment, a primary key exists only for the time
required for two end users to exchange data. Ordinarily, the key would exist
for a matter of minutes, perhaps an hour, but rarely for more than a day. In
cases where encrypted files are transported between data processing locations,
the key would exist for a matter of days or weeks. In contrast, a primary key
used to protect archival data could exist for a period of years, or as long as
the file is retained.

KN

Figure 4-13. Shorthand Notation Representing
Key Protection Between Nodes A and B
Using Secondary Key KN

214 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

During the initiation of a communications session, a session key (either
dynamically generated by the cryptographic system or supplied by the end
user) is assigned to the session. At the completion of the session, the session
key is erased or overwritten. Thus each session carries on cryptographic com-
munications with a different key, thereby reducing the amount of data
encrypted under a single key.

When used in a data base environment, the cryptographic system dynam-
ically provides, or accepts from the end user, a key analogous to the session
key (a file key) which it then assigns to a file. The file keys are protected via
a secondary file key, which is analogous to the secondary communication
key mentioned above. The net result is that different files are encrypted with
different file keys, just as the data for different sessions are encrypted with
different session keys. When a personal key is used as a file key, access to
encrypted data also depends upon the user’s ability to supply the correct
key.

The sequence of events involved in gaining cryptographic protection for
data communications between two end users can now be summarized. In
order for the two nodes to establish a common primary key (data-encrypting
key) on behalf of their respective end users, they must share, or have access
to, a common secondary key. For good security, a different secondary key
should be used between each pair of nodes. During the initiation phase
(Figure 4-14), a dynamically generated primary key (K) is sent from node A
to node B enciphered under a secondary key (KN) previously installed at
each node. During the communication phase (Figure 4-19, end users 1 and 2
located at nodes A and B, respectively, communicate using primary key IS.

(Encipher) (Decipher)

KN
(Key)

Figure 4-14. Initiation Phase

(Encipher) (Decipher)

Data9 Data

Figure 4-15. Communication Phase

CIPHER KEY ALLOCATION 215

In a communications environment, key distribution occurs at the time a
session is established. Where nodes A and B are hosts and the data being
transmitted are in the form of an encrypted file, key distribution can precede,
be part of, or follow the transmission of data.

Let us now expand on this concept. It is evident that in a system with n
network nodes, all of which require and support cryptography, there are

n 0 = n(n-1)
2 2

ways in which nodes may be selected two at a time (i.e., in pairs). A total of
n(n - 1)/2 different secondary keys is needed within the system, where each
node is required to store n - 1 different secondary keys, one for each of the
other nodes in the system. This is illustrated by a simple four node system
(Figure 4- 16).

In a system with a realistic number of nodes, say 100, each node would
have to store 99 different secondary keys. A total of 4950 different secondary
keys would have to be stored in the system. Clearly, the task of installing
and managing such a large number of cipher keys would be difficult. However,
recognizing that data processing systems have different processing and storage
capabilities, one can reduce the number of secondary keys to a more manage-
able number by concentrating keys at host nodes and installing only one key
in each terminal node.

Each terminal, as a rule, is, or can be, associated with a single managing
host. In effect, a terminal has a logical owner (the host). Therefore, the col-
lection of terminals and other nodes managed by a single host is defined here
as a domain or single domain. When two or more hosts are logically connected,
the resultant network is said to have multiple domains. This concept of
ownership allows keys to be assigned more simply.

The path between each terminal and its owning host (a single domain) is
protected with a unique secondary communication key, installed in the ter-
minal and stored in the host’s key table. The path between each pair of hosts

Node Stored Keys

A KNl, KN2, KN3
B KN2, KN4, KN5
C KNl, KN4, KN6
D KN3, KN5, KN6 KNS

KN6

Figure 4-16. Allocation of Secondary Keys in a Four Node System

216 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

is protected with a pair of unique secondary communication keys, stored in
the key table at each host. These key-encrypting keys are unidirectional:
they are used for data movement in only one direction. The property of
unidirectionality is actually enforced via the system’s cryptographic opera-
tions, which must be appropriately designed (see Chapter 5). In effect, the
cryptographic operations permit decryption of encrypted information only
at the intended destination node.

Assume that a session key is generated at a host (for matters of economy
and practicality). It is enciphered under the secondary communication key
(obtained from the host’s key table) assigned to each of the receiving nodes.
In this form, the session key can be safely transmitted to each receiving node,
while enjoying the protection provided by the secondary communication
key. The operations defined to the host’s cryptographic facility are such that
the session key, once enciphered, cannot be recovered at the generating host
(under the assumption that the generating host is not a receiving node),
preserving the unidirectional property of the secondary communication key.

In an environment with multiple domains, each host must be able to send
as well as receive session keys enciphered under a unidirectional secondary
communication key. The two different cases (single and multiple domains)
are shown below (Figure 4-l 7), ,where the unidirectional nature of the sec-
ondary communication key is illustrated through the use of a right or left-
directed arrow.

In summary, each host shares two different secondary communication keys
with each of the other hosts in the network, and a single secondary commu-
nication key with each of the terminals within its own domain. Thus in a
network with 3 hosts and 2 terminals per host (Figure 4-18), each host must
store 4 different secondary keys, each terminal must store 1 secondary key,
and a total of 12 different secondary keys are required in the system. The

Single Domain COMSEC:

KNCI H = Host
T = Terminal

Multiple Domain COMSEC:

KNC2

0 H2
KNC3

Figure 4-17. Allocation of Secondary Communication Keys

CIPHER KEY ALLOCATION 217

r

H = Host
T = Terminal

Each arrow denotes
a different secondary
key.

Figure 4-18. Allocation of Secondary Communication Keys in a
Communicatioris Network with 3 Hosts and 2 Terminals per Host

allocation of these secondary communication keys can be illustrated by a
directed graph, where each arrow denotes a different secondary communica-
tion key, KNC (Figure 4-18).

A system with 4 hosts and 24 terminals per host yields a network with
100 nodes. Each host would have to store 30 different secondary communi-
cation keys, each terminal would be required to store 1 secondary commu-
nication key, and a total of 108 secondary communication keys would be
needed by the system. This compares favorably with the prior system of 100
nodes, where the path connecting each pair of nodes was protected with
a different secondary communication key. Recall that in such an approach
99 different secondary communication keys were stored at each host and
each terminal, resulting in a total of 4950 different keys in the system.

The allocation of secondary keys for FILESEC (Figure 4-19) is similar
to that described for COMSEC. However, encrypted files can be created and
recovered (decrypted) only at host nodes.” Therefore, secondary file keys
are needed to protect only the paths connecting two hosts, but not the paths
leading to or from terminals. Encrypted files can also be created and recovered
at the same host, and so a secondary file key is used to protect the path
leading from a host back to itself.12

In a network with three hosts (Figure 4-20), each host must store five dif-
ferent secondary file keys, and a total of nine different file keys are required
within the network.

I1 This is a convention, not a requirement. The developed key management scheme could
be extended to handle file encryption and decryption at terminals, but is not shown.

12The corresponding case in COMSEC would involve data communications among applica-
tion programs within a single host. Data protection for such an environment is a function
of hardware protection features and access control procedures, not cryptography.

218 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Multiple Domain FILESEC:

0
KNFl

Hl 7 H2
KNF2

0

Figure 4-19. Allocation of Secondary File Keys

A procedure in which files are encrypted at one host and decrypted at
another is analogous to a communication session in which data are trans-
mitted only in one direction. As one might expect, the similarity between
COMSEC and FILESEC is reflected in their respective key management
schemes. Thus in FILESEC, the secondary key plays the same role that it
does in COMSEC; namely, it protects the primary key until it is loaded into
the cryptographic facility and used to decipher enciphered data.

w Each Arrow Denotes
a Different Secondary
File Key (KNF)

H

6

H = Host

Figure 4-20. Allocation of Secondary File Keys in
a Network with 3 Hosts

CIPHER KEY ALLOCATION 219

Let domain i and domain j be two domains within a multiple domain net-
work. The following instances of data encryption are treated within the pro-
tocols for COMSEC and FILESEC:

Single Domain COMSEC
Terminal user (domain i) e---, terminal user (domain i)
Terminal user (domain i) c--, application program (domain i)
Multiple Domain COMSEC
Terminal user (domain i) c--, terminal user (domain j)
Terminal user (domain i) c--, application program (domain j)
Application program (domain i) +--) application program (domain j)
Single Domain FILESEC
Application program (domain i) * application program (domain j)
Multiple Domain FILESEC
Application program (domain i) c----, application program (domain j)

An Example of the Encryption of Transmitted Data

An example is now given, using the concept of multiple domains, to show
how a user located at a terminal in one domain can initiate a communications
session with a user located at a terminal in a different domain. Cryptography
is transparent in this example. In the following diagrams, for simplicity, only
the relevant key transformation functions are depicted. Although the com-
plexities of an actual network implementation are purposely omitted, bear
in mind that the described operations require a host system which has a full
complement of programming support, including an operating system to con-
trol the execution of application programs and telecommunication access
methods to manage data transmission between the host and other network
nodes.

Suppose that user 1 is located at terminal 1 in domain i and that user 2 is
located at terminal 2 in domain j. The network configuration and allocation
of secondary keys are shown in Figure 4-2 1.

Each host generates the secondary communication keys for its respective
domain, and these keys are securely distributed and inserted into designated
nodes by authorized personnel. The means for protecting the keys while
they are stored at each node, and the means for using the keys to perform
the required key transformation functions, are topics to be covered in the
remainder of this chapter.

User 1 initiates the session by invoking the appropriate logon procedure,
specifying a designated application program in host i. The logon message
would, in this case, identify the sending terminal (Tl) and the requested
destination terminal (T2). As a result, at host i, a pseudo-random number
(session key) is generated, which then is enciphered under both KNCl, for
secure transmission to Tl, and KNC2, for secure transmission to host j
(Figure 4-22).

The copy of the session key enciphered under KNCl is transmitted to

220 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

s \
KNCl

\ KNC2 /
-

KNC4
+

I / KNC3 \ Q) T2

!

T-l
(Domain i)

/

(Domain j)

Note: It is assumed in this and subsequent Figures that KNCl f KNC2
KNC3 # KNC4.

Figure 4-21. Initial Configuration

terminal 1 and the copy enciphered under KNC2 is transmitted to host j. At
host j, a transformation is performed to reencipher the session key from
encipherment under KNC2 to encipherment under KNC4 (Figure 4-23). The
copy of the session key reenciphered from KNC2 to KNC4, is now transmitted
to terminal 2.

Terminals 1 and 2 each recover the session key by deciphering the en-
ciphered value of KS using the stored values of KNCl and KNC4, respectively,

Encipher Under
Secondary Keys

KS Enciphered KS Enciphered
Under KNCl Under KNC2

4 b

KNCl KNC2
- KNC4
+

KNC3

Figure 4-22. Session Key Generation/Encryption-Host i

CIPHER KEY ALLOCATION 221

Transformation
Function

4

KS Enciphered
Under KNC2

KS Enciphered
Under KNC4

b

KNCl KNC2

(>.-@
KNC4

Hi
KNC3

Figure 4-23. Session Key Transformation-Host j

and the recovered session key is then stored in a secure area in the respective
cryptographic facilities (Figure 4-24).

At the end of the session initialization process, the communicants, 1 and
2, have a common session key (KS). Encrypted data can now be sent and re-
ceived, thus completing the communication protocol.

Using a similar approach, an application program executing in one host
can encipher data that are to be written to a portable storage medium, such
as a reel of tape. The same data, after having been transported to another
host, can be read and deciphered by a second application program.

Decipher Under
Secondary Key

A

KS KS Enciphered
Under KNCl

Decipher Under
Secondary Key

4

KS Enciphered KS
Under KNC4

(User) (User)

Figure 4-24. Session Key Recovery at Terminal 1 and Terminal 2

222 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Note: It is assumed in this and subsequent Figures that KNFl # KNF2.

Figure 4-25. Initial Configuration

An Example of the Encryption of a Data File

Suppose that application program 1, executing in host i, creates an enciphered
file for transmission to host j, and that at host j, the file is deciphered by
application program 2. The network configuration and allocation of secondary
keys are as shown in Figure 4-25.

Application 1 initiates the procedure by requesting a file key from host i.
In response, host i generates a random file key, KF, and provides this value
in a form that can be used by host i’s cryptographic facility. In addition, a
second copy of the file key is enciphered under a secondary file key, KNF 1,
and this value is written to the file’s header record. This latter step allows the
enciphered file to be recovered at its intended destination. Once the file has
been enciphered, it is transported to host j. The entire process is illustrated
in Figure 4-26.

At host j, the enciphered file key is read from the file header, and KF is
recovered by deciphering under KNF 1. The resulting value of KF is stored in
a secure area of host j’s cryptographic facility, where it is then used to de-
cipher the enciphered file, as illustrated in Figure 4-27.

THE CRYPTOGRAPHIC FACILITY

The basic cryptographic operations of key transformation and data ciphering
are performed by a cryptographic facility (Figure 4-28). The cryptographic
facility is a secure implementation containing a conventional cryptographic
algorithm (DES is assumed) and storage for a small number of key and data
parameters. It can be accessed only through inviolate interfaces (secure

Encipher KF
Under Secondary
File Key KNFl

Generate KF KF Enciphered Data Enciphered
Under KNFI Under KF

/

Encipher Data
Under KF

Q
KNFl

Hi 1z Hj
KNF2

Q
I I
I

--cl 1

(Program)

i
rl 2

(Program)

Figure 4-26. File Key Generation and Encipher Data Operations-Host i

Data Enciphered Decipher KF Under

Under KF
Secondary File
Key KNFl

I Decipher Data
l Under KF

KF

KNFl
-

i
KNF2

I I

Delay

(Program) (Program)

Figure 4-27. File Key Recovery and Decipher Data Operations-Host j

223

224 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Operation Code: { Input Parameters } -, Output

Master
Key

Entry
-

Set of
Operations ----I Control

p7w i Line

(Master Key)
i
I I

Data Buffer
I I

I
I
I,, Cryptographic

Algorithm
b (Encipher/Decipher)

4
I

t
(Working Key)

Figure 4-28. Cryptographic Facility

against intrusion, circumvention, and deception) which allow processing
requests (via the indicated control line), key, and data parameters to be
presented, and transformed output to be received. This strategy ensures that
clear keys and results of intermediate rounds of encipherment and decipher-
ment are kept secret. Access to the cryptographic facility can be controlled
by a combination of physical and logical means that vary depending on
whether the cryptographic facility is implemented in hardware or software.i3
Cryptographic operations are described using the following notation:

Operation Code: {Input Parameters) w Output

A cryptographic facility is assumed present at every host and terminal using
cryptography. (It is assumed that useful processing of encrypted data is not
possible.) However, since a terminal receives, but never produces enciphered
keys, the cryptographic operations required at a terminal are different from
those required at a host (see Basic Cryptographic Operations).

The cryptographic facility contains storage for both a master key and a
working key. The working key, which is the key actively used by the cryp-

13Hardware is emphasized because it is more secure than software and it is required, per
FIPS Publication 46 [10] for equipment procured for U.S. Government use.

THE CRYPTOGRAPHIC FACILITY 225

tographic algorithm at any given time, normally changes from operation to
operation. The master key, on the other hand, is a permanently stored
quantity, and is maintained in a nonvolatile memory (i.e., a memory under
battery power to prevent its loss when power to the device is shut off). A
volatile memory (erased when power to the device is interrupted) or data
buffer is also provided for the storage of input key and data parameters,
intermediate results, and transformed output.

For simplicity, certain nonessential or unimportant elements (e.g., set of
operations, control line, key and data storage elements) are omitted in sub-
sequent figures depicting the cryptographic facility. Rather, emphasis is
placed on the sequence of encipher and decipher operations required to
perform a cryptographic operation and the key and data parameters used
therein.

The cryptographic facility performs only two primitive operations: en-
cipherment and decipherment. That is, the contents of the data buffer are
either enciphered or deciphered under the cryptographic key contained in
the working key storage, as illustrated in Figure 4-29.

Encipherment is denoted by the letter E and decipherment by the letter
D. Each operation has two inputs (the data to be enciphered or deciphered
and the working key) and a single output (the transformed data). The cryp-
tographic algorithm is represented by a box, and by convention, the key
enters from the left, data enter at the top, and output exits at the bottom.
The notation used to express these operations is

EK(X) = Y

which means that ciphertext Y is produced by the encipherment of plain-
text X under key K, and

D,(Y) = X

which means that plaintext X is produced by the decipherment of cipher-
text Y under key K.

Encipherment: Decipherment:

Plaintext Ciphertext
Input (X) Input (Y)

g+ g+

Ciphertext Plaintext
output (Y) output (X)

Figure 4-29. “Primitive” Operations of Encipherment and Decipherment

226 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

The basic cryptographic operations invoked through the programmed
interface are performed by repeated executions of the primitive operations
of encipherment and/or decipherment. During this process, the master key
may be used as the working key if it is first transferred to the working key
storage. In the same manner, an output from one operation may be used as
an input (data or working key) to the next operation (described in more de-
tail in the next section, Cipher Key Protection). Accordingly, when a series
of encipher/decipher executions is required to satisfy a request, the contents
of the working key storage will typically change as each encipher and decipher
operation is performed.

Insertion of the master key into the cryptographic facility may be accom-
plished by a direct manual process, in which case a key is entered from
mechanical switches, dials, or from a hand-held device, and is read directly
into the master key storage. Alternatively, insertion of the master key may
be accomplished by an indirect entry process, in which case a key entered
from a nonvolatile medium, such as a card with a magnetic stripe, or entered
through a keyboard-entry device, is first read into main memory and is then
transferred to the master key storage. In this case, the residual copy of the
master key in main memory must be erased (overwritten) after transfer to
the master key storage is complete.

The master key is only used by the cryptographic facility to encipher
and decipher other keys, and therefore is classified as a key-encrypting key.
Being stored in nonvolatile memory, it can remain in use for long periods of
time without having to be reentered.

CIPHER KEY PROTECTION

Because the cryptographic algorithm is assumed to be nonsecret, the degree
of protection provided by the cryptographic system depends on how well
the secrecy of the cryptographic keys is maintained. Therefore, the objective
of sound key management is to ensure that cryptographic keys never occur
in clear form outside the cryptographic facility, except under secure condi-
tions during the period when keys are first generated, distributed, and in-
stalled, or when they are stored for backup or recovery in a safe or vault.

Protection of Terminal Keys

Since only one secondary communication key needs to be stored at a terminal
(the one shared with its owning host), this key can be stored directly in the
master key storage of the cryptographic facility. (Accordingly, the secondary
communication key (KNC) used by a terminal is referred to as the terminal
master key, KMT.) In effect this means that the terminal’s cryptographic
operations are less complicated than those required by the host, since the
terminal must manage only a single secondary communication key. On the
other hand, the host must manage the activities of the entire cryptographic
system and therefore must cope with greater numbers of secondary and pri-
mary keys. In such a system, the terminal plays a passive role by responding

CIPHER KEY PROTECTION 227

to requests made by the host, while the host plays a more active role by
managing and initiating requests.

As previously stated, a terminal master key provides a means for the host
to transmit securely to a terminal a primary communication key (KC), re-
ferred to as a session key (KS). The process of recovering a session key at a
terminal is illustrated in Figure 4-30.

First the terminal master key is copied from master key storage to working
key storage, and the enciphered session key is accepted as input to the cryp-
tographic algorithm (step 1). The cryptographic algorithm deciphers the input

(Receive From Host)

Decipher Under KS Enciphered
Master Key Under KMT

1 KMT]

(Master Key)

(Working Key)

KS

KMT = Secondary Communication Key (Terminal Master Key)
KS = Primary Communication Key (Session Key)

Note: To improve readability, some nonessential elements of the
cryptographic facility are omitted in this and subsequent figures.

Figure 4-30. Session Key Recovery at the Terminal’s Cryptographic Facility

228 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

data, under control of the terminal master key located in the working key
storage, to obtain the clear session key (step 2). The session key is then trans-
ferred to the working key storage, replacing the terminal master key (step 3).
The terminal can now initiate requests for data to be ciphered using the
session key.

Protection of Host Keys

Because the host system has a greater role than a terminal in managing and
controlling the operation of the cryptographic system, proportionately more
demands are placed upon it to store and protect many different cipher keys
(see Cipher Key Allocation). I4 Likewise, it becomes a more desirable target
to an opponent.

Since several primary keys may be in use at any given time (typically, one
per application program using cryptography), the host’s cryptographic facility
must be shared among the various applications. And when the working key
storage will accommodate only one key, it is impractical to retain a primary
key until its associated application program terminates. Instead, governed by
the priority scheduling rules imposed by the host, the working key storage
is regularly reinitialized with the primary key corresponding to the active
application program. Thus primary keys must be protected when they are
not being used by the cryptographic facility.

The Master Key Concept

One way to keep primary keys secret is to store them (in clear form) in a
memory that can be read only by the cryptographic facility (i.e., a protected
memory). However, an equally acceptable alternative is to encrypt keys and
control their use via the host system. In the approach suggested here, all
primary keys stored outside the cryptographic facility are enciphered under
a single host master key (KMO) stored within the cryptographic facility.
Therefore, before it can be used, an enciphered primary key, Em0 (K), must
first be deciphered under KMO.

The concept of using one key to protect many other keys is defined as the
master key concept. Basically, the problem of providing secrecy for a large
number of cipher keys is reduced to that of providing secrecy for only a
single key. More generally, cryptography reduces the problem of protecting
large amounts of information (the plaintext) to that of a small amount of
information (the cryptographic keys).

Encrypted vs. Unencrypted Primary Keys

When encrypted primary keys are used, an opponent must either compromise
the security of the cryptographic facility containing KM0 or gain access to
the system and invoke the decipher data operation, specifying E,,(K) and
data enciphered under K as input parameters. (It is assumed that a cryp-

1401979 IEEE. Reprinted from NTC 79 Conference Record, November 27-29, 1979,
Washington D.C. [91

CIPHER KEY PROTECTION 229

tographic operation designed to produce a clear key does not exist.15) Un-
encrypted primary keys, on the other hand, offer no protection if they
become known.

In a network with multiple hosts, good security (i.e., independence among
hosts) dictates that the master key at each host (KMO) should be different
from that at any other host, or equal only by pure chance. Thus the points
at which an encrypted primary key can be attacked are further reduced.

Not only must the secrecy of keys be protected, either by storing them in
a protected memory or by enciphering them, but key usage must also be
controlled, that is users must be able to access and use only those keys for
which they are authorized. I6 Cryptography alone does not provide a solution
to this problem, even though it provides effective measures to augment
system services (see Authentication Techniques Using Cryptography, Chapter
8). Instead, security features provided by the host processor hardware and
the host operating system must be used in conjunction with cryptography to
ensure the security of data when resident in the host’s main memory. Examples
of hardware security features include store and fetch protection and special
operations that may be used only by a supervisory program (or when the
host processor is operating in the supervisory state).

Multiple Master Keys

Secondary keys stored at the host system can also be protected through en-
cryption. These enciphered keys are stored in a data set accessible only to
the cryptographic system (see The Host Cryptographic System). However,
enciphering the keys using the host master key is not sufficient for protec-
tion since it allows primary keys to be recovered in clear form via selected
cryptographic operations (see The Host System Cryptographic Operations,
Chapter 5). To prevent this, a second host master key, KM1 , is used. A third
host master key, KM2, is defined to guarantee the unidirectional property of
secondary communication keys (used to encipher primary keys while they
are routed through a communications network). Thus three master keys are
required: KMO, KM 1, and KM2.

Note that multiple master keys are broadly applicable to cryptography
since they allow the cryptographic operations for one application or purpose
to be separated from those used for another (see Partitioning of Cipher Keys).
The discussion of multiple master keys presented in this section has been
kept brief deliberately and is intended only to give the reader enough infor-
mation to allow the hierarchical structure of keys and the system’s cryp-
tographic operations to be discussed. The full justification for having three
separate master keys is presented in Chapter 5.

Within the cryptographic facility, storage could be provided for three

“TO create such an operation, an opponent would have to modify or replace the cryp-
tographic facility. It is assumed that adequate physical security measures are present to
deny an opponent such an opportunity.
161n a cryptographic system which operates transparent to the user, the system provides
the keys, not the user. In contrast, if private or personal keys are allowed, the user provides
the key, not the system.

230 COMMUNICATION SECURITY AN0 FILE SECURITY USING CRYPTOGRAPHY

Operation Code: { Inputs } --, output

I I t

I
(Master Keys)

(Working Key)

t

Cryptographic
Algorithm I

I

Figure 4-31. An Implementation Using Three Independent Host
Master Keys

independent master keys (Figure 4-31). One or more of these keys (KMO,
KM 1, and KM2) would be selected as the working key and used to perform
a sequence of encipher and decipher operations, depending upon the par-
ticular operation code presented to the cryptographic facility.

In a different approach, the three master keys could be derived from a
seed key, KM, stored in the cryptographic facility. This requires an additional
computation, but less storage. The keys could be obtained, for example, by
defining KM0 as the encipherment of 0 under the key KM, KM1 as the en-
cipherment of 1 under key KM, and KM2 as the encipherment of 2 under
key KM (Figure 4-32).

When a master key is needed, KM is copied to the working key storage,
a value is then selected for j (0, 1, or 2 depending upon the particular opera-
tion specified), and j is placed in the data buffer (step 1). The contents (j)
of the data buffer are enciphered under the key (KM) located in the working
key storage to produce the desired master key, KMj (step 2). The computed
master key is then returned to the working key storage, overwriting the value
of KM (step 3).

Master Key Variants

Another procedure for implementing multiple master keys is to store KM0
in the cryptographic facility and then derive KM1 and KM2 from KMO, as
needed, by simply inverting selected bits in KMO. In such an approach, KM1
and KM2 are called variants of the host master key.

CIPHER KEY PROTECTION

Operation Code: { Inputs } + Output

Load j

(Seed Key Storage)

I (Working Key) KMi’T

231

j=O, 1 or 2

Figure 4-32. Implementation in which Multiple Master Keys are Derived
from a Seed Key

KMO: Host master key
KM1 : First variant of KM0
KM2: Second variant of KM0

Different variants are derived by inverting different bits. Such an operation
can be easily performed within a cryptographic facility at the time KM0 is
transferred from master key storage to the working key storage (Figure 4-33).
(Note that the particular bits inverted to produce KM1 and KM2 are not
important to this discussion.)

Obviously, a knowledge of any one of the keys (KMO, KMl, or KM2) is
equivalent to a knowledge of all the keys, and therefore, using variants of
KM0 must, by definition, provide less overall security than using either three
independent master keys or three dependent master keys derived from one
seed key using an irreversible operation. However, the trade-off between key
storage, key computation time, and key independence is a good one. The
resulting key management scheme is strong in any case.

Note that using three closely related keys is worthwhile only if a high
correlation between keys does not result in exploitable correlations in the

232 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Key Selection (Master Key)
Signal

Bit Inversion
b Algorithm

I

Note: for operations
which require KMO, no
bit inversion occurs.

j=O, 1 or 2

(Working Key)

Figure 4-33. Derivation of Variants within the Cryptographic
Facility Using Selected Bit Inversion

ciphertext which is produced by enciphering the same plaintext. Since, for
DES, a single bit change in the key has a drastic effect on the ciphertext (see
Analysis of Intersymbol Dependencies for the Data Encryption Standard,
Chapter 3), there is no computationally feasible way to deduce one enciphered
value from another. For example, given EKMx(K), for x = 1, 2, or 3, where
KMx and K are unknowns, it is not presently possible to compute, deduce,
or otherwise infer EKMy(K), for y = 1,2, or 3 and y # x.

Summary

Figure 4-34 illustrates the overall scheme for protecting cipher keys at the
host system.

Hierarchy of Cipher Keys

The discussion of cipher key allocation and protection implicitly defined a
hierarchy of cipher keys and of key protection. This hierarchy is illustrated
in Figure 4-35.

Large amounts of data are protected through the use of a smaller number
of dynamically generated data-encrypting keys (primary keys), and the data-
encrypting keys are protected through a still smaller number of relatively
constant key-encrypting keys (secondary keys) or with the host master key
(KMO). The key-encrypting keys are, in turn, protected with the variants of
the host master key (KM1 and KM2). As a consequence, only a small number
of keys need to be stored in clear form within the cryptographic facility,
whereas the remainder of the keys can be stored outside the cryptographic
facility in enciphered form. The various cipher keys defined to the cryptog-
raphic system are summarized in Figure 4-36, by name, category, use, and
item protected (key or data).

7
I E KMx(KNl)

E K&KN~)

I E K,,WNm)

Secondary Key
Enciphered Under
KMx where x= 1 or 2

1
Primary Key
Enciphered Under KM0

1
Operation Code: {EKMj(KeY), . ..} + Output

, “;y Decipher 1

Key I

Cryptographic Facility

KMO= Host Master Key
KM1 = First Variant of the Host Master Key
KM2 = Second Variant of the Host Master Key

j = 0, 1, or 2 Depending on the Requested Operation Code

Figure 4-34. Host Cipher Key Protection-Summary

233

234 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Data-Encrypting Keys

Figure 4-35. Hierarchy of Key Protection

THE HOST CRYPTOGRAPHIC SYSTEMI’

Even for a modest-sized cryptographic system, the number of data-encrypting
keys required over a period of time may indeed be quite large. Therefore,
manual techniques for key generation and key management would soon prove
to be inadequate. Automated procedures which are fast and eliminate security
exposures resulting from human errors are required.

Fortunately, in this case, the computer itself provides the answer. Key
generation and key management can both be effectively handled as computer
applications. The net effect is that the computer augments cryptography by
generating and managing the system’s cipher keys, and in turn, cryptography
protects the computer’s data.

The host cryptographic system is comprised of three basic elements:

1. Cryptographic Facility The cryptographic facility, as previously
described (Figure 4-28), is a secure implementation (hardware and/or
software) containing the cryptographic algorithm (DES is assumed)
and storage for a small number of key and data parameters. It can be
accessed only through inviolate interfaces which allow processing re-
quests (basic cryptographic operations), key, and data parameters to
be presented, and transformed output to be received.

2. Key Generator The key generator is a computer program that

“The material in this and subsequent sections represents the details of one particular
implementation [21. This implementation illustrates the operation and interrelationships
between the various components of an actual cryptographic system. Other designs are
possible.

THE HOST CRYPTOGRAPHIC SYSTEM 235

Category

Key-
Encrypting
Keys

Data-
Encrypting
Keys

Key Name

Host Master Key
(KM01

First Variant of
Host Master Key
(KM11

Second Variant of
Host Master Key
(KM21

Secondary
, Communication

Key

Secondary File Key ,,

Primary
Communication
Key

Primary File Key I I,

Use

Encipher Keys
Actively Used
or Stored at
Host

I,

,,

Encipher Keys Primary
External to Communication
Host Key

Encipher or
i Decipher Data

Item Protected

Primary Key

Secondary Key

Secondary Key

Primary
File
Key

Data in Motion

Data in Storage

KMT = Terminal Master Key (Secondary Communication Key
Stored at Terminal)

KS = Session Key (Primary Communication Key that is
Unique for Each Session)

Figure 4-36. Summary of Cipher Keys

creates the key-encrypting keys required by a host. Key-encrypting
keys can also be specified by installation personnel. These keys are
enciphered under avariant of the host master key, either KM1 or KM2,
and then written in a file called the Cryptographic Key Data Set
(CKDS). The CKDS resides on secondary storage (either disk or drum)
and is assumed to be accessible by the cryptographic system during
normal operations. A discussion of which secondary keys are enciphered
under KM 1 and which are enciphered under KM2 is given in the section
called Key Management Macro Instructions. A label, or symbolic name,
is associated with each enciphered key stored in the CKDS. The key

236 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

manager accesses a key in the CKDS by using the label of the key
(i.e., the key’s name). The label could, for example, be the name of a
resource protected by the referenced key. The generated keys (in
clear form) and their respective identifying labels are recorded on a
second output medium, such as a printer listing or punched cards.
This allows the keys to be distributed to other locations and installed
within their nodes. It also permits a backup record of the keys to be
kept in a secure repository (safe, vault, or the like). Whenever the
existing host master key is changed, the key generator is also used to
decipher the secondary keys on the CKDS and reencipher them under
the appropriate variant of the new host master key.

3. Key Manager The key manager is a program that creates primary
keys, accesses the CKDS using a key’s name supplied as input, and
exercises the cryptographic facility in response to requests for key
translation operations. In short, the key manager is the resource man-
ager for the host’s cryptographic keys. It has programming interfaces
through which processing requests, keys, and data are presented, and
generated or transformed outputs are received.

Figure 4-37 provides an overview of the basic elements needed at a host to
implement a cryptographic system; namely, cryptographic facility, key
generator program, and key manager program. GENKEY and RETKEY,
which denote programming interfaces to the key manager, are used by pro-
grams to request key translation functions. CIPHER, another programming
interface to the cryptographic facility, is used by programs for ciphering
data. GENKEY, RETKEY, and CIPHER are implemented as programming
macro instructions.

A macro instruction is commonly used with programs written in the basic
assembly language of a particular computer. It approximates a higher level
‘language in that with one uniquely named statement a programmer can in-
corporate a predefined sequence of instructions needed to satisfy a particular
(and normally repetitive) function. The substitution of assembler language
instructions for the macro instruction is performed during the compilation
of the source program. For additional flexibility, macro instructions can be
customized through the use of input parameters to vary the sequence of, and
values associated with, the substituted assembler language instructions.

The macro instructions GENKEY, RETKEY, and CIPHER, when placed
on the system macro library, can be used by system programs (where trans-
parent cryptography is desired) or by user application programs (where private
cryptography is desired). l8

In the particular implementation discussed here, GENKEY, RETKEY, and
CIPHER are implemented through the use of four basic cryptographic opera-
tions defined to the host’s cryptographic facility; namely, encipher data
(ECPH), decipher data (DCPH), reencipher from master key (RFMK), and
reencipher to master key (RTMK). Two additional operations, set master

18Restricted access to a macro is achieved by placing it on a private library, addressable
only by authorized users.

BASIC CRYPTOGRAPHIC OPERATIONS 237

VT -4 (Generate) (Reencipher)
DCPH ’
SMK

Cryptographic

EMK
Facility

RFMK
RTMK

CKDS
(Retrieve)

Cryptographic
Key Data Set

Figure 4-37. Host Cryptographic System

key (SMK) and encipher under master key (EMK), permit, respectively,
installation of the host master key and encipherment of user-supplied data-
encrypting keys (private or personal keys) under the host master key. (See
The Host System Cryptographic Operations, Chapter 5.)

BASIC CRYPTOGRAPHIC OPERATIONS

There are two categories of cryptographic operations within the cryptographic
system: those that transform data (data-ciphering operations), and those that
initialize and transform cipher keys (key-ciphering operations). Since the
host has an active role in managing the system’s cipher keys (as compared to
the terminal’s less active role), the key-ciphering operations at the host sys-
tem are more complex than those at the terminal.

In any case the cryptographic operations performed by a cryptographic
facility are defined as basic since they are the most elementary operations
that can be requested by the system. Recall that a cryptographic operation
is described by its operation code, one or more input parameters (enclosed

238 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

in braces), and output (pointed to by a right arrow) (see also The Cryptog-
raphic Facility) :

Operation: {Input Parameters) ___+ Output

An input, as well as the operation’s output, can be either a key or data
parameter. Keys and data parameters may be in either clear or enciphered
form. However, operations involving clear keys will ordinarily be exercised
only when the system is sterile, that is, no other users or application pro-
grams are active. l9

The basic cryptographic operations provide a means for implementing
high level key management functions in the cryptographic system.20 But, if
not properly designed, they could allow an opponent to perform complex
cryptographic transformations leading to the recovery of keys and data.
Therefore, the cryptographic system must be designed so that if one or more
of the operations are used together with any enciphered keys or data param-
eters that are routinely generated, routed, or stored within the system, it
is not possible to recover:

1. Clear keys outside the cryptographic facility, regardless of the inherent
security of the supporting host operating system.

2. Plaintext from ciphertext outside the cryptographic facility, except in
the specific manner intended (using a decipher data operation), and
under the specific conditions anticipated.

The same method used to validate the strength of a cryptographic algorithm
(Chapter 1) is used to certify that cryptographic operations are dependable
and secure. The process of subjecting cryptographic operations to a series of
hypothetical attacks is called threat analysis. A favorable result (validation
by threat analysis) leads to the conclusion that exposure of keys and data,
although not provably impossible, is at least demonstrably difficult or
unlikely.

As an aid to the reader in interpreting the meaning of the cryptographic
operations described below, a summary of common abbreviations is given.

X: Plaintext block
Y: Ciphertext block
K: Primary key (data-encrypting key)

KN: Secondary key (key-encrypting key)
IWO: Host master key
KM1 : First variant of host master key
KM2: Second variant of host master key

l9 For example, clear keys would exist at a host when the key generator program is executed
or when a key is installed in the cryptographic facility. The key generator program might
even be executed on a separate system, if the host’s system programs cannot be trusted.

20They represent one way in which the high level key management functions can be
achieved, but not the only way.

BASIC CRYPTOGRAPHIC OPERATIONS 239

Recall that the notation Ex(X) denotes the encipherment of plaintext X
under key K, and the notation D,(Y) denotes the decipherment of ciphertext
Y under key K.

Cryptographic Operations at a Terminal

The following basic cryptographic operations are used at a terminal:

load Key Direct (LKD)

Write Master Key (WMK)

Decipher Key (DECK)

Encipher (ENC)

Decipher (DEC)

The LKD, WMK, and DECK operations are used for initializing and trans-
forming keys, while ENC and DEC are used to transform data.

Since a terminal participates in only one communication session at a time,
it is possible for the session key to be placed into the working key storage of
the terminal’s cryptographic facility at the beginning of a session, and remain
there unchanged for the session’s duration. The terminal’s cryptographic
operations are designed to avoid the overhead of reinitializing the working
key storage whenever possible.21

LOAD KEY DIRECT

LKD: {K) __+ Load Cipher Key K into Working Key Storage

The LKD operation (Figure 4-38) is used to load a clear key into the working
key storage of the terminal’s cryptographic facility. No inverse operation is
available for reading the working key. The LKD operation allows the terminal
user to enter a private key which can be used for ciphering data. (This opera-
tion is not needed if only system-initiated session keys are used.)

WRITE MASTER KEY

WMK: {KNI - Write Cipher Key KN in Master Key Storage

The WMK operation (Figure 4-39) is used to write a key into the master
key storage of the terminal’s cryptographic facility. No inverse operation is
available for reading the master key. The WMK operation may be exercised
only in an authorized state. Such a state may be created by a physical key-
operated switch which enables or disables the operation. (This is an example
of an authorized state that is not automated, that is, the machine is placed
in an authorized state manually by a designated user or security administrator.
See also the Set Master Key operation.)

21 The cryptographic operations for a terminal control unit (or cluster controller), which
can service several terminals and terminal users concurrently, would need to be designed
to accommodate several enciphered session keys, associating each with the corresponding
session. The details of such a design are not provided in this discussion.

240 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

LKD : IKI

(Master Key)

I

1
(Working Key)

Figure 4-38. Load Key Direct Operation at Terminal

DECIPHER KEY

DECK: {EKN(K)l __* Load Cipher Key K into Working Key Storage

The DECK operation (Figure 4-40) is used to decipher a key under the cipher
key stored in the master key storage of the terminal’s cryptographic facility,
and place the result in working key storage. By definition, the input key
parameter is a primary key enciphered under the terminal master key, and
hence the value placed in the working key storage (as a result of the DECK
operation) will be the intended data-encrypting key.

ENCIPHER

ENC: {X} + EK(X)

The ENC operation (Figure 4-41) is used to encipher data. A 64-bit block of
plaintext (X) is enciphered under the data-encrypting key (K) stored in the
working key storage of the terminal’s cryptographic facility. A 64-bit block
of ciphertext, denoted by EK(X), is produced. 22 As long as the cryptographic

22The described implementation of DES is called the Electronic Code Book Mode (ECB).
As a rule, block encryption (see also the DEC, ECPH, and DCPH operations) is used to
protect keys. A different method, called chained block encryption (see CIPHER Macro
Instruction), is used to protect data. (See also Block Ciphers with Chaining, Chapter 2.)

BASIC CRYPTOGRAPHIC OPERATIONS

(Working Key)

241

Figure 4-39. Write Master Key Operation at Terminal

facility’s controls remain set to the encipher mode of operation, a message
of multiple 8-byte blocks of plaintext can be enciphered as a series of steps
in which each 8-byte block of plaintext is presented to the cryptographic
facility in succession. Thus message encipherment can be expressed by the
notation

ENC: {X(l), X(2), . . . , X(n)> b Y(l), Y(2), . . . , Y(n)

where X(l), X(2), . . . , X(n) denotes a message of n 8-byte blocks of plain-
text, Y(l), Y(2), . . . , Y(n) denotes the resulting ciphertext, and Y(1) =
Ek(X(l)), Y(2) = E,(X(2)), and so on.

DECIPHER

DEC: {Ek(X)) * X

The DEC operation (Figure 4-42) is used to decipher data. A 64bit block of
ciphertext (denoted by Ek(X)) is deciphered under the data-encrypting key
(K) stored in the working key storage of the terminal’s cryptographic facility.
A 64-bit block of plaintext (X) is recovered. As long as the cryptographic
facility’s controls remain set to the decipher mode of operation, a message
of multiple 8-byte blocks of ciphertext can be deciphered as a series of steps
in which each 8-byte block of ciphertext is presented to the cryptographic

242 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

DECK: { EKl

m-

!

(Master Key)

Y
+,,I -
1 V Decipher

t
2

(Working Key)

L K 3

K) 1

Note: The numbers indicate the order in which
the individual steps are performed.

Figure 4-40. Decipher Key Operation at Terminal

facility in succession. Thus message decipherment can be expressed by the
notation

DEC: {Y(l), Y(2), . . . , Y(n)} - X(l), X(2), . . . , X(n)

where Y(l), Y(2), . . . , Y(n) denotes a message of n 8-byte blocks of cipher-
text, X(l), X(2), . . . , X(n) denotes the recovered plaintext, and X(1) =
Dk(Y(l)), X(2) = D,(Y(2)), and so on.

Once the session key has been placed into the working key storage using
the DECK operation, there is no need to repeat the step of loading and de-
ciphering the working key as a precondition of requesting subsequent encipher
(ENC) and decipher (DEC) operations, since the session key is still present in
working key storage. Hence all data ciphering operations can be performed
using an implicit cipher key (the cipher key present in the working key stor-
age), rather than an explicit cipher key (a cipher key supplied as an input
parameter to the requested cryptographic operation).

BASIC CRYPTOGRAPHIC OPERATIONS 243

ENC : ix1

I I / /
(Master Key) (Master Key)

I I

v v 3 3

I I
K K

1 1
b b Encipher Encipher

(Working Key) (Working Key)

+
E,(X)

Figure 4-41. Encipher Operation at Terminal

Cryptographic Operations at a Host

There are two categories of basic cryptographic operations defined to the
host’s cryptographic facility, those that transform data:

Encipher Data (ECPH)

Decipher Data (DCPH)

and those that are used to initialize and transform keys:23

Set Master Key (SMK)

Encipher Under Master Key (EMK)

231n an actual implementation, the steps describing each cryptographic operation vary
depending upon the number of storage elements within the cryptographic facility available
for storing intermediate results produced by the operation.

244 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

DEC : t E,(X) 1

4 -1
(Master Key)

I

w

I
K

I
+ Decipher

(Working Key)

Figure 4-42. Decipher Operation at Terminal

Reencipher from Master Key (RFMK)

Reencipher to Master Key (RTMK)a4

Data Ciphering Operations

Since several application programs may be involved in communication sessions
at one time, the cryptographic facility must be shared among these several
different users. In the approach described here, the primary key is provided
as an input parameter to all requests for enciphering and deciphering data.

ENCIPHER DATA

ECPH: U&o(K), Xl - EK(X)

The ECPH operation (Figure 4-43) is used to encipher data. A 64-bit block
of plaintext (X) is enciphered under the data-encrypting key (K) to produce

24 In an actual implementation, effective security could require that the RTMK operation
be restricted to privileged brograms (see Key Management Macro Instructions).

BASIC CRYPTOGRAPHIC OPERATIONS 245

ECPH : { J&-,(K) Xl

E,&X)

Figure 4-43. Encipher Data Operation at Host System

a 64-bit block of ciphertext, denoted by Ek(X). As long as the cryptographic
facility’s controls remain set to the encipher data mode of operation, a mes-
sage of multiple 8-byte blocks of plaintext can be enciphered as a series of
steps in which each 8-byte block of plaintext is presented to the cryptographic
facility in succession. Message encipherment can be expressed by the notation

ECPH: {EKMO(K), X(l), X(2), . . . , X(n)) -Y(l), Y(2), . . . , Y(n)

where X(l), X(2), . . . , X(n) denotes a message of n 8-byte blocks of plain-
text, Y(l), Y(2), . . . , Y(n) denotes the resulting ciphertext, and Y(1) =
Ek(X(l)), Y(2) = Ex(X(2)), and so on.

DECIPHER DATA

DCPH: { EKMo 03, J&(W) -X

The DCPH operation (Figure 4-44) is used to decipher data. A 64-bit block
of ciphertext, denoted by Ex(X), is deciphered under the data-encrypting
key (K) to recover a 64-bit block of plaintext (X). As long as the cryptog-
raphic facility’s controls remain set to the decipher data mode of operation,
a message of multiple 8-byte blocks of ciphertext can be deciphered as a
series of steps in which each 8-byte block of ciphertext is presented to the
cryptographic facility in succession. Message decipherment can be expressed
by the notation

DCPH: {EKMO(K), Y(l), Y(2), . . . , Y(n)) ---Xx(l), X2), . . . , X(n)

246 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

DCPH : 1 EKM,(K) 9 EKG) 1

-I--

I v

KMO+ Decipher

l
!

K
b Decipher

Figure 4-44. Decipher Data Operation at Host System

where Y(l), Y(2), . . . , Y(n) denotes a message of n 8-byte blocks of cipher-
text, X(l), X(2), . . . , X(n) denotes the recovered plaintext, and X(1) =
D,(Y(l)), X(2) = Dk(Y(2)), and so on.

Key Management Operations

SET MASTER KEY

SMK: {KMO} -Write Cipher Key KM0 in Master Key Storage

The SMK operation (Figure 4-45) is used to write a key into the master
key storage of the host’s cryptographic facility. No inverse operation is
available for reading the master key. The SMK operation can be invoked
only in an authorized state. Such a state may be controlled by a physical
key-operated switch which enables or disables the operation.

ENCIPHER UNDER MASTER KEY

EMK: {K) - EKM,,(K)

The EMK operation (Figure 4-46) is used to encipher a data-encrypting key
under the host’s master key (KMO). No inverse operation is available which
allows decipherment under KMO. (A description of how keys can be en-
ciphered under the variants of the host master key is given in Chapter 6.)

SMK : {KM(‘)

’ OJ ’ OJ
I I

(Master Key) (Master Key)

Figure 4-45. Set Master Key Operation at Host System

EMK : {Kl

KM0 _+ Encipher

Figure 4-46. Encipher Under Master Key Operation at Host System

247

248 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

An EMK operation is provided at the host to support the use of personal
(user-supplied) keys. Without EMK it would be impossible to encipher a
personal key under the host master key so that it could be used to encipher
and decipher data (see CIPHER Macro Instruction).

REENCIPHER FROM MASTER KEY

RFMK: %o,I~WN), h,,o(K)~ - J&(K)

The RFMK operation (Figure 4-47) is used by the key manager to transform
a primary key (K) from encipherment under the host master key (KMO) to
encipherment under a secondary key (KN).

REENCIPHER TO MASTER KEY

RTMK: EmdKN), Em(K)) - hm,W)

The RTMK operation (Figure 4-48) is used by the key manager to transform
a primary key (K) from encipherment under a secondary key (KN) to en-
cipherment under the host master key (KMO).

Although it may appear that the RFMK and RTMK operations are the in-
verse of each other, this is true only if the same secondary key is enciphered
under both KM1 and KM2. Two variants are introduced specifically so that
the operations are not reversible (see Chapter 5). Translation of a key from

RFMK : { E,,,W) , E KMO(K) 1

-M-B

I w v

KM1 __+ Decipher KM0 --+ Decipher

KN
b Encipher

Figure 4-47. Reencipher From Master Key Operation at Host System

BASIC CRYPTOGRAPHIC OPERATIONS

RTMK : t E,,,WN) , EKN

m--
I w

KM2-+ Decipher

249

KM0

EKMO(K)

Figure 4-48. Reencipher To Master Key Operation at Host System

encipherinent under one secondary key to encipherment under another
secondary key would be accomplished using a combination of RTMK and
RFMK.

Key Parity

A DES key consists of 64 bits of which 56 bits are used directly by the algo-
rithm and 8 bits (the last bit of each 8-bit byte) can be used for error detec-
tion [91. (See also The Data Encryption Standard, Chapter 3.) For example,
the bits can be used to assure that each byte in the key has odd parity (i.e.,
that the number of 1 bits in each byte is odd). If used, keys are parity adjusted
when they are created.

Since some of the concepts pertinent to’key parity are applicable to this
section, the topic is presented here. The topic of key generation is discussed
in detail in Chapter 6.

Key-encrypting keys are generated in clear form. Prior to encipherment-
in this case, with a variant of the host master key-each byte in the key can

250 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

easily be adjusted to have odd parity. When retrieved within the cryptographic
facility, during execution of the various basic cryptographic operations, the
clear key may be examined for correct parity. However, there is no firm re-
quirement per FIPS Publication 46 [101 to test for parity, nor is there any
recommended action that should be taken if parity is found to be incorrect.
Therefore, parity checking remains an implementation option.

In the discussed implementation, data-encrypting keys are generated in
an enciphered form. Thus, there is no way of knowing, short of deciphering
the key and making a test, whether a generated key has correct parity or
not. Furthermore, there is only a l/2’ = l/256 chance that correct parity
will occur. Needless to say, ensuring correct parity for data-encrypting keys
would be complex and time-consuming. Therefore, data-encrypting keys (as
discussed here) are not parity adjusted.

Partitioning of Cipher Keys

The host master key (KMO) and its variants (KM1 and KM2) permit cipher
keys to be separated or partitioned into functionally different groups.25
Such partitioning ensures that the keys defined to one cryptographic opera-
tion, or set of cryptographic operations, cannot be used, misused, or ma-
nipulated meaningfully by another cryptographic operation, or set of
cryptographic operations. This in turn is the basis for achieving isolation or
independence among different cryptographic applications (e.g., communica-
tion security and file security).

Key partitioning may be achieved if the cipher keys used by a first opera-
tion are enciphered under the first variant of the host master key (KMl) and
the cipher keys used by a second operation are enciphered under the second
variant of the host master key (KM2). Assume that encipherment under the
variants is restricted to personnel authorized to install keys, and that deci-
pherment under the variants is possible only within the cryptographic facility
where the variants are derived from the stored host master key (Figure 4-49).

Once a key has been enciphered under its appropriate variant (either KM1
or KM2) it can be specified as a parameter in a cryptographic operation. An
enciphered key can be recovered only in the cryptographic facility. And only
a key that has been specifically selected and enciphered in advance under
one of the variants of the host master key can be recovered when specified as
a parameter in a cryptographic operation. If a key not intended for use with
a particular cryptographic operation is specified as a parameter of that opera-
tion, it will produce a final output that cannot be interpreted, understood,
or used in a meaningful way.

This principle can be explained further through the use of a hypothetical
cryptographic operation defined as OPl. OPl has a single input parameter:

OPl: {Key Parameter} __+ Output

25@1979 IEEE. Reprinted from NTC 79 Conference Record, November 27-29, 1979,
Washington, D.C. [91.

BASIC CRYPTOGRAPHIC OPERATIONS 251

Cryptographic Key Data Set

Key

E KMxWey)

x=1 or 2
Key

Encipher
Under
KMx

Under
KMx *

Authorized Instal-
lation Personnel

Only

Cryptographic
Facility Only

Figure 4-49. Encipherment and Decipherment Under the Variants of the
Host Master key

and a set of secondary keys (KNI, KN2, . . . , KNn) that are to be used with
it. Selected secondary keys are coupled to OPI by enciphering them under
the first variant of the host master key (KMl):

Pl = EKM1(KN1)

P2 = EKMI(KN2)

Pn = EKMI(KNn)

It is assumed that KM1 is used only with OP 1. If EKMi(KNi) is used as a key
parameter in OPl, then KNi is recovered within the cryptographic facility.
Afterwards, KNi participates in additional ciphering operations to produce
a final output. (A precise specification of the additional ciphering operations
is not important to the present discussion.)

If the input key parameter (P) is an element in the set EKMI(KN1),
EKM~(KW, . . . , EKMI (KNn), then the recovered value of KN is a valid key
known to the system (i.e., the recovered key-encrypting key is in the set KNl,
KN2, . . . , KNn). However, if P is any other key parameter (e.g., a key en-
ciphered under KM0 or KM2), or a key not in the set KNl, KN2, . . . , KNn,
then the recovered value of KN is a key unknown to the system. The output
of the cryptographic operation therefore involves a key whose value is both
unpredictable and uncontrollable.

252 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

KNl, KN2, KNn KNn+ 1, KNn+2, KNm

-I-- I
KM1 KM2

Figure 4-50. Hypothetical Scheme for the Protection of Keys

Suppose that a second hypothetical cryptographic operation is defined as
OP2. OP2 also has a single input parameter:

OP2: {Key Parameter) - Output

and a set of cipher keys (KNn + 1, KNn + 2, . . . , KNm) that are to be used
with it. However, in this case, the cipher keys to be used with OP2 are
enciphered under the second variant of the host master key (KM2).

Encrypting KN 1 through KNn with KM 1, and encrypting KNn + 1 through
KNm with KM2, cryptographically separates the secondary keys (Figure
4-50).

Since the results of OPl or OP2 are meaningful only if the input key
parameter is a key-encrypting key enciphered under KM1 or KM2, respec-
tively, it is possible to eliminate shortcut methods of attack which either
manipulate the cryptographic operations or use enciphered keys not intended
for use with a specific operation. This point is illustrated below by showing
the effect of using different key parameters with the example operations
(Figure 4-5 1).

OPl: {P}+Usable
output

A

Keys
Enciphered

under KMV

OP2: { P } + Unusable
output

OPl : { P } -+ Unusable
output

Keys
Enciphered

<Under KMP

OP2: { P } + Usable
output

Figure 4-51. Correct and Incorrect Use of OPl and OP2

CIPHER MACRO INSTRUCTION 253

An important advantage results from using multiple master keys; the
cryptographic operations, higher-level functions, and applications provided
by the cryptographic system can be isolated (logically separated) from one
another. Cryptographic operations can also be made irreversible, thus limiting
the function provided to the system and its users and thereby reducing the
ways in which an opponent could attack the system. Whether implemented
through variants of a single master key, or several different master keys, the
concept of multiple master keys offers the cryptographic system designer
flexibility in the development of provably secure cryptographic operations
(see Extended Cryptographic Operations, Chapter 5).

CIPHER MACRO INSTRUCTION

The reader is reminded that this and subsequent macro instructions represent
only sample specifications for the purpose of illustration. A byte is defined
as a sequence of 8 contiguous bits.

The CIPHER macro instruction allows users of the system to encipher and
decipher data. The CIPHER macro is defined as follows:

name CIPHER PLNTXT = address of plaintext

CHRTXT = address of ciphertext

KEY = address of enciphered primary key

LENGTH = address of length parameter

FNC = ENCPHR (OECPHR

ICV = address of initial chaining value

CHAIN = (HJ 1 BLK I PLNCHR

ocv = address of output chaining value

SHORT = PAD ISTREAM

The symbol 1 denotes “or”, whereas the underscore symbol indicates the
defaulted parameter.

0 PLNTXT = Address of Plaintext

If the function specified is encipher (FNC = ENCPHR), then PLNTXT is
the address of the data to be enciphered. If the function specified is decipher
(FNC = DECPHR), then PLNTXT is the address of the storage location where
the deciphered data are placed.

254 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

0 CHRTXT = Address of Ciphertext

If the function specified is encipher (FNC = ENCPHR), the CHRTXT is
the address of the storage location where the enciphered data will be placed.
If the function specified is decipher (FNC = DECPHR), then CHRTXT is the
address of the data to be deciphered.

l KEY = Address of Key Parameter (Primary Key Enciphered Under
Host Master Key, KMO)

8 Bytes

Data ciphering is performed using primary key K, where K is obtained by
deciphering the input key parameter with KMO.

l LENGTH=Address of the Location Containing the Length of the Data
in Bytes

I 4 Bytes

If FNC = ENCPHR, then LENGTH denotes length of plaintext. If FNC =
DECPHR, then LENGTH denotes length of ciphertext.

l FNC = ENCPHR I DECPHR

ENCPHR specifies the function of encipherment and DECPHR specifies the
function of decipherment.

a ICV = Address of Initial Chaining Value

L 8 Bytes

Supplied

CIPHER MACRO INSTRUCTION 255

When block chaining is used, a chaining value (CV) is required for each
block of data to be ciphered. The CV used to cipher the initial block is called
the initial chaining value (ICV). The ICV is a nonsecret, %byte, random or
pseudo-random value which is supplied as input. It is also called the initiali-
zation vector Z (see Block Ciphers and Stream Ciphers, Chapter 2). Except
for the ICV, all other chaining values are derived from information supplied
or derived when ciphering takes place, and depend on the particular chaining
scheme employed.

l CHAIN = CHR I BLK I PLNCHR

The function CHAIN = BLK specifies that ciphering is performed on a block-
by-block basis, with no chaining. In this case, the LENGTH parameter must
be an exact multiple of 8 bytes. Since the SHORT parameter is used only in
situations where LENGTH is not a multiple of 8 bytes, SHORT is invalid
when BLK is specified. The method of ciphering data using the BLK function
is in Figure 4-52.

The function CHAIN = CHR (CHR being the default parameter for routine
encipherment of data) specifies that block chaining with ciphertext feedback
is used for data ciphering. The LENGTH parameter, in this case, does not
have to be a multiple of 8 bytes. The method of ciphering data using the CHR
function is in Figure 4-53.

Encipher I Decipher

Input
Plaintext

output
I

Input output
Ciphertext Ciphertext Plaintext

X(l) E&W)) Y(l) DK(WN
x (2) E,W (2)) y (2) D,(Y (2)) . .

. . I . l

. .

Xin) EK& W I Yin) DK& O-0)

K is a Primary Key.
Input and Output Blocks are 64 Bits in Length

Encipherment:

ECPH: { E,,,(K), X(l), X(2), K(n) 1

- Y(l), Y(2), Y(n)

Decipherment:

DCPH: { EKMOW), Y(l), Y(2), Y(n))

--, X(l), X(2), X(n)

Figure 4-52. Ciphering Operation Using the BLK Function

Chaining Encipher Decipher
Value

Input output Input output
Plaintext Ciphertext Ciphertext Plaintext

CV(l)= ICV X(l) Y(l)=EK(X(l)@CV(l)) Y(1) X(l)= DK(Y(l))@CV(l)
CV(2)=Y(l) X(2) Y (2) = EK(X(2@3CV(2)) Y(2) X(I) = D,(Y (2))+13LV(2)

.

. l . . .

.

CV(n)=Y(n-1) X(n) Y(n) = EK(X(n)@V(n)) Y (4 X(n) = D,(Y (n))@CV (n)

Where: K is a Primary Key
Input and Output Blocks are 64-bits
@ = Modulo 2 Addition (Exclusive-OR (XOR) Operation)

Encipherment:

ECPH: { E,,,(K), X(1) $ ICV, X(2) @Y(l), X(n) o Y(n-l)} + Y(l), Y(2), Y(n)

Decipherment:

DCPH: { E KM,,W), Y(l), Y(2), Y(n) 1 - D,&YUN, DKW(2N, DK(Y(nN

Then XOR the Appropriate Chaining Value to Each Intermediate Block to Recover the Original Plaintext, Namely:

DK(Y(I))eICV =X(l)
DK(Y(2))@Y(l) =X(2)

.

.

.

DK(Y(n))eY(n- 1) =X(n)

Figure 4-53. Ciphering Operation,Using the CHR Function

CIPHER MACRO INSTRUCTION 257

The function CHAIN = PLNCHR specifies that block chaining with
plaintext-ciphertext feedback is used for data ciphering. The method of
ciphering data using the PLNCHR function (Figure 4-54) is similar to
that described in Figure 4-53, except that the chaining values are defined
differently.

In the case of CHAIN = CHR, the chaining values are CV(1) = ICV, CV(2) =
Y(l), . . . , CV(n) = Y(n - 1). In the case of CHAIN = PLNCHR, the chaining
values are CV(1) = ICV, CV(2) = X(1) + Y(1) mod 264, . . . , CV(n) = X(n - 1) +
Y(n - 1) mod 264.

l OCV = Address of Output Chaining Value

1, 8 Bytes

Returned

The OCV is a nonsecret, 8-byte, pseudo-random value which is computed
from information supplied to or derived by the CIPHER macro at the time
ciphering is performed. The method of computation depends upon the par-
ticular chaining scheme employed.
The OCV is defined here as the encipherment of the last block of cipher-
text (Figure 4-55), although there are other ways in which an OCV could be
derived.

0 SHORT = PAD I STREAM

The SHORT parameter defines how short’ blocks (blocks of fewer than 8
bytes) are to be treated during the ciphering process. Basically, short blocks
may be handled in two ways: they may be padded and then ciphered, or
they may be ciphered directly with a stream cipher. The SHORT parameter
is ignored for data that is a multiple of 8 bytes.

If SHORT = PAD is specified, then pad characters are added to J short
block prior to its encipherment, and the pad characters are removed from
the recovered plaintext block. Up to 7 pad characters can be added to a short
block. The last pad character is a binary count of the total number of pad
characters; the other pad characters are random or pseudo-random data
(Figure 4-56).

If SHORT = STREAM is specified, then blocks 1, 2, . . . , n - 1 are
ciphered using block chaining and block n (the short block) is ciphered using
a stream cipher. The procedure for ciphering the short block consists of first
enciphering the chaining value, CV(n), with the primary key K, and then

.

CV(n) = ;((n - 1) + Y(n - 1)

Encipherment:
ECPH: { E,,u (K), X(1) @ ICV, X(2) @(X(l) + Y(l)),

X(n) @(X(n- 1) + Y(n-1))) * Y(l), Y(2), Y(n)

Decipherment:
DCPH: I E,,,(K), Y(l), J’(2), Y(n) 1

- D,(Y(lh D,(YW), D,(Y(nN

Then XOR the Appropriate Chaining Value to Each Intermediate
Block to Recover the Plaintext Values, Namely:

D,(Y(l)) @ ICV =X(l)
D,(W)) @ (X(1) + Y(1)) =X(2)

.

.

D,(Y(n)) @ (X(:- 1) + Y(n-l))=X(n)
I
Note that addition is modulo 2@.
Figure 4-54. Ciphering Operation Using the PLNCHR Function

Encipherment: Decipherment:

cv +
Y(n- 1)

K

e,
E

Y(n)
K-b D

K E

1:11
cv +

Y(n- 1)

ocv X @I

K-b E

Figure 4-55. Procedure for Computing OCV

258

CIPHER MACRO INSTRUCTION 259

n Bytes

n= 1, 2 7; Pad Count = 8 - n

Figure 4-56. Padding of Short Blocks

Exclusive-ORing as many of the produced bits with the short block as neces-
sary. Thus each bit in the short block is Exclusive-ORed with a corresponding
bit in the enciphered chain value (Figure 4-57).

In the context of the present discussion, the SHORT parameter is invalid
whenever CHAIN = BLK is specified. If CHAIN = CHR and SHORT =
STREAM are specified, then the output chaining value is defined as

OCV = Ek(RIGHT64[CV(n) 1) Y(n)])

where RIGHT64 denotes a function that extracts the rightmost 64 bits from
the bit string variable enclosed in brackets, and (I denotes concatenation. By
definition, OCV = Ek(Y(n)) whenever the length of X(n) is 64 bits, If
CHAIN = PLNCHR and SHORT = STREAM are specified, then the output
chaining value is defined as

OCV = E,(RIGHT64[CV(n) II (Y(n) + X(n) mod 29 I)

8 Bytes Short Block

Figure 4-57. Ciphering a Short Block Using the STREAM Parameter

260 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

KEY MANAGEMENT MACRO INSTRUCTIONS

The key management macro instructions, GENKEY (generate key) and
RETKEY (retrieve key), allow users of the cryptographic system to perform
key transformations via the key manager program. In turn, the key manager
program effects the desired key transformations by using one or more of the
basic cryptographic operations. Used in the process are the key and data
parameters specified by the macro, and other parameters stored in a key
table that are available to the key manager program. The required transfor-
mations are performed by the key manager program using the cryptographic
operations RFMK and RTMK, although in a different implementation they
might be performed using a different set of cryptographic operations.

GENKEY and RETKEY Macros

Possible specifications for the GENKEY and RETKEY macros are as follows:

GENKEY

name GENKEY TOKEY 1 = address, TOKEY = address

The TOKEY 1 and TOKEY parameters each specify the address of a 16-byte
area that contains an 8-byte key name (the name of a cryptographic resource)
and an 8-byte answer area for the generated key enciphered under the named
key-encrypting key.

TOKEY 1 = Address

Supplied

TOKEY = Address

8 Bytes

Supplied

8 Bytes
ppq

Returned

8 Bytes
yzgzq

Returned

Execution of the GENKEY macro instruction causes the key manager to
create a data-encrypting key (K) and to encipher this key under the key-

KEY MANAGEMENT MACRO INSTRUCTIONS 261

encrypting keys (KNl and KN2) specified by the key names in the TOKEY 1
and TOKEY parameters. 26 Each enciphered key is then placed in its respec-
tive 8-byte answer area.

RETKEY

name RETKEY FROMKEY = address, TOKEY = address

The FROMKEY parameter specifies the address of a 16-byte area consisting
of an 8-byte key name, and an 8-byte data-encrypting key which has been
enciphered under the key-encrypting key specified.

FROMKEY = Address

Supplied Supplied

The TOKEY parameter specifies the address of a 16-byte area that con-
tains an 8-byte key name and an 8-byte answer area.

TOKEY = Address

Supplied Returned

Execution of the RETKEY macro instruction causes the enciphered key
supplied in the FROMKEY parameter to be deciphered under the key-
encrypting key identified by the supplied key name also in the FROMKEY
parameter. The result is then enciphered under the key-encrypting key iden-
tified by the supplied key name in the TOKEY parameter.

The qualifiers local and remote are used to distinguish the various cryp-
tographic resources managed by a host processor. For a given host, a Zocul
resource is one located in the domain of that host; a remote resource is one
located in or shared with another domain. Each host is a resource itself.
There are five types of key-encrypting keys used by the cryptographic sys-
tem: LOCAL TERMINAL, LOCAL FILE, LOCAL HOST, REMOTE FILE,

26 Instead of producing K in clear form and then enciphering it under KNl and KN2, the
key manager generates a pseudo-random number, RN, which is defined as EmI(
Em2(K) is then produced by deqiphering RN with KNl and reenciphering the resulting
value (K) with KN2.

262 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Local/Remote Resource Indicated Key Key Location

LOCAL TERMINAL KMT CKDS (Host i) &
Terminal (Domain i)

FILE KNF CKDS (Host i)

HOST KMOi Cryptographic
Facility (Host i)

REMOTE FILE KNFij; KNFji CKDS (Host i & j)

HOST KNCij; KNCji CKDS (Host i & j)

Notes:
LOCAL refers to domain i; REMOTE refers to domain j or something
shared with domain j. Lower case letters (i, j) are used to indicate the
referenced domain. Letter “i” is sometimes omitted when referring to a
LOCAL resource, e.g. KM0 is used in place of KMOi. CKDS denotes the
Cryptographic Key Data Set.

Table 4-1. Resources, Keys, and Key Storage Locations

and REMOTE HOST. The relationships among resources, keys, and key
storage locations is shown in Table 4-1.

Every key-encrypting key stored at a host is assigned a unique key name.
A key name is used by the key manager to locate a key stored in either the
cryptographic facility or the CKDS. The key name could, for example, con-
sist of a resource name (either the name of a resource protected by the key,
or the location where it is stored) and an identifier:

<key name> = <resource name>, <identifier>

The name of the key installed in the first of a set of terminals might be
TERM000 1.

The parameters of the GENKEY and RETKEY macros provide a general
framework for a user to request key translations. However, it must be realized
that only certain combinations cf parameter values (as specified by their
supplied key names) will be accepted as valid, whereas others will not.27 The
reasons for this are:

1, Certain key translations may be inhibited because they cannot be per-
formed (i.e., the basic cryptographic operations may not permit effec-
tive translation).

2. Certain key translations may be inhibited for reasons of security (i.e.,
the translation, if provided, would lead to an exposure of keys or data).

27Error reporting mechanisms are not presented here but can be assumed.

KEY MANAGEMENT MACRO INSTRUCTIONS 263

3. Certain key translations may be inhibited simply because the function
is not needed by the cryptographic system. The user is only able to do
those things that are absolutely required for cryptography.

For example, if the key name of a local terminal and the key name of a local
host could be specified for the FROMKEY and TOKEY parameters, respec-
tively, then it would be possible to translate a wiretapped session key (KS)
from encipherment under a terminal master key (KMT) to encipherment
under a host master key (KMO). Once E K&KS) is obtained, anyone with
access to the host system could then decipher intercepted ciphertext (en-
ciphered under KS) via the CIPHER macro instruction.

A truth table (matrix of 1s and OS) could be used by the key manager to
determine if certain parameter combinations are valid or invalid. The row
and column headings could be identified by LOCAL TERMINAL, LOCAL
FILE, LOCAL HOST, REMOTE FILE, and REMOTE HOST (Table 4-2). A

GENKEY

(TOKEY2)

\
LOCAL LOCAL LOCAL REMOTE REMOTE

(TOKEYI) TERMINAL FILE HOST FILE HOST

LOCAL
TERMINAL

LOCAL
FILE

LOCAL
HOST

REMOTE
FILE

REMOTE
HOST

I
1 1 1 1 1

1 0 1 1 1

1 1 X 1 1

1 1 1 1 1

1 1 1 1 1

“1” Denotes Requested Translation Allowed
“0” Denotes Requested Translation Denied
“X” Denotes a Null Translation

Note: The cryptographic operations will not permit the
encipherment of a common data-encrypting key
under two different LOCAL FILE keys.

Table 4-2. Valid and Invalid Parameter Combinations in the GENKEY Macro

264 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

similar truth table can be constructed for the parameters of the RETKEY
macro (Table 4-3).

In each case, it can be shown that the defined key transformations (Tables
4-2 and 4-3) can be effected by using the RFMK and RTMK operations. For
example, a GENKEY request where TOKEY 1 designates a local host and
TOKEY designates a local terminal could be handled as follows. A random
number (RN) is produced and defined to be the required data-encrypting
key (K) enciphered under the host master key (KMO). RN = EKILIO(K) is
returned in the 8-byte answer area of the TOKEYl parameter. An RFMK
operation is then used to transform K from encipherment under KM0 to

RETKEY

(TOKEY)

\ (FROM- LOCAL LOCAL LOCAL REMOTE REMOTE
KEY) TERMINAL FILE HOST FILE HOST

LOCAL
TERMINAL

LOCAL
FILE

LOCAL
HOST

REMOTE
FILE

REMOTE
HOST

x XV x x x
0 0 0 0 0

%

1 0 1 1 1

%

1 0 X 1 1

%
1 0 1 1 1

I I

%

1 0 I 1 I 1 I 1 I

“ ” Denotes Requested Translation allowed 1
“0” Denotes Requested Translation Denied
“X” Denotes a Null Translation

Notes: 7 No cryptographic operation(s) will permit a data-
encrypting key to be transformed to encipherment
under a LOCAL FILE key.

u No cryptographic operation(s) will permit a data-

encrypting key enciphered under a LOCAL TER-
MINAL key to be transformed to encipherment
under any other key.

Table 4-3. Valid and Invalid Parameter Combinations in the RETKEY Macro

KEY MANAGEMENT MACRO INSTRUCTIONS 265

encipherment under the master key of the specified terminal (KMT). EKMT(K)
is returned in the 8-byte answer area of the TOKEY parameter. In the
described communications environment, the transformations provided by
GENKEY would be effected with the RFMK operation. The logical inverse
transformation provided by RETKEY is effected with the RTMK operation.
As a general rule, key translations related to a file key involve the use of
RTMK for both GENKEY and RETKEY. (See also The Host System Cryp-
tographic Operations, Chapter 5 .)

The translation functions of RETKEY are necessary to effect proper key
management within the cryptographic system but also provide an opponent
with a way to subvert the system’s security. For example, interdomain com-
munications require that there be a way for one domain to receive an enci-
phered session key from another domain, and translate that key (via the
RETKEY macro instruction) into a form usable for deciphering data. In
effect, this means that an opponent who has intercepted an enciphered ses-
sion key and data enciphered under that key can perform the same translation
by invoking the RETKEY macro, provided that access can be gained to the
receiving host system.

It is absolutely essential that the cryptographic system have a way of COP
trolling the use of the RETKEY macro. Control can be effected, for example,
by requiring that the calling program have privilege equal to that of the host’s
operating system. In addition, the CKDS can be made a protected data set,
thus making it the exclusive resource of the key generator and key manager.
Recording denied RETKEY requests on a system log is also advisable as an
extra precautionary measure.

Using GENKEY and RETKEY

In a previous example (see An Example of the Encryption of Transmitted
Data), user 1 located at terminal 1 in domain i established a communications
session, using cryptography in a transparent manner, with user 2 located at
terminal 2 in domain j. The network configuration and allocation of secondary
keys for this example is shown in Figure 4-58.

User 1 initiates the session by logging on via a terminal. This causes a
message to be transmitted to host i requesting that a communications session
be established between terminal 1 in domain i and terminal 2 in domain j. As
a consequence of this action (Figure 4-59), the teleprocessing access method
invokes the key manager via the GENKEY macro instruction, passing as
parameters the names of KNCl and KNC2. The key manager generates a
session key (KS) and then causes KS to be enciphered under secondary key
KNCl so that it can be transmitted to terminal 1, and under secondary key
KNC2 so that it can be transmitted to host j.

The quantity EKNCl (KS) is transmitted to terminal 1, and the quantity
EKNCZ(KS) is transmitted to hostj. At host j, the teleprocessing access method
invokes the key manager via the RETKEY macro and passes as parameters
the names of KNC2 and KNC4. The key manager then causes the session key
(KS) to be transformed from encipherment under KNC2 to encipherment

266 COMMUNIC’ATION SECURITY AN0 FILE SECURITY USING CRYPTOGRAPHY

(Domain i) (Domain j)

Figure 4-58. Initial Configuration

under KNC4 (Figure 4-60). The quantity E xNc4(KS) is transmitted to ter-
minal 2.

At terminal 1, the session key is recovered by deciphering the quantity
EKNCl(KS) with the cipher key KNCl. KNCl is maintained within the mas-
ter key storage of terminal l’s cryptographic facility. Similarly, at terminal
2, the session key is recovered by deciphering the quantity EKNC4(KS) with
the cipher key KNC4. KNC4 is maintained within the master key storage of
terminal 2’s cryptographic facility. The cipher keys KNC2 and KNC4 are
terminal master keys, although the notation KMT is not used in the present
example. As a result of the process of initiating the session, end users 1 and
2 share a common session key (KS) that can be used for ciphering data.

GENKEY

TOKEY 1 = Key Name of KNCl
TOKEY = Key Name of KNC2

KNCI 1 KNC2
-

KNC4
+

KNC3

Figure 4-59. Session Key Generation at Host i

THE CRYPTOGRAPHIC KEY DATA SET 267

RETKEY

FROMKEY = Key Name of KNC2
TOKEY =Key Name of KNC4

A

EKNC2(KS) EKNC4(KS)
b

KNCl KNC2
-

KNC4
-

KNC3

Figure 4-60. Session Key Translation at Host j

THE CRYPTOGRAPHIC KEY DATA SET

The Cryptographic Key Data Set (CKDS) is the repository for all secondary
keys (other than the host master key) used by the key manager to perform
key translation functions. These keys are protected (during their period of
storage) by being enciphered under either the first (IUvfl) or second (KM2)
variant of the host master key.

The CKDS is created and maintained by the key generator. A separate
input statement is supplied to the key generator for each entry or record in
the CKDS that is to be added, updated, or deleted. The input statement has
the general format shown in Figure 4-6 1. The format of each entry (record)
in the CKDS is shown in Table 4-4.

The key name is a parameter used to locate an entry in the CKDS. The
key type indicates to the key generator whether the stored key is enciphered

Key Type: Type 1, Type 2, or Type 3 (representing LOCAL
TERMINAL, LOCAL FILE, and REMOTE HOST or
REMOTE FILE, repectively)

Key Name: Installation Specified Name

Key1 : Optional &l-Bit Key
If a key is required and no key is specified, then a key will be
generated automatically.

Key2: Same as for Key1

Action: Add, Update, or Delete

Figure 4-61. Input Statement to Add, Update, or Delete a CKDS Record

266 COMMUNICATION SECURITY AND FILE SECURITY USING CRYPTOGRAPHY

Field Field
Position Length
(Bytes) (Bytes)

Field
Description

0 8 Key Name
8 8 Key1 Enciphered Under KM1

16 8 Key2 Enciphered Under KM2
24 1 Resource Type (1, 2, or 3)
25 8 Test Pattern (Optional)

Table 4-4. CKDS Record Format

under KM1 (designated type 1) or KM2 (designated type 2) or whether two
different keys are stored under KM1 and KM2 (designated type 3). The re-
source type indicates to the key manager what cryptographic operations
must be performed by the cryptographic facility in order to satisfy requests
for translation. The test pattern is an optional parameter that can be used to
authenticate stored keys (see Authentication Techniques Using Cryptography,
Chapter 8).

Local Terminal:

pizq-&q~(Unused)~l~l

Remote Host:

(~j~IIPKMIIXNCII)(IEI(MI(KNCII)II~~~

Remote File:

Legend: Local = Host i
Remote = Host j

Figure 4-62. CKDS Entries

REFERENCES 269

Secondary keys stored in the CKDS are of the types described in Figure
4-62. A secondary communication key associated with a locat terminal is
of type 1 (i.e., it is stored enciphered under KMl). A secondary file key
associated with a local file is of type 2 (i.e., it is stored enciphered under
KM2). A pair of secondary communication keys or secondary file keys
associated with a remote host or remote file, respectively, are of type 3,
(i.e., one of the keys is stored enciphered under KM1 and the other key is
stored enciphered under KM2). A secondary key which allows a primary key
to be sent to another host is stored enciphered under KMl, whereas a sec-
ondary key which allows a primary key to be received from another host is
stored enciphered under KM2.

SUMMARY

The main thrust of this chapter has been to show how the DES algorithm
can be implemented in a network of connected computers to provide end-to-
end encryption for communication security and file security. (Link encryption
was treated briefly for the sake of completeness.) Emphasis has been placed
on describing a method for allocating keys (including a hierarchical structure
of keys for both key and data protection) and defining a set of basic cryp-
tographic operations that use these keys. The cryptographic operations are
performed by a cryptographic facility, or secure implementation, that can be
invoked through a programming interface (e.g., with program macro instruc-
tions). The intent was to provide the reader with an insight into the design
of a cryptographic system and to give enough details of the implementation
to allow its operation to be understood. A justification for the particular
cryptographic operations and keys (including multiple master keys) defined
herein is given in Chapter 5.

REFERENCES

1. Ehrsam, W. F., Matyas, S. M., Meyer, C. H., and Tuchman, W. L., “A Cryptographic
Key Management Scheme for Implementing the Data Encryption Standard,” IBM
Systems Journal, 17,No. 2, 106-125 (1978).

2. IBM Cryptographic Subsystem Concepts and Facilities, IBM Systems Library Order
Number GC22-9063, IBM Corporation, Data Processing Division, White Plains,
NY (1977).

3. McFayden, J. H., “Systems Network Architecture: An Overview,” IBM Systems
Journal, 15, No. 1, 4-23 (1976).

4. Green, P. E., “An Introduction to Network Architectures and Protocols,” IBM Sys-
tems Journal, 18, No. 2, 202-222 (1979).

5. Baran, P., “On Distributed Communications: IX. Security, Secrecy and Tamper-free
Considerations,” Memo. RRM-3765PR, Rand Corporation, Santa Monica, CA
(August 1964).

6. Chaum, D. L., “Untraceable Electronic Mail, Return Address, and Digital Pseudo-
nyms,” Memo. UCB/ERLM79/9, Electronic Research Laboratory, University of
California, Berkeley (February 1979).

270 COMMUNICATION SECURITY AND FILE SECURITY USING c~ypT0GRAPtiy

I. Cypser, R. J., Communications Architecture for Distributed Systems, Addison-
Wesley, Reading, MA, 1978.

8. IBM 3848 Cryptographic Unit Product Description and Operating Procedures, IBM
Systems Library Order Number GA22-7073, IBM Corporation, Data Processing
Division, White Plains, NY (1979).

9. Lennon, R. E. and Matyas, S. M., “Unidirectional Cryptographic Functions Using
Master Key Variants,” National Telecommunications Conference Record, 3,43.4.1-
43.4.5 (1979).

10. Data Encryption Standard, Federal Information Processing Standard (FIPS) Publica-
tion 46, National Bureau of Standards, U.S. Department of Commerce, Washington,
DC (January 1977).

Other Publications that Treat Key Management in Conventional and/or

11.

12.

13.

14.

1.5.

16.

17.

18.

19.

20.

Public-Key Cryptographic Systems

Kent, S. T., “Encryption Based Protocols for Interactive User-Computer Communi-
cation,” Proceedings Fifth Data Communications Sysmposium, 5-13 (September
1977). Available from ACM, New York.
Everton, J. K., “A Hierarchical Basis for Encryption Key Management in a Computer
Communications Network,” Trends and Applications 1978: Distributed Processing,
IEEE Computer Society, Long Beach CA (1978).
Merkle, R., “Secure Communications Over Insecure Channels,” Communications of
the ACM, 21, No. 4,294-299 (April 1978).
Popek, G. J., and Kline, C. S., “Encryption Protocols, Public Key Algorithms, and
Digital Signatures in Computer Networks, ” in Foundations of Secure Computation,
edited by R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, Academic
Press, New York, 1978, pp. 133-l 53.
Needham, R. M., and Schroder, M. D., “Using Encryption for Authentication in
Large Networks of Computers,” Communications of the ACM, 21, No. 12, 993-999
(December 1978).
Kohnfelder, L. M., “Towards a Practical Public-Key Cryptosystem,” B.S. Thesis,
Department of Electrical Engineering, Massachusetts Institute of Technology,
Cambridge (May 1978).
Smid, M. E., A Key Notarization System for Computer Networks, NBS Special
Publication 500-54, U.S. Department of Commerce, National Bureau of Standards,
Washington, DC (October 1979).
Konheim, A. G., Mack, M. H., McNeill, R. K., Tuckerman, B., and Waldbaum, G.,
“The IPS Cryptographic Programs,” IBM Systems Journal, 19, No. 2, 253-283
(1980).
Blakley, G. R., “Safeguarding Cryptographic Keys,” AFIPS Conference Proceedings, 48,
313-317 (June 1979).
Shamir, A., “How to Share a Secret,” Communications of the ACM, 22, No. 11, 612-613
(1979).

The Host System Cryptographic 271...................
SINGLE-DOMAIN COMMUNICATION 271..........
SINGLE-DOMAIN COMMUNICATION 274..........

Two Master Keys 275..
Encipherment Under KM 1 276..................................
An Example of Communications Encryption 276.......
Requirements 278..

SINGLE-DOMAIN COMMUNICATION 278..........
Problems Associated with Storing Enciphered 278....
Three Master Keys 280..
Host Key Protection 281..
Encipherment under KM1 and KM2 281....................
File Key Generation 282..
An Example of File Encryption 283............................

File Create: 284..
File Recovery: 284...

Requirements 284..
MULTIPLE-DOMAIN ENCRYPTION 284.............

A Protocol For Communication Security 285.............
A Protocol For File Security 288................................
Transporting a New File 288......................................
Transporting an Existing File 289...............................

ADDITIONAL CONSIDERATIONS 291...............
EXTENDED CRYPTOGRAPHIC OPERATI 292...

Cryptographic Key Distribution Using 293..................
A Composite Key Protocol 294..................................

Generate Session Key 2 (GSKZ): 296.................
Random Number Generator 296........................
Merge Key (MGK): 297..
SUMMARY 299..
REFERENCES 299..

- CHAPTER FIVE

The Host System
Cryptographic Operations’

Since an opponent masquerading as an authorized user could access the
host’s cryptographic facility, the cryptographic operations at a host (Chapter
4) must be such that keys are not exposed as a result of exercising these
operations in some chosen manner. For this reason, the operations are dis-
cussed in depth, providing the reader with additional insight into their design.

The host’s basic cryptographic operations are invoked via a programmed
interface to the host’s cryptographic facility. However, a set master key
operation, used to store a host master key in the cryptographic facility, is
enabled via a physical key lock that operates an associated electromechanical
lock. The key lock isolates the set master key operation from the other
cryptographic operations, thus affording maximum protection to the master
key.

In a data communications network, a host system’s domain refers to the
set of resources managed by that host system. Data communications in-
volving only a single host system are referred to as single-domain communi-
cations, whereas those involving more than one host system are referred to
as multiple-domain communications.

One master key provides adequate security for single-domain communica-
tions when pregenerated data-encrypting keys are used. Two master keys are
necessary if dynamically generated data-encrypting keys are desired. And if
file security (the storage of ciphered data) is also desired, three master keys
are required. Also, three master keys are sufficient to provide for single-
domain and multiple-domain COMSEC and FILESEC using dynamically
generated data-encrypting keys.

SINGLE-DOMAIN COMMUNICATION SECURITY
USING PREGENERATED PRIMARY KEYS

Pregenerated primary keys are primary keys generated under secure condi-
tions in a single large group before they are needed, and stored within the

1 0 1978 IBM Corporation. Reprinted in part from IBM Systems Journal, 17, No. 2
(1978) [11.

271

272 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

system for later use. A cryptographic system with one master key permits
single-domain communication security using pregenerated primary keys.

Let KCl, KC2, . . . , KCn denote the pregenerated primary communica-
tion keys used for ciphering data. If there is only one master key, KMO,
then KM0 is used to protect all primary communication keys stored at the
host system for use in subsequent data ciphering operations. Keys are stored
in the form

&dKCl), &dKW, . . . , EKdKCn)

The host master key KM0 is inserted into the master key storage of the host’s
cryptographic facility via a set master key (SMK) operation, as follows:

SMK: {KM01

It is assumed that the primary communication keys are generated ahead of
time, and that these keys are enciphered under the host master key KM0
with the encipher under master key (EMK) operation, as follows:

EMK: {KC) b E,,,(KC)

The encipher data (ECPH) and decipher data (DCPH) operations at the host
system are defined as

ECPH: {Ek&Key), Data) - ExEY(Data)

DCPH: {Ex,,(Key), Ex,,(Data)l h Data

and hence the enciphered primary communication keys stored at the host
system are in a form that can be used directly as inputs to these operations.
The ECPH and DCPH operations are defined in such a way that a primary
communication key (KC) can be used for ciphering data only after the
quantity EKMO(KC) has been deciphered under KM0 and the resulting value
of KC transferred to the working key storage of the host’s cryptographic
facility. This complies with the requirement that KC should not appear in
clear form outside the cryptographic facility, except when it is generated and
initially enciphered under KMO.

Each terminal in the domain of the host system has its own unique second-
ary communication key, also called the terminal master key (KMT). The
terminal master keys are generated under secure conditions at the host
system, and each key ‘is distributed in a secure manner (as by courier) to its
respective terminal where it is installed in the, master key storage element of
the terminal’s cryptographic facility.

Once installed, the terminal master key is used to protect the primary
communication keys as they are sent from the host system to the terminal.
At the terminal, the enciphered primary communication key is first deci-
phered under the terminal master key, and the resultant value of KC is
transferred to the working key storage of the terminal’s cryptographic facility
(where it can be used for subsequent ciphering operations).

SINGLE-DOMAIN COMMUNICATION SECURITY 273

Also, as part of the initialization, the list of primary communication keys
is divided into as many separate groups of keys as there are terminals. Each
group of keys is then enciphered under a different terminal master key. For
example, if there were 5 terminals and 5000 primary communication keys,
then the table of enciphered keys would be shown by Table 5- 1.

This table of enciphered primary communication keys is stored at the
host system, and individual keys are selected from the table and sent to
their respective terminals as needed. Alternatively, the keys in each row of
the table could be stored at their respective terminals. Individual keys could
then be selected, as needed, from this locally stored list.

The table of enciphered primary communication keys is produced by
using both the encipher under master key (EMK) operation and the encipher
data (ECPH) operation. A terminal master key (KMT) is first enciphered
under the host master key (KMO) using an EMK operation. The quantity
EKMO(KMT) is then used in an ECPH operation to encipher a primary com-
munication key (KC) under the terminal master key (KMT):

EMK: CKMT) - ExMO(KMT)

ECPH: {ExM,,(KMT), KC1 - EKMT(KC)

After the table of enciphered primary communication keys has been pro-
duced, all quantities used in its generation are erased from the host system’s
main storage.

To implement the approach described here, four basic cryptographic
operations are needed at the host system: set master key (SMK), encipher
under master key (EMK), encipher data (ECPH), and decipher data (DCPH).
(See Cryptographic Operations at a Host, Chapter 4.) The approach requires,
in addition, only one master key (KMO).

The disadvantages of this approach are that the number of primary com-
munication keys needed by the cryptographic system must be determined in
advance, and the storage space for these keys must be provided by the host
system. There is also a danger that one or more of these enciphered keys
may become known to an opponent. In that case, the quantity EKMO(KC)
could be used by an opponent directly as input to a decipher data operation

Terminal 1 E,,,,(KCl), E,,,,(KC2), E,,,,(KClOOO)

Terminal 2 E ,,,,W1W, EK,,,WCIOW, E,,,,(KC2@W
l

I

l l l

l l l a

l l l l

Terminal 5
I

E ,,,,W4fW, E,,,,WC4~2), . . ., EKM,,WC50@3

Table 5-1. Table of Primary Communication Keys Enciphered Under
Terminal Master Keys

274 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

to decipher intercepted ciphertext, provided that access to the host system
could be obtained.

SINGLE-DOMAIN COMMUNICATION SECURITY
USING DYNAMICALLY GENERATED PRIMARY KEYS

The previous section described a protocol in which one host master key was
needed to protect the pregenerated keys used for communication security in
a single domain. The question now arises whether one master key is sufficient
if dynamically generated session keys are used.

Let KSl, KS2, . . . , KSn denote the dynamically generated primary com-
munication keys used for ciphering data. Each KS is operational only for the
duration of a communications session, and hence is called a session key (see
Cipher Key Allocation, Chapter 4). Since there is only one host master key,
KMO, session keys are maintained at the host system in the form

EKMoWS~), EKMO(KS~), . . . , EKMoWn)

Session keys required by the cryptographic system are generated at the host
processor. This is because a single host facility is more economical than
multiple facilities duplicating the same function at several terminals.

To satisfy the condition that no clear key occurs outside the cryptographic
facility, and yet avoid a requirement to generate KS directly within the cryp
tographic facility, an indirect method of generating session keys is adopted.
A 64-bit pseudo-random number (RN) is generated (Chapter 6) and defined
to be the session key enciphered under the requesting node’s host master key
(KMO):

RN = ExMO(KS)

Session keys are therefore produced as a sequence of pseudo-random numbers:

RN 1, RN2, . . . , RNn

where the ith pseudo-random number (RNi) corresponds to the ith encrypted
session key (i.e., RNi = EKMO(KSi)).

This method for generating session keys also has the advantage that the
quantity RN can be used directly at the host system to encipher and decipher
data:

ECPH: {RN, Data) - Eo,,,(RN)(Data)

DCPH: {RN, Eo,,,&Data)) - Data

where

Di&RN) = KS

SINGLE-DOMAIN COMMUNICATION SECURITY 275

Because session keys are generated in enciphered form, it is not possible to
encipher them directly under a terminal master key (KMT) by using the
EMK and ECPH operations (see Single Domain Communication Security
Using Pregenerated Primary Keys). Thus to obtain EkMT(KS), which is
required at the terminal, a cryptographic operation is needed to transform
KS from encipherment under KM0 to encipherment under KMT. This trans-
formation is accomplished by deciphering EKMO(KS) with the value of KM0
stored in the host’s cryptographic facility and reenciphering KS with the
terminal master key (KMT). (KMT is stored at the host system and is pro-
vided as an input parameter to the host’s cryptographic facility as needed,)

A cryptographic system, like the one being discussed, could be con-
structed with one master key if KMT were stored enciphered under KMO.
Such a system, however, would expose session keys, since using EKM,(KMT)
and ExMr(KS) as inputs to a decipher data operation would yield a clear
value of KS:

DCPH: (ExM,,(KMT), EKMT(KS)) - KS

This condition violates the stated requirement that it must not be possible
to recover keys in the clear outside a designated physically secure area, such
as a cryptographic facility.

Two Master Keys

The situation described above can be avoided by defining a second master
key, KMl. In this case, session keys are maintained at the host system in
the form

and terminal master keys are maintained at the host system in the form

The terminal master keys are generated under secure conditions at the host
system, and each key is distributed in a secure manner (as by courier) to its
respective terminal where it is installed in the master key storage of the
terminal’s cryptographic facility. This approach, however, requires a transla-
tion capability, defined as the reencipher from master key operation:

RFMK: {ExMi(KMT), Ex~e(Ks)) - ExMr(KS)

Even though the relationship between KM0 and KM1 is publicly known, this
information is not enough to permit the algorithm to be broken. For instance,
ExMe(KMT) cannot be deduced from E KM i (KMT) for a strong cryptographic
algorithm (see Protection of Host Keys, Chapter 4).

The attack described above for recovering session keys is thwarted when
KMT is stored enciphered under KMl. Neither is it possible to deduce

276 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

EKMo(KMT) from E KMl(KMT), nor is it possible to enter EKMI(KMT) and
EKMT(KS) as inputs to a decipher data operation and recover a clear session
key (KS):

DCPH: {EKMI(KMT), EKMT(KS)I + Dk(EKMT(KS)) # KS

because

K = DKMO(EKMl(KMT)) # KMT

The host master key (KMO) is inserted into the master key storage of the
host’s cryptographic facility with an SMK operation (as previously discussed).
Because session keys are generated in a form enciphered under the host
master key (KMO), the EMK operation is not needed to encipher dynamically
generated primary keys as it is for pregenerated primary keys.

Encipherment Under KM 1

Encipherment of the terminal master keys under KM1 can be accomplished
under secure conditions by a combination of cryptographic operations al-
ready discussed. 2 The steps involved in this procedure are as follows. The
host master key (KMO) is first read into the main storage of the host system,
where the variant KM1 is derived by inversion of appropriate bits of KMO.
The intermediate quantity E KMl(KMl) is then derived as follows:

EMK: {KM11 - EKMO(KMl)

ECPH: CEKMO(KM l), KM 11~ EKMl (KM 1)

Using the intermediate quantity E KMl(KMl), each terminal master key
(KMT) is then enciphered under KM1 as follows:

EMK: {KMTII - EKM,(KMT)

RFMK: CEKMI(KM~), E,,,(KMT)I 4 EKMl(KMT)

Once the list of terminal master keys is enciphered, all intermediate values
used in the computation are erased from the host’s main storage.

An Example of Communications Encryption

A communication session between a terminal and an application program in
a host is initiated as follows. A 64-bit pseudo-random number (RN) is gener-
ated at the host system and is defined to be the session key (KS) enciphered
under the host’s master key (KMO), that is, RN = EKMO(KS). Since the host’s
master key (KMO) is unavailable at the terminal, EKMO(KS) must be trans-
formed into a form usable at the terminal, that is, into the form EKMT(KS).

‘Another approach is to use a new cryptographic operation (see Encipherment of Keys
Under the Master Key’s Variants, Chapter 6).

277

278 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

This is accomplished through the use of the RFMK operation, as described
above. EKMT(KS) is then transmitted to the terminal, where KS is recovered
and transferred to the working key storage in the terminal’s cryptographic
facility. EKMO(KS) is given to the application program in the host. At this
point, both the terminal and the application program have identical session
keys (KS) that can be used for ciphering data (Figure 5-l).

Requirements

In the approach described here, five basic cryptographic operations are needed
at the host system: set master key (SMK), encipher under master key (EMK),
encipher data (ECPH), decipher data (DCPH), and reencipher from master
key (RFMK). The approach also requires two master keys: KM0 and KM 1,

SINGLE-DOMAIN COMMUNICATION SECURITY AND FILE SECURITY
USING DYNAMICALLY GENERATED PRIMARY KEYS

A cryptographic system with two master keys permits single-domain com-
munication security using dynamically generated primary keys. If stored
data must be protected as well, then a third master key is needed.

Problems Associated with Storing Enciphered Data

The previous section described a protocol for single-domain communication
security using dynamic session keys. It therefore seems natural to ask if the
same scheme could be adapted for use in file security to protect stored
data.

Suppose one wishes to protect stored data in the same way that communi-
cated data are protected, that is, one wishes to use a session key in the form
EKMO(KS) as an input parameter to the encipher data and decipher data
operations for the purpose of creating and recovering data files, respectively.
However, for this approach to be workable (i.e., to be able to recover data
with a DCPH operation), either E kMO(KS) must be saved for later use or else
it must be possible to recreate it when it is needed (Figure 5-2).

If EKMO(KS) is stored within the system, especially for long periods, it
must be protected by a suitable method of controlled access, since knowl-
edge of EKMO(KS) would allow data to be recovered directly with a decipher
data operation. This difficulty could be avoided, of course, by using the
quantity EKMi)(KS) as a personal key and therefore not storing it within the
system. However, the advantage of a personal key must be weighed against
that of cryptographic transparency (where the user is relieved of any respon-
sibility for handling keys). When stored information is shared among many
users, the use of personal keys may be impractical. For example, if there are
10 different users and 10 different data files, such that the first user must
have access to all but the first data file, the second user must have access to
all but the second file, and so forth, then each file must be enciphered under
a different key and each user must be given nine different personal keys to
manage.

SINGLE-DOMAIN COMMUNICATION SECURITY AND FILE SECURITY 279

@ E,, (Data)

% 7
DCPH: { E,,, (KS), E,, (Data) } -, Data

Figure 5-2. Recovery of Data Using the DCPH Operation

Whether EKMO(KS) is stored in the system or used as a personal key, key
management must permit the host master key (KMO) to be changed peri-
odically. Either there must be a method for recovering KS in clear form so
that it can be reenciphered under the new host master key, or else there
must be a method for translating KS directly from encipherment under the
old master key to encipherment under the new master key. In either case,
the procedure would be cumbersome because of the many different session
keys.

Still another disadvantage of basing a file recovery strategy on the stored
quantity EKMO(KS) is that recovery at a different host system would not be
possible unless KM0 was shared with that other host system. But no good
key management scheme would require a host master key to be shared with
another host system.

Because of these disadvantages, E kMO(KS) should not be the quantity
saved for later use in file recovery operations. The disadvantages are over-
come, however, if KS is stored enciphered under a secondary file key (KNF),
rather than under KMO.

In the described approach, quantity E k&KS) is saved in a place that will
be accessible during later file recovery operations, such as in the file header
or in a separate file. At the host system, KNF is stored under the enci-
pherment of some suitable key-encrypting key. (The choice of this key-
encrypting key is discussed below.) Recovery of data is accomplished by
reading Ek&KS) from its saved location, obtaining access to the value
of KNF stored at the host system, and regenerating the quantity EKMO(KS)
using an appropriate translation operation.

The question now arises as to what key KNF can safely be enciphered
under during its period of storage. Suppose KNF is stored enciphered under
KMO. If it were, then a decipher data operation could be used to obtain a
clear session key:

DCPH: ;Ek&KNF), EKNF(KS)) - KS

280 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

Again, this would violate the requirement that it must not be possible to
recover keys in the clear outside the cryptographic facility.

If, on the other hand, KNF is stored enciphered under KM 1, then the
cryptographic operation that permits EKMO(KS) to be recovered from
EKM1(KNF) and E kNF(KS) would also permit EkMO(KS) to be recovered
from EKM1(KMT) and E k&KS). The said cryptographic operation would
permit an attack against ciphered data by an opponent who could gain access
to the system.

The attack is as follows. During a communication session between a user
at a terminal and an application program in a host, the opponent obtains the
quantities EkMr(KS) and E&Data) via a wiretap. By gaining access to the
host system, the opponent first recovers E kMO(KS) by entering the quantities
EKM1(KMT) and E k&KS) as inputs to the said cryptographic operation.
Data is then recovered by entering the quantities EKMO(KS) and E&Data)
as inputs to a DCPH operation.

Incorporation of file security within a cryptographic system, as described
here, weakens the protection afforded by communication security. This is
because the cryptographic operation that permits E,,,(KS) to be recovered
from E,,r(KS) also permits E k&KS) to be recovered from EKMT(KS).
Such a condition should be avoided; COMSEC and FILESEC applications
should be cryptographically separated (see Partitioning of Cipher Keys,
Chapter 4).

Three Master Keys

Enciphering the terminal master keys and secondary file keys under different
host master keys permits the file security system to be implemented yithout
affecting the integrity of the communication security system. The terminal
master keys (which are secondary communication keys) are stored enciphered
under a second variant of the host master key (KMl), and the secondary file
keys are stored enciphered under a second variant of the host master key
(KM2). KM2 is derived from KM0 in a manner similar to that used for deriv-
ing KM1 : by inverting (different) selected bits in KMO. (A precise specifica-
tion for KM2 is not important to the present discussion).

In file security, the primary key used for ciphering data is called a file key
(KF). Let KFl , KF2, . . . , KFn denote the dynamically generated primary
file keys used for ciphering stored data. It is assumed that KF is operational
for the life of the enciphered file, that is, until the file is no longer main-
tained enciphered under KF.

The cryptographic operation that allows a file key (KF) to be transformed
from encipherment under a secondary file key (KNF) to encipherment under
the host master key (KMO), defined as the reencipher to master key (RTMK)
operation, is given by

RTMK: {Er&KNF), EKNF(KF)) - EKM~(KF)

Even though the relationship between the host master key and its first and
second variants is publicly known, this information is not enough to permit

SINGLE-DOMAIN COMMUNICATION SECURITY AND FILE SECURITY 281

the algorithm to be broken. For instance, EkMO(KNF) and EKMl(KNF) can-
not be deduced from EKMZ(KNF) for a strong cryptographic algorithm (see
Protection of Host Keys, Chapter 4).

The attack described above for recovering session keys is thwarted when
KNF is stored enciphered under KM2. That is, it is not possible to enter
EKMZ(KNF) and E kNF(KF) as inputs to a decipher data operation and re-
cover a clear file key (KF):

DCPH: CEKM2(KNF), EKNF(KF)) - Dk(Ek&KF)) + KF

because

K = DKMO(EKMZ(KNF)) # KNF

In like manner, it is not possible to enter EKMI(KMT) and E,,,(KS) as in-
puts to a reencipher to master key operation and recover the quantity
EKMO(KS):

RTMK: {EKMI(KMT), EKMT(=)) - EKMO(DK@KMT(KS))) f EKMO(KS)

because

K = DkMz(EkMr(KMT)) Z KMT

Host Key Protection

Having justified the need for three master keys, the intended use of each of
these keys is now summarized. KM0 is used to protect both file keys and
session keys. Thus primary keys are maintained at the host system in the
form

EKMO(KS~), EKMO(KS~), . . . , &dKSn)

EKMoGF~), EKM&F’& . . . , EKdKFn)

KM1 is used to protect terminal master keys. Terminal master keys are
maintained at the host system in the form

EKMI(~T~), EKMI(~T~), . . . , ErwI(mTn)

KM2 is used to protect secondary file keys. Secondary file keys are main-
tained at the host system in the form

EKMZ(KNF~), EKMZ(KNF~), . . . , &dKNFn)

Encipherment under KM1 and KM2

Encipherment of the secondary file keys under KM1 is performed under
secure conditions by a combination of the cryptographic operations already
described (see Encipherment Under KMl). The host master key (KMO) is

282 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

first entered into the main storage of the host system, where the variant
KM2 is derived by inverting appropriate bits in KMO. (It is assumed that
KM0 has already been inserted into the master key storage of the host’s
cryptographic facility using an SMK operation.) The intermediate quantity
EkM1(KM2) is then derived as follows:

EMK: {KM1 17 EkMa(KMl)

ECPH: {EkMe(KMl), KM21 - Ekr,~i(KM2)

Through the use of the intermediate quantity EkMi(KM2), each secondary
file key (KNF) is then enciphered under KM2 as follows:

EMK: {KNF) + EkM,(KNF)

1
RFMK: fEk~i(KM2), EkM,(KNF)} + EkMz(KNF)

Once the list of secondary file keys has been enciphered, all intermediate
values used in the computation are erased from the host’s main memory.

File Key Generation

To satisfy the condition that no clear key occurs outside the cryptographic
facility, and yet avoid a requirement to generate KF directly within the
cryptographic facility, an indirect method of generating file keys is adopted.
A 64-bit pseudo-random number (RN) is generated and defined to be the
file key enciphered under the secondary file key associated with the named
file :

RN = EkNr(KF)

The encrypted file keys required by the cryptographic system are therefore
produced as a sequence of pseudo-random numbers

RNl, RN2,. . . , RNn

where the ith pseudo-random number (RNi) corresponds to the ith encrypted
file key (i.e., RNi = EKNF(KFi)).

The rationale for defining RN as the file key (KF) enciphered under the
secondary file key (KNF), rather than as the file key enciphered under the
host master key (KMO), is as follows. If RN were to be defined as the quan-
tity EkMe(KF), then the RFMK operation would have to be used at file crea-
tion to derive EkNr(KF) from EkMe(KF). Recall that EkNr(KF) is saved in a
location that will be accessible during later file recovery operations, whereas
EkMa(KF) is used with an ECPH operation to encipher the file. But at file
recovery, the RTMK operation would have to be used to derive EkMO(KF)
from Eknr(KF). Thus both the RFMK and RTMK operations would be

SINGLE-DOMAIN COMMUNICATION SECURITY AND FILE SECURITY 283

needed for file security. This in turn would require that KNF be stored
enciphered under both KM1 and KM2. An undesirable reversibility would
then exist between RFMK and RTMK.

In contrast, if RN is defined as the quantity ExNr(KF), then the RTMK
operation can be used to derive E kMe(KF), both when the file is created and
when the file is recovered, and KNF need only be stored enciphered under
KM2.

An Example of File Encryption

The following example describes how a host application program can en-
cipher a file to be stored on a secondary storage medium, and how this file
can later be recovered. Recovery is at the same host where the file was
originally enciphered. (Enciphering a file at one host and deciphering it
at another host is discussed in Multiple-Domain Encryption.) A 64-bit
pseudo-random number (RN) is generated at the host system and defined to
be the file key (KF) enciphered under the secondary file key (KNF) of the
named file (i.e., RN = Ek&KF)). In this example, RN is written in the file
header. The RTMK operation is used by the key manager to transform RN
into the quantity E xMO(KF). The quantity E kMO(KF) is then returned by the
key manager to the host application program, whereupon the program uses
it as an input parameter to the CIPHER (FNC = ENCPHR) macro instruc-
tion for the purpose of enciphering the file. During recovery, the quantity
RN is read from the file header. The RTMK operation is used by the key
manager to transform RN into the quantity EkMa(KF). Again, the quantity
ExMO(KF) is returned by the key manager to the application program,
whereupon the program uses it as an input parameter to the CIPHER (FNC =
DECPHR) macro instruction for the purpose of deciphering the file. Figure
5-3 illustrates the procedures for creating and recovering a file.

Because of the level of indirection provided by the secondary file key
(KNF), the quantity ExNr(KF) does not depend on the host master key.
Therefore, changing the host master key will not require that ExNr(KF)
be reenciphered, as would be the case if E xMO(KF) were written in the file
header. The only change that must be made when a new host master key is
installed is that the secondary keys stored at the host system are reenciphered
under the new variants of the master key, KM1 ’ and KM2’ (where ’ indicates
new). Moreover, since the secondary tile key (KNF) can be disclosed to
other host systems, recovery is also possible at remote locations.

If cryptographic transparency is desired, the quantity ExNr(KF) can be
written in the header of the data file. Access to the data, in this case, can be
controlled by controlling the use of the RETKEY macro and thereby con-
trolling access to the quantity E kMz(KNF), which is stored at the host sys-
tem. In an alternate approach, E xNr(KF) can be treated as a personal key
and stored outside the system. In this case, access to the data requires also
that the secret quantity E xNr(KF) be provided to the system at the time
data are to be deciphered.

284 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

File Create:

ECPH: { E,,, (KF), Data } + E,, (Data)

t

RTMK: { E,,, (KNF), RN } + EKM, WV

I I
RN; E,, (Data)

File Recovery:

RTMK: { EKM2 (KNF), RN I-+ E,,o (W

DCPH: { E,,, (KF), E,, (Data) } + Data

Figure 5-3. Single-Domain File Security Using 9 Dynamically Generated
File Key (KF)

Requirements

In the approach described here, six basic cryptographic operations are
needed at the host system: set master key (SMK), encipher under master
key (EMK), encipher data (ECPH), decipher data (DCPH), reencipher from
master key (RFMK), and reencipher to master key (RTMK). The approach
also requires three master keys: KMO, KMl, and KM2.

MULTIPLE-DOMAIN ENCRYPTION

The set of basic cryptographic operations defined in the previous sectidn
permits communication security and file security to be achieved within a
single-domain network, that is, in a communications network consisting of a
single host node and one or more terminal nodes. In this section, it is shown
that this same set of cryptographic operations is sufficient to achieve com-
munication security and file security within a multidomain network, that
is, in a communications network with many host nodes.

MULTIPLE-DOMAIN ENCRYPTION 285

A Protocol For Communication Security

Let i and j denote host nodes whose master keys are KMOi and KMOj, respec-
tively. To permit establishment of a common KS between domains i and j,3
the two host systems must first share a common key. However, the common
key shared by each pair of host systems should not be the host master key
of either system. Instead, the host systems should share a special key that is
used only for sending session keys from one domain to the other. The cryp
tographic key used for this purpose is called a secondary communication key
(KNC).

In the protocol discussed, the following secondary communication keys
are defined:

KNCii Known only by host node i; permits a session key generated at
host node i to be established between two nodes within domain i. KNCjj is
similarly defined at host node j.
KNCij Shared by host nodes i and j ; permits a session key generated at
host node i to be transmitted to and recovered at host node j. A similar
key KNCji is available at host nodes j and i to permit a session key to be
transmitted in the reverse direction.

Generally speaking, there should be only one KNCij key and one KNCji key,
but possibly many KNCii and KNCjj keys. Within the domain of host node i,
the secondary communication keys are used as a means for establishing a com-
mon KS between the host and one of its (n) terminals, or between two of its
(n) terminals. Hence the set CKNCii) actually represents the set (KMTil,
KMTi2, . . . , KMTin), where i refers to domain i and the numbers 1 through
n denote the specific terminal.

At host node i, KNCij is stored enciphered under KMli, thus allowmg KS
to be transmitted to host node j. At host node j, KNCij is stored enciphered
under KM2j, thus allowing KS to be reenciphered under KMOj. A symmet-
rical specification also exists for KNCji. At host node j, KNCji is stored
enciphered under KMlj, thus allowing KS to be transmitted to host node i.
At host node i, KNCji is stored enciphered under KM2i, thus allowing KS
to be reenciphered under KMOi. The form in which KNCij and KNCji are
stored at host nodes i and j is shown in Figure 5-4.

The method for establishing a common session key (KS) between two
domains, say domain i and domain j, is shown in Figure 5-5. I

At host node i, a pseudo-random number (RN) is generated and defined as

RN=E KMOi(KS)

RN can be used directly in the ECPH and DCPH operations for ciphering data
or it can be used in an RFMK operation to transform KS from encipherment

3The collection of nodes consisting of host node i and all its logically connected terminal
nodes is defined as domain i. A similar domain is defined for host node j.

286 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

Host Node i Host Node j

Figure 5-4. Storage of Secondary Communication Keys Shared by
Domain i and Domain j

under KMOi to encipherment under a terminal master key (a key in the set
IKMTil, KMTi2, . . . , KMTin)). To send KS to domain j, the RFMK opera-
tion is used to transform KS from encipherment under KMOi to encipher-
ment under the appropriate secondary communication key (KNCij):

RFMK: CEKM~~(KNC~~), ExMci(KS)) __* ExNcij(KS)

The quantity ExNcij(KS) is then transmitted to host node j, where the
RTMK operation is used to transform KS from encipherment under KNCij
to encipherment under KMOj :

RTMK: {ExMZJKNCij), ExNcij(KS)) - ExMcj(KS)

The quantity E xMcj(KS) can then be used directly in the ECPH and DCPH
operations for ciphering data at host node j, or it can be used in an RFMK
operation to transform KS from encipherment under KMOj to encipherment
under aterminalmaster key (a key in the set IKMTj 1, KMTj2, . . . , KMTjnJ).

Because the RFMK and RTMK operations are designed to use, respectively,
only the first and second variants of the host master key, a unidirectional
process of transformation involving secondary keys (secondary communica-
tion keys in the present example) is achieved. A unidirectional transforma-
tion process is one that is irreversible at the sender’s location, that is, recovery
of the primary key (session key in the present example) can only be done at
a predefined receiver.

In the example above (of host-to-host communication), unidirectionality
from the first host to the second host is achieved because the secondary
communication key (KNCij) is known to the first host only in the form
ExMrJKNCij), and the output of the sender’s RFMK operation, ExNcij(KS),
is usable only by the intended receiver’s RTMK operation. In other words,
the first host can produce EkNcij(KS) from ExMci(KS) because ExMri(KNCij)
is available, but it cannot retrieve ExMOi(KS) from ExNcij(KS) because
ExMzi(KNCij) is not available. Conversely, the second host can retrieve
ExMcj(KS) from ExNcij(KS) because E KMzj(KNCij) is available, but it cannot
produce ExNcij(KS) from ExMcj(KS) because ExMrj(KNCij) is not available.

Thus the unidirectionality property ensures that an opponent who recovers

Domain i

r KMTil
E 3 KMTil tKS)

I
I J I Host Processor i

Domain j
E

I
KMTj 1 (KS)rKMTj d

KMTi2 tKS)l r . I Host Processor j
E KNCij tKS)

0 I r,rrn: I---- I

KNCii (KS) I

*-. *-.
1 kKMTj2 (Ks$z

- 0 I K”“J 1 0
0

r

W’KMTin (KS)I

I KNCiizKMTi

E KMli WMTil)

EKMIi (KMTi2)

0
l

0

E KMli (KM’W

E KM ti &NW

E KMlj (KM311

E KMlj WMW)
a
l

E KMlj (~MTjm)

E KM2j (KNW

KNCjjrKMTj

Figure 5-5. Secondary Communication Key Protocol Between Domain i and Domain j

288 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

the quantity EkNcij(KS) via a wiretap cannot make use of this quantity at
host node i. At host node j, however, the same protocol that permits host
node j to recover EkMOj(KS) from EkNcij(KS) can potentially be misused by
an opponent. For this reason, the RTMK operation should be privileged, and
its use controlled by the key manager.

In summary, then, when a secondary communication key is used to trans-
mit a session key from one domain to another, recovery of that session key
at the destination host must be controlled by means other than cryptography.

A Protocol For File Security

To permit establishment of a common KF between domains i and j, the host
systems must first share a common key. The cryptographic key used for this
purpose is called a secondary file key (KNF).

In the protocol discussed, the following secondary file keys are defined:

KNFii Known only to host node i; permits a file key generated at host
node i to be recovered at host node i. KNFjj is similarly defined at host node j.
KNFij Shared by host nodes i and j; permits a file key generated at host
node i to be safely stored and later recovered at host node j. A similar
key KNFji is available at host nodes j and i to permit a file key to be
transmitted in the reverse direction.

At host node i, KNFij is stored enciphered under KMli, thus allowing KF to
be transmitted to host node j. At host node j, KNFij is stored enciphered
under KM2j, thus allowing KF to be reenciphered under KMOj. Conversely,
at host node j, KNFji is stored enciphered under KM lj, thus allowing KF to
be transmitted to host node i. And at host node i, KNFji is stored enciphered
under KM2i, thus allowing KF to be reenciphered under KMOi. Note the
similarity between KNCij and KNFij, and between KNCji and KNFji. The
form in which KNFij and KNFji are stored at host nodes i and j is shown in
Figure 5-6.

Transporting a New File

The method for generating a file key (KF) at one domain (say domain i)
which can be recovered at another domain (say domain j) is shown in Figure
5-7.

At host node i, a pseudo-random number (RN) is generated and defined as

RN=E KModXF)

RN can be used directly in the ECPH operation to encipher the file, as follows:

ECPH: {RN, Data) * E,&Data)

To send KF to domain j, the RFMK operation is first used to transform KF

MULTIPLE-DOMAIN ENCRYPTION 289

Host Node i Host Node j

Figure 5-6. Storage of Secondary File Keys Shared by Domain i and
Domain j

from encipherment under KMOi to encipherment under the secondary file
key (KNFij) :

RFMK: {E KM 1 i(KNFij), E KMOiWF)) - EKNFij(KF)

The quantity ExN,ij(KF) is, for this example, recorded in the file header.
The enciphered file is then sent to host node j. At host node j, the RTMK
operation is used to transform KF from encipherment under KNFij to en-
cipherment under KMOj :

RTMK: {ExMzj(KNFij), ExNFij(KF)) - ExMoj(KF)

The quantity ExMOj(KF) can then be used directly in the DCPH operation
to recover data:

DCPH: {ExMOj(KF), EKr(Data) I+ Data

Transporting an Existing File

The protocol described here has the advantage that a file created and in-
tended to be recovered at host node i can easily be sent to and recovered at
host node j without the data having to be deciphered and reenciphered under
a flew KF. This is accomplished by using an RTMK operation to recover
E xMOi(KF) from Ex~rii(KF), and then using an RFMK operation to produce
E KNFijW) from E KMoi(KF):

RTMK: {E KMdKNFii), EKNFii(KF)) - EKMOi(KF)

RFMK: {E KM1i(KNFid, EKM!i(KF)} - EKNFij(KF)

Hence the file can be sent to host node j by merely replacing ExNrii(KF)
with ExNFij(KF) in the file header. (Note that the procedure may require the
file to be copied to another volume.)

Again, because of the property of unidirectionality (see A Protocol for

Domain i

gq Hoiczq&i$

l

l

l I t-
@ EKNFiin (KF)]fi

:
I

E KM2i (KNFii 1)

EKM2i (KNFii2)
l

l

l

EKM2i (KNFiin) t

EKM,i WNFij)

.a)/

I Domain j E KNFiil lKF) &h

J

Figure 5-7. Secondary File Key Protocol Between Domain i and Domain j

E KM2j WNFjj 1)

E KM2j WNFjj2)
l

l

l

E KM2j (KNFjjn)

E KM2j (KNFij)

L

1
tKNFjj2 (KFj @

l

l

l

ADDITIONAL CONSIDERATIONS 291

Communication Security), an opponent who obtains the quantity ExNFij(KF)
from the file header can make no use of it at host node i. However, at host
node j the RTMK operation could be used to recover ExMOj(KF) from
E xNFij(KF), provided that access to the system is obtained. Hence the
RTMK operation should be privileged, and its use controlled by the key
manager.

ADDITIONAL CONSIDERATIONS

It is assumed that only installation-specified cryptographic keys are stored
enciphered under KM1 or KM2, and that these keys are secret and known
only to authorized installation personnel.

If an opponent could encipher under the host master key variants (KM1
and KM2), then it might be possible to replace existing installation-specified
keys with those selected by the opponent. For example, to attack a terminal
an opponent could do the following: encipher an alien terminal master key
(KMT’) under KMl, replace KMT with KMT’ at the terminal, and replace
ExMr(KMT) with E xMr(KMT’) in the host’s key table. The opponent could
then recover session keys sent to the terminal in the form ExMT$KS), and
thus recover data sent to or from the terminal in the form EKs(Data).

Variations of the above attack include the following: requesting or causing
installation personnel to encipher, under KM1 or KM2, a value which the
opponent knows, or compromising the security of the system by obtaining
ExMr(KMT) from the host’s key table, and KMT from the terminal.

If an opponent can encipher a known value X under KMl, or can cause
installation personnel to encipher a known value X under KMl, or can dis-
cover the value of an unknown quantity enciphered under KM 1, then an
attack can recover primary keys in clear form. Let X, ExMr(X), and EkMc(K)
be the values known to an opponent, where K is the unknown primary key
to be recovered. The operations involved in the attack are shown below.4

RFMK: IEKMIW, EKMO~)} - ExW

EMK: {X1 + ExMa(X)

DCPH: (ExMc(X), E,(K)) __* K

Elements in the set {Er&KMy) : x, y = 0, 1, 2; x = y # 2) must be kept
secret from any potential opponent, since they could be used as parameters
with the available cryptographic operations to encipher and/or decipher under
one or more of the keys: KMO, KM 1, and KM2, as indicated in Table 5-2.

The quantities ExMc(KMO), ExMc(KMl), and EKMO(KM~) could be used
with an ECPH operation to encipher under KMO, KM 1, and KM2, respectively,

41n a sense, the attack is academic because knowledge of Emo(K) (where K = KS)
would allow data enciphered under K to be recovered with the ECPH operation.

292 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

Function Operation Key Used For Ciphering
KM0 KM1 KM2

Encipher ECPH E KMOWW Q&M 1) EKM,,(KW

Decipher DCPH E KMOWW E,,,(KM 1) E,,,(KW

Encipher RFMK E KM1(KW E,,,WW E,,,(KW

Decipher RTMK - E,,,(KW E,,,WW

Table 5-2. Special Quantities that Permit Encipherment and
Decipherment Under KMO, KMl, and KM2

or they could be used with a DCPH operation to decipher under KMO, KMl,
and KM2, respectively. For example, an arbitrary quantity X could be en-
ciphered and deciphered under KM1 as follows:

ECPH: {Ex&KMl), X1 - &MI(X)

DCPH: {Ek&KMl), X) - DKMl(X)

The quantities EKMI(KMO), EKMl(KMl), and EKM1(KM2) could be used
with an RFMK operation to encipher quantity X under KMO, KM 1, and
KM2, respectively:

EMK: {X) - EKMO(X)

RFMK: %~IIWM~), kdX)l- &Ml(X)

Finally, the quantities EKMZ(KMI) and EkM,(KM2) could be used with an
RTMK operation to decipher quantity X under KM 1 and KM2, respectively,
provided that decipherment under KM0 is also available:

RTMK: EKMzWM~), Xl - &M~O~M~GO)

DmI (X) is recovered by deciphering EKILIO(DKIIII (X)) under KMO.

EXTENDED CRYPTOGRAPHIC OPERATIONS

Additional cryptographic operations can be defined to satisfy specific security
requirements. In each case, the primitive operations of encipher and decipher
act as building blocks to achieve the desired goal. Similarly, additional vari-
ants of the host master key can be defined to isolate further the desired
functions served by a particular operation. In this manner, the property of

EXTENDED CRYPTOGRAPHIC OPERATIONS 293

irreversibility is built-in, thus preventing an opponent from manipulating an
operation to reverse and defeat its intended purpose.

Although the opportunity for designing special purpose cryptographic
operations is virtually infinite, in the interest of economy only one example
will be presented here-a method using composite keys to effect session key
distribution. Through the use of a unique variant of the host master key, the
technique, applicable to COMSEC applications, reduces the system’s depen-
dency on the RTMK operation. A second example extends the idea of addi-
tional master key variants to produce test patterns used in cryptographic
authentication (see Implementing AF and AR, Chapter 8).

Cryptographic Key Distribution Using Composite Keys5

The key management scheme discussed thus far (Chapters 4 and 5) distin-
guishes between primary keys and secondary keys. The latter are used to
encipher other keys and are defined as part of the process of initializing the
cryptographic system. Primary keys, on the other hand, are dynamically
generated each time a communications session is established and are referred
to as session keys (KS). Session keys remain in existence only for the dura-
tion of the communications session, which is usually a relatively short time.

A simple method of establishing a session key between any two nodes
within a communications system is to generate the key at one node and
send it to the other. The key can be protected by enciphering it under a
special secondary key that is unique to only these two nodes and is installed
in advance. A retrieve function (e.g., the RTMK operation) must be used at
the receiving node to transform the session key into a form suitable for
enciphering and deciphering data. Thus someone who intercepts both an
enciphered key and data enciphered under that key, and who also can gain
access at any later time to the session key retrieve function, can transform
KS into the form suitable for deciphering data.

In network nodes which provide a programmed interface to their respec-
tive cryptographic facility, use of the retrieve function (RTMK) can be con-
trolled through physical means (denying access to the system to all but
authorized users), and through logical means (making the designated func-
tion privileged and/or implementing an access control mechanism).

A fixed jbzction node-one that does not provide user access to the
cryptographic facility-already provides a level of protection in this regard.
However, even here cryptographic authentication (see Handshaking, Chapter
8) could be required if the retrieve function is exposed to a “midnight”
attack.

However, a different and more secure approach for protecting the retrieve
function is achieved if composite keys are supported by the key distribution
process. This is accomplished by defining the session key to be a composite
of random data supplied by each node; for example, by combining a first

‘0 1978 IEEE. Reprinted from NTC 78 Conference Record, December 3-6, 1978,
Birmingham, Alabama [21.

294 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

random number (RN 1) generated at the initiating node with a second random
number (RN2) generated at the receiving node:

KS = RN1 @ RN2,

where @ represents modulo 2 addition.6
The composite key protocol is such that interception of the enciphered

values of RN1 and RN2 will not allow KS to be recovered in a form suitable
for deciphering data at either node. However, the protocol for composite
keys is more complex.

A Composite Key Protocol

A composite key protocol can be used to distribute keys between any two
nodes in a communications network. However, because it is the intent here
only to illustrate the concept of composite keys, the discussion will be
limited to an example of host-to-host communications (Figure 5-8). In this
example, an application program resident in one host (host i) requests a com-
munications session with an application program resident in another host
(host j). The composite key protocol is described as follows. At host i, a
generate session key 1 (GSKl) operation is used to

1. Generate a random number, RN1 (Figure 5-8).

Host i Host j

l

1. Generate RNl.
2. Store RN1 at host i and send RN1 to host j.

/ 3. Generate RN2.
4. Combine RN2 with RN1 to produce KS.
5. Send RN2 to Host i.

RN2* I

1
6. Retrieve RN1 and combine with RN2 to produce KS.
7. Erase stored copy of RNl.

*Protected by encryption during transmission

Figure 5-8. Overview: Composite Key Protocol

6 Modulo 2 addition has been chosen for illustrative purposes only. Other suitable tech-
niques for combining RN1 and RN2 exist.

EXTENDED CRYPTOGRAPHIC OPERATIONS 295

2. Encipher RN1 under KNCij, which permits RN1 to be safely trans-
mitted to host j (Figure 5-8).

3. Encipher RN 1 under KM3i, which permits RN1 to be safely stored at
host i (Figure 5-9).

A third variant of the host master key (KM3) is used to protect RN1 speci-
fically so that no other parameter (except one enciphered under KM3) can
be used in any meaningful way to produce KS. In effect, this isolates and
protects the composite key functions from other functions in the crypto-
graphic system. A fourth variant of the host master key (KM4) is defined
for the purpose of generating pseudo-random numbers (see An Approach
for Generating Keys with the Cryptographic Facility, Chapter 6).

At host j, a generate session key 2 (GSK2) operation is used to

1. Generate a random number, RN2.

2. Encipher RN2 under KNCji, which permits RN2 to be safely trans-
mitted to host i.

3. Merge RN2 with the value of RN1 received from host i.

Generate Session Key 1 (GSKl):

GSKl: {E KMliWNW 1 + E KN,ij(RNl), EKM3i(RNl)
where i designates the originating host of RNl.

E KMliWNCij)

Clock
KM1 __+ D

KNCij

EKNcij(RNl)
Figure 5-9. Generate Session Key 1

E,,,(RNl)

296 THE HOST SYSTEM CRYPTOGRAPHIC OPERATIONS

4. Encipher this merged value (KS) under KMOj, which is then in a form
usable by an application program at host j for ciphering data.

(See Figure 5-10 and steps 3, 4, and 5 in Figure 5-8). The KS assigned to a
particular session cannot be recreated even if someone obtains E,,cij(RNl)
and executes GSK2. At each execution of GSK2 a nonresettable clock is
read and is used as part of the random number generation process to create
RN2.’ Since KS is a function of RN2, and RN2 changes with each execution
of GSK2, the ability to recreate KS is denied.

At host i, a merge key (MGK) operation is used to

1. Merge the saved copy of RN1 with the value of RN2 received from
host j.

2. Encipher this merged value (KS) under KMOi, which is then in a form
usable by an application program at host i for ciphering data.

Generate Session Key 2 (GSKZ):

GSK2: { E,,,j(KNCij), EKNcij(RNl), E,,,j(KNCji) 1 + E,,,j(KS), E,,,ji(RN’)

where i designates the originating host of RN1 and j, the originating host of RN2.

KNLIJ

KMOj

Random
Number
Generator !I RN2

‘s- E

KNCji

@= Modulo 2 Addition 4 4
E

KMOj(KS)
E ,N,ji(RN2)

Figure 5-10. Generate Session Key 2

‘An alternate approach would be to use a nonresettable counter as input to the random
number generator and increment it at each GSK2 execution.

EXTENDED CRYPTOGRAPHIC OPERATIONS 297

Merge Key (MGK):

MGK: { E KM2iWNCiiA EK,,ji(RN2), EKM,i(RNl) 1 - EKMoi(KS)

where i designates the originating host of RNI and j, the originating host of RN2.

E KMZi(KNCji) EKNcii(RN2) E KM3i(RNl)

7 7

KM2i+ D KM3i + D

L

v

b D
KNCji RN1

RN2

KMOi + E

@ = Modulo 2 Addition

Figure 5-11. Merge Key

E KMOitKS)

(See Figure 5-11 and steps 6 and 7 in Figure 5-8.)
Once the MGK operation is completed, EKMO,(KS) is assigned to the

application program, EKMsl(RN 1) is erased from host i’s main storage, and
E xMO1(KS) is returned to the application program. For someone to gain any
advantage from the MGK operation, the value ExM3i(RNl) would have to be
obtained during its brief period of storage at host i.

Although the present example discusses session initiation between two
application programs, it can be coupled with the procedure specified for ses-
sion key distribution in a single domain network (see Single-Domain Com-
munication Security Using Dynamically Generated Primary Keys) so that a
composite key (KS) produced at a host could then be sent to one of its
termmals. In this case, EKMOl (KS) is provided as input to an RFMK opera-
tion, and KS is transformed from encipherment under the host master key to
encipherment under the terminal’s master key (KMT):

RFMK: CE KM~,(KMT), EKMO,UW) - EKMT(KS)

The quantity E KMT(KS) is then sent to the terminal where KS is recovered
and used for ciphering data. While this example ihstrates a mixture of

Key Data Set Key Data Set

At Time = to:

iKMli(KNCtJ) E KMlj(KNCji)
KM2i(KNC~0 E KM2j(KNCij)

ost i 0 Host 7

GSKl: { E,,,(KNCij) } +

E KNCij(RNl)* EKM,i(RNl)

At Time=tl: 1
GSK2: { E,,,j(KNCij), EK,cij(RNl), E,,,j(KNCji) } -

E KMOj(KS)y EKNcji(RN2)

At Time = t2: 1
MGK: { E KMZi(KNCji)y EKNcji(RN21, EKMJi(RNl) I +

EKMOi(KS)

Figure S-12. Interdomain Exchange of KS

REFERENCES 299

protocols for session initiation, it should be obvious that the composite
key protocol could be extended to include terminals.

To implement a composite key protocol, the cryptographic facilities at
the affected nodes would have to support the operations GSKl, GSK2, and
MGK, and the communications architecture would have to permit the ex-
change of RN1 and RN2. One such architecture, and the protocol it uses to
send session keys between two nodes in a network, is described later (see
Incorporation of Cryptography into a Communications Architecture, Chap
ter 7). Support for composite keys in this architecture could be accomplished
by either modifying existing commands or creating new commands. Figure
5-l 2 illustrates host-to-host key distribution using composite keys.

Without composite keys, a session key could be retrieved and used with-
out authorization provided that the enciphered value of that key and access
to the receiving node is obtained. The protocol described here prevents this
attack; Thus any attempt to bypass cryptographic protection must be made
at the system level during the active session period and involve the retention
of the session key in its final enciphered form or be directed at the clear
data itself. For all practical purposes, then, no advantage is gamed by inter-
cepting RN1 and/or RN2.

SUMMARY

Cryptography reduces the problem of protecting data, in certain clearly
defined situations, to that of protecting the secrecy and use of a small set
of cryptographic keys. Without cryptography, data is exposed through such
external attacks as wiretapping and theft of removable storage. When cryptog-
raphy is used, the opponent is forced to attack the system from within,
requiring a penetration of the operating system.

Control over the execution of the defined cryptographic operations can
be exercised by the following means: activating or deactivating certain cryp
tographic operations with a physical, key-operated switch; maintaining the
secrecy of certain special cryptographic quantities used as input to Crypto
graphic operations; and making selected cryptographic operations privileged.

However, it must be emphasized that without system integrity, cryptog-
raphy will not add significantly to the overall security of a system when the
opponent is or can masquerade as an authorized system user. Although
cryptography can enhance the integrity of a computer system, it is not a
substitute for integrity. When used in conjunction with other security
features, cryptography does play an important and valuable role in a total
security plan.

REFERENCES

1. Ehrsam, W. F., Matyas, S. M., Meyer, C. H., and Tuchman, W. L., “A Cryptographic
Key Management Scheme for Implementing the Data Encryption Standard (DES),”
IBM System Journal, 17, No. 2,106-125 (1978).

2. Lennon, R. E. and Matyas, S. M., “Cryptographic Key Distribution Using Composite
Keys,“NTC 78 Conference Record, 2, 26.1.1-26.1.6 (December 1978).

GENERATION OF THE HOST MASTER 301......
Tossing Coins 301..

Table 6-1. Results of Coin-Tossing 302.................
Throwing Dice 302..

Table 6-2. Parity-Adjusted Hexadecimal 302.........
Random Number Table 303..

GENERATION OF KEY-ENCRYPTING 303.........
A Weak Key-Generating Procedure 304.....................
A Strong Key-Generating Procedure 304...................

Figure 6-1. Basic Approach for Generating 305.....
An Alternate Approach for Generating 307.................
Encipherment of Keys under the Master Key�s 308....

Figure 6-3. Encipherment of Cryptographic 310.....
Transforming Cryptographic Keys 311........................

Figure 6-4. Reencipherment of Cryptograph 312...
Figure 6-5. General Procedure for 313..................
Figure 6-5 (cont�d). General Procedure 314..........

GENERATION OF DATA-ENCRYPTING 314......
An Approach for Generating Keys with the 315..........

Figure 6-6. Procedure for Generating 315.............
An Alternate Approach for Generating 316.................

Figure 6-7. DES-Based Pseudo-Random 317.......
ENTERING A MASTER KEY AT THE 317...........

Hard-Wired Entry 318...
Figure 6-8. Validation of the Master Key as 319....

Indirect Entry 321..
ATTACK VIA EXTERNAL MANIPULATION 322..
MASTER KEY ENTRY AT A TERMINAL 323.......

On-Line Checking 323..
Off-Line Checking 323..
Figure 6-9. Procedure, at the Host Processor, 324.....
Figure 6-10. Procedure for Entering and 325..............

DISTRIBUTION OF CRYPTOGRAPHIC 326........
LOST CRYPTOGRAPHIC KEYS 327...................
RECOVERY TECHNIQUES 328...........................

Figure 6-11. Encipherment Using a 329.....................
SUMMARY 329...
REFERENCES 330...

Generation, Distribution, and Installation
of Cryptographic Keys’

Key generation is the process of producing the cryptographic keys required
by a cryptographic system. Key distribution is the process of transporting
or routing cryptographic keys through a cryptographic system for subsequent
installation. Key installation is the process of entering cryptographic keys
into cryptographic devices.

The procedures presented here for the generation, distribution, and in-
stallation of cryptographic keys are founded upon the key management
scheme developed in Chapters 4 and 5. This scheme for key management
distinguishes between key-encrypting keys and data-encrypting keys. The
former are used to encipher other keys and are derived as part of the process
of initializing the cryptographic system. They remain constant for relatively
long periods-changed perhaps once a year. Data-encrypting keys, on the
other hand, are generated dynamically during regular system operation.
They remain in existence for the life of the data they protect. That period,
for communication security, is the length of time the user is signed-on to
the system-usually a matter of minutes. For file security, where data are
stored in enciphered form, the data-encrypting keys may exist for relatively
long periods of time.

One special key-encrypting key, the host master key, should be generated
by some random process such as tossing a coin or throwing a die. All other
key-encrypting keys are produced by using DES as a generator of pseudo-
random numbers. The procedure can be performed under secure conditions
on the computer. Data-encrypting keys are generated dynamically at the
host processor by exploiting the randomness associated with the many dif-
ferent users and processes that normally are active on a system at any given
time.

With DES, each 64bit cryptographic key consists of 56 independent key
bits and 8 bits (the last bit of each 8-bit byte) that may be used for error
detection. If used, these bits assure that each byte in the key has odd parity
(see Key Parity, Chapter 4).

‘0 1978 IBM Corporation. Reprinted in part from IBM Systems JOUVZQ~ 17, No. 2,
1978 [ll.

300

GENERATION OF THE HOST MASTER KEY 301

Since DES is a publicly known algorithm, cryptographic strength must be
based on the secrecy of its cryptographic keys. Even though there are 2s6
different possible keys, keys should be randomly selected so that an organized
search for them would not be likely to meet with early success. If there were
a known bias in the selection of keys, an opponent could try the more likely
candidates first.

GENERATION OF THE HOST MASTER KEY

Regardless of the procedure used for key generation, organized predictable
methods must be avoided. Any procedure based on one’s telephone number,
name and address, date of birth, or the like, is so frail that no real protection
is provided. Also, the programs for generating pseudo-random numbers,
which are available on many computer systems, are far too predictable to be
used for this purpose and should be avoided.

Since the host master key, either directly or through one of its derived
variants, provides protection (through encipherment) for all other keys
stored in the system, and since the host master key will in all probability
remain unchanged for long periods, great care must be taken to select this
key in a random manner. The method recommended here is for the key to
be created via a process performed by the user of the system.

Assume that a 64-bit parity-adjusted key is required for the selection
process, and that odd parity is used (i.e., every eighth bit is adjusted so that
the number of bits in the 8-bit group is odd). Since a change to the key is
likely to cause its parity to become incorrect, parity can be used for error
detection. For example, parity can be checked to ensure that a master key is
properly specified for entry into a cryptographic facility. Or, during regular
operation, parity can be checked to ensure that bits in the master key are
not inadvertently changed (e.g., because of a malfunction in the crypto-
graphic facility).

Tossing Coins

Let the bit values 0 and 1 in the cryptographic key be determined by the
occurrence of heads and tails, respectively. Then toss 56 coins in eight groups
of seven coins each, and record the results. Each group is then converted to
its corresponding parity-adjusted hexadecimal digits (Table 6-l).

Each group of 7 bits in the 56-bit key is expanded to 8 bits by appending
an additional parity bit (odd parity is maintained). This process can be per-
formed with the aid of a table, if desired. In Table 6-2, for example, the first
4 bits index the table row and the last 3 bits the table column. Since every
entry in the table has correct parity, a parity-adjusted key will be formed
even if there should be an error in indexing. The cryptographic key (the
value entered into the system and saved in a secure repository for back up
purposes) is defined as that string of hexadecimal digits produced by the
table reference process. The values used to index the table are then destroyed.

decimal 0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

binary

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

302 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHlC KEYS

Trial Result Binary Parity Hex

(1) HHHT HTH 0001 010 1 15
(2) THTH HHT 1010 001 0 A2
(3) TTHT HHH 1101 000 0 DO
(4) THHH TTT 1000 111 1 8F
(5) HHTT TTH 0011 110 1 3D
(6) TTHH HHH 1100 000 1 Cl
(7) HHHT THT 0001 101 0 1A
(8) HHTH THH 0010 100 1 29

Parity-Adjusted Key= Hex 15A2D08F3DCl lA29

Table 6-1. Results of Coin-Tossing Converted to Binary and
Hexadecimal Digits (heads (H) = binary 0, tails (T) = binary 1)

Throwing Dice

The method described above can also be used with dice. Instead ofltossing
seven coins, the user rolls seven dice. The binary digits can be obtained by
an even roll (2, 4, or 6) to represent a 0 bit and an odd roll (1, 3, or 5) to
represent a 1 bit.

ooo 001 010 011 100 101 110 111

01 02 04 07 08 OB OD OE
10 13 15 16 19 1A 1C 1F
20 23 25 26 29 2A 2C 2F
31 32 34 37 38 3B 3D 3E
40 43 45 46 49 4A 4C 4F
51 52 54 57 58 5B 5D 5E
61 62 64 67 68 6B 6D 6E
70 73 75 76 79 7A 7C 7F
80 83 85 86 89 8A 8C 8F
91 92 94 97 98 9B 9D 9E
Al A2 A4 A7 A8 AB AD AE
BO B3 B5 B6 B9 BA BC BF
Cl C2 C4 C7 C8 CB CD CE
DO D3 D5 D6 D9 DA DC DF
EO E3 E5 E6 E9 EA EC EF
Fl F2 F4 F7 F8 FB FD FE

Table 6-2. Parity-Adjusted Hexadecimal Digits (Odd Parity)

GENERATION OF KEY-ENCRYPTING KEYS 303

Random Number Table

A random number table contains a list of numbers that have been generated
by a random (or nearly random) process. Once recorded, the numbers are
subjected to extensive statistical tests to uncover any nonrandomness. There
is one book [21, for example, that lists 1 million random digits arranged in
20,000 rows and 50 columns. The table occupies 400 pages within the text.
The basic problem with random number tables is that the opponent may be
able to guess which table has been used. For all practical purposes, once this
happens a number obtained from the table is no better than the randomly
selected starting position.

For example, if a key is selected from the table by using one random
starting point, and the table is read from left to right, then there are only 1
million different keys that may possibly be selected. In this instance, the
key space is reduced from 72,057,594,037,927,936 (2s6) possible different
keys to 1 ,OOO,OOO (approximately 220) possible different keys. In addition,
the tendency of books to open repeatedly to the same page or set of pages,
and the tendency to choose numbers near the center of the page, reduce the
possible candidates still further.

To overcome these problems, one can choose several random starting
points. This would introduce an element of randomness into the routine for
generating key bits based on the starting point. But this requires a random
process (like coin-tossing) which could instead be used to generate the key
directly. Hence the use of random number tables in key generation does not
obviate a random process. The use of random number tables complicates,
but does not strengthen the key generation process. In fact, the improper use
of such tables could actually weaken the procedure. For this reason, random
number tables are not recommended for generating keys.

GENERATION OF KEY-ENCRYPTING KEYS

When large numbers of key-encrypting keys are deployed throughout a
cryptographic system, there is an increased chance that one or more of
these keys will become known to an opponent. Therefore, the procedure
for generating keys must be such that if one or more of the keys are dis-
covered, the work factor will remain high enough to protect the remaining
keys; that is, a knowledge of part of the keys will not provide a shortcut
method to find any of the other keys.

It is recommended that the procedure for generating keys involve the host
master key or one of its variants by executing one or more of the crypto-
graphic key management operations. Not only will an opponent be forced
to carry out part of his attack on the same host system, but because the
operations themselves must be executed as part of the attack, the opponent
is constrained by the particular operational characteristics of the host
machine itself. For example, since the time it takes to encipher and decipher
is known for a specific system, the minimum required computation time
can be determined for a given attack.

304 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

A Weak Key-Generating Procedure

Suppose that RN is a 64-bit random number supplied as input to the key-
generating procedure, and that keys are generated using an encipher under
master key operation as follows:

Ki = the ith cryptographic key (i = 1, 2, . . . , n) obtained
by adjusting each byte in Yi for odd parity

where

YO=RN

Yi = EKMO(Yi - 1) fori=1,2,...,n

This procedure is too frail, however, since a compromise of only a single
key, say Ki, would with little uncertainty allow an opponent to deduce Yi.
By exercising the encipher under master key operation, the opponent could
then generate the remaining keys, Ki + 1, Ki + 2, . . . , Kn.

A Strong Key-Generating Procedure

The procedure recommended here is to use DES as a generator of pseudo-
random numbers and produce the entire set of keys with three 64bit random
values: RNl, RN2, and RN3. Let RN1 and RN2 be generated externally by
a human using a random process (such as coin-tossing or rolling dice) similar
to that used for generating the host master key, and let RN3 be derived
internally within the host system. To defeat the key generating procedure,
an opponent must compromise three secret parameters from at least two
independent sources. (Three independent sources would be involved if
RN1 and RN2 were generated and entered into the system by two differ-
ent people.)

A straightforward approach for using RN1 , RN2, and RN3 in the key-generating
procedure is illustrated in Figure 6-l. (Multiple encryption is also discussed in
Appendix D.) The procedure is described as follows:

Ki = the ith cryptographic key (i = 1,2, . . . , n)
obtained by adjusting each byte in Yi for odd parity

and

Yi = ERNJ(ERN1(ERN2(ERNI(i)))) fori=1,2,...,n (6-l)

For an opponent to compromise a single key, say Ki, the values of RNl,
RN2, and RN3 must be known. Thus even if a set of keys, Kil, Ki2, . . . ,
Kij would become known, it would still be impossible to deduce the re-
maining unknown keys.

GENERATION OF KEY-ENCRYPTING KEYS 305

i

RN1

RN2

RN1

RN3

yi = ERN3(ERNI(ERN2(ERNI(i))))

Ki

RNl, RN2 = random numbers supplied by the user.
RN3 = a random number generated by the host processor.

i = index number.
E = encipherment.
D = decipherment.

Figure 6-1. Basic Approach for Generating Keys Using the DES

The key-generating proceduri illustrated in Figure 6- 1 can be implemented
within the host cryptographic system by exercising a reencipher from master
key operation, as shown below:

RFMK: {RNl, i) - Ai

RFMK: (RN2, Ai) __+ Bi

RFMK: IRNl, BiI - Ci

RFMK: (RN3, CiI - Yi

adjust panty

Yi: + Ki

(6-2)

306 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

where

i = index number

Rl = DKMl(RNl)

R2 = DKM1(RN2)

R3 = DKMI(RN3)

Yi = ER~(DKM~(ER~(DK~~(E~~(D~~*(E~~(D~~~(~))))))))

and Ai, Bi, and Ci are 64-bit intermediate results.
Assuming that DES does not introduce any bias, then (for i = 1, 2, and 3)

Ri is random if RNi is random. Thus the expressions for Yi given in Equa-
tions 6-l and 6-2 are comparable, except for the extra deciphering opera-
tions under KM0 in Equation 6-2.

RN3 is generated from several independent readings of a time-of-day
(TOD) clock. The idea is to issue n different input/output operations of in-
determinate length so that the clock values, read at the completion of the
operations, denoted

TOD 1, TOD2, . . . , TODn

are unpredictable.
One way to obtain an input/output operation of indeterminate length is

to send a message to a terminal’s user requesting that one or more terminal
keys be struck in response to the issued message. Since the response time is
different from user to user, the clock reading obtained at the completion of
the event is unpredictable. By repeating the process, the required number of
clock readings can be obtained.

If the TOD clock is a 64bit counter, then a straightforward approach for
generating RN3 is to exercise repeatedly the reencipher from master key
operation:

RFMK: {TODl, X0) - Xl

RFMK: (TOD2, X11 - X2

RFMK: {TODn, Xn - 1) - RN3

where :

x0 = 0

Xi = E DKM1(TODi)(hW#= 1)) fori=1,2,...,n

RN3 =ED~~l(ToDn)(D~~~(~. * (EDK,,(ToD~)(DKMo(O))). . +))

The uncertainty in RN3 depends on the uncertainty in each clock value used
in its computation. If, for example, each clock value has two possible out-

GENERATION OF KEY-ENCRYPTING KEYS 307

comes of equal likelihood, then there would be 2” possible combinations for
the n-tuple (TODl, TOD2, . . . , TODn). A value of n equal to 64 would be
more than enough to ensure that RN3 is random.

Since, in an actual implementation, the number of unpredictable outcomes
for each clock value is much larger than 2, fewer clock readings are needed.
For example, if the time a human takes to respond varies as much as one
second, and if the responses are spread uniformly over the interval, then a
clock with resolution to one microsecond has 220 unpredictable outcomes.
Three independent clock values may then be sufficient to generate a random
value for RN3.

Where it is undesirable to involve a human in the creation of a random
value for RN3, a single clock reading, taken at the time the key-generating
procedure is invoked, can be used. However, a single clock value does not
have enough different unpredictable combinations to allow RN3 to be used
as a cryptographic key, since an opponent may be able to guess the approxi-
mate time when the keys were generated. But it does reduce the chance that
a duplicate set of keys is accidentally regenerated, should it happen that
RN1 and RN2 are inadvertently reentered during a subsequent execution of
the key-generating procedure.

An Alternate Approach for Generating Key-Encrypting Keys

An alternate approach also uses DES as a generator of pseudo-random num-
bers. The basic idea is that a 64-bit random number, RN, can be used in con-
junction with the DES algorithm to produce the entire set of key-encrypting
keys (except the host master key). RN, in this case, is generated externally
by a random process similar to that used in generating the host master key
(e.g., coin-tossing or dice-throwing). Yi is the ith pseudo-random number
generated in the process, and Ki, which is obtained from Yi by adjusting
each byte for odd parity, equals the ith cryptographic key (i = 1, 2, . . . , n).

The approach described here is to use one of the host processor’s crypto-
graphic operations so that each value of Yi (i = 1, 2, . . . , n) is a function of
the host master key as well as a function of RN. This approach makes use of
the reencipher from master key (RFMK) operation, as shown below:

RFMK: {RN, TOD + i) + Ai

RFMK: {RN, Ai) - Yi

Yi:
adjust parity

) Ki

where

R = DKMI(RN)

yi = ERDKMO(ER(DKMO(TOD + iI>>>

and Ai is a 64bit intermediate result. Again, assuming that DES does not
introduce any bias, the quantity R = D KM r (RN) is random if RN is random.

308 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

Therefore, Yi is a function of two secret, independently selected crypto-
graphic keys: one (RN) supplied by the user, the other (KMO) supplied by
the system.

Because of the DES algorithm’s property of noninvertibility and because
of the manner in which the parameters (RN and KMO) are used to compute
Yi, a knowledge of several clear keys (Kil, Ki2, . . . , Kij) or, in fact, even a
knowledge of the corresponding Y-values (Yil, Yi2, . . . , Yij) will not permit
RN or KM0 to be deduced. Therefore, a knowledge of one or more of the
generated keys will not allow any of the remaining keys to be deduced.

Note that the procedure described above does not depend on the random-
ness provided by the TOD clock. A clock value is introduced in this case to
reduce the likelihood that the user will inadvertently regenerate a duplicate
list of keys by reentering the same value of RN. A duplicate RN could be
reentered, for example, if the medium on which a new value of RN is re-
corded was accidentally replaced with one containing an old value of RN.

Encipherment of Keys under the Master Key’s Variants

Enciphering under the variants of the host master key could be done with
operations similar to the encipher under master key (EMK) operation. If
EMKl and EMK2 designate encipherment under KM 1 and KM2, respectively,
then these operations can be described as follows:

EMKl: {XI-EKMl(X)

EMK2: {X> - EK&X)

In this approach, use of the EMKl and EMK2 operations must be carefully
controlled (see Additional Considerations, Chapter 5). For example, if an
opponent could encipher a known value X under KM 1, then knowledge of X
and ExMi(X) would permit the opponent to transform ExMO(Y) to Ex(Y)
and thus allow the decipherment of any arbitrary quantity (Y) under the
host master key (KMO). This would enable recovery of session keys and file
keys in clear form. To protect against this threat and thus provide control
over enciphering under the host master key’s variants, the EMKl and EMK2
operations could be designed so that they are activated (made operational)
only through the use of a physical key-operated switch.

In an alternate approach, encipherment under the variants KM 1 and KM2,
could be accomplished by using the quantities ExM i (KM 1) and ExM i (KM2),
respectively. These quantities are called system activation keys, and enci-
perment of an arbitrary value X is accomplished by using a reencipher from
master key operation, as shown below:

EMK: CX) l EKMO@)

RFMK: IEKMI(KM~), bdX)) - &MI(X)

RFMK: {EKM,(KM~), &MO(X)) - EKMZ(X)

How the system activation keys can be created and used for enciphering
under the host master key’s variants, KM1 and KM2, is further illustrated in
the block diagram in Figure 6-2.

Y

. .
2
W

309

310 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

System Activation Keys

v
E,,,NW

1
RFMK: { E KMIWM1), &MO(@) 1 + E,,,(@)

EMK: { a } * EkMe(a) f

Key Storage

EMK: { p 1 -, &MO@)

1
RFMK: { E KM,(KM% &MO@) j + E,,,(13)

a = key to be enciphered under 1st variant, KM1 .
/? = key to be enciphered under 2nd variant, KM2.

Figure 6-3. Encipherment of Cryptographic Keys for Local Storage at a
Host Processor

Once created, the system activation keys may be saved and later reentered
as input parameters to the key-generating procedure (Figure 6-3).

To prevent unauthorized enciphering under 041 and KM2, the system
activation keys are maintained as secret parameters of the cryptographic
system. Since deciphering under KM1 and KM2 is not possible with the
system activation keys, the design adheres to the strategic principle of pro-
viding the cryptographic system with only the minimum functional capa-
bility needed to generate and manage its keys.

Alternatively, the quantities EkMa(KMl) and EKMo(KM2) could be used
with an ECPH operation to encipher under the respective variants, KM1 and
KM2. However, these quantities could also be used with a DCPH operation
to decipher under KM1 and KM2. Because of this, it would be less desirable
to use EKMe(KMl) and EkMe(KM2)-rather thanE,,,(KMl)andEKMI(KM2)
-as system activation keys.

GENERATION OF KEY-ENCRYPTING KEYS 311

Transforming Cryptographic Keys

It may happen that the host master key is changed within the cryptographic
system without the other keys in the system also being changed. Thus a
procedure is needed that permits keys stored under the encipherment of
variants of the old host master key to be reenciphered under variants of the
new host master key.

Let KMO* and KM0 represent the old and new host master keys, respec-
tively. The required function is obtained as follows. KMO* and KM0 are
read into the main memory of the host system where the variants KMl*,
KM2*, KMl, and KM2 are derived by inverting appropriate bits in KMO*
and KMO, respectively. The new host master key, KMO, is then written into
the host’s cryptographic facility using a set master key operation.

An encipher under master key operation is then used to generate the fol-
lowing quantities:

EMK: {KM 1) - E,,,(KM 1)

EMK: {KM21 - EkM,(KM2)

These quantities are used with an encipher data (ECPH) operation to gener-
ate the following additional quantities:

ECPH: {EKMO(KM l), KM 1) - EKM~(KM~)

ECPH: {EKMO(KMl), KM21 - EKMI(~~)

ECPH: {EKM~(KM~), KMl*)---+ EkMZ(KMl*)

ECPH: {EKM,(KM2), KM2*1- FKM~(KM~*)

If 01 represents a secondary key stored enciphered under the first variant of
the host master key, then reencipherment is accomplished as follows:

RTMK: CEKMZ(KMl*), EKMl*(a)Y)) - EkMO(a)

RFMK: {EkMi(KMl), EkMe(o)) __+ EKMI(@

If /3 represents a secondary key stored enciphered under the second variant
of the host master key, then reencipherment is accomplished as follows:

RTMK: {EKM,(KM~*), &Q,wW~ - EKMC@

RFMK: CEkMi WW, EK,,@)} - EKMZ(P)

Reencipherment using the RTMK and RFMK operations is further illustrated
in the block diagram in Figure 6-4. The general procedure for reencipherment
of keys in the cryptographic key data set (CKDS) is illustrated in Figure 6-S.

To ensure that the procedure for transforming cryptographic keys is per-
formed properly, one should verify that the old host master key read into

W

;s

RTMK: I

iM2

7
KMx*

Key

KM0

J

E,,, (KMx)
4

h,dKey)

KMx

-

L

KMO* is the old master key; KM0 is the new master key.
&,&Mx*) and EKMl (KMx) are assumed to be pregenerated.
x=1 or 2.

Figure 6-4. Reencipherment of Cryptographic Keys from an Old to a New Master Key

EKh.&W

GENERATION OF KEY-ENCRYPTING KEYS 313

ECPH: { E ,&KMl), KM1 1 + EKMI(KM1)

t
EMK: { KM1 } -+ E,,,(KMl)

1
ECPH: (E KMOiKMl), KM2 1 + EK,,(KM2)

ECPH: { E kMO(KM2), KMl* } - Ek,,(KMl*)

t
EMK: { KM2 } --+ E,&KM2)

1
ECPH: { E KM&M% KM2* } + E,,,(KM2*)

KMO*, KM0

(Derive)

(Generate)

KMl*, KM2*, KMl, KM2

KMO*, KMl*, KM2* are old master key and variants.
KMO, KMl, KM2 are new master key and variants.

Figure 6-5. General Procedure for Reencipherment of Keys

the main memory of the host system is equal to the actual host master key
stored in the cryptographic facility. This can be accomplished by using the
following procedure. Let

KMO* = the old host master key previously written into the host’s crypto-
graphic facility

KMO’ = the copy of the old host master key read into main memory of
the host system for verification

The following operations are now performed:

EMK: CKMO’) ’ EKMO*(KMO’)

DCPH: IEK,,*(KMO’), EkMO*(KMO’)) - q

where
‘l = DKM&KMO*(KM 0’))

314 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

Old Key Storage

RTMK: { E,,,(KMl*), E,,,*(a) I- &,&)

4
I

RFMK: { E,,,(KMl), &IO(@) 1 -+ &,~(a)

-c I
RFMK: { EkMr(KM% &MO@) 1 + EKM#)

New Key Storage

b EKMl(a)

- EKM2(fi) /*

a = key stored under 1st variant.
fl= key stored under 2nd variant.

Figure 6-5 (cont’d). General Procedure for Reencipherment of Keys

If KMO’ equals KMO*, then it is always true that q equals KMO’. However,
q may equal KMO’ when KMO* is not equal to KMO’, although for DES this
is an extremely unlikely event. Assuming that DES is a good pseudo-random
number gencfator, so that each bit in a generated number is equally likely
to be a 0 or 1, it follows that the probability of the event that q equals
KMO’ and KMO* does not equal KMO’ is about 2-64.

For all practical purposes, if q equals KMO’, then KMO* equals KMO’
(i.e., the entered value of the host master key is equal to the host master
key in the cryptographic facility).

GENERATION OF DATA-ENCRYPTING KEYS

A data-encrypting key is produced from a 64-bit random or pseudo-random
number (RN) by defining the number to be the desired data-encrypting
key already enciphered under a key-encrypting key known to the crypto-
graphic system. For example, in communication security, RN is defined as
the session key (KS) enciphered under the host’s master key (KMO):

RN E ExMO(KS)

GENERATION OF KEY-ENCRYPTING KEYS 315

On the other hand, in file security, RN is defined as the file key (KF) enci-
phered under a secondary file key (KNF):

RN E EKNr(KF)

With this strategy, it is not necessary to generate first a data-encrypting key
in clear form and then encipher it under the appropriate key-encrypting key.
Data-encrypting keys are never exposed in clear form. Rather, they are
dynamically produced as needed by the cryptographic system. This is
accomplished by using the DES algorithm as a generator of pseudo-random
numbers.

An Approach for Generating Keys with the Cryptographic Facility

One way to generate pseudo-random numbers (enciphered data-encrypting
keys) is by using a nonresettable counter, or nonvolatile storage, that can be
read and incremented only by the cryptographic facility. With this approach,
the counter receives the same protection as the master key, working key,
or any other intermediate value produced by one of the cryptographic
operations.

A pseudo-random number is generated by incrementing the counter and
enciphering the resultant value (c + 1) with a special variant of the host
master key (KM4), as illustrated in Figure 6-6.

Because the pseudo-random numbers produced from this procedure (RN 1,
RN2,. . . , RNn) are each based on a different counter value, it follows that
RNl#RN2#... # RNn. The period of the pseudo-random number gen-

64-Bit Counter

KM4

EKM~(c + l)zRN

KM4 is a special variant of the host master key used only for the
generation of RN. RN is defined as a data-encrypting key enciphered
under a key-encrypting key known to the cryptographic system.

Figure 6-6. Procedure for Generating Pseudo-Random Numbers with
the Cryptographic Facility

316 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

erating process is equal to the period of the counter (n). The procedure is
such that it is not computationally feasible to deduce the secret key (KM4)
or subsequent unknown values of RN using knowledge of one or more prior
values of RN. Furthermore, this process is completely isolated from other
cryptographic functions because KM4 is used in the procedure only for gen-
erating pseudo-random numbers.

Since the counter can be accessed only by the cryptographic facility, it
is not possible for an opponent to reset its value and thereby cause prior
data-encrypting keys to be regenerated. Moreover, if the counter is made
large enough, say on the order of 64 bits, an opponent cannot cause the
counter to recycle by making repeated requests for pseudorandom numbers.
Thus previously generated numbers are never recreated. (Note that the
counter value need not be kept secret to provide adequate cryptographic
strength, but keeping the counter values secret will increase cryptographic
strength.)

An Alternate Approach for Generating Data-Encrypting Keys

Basically, a pseudo-random number RN (defined as an enciphered data-
encrypting key) is generated within the host processor as a result of the dy-
namically changing and unpredictable nature of the resource demands placed
upon the system by its users.

The alternate approach for generating pseudo-random numbers makes use
of the reencipher to master key (RTMK) operation in conjunction with two
seed values, U and 2. These seed values are derived internally within the
processor and are used as input parameters to an RTMK operation. The
output of the operation is then used to derive RN. Two independent seed
values provide the procedure with added strength, since both values must be
compromised before a successful attack is possible. Figure 6-7 illustrates the
described procedure for generating pseudo-random numbers.

For example, consecutive seed values Z(l), Z(2), . . . , Z(i) could be gen-
erated by combining two or more independent TOD clock values. Indepen-
dent clock values can be achieved by interleaving an input-output operation
of unpredictable duration between successive clock readings. The seed value
U(0) could be derived from a combination of user-dependent and process-
dependent information stored in the volatile memory of the host processor.
Each value U(i), for any value of i greater than zero, is defined as the output
of an RTMK operation whose input consists of U(i - 1) and Z(i). Hence it
follows that U(i) is a function of U(0) and of Z(l), Z(2), . . . , Z(i).

It should be noted that RN(i) is a function of two independent quantities,
U(i - 1) and Z(i), each having enough different values or combinations
to prevent discovery by direct search. Each of the U-values, U(l), U(2),
. . .) U(i), is generated internally by feeding back the result from the pre-
vious RTMK operation. A second RTMK operation is used to produce
RN(i) from U(i) and to ensure that it is not possible to deduce U(i) from
RN(i). Hence knowledge of one or more of the generated values of RN will
not permit an opponent to deduce other (prior or subsequent) values of RN.

ENTERING A MASTER KEY AT THE HOST PROCESSOR 317

(Protected Area)

RTMK: { U(i- l), Z(i) } -, U(i)

RTMK: { U(i), U(i) } -, RN(i)

Where:

U (0) = arbitrary value.
Z(i) = function of two or more readings of the time-of-day clock.

RN(i) = generated pseudo-random number.
i = index number.

The specific relations are:

U (9 = EKMo(DD KMz(U(i - I))(z(i)))
RN (9 = EKMO(DDKM2(U (i,,(U (0))

Figure 6-7. DES-Based Pseudo-Random Number Generator for Data-
Encrypting Keys

To subvert this process for generating pseudo-random numbers, an op-
ponent must contend with both a changing and unpredictable Z-value and a
secret U-value that itself is a function of U(0) and all prior Zvalues. Even if
one of the seed values should be compromised, the other provides enough
cryptographic strength so that an exhaustive attack intended to recover a set
of eligible RN(i) would be computationally infeasible.

ENTERING A MASTER KEY AT THE HOST PROCESSOR

For reasons of security, the master key cannot be read once it has been
installed in a cryptographic facility. However, the following procedure will
allow a security officer to validate, with a high level of confidence, that the
master key stored in the cryptographic facility is the one that was intended.

Some function (4) of the master key is computed externally to the system
and compared with a similar value computed within the system. For example,
KM0 could be used as a key to encipher a 64-bit random number (RN);

@(KM01 = EKMOGW

Once the master key has been installed in a cryptographic facility, the

318 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

encipher under master key (EMK) operation could be used to produce the
same quantity:

EMK: {RN) - EKM,,(RN)

Comparison of these two values could then establish whether the keys
used in the two routines were identical. The procedure is not foolproof,
however, because the same incorrect key could have been entered in both
routines. The objective, therefore, is to reduce the likelihood that an in-
correct key is installed in the cryptographic facility in the first place.

Hard-Wired Entry

The reading of temporarily stored keys into the main memory of a system
can be avoided by providing a direct wire connection between the point
where the key is entered and the nonvolatile key storage area of the crypto-
graphic facility. In this case, the key is entered by means of toggle switches,
dials, or the like. The direct wire connection should be so constructed, as by
shielding, that probing or tapping of transmitted information is not possible.

Even with hard-wired entry, there is still some chance that the key entered
into the cryptographic facility will be different from the key that was in-
tended. The following analysis provides an estimate for p(UE), the probability
of undetected error in the entered key (i.e., that an incorrect master key
becomes installed in the cryptographic facility).

Of the sources of error affecting the key entry process, human error is the most
critical. Mechanical or machine error occurs relatively infrequently, and therefore
can be disregarded. At first, it is assumed that only one of the 16 hexadecimal digits
entered into the cryptographic facility might be in error. A special case of multiple
errors (i.e., double digit transposition of adjacent hexadecimal digits) is considered
subsequently.2

In the situation described, a mistake in entering the key will not be detec-
ted if the parity of the incorrectly entered hexadecimal digit is correct.
Since there are 16 possible hexadecimal digits, of which only 8 have odd
parity, eliminating the correct digit leaves 7 combinations that have correct
parity out of 15 possible combinations. Let

A = the event that the entered value of KM0 has
correct parity

B = the event that KM0 is incorrectly entered

Then the probability of an undetected error, P(UE), is given by

p(UE) = p(A and B)

= ~(4 B)P@)

= (7/ 15)p(B)

= 0.47p(B)

2 It is assumed, as previously stated, that host and terminal master keys are entered in the
form of 16 parity-adjusted hexadecimal digits.

ENTERING A MASTER KEY AT THE HOST PROCESSOR 319

where p(AlB) designates the probability of event A given that event B has
occurred.

To improve the situation, two quantities, KM0 and a function (@) of
KMO, are specified in such a way that errors associated with the entry of
KM0 and c#J(KMO) are statistically independent. The choice of C#J equal to the
identity function would not be practical. This would amount to entering
KM0 twice, so that an error in the first entry might well be repeated in the
second, implying that the errors in KM0 and c#J(KMO) could not be considered
statistically independent. However, the choice of $(KMO) = KM0 (where
overbar indicates the complement) is satisfactory. In this case, the comple-
mentary property3 of the DES algorithm can be advantageously used to vali-
date that the intended KM0 is submitted for entry in the host’s cryptographic
facility.

The procedure consists of first installing the complement of KM0 (KMO)
in the cryptographic facility and enciphering the arbitrary value U, then in-
stalling KM0 in the facility and enciphering the complement of U (U).
The output values are defined as Y 1 and Y2, respectively. By the comple-
mentary property of the DES, KM0 can be assumed to be installed properly
in the cryptographic facility whenever Y 1 equals the complement of Y2
(Y2). Any corruption that may occur in the master key during its transmis-
sion between the entry point and the cryptographic facility is also detected
with this procedure. Figure 6-8 illustrates this entry procedure.

Step 1:

Em,(U) = Y 1

Step 2:
KM0

1 i7
10 E

+
E,,,(U) = Y2

Notes: “-‘I indicates “the complement of.”
Accept KM0 if Yl =m, otherwise reject KMO.

Figure 6-8. Validation of the Master Key as it is Entered at the Host
Processor

3The complementary property of the DES algorithm stipulates that EK(X) equals EK(X)
for every key (K) and plaintext (X). (See also Classes of Ciphers, Chapter 3.)

320 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

The following analysis illustrates the superiority of validating the master
key using KM0 and KMO. Let

El = the event that the entered value of KM0 is in error, but that the
entered value has correct parity

E2 = the event that the entered value of KM0 is in error, but that the
entered value has correct parity

E3 = the event that the entered value of KM0 and the entered value of
KM0 are complements of each other

An undetected error can occur only if all events, El, E2, and E3, occur
simultaneously. The notation (El, E2, E3) denotes this joint event. The
probability of an undetected error is thus given by

p(UE) = p(E 1, E2, E3)

= p(E31E1, E2)p(E2IEl)p(El)

Since it can reasonably be assumed that the events El and E2 are statistically
independent, it follows that

p(E2) = p(E 1) = (7/ 15)~’

and therefore that

p(UE) = p(E3lE1, E2)(7/15)*(~‘)~ (b-3)

where p’ is the probability that one digit in a key is incorrectly entered (i.e.,
is in error).

However, given that the events El and E2 do occur and that only one
hexadecimal digit is in error, it follows that there is a l/16 probability
that the errors in KM0 and KM0 occur in the same digital position, a require-
ment if the errors are to go undetected. Moreover, given that the errors occur
in the same digital position, then there is a l/7 probability that the two
incorrect digits will be complements of each other. This IS because there are
seven incorrect hexadecimal digits with correct parity and only one of these
that is the complement of the other incorrectly entered digit. Therefore

PWE) = (1/16)(1/7)(7/15)2(p1)2

= 0.00194(p1)2

A more general result that takes into account the possibility that multiple
errors may occur can be obtained in the following way. Let

El ,i = the event that exactly i digits (i = 1, 2, . _ . , 16) in the entered
value of KM0 are in error, but the entered value has correct parity

E2,i = the event that exactly i digits (i = 1, 2, . . . , 16) in the entered
value of KM0 are in error, but the entered value has correct parity

E3,i = the event that the entered value of KM0 and the entered value of
KMO, as given by E 1 ,i and E2,i, are complements of each other

ENTERING A MASTER KEY AT THE HOST PROCESSOR 321

Then p(UE) can be expressed as
16

p(UE) = c p(El,i, E2,i, E3,i)
i=l

16

=
c

p(E2,e, E3,i 1 El,i)p(El,i) (e-4)
i= 1

As an example, let double digit transposition of adjacent hexadecimal digits be
considered. (This is probably one of the most frequent multiple errors.) Let p2 be
the probability of such an event. There are 15 error combinations for this case.
Eight of these affect only 1 byte, case (a), with probability (8/15)p2 and 7 of these
affect 2 bytes, case (b), with probability (7/15)p2. In the case where transposition
takes place within 1 byte, parity is not lost, and thus p(El,2) = p(E2,2) = (8/15)p2.
In the case where transposition affects 2 bytes, the probability of obtaining correct
parity is p(E1,2) = p(E2,2) = (7/15)*p2, since there are 7 out of 15 hexadecimal
combinations leading to the correct parity.

The conditional probability p(E2,2, E3,2] E1,2) is equal to (1/15)p2. This is so
because the event E3,2, describing the complementary property, occurs only if the
same digit pairs are affected in KM0 and KMO. (Otherwise the transposed digits
destroy the complementary property of the entered values.) Thus only one transpo-
sition combination out of the 15 satisfies this condition. Given that El,2 occurs, it
also follows that parity is not affected in KM0 if the same digit pairs are transposed
in both KM0 and KMO. (Note that if parity is unaffected when a pair of digits in
KM0 (or KMO) are transposed, then parity will also be unaffected when the corre-
responding pair of digits in KM0 (or KMO) are transposed.)

Since the events of cases (a) and (b) are mutually exclusive, probabilities can be
added, and for i = 2 Equation 6-4 can be rewritten as

p(UE) = p2*(1/15) [@i/15) + (7/15)2] = 0.05~2~

To reduce P(UE) still further, the key entry procedure could cause the
key and its complement value to be displayed prior to the key being written
in the cryptographic facility. This would allow an additional visual check to
be made on the entered values.

Indirect Entry

To enter the master key indirectly, it is read into the main storage of the
host processor and a set muster key (SMK) operation is then used to write
the key into the nonvolatile storage area of the cryptographic facility. Once
the master key has been transferred, the copy of the master key in main
storage is erased.

322 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

To reduce the likelihood of human error resulting in an incorrect master
key being initialized in the cryptographic facility, it is recommended that the
key be entered from a nonvolatile medium such as a punched card or mag-
netic tape. The card or tape could be stored in a secure location (e.g., a safe
or vault) when not being used. As part of the procedure, the master key
would be defined as that value which is recorded on the medium-provided,
of course, that it has correct parity. Thus any human error committed in
recording the key on the medium would be of no real consequence.

Any corruption of the master key between its entry point and the cryp
tographic facility resulting from either a hardware or software error could be
detected by using the previously described procedure in which both the host
master key and its complement value are entered (see Hard-Wired Entry).

ATTACK VIA EXTERNAL MANIPULATIONS

While the importance of having a physically protected area for the storage
of the master key has been emphasized, the following illustrates that care
must also be exercised in choosing a key entry procedure that is safe.

Let K denote an unknown master key and R the contents of the master
key storage area in the cryptographic facility. Assume that K and R consist
of 16 hexadecimal digits:

K=Kl,K2,...,K16

R = Rl, R2,. . . , R16

where K 1 is stored in R 1, K2 in R2, and so forth.
Assume further that the master key is entered into the cryptographic

facility in a series of 16 consecutive steps. At each step, a single 4-bit hexa-
decimal digit of the key is entered into the next available location within R.
The procedure is accomplished via manual switches. The storing of digits
into R is controlled by an indexing circuit that indicates the next available
location. When the switches are deactivated, the index is reset to point Rl.
However, the procedure has a weakness that can be exploited.

The unknown value of Kl can be attacked by systematically setting Rl
to the values 0 through (hexadecimal) F. This can be done by activating the
switches for entering the key, entering a trial digit, and deactivating the
switches. A list of test messages, previously enciphered under the unknown
master key, is now enciphered under each of the 16 different trial master
keys. Since R2, R3, . . . , R16 are not changed in the procedure, the value
of Kl can be determined by observing which entered digit causes the enci-
phered test messages to produce the correct ciphertext.

In like manner, K2 can be determined by systematically setting R2 to the
values 0 through F. This is done by activating the switches, entering the
known value of Kl into Rl, entering a trial digit into R2, and deactivating
the switches. The list of test messages is again enciphered under each of the
16 different trial master keys. Since Rl is set to Kl and R3, R4,. . . , R16
are not changed in the procedure, the value of K2 can be determined by ob-

MASTER KEY ENTRY AT A TERMINAL 323

serving which entered digit causes the enciphered test messages to produce
the correct cipher-text.

Repeating the procedure, one can determine the digits K3 through K16.
An average of 128 trials, or a maximum of 256 trials, are required. The
described attack is thwarted by ensuring that R is automatically overwritten
whenever the switches for entering the master key are activated. The process
of overwriting the key is called key zeroization [31.

MASTER KEY ENTRY AT A TERMINAL

A terminal master key can be set by means of switches, dials, or a hand-held
key loading device, or it can be entered at a keyboard. Again, because the
terminal master key (KMT) cannot be read once it has been set, one should
validate that the key has been properly initialized in the cryptographic
facility.

On-Line Checking

One way of determining whether the proper master key has been initialized
in a terminal’s cryptographic facility is to establish a communications session
with the host processor. If the installed terminal master key differs from the
copy stored at the host, the session key initiated between the host and ter-
minal will be different, and it will not be possible to send and receive an
agreed-upon message.

A simple handshaking protocol could be adopted as part of the process
of initiating a session. For example, the terminal could encipher a value
N = (N 1, N2) with the session key (KS) and send the resulting value to the
host processor. Via the established protocol, the host would decipher the
received quantity, apply some function to N such as switching the Nl and
N2 to produce N’ = (N2, Nl), reencipher the value N’ under KS, and send
the result to the terminal. At the terminal, a check could then be made to
ensure that the first and last halves of the deciphered value of N’ are equal
to the last and first halves of N, respectively. If the values agree, the terminal
master key would be accepted. Other approaches are possible (see Handshak-
ing, Chapter 8).

Off-Line Checking

It is often desirable to check KMT directly at a terminal without involving
the host processor. To do so one can use a validating pattern. This pattern is
a nonsecret function of KMT, and is created as part of the process of gener-
ating the key.

When a key is generated, the encipher under muster key (EMK), encipher
data (ECPH), and decipher data (DCPH) operations are used to produce a
validating pattern (Vh) at the host system, as follows:

EMK: CKMT) - Ek&KMT)

DCPH: {Ex&KMT), TID) - DKMT(TID)

EMK: I

DCPH: Em+KMT)

KM0

I KMT

TID = terminal identification number, unique to each
Vh = validating pattern generated at a host processor

Figure 6-9. Procedure, at the Host Processor, to Crea

EMK:

ECPH: E,,,(D,,,(TID))
I

1 TID

4
KM0 + D

DKMT(TID) ’ E 1
I
4

Gnal in a network.

Validating Pattern for the Terminal Master Key

MASTER KEY ENTRY AT A TERMINAL 325

EMK: 1: DKMT(TID)l -~&-~MT(TID))

ECPH: CE~M&DKMT(TID)), TID) - ED~~~(T~D)(TID) = Vh

where TID is a terminal identification number unique to each terminal.
The steps to create Vh are shown in block diagram form in Figure 6-9.

Later, at the terminal, the decipher key (DECK) and encipher (ENC) opera-
tions are used to produce a similar validating pattern (Vt), as follows:

DECK: ITID) + DKMT(TID)

ENC: {TIDJ b E DKMT(TID)(TID) = Vt

It is assumed here that the terminal can ensure the integrity of TID and
that an opponent is not able to cause the terminal to use a value other than
TID in the computation of Vt.

Vh KMT

TID TID

1 EDKMT(TID)(TID)3Vt
No

b Reject KMT

Accept KMT

Vh = validating pattern generated at a host processor.
Vt = validating pattern generated at a terminal.

TID = terminal identification number, unique to each terminal in a network.

Figure 6-10. Procedure for Entering and Validating Terminal Master Keys

326 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

The person who is authorized to enter KMT at the terminal is given the
quantity Vh. As part of the procedure for entering KMT, the terminal will
cause the value Vt to be generated and displayed. The operator can determine
whether KMT has been entered correctly by comparing Vh with Vt. The
steps to create Vt and validate KMT are shown in block diagram form in
Figure 6- 10.

If Vh is stored in nonvolatile storage at the terminal, frequent checks can
be made on the correctness of the terminal master key. Alternatively, Vh
could be written down and posted in a conspicuous location at the terminal.
A keyboard entry command causing Vt to be generated and displayed would
thus allow Vt and Vh to be compared periodically by the terminal operator.

DISTRIBUTION OF CRYPTOGRAPHIC KEYS

Whenever data-encrypting keys (session and file keys) occur outside the
cryptographic facility, they are maintained under the encipherment of some
key-encrypting key. This allows data-encrypting keys to be routed through
the system over paths that are nonsecure. A data-encrypting key can be re-
covered in a usable form only if the recipient possesses the key-encrypting
key under which the data-encrypting key has been encrypted.

Key-encrypting keys are distributed through the system in an altogether
different way. One cannot alwaysrely on encryption as a means of protecting
the secrecy of these keys, since each node must have at least one key in-
stalled initially in clear form. That key must be sent to the node over a path
with an acceptable degree of security (i.e., the probability of interception
of the key must be very low). One such method is to use a courier, normally
the safest and most secure means of transporting keys. Of course, security
in this case depends on the reliability of the courier.

Although not necessarily recommended, other means of transmitting keys
are by registered mail and by private telephone conversation. These methods
are less secure than using a courier because there is a greater chance that an
opponent could intercept the key during transmission. The probability of
compromise could be reduced, however, by transmitting two or more bit
patterns over independent paths and combining them, (e.g., by using an
Exclusive-OR oueration) at the final destination.

The same approach could be used when entering the key itself. For ex-
ample, a different bit pattern could be entered into the cryptographic
facility by each of several persons. These bits could then be combined
within the cryptographic facility to produce the desired key. For the key to
be compromised, this protocol would require the collusion of all persons in-
volved in the key entry process.

The procedure for routing keys can be expressed more formally using
statistical measures. Let Tl, T2, . . . , Tn denote n different bit patterns of
64 bits each, and 4 a nonsecret function used to produce $ cryptographic
key (K):

K=#(Tl,T2,...,Tn)

LOST CRYPTOGRAPHIC KEYS 327

For example, C$ could denote an operation that Exclusive-ORs the bit pat-
terns together, as shown below:

K=Tl@T2@...,@Tn

If desired, the technique would permit each of the different bit patterns to
be entered into the cryptographic facility by a different person. This, of
course, would require that function 4 be available within the cryptographic
facility itself. More likely, the bit patterns would be separately transmitted
to a single person, who would in turn combine them using function r$ and
then enter the resulting key into the cryptographic facility.

Let Ai denote the event that bit pattern Ti is transmitted to a designated
receiver without being compromised. Note that the complement of Ai (%)
denotes the event that Ti is compromised during transmission. Assume, as
with the Exclusive-OR operation, that function 6 is such that T 1 through Tn
must be compromised in order for the cryptographic key (K) to be com-
promised. Thus if B represents the event that key K is compromised, then
the probability of event B, p(B), can be expressed as follows:

~09 = p(Al)p(~iA2) . . . p(AnlA1, A2,. . . , An)

If the events Al, A2, . . . , An are statistically independent, then p(B) can
be expressed as the product of the probabilities;

~09 = p(Al)p(m) . . . p(An)

Even though individual values for p(A 1) through p(z) may not be small
enough to justify the transmission of only a single bit pattern, the product
of the probabilities may be small enough to be acceptable.

Since assessment of the likelihood that cryptographic keys may become
compromised is highly subjective, it is unreasonable to expect that accurate
values for the various probabilities in question can ever be obtained. The
model is useful mainly to demonstrate the underlying principle involved.

To illustrate this idea, suppose that Tl is sent by registered mail, T2 is
sent by telegram, T3 is sent by private conversation, and that K is produced
by Exclusive-ORing Tl, T2, and T3. Since the bit patterns, Tl through T3,
are transmitted via different paths, an assumption of statistical independence
ought to hold, in which case, the probability that K is compromised should
be the product of the probabilities that T 1 is compromised, T2 is compromised,
and T3 is compromised. Assuming that the probabilities of the events, p(Tl),
p(T2), and p(T3), are less than one, it follows that the product of these
probabilities is less than any one of the values. Thus, sending the key as Tl,
T2, and T3 involves less risk than sending the key directly using only one of
the paths.

LOST CRYPTOGRAPHIC KEYS

Remember that it is as difficult for the properly authorized user of the
system to decrypt data when the key is unknown as it is for the hostile

328 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

cryptanalyst who never had the key in the first place. Consequently, if for
any reason the cryptographic key required to decrypt data should become
lost or unknown, the data will not be recoverable. Every effort should be
made to adopt a set of administrative procedures and controls that will
minimize the probability of losing cryptographic keys.

A copy of all pregenerated key-encrypting keys should be stored in a
secure area (e.g., a safe or vault) in the event they are needed for the purpose
of backup (see also A Procedure for Authentication of Cryptographic Keys,
Chapter 8).

Cryptographic keys may become lost or unknown as a result of hard-
ware malfunction, software error, or human failure. An undetected modifica-
tion of a cryptographic key stored within the cryptographic system, or
failure to use the proper key in the cryptographic facility may cause
ciphering operations to proceed using an unknown key. In communication
security, two nodes may attempt to communicate using different session
keys, or in file security, stored data may be enciphered under a key that is
different from that used for recovery.

A simple handshaking procedure at session initiation ensures that both
communicants are using the same session key. Message-authentication pro
cedures can also be used to test that plaintext has been recovered with a
proper key. Authentication techniques based upon the host master key per-
mit keys to be validated prior to their use. As an extra measure, at the
time data are enciphered they could also be deciphered to make sure that
recovery is possible. (See Authentication Techniques Using Cryptography,
Chapter 8.)

RECOVERY TECHNIQUES

In situations where a cryptographic key will not properly recover plaintext
from ciphertext, it may still be possible to decipher the data using tech-
niques for recovery. The underlying principle is that even though the exact
key used to encipher the data is not known, one may still be able, using
trial and error, to search the key space in a preferred order of likely candi-
dates. If the list of likely candidates is small enough, then such a search may
be successful.

Any error by a human, a machine, or software that causes a cryptographic
key, K, to be changed to an incorrect key, K’, can be thought of as a func-
tion, 4, which maps the space of possible keys to itself. Hence recovery can
be handled as a two-step procedure: (1) all available information concerning
the nature of the error is used to compute a list of functions, $1, 42, . . . ,
$n, identifying the most probable candidates, 41(K), $2(K), . . . , @n(K),
for the incorrect key, K’, and (2) the data are then decrypted with each of
these candidate keys.

In the present discussion, it is assumed that an incorrect key, K’, is used to
encipher data and that the correct key, K, is used to recover the data (Figure
6-l 1). Alternatively, it may happen that the plaintext is enciphered with the
correct key, K, but recovery is later attempted using a corrupted key, K’.
In that case, a trial key is in the set of keys to be searched, provided that one
of the functions, @1,42, . . . , &r, maps it to K’.

SUMMARY 329

Error
K’ E

,

X = plaintext. +
Y ’ = E, ,(X) = ciphertext. X’

X ’ = D,(E, JX)) = recovered plaintext.
K = key.

K ’ = corrupted key.
Figure 6-11. Encipherment Using a Corrupted Key and Decipherment
Using the Correct Key

Consider the example of a data file enciphered with a key that in turn is
written down on a slip of paper (as 16 hexadecimal digits) and stored in a
vault. It is discovered later that the key will not decipher the data. Further-
more, it is suspected that an error occurred in recording the key. Since
human error will most likely involve only one, two, or at most, three digits
(the occurrence of multiple errors is small) recovery could be attempted by
changing each digit, or combination of digits, in the incorrect key to its
other possible values and then attempting to decipher and file with each of
the keys. If this method does not succeed, it means that more digits were in
error. Searching additional keys may be uneconomical, since many trials
would be required.

SUMMARY

In connection with the key management scheme discussed in Chapters 4
and 5, two kinds of keys have been described: data-encrypting keys, which
protect either data in transit (primary communication keys or session keys)
or stored data (primary file keys or file keys); and key-encrypting keys,
which encipher other keys-for example, host master keys, secondary com-
munication keys (of which the terminal master key is a special case), and
secondary file keys.

Generally speaking, the best method for generating a given class of cryp-
tographic keys depends on the expected number of each type of key that
will be needed and the time when the keys will be used. In many cases, the
keys can be created dynamically (on demand), but sometimes they are
required ahead of time in order to initialize the system.

The host master key is generated by a random process such as tossing

330 GENERATION, DISTRIBUTION, AND INSTALLATION OF CRYPTOGRAPHIC KEYS

coins or throwing dice. Human involvement to that extent is reasonable
in the process of generating keys because only one master key is required
for each host processor, and the master key is likely to remain unchanged
for a relatively long time. Since the master key protects all other keys stored
at the host processor, special care should be taken to ensure that it is gen-
erated and installed in the cryptographic facility in a secure manner.

It is reasonable to anticipate that the total number of key-encrypting
keys (excluding the host master key) may be large enough to warrant me-
chanical (nonhuman) generation procedures. The desired keys can be pro-
duced using the DES algorithm as a generator of pseudo-random numbers.
The seed values used in this procedure are generated by the user, employing
a random process similar to that used in generating the host master key.
Since the key-encrypting keys are used in initializing the cryptographic
system, they must be generated ahead of time. This can be accomplished
under secure conditions using a computer.

Data-encrypting keys are also required in large numbers (one for each
session and file using encryption), but they need not be generated until
specifically requested (i.e., until they are needed to protect a communica-
tions session or stored data). Hence data-encrypting keys either could be
generated ahead of time and stored in table form until needed, or they
could be generated dynamically (on demand). Disadvantages in generating
them ahead of time are that the keys would be exposed longer to possible
compromise by an opponent, and they would require additional storage. One
approach for dynamically generating data-encrypting keys is to make use of
the randomness associated with the many users and processes normally ac-
tive on the system at any one time.

Among the more important principles to be followed in key generation
is that the compromise of one or more keys should not make it possible for
any of the remaining keys to be deduced. With regard to key distribution,
it was shown that security can be increased whenever two or more bit
.patterns of 64 bits are transmitted over different paths and combined at
the final destination. To enhance the security of key installation, it is sug-
gested that two different related values, the key and a function of the key,
be entered into the cryptographic facility. Any errors that occur in both
values will be statistically independent, so the likelihood of an undetected
error (i.e., the probability that a wrong key will be installed) will be greatly
reduced.

REFERENCES

1. Matyas, S. M. and Meyer, C. H., “ Generation, Distribution, and Installation of Crypto-
graphic Keys,” IBM Systems.lournaZ, 17, No. 2,126-137 (1978).

2. The RAND Corporation, A Million Random Digits With 100,000 Normal Deviates,
Free Press, Glencoe, IL, 1955.

3. Federal Standard 1027, Telecommunications: General Security Requirements for Equipment
Using the Data Encryption Standard, General Services Administration, Washington, D.C.
(April 14, 1982).

Incorporation of Cryptography into a 331..............
Figure 7-1. RH/RU Relationship 332......................
Figure 7-2. Cryptography Selection Process 333...
SESSION-LEVEL CRYPTOGRAPHY IN A 333.....

Transparent Mode of Operation 333............................
Figure 7-3. SNA Session Initiation Command 334.......
Figure 7-4. Cryptographic Verification 335...................
Figure 7-7. Session-Level Cryptography in a 339........
Nontransparent Mode of Operation 339.......................

PRIVATE CRYPTOGRAPHY IN A 339..................
Figure 7-8. Session-Level Cryptography in a 34l........
Figure 7-9. Session-Level Cryptography in a 34I........
Table 7-1. Summary of Approaches Using 343...........

SESSION-LEVEL CRYPTOGRAPHY IN 343........
Figure 7-11. SNA Session Initiation Command 344.....
PO Figure 7-12. Session-Level Cryptography 344......
Figure 7-13. Session-Level Cryptography in �.........

APPLICATION PROGRAM-TO-APPLICAT 347....
Figure 7-14. Session-Level Cryptography in a 347......

PADDING CONSIDERATIONS 349.......................
REFERENCES 349..

Other Publications of Interest 349................................

CHAPTER SEVEN

Incorporation of Cryptography into a
Communications Architecture1

Today’s versatile, powerful, and complex computer networks have evolved
from a modest beginning in the 1950s when users first accessed computer
resources from remote terminals. As the evolution proceeded, so did attempts
to replace ad hoc network designs with systematic approaches based on de-
fined parameters [2-61.

Fundamental to this approach is a protocol (set of agreements) which
presents a basis for controlling information transfer within a communications
network. Collectively, such protocols, referred to as a communications
architecture, put the parties served by a network into communication with
each other. One architectural approach, IBM’s Systems Network Architecture
(SNA) [2, 31, is used here to show how cryptography can be incorporated
into a communications network. The specifics, discussed here to illustrate
how the SNA architecture can be structured to support cryptography, lead
to broader concepts which are applicable to other architectures.

In SNA terminology, application programs and terminal devices equate
to logical units (LUs). Data transfer between two LUs may occur after a
logical connection, or session, has been established [4] . Cryptography can
be specified as a session parameter at the time a session is established. When
this method of protection is in effect, data are enciphered by the originating
LU and deciphered only by the destination LU; thus end-toend protection
is achieved (see Chapter 4).

Three architectural levels of cryptography are defined within SNA: session,
end user, and private. In session-level cryptography, SNA protocols are used
by the system to manage cryptography during a session between communi-
cating LUs. In end-user cryptography, SNA protocols are used by the system
for key distribution, but the end user provides his own rules and protocols ’
regarding the use of cryptography. In private cryptography, key selection
and distribution, as well as management of the use of cryptography, is per-
formed by the end user according to his own rules and protocols. Because,
in this latter case, the use of cryptography is known only to the end user and
not to the system, it is transparent to and not in conflict with SNA.

The basic information element that flows between LUs during the LU-LU

I01978 IBM o p C r oration. Reprinted from IBMSystems Journal 17, No. 2, 1978 [11.

331

332 INCORPORATION OF CRYPTOGRAPHY INTO ARCHITECTURE

Figure 7-1. RH/RU Relationship

session is a request/response unit (RU). It contains either user data or control
information (Figure 7-l). The RU is preceded by a request/response header
(RH). Only a data request unit is enciphered; the RH remains in the clear. A
bit in the RH indicates that the RU contains enciphered data.

The installation, through a definition process, specifies each LU’s cryptog-
raphic capability, that is whether the LU is equipped with or has access to a
cryptographic facility (see The Cryptographic Facility, Chapter 4). Further-
more, particular LUs may be declared secure components, thus making cryp-
tography mandatory for every session in which they participate. The terminal
operator may, via the LOGON procedure, select cryptography as a session
option. An application program, as part of the OPEN process of a system
teleprocessing access method, such as IBM’s ACF/VTAM (advanced commu-
nication function/virtual telecommunications access method), may request the use
of cryptography for the pending session (Figure 7-2). Once cryptography is
selected for communicating LUs, it cannot be disabled for the duration of
the session.

Three levels of session cryptography are defined: (1) selected cryptography
in a transparent mode of operation, (2) selected cryptography in a non-
transparent or application-directed mode of operation, and (3) mandatory
cryptography.

Transparent cryptography results when the selection of cryptography is
unknown to the participating end users. Cryptography may be specified by
the installation, perhaps based upon the physical characteristics and not
necessarily the logical characteristics of an LU. If selected, cryptographic
services are provided by the system, transparent to the end users.

Application-directed cryptography results when the end user makes a
specific request for the use of cryptography during a given session. An appli-
cation program may select which outbound messages are to be enciphered
and which are not. Similarly, by using the indicator in the RH, inbound mes-
sages can be identified as being enciphered, thus requiring decipherment
before being processed.

Mandatory cryptography is a subset of transparent cryptography. As the
name implies, this level requires both participating LUs to encipher all out-
bound messages and to decipher all inbound messages. In this case, the indi-
cator bit in the RH is ignored (as to what or what not to decipher), although
it may continue to be set to maintain consistency with other system services.

SESSION-LEVEL CRYPTOGRAPHY IN A SINGLE-DOMAIN NETWORK 333

Figure 7-2. Cryptography Selection Process

SESSION-LEVEL CRYPTOGRAPHY IN A SINGLE-DOMAIN NETWORK

Transparent Mode of Operation

SNA provides a set of commands to allow LUs within the communications
network to specify and agree on the manner in which the orderly transfer
of information from one LU to another will be accomplished. The addition
of cryptography, as a means of protecting information from disclosure
during its passage through the network, affects the SNA communication net-
work from the standpoint of selection, distribution, and verification of the
function. The SNA commands affected by the implementation of communi-
cation security will be described.

Figure 7-3 provides a logical view of both commands significant to session
initiation, and the network elements between which they flow. The notation
PLU (primary logical unit) and SLU (secondary logical unit) is used because
the clarifiers secondary and primary aid in establishing the relationship be-
tween the two nodes [3].

Typically, in a terminal-to-application program communications session,
the application is the PLU and the terminal (with an installed master key,

334 INCORPORATION OF CRYPTOGRAPHY INTO ARCHITECTURE

“LOGON”

Figure 7-3. SNA Session Initiation Command Flow

KMT) is the SLU. The session initiation process begins with the receipt of an
INITIATE (INIT) command at the system services control point (SSCP).
The SSCP resides in a host node and is the manager of all sessions between
communicating LUs within its domain of control. The INIT command
is typically generated as the result of a LOGON request (to establish contact
with the system) entered at an SLU. An INIT command can also result from
actions taken by the host operator or host application programs.

The SSCP resides in a host processor and has available to it tables, built
from definition parameters, which completely describe the network or por-
tion of the network that it manages (i.e., the domain of the SSCP). From
these tables, the SSCP can determine if cryptography is supported by an LU.
Additionally, from the same tables or from LOGON parameters, the SSCP
determines if the cryptography function is required or requested for the
session corresponding to the INIT. (Refer to Figure 7-2 for clarification of
SSCP actions during session initiation.) An error condition occurs if one or
both of the candidate LUs cannot support a requested function.

If the use of cryptography is possible, the SSCP obtains a randomly gen-
erated number via GENKEY (see Key Management Macro Instructions,
Chapter 4), which it defines to be the session key enciphered under the host
master key (i.e., in the form E KM,-,(KS)). EKMO(KS) is then inserted in the
appropriate field of the CONTROL INITIATE (CINIT) command. If the
SLU happens to be a terminal device, then the session key is additionally
enciphered under the terminal master key (EKMT(KS)) and this quantity is
then inserted in the BIND image (which consists of a number of fields in the
CINIT command). (The BIND image contains information which specifies
the characteristics of the session when established.)

The SSCP forwards the CINIT command to the specified PLU, thus indi-
cating to the PLU that there is a request for a session to be established with
an SLU. A PLU, as implemented in SNA, is a host-resident application pro-
gram. An SLU may be another host-resident application program, or an LU
residing in a control unit or terminal.

SESSION-LEVEL CRYPTOGRAPHY IN A SINGLE-DOMAIN NETWORK 335

Upon receipt of CINIT, the PLU can either accept or reject the invitation
to go into session with the SLU, regardless of the cryptography level specified.
When the PLU accepts, implying also that it acknowledges the use of cryp-
tography, it extracts the session key in the form EKM,,(KS) from CINIT and
saves it for later use. The PLU uses this quantity for ciphering data which is
communicated during the session. The PLU converts the BIND image into a
BIND command. The BIND command is then transmitted to the SLU. Upon
receipt of BIND, the SLU (if it accepts BIND) extracts from it the quantity
EKMT(KS), saving it for later use in the session. The result of this dialogue is
that the two participating LUs are each provided with a copy of an identical
session key in a form suitable for use with their respective cryptographic
facilities.

One additional step is required to complete the process of session initiation
(Figure 7-4).2 It involves an action on the part of the SLU to verify that the
PLU has an identical copy of the session key, and that both the PLU and SLU
have the ability to encipher and decipher data correctly. If cryptography is
specified, a randomly chosen 64-bit number (N) enciphered under the session
key (KS) is appended to the positive BIND response. (Note that by SNA
protocol, the SLU is required to respond to the BIND command positively
if in agreement, negatively if not.) Representing N as the concatenation of
two 32-bit quantities, Nl and N2, the resulting quantity, Exs(N1, N2), is
thus returned to the PLU in the BIND response.

For those sessions bound using cryptography, the PLU is required to initiate
an additional command, the CRYPTO VERIFICATION (CRV) command.
The CRV command is used to send the quantity E&M, N2) to the SLU,
where m denotes the complement of Nl. The PLU produces this quantity

Terminal Host Process0 r I

Generate N = (Nl, N2).
Store N.

1 1

+ BIND Response -a- ------ -
E&N 1, W

-----------,
Invert bits

Compare (N) sent
with (N) received. ’

CRV Request -
E,,(Nl, W

in Nl.

a---a----- +CRVResponse ---------+

4 E&Data) b

Figure 7-4. Cryptographic Verification Procedure for Session Keys

21n this and all subsequent figures, SNA commands are denoted by solid arrows (---+)
and responses by broken arrows (- - +).

336 INCORPORATION OF CRYPTOGRAPHY INTO ARCHITECTURE

by deciphering Ek,(N 1, N2), which it received from the SLU in the BIND
response, inverting Nl, and enciphering (m, N2). The quantity Eks(N7, N2)
is then sent to the SLU (via CRV). Upon receipt of the CRV, the SLU deci- -
phers Exs(N1, N2), inverts m, and compares the result (Nl , N2) with the
random number (N) that,it originally sent to the PLU in the BIND response.
If equal, the SLU responds positively to the CRV (completing the session
initiation procedure), and messages may now flow between the two bound
LUs, within the constraints of SNA and subject to the agreed upon session
cryptographic protocol. If unequal, the SLU overwrites the stored copy of
the session key and responds negatively to the CRV. This action then causes
the PLU to terminate the session.

Besides verifying that the SLU and PLU have identical session keys and
that both LUs can correctly encipher and decipher data, the described hand-
shaking procedure prevents an attack known as the midnight attack, where
the data from an entire session is intercepted, recorded, and then later played
back into the terminal. (For a more detailed analysis of handshaking, see
Authentication Techniques Using Cryptography, Chapter 8.)

Furthermore, random number N is subsequently used by the LUs in ses-
sion as the initial chaining value (ICV) required with block chaining (see
Communication Security and File Security Using Cryptography, Chapter 4).
Note that SNA specifies block chaining with ciphertext feedback as the
default mode of data encryption.

Figure 7-5 illustrates the session concept in a single domain network where
cryptography has not been implemented. Figures 7-6 and 7-7 illustrate session-
level cryptography in a single-domain network where the cryptographic sys-
tem operates in a transparent mode and employs system managed keys
(KMTs and KSS).~

By employing system keys, the architecture discussed so far allows cryp-
tography to be used in a manner that is transparent to both terminal users
and application programs. If personal keys (KPs) are employed, cryptography
can still be used in a manner that is transparent to application programs (by
treating KP as a master key of a terminal), but requires an action on the part
of the user to install the key. For example, KP could be stored on a magnetic
stripe card and entered into the terminal during session initiation. A write
muster key operation would then allow KP to be loaded as the terminal’s
master key.

In this case, KP is used as a key-encrypting key, and session keys are thus
sent to the terminal in the form Er&KS), as shown in Figure 7-8. Except for
the fact that KP is identified by the user’s ID, whereas KMT was identified
by the terminal’s ID, the basic protocol has not changed.

3 The following legend applies to this and all subsequent figures: GENKEY (Generate Key)
produces a session key (KS) enciphered under the host master key (KMO) and transforms
it to encipherment under the appropriate secondary communication key(s) (KMT, KNC).
RETKEY (Retrieve Key) transforms a session key (KS) from encipherment under a
secondary communication key (KNC) to encipherment under the host master key (KMO).
CIPHER performs data enciphering and data deciphering on behalf of an application pro-
gram residing in the host. CKDS (Cryptographic Key Data Set) denotes a table of enci-
phered keys.

1

I
I
I
I
I
I
I
I s
I 4
I

5 zi
16

E I 3
8 1 3

I E

337

r

I

I

I

I

I
I
I
I

I I I

- --

A

: ,
:

t

I D
d
CJ %
ti’
+I

338

PRIVATE CRYPTOGRAPHY IN A SINGLE-DOMAIN NETWORK 339

INIT
+

+ INIT Response -------------
CINIT { E K~&% E,,,W))

b
+ CINIT Response -------v-m--

BIND t E,,,W) 1
4

+ BIND Response { E,, (Nl, N2) }
---_-------------------

-
CRV Request { E,,(N 1, N2) } v

c + CRV Response

Figure 7-7. Session-Level Cryptography in a Single-Domain Network
(SNA Command Flow, Transparent Mode)

Nontransparent Mode of Operation

In this mode, requests for cryptographic services originate with an applica-
tion program instead of a system routine, and positive action is required on
the part of the terminal user to load a personal key in the terminal (Figure
7-9). KP is entered in the terminal at session initiation, and a write muster
key operation is used to load it as the terminal’s master key. Session keys are
thus sent to the terminal in the form E&KS).

A private protocol can be established between the terminal and application
program by using the private bit in BIND (provided for this purpose by SNA).
But to process the BIND properly, the terminal must be programmable (i.e.,
the user must be able to program for private cryptography).

In the described protocol, key distribution is accomplished with BIND,
but there is no CRV issued. Keys are managed by the application program,
not the system, and if handshaking is desired it must be provided by the
private protocol.

PRIVATE CRYPTOGRAPHY IN A SINGLE-DOMAIN NETWORK

If a personal key (KP) is used to encipher and decipher data instead of a
session key (KS), then private cryptography must be used rather than session-
level cryptography. Although this mode of operation is not defined by SNA,
neither is it precluded. What is needed is a means of synchronization similar
to that provided by session-level cryptography (key selection, key generation,
cryptography selection mechanism, etc.) that has been agreed to and imple-

l Read Magnetic Stripe Card
l Load KP as Terminal Master Key
l LOGON I

Host System --- --_--_- - ---

/I VTAM

I I I I
CKDS

11 II
KM0 et E,,,(KP)

B
I
h
c

I E,p(KS)
I &&KS)

I

r- Application
Program

E&KS)

--
1

1 Application
Program

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INIT b

Response +-----

BIND t E,pW) 1

+ BIND Response em----+

CRV Request
4

+ CRV Response
-----+

E&Data)
4 b

Figure 7-8. Session-Level Cryptography in a Single-Domain Network
(Transparent Mode, Personal Keys, System Managed)

l Read Magnetic Stripe Card
l Load KP as Terminal Master Key
l LOGON

Host System

1

B
I
N
II

INIT I
l

I

+Response ---- l

BIND* { E,,(KS) } I
4

J

I
I
I
I
I
I
I
I
I
I

+ BIND Response I
- ----+

I
EK@W

4 b I

I
I

Application
Program

* “Private” Bit On
A--------__-_-_ -I

Figure 7-9. Session-Level Cryptography in a Single-Domain Network
(Nontransparent Mode, Personal Keys, Privately Managed)

b
Storage

I
I
I
I
I
I
I
I
I
I
I
I
I
I

-

0

a
M

-

9
z

I I=
------ J ‘2

8

342

SESSION-LEVEL CRYPTOGRAPHY IN A MULTIDOMAIN NETWORK 343

mented by the communicants in advance (i.e., the nature of the private
protocol must be defined).

With private cryptography (Figure 7-lo), KP is entered in the terminal
at session initiation, and a load key direct (LKD) operation is used to transfer
it to the terminal’s working key storage. KP can then be directly used to
encipher and decipher data with the ENC and DEC operations.

At the host, KP is maintained enciphered under the host master key (KMO).
In this form, the personal key can be directly used in an encipher data
(ECPH) or decipher data (DCPH) operation. But because the DCPH opera-
tion is available to any authorized user of the system, anyone having access
to KP can decipher data. Thus data security is enhanced if KP is stored off-
line and entered as an input parameter only when the using application is
executed.

Table 7-1 gives a brief overview of the possible implementations using
system managed keys and personal keys.

Approach Secondary
Communication

Key

Data-Encrypting Storage of Key
Key at Host

Fig. 7-6 Terminal Master Key Session Key
(KMV (KS)

E,,, (KMT) Stored
On-Line

Fig. 7-8 Personal Key Session Key E,,,(KP) Stored
W) (KS) On-Line

Fig. 7-9 Personal Key
W)

Session Key
6s)

E,, I(KP) Stored
On-Line

Fig. 7-10 None Personal Key
W’)

E,,,(KP) Typically
Stored Off-Line

Table 7-1. Summary of Approaches Using System Managed Keys and
Personal Keys

SESSION-LEVEL CRYPTOGRAPHY IN A MULTIDOMAIN NETWORK

The addition of another domain managed by another host requires additional
commands to flow in the session initiation process. Figure 7-l 1 describes the
multidomain case. Note that the difference between the multidomain case
and the single-domain case is the addition of a cross-domain link. It is over
this link that SNA supports a special session known as the cross-domain
session. The cross-domain session plays an important role in establishing
session-level cryptography between two LUs residing in different domains.

As in the single-domain case, the process might begin with the receipt of
an INIT command at the SSCP logically owning the SLU. Again, this is typi-

344 INCORPORATION OF CRYPTOGRAPHY INTO ARCHITECTURE

Domain j Domain i

Figure 7-11. SNA Session Initiation Command Flow in a Multi-Domain
Network

tally the result of a LOGON sequence entered at a terminal. The PLU (via
its SSCP) may also request a session with an SLU. If the SSCP receiving the
INIT determines that the requested LU is not in the immediate domain, it
initiates cross-domain communication with the appropriate owning SSCP.

The CROSS-DOMAIN INITIATE (CDINIT) command is sent between
SSCPs to indicate that an LU in the sender’s domain wishes to establish a
session with an LU in the receiver’s domain. Transmission of CDINIT and its
response allows each SSCP to define completely the communicating LUs.
The protocol permits session requests to originate in the domain of either
LU. No extension to CDINIT is required for cryptography.

A positive acknowledgment to CDINIT results in the creation and trans-
mittal of the CROSS-DOMAIN CONTROL INITIATE (CDCINIT) command.
It is through this command that the session key, enciphered under a secondary
communication key (KNC), is passed from one domain to another. (SNA
defines this key as a cross-domain key). In addition to enciphering KS under
the cross-domain key, the SSCP must also encipher KS under the SLU’s key.
This is because the SLU’s key is known only to its owning SSCP, and the
SSCP therefore is responsible for managing session key initialization. The
SLU’s key is either a terminal master key (KMT), if the SLU is a terminal,
or a special secondary communication key called a node application key
(KNA), if the SLU is a host application program. (For the distinction between
KMT and KNA, see Application Program-to-Application Program Cryptog-
raphy.) In either case, the session key (KS) is enciphered under the SLU’s
key and then placed in the BIND image. Both KS (enciphered under the
cross-domain key) and the BIND image are included in the CDCINIT
command.

The receiving SSCP extracts from CDCINIT the value of KS which was
previously enciphered under the cross-domain key. KS is then reenciphered
via a RETKEY macro instruction (see Key Management Macro Instructions,
Chapter 4) under the host master key of the SSCP, and the result is placed

Domain j Q SSCPj Q SSCPi Domain i

INIT Q SLU

CDINIT

;l,,i,,

+ CDINIT Response

t

-I CDCINIT I EKNcijWS), EKMT(KS) 1

CINIT I E,,oj(KS), E,,,(KS) 1

+ CDCINIT Response

t

------------ +I

PO Figure 7-12. Session-Level Cryptography in a Multi-Domain Network
VI (SNA Command Flow, Transparent Mode)

+ CINIT Response .----------- +I
BIND { E,,,(KS) 1

+ BIND Response { E&N 1, N2) } ------------------------------------
-

CRV t E,,W, W I

f CRV ResDonse
1

------------------------------- --

4 / / 1 KEY’ HER ’

Host j

CKDS

1
N
I l
T

LOGON

5 + BIND Response ----------,

EKMT(=)

Application -7
Program

6 CRV Request
4

7 +CRV Response ---e--w--)

EK@W
4 b

Note: numbered commands and responses are used to indicate the sequence of events.
Some responses are not shown to avoid unnecessary complexity.

4

Figure 7-13. Session-Level Cryptography in a Multi-Domain Network (Transparent Mode, System Keys, System Managed)

APPLICATION PROGRAM-TO-APPLICATION PROGRAM CRYPTOGRAPHY 347

in the appropriate field of a CONTROL INITIATE (CINIT) command. The
BIND image, which contains KS enciphered under the SLU’s key, is also
copied to CINIT, and CINIT is then passed to the requested PLU (application
program).

From this point, the action taken by the PLU and SLU is the same as dis-
cussed earlier (see Session-Level Cryptography in a Single-Domain Network.)
To summarize, the receiving PLU extracts from CINIT the value of KS which
was previously enciphered under the host’s master key, and stores it for later
use during the session. It also extracts the BIND image, which contains KS
enciphered under the SLU’s key, and transmits the enciphered session key to
the SLU via BIND. At the end of this exchange, both the PLU and SLU have
identical copies of the session key.

Figures 7-l 2 and 7-l 3 provide an overview of the command flow and keys
contained therein for the establishment of a cryptographic session between
two LUs in different domains.

APPLICATION PROGRAM-TO-APPLICATION PROGRAM CRYPTOGRAPHY

Unlike a terminal, an application program has no cryptographic facility of its
own; it must use the host’s cryptographic facility. Thus to perform encipher
and decipher operations, the session key used by an application program
must be enciphered under the host master key, that is in the form EKMO(KS).
Because of this, the nature of the key transformations that support
application-to-application communications vary slightly from those described
for application to terminal communications. (In SNA terms, an application
program is referred to as an outboard LU.)

Suppose that an SLU residing in host i has requested a session with a PLU
in host j. The session key to be used by the SLU thus appears as EKMOi(KS),
and is analogous to an outboard SLU’s session key which appears in the form
EKMT(KS). The SNA protocol for establishing a common session key requires
that the key be received by the SLU in BIND. In other words, it must be
sent to the SLU by the PLU. In the case of an outboard SLU, the key is
directly usable in the form E KMT(KS). However, in the case of an inboard
SLU, the equivalent approach of routing EKMOi(KS) to the SLU in domain
i via the PLU in domain j is not desirable from a security viewpoint. A ses-
sion key m the form E,,,i (KS) could be used directly in a decipher data
operation at host i. Thus if an opponent were able to obtain EKMOi(KS) and
data enciphered under KS (via an external wiretap), and obtain subsequent
access to host i, then the data could be recovered. The problem is overcome,
however, by enciphering the session key under an SLU key (KNA) associated
with the specific application program. The quantity EKNA(KS), instead of
E KMOi(KS), is sent to the PLU and returned via BIND to the host owning the
SLU. After being received, the quantity EKNA(KS) is transformed via a
RETKEY macro instruction4 to the quantity E,,,i(KS), which can then be

4To ensure that the transformation cannot be used indiscriminately, the key manager
could enforce a requirement that the program invoking RETKEY be privileged (see Pro-
tection of Host Keys, Chapter 4).

Host i

CKDS

2
ZDCINIT F

V’I‘AM + VTAM

I I
E KNCi

GEN RET CIP
KEY KEY ’ HER I

. I I

I I-
RET , CIP

I

KMOi l

1 Host j -

I/ INIIT.

I
EKMOiWS) EKES

EK,ojWS)

l-l Application I+-

7 + CRV Response --------,

E&Data)

E,,,(KS)

Note: some responses are not shown to avoid unnecessary complexity.

Figure 7-14. Session-Level Cryptography in a Multi-Domain Network (Application Program-to-Application Program Cryptography)

REFERENCES 349

used by the application program at host i to encipher and decipher data.
Application-to-application cryptography is illustrated in Figure 7-l 4.

Personal keys, whether managed privately or by the system, can be imple-
mented in multidomain networks in a manner similar to that described for
single-domain networks. The interested reader should have no difficulty in
making the necessary extensions.

PADDING CONSIDERATIONS

When the DES algorithm is used in a block cipher mode of operation (e.g.,
block chaining with ciphertext feedback), a requirement for padding arises
because communicated data quite often are not a multiple of 8 bytes (8
bits per byte). (The DES algorithm operates only with blocks of 8 bytes).
Therefore, the communications architecture must accommodate a require-
ment to pad data to 8 bytes.

The cryptographic extensions to SNA provide for message padding. When
padding is used, the last message block contains n data bytes (n = 1,2, . . . , 7),
7-n random pad bytes, and a 1 byte count indicating the number of added
(nondata) bytes. A defined bit in the accompanying RH is then set to indicate
to the receiver that the message must be stripped of pad characters after
decipherment. However, RH is not available to application programs. Thus
a private protocol that pads messages must provide a means to identify when
padding is used, and identify the number of added pad bytes.

REFERENCES

1. Lennon, R. E., “Cryptography Architecture for Information Security,” IBM Systems
Journal, 17, No. 2, 138-1.50 (1978).

2. McFadyen, J. Ij., “Systems Network Architecture: An Overview,” IBM Systems
Journal, 15, No. 1,4-23 (1976).

3. Cypser, R. J., Communications Architecture for Distributed Systems, Addison-
Wesley, Reading, MA, 1978.

4. Schwartz, M., Computer-Communication Network Design and Analysis, Prentice-
Hall, Englewood Cliffs, NJ, 1977.

5. Davies, D. W. and Baiber, D. L. A., Communications Networks for Computers, Wiley,
New York, 1973.

6. Proceedings of the IEEE, Special Issue on Packet Communication Networks, 66,
No. 11, 1301-l 588 (November 1978).

7. Albrecht, H. R. and Ryder, K. D., “The Virtual Telecommunications Access Method: A
Systems Network Architecture Perspective,” IBM Systems Journal, 15, No. 1,53-80 (1976).

8. Advanced Communication Function for VTAM (ACFIVTAM) General Information,
IBM Systems Library, Form No. GC27-0462.

Other Publications of Interest

9. Barber, D. L. A., Davies, D. W., Price, W. L., and Solomonides, C. M., Computer
Networks and Their Protocols, Wiley, New York, 1979.

10. Kent, S. T., Protecting Externally Supplied Software in Small Computers, Doctoral
Thesis, Massachusetts Institute of Technology, 1980. Department of Electrical En-
gineering and Computer Science.

Authentication Techniques Using 350..................
FUNDAMENTAL CONCEPTS 350.......................
HANDSHAKING 351...

Figure 8-1. Authentication of System Nodes 352........
MESSAGE AUTHENTICATION 354.....................

Authentication of a Message�s Origin 354..................
Figure 8-2. Message Encipherment 355................
Figure 8-4. Authentication of the Identity 356.........

Authentication of a Message�s Timeliness 358...........
Authentication of a Message�s Contents 359..............
Authentication by an Encryption Method 359..............

Figure 8-5. Authentication of the Content 360........
Authentication by an Encryption Method 361..............
Authentication Without Message Encryption 363........
Authentication of a Message�s Receiver 364..............
A Procedure for Message Authentication 364.............

Figure 8-7 (cont�d). 366..
AUTHENTICATION OF TIME-INVARIANT 367....

Authentication of Passwords 368................................
Figure 8-8. Authentication Using a Stored 368......
Figure 8-9. Authentication of Passwords 370.........

Authentication Using Test Patterns Generated 371....
Figure 8-10. Authentication Based Upon a 373.....

A Short Analysis 374...
Implementing AF and AR 374.....................................

Table 8-1. Comparison of Different 375.................
Figure 8-11. The AF and AR Operations 376.........

An Implementation Using the Cryptographic 377........
Figure 8-12. Generation of the System 379...........

A Procedure for Authentication of Cryptograph 381...
Figure 8-14. Authentication of Cryptographi 382....
Figure 8-15. The AF and AR Operations 383.........

REFERENCES 385...
Other Publications of Interest 385.........................

1 CHAPTER EIGHT

Authentication Techniques Using
Cryptography

FUNDAMENTAL CONCEPTS

Authentication is a process which proves that someone or something is valid
or genuine.. In a computer system or communications network, authentica-
tion is an important part of good data security. Cryptography offers a highly
secure means to authenticate transmitted messages, stored data, and the
identity of people and devices.

Generally, all authentication schemes have a common step in which the
validity of one or more parameters must be checked. An authentication
scheme is characterized by the nature of the preestablished relationships exist-
ing between the checked parameters and the quantities to be authenticated.

For example, authentication of a person’s identity requires a special test
of legitimacy in which a secret or nonforgeable parameter is supplied by the
identified individual together with a claimed identity (ID). By checking the
validity of the supplied parameter, the system can decide whether the identi-
fied individual is the person he claimed to be. (Personal authentication is
discussed in greater detail in Chapters 10 and 11, which treat electronic
funds transfer systems.)

Data parameters that remain constant for relatively long periods can be
authenticated using bit patterns which are pregenerated under secure condi-
tions. Data parameters which are not constant must be authenticated using bit
patterns generated dynamically within the system during normal operations.

The authentication techniques discussed in this chapter are based on a
conventional algorithm like DES, and it is assumed that:

1. The cryptographic algorithm is strong, which implies a property of
noninvertibility.

2. The cryptographic system can maintain the secrecy and/or integrity of
its cryptographic keys.

However, many of the concepts and principles apply to public-key algorithms
as well.

As previously defined, encipherment of plaintext X under cipher key K,

HANDSHAKING 351

results in cipher-text Y = Ex(X), and decipherment of ciphertext Y under
cipher key K results in plaintext X = D,(Y).)

A cryptographic algorithm has the property of noninvertibility if it is
computationally infeasible to determine cipher key K given knowledge of
plaintext X and cipher-text Ek(X). Many cryptographic authentication tech-
niques take advantage of this property by treating certain data as cryptog-
raphic keys. The idea is similar to that of using one-way functions in the
process of personal identification [l-3], in which case the function’s input
parameter(s) cannot be reconstructed from the function’s output parameter.

HANDSHAKING

Handshaking is a procedure to ensure that communication has been established
between two genuine nodes (devices) within a communications network.
Ordinarily used when communications are initiated, it permits a node to
prove that its communicating partner possesses the same data-encrypting
key. This is accomplished by testing that enciphered data can be commu-
nicated successfully between the two nodes.

In the key management scheme described in Chapter 4, a common session
key, KS, is established between a host and terminal by generating KS at the
host and transmitting it to the terminal. In this case, KS is protected by enci-
phering it under the terminal’s master key, KMT, which is resident within
the terminal’s cryptographic facility.

Even though the secrecy of KS is ensured by enciphering it with KMT,
without handshaking the procedure is exposed to the so-called midnight
attack. In a midnight attack launched against a terminal, the data associated
with an entire communication session, including the session key, which is
sent to the terminal under KMT encipherment, are wiretapped and recorded
(figuratively, by day). Later, (figuratively, by night), the opponent gains
unauthorized access to the terminal room and plays back the recording into
the terminal. During playback, the terminal is unaware that it is in communi-
cation with a fictitious node. The session key is deciphered and initialized in
the cryptographic facility. The ciphertext is then deciphered and presented
to the opponent who is stationed at the terminal. Handshaking prevents the
midnight attack.l

Figure 8-1 illustrates a procedure that allows node A (the terminal) to
authenticate node B (the host). (By reversing the procedure, node B could
also authenticate node A.) Assume that node A generates a pseudo-random
number N which it enciphers under the session key KS and transmits to node
B. N is padded with null characters if necessary, although it is assumed that
N is long enough to ensure that the probability of the same value recurring
is very low. N is recovered at node B by deciphering the transmission under

‘Other cryptographic methods could be used to defend against a midnight attack; for
example, a protocol of composite session keys (see Extended Cryptographic Operations,
Chapter 5). A midnight attack would also be blocked if (user-supplied) personal keys
were used at terminals instead of (system-managed) terminal master keys,

Node B: Node A:

I
N* (Pseudo-Random Value)

I
(Encipher)

(Transmit to Node B)
EKs(N

I
(Decipher)

(Apply A)

1 I

N

(Apply A)

*

A (N)

(Encipher)

pfG+a-&,

(Decipher)

1
A (NJ

No
(Terminate Session)

1 Yes

(Accept)

Note: A could be a function which inverts certain bits in N.

*Padding with zeros is indicated for the case where N does not have enough
bits. N must have enough combinations to prevent a successful attack by
trial and error.

Figure 8-1. Authentication of System Nodes via Handshaking

352

HANDSHAKING 353

KS. Note that this step is possible only if node B is a genuine node and a
copy of the correct KS is available. A nonsecret function A is applied to N,
and the quantity A(N) is enciphered under KS and sent back to node A. At
node A, A is similarly applied to the stored or saved value of N so that A(N)
can be compared with the corresponding value returned from node B. Node
B is accepted as genuine only if the comparison is successful. Otherwise,
the session is aborted.

The following example illustrates why an opponent is blocked from carry-
ing out a midnight attack when handshaking is used. Let Nl be a pseudo-
random number generated at node A during a session that is wiretapped by
an opponent. Assume that node A is a remote terminal. Later, when the
recording is played back into the terminal, a value N2 (not equal to Nl) is
generated within the terminal as part of the handshaking procedure. This
means that the prior value Ex,(A(Nl)) returned from node B is no longer
correct, and hence the comparison for equality between A(N1) and A(N2)
will fail. In an actual implementation, A could be a function that inverts
certain bits in N.

It is important that N be generated within the terminal and stored in a
protected memory. If N is entered by a human operator, or if the stored
value of N can be overwritten by avalue of the user’s choosing, the procedure
can be attacked. For example, during an attempted playback, the opponent
stationed at the terminal enters A(N2) instead of N2 (A is a nonsecret func-
tion) and wiretaps the quantity Exs(A(N2)), which is sent to node B instead
of Eks(N2). The original recording is now modified so that Ex,(A(Nl)) is
replaced by EKs(A(N2)). A second playback is made. This time the opponent
enters N2 into the terminal and the authentication check therefore succeeds.

To block this kind of attack, N can be defined as an operator-entered
number RN which is enciphered under the session key KS:

N E E,,(RN)

Since N is a function of the unknown session key KS, there is no way to
subvert the checking procedure unless it is possible to encipher or decipher
under the same session key. For example, if an opponent could gain access
to an unattended terminal during an actual session, then N2 could be entered
as data and the ciphertext Exs(N2) intercepted via a wiretap. Since A is a
nonsecret function, A(Ex,(N2)) could be computed from Exs(N2). Then, by
entering A(EKs(N2)) as data during the same session, the quantity
EKS(A@KS(N~))) could be obtained via a wiretap. Thus to defeat the system,
the opponent replaces Exs(A(Exs(N1))) with EKs(A(EKs(N2))) in the original
recording, and enters N2 at the terminal.

In an actual implementation, this attack may already be blocked. For
example, the attack would not be possible if certain characters in A(E,s(N2))
had no corresponding keyboard characters.

Whenever possible, the pseudo-random number N should be generated
within a terminal. In theory, this requires a nonvolatile storage in the ter-
minal; otherwise, the terminal will always start from the same initial condi-
tions when power is first supplied to it. However, from a practical viewpoint,

354 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

a free-running counter starting from the same value (after power-on) may be
acceptable provided that the resolution of the counter is such that syn-
chronizing the recorded playback with the power-on sequence is impractical.

MESSAGE AUTHENTICATION

Message authentication is a procedure which, when established between two
communicants, allows each communicant to verify that received messages
are genuine. Communicants can be people, devices, or processing functions.
Typically, a communicant acts as both a sender and receiver of messages,
although it is possible for a communicant to participate only as a sender or
receiver. Message authentication must allow the receiver of a message to
determine that:

1. The message originated with the alleged sender.

2. The contents of the message have not been accidentally or intentionally
changed.

3. The message has been received in the same sequence that it was trans-
mitted.

4. The message was delivered to the intended receiver.

In other words, message authentication permits the receiver to validate a
message’s origin, con tents, timeliness, and in tended destination. 2

Although message authentication permits the receiver to verify that mes-
sages are genuine, it does not always permit these properties (origin, contents,
timeliness, and intended destination) to be proven to or verified by a third
party. (If both the sender and receiver share the same secret information
used in the authentication procedure, the sender could later claim that a
message was manufactured by the receiver.)

However, an approach using digital signatures does permit the receiver to
prove to a third party that messages are genuine (see Digital Signatures,
Chapter 9). It provides that the sender cannot later disavow messages as his
own, the receiver is unable to forge messages or signatures, and the receiver
can prove to an impartial third party (referee) that the content of a message
is genuine and that it originated with the sender.

Authentication of a Message’s Origin

Two methods for a receiver to verify a message’s origin (sender) are discussed.
In the first method, the sender’s identity is verified through the use of a

2Proposed Federal Standard 1026 [4] defines authentication as “the process of assuring
that only intended parties or locations exchange and accept a given unit of information as
being valid.” The standard describes cryptographic methods to achieve the following
security objectives: detection of fraudulent insertion of messages; detection of fraudulent
deletion of messages; detection of fraudulent modification of messages; and detection of
replay of previously valid messages. These security objectives, therefore, represent a subset
of those specified herein.

MESSAGE AUTHENTICATION 355

Kl Encipherment

0,
A

‘cl
B

K2 Encipherment

Figure 8-2. Message Encipherment Between A and B

secret data-encrypting key shared by the sender and receiver. The receiver
verifies the sender’s identity by deciphering the received ciphertext using the
agreed upon key (determined by the sender’s ID), and checking that the text
has been properly recovered. In the second method, the sender’s identity is
verified through the use of a secret password (known to both the sender and
receiver) that is included within the transmitted message.

Suppose that communicants A and B use cryptographic keys Kl and K2,
where Kl is used only for transmission from A to B and K2 is used only for
transmission from B to A (Figure 8-2). To prove that a message originated
with A, B need only demonstrate that the message is properly recovered using
Kl . Similarly, to prove that a message originated with B, A need only demon-
strate that the message is properly recovered using K2.

If the communicants A and B use a common key K there will always be
some uncertainty as to which of the two (A or B) was the true originator of
a message. For example, it may be possible for a stale message sent from A
to B to be injected back into the communication path and redirected to A.
Unless steps are taken to prevent such a condition, A could never be certain
that a received message originated with B. This problem can be avoided if
the sender includes an identifier (ID) in all transmitted messages and the re-
ceiver authenticates the contents of the message (Figure 8-3).

When it is either impractical or undesirable to verify a message’s sender on
the basis of a cryptographic key, a password can be used instead. In that case,
A and B must agree ahead of time on the passwords to be used. Let PWa and
PWb be the respective passwords assigned to A and B. A includes PWa in all
messages sent to B, and B includes PWb in all messages sent to A. To prevent
an opponent from finding out the value of one of these passwords, which
could then be used to impersonate the respective communicant, passwords are
encrypted. But encryption alone is not enough, since an opponent may be
able to impersonate a communicant by substituting the communicant’s
encrypted password in a bogus message. The cryptographic procedure must
be such that if an encrypted password is used in a bogus message, it causes
either the recovered password to be incorrect or some other part of the mes-
sage authentication procedure to fail. Various techniques can be used. For
example, the password could be encrypted with a dynamically changing
data-encrypting key, or block chain encryption could be used with a variable
initializing vector (see Block Ciphers with Chaining, Chapter 2). The use of
constant passwords is illustrated in Figure 8-4. (The assumption is made here
that the number of password combinations is large enough so that it is im-
practical or impossible for an opponent to cause a correct password to be
produced via some process of trial and error.)

In a public-key cryptographic system (see Chapter 2), the sender (A) of an

.

.

.

356

A: Sender

(Message)

Stored
Value of PWa

Yes

*
(Sender is A)

(Identity of
Sender Uncertain)

PWa and PWb are secret passwords known only to A and B.
PWa is included in each message transmitted from A to B, and
PWb is included in each message transmitted from B to A.

Figure 8-4. Authentication of the Identity of a Message’s Sender Using Constant Passwords

358 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

enciphered message cannot be identified with the receiver’s (B) secret key
(SKb). This is because the receiver’s enciphering key (PKb) is not secret (it
is in the public domain) and, therefore, anyone can encipher a message with
that key. However, the identity of a message’s sender can be established if
the sender (A) operates on the message with a secret deciphering key (SKa)
(e.g., by deciphering the message). In that case, by enciphering the message
with the sender’s public key (PKa) and checking that it has been properly
recovered, anyone can verify that the message originated with A. However,
this form of authentication is achieved at the price of having no secrecy. If
secrecy is desired (or required), the deciphered message, Dsx,(M), must be
enciphered with the receiver’s public key (PKb). (For more details, see
Digital Signatures, Chapter 9.)

Authentication of a Message’s Timeliness

A procedure for verifying that messages are received in the same order they
were transmitted by the sender is as follows:

1. If a time-variant quantity Z is known in advance to both the sender
and receiver, then the order of transmitted messages can be established
by requiring that each message be enciphered using Z as an initializing
vector.3

2. If a time-variant quantity T is known in advance to both the sender
and receiver, then the order of transmitted messages can be established
by requiring that T be included in the text of each message.

Let Zl, 22, . . . ,Zn denote time-variant quantities used in transmitting a set
of messages, Ml, M2, . . . , Mn, respectively. Assume that block chaining
with error propagation is used for message encryption (see Figure 2-l 6). The
Z-values establish the sequence of transmitted messages because the ith ini-
tializing vector (Zi) allows only the ith enciphered message (Mi) to be re-
covered. Zi will not permit a different message (Mj) to be recovered. Therefore,
to verify that a message is received in its proper sequence, it is necessary only
to decipher the message using the appropriate initializing vector, and to verify
that it is properly recovered.

Messages can also be sequenced via a time-variant quantity T which is
included in the text of each transmitted message. Let Tl, T2, . . . , Tn
denote the time-variant quantities used in transmitting messages Ml, M2,
. . . , Mn, respectively. For example, Tl, T2, . . . , Tn could be the nonsecret
sequence numbers 1, 2, . . . , n. In that case, the recipient could verify that
messages are received in their proper sequence if the procedure in Figure
8-3 were changed to include T as well as ID.

3There are many ways in which initializing vectors can be established between two com-
municants. In general, selecting a satisfactory and secure method will depend on the in-
tended application and environment.

MESSAGE AUTHENTICATION 359

Another approach is to use a list of one-time passwords, Tl , T2, . . . , Tn,
which are agreed upon in advance. These passwords, if used with the procedure
in Figure 8-4, allow the receiver to establish the identity of the sender and
verify that messages are received in their proper sequence.

The disadvantage of this procedure is that each communicant must keep a
record of the next value of T to be used. In addition, the procedure must
handle cases where synchronization has been lost. This can be partially over-
come if T is a value taken from a TOD clock. In that case, the receiver can
authenticate T by using a simple test of reasonableness.

In a different approach, whenever A informs B that it wants to send B a
message, B sends A a random number T which A includes in the text of the
prepared message. B ensures that the message has been received in its proper
sequence by verifying that the correct value of T has been returned in the
text of the message. In this procedure, T is a variable that is produced when
needed. However, since T is included in the text of the message, the procedure
works only if the receiver also verifies the contents of the message.

Authentication of a Message’s Contents

The contents of a message are authenticated by verifying the correctness of
an authentication code (AC), also called a message authentication code
(MAC), that is computed by the sender and appended to the message (plain-
text or ciphertext) before it is sent to the receiver.4

Authentication by an Encryption Method
with the Property of Error Propagation

Authentication of the contents of a message is easily accomplished if the
message is enciphered with an encryption method that has the property of
error propagation. A block chaining scheme such as plaintext-ciphertext
feedback (see Figure 2-16) could be used. The procedure requires that a
quantity known to the receiver (and sender) be appended to the end of the
message prior to encipherment (e.g., the initializing vector Z, or the first block
of plaintext X(1)). After decipherment, the contents of the message can be
authenticated by verifying that the correct quantity appears at the end of
the message. If the quantity appended to the end of the message contains c
bits, then any change in the ciphertext will be detected with a probability
approximately equal to (2” - 1)/2c = 1 - l/2”.

Figure 8-5 illustrates a procedure in which the fist c bits of the message
are repeated at the end of the message. Upon encryption, these c bits represent
the AC. If an error occurs in the ciphertext, the recovered plaintext (after
the point of error) will also be in error. In that case, the first c bits of the
recovered plaintext will differ from the last c bits with a probability equal to
1 - 1/2c.

4Procedures to authenticate a message’s contents are discussed in Cryptographic Message
Authentication Using Chaining Techniques, Chapter 2.

A: Sender

x1.1 x1.2

m a 0 b

I-&!Z+(lVot True Content)

It is assumed that plaintext block Xi is dependent on ciphertext blocks Y 1,
Y2, . ..) Yi and key K. An error in ciphertext, or decipherment with the
wrong key, can be detected with probability 1 - 2- ‘.

Figure 8-5. Authentication of the Content of a Message Using Chained
Block Encryption with Error Propagation

Yes Y
(True Content)

MESSAGE AUTHENTICATION 361

Authentication by an Encryption Method
Without the Property of Error Propagation

If the encryption method does not have the property of error propagation
(e.g., chained block encryption using ciphertext feedback, Figure 2-17),
then a change to the ciphertext may or may not cause the last block of
recovered plaintext to be in error. In this case, an approach slightly different
from that just discussed can be used to authenticate the contents of a message.

Since an error in the ciphertext is not propagated in the recovered plain-
text but instead is localized, the pattern of bits appended to the end of the
message must be a function A of the entire message (not merely part of the
message). The function A transforms a message M of arbitrary length into a
relatively short, fixed length, pattern of bits A(M), such that with high prob-
ability A(M) will differ from A(M’) whenever the recovered message (M’) dif-
fers from the original message (M). The enciphered value of A(M) represents
the AC. (A may be a nonsecret function or a secret function known only by
the appropriate communicants.) A procedure in which messages are enci-
phered using block chaining with ciphertext feedback is illustrated in Figure
8-6. (Ciphertext feedback is illustrated in Figure 2-l 7.)

Even if A were such that one could easily find an M andM’ where A (M) =
A(M’), this alone would be insufficient to allow the authentication procedure
to be defeated. This is because M and A(M) are encrypted. Even if a forged
message (M’) could be derived, the opponent could not encrypt it with the
proper key. On the other hand, in order to calculate M’ such that A(M’) =
A(M), the value of M or A(M) must first be known. But since M and
A(M) are encrypted, it is assumed that this information is denied to the
opponent. Consequently, the opponent can make changes only to the cipher-

text, in which case he ordinarily has no control over the recovered plaintext (M’)
when the message is deciphered. If the length of A(M) is c bits and the bit patterns
A(Ml), A(M2), . . . , A(Mn), are (nearly) randomly distributed over the set of 2’
possible values for n arbitrarily selected messages, then A(M’) will differ from A(M)
with a probability equal to 1 - l/2’.

LetA(M)=XlElX2El.. . El Xn, where El denotes a hashing operator, and let
the augmented message M* = Xl, X2, . . . , Xn, A(M) be encrypted, e.g., using
block chaining with ciphertext feedback (Figure 2-17, i.e., CBC mode). The last
block of ciphertext is defined as the AC.

Jueneman has shown that defining El as modulo 2 addition is not secure if en-
cryption of M* is performed using CBC mode [5]. (A permutation of the ciphertext
blocks and/or insertion of an even number of spurious ciphertext blocks will pro-
ducearecoveredmessageM’ = Xl’, X2’, . . . , defining El as modulo 2 addition is
not secure if encryption of M* is performed using cipher feedback (Figure 2-30, i.e.,
CFB mode) or with a key auto-key cipher (Figure 2-12) 161.

A simple method of.computing A(M) (still to be more thoroughly analyzed, see
Reference 6) is to define El as modulo 264 addition.

. b c . p. .e

. g,

D

z -

MESSAGE AUTHENTICATION 363

Another, even more secure, method of computing A(M) would be to encrypt M
under a first secret key (using CBC mode) and define A(M) as the last block of
ciphertext. The augmented message M” is then encrypted under a second or variant
secret key (again using CBC mode).

Authentication Without Message Encryption

It may happen that message authentication is required in cases where messages
are sent in unencrypted form, either because there is no need for privacy or
because an intermediate network node without an encryption capability must
be able to read messages. Thus it is worthwhile to investigate schemes that
authenticate unencrypted text (plaintext).

In the discussion that follows, assume that M = (Xl, X2, . . . , Xn) is a
message to be transmitted in unencrypted form, and that M* = (M, AC) is
the augmented message comprised of M and an appended AC. Since M is
nonsecret, the authentication procedure must be such that only authorized
individuals can compute AC. In effect, this means that the procedure itself,
or a parameter used by the procedure, must remain secret. Otherwise, an
opponent could compute AC’ for any M’ and substitute (M’, AC’) for (M,
AC).

Consider a solution in which the communicants, denoted by the end
points in the network, have an encryption capability, whereas the interme-
diate points in the network have no encryption capability. The cryptographic
algorithm and a shared key are used to compute AC. A strong procedure
results if the message M is enciphered using block chaining with ciphertext
feedback and the AC is defined as the last block of ciphertext (Yn).

However, a weak procedure results if AC is defined as the encipherment
of A(M) under K and A(M) is produced by Exclusive-ORing the blocks of
plaintext:

Such a scheme is easily defeated by replacing Xl through Xn - 1 with any
quantities X’l through X’n - 1 and replacing Xn with X’n, where X’n is
defined as

X’n = X’l @ X’2 o . . . @ X’n - 1 @ A(M)

In this case, knowledge of M provides an opponent with enough extra infor-
mation to defeat the procedure successfully.

The procedure for authentication without message encryption could also
be defeated if A(M) were computed with a polynomial code. Let q be the
modulus, and let r be the remainder when M is divided by q. M can be ex-
pressed by the equation M = kq + r, where k is an integer that depends on

364 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

the value of M. However, for a fixed q and r, and any i not equal to k, each
message in the set IMi : Mi = iq + r, i Zk) would be a candidate that could
be substituted for M.

If quantity E&A(M)) is defined as the AC, then it is evident that an
opponent cannot merely substitute a bogus message (M’) for M, since without
K the new authentication code, AC’ = Ex(A(M’)), cannot be computed.
However, if A has the property that an M’ can be easily found such that
A(M’) = A(M), then the procedure is exposed to an attack wherein M’ is
substituted for M.

Authentication of a Message’s Receiver

The methods already discussed for authenticating a message’s sender are
easily adapted so that the message’s receiver can authenticate that it is the
intended receiver. Let A and B denote the sender and receiver, respectively.
The receiver has enough information to verify that the message has been
delivered to the correct destination (receiver) whenever any of the following
conditions are satisfied:

1. A and B share a pair of secret keys, where one key is used to encipher
messages sent from A to B and the other key is used to encipher mes-
sages sent from B to A.

2. A and B share one secret key used to encipher messages sent to each
other, and the ID of the receiver is included in the text of each message.5

3. A and B share a pair of secret passwords, where A’s password is in-
cluded in the text of each message sent to B, and vice versa.

4. A and B share one secret password, but they include ID information
in each message, as discussed in condition 2 above.

In a public-key cryptographic system (see Public-Key Algorithms, Chapter 2),
the receiver uses its secret deciphering key to verify that it is the message’s
intended receiver. The receiver knows that a message was directed to it if the
correct text is recovered after the message has been deciphered with its secret
key.

A Procedure for Message Authentication

Several of the previously discussed ideas are now combined into a single pro-
cedure for authenticating messages (Figure 8-7). The procedure has the fol-
lowing characteristics:

1. An encryption method with the property of error propagation is used
to authenticate the contents of a message.

2. Passwords are used to authenticate the sender and receiver (i.e., the
sender and receiver share secret passwords).

‘Since there are only two communicants, an acceptable protocol could be established
in which only the ID of the sender is included in the text of the message.

365

366 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

A: Receiver

‘;” El . . . rl (Ciphertext Received from B)

r$l 17 . . . +i (Recovered Plaintext)

No , (Sender not B, or Intended
Receiver not A, or Both)

Yes

No (Incorrect Order, Not True
Content, or Both)

Yes

7
(Message Authenticated)

*Block chaining with plaintext-ciphertext feedback

Figure 8-7 (cont’d).

3. A time-variant quantity T is used to verify that messages are received
in their proper sequence.

If the cryptographic key used for encipherment is a personal key, KP, then
the password, PW, may be omitted from the procedure. On the other hand,
if the key used for enciphering is a session key, KS, then the following can
be said:

1. The sender need only include PW in the first transmitted message. This
is because at session initiation a correspondence between PW and KS is
established that lasts for the duration of the session. Once PW has
been verified, KS and T can be used to authenticate the message’s
sender and intended receiver.

2. If T is omitted from the procedure, it is still not possible for messages
intercepted during one session to be successfully redirected to one of

AUTHENTICATION OF TIME-INVARIANT DATA 367

the communicants during another session. This is because KS is also a
time-variant quantity-a message enciphered with one session key is
not properly deciphered with a different session key. In that case, the
message’s content can be authenticated using the method described in
Figure 8-5 (i.e., by appending a known value to the end of the message
and enciphering the result with an encryption method that has the
property of error propagation).

Generally, the quantity T should contain at least 16 bits (c = 16). If greater
integrity is desired, up to 64 bits could be used conveniently with DES.

If passwords are entered into the system through a single standard interface,
such as at a remote terminal during sign-on, additional measures can be taken
to enhance the security of the personal identification procedure (see Chapters
10 and 11). For example, passwords could be enciphered under a special
cryptographic key resident within the terminal, or each password could be
treated as a cryptographic key (provided it has enough combinations) and
used to encipher a nonsecret value that has been agreed upon in advance. An
opponent who intercepts a transformed password cannot enter this value
through the standard interface and gain entry to the system.

In the final analysis, there is no set of authentication procedures that can
satisfy the processing and security requirements of all conceivable applica-
tions implemented under all operating conditions. Thus each method of
authentication (origin, contents, timeliness, and intended recipient), or com-
bination thereof, must be evaluated according to the particular application
for which it is intended. In so doing, a set of assumptions about the type of
information an opponent would have available to defeat the method must
also be established. Selection of a method is accomplished by ensuring that it
defends against the opponent’s anticipated attacks.

AUTHENTICATION OF TIME-INVARIANT DATA

Computer system integrity is the state that exists when there is complete
assurance that the system will perform as intended by its designers. His-
torically, computer system integrity has been based on the concept of acci-
dental error [7]. That is, ways were sought to provide protection only from
the accidental loss or destruction of data. No attempt was made to prevent
deliberate tampering with the operating system or stored data.

Today it is recognized that data security6 must include protection from
intruders who deliberately attempt to gain unauthorized access to protected
resources. Authentication methods that permit only authorized system users
to access and manipulate system resources are essential to achieve system
integrity. Authentication is the process which proves that someone or some-
thing should be accepted as being valid or genuine.

6Data security is defined as the protection of data from unauthorized disclosure, destruc-
tion, and modification, either by accident or intent.

368 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

Authentication of Passwords

A common method of authenticating time-invariant data is by comparing
the data with a copy of those data which has been stored elsewhere in the
system. For example, a user’s ID (i.e., the users name or account number) is
verified by comparing a supplied password (PW) with a corresponding pass-
word stored within the system (Figure 8-8).

This method of checking can be improved whenever passwords are entered
into the system from a remote entry device (terminal or hand-held unit
attached to a terminal) capable of encryption [2, 3 I. A cryptographic opera-
tion, A, is used to protect the secret PW by transforming it into a nonsecret
quantity, A(PW). The quantity A(PW) is then transmitted to a central facility
to verify the user’s identity by comparing it with a similarly precomputed
value stored in the system.

Password and ldentifier
Supplied by User

PWi IDi

i-+Lb Reject Candidate

I Yes

stored PWi

Verification
Table

IDl, PWl
1D2, PW2

.

.

.

IDn, PWn

Accept Candidate
(ID Valid)

ID is a user identifier (name, account number).

Figure 8-8. Authentication Using a Stored Table of Passwords

AUTHENTICATION OF TIME-INVARIANT DATA 369

When the cryptographic operation (A) is based on a strong algorithm such
as DES, the value of PW cannot be deduced, even using involved cryptanalysis.
In some cases, this degree of protection is absolutely essential (e.g., when PW
is the basis for commercial wire transfer of funds as in electronic funds trans-
fer, EFT). In general, the services provided by such a system (debiting
and/or crediting customer accounts) are predicated on knowing the customer’s
identity.

Modern banking methods incorporate self-service terminal devices at which
customers conduct their banking business. Such methods do not require
customer recognition by an institution employee. Instead, the device and
supporting system must be responsible for identifying the customer. Typically,
when a transaction is initiated, the customer supplies a secret parameter (a
password or more precisely a personal identification number, PIN) together
with a claimed ID. The PIN must be managed securely to preserve the integrity
of the transaction.

One way to protect PW (or, equivalently, PIN for EFT systems) would
be to encipher PW under a secret key available at an entry point to the sys-
tem (i.e., A(PW) = Ek,,(PW)). Alternatively, when PW has enough combina-
tions, it may be treated as a cryptographic key and used to encrypt (at the
entry point) a test phrase such as the user’s ID (i.e., A(PW) = Erw(ID)). The
latter approach has the advantage that only user-supplied quantities are needed
to effect the transform A, whereas in the former case a system-managed key
is required.

However, with most customer-oriented EFT systems, the PIN (PW) is
usually comprised of only four to six characters, so that it is easy to remember
and convenient to use. The short length also makes the PIN susceptible to
exhaustive attacks (methods to determine the PIN using direct searches or
trial and error techniques). The PIN’s short length thus makes it unsuitable
for use as a cryptographic key. However, an approach which overcomes the
objection of a short PIN and at the same time enhances key management
would be for each customer to supply also a secret personal key (KP). With
such an approach, exhaustive attacks against PIN and KP could be blocked
by defining A(PIN, KP) = E xP (B rIN(ID). (See Applying Cryptography to
Electronic Funds Transfer Systems-Personal Identification Numbers and
Personal Keys, Chapter 11.) In any case, the purpose of A is to transform
PW into a nonsecret form so that it can be safely transmitted to a central
facility (host processor) for authentication.

Upon receipt at the host processor, A(PW) is used to verify the user’s
identity by comparing it with a similarly precomputed value stored in the
system (Figure 8-9). Storing A(PW) in a verification table at the central
facility will protect the secrecy of passwords (Figure 8-9), but it will not pro-
tect against an intruder who could alter data stored in the verification table.
If an opponent were able to create A(X) for an arbitrary value of X, and re-
place A(PWi) with A(X) for some user identifier (IDi) in the verification
table, then entry to the system could be gained by inputting the known value
of X at any entry point. Moreover, a legitimate user of the system with IDj
could gain entry under a different identifier, say IDi, by replacing A(PWi)
with A(PWj). In either case, once entry had been achieved, A(PWi) could be
put back into the verification table to prevent subsequent detection.

370 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

Transformed Password and Identifier
Received from Entry Point Device

A(PWi), IDi

I-~~~ Reject Candidate

$1 1Di I

stored A(PWi)

Verification
Table

IDI, A(PWI)
ID2, A(PW2)

.

.

.
IDn, A(PWn)

No Accept Candidate
(ID Valid)

Reject Candidate
(ID Invalid)

A is a cryptographic operation used to transform PW at its entry point into
the system. For example, A(PW) could be represented by E,,,(PW) or
E&ID), where ID is a user identifier (name, account number).

Figure 8-9. Authentication of Passwords that have been Transformed
Under a Cryptographic Operation A

An active wiretap threat in which A(F’Wi) and IDi are intercepted and later
retransmitted to the host could be blocked by cryptography (e.g., by imple-
menting a protocol for message authentication between the entry point
(terminal) and host). However, defenses against the threat of wiretaps in
communications networks can be achieved through communication security
techniques described in Chapters 4-7 an&l are not treated in the present
discussion.

Gaining unauthorized entry to the system by altering or manipulating the
verification table can be prevented by using the technique described for pass-
word verification. This technique protects against misuse of information stored
in a verification table, even by those who manage and maintain the table and

AUTHENTICATION OF TIME-INVARIANT DATA 371

who have legitimate access to it. This authentication technique makes use of
a special test pattern (TP) not equal to A(PW), which can be used at any
later time together with a special cryptographic operation to verify A(PW).

In the discussion that follows, ID and A(PW) are assumed to be 64-bit
quantities. (Parameters less than 64 bits can be padded to 64 bits using some
agreed upon protocol; e.g., padding with zero bits.) Moreover, it is assumed
that an opponent has read and write access to the verification table.

Authentication Using Test Patterns Generated from the Host Master Key

This procedure, which assumes the DES algorithm, is a general technique to
authenticate the contents of a 64-bit block of data (X). For example, pass-
word authentication is performed by setting X equal to A(PW). However,
unlike the method of password authentication described above, this method
is not exposed to attacks based on an alteration or manipulation of the veri-
fication table.

The basic idea can be implemented within a host processor that has an
encryption capability by providing two cryptographic authentication opera-
tions: authentication forward (AF) and authentication reverse (AR). These
two operations are defined

AF: IX, TPI - VP
AR: IX, VP) - TP

where the contents in the braces indicate the input to the host’s cryptographic
facility, the arrow points to the result, and

X = the data block to be authenticated
TP = test pattern associated with X
VP = verification pattern assigned to X

TP and VP are nonsecret parameters, each containing 64 bits.
Basically, AR computes the test patterns needed to initialize the system

and AF validates data parameters. Hence AR must be restricted to certain
special runs with particular users-those responsible for initializing and up-
dating the system. One way to ensure that AR is executed only under secure
conditions is to require that it be activated by physically turning a key-
operated security lock. 7 AF is available to any program or system user need-
ing to validate data parameters. Therefore, AF must have the property that
TP cannot be computed or deduced from X and VP.

For each Xi requiring authentication, there is a corresponding test pattern
(TPi) that must be computed in advance. For this reason, the quantity to be
authenticated must be known beforehand in clear form. The technique

cannot be used when the data to be authenticated are time-variant, such as
messages transmitted in a network. Otherwise, this method is completely

general; it can be applied to any quantity (Xi).

‘In general, what is needed to perform the mappings AF and AR is a trapdoor one-way
function 181.

372 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

Authentication of Xi takes place by exercising the AF operation

AF: {Xi, TPi) b VPi

and comparing the result (VPi) for equality with the corresponding predefined
verification pattern to determine whether Xi should be accepted. If the two
values are equal, Xi is accepted. Otherwise, Xi is rejected. Only the correct
Xi and TPi will produce VPi. A different result (Z VPi) is produced if one or
both of the input parameters are changed.

VPi must be a value related to the identity of Xi. For example, VPi could
reflect the name of Xi or the address in main storage where Xi is stored
(assuming Xi’s storage location does not change). If VP1 = VP2 = . . . =
VPn = constant, then by replacing (Xi, TPi) with (Xj, TPj) the system could
be deceived into using Xj in place of Xi.

Let the relationship between VPi and IDi (the identifier of Xi) be expressed
as

VPi = V (IDi), i=l,2,...,n

where V is a function which prevents ID from being computed from VP. For
example, V (ID) could be defined as E,,(C), where C is a nonsecret constant
value.8 Figure 8-10 illustrates how the test pattern scheme could be applied
to password authentication, where the quantity to be authenticated is
Xi = A(PWi).

The reason for employing a V function with these properties can be ex-
plained by referring to Figure 8-10. Suppose an opponent chooses a pass-
word (PW) and obtains A(PW) as the result of a sign-on attempt (e.g., via
a wiretap). Assume also that VP = ID. The opponent now selects an arbi-
trary test pattern (TP) and exercises AF using A(PW) to obtain VP, which
subsequently is specified as ID. By creating an entry in the verification table
for the forged values of ID and TP, the opponent could then sign-on the
system using the selected password and the corresponding derived identifier.

This attack may already be partially blocked if, for example, the ID con-
sists only of alphameric characters (A, B, . . . Z, 0, 1, . . . , 9) and an initial
consistency check is performed to test its validity. This type of consistency
check is assumed in Figures 8-8, 8-9, and 8-l 0 (“ID format correct?” deci.
sion block).

VPi does not need to be kept secret because a potential intruder cannot
deduce the correct TPi for a given Xi and VPi. (Note that TPi can be created
only by using the AR operation and the AR operation is available only to
authorized persons.) It should also be realized that VPi must be checked in
a dynamic sense (i.e., it must not be compared to a stored system value).
Otherwise, an opponent using AF could compute VP for a valid X and ar
arbitrary TP and replace the correct table value with the value so obtained

‘Greater security can be achieved if the method is extended to two test patterns. For
example, one could define VPil = E&Cl) and VPi2 = E&C2), where Cl and C2 are
nonsecret constant values. In that case, Xi and VPil would be used to generate TPil , and
Xi and VPi2 would be used to generate TPi2.

Transformed Password and Identifier Received
from Entry Point Device
Xi=At Ni), IDi

Lez& Reject Candidate

IDl, TPl
ID2, TP2

.

u-t .
.

IDn, TPn

Accept Candidate Reject Candidate
(ID Valid) (ID Invalid)

A is a cryptographic operation used to transform PW, at its entry point,
into a nonsecret quantity. A(PW) could be defined as E,,,(PW) or
E,,(ID), where ID is used as an identifier. V is a cryptographic operation
used at the host to transform ID into VP.

Figure S-10. Authentication Based Upon a Table of Test Patterns

373

374 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

A Short Analysis

It would be unwise’to define VP equal to ID. However, to gain further in-
sight into the matter, assume the following for the sake of discussion:

1. The length of ID is less than or equal to 64 bits.
2. VP is defined as the ID padded with enough zero bits to create a 64-bit

quantity.

64-n n

VP= ID
I

Zero Bits
I

3. Each of the m = 264 - n combinations for ID are valid, and hence there
are m possible values for VP.

In theory, the authentication procedure could be attacked in the following
way :

1. For each of the m values of ID, the pairs (IDl, V (ID l)), (ID2, V (ID2)),
. . .) (IDm, V (IDm)) are computed.

2. For an arbitrary Xi, the AF operation is exercised using different values
of TP. This is continued until a VP is found which matches one of the
m values in the list: V (ID l), V (ID2), . . . , V (IDm).

Since there are 2@’ possible verification patterns, the probability that an arbi-
trary TP will produce a valid verification pattern is 2@ - ” /2@ = l/2”. There-
fore, about 2” - ’ trials (exercising AF) are needed, for a given X, to find a
TP that produces a VP in the list:

V(IDl), V(ID2), . . . , V(IDm)

As a consequence, about 2 6~ - n + 2” - 1 trials are needed to carry out the
attack. The V function must be exercised 2 64 - ” times to obtain the relation-
ship between ID and V (ID) for each ID, and the AF operation must be exer-
cised 2” - l times to find an appropriate TP. If n is small (the number of IDS
is large), then the V function must be exercised more frequently than the
AF operation. If n is large (the number of IDS is small), then the AF operation
must be exercised more frequently then the V function. The value of n that
is selected thus determines the opponent’s work factor.

Table 8-l provides a summary of the effective security achieved with each
of the three authentication procedures: unenciphered passwords, transformed
passwords, and test patterns.

Implementing AF and AR

One way to implement AF and AR using a conventional cryptographic al-
gorithm like DES would be to define special encipher and decipher opera-

AUTHENTICATI.ON OF TIME-INVARIANT DATA 375

Protection Method Opponent can read from, but Opponent can read from and
not write into verification write into verification table.
table.

Password stored in
verification table (Figure 8-8).

Password stored in
verification table (Figure 8-9).

Test patterns stored
in verification table
(Figure 8-10).

Actual Verification informa- Actual Verification information
tion can be obtained. Oppo- can be obtained. New verifica-
nent can LOGON pretending tion information can be
to be someone else. created, i.e., a new user can be

introduced into the system.

No subversion possible. Actual verification information
cannot be obtained. New verifi-
cation information can be
created, i.e., a new user can be
introduced into the system.

No subversion possible. No subversion possible.

Table 8-1. Comparison of Different Verification Procedures

tions using a new variant9 of the host master key-a variant defined solely
for the purpose of authentication [91. With a public-key algorithm such as the
trapdoor knapsack or the RSA algorithm (see Block Ciphers, Chapter 2), AF
and AR would be implemented via the public and private keys, respectively.

Let KM5 represent the fifth variant of the host master key and define

AF: {Xi, TPi) w EoKMS(Xi)(TPi) = VPi

AR: {Xi, VPi) -+ DDmsFQ(VPi) = TPi

Figure 8-11 describes the steps taken by the cryptographic facility to perform
the AF and AR operations.

Let KAi be a cryptographic key defined as follows:

KAi = DKMJ(Xi), i=1,2,...,n

The integrity of the authentication procedure is assured because of the
following:

1. By using a special variant of the host master key (KM5), it is not pos-
sible to use other cryptographic operations, singularly or in combina-

9A variant of the host master key is derived by inverting selected bits in the master key
(see Protection of Host Keys, Chapter 4). In effect, a cryptographic system with multiple
master keys is achieved when in fact only a single master key is stored in the cryptographic
facility. By defining a cryptographic operation to be dependent upon a specific host
master key variant, one effectively isolates that operation from all others without loss of
cryptographic strength.

Xi T i

1
ED K&Xi)(TPi) = VPi

Xi \

AR: I

i ‘P,

-b
D,,,(Xi)EKAi

1
DD ~&Xi)(VPi)=TPi

AF is used to authenticate Xi with TPi; AR is used to generate test patterns. Xi is
the value to be authenticated; TPi and VPi are the test pattern and verification
pattern corresponding to Xi. KM5 is the fifth variant of the host master key.

Figure 8-11. The AF and AR Operations

AUTHENTICATION OF TIME-INVARIANT DATA 377

tion, to subvert or reverse the effect of AF and AR. Likewise, no
other operation is provided that will allow encipherment or decipher-
ment under KM5. Furthermore, KAi never appears in the clear outside
of the cryptographic facility. Hence for an arbitrary Xi there is no wav
to determine the corresponding KAi, and vice versa.

2. AF allows arbitrary encipherment under KAi, but no (inverse) opera-
tion is provided to allow decipherment under KAi.

An attack in which the AF operation and the V function are repeatedly
exercised in order to find an X, TP, and ID such that

AF: 1X, TP) - VP = V (ID)

can be thwarted by making the number of trials sufficiently large (see also
footnote 8).

The method for authentication discussed herein is a general scheme for
validating the contents of a time-invariant data variable of arbitrary length.
The test of legitimacy is based on a previously computed, nonsecret, nonforge-
able test pattern (TP), whose functional relationship to the data is verified
(at any later time) using a dynamically generated, nonsecret verification pat-
tern (VP). The method does not rely on either the security or integrity fea-
tures of a host processor and operating system to protect a verification
table.

The cryptographic principles upon which this method is founded include:

1. Ability to create a test pattern using a cryptographically secure oper-
ation involving the quantity to be authenticated and a secret key resi-
dent in a host.

2. Ability to deny unrestricted usage of AR, the cryptographic operation
used to create test patterns. (For all practical purposes, the user sees
only a one-way function which allows a verification pattern to be gen-
erated from the quantity to be authenticated and the test pattern.)

An Implementation Using the Cryptographic Operations Proposed for
Communication and File Security”

Except for set master key, each of the host’s cryptographic operations pro-
duce outputs that depend on either the host master key or one of its derived
variants (see Chapters 4 and 5). There are many mathematical identities in-
volving the cryptographic operations which might be the basis for an authen-
tication procedure. One such technique is described here.

At the time the host’s master key is entered into the cryptographic facility
(read into main storage and used as the object of a set master key operation),
the following steps are performed :

1. KM 1 and KM2 are obtained directly from KM0

lo Only the cryptographic opt,.ations defined in Chapter 4 are used.

378 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

2. EMK: {KM11 - EKMO(KM1)

3. DCPH: {EKMO(KM1), Cl d DKMl(C)

4. EMK: {KM21 - ExM,,(KM2)

5. ECPH: {EKMoWW, DKM~(C)I - EKM~DKM~(C))

C is an arbitrary nonsecret value which remains constant for all generated
test patterns. The quantity

is called the system authentication key. The system authentication key is a
secret parameter used to create test patterns. It is created during a secure
computer run, before or during the time when test patterns are created. A
copy of KA should be sent to a suitable output device and stored in a secure
place for future use. KA and all quantities involved in the computation are
erased from main storage when processing is complete.

Test patterns are also created during a secure computer run. KA is made
available either by reading it into main storage or by initially creating it. It
is assumed that Xi and VPi are available for each required TPi. The procedure
is as follows:

1. DCPH: {Xi, VPil b DnKMO(xi)(VPi) = Qi

2. RTMK: {KA, Qi) - EKMO(DDKM1(c)(Qi)) z TPi

The output of step 2 is defined as the generated test pattern. KA and all
quantities involved in the computation are erased from main storage upon
completion of this sequence.

Authentication of Xi is performed in the following manner:

1. RFMK: CC, TPi) * DnKMO(xi)(VPi)

2. ECPH: {Xi, Dq,,,(xi)(VPi)} B VPi

The value C used here must be the same as that used to create TPi. If the
result at step 2 agrees with the known value of VPi, then Xi is accepted;
otherwise, Xi is rejected.

The integrity of the procedure dependson the secrecy of quantity DkMi(C).
This quantity appears in clear form only within the cryptographic facility.
Moreover, there is no way to use the cryptographic operations to decipher
under KM1 (the first variant of the host’s master key). Because of this, there
is no way for an opponent to derive DKMi(C).

It is important, however, that an opponent not be able to alter or control
the value of C. If an opponent could manipulate the value of C and could
also obtain X and ExMi(X), for some arbitrary value of X, the procedure
would be inadequate for security. For example, if ExMi(X) were substituted
for C, this would yield the value X for the intermediate quantity DxMi(C).

AUTHENTICATION OF TIME-INVARIANT DATA 379

Since the opponent knows the value of X, he could now forge test patterns
for any desired quantities.

It is conceivable that values of X and E KM1(X) could be acquired, provided
that the system’s security is violated; for example, if KMT could be illegiti-
mately acquired from a terminal and the corresponding value of E,, (KMT)
could be obtained from the host’s key table. On the other hand, if the
opponent could manage to capture E, 1 (KM l), which is a system activation
key (see Generation of Key-Encrypting Keys, Chapter 6), then the EMK
and RFMK operations could be used to encipher arbitrary values under
KMl.

Figure 8-12 illustrates the procedure for generating KA. Figure 8-13 illus-
trates the procedure for generating test patterns and for authenticating objects.

KM2 KM1 C

EMK: I EMK: I

<M2)

KM0

XPH:
E,,$KMl)

KM0

C is a constant.
KA is the system authentication key.

I

I
Figure 8-12. Generation of the System Authentication Key E,,,(D,,,(C))=A

J

380

AUTHENTICATION OF TIME-INVARIANT DATA 381

A Procedure for Authentication of Cryptographic Keys

Except for the host master key, which is stored in clear form within the host’s
cryptographic facility, all keys used by the host system are maintained in
enciphered form. Data-encrypting keys, such as session and file keys, are
protected by encipherment under the host master key, KMO. Secondary keys,
such as terminal master keys, secondary communication keys, and secondary
file keys, which are stored in the cryptographic key data set (CKDS), are
protected by encipherment under either the first or second variant of the
host master key, KM1 or KM2 (see Chapters 4 and 5). Several considerations
bear upon any decision to provide authentication for cryptographic keys.

Secondary keys (stored enciphered under KM1 or KM2) could be parity-
adjusted at key generation, and the key’s parity could be checked at the time
it is deciphered in the cryptographic facility. Since each byte in the external
key consists of seven key bits and one parity bit, any alteration of the en-
crypted key due to noise would be detected with a probability of 2551256.

Session keys (KSs) and file keys (KFs) are not parity-adjusted at the time
they are created, since they are defined to be enciphered already under KM0
or KNF. A data-encrypting key (KS or KF) is created by generating a random
number RN, and defining RN as KS enciphered under KMO, or as KF en-
ciphered under KNF. On the average, about 128 pseudo-random numbers
would have to generated before one would be found that provided the
recovered KS or KF with correct parity. Such a key generation procedure
would be too inefficient for most purposes.

As to communication security, any alteration of stored secondary com-
munication keys or terminal master keys would cause the initiated session
keys to be different for each end user. Such a condition would be detected
by the handshaking procedure.

As to file security, any alteration of stored secondary file keys would
cause the recovered secondary file key to have correct parity with a prob-
ability of l/256. Under such conditions, an incorrect secondary file key
would go undetected with probability l/256, and hence a file (such as one
for backup) created using an incorrect secondary file key could not be
recovered unless the same altered copy of the secondary file key were used.

If there were no cryptographic authentication, an opponent could trans-
pose keys stored in the CKDS, and indexing errors could cause use of the
wrong key without detection of the error. In each case, the parity of the key
would still be correct, and this might allow unwanted or unanticipated cryp-
tographic quantities to be derived that could be damaging to the security of
the system. If an opponent could encipher under KM1 or KM2, without
necessarily knowing the value of either KM 1 or KM2, he could systematically
replace existing keys with his own keys.

A technique employing test patterns can easily be adapted to validate en-
crypted keys stored in the CKDS (e.g., prior to their use within the cryp-
tographic facility) (Figure 8-14). However, it should be realized that if the
procedure is bypassed due to an unauthorized modification of programming
(software), then the intended protection would not be achieved. There-
fore, such an authentication procedure reduces the risk associated with

382 AUTHENTICATION TECHNIQUES USING CRYPTOGRAPHY

Generation: AR: { Xi, V(IDi)] + TPi

Checking:
Table of Encrypted Keys

<ID1 of Keyl>, Xl, TPl
<ID2 of Key2>, X2, TP2

. . . Xl, X2, Xn
1Di l . . . are keys encrypted

. . . under KM1 or KM2. 1
<IDn of Keyn>, Xn, TPn

v v
AF: { Xi, TPi } + VPi

No
4 APPLY V

V(IDi)

Alternate Checking Approach:
Accept Key

v
Reject Key

RFMK: { C, TPi } - Ri
ECPH: { Xi, RI } * VPi

Note: C is a dynamically ge.re-ated constant.
Figure 8-14. Authentication of Cryptographic Keys Using Test Patterns

using an incorrect cryptographic key, but it cannot eliminate the problem
altogether.

Another Authentication Method Using Test Patterns Generated
from the Host Master Key

Another way to define AF and AR using a conventional cryptographic algo-
rithm like DES is described below: I1

AR: {IDi, Xi1 - TPi

=
AF: {IDi, Xi, TPi} __)

C

1 if (Xi, IDi, TPi) is a valid triple

1 otherwise 1
l1 The method is based on a similar method suggested by Smid [lo]. See also A Key
Notarization System for Computer Networks, Chapter 9.

AUTHENTICATION OF TIME-INVARIANT DATA 383

In this case, only test patterns are used. Verification patterns are not re-
quired. This is because TPi is tested for validity inside the cryptographic
facility, that is, the output of the AF operation indicates only the result
of the test (= 1 or f 1).

Let KM5 represent the fifth variant of the host master key and define

KO = &w(O)
Kl = %m(l)

KO, Kl, ,and KM5 are keys used solely by the AF and AR operations; they
effectively isolate AF and AR from the other cryptographic operations de-
fined to the cryptographic facility. AF and AR are defined as follows:

AR: {IDi, Xi) - EK1 a rD1 (EKO(Xi)) s TPi

AF: {IDi, Xi, TPi1- Dxr (ETrI*(Drri(Exr (1)))

where

TPi* = Ekr B rD1 OMXi))

If TPi* = TPi, the output of the AR operation is equal to 1. Otherwise,
the output is a complex function of Kl, TPi*, and TPi and (in all proba-
bility) its value is unequal to 1. Figure 8- 15 describes the steps taken by the
cryptographic facility to perform the AF and AR operations.

1Di Xi

AR:

1 0

1

KM5-b E KM5-b E
* b

t ~
Kl KO E

Kl CB IDi E

Figure 8-15. The AF and AR Operations

L

I I
I

I
I
I
I

I x -.s I
I I

_

384

REFERENCES 385

Rather than define Kl as a variant of the host master key, which would
allow Kl @ IDi to be manipulated to produce other variants of the host mas-
ter key, Kl is produced via encipherment using a variant of the host master
key. KO (or the step of encipherment under KO) is introduced to prevent
an opponent from directly controlling the input enciphered under Kl @
IDi.

The reader will note that the steps involved in producing the quantity
%a (DTP~(ETPI*(DKI (1)>I> are an alternate way to compare TPi and TPi* for
equality. In effect, the comparison is implemented as a series of encipher
and decipher operations.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

REFERENCES

Wilkes, M. V., Time-Sharing Computer Systems, American Elsevier, New York,
1972.
Evans, A., Jr., Kantrowitz, W., and Weiss, E., “A User Authentication System Not
Requiring Secrecy in the Computer,” Communications of the ACM, 17, No. 8,
437-442 (August 1974).
Pudy, G. B., “A High Security Log-in Procedure,” Communications of the ACM,
17, No. 8,442-445 (August 1974).
Proposed Federal Standard 1026, Telecommunications: Interoperability and Secu-
rity Requirements for Use of the Data Encryption Standard in the Physical and Data Link
Layers of Data Communications, General Services Administration, Washington, D.C.,
Draft (January 21, 1982).

Jueneman, R. R., “Analysis of Certain Aspects of Output Feedback Mode,” in Advances in
Cryptography: The Proceedings of Crypto 82, edited by L. M. Adleman, D. L. Chaum,
D. E. Denning, W. Diffre, S. T. Kent, R. L. Rivest, A. Shamir, Plenum Publishing Corp.,
New York (1983).

Jueneman, R. R., Matyas, S. M., and Meyer, C. H., “Authentication with Manipulation
Detection Code,” Proceedings IEEE ‘83 Symposium on Security and Privacy, Oakland,
California (April 1983).
McPhee, W. S. “Operating System Integrity in OS/VS2,” IBM Systems Journal, 13,
No. 3,230-252 (1974).
Diffie, W. and Hellman, M., “New Directions in Cryptography,” IEEE Transactions
on Information Theory, IT-22,644-654 (November 1976).
Lennon, R. E., Matyas, S. M., and Meyer, C. H., “Cryptographic Authentication of
Time-Invariant Quantities,” IEEE Transactions on Communications, COM-29,
No. 6, 773-777 (June 1981).
Smid, M. E., A Key Notarization System for Computer Networks, National Bureau
of Standards Special Publication 500-54, National Bureau of Standards, U.S. Depart-
ment of Commerce, Washington, DC (October 1979).

Other Publications of Interest

Needham, R. M. and Schroder, M. D., “Using Encryption for Authentication in
Large Networks of Computers,” Communications of the ACM, 21, No. 12,993-999
(December 1978).
Guideline on User Authentication Techniques for ComputerNetwork Access Control,
Federal Information Processing Standard (FIPS) Publication 83, National Bureau of
Standards, U.S. Department of Commerce, Washington, DC (September 1980).
Feistel, H., “Cryptographic Coding for Data-Bank Privacy,” IBM T. J. Watson Re-
search Center, Yorktown Heights, NY, RC 2827 (March 1970).

Digital Signatures� 386..
SIGNIFICANCE OF SIGNATURES3 386.............

Law of Acknowledgments 387....................................
Law of Agency 388..
Uniform Commercial Code 388...................................
Contributory Negligence 389.......................................

OBTAINING DIGITAL SIGNATURES 390............
UNIVERSAL SIGNATURES 391...........................

Figure 9-1. A General Approach for 392.....................
Figure 9-2. Public-Key Cryptographic System 393.....
Figure 9-3. Public-Key Cryptographic System 393.....
Figure 9-4. Public-Key Cryptographic System 394.....
Figure 9-5. Nonsecret Enciphkring Keys and 394.......
An Approach Using Conventional Algorithms 396......

Method One 396...
Compressed Encoding Function 398..........................

Figure 9-6. The Compressed Encoding 398..........
Method One-Improved 399....................................

Figure 9-8. A Digital Signature Composed of a 402......
Method Two 402...
Method Three-Matrix Method 406..........................

Figure 9-11. 31 x 31 Matrix of Secret Keys 406............
Figure 9-12. 30 x 3 1 Matrix of Nonsecret 407..............

ARBITRATED SIGNATURES� 409.......................
Figure 9-13. Arbitrated Digital Signatures 410............
An Approach Using the DES Algorithm 410................

Figure 9-14. Individual Secret Keys Shared 411....
An Example of Arbitrating a Signature 412.................
A Weak Approach 414..
Additional Weaknesses 416..

USING DES TO OBTAIN PUBLIC-KEY 417.........
A Key Notarization System for Computer 417............
System Design 417...
Identifiers and Key Notarization 418...........................
User Authentication 419..
Commands 420...
Digital Signatures 420...
A Method Using Variants of the Host Master 421.......

LEGALIZING DIGITAL SIGNATURES�8 423........
Initial Written Agreement 424......................................

Choice of Law 425..
Judicial Notice Recognized 426.............................

REFERENCES 427...
Other Publications of Interest 428...............................

CHAPTER NINE -

Digital Signatures’

With the quickened pace of business today, and the large distances which are
frequently involved, the time required to obtain a signed agreement may
undesirably delay a project. The use of an electronic (or digital) signature
may remove this inconvenience. If today’s paper-based business transactions
were to be implemented exclusively via an electronic communications net-
work, the system would have to rely on signed messages or digital signatures.

The signature would have to be such that the receiver could prove to an
impartial third party (a court, judge, or referree before whom the parties had
agreed to submit for resolution any issue or dispute)2 that the contents of
the message were genuine and that it originated with the sender. The signa-
ture would also have to be such that the sender could not later disavow mes-
sages, nor could the receiver forge messages or signatures for self-serving
purposes.

A signature is a function of (1) the message, transaction, or document to
be signed, (2) secret information known to the sender, and possibly, (3) pub-
lic information known to all parties. The signature may either be a special
bit pattern appended to the data, or it may be an integral part of the cryp-
tographically transformed data.

Although digital and written signatures can serve the same purposes, there
are obvious physical differences. It should be understood that the several
branches of law pertaining to signatures assume a paper-based system as the
medium for transacting business. Thus before describing how digital signa-
tures can be obtained, the legal significance of written signatures is discussed.

SIGNIFICANCE OF SIGNATURES3

The legal significance of signatures and the use of writings bearing such sig-
natures must be viewed from a perspective which encompasses several branches
of the law, including but not limited to the Statute of Frauds, the Law of

‘This is a technical discussion of an approach to solving a legal problem. The material
contained in this chapter does not constitute advice, and those who intend to implement
any of the concepts included herein should first consult their legal counsel.

‘Hereafter, this impartial third party shall be referred to as the referee.
3@1978 McGraw-Hill, Inc. Reprinted in part from Data Communications, February
1978 [l].

386

SIGNIFICANCE OF SIGNATURES 387

Acknowledgments, the Law of Agency, and the Uniform Commercial Code
(UCC). The need for a device or process which may satisfy the requirements
of such branches of law in the modern context of electronic (or paperless)
signatures can be appreciated by understanding some key areas of the law
affecting signatures.

The history of the Statute of Frauds [21 begins in 1677 when “An Act
for Prevention of Frauds and Perjuries” was enacted in England. The need
for such an act resulted from the peculiar rules of evidence used by English
courts during the 17th Century. For example, two parties (A and B) might
enter into an oral agreement for the sale of land. It was possible for A to sue
B, alleging that B orally agreed to sell the land for a certain amount. In fact,
there may never have been any agreement at all, or the price may have been
much greater. Under English law, B could not testify in his own behalf. Law-
suits of this kind were frequently tried with professional witnesses, testimony
of friends of the parties, and the like. Since perjury was commonplace, the
defendant in such cases was at a distinct disadvantage. Suppose that party C
testified that he heard B agree to the sale. How could B bring forth a witness
who could testify that he did not hear the agreement? The difficulty is that
of proving a negative condition.

The difficulty was finally overcome by requiring written evidence that
contracts were actually entered into. Specifically, the Statute of Frauds was
designed to prevent fraud by excluding from consideration by the courts legal
actions on certain contracts, unless there was written evidence of the agree-
ment signed by the party to be charged or his duly authorized agent.

Law of Acknowledgments

Certain documents require acknowledgment or proof of the identity of the
person who signs the document, and proof that it was signed on the stated
date. This acknowledgment or proof is necessary to prevent the person who
signed the document from claiming later that the signature is not genuine.
Moreover, certain transactions require that the signature be witnessed by one
or more persons. Such transactions may vary according to the law of the
jurisdiction in which the document was executed.

Acknowledgment or proof of signature upon a legal document or instru-
ment may normally be made before a judge, an official examiner of title, an
official referee, or a notary public. Essentially, the form of an acknowledgment
consists of the following:

On the--.-day of 19-, before me personally appeared (John Doe) to
me known and known by me td be [John Doe) who placed his hand upon said docu-
ment in my presence and acknowledged same to be his signature.

Notav Public

Such acknowledgments together with the signed document are usually re-
corded in an official registry, like an office of the county clerk or secretary
of state.

388 DIGITAL SIGNATURES

Law of Agency

The principles of agency law [2] are essential for the conduct of business
transactions. A corporation, as a legal entity, can function only through its
agents. The law of partnership is to a large degree a special application of
agency principles to that particular form of business organization. Agency
may be defined as follows:

Agency is the fiduciary relation (involving a confidence or trust) which results from
the manifestation of consent by one person to another that the other shall act on
his behalf and subject to his control, and consent by the other so to act. [Restate-
ment of the Law, Agency (2d), p. 7, Sec. 1 (l)]

As a general rule, no particular formalities are required to create an agency
relationship. The appointment may be either written or oral, and the rela-
tionship may be either expressed or implied. There are two situations in which
formalities are required: (1) with a power of attorney, where a formally
acknowledged instrument is used for conferring authority upon the agent;
and (2) in a few states where it is required that the act which confers authority
to perform a certain act must possess the same formalities as the act to be
performed. For example, authority to sign a contract which is required to
be in writing must itself be granted by a written instrument.

Generally, the law of agency applies to contracts or commercial paper. A
principal (the person from whom an agent’s authority derives) is bound by
the duly authorized acts of his agent. However, if the agent does not possess
the requisite authority (express, implied, or apparent), the principal in most
instances will not be bound. An agent who fails to bind his principal to an
agreement because of the agent’s failure to name the principal, or due to lack
of the agent’s authority, will usually be personally liable to third parties. Thus
the correct way for an agent to execute a contract or instrument is to affix
the name of his principal followed by his own signature and the capacity in
which it is made: “P” Principal, by “A”, as Agent.

Uniform Commercial Code

The Uniform Commercial Code (UCC) [3] is a comprehensive moderniza-
tion and compilation of the various statutes relating to commercial transac-
tions. Its primary objective is to provide uniformity of commercial law
throughout American jurisdictions. It has been adopted in all states except
Louisiana. The present articles relating to commercial paper, banking trans-
actions, and investment securities are paper-based.

To accommodate electronic funds transfer systems, a special committee
was formed to prepare amendments or supplements to these articles. Although
the principles governing the transfer of paper-based stocks and bonds (see
Article 8 of reference 3, for example) can generally be made applicable to
the paperless variety, many technical and mechanical changes are needed to
apply those principles to securities without certificates.

According to the current (1972) version of the UCC,

SIGNIFICANCE OF SIGNATURES 389

“Signed” includes any symbol executed or adopted by a party with present inten-
tion to authenticate a writing. [UCC: Sec. l-201 (39)]

and, in case of commercial paper,

A signature is made by use of any name, including any trade or assumed name,
upon an instrument, or by any word or mark used in lieu of a written signature.
[UCC: Sec. 3-401 (2)]

The inclusion of the word authenticate in the definition of signed clearly
indicates that a complete handwritten signature is not necessary. This
authentication may be printed, typed, stamped, or written; it may be initials
or thumbprint. It may be on any part of the document, and in certain cases
may be found in a billhead or letterhead. No catalog of possible authentica-
tions can be complete, and courts must use common sense and commercial
experience in passing upon such matters. The question is always whether the
symbol was executed or adopted by the party with the intention at that
time of authenticating the writing.

A signature may be made by an agent or other representative, and his
authority to make such signature may be established according to the Law of
Agency. No particular form of appointment is necessary to establish such
authority. However, such a signature may be unauthorized if made by an
agent who exceeds his actual or apparent authority. An unauthorized signature
is one made without actual, implied, or apparent authority, and includes
those made by forgers, imposters, and fictitious payees.

The law of commercial paper also recognizes the principle that the drawer-
the one who creates a negotiable instrument (a draft, check, note, or certifi-
cate of deposit)-has voluntarily entered into relationships beyond his control
with subsequent holders of the instrument. The law imposes on the drawer
the responsibility to assure that his own negligence does not contribute to
the possibility of material alteration of the instrument later in the chain of
transfer.

Contributory Negligence

Any person who by his own negligence substantially contributes to a material
alteration of the instrument, or to the making of an unauthorized signature,
is precluded from asserting the defense of alteration or of lack of authority
against anyone who has accepted the instrument in accordance with reason-
able commercial standards. An example of such negligence is the situation
where space is left in the body of the instrument, such as $ 500, allowing
the value to be changed to $2,500, or allowing the words “ five hundred”
to be changed to “twenty-five hundred.” It also covers the most obvious
case where a drawer makes use of a signature stamp or other automatic
signing device and is negligent in controlling access to it.

In banking transactions, verification of signatures is a necessary part of
the procedure known as the process of posting. Completion of this procedure
helps to determine when an item is finally paid in favor of an innocent

390 DIGITAL SIGNATURES

holder. Posting involves two basic elements: a decision to pay, and some re-
cording of the payment. In certain instances, the recording may actually
precede the decision to pay. That is, provisional debits may be entered, and
the decision on the authenticity of the signature may be made at a later time.

As incorporated in the UCC, the concept of finality of payment [Sec.
3-4 181 states that a drawee (the person on whom a bill of exchange is drawn)
cannot recover funds paid to a bona fide holder of a draft or check bearing a
forged signature of the drawer (one who draws a bill of exchange, or order
for payment). This is known as the rule of Ptice V. Neal [3 Burr. 1354 (1762)].
The rule, as enunciated by Lord Mansfield in 1762, imposed upon the drawee
the duty to be satisfied that “the bill drawn upon him was in the drawer’s
hand” [Price v. Neal, 3 Burr. 1354, at 13571 before he accepted or paid it,
but that it was not the duty of the good-faith holder to inquire into it.

Many banks today rarely review the signature on a small check for its
authenticity. Only in cases of stop-payment orders and reports of lost or
stolen checks do banks interrupt their otherwise mechanized routines in-
volving such instruments. Generally, losses incurred as, a result of forged
drawers’ signatures are small enough to be absorbed as a cost of operation.

OBTAINING DIGITAL SIGNATURES

For a digital signature procedure to work, there must be enough informa-
tion available for message and signature validation and yet insufficient infor-
mation to permit forgery of either message or signature. While a receiver
could validate messages and signatures with the same information (algorithm
and parameters) used by the sender to create signatures, this could also per
mit forgery. Therefore, the same information is never sufficient for botli
signature generation and validation.

Using a data communication system, a sender A may transmit signed mes-
sages to a receiver B under a defined procedure which requires that certain
information be held by both parties. A must have information that allows it
to generate a signature for each message transmitted to B. And B must have
information that allows it to validate messages and signatures received from
A. The procedure can be extended to permit two-way communication by
providing B with signature-generation information similar to that held by A,
and by providing A with information that allows it to validate messages and
signatures received from B.

If A is concerned that B may later disavow the receipt of messages, A can
require that messages be certified. Message certification means that the re-
ceiver provides some proof to the sender that the message was received. For
example, if A sends message M to B, then B could send back to A the signed
message “B received M from A,” with message M repeated in its entirety.

An initial written and hand-signed agreement is normally required between
sender and receiver, regardless of the method used in implementing digital
signatures (see Legalizing Digital Signatures). Such an agreement should con-
tain a complete description of the digital signature procedure to be used,
including either a list of bit patterns that may be required for validating

UNIVERSAL SIGNATURES 391

signatures or the name and location of a registry where the bit patterns are
recorded.

There are several cryptographic techniques for generating digital signatures
using both conventional and public-key cryptographic algorithms.” Digital
signatures obtained with a public-key algorithm are referred to here as
universal, general, or true signatures. This is because such signatures can be
validated by anyone having access to the public-key (or validation parameter)
of the sender. To insure that the public-key is genuine and cannot be changed,
each sender must publish or record his public-key in a designated registry.

Universal signatures can also be obtained with a conventional algorithm,
but the protocols are more involved. As with a public-key algorithm, the
sender must share certain nonsecret validation information in advance with
the receiver, and this information must also be published or recorded in a
designated registry. However, the protocol may also involve certain other
secret and/or nonsecret information sent to the receiver at the time the mes-
sage is validated. However, in no case does the sender share all his secret
signature generation information with other communicants or parties.

Arbitrated signatures are another way to obtain digital signatures with a
conventional algorithm. An arbitrated signature is validated by a trusted
arbiter at the time the message is communicated between parties. To permit
validation, each user shares his secret signature-generation information with
the arbiter.

Finally, digital signatures can be obtained with a conventional algorithm if
the algorithm is first used to obtain the properties of public and private
keys. The digital signatures are then created in the same manner as if they
were created with a public-key algorithm.

UNIVERSAL SIGNATURES

When universal signatures are involved, the receiver can independently validate
each message and signature. A referee is called upon only to settle disputes.

Figure 9-l illustrates the general approach for obtaining universal signatures.
To prevent signatures from being forged, and to associate them uniquely with
their senders, each communicant has certain nonshared (secret) information
that is used to generate the signature. Usually a signature and message are
validated with nonsecret validation information which is included within the
initial written agreemetit or recorded in a designated registry and is available
to the parties in advance. But it may also involve certain secret and/or non-
secret information provided to the receiver at the time the message is
validated.

4A conventional cryptographic algorithm is one for which the enciphering and deciphering
keys are either identical or are such that each can easily be computed from the other. In
contrast;a pu6lic-key algorithm is one for which there are public and private keys (nor-
mally the public key is used for enciphering and the private key for deciphering), and
knowledge of the public key does not permit the private key to be computed [4]. See
also Cryptographic Algorithms, Chapter 2.

392 DIGITAL SIGNATURES

(Settle Disputes)

Secret Signature
Generation Data

,for A
---- /
Nonsecret
Validation Data

er B

for A
-No-

Secret Signature 1
Generation Data I

\ ,
Initial Written Agreement:

Complete Description of
Protocol; Nonsecret
Validation Data or

- Path from A to B

__d Path from B to A

Location of Registry.

Figure 9-1. A General Approach for Exchanging Universal Signatures

An Approach Using Public-Key Algorithms

Recall that a cryptographic algorithm is composed of enciphering (E) and de-
ciphering (D) procedures which usually are identical or simply consist of
the same steps performed in reverse order, but which can be dissimilar.5 The
keys selected by the user consist of sequences of numbers or characters. An
enciphering key (Ke) is used to encipher plaintext (X) into ciphertext (Y), as
in Equation 9-1, and a deciphering key (Kd) is used to decipher ciphertext
(Y) into plaintext (X), as in Equation 9-2.

Ewe = y (9-l 1

D~dbdX)) = &dY) = x (9-2)

If E and D are made public, as the present discussion assumes, cryptographic
security completely depends on protecting the secret keys.

In a public-key algorithm, the enciphering and deciphering keys, Ke and
Kd, are unequal. One key is made public and the other is kept private. How-
ever, if the algorithm is to be useful, communicants must be able to compute
a public and private pair of keys efficiently, whereas knowledge of the public
key alone must not permit the private key to be computed efficiently.

sConventiona1 and public-key algorithms have already been defined and discussed in
Chapter 2. However, these subjects are introduced here in a slightly different way.

UNIVERSAL SIGNATURES 393

Data
X

E,&) Data
b E b D b x

A * A

Ke Kd
(Public) (Secret)

Figure 9-2. Public-Key Cryptographic System Used for Privacy
Only

If Ke can be made public without compromising the secrecy of Kd, then
the public-key algorithm can be used for private data communications
(Figure 9-2). In that case, anyone can encipher data by using the receiver’s
public enciphering key, but only the authorized receiver can decipher the
data through possession of the secret deciphering key.

If Kd can be made public without compromising the secrecy of Ke, then
the public-key algorithm can be used to obtain digital signatures, or signed
messages (Figure 9-3). In that case, anyone can decipher data using the
sender’s public deciphering key and thereby prove the origin of the data, but
only the authorized sender can encipher the data through possession of the
secret enciphering key.

By inserting prearranged information in all messages (such as sender ID,
receiver ID, and message sequence number), the messages can be checked to
determine if they are genuine. However, because the data are available to
anyone having the public deciphering key, privacy is not attained.

If it is also the case that encipherment followed by decipherment, and
decipherment followed by encipherment, produce the original plaintext,
that is,

h~&eW) = bdh~dX)) = X; for all X (9-3)

then the public-key algorithm can be used for both private data communi-

Dp f--p E&Q iy-p , DC

Ke
(Secret)

Figure 9-3. Public-Key Cryptographic System Used for Digital
Signatures Only

394 DIGITAL SIGNATURES

Data Data
X b ,X

KAd
(Secret)

KBe
(Public)

KBd KAe
(Secret) (Public)

KAe and KAd are enciphering and deciphering keys of the sender (A).
KBe and KBd are enciphering and deciphering keys of the receiver (B).

Figure 9-4. Public-Key Cryptographic System Used for Both Privacy and Digital Signatures

cations and digital signatures (Figure 9-4).6 A message is signed by decipher-
ing it with the sender’s (A’s) secret deciphering key (KAd), and privacy is
obtained by enciphering the result with the receiver’s (B’s) public encipher-
ing key (KBe).

However, it must be emphasized that effective data security demands that
the correct public key be used; otherwise, the system is exposed to attack.
For example, if A can be tricked into using C’s instead of B’s public key,
then C can both decipher the secret communications sent from A to B, and
transmit messages to A pretending to be B. Thus key secrecy and key integrity
are two distinct, but very important, attributes of cryptographic keys. With
a public-key algorithm, the requirement for key secrecy is relaxed for one of
the keys, but the requirement for integrity is not.

In order to understand how a public-key algorithm can be used to obtain
signed messages, let PA, PB, . . . , PZ denote the public enciphering keys
(stored in public files) and SA, SB, . . . , SZ denote the private deciphering
keys belonging to the communicants A, B, . . . , Z, as shown in Figure 9-5.

Public File

ID Key

A, PA
B, PB

q
.
.
.

z, PZ

User A User B User Z q q l .* p-J

Figure 9-5. Nonsecret Enciphkring Keys and Secret Deciphering Keys

6Merkle and Hellman [5] have shown that a signature capability can be obtained if the
relation E&DK~(X)) = X holds for only a fraction of the set of all messages.

UNIVERSAL SIGNATURES 395

Assume also that the relation in Equation 9-3 is satisfied. Note that for each
pair of keys (PA, SA), it follows that EPA(DSA(M)) = M for all M, whereas
EPB(DsA(M)) # M for almost every M when PB Z PA.

Assume that all communicated messages contain the sender’s ID, the re-
ceiver’s ID, and a message sequence number in addition to whatever other
text is sent in the message; that is, let M denote a message whose format is

M = <sender ID>,
<receiver ID>,
<sequence number>,
<data>

(9-4)

where the symbols < and > delimit the elements of M. The text of the mes-
sage is represented by <data>. (A description of the message format would
be part of the prior written agreement between the parties.)

In the general case, M will have to be divided into several blocks and enci-
phered/deciphered separately using methods of chained block encryption
(see Block Ciphers and Stream Ciphers, Chapter 2). However, to simplify the
discussion, assume that M contains only one block.

Prior to the commencement of the protocol, each communicant reads the
public file and obtains the public key of each other communicant. In the
present example, A would obtain PB and B would obtain PA from the public
file. (Although keys stored in the public file need not be kept secret, they
must be protected from accidental or intentional alteration. Methods have
been suggested for protecting the integrity of the public-key file [61, but are
not discussed here. See also Key Management Considerations-Symmetric
Versus Asymmetric Algorithms, Chapter 1 1).

Let Mi = [A, B, i, T] denote the ith message communicated from A to B.
To sign the message using the described protocol, A deciphers Mi with the

secret key SA. If private data communications are also required, the result,

I&(M), is enciphered with B’s public key, PB, and the resulting quantity,
Era(Ds*(Mi)), is sent to B; otherwise Ds,(Mi) is sent to B.

If Era(Ds*(Mi)) is received, B recovers DsA(Mi) by deciphering the re-
ceived quantity with the secret deciphering key, SB.

Dsa(Era(DsA(Mi))) = Ds*(Mi)

Otherwise, Ds,(Mi) is received, in which case decipherment with SB is not
required. In any event, B then recovers Mi by enciphering Ds,(Mi) with
A’s public key, PA.

EPA(DSA(Mi)) = Mi

Once the content of Mi has been verified, quantity D,,(Mi) can be used as
proof that Mi originated with A. Because SA is available only to A, only A
could produce Ds,(Mi) in the first place. It is impossible for another com-
municant to produce DSA(Mi’) for a given Mi’ (unless, of course, SA is
compromised).

396 DIGITAL SIGNATURES

Let Q denote the concatenation of <sender id>, <receiver id>, and
<sequence number>, and let c be the length of Q in bits. Assume that the
public-key algorithm is a good generator of pseudo-random numbers. There-
fore, if Ds,(Mi) is enciphered with any key other than PA, or a corrupted
value of Ds,(Mi) is enciphered with any key including PA, then the proba-
bility of producing a correct value Q is approximately equal to l/2”.

Because 1/2c is a very small number (recall that c is the length of Q
in bits), the content of Mi can be authenticated by ensuring that the correct
value of Q is recovered when D,,(Mi) is enciphered with PA.’ Therefore,
B concludes that M is genuine and that it originated with A if and only if

1. <sender ID> = A (sender’s ID),

2. <receiver ID> = B (receiver’s ID)

3. <sequence number> = i (next expected value).

In the example, Ds,(Mi) is a function of both the message (Mi) and the
sender’s secret key (SA), and can be computed only by the sender. Moreover,
Ds*(Mi) satisfies the criteria for a signed message without the need for a
digital signature to be appended to the message. This is because the con-
tents of a recovered message can be validated strictly on the basis of known
parameters contained in the data, such as <sender id>, <receiver id>, and
<sequence number>.

Schemes for obtaining digital signatures with a public-key algorithm have
been invented by Rivest, Shamir, and Adleman [7 1, Merkel and Hellman [51,
and Shamir [8].

An Approach Using Conventional Algorithms

Method One

An approach invented by Diffie and Lamport [4], which is based upon a
conventional algorithm such as DES, makes use of a digital signature com-
posed of a list of cryptographic keys.

In order that an n-bit message may be signed, the sender randomly generates
in advance 2n 56-bit cryptographic keys

kl, Kl, k2, K2,. . . , kn, Kn (9-5)

which are kept secret. The receiver is given in advance two sets of corres-
ponding nonsecret 64-bit validation parameters

ul,Ul,u2,U2 ,..., un,Un (9-6)

71f M is divided into blocks and a method of chained block encryption is used, then the
last block must contain some data whose value is known to the receiver. This may require
that some agreed upon constant, say all zero bits, be included in the last block.

and

UNIVERSAL SIGNATURES

vl,Vl,v2,V2,. . . ,vn,Vn

397

(9-7)

where

vi = Eki(ui), Vi = E,(Ui); i= 1,2,...,n

The validation parameters (Equations 9-6 and 9-7) are also recorded by the
sender in an established public registry with recognized and accepted integrity.
It is the receiver’s responsibility to ensure that the validation parameters
received from the sender are genuine (e.g., by comparing them with similar
values stored in the public registry).8

Later, when message M is sent, the digital signature is generated by selecting
kl or Kl depending on whether the first bit of M is 0 or 1, respectively;
selecting k2 or K2 depending on whether the second bit of M is 0 or 1, re-
spectively; and so forth. For example, if M = 0, 1, 1, 0, . . . , the signature
would contain the following keys: kl , K2, K3, k4,

The receiver validates the digital signature by ensuring that the first 56-bit
key in the signature will encipher validation parameter ul into Ekl(ul) if the
first bit of M is 0, or that it will encipher Ul into Ekr(U1) if the first bit of
M is 1; the second 56-bit key in the signature will encipher validation param-
eter u2 into E,,(u2) if the second bit of M is 0, or it will encipher U2 into
E,,(U2) if the second bit of M is 1; and so forth.

For all practical purposes, only the sender, who knows the secret values of
ki and Ki (Equation 9-5) and who originally creates vi and Vi from ui and Ui,
can disclose a key (to the receiver) that will successfully encipher either ui
into vi or Ui into Vi. An opponent would have to discover the value of one
of the secret keys (e.g., by using Ui and Vi to solve for Ki), which would not
be computationally feasible, or change the value of one of the validation
parameters recorded in the registry. For these reasons, and since the procedure
is a one-time system (i.e., ki, Ki, vi, and Vi are not reused once ki or Ki has
been sent to the receiver), the receiver is unable to forge a single bit in
the message.

The above approach demonstrates that digital signatures can be obtained
with conventional algorithms and is discussed because it is simple and easy
to understand. An obvious disadvantage is that a separate key must be included
in the signature for each bit in the message. This could result in very large
signatures depending upon the size of the message to be signed. For example,
if the DES algorithm were used, the approach would result in a 56-fold data
expansion. However, if data compression techniques are used, smaller signa-
tures are possible.

a Alternatively, only one validation parameter (a master validation parameter) is stored
in the public registry, and this one value is used to validate the entire set of validation
parameters received from the sender. The master validation parameter could be published
in one or more major newspapers. In such an approach, the master validation parameter
would be a complex function of the set of validation parameters (see Compressed Encod-
ing Function). However, such protocols are omitted from the discussion.

398 DIGITAL SIGNATURES

Compressed Encoding Function

Let compressed encoding (CE) be a function that maps variable length mes-
sages of t bits to fixed length bit patterns of m bits, where m and CE are
such that it is computationally infeasible to find two different messages, M
and M’, for which CE(M) = CE(M’) (Figure 9-6). For a specific M, it ordinarily
requires on the order of 2” /2 = 2m - l trials to find an M’ # M such that
CE(M’) = CE(M). However, by trading off time for memory, the number of
trials can be reduced with the aid of a precomputed table (see reference 9
and Appendix B). (However, the time to compute such a table may be con-
siderable.) Suppose, for example, the CEs of 2m/2 messages have been com-
puted and stored in a table. Since the total number of CEs (2”) is much
greater than 2m/2, the probability that an intercepted CE is included in the
table is about l/2 m’2. In that case, only about 2 m/2 CEs must be intercepted
before a match with a table entry occurs. In other words, to find two different
messages, M’ and M, such that CE(M’) = CE(M), requires 2m/2 trials instead
of 2m/2. If m = 64, the values for 2’jz and 263 are

232 = 4,294,967,296

263 = 9,223,372,036,854,775,808

Thus, the opponent gains an enormous advantage: a computationally infeasible
problem is now reduced to a computationally feasible problem.

For example, a digital signature procedure that uses a CE function with
2m different CE-values could be defeated if it were possible to compute the
compressed encoding function of only twice the square root of 2” messages.’

Message
W

x3 . . . t bits

CUM) I Yl Y2 Y3 . . . ym 1 m bits

Figure 9-6. The Compressed Encoding Function

‘If there are Zm different CE-values, the probability of a match (i.e., any two values
being equal) is about 0.5 when only 2 (m+ ‘)I* CE-values have been precomputed. The
attack is described by Yuval [IO] in terms of the birthday paradox-a closely related but
different problem (see also Appendix B).

UNIVERSAL SIGNATURES 399

Let Ml denote a set of messages that the receiver is willing to accept and let
M2 denote a set of messages that the receiver is not willing to accept. The
messages in each set could be random perturbations on only two starting
messages (i.e., replace words by their synonyms, manipulate the number of
blanks between words, and so forth). Generate the compressed encoding for
each of these perturbed messages and wait until the same compressed encoding
is produced for an acceptable message in Ml and an unacceptable message in
M2:

There are many ways in which a suitable CE function could be defined
using the DES algorithm. First let M be divided into n 64-bit blocks, Xl, X2,

Xn, and define V K as a function that transforms n X 64 bits of data,
&+X1,X2,... , Xn), into 64 bits of data (U):

VK(M)=U

where K is a cryptographic key and U is computed as follows:

E,(Xl) = Yl

Ex(X2 @ Y 1) = Y2

Ex(Xn @ Yn - 1) = Yn

E,(XlBX2B...l3Xnl3lYn)=U

where I3 denotes a hashing operator. For example, H could be simple modulo 2k
addition, k = 1,2, . . . ,64, or, in an extreme case, a complex encryption function.
Now let Kl and K2 (Kl # K2) be two nonsecret keys, and define CE(M) as the 12%
bit compressed encoding function

CE(M) k (Ul,U2) (9-8)

where Ul = VKl(M) and U2 = VK2(M). The CE function described above is
shown in Figure 9-7. The number of bits in the compressed encoding function
(Equation 9-8) has thus been adjusted to effectively thwart the time-memory attack
suggested by Yuval [lo].

Method One-Improved

The number of 56-bit keys comprising the signature is reduced by basing the
digital signature on the compressed encoding of M, rather than on M itself.
Since CE(M) contains m bits, the resulting signature contains 56m bits, rather
than 56t bits. If the number of message bits (t) is much larger than the number
of bits in the compressed encoding of the message (m), a significant saving is
achieved. If the CE function is computed using Equation 9-8, there are 128
keys, or 56’ 128 = 7 168 bits in the signature (Figure 9-8).

The signature is validated against the 128-bit compressed encoding of the
received message via the technique described in method one above. However,
the size of the signature can be reduced from 128 to 64 keys if the compressed

-

+
2

w bs---

- -

. . . z4 .

. . . .

. . . .

cl +
1

2, +“x W ,z
*

- 1

cl +

400

I

2

- -

2 W
c

‘5:

-

q +
.

cl + I

0 +

401

402 DIGITAL SIGNATURES

Signature Creation by User A:

Compressed
Encoding

?

of M

Message

W)

I
X1

CE(M) 1 0 1 . . . 0

Key kl k2 k3 . . . k128

Matrix Kl K2 K3 . . . K128
I 1

I T
T T T

1 Keys

I-
Send to B

Signature 1 Kl k2 K3 . . . k128 1 b

0 Keys I

Figure 9-8. A Digital Signature Composed of a List of Cryptographic Keys
(Signature Creation)

encoding is divided into 64 2-bit segments instead of 128 1 -bit segments, and
if the keys kl, k2, . . . , k128, Kl, K2, . . . , K128, are arranged in a 4 X 64 .
table instead of a 2 X 128 table. The rows of the table are denoted 00, 01,
10, and 11, and a key is selected from the appropriate row depending on
whether the corresponding bits in CE(M) are 00, 01, 10, or 11.

The same principle could be used to obtain a signature of 32 keys with a
16 X 32 key table, a signature of 16 keys with a 256 X 16 key table, and so
on. However, after only a few such reductions, the key table becomes too
large to be useful.

Method Two

In a different approach invented by Rabin [111, the digital signature is com-
posed of a list of cryptographic quantities that are formed by enciphering
the compressed encoding of a message with a list of randomly selected cryp-
tographic keys. The signature, or list of cryptographic quantities, is validated
in a probabilistic fashion by requiring the sender to reveal part of the secret
keys that were originally used to produce the cryptographic quantities.
Because the particular subset of keys (selected by the receiver) is not known

UNIVERSAL SIGNATURES 403

to the sender ahead of time, the properties essential to digital signatures are
obtained.

The sender randomly generates 2r cryptographic keys

kl, k2,. . . , k2r-l,k2r (9-9)

which are kept secret. (The value r is determined by security considerations,
and is explained later.) The receiver is given, in advance, the corresponding
validation parameters

ul,u2..., u2r- l,u2r

and

ha(Ul), E,,(u2), . . . 3 EkZr- r(U2r - l), EdU2r)

which have also been recorded by the sender in an established registry with
recognized and accepted integrity.

The digital signature for message M is formed (Figure 9-9) by enciphering
the compressed encoding of M with each cryptographic key in the list denoted
by Equation 9-9:

Ekl(CE(M)), Et&E(M)), . . ’ , E,,,(CE(M)).

(If CE(M) is computed via Equation 9-8, then Exi(CE(M)) = [Exi(ul),
EKi(u2)], and each of the entries in the above list is composed of two 64-bit
blocks of ciphertext.) The message and signature are then sent to the receiver.

To permit the signature to be validated, the sender discloses to the receiver
exactly half (r) of the secret keys (kl, k2, . . . , k2r) used in forming the sig-
nature. The remaining r keys are kept secret in order to prevent the receiver
from forging signatures. The keys to be disclosed (Figure 9-10) are selected
as follows. The receiver randomly generates a vector of numbers, in which
there are exactly r ones and r zeros, and sends a copy to the sender. A 1 in
position i of the vector signifies that the sender is directed to forward the ith
key to the receiver; a 0 signifies that the ith key has not been selected. Once
the r keys have been received, the signature is validated by ensuring that kil
enciphers uil into Ekil(Uil), and kil enciphers CE(M) into Ekir(CE(M));
ki2 enciphers ui2 into EkiZ(Lliz), and ki2 enciphers CE(M) into Ekiz(CE(M));
and so forth.

The sender challenges a message M alleged by the receiver to be signed
with %(CE(M)), b(CE(M)), . . . , Ek2,(CE(M)) by producing in front of
a referee the keys kl, k2, . . . , k2r. These keys and the alleged signature are
then validated as before using the corresponding validation parameters ob-
tained from the designated public registry. If r -I- 1 or more of the elements
in the signature are correct, then the receiver is upheld and it is assumed that
the sender is attempting to disavow a message he actually sent. On the other
hand, if r or fewer of the elements in the signature are correct, then the sender
is upheld and it is assumed that the receiver is attempting to forge a message
and signature.

.

.

.

rs . . .
Y 2

I-
::
.
.
.

2 J

404

406 DIGITAL SIGNATURES

In order for the sender to disavow successfully a message and signature
that might also be validated by the receiver, there must be exactly r correct
entries in the signature, and the receiver must request and validate the sig-
nature using precisely these r entries. But the probability of such an event
is given by

P = l/(2,‘)

If 2r = 36, then the probability is about 1 /lOi’.

Method Three-Matrix Method

In yet another approach invented by the authors [121, the digital signature is
a list of 31 cryptographic keys that are selected from a 3 1 X 3 1 matrix of
secret keys (Figure 9-l 1) based on the value of the compressed encoding of
the message to be signed. A different matrix of keys is required for each
signed message.

Initial Keys k(l.1) k(1,2) . . . k(1,31)
k(2,l) k(2,2) . . . k(2,31)

. . .

. . .

. . .

Final Keys k(31,l) k(31,2) . . . k(31,31)

Figure 9-11. 31 x 31 Matrix of Secret Keys used by the Sender to Form a Signature

Row 1 of the matrix contains 31 initial keys, denoted k(1, l), k(1, 2),
. . .) k(1, 3 l), which are produced via a standard generator of pseudo-random
numbers. For example, the initial keys for the nth message could be produced
with the DES algorithm using a single secret key-encrypting key K, via the
relation

E,(31(n-l)+j)Gk(l,j)

where

j = (matrix) column number, 1 <j < 3 1

n = message sequence number

In addition to the key matrix, a 30 X 31 matrix of nonsecret code words
(Figure 9-12) is produced via a generator of pseudo-random numbers. For
the purpose of illustration, it is assumed that the code words for the nth
message are produced from a single nonsecret seed key U, via the relation

UNIVERSAL SIGNATURES 407

where

u(l,l) u(1,2) . 0 . u(1,31)
4291) u(2,2) . l . u(2,31)

. . .

. . .

. . .
u(30,l) u(30,2) . . . u(30,31)

Figure 9-12. 30 x 3 1 Matrix of Nonsecret Code Words

EU(312(n - 1) + 31(i - 1) + j) G u(i, j)

i = (matrix) row number, 1 < i < 30

j = (matrix) column number, 1 <j G 3 1

n = message sequence number

(The subscript n, which denotes the message sequence number, is omitted
from the discussion.)

This method for generating keys and code words has the advantage that
the necessary quantities can be created as needed (i.e., they do not have to
be saved).

The keys in rows 2 through 3 1 of the key matrix are obtained via repeated
steps of encipherment using the initial keys and the matrix of code words, as
follows:

where

bqi,j)(U(i, j)) - Hi + 1, j)

l&j<31

For example, k(2, j) is produced by enciphering ~(1, j) with k(1, j); k(3, j)
is produced by enciphering ~(2, j) with k(2, j); and so forth. Thus if the re-
ceiver is sent key k(i, j), he can compute k(i + 1, j), k(i + 2, j), . . . , k(31, j),
but cannot compute k(1, j), k(2, j), . . . , k(i - 1, j).

The keys in row 3 1 of the key matrix are called the final keys. These final
keys, which are prepared in advance by the sender and sent to the receiver,
represent the validation pattern. (A protocol must be established whereby
the receiver can independently validate these final keys; e.g., by requiring
the sender to record them in a designated public registry.) In an actual im-
plementation, a large number of these validation patterns would be needed-
one for every message to be signed.l’

“To reduce storage further, the receiver could store the compressed encoding of each
validation pattern instead of the validation pattern itself. This modified protocol is not
discussed.

408 DIGITAL SIGNATURES

The first step in forming the signature is to obtain the compressed encoding
of the message M that is to be signed. For the purposes of illustration, assume
that the compressed encoding of M, or CE(M), is computed via Equation 9-8;
that is, CE(M) = (Ul , U2) where Ul and U2 are 64-bit quantities. The com-
pressed encoding of M is used together with 3 1 nonsecret keys, al, a2, . . . ,
a3 1, (also held by the receiver to permit signature validation) to produce 3 1 unique
code words, bl, b2, . . . , b31, as follows:

E,,(Ul) 8 E,,(U2) = bl

E,,(Ul) @ E,,(U2) = b2

E,31(U1) @ Ea3i(U2) = b31

The keys, al, a2, . . . , a3 1, could be established universal constants that are
recorded in a public registry.

The 31 b-values are now sorted into numerical sequence. Since each b-
value has a position in the sorted and unsorted sequence, it constitutes an
index that can be used to select a key from the key matrix. Its position in
the sorted sequence specifies the row, and its position in the unsorted se-
quence specifies the column.

For example, if the sorted and unsorted b-values are given by

Unsorted: bl, b2, b3,. . . , b31

Sorted: b5, b20, bll,. . . , b7

then the keys in the signature are, respectively,

k(5,l),k(20,2),k(11,3) ,..., k(7,31)

This guarantees that one and only one key is selected from each row and
column.

As a consequence, one can choose from 3 1 positions in column 1, 30 posi-
tions in column 2, and so on. Altogether, there are 3 1 ! or about 2”* ways in
which the 31 signature keys can be selected from the key matrix. The dimen-
sions of the key matrix have thus been adjusted to eliminate any problem
with synonyms (two or more compressed encodings of different messages
that result in the same list of signature keys); for example, if the digital sig-
nature procedure were attacked using a form of time-memory trade-off [9].

The receiver, except for one additional step, checks the signature by re-
peating the same steps performed by the sender. First, the compressed encod-
ing of the message is obtained. Then the 3 1 b-values are computed and sorted
into numerical order. This allows the 3 1 keys in the signature vector to be
reinserted into an empty 31 X 31 key matrix. The receiver then uses each
signature key to encipher the standard, nonsecret code word to form each
lower key in the same column of the matrix, including the final keys that
make up the validation pattern. If the final keys (row 31) of the key matrix
are equal to the validation pattern previously received from the sender, then

ARBITRATED SIGNATURES 409

the message and signature are accepted as valid; otherwise, the message and
signature are rejected.

If the rank of a key is defined as the row number of that key in the key
matrix, then in order for the receiver to forge a signature, he must know the
value of at least one key in one column of the key matrix whose rank is less
than the rank of the corresponding key in the signature. But by the non-
invertibility property of the DES algorithm, it is computationally infeasible
to compute such a key. Only the sender, who possesses the key-generating
key, can produce the full set of keys in the key matrix.

The advantage of this method is that it allows a trade-off to be made be-
tween computation time (the time to generate and validate signatures) and
signature size. The general approach of computing a list of final keys from a
list of signature keys leads to a variety of signature methods. For example,
an approach in which both the sender and receiver have enough information
to disprove a false claim brought by the other, but do not have enough in-
formation to prove a self-initiated claim is described in reference 13.

A requirement of all the methods using conventional algorithms is that they are
one-time systems. This means that at least one different validation parameter is
required for each message and digital signature that is received. However, with a
public-key algorithm, only one validation parameter (the public-key of the sender)
is required, regardless of how many signed messages are received.

ARBITRATED SIGNATURES”

The requirement of a one-time system of digital signatures based on a con-
ventional algorithm can be overcome if a protocol of arbitrated signatures is
adopted. In a communication system with arbitrated signatures, every signed
message prepared by the sender is sent to an arbiter. The arbiter authenticates
each message and signature, and communicates the result to the intended
receiver. Each communicant’s signature-generation information must there-
fore be shared with the arbiter to allow message and signature validation.
Message and/or signature forgery is prevented because the signature-generation
information is not shared with other communicants.

Figure 9-l 3 illustrates an approach for generating arbitrated signatures. In
an actual implementation, the arbiter might be a combination of software
and hardware located at a communications network node. However, because
the arbiter has access to every communicants signature-generation informa-
tion, a high level of physical security and access control is required.

Arbitrated digital signatures seem best suited to users under a common
supervising entity (e.g., brokerage house members of a stock exchange, or
users whose transactions occur within a single organization’s communication
network).

Arbitrated signatures are obtained using message authentication tech-

“01979 North-Holland Publishing Co. Reprinted in part from Computer Networks 3,
No. 2, April 1979 [141.

410 DIGITAL SIGNATURES

___* Path from A to B
__O Path from B to A

Figure 9-13. Arbitrated Digital Signatures

niques.12 However, the combination of message authentication and a trusted
arbiter (who validates the signature at the time a message is communicated)
permits a stronger protocol of digital signatures to be obtained.

Various encryption-based authentication procedures are available that
could be used to implement arbitrated signatures. One approach-based on
the DES algorithm-is illustrated below.

An Approach Using the DES Algorithm

Suppose each communicant, A, B, . . . , Z, has a secret cryptographic key,
KA, KB, . . . , KZ, which is shared with the arbiter (Figure 9-14). With these
shared keys it is possible for the arbiter to authenticate messages from each

‘21kfessage authentication is a procedure for authenticating a message’s origin, true con-
tents, timeliness, and intended destination. See also Authentication Techniques Using
Cryptography, Chapter 8, and Chapters 10 and 11 which treat electronic funds transfer
systems.

ARBITRATED SIGNATURES

Arbiter’s Kev Table

411

User A User B User Z
. . .

Figure 9-14. Individual Secret Keys Shared With the Arbiter

communicant and for each communicant to authenticate messages from the
arbiter. (However, communicants cannot authenticate messages received
directly from other communicants.)

In the discussion that follows, let M denote a message whose format is

M = <sender ID>,

<receiver ID>,

<sequence number>,

<data>

(see Equation 9-4). Let M be divided into 64-bit blocks of plaintext as follows:

M=(Xl,X2,.. . ,Xn), (9-10)

where Xn could be a short block that is padded to 64 bits. Let X0 be a random
64-bit value that is appended to the front of M and let

Xn + 1 = X0 + Xl + . . . + Xn (mod 264)

be a block of plaintext appended to the end of M. X0 is used in place of a
random initializing vector to mask patterns in the data. X0 can be produced
by a generator of pseudo-random numbers. Xn + 1 is a parameter used in the
computation of the authentication code (AC).

The plaintext X0, Xl, . . . , Xn + 1 is enciphered using a form of chained
block encryption with ciphertext feedback (Figure 2-17) as follows:

YO = EK(XO @ Z)

Yl = EK(X1 @ YO)
(9-11)

Yn +l = EK(Xn -!- 1 @ Yn)

412 DIGITAL SIGNATURES

where 8 denotes modulo 2 addition, K is the cryptographic key, and Z (the
nonsecret initializing vector) is an established constant, say all zero bits.

Once the message has been enciphered, the following information is sent
to the receiver:

[YO, Y, AC1

where

YO = the block of ciphertext corresponding to X0

Y = the ciphertext Y 1, Y2, . . . , Yn

AC = the ciphertext Yn + 113

When it is received, the ciphertext (YO, Y 1, . . . , Yn + 1) is deciphered as
follows:

X0 = Dk(Y0) @ Z

Xl = D,(Yl) 6 YO

Xn+ 1 =D,(Yn+ l)@Yn

where X0, Xl,. . . , Xn + 1 denotes the recovered plaintext.
Message authentication is made possible because the recovered value Xn + 1

is a complex function of K, and YO, Y 1, . . . , Yn + 1. Therefore, with high
probability, decipherment of YO, Yl, . . . , Yn + 1 with the wrong key, or
the corruption of any bits in YO, Y 1, . . . , Yn + 1 will cause the recovered
value of Xn + 1 to be incorrect. Thus by comparing the recovered value of
Xn+lwithXO+Xl+... + Xn (mod 29 for equality, the receiver can deter-
mine if the contents of the recovered plaintext (X0, Xl, . , , , Xn + 1) are genuine.
And, once the contents of the message have been validated, the parameters,
<sender id>, <receiver id>, and <sequence number>, can then be checked
for correctness.

An Example of Arbitrating a Signature

Let T denote the text of the ith message communicated from A to B, where
M is given by

M = [A, B, i, Tl

r3Greater security can be achieved if AC is defined as the concatenation of Yn + 1 and
Y’n + 1, where Yn -I- 1 and Y’n -I 1 are the last blocks of ciphertext that result when X0,
Xl, . . .) Xn is enciphered with two different keys, K and K’, respectively. This would
thwart the described attack in which the opponent generates random perturbations on
only two starting messages (see Compressed Encoding Function, and also reference 10).

ARBITRATED SIGNATURES 413

At A, data (RN, M, n) is enciphered using cryptographic key KA and initializ-
ing vector Z = 0 to produce ciphertext (YO, Y, AC), where RN (defined X0
above) is a 64-bit random number, M = Xl, X2, . . . , Xn, and x = RN + Xl +
x2 + . . . + Xn (mod 2W). Data (A, YO, Y, AC)-A’s unencrypted identifier and
the just produced ciphertext-is then sent to the arbiter. Identifier A is in-
cluded in the transmission so that the arbiter can identify and obtain KA
from his key table. (Recall that <sender ID> in M is encrypted.)

At the arbiter, ciphertext (YO, Y, AC) is deciphered using KA. To prevent
messages from being sent under an assumed identity, the arbiter checks that
<sender ID> matches the received, unencrypted ID used to retrieve KA (i.e.,
that <sender ID> = A). If the two identifiers are unequal, an appropriate
response is communicated to the sender and the procedure halted. If the two
identifiers are equal, the arbiter checks that the last block of recovered plaintext
equals RN + Xl + X2 + . . . + Xn (mod 29, and if so, it is concluded:

1. (YO, Y, AC) was enciphered using KA and Z = 0, and therefore mes-
sage M originated with A.

2. M is the true content of the communicated message.

If the last block of recovered plaintext is unequal to RN + Xl + X2 + . . . + Xn
(mod 29, the message is not considered genuine. The arbiter sends the following
message to B:

M’ = [A, B, i, T’]

where

T’ = [T, RN, AC, <genuine>] if M is genuine,

or

T’ = [T, RN, AC, <not genuine>] if M is not genuine.

In the example, text T, RN, and AC are repeated in their entirety, whereas
<genuine> and <not genuine> denote established code words. A new ran-
dom number, RN’, is selected and data (RN’, M’, ‘7’) are enciphered with key
KB and initializing vector Z = 0 to produce ciphertext (YO’, Y’, AC’). The
ID of the receiver, which is included in the received message, is used to lo-
cate KB in the arbiter’s key table. Data (YO’, Y’, AC’) are then sent to B.

Having established a communication session with the arbiter, B deciphers
(YO’, Y’, AC’) using Z’ = 0 and KB, and then authenticates M’ in the same
way that M was authenticated by the arbiter. B accepts M if and only if

1. M’ is genuine.

2. Code word <genuine> is received in T’.

3. M’ satisfies all other conditions imposed by the digital signature pro-
cedure (e.g., parameters <sender ID>, <receiver ID>, and <sequence
number> are correct).

414 DIGITAL SIGNATURES

RN, M, and AC are retained by B in order to prove later that M was received
from A. This can be done by requesting the arbiter to encipher (RN, M, n)
using Z = 0 and KA (obtained from the arbiter’s key table), and then verify-
ing that the last block of produced ciphertext is equal to the value AC (held
by B).

In the example, AC is a function of both the message and the sender’s
secret key. It can be computed by either the arbiter or the sender, but not
by the receiver. In that case, AC is the digital signature of the message.

A Weak Approach

Consider an approach in which X0 is eliminated and Z is produced via a
generator of pseudo-random numbers. The process of encipherment is as
follows:

Yl = Ex(X1 @ Z)

Y2 = Ex(X2 @ Y 1)

Yn+ l=Ek(Xn+ 1 @Yn)

where Xn + 1 = Xl + X2 + . . . + Xn (mod 29.
AtA,data(M,n),whereM=Xl,X2 ,..., Xnandn =X1+X2+. ..+Xn

(mod 29, are enciphered using cryptographic key KA and initializing vector Z to
produce (Y, AC). Data (A, Z, Y, AC) are then sent to the arbiter. In the
modified procedure, Z is sent to the arbiter instead of YO.

The procedure at the arbiter is unchanged, except that Z instead of RN is
sent in T’:

T’ = [T, Z, AC, <genuine>] if M is genuine,

or

T’ = [T, Z, AC, <not genuine>] if M is not genuine.

Data (M’, n’) are enciphered with key KB and a new initializing vector Z’,
which produces ciphertext (Y’, AC’). Data (Z’, Y’, AC’) are then sent to B.
The procedure at B is unchanged, except that Z, M, and AC are retained in
order to prove later that M was received from A.

This approach allows users to forge messages and signatures. l4 For example,
user A could create a forged message and signature, purportedly from user
B, as follows. User A sends (A, Z, Y, AC) to the arbiter, where

14This weakness was pointed out by Miles Smid, National Bureau of Standards.

ARBITRATED SIGNATURES 415

(Y, AC) = ciphertext produced from plaintext (M, u) using KA

M = [A, B, i, Tl

II = the 64-bit quantity produced by adding the blocks in
M modulo 264

Except in this case T contains the following:

T = [pad bits, Mf, nfl

where

pad bits = enough bits to align Mf on a block boundary

Mf = [B, A, j, Tfl is the forged message

j = sequence number of some message received previ-
ously from user B

nf = the 64-bit quantity produced by adding the blocks in
Mf modulo 2@

Thus,

T= [pad bits, B, A, j, Tf, nfl

After validating (Y, AC), the arbiter sends (Z’, Y’, AC’) to user B, where

(Y’, AC’) = the ciphertext produced from plaintext (M’, n’)

M’ = [A, B, i, T’]

T’ = [T, Z, AC, <genuine>]

Or, upon substituting for T, M’ equals

M’ = [A, B, i, pad bits, B, A, j, Tf, nf, Z, AC, <genuine>]

However, user A intercepts (Z’, Y’, AC’) (e.g., by using a wiretap) and jams
the transmission to prevent it from reaching user B. The intercepted cipher-
text is then used by user A to produce (Zf, Yf, ACf), where

Zf = X(i) @ Y(i); Y(i) is the block of ciphertext produced from
X(i) and X(i) is the block of plaintext just prior to the
second B in M’

Yf = that portion of the intercepted ciphertext corresponding to
Mf

ACf = that portion of the intercepted ciphertext corresponding to
nf

416 DIGITAL SIGNATURES

(Zf, Mf, ACf) can now be given to the arbiter as proof that Mf was received
from user B.

The weakness is overcome when Z is held constant and a random X0 is
appended to the front of the message as described above.

Additional Weaknesses

There are encryption methods that permit message authentication which
would have undesirable properties if used in a procedure for arbitrated signa-
tures. For example, if a form of chained block encryption with plaintext-
ciphertext feedback (see Figure 2-16) was used, it would be possible under
certain conditions for the sender and receiver to forge messages and
signatures.

Consider an implementation in which a message, M = Xl, X2, . . . , Xn, is
enciphered as:

Yl = Ex(X18 Z)

Y2 = Ek(X2 @ Xl @ Yl)

Yn+l=Ex(Xn+l@Xn@Yn)

where K is the cryptographic key, Xn + 1 = Z (Z is a random initializing vec-
tor), and Yn + 1 is defined as the AC. This encryption method has the peculiar
property that for any value D the encipherment of M’ = Xl @ D, X2 8 D,

Xn @ D using cryptographic key K and initializing vector Z’ = Z @ D is
the Hame as the encipherment of M = Xl, X2, . . . , Xn using cryptographic
key K and initializing vector Z (i.e., Y’l = Yl, Y’2 = Y2, . . . , Y’n + 1 =
Yn + 1). Consequently, there are numerous easily derived messages that will
produce the same AC.

The sender might be able to find values Xl, X2, . . . , Xn and D (especially
if n is small) such that both M and M’ are valid messages, except that the re-
ceiver would be willing to accept M whereas he would be unwilling to accept
M’. The sender would send M to the receiver and later claim that M’ was sent.

On the other hand, if a protocol is used in which Xn + 1 is equal to a con-
stant, say all 0 bits, the arbiter could be tricked into accepting an altered
message. Let (Z, M, AC) denote a valid triple (initializing vector, message,
authentication code) received by the receiver from the arbiter, and let M =
Xl, x2, . . .) Xn. The receiver can produce a forged triple (Zf, Mf, ACf)
provided that he knows the value of some X’l and Y’l such that Y’l =
Ex(X’1). X’l and Y’l may be determined from previous transmissions. In
that case, Z is replaced by X’l @ X1 @ Y’l @ Y 1 and X1 is replaced by Xl @
Y’l f3 Yl:

Zf =X’l @Xl @Y’l eY1

Mf = Xl @ Y’l @ Yl, X2, X3,. . . , Xn

and ACf = AC. Observe that the feedback used to encipher block Xi (i =

USING DES TO OBTAIN PUBLIC-KEY PROPERTIES 417

2, 3, . . . , n + 1) is Xi - 1 @ Yi - 1 when (Xl, X2, . . . , Xn f 1) is enci-
phered with Z and K, and when (Xl @ Y’l @ Yl, X2, . . . , Xn + 1) is en-
ciphered with Zf = X’ 1 @ Xl @ Y’ 1 @ Y 1 and K. Thus in either case the
second, third, and so on, blocks of ciphertext are the same, and therefore,
the same authentication code is produced-proving that (Zf, Mf, ACf) would
be accepted by the arbiter.

USING DES TO OBTAIN PUBLIC-KEY PROPERTIES

Even though there are significant differences between public-key and con-
ventional algorithms, a conventional algorithm can provide some of the prop-
erties of a public-key algorithm. Thus while the algorithms are markedly
different, the cryptographic systems or functions provided the respective
systems (i.e., what the user sees or perceives) may be very much alike.

The properties of public and private keys usually associated only with a
public-key algorithm can be attained with a conventional algorithm provided
that: (1) the public and private (DES) keys are used only at devices and
equipment belonging to a specific cryptographic system, and (2) the secrecy
and integrity of other system-managed keys stored within these cryptographic
devices can be maintained.

Assuming a conventional algorithm, the basic problem involves the design
of a trapdoor one-way function that can be used to encrypt/decrypt (trans-
form) time-variant data (e.g., messages transmitted in a communication net-
work). To some degree, the unidirectional cryptographic operations reported
in reference 15, and further elaborated on in reference 16, were designed
along these lines. Used for key management, one cryptographic operation
encrypts keys sent to other devices and a second operation decrypts keys
received from other devices. In addition, the two cryptographic authentica-
tion operations reported in reference 17, which allow time-variant quantities
to be authenticated via a special precomputed test pattern, were also designed
around this principle.

A method for implementing unidirectional DES data-encrypting keys was
first proposed by Smid [181 . A data key Kij is used to transmit data from
user i to user j (i.e., only user i can encrypt with Kij and only user j can de-
crypt with Kij). A second data key, Kji, is used to transmit data from user j
to user i. With this scheme, the key assumes either a transmit (encipher only)
or a receive (decipher only) capability. This method permits a protocol for
digital signatures to be implemented, similar to that obtained with a public-
key algorithm.

A Key Notarization System for Computer Networksl’

System Design

The key notarization system is designed for computer networks which con-
sist of host computers, user terminals, and key notarization facilities. The

I5 Reprinted in part from NBS Special Publication 500-54, October 1979 [181.

418 DIGITAL SIGNATURES

key notarization facility is analogous to the cryptographic facility described
in Chapter 4 or to the security module in reference 19.

The host controls the normal operation and communication of the ter-
minals. Terminals have the capability of communicating with the host, with
other local terminals through the host, and with terminals of other hosts
through communication channels called interchanges. Each terminal can use
the host key notarization facility by means of user commands. All commands
are implemented in the key notarization facility, and every key notarization
facility has the capacity to generate keys for distribution to other hosts or
facility users.

Two distinct types of keys are used: interchange keys (IK) and data keys
(DK). Interchange keys and data keys are similar to the secondary and pri-
mary keys introduced in Chapter 4. Interchange keys are used for the
exchange of data keys between users. One interchange key, called the facility
interchange key, is used for the encryption of facility user passwords. Other
interchange keys may be available for the exchange of data keys between
facilities or for subgroups of a facility. Interchange keys are generated outside
the network and are entered, unencrypted, directly into the key notariza-
tion facility. This permits two facilities to enter the same interchange key.
Data keys are used to encrypt data and are generated in the key notarization
facility.

The key notarization facility contains the DES algorithm, which employs
a secret key to encipher/decipher data or other keys. It has a control micro-
processor and memory to implement commands and data transfers. The key
notarization facility must also store the unencrypted interchange keys and
the states of active users. An active state consists of a user identifier, two
initializing vectors, and two unencrypted data keys for transmitting and re-
ceiving data, respectively. A user is active as soon as his identifier is loaded
into the key notarization facility. He may then proceed to load the rest of
his state.

The key notarization facility contains a key generator which is capable of
generating unpredictable keys. Once the 56-bit keys are generated, the proper
parity is determined and the entire 64-bit key is encrypted before it is re-
turned to the host. Thus no clear keys are known outside the key notariza-
tion facility. The key generator is also used to generate 64-bit initializing
vectors which initialize the DES.

Identifiers and Key Notarization

Identifiers are nonsecret binary vectors of up to 28 bits that uniquely identify
each user in the network. When a user first attempts to use the key notari-
zation facility, he must submit his identifier along with the correct password
to establish an active state in the key notarization facility. Both the host and
the key notarization facility employ identifiers to recognize users.

Let i and j be identifiers, and let K be a 64-bit DES key. (i 1) j) represents the
concatenation of i and j. K consists of 8 bytes, each byte containing 7 infor-
mation bits and a parity bit. K XOR (i II j) is a special function defined as
follows. The leftmost 7 information bits of K are Exclusive-ORed with the

USING DES TO OBTAIN PUBLIC-KEY PROPERTIES 419

leftmost 7 bits of i. The eighth bit, a parity bit, is then appended so the
modulo two sum of the eight bits is odd. Then the next 7 information bits
of K are Exclusive-ORed with the next 7 bits of i and the correct parity bit
is appended. This continues until the last 7 information bits of K have been
Exclusive-ORed with the last 7 bits of j and the final parity bit has been set.
Therefore, K XOR (i II j) is a valid DES key with 56 information bits and 8
parity bits. All passwords and data keys are encrypted under K XOR (i II j)
for some K and some i, j pair. In the case of passwords, i = j.

When key notarization is used, keys and passwords are sealed upon en-
cryption by the key notarization facility with the identifiers of the trans-
mitter (or key generator) and the receiver. To generate a notarized key, the
trahsmitter must identify itself to the key notarization facility and provide
proof of its identity by supplying the correct password. This is called user
authentication. The transmitter must also specify the intended receiver of
the key.

A generated key is immediately encrypted under an interchange key
Exclusive-ORed with the proper identifier pair, that is IK XOR (i II j). The
identifier of the user requesting the key, who is also the transmitter, is always
the left identifier (i), and the identifier of the intended receiver is the right
identifier (j) in the identifier pair.

Once encrypted, the correct key cannot be decrypted unless the correct
identifier pair is again provided. To decrypt the key, the receiver identifies
itself and provides password proof of its identity. The receiver must also
supply the identifier of the transmitter. If the identification information is
not the same as that provided by the transmitter to its key notarization
facility, then the decrypted key will not equal the original key and no infor-
mation can be correctly decrypted. Thus the receiver must know the correct
transmitter and be the intended receiver.

User Authentication

Each user has a password used to authenticate and permit him to invoke user
commands. The plain password is passed through an encryption function,
involving the users identifier, and the result is compared in the key notariza-
tion facility with a stored value before the user is activated. No other com-
mand will be accepted by the key notarization facility until the user’s identity
has been authenticated. Each user’s password is stored in system memory
encrypted under the facility interchange key combined with the users
identifier. It is assumed that the host can maintain the correct identity of a
user once he has been authenticated. Thus after users are activated, they
need not resubmit their passwords each time a new command is issued.

Let EK(X) indicate the encryption of X under key K using the electronic
codebook mode of DES operation [20]. Thus EcIK1 xoR (i 1, i,$PWi) denotes
the encryption of PWi under IKl Exclusive-ORed with user i’s identifier pair,
(i II i). IKI is used because the passwords are from the system memory of
host 1 and IKl is the facility iyterchange key of host 1.

To protect against substitution, the password is encrypted under IKl
Exclusive-ORed with the appropriate identifier pair. If identifiers were not

420 DIGITAL SIGNATURES

used and user j could gain access to the system memory, he might substitute
his own encrypted password, En<i(PWj), for user i’s encrypted password
EX1(PWi). User j could then be authenticated as user i by submitting his
own password and claiming to be user i. However, if an identifier pair is
Exclusive-ORed with the interchange key in the manner described, then
E(IKI XOR (i I I i))(PWj) would be calculated upon authentication and it would
not compare with Ecncl xOR 0 ,lg>(PWj) which was submitted as user i’s en-
crypted password.

User i’s memory contains personal and shared data keys. Personal data
keys are encrypted under the facility interchange key Exclusive-ORed with
the user’s identifier pair. Personal keys may be used to encrypt files and
other private data, but they cannot be shared. User i’s memory also contains
shared data keys. A shared data key is encrypted under an interchange key
Exclusive-ORed with the concatenation of user i’s identifier and another
user’s identifier, say user j. (i II j) uniquely identifies the communication
parties. If (i 11 j) were not used, another user could substitute his own data
key encrypted under the interchange key and could then decrypt any
subsequent ciphertext encrypted with that data key. Similarly, when user j
receives &IQ XOR (i I I j>>(DKij), he must know that he is communicating with
user i over interchange p to decipher DKij correctly. Thus the transmitter
is prevented from posing as someone else. And since several users may all
use the same IKp to communicate, this protection is critical.

Commands

The key notarization facility supports the required commands through a
combination of hardware and software. The commands are used for:

1. Data encryption, decryption, and authentication.

2. Password initialization, notarization, change, and reencryption.

3. Reserving and logging out of active user states.
4. Generating notarized data keys and initializing vectors.

5. Loading notarized data keys and initializing vectors.

6. Reencrypting data keys.

A user must authenticate and receive an active state before he can execute
any other commands. Password initialization is the only command function
which must be privileged to the security officer.

Digital Signatures

Since the key notarization facility combines identifiers with interchange keys
for protection against substitution, and employs a separate encryption and
decryption key storage, one cannot encrypt data in a key that was generated
by another user. Therefore, any encrypted message may be regarded as a signed
message (or a signature). It is assumed that messages can be distinguished
(e.g., by including redundant data in them). No additional keys or commands
are required. All user j needs to do is keep EmKpXOR (iIu,)(DKij), E,,(IV),

USING DES TO OBTAIN PUBLIC-KEY PROPERTIES 421

and the encrypted message in order to be able to prove that it was received
from user i. Of course, user j may send a signed message to user i using data

Suppose user i generates a data key for communication with user j. The
encrypted key would be of the form

where IKp is the interchange key for interchange p and DKij is the data key
generated by user i for transmission to user j. Whenever user i generates a
key, his identifier is always leftmost in the identifier pair. The only way user
j can load DKij is by loading it as a receive key. If user j tries to load DKij as
a transmission key (i.e., for the encryption of data going to user i), the key
notarization facility will use (j 1) i) instead of (i I] j) when decrypting DKij. If
user j tries to load the key as a personal key, then (j 1) j) will be used. When
DKij is loaded as a receive key, only the decryption commands have access
to it. Since there is no way for user j to get DKij into the transmit data key
active storage, he cannot encrypt a message under DKij or alter a message
already encrypted under DKij.

If user j generates a data key for communication with user i, the key will
be of the form

However, user j cannot claim that a message encrypted under DKji came
from user i, since he could be challenged to decrypt the encrypted message.
To do so, user j would have to load DKji by submitting ECrkp XOR (j,, ,)(DKji)
to the key notarization facility and claim to be the receiver. The key notari-
zation facility would not load the correct data key (DKji), since (i 11 j)
instead of (j 11 i) would be used as the identifier pair when decrypting
&IKp XOR (jll i))(DKji). Thus the decrypted message would be garbled.

It is assumed that the key notarization facility of each host is physically
secure from all users and that shared interchange keys are securely distributed.
One must guard against disclosure and substitution of keys. If one could
gain knowledge of the shared key, one could forge all signatures sent between
both facilities. Of course, all data keys encrypted under the shared key would
also be compromised.

A Method Using Variants of the Host Master Key16

A different method for implementing encipher only and decipher only keys
with the DES is discussed below. KE (the encipher only key) and KD (the
decipher only key) are defined as follows:

KD = Er&K)

‘6@1980 Horizon House. Reprinted in part from INTELCOM ‘80 Conference Proceedings
[211 with permission of Horizon House Telecommunications, Inc.

422 DIGITAL SIGNATURES

where KM1 and KMJ are two different variants of the host master key (KMO),
unique to the specification of KE and KD respectively, and K is a DES data-
encrypting key.

Two new cryptographic operations are also defined to the cryptographic
facility: encipher data only (ENCO) and decipher data only (DECO), as dis-
cussed below: I7

where X and Y are the plaintext and ciphertext, respectively. ENCO uses
variant KM1 and DECO uses variant KMJ.

X is recovered whenever it is enciphered with KE and the result is deci-
phered with KD:

DECO: {KD, ENCO: IKE, X)1= X; for all X,

and X is recovered whenever it is deciphered with KD and the result is enci-
phered with KE:

ENCO: IKE, DECO: {KD, X1)= X; for all X

provided that

bdJW = DKMJWD),

which is the case whenever KE = EmI and KD = Ek&K).
For an arbitrary value of K, EmI is generally unequal to EKILIJ(K) (i.e.,

KE # KD). This means that when plaintext is enciphered/deciphered with a
given key parameter (KE or KD), it cannot be recovered (deciphered/enci-
phered) with the same key parameter.

Because of the complexity of DES, a knowledge of KE does not reveal KD
(and vice versa), even though KM1 and KMJ are variants of the same key
(KMO). But when used in conjunction with the cryptographic operations
ENCO and DECO, KE permits data to be enciphered under a secret DES key
(K) and the corresponding KD permits data to be deciphered under the same
secret DES key (K). Therefore, as far as the cryptographic system is concerned,
enciphering and deciphering are performed with K. But as far as the cryptog-
raphic system users are concerned, enciphering is performed with KE and
deciphering is performed with KD. That is, the keys and the attributes of
those keys are defined respectively different to the user and the cryptographic
system.

The properties of a public-key cryptosystem are achieved by making KE
(the encipher only key) public and keeping KD (the decipher only key) pri-

“ENCO and DECO illustrate the Electronic Codebook (ECB) mode of DES operation [201.
The encipher only and decipher only attributes could also be extended to cover encryption
and decryption using block chaining techniques, although such methods are omitted from
this discussion.

LEGALIZING DIGITAL SIGNATURES 423

vate. The approach, however, is not as flexible as a true public-key crypto-
system. KE and KD can be used only at the host system where they were
originally created. Moreover, the encipher only and decipher only properties
of the keys are guaranteed only as long as the secrecy of KM0 or any of its
variants, and the data-encrypting key associated with each KE and KD pair,
can be guaranteed.

To allow a user to create a public and private key pair, a key generation
function is defined called generate key (GKEY):

This operation has no input parameters, and when invoked a random number
K is generated within the cryptographic facility and in turn enciphered first
under KM1 and second under KMJ. The variants KM1 and KMJ are derived
inside the cryptographic facility by a selected inversion of bits of the host
master key KMO.

The principle of encipher only and decipher only keys can also be ex-
tended to a network of interconnected terminals and host computers [221.
However, the details are omitted from this discussion.

LEGALIZING DIGITAL SIGNATURES’8

In the absence of an omnibus statute governing paperless commercial trans-
actions via an electronic communications network, parties are free to enter
into their own agreements. However, if disagreements later arise, the party
seeking to enforce the contract will prevail only if the agreement complied
with certain basic legal requirements. These requirements may include the
the provisions of statutes of frauds (as imposed by the UCC and/or local law),
acknowledgments, recording, and reasonableness. Modern statutes of frauds
require some writing which indicates that a contract for sale has been made
between the parties at a defined price, that it reasonably defines the subject
matter, and that it is signed by either the party against whom enforcement is
sought or by his duly authorized agent. We have seen, however, that the signed
requirement may be satisfied by something less than a formal handwritten
signature. A mere pattern of bits, whether in clear or encrypted form, would
not as a practical matter serve as the required symbol in lieu of a handwritten
signature, even though the pattern of bits was transmitted or accepted by a
party with the intention at that time of authenticating a writing. This is be-
cause a pattern of bits which is used as a signature may be altogether too
easily manipulated or forged, and is not part of, or annexed to, a tangible
writing. Moreover, unless the pattern of bits were predefined to have a par-
ticular meaning to the party receiving it, or unless an established code form
were adopted by the parties, it would be utterly without meaning.

Therefore, it seems doubtful that, by itself, a special pattern of bits trans-

1801978 McGraw-Hill, Inc. Reprinted in part from l)ntu Communicatiors, February
1978 [l].

424 DIGITAL SIGNATURES

mitted together with a message and subsequently recorded on some machine-
readable medium would satisfy the necessary legal requirements of signature.
On the other hand, when an initial written agreement, signed in the ordinary
sense, is entered into by the parties in question, it appears that the legal
requirements of signature can be satisfied. The initial written agreement in
this case defines the procedures and protocols whereby the parties would
conduct a series of future transactions, together with an agreed means and
procedure for recording the elements of such transactions.

The UCC specifically authorizes parties to vary the provisions of the
code by agreement, except as otherwise stated, and provided that the obli-
gations of good faith, diligence, reasonableness, and care as prescribed by the
code may not be disclaimed [Sec. l-1 02-(3)] . The UCC further provides for
parties involved in banking transactions to stipulate or agree to deviate from
its requirements, and to determine for themselves the standards by which
their responsibilities are to be measured, provided that a bank may not dis-
claim responsibility for its own lack of good faith or failure to exercise
ordinary care or limit the measure of damages for such lack or failure [Sec.
4-1031. It is under this exception that banks have been able to operate
current electronic funds transfer systems, including transactions with their
customers and with other banks.

Of course, there are certain classes of transactions for which only accepted
paper-based conventions will suffice. For example, to be enforceable, trans-
actions involving real property must (in most states) be in writing, and be
acknowledged and recorded in a public registry (the office of the county
clerk in which the property is located). Hence to comply with present law,
contracts of this nature could not be handled by electronic communications
networks with a capability for digital signatures.

Initial Written Agreement

With each of the methods for obtaining digital signatures previously described,
each party possesses certain secret and possibly nonsecret, information used
in generating his own signature, and other nonsecret information used in
checking or validating the signatures of others.

For this protocol to be workable, there must be some mechanism for each
party to authenticate independently the nonsecret signature validation infor-
mation which he holds. This could be done if each party were to record his
own signature validation information at some established registry with recog-
nized and accepted integrity, such as an office of the county clerk or the
office of a secretary of state. Alternatively, one could include this information
within the initial written agreement itself, which was shown to be necessary
in order to comply with the underlying legal requirements for conducting
signed transactions via an electronic network. Recall that in a public-key
cryptographic system, the private deciphering key cannot be efficiently de-
rived from the public enciphering key. Likewise, in a DES-based protocol,
the private signature keys cannot be efficiently derived from the correspond-

ing public validation quantities.
As to the question of whether a person who transmits a message signed

LEGALIZING DIGITAL SIGNATURES 425

with an electronic digital signature is in fact authorized, the procedures
necessarily imply that only an authorized agent would have access to the
secret information needed to generate the signature. Thus, when the secret
information used in generating signatures is stored within a computing sys-
tem, the burden is upon installation management to assure that this infor-
mation is kept secret, and that an adequate access control mechanism is in
place so that signatures can be created only by authorized users (persons,
programs, and the like).

Whoever has access to a principal’s secret signature generation information
will be deemed to be the principal’s authorized agent. Therefore, installation
management must also implement sufficient security controls in order to be
alerted if this secret signature generation information should become exposed,
or if the capability to sign messages has been obtained by unauthorized users.
Failure of one of the principals to notify other parties that his digital signa-
tures have been compromised may be deemed his own negligence, and might
defeat any defenses he may later raise as to the authority of his agents.

Choice of Law

As part of their initial written agreement, the parties must specify a particular
jurisdiction under whose laws the agreement is to be governed (such as New
York law), and the forum for the litigation of disputes that may arise out of
transactions executed via the electronic communications system. Where the
parties agree to communicate via a common network and the information
needed to validate signatures has been recorded or registered, the jurisdiction
wherein such registry is located would be the reasonable and logical choice.
Both interstate and international transactions may be accommodated in this
manner.

The statute of limitations defines the period of time within which a lawsuit
must be commenced from the time a cause of action accrues. In disputes
involving contracts, the period in most states is six years. A cause of action
upon a contract may accrue at the time the original written agreement was
entered into, or at some time thereafter, when a signed message is transmitted.
It would appear necessary, therefore, that both parties to a transaction (sender
and receiver) retain all data relating to their initial written agreement and to
each subsequent signed message for at least the period of the applicable
statute of limitations.

Moreover, it would serve the interest of both parties to have a trusted
mechanism for the recording of the time and date of the transaction. If the
time and date were included as part of the message’s content, the receiver
would have a means of verifying and proving the time and date of the trans-
action. This, of course, could be easily accomplished with existing message
time-stamping facilities already available in data processing systems.

Regardless of the protocol for implementing electronic digital signatures,
the claim is made that if the protocol is implemented as intended, then one
can be assured that (1) the sender is not able to later disavow messages as his
own, (2) the receiver is not able to forge messages or signatures, and (3) both
the sender and receiver are certain that the identity of the sender and the

426 DIGITAL SIGNATURES

contents of the message can be proved before a referee. As a consequence,
the following may be said about the judicial acceptance of the electronic
digital signature.

The parties may agree or stipulate as part of their initial written agreement
that they will be bound by their digital signatures, that they agree to submit
all disputes to a referee, and that they agree the concept of digital signatures
is cryptographically sound. However, this agreement will not prevent one of
the parties from later raising the claim that the indicated result lacks validity,
that he did not understand the underlying scientific principle (not an un-
reasonable assertion), or that he was forced to sign the stipulation as a condi-
tion of his transacting business with the other party. As a practical matter,
therefore, it is prudent to assume that such disputes will inevitably arise.

While various techniques exist for proving the validity of written signatures
(ranging from expert handwriting analysis to the unique properties of hand-
written signature acceleration patterns), the resolution of disputes over digital
signatures will be based on validation quantities, the cryptographic strength
of the algorithms used in the generation of signatures, and the like. Thus as
part of the process of judicial acceptance, the courts must initially pass upon
the question of the soundness of the underlying cryptographic technique.

All scientific aids and devices go through experimental and testing phases.
During these phases there may be considerable scientific controversy over
the validity of the technique, aid, or device. During this period of controversy,
there is the danger that a trial of a legal dispute between the parties may
result in the trial of the validity of the new scientific technique, rather than
a trial of the issues involved in the case. “It is not for the law to experiment
but of science to do so” [State vs. Gary, 99 N.J. Sup. 323, 239 A.2d 680,
aff d, 56 N.J. 16,264 A.2nd 209 (1970)].

When scientific aids to the discovery of truth receive general recognition
within the relevant scientific community as to their accuracy, courts will not
hesitate to take judicial notice of such fact and admit evidence obtained
through their use. Judicial notice means that the underlying scientific prin-
ciple upon which the new device or process is based need not be proved each
time the results of the device or process are introduced into evidence.

Judicial Notice Recognized

As an example of judicial notice, each time a police officer testifies that
according to the output display of his radar device the defendant was speeding,
he need not present expert witnesses to testify to the scientific foundation
of radar-that the radar transmitter and receiver can measure the velocity of
a moving target based upon the Doppler effect of reflected waves. Radar has
now become generally accepted as a means of measuring vehicle speed. All
the officer must prove is that, on the particular occasion in question, his
particular radar unit was properly set up, calibrated, and operated.lg Examples

“A highly publicized case in Dade County Florida in 1979 regarding the reliability of
radar devices and their use by police officers resulted in a ruling “that the reliability of
radar speed measuring devices as used in their present modes and particularly in these
cases, has not been established beyond and to the exclusion of every reasonable doubt.”
[23] Subsequent court decisions, however, have generally upheld the accuracy and reli-
ability of police traffic radar.

REFERENCES 427

of other scientific principles that have been reduced to practice and are now
judicially noticed include the unique properties of fingerprints and ballistics
comparisons [241.

While the digital signature concept could be implemented using any encryp-
tion algorithm, its own scientific acceptance would be aided by basing the
scheme upon a strong encryption algorithm which itself has already been
scientifically recognized and accepted. Of course, if and when additional
scientific evidence becomes available to challenge the effectiveness of the
algorithm, courts may later reject their reliance upon once accepted principles.

It would be preferable, therefore, for the digital signature to be based
on an algorithm whose strength has been certified by the NSA. In all likeli-
hood, this would satisfy the criteria for judicial acceptance of the validity of
the underlying scientific principle of digital signatures, and could aid in the
eventual acceptance by the courts of the digital signature concept.

REFERENCES

1. Lipton, S. M. and Matyas, S. M., “Making the Digital Signature Legal-and Safe-
guarded,” Data Communications, 7, No. 2,4 1-52 (February 1978).

2. Corley, R. N. and Robert, W. J., Dillavou and Howard’s Principles of Business Law,
9th ed., Prentice-Hall, Englewood Cliffs, NJ, 1971.

3. Uniform Commercial Code, 1972 Official Text with Comments, American Law In-
stitute and National Conference of Commission on Uniform State Laws.

4. Diffie, W. and Hellman, M., “New directions in Cryptography,” IEEE Transactions
on Information Theory, IT-22,644-654 (November 1976).

5. Merkle, R. and Hellman, M., “Hiding Information and Receipts in Trapdoor Knap-
sacks,” IEEE Transactions on Information Theory, IT-24, 525-530 (September
1978).

6. Kohnfelder, L. M., Towards a Practical Public-Key Cryptosystem, BS Thesis, Depart-
ment of Electrical Engineering, Massachusetts Institute of Technology, Cambridge
(May 1978).

7. Rivest, R. L., Shamir, A., and Adleman, L., “A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems,” Communications of the ACM, 2, No. 21,
120-126 (February 1978).

8. Shamir, A., “A Fast Signature Scheme,” Massachusetts Institute of Technology,
MIT/LCS/TM-107 (July 1978).

9. Branstad, D., Davida, G. I., Hellman, M. E., Tuchman, W. L., and Sugarman, R., “On
Foiling Computer Crime,” IEEE Spectrum, 16, No. 7, 3 l-49 (July 1979).

10. Yuval, G., “How to Swindle Rabin,” Cryptologia, 3, No. 3, 187-189 (July 1979).
11. Rabin, M. O., “Digitized Signatures,” in Foundations of Secure Computation,

edited by R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, Academic
Press, New York, 1978, 155-168.

12. Matyas, S. M. and Meyer, C. H., “Electronic Signature for Data Encryption Standard,”
IBM Technical Disclosure Bulletin, 24, No. 5,2332-2334 (October 1981).

13. Matyas, S. M. and Meyer, C. H., “Electronic Signature for use with the Data Encryp-
tion Standard,” IBM Technical Disclosure Bulletin, 24, No. 5, 2335-2336 (October
1981).

14. Matyas, S. M., “Digital Signatures-An Overview,” Computer Networks, 3, 87-94
(1979).

15. Ehrsam, W. F., Matyas, S. M., Meyer, C. H., and Tuchman, W. L., “A Cryptographic
Key Management Scheme for Implementing the Data Encryption Standard,” IBM
Systems Journal, 17, No. 2, 106-l 25 (1978).

428 DIGITAL SIGNATURES

16. Lennon, R. E. and Matyas, S. M., “Unidirectional Cryptographic Functions Using
Master Key Variants,” 1979 National Telecommunications Conference Record, 3,
43.4.1-43.4.5 (November 1979).

17. Lennon, R. E., Matyas, S. M., and Meyer, C. H., “Cryptographic Authentication of
Time-Invariant Quantities,” IEEE Transactions on Communications, COM-29, No.
6,773-777 (June 1981).

18. Smid, M. E., A Key Notarization System for Computer Networks, NBS Special
Publication 500-54, U.S. Department of Commerce, National Bureau of Standards,
Washington, DC (October 1979).

19. Campbell, C. M., Jr., “A Microprocessor-Based Module to Provide Security in Elec-
tronic Funds Transfer Systems,” Proceedings COMPCON 79, 148-153 (1979).

20. DES Modes of Operation, Federal Information Processing Standard (FIPS) Publica-
tion 81, National Bureau of Standards, U.S. Department of Commerce, Washington,
DC (1981).

21. Lennon, R. E., Matyas, S. M., and Meyer, C. H., “Cryptographic Authentication
Methods for Emerging Data Processing Applications,” Proceedings, INTELCOM ‘80,
337-341 (November 1980).

22. Lennon, R. E., Matyas, S. M., and Meyer, C. H., “Public-Key Enciphering/Decipher-
ing Transformations Using a Conventional Algorithm,” IBM Technical Disclosure
Bulletin, 25, No. 3A, 1241-l 249 (August 1982).

23. Police Traffic Radar, U.S. Department of Transportation Issue Paper, DOT HS-805
254 (February 1980).

24. Maguire, J. M. and Chadborne, J. H., Evidence-Cases and Materials, 6th ed., Foun-
dation Press, Mineola, NY, 1973.

Other Publications of Interest

25. Merkle, R. C., Secrecy, Authentication, and Public Key Systems, Technical Report
No. 1979-1, Department of Electrical Engineering, Stanford University, Palo Alto,
CA (June 1978).

26. Shamir, A,, A Fast Signature Scheme, MIT Laboratory for Computer Science, Re-
port TM-107 (July 1978).

Applying Cryptography to Pin-Based 429..............
INTRODUCTION 429...
SECTION ONE: BASIC PIN CONCEPTS 430.......

Why PINS? 430..
PI N Secrecy 431..
PIN Length 432...
Allowable PIN Entry Attempts 433................................
PIN Issuance 434...
Bank Selected PIN 434..
Cardholder Selected PIN 435.......................................
Consider each of these techniques: 436......................
Comparison of Bank Selected PIN and 438.................
The Forgotten PIN 439...
On-Line PIN Validation 440..
Off-Line PIN Validation 441..
PIN Validation for Interchange Transactions 441.........
Conclusions 443...

SECTION TWO: EFT FRAUD THREATS 444.......
E FT Fraud Categories 445..
Passive Fraud Threats 446..
The Delivery System 447...
The Cardholder 447..
The EFT System 448..
Relative Risks 448..
Active Fraud Threats 449...
Communications Lines 449..
E DP Systems 450...
Fraud and Liability 451...
Conclusions 453...

SECTION THREE: PRINCIPLES OF 454..............
Cryptography, The Tool for Fraud Prevention 454.......
Preventing Passive Fraud Threats 455........................
PIN Encryption 455...
Protection of Cryptographic Keys 456..........................
Physical Protection of PINS and Cryptographic 456....
Preventing Active Fraud Threats 457...........................
Data Modification 457...
Replay of Debit Authorization 458................................
Fraudulent Credits 459...
Encrypted PIN Substitution 459....................................

Fraud Prevention in Interchange 461...........................
Countering the Fake Equipment Threat 462................
Conclusions 463...

SECTION FOUR: IMPLEMENTATION OF 464......
Suggested Characteristics of Hardware 464................
Suggested Capabilities6 465..
Bank Selected Random PIN 466..................................
Customer-Selected PIN 467...
PIN Validation 467..
Key Management 468..
MAC Generation� 469...
Utilization 469...

Figure 10-l. Issuer�s PIN Validation - Local 471.......
Figure 10-2. PIN in Interchange 472........................

Conclusions 473...
REFERENCES 473..

CHAPTER TEN

Applying Cryptography to Pin-Based
Electronic Funds Transfer Systems’

Today there are many cryptographic authentication techniques being used
and evaluated by major financial institutions for electronic funds transfer
systems. Therefore, due to the state-of-the-art, there are divergent opinions
as to the order in which problems should be addressed and what method-
ologies should be used to achieve optimum solutions.

To provide a balanced discussion between the authors’ point of view
(expressed in Chapter 11) and that of others, permission has been obtained
to reprint relevant sections from the PIN Manual: A Guide to the Use of
Personal Identification Numbers for Interchange 11 I, which was prepared
by the staff of Master-Card International, Inc. (formally Interbank Card
Association) in cooperation with MasterCard International’s Standing Com-
mittees. The material in this chapter, except for two indicated passages, was
comprised from the first four sections of the PIN Manual. The views
expressed and responsibility for the accuracy of the material lies with the
originators of that manual.

Helpful footnotes, annotations, and additional material was provided by
the authors. (Material added by the authors appears in brackets.) In order to
maintain consistency, the original notations for encipherment and decipher-
ment have been changed to conform with the notations used throughout the
book.

Pin Manual
A Guide to the Use of

Personal Identification Numbers
in Interchange

INTRODUCTION

In the early 1970’s, Interbank Card Association began to investigate the
implications of the transition from an off-line paper based funds transfer

’ By permission of Mastercard International, Inc. (formerly Interbank Card Association).
Reprinted in part from PIN Manual: A Guide to the Use ofPersona Identification Num-
bers in Interchange, September 1980 [I].

429

430 APPLYING CRYPTOGRAPHY

system, exemplified by Mastercard, to an on-line, Electronic Funds Transfer
(EFT) system. The investigation soon determined that this transition would
present many problems relating to customer acceptance, economic justifica-
tion, and regulatory policy. However, the only unsolved technological prob-
lem was how to insure the system’s security.

Interbank soon realized that using secret Personal Identification Numbers,
PINS, was the best technique for authenticating customers in EFT. A PIN
serves the same role in an electronic system that a written signature serves in
a conventional paper based system. While this did not solve the security
problem, it did define one major aspect, the need to ensure PIN secrecy
everywhere within the EFT environment. Although the assurance of PIN
secrecy was the first and foremost EFT security problem, it was not the only
one. Insuring the authenticity and integrity of the transaction were also
problems.

Since it was apparent that EFT could not progress until these security
problems were resolved, Interbank began, in the 1970’s, what is believed to
be the most extensive study of EFT security ever undertaken. The study,
which lasted more than three years, uncovered and assembled a wealth of
information regarding virtually every aspect of securing an EFT system.
It considered, in detail, the possible fraud threats that could be perpetrated
against such a system and developed countermeasures to prevent them. The
implementation of each countermeasure was studied in detail to insure that
its effectiveness would not detrimentally affect the cost or performance of
the EFT system as a whole. The study considered many approaches to the
issuance, management, validation, and interchange of PINS, and where choices
were available to the financial institution, attempted to determine the pros
and cons of the available alternatives. Since the study concluded that most
of the required security techniques were cryptographic, considerable thought
was given to the practical implementation of cryptography in a retail funds
transfer environment. Given special study was the management of the secret
keys that are a fundamental ingredient in any secure cryptographic system.

SECTION ONE: BASIC PIN CONCEPTS

Why PINS?

The term PIN refers to personal identification number. It is a secret number
assigned to, or selected by, the holder of a debit card or credit card used in
an EFT (electronic funds transfer) system and serves to authenticate the
cardholder to the EFT system. The PIN is basically the cardholder’s elec-
tronic signature, and serves the same role in an EFT transaction as a written
signature serves in a conventional financial transaction. The PIN is memorized
by the cardholder and is not to be recorded by him in a manner that could
be ascertained by another person. At the time that the cardholder initiates
an EFT transaction, he enters his PIN into the EFT terminal using a key-
board provided for this purpose. Unless the PIN, as entered, is recognized by
the EFT system as being correct for this particular account number (read by

SECTION ONE: BASIC PIN CONCEPTS 431

the EFT terminal from the card’s magnetic stripe), the EFT system refuses
to accept the transaction. The purpose of all this is so that, should the card
be lost or stolen, the finder or thief would be unable to use the card, not
knowing the associated PIN. Similarly, it is to prevent someone who would
be able to do so from making a usable counterfeit copy of the card. Even if
he could make such a counterfeit card he could not use it, not knowing the
PIN.

PI N Secrecy

In order for the PIN to serve its required function, it must be known to the
cardholder, but to no one else. PIN secrecy is of the utmost importance.
If the financial institution wishes the cardholder to be responsible for any
compromise of his PIN, and, if a PIN is to be an effective signature substitute,
then the institution’s own handling of the PIN must be above reproach. It
must display to its cardholders extreme care in its PIN management proce-
dures. For example, if a cardholder is given the opportunity of selecting his
own PIN and is asked to write the PIN of his choice on the application form
containing information identifying him, he will quite likely realize that cer-
tain bank employees could ascertain his PIN from this form. This cannot
help but influence his own attitude toward the importance of PIN secrecy.
On the other hand, if he sees that the institution exercises extreme care to
insure that no bank employee can possibly learn his PIN, he will be impressed
with the importance of PIN secrecy on his own part.

Some financial institutions tend to view PIN secrecy on a cost-effective
basis. That is, they attempt to compare the cost of a certain degree of PIN
security with the cost of the fraud losses that might otherwise occur. This is
not really a valid comparison, because the impact of fraud due to the com-
promise of PIN secrecy greatly transcends the actual dollars lost. The most
catastrophic type of fraud that can occur because PINS are compromised is
the production and use of counterfeit cards, causing the accounts of unsus-
pecting cardholders to be fraudulently debited. This is not known until the
cardholders find their accounts overdrawn or incorrect debits on their
monthly statements. Assuming that the fraud losses are not due to negligence
on the cardholders’ part, the institution must pay not only for the fraud but
also for the clerical costs involved in processing cardholder complaints and
making restitution. Undoubtedly such fraud would become publicized, and
cardholders who had not actually experienced fraud but who could not
recall making certain transactions appearing on their statements would sus-
pect that they had been defrauded, and file complaints with the institution.
The institution would have no obvious way of distinguishing valid complaints
of fraud from invalid ones. As a result, some dishonest cardholders would
undoubtedly deny making certain of their transactions, knowing the institu-
tion could not prove them wrong. This secondary fraud could be of even
greater consequence than the primary fraud. However, the greatest impact
of fraud resulting from PIN compromise would probably be on customer
relations. A number of honest cardholders would hesitate to trust their funds
to such an institution any longer, and would move their accounts elsewhere.

432 APPLYING CRYPTOGRAPHY

Thus, the net loss to an institution could be many times the loss directly due
to PIN compromise.

As electronic banking and other forms of EFT grow as a percentage of
total financial transactions, the importance of the PIN, and hence of PIN
secrecy, is expected to grow likewise. Only by stringent (though not neces-
sarily costly) security measures can a high degree of PIN secrecy be main-
tained.

The PIN in its clear (comprehensible) form should never be transmitted
over communications lines, because these lines could be tapped. The clear
PIN should never reside, even momentarily, in any main frame or any data
base, because a clever programmer or computer operator might devise some
technique for ascertaining it. It should never be known to, or accessible by,
any employee of the institution, not even during the PIN issuing process.
(PIN mailers, if used, should be under strict dual control at all times to pre-
vent compromise.)

As stringent as these security measures may be, they can be implemented
at modest cost and without noticeable impact upon banking operations.
Subsequent sections describe, in detail, security techniques and their imple-
mentation.

PIN Length

In order to achieve its intended purpose, the PIN must contain enough digits
so that a card finder, thief or counterfeiter would have little probability of
hitting the correct PIN by chance, if he simply guessed at values. On the
other hand it should not contain very many digits, or it will slow down the
EFT transaction time. Therefore it is recommended that the PIN be four,
five or six decimal digits in length. A four digit PIN allows ten thousand
unique PINS. The criminal has no way of knowing which of these is the
correct PIN value for any given stolen or counterfeit card in his possession.
Assuming that the number of consecutive incorrect PIN entry attempts per
card is limited to a small number (e.g., ten or less), assuming that only one
PIN value is usable with any given card, and assuming a best case situation
from a card counterfeiter’s point of view, namely, an unlimited supply of
counterfeit cards (thousands), the unobserved exclusive use of an ATM for
hours on end, and no other special system checks to ascertain trial and error
PIN determination, he would still require more than forty continuous hours
of trial and error (assuming four tries per minute), and nearly one thousand
counterfeit cards, before he could determine the PIN for a single card. This
is believed to be an unfeasible fraud technique, so a four digit PIN appears
adequate. Of course this trial and error procedure would be ten or a hundred
times longer for a five or a six digit PIN.

It is assumed that in a properly designed EFT security system, it is impos-
sible for the card counterfeiter to construct an off-line system and use it for
trial and error PIN determination. That is, it is assumed that he can attempt
this trial and error method only on a terminal connected to the actual EFT
network. This assumption is not valid for certain EFT security techniques
that have been proposed. Were one of these techniques to be used, a PIN
length of six or fewer digits would be extremely non-secure.

SECTION ONE: BASIC PIN CONCEPTS 433

Though there is no security disadvantage to having long PINS, there is a
practical disadvantage. The longer the PIN, the longer the time the cardholder
will require to enter it, and the greater the probability of an entry requiring
a repeat. The latter is of special concern in an interchange environment
where the PIN must be sent to the card issuer for validation. Several seconds
or more could elapse before the cardholder began reentering his PIN. During
this time the EFT terminal would be unavailable for other use, and in POS
environment, a clerk would also be kept waiting. In addition, there is the
delay and inconvenience to the cardholder. Thus long PINS, by increasing
the transaction time, are a detriment to the merchant, the cardholder and
the financial institution.2

Allowable PIN Entry Attempts

It is customary to place a limit on the number of consecutive incorrect PIN
entries a cardholder is allowed. This is done to further hinder fraudulent
PIN determination by trial and error. Though desirable, this is not as impor-
tant as it is perhaps believed to be, and would appear unnecessary for all but
four digit PINS. Determining a five digit PIN by trial and error would require
an average of fifty thousand attempts without such a limit, and this appears
unfeasible. If a limit is imposed, it can be either an absolute limit, or a daily
limit. An absolute limit gives the cardholder a specified number of attempts
to enter his PIN correctly, regardless of the time span. After the allowable
attempts have been exhausted, the card is considered invalid. A daily limit
restricts the cardholder to a specified number of consecutive incorrect
attempts in any one day, but the cardholder starts with a “clean slate” the
following day. Only when the number of consecutive incorrect PIN entries
in any one day exceeds the limit is the card considered invalid. Of these two
approaches, the absolute limit appears preferable, since it more definitively
limits criminal attempts at trial and error PIN determination. The benefits
of this approach, for a four digit PIN, can be expressed quantitatively. If we
let N represent the absolute number of consecutive incorrect PIN entries
allowed, where N is small (e.g., ten) relative to ten thousand, then the
criminal would have to make an average of about ten thousand tries for each
PIN he successfully determined. During this time he would have used up ten
thousand divided by N cards. That is, for every card’s PIN he successfully
determined, he would fail on ten thousand/N cards. Without any type of
limit, he would require only a single card, and an average of five thousand
tries.

When the PIN is validated using the technique of the American Banking
Association PIN Verification Standard, the statistics are somewhat different
because this technique uses a “non-reversibly encrypted” PIN, which means
that more than one PIN can generally be used with a given card. With this
technique and an absolute limit, the criminal requires the average of five
thousand trials, and for every counterfeit card on which he succeeds he fails

21t is only fair to point out that, at the time of this writing, there are differing opinions
as to what constitutes a reasonable and practicable PIN length. Current technology will
easily accommodate PINS of up to 16 digits.

434 APPLYING CRYPTOGRAPHY

on .5,000/N. Without any type of limit he requires a single card and the
average of 3,679 tries.

The situation for a daily rather than an absolute limit is essentially the
same as in the no limit case, except the criminal is restricted daily to one less
than the maximum number of attempts allowed. In this way the card is
never declared invalid, and the criminal can make additional attempts the
next day. The intent is that long before he has made the five thousand (or
3,679 average) tries required, the legitimate cardholder will have noticed that
the card is missing, and report the loss. However, if the criminal is using a
counterfeit copy of the card, there is no loss to report.

If some type of limit is imposed on incorrect PIN entries, then the ques-
tion is whether or not the card should be retained when this limit is reached.
In an off-line system, card retention may be necessary to prevent unautho-
rized card usage. However, as a general rule, it appears better not to retain
the card if this can possibly be avoided. In an on-line system, the account
can be flagged as invalid in the data base, so there is no practical need to
retain the card. If the imposed limit is a daily, card related limit, retaining
the card does not significantly affect the criminal who is attempting trial and
error PIN determination. He is well aware of the limit, and is careful to stay
below it. The only effect of card retention at the limit is to reduce by one
the number of tries per card per day that can be made. On the other hand,
the cardholder is unaware of the card retention threat, and may keep trying
to remember his PIN until he has reached the retention threshold. Thus,
retaining the card when this type of limit is used does not appear desirable,
un@.s required by off-line usage of the card.

In summary, some limit on the number of consecutive incorrect PIN
entries seems desirable when four digit PINS are used, though unnecessary
when the PIN length is longer. This should not be an argument to use a longer
PIN, because four digits is, in many ways, the optimum PIN length. With a
four digit PIN, the first choice is to use a per card absolute limit, without
regard to time. A value in the range of three to ten would seem reasonable.
The second choice is to use a per card daily limit, in the range of three to
four. The third choice is no limit. This choice introduces some risk, however,
this risk is not significant, since it would require the average of fifteen to
twenty hours of trial and error at an ATM (assuming the ATM allows four
tries per minute) for each four digit PIN thus determined. Finally, retaining
the card (should the limit, of whatever type, be reached) appears undesirable,
unless there is no other method available for restricting future use of the
card.

PIN Issuance

There are two basic PIN issuance techniques. In the first, the financial institu-
tion determines what the PIN will be, and conveys it to the cardholder. In
the second, the cardholder determines what the PIN will be and conveys it
to the institution.

Bank Selected PIN

Again, the card issuing institution has two choices. The PIN can be crypto-
graphically derived from the account number, or it can be a random value.

SECTION ONE: BASIC PIN CONCEPTS 435

PIN Cryptographically Derived from the Account Number. In this case,
the account number is processed using a cryptographic algorithm so as to
produce a decimal value of the appropriate number of digits. With proper
generation techniques there is no discernible correlation between the derived
PIN and the account number, and the PIN is completely unpredictable to
anyone who knows the account number but does not know the secret key
(defined in Section Three) used in the cryptographic process.

The advantage of this technique is that it eliminates the necessity for main-
taining any record of the PIN. When the PIN of reference is needed to vali-
date the PIN as entered by the (alleged) cardholder, it may be regenerated
by simply processing the same account number through the same crypto-
graphic process (utilizing the same secret cryptographic key). The main dis-
advantage of this technique is that the PIN cannot be changed unless the
account number is changed. If a cardholder fears that his PIN may have been
compromised and requests a new PIN, the only way to give him a new PIN
is to give him a new account number. Another disadvantage is that the
cryptographic key cannot be changed without changing every cardholder’s
PIN.

Random PIN. The use of a random number for the PIN overcomes the
disadvantage of having a PIN that is inherently linked to an account number
and to a specific cryptographic key. With the random number technique, the
card issuing institution generates, in a highly secure manner, a random deci-
mal number that serves as the cardholder’s PIN. The disadvantage of this
technique is that the institution must maintain a record of the random PIN
it issued to serve as the PIN of reference for subsequent validation of the
PIN as entered from EFT terminals. As indicated previously, it is unaccept-
able to store the PIN in its clear form. It must be encrypted, as described in
subsequent sections. The encrypted PIN may be (1) stored in the issuer’s
data base, (2) encoded on the magnetic stripe of the card, or (3) both.

Regardless of which technique is chosen to generate a bank selected PIN,
it must be conveyed to the cardholder. This is normally accomplished by
means of a PIN mailer, a printed document containing the clear PIN. This
document must be printed under conditions of very high security, and dual
control throughout must be utilized to insure that no bank employee opens,
reads, or even closely examines such a mailer. The most secure PIN mailer is
a multi-part sealed form with the PIN printing visible only inside the form.
(The form can then, if desired, be placed in a windowed envelope to hide
any impression which may have been made upon the top surface of the
form.)

The PIN and the associated cards should never be mailed together. Prefer-
ably, the PIN is mailed after the cardholder has signed a confirmation receipt
for the card.

It is recommended that bank selected PIN should be four digits (not five
or six) to simplify its memorization and lessen the probability that it will be
carried, in written form, with the card.

Cardholder Selected PIN

Many financial institutions, for reasons to be discussed later, prefer to have
the cardholder select his own PIN. In this case, a technique is required where

436 APPLYING CRYPTOGRAPHY

the cardholder can convey his PIN to the institution. There are three such
techniques:

1. The PIN may be solicited by mail, with the selected PIN mailed back
to the institution.

2. The PIN may be entered by the cardholder via a secure terminal located
at one of the institution’s offices.

3. The PIN may be selected when the potential cardholder visits the
issuer’s facility.

Consider each of these techniques:

PIN Solicited by Mail. With this technique the institution prepares a two
part form to be mailed to the cardholder. The first part contains the card-
holder’s name and address, and serves only for mailing purposes. The second
part contains a reference number and a place for the cardholder to write the
desired PIN. The cardholder is instructed to write only the PIN on the second
portion and mail it back to the institution in an opaque envelope provided
for the purpose. The first part is to be discarded. The reference number bears
no discernible relationship to the cardholder’s account number, nor to any
other information that would identify the cardholder. Thus, a clerk at the
institution may open the returned envelope and manually enter the PIN and
the reference number into a special security system. This system can, through
a cryptographic process, ascertain the account number from the reference
number. Then it passes the PIN, encrypted, and the clear account number
to the institution’s EDP system. At no point in this process is the clear PIN
ever associated with the clear account number, nor with any other informa-
tion which would serve to identify the cardholder.

PIN Entered via a Secure Terminal. Perhaps the simplest and best way for
a cardholder to convey his selected PIN to the financial institution is by
entering it via the PIN pad of a secure terminal. A secure terminal is one that
encrypts the PIN as soon as it is entered. Such a terminal operating in con-
junction with special cryptographic equipment at the institution’s EDP facil-
ity, provides an environment where the clear PIN is never thereafter available
(except within the security system).

With this method of cardholder PIN selection, safeguards must be imple-
mented to protect against someone who steals a card from the mail, imper-
sonates the legitimate cardholder in the PIN selection process, and then
draws against the legitimate cardholder’s funds. To guard against this, one or
more officials at the office where the terminal is located should be responsi-
ble for validating the cardholder’s identity. Such an official has a special PIN,
which he enters into the terminal just before the cardholder begins the PIN
selection process, provided the official is satisfied with the cardholder’s
identity. Only when the cardholder’s PIN is preceded by a legitimate official’s
PIN, is the cardholder’s PIN accepted.

Another approach to cardholder PIN selection at a secure terminal is to
assign the cardholder an initial PIN with a secure PIN mailer, then allow the

SECTION ONE: BASIC PIN CONCEPTS 437

cardholder to replace it with a PIN of his own choice. In this case, the card-
holder must first correctly enter the assigned PIN, then enter the PIN of his
choice. This procedure precludes the necessity of a bank official authenti-
cating the cardholder. The fact that the cardholder knows the assigned PIN
is probably sufficient proof of identity.

Regardless of which cardholder authentication method is used, it is sug-
gested that the cardholder be required to enter the PIN identically two con-
secutive times. This is to prevent accidental errors in entering the selected
PIN.

PIN Selected at the Issuer’s Facility. Today, a large number of financial
institutions utilizing the cardholder selected PIN technique have the card-
holder select the PIN at the time he applies for the card. This is logistically
simpler than mailing PIN solicitation forms. Furthermore, it allows the card
to be prepared immediately thereafter, even if the magnetic stripe is to con-
tain an encrypted version of the PIN. A widely used technique is to have the
cardholder write the PIN on the application. This is not a recommended
procedure, as certain bank employees would be able to relate the PIN to the
name, and then to the account number.

A secure technique for cardholder PIN selection at the issuer’s facility uses
a prepared form, produced by a special security system. This is a sealed,
multi-part form, similar to that suggested previously for PIN mailers. On the
top layer the security system prints a clear reference number, and inside the
form (where it cannot be seen) it prints this number encrypted. There is no
discernible relationship between the clear and the encrypted versions of the
reference number, as they are related only via a cryptographic process
utilizing a secret key known to no one.

The customer applying for a card is given this sealed form. Privately, he
removes the inner portion of the form containing the encrypted reference
number, and on this portion writes the PIN of his choice. He writes nothing
else, places this portion of the form in an opaque envelope and seals and
deposits it in a locked container provided for the purpose. The outer portion
of the form containing the clear reference number is submitted along with
the application. This clear reference number is entered into the data base of
the institution’s EDP system as a part of the application and becomes the
account number, or is associated with the account number as soon as this
number is assigned. At some subsequent time, a bank employee enters the
encrypted reference number and the PIN into a special security system which
encrypts the PIN, decrypts the reference number, passing the result to the
institution’s EDP system. This system uses the clear reference number to
relate the encrypted PIN to the account number. At no point in this process
is the clear PIN associated with any data that identifies the cardholder.

If a secure terminal is available at the office where the customer makes
application for the card, another PIN selection procedure is possible. Under
this alternate technique, the application is assigned a number. This number
is written on the application, and entered into the secure terminal. The
customer then enters the PIN of his choice into this terminal, via its PIN pad.
The PIN is encrypted at the secure terminal, and remains encrypted there-
after during transmission through, or storage in, communications or EDP

438 APPLYING CRYPTOGRAPHY

equipment. The encrypted PIN will be related to the account number, when
the latter is assigned, via the application number.

Another issue concerning a cardholder selected PIN relates to the nature
of the PIN itself. Should it be a number or a word? It is often held that a
word is preferable, being easier to remember than a number. Since PIN key-
boards have (or will have) letters (in the manner of a telephone) associated
with each digit, the entry of letters is as convenient as that of numbers.
However, the use of a single word for the PIN is not recommended. There
are simply not enough different words cardholders would be likely to choose
to adequately preclude trial and error PIN determination. For example, one
could probably make a list of two hundred words, and have a reasonable
probability that any given cardholder would select a PIN from this list.

The recommended technique, where an alphabetic PIN is desired, is to
instruct the cardholder to select two unrelated words, using the first two
letters of each word to form his four character PIN. If a six character PIN
is desired, the first three letters of each word should be used.

When a numeric PIN is used, it is also advisable for cardholders to be given
instructions on how to select a PIN. For example, they should be instructed
not to select a telephone number that might be readily associated with them
(e.g., their own or that of a close relative or business associate). Similarly,
they should not select a date that might be readily associated with them
(e.g., birthday, anniversary of themselves or a close relative), nor any other
number closely associated with them (license number, social security num-
ber). These admonitions are designed to guard against the interception of a
card in the mail (or the theft or counterfeiting of a card), and determination
of the associated PIN by trial and error using readily available information
about the cardholder. (While this fraud threat is certainly possible, it is not
considered to be a major one.)

Comparison of Bank Selected PIN and Cardholder Selected PIN

There is considerable difference of opinion among financial institutions as to
which method of PIN selection is preferable. Operational simplicity favors
the institution specifying the PIN. PIN mailers can be printed in an auto-
matic fashion at a very rapid rate. When the PIN is selected by the card-
holder, however, each PIN must be individually entered into the system.
This is a manual and time consuming procedure with some cost consequences
for the financial institution, unless the cardholder can perform the entry
without manual assistance.

The advantage of having the cardholders select their PINS is that they will
more easily remember such PINS, and be less inclined to write them some-
place where they might be associated with their cards. The disadvantage, in
addition to the above indicated cost consideration, is that the cardholders
may tend to select values which might be surmised, despite admonitions to
the contrary. Another factor favoring the cardholder selected PIN is customer
relations. It is, presumably, less onerous for customers to memorzie a value
they have selected, then one that has been imposed on them.

The recommended approach for PIN selection is one whereby the financial

SECTION ONE: BASIC PIN CONCEPTS 439

institution issues a PIN to the cardholder with the option of selecting an
alternate value. This alternate value is selected, desirably, via a secure termi-
nal with the bank issued value authenticating the cardholder for the PIN
change procedure. The bank selected initial value, which most cardholders
will probably elect to use as their permanent PIN, should be four digits long,
whereas the cardholder might be allowed to select a four, five, or six digit
value, depending upon his personal preference.

In many situations it is not feasible to give the cardholder a PIN with the
option of changing it. This can be true if the PIN, in an encrypted form, is
to be encoded on the card. In such a case the recommended procedure would
be for the bank to issue the cardholder a four digit PIN, or else use the
previously discussed technique of PIN selection at the time of application.
Though the latter may be viewed as somewhat preferable, the former appears
acceptable, and is logistically much simpler.

Regardless of the PIN selection technique chosen, the cardholder should
be advised of the importance of the PIN and PIN secrecy. The cardholder
should be warned against recording the PIN value where it might be located
by a finder or thief of the card.

The Forgotten PIN

Regardless of how the PINS are conveyed to the cardholders, it is possible
they will forget the PINS. When this happens, there are three possible courses
of action for a financial institution.

1. Send the cardholder a PIN mailer advising him of the forgotten PIN.
2. Send the cardholder a completely new PIN.

3. Allow the cardholder to select a new PIN.

From a human factors point of view, the most desirable procedure is proba-
bly the first and the least desirable alternative is the second. It is a psycho-
logical fact that it is easier to rememorize something than to memorize some-
thing completely new. Thus, sending a PIN mailer reminding the cardholder
of the original PIN is the preferred technique, even if the cardholder had
originally selected the PIN. (Once the cardholder sees the PIN, he will most
likely recall why it was selected, and this will reinforce it in the cardholder’s
mind all the more.) Sending a completely new bank selected PIN is not
recommended. If the cardholder could not remember the initial PIN, there
is little reason to believe he will remember a different one. Finally, allowing
the cardholder to select another PIN is probably acceptable, but less desir-
able than reminding him of the PIN already selected. Of course, when the
PIN in encrypted form has been encoded on the magnetic stripe of the card,
the financial institution has no choice but to advise the cardholder of the
original PIN, unless the card is to be reissued when the new PIN is chosen.

A PIN mailer, advising the cardholder of a forgotten PIN, must be printed
under rigid physical security to prevent bank employees from opening the
mailer.

440 APPLYING CRYPTOGRAPHY

PIN Validation for Local Transactions

Local transaction refers to a transaction in which the institution that issued
the card also controls the terminal. By contrast, an interchange transaction
is one in which the terminal is controlled by an institution other than the
card issuing one. For a local transaction, there are two possible techniques
for PIN validation, on-line and off-line.

On-Line PIN Validation

On-line validation refers to PIN validation at the institution’s EDP facility,
whereas off-line PIN validation refers to PIN validation in the terminal itself.
On-line PIN validation is possible only when the terminal in question is on-
line to the institution’s EDP system (i.e., communicating with an operational
EDP system).

In any PIN validation procedure, the PIN as entered by the cardholder is
compared against the PIN of reference as recorded by the financial institu-
tion. There are three possible techniques for obtaining the PIN of reference.
First, it may be stored in encrypted form in the data base of the financial
institution. In this case either the encrypted PIN of reference is decrypted
and compared with the clear PIN as entered, or else the PIN as entered is
encrypted using the same procedure and key as was the PIN of reference,
and the two encrypted values are then compared. Second, it may be recorded
in encrypted form on the magnetic stripe. Again, either the encrypted PIN
of reference is decrypted and compared to the clear cardholder-entered PIN,
or else the cardholder-entered PIN is encrypted and compared against the
encrypted PIN of reference. Finally, it may be a cryptographic function of
the account number, obtained by employing the account number with a
cryptographic process.

Encrypted PIN from Data Base. In this approach, the PIN must be en-
crypted at the terminal, then transmitted to the institution’s EDP system
along with the other elements of the transaction. Using the account number,
the EDP system locates, in its data base, the encrypted PIN for this account.
Special security equipment is then (desirably) used to decrypt both the PIN
of reference from the data base, and the PIN entered by the cardholder from
the terminal. These two decrypted versions of the PIN are compared, and an
indication is sent to the EDP system as to whether or not they agree. If the
two versions agree, the cardholder entered the correct PIN, and is presumed
to be a legitimate user of the card.

Alternately, the PIN as entered by the cardholder is decrypted, then imme-
diately reencrypted using the same key and in the same manner as is the PIN
or reference. These two encrypted versions of the PIN are then compared.

Encrypted PIN from the Ca+d, In this approach, the cardholder’s PIN is
encrypted at the terminal and transmitted, along with the other elements of
the transaction, to the EDP system. Included in this transaction data are the
contents of the card’s magnetic stripe. One of the fields in the stripe contains
the encrypted PIN of reference. These two encrypted verions of the PIN, the
PIN entered by the cardholder and the PIN of reference from the magnetic

SECTION ONE: BASIC PIN CONCEPTS 441

stripe, are passed (desirably) from the EDP system to special security equip-
ment which performs appropriate cryptographic operations and then com-
pares both versions as described above. Note, the PIN of reference is encrypted
utilizing the account number (which must be passed to the security equip-
ment before it can decrypt this version of the PIN) so that if two cardholders
have identical clear PINS, their encrypted PIN will be different.

PIN a Cryptographic Function of the Account Number. As before, the
PIN entered by the cardholder is encrypted at the terminal and transmitted
to the EDP system, along with the other elements of the transaction. Then
the EDP system (desirably) transfers to special security equipment both the
encrypted PIN from the terminal and the account number. This security
equipment decrypts the encrypted PIN and cryptographically processes the
account number to generate the PIN of reference. The two versions of the
PIN are then compared, as before.

Off-Line PIN Validation

When the PIN is validated within the terminal (or other remote facility), the
terminal (or facility) must have the means to compare the PIN of reference
with the PIN entered by the cardholder. Thus the PIN, in an encrypted form,
must be encoded on the card’s magnetic stripe, or the PIN must be a crypto-
graphic function of the account number. In either case, the terminal must
have the cryptographic capability, as well as the necessary encryption keys,
to perform the required comparison. The terminal allows the transaction to
proceed only if the two versions of the PIN agree.

The use of off-line PIN validation at other than a highly secure terminal
like an ATM (automated teller machine) is not recommended. Should a
terminal with off-line PIN validation ever be compromised, and the secret
encryption keys stored within it ascertained by anyone intent on fraud, they
would be able to determine the correct PIN for any lost or stolen card issued
by that institution. Furthermore they could, with some additional sophistica-
tion, produce usable counterfeit copies of any or all of this institution’s
cards.

Today off-line PIN validation is widely used in ATMs. This enables the
ATM to perform most of its functions (excluding balance inquiry) even when
the ATM cannot communicate with the EDP system. This is a useful and
valid mode of operation, yet care must be taken, as indicated above, that the
secret cryptographic keys are always kept highly secure.

PIN Validation for Interchange Transactions

At some future time it is anticipated that the on-line interchange of EFT
transactions will become as common as the present off-line interchange of
credit card transactions. It is anticipated that a combination of ATMs, POS
(point of sale) terminals, and POB (point of banking) terminals would be
included in a nationwide EFT network. Whenever cash is dispensed, the use
of a PIN will probably be required. Thus, PIN validation in interchange will
become, in the future, a r,,atter of considerable importance.

442 APPLYING CRYPTOGRAPHY

The use of PINS in interchange poses special security problems. This is due
to the fact that the PIN is entered into a terminal under the control of one
institution, the acquirer, whereas the card was issued by another institution,
the issuer. Should the acquirer’s negligence allow the issuer’s PINS to be
ascertained ty someone intent on fraud, the issuer would bear the fraud loss,
and there would be no obvious way of determining the identity of the negli-
gent institution because hundreds or thousands participate in a nationwide
interchange network.

To provide the highest possible protection for the PIN in an interchange
environment, several basic principles appear evident:

1. An acquirer should not be able to validate the PINS of other issuers.
Were every institution in an interchange network able to validate the
PINS of every other institution, the compromise of a single institution
could compromise every PIN of every other institution in the inter-
change network. This is an unacceptable risk. Therefore, each issuer
must validate its own PINS, though an issuer may delegate this respon-
sibility to someone else.

2. Clear PINS should not be allowed over any communications line nor in
the EDP system of any acquirer. If clear (intelligible) PINS were trans-
mitted over communications lines, these lines could be tapped and the
PINS ascertained. This would not only compromise the PINS of the
institution whose lines were tapped, but those of every other institu-
tion whose cardholders used terminals of the institution in question.
Similarly, clear PINS should not be allowed in any acquirer’s or switch’s
EDP system, because some clever programmer or computer operator
might determine a technique for recording the PINS along with the
corresponding magnetic stripe information. Even though an issuer
might trust its own EDP system to store and/or process its own PINS
in a secure manner, such an issuer would quite likely not similarly
trust the EDP systems of perhaps thousands of other institutions to
be similarly secure. Thus, the PIN should be encrypted at all times as
it traverses communications circuits and EDP systems from the termi-
nal where it was entered to the issuer’s facility.

Therefore to provide very high security:

1. Every PIN-using terminal in an EFT network should have an integral
encryption capability that is physically secure.

2. Every acquirer, as well as certain other nodes that a transaction may
traverse, should have a special, physically secure, cryptographic capa-
bility to translate the PIN from one cryptographic key to another, in
order not to perform any cryptographic operations that might expose
clear PINS in a general purpose EDP system.

A “physically secure” cryptographic capability in the above context has a
very specific meaning if very high security is desired. The cryptographic
capability in question is enclosed, and if the enclosure is penetrated by any

SECTION ONE: BASIC PIN CONCEPTS 443

means, the cryptographic keys stored within the enclosure are automatically
erased. If someone should penetrate the enclosure in an attempt to commit
fraud, the cryptographic capability would be rendered inoperative (because
it can no longer decrypt PINS) and all the information that could possibly be
used to commit the intended fraud would be destroyed.

In order to assure PIN security at all points in the interchange process, it
appears that PIN validation in interchange should operate as follows if very
high security is desired:

1. PIN is encrypted at the entry terminal, using a secret cryptographic
key. The encrypted PIN is then transmitted to the acquirer’s EDP
system, along with other transaction elements.

2. The acquirer’s EDP system routes the encrypted PIN to special security
equipment, a security module. Within this physically secure module
the PIN is decrypted using the cryptographic key of the terminal, and
is immediately reencrypted with a cryptographic key used for inter-
change. The PIN, thus encrypted, is returned to the acquirer’s EDP
system. It is then routed to the issuer’s EDP system via normal com-
munications channels.

3. The issuer also has a security module, and the PIN from the inter-
change transaction is routed to this module where it is decrypted, then
validated, using any one of the three techniques previously discussed
for on-line, local PIN validation.

Although use of the above suggested hardware module provides very high
security for PINS in interchange, this degree of security may exceed that
which will actually be required by Interbank rules. Main frame software may
be acceptable for the decryption and the reencryption of such PINS, especially
in the initial steps of nationwide interchange.

The above discussion of interchange applies primarily to the eventual
nationwide interchange between hundreds or even thousands of financial
institutions. Regional interchange among approximately a dozen institutions
is quite likely at an earlier date, and might not operate in conformity to the
relatively rigid PIN security principles indicated above. For example, off-line
PIN validation within ATMs might be possible in regional interchange, pro-
vided all participants clearly understand that the compromise of any one of
these shared ATMs could compromise every PIN of every participant. Basi-
cally, in regional interchange of this sort, the various institutions trust one
another in a way that would not be realistic when interchanging with hun-
dreds or thousands of institutions across the country.

Conclusions

PINS are an essential ingredient of any EFT system, serving as the card-
holder’s electronic signature to authenticate his right of access to his account.
To serve this purpose, the PIN must be kept secret and must be known by
no person other than the cardholder. PINS should be from four to six digits
in length, long enough to preclude trial and error PIN determination, but not

444 APPLYING CRYPTOGRAPHY

so long as to impede transaction time. When four digit PINS are used, some
limit on the number of PIN entry trials is desirable, though it is preferable
not to retain the card if this limit is exceeded.

The PIN may either be determined by the institution or selected by the
cardholder. There are advantages and disadvantages to each approach, but
techniques exist to implement either approach in a secure manner so that no
one can determine cardholder PINS. Secure techniques are also available to
advise a cardholder of his PIN should he forget it.

A cardholder’s PIN is validated by comparing his PIN as entered via an
EFT terminal with his PIN of reference. This comparison may be either on-
line at the institution’s EDP center, or off-line within the EFT terminal itself.
On-line PIN validation can be implemented more securely than off-line
validation by the use of special security equipment at the institution’s EDP
center. However, in many cases off-line PIN validation is a necessity, to
permit off-line operation of ATMs, for example.

In the forthcoming nationwide interchange of EFT transactions, the PIN
cannot be validated off-line in the terminal, but must be transmitted securely
to the facility of the issuer (or some institution serving on behalf of the
issuer) for validation. Specific security requirements must be placed on
acquirers and switches in an interchange environment to insure that an
issuer’s PINS are not compromised by negligence on the part of another
institution.

SECTION TWO: EFT FRAUD THREATS

The preceding section considered general PIN management concepts, and
dealt with most of the issues faced by a financial institution that wishes PINS
to be used with its debit or credit cards. Insofar as possible, this discussion
has been nontechnical, and has avoided the detailed discussion of how
security techniques can be implemented.

The remaining sections consider ,in detail the technical aspects of PIN
management, as well as other aspects of EFT security. These sections are
intended for those who wish to pursue the subject in greater detail, espe-
cially those who are concerned with the design of systems and equipment
to be used in an EFT environment, and those who wish to evaluate different
equipment designs. This present section serves as an introduction to this
detailed technical discussion by considering the general fraud threats against
which an EFT system must be protected.

Major EFT fraud is not expected to become a significant risk until a
nationwide system for the interchange of EFT transactions is in operation.
The relatively small scale of most of today’s EFT systems, and the diversity
between such systems, tends to discourage fraud. Considerable study and
development effort would be required to compromise any one EFT system.
Even if such a system were compromised, it would most likely be shut down
and/or its security techniques upgraded, long before the criminal had re-
couped his investment in fraud technology. Though the shutdown of an EFT
system would be a mild catastrophe for the institutions involved, it would be

SECTION TWO: EFT FRAUD THREATS 445

preferable to sustaining a substantial fraud loss since EFT is currently more
of a convenience (e.g., ATMs as a source of after hours cash) than a necessity.
Thus, the potential payoff in compromising an EFT system today would not
appear to justify the investment in fraud technology which it would require.

When the nationwide interchange of EFT transactions becomes well estab-
lished, however, EFT will become a tempting target for a concerted fraud
effort. Such a nationwide network will, of necessity, use standardized security
techniques throughout. Thus, if organized crime could develop the fraud
technology to defeat these techniques, it could be applied against financial
institutions all across the country. Furthermore, by this time EFT will be
well entrenched, with many thousands of supposedly secure terminals, so
the retrofitting of these terminals to counter the exploited vulnerability
would be almost prohibitively expensive, and impose nearly insurmountable
transition problems. By this time EFT could well have become a major pay-
ment system, comparable to checks and credit cards, so shutting down such
a system would be virtually unthinkable. Thus, the situation faced by the
banking industry would be similar to, though far more serious than, the one
faced by the telephone company when Blue Boxes (electronic devices used
to make unbillable long distance calls) were first developed. If the banking
industry were essentially defenseless against certain fraud threats, these
threats would become very attractive to potential perpetrators.

It should also be noted that much of the fraud loss in today’s payment
system (e.g., bad checks) is borne by merchants. In an EFT system it would
be borne primarily by financial institutions.

E FT Fraud Categories

There are three main types of fraud threat to which an EFT system might be
susceptible :

1. Fraudulent use of lost or stolen cards.

2. Production and use of counterfeit cards.
3. Manipulation of data.

The use of lost or stolen cards, assuming the PINS for them can be ascer-
tained, is probably the most obvious fraud threat. It requires no technological
sophistication (except whatever might be required to determine the associ-
ated PIN) and could enable funds to be withdrawn from the corresponding
accounts at ATMs or other EFT terminals. However, this exposure to fraud
is limited, in an on-line EFT system, to the time between the loss of a card
and the reporting of this loss by the cardholder.

The production and use of counterfeit cards is potentially a far more
serious fraud threat. In a nationwide EFT system, the flooding of the country
with many thousands of counterfeit cards could have a potentially disastrous
effect. Unlike the losing or stealing of a card, which is likely to be promptly
reported, the use of a counterfeit version of a legitimate card would not be
detected until the legitimate cardholder examined his next statement or

446 APPLYING CRYPTOGRAPHY

received notification that his account was overdrawn. Thus, thousands of
unsuspecting cardholders would find funds missing from their accounts, an
obviously catastrophic occurrence. As indicated in Section One, not only
would the banking industry be faced with the resulting direct fraud loss, but,
once the fraud had become publicized, inadvertent claims of fraud, or out-
right fraudulent claims of fraud (cardholders who claim fraud because of
transactions they have honestly forgotten, and cardholders who claim fraud
knowing that they themselves withdrew the disputed funds) would without
doubt occur. This secondary fraud could result in even greater losses than
the original direct fraud. Perhaps most serious of all would be the loss of
customer good will, and customer confidence in the EFT system. Thus, mass
fraud of this type is clearly in a different class from the type which could
occur through the fraudulent use of actual issued cards.

The most difficult task in the production and use of counterfeit cards
would probably be determination of PINS and corresponding account num-
bers. The actual encoding of counterfeit cards would not appear to be
especially difficult, employing either stolen or handmade card encoders, and
using either stolen card stock, plain bank cards, or reencoding expired cards.
It should be noted that the same physical card could be reencoded and reused
for many different accounts.

The final threat, the manipulation of data, is perhaps the most sophisti-
cated fraud threat of all. In this threat, the EFT system is penetrated and
data are inserted or modified in real time. For example, funds may be with-
drawn without any account being debited, or with the wrong account being
debited. Similarly, credits may be routed into the incorrect account, or
credits spuriously originated when no actual deposit or return of merchandise
took place. This subject will be considered in greater detail under “Active
Fraud Threats.”

Fraud techniques can be categorized as either passive or active. Passive
techniques are those which simply ascertain information, presumably to
enable the subsequent use of lost or stolen cards, or the production and use
of counterfeit cards. Active techniques, in contrast, modify or insert data,
as indicated above.

Passive Fraud Threats

In order to use lost or stolen cards or to produce and use counterfeit cards
at PIN-using EFT terminals, it is necessary to learn PINS and associated
account numbers. In the absence of appropriate security safeguards, an
identifiable cardholder’s PIN might be subject to determination for possible
fraudulent use by:

1. The card issuing institution.
2. The PIN delivery system.

3. The cardholder himself.

4. The EFT system.

SECTION TWO: EFT FRAUD THREATS 447

The following discussion considers each of these, then briefly evaluates the
relative risks involved.

The Card Issuing Institution

Improper PIN management and PIN issuing techniques on the part of the card
issuing institution can expose the PIN to possible determination. There is a
risk of this type of exposure whenever even one member of the institution’s
staff:

1. Has the opportunity to see or access any cardholder’s PIN.
2. Has the ability to change cardholder PINS (enabling him to change

PINS to values known by him).

3. Is in a position to authorize others to access or change cardholder
PINS.

4. Has the capability to ascertain the cryptographic keys used to protect
or derive cardholder PINS, or to enable others to ascertain these keys.

Another area of possible risk within the card issuing institution is the method
used to generate cardholder PINS. An improper PIN generation technique
might enable information about some or all PINS to be determined from
obtainable data.

The Delivery System

The technique used to convey the PIN to the cardholder when the institu-
tion selects the PIN, or to the institution when the cardholder makes the
selection, is a possible area of PIN compromise. For example, if PINS are
sent to cardholders via PIN mailers, there is the possibility that someone
might ascertain PINS from these mailers. Risk exists whenever the PIN,
together with cardholder identifying information, is conveyed via non-secure
channels.

The Cardholder

Careless or improper actions on the part of the cardholder could cause his
PIN to be compromised. For example he might:

1. Fail to destroy or secure the PIN mailer. The cardholder might allow
his PIN mailer to fall into unauthorized hands.

2. Record the PIN. The cardholder might write the PIN on the card, or
in some other place where it could be found and associated with the
card.

3. Divulge the PIN. He might tell his PIN to others, who in turn, could
allow it to be compromised. Similarly, he might be tricked into giving
his PIN to someone purporting to have the authority to receive it.

4. Allow the PIN to be observed. He might allow his PIN to be observed
as he enters it into the EFT terminal.

448 APPLYING CRYPTOGRAPHY

5. Make a poor PIN selection. If the cardholder himself selects his PIN,
he might select a value which could be surmised.

The EFT System

The EFT system itself could be vulnerable to PIN compromise if it doas not
include adequate security techniques.

1. Wire tapping. If PINS are unencrypted or improperly encrypted, they
could be ascertained from taps on appropriate communications lines.

2. Computer tapping. If PINS in their unencrypted form exist within a
general purpose EDP system even momentarily (perhaps while being
decrypted and then reencrypted), the computer software could be
surreptitiously modified to cause PINS and corresponding cardholder
identifying information to be recorded or otherwise divulged. Simi-
larly, if the cryptographic keys used to encrypt PINS are available
within such a system, these keys could be subject to compromise,
which would then allow the PINS encrypted under them to be deter-
mined. These problems are especially critical in an interchange envi-
ronment where one institution’s PINS pass through EDP systems of
switches and other institutions over which it has no control.

3. Terminal tapping. If PIN-using terminals without adequate safeguards
are used in a non-secure environment (e.g., point of sale), it would be
possible to tap the PIN pad and the magnetic stripe reader, and thus
ascertain PINS and corresponding cardholder identifying information.

4. Fake equipment. In a non-secure environment without specialized
safeguards, it might be possible to place fake equipment to record
PINS. For example, a PIN pad could be installed with a non-PIN using
terminal. This PIN pad would go only to a recorder, which would
operate in conjunction with a tap in the terminal itself or on the com-
munications line for recording magnetic stripe information.

5. Trial and error PIN determination. If the number of consecutively
invalid PIN entry attempts is not appropriately limited, trial and error
PIN determination might be possible using the actual EFT system,
especially if the finder or counterfeiter of the card had some insight
into which PIN values were most likely. Furthermore, PIN determina-
tion by exhaustion could be quite feasible if the card finder or counter-
feiter could employ some off-line simulation of the EFT system to
make and evaluate PIN trials automatically.

6. Compromise of cryptographic keys. If it is possible to ascertain any of
the cryptographic keys used to encrypt PINS as they traverse the EFT
system; such keys could then be used to decrypt, and thus reveal, the
PINS encrypted under them.

Relative Risks

It appears impossible to develop any type of payment system which com-
pletely eliminates all fraud risks. In an EFT system, special attention must be

SECTION TWO: EFT FRAUD THREATS 449

paid to those risks which could result in mass fraud, especially the flooding
of the country with many thousands of counterfeit cards. Less concern need
be focused on those risks which expose only an occasional, specific account.

Though the most difficult risks to counter are those which involve card-
holder negligence in the handling of his own PIN, these risks are not of
extreme concern. Such risks do not appear to be a source for mass fraud, and
furthermore it appears that cardholders can be instructed to treat their PINS
with appropriate care.

The greatest fraud risks appear to be in the issuing institution, and in the
EFT system itself. Security weaknesses in these areas could result in the
compromise of thousands of PINS. For example, security weaknesses which
would allow PINS to be determined from an institution’s PIN management
techniques, or by wiretapping, terminal tapping, or computer tapping the
EFT system itself, would appear to pose very great risks. A security weak-
ness cannot be discounted simply because a considerable investment would
be required to exploit it. In a nationwide EFT system, the fraudulent payoff
from such an investment could be tremendous.

Finally, it should be noted that, once a large-scale nationwide EFT system
is in operation, upgrading its security features could be an almost impossibly
difficult task because of the standardization and cost inherent in such a sys-
tem. Thus the system cannot necessarily take advantage of advancing tech-
nology. The criminal, however, operates under no such handicap, and can
employ the latest technology in his efforts to defraud the system. Therefore
an EFT security system must be carefully designed at its inception, with this
realization in mind.

Active Fraud Threats

Active fraud threats, the manipulation or insertion of data in real time,
require a high degree of technical sophistication. Nevertheless, the continuing
advance of computer and electronic technology will make the required tech-
nology increasingly available. The two areas in an EFT system where such
technology might be applied are the communications lines and the EDP
systems.

Communications Lines

There are many ways in which transmitted data could be manipulated to
commit fraud in the absence of appropriate security safeguards. The amount
field, the transaction type, or the account identifier could be modified in
various ways to commit different types of fraud. However, the most likely
active fraud threat is probably the simulation of the response message from
a host to a terminal, causing every transaction to be approved, but no account
to be debited. An ATM would be a likely candidate for this type of fraud.
The communications line from the ATM to the host would be found, and a
microprocessor system would be placed in series with this line. To the host,
this system would look like an idle ATM. To the ATM, this system would
look like the host. The criminal would then initiate a transaction from the
ATM. The transaction would be intercepted by his microprocessor and would
never reach the host. Instead, the microprocessor system would respond to

450 APPLYING CRYPTOGRAPHY

the ATM with “transaction approved” indication, causing the ATM to dis-
pense cash. This procedure would be repeated time after time until the ATM
had been depleted of cash.

There are a number of other ways in which such a microprocessor system
inserted in a communications line could be used to commit fraud. It could
be programmed to pass all transactions unaltered except those for certain
specified account numbers. In the case of these accounts, it would modify
the message from the terminal to the host then modify the response from
host to terminal in the inverse manner. For example, an ATM dispense cash
request for $150 might be reduced to $10 by the microprocessor, so the
account in question would be debited by only this latter amount. The
amount field in the approved response would then be changed from $10
back to $150. Similarly, the amount of a credit transaction could be increased
or a debit transaction turned into a credit. Also it might be possible to cause
transactions to be misdirected. The account number of a debit transaction
might be changed so that the wrong account was debited. Similarly, credit
transactions might be misdirected into accounts controlled by the criminal.
Finally, it might be possible to introduce spurious credit transactions, or to
fraudulently replay previously valid credit transactions.

Another type of active wiretapping would be the substitution of one
encrypted PIN for another in an EFT system which encrypted the PIN but
did not preclude such substitution. For example, a transaction including an
encrypted PIN could be recorded via a passive tap. A counterfeit version of
the associated card would be produced and then used at the same terminal
with a fictitious PIN. By means of active wiretapping, the encrypted fictitious
PIN would then be replaced by the previously recorded encrypted true PIN,
causing the transaction to be accepted as valid by the issuer.

E DP Systems

The same types of active fraud which could be perpetrated via communica-
tions lines could also be perpetrated within the EDP systems, acquirer’s,
switch’s, and issuer’s, which the transaction traverses. This could be accom-
plished through surreptitious modifications of the CPU software, causing
data to be inserted or modified as suggested above. This type of computer
fraud would be especially attractive were transactions cryptographically
protected only over communications lines and not within EDP systems.

Other opportunities for active fraud exist within the EDP system of the
issuer. For example, it might be possible to cause debits against accounts
controlled by the criminal to be applied against other accounts instead, with
the corresponding journal entries similarly adjusted. In a totally electronic
system without backup paper documents, this type of fraud could be quite
effective.

Another fraud scenario which might be perpetrated within an issuer’s
facility is encrypted-PIN substitution. This scenario is possible, for example,
when an ATM encrypts the PIN under the PIN KEY (a key shared by all of
the institutions’ ATMs), then transmits this encrypted PIN to the EDP sys-
tem for comparison against an identically encrypted PIN of reference in the
data base. The criminal would make a counterfeit version of a valid card,

SECTION TWO: EFT FRAUD THREATS 451

then use this card at an ATM with a PIN of his own choosing. The trans-
action would, of course, be rejected (invalid PIN). However, the criminal
would have an accomplice, a skilled programmer at the bank’s EDP facility,
who would record the criminal’s PIN in its encrypted form. At some later
time the programmer accomplice would replace the encrypted PIN of refer-
ence in the data base with the criminal’s encrypted PIN. Thereafter, the
criminal could withdraw funds at will from this account, because his PIN
would have become the PIN of reference for this account in the data base.

Fraud and Liability

In an interchange environment, the possibility of fraud brings with it the
obvious question of which institution is liable in the event that fraud does
occur. The concept of liability is that a negligent party must pay any losses
which other parties incur because of this negligence. Although liability may
be viewed primarily as a legal issue rather than a technological one, liability
can be established only if the party responsible for the fraud can be deter-
mined. Since technology is generally required to make this determination,
the security techniques used in an EFT interchange environment serve not
only to counter anticipated fraud threats, but also to provide a basis for
establishing liability in the event of fraud.

Considering first the use of lost or stolen cards and the production and
use of counterfeit cards, the liability would appear to rest with the card
issuer for all transactions in which PINS are used. The main prerequisite for
this type of fraud is the ability to ascertain PINS for known accounts. This
is most likely to occur in the issuer’s PIN management system, PIN distri-
bution system, or as a result of negligence on the part of the cardholders.
Since it is impossible for an interchange system to oversee all these aspects
of an issuer’s internal operations, the interchange system has little choice
but to assume that, if PINS are compromised, the issuer is responsible. The
result of the above assumption is that the PINS must be extremely well pro-
tected in the interchange environment. Were PINS to be compromised in
interchange, it would be virtually impossible to establish responsibility.
Thus, all aspects of interchange PIN handling must be made especially secure
if an ambiguous liability situation is to be avoided.

For example, it may eventually become a fundamental principle of inter-
change that one institution’s clear text (unencrypted) PINS should never
exist, even momentarily within the general purpose EDP facility of any other
institution. Were this principle to be violated, a devious programmer at an
EDP system would be able to ascertain PINS in such large quantities that he
could pick and choose among them for fraudulent use so as to give little
evidence as to the location of compromise. In such a case many issuers would
experience fraud losses, perhaps substantial ones, because of a security com-
promise over which they had absolutely no control, and for which the guilty
party could not be determined.

Another fundamental principle of interchange would appear to be that an
institution’s PINS are validated only by the issuing institution itself, or by
an institution explicitly authorized to do so by the issuing institution. Inher-

452 APPLYING CRYPTOGRAPHY

ent in the capability to validate PINS is the capability to determine PINS.
(There are exceptions to this, but they require the use of very long PINS,
eight digits or more.) Thus, in an interchange environment in which every
acquirer has the capability to validate the PINS of every issuer, a one-time
compromise on the part of a single acquirer could compromise every PIN of
every issuer, and leave absolutely no residual evidence as to which acquirer
was at fault. Again, many institutions would suffer losses, perhaps very sub-
stantial, because of negligence on the part of an institution whose identity
could not be determined. Thus the interchange system must be designed to
prevent the negligence of one unidentifiable institution from resulting in loss
to other institutions.

Fortunately, it is essentially only the passive threats in an EFT interchange
environment which can result in losses to some institutions as a result of
untraceable negligence on the part of others. In the case of most active
threats it is possible to pinpoint the guilty institution and make it financially
responsible. Therefore the countering of such active threats in an interchange
environment can be left up to the discretion of each participating institution.

In the case of two active threats it is impossible to distinguish negligence
on the acquirer’s part from negligence on the issuer’s part. The first such
threat is the substitution of a previously recorded PIN replayed as part of a
counterfeit transaction. There is no apparent way to distinguish this fraud
threat, due to the acquirer’s negligence, from the use of a counterfeit card
with a PIN ascertained through negligence on the issuer’s part. Probably the
simplest resolution to this ambiguity is for the acquirer, who chooses not to
use terminals which preclude the active version of this threat, to assume
liability unless it can be shown that it was the passive version of the threat
which occurred.

The other active threat is the fraudulent repIay of a previously valid credit
transaction when this replay takes place between an issuer and an acquirer
who communicate directly. It would not always be possible to determine
whether the replayed message originated from the acquirer’s EDP system,
the issuer’s EDP system, or on the communications link between them. It
appears that, in this case, the issuer must assume responsibility for the fraud,
since he is better equipped to detect it, as will be shown subsequently.

In other situations it is not possible to distinguish fictitious claims of fraud
on the part of dishonest cardholders, the issuer’s problem, from certain
active fraud threats for which the acquirer should be responsible. For exam-
ple, the fraudulent misdirecting of credits could, unless precluded by appro-
priate security measures, occur because of an active wiretap on an acquirer’s
terminal. On the other hand, a cardholder could claim a credit which he did
not receive, and produce a fictitious receipt to prove his claim. Since credits
in interchange should be relatively rare (probably limited to the return of
merchandise), it is suggested that all terminals with a credit capability pro-
tect against this threat. In the absence of such protection, the acquirer should
assume liability unless it can be proven otherwise.

Another similarly ambiguous situation might be as follows: A cardholder
institutes a debit transaction for what he claims is $20, and has a receipt to
prove it. However, his account is debited for $200. The possibilities are

SECTION TWO: EFT FRAUD THREATS 453

(1) that the cardholder himself falsified the receipt and actually received the
$200, or (2) that active wiretapping of the acquirer’s terminal caused the
amount to be increased for transmission to the host, then correspondingly
decreased in the response message back to the terminal, with a teller or some
other acquirer’s employee pocketing the $180 difference.

Fortunately the ambiguous active fraud threats are judged to be relatively
improbable. The most probable active threats are unambiguous. For example,
the previously suggested “draining” of an ATM (or other EFT terminal) by
cutting this terminal off from its host and giving an “approved” response to
every request, is clearly the acquirer’s liability. The use of active wiretapping
to decrease the amount of a debit as reported to the issuer is also clearly the
acquirer’s liability. Even when a ambiguous situation does exist, it is between
two, or at most three potentially responsible parties. In the case of passive
fraud threats, it might be impossible to ascertain which one of a thousand or
more institutions was responsible for fraud.

Finally, the flooding of the country with tens of thousands of counterfeit
cards, the ultimate EFT catastrophe, is possible through passive, not active
threats. Thus, it appears acceptable to allow each participating member of an
interchange system to decide for itself the degree of protection against active
wiretapping which it considers cost effective between its terminals and EDP
systems. Whenever an instance of ambiguous fraud occurs (which should be
seldom), the associated liability can be stipulated in the Interbank rules.

Another aspect of fraud and liability concerns a cardholder’s liability if
his PIN is compromised. Consumer protection legislation will make it in-
creasingly difficult for financial institutions to hold the cardholder financially
responsible for protection of his own PIN. However, an interchange system
which is extremely secure against passive fraud threats, coupled with a highly
secure PIN management system on the part of the issuing institution (in
which no employee of the institution knows any cardholder’s PIN, and all
PIN related operations are under strict dual control) can significantly reduce
the risk that lost, stolen, or counterfeit cards will be used other than as the
result of cardholder negligence. Furthermore, a well publicized, highly secure
PIN system should discourage cardholders, who would otherwise fraudulently
deny transactions they had in fact actually made (today’s main fraud threat),
and also convince cardholders to treat their PINS with considerable care.
If the precautions taken by the financial institution to prevent any of the
institution’s employees from learning any cardholder’s PINS are highly visible
to the cardholder, it cannot help but influence the cardholder’s own attitude
toward the importance of PIN secrecy, and may, in time, also affect the
judicial attitude toward the liability for PIN compromise.

Conclusions

Fraud is not expected to become a major problem for EFT until a nationwide
EFT interchange system is in operation, At this point the payoff for fraud
technology could be very great, and the result could be mass fraud of perhaps
catastrophic proportions. Potentially, the most serious fraud threat is the
production and use of counterfeit cards, and the widespread dissemination

454 APPLYING CRYPTOGRAPHY

of large numbers of such cards could be truly disastrous. The use of lost and
stolen cards is a potential problem but the use of any sort of PIN system
could control this fraud threat. The remaining threat is the modification or
insertion of data in real time. Though a serious threat, it would not have
nearly as devastating an effect as the massive use of counterfeit cards.

The two main types of fraud threats are passive, the determination of
PINS and corresponding account identities to enable the use of lost, stolen,
or counterfeit cards, and active, the fraudulent modification or insertion of
data in real time. Of these two, the passive is of greater concern in an inter-
change environment, not only because the passive threats could lead to mass
fraud in the form of counterfeit cards, but also because it would be virtually
impossible to ascertain the negligent party and thus establish liability for
such fraud. Active threats, though potentially serious, are not judged to be
catastrophic, and quite often can be traced back to the offending institution.

As a result, it is concluded that an EFT system should protect against
passive threats in all aspects of interchange. If very high security is desired,
it appears that an issuer’s clear PINS should not be allowed, even momen-
tarily, in any general purpose EDP equipment of an acquirer or switch but
rather than such clear PINS should be restricted to physically secure crypto-
graphic hardware where they, and the cryptographic keys used to encrypt
them, can be physically protected. By imposing stringent security require-
ments upon all acquirers and switches, it seems more reasonable to then
place liability for any use of lost, stolen, or counterfeit cards on the issuer,
any compromise of his cardholders’ PINS being assumed to result from negli-
gence on the part of the issuer or its cardholders.

A further conclusion is that protection against active fraud threats can be
left up to an acquirer’s discretion, provided he is willing to assume responsi-
bility for any such fraud against which he does not provide protection. How-
ever, it does appear desirable to protect transactions in interchange between
institutions against these active threats.

Perhaps the most important conclusion of all is that fraud in a nationwide
interchange environment could eventually become a serious problem, if not a
major catastrophe. Thus, in planning for interchange, and during the evolu-
tion toward it, careful provisions must be made to ensure that adequate
security is indeed realized. Security must be an inherent characteristic of
EFT from the start. It cannot be added on after the fact.

SECTION THREE: PRINCIPLES OF FRAUD PREVENTION

Cryptography, The Tool for Fraud Prevention

Most of the techniques used to prevent fraud in an EFT system are based
upon the use of cryptography. Cryptography involves encryption and de-
cryption. Encryption is the transformation of clear (comprehensible) data by
means of an algorithm (i.e., a defined procedure) and a secret number called
a key into a form called cipher, which bears no resemblance to the original,
clear data. Only someone else possessing the identical secret key is able to
decrypt the transformed data and recreate its original clear form.

SECTION THREE: PRINCIPLES OF FRAUD PREVENTION 455

The Interbank recommended encryption algorithm for use in EFT is the
Data Encryption Standard (DES), which is the cryptographic algorithm
sponsored by the National Bureau of Standards for data security. It is the
only publicly available algorithm which has been certified as highly secure by
the United States Government. DES is a block encryption technique. That is,
given an input data block of 64 binary bits, a 56 bit secret binary key, and
the encrypt command, the algorithm produces 64 cipher bits. These bits bear
no obvious relation to the input. In fact, a minor (i.e., one bit) change in the
input produces a drastic change in the output. Given these 64 cipher bits,
the same 56 bit key, and the decrypt command, the algorithm produces the
original clear data.

Though inherently a binary, block encryption technique, DES can be
applied in various ways to implement virtually any desired type of encryption.

Preventing Passive Fraud Threats

As described in the preceding section, passive fraud threats are those which
enable the PIN for known accounts to be ascertained. As a result, the use of
lost, stolen, or counterfeit cards is possible. Given today’s technology, the
fraud threat can be virtually prevented by:

1. Insuring that the PIN is encrypted at all times except when within a
physically secure environment.

2. Insuring that the keys used to encrypt PINS are never available in
“clear” form except within physically secure environments.

3. Insuring that physically secure environments, in which clear PINS and
clear PIN encrypting keys are found, are in fact secure against physical
compromise.

PIN Encryption

To be protected against compromise the PIN should be encrypted using DES
and a secret key. Furthermore, the PIN should be encrypted as a function of
some quantity which varies from transaction to transaction, or at least from
account to account. Were this not done, identical clear PINS encrypted under
the same key would produce identical ciphers. This fact could be exploited
by a criminal, who would, for example, open ten accounts under fictitious
names. He would then know ten PINS and institute transactions from a spe-
cific EFT terminal against each of his ten accounts. He would also have
tapped the line from his terminal, and would record the encrypted PIN from
each of his ten transactions. Next he would use the tap to record transactions
from other cardholders. Whenever the encrypted PIN from one of these trans-
actions exactly matched the encrypted PIN from one of his accounts, he
would know that the clear PINS were identical. In an environment in which
most or all PINS are four digits, he would be able to ascertain the PIN for
approximately one account in a thousand which used this particular terminal.
For each of these cases, from other information in the recorded transaction,
he could determine the contents of the associated card’s magnetic stripe, and

456 APPLYING CRYPTOGRAPHY

thus make a counterfeit copy of this card and use it to draw against the card-
holder’s funds.

One method of encrypting the PIN as a function of a varying quantity
(and thus preclude the above indicated fraud threat) is to concatenate the
clear PIN with a value six decimal digits or longer, which is:

1. A random or pseudorandom number,
2. A counter, which increments on each transaction, or

3. The least significant digits of the account number.

The result, which must be no more than 64 binary bits in length, is block
encrypted using DES and a secret key. The entire 64 bit resulting cipher thus
serves as the encrypted PIN for this transaction.

Other equally secure PIN encryption methods exist in which the encrypted
PIN is a decimal value of the same number of digits as the clear PIN.

Protection of Cryptographic Keys

PINS should always be encrypted under secret 56 bit DES keys. Maintaining
the secrecy of these keys is of the utmost importance, because if any such
key becomes compromised the PINS encrypted under it can be similarly
compromised. There are two problems associated with key secrecy. The first
is the generation and distribution of keys in such a way as to preclude com-
promise. This is called key management, and will be discussed subsequently.
The other, protection of the key while it is within the cryptographic device,
will be considered now.

Physical Protection of PINS and Cryptographic Keys

PINS and keys must be physically protected whenever they are in clear (unen-
crypted) form within cryptographic devices. (For high security, clear PINS
and keys should exist nowhere else.) The most effective solution to this
problem appears to be the interlocking of the device’s enclosure. All of the
cryptographic logic is placed within a physically secure enclosure and tamper
detection circuitry, built into the enclosure, detects any attempt to gain
access to the internal circuitry of the device. The secret keys are interlocked
by means of these tamper circuits so that any act of tampering causes the
keys to be erased.

The immediate erasure of the keys obviously protects them from compro-
mise. Tapping of the device to ascertain future PINS is prevented also, because
opening the device to install the tap erases the secret keys and this renders
the device inoperative (i.e., unable to decrypt incoming PINS). As a result,
the tap will not successfully capture PINS.

In order to protect the PIN at its point of entry into the system, the PIN
keyboard must be a part of this protected enclosure. If it is, and if the enclo-
sure is properly protected via the above suggested interlocks, the terminal
tapping threat discussed in the preceding section is precluded.

SECTION THREE: PRINCIPLES OF FRAUD PREVENTION 457

Preventing Active Fraud Threats

Though passive fraud threats may be countered by simply protecting the PIN
from disclosure, countering active threats is more difficult, with different
countermeasures needed for different threats.

Data Modification

Many active fraud threats involve the modification of data in real time. These
threats can be countered by either of two techniques, message encryption
or message authentication. Message encryption, as the name implies, is simply
the encryption of all, or at least most, of the message which conveys the
transaction. This technique has the advantage of providing privacy as well as
security. The disadvantage, however, is that the encrypted message cannot
be comprehended or processed by the EDP systems (acquirer’s, switch’s,
issuer’s) through which the transaction passes. Thus, the message must be
decrypted prior to being processed, but once decrypted, it loses its crypto-
graphic protection, and therefore is susceptible to fraudulent modification
within the EDP system.

Message authentication is a technique which produces cryptographic check
digits which are appended to the message. These digits are analogous to a
parity check or cyclic redundancy check, except that in this case the check
digits are cryptographically generated, using DES and a secret key. These
digits, called the message authentication code or MAC, are generated by the
originator, appended to the transmitted message, and then checked by the
recipient, who also holds the same secret key used in the generation process.
Should anyone attempt to modify the message between the time the MAC is
generated and the time it is checked, he would be detected. Not knowing the
secret key, he would be unable to generate the correct MAC for his modified
message. Similarly, no one can successfully introduce a spurious message
because he could not generate the proper MAC for this message.

The suggested technique for MAC generation is as follows: The first 64
bits of that portion of the transaction to be protected are block encrypted
using DES and the secret key. Then the next 64 transaction bits to be thus
protected are Exclusive-ORed (modulo 2 added) with the just produced
cipher. The result is then block encrypted using the same key, producing a
new 64 bits of cipher. This procedure is continued until all critical trans-
action fields have been included. (The final data block will likely be less than
64 bits, so it is padded with zeros to make a full 64 bits prior to being
Exclusive-ORed with the just produced cipher.) Some subset of the final
cipher, at least six decimal digits or five hexadecimal digits, serves as the
MAC.

As a minimum, the following fields should be included in the MAC genera-
tion for a transaction request message:

1. Transaction type (debit, credit, etc.).

2. Cardholder’s account number.
3. Amount.

458 APPLYING CRYPTOGRAPHY

4. Transaction identification information (that information which
uniquely identifies a specific transaction from a particular terminal).

In the case of a transaction response message, the equivalent fields plus the
response code (approved, disapproved) should be protected. Alternatively,
the MAC can be generated only if the transaction is approved, because no
known fraud threat could exploit an unprotected disapproved response
,message.

Though the MAC approach does not provide privacy, its advantage over
message encryption is that the protected message is also intelligible, and thus
can be processed by EDP systems. With message encryption, the protection
is lost when the message is decrypted, so the message is protected against
fraudulent modifications only over communications lines but not within
EDP systems. Thus message authentication, by protecting the transaction
against fraudulent modifications both over communications lines and within
EDP systems, is the recommended approach.

As indicated in the preceding section, message authentication can be
optional within an acquirer’s own network, provided the acquirer is willing
to assume any fraud loss which might result from the failure to protect
against any “active” fraud threats. However, it is recommended that all trans-
actions in interchange be protected against active fraud by means of message
authentication. If subsequent privacy legislation requires encryption, this can
be accomplished, for the interchange network, by using link encryption
devices, or by encrypting the six or so least significant digits of the account
number to conceal the cardholder’s identity.

Replay of Debit Authorization

Perhaps the most likely active fraud threat is the isolation of a terminal
(especially an ATM) from its host, giving it an “approved” response to every
transaction request. Message authentication alone cannot necessarily solve
this problem, because it might be possible to record the “approved” response
to a valid transaction prior to isolating the unit, then institute identical
fraudulent transactions, and replay the previously recorded “approved”
response. This fraud threat can be countered only if there is something unique
about each transaction (even two transactions for the same amount against
the same account), and the transaction-approved response includes this
uniqueness, which is checked by the terminal. Furthermore, this unique
characteristic must not be something which the criminal can duplicate. For
example, the terminal itself can insert a sequence number into the transac-
tion request message. This same number is included in the transaction autho-
rization message back to the terminal protected under the MAC. The terminal
checks for agreement between the two values andcauthorizes the completion
of the transaction (e.g., the dispensing of cash) only if the sent and received
sequence numbers are identical. Thus, it is impossible to replay the
“approved” response to a previous transaction because the sequence number
is invalid for any other transaction. Furthermore, the replay version cannot
be modified to include the current sequence number, because the MAC
would not check.

SECTION THREE: PRINCIPLES OF FRAUD PREVENTION 459

For this approach to provide the required degree of protection, the se-
quence number should not repeat within the life of the cryptographic key
used in the MAC generation. Alternately, it could be a random, rather than a
sequential value, provided it is truly unpredictable, and is at least six decimal
digits in length.

Other approaches can provide the same effect. For example, if the terminal
key is changed after every transaction, a MAC on the transaction authoriza-
tion message is unique to a given transaction.

Fraudulent Credits

The four fraud threats associated with credit transactions are:

1. Modified credits (amount field increased, or debit made into a credit).

2. Misdirected credits (account number modified).

3. Spurious credits (totally fictitious credit transaction).

4. Fraudulent replay of previously valid credit transaction.

The first three fraud threats may be countered by the use of message authen-
tication. The use of MAC prevents undetected modifications in any critical
transaction field, and also prevents the origination of totally spurious trans-
actions. The fourth fraud threat, however, is somewhat more difficult to
counter. Though message sequence numbers are commonly used to detect
duplicated messages, these numbers are not considered a part of the security
system and thus cannot be relied upon for fraud prevention purposes. That
is, they can only be checked in the presumably non-secure main frame, and
cannot be checked in special security equipment.

It appears that the responsibility for detecting replayed credits must rest
with the issuer. Under this approach, the issuer would be expected to check
the previous real time EFT credit transaction for the account in question and
verify that it had occurred earlier than the current credit transaction. (This
assumes that real time EFT credit transactions are stored in chronological
order and that the date/time field in every such credit transaction is pro-
tected by the transaction’s MAC.) The issuer could then immediately detect
a replayed transaction.

It should be noted that real time credits in a retail EFT system should be
relatively infrequent. Normal bank deposits are not real time because they
are subject to verification and to check clearances. The only expected real
time credits would result from the return of merchandise, a relatively uncom-
mon occurrence, so placing the responsibility for detecting the replay of such
credits upon the issuer should not be an undue burden.

Encrypted PIN Substitution

Unless appropriately precluded, it would be possible for a criminal to record
an encrypted PIN as it leaves a terminal in a valid transaction, then, by active
wiretapping at a later time, replay this recorded encrypted PIN as part of a
fraudulent transaction. This fraud threat is prevented by techniques which

460 APPLYING CRYPTOGRAPHY

insure that the same PIN when encrypted by the same terminal on two or
more different occasions always produces a unique cipher each time. This
can be achieved by encrypting the PIN as a function of a variable quantity,
such as a terminal generated transaction sequence number (in addition to the
secret key). To be fully effective, this terminal should utilize message authen-
tication for the transaction authorization message. This message should
include the same variable quantity (e.g., the transaction sequence number)
which is used in the encryption of the PIN in the transaction request message.
Only if the variable quantity in the authorization message matches the one
the terminal used for PIN encryption in the request message, and only if the
authorization message is successfully authenticated by the terminal, does the
terminal complete the transaction. At the host end, PIN validation and
authentication of the authorization message should be performed as a single
operation in a physically secure environment, the message authentication
code for the authorization message being generated only if the cardholder
entered PIN is successfully validated.

If the above indicated procedures are followed, the criminal is prevented
from fraudulently replaying a previously recorded encrypted PIN. This PIN
would have been encrypted as a function of a previously used variable quan-
tity which could not be successfully reused.

Another technique which can be used to prevent the substitution of the
encrypted cardholder entered PIN is key transformation. With this technique,
the terminal’s key is changed after every transaction. This is accomplished
by generating the new key from the old key via a cryptographic procedure.
Since the key used to encrypt the PIN changes on each transaction, the
criminal is unable to successfully replay the encrypted PIN from a previous
transaction. To insure this completely, however, the authorization message
to the terminal must be authenticated using the current key.

Other fraud threats are possible if the criminal is able to substitute the
encrypted version of a PIN, which the criminal himself knows, for the card-
holder’s encrypted PIN of reference. Two techniques are required to preclude
this threat. First, the cardholder’s PIN must be encrypted as a function of
his account number. This prevents the criminal from substituting his en-
crypted PIN of reference for that of the targeted cardholder. Second, the
PINS of reference must be encrypted under a cryptographic key never used
to encrypt cardholder entered PINS. This prevents the criminal from using
an invented PIN with a counterfeit card for the targeted account, then
replacing the PIN of reference for this account with the encrypted version of
the invented PIN.

It should be noted that the prevention of this fraud threat requires that
the PIN of reference and the entered PIN both be decrypted (or that the
latter be decrypted, then reencrypted like the former) before a comparison
is made since both are encrypted under different keys. This does not permit
a commonly used PIN validation technique in which the encrypted card-
holder entered PIN is compared in a non-secure environment against a simi-
larly encrypted PIN of reference.

SECTION THREE: PRINCIPLES OF FRAUD PREVENTION 461

Fraud Prevention in Interchange

The fruad threats associated with interchange are basically no different than
those already considered, namely, passive threats to ascertain PINS (for use
with lost, stolen or counterfeit cards), and active threats to modify or insert
data in real time. Thus, the fraud prevention techniques considered above
apply to interchange just as much as to local operations. However, inter-
change poses a practical problem concerning the implementation of these
fraud prevention techniques, the necessity to translate from one crypto-
graphic key to another.

A typical interchange transaction begins when the cardholder enters his
PIN at some EFT terminal which also reads his card. At this point the PIN
must be encrypted in a key unique to this particular terminal.

Similarly, if message authentication is used, it must be based on a key, the
same or different, but still unique to this particular terminal. In an EFT sys-
tem with thousands or tens of thousands of encrypting EFT terminals, it is
not feasible, or even desirable, for every key of every acquirer’s terminal to
be known at every issuer’s facility. Thus, each acquirer must have the capa-
bility to translate from the terminal’s key to an interchange key known
either by the issuer, or by the switch which serves the acquirer (in which case
the switch will make a second translation into a key known to the issuer).
Furthermore, in the case of the PIN, this translation must take place under
conditions of very high security, desirably using special, physically protected,
cryptographic hardware. As indicated previously, it may eventually be con-
sidered unacceptable for one institution’s clear PINS, or the clear keys used
to encrypt such PINS, to reside even momentarily in the general purpose EDP
equipment of any other institution. Thus, for high security, the acquirer
should not perform this translation function of the PIN using CPU software,
but rather should use the above indicated physically secure hardware.

In the case of message authentication, however, this does not necessarily
apply. Since message authentication is optional on the acquirer’s part, he
may use CPU software for MAC translation. However, in this case a com-
pletely different key must be used for MAC generation than is used for PIN
encryption or the clear PIN key would exist in the acquirer’s CPU. Since the
acquirer may utilize special cryptographic hardware for PIN translation, it
is suggested that this same hardware be used for MAC translation as well.

Should an acquirer or a switch find an invalid incoming MAC while per-
forming MAC translation, it is considered acceptable for this institution
simply to generate an invalid outgoing MAC. In this way, only the issuer,
who performs the final MAC check, need implement the error paths which
handle the invalid MAC situation.

Another acceptable technique is to superimpose the MAC on the encrypted
PIN and avoid an additional field to the message. This may be accomplished
by Exclusive-ORing the MAC and the encrypted PIN. Should the MAC not
check, the issuer finds a garbled PIN, and the PIN check fails. While this
technique cannot distinguish between an invalid PIN and a modified message,

462 APPLYING CRYPTOGRAPHY

this is of little consequence since the net result in either case is to disallow
the transaction.

It is assumed that the EFT system as a whole provides an adequate degree
of error control, so that the MAC is relied upon for fraud detection rather
than error detection. Since fraud attempts are expected to be virtually non-
existent because of the use of message authentication, there is virtually no
inefficiency in relaying a message with an invalid MAC all the way to the
issuer.

Returning again to a typical interchange transaction, the encrypted PIN is
transmitted from the EFT terminal, encrypted in this terminal’s secret key.
Optionally a MAC, to protect the critical message fields, is also included.
The transaction message, including the encrypted PIN, and optionally the
MAC, reaches the acquirer’s facility. Here the above indicated cryptographic
transaction takes place. The PIN is decrypted using the terminal key, and
reencrypted using an interchange key. If there is an incoming MAC, this too
is translated into the interchange key. If there is no incoming MAC, one is
generated.

The interchange key indicated above is either a bilateral key shared by the
issuer and the acquirer, or a key shared by the acquirer and his EFT switch.
In this latter case, the transaction goes to the switch where a second crypto-
graphic translation occurs, translating the PIN and MAC from the key used
between switch and acquirer to that used between switch and issuer. The
message with this new encrypted PIN and MAC is then transmitted from
switch to issuer, where the MAC is checked and the PIN decrypted and vali-
dated. If the transaction is approved by the issuer, a transaction authorization
message is sent from issuer to switch. This message is protected by means of
a MAC using the key shared by switch and issuer. The switch, upon receiving
the transaction authorization message, translates it into the key used between
switch and acquirer. The MAC in this key reaches the acquirer. If the MAC
is valid, the appropriate authorization response is transmitted to the terminal
where the transaction originated. If this terminal expects a MAC with the
authorization message, such a MAC is generated, in the terminal key.

Countering the Fake Equipment Threat

Perhaps the most difficult fraud threat to counter is the fake equipment
threat, in which a dishonest merchant induces unsuspecting cardholders to
use EFT terminals with PIN pads which are fake. Either the entire terminal
is fake, or a fake PIN pad is added to a non-PIN-using terminal. In either case
the PIN pad output goes ‘to a recorder, as does the output of the magnetic
stripe reader. From the information thus collected, the criminal is able to
produce usable counterfeit cards. Fortunately, this fraud threat is considered
too blatant to be especially probable, but must be considered nevertheless.

This threat can be countered only with the help of the cardholders them-
selves, some of whom can be induced into cooperating by the offer of sub-
stantial rewards (but only after the fraud threat has actually materialized).
To enable the cardholders to detect that something is suspicious, a code
printed on the EFT receipt must indicate whether or not a PIN was used

SECTION THREE: PRINCIPLES OF FRAUD PREVENTION 463

with the transaction in question. For example, a Transaction Proof Code
with a non-zero leading digit printed on the receipt, can indicate that a PIN
was used. If the leading digit is zero, a PIN was not used. Thus, an observant
cardholder who uses such a terminal with a PIN pad and finds the leading
digit of his Transaction Proof Code is zero, would know that he could receive
a reward for informing the financial institution of this fact without alerting
the merchant.

In a similar manner, an account-related sequence number, maintained by
the issuing institution and printed on the EFT receipt, would allow the alert
cardholder to immediately detect a totally fake terminal (which did not
communicate with his institution) because the sequence number printed on
the receipt would not be the number he was expecting.

It is possible that the dishonest merchant could have a non-PIN terminal
(with a fake PIN pad) modified so as to change, in real time, the leading
Transaction Proof Code digit from zero to some other value. However, the
Transaction Proof Code as recorded by the financial institution also prints
on the cardholder’s monthly statement. Thus, the alert cardholder would
also know that he could receive a reward for reporting discrepancies between
his EFT receipts and his statement (provided these discrepancies could be
confirmed by the institution). The totally fake terminal (which resulted in
no statement entry) and the terminal which actively modified the Trans-
action Proof Code, would be discovered through such cardholder reports.
In an interchange environment with on-line EFT, it would be virtually
impossible for the dishonest merchant to predict just how soon after using
his fake equipment an alert cardholder would receive a statement and report
his suspicions. The dishonest merchant would be exposed to an unacceptably
high level of detection and therefore would not likely attempt this type of
fraud in the first place.

While many cardholders would either not understand, or ignore the above
suggested reward offers, a small number of intelligent and alert cardholders
should respond. Even these few should be sufficient to pinpoint such dis-
honest merchants relatively quickly.

Since this fraud threat is considered rather improbable by Interbank, little
attention need be paid at this time. Nevertheless, the possibility of the threat,
and the techniques for countering it, should be kept in mind.3

Conclusions

The two basic techniques used to provide security in an EFT environment
are PIN encryption and message authentication. PIN encryption prevents
passive fraud threats from ascertaining PINS, and thus precludes the use of
lost, stolen, and counterfeit cards. For PIN encryption to be effective, the
PIN must be physically protected everywhere that it is not encrypted. Simi-
larly, the cryptographic keys used to encrypt PINS must be protected. Inter-

’ A fake equipment attack, which cannot be defended against using the above mentioned
technique is described in Chapter 11 in the section entitled Threats to the Secrecy of a
Key Stored on a Magnetic Stripe Card.

464 APPLYING CRYPTOGRAPHY

locking these keys with the cryptographic device’s enclosure is one obvious
technique for providing the required physical protection.

Message authentication insures message integrity, and prevents most active
fraud threats. A few active fraud threats, however, require specialized coun-
termeasures, as does the fake equipment.

Interchange does not pose any unique fraud threats, but it does require a
special cryptographic capability-translation from one cryptographic key to
another under conditions of very high security.

The above discussion has presented only the basic principles of fraud pre-
vention. The following section considers, in some detail, how these principles
can be effectively implemented, both in EDP facilities and in EFT terminals.
In addition, techniques for secure PIN management and key management
will be considered.

SECTION FOUR: IMPLEMENTATION OF FRAUD PREVENTION TECHNIQUES

Section Three considered the general principles which are recommended for
preventing fraud in EFT networks. This section will describe in further detail
how these principles can be applied, through the use of a “security module.”
In its preferred implementation, such a module is a physically secure hard-
ware device which serves as a peripheral to an EDP system. Potentially less
secure implementations are also possible, in which security module functions
are implemented in mainframe software. The implementation used by an
issuer for its own PINS is clearly its decision. The implementation used by an
acquirer in Interbank interchange may be dictated by future standards,
though it is presently premature to indicate what such standards will be.4

Suggested Characteristics of Hardware Security Module Implementation

When very high security is desired, hardware implementation of the security
module is recommended. The previously mentioned Interbank security study
considered in detail how such a hardware device could best be implemented.
The hardware implementation as suggested by this study is now considered.

The suggested security module is a self-contained, physically secure, micro-
processor controlled cryptographic device programmed to perform the
cryptographic functions which the EDP center of a financial institution
requires for its EFT operations. A security module interfaces with the institu-
tion’s EDP system as a peripheral device. Information which requires crypto-
graphic processing is sent from the computer to the module, which almost
immediately sends back the results.

Each security module can be programmed to perform virtually any required
cryptographic function. These programs are written to insure that the secret
ingredients in EFT operations, customer PINS and cryptographic keys, never
exist in a clear form outside the physically secure internal circuitry of a
security module or of an EFT terminal’s cryptographic hardware. In effect,

4 See Cryptographic PIN Security-Proposed ANSI Method, Appendix E

SECTION FOUR: IMPLEMENTATION OF FRAUD PREVENTION TECHNIQUES 465

the security module takes from a non-secure EDP system all information
which must be kept secret to prevent EFT fraud, and concentrates it within
a dedicated module where it can be physically protected. Thus, the security
module trades computer security, which is now and may always be, elusive,
for physical security, which is well understood.

The suggested security module achieves its physical security by means of
both locks and interlock circuitry. The module is protected by two different
physical locks, requiring two different physical keys. This insures that the
module can be legitimately opened only under dual personnel control.
Furthermore, whenever the module is opened, whether legitimately using the
two keys or by force, interlock circuitry causes all secret data stored within
the module (i.e., the cryptographic keys) to be erased. If a criminal breaks
into the module, the secret information contained therein will disappear as it
is forced open.

The suggested security module system consists of three modules, all elec-
trically and mechanically independent, but sharing a common cabinet. A
conventional terminal serves as the keyboard and printer for the system. It is
connected to only one of the three modules at any given time, and serves to
perform certain subsequently described PIN and key management functions.’

Suggested Capabilities6

The main functions performed by the security module include PIN manage-
ment, PIN verification, PIN “translation” in interchange, key management,
and message authentication. These functions are based on the National
Bureau of Standard’s Data Encryption Standard (DES), although proprietary
algorithms can be supported as well.

For PIN management, the module can generate a random value for the
PIN, then encrypt this value for storage in the mainframe and/or for encoding
on the card’s magnetic stripe as the “PIN offset” of the “PIN verification
field.” Alternately, the module can cryptographically derive the PIN from
the account number. In either case, the module can print the PIN mailer on
a dedicated printer. As a result, the unencrypted PIN is never known to any
person and is never present, even momentarily, in the mainframe. If the
institution prefers that cardholders select their own PINS, the module imple-
ments a system that never allows anyone within or outside the bank, except
the actual customer, to associate an unencrypted PIN with the corresponding
account number.

For PIN verification, the module decrypts a PIN which has been encrypted
by an EFT terminal. It then compares this customer-entered version of the
PIN with the “reference” version of the PIN using the technique appropriate
to the institution in question, which can be an encrypted PIN from the data

‘The security module described here was developed and tested in prototype form by
Interbank Card Association under the name PINPACK (see also reference 2).
6The following six paragraphs are from Datupro Reports on Banking, Report No. B61-
854-101, “Transaction Security Products Security Module” [3] . Copyright 1980 by
Datapro Research Corporation, Delran, New Jersey. All rights reserved. Reprints may be
obtained from Datapro Research Corporation.

466 APPLYING CRYPTOGRAPHY

base, a “PIN offset” or “PIN verification field” from the card’s magnetic
stripe, or a PIN cryptographically derived from the account number. The
module responds with a “valid” or “invalid” indication, but in no case dis-
closes the unencrypted PIN.

For interchange use, the module can “translate” the PIN (and any other
data) from the cryptographic key and format used by the EFT terminal to
the cryptographic key and format used for interchange. When the module is
used for this “translation” function, no unencrypted PINS of any issuer are
ever present, even momentarily, within the mainframe of participating
institutions, where they might be subject to disclosure.

All functions performed by the DES algorithm are controlled by “keys.”
A security module is able to generate, control, maintain, and protect all keys
associated with the user’s network. This includes terminal keys, data storage
keys,7 and interchange keys. Terminal keys are used for encrypting and
decrypting PINS and other data transmitted between a terminal and its host.
A module can generate terminal keys and can support down-line key loading.
Data storage keys protect sensitive data such as PINS stored in a user’s data
base. Interchange keys are used for transmitting data among various users
within a shared system.

The message authentication function performed by a module provides
protection against fraudulent modification of messages by cryptographically
protecting the text. This is accomplished by processing critical message fields
through the DES encryption algorithm, which generates a Message Authen-
tication Code (MAC) appended to the message by the originator and checked
by the recipient. Without knowledge of the key used in this process, anyone
attempting to modify the message fraudulently would be unable to do so
without detection.

PIN management refers to the techniques by which an institution issues,
stores, and validates customer PINS. Here the system provides several options.

Bank Selected Random PIN

The security module itself can generate PINS, then print a PIN mailer on its
own dedicated terminal printer. This just generated PIN is then encrypted
under the PIN Master Key [PMK] and transmitted to the CPU for storage
in the EDP system’s data base, or; for encoding on the magnetic stripe of
the customer’s card.

Before the security module will print PIN mailers, it must be put into the
“authorized state.” To do this, each of two members of the institution’s
staff must enter a different secret code. Each had previously selected his
code, and neither knows the other’s code. If both of these codes are entered
correctly, the module enters the authorized state, and will print PIN mailers
when instructed to do so. If it is not in the authorized state it will respond
with an error indication to such an instruction. This would prevent unautho-
rized personnel from printing PIN mailers at a time when the security
module’s printer is not properly secured.

7Storage keys are equivalent to the master keys discussed below.

SECTION FOUR: IMPLEMENTATION OF FRAUD PREVENTION TECHNIQUES 467

PIN Cryptographically Derived from the Account Number

The security module, using DES, can cryptographically derive a PIN from a
customer’s account number and issue the PIN to this customer on a PIN
mailer as discussed above.

Customer-Selected PIN

This may be accomplished by a mailed customer response, by a document
given to the customer at the bank’s facility, or by having the customer enter
his PIN via a secure terminal.

To provide secure management for a customer mailed response, a PIN
solicitation document is prepared and mailed to the customer. The portion
to be returned, on which the customer writes his PIN, contains no customer
identifying information except a reference number. This reference number
is really an encrypted account number, intelligible only to the security
module. Someone who sees the returned portion of the mailer would be
unable to relate the PIN to the account. A bank employee uses this returned
portion to enter the selected PIN and the reference number into the security
module. The module then decrypts the reference number to determine the
account number and encrypts the PIN under the PIN Master Key [PMK] .
This resulting information is then transferred to the CPU for storage in the
data base. At no point in this process is the clear PIN ever associated with
the clear account number.

A similar document can be used by those institutions which have the cus-
tomer choose his PIN at the time he applies for the account. Another tech-
nique which can be used under some conditions is to have the customer
convey his PIN selection by entering it into a secure EFT terminal.

PIN Validation

The security module provides a number of different techniques for PIN
validation, depending upon the characteristics of the EFT system and how
the PIN was issued and stored. In most of today’s ATM systems the PIN is
validated by the ATM itself. In this case, the only role played by the security
module is the preparation, during the PIN issue process, of the encrypted
PIN or offset to be encoded on the magnetic stripe of the bank card used to

* activate the ATM. (Many ATMs use this offset value in the PIN validation
process.) In an interchange environment, however, PIN validation must be
performed at the EDP system of the card issuing institution, or of some
other institution designated by the issuer to perform this function. (As
previously indicated, it would be nonsecure to have the information needed
for the validation of one institution’s PINS available to all other institutions.)
In this type of environment, the customer’s PIN arrives from the EFT termi-
nal or the interchange network, encrypted under a terminal key [TK] or an
interchange key [IKI known only to the security module. The module
decrypts the customer entered PIN, and then determines the PIN of reference
for comparison purposes. In some institutions the security module deter-
mines this PIN of reference from the account number, or from data encoded

468 APPLYING CRYPTOGRAPHY

on the bank card (which was previously generated by the module during the
PIN issue process). In other institutions there is an encrypted PIN entry in
the data base for each account, and this entry is passed to the security module
along with the transaction. This entry was generated by the module itself
during the PIN issue process, and the security module alone holds the PIN
Master Key [PMK] required to decrypt it. After obtaining the PIN of refer-
ence and comparing it with the customer entered PIN, the security module
informs the EDP system of the comparison result, but does not, under any
conditions, output the clear PIN.

Key Management

The preceding discussion has mentioned several types of keys: master keys,
terminal keys, and interchange keys. The generation and management of
such keys is an important feature of a security module system.

Master keys, of which there are perhaps fifteen in a security module, are
common among all the modules which serve a financial institution’s EDP
facility. However, no two institutions share the same, or even similar, master
keys. Master keys are used primarily for encrypting terminal keys [TKl,
TK2,. . . .I, interchange keys [IKl , IK2,] , and PINS. Interbank has
developed a special, highly secure Key Management Center for the generation
of master keys for use in Interbank interchange. The Interbank personnel
who operate this center do not have the capability to ascertain the keys it
generates. These keys are conveyed from the center to the institution’s secu-
rity modules via electronic key transfer devices, so no printed record of the
keys is ever produced. Though these devices must be transported to the insti-
tution under dual controlled conditions of very high security, the use of two
independently conveyed devices for each set of keys means that both devices
would have to be compromised before any of the conveyed master keys
would be revealed.

The keys for an institution’s terminals are produced by that institution’s
security module. The module must first be placed in the authorized state as
described previously. Then the module, upon command from the EDP sys-
tem, generates a random value to use as the terminal key. Ideally, this key is
transferred from the security module directly into an electronic key loading
device by which it is transported to the terminal in question. Such devices,
several versions of which are in use today, prevent the person who loads the
key from ascertaining it. As an interim necessity, in the absence of the termi-
nal’s ability to interface with such a device, the key may be formed by the
addition of two or more sub-keys, each of which is separately printed by
the security module’s printer, carried to the terminal, manually entered into
it, and then the printed record destroyed. Desirably, the key is formed inside
the terminal as the sum of two values which are independently conveyed
from the security module to the terminal.

After the security module has generated a new terminal key [TK] and
transferred it to a key loading device (or to the printer) the module encrypts
the just generated key under its Terminal Master Key [TMK] , and sends this
encrypted value to the EDP system for storage. This eliminates the necessity
of internally storing a large number of terminal keys. Every time a transaction

SECTION FOUR: IMPLEMENTATION OF FRAUD PREVENTION TECHNIQUES 469

comes from a terminal, the EDP system finds the corresponding encrypted
key in its data base and passes this to the security module along with the
transaction .’

Interchange keys are used between the security modules of different insti-
tutions to encrypt data in interchange. Such keys for use in Interbank inter-
change are generated by the Interbank Key Management Center. Usually
they are generated on a bilateral basis, two institutions (or an institution and
its EFT switch) sharing a common interchange key for transactions between
them. The Interbank Key Management Center must first have conveyed to
each institution a unique Interchange Master Key [IMK] . The center then
generates a random value to serve as this bilateral interchange key [IK] , then
encrypts this interchange key under the Interchange Master Key of the first
institution [IMK 11, then under the Interchange Master Key of the second
[IMK2]. Thus encrypted [EIMK1 (IK) and E rMKZ (IK)] , the interchange key
may be conveyed to each institution via non-secure means.

Note that the security module’s PIN management and key management
techniques are designed to enforce dual control over all critical manual opera-
tions. If the security module is implemented in the suggested physically
secure hardware, no cryptographic key can ever be ascertained by anyone,
and no PIN can be ascertained except by the customer to whom it is issued,
unless there is fraudulent collusion between two explicitly trusted employees
of the institution.

MAC Generation’

Another security technique provided by the security module is called message
authentication. Under this technique, the message is cryptographically pro-
cessed using a secret key. This process produces a residue, which is then
appended to the clear message. This residue, called the message authentica-
tion code or MAC, is generated by the originator and checked by the recipi-
ent. Should anyone attempt to modify such a message while in transit, he
would be unable to do so without detection. Not knowing the secret key
used in the authentication process, one would be unable to generate the
MAC appropriate to the modified message. This technique is used primarily
to prevent messages from being fraudulently modified as they traverse non-
secure communications circuits and EDP systems. Since the message is
assumed to be in clear (comprehensible) form, it can be comprehended,
though not modified, by EDP systems along the way [21.

Utilization

Security module utilization in an operational environment is perhaps best
illustrated by means of two examples-its use in a local transaction and its

‘Each ATM which performs PIN validation must internally store the PIN Master Key. To
convey this key to an ATM, the security module encrypts it under the terminal key, so
that it can be transmitted to the ATM over the nonsecure communications link. Replace-
ment terminal keys can be similarly conveyed from security module to terminal.
‘The material in this section is taken from reference 2.

470 APPLYING CRYPTOGRAPHY

use in an interchange transaction. A local transaction is one in which the cus-
tomer uses a terminal controlled by his own institution. An interchange trans-
action is one in which the customer uses some other institution’s terminal.

Figure 1 O-l illustrates a local transaction. The cardholder’s PIN is entered
into the terminal, where it is immediately encrypted under the terminal key
[TK] . This encrypted PIN, together with the other elements of the trans-
action, is then transmitted to the institution’s CPU. The CPU examines the
just received transaction and determines the identity of the terminal from
which it originated, and the identity of the cardholder who initiated it. (The
cardholder is identified by his account number, which is read from the card’s
magnetic stripe by the terminal.) From this information the CPU finds, in its
data base, the terminal’s key encrypted under the Terminal Master Key,
TMK, and the cardholder’s PIN of reference encrypted under the PIN Master
Key, PMK. (Alternately the encrypted PIN of reference may be encoded on
the card’s magnetic stripe.) These two encrypted values [ETMK(TK) and
EPMK(PIN)l along with pertinent fields from the transaction are conveyed
to the security module. The module contains, in its internal storage, the
master keys [TMK and PMK] . Using its Terminal Master Key [TMK] it
decrypts the terminal key from the data base. This just decrypted value is
used to decrypt the cardholder entered PIN as received from the terminal.
Then using the PIN Master Key [PMK] it either decrypts the PIN of refer-
ence from the data base or encrypts the just decrypted cardholder entered
PIN. Either way, the two versions of the PIN are compared. If they disagree,
the module sends the CPU a “no” indication. If they agree it sends a “yes”
indication.

If the terminal in question uses message authentication, the module will
output a valid MAC for the response message only if it finds both the incom-
ing MAC and the PIN to be valid. This prevents a clever CPU programmer from
substituting an “approved” response to a terminal for the “disapproved”
response which always results/from an invalid PIN (or modified message).

An interchange transaction, Figure 10-2, begins just as a local one, with
the cardholder’s PIN being encrypted under the terminal key [TK] and
transmitted as part of the transaction to the acquiring institution. This insti-
tution’s CPU examines the transaction to learn the identity of the terminal
and the cardholder. Again, from the terminal’s identity, it locates the termi-
nal’s key encrypted under the Terminal Key Master Key in its data base
[ETMK(TK)] . It notes, however, that this is an interchange transaction and
that this particular cardholder’s PIN is not on file here. It thus sends the
encrypted terminal key and the transaction to its security module with
instructions to perform a PIN translation. The security module decrypts the
terminal key, TK, then uses this to decrypt the PIN. It immediately reencrypts
the PIN under the appropriate interchange key, IK. In some cases, as illus-
trated in Figure 10-2, this is a key which the acquirer shares, on a bilateral
basis, with the issuer. If it does not share a bilateral key with the issuer in
question, the interchange key used is the one the acquirer shares with the
interchange switch. The switch will then perform a second key translation,
decrypting under the interchange key which it shares with the acquirer [say
IKl] and reencrypting with the interchange key it shares with the issuer

ET,, UK11 ET~K UK3 . . .
ETMK UK@

----,,4(d

Transaction Request Message
I

Account Amount
I

Transaction
I I

Sequence
No. (IDj)

ETKi WW)
Type No.

I I I I
Encrypted PIN

Magnetic Stripe
Bank Card

IDj

EFT Terminal

PINj
I P TKi Security Module

Master Keys
CPU Yes/No

4
*

t

EPMK V’INl)
E,,, V’IW

.

.

EPMK &ml

- I

Data Base

I I
Legend:

TK - Terminal Key
TMK - Terminal Master Key
PMK - PIN Master Key
ET, (PIN) - PIN Encrypted under

Terminal Key
ETMK (TK) - Terminal Key Encrypted

under Terminal
Master Key

EpM, (PIN) - PIN Encrypted Under
PIN Master Key

This figure is based on a similar figure in Reference 1.

Figure 10-l. Issuer’s PIN Validation - Local Transaction

471

472 APPLYING CRYPTOGRAPHY

Cardholder’s EFT Terminal

ETKi(PINJ) CPU Security Module 7

L

Legend

PINj

Acquirer

CPU Security Module

E,,(PINj)

TK - Terminal Key
IK - Interchange Key

This figure is based on a
similar figure in Reference 1.
Figure 10-2. PIN in Interchange

L I
Issuer

[say IK2] . Either way, the issuer receives the PIN encrypted under an inter-
change key available to its security module. It then validates the PIN in
essentially the same manner described for a local transaction.

Though not shown in Figure 10-2, every interchange transaction is pro-
tected by means of a Message Authentication Code, or MAC. This code is
generated by the acquirer using the same key used for PIN encryption. The
code is validated by the issuer. When the acquirer and issuer do not share
a bilateral key, the switch’s security module performs a MAC translation as
well as the above indicated PIN translation.”

Message authentication is also used for the response message from issuer
to acquirer, and again a MAC translation, if required, is performed by the
interchange switch. If the EFT terminal uses message authentication, the
acquirer’s security module generates the proper message authentication code
for the terminal only if the MAC from the issuer is valid.

Note that throughout this interchange procedure, the clear PIN exists only
within the physically secure confines of the originating terminal and the two

“For example, the switch decrypts the PIN and checks the MAC using the interchange
key shared with the acquirer (WI). If the incoming MAC is found to be valid, it then
reencrypts the PIN and generates an outgoing MAC using the interchange key shared with
the issuer (IK2). (It is assumed that each interchange key shared with the switch is stored
encrypted under the switch’s Interchange Master Key, IMK.)

REFERENCES 473

or three indicated security modules, thus providing the highest possible
security for the PIN at all points in the interchange environment.

Conclusions

The above suggested “security module” can be implemented by mainframe
software, or by a hardware device. Especially when implemented by a hard-
ware device, the module provides very high security to perform those fraud
prevention functions which a financial institution requires in order to partici-
pate in a secure EFT interchange network. It provides a means to translate
encrypted PINS from one cryptographic key to another without allowing
either the clear PINS, or the clear keys used to encrypt them, from existing
even momentarily outside of the security module, or of the EFT terminal
itself.

Not only does the security module protect PINS in interchange, but it also
provides fraud protection for the institution’s own PINS as well. It enables a
system of PIN issuance, PIN management, and PIN validation by which not
even one member of the institution’s staff has the capability to ascertain
cardholders’ PINS. In addition, it performs all other cryptographically related
functions (e.g., message authentication) which are required of an institution’s
EDP facility, and also provides for the required key management capabilities.

REFERENCES

1. PIN Manual: A Guide lo the Use of Personal Identification Numbers in Interchange,
Interbank Card Association (September 1980). Distribution restricted. Contact
Security Department, Mastercard International Inc. (formerly Interbank Card Associ-
ation), 888 7th Avenue, New York, NY 100 19.

2. Campbell, C. M., Jr., “A Microprocessor-Based Module to Provide Security in Elec-
tronic Funds Transfer Systems,” Proceedings COMPCOJJ 79, 148-l 53 (1979).

3. “Transaction Security Products Security Module,” Report Number B6 1-854-l 0 1,
reprinted from Datapro Reports on Banking, Datapro Research Corporation, Delran,
NJ (1980).

Applying Cryptography to Electronic Funds 474..
BACKGROUND 474...

Communication Link Security 478................................
Computer Security3 478..
Terminal Security 479..
EFT Terminals in Nonsecure Environments 480.........
Fake Equipment Attack 480...
Bank Card Security 481...
Magnetic Stripe Card 481..
Intelligent Secure Card 482..
IDENTIFICATION AND AUTHENTICATION 482........
Transferable User Characteristics 482.........................
Nontransferable User Characteristics 482...................

REQUIREMENTS FOR PERSONAL 483..............
Figure 11-2. The Personal Verification Process 484....
Authentication Parameter 484......................................

Figure 11-3. Transformation of User-Supplied 485.
Personal Authentication Code 486...............................
Personal Verification Using AP Only 487.....................
Personal Verification Using AP and PAC 488..............

Figure 11-4. A Method for Achieving 489................
Message Authentication Using a MAC 489..................
FT Security RequirementsI 490...................................
Figure 11-5. A Method for Achieving Message 491.....

PERSONAL VERIFICATION IN THE 499..............
Personal Verification with Dependent PINS 500..........

Figure 11.6. Personal Verification using a 501........
Personal Verification with Independent PINS 502.......

Figure 11-7. Personal Verification Using a 502.......
Figure 11-8. Personal Verification using 504...........
Figure 11-9. Personal Verification Using a 505.......
Figure 11-9 (cont�d) 506..

Minimizing Card Storage Requirements 507...............
PERSONAL VERIFICATION IN THE 511..............

PAC of Reference = leftmost m bits of 508..................
Figure 11-10. Calculation of KP such that 509........
Figure 11-11. Personal Verification Using a 510.....
Figure 1 l-l 1 (co&d) 511..

Personal Verification with System-Selected 512..........
Figure 11-12. An Example of Off-Line 513..............

Personal Verification with User-Selected PINS 514.....
Personal Verification with User-Selected 514..............

Figure 11-13. An Example of Off-Line 515..............
Figure 11-14. Off-Line Personal Verification 516....

GUIDELINES FOR CRYPTOGRAPHIC 517..........
Threats to PIN Secrecy 520...
Observation of the PIN 520..

Table 1 l-l. Security Properties of 521.....................
Table 11-2. Security Properties of 521....................

Bugging of Input Information at E FT Terminals 523...
Insertion of Fake Equipment 523.................................
Key Management Requirements 523...........................

Figure 1 l-15. Concepts Associated with 525..........
Figure 11-16. Message Authentication-Unive 526..

Threats to the Secrecy of a Key Stored on a 526........
Figure 11-17. Message Authentication-Syst 527.....

Lost Cards 527...
Stolen Cards 528...

Figure 11-19. Message Authentication-Sys 529......
Copying Card Information 530.....................................
Bugging of Input Information at EFT Terminals 530....
Insertion of Fake Equipment 530.................................

THE PIN/SYSTEM KEY APPROACH 530.............
Table 11-3. Keys Used for Message 531.....................
Table 11-4. Information Flow from Terminal 531.........
Table 1 l-5. Information Flow from Issuer to..........
Key Management Considerations for 535....................
Sharing of Secret Keys 535...
Cryptographic Translations 535...................................
Translation at the Issuer 535..
Protection Against Misrouted Data 536........................
Defending Against the Misrouting Attack 536..............

Figure 11-21. Generation of Test Pattern 539.........
Figure 11-22. Authenticating a Translate 540.........

A PIN/System Key Approach for Noninterchang 541...
A PIN/System Key Approach for Interchange 541.......

Figure 1 l-23. TRANSLATE Operation - 5 4 2...........
Disadvantages of the PIN/System Key 544.................
Exposure of Keys at the Entry Point 544.....................
Key Management is Not Robust 545...........................
Advantages of the PIN/System Key Approach 545......

THE PIN/PERSONAL KEY APPROACH 546........
Description of a PIN/Personal Key Approach 546.......
Key Management Considerations for 548....................
Advantages of the PIN/Personal Key Approach 548...
End-To-End Protection Between the User and 548.....
Objections to the PIN/Personal Key Approach 549.....
A Key on the Magnetic Stripe Card Cannot be 549.....
A Key on the Magnetic Stripe Card Must be 550.........
Exposure Due to Misuse of Personal Keys 550...........
No Interlocking with KP 551...
Personal Key Approach with an Intelligent 551............
An Ideal Intelligent Secure Card 551...........................

Table 11-6. Keys Defined for the PIN/Person 552..
A Practical Intelligent Secure Card 553.......................

Table 11-7. Information Flow from Card to 554.......
Table 1 l-8. Information Flow from Issuer 5 5 4.........

THE PIN/PERSONAL KEY/SYSTEM KEY 557...........
Description of a Hybrid Key Management 558.............
The Reason for Doubly Encrypting KSTR 559.............

Figure 11-24. Generation of KP, PIN, and 560........
PIN and KP Selection 560..
PIN and KP Validation 560...

Figure 11-25. Regeneration of the 561....................
System Key Generation 561..
Key Management Considerations for the 561..............
Hybrid Key Management Approach for 562.................

Figure 11-26. Transaction Request 563..................
Figure 11-27. Generation of the 564.......................
Figure 1 l-28. Message Authentication at 566.........

Hybrid Key Management Approach For 566................
Figure 11-29. Generation of the Positive 567..........
Figure 11-30. Message Authentication at 568.........

Cryptographic Considerations for an Intelligent 569....
Security Enhancements with Digital Signatures 569....

Table 11-9. Keys Referenced in the Hybrid 570......
Table 11-10. Information flow from 574...................

Advantages 576...
KEY MANAGEMENT CONSIDERATIONS- 577....

Figure 11-31. Personal Key Approach with 579...........
Figure 1 l-32. Personal Key Approach with 579...........
Figure 11-33. Personal Key Approach with 580...........
Figure 11-34. Personal Key Approach with 580...........

Table 11-12. Required Number of Keys for 581..........
Figure 1 l-35. Symmetric Algorithm-Keys 582..............
Figure 1 l-36. Asymmetric Algorithm-Keys 582............
Table 11-13. Required Number of Keys for 583..........
Secrecy Without Authentication 583............................

Table 11-14. Required Number of Keys for 584......
Figure 11-37. Protocol to Send Secret 585.............
Figure 11-38. Interception of Secret 586.................
Figure 1 l-39. Routing of Bogus Document 586......

A CRYPTOGRAPHIC SYSTEM USING AN 588...
Description of a Public-Key Management 589.............
DGSreq = DsKc [CE(Mreq)] 590..................................
DGSresp = DsKb [CE(Mresp)] 590..............................
PIN Selection 591..
Generation of the User�s Public and Private 591.........
Validation of the User�s PIN and Card Key 591...........

Figure 11-40. Information Stored in the 592............
Figure 11-41. Information Stored on the 593...........

Key Management Considerations for 593....................
Figure 11-42. Information Stored in the 593............

Off-Line Use 594..
Figure 11-43. Off-Line Use 595...............................

On-Line Use in Interchange and Noninterchang 596...
Figure 11-44. On-Line Use-EFT Terminal 596........
Figure 11-45. On-Line Use-Issuer�s EDP 598.........

Additional Comments 598..
Figure 11-46. On-Line Use-El3 Terminal 599..........
Table 1 l-15. Keys Defined for the Public 600.........
Table 11-16. Information Flow from Card to 601.....
Table 1 l-17. Information Flow from Issuer 603.......

CONCLUDING REMARKS 604.............................
GLOSSARY 604...
REFERENCES 605..

Other Publications of Interest 606................................

Applying Cryptography to Electronic Funds i’
Transfer Systems- Personal Identification

Numbers and Personal Keys

One essential requirement of an electronic funds transfer (EFT) system is
that institutions must be able to join together in a common EFT network
(defined as an interchange) such that the EFT security of each institution is
independent of the security measures implemented at other institutions.
Another requirement is that the process of identification or verification of a
user must involve a secret value, commonly called a Personal Identification
Number (PIN) which is, on the average, only 4 to 6 digits long.

To discuss EFT security from a more general viewpoint, two terms associ-
ated with personal verification are defined: an authentication parameter (AP)
and a personal authentication code (PAC). An AP is a function of secret and
nonsecret user-supplied information as well as nonsecret system-supplied
information. A PAC is a function of the user’s identifier (ID), AP, and a
secret system-supplied authentication key, KA. A quantity similar to PAC is
used in message authentication and is defined as a message authentication
code (MAC). Examples of personal verification and message authentication
are provided to illustrate the use of AP, PAC, and MAC.

After developing a set of EFT security requirements, implementations
based on PIN/system keys and PIN/personal keys are discussed. It is shown
that neither implementation satisfies all of the stated requirements, although
the PIN/system key approach does provide adequate protection for current
EFT systems.

An implementation incorporating PINS, personal and system keys (defined
as a hybrid key management), and an intelligent secure card is discussed next.
This approach, which meets the stated requirements to a higher degree,
offers the potential for increased security in future EFT applications.

A glossary of terms and abbreviations is provided at the end of this
chapter.

BACKGROUND

Many techniques for cryptographic authentication are used in EFT systems
and in those systems being evaluated by major financial institutions and their

474

BACKGROUND 475

vendors. The purpose here is to suggest some additional techniques for con-
sideration in the development of these systems.

Every day EFT systems electronically transfer billions of dollars between
institutions and individuals. Such transactions (e.g., deposits and withdrawals)
cannot be processed safely unless user identities can be validated securely
and the correct, unaltered transmission of messages between network nodes
(terminals, computers, etc.) can be assured.

The process of validating user identities is called personal authentication,
personal verification, or personal identification, whereas the process of vali-
dating messages is called message authentication. The term personal verifica-
tion is used throughout this chapter specifically to address validation of
secret quantities supplied by a system user. (If a user is verified on the basis
of a PIN only, the term PIN validation is commonly used.)

A user is normally provided with an embossed, magnetic stripe identifica-
tion card (bank card) containing an institution identification number, the
card’s expiration date, and a primary account number (PAN).’ The institu-
tion at which the customer opens his account, and which provides the user
with a bank card, is called the issuer. At an entry point to the system, infor-
mation on the user’s bank card is read into the system and the user enters a
secret quantity called the personal identification number (PIN). If the card-
holder has supplied the correct PIN and if the balance in the account is
sufficient to permit the transaction and if that type of transaction is allowed
for that account, the system authorizes the funds transfer.

Consider the network configuration shown in Figure 1 l-1. The entry point
at which transaction requests are initiated, such as a point of sale (POS)
terminal or an automated teller machine (ATM), is defined as an EFT termi-
nal. An institution’s computer facility, which also happens to manage the
connected EFT terminals, is referred to as a host processing center (HPC).
The three HPCs shown in Figure 1 l-l are interconnected via an intelligent
switch. The switch, which can be another HPC, establishes connections
between the HPCs so that information can be routed in the network effi-
ciently. A communications control unit (CC), an independent device posi-
tioned in the path between an HPC and its associated EFT terminals and
between an HPC and adjacent network nodes, is responsible for managing
data transmissions over the communications links. Similarly, EFT terminals
are assumed to provide complementary support for link management func-
tions. Theoretically, and assumed here, the CC has the capacity to verify
system users and data.

The HPC that first acts on information entered at an EFT terminal is the
acquirer (acquiring HPC). 2 A user who initiates a transaction at an EFT
terminal may be a customer of a local institution (HPC X, in which case the
acquirer is also the issuer) or a remote (distant) institution (HPC Y or
HPC Z). If a user can initiate transactions at an entry point not controlled
by the issuer, the supporting network is called an interchange system.

‘The American National Standard Institute’s (ANSI) standard magnetic stripe format is
given in Appendix C.
‘The acquirer is normally the HPC associated with the EFT terminal at which PIN and
card information are entered.

v

Q
v

476

BACKGROUND 477

For example, consider a simple transaction in which cryptography is not
employed. A customer wishes to use a bank card to pay a grocery bill of
$35 .OO and to receive an additional $50.00 in cash. Assume that the grocer’s
account is with institution X and the customer’s account is with institution
Y. The customer’s card is inserted into the EFT terminal, either by the cus-
tomer or by an employee of the retailer attending the EFT terminal, and the
customer enters his PIN via a suitable entry device such as a keyboard or a
PIN pad, which looks and operates much like a hand-held calculator. Simi-
larly, the grocer enters a transfer request for $85.00 to be transferred from
the customer’s account to the grocer’s account ($35.00 for the groceries
plus the $50.00 to be given to the customer).

The information entered at the EFT terminal is assembled into a debit
request message. This message or transaction request, which includes the
customer’s PIN, his account number (PAN), andsuitable routing information,
is then sent via the acquirer (HPC X) and switch to the issuer (HPC Y).

Upon receiving the debit request, HPC Y verifies that the PIN correlates
properly with the customer’s PAN, and that the customer’s account balance
is sufficient to cover the $85.00 transfer. If the PIN check fails, the user is
normally given at least two more chances to enter the correct PIN. If after
the additional trials the PIN is still rejected, HPC Y sends a negative reply to
HPC X. If the PIN is correct but the account balance is insufficient to cover
the transfer, HPC Y denies the debit request by sending a negative reply or
debit refusal (insufficient funds) message to HPC X. A message is then sent
via the network to the grocer’s EFT terminal indicating to the grocer that
the funds transfer has been disapproved.

If the debit request is approved, HPC Y records the debit request, reduces
the customer’s account balance by $85.00, and transmits a positive reply or
debit authorization message back to HPC X. Upon receiving the debit autho-
rization HPC X takes two actions. A message is sent to the grocer’s EFT
terminal, indicating to the grocer that the funds transfer has been approved.
Then HPC X credits the grocer’s account with $85.00. This completes the
transaction. (Although other protocols are possible, the one described above
will be assumed throughout the present discussion.)

When personal verification is performed by the issuer’s HPC (or the HPC
of another designated node), the process is said to operate in the on-line
mode. If personal verification is performed by the terminal, the process is
said to operate in the off-line mode. If only the terminal and communications
controller are involved, the process is said to operate in the off-host mode.

In an on-line environment, the highest level of data security can be pro-
vided. However, if the system is to be kept available even when the HPCs are
not operating (e.g., during weekends, holidays, maintenance, etc.), an off-line
or off-host mode of operation must be supported. In general, there is insuffi-
cient storage to maintain a verification table at the EFT terminals, and users
must be verified without benefit of the HPC’s files (of hundreds of millions
of characters) which contains the PAN/PIN information of each user. There-
fore, off-line and off-host authentication techniques must contend with this
limitation, which ultimately results in a decrease in security.

478 APPLVING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

SECURITY EXPOSURES IN EFT SYSTEMS

An EFT system is defined to have the following four components:

1. Communication links

2. Computers

3. Terminals

4. Bank cards

Security considerations for each of these are discussed below (see also refer-
ence 1, where part of the material has been taken).

Communication Link Security

Communication links are highly vulnerable to interception of messages by a
number of techniques which permit passive (listening), and/or active (data
alteration/substitution) attacks. Where there are public telephone line con-
nections between computers and terminals, and that is most common, one
normally needs a physical connection to intercept the information. With
satellite or microwave transmissions, on the other hand, a physical connec-
tion is not required since an appropriate antenna allows the communications
channel to be breached between the sending and receiving stations.

If certain data were altered, illegitimate authorization of a transaction
could occur. For example, money could be diverted to the wrong institution
or account, transaction amounts could be changed, or a debit refusal message
could be converted into a debit authorization message. Message authentica-
tion techniques eliminate these exposures. They allow the receiver to deter-
mine where the message originated, if it is current, what its destination is,
and, most importantly, if it has been altered.

Computer Security3

Today, time-sharing, real-time interactive terminal communications, and
computer-to-computer data links are all common. These technological inno-
vations, coupled with the growth of computer usage, have increased the
opportunities for computer abuse. Access to the computer can be gained
through a remote terminal or other peripheral device such as a card reader.
Thus programs or data stored in or being processed by a computer system
could be copied, altered, replaced, or even destroyed. To cope with these
problems, a combination of physical security, procedural protection methods,
and cryptography can be used.

Cryptography alone does not solve the computer security problem. Other
methods are required such as access control, store and fetch protection, and
the like. This contrasts with communication security where cryptography
may indeed be the only method needed to provide protection.

3The security exposures discussed here apply in general to programs or data stored in or
processed by a communications control unit or terminal control unit.

SECURITY EXPOSURES IN EFT SYSTEMS 479

Terminal Security

Whenever cipher keys reside in terminals, some physical security is manda-
tory. Without it, an opponent may be able to probe for a key or change its
value. Therefore, both the integrity of nonsecret parameters and the con-
fidentiality of secret parameters must be preserved. In well-designed systems,
considerable time would be required to probe for a key successfully.

However, sufficient time to probe for a key would be available if an oppo-
nent could steal a terminal. (Note that a resident key is normally stored in
volatile storage maintained under battery power so that the key will not be
erased if main power is interrupted.) Elaborate interlocks designed to detect
penetration and to erase the terminal’s key(s) automatically could be defeated
with enough time and resources. In that case, previous data encrypted or
transformed with the secret terminal-resident key would be exposed. On the
other hand, removal of a terminal is likely to be detected and the proper
response is to invalidate the terminal and key in the supporting network.
This would protect future encrypted data.

Because of the trend toward employment of large numbers of inexpensive
terminals (which may be installed in relatively nonsecure locations), the
secrecy afforded terminal-resident cryptographic keys inay be very little. An
inexpensive terminal cannot have elaborate or sophisticated defenses, and
penetration of the terminal without its physical removal from the premises
becomes increasingly more difficult to defend against.

Even a public-key cryptosystem (PKC) (see Chapters 2 and 9 and refer-
ences 2 and 3) employing public keys in the EFT terminals, would not pro-
vide a secure solution if there were no physical security at the entry points.
A PKC would eliminate the need to keep certain (public) keys secret, but it
would still be necessary to protect the integrity of these public keys. Other-
wise, an attack is possible wherein an opponent replaces the installed public
key with a key of his or her own choosing. The opponent, knowing the cor-
responding secret key, could then produce forged verification information
that would be accepted by the terminal. In addition, a public key would
only allow the terminal to authenticate transaction response messages received
from the issuer. A secret key would still be required for generation of the
MACs on transaction request messages sent to the issuer. Hence, even the
public-key approach requires a secret key at the entry point.

It may appear that the solution to the exposed terminal problem is to use only exter-
nally supplied secret keys (i.e., to use personal keys instead of system keys.) However,
it will be shown later that personal keys alone will not lead to a secure implementation.

When transactions are conducted entirely at an EFT terminal (such as a cash-
issuing terminal operating in the off-line mode), only personal verification is
required-message authentication between the EFT terminal and the issuer
is, by definition, not needed. In that case, a public-key cryptosystem with a
public key installed in the EFT terminal would suffice to permit personal
verification. However, unless the integrity of the public key can be ensured,
the system could be attacked.

480 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

EFT Terminals in Nonsecure Environments

Ordinarily, information entered into or stored within an EFT terminal would
be protected as a consequence of the physical security routinely provided by
the owner of an establishment, e.g., the retailer, wherein an EFT terminal is
installed. However, if the retailer or an employee of the retailer becomes an
opponent, the secrecy and integrity of information at the entry point no
longer can be maintained (see the section entitled EFT Security Require-
ments). Although its physical surroundings (the building, locked doors,
employees of the retailer), to some degree, protect an EFT terminal from
outsiders who are not authorized to have access, they do not protect an EFT
terminal from insiders who are authorized to have access (e.g., the retailer,
clerks, cashiers, and sales personnel employed by the retailer).

Those with authorized access to the retailer’s premises could subvert secu-
rity in several ways. For example, by

1. Illicitly reading (skimming) card information.

2. Probing the EFT terminal for secret keys.
3. Replacing keys, algorithms, and hardware devices with parameters,

procedures, and devices under the control of the opponent.
4. Tapping (obtaining electronically) information entered at the EFT

terminal.
5. Tapping information sent to the issuer.

The insider has an advantage over the outsider simply in terms of the time
available to carry out attacks. But the threats are even more insidious because
of the insider’s ability to coordinate one activity with another (e.g., skimming
bank cards and simultaneously tapping the output line).

Fake Equipment Attack

Instead of using indirect methods to obtain the PIN, an opponent can recover
PINS directly by subverting the entry process. For example, an opponent
could replace the PIN pad4 and terminal with devices that will display or
print the entered values, PIN and personal key (KP), to the opponent sta-
tioned out of view. Each PIN and KP so obtained is recorded and reentered
into the real terminal which is kept hidden. Upon receiving the transaction
response from the issuer, the opponent sends a comparable message to the
bogus terminal, leading the user to believe the transaction was completed
without interference.

This fake equipment attack points out the vulnerability of entering card
and PIN information into devices whose security and integrity cannot be
assured. It clearly demonstrates once again that cryptography does not pro-
vide the solution to the problem of protecting secret information if that
information can be attacked before it is entered into the system. It also

4Thi~ is a device attached to the terminal, often with an integrated encryption capability,
specifically designed to facilitate PIN entry.

SECURITY EXPOSURES IN EFT SYSTEMS 481

argues strongly in favor of a design in which secret user information need not
be exposed at the entry point. One approach already suggested involves an
intelligent secure card (see the sections entitled Bank Card Security and
Personal Key Approach with an Intelligent Secure Card). Since a secret com-
ponent (KP) is stored on the card, and the card can neither be read nor
skimmed by the opponent (the retailer, in this case), its use prevents the
exposure at the entry point. The protocol should be such that there is no
need to transfer secret card information to another device during normal
operation (i.e., transformations involving the secret information are per-
formed directly on the card).

Bank Card Security

The most convenient method of identification or authentication currently in
use by financial institutions encompasses something the customer has, a
bank card, and something the customer knows, a PIN. The unique corre-
spondence of the account number contained on the card’s magnetic stripe
and the PIN memorized by the customer serves to identify the customer.
Possession of the card without knowledge of the PIN, or knowledge of the
PIN without the corresponding card, is insufficient for an imposter to gain
access to the system.

Magnetic Stripe Card

Security exposures exist today because it is relatively easy to counterfeit or
duplicate magnetic stripe cards. Special knowledge of the card’s recorded
data is not required to duplicate a card and there are several methods of
transferring data from one card to another. Moreover, it does not matter if
information on the card is encrypted or in the clear; cryptography does not
protect against this exposure.

Two methods of duplicating encoded data previously recorded on the
magnetic stripe of a bank card are skimming and buffer recording [11. One
technique for skimming involves placing a piece of recording tape over the
magnetic stripe of a good card and applying heat (e.g., from a common
household iron). The recording tape is then placed over the blank stripe of
another card and heat is again applied. With this technique, it is possible to
produce several duplicate cards without seriously degrading the quality of
recorded information on either the original or the duplicate card.

Buffer recording produces a duplicate card of higher quality, but the
method is more complex and more expensive than skimming. An electro-
magnetic reader (a device similar to a tape recorder) and buffer storage are
required. Data, read from the card, are stored in the buffer. Later, the data
can be read from the buffer and written on a blank card.

Duplication is more readily detectible if cards are constructed with some
random property that changes from card to card and which is subsequently
verified as part of the users transaction processing [11. One such technique
involves two sets of interleaved magnetic bars printed on the card’s inner
core. This forms a protective magnetic fingerprint with no two cards being
alike. In addition, cards can be constructed of heat- and pressure-sensitive
materials that invalidate a card if there are attempts to alter or duplicate it.

482 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

But mechanisms that discourage card duplication also increase the cost of
both the card and the card reader. If only a few properties are added, the
card is less expensive to read but relatively easy to duplicate. As more and
more random properties are added, the card becomes more expensive to read
and more difficult to duplicate. Furthermore, the special properties must be
checked each time the card is read; otherwise a counterfeit card without
these properties could be used instead.

Intelligent Secure Card

Recent advances in technology have made it possible to embed a micro-
processor on a plastic card permitting identification and authentication com-
putations to be performed directly on the card rather than in the logic of the
system entry point device. In addition, small storage arrays permit important
customer account information to be stored on the card, thus providing auto-
mated record keeping functions equivalent to those provided by a savings
passbook. The net effect is to produce a card that is intelligent as well as
secure [4, 5 1. The intelligent secure card is also referred to as chip card and
smart card.

IDENTIFICATION AND AUTHENTICATION OF SYSTEM USERS

A primary objective in the design of a practical authentication method is to
find an inexpensive, practicable technique that is difficult to penetrate. The
problem is that of properly balancing security against human factors and
cost.

User characteristics are grouped into two sets: transferable, which means
they could be forged, and nontransferable, which implies they cannot be
forged.

Transferable User Characteristics

Verification can involve something a person has (a magnetic stripe identifica-
tion card) or knows (a password). Passwords are commonly used, but they
are not very secure. They may be compromised without the user, the institu-
tion’s management, or its auditors knowing.

Nontransferable User Characteristics

Methods of verification involve testing for a unique personal characteristic
such as something a person is (voiceprint, fingerprint, hand geometry) or
something a person does (handwritten signature). One method, based on a
handwritten signature, makes use of a signature pen capable of measuring
pen pressure and pen acceleration. Experiments have shown that these two
parameters are unique in the process of writing a signature [61.

When a person signs his or her name, the acceleration and pressure motions

REQUIREMENTS 483

are not consciously controlled. This can be demonstrated by the close match
between a person’s signatures written with eyes open and those written with
eyes closed. Further development work, however, is needed to bring hand-
written electronic signature verification into everyday use.

For the present, a password used in conjunction with a magnetic stripe
card and authentication processing performed at an HPC represent the most
practical means for achieving personal verification.

REQUIREMENTS FOR PERSONAL VERIFICATION
AND MESSAGE AUTHENTICATION

The problems to be solved with cryptography are:

1. Verification of system users, referred to as personal verification.
2. Verification of data (to check for origin, true content, timeliness, and

destination), referred to as message authentication.

It must be recognized that

applications requiring personal verification very frequently require message authentica-
tion, and since both processes are closely related and neither must be allowed to
weaken the security of the other, it is prudent to seek a cryptographic solution to both
problems simultaneously.

For example, when the entry node must take some action in response to a
transaction request (e.g., to dispense cash or not), the node must receive a
message notifying it that the user has or has not been accepted (Figure 1 l-2).
For detection of an attack where a “User Not OK” (or negative) reply is
changed to a “User OK” (or positive) reply, message authentication must be
used. In this application, the best personal verification scheme could be cir-
cumvented were there no message authentication.

The personal verification process starts with the user providing personal
verification information. This can be categorized in the approaches discussed
here as user-remembered information (e.g., a PIN or a password) and user-
supplied information stored on the bank card (e.g., a primary account num-
ber, PAN, or a cryptographic key). If a cryptographic key is stored on the
bank card, it is referred to as a personal key (KP).

The PAN is also referred to as a personal identifier, or identifier (ID).
Using a unique ID is better than using, for example, the name of a person,
since people’s names are not always unique. In the discussion that follows,
it is assumed that an opponent has knowledge of user IDS. This is a practical
assumption, since ordinarily no special precautions are taken to ensure their
secrecy (i.e., they are treated as nonsecret quantities). Obtaining them would
not be too difficult, since they are frequently used for identification and
auditing purposes and are transmitted, stored, and printed on documents in
unencrypted form.

484 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

No

Reject User
Send “User Not OK”
(negative reply)

I

Accept user
Send “User OK”
(positive reply)

User-Supplied
Information

Authenticating
Node (e.g., HPC)

b

t

Send Reply Message
to Entry Point

Figure 11-2. The Personal Verification Process

Authentication Parameter

The following discussion of several possible methods for performing personal
verification assumes that part or all of the user-supplied verification informa-
tion is first subjected to a transformation at the entry point. This process
creates another quantity defined as a personal authentication parameter, or
authentication parameter (AP) for short (Figure 1 l-3). An AP is a function
satisfying the following conditions:

1. It is always a function of secret user-suppli?d information, which may
or may not be shared with the issuer.

2. It may or may not be a function of other nonsecret user-supplied
and/or system-supplied information.

3. It is a function only of the information specified in conditions 1 and 2

REQUIREMENTS 485

Secret Nonsecret
User-Supplied
Information I- Nonsecret

User-Supplied System-Supplied
Information Information

(e.g., ID)
(e.g., PIN) (e.g., time-of-day)

f

‘I * v

Procedure to
Generate AP

Authentication Parameter (AP)

Note: Proper coupling of nonsecret with secret information can lead
to a quantity more resistant to analysis.

Figure 11-3. Transformation of User-Supplied Verification Information
to a Personal Authentication Parameter at the Entry Point

above (i.e., AP does not depend on secret information known to any-
one other than the user or the user and the issuer).5

It is fundamental to any cryptographically secure procedure for personal
verification that the secret information supplied by the user (which is used
by the issuer to authenticate the user) be transformed at the entry point
under some cryptographic process to ensure that the secret user-supplied
information cannot be ascertained by the unauthorized. It is significant that
the secret information used in the computation of AP is known only to the
user or to the user and issuer. This is a requirement if personal verification
in an interchange environment is to be achieved exclusively between the user
and issuer.

For personal verification, AP can be used either alone (by storing an
appropriate reference,6 AP of reference, in a verification table) or in con-
junction with other information related to AP via a special cryptbgraphic key
defined solely for authentication purposes. The nonsecret information in the
computation of AP may be time-invariant (e.g., the primary account num-
ber), time-variant (e.g., a time-of-day clock reading), or both. If AP is time-
invariant, an AP of reference may be precomputed and stored in a verification

’ In a discussion of PIN/system key approaches to EFT security, it is likely that the defini-
tion of AP would be broadened, allowing AP to depend additionally on secret system-
supplied information (e.g., a secret system key).
6A reference is a quantity uniquely related to the item to be verified or authenticated. It
is a parameter computed or designated, and used, by the authenticator as part of the
authentication process.

486 APPLYING CRYPTOGRAPHY TO ELiCTRONIC FUNDS TRANSFER SYSTEMS

table at the issuer. If AP is time-variant, then an AP of reference must be
dynamically computed.

If AP depends on time-variant information as well as on the transaction
request message, it can also be used as a message authentication code (MAC).
Message authentication (via the MAC) is used primarily to detect stale or
bogus messages inserted into the communications path and fraudulently
modified messages traversing nonsecure communications systems. However,
in such a situation, AP can serve a dual purpose-i.e., it can be used for per-
sonal verification as well as message authentication.

The function defining AP may be simple or complex. For example, AP
may merely define a process of concatenation of parameters, or it may in-
volve successive encryptions and decryptions, such that it is computationally
unfeasible to invert the process (or one-way function) and find secret user-
supplied information from AP. The developed set of security requirements
places additional constraints on the specification of AP.7

Some specifications for AP presently under consideration by the American
National Standards Institute (ANSI) technical committees X9 are AP = PIN
and AP = PIN11 ID, where PIN11 ID denotes the concatenation of PIN and
ID. If secret information (a 56-bit personal key, KP) is also stored on the
bank card, then a better choice for the authentication parameter is AP =
EPIN s &ID) as discussed later in this chapter. (Note that @ denotes modulo
2 addition and Ex(X) and D,(Y) define encipherment of X with key K and
decipherment of Y with key, K, respectively.)

Personal Authentication Code

In cases where a copy of AP can be safely stored in a verification table at the
authenticating node, or where it is possible for the authenticator to compute
an AP of reference either by recreating the information that is used to com-
pute each user’s AP or by safely storing that information in a table at the
authenticating node, personal verification can be based solely on ID and AP.
However, if the integrity of the verification table or the secrecy and integrity
of stored information used to compute the AP of reference cannot be ensured,
or if it is not possible to recreate the information used to compute each user’s
AP of reference (e.g., if PINS and KPs are selected independently), then
personal verification can be based on ID, AP, and a personal authentication
code (PAC). PAC is a function satisfying the following conditions:

1. It is a function of ID, secret user-supplied information, a secret key
known only to the issuer (or authenticator), and possibly other non-
secret information.

2. It does not depend on secret information known to anyone other than
the user and the issuer.

7For example, AP must be a one-way function of the input parameters which define it,
and the secret user-supplied information and AP must each contain on the order of 56
independent bits.

REQUIREMENTS 487

The distinction between AP and PAC is as follows. Either a part of the secret
information used in the computation of AP is known only to the user, or, all
the secret information used in the computation of AP is shared between the
user and issuer. On the other hand, it is always the case that a part of the
secret information used in the computation of PAC is known only to the
issuer.

There are two approaches for implementing personal authentication codes
in an EFT system. In the first approach, PACs are stored directly on the
magnetic stripe of the user’s bank card thereby eliminating the need for a
verification table at the issuer. When needed, the PAC is supplied to the sys-
tem by the user, and together with AP it is forwarded to the authenticator
(synonymous with authenticating node). In the second approach, the PACs
are stored in a verification table in the issuer’s system and only AP is sent to
the issuer. In either case, the correct (ID, AP, PAC) relationship is checked
via the authentication key, KA.

The authentication parameter and personal authentication code are intro-
duced to broaden and generalize many of the concepts. At the same time,
they allow different EFT systems to be discussed using a common, consistent
terminology.

Personal Verification Using AP Only

Consider an AP-authenticating procedure that uses a verification table at the
issuer, and therefore is an on-line verification method. Assume, for this
example, that the quantity to be verified is AP = ExP e pIN (ID), where KP is
a 56-bit personal key, and a copy of AP is stored in the verification table of
the issuer’s HPC during the initialization process. Later, during the verifica-
tion process, the quantities KP*, PIN*, and ID are entered at an entry point
of the system by a user who wishes to be authenticated.8 At the entry point,
AP* = EKP* B) rIN* (ID) is generated and transmitted (together with ID) to the
authenticator. If the stored AP of reference (indexed in the verification table
by ID) agrees with the received AP*, the authenticator concludes that KP* @
PIN* = KP @ PIN and the user’s identity is ID (as claimed). Otherwise, the
user is rejected.

For the approach to be secure, it must not be possible for an opponent to
violate the integrity of the verification table (e.g., by overwriting a stored
value of AP with another value of AP). If this were possible, the opponent
could define his own personal key (KP*) and PIN* for some existing ID, gen-
erate AP* = Exr* e r&ID), and overwrite AP with AP* in the verification
table. Subsequently, the opponent could supply KP*, PIN*, and ID at an
entry point and be accepted by the system as the user whose identifier is ID.

It is assumed, although not shown at this point, that time-invariant AP
values (as described in the example above) are included in the transaction

8KP* and PIN* denote the personal key and PIN entered by the user and KP and PIN
denote the personal key and PIN (of reference) stored in the system. If the user is legiti-
mate and does not make an error in entering his personal key and PIN, then KP*@PIN*
equals KP@PIN.

488 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

request messages sent from the EFT terminal to the issuer, and message
authentication is implemented such that the issuer can validate the content,
timeliness, sender, and intended receiver of all received messages (see the sec-
tion entitled Message Authentication Using MAC). Without message authen-
tication, a procedure for personal verification based on time-invariant APs
could be attacked in the following manner. A microprocessor is connected
to the communications line of the EFT terminal to be attacked. The opponent
initiates a transaction at the designated terminal using a bogus PIN and KP
and an ID corresponding to a previously intercepted value of AP. The micro-
processor is programmed to intercept the transaction request message and
replace the bogus value of AP (computed by the terminal from the bogus
values of PIN and KP) with the (correct) previously intercepted value of AP.
The opponent, masquerading under the assumed ID, is thus validated by the
issuer.

Personal Verification Using AP and PAC

An Blternative procedure which does not use a verification table is also pos-
sible. Consider the on-line case where AP = E,, b ,,(ID), PAC = K,,(AP),
and KA is an issuer-controlled, secret authentication key. At the time KP
and PIN are created, the issuer (who has KA) computes and stores PAC on
the user’s bank card (Figure 1 l-4). Since KA is a secret key, only the issuer
can create valid PAC values. During the verification process, both AP and PAC
are transmitted to the issuer. This permits the issuer to authenticate AP by
enciphering it under KA and testing the result for equality with PAC
(Figure 1 l-4).

To verify the user, the authenticator creates a dynamic reference (Rf), or
more specifically, a PAC of reference, defined by Rf = EKA(AP). This ref-
erence is then compared with the received PAC. If Rf = PAC,g the authenti-
cator concludes the following: The received quantities AP and PAC are
properly related via the secret authentication key. Since these corresponding
quantities could only be generated by someone who knows (or has access to)
the secret authentication key, AP is accepted as genuine. Since AP depends
on KP, PIN, and ID, authentication of AP also authenticates the triple (KP,
PIN, ID) provided that message authentication is also employed to ensure
that the transmitted ID is unchanged (i.e., one can conclude that AP was
computed from a valid triple). lo On the other hand, if AP or PAC or both
do not have the correct values, then Rf f PAC (with high probability) and
hence this condition can be detected (with high probability).

91t is assumed that AP and PAC are part of the transaction request message whose con-
tent, timeliness, sender, and intended receiver are authenticated by the issuer.
“PAC is really only coupled to AP. Authentication of AP does not by itself ensure that
the claimed ID is the ID in the triple (KP, PIN, ID) that was used to compute AP. Message
authentication is also required to ensure that the claimed ID has not been changed.
Coupling AP and ID to PAC is discussed in the section Personal Verification with Inde-
pendent PINS and Personal Keys (Equation 114).

REQUIREMENTS 489

ritialization Process Verification Process

PIN ID

E,,(AP) = PAC
Issuer stores PAC

on bank card
with ID and KP

PIN PAC

Legend:

AP: Authentication Parameter 64 Bits
ID: User Identifier -< 64 Bits

KA: System Authentication Key 56 Bits
KP: Personal Key 56 Bits

PAC: Personal Authentication Code 64 Bits (Truncation Possible)
PIN: Personal Identification Number 5 56 Bits
RF: Reference 64 Bits (Truncation Possible)

Figure 11-4. A Method for Achieving Personal Verification

Message Authentication Using a MAC

To simplify the discussion of message authentication, it is assumed that data
secrecy is not required, i.e., a message (M) is sent in the clear and therefore
can be read by an opponent. l1 Furthermore, it is assumed that M consists
of only one 64-bit data block. The message authentication code (MAC),
defined here as quantity EK(M @ Z), is produced by the modulo 2, addition
of M with a nonsecret initializing vector (Z) and encipherment of the result
with a secret authentication key (K). l2 The initializing vector, Z (used to

‘i If secrecy and authentication are desired at the same time, the data are first encrypted
and then one of the authentication methods described below is applied to the resulting
ciphertext.
‘*Typically, a message would exceed 64 bits and would contain identification information
such as the user’s ID, the computed value of AP, a PAC value (if used), as well as other
data such as the transaction code and the transaction amount. In that case, a MAC may
be generated by using a form of chained block encryption wherein Z is added modulo 2
to the first block of plaintext and each block of cipher-text is added modulo 2 to the next
block of plaintext.

490 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

introduce timedependent information into the authentication procedure),
may be established between the communicants as part of the session initial-
ization process. I3 By transm it in M and MAC to the receiver, the authen- t g
ticity of M can be checked by comparing the received MAC for equality with
a system-generated MAC of reference (Figure 1 l-5).

There is a close analogy between personal verification where a PAC is
transmitted to the authenticator together with AP (Figure 114) and message
authentication where a MAC is transmitted to the authenticator together
with the corresponding message. (The procedure in Figure 1 l-4 is actually
the same as Figure 1 l-5 if AP is replaced by M @ Z, PAC is replaced by MAC,
and KA is replaced by K.) The difference is that PAC is precomputed
whereas MAC is dynamically computed.

To create a reference (Rf), or more specifically a MAC of reference, the
authenticator encrypts M @ Z with K using the same procedure as the sender.
This reference is then compared with the received MAC. If Rf = MAC,
the authenticator concludes the following: The received quantities M and
MAC are properly related via the secret authentication key. Since these
corresponding quantities could only be generated by someone who knows
(or has access to) the secret authentication key, M will be accepted as
genuine. On the other hand, if M or MAC or both do not have the correct
values, then Rf # MAC (with high probability) and hence this condition can
be detected (with high probability).

Although prevented from generating a proper MAC for an arbitrary M,
an opponent could present a previously intercepted message and MAC.
To permit detection of such an event, the MAC must be time-variant-
assured here by the quantity Z. It could also be assured by including a
unique message sequence number in M, in which case quantity Z (Figure
1 l-5) would not be needed. In either case, the receiver could then detect
stale messages injected into the communication path as well as deleted
messages.

In the discussion that follows, personal verification is based on an AP
value received in the transaction request message M. Message authentication
is based on a MAC attached to the transaction request message. AP is used to
validate the originator of the message, whereas MAC is used to validate the
content of the message (including the received AP).

E FT Security RequirementsI

The following EFT security requirements assume that the system must be
secure from both insiders (those that have access to privileged system inter-
faces and internal functions of the system) and outsiders (legitimate users or
opponents who have access only to external system interfaces).

131t is assumed that the process of establishing Z is such that an outsider cannot alter or
predict its value. Otherwise, he may be able to find M* and Z* such that M* @ Z* = M @ Z.
He could then change [M, EK(M @Z)] to [M*, EK(M @Z)] = [M*, EK(M* @Z*)] which
would authenticate when Z* were used as the initializing vector.
14@1981 IEEE. The section on EFT security requirements is reprinted in part from the
authors contribution to the Proceedings of the IEEE 1981 Symposium on Security and
Privacy, April 27-29, 1981, Oakland, California [71.

Sender

Z

v
EK(M@Z) = MAC

Sender transmits
M and MAC

Receiver

M MAC

M

Legena:

K: Authentication Key 56 Bits
M: Message 64 Bits

MAC: Message Authentication Code 64 Bits (Truncation Possible)
Rf: Reference 64 Bits (Truncation Possible)
Z: Initializing Vector 64 Bits

Figure 11-5. A Method for Achieving Message Authentication

492 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Although the subject of auditability is not specifically addressed in this
chapter, it should be understood that auditability is a prime objective of any
well-designed security system. Commonly recognized auditing practices
include accountability, cross checks, and sensitivity checks. The EFT se-
curity requirements listed below do not obviate the need to implement
supportive security practices (e.g., auditing practices, access control, and
physical security).

It is not possible to meet every one of the requirements. In some cases,
particularly in the case of requirements 1 through 3, they should be con-
sidered goals more than requirements. Requirements 4 through 17 assume
that cryptography is used (when appropriate) to protect the privacy of data
and to authenticate data and users.

Requirement I. The process of entering information at an EFT terminal
must be protected; i.e., the integrity and secrecy of information entered
into the EFT terminal must not be compromised as a consequence of the
entry process. Furthermore, the information flow within a terminal must
be protected.
Requirement 2. Information stored permanently or temporarily within
an EFT terminal must be protected;i.e., the integrity of public information
and the secrecy as well as integrity of private information must be assured.
Requirement 3. System managers and maintainers of the system (insiders)
must be denied the opportunity to misuse the system accidentally or
intentionally.
Requirement 4. Messages and system users must be authenticated.

Without personal verification, an opponent who may be a legitimate system
user could pose as any system user. Without message authentication, an
opponent could alter messages or inject previously communicated messages
back into the communications network. This in turn could cause the system
to provide some resource to the opponent for which he lacks authorization.
Thus, an EFT system (and, for that matter, any communications system)
will function securely only if users and messages are genuine.

In implementing authentication methods, the system must provide security
measures (other than cryptography) to prevent subversion (e.g., bypassing)
of authentication procedures. To the extent that subversion is prevented,
the system is said to have the property of integrity.

Requirerr; ent 5. The security of the personal verification process imple-
mented at one institution must not depend on security measures im-
plemented at other institutions.

The requirement is based on the principle that a well-designed procedure for
personal verification should be such that a user can be authenticated by the
issuer without exposing or disclosing (to others) the secret information used
in that process and without depending on others, including terminals, ter-
minal control units, communications control units, and Electronic Data
Processing (EDP) systems in the network (except the issuer’s HPC) to pro-

REQUIREMENTS 493

tect the secrecy of that information. The personal verification process must
be such that it is unaffected by a breach in security at another node.”

The requirement can be satisfied only if the cryptographic parameters,
keys, and operations used to authenticate users are controlled and managed
by the cardholder and card issuer. In that case, each issuer or institution can
specify the security level it desires, independent of other institutions.

Verification could also be performed by some other node, such as a switch
designated by the issuer. In this case, the security of the personal verification
process would depend on security measures implemented at the designated
node. Although employing the services of a designated node should be an
option available to the issuer, it should never be a requirement in order to
transact business in an interchange.

Requirement 6. Each user must have only one set of user-supplied veri-
fication information, and it must be possible to initiate personal verification
with this one set of information at any entry point to the system.

Otherwise, institutions could not join together in an interchange unless users
were required to know or possess a different set of verification information
for each different institution in the system. This would be very impractical.

Requirement 7. The personal verification process must involve user
remembered PINS and that process must be secure even if PINS have only
four digits.

The PIN is the means by which the EFT system prevents a lost, stolen, or
forged bank card from being used at an entry point by someone other than
the true cardholder. However, a limitation which any design must cope with
is that of human factors. It has been determined that, on the average, people
cannot reliably remember a PIN which is longer than six digits. In addition,
people prefer PINS as short as possible. In today’s EFT systems, the PINS in
use are normally between four and six digits long, which is a compromise
between usability and security. It is important that this limitation be kept in
mind when verification schemes are designed. (Normally, PIN length is a
parameter that the issuer can select.) For instance, since verification is based
on PIN and card information, it follows that PIN exhaustion (trying one
PIN after the other) at the entry point interface is always feasible if card
information is available, although six-digit PINS provide greater protection
against such attacks than do four-digit PINS. However, exhaustive attacks
should not be feasible anywhere else in the system (e.g., within the nodes via
a programming interface).

r5 Security at the node designated to perform verification can be obtained through the use
of a cryptographic facility (Chapter 4) or security module [8] (see also Implementation
of Fraud Prevention Techniques, Chapter 10). With such an approach, important authen-
tication information does not exist in the clear except within the protected confines of
hardware. However, additional security measures are needed to prevent unauthorized
users from directly exercising the cryptographic facility or security module.

494 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Requirement 8. It must be unfeasible to derive user-remembered infor-
mation solely from a bank card.

Since bank cards may become lost or stolen, the strength of the personal
verification process would be diminished if a PIN could be derived from card
information. For the same reason, an opponent who creates a bogus card
should not also be able to create a valid corresponding PIN.

Requirement 9. Data can be authenticated only if sufficient nonsubver-
tible redundant information related to the data to be authenticated is
introduced.

Assuming that the sender can generate arbitrary information (e.g., messages,
passwords, etc.), the authenticator would have to treat any arbitrary pattern
of bits as valid. In simple terms, data cannot always be authenticated by
testing only the data. To authenticate random data, the authenticator must
be provided with some additional, redundant information that is related to
the information to be authenticated and cannot be subverted by an opponent.

The required redundant information may either be an integral part16 of
the data to be authenticated or it may be separate from it (defined here as an
authentication code). In a communications system, analogously error-free’
transmission over a noisy channel requires the introduction of redundancy.
Although, in this case, the redundancy is a countermeasure against the intro-
duction of random (unintelligent) noise. In cryptographic applications, one
is additionally concerned with the effects of deliberate tampering (intelligent
noise) introduced by an intruder.

Requirement 10. Personal verification and message authentication require
a reference to be available to the authenticator at the time authentication
takes place. This reference, or the process used to generate the reference,
must be defined and agreed upon in advance. It must be such that the
integrity of the reference (and sometimes its secrecy) or the process that
generates the reference or both can be assured by the authenticator.

The authentication process requires a comparison of two quantities (directly
or indirectly). If the two quantities are equal, or correlate properly, the
quantity to be authenticated is considered genuine; otherwise, it is not. At
least one of these two quantities must be determined by the authenticator,
and in this discussion, that quantity is called the reference.

Requirement 11. When a personal authentication code is used, it must
be a function of user ID, the authentication parameter associated with

16For example, consider the (not necessarily practical) case where messages are formed
by using onIy a character set of 36 symbols (A thru Z and 0 thru 9) and each character is
represented by 8 bits. In that case, only 36 out of a possible 256 plaintext characters are
used. A received message is accepted only if each decrypted character is in the set of 36
valid plaintext characters.

REQUIREMENTS 495

that ID, and a secret authentication key managed, controlled, and known
only to the authenticator (issuer, switch, or terminal).

The EFT procedure or protocol must ensure that forged values of PAC will
be unacceptable to the authenticator. It must not be possible to subvert the
process of personal verification by supplying forged parameters or altering
or replacing stored system parameters. This can be accomplished with a
secret authentication key that relates PAC to the secret user-supplied infor-
mation used for authentication. The relationship may actually be one that
relates PAC to AP, and hence relates PAC to secret user-supplied informa-
tion indirectly since AP depends on secret user-supplied information. The
key permits valid PACs to be created only by those so authorized.

If a verification table is used by the authenticator and the table is such
that stored information cannot be changed, or cannot be changed without
detection, then a copy of the user’s secret user-supplied information, or AP
value, can be stored directly in the table. In that case, a secret authentication
key and PAC values are not needed.

Requirement 12. Information included in a transaction request message
sent from the entry point to the issuer, which the issuer will use to validate
the identity of the user initiating the transaction, must be formed from
secret user-supplied information. It may or may not also be formed from
nonsecret information, but it must not be formed from secret information
known to anyone other than the user or the user and issuer.

This is the only way in which the personal verification process at one institu-
tion can be completely isolated from other institutions (see Requirement 5).
It also implies that secret cipher keys used in the personal verification process
by each institution are not shared with other institutions. Note that an EFT
system in which PINS are protected via system keys would not meet this
requirement.

Requirement 13. Knowledge of a transaction request message sent from
an entry point to the issuer, which includes information that the issuer
will use to validate the identity of the user initiating that transaction,
must not allow an exposure of secret user-supplied information. And it
must not permit equivalent user-supplied information to be derived that
would allow an opponent masquerading as a customer of some financial
institution to be verified by the system.r7

Since users may initiate EFT transactions at any entry point in an interchange,
information included in the transaction message which the issuer will use to

” Requirement 13, however, applies only if user-supplied verification information can be
forged or duplicated, e.g., information the user knows (PIN) or has (personal key). On the
other hand, if a user is identified by something he does (signature) or is (fingerprint), then
duplication of that information may be difficult. Therefore, secrecy in this latter case is
not critical. But a solution with PINS, or PINS and personal keys, is pursued here because
such an approach is more apt to be used in the foreseeable future.

496 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

authenticate that user (e.g., an AP value or a MAC, whose computation in-
volves secret user-supplied information) will often be transmitted through
networks under the control of someone other than the issuer. A well-designed
procedure for personal verification should not assume that the secrecy or
integrity of transaction request messages can be maintained by others except
the user and issuer. Therefore, knowledge of data contained in the transaction
request message (including the generated MAC) should not expose secret
user-supplied information nor should it permit equivalent user-supplied in-
formation to be derived that would permit an opponent to be verified by
the system.

Requirement 14. Secret user-remembered information (PIN) must be
supplemented by additional secret user-supplied information.18 The infor-
mation sent from an entry point to the issuer, which the issuer will use to
validate the identity of a user, must be a one-way function of the PIN and
additional secret user-supplied information.

With short PINS (e.g., 4 to 6 digits), there are insufficient independent secret
bits available for computing an authentication parameter (AP) that will
prevent recovery of the PIN via exhaustive methods. To overcome this, addi-
tional independent secret bits must be made available. However, because of
requirement 12, the additional independent secret bits must be user-supplied.
At the same time, because of the short PIN, the magnitude and random
nature of the additional required secret bits precludes them from being com-
mitted to memory. Therefore, since each user has a bank card for initiating
transactions at the entry point, it is assumed that the additional secret user-
supplied bits (defined to be KP for personal key) are stored on the bank
card. Thus, the card must provide storage for an additional quantity to
serve as KP (a 56-bit key is assumed). The security issues involved with
storing a KP on the bank card (e.g., whether a KP stored on a bank card
can be maintained as a secret parameter) are taken up later (see the section
entitled Threats to the Secrecy of a Key Stored on a Magnetic Stripe Card).

Since the information used by the issuer to validate the identity of a user
must not depend on secret information other than that supplied by the user
(requirement 12), and knowledge of that information must not expose secret
user-supplied information or allow equivalent user-supplied information to
be determined (requirement 13), it follows that this information must be a
one-way function of user-supplied information.

A function f is a one-way function ik for any argument x in the domain of i it is easy
to compute the corresponding value y = f(x); yet for almost ally in the range off, it
is computationally infeasible, given a value of y and knowledge off, to calculate any
x whatsoever with the property that f(x) = y. It is important to note that a function
is defined which is not invertible from a computational point of view, but whose

l8 It is assumed here that verification is based on something the user has (data stored on a
magnetic stripe identification card). or knows (a password). Since these data can be forged,
they must be kept secret. However, this would not apply if a nonforgeable input param-
eter were employed (e.g., a fingerprint or the dynamics of a handwritten signature).

REQUIREMENTS 497

noninvertibility is entirely different from that normally encountered in mathematics.
A function f is normally called “‘noninvertible” when the inverse of a pointy is not
unique; i.e., there exist distinct points xl and x2 such that f(x1) = y = f(x2). This
is not the sort of inversion difficulty that is required here. Rather, it must be over-
whelmingly difficult, given a value y and knowledge off to calculate any x what-
soever with the property that f(x) = y [2] .

The complexity of DES makes it suitable for designing one-way functions.
About 56 independent bits of secret input information are needed to obtain
a one-way function with DES. lg The nonsecret output of the one-way
function must also be about 56 bits. In subsequent discussions, the one-way
function approach will also be defined as the noninvertible mode; all other
approaches will be referred to as invertible modes. 2o

An example of a one-way function of secret user-supplied information is
AP = ExP a &ID). Advantage is taken here of the fact that, for a strong al-
gorithm, knowledge of plaintext (ID) and corresponding ciphertext (AP)
does not permit deduction of the key (KP G+ PIN). Thus KP and PIN cannot
be obtained from AP and ID. Also a KP* and PIN* cannot be deduced such
that AP = Exr* e PINa(In that case, AP is a one-way function of KP and
PIN.

A more detailed discussion of AP values and one-way functions is given
in Appendix D. For the remainder of this chapter, the discussion will be con-
cerned mainly with AP values that are one-way functions of the user’s ID
and secret user-supplied information, although the computation may also
involve nonsecret system-supplied information.

Requirement 15. For message authentication, the authentication code
must be a function of the message, a secret authentication key, and time-
dependent information. The authentication key must always be known by
or accessible to the sender.

Since messages are unpredictable, as far as information content is concerned,
message authentication codes (MACs) cannot be precalculated; they must
be calculated dynamically. Each MAC is transmitted to the authenticator
together with the data that produce it. An opponent is prevented from gen-
erating a MAC, since a secret quantity (unknown to the opponent) is used in
its generation. Since the procedure or cryptographic algorithm is public, as
assumed here, that secret quantity must be a cryptographic key.

Furthermore, the MAC must be time-dependent to permit detection of

rg As a rule, with approximately 32 independent key bits, the key can be recovered rela-
tively easily using exhaustive methods. As the number of key bits increases, the key may
or may not be recoverable depending upon the sophistication and resources of an opponent.
20T~o other definitions that are closely related but should not be confused with the
definitions of invertible and noninvertible functions are those of reversible and irrevers-
ible encryption [9]. Reversible encryption is defined as a cryptographic transformation
of plaintext to ciphertext such that the ciphertext can be converted back to the original
plaintext. Irreversible encryption is defined as a cryptographic transformation of plaintext
to ciphertext such that the ciphertext cannot be converted back to the original plaintext
by other than exhaustive methods.

498 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

previously transmitted data (stale messages). Requirement 15 differs slightly
from requirement 11 because the PAC is time-invariant. Recall that personal
verification information (e.g., PINS) remains constant for relatively long
periods of time.

Requirement 16. Time dependence in the message authentication code
requires that a common time reference be established between the com-
municants. Furthermore, the receiver must be able to determine the
reference’s validity independently.

As previously discussed, time dependence allows the receiver to detect whether
messages have been deleted or prevented from arriving, and whether stale
messages (messages recorded on a prior occasion) have been injected back
into the transmission path. But time-dependent quantities per se are not
enough to ensure that the receiver rejects stale messages. In addition, the
receiver must be able to establish independently the validity of the time
reference. A weak procedure would result if the time reference were supplied
to the receiver by the sender. In that case an opponent could also do the
same and trick the receiver into accepting a previously sent message.

There are two ways in which a time reference could be established be-
tween the sender and the receiver: The sender could request a time reference
(e.g., a randomly generated quantity) from the receiver, in which case the
reference is under exclusive control of the receiver. Or the sender and re-
ceiver could maintain a common time reference (e.g., a sequential counter),
in which case the reference is under control of both the sender and receiver.
For example, a time reference stored on the bank card in a writeable storage
element could be automatically updated with each use of the card. The
issuer, on the other hand, could track the time reference by storing it in the
verification table. The user and issuer could also establish a time reference
via some means not under their direct control (e.g., by using a date and
time-of-day).

Requirement 17. The security of the message authentication process
implemented at one institution must not depend on security measures
implemented at other institutions.

The requirement is based on the principle that a well-designed procedure for
message authentication should be such that the process of authenticating
transaction requests sent from the user to the issuer, and the process of
authenticating transaction responses sent from the issuer to the originating
terminal, can be effected without exposing the secret information used in
these processes and without depending on other institutions and network
nodes to protect the secrecy of information used in these processes. This
means that message authentication between the user and issuer and between
the issuer and originating terminal must be unaffected by the security or
lack thereof at any other EDP system or terminal in the interchange.

PERSONAL VERIFICATION IN THE ON-LINE MODE 499

Comments on the EFT Security Requirements

The reader may note that the six security principles recommended by Kaufman
and Auerbach [101 are a subset of the requirements developed here. The
basic idea of employing one-way functions for personal verification was dis-
cussed in references 11 and 12. The reader may also note that some require-
ments are derived from preceding requirements. This allows the requirements
to be developed in an orderly and progressive manner.

Although there is bound to be some disagreement over what constitutes
a true security requirement, the intent here has been to develop a set of
requirements that will tend toward maximizing security. In the end, financial
institutions and designers and developers of cryptographic systems must
weigh their own EFT security requirements against those developed here
and decide which are mandatory, which are only desirable, and which are
possibly unnecessary. One must always balance the probability and gravity
of harm, should it occur, against the cost of implementing sufficient measures
to prevent that harm.

PERSONAL VERIFICATION IN THE ON-LINE MODE

There are many ways of using PINS and personal keys to achieve personal
verification. Several different designs and design tradeoffs are considered
next.

In the design of a procedure for personal verification, the PINS and per-
sonal keys may be considered as parameters of the problem, where “secret”
and “time-invariant” are attributes of these parameters. The significance of
secret versus nonsecret and time-variant versus time-invariant parameters in
the design of cryptographic systems has already been discussed. There is,
however, another parameter attribute that is important to the design of per-
sonal verification procedures, i.e., whether the parameter is independent or
dependent. An independent parameter is one whose value does not depend
on any other parameter. It may be arbitrarily selected by the user, systems
personnel, or the system. A dependent parameter is one whose value depends
on one or more other parameters. Its value is derived from the parameter or
parameters upon which it depends.

Independent PINS and personal keys can provide greater security than
dependent PINS and personal keys. An independent parameter is not auto-
matically compromised as the result of a compromise of other parameters in
a cryptographic system, whereas a dependent parameter is always compro-
mised whenever the secret parameter or parameters and algorithm (if secret)
used to compute the parameter are compromised. With an independent
parameter, every bit of the parameter must be stored. On the other hand, a
dependent parameter can be computed dynamically as needed and thus
storage requirements may be substantially reduced. For example, PINS
could be derived from the corresponding IDS using a secret system key. This

500 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

permits the system to regenerate PINS rather than store them in a table.
However, such a choice of dependent parameters might be unacceptable
because users may want to select their own PINS, and institutions may want
to provide this option to their customers.

Note that in the examples below, it is assumed (although not specifically
shown) that authentication parameters are sent to the issuer in the transac-
tion request messages and message authentication techniques are used to
prevent replay of intercepted AP values.

Personal Verification with Dependent PINS and Dependent Personal Keys

PINS and personal keys can be made dependent variables, for example, by
deriving them from users’ IDS via a PIN-generating key (KPN) and a persond
key-generating key (KPG) as indicated by the following relationships:

PINi = EKPN(IDi) (1 l-l)

KPi = Dkro(IDi) (1 l-2)

Encipherment with KPN and decipherment with KPG permit the use of only
a single secret key, KPN = KPG.

During the initialization process, the issuer selects KPN and KPG and then
produces and issues personal identification numbers, personal keys, and bank
cards to each user. ID and KP are stored on the bank card, whereas PIN must
be remembered by the user. KPN and KPG are retained by the issuer so that
each user’s PIN and personal key can be regenerated during the process of
personal verification.

A procedure that could be used for verification of a user is as follows
(Figure 1 l-6). User i enters IDi, KPi, and PINi at an entry point (EFT ter-
minal). The EFT terminal computes APi = E xrr e rrm(IDi) and sends IDi and
APi to the issuer (via an interchange if necessary). The issuer computes a PINi
of reference and a KPi of reference (via Equations 1 l-l and 1 l-2) from the
received IDi and the stored values of KPN and KPG. IDi and the derived
values of PINi and KPi are then used to compute an APi of reference, or
reference Rfi for short. Rfi and the received APi are compared for equality.
If Rfi = APi, then IDi is accepted (i.e., the identity of the user is accepted as
IDi); otherwise, IDi is rejected.

Deriving PINS and personal keys from seed keys, KPN and KPG, has the
disadvantage that it is awkward to reissue new PINS and personal keys.21
Changing KPN or KPG causes every user’s PIN or personal key to change,
and thus requires the issuer to reissue a PIN and a bank card to each user and
update the associated account file in the issuer’s data base. Changing a user’s
identifier affects only that one user, but requires the issuer to close and open
a new account. Compromise of both KPN and KPG allows a global attack
against all users whose PINS and KPs were generated with these keys.

‘ITo change a user’s PIN, one could define the ith updated PIN as the ith encipherment
of ID under KPN. However, in that case the system must be able to track the value of i
(e.g., by storing it in a verification table).

Initialization Process at Issuer:
1Di

KpG,-fyy+

KPi PINi

Stored on bank card
Note: Issuer selects KPG and KPN and computes PlNi and KPi for each user.

Initiation of Personal Verification at Entry Point:
Information Supplied by User i

KPi PlNi 1Di

0
Information Sent

+ to Issuer

b E b IDi

I
Verification Process at Issuer: + API

Information Received
from Entry Point

API IDi

tb-

I

KPG KPN- E

KPi PINi
l

b E
Computation of KPiePINi

APi of Reference

Rfi

Legend: Accept IDi Reject IDi
KPN: PIN Generating Key Independent Secret
KPG: Personal-Key Generating Key Independent Secret

IDi: User i’s Identifier Independent Nonsecret
PlNi: User i’s PIN Dependent Secret
KPi: User i’s Personal Key Dependent Secret
APi: User i’s Authentication Parameter Dependent Nonsecret

Fi@e 114. Personal Verification using a PIN Generating KEY (KPN) and a
Personal-Key Generating Key (KPG)

501

502 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

The verification procedure does have the advantage that there is no require-
ment for a personal authentication code (PAC) to be stored on the bank card
or in a verification table, i.e., only ID, AP, and the secret system keys are
needed.

If banks wish to allow users to choose their own PINS, the scheme could
be redefined as follows. From the user’s specified PIN, a quantity (defined as
the offset) is generated such that the offset equals the modulo 2 addition of
PIN and EKPN (ID), where E wN (ID) is a system-generated personal identifi-
cation number (defined as pin, Figure 1 l-7). The offset, which is equal to
PIN @ pin, is recorded on the user’s bank card. When a user is identified to
the system, the entered PIN is added modulo 2 to the offset to reproduce
the correct dependent value of EWn (ID) = pin.22 Thereafter, pin and KP
are used together as the basis for user verification.

A disadvantage of this method is that PIN 8 offset is a constant (C = pin)
as long as ID and KPN are not changed. For example, if an opponent ever
obtained the PIN and offset, he could calculate C. From then on, the partic-
ular ID is compromised even if the user changes his PIN. Note that changing
PIN will only change the offset but will not affect pin. Furthermore, since
the offset must be stored on the bank card, storage for an additional bit pat-
tern is now required.

Personal Verification with Independent PINS and Independent Personal Keys

When PINS and personal keys are independent variables, they cannot be
dynamically regenerated. Therefore, PIN and Personal key generating keys
cannot generally be used securely. (The procedure described in Figure 1 l-7

ID

KPN

pin

PIN

-+

+

Offset

KPN: pin Generating Key

Figure 11-7. Personal Verification Using a PIN Offset

22 With current magnetic stripe cards, the modulo 2 addition is performed in the EFT ter-
minal. With an intelligent secure card, the operation would be performed on the card.

PERSONAL VERIFICATION IN THE ON-LINE MODE 503

employed a PIN generating key, and independent PINS were allowed by
defining an offset. However, such a scheme has certain security weaknesses,
as discussed above.) Hence, a different procedure for personal verification
must be used.

One approach is for the issuer to store each user’s independently calculated
authentication parameter, AP = E kP Q &ID), in a verification table. Select-
ing a particular entry in the table is accomplished by using ID as shown in
Figure 11-8. Thus, the dynamic computation producing APi of reference, as
shown above in Figure 11-6, is replaced by one in which IDi is used to look
up the corresponding APi of reference in a table.

Storage of information in a verification table at the issuer can be avoided
if an equivalent amount of information is distributed among the users and
stored on the bank cards. This additional information, defined here as a
personal authentication code (PAC), can be computed using the relationship

PACi = Ea (APi) = Em (Exee rmi (IDi)) (1 l-3)

where KA is a secret authentication key known only to the issuer.
A user is now verified when the correct (AP, PAC) pair is supplied. How-

ever, the procedure relates PAC to ID only indirectly. Although AP is checked
via the procedure, ID itself is not explicitly checked. Thus if the authenticator
receives IDj, APi, and PACi instead of IDi, APi, and PACi, there is no way
to determine that IDi was changed to IDj-the generated PACi of reference
will check only that APi and PACi are a valid pair.

This can be remedied by coupling PAC to AP and ID be defining PAC as
follows:

PACi = EKA(EKA(IDi) @ APi) (1 l-4)

If IDi and APi are &byte blocks, PACi can be thought of as being produced
by encrypting IDi and APi using a form of ciphertext feedback. Thus, PACi
validates both APi and the correspondance of APi to IDi. IDi and APi are
accepted as valid only if they generate, via KA, a PACi of reference equal to
the received PACi.

Since PAC is precomputed, personal verification based solely on the triple
(ID, AP, PAC) without any additional message authentication is by definition
exposed to an active attack wherein previously recorded information is used
to modify a transmitted message. For example, an intruder who has pre-
viously intercepted the triple (IDi, APi, PACi) can masquerade as user i
by entering IDi and any bogus values for KPi, PINi, and PACi at the entry
point and then replacing the bogus triple (IDi, AP*, PAC*) transmitted in
the transaction request message with the previously recorded triple (IDi,
APi, PACi) via an active attack.

Message authentication, which provides a defense against message altera-
tion and the introduction of stale messages, solves the problem. In that case,
the relationship between ID and AP is now checked via the MAC and, there-
fore, personal verification can be based on either Equation 1 l-3 or 11-4.

During the initialization process (Figure 1 l-9), PINS are selected by either

Initiation of Personal Verification at Entry Point
(Computation on the Intelligent Secure Card):

Information Supplied by User i
KPI PINi IDi

0 Information Sent
v to Issuer

b E MDi

I

Verification Process at Issuer:
IDi and APi Received
from Entry Point

APi IDi

L

ID1 ID1 APl of Reference APl of Reference
ID2 ID2 AP2 of Reference AP2 of Reference

. . . .

. . . .

. . . .
IDI IDI APi of Reference APi of Reference
. . . .
. . . .
. . . .

Selection of Selection of IDn IDn APn of Reference APn of Reference
APi of Reference APi of Reference

Rfi JRfi

Legend: Legend:

Yes
1

Accept IDi Accept IDi

No
1

Reject IDi Reject IDi

IDi: User i’s Identifier Independent Nonsecret
PINi: User i’s PIN Dependent Secret
KPi: User i’s Personal Key Dependent Secret
APi: User i’s Authentication Parameter Dependent Nonsecret

Figure 11-8. Personal Verification using Table Lookup

504

PERSONAL VERIFICATION IN THE ON-LINE MODE 505

Initialization Process at Issuer:
IDi KPi PlNi

APi = EKPkPINi(IDi)

1
PACi = EK,(EK,(IDi)@APi)

Notes: IDi, KPi, and PACi are recorded on the bank card of the ith user.
Issuer or user selects PINi. Issuer selects KPi, records it on the bank
card, and computes API. Issuer also selects KA and computes PACi.

Initiation of Personal Verification at the Entry Point:
Information Supplied by User i

PACi KPi PlNi 1Di Information Sent

. PACi

(continued)

Legend:

KA: Authentication Key Independent Secret
IDi: User i’s Identifier Independent Nonsecret

PINi: User i’s PIN Dependent Secret
KPi: User i’s Personal Key Dependent Secret
API: User i’s Authentication Parameter Dependent Nonsecret

PACi: User i’s Personal Authentication Code Dependent Nonsecret

Figure 11-9. Personal Verification Using a Secret Authentication Key and Personal
Authentication Codes (cont’d next page)

506 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Verification Process at Issuer:
PAG, IDi, and APi Received

from Entry Point

PACi IDi API

*

KA- E

I

KA----* E Computation of

I ’
PACi of Reference

Figure 11-9 (cont’d)
Accept IDi Reject IDi

the user or the issuer whereas personal keys are selected by the issuer (to
prevent misuse of KPs, see the section entitled Objections to the PIN/
Personal Key Approach). The issuer also selects KA and computes APi =
E kP,@ rrNi(IDi)) and PACi = EKA (EKA (IDi) @ APi for each user. KA is re-
tained by the issuer so that each user’s IDi and APi can be checked against
PACi, which is stored on the bank card.

The process of user verification (Figure 1 l-9) requires user i to enter IDi,
KPi, PINi, and PACi at an entry point (EFT terminal). The EFT terminal
computes APi = Ekris PrNi(ID)) i an sends IDi, APi, and PACi to the issuer- d
via an interchange if necessary. The issuer computes a PACi of reference, or
Rfi for short (via Equation 11-3 or 11-4, as appropriate), from the received
values of IDi and APi using the stored value of KA. Next, Rfi and the received
PACi are compared for equality. If Rfi = PACi, then (IDi, APi) is accepted
as valid and the identity of the user is accepted as IDi. Otherwise, (IDi, APi)
is rejected and the user claiming IDi is denied system services.

The approaches in Figures 11-6 and 1 l-9 are similar in some respects and
different in others. Neither requires a verification table, since their references
are generated using one or more system keys. In the first case, KPG and KPN
are used to generate personal keys and PINS, and in the second case, KA is
used to compute PAC. Both approaches provide comparable security because
they are equally vulnerable as far as compromise of system keys is concerned.
In either implementation, compromise of the system keys KPG and KPN, or
KA, will allow global attacks against any user of the system.

The major difference in the two approaches is that an additional quantity,

PERSONAL VERIFICATION IN THE ON-LINE MODE 507

PAC, must be stored on the bank card when independent KPs and PINS are
used. Independence is therefore achieved at the expense of extra storage on
the bank card.

Although only three examples of on-line personal verification have been
given, variations of these, as well as other designs, are possible. For example,
a different KA could be defined for each user, in which case a verification
table would be required to store the KAs. Personal authentication codes
could also be used to provide cryptographic separation among institutions
in an interchange supporting off-line verification. For example, each institu-
tion could define two authentication keys for off-line verification. A first
key, KAlocal, could be used only to verify an institution’s own users (i.e., it
would not be shared with other institutions). A second key, KAremote,
could be shared and used by all other institutions to verify that institution’s
users. Such a protocol would require two PACs to be stored on the bank
card, one calculated using KAlocal and the other calculated using KAremote.
Each entry point would be required to store its KAlocal key and the KA-
remote key for each other institution in the interchange.

Minimizing Card Storage Requirements

In any scheme not requiring a verification table, the specification of at least
one authentication key is mandatory. If, in addition, the PINS are selected
independently, additional storage must be provided on the card for a personal
authentication code, as in the method of Figure 11-9. In that method, KP
as well as PIN are independent variables and KP and PAC are stored on the
bank card. Since security requires that KP be selected by the issuer to elim-
inate misuse of personal keys (see section Objections to the PIN/Personal
Key Approach), it is not really necessary to make KP an independent variable.
It is shown next that it is possible, by giving up the freedom to choose KP
independently, to reduce storage requirements on the bank card by making
KP dependent on PAC and accepting a shorter PAC length (on the order of
16 to 32 bits). Assume that

AP = EKP~ PIN (IDI (1 l-5)

PAC = leftmost m bits of EkA(EkA(ID) @ AP)) (11-6)

Storage on the bank card can be reduced by generating PAC dynamically
from KP.

PAC = leftmost m bits of E&ID) (1 l-7)

The price paid for this advantage is that only certain KPs will satisfy all
three equations (1 l-5, 1 l-6, and 1 l-7). Furthermore, due to the complexity
of the equations, only trial-and-error methods (i.e., key exhaustion) can be
used to generate proper KPs. If the PAC length is m bits, the average num-
ber of iterations to find an acceptable KP is 2m-1. To make exhaustion
feasible, m should be chosen less than 32.

508 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

For analysis of the generation of KPs by the issuer, let

APtrial = E mtrial b PIN (ID) (1 l-8)

Cl = the leftmost m bits of E,(E,(ID @ APtrial))
(= PACtrial) (1 l-9)

C2 = the leftmost m bits of E,,,,,(ID) (1 l-10)

Due to Equation 1 l-7, the constraint Cl = C2 is now introduced.
For the generation of KPs that satisfy the condition Cl = C2, trial values

of KP (KPtrial) are used for a selected PIN with the corresponding ID to
generate a trial AP according to Equation 11-8. A trial PAC (Cl = PACtrial)
is then computed from the trial AP using Equation 1 l-9. A trial value of C2
is also calculated using Equation 1 l-10. The KPtrial is accepted only if Cl =
C2; otherwise, the KPtrial is rejected and the process is repeated (Figure
1 l-10). Assuming that the probability of a match (Cl = C2) at each trial
is2-“, it takes an average of 2m/2 trials to find an acceptable KP.

Once an acceptable KP is found, the initialization process is complete.
To initiate the verification process at the entry point requires that AP =
EKP e rrn(ID) and PAC = the leftmost m bits of E&ID) be generated and
transmitted together with the ID to the issuer (Figure 1 l-l 1). At the authen-
ticating node (the issuer), the authentication key, KA, is used to generate a
PAC of reference, i.e.,

PAC of Reference = leftmost m bits of EKA(EKA(ID) @ AP)

Only if this quantity is equal to the received PACi will the user (IDi) be ac-
cepted. Otherwise, the user will be rejected (Figure 1 l-l 1).

This approach requires, again, proper message authentication. Otherwise,
any intercepted triple (ID, AP, PAC) sent to the authenticating node would
authenticate the user (Figure 1 l-1 1). An opponent could thus masquerade
as the user associated with the intercepted triple.

But even if proper message authentication is in place, an opponent could
attempt to impersonate another user (say user i) by entering IDi (assumed
known) and using a method of trial and error, as follows: an arbitrary per-
sonal key and PIN (i.e., KP* and PIN*) are entered so that the entry point
calculates AP* = EKrfePmI (IDi) and PAC* = Exr*(IDi) (Figure 1 l-l 1).
At the authenticating node, Rf* = E=(IDi) @ AP*) is calculated and
checked for equality with the leftmost m bits of PAC*. Since the probability
is 2-m that these (fake) quantities are indeed identical, about 2m-’ trials
are required for the attack to succeed. In the described attack the opponent
must manually enter the trial values of KP* and PIN*, which means that the
time per trial is measured in seconds. The value of m is selected so that
2m-1 X (time per trial) is sufficiently large.

A more serious threat arises if insiders are able to repeatedly exercise the
operation that calculates the PAC of reference (Rf in Figure 1 l-l 1). In that
case, the opponent selects a trial key, KPtrial, and calculates a set of APs by

APtrial

Select Leftmost

I c2

I

I

I

Select Leftmost Cl No
m Bits Select New

Trial KP

Figure 11-10. Calculation of KP such that Cl =C2

+
Accept Trial
Key as Valid KPi

510 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

exhausting PIN space (i.e., {APj = E,,,i,~.~~j(IDi);j = 1,2,. . . , n} wheren
is the number of possible PIN combinations). In addition, PACtrial =
E mrial(IDi) is calculated. The set of APs is then used together with IDi and
PACtrial to calculate the set Q = {Rfj; j = 1, 2, . . . , n}, where Rfj =
EKA (IDi) @ APj. If Q contains an element Rfj such that Rfj = PACtrial,
then the attack succeeds, because in that case an equivalent PIN and KP are
found for the IDi. If no match is found, the procedure is repeated using a
different KPtrial. This insider attack will succeed only if references can be
calculated at will. One way to detect and thwart such an attack is to log all
unsuccessful validations. Since most of the time (in an honest environment)
the validations will succeed, the statistic of unsuccessful validations is a use-
ful audit tool. The lesson to be learned from this threat analysis is the fol-
lowing: whenever the number of trials required by the issuer to generate
certain parameters is small, extreme care must be taken to ensure that an
opponent cannot benefit from this efficient computational procedure in the
same way. By restricting the opponent to attack the entry point, the de-
scribed method for reducing card storage can be made sufficiently strong.
The value of m is thus chosen so that the issuer can carry out the required

Initialization Process at Issuer:
Notes: Issuer or user selects PINi. Issuer selects KA, generates KPi

(as in Figure II-IO), and records KPi on the bank card.

Initiation of Personal Verification at Entry Point:

Information Supplied by User i
KPi PlNi IDi Information Sent

to issuer

0 Y wIDi

*

0 + E -

KPi@PINi

wAPi

-+PACi

.

l KA

Select Leftmost
m Bits

Legend:
KA: Authentication Key Independent Secret
IDi User i’s Identifier Independent Nonsecret

PINi: User i’s PIN Independent Secret
KPi: User i’s Personal Key Dependent Secret
APi: User i’s Authentication Parameter Dependent Nonsecret

PACi: User i’s Personal Authentication Code Dependent Nonsecret

Figure 11-11. Personal Verification Using a Secret Authentication
Key and Personal Authentication Codes

PERSONAL VERIFICATION IN THE OFF-LINE AND OFF-HOST MODES 511

Verification Process at Issuer:
Information Received from Entry Point

PACi IDi API

Figure 1 l-l 1 (co&d)

+

KA-W E

KA- E Computation of
PACi of Reference

Rfi

T

Select leftmost
m bits

IDi

computations efficiently using a high-speed computer whereas an opponent
is forced to use a much slower procedure of trial and error involving a man-
ual entry of trial parameters at the entry point.

PERSONAL VERIFICATION IN THE OFF-LINE AND OFF-HOST MODES

When personal verification is performed by a terminal, the process is said to
operate in the off-line mode. When a terminal and a communications control
unit (Figure 1 l-l) cooperate to perform personal verification, the process is
said to operate in the off-host mode. In the off-line mode, the entry point
must additionally assume the role of issuer. It must perform personal verifi-
cation and manage transaction requests, although it is relieved of other tasks
such as opening new accounts and assigning and selecting PINS.

The discussion in this section demonstrates that personal verification
using the on-line mode is more secure than either the off-line or off-host
modes of operation. The reason for this is that the on-line mode does not in-
volve widely distributed keys as do the other modes. With the off-line and
off-host modes, it is not possible to isolate the personal verification process
to a single institution. To show why security is reduced in this case, methods

512 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

are discussed wherein personal verification is performed by a node different
from the issuer’s node.

Cryptographic system designs for off-line and off-host banking trans-
actions are more straightforward than those for comparable on-line banking
transactions. For instance, in an off-line mode, there is no requirement for
message authentication, since the entire procedure takes place at the entry
point. However, because a terminal and a communications control unit do
not, in general, have storage for a verification table, the possible designs are
more limited. The following discussion assumes, therefore, that insufficient
storage is available for a verification table. Hence, personal verification must
be based on testing a preestablished relationship between the ID and secret
information supplied by the user.

By definition, when personal verification is performed in the off-line or
off-host mode, a widely distributed authentication key must be used to test
the relationships among ID, secret user-supplied information, and PAC. If
that key is a secret key (using the DES), its compromise globally affects
the entire verification procedure. If that key is a public key (using a PKC),
compromising its integrity compromises only the verification procedure at
that one off-line or off-host location:

An attack against a PKC succeeds if the public key at the entry point is changed by an
opponent who then enters a PAC calculated with the corresponding secret key. If the
secret key used to compute user PACs is compromised, a global attack against all users
is possible (as would be the case with a conventional algorithm). The advantage of the
PKC, however, is that the secret key is not stored at the entry point.

Because the authentication key (whether it is a public or a private key) is
widely distributed, the soundness of the off-line and off-host modes is ques-
tionable. In an interchange environment, for example, the authentication
keys may be stored in thousands of terminals. However, the approach may
be used safely in networks where the number of institutions and EFT ter-
minals is small and where the EFT terminals are vault-like units. With such
an implementation, protecting the secrecy or integrity of a key in the EFT
terminal may be less of a problem than providing similar protection to a
verification table or authentication key located at a host.

An important requirement of any off-line or off-host personal verification
procedure is that a compromise of either of these modes should not com-
promise or severely weaken security in the on-line mode. (In the discussion
it is assumed that both modes are implemented in the network.) In other
words, compromising a secret key used in the off-line or off-host mode should
not jeopardize secret user-supplied information essential to on-line personal
verification.

Personal Verification with System-Selected PINS
Employing a PIN Generating Key

The on-line mode can be separated cryptographically from either the off-
line or off-host mode if dependent PINS and dependent personal keys are
used. For example, assume the on-line scheme illustrated in Figure 11-6,

PERSONAL VERIFICATION IN THE OFF-LINE AND OFF-HOST MODES 513

where on-line personal verification is based on PINS and personal keys derived
from other keys (KPN and KPG). One way to achieve separation between
on-line and off-line personal verification, in this case, would be to base off-
line personal verification on PIN only and to base on-line personal verification
on PIN as well as KP. This could be achieved by storing only KPN in the
terminal (Figure 1 l-l 2) and by storing KPN as well as KPG at the issuer’s
HPC (Figure 1 l-6). In that case, a compromise of KPN in the off-line mode
(resulting in the exposure of PINS) would not compromise the on-line mode
since personal keys are still secure.

During the verification process (Figure 1 l-l 2), user i enters IDi and PINi
at an EFT terminal in which KPN has been installed. The EFT terminal com-
putes Ex,(IDi) = Rfi (i.e., the PIN of reference), and compares Rfi and
PINi for equality. If Rfi = PINi, then IDi is accepted; otherwise, if Rfi #
PINi, IDi is rejected.

Verification Process

(From User i)
PINi

(From Card)
IDi .-,

:PN

Rfi

.

Accept ID Reject ID

KPN = PIN Generating Key
Rfi=PIN of Reference

Notes: To initialize the system, the issuer selects KPN and computes
PINi = E KPN(IDi) for each user (IDl, ID2, IDn). If KPN
is compromised a valid PIN can be generated for any given ID.

Figure 11-12. An Example of Off-Line Personal Verification
with System Generated PINS

514 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Personal Verification with User-Selected PINS Employing Offsets

Consider a design based on independent PINS which uses an offset field on
the card and satisfies the relation

EKPN(IDi) = PINi 8 offseti

where KPN is a secret system-managed PIN generating key (see also Figure
1 l-7).

In this case, KPN, IDi, and PINi are independent variables, whereas
E, (IDi) and offseti are dependent variables. Verification takes place as
illustrated in Figure 1 l-l 3. The security weakness here (as discussed before)
is that the user-related PIN added to the offset results in a constant, C, as
long as ID and KPN remain fixed.

Personal Verification with User-Selected PINS Employing PACs

In a more secure approach, different personal authentication codes (PAC and
PACoff) can be used for on-line and off-line (or off-host) transactions, respec-
tively. This is accomplished by using different secret authentication keys
(KA and KAoff). For example, one could define

PACi = EKA(EKA(IDi) @ APi)

PACoffi = EKAo&EKAoff(IDi) 8 APi)

where

APi = EKri a Prm(IDi)

The on-line verification mode using KA and PACi is shown in Figure 1 l-9.
The off-line and off-host modes use the same procedure as the on-line mode
except that KA is replaced by KAoff and PAC is replaced with PACoff
(Figure 11-14). KA is stored at the issuer’s HPC for on-line verification
whereas KAoff is stored in the appropriate terminals and communication
controllers to allow off-line and off-host verification.

If KAoff is compromised, a valid PACoff can be generated for any given
set of values (ID, KP, PIN) thus compromising the off-line mode. However,
the actual KP and PIN cannot be determined, and thus the on-line mode is
still secure. Furthermore, since KA is unavailable, PAC cannot be evaluated.

A saving in card space could be achieved by basing on-line personal veri-
fication on an authentication parameter stored in a verification table (Figure
1 l-8). This would eliminate the need to store a personal authentication code
associated with on-line verification on the bank card. Storage requirements
on the bank card could be reduced further by basing off-line personal
verification on a personal authentication code (PACoff) which is related to
KP. This idea is discussed above in the section Minimizing Card Storage
Requirements.

Initialization Process IDi
I

KPN

User selected PINi -A-F Offseti
Notes: User selects PIN, whereas issue selects KPN. Issuer computes offset

for each user by adding, module 2, the user-selected PIN and
the value El&ID).

Verification Process
(From Useri)

PINi
(From Card)

IDi -I

ti

KPN E

-Y

.PN = PIN Generating Key
Rfi = PIN of Reference

Accept ID Reject ID

Note: If KPN is compromised, actual PINS can be generated.
Figure 11-13. An Example of Off-Line Personal Verification
with User-Generated PINS Employing an Offset

515

Entry Point (Terminal)

(From User i)
PINi

Bank Card

I I

Calculation of AP
I

APi = EKpi@plNi(IDi)
I

1% Ah PA bffi

Figure 11-14. Off-Line Personal Verification - PACoffi stored on Bank Card

User User

516

GUIDELINES FOR CRYPTOGRAPHIC DESIGNS 517

GUIDELINES FOR CRYPTOGRAPHIC DESIGNS

The EFT security requirements developed above are used in the remainder
of the discussion to develop good cryptographic designs. These EFT security
requirements may be used effectively to compare and establish trade-offs in
different designs (e.g., key management approaches based on system keys
only, or personal keys only, or a hybrid approach involving a combination of
both).

In the following discussion of methods used to satisfy the various require-
ments, the focus is on requirements 1, 2, 5, 12, 14, and 17-which are con-
cerned with the integrity of secret information entered into a system, integrity
and secrecy of terminal stored information, isolation of the personal verifica-
tion process, generation of user verification data, one-way functions of secret
user-supplied information, and isolation of the message authentication process,
respectively. Since requirements 12 and 14 follow from requirement 5, it
suffices to compare the different methods with respect to requirements 1,
2, 5, and 17 which are repeated below for the reader’s convenience.

Requirement 1. The process of entering information at an EFT terminal
must be protected, i.e., the integrity and secrecy of information entered
into the EFT terminal must not be compromised as a consequence of the
entry process. Furthermore the information flow within a terminal must
be protected.
Requirement 2. Information stored permanently or temporarily within
an EFT terminal must be protected, i.e., the integrity of public information
and the secrecy as well as integrity of private information must be assured.
Requirement 5. The security of the personal verification process imple-
mented at one institution must not depend on security measures imple-
mented at other institutions.
Requirement I 7, The security of the message authentication process
implemented at one institution must not depend on security measures
implemented at other institutions.

To satisfy requirement 1, the following must be true:

1. The entry paths for the PIN and user-supplied key into and within the
terminal are not exposed during normal system operation.

2. The entry paths for terminal resident keys into and within the termi-
nal are not exposed during the key loading process.

3. During the entry process, secret card information is not exposed even
if bank cards are temporarily in the possession of others.

Requirement 1 is independent of cryptography. It requires that security
measures be employed at the entry point to reduce the probability that the
PIN and secret card information (e.g., a personnel key, KP) can be ascertained
during the entry process. To prevent, or at least make it difficult for card

518 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

information to be ascertained while the card is in the possession of someone
other than the card owner (a bank teller or store clerk), requires a particular
approach in the design of the bank card, i.e., the introduction of an intelligent
secure card (discussed below) capable of performing computations that involve
secret information stored on the card.

To satisfy requirement 2, one must assure that

1. Permanently stored terminal keys are not exposed.

2. Temporarily stored PINS and terminal keys (active for the duration
of a transaction) are not exposed.

Keys stored in a terminal can be protected only by physical security mea-
sures. Hence, requirement 2 is also independent of cryptography. To avoid
the problem of key security at the terminal altogether, one might search
for a method which does not require a cryptographic key resident in the
terminal. This leads to the idea of using a key supplied by the user, i.e., a
personal key. It happens, however, that such an approach is not secure unless a
bank card with the following properties could be introduced: counterfeit cards
could not be manufactured and information stored on genuine cards could
not be read or altered. Such a bank card is defined below as an ideal intelli-
gent secure card. It is concluded, however, that the requirements of the ideal
bank card are unattainable at a reasonable cost with current technology.

An intelligent secure card capable of achieving realistic security objectives
is defined a practical intelligent secure card (or intelligent secure card for
short). It has the property that card information is secure while the card is
temporarily in the possession of another person or device for the purpose of
transacting business. However, use of an intelligent secure card does not
obviate the need to protect the integrity and sometimes the secrecy of
information transferred between the card and terminal.

Requirements 1 and 2 can therefore be satisfied partially through the intro-
duction of an intelligent secure card incorporating a personal key. Card
information, in this case, is not entered into the EFT terminal. The PIN is
not assumed to be entered directly on the card, although, if it were, require-
ments 1 and 2 could be fully satisfied. Therefore, except for PIN entry, the
intelligent secure card is equivalent to a miniature EFT terminal carried by
its owner.

Computationally the card would contain the following elements: a one-chip
microprocessor, ROS (read only store) containing executable programs, a
small RAM (random access memory) for storage of intermediate results
(which could be on the microprocessor chip), and a nonvolatile memory for
the storage of customer unique information (e.g., account number, secret
card key or parameter, and PIN-related information) and dynamic informa-
tion (e.g., current balance, number of transactions, and a one-up counter or
message sequence number). The nonvolatile memory is partitioned and
protected so that

1. A portion of the memory can be written to only by the issuing institu-
tion during card personalization. Thereafter, secret information stored

GUIDELINES FOR CRYPTOGRAPHIC DESIGNS 519

in this memory can be read only by the card, whereas nonsecret in-
formation stored in this memory can be read by both the card and
EFT terminal.

2. A part of the memory can be written to and read only by the card.

Power and timing information would be provided externally by the EFT ter-
minal, although fully self-contained devices are not precluded. Electrical
connections for communication between the card and terminal are also
provided.

One important design goal is to achieve isolation among institutions with
regard to personal verification (requirement 5) and message authentication
(requirement 17). A design based solely on PINS and system keys requires a
high degree of trust among institutions, since cryptographic transformations
are required to translate data from encryption under one key to encryption
under another key. This means that PINS or PIN-related information occurs
in the clear at nodes not under the control of the issuer. The potential for
exposure is minimized if this information occurs in the clear only in secure
hardware. But the fact remains that the issuer must trust other institutions
to implement secure hardware and maintain its integrity. Hence require-
ments 5 and 17 cannot be satisfied with a design based solely on PINS and
system keys. Details are discussed in the section The PIN/System Key
Approach.

Requirement 5 can be satisfied with a design that increases the number of
combinations of secret user-supplied information by introducing (in addition
to PIN) a personal key (KP) written on an intelligent secure bank card. With
PIN and KP, the number of independent bits of secret user-supplied informa-
tion is sufficient to defend against direct search and dictionary attacks.
(Designs based only on PIN are vulnerable to these attacks.) A design based
only on KPs and PINS (no system keys) is described in the section The PIN/
Personal Key Approach. Specifically, it is shown that KP enhances personal
verification and authentication of transaction request messages by satisfying
requirement 5. However, the EFT terminal cannot use personal keys to
authenticate transaction response messages unless it can be assured that these
keys are known only to the issuer (i.e., not even known to the legitimate
user). An opponent who enters a fake personal key at an EFT terminal
could, for example, inject bogus transaction response messages into the
communication line that the EFT terminal would accept as valid. Elimina-
tion of these exposures would be possible, and thus requirements 5 and 17
could be satisfied, if a pure personal key approach were used together with
an ideal intelligent secure card. But, as a practical matter, the properties
of an ideal intelligent secure card are unattainable, and therefore require-
ment 17 cannot be satisfied with only a personal key approach. AS a cons~-
quence, use of a personal key does not eliminate the requirement for a
terminal resident key.

In the section The PIN/Personal Key/System Key (Hybrid Key Manage-
ment) Approach Using an Intelligent Secure Card, an implementation is
discussed that uses a combination of personal and system keys (defined as
hybrid key management) together with an intelligent secure card capable of

520 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

achieving realistic security objectives (defined as a practical intelligent secure
card in contrast to the ideal intelligent secure card described above). In par-
ticular, requirement 5 can be satisfied completely and requirement 17 can be
satisfied to a high degree. To satisfy requirement 17 completely requires that
electronic digital signatures be implemented (see the section entitled Security
Enhancements With Digital Signatures).

The different methods can now be classified as follows:

Method 1. PIN/System Key Approach
Method 2. PIN/Personal Key Approach
Method 3. PIN/Personal Key/System Key Approach

In addition, the following categories can be defined:

Category a. Using a magnetic stripe bank card
Category b. Using a practical intelligent secure card
Category c. Using an ideal intelligent secure card

Hence, altogether there are nine different approaches defined, i.e., la, lb,
lc,2a,..., 3b, 3c. Tables 1 l-l and 1 l-2 indicate the effectiveness of each
method with respect to the requirement of separating personal verification
and message authentication among institutions (requirements 5 and 17),
respectively. Since requirements 1 and 2 require physical security in all
approaches, a separate table is not provided for these.

Details of the different designs are discussed in the sections The PIN/System
Key Approach, The PIN/Personal Key Approach, and The PIN/Personal
Key/System Key (Hybrid Key Management) Approach Using an Intelligent
Secure Card. From these discussions it can be concluded that the combination
3b presents a realistic security solution.

Before presenting the details of different designs, some of the fundamental
threats to PIN secrecy are highlighted. Furthermore, key management require-
ments common to all designs are investigated.

Threats to PIN Secrecy

Observation of the PIN

In any nationwide EFT environment, there will be a very large number of PIN-
using terminals located in nonsecure locations. The line from the PIN-using
terminal could be tapped and one or more cameras or video recorders could
be positioned to observe and record customers entering their PINS into the
EFT terminal or PIN pad device. This observation is synchronized with reading
the corresponding transaction sent over the communication line to establish
a relationship between the observed PIN and intercepted account number.
After a period of time, a significant number of PINS could be obtained from
unsuspecting customers who were not particularly careful during the PIN
entry process. A computer could then correlate the recovered PINS with the
intercepted transactions to determine the customer’s account number and

Method 1 Method 2 Method 3

a b C a b C a b C

Requirement 5 : Comparison of Methods Excluding the Entry Point

not not not
satisfied satisfied satisfied

Common keys between nodes are
necessary.

satisfied satisfied satisfied satisfied satisfied

Secret verification information is processed only at the end points.

satisfied

Requirement 5 : Comparison of Methods at the Entry Point

not not not
satisfied satisfied satisfied

Key at entry point is not controlled
by the issuer.

not
satisfied

Secrecy
of input
information
(PIN and
KP) not
controlled
by the
issuer.

satisfied

Card
information
(KP) not
exposed to
others;
fake KP
and misuse
of KP not
possible.

satisfied not
satisfied

Secrecy
of card
information
tw
guaranteed.

Secrecy
of input
information
(PIN and
KP) not
controlled
by the
issuer.

satisfied satisfied

Card
information
(KP) not
exposed to
others;
fake KP
and misuse
of KP not
possible.

Secrecy
of card
information

o(p)
guaranteed.

Table 1 l-l. Security Properties of Different Cryptographic Methods-Separation of Personal Verification Process.

Method 1 Method 2 Method 3

a b C a b C a b C

Requirement 17: Comparison of Methods Excluding the Entry Point

not not not
satisfied satisfied satisfied

Common keys between nodes are
necessary.

satisfied satisfied satisfied satisfied satisfied satisfied

Secret verification information is processed only at the end points.

Requirement 17: Comparison of Methods at the Entry Point

not not not
satisfied satisfied satisfied

Key at entry point is not controlled
by issuer.

not
satisfied

Secrecy
of input
information
not
controlled
by the
issuer.
Threat of
KP misuse;
threat of
fake KP.

not
satisfied

Threat of
KP misuse
since user
could deter-
mine his
KP.

satisfied* not
satisfied

Secrecy
of card
information
guaranteed.

Secrecy
of input
information
not
controlled
by the
issuer.**

partly
satisfied

satisfied*

Threat of
KP misuse
since user
could deter-
mine his
KP. But
attack
requires
subversion
of system
keys.

Secrecy
of card
information
guaranteed.

Note: Although the PIN/personal key approach (method 2) provides good separation between institutions, it is not an acceptable solution
unless an ideal intelligent secure card is used (method 2~). The security exposure is due to the threat of KP misuse and the use of fake
KPs.

*It is assumed that the signal path between the intelligent secure bank card and the terminal is not subverted.
**There is also the threat of KP misuse and the use of fake KPs. But a successful attack is dependent upon subversion of system keys.

Table 11-2. Security Properties of Different Cryptographic Methods-Separation of Message Authentication Process

GUIDELINES FOR CRYPTOGRAPHIC DESIGNS 523

other information necessary to produce a counterfeit card. This would allow
fraud to be perpetrated against each corresponding account.

A suggested defense against this threat is to encrypt the account number
and all other information that links the PIN to the cardholder. This prevents
the production of a counterfeit card from intercepted information. However,
financial institutions may find that encryption of card information conflicts
with some other system requirement. For example, it may be necessary for
certain intermediate nodes, which do not have an encryption/decryption
capability, to read the information contained in the transaction messages.

Bugging of Input Information at E FT Terminals

A bug placed in an EFT terminal allows all PINS entered into that terminal
to be intercepted. This, in turn, allows an opponent to successfully masquerade
as any one of the users whose PINS are intercepted, thus allowing fraud to be
perpetrated against each of the corresponding accounts.

Insertion of Fake Equipment

The most insidious fraud threat is one that uses fake equipment. A dishonest
merchant may induce unsuspecting cardholders to use EFT terminals with
fake PIN pads. Although there are many variations on this attack (see Counter-
ing the Fake Equipment Threat, Chapter lo), some of which can be defended
against, there is one that offers no apparent practical defense (no matter
what method is employed, personal keys or system keys) if card information
and PIN are entered into the retailer’s equipment.

In this attack, the merchant replaces the EFT terminal and PIN pad with
devices that will display or print the entered PIN at a work station. Every
PIN so obtained is automatically recorded. The card information is auto-
matically written on an unused card supplied by the opponent and the
PIN and card are entered into the real PIN pad and EFT terminal, which are
also hidden. Upon receiving the transaction response from the issuer, the same
response is sent to the fake terminal. In this way, the cardholder is made to
think that the transaction has completed normally. PINS and counterfeit
cards obtained in this manner are then used to commit fraud against the cor-
responding accounts.

There is no apparent practical defense against the above fake equipment
attack. Financial institutions must therefore be willing to accept this threat,
realizing that it is impossible to develop protection systems that completely
eliminate all risks of fraud.

Key Management Requirements

Fundamental to any key management approach is the requirement (10) that:
Personal verification and message authentication require a reference to be
available to the authenticator at the time the authentication takes place. This
reference, or the process used to generate the reference, must be defined and
agreed to in advance. It must be such that the integrity of the reference (and
sometimes its secrecy) and/or the process that generates the reference, can
be assured by the authenticator.

524 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Thus to check a received MAC at the issuer (associated with the transaction request
message) an authentication key must either be stored or dynamically created at the
issuer. The same requirement exists at the entry point in order to provide checking
procedures for the MAC associated with the transaction response message sent from
the issuer to the entry point.

To provide,‘a check for message timeliness, required for detection of the replay
of stale messages, the MACs must be time-dependent. Furthermore, for detec-
tion of the replay of stale messages and MACs, the time dependence must be
controlled by the authenticating node.

This can be accomplished by using a universal time reference, T, e.g., a
time-of-day (TOD) clock, which logically ties all nodes together. Here, each
node must access T internally since otherwise T is not under the authenticating
node’s control.

Another way of establishing a common time reference is for the authenti-
cating node to generate a random quantity which is transmitted to the send-
ing node (i.e., the node desiring to send a message to the authenticating
node). The sending node places this received random value in the message,
generates a MAC on the message, and sends the message and MAC to the
authenticating node.

To continue the discussion of authentication concepts: consider two nodes,
A and B, which use a common message authentication key, Kauth. This key
can be either static (in which case Kauth is stored permanently at both nodes)
or dynamic (in which case Kauth may be generated by one or both of the
nodes). Figure 1 l-l 5 summarizes the concepts discussed thus far.

For the case where Kauth is randomly generated, a key-encrypting key
(KNC, or node communication key) must be used to encrypt Kauth so that
it may be transmitted safely to the other node’where it must be established.

For example, if one node generates Kauth, it can be sent in the form
EKNC (Kauth) to the other node. Details of protocols which incorporate the
concepts of Figure 1 l-l 5 are suggested in Figures 1 l-l 6 through 1 l-l 9.
These figures specifically show that initiation protocols are needed before
regular communication can start, unless when a universal time reference is
used in conjunction with a static Kauth. If created dynamically, Kauth
could be generated either at node A or node B. Another possibility discussed
in reference 13 is for Kauth to be formed from random quantities generated
at node A and node B.

The notation MAC(argument) is used to show specifically the quantities
that MAC depends on. For example, MAC(key, data) is interpreted as the
leftmost m bits of the last block of E, (data), where m < 64 is selected by
the user and for convenience is omitted from the notation.

Choosing a particular design approach, i.e., system keys, personal keys, or
both, affects the way references can be established (discussed below). After
one decides how references are established, the major remaining effort must
focus on the problem of how best to achieve separation of the personal
verification and message authentication processes among different institu-
tions. The details are discussed under the general topic of key management
in each of the separate sections covering the PIN/system key approach, the

Authentication Key Time Reference

Kauth

Universal

time-of-day clock

System Generated

Ta generated at node A
Tb generated at node B

Static, i.e., Kauth is
permanently stored at
both nodes

MACa,b and MACb,a
are functions of Kauth,
TOD, and data sent
between node A and
node B.

MACa,b is a function of
Kauth, Tb, and data sent
from node A to node B.
MACb ,a is a function of
Kauth, Ta, and data sent
from node B to node A.

No initiation protocol
required.

Initiation protocol re-
quired to send Ta from
node A to node B and Tb
from node B to node A.

Dynamic, i.e., Kauth
is randomly generated

MACa,b and MACb ,a
are functions of Kauth,
TOD, and data sent
between node A and
node B.

MACa,b is a function of
Kauth, Tb, and data sent
from node A to node B.
MACb ,a is a function of
Kauth, Ta, and data sent
from node B to node A.

Initiation protocol re-
quired to establish
common authentication
key (Kauth) between
node A and node B.

Initiation protocol re-
quired to send Ta from
node A to node B and
Tb from node B to node A.
In addition, a common
authentication key (Kauth)
must be established
between node A and
node B.

Legend:

IDa:
IDb:

Kauth:
Ma,b:
Mb,a:

MACa,b:
MACb,a:

Ta:
Tb:

TOD:

Identifier of node A
Identifier of node B
Message authentication key
Message sent from node A to node B
Message sent from node B to node A
Message authentication code for Ma,b
Message authentication code for Mb,a
System generated time reference at node A
System generated time reference at node B
Universal time reference stored at node A and node B

Figure 1 l-15. Concepts Associated with Authentication

525

526 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Time Reference: Permanently stored time reference at both nodes, e.g., time-of-day
clock (TOD)

Data sent from node A to node B:

TOD, IDa, IDb, Ma,b, MACa,b(Kauth,TOD,IDa,IDb~a,b)

Data sent from node B to node A:

Legend:

IDa:
IDb:

Kauth:
Ma,b:
Mb,a:

MACa,b:
MACb,a:

TOD:

TOD, IDb, IDa, Mb,a, MACb,a(Kauth,TOD,IDb,IDa,Mb,a)

Identifier of node A
Identifier of node B
Message authentication key
Message sent from node A to node B
Message sent from node B to node A
Message authentication code for Ma,b
Message authentication code for Mb,a
Universal time reference stored at node A and node B

Figure 11-16. Message Authentication-Universal Time Reference and Static Authentica-
tion Key

PIN/personal key approach, and the PIN/system key/personal key (or hybrid
key management) approach.

One particular method that assures separation of the personal verification
process among institutions uses a secret personal key stored on the card.
A system with personal keys faces new threats.

Threats to the Secrecy of a Key Stored on a Magnetic Stripe Card

One major threat to the key-on-the-card (magnetic stripe card) is that cards
can be lost and stolen, and information on the card can be copied. Further-
more, information entered into nonsecure terminals can be bugged, and un-
suspecting customers can be induced to enter card and PIN information into
fake equipment.

However, not all of these exposures present the same threat to EFT se-
curity, as will be seen from the discussion below. Note also that many of the
exposures could be eliminated with an intelligent secure card (see also the
sections entitled Bank Card Security, and Personal Key Approach with an
Intelligent Secure Card).

A PIN is analogous to a user-remembered combination to a combination
lock; a card with a secret personal key (KP) stored on it is analogous to a
physical key to a key lock. It is true that physical keys can be lost, stolen,
and duplicated, and therefore, that cards with secret keys written on them
would be subject to the same exposures. Yet, keys and locks have been
proven to be practical, useful, and worthwhile, even though they do not pro-
vide their users with perfect or absolute security. The same would be true of

GUIDELINES FOR CRYPTOGRAPHIC DESIGNS 527

Time Reference: Randomly generated time-variant quantities (Ta at node A and Tb at
node B) establish origin of time reference, e.g., Ta and Tb are incre-
mented by one for each message sent

Initiation protocol to exchange Ta and Tb:

From node A to node B: Ta, IDa, ID\,
From node B to node A: Tb, IDb, IDa

Data sent from node A to node B:

Tb+i, IDa, IDb, Ma,b, MACa,b(Kauth,Tb+i,IDa,IDb~a,b)

Data sent from node B to node A:

Ta+j, IDb, IDa, Mb,a, MACb,a(Kauth,Ta+j,IDb,IDa,Mb,a)

Legend :

IDa: Identifier of node A
IDb: Identifier of node B

Kauth: Message authentication key
Ma,b: Message sent from node A to node B
Mb,a: Message sent from node B to node A

MACa,b: Message authentication code for Ma,b
MACb,a: Message authentication code for Mb,a

Ta: System generated time reference at node A
Tb: System generated time reference at node B

i: Message sequence number for Ma,b
j: Message sequence number for Mb,a

Note: It must not be possible to influence the generation of Ta and Tb externally. Other-
wise, stale messages associated with a previously used Ta and Tb can be inserted.

Figure 11-17. Message Authentication-System-Generated Time Reference and Static
Authentication Key

bank cards with secret keys stored on them. Information stored on the card
would be protected as a consequence of the physical security routinely pro-
vided to the card by its holder. Once users were aware of the security impli-
cations of exposing card information, it is assumed that they would take the
necessary precautions to protect their cards, and by so doing, they would
protect the information stored thereon.

Lost Cards

Loss of a card is probably the most common way in which card information
becomes exposed, yet this represents the least serious threat to EFT security.
An opponent is unlikely to launch an attack by first searching for a lost card,
and people who find lost cards are unlikely to be motivated to tap the com-
munications line and recover PINS using cryptographic methods.

52% APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Time Reference: Permanently stored time reference at both nodes, e.g., time-of-day
clock (TOD)

Initiation protocol to exchange time-variant authentication key (Kauth) generated at
node B

From node A to node B: IDa, IDb
From node B to node A: IDb, IDa, EKNCO<auth)

Data sent from node A to node B:

TOD, IDa, IDb, Ma,b, MACa,b(Kauth,TOD,IDa,IDb,Ma,b)

Data sent from node B to node A:

TOD, IDb, IDa, Mb,a, MACb,a(Kauth,TOD,IDb,IDa,Mb,a)

Legend:

IDa:
IDb:

Kauth:
KNC:
Ma,b:
Mb,a:

MACa,b:
MACb,a:

TOD:

Identifier of node A
Identifier of node B
Message authentication key
Node communication key (key-encrypting key)
Message sent from node A to node B
Message sent from node B to node A
Message authentication code for Ma,b
Message authentication code for Mb,a
Universal time reference stored at node A and node B

Figure 11-18. Message Authentication-Universal Time Reference and Dynamic Authen-
tication Key

It is assumed that the cardholder would notify the issuer upon discovering
that he has lost his card. The issuer would then invalidate the account and
disallow further transactions until a new card had been issued. Thus the time
during which fraud could be committed against an account would be relatively
short.

Stolen Cards

Stolen cards are not much of a threat either, although here it must be assumed
that the opponent is motivated and capable of attacking the system (which
would include the tapping of communication lines, interception of authenti-
cation pattern values, and recovery of PINS). However, AP values cannot be
intercepted after the cards are stolen, since the cards themselves are needed
to initiate transactions. In addition, it is assumed that reissued cards would
use different KPs, thus making the APs different.

For stolen cards to be of significant value, they must be stolen from se-
lected individuals whose transaction request messages have been previously

GUIDELINES FOR CRYPTOGRAPHIC DESIGNS 529

Time Reference: Randomly generated time-variant quantities (Ta at node A and Tb at
node B) establish origin of time reference, e.g., Ta and Tb are incre-
mented by one for each message sent

Initiation protocol to exchange Ta and Tb as well as Kauth:

From node A to node B: Ta, IDa, IDb
From node B to node A: Tb, IDb, IDa, EKN&auth)

Data sent from node A to node B:

Tbfi, IDa, IDb, Ma,b, MACa,b(Kauth,Tb+i,IDa,IDb,Ma,b)

Data sent from node B to node A:

Ta+j, IDb, IDa, Mb,a, MACb,a(Kauth,Ta+j,IDb,IDa,Mb,a)

Legend:

IDa:
IDb:

Kauth:
KNC:
Ma,b:
Mb,a:

MACa,b:
MACb,a:

Ta:
Tb:

i:
j:

Identifier of node A
Identifier of node B
Message authentication key
Node communication key (key-encrypting key)
Message sent from node A to node B
Message sent from node B to node A
Message authentication code for Ma,b
Message authentication code for Mb,a
System generated time reference stored at node A
System generated time reference stored at node B
Message sequence number for Ma,b
Message sequence number for Mb,a

Note: It must not be possible to influence the generation of Ta and Tb externally. Other-
wise, stale messages associated with a previously used Ta and Tb can be inserted.
Since Kauth represents time-variant information generated at node B, it is not
necessary also to generate Tb at node B. In that case, Ta could be used in place of
Tb to generate MACb,a.

Figure 11-19. Message Authentication-System-Generated Time Reference and Dynamic
Authentication Key

intercepted. For example, the opponent could tap the communications line
from an EFT terminal and accumulate a file of transaction request messages
for many different cardholders. (It is assumed that the cryptographically
transformed PINS are sent in the transaction request messages.) By stealing
the cards of one or more of these people, a computer could then be used to
obtain the associated PINS. This would allow fraud to be committed against
each account until such time as the card is reported stolen or missing and the
issuer updates his data base to reject the invalid card.

530 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Copying Card Information

Copying card information presents a serious threat provided that the card
can be read without the cardholder’s knowledge. In that case, the issuer has
no basis for updating his data base to reject the invalid card. In effect, the
opponent has enough time in which to attack the PIN (e.g., by intercepting
the user’s AP value and recovering the PIN using exhaustive methods, see the
section Objections to the PIN/Personal Key Approach Using a Magnetic
Stripe Card).

A particular scenario for obtaining card information follows: In any na-
tiontiide EFT environment, there is probably a very large number of non-
secure EFT terminals used without PINS for the purchase of merchandise.
The same card used in ATMs and other PIN-using terminals could be used in
these nonsecure terminals. Thus it is not especially difficult to bug a non-
secure terminal to read and record the key from the card along with the
normal magnetic stripe information.

Dishonest retailers or employees who routinely handle customers’ cards
in the process of transacting business represent another threat. For example,
it may be common practice for the cardholder to present his or her card to a
clerk, cashier, or salesperson who enters it into the EFT-terminal’s card
reader. Before returning the card to the cardholder, a skillful opponent could
easily skim information from many cards without being observed. The line
from the retailer’s PIN-using terminal would also be tapped to intercept AP
values. After a time, information from a significant number of cards could
be skimmed.

Bugging of Input Information at EFT Terminals

Information (PINS and KPs) entered into a terminal could be exposed to a
bugging attack. A suggested defense is to interlock the terminal to an alarm
so that any penetration of the device causes the alarm to be triggered. How-
ever, inexpensive terminals cannot have sophisticated alarm systems. Thus,
for inexpensive terminals located in nonsecure retailer environments, there is
an increased potential that card information and PINS will be exposed to a
bugging attack. For the same reason, terminal-resident keys are also vulner-
able in such an environment. Thus, the threat is not restricted to personal
keys.

Insertion of Fake Equipment

The fake equipment threat described earlier to obtain PINS (see Threats to
PIN Secrecy) is equally effective for obtaining KPs. There is no apparent
practical defense to this threat if secret information is entered into a device
not under the control of the customer.

THE PIN/SYSTEM KEY APPROACH

In the PIN/system key approach, personal verification is based solely on a
secret PIN entered into the EFT terminal by the customer. The PIN is

THE PIN/SYSTEM KEY APPROACH 531

often combined with other nonsecret information such as the cardholder’s
ID and this combined information is encrypted under a secret system-supplied
key.23 When the ID is coupled to the PIN, attacks against the PIN must take
into account the ID. The work factor for certain dictionary attacks against
the PIN is increased (see also Appendix D). The ANSI-proposed method for
PIN encryption is described in Appendix E.

System keys are used to generate the MACs required for message au-
thentication (Table 1 l-3). A separate dynamically generated transaction
key KTR is used for MAC generation between each logically adjacent pair of
nodes (e.g., the terminal and the acquirer, the acquirer and the switch,
and the switch and the issuer). The keys KTRl and KTR2 are used to dis-
tinguish further between the MACs generated on transaction request and
transaction response messages, respectively. The subscripts x,y denote the
sender (x) and the receiver (y). For example, KTRlterm,acq represents
a transaction key shared by the terminal and the acquirer, and is used by the
terminal (the sender) to generate a MAC on a transaction request message
sent to the acquirer (the receiver).

It is assumed that the transaction keys are generated at one node (either
sender x or receiver y) and transmitted to the other node (receiver y or
sender x, as the case may be) encrypted under a permanently installed
system key shared by the two nodes (Table 1 l-3). Transaction keys trans-
mitted between a terminal and the acquirer would be encyrpted under a
terminal master key, KMT. Transaction keys transmitted between the ac-
quirer and the switch, and between the switch and the issuer, would be en-
crypted under an interchange key, KI. The flows of information from an
EFT terminal to the issuer and from the issuer back to the EFT terminal
(including the keys and MACs used in the message authentication process)
are shown in Tables 1 l-4 and 1 l-5. The PIN/system key approach is discussed
in greater detail in the section Implementation of Fraud Prevention Tech-
niques, in Chapter 10. Some variations on the key management approach
shown in Tables 1 l-4 and 1 l-5 are listed below.

1. KTRl term,acq = KTR2acq,term
KTR 1 acq,sw = KTR2sw,acq
KTR 1 sw,iss = KTR2iss,sw

2. KTRlterm,acq = KTRlacq,sw = KTRlsw,iss
KTR2iss,sw = KTR2sw,acq = KTR2acq,term

3. Both 1 and 2 are satisfied (i.e., a single transaction key KTR is used).

In case 1, a different transaction key is established between each logically
adjacent pair of nodes, and this key is used to generate the MACs for both
Mreq and Mresp. In case 2, a first transaction key (KTRl) is established
among the nodes (term, acq, SW, and iss) for the purpose of generating the
MAC on Mreq and a second transaction key (KTR2) is established among

231f entered into a PIN pad with encryption capability, the PIN may be encrypted under
a secret PIN-pad key. However, a terminal key is still required unless the PIN-pad key can
also be used to generate the MAC’s which are required for message authentication.

ul
It: System Nodes

System Bank EFT Acquirer’s Switch’s Issuer’s
User Card Terminal Host Host Host

Permanently Installed Master Keys

none none KMT KMHacq KMHsw

Permanently Installed Interchange Keys

KMHiss

none none none KIacq,sw KIacq,sw
KIsw,iss KIsw,iss

Dynamically Generated Keys Used for MAC Generation on the Transaction Request Message, Mreq

none none KTRI term,acq KTRl term,acq
KTRl acq,sw

KTRI sw,iss
KTRl acq,sw

KTRl sw,iss

Dynamically Generated Keys Used for MAC Generation on the Transaction Response Message, Mresp

none none KTR2acq,term KTR2acq,term
KTR2sw,acq

KTR2iss,sw
KTR2sw,acq

KTR2iss,sw

Note: Keys used for personal verification at the issuer and switch are not shown.

Legend :

KMT: Terminal master key
KMH: Host master key

KI: Interchange key
KTRl : Transaction key for MAC generation on transaction request message (Mreq)
KTR2: Transaction key for MAC generation on transaction response message (Mresp)

Table 11-3. Keys Used for Message Authentication-PIN/System Key Approach

System
User

Bank
Card

EFT
Terminal

System Nodes

Acquirer’s Switch’s Issuer’s
Host Host Host

1 2 3
Enter PIN into Enter card into Generate AP.
terminal. terminal and

read card 4
information. Formulate Mreq which

includes time depen-
dent information from
acquirer (TODacq) and
terminal (Tterm).

5
Generate
MAC1 term,acq with
KTRl term,acq.

6
Send Mreq and
MAC 1 term,acq to
acquirer.

7
Check received
MAC1 term,acq with
KTRl term,acq of
reference and TODacq
of reference; retain
Tterm randomly
generated by terminal.

8
Check for correct
destination.

9
Generate
MAC 1 acq,sw with
KTRlacq,sw.

10
Send Mreq and
MAC 1 acq,sw to switch.

11 15
Check received Check received
MAC 1 acq,sw with MAC1 sw,iss with
KTRl acq,sw of KTRl swjss of
reference and TODsw reference and TODiss of
of reference. reference.

12
Check for correct
destination.

16
Verify user.

17
13

Generate MAC 1 sw ,iss
with KTRlswjss.

Decide if Mreq is to be
honored.

14
Send Mreq and
MAClswjss to issuer.

18
Formulate Mresp which
includes time information
stored at issuer (TODiss)
as well as time information
generated by the terminal
(Tterm).

Note: It is assumed that the acquirer periodically sends time-of-day information (TODacq) to the terminals in its domain. The terminal, on the
other hand, generates random information (Tterm) and sends it to the acquirer. This can be done as part of the initiation protocol
(Figure 11-15). The TOD stored at the other network host nodes (TODsw at the switch and TODiss at the issuer) is assumed to be equal

E
to TODacq within an allowable range (ATOD).

The integers 1-18 in the table show the sequence of steps in the transaction.

Table 11-4. Information Flow from Terminal to Issuer-PIN/System Key Approach

Svstem Nodes

E System Bank EFT Acquirer’s Switch’s Issuer’s
User Card Terminal Host Host Host

32 29
Eject card from Check received
terminal MAC2acq,term with

KTR2acq,term of
reference and Tterm of
reference.

30
Decide if Mresp is to be
accepted or rejected.

31
If Mresp is accepted,
process transaction;
otherwise, abort trans-
action request.

25
Check received
MAC2sw,acq with
KTR2sw,acq of
reference and TODacq
of reference.

26
Check for correct
destination.

27
Generate
MAC2acq,term with
KTR2acq,term.

28
Send Mresp and
MAC2acq,term
to terminal.

21
Check received
MAC2,iss,sw with
KTR2iss,sw of
reference and TODsw
of reference.

22
Check for correct
destination.

23
Generate
MAC2sw,acq with
KTR2sw,acq.

24
Send Mresp and
MAC2sw,acq
to acquirer.

18
Formulate Mresp which
includes time information
stored at issuer (TODiss)
as weII as time information
generated by the terminal
(Tterm).

19
Generate MAC2iss,sw
with KTRZiss,sw.

20
Send Mresp and
MAC2iss,sw to switch.

Note: It is assumed that the acquirer periodically sends time-of-day information (TODacq) to the terminals in its domain. The terminal, on the
other hand, generates random information (Tterm) and sends it to the acquirer. This can be done as part of the initiation protocol
(Figure 1 l-15). The TOD stored at the other network host nodes (TODsw at the switch and TODiss at the issuer) is assumed to be equal
to TODacq within an allowable range (ATOD).

The integers 18-32 in the table show the sequence of steps in the transaction.

Table 1 l-5. Information Flow from Issuer to Terminal-PIN/System Key Approach

THE PIN/SYSTEM KEY APPROACH 535

the nodes for the purpose of generating a MAC on Mresp. In case 3, a single
transaction key KTR is established among the nodes for the purpose of gen-
erating the MACs onMreq and Mresp. In each case, the protocols vary slightly
depending on the method used to generate, transmit, and intitialize the vari-
ous transaction keys.

Key Management Considerations for PIN/System Key Approach

A major objective of the PIN/system key approach is to provide a key man-
agement scheme which is transparent to the user (i.e., it does not require
keys to be supplied by the user). This means that system keys are used to
encrypt PINS and generate message authentication codes. However, the
keys at the entry points are not generally known to the issuer (final destina-
tion). Thus as messages are routed through the network, encrypted PINS
must be decrypted and reencrypted and MACs must be generated.

Sharing of Secret Keys

The PIN/system key approach requires limited sharing of keys so that
an institution may recover (decrypt) encrypted PINS and regenerate MACs.
Hence financial institutions must be willing to exchange and use inter-
change keys. On the other hand, key management designs must consider the
constraint that financial institutions are unwilling to share, as a condition of
joining the interchange, all of their secret keys (e.g., terminal master keys,
host master keys) with other institutions.

Cryptographic Translations

In addition to the cryptographic operation or operations required at the
EFT terminal to transform PINS and generate MACs, one or more crypto-
graphic operations are required in the security module of the acquiring
institution (or designated node) and in the security module of the switch
(if used) to allow PINS and MACs traversing the system to be transformed
and regenerated, respectively, so that ultimately they are in a form that
can be comprehended by the issuing institution.24

PIN Translation at the Issuer

If PIN validation is coupled with MAC validation, then PIN translation
at the issuer is not required. However, if PIN validation is separate from
MAC validation, then a PIN translation is likely to be required at the issuer
to transform the PIN of reference, the received PIN, or both, into a form
that will allow them to be compared. There are different reasons for this.
For example, the issuer may not wish to share the key under which the PIN
of reference is encrypted. Or the received PIN may be encrypted under a
terminal-generated key, and in turn this key may be transmitted to the issuer

241n the PIN/system key approach discussed in Chapter 10, the PIN and MAC must
undergo translation at a compxable number of points in the network.

536 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

encrypted under the issuer’s interchange key. Ultimately, each different key
management scheme will have its own different requirement for PIN transla-
tion at the issuer.

Protection Against Misrouted Data

Since PINS must be transformed from encryption under one key to encyrp
tion under another key as messages are routed through the system, PIN
information may be misrouted accidentally or intentionally. If an opponent
were to cause PINS to be translated to encryption under a known key,
these PINS would be exposed. Thus the PIN/system key approach must
incorporate methods to detect misrouting, thus assuring that PINS are routed
only to the proper destinations.

Defending Against the Misrouting Attack

If a PIN/system key approach to EFT security is improperly designed, an
intentional misrouting attack may be possible. For example, an opponent
might alter the destination bank ID to one of his own choosing. Thus at a
selected system node (e.g., the switch) a PIN could be translated from en-
cryption under an interchange key KIi to encryption under an interchange
key KIx rather than the intended interchange key KIj. The opponent, who
knows KIx, could then recover all misrouted PINS.

A defense against the misrouting attack can be provided by coupling the
destination bank ID to the appropriate destination interchange key (see also
reference 14). The procedure ensures that the indicated destination bank ID
is the one designated at the creation of the transaction request message. At
the sender this is made possible by calculating a message authentication code
on the information requiring protection (i.e., the transaction request message
which contains the bank ID, time-variant information such as a time stamp,
and the encrypted PIN).

Before a TRANSLATE operation is attempted, a MAC of reference is
generated for the received data = [T, BIDj, E,,i(PIN)] ,where T denotes
the time variant information, BIDj denotes the destination bank ID, and
E,,i(PIN) denotes the PIN encrypted under interchange key KIi. The MAC
of reference is then compared for equality with the received MAC. If the two
MACS are identical, the TRANSLATE operation is enabled. Otherwise an
error condition is noted and the TRANSLATE operation is inhibited.

Using the Data Encryption Standard (DES) in the Cipher Block Chaining
(CBC) mode (Chapter 2 and Figure 1 l-20) will suffice to detect as little as
a onebit change in the entire message. Note that MAC does not have to be
64 bits long. A smaller number of bits could be used with a corresponding
loss of error detection capability (i.e., the probability of detecting an error
is decreased).

The CBC mode can also be used if both secrecy and authentication are
required. If two different keys are employed (i.e., one key for encryption
and another for MAC generation), a strong procedure is effected. However, this is
not the case if only one key is employed. An insecure procedure results if data are

THE PIN/SYSTEM KEY APPROACH 537

first encrypted as shown in Figure 2-17 and a MAC is generated on the encrypted
data employing the CBC mode as indicated in principle in Figure 11-20. With known
plaintext and matching ciphertext, a string of ciphertext blocks and MAC can be
constructed that will pass the authentication check, although the recovered plaintext
will be “garbage” (suggested by D. Coppersmith, IBM Thomas J. Watson Research
Center, Yorktown Heights, N.Y.). If the MAC is generated first, followed by encryp-
tion, a change in ciphertext will not generally be propagated to the MAC field due to
the self-synchronizing property of the CBC mode. Thus, message authentication is
not achieved if the same key is used for MAC generation and message encryption.

Two implementations to detect misrouting are discussed. In the first ap-
proach (case I), interchange keys are stored in the clear in secure hardware
and are used directly during execution of the TRANSLATE operation
(Figure 1 l-20).

In the second approach (case 2), the interchange keys are stored in
encrypted form outside the secure hardware and are supplied to the TRANS-
LATE operation as additional parameters. This is a more economical ap-
proach, since less storage is required within the secure hardware.

The interchange keys could, for example, be stored encrypted under some
unique variant of the master key (KMx) residing in the secure hardware
(see Chapters 4 and 5). As a result, there is a table of encrypted keys like
this one:

BID1 E,,,(KIl)

BID2 E,,,(KI2)

BJDj EKMx(KI.i)

BIDn ht,WIn)

However, the TRANSLATE operation cannot distinguish between one en-
crypted key and another, i.e., between EKMx(KIi) and EKMx(KIj), when
they are not stored within the confines of the secure hardware. Therefore, a
test is needed to ensure that the correct BIDj, EKMx(KIj) pair is used in the
TRANSLATE operation.

In devising such a test, advantage can be taken of the fact that the correct
bank ID (BIDj) already resides within the secure hardware (Figure 1 l-20),
provided that the MAC check was successfully completed. Using the methods
for validating time-invariant data discussed in the section Authentication of
Time-Invariant Data, in Chapter 8, a validation pattern (VP) which is a func-
tion of this BID, say VP = Ea,(BID), is defined. The VP, in turn, is linked
to a test pattern (TP) and the quantity to be checked, EKMx(KIj), as shown
in Figure 11-21.

The table of encrypted keys is now extended by including the test pat-
tern for each encrypted key, i.e.,

0 A

- Kli of Reference

No
1

Er;or
Condition

r --m--e

T of Reference

Validate I Error Enable
MAC -------- TRANSLATE - - - - - -

i
Condition

. .

. .
BIDn: Kln

THE PIN/SYSTEM KEY APPROACH 539

Quantity Checked

EKMx(KIj)

7

KMY+ D

Bank ID
BIDj

0
w

? E

b D

I

1
Test Pattern

TPj
Note: Test pattern is generated under secure conditions and

makes use of a special variant of the Master Key (KMy).

Figure 11-21. Generation of Test Pattern

BID1 EKMX(KI~)

BID2 EKMX(KI~)

BID EKdKIj)

BIDn EKdKIn)

TPl

TP2

TPj
.

TPn

The encrypted key can now be authenticated using the method indicated
in Figure 1 l-22.

After the checks for content (via MAC), timeliness (via T and MAC),
and proper translate key (via TP) have been successfully completed (all in
secure hardware), the TRANSLATE operation is enabled and allowed to
execute (again in secure hardware, Figure 1 l-23). If any of the checks fail,
the TRANSLATE operation is not enabled.

The approach described here blocks misrouting attacks by enabling the
TRANSLATE operation only after the proper bank ID/key relationship has
been established. Another defense against the misrouting attack is to trans-
form the personal verification information at the entry point so that the re-
sulting value is a one-way function of the input information. This is achieved
by supplementing PINS with personal keys. Misrouting attacks are, in that
case, ineffective because the personal key provides end-to-end authentication.
An additional advantage is that a simpler key management is achieved [see
the section PIN/Personal Key/System Key Approach (Hybrid Key Manage
ment) Using an Intelligent Secure Card].

540 A6PLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

BIDj EKdKIj) TPj

-

v

KMY + D

I

+

b E

b BIDj (Checked per VPj of
Reference

b E

VPj

Yes

Externally supplied encrypted
translate key corresponding to BIDj
is correct and can be employed in
TRANSLATE (Figure 1 l-23).

Error indicating externally
supplied encrypted translate
key is incorrect.

Figure 11-22. Authenticating a Translate Key using a Test Pattern

When personal verification information, i.e., PIN, is protected exclusively
via system-controlled keys, key management must be specifically designed
to prevent misrouting attacks. The described methods solve the problem by
coupling routing information (e.g., bank IDS) with corresponding crypto-
graphic keys via a message authentication code. Only after the proper bank
ID/key relationship has been established is the TRANSLATE operation
enabled. The TRANSLATE operation works with clear keys stored in secure
hardwari: (case 1) or with encrypted keys stored externally (case 2). But,
in the litter case, the encrypted keys must also be coupled to their respective
identifiers, which is accomplished here by introducing a checking procedure
based on stored test patterns.

Methods to prevent misrouting of PINS could also be extended to include
messages. As an illustration of this, consider the case where the MAC on the
transaction request message is generated at the EFT terminal using a resident
terminal key. At the acquiring institution, the received MAC is replaced with
a tiew MAC generated under KIi. Likewise, at the switch, the MAC generated
under KIi is replaced with a MAC generated under KIj. Thus, the generation

THE PIN/SYSTEM KEY APPROACH 541

of a valid MAC on a misrouted message is prevented by enabling the MAC
generation operation (as was suggested with the TRANSLATE operation)
only if the validated bank identifier BIDj received in the transaction request
message agrees with the bank identifier corresponding to the supplied en-
crypted key EKMx(KIj).

A PIN/System Key Approach for Noninterchange

By definition, a secure PIN/system key approach can be devised for a non-
interchange (local) environment, since the acquirer and the issuer are one
and the same. Although the processes of personal verification and authenti-
cation of transaction request messages involve the user, the EFT terminal,
and the HPC, the EFT terminal and the HPC are components of the issuer.
Therefore, personal verification and authentication of transaction request
messages involve only the user and the issuer.

Authentication of transaction response messages involves only the issuer
and EFT terminal. Under the established protocol, the decision to approve
or disapprove transactions is made by the issuer; EFT terminals merely re-
spond to the commands received from the issuer’s HPC in the transaction
response messages. Hence, each institution controls its own EFT security.

A PIN/System Key Approach for Interchange

The EFT security achieved implicitly with a PIN/system key approach in
a noninterchange environment is not achieved in an interchange environment.
In an interchange environment, the acquirer and issuer may represent differ-
ent financial institutions, and users may therefore interact with EFT terminals
not owned or managed by the issuer. Thus, each institution must trust that:

1. The secret keys it shares with other institutions, or with a switch (if
used), will be adequately protected.

2. Each other institution will implement appropriate security measures
in its terminals and PIN entry devices to protect PINS.

3. PINS-which may be either included in the message in encrypted form
or used in the computation of the MAC-messages and their corre
sponding MACs will be transmitted via the network to their proper
destinations in accordance with an agreed-upon protocol ensuring
both PIN secrecy and message integrity.

It follows from these statements that institutions must trust one another
and, if used, they must trust the switch. Complete independence, isolation,
and separation among the institutions with respect to personal verification
and message authentication are thus unattainable with the PIN/system key
approach.

Transaction response messages are not merely commands to be acted upon
by the originating EFT terminal. Each institution must agree that in its role
as an acquiring institution, it will honor transaction requests on the basis

I

542

J I
I
I

-_------ J

Perform TRANSLATE

I I

0
EKli(PIN) J&&W

I I

1 1

Kli D KMx4 D

l*
E l

I

E,,j(PIN)
TRANSLATE is enabled only if ail the following checks are successful:
1. T for timeliness (Figure 1 l-20)
2. MAC for content (Figure 1 l-20)
3. TP for correct translate key (Figure 11-U)

Figure 1 l-23. TRANSLATE Operation - Encrypted Keys (Case 2)

544 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

of receiving a valid transaction response message and MAC from the issuing
institution. Message authentication permits the originating EFT terminal to
detect bogus response messages that may be injected into the communication
line. However, the cryptographic equivalent of a signed message or digital
signature (Chapter 9) would be required for the acquirer to have incontro-
vertible proof that transactions have been authorized by the issuer.

If institutions are willing to join together in an interchange such that each
institution trusts all other institutions and the switch, each institution is
willing to share secret keys with other institutions or, at least, share one
secret key with a switch, and each institution is willing to implement a key
management that will allow PINS, messages, and generated MACs to be sent
throughout the system in a protected manner in accordance with the es-
tablished protocol, then an acceptable PIN/system key approach to EFT
security is possible.

Disadvantages of the PIN/System Key Approach

Compromise of a System Key Allows Global Attacks Against PINS

The obvious disadvantage of using system keys to protect PINS is that a
compromise of any one of these keys will reveal a large number of PINS. (On
the other hand, a knowledge of one personal key will reveal at most only the
associated PIN for that one account number.) System keys must therefore be
provided an especially high degree of security.

For increased security, the PINS could be encrypted with a continu-
ally changing key such that the new key is a one-way function of the old
key. The purpose of changing the key at time T is to protect traffic encrypted
under a previous key, since the new key does not reveal the keys used at
times previous to T. As a consequence, PINS cannot be obtained from inter-
cepted encrypted PINS at times previous to T, even if the new key is com-
promised. One method for achieving this property is to use a decimal
counter which holds a cycle count [151. This counter is incremented when-
ever a new key is desired, preferably after every transaction. The incremented
cycle count, concatenated with the device’s identity, is encrypted under the
old key, and the resulting cipher is used as a new key. The HPC and security
module can track this operation, provided the current cycle count for each
transaction is known. This can be accomplished by including the current
cycle count in each transaction request sent to the issuer.

Although this method works in principle, a synchronization requirement
is introduced, since the communicating nodes must track the keys even in
the presence of system errors. This may be unacceptable in some system
designs.

Exposure of Keys at the Entry Point

The suggested protection against terminal intrusion, which could lead to an
exposure of the secret terminal key, is to interlock the terminal key so that
any penetration of the device causes the key to be erased, thus making the
device inoperative. However, the manufacture of tamper-proof terminals,

THE PIN/SYSTEM KEY APPROACH 545

although perhaps possible, could lead to unacceptable, increased costs to the
respective financial institutions. Even under the assumption that the secret
terminal key is interlocked, so that any penetration of the device causes
the key to be erased, it must be ‘realized that with enough time and sophis-
ticated equipment the interlock can generally be defeated. Then the terminal
key could be recovered.

Key Management is Not Robust

The term robust is used frequently in statistical analyses where the assump-
tion is often made that the underlying probability distributions are Gaus-
sian or normal (i.e., follow a bell-shaped curve). But such an assumption is
often incorrect. The question then is: How are the results affected by a
deviation from the original assumption of a normal distribution? If devia-
tions do not seriously affect the results, one says the method is robust.

In the PIN/system key approach, key management must defend against
dictionary and misrouting attacks. However, weak key management at one
network node could expose the PINS of many users, and therefore the
security of the entire network could be jeopardized (i.e., a weakness at
one point in the system could affect the security of the entire system).
Therefore one can say that the PIN/system key approach is not robust.2s

Advantages of the PIN/System Key Approach

1. Although separation of the authentication process among institutions
is not possible with the PIN/system key approach, it nevertheless
achieves many of the EFT security requirements stated previously,
and provides a strong defense against threats posed by outsiders (those
with access only to external system interfaces).

2. The PIN/system key approach can be implemented using existing tech-
nology and is in compliance with present bank card format standards
and emerging PIN management standards.

3. With secret keys installed in the EFT terminals, there is automatically
something with which the terminal can be interlocked (i.e., the secret
terminal key) so that any penetration of the device causes the key
to be erased and the terminal to become inoperative. Without a
secret key, the terminal would have to be interlocked to an alarm or
hardware-disabling device.

Conclusion: Although the PIN/system key approach does not satisfy all of
the stated EFT security requirements, it does provide a reasonable level of
protection, using existing technology and current banking practices and
standards, for present EFT systems and those planned for the near future.

25A hybrid key management approach is less vulnerable to global exposures as discussed
in the section The PIN/Personal Key/System Key (Hybrid Key Management) Approach
using an Intelligent Secure Card. Such an approach is thus more robust. In other words,
security weaknesses introduced at some nodes in the network do not have a major effect
on the overall security of the network.

546 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

THE PIN/PERSONAL KEY APPROACH

The personal key approach attempts to improve the process of personal
verification by eliminating the need for a secret key in the EFT terminal.
Instead a personal key is recorded on each customer’s bank card. The key,
together with the cryptographic algorithm, is then used to encipher the PIN
and generate the MACs needed to authenticate the transaction request and
transaction response messages.

The personal key could be stored on either a magnetic stripe card or an
intelligent secure card. An intelligent secure card offers greater security,
although the magnetic stripe card can provide a migration path to a system
incorporating personal keys stored on intelligent secure cards. A PIN/
personal key approach using a magnetic stripe card is described first. An
approach in which the personal key is stored on an intelligent secure card is
described in the section Personal Key Approach with an Intelligent Secure
Card.

Description of a PIN/Personal Key Approach Using a Magnetic Stripe Card

Assume that cardholders are authenticated on the basis of an authentication
parameter, defined as AP = Ekr e rrn (ID), a copy of which is stored in a veri-
fication table in the issuer’s HPC. 26 Message authentication between the user
and issuer, and between the issuer and originating EFT terminal, is based on
a MAC produced from the message using a transaction key (KTR) computed
dynamically in the EFT terminal from KP, PIN, and ID, as follows: KTR =
DxP e rIN (ID).27 Since E xP tB pIN (ID) was already used for an authentication
parameter, the decipher operation is used to define KTR. A copy of each
user’s KTR is also stored in the issuer’s verification table.

When a customer initiates a transaction and his card is read, the card infor-
mation (including KP and ID) is transferred to the terminal and his PIN is
entered via a suitable entry device. The PIN and KP are Exclusive-ORed to
produce an intermediate key, which is used in turn to produce AP and KTR
by enciphering and deciphering the ID, respectively. A transaction request
message is then formed, which consists of a time stamp supplied by the ac-
quirer’s HPC (TODacq), a message sequence number supplied by the terminal,

26The verification table could be eliminated by defining a personal authentication code,
PAC = EKA(AP), which is stored on the bank card. In such a case, the issuer would need
to store only KA. (See also Figure 1 l-9.)

27A one-way function of KP, PIN, and ID (e.g., KTR = DmBp&ID)) has an advantage
over a function that is not one-way (e.g., KTR = KP @ PIN). If KTR were defined as KP @
PIN, then knowledge of KTR would permit an equivalent KP and PIN (say KP* and PIN*)
to be derived such that KP* @ PIN* = KP @ PIN. Therefore, unauthorized entry to the
system could be gained at any EFT terminal by using KP* and PIN*. On the other hand,
if KTR is a one-way function of KP and PIN, there is no practical way to devise KPs and
PINS that could be used to gain entry to the system. In that case, an opponent would be
forced to conduct an active attack wherein a previously intercepted AP value (corres-
ponding to KTR) is inserted into a bogus message and a MAC is then generated for the
message using the compromised KTR.

THE PIN/PERSONAL KEY APPROACH 547

the user’s account number, the user’s authentication parameter, the terminal’s
ID, the transaction type, and the transaction data. The time stamp allows
the issuer to check the timeliness of the transaction request message. The
message sequence number, which is returned in the transaction response mes-
sage, allows the EFT terminal to check the timeliness of the response. (See
also Figures 1 l-l 5 through 1 l-l 9 for a discussion of time stamps.) A MAC is
then generated for the transaction request message using KTR, and the trans-
action request message and MAC are sent to the issuer.28

The issuer validates the message using the KTR of reference stored in his
data base filed under the user’s identifier (ID). A MAC of reference is com-
puted from the message and the KTR of reference. The MAC of reference
is then checked for equality with the received MAC. The time stamp in the
received message is also checked against the time stamp of reference to ensure
that the message is current (not a stale message). If both tests succeed, the
message is validated. The time stamp of reference is then replaced by the re-
ceived time stamp.

The received AP value is next compared for equality with the AP of refer-
ence also filed under the user’s identifier (KD) in the issuer’s data base.2g If
the two AP values are equal, the issuer concludes that the secret data supplied
by the user (KP and PIN) are properly related to the claimed ID. If the re-
quested transaction can be honored, a positive response is sent to the origin-
ating terminal; otherwise, a negative response is sent.

The positive and negative responses could consist of request for transaction
granted and request for transaction not granted, respectively (where “trans-
action” denotes the transaction request message repeated in its entirety). A
MAC is also generated for the transaction response message using KTR, and
the transaction response message and generated MAC are sent to the EFT
terminal.

Upon receipt of the response message, the terminal generates a MAC of
reference from the stored KTR of reference and the received message. The
received MAC is then compared for equality with the MAC of reference.
The message sequence number in the received message is also compared for
equality with the message sequence number of reference stored previously
in the EFT terminal (at the time it was generated). If both the MACs and
message sequence numbers are equal, the response is validated; otherwise, it
is not. If a validated positive response is received, the terminal honors the

28 Since KTR is a function of KP and PIN, MAC is by definition an authentication param-
eter. Thus, personal verification could be based on the MAC (i.e., an AP value in the mes-
sage is unnecessary). In the proposed ANSI standard for PIN management and security
[111, PIN validation is treated separately from message authentication. For this reason,
personal verification and message authentication are treated separately here. An EFT sys-
tem in which authentication of the transaction request message and personal verification
are based solely on the MAC is described in the section The PIN/Personal Key/System
Key (Hybrid Key Management) Approach Using an Intelligent Secure Card.

2gIf PAC = Eu(AP) is stored on the bank card, verification takes place as follows. The
received value of AP is encrypted with the issuer’s KA of reference to generate a PAC of
reference. If PAC of reference equals the received PAC, the user is accepted; otherwise, he
is rejected.

548 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

transaction. If either an invalid or negative response is received, the transac-
tion is denied.

Key Management Considerations for PIN/Personal Key Approach

The major objective of the PIN/Personal Key approach is to devise a key
management which minimizes the need for system keys. This means that
personal authentication information is a function of KP and PIN only. This
also means that message authentication codes associated with transaction
request messages are a function of KP (but not a function of system keys).
Thus to check a received MAC (associated with the transaction request mes-
sage) the issuer needs a dynamically computed MAC of reference. This in
turn means that KP must be stored or recreated at the issuer dynamically.

The requirement to generate a MAC of reference exists also at the entry
point. This allows the MAC associated with the transaction response message
sent from the issuer to the entry point to be checked.

A reference must be available at both the issuer and the entry point to
permit MACs to be checked. With the PIN/Personal Key approach, that
reference would be KP or a secret value related to KP and perhaps PIN.
The important thing is that the integrity and secrecy of that reference be
assured. It is relatively easy to satisfy this requirement at the issuer where
strict security procedures can be enforced. This means that the processes of
personal verification and authentication of transaction request messages can
be isolated to the respective issuing institutions. However, the situation is
different at the entry point. A secret reference cannot be stored in the EFT
terminal, since doing so would conflict with the intent of the personal key
approach. The personal key approach attempts to eliminate the storage of a
secret key (or parameter) in the EFT terminal and thus eliminate the need to
manage and maintain the secrecy of terminal resident keys (or parameters).
Since storing a reference in the EFT terminal is effectively the same as stor-
ing a key, a practical solution is not achieved. The only remaining alternative
is to store the reference on the card. However, the price paid for doing this
is that the process of authentication of transaction response messages can-
not be isolated among the respective institutions.

Advantages of the PIN/Personal Key Approach

Increased Number of Combinations of Secret User-Supplied Information

With an increased number of combinations of secret user-supplied informa-
tion, discovery of a PIN and personal key via attacks using exhaustive methods
are computationally infeasible. Trial and error methods at the entry point
interface where the user supplies his information or exhaustive methods per-
formed on the system via a programming interface, are effectively thwarted.

End-To-End Protection Between the User and Issuer

In an interchange environment, a user-supplied key provides true end-to-end
cryptographic protection between the user and issuer. Secret interchange

THE PIN/PERSONAL KEY APPROACH 549

keys shared with other institutions or with a switch are unnecessary. Also,
cryptographic transformations at the acquirer, the switch, or other inter-
mediate network nodes to decipher data under one key and reencipher
them under another key are unnecessary. Thus data are not exposed in the
HPC of other institutions, or even in the security modules of those institutions.

In summary, the PIN/personal key approach does not require

1. Sharing of secret keys

2. Cryptographic translation of data

3. Protection against data misrouting

4. PIN translation at the issuer

as would be the case with the PIN/system key approach. This reduces the
complexity of key management.

Objections to the PIN/Personal Key Approach Using a Magnetic Stripe Card

Although a magnetic stripe card can be used for storing KP, there are several
objections that favor the intelligent secure card as the storage medium for
such a KP. For example, a key stored on the magnetic stripe card could be
compromised via skimming or bugging. In addition, a key stored on the mag-
netic stripe card offers no protection against certain active fraud threats as
discussed below in the section Exposures Due to Misuse of Personal Keys
and Fake Personal Keys.

A Key on the Magnetic Stripe Card Cannot be Protected

One of the major objections raised against storing a key on the magnetic
stripe card is that the key cannot be adequately protected, i.e., it cannot be
maintained as a secret in a practical EFT system. In a nationwide EFT en-
vironment, there is probably a very large number of nonsecure terminals
used without PINS and cryptography for the purchase of merchandise. In
such an environment a key on the bank card would be exposed. (See also the
section above entitled Threats to the Secrecy of a Key Stored on a Magnetic
Stripe Card.)

If a cardholder’s personal key should become compromised, the associated
PIN can also be ascertained with only a small additional effort provided that
a transaction request message initiated by the cardholder can be intercepted
in the network domain where PINS are used. Consider this case: assume that
cardholders are authenticated on the basis of an authentication parameter
(AP) included in the transaction request message, where AP is defined as
AP = EKPte rIN (ID). With a compromised KP and the corresponding inter-
cepted AP and ID, the PIN can be recovered using a method of direct search.
With a four-digit PIN there would be 10,000 combinations, namely, 0000,
0001,. . .) 9999. Starting with the first value, each successive value is tested
to see if it is the correct PIN. This is done by Exclusive-ORing the trial PIN
with the compromised KP, encrypting ID under this intermediate value, and

550 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

comparing the result for equality with AP. The trial PIN is therefore the
actual PIN in question if the computed value of AP is equal to the inter-
cepted value of AP.

If AP is not sent, the system can still be attacked since the intercepted
MAC is a function of KP and PIN. In this case a trial KTR is generated by
Exclusive-ORing the trial PIN with the compromised KP and decrypting ID
under this intermediate value. The trial KTR is accepted as valid if the MAC
generated from the intercepted message (using the trial KTR) equals the
corresponding intercepted MAC.

A Key on the Magnetic Stripe Card Must be Shared with the Terminal

By definition, a secret user-supplied key must be used to achieve personal
verification and authentication of transaction request messages between the
cardholder and issuer such that the cardholder and issuer are completely
isolated from all other users, programs, and devices in the EFT system. Al-
though a personal key is required to achieve isolation, it is not by itself suf-
ficient. Isolation is achieved only if the secret personal key is not exposed,
disclosed, or shared with others. A key written on a magnetic stripe card
must always be read into the EFT terminal, since the terminal contains the
cryptographic algorithm. Therefore, in an interchange, the process of per-
sonal verification is not isolated to the cardholder and issuer: the secrecy of
KP depends additionally on security measures implemented in the acquiring
institution’s terminals.

Exposure Due to Misuse of Personal Keys and Fake Personal Keys

Although the personal key can be used to generate MACs on EFT transaction
request messages and transaction response messages, these MACs are based
on a KP and PIN supplied and known to the cardholder. Thus the cardholder
himself is able to launch active attacks by generating valid MACs for arbitrary
transaction response messages. This action is referred to as a misuse ofper-
sonal key attack. An opponent who supplies a bogus personal key to the
EFT terminal can also forge transactions. This action is referred to as a fake
personal key attack.

Fraud could be perpetrated against the system by initiating a transac-
tion at an EFT terminal using any (bogus or valid) KP and PIN known to
the cardholder. A microprocessor previously placed in the communication
line between the EFT terminal to its host could be programmed to intercept
and prevent all opponent-initiated transactions from reaching the issuer. The
microprocessor would then generate a fraudulent response message and valid
MAC and send them to the EFT terminal. The EFT terminal would respond
as though it were in communication with the issuer, when in fact it would be
in communication with the opponent’s microprocessor.

The attack illustrates why the process of authenticating transaction response
messages must be based on secret information (a secret key) known only to
the issuer or to the issuer and originating terminal, but not to the cardholder.

THE PIN/PERSONAL KEY APPROACH 551

No Interlocking with KP

When a secret terminal key is employed, the suggested protection against
bugging and probing is to interlock the terminal key so that any penetration
of the device causes the key to be erased and the device to become inopera-
tive. In the personal key approach, there is no secret key to interlock. In that
case, a defense against penetration of the terminal must be provided by other
methods, e.g., using an integrated alarm system. In addition to increasing cost,
alarms may malfunction or become inoperative or be intentionally bypassed
during an attack. Moreover, an indication of the alarm’s ineffectiveness is
not necessarily obvious.

Personal Key Approach with an Intelligent Secure Card

Although several objections have been raised with regard to the personal key,
most of these are objections to storing the key on the magnetic stripe card.
A valid objection to the personal key, however, is that authentication of
transaction response messages must not be based on a key known to the card-
holder (legitimate user or opponent). Otherwise, the system is exposed to
active fraud threats wherein valid MACs would be generated on fraudulent
transaction response messages.

An Ideal Intelligent Secure Card

The objection to the “personal key approach,” stated above, could be
largely overcome by employing an intelligent secure card with the following
properties:

1. Secret information stored on the card cannot be probed or read.

2. It is not possible to manufacture counterfeit cards.

3. It is not possible to write a bogus key on a genuine card.

An intelligent secure card with the above properties is defined here as an ideal
intelligent secure card (“ideal” mainly because the properties of the card
are unattainable with present technology).

The intelligent secure card must have some identifying property or feature
that could be checked at the time of its use to distinguish it from a bogus
card. Otherwise, an opponent may be able to manufacture inexpensive bogus
cards which do not have the properties of the intelligent secure cards, but
nevertheless satisfy the interface requirements of the entry point.

With an ideal intelligent secure card, all cryptographic operations would
be performed on the card using KP. KP would be used to encrypt and protect
the PIN and to generate MACs on the transaction request and transaction
response messages.

Loss and theft of cards and copying card information present no threat to
the secrecy of KP since secret information stored on the card cannot be as-
certained due to property 1. The fake personal key attack is blocked since

System
User

Ideal
Intelligent

Secure
Bank Card

EFT
Terminal

System Nodes

Acquirer’s Issuer’s
Host Switch’s Host

(Inst. X) Host (Inst. Y)

Permanently Installed Keys

none KP none none none KMHiss

Keys Used for MAC Generation on the Transaction Request Message, Mreq

none KTRcard,iss
(dynamically
generated from
KP and PIN)

none none none KTRcard,iss for each mem-
ber of institution Y
(dynamically generated or
stored)

Keys Used for MAC Generation on the Transaction Response Message, Mresp

none KTRcard,iss
(dynamically
generated from
KP and PIN)

none none none KTRcardjss for each mem:
ber of institution Y
(dynamically generated or
stored)

Note: Keys associated with personal verification at the issuer (and perhaps the switch) are not shown.

Legend :

KMH: Host master key
KTR: Transaction key (used for message authentication, e.g., KTRlcard,iss = Dmm(ID))

KP: Personal Key

Table 11-6. Keys Defined for the PIN/Personal Key Approach Using an Intelligent Secure Card

THE PIN/PERSONAL KEY APPROACH 553

manufacturing or changing a bank card is considered not possible due to
properties 2 and 3. Cardholders would not be given their personal keys (only
the issuer would know the KPs), thus blocking misuse of personal keys by
legitimate users. In effect, the issuer would determine all card information,
including the user’s personal key. Cardholders would be prevented from ob-
taining their KPs since they cannot read the information due to property 1.

Furthermore, because all cryptographic operations would be performed
on the card, it is unnecessary to transmit KP to the entry point. Thus, KP
would not be exposed at the terminal. The ideal intelligent secure card would
also eliminate the need for storing a key in the terminal. Hence, an extremely
simple key management could be implemented. No additional system keys
would be needed with the possible exception of an authentication key at
the issuer if personal authentication codes are used.

There is, however, one remaining exposure with this approach. After all
checking has been done on the bank card, the terminal must be informed of
the outcome (positive or negative). But since there are no keys stored in the
terminal, data communications between the card and terminal cannot be
authenticated. Therefore the integrity of this communication path must be
assured independently. Otherwise, a negative response could be changed to
a positive response (again allowing fraud to be committed).

A summary of the keys required with the PIN/personal key approach is
provided in Table 1 l-6. A description of the PIN/personal key approach when
used in conjunction with an intelligent secure card is summarized in Tables
1 l-6 and 1 l-7. The tables show the flows of information from the card to
the issuer (via the EFT terminal) and from the issuer to the EFT terminal
(via the card), and include a description of the keys and MACs used in the
message authentication process.

Comparing Tables 1 l-6, 1 l-7, and 1 l-8 with those of the PIN/system key
approach (Tables 11-3, 1 l-4, and 1 l-5), one observes that a simpler key
management is achieved with the PIN/personal key approach.

The personal key approach provides adequate EFT security if the require-
ments of an ideal intelligent secure card are met. However, the approach has
one major drawback; it is unlikely that an attractively priced card meeting
these requirements can be produced with current technology. Despite this
drawback, the intelligent secure card does offer the potential for improved
EFT security if used in conjunction with personal and system keys, as dis-
cussed in the section The PIN/Personal Key/System Key (Hybrid Key Man-
agement) Approach Using an Intelligent Secure Card.

A Practical Intelligent Secure Card

The requirements for an ideal intelligent secure card are unattainable for the
following reasons. First, it is unlikely that probing for card information can
be prevented. With enough time and resources, information on the card could
be recovered. Second, since institutions must be able to arrange for the manu-
facture of cards, an opponent must be assumed to have the same opportunity.

A more realistic objective would be to make it prohibitively expensive for
an opponent to obtain only a few cards, by forcing him to assume the total
cost and burden of becoming a manufacturer. Since the opponent would

System Nodes

System
User

Ideal
Intelligent

Secure
Bank Card

EFT Acquirer’s
Terminal Host

Switch’s
Host

Issuer’s
Host

1 2
Enter PIN and Generate Tcard
transfer to card and transfer to
via terminal. terminal.

5
Compute
MAC 1 cardjss
with
KTRcardjss.

6
Send Mreq and
MAClcardjss
to terminal.

3
Read card information
and formulate Mreq
which includes TODacq
and Tcard.

4
Send Mreq to intelligent
secure card.

7
Forward received Mreq
and MAC 1 card,iss to
acquirer.

8 9 10
Forward received Mreq Forward received Mreq Check received
and MAC 1 card,iss to and MAClcard,iss to MAClcard,iss with
switch. issuer. KTRcard,iss of reference

and TODiss of reference.

11
Verify user.

12
Decide if Mreq is to be
honored.

13
Formulate Mresp which
includes Tcard.

Note: It is assumed that the acquirer periodically sends time-of-day information (TODacqJerm) to the terminals in its domain. The card also
generates time-variant information (Tcard) which is transmitted to the issuer. The TOD stored at the other network host nodes (TODsw
at the switch and TODiss at the issuer) is assumed to be equal to TODacq within an allowable range (ATOD).

The integers 1-l 3 in the table show the sequence of steps in the transaction,

Table 11-7. Information Flow from Card to Issuer-PIN/Personal Key Approach with Intelligent Secure Card

System
User

Ideal
Intelligent

Secure
Bank Card

EFT
Terminal

System Nodes

Acquirer’s Switch’s Issuer’s
Host Host Host

19
Check received
MAC2iss,card
with KTR of ref-
erence and Tcard
of reference.

20
Decide if Mresp
should be accepted
or rejected.

21
Notify terminal to
process transac-
tion if Mresp is
accepted; other-
wise notify
terminal to abort
transaction
request*.

18 17 16 13
Forward received Mresp Forward received Mresp Forward received Mresp Formulate Mresp which
and MAC2iss,card to and MACZiss,card to and MAC2iss,card to includes Tcard.
card. terminal. acquirer.

22 14
Initiate action based on Generate MAC2iss,card
decision made by using KTR.
intelligent secure card.

15
Send Mresp and
MAC2iss,card to
intelligent secure
card via switch,
acquirer, and
terminal.

*This response to the terminal cannot be authenticated since there is no terminal resident key.

i The integers 13-21 in the table show the sequence of steps in the transaction.

Table 1 l-8. Information Flow from Issuer to Terminal-PIN/Personal Key Approach with Intelligent Secure Card

556 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

normally need only a few cards, the cost per card would be very high. It
seems much more reasonable that an intelligent secure card could be manu-
factured (designed and mass-produced) with the property that secret infor-
mation stored on the card could not be read, skimmed, or copied during
periods when the card is used (and exposed) routinely to transact business.
It is assumed that secret information stored on the card would be secure
against reading, skimming, or copying even if the card is unwittingly entered
into a fake or modified terminal under the control of an opponent, or if, as
a part of the procedure for transacting business, the cardholder gives his card
to a dishonest merchant (or employee of the merchant) who, in turn, sur-
reptitiously enters the card into a special reading device hidden from view.
An intelligent secure card with these properties is defined here as a practical
intelligent secure card, or intelligent secure card, for short.

To summarize, the following properties are assumed for the intelligent
secure card.

1. Secret information stored on the card cannot be probed or read by
personnel or equipment handling the card during routine business
transactions. Sophisticated techniques and expensive equipment would
be required to probe or write secret card information, although it is
assumed that this could be accomplished in a laboratory environment.

2. It is very expensive to manufacture counterfeit cards on a small scale.

3. It is very expensive to write a bogus key on a genuine card.

The intelligent secure card, as assumed here therefore, only defends against
attacks of short duration that do not injure or destroy the card or the secret
information stored thereon. It is assumed that a destroyed, injured, or non-
functional card would be promptly reported to the issuing institution, and
that the issuing institution would invalidate the corresponding account and
either reissue a new card or reinitialize the existing card with a new key (as
appropriate). Likewise, it is assumed that lost and stolen cards would be
promptly reported to the issuing institution and that a similar action would
be taken by the issuing institution to invalidate the accounts and reissue new
cards to the affected cardholders.

However, since one must assume that an opponent could manufacture bogus
cards and write bogus keys on them, the PIN/Personal key approach is still
exposed to a fake personal key attack. Since one must assume also that a
legitimate user can determine his KP if he is willing to overcome the obstacles
identified in item 1 above, the exposure to misuse of KPs also exists. For
these reasons, the intelligent secure card does not overcome the basic objec-
tion to the personal key approach stated previously; namely, authentication
of transaction response messages must not be based on a key known to the
cardholder (legitimate user or opponent).

This objection (to the personal key approach) can be overcome by basing
authentication of transaction response messages on a secret terminal key in
addition to a personal key (i.e., the key management employs both personal
and system keys). Such hybrid key management used together with an intel-

THE PIN/PERSONAL KEY/SYSTEM KEY APPROACH 557

ligent secure card offers the potential for increased security in future EFT
applications.

THE PIN/PERSONAL KEY/SYSTEM KEY (HYBRID KEY MANAGEMENT)
APPROACH USING AN INTELLIGENT SECURE CARD

Discussed here is a system which provides a higher level of security than either
the PIN/system key or the PIN/personal key approach. From a security point
of view, it is thus a preferred solution. The approach combines the features
of an intelligent secure card (see the section Personal Key Approach with an
Intelligent Secure Card) with that of hybrid key management based on both
system keys and personal keys. 3o For reasons of completeness, some of the
ideas and terms discussed above are repeated here.

Hybrid key management used together with the intelligent secure card
solves the following problems individually associated with the PIN/system
key and PIN/personal key approaches, respectively:

1. The PIN/system key approach does not provide isolation of institu-
tions as far as personal verification and message authentication are
concerned, although it is an acceptable solution.

2. The PIN/personal key approach in combination with an intelligent
secure card, although it provides a higher degree of isolation for per-
sonal verification than does the PIN/system key approach, is subject
to misuse of KPs and fake KPs. It is, by itself, an unacceptable
solution.

With a combination of both approaches (i.e., PIN/system key and PIN/
personal key), personal verification can be isolated among institutions and
the threats of misused and fake KPs are greatly reduced. As shown below, an
attack will succeed only if system keys are subverted and personal keys are
manipulated at the same time. In addition, the end-to-end message authenti-
cation procedure based on KP and PIN is combined with personal verification
eliminating the need for generation of a separate authentication parameter
for personal verification.

Although the hybrid approach combines two key management schemes
(system and personal key), it is actually less complex than the PIN/system
key approach. Rerouting attacks are of no concern because of the personal
key, which eliminates some of the functions needed in the PIN/system key
approach. It is also more robust since security exposures occurring at inter-
mediate nodes have only a limited effect on overall security.

JO An increase in security over the PIN/system key approach can be achieved by coupling
a hybrid key management with a magnetic stripe card. Storing a personal key on the mag-
netic stripe card allows a migration path to a hybrid key management approach coupled
with an intelligent secure card. The details of such an approach are omitted, although the
reader should have no difficulty in adapting the hybrid key management approach
described here to work with a magnetic stripe card.

558 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Description of a Hybrid Key Management Approach

The system discussed here is composed of host processing centers (HPCs)
and EFT terminals, interconnected in an EFT network supporting inter-
change.31 Each network node has a DES cryptographic capability either
integrated into the node or contained in a separate dedicated device called
a security moduIe32 attached to the node via a secure, local cable. Each
security module has a set of cryptographic operations that may be invoked
by the supporting device or HPC via a defined interface. The cryptographic
operations perform data encryption and decryption and key translations
necessary to the management of EFT transactions. No clear cryptographic
keys ever exist outside the security module, except during periods when they
are initially generated or entered into the system,

Keys stored in a security module are protected by implementing adequate
physical security measures and/or providing a set of interlocks that will erase
all secret information if penetration of the security module or containing
device is detected.

It is assumed (as in the discussion of the PIN/personal key approach,
Table 1 l-6), that a transaction key (a dynamically created key used solely
for authentication, denoted by KTRl), is used to generate the MAC on the
transaction request message (Mreq). KTRl is a one-way function of the PIN,
the personal key, and the user identifier, so that each user is assigned a dif-
ferent value of KTRl. (Other variations are possible in which different
KTRl keys are generated for the same user on successive transactions, but
are omitted from the discussion.) End-to-end authentication is made possible
by storing a copy of each user’s KTRl at the issuer. At the entry point, KTRl
is dynamically created from user-supplied information. Since the MAC de-
pends only on secret user-supplied information and other nonsecret informa-
tion, it is by definition an authentication parameter (AP). Thus authentication
of the transaction request message and personal verification are integrated
into one procedure.

The response message is authenticated on the basis of a time-variant key
KSTR generated randomly at the issuer and transmitted to the terminal in
the form Ex,,tie(EKrR2(KSTR)) (i.e., doubly encrypted under two keys,
KTR2 and Knode). KTR2 is defined by the one-way function KTR2 =
D,,,(Tcard), where KTRl is the same key used to generate the MAC on
the transaction request message and Tcard is a nonsecret time-variant
quantity generated by the intelligent secure card. Knode is a time-variant
system key shared between two logically adjacent network nodes (e.g., the
terminal and acquirer, the acquirer and switch, and the switch and issuer).
Thus as KSTR is routed from the issuer to the terminal it is encrypted and
reencrypted successively under different Knode keys. For example, Knode

31 For simplicity, the control units shown in Figure 1 l-l are omitted.

32The security module provides the same function as a cryptographic facility (see The
Cryptographic Facility, Chapter 4). The term “security module” is used here to maintain
consistency with the discussion in Chapter 10 of the PIN/System key approach.

THE PIN/PERSONAL KEY/SYSTEM KEY APPROACH 559

would equal the terminal master key KMT on the link between the acquirer
and terminal.

At the time Tcard is generated, KTR2 is also generated by the intelligent
secure card. KTR2 and Tcard are then sent to the terminal where KTR2 is
saved for later use in decrypting KSTR and Tcard is forwarded to the issuer
in the transaction request message. The issuer generates KTR2 from Tcard
(which it receives in Mreq) and KTRl (which is stored in the issuer’s data
base). In a sense, KTR2 is nothing more than a time-variant personal key
with the property that knowledge of KTR2 does not reveal KP. Note also
that KTR2 is not routed through the system (i.e., the terminal and issuer
establish KTR2 without involving other system nodes or depending on these
nodes to protect the secrecy of KTR2).

At the terminal, the encrypted KSTR arrives in the form
E KMTacq,term EKTR2(KSTR). It is decrypted first with KMT and second with
KTR2 to recover KSTR. Mresp is authenticated by generating a MAC of
reference from Mresp and KSTR and comparing it for equality with the re-
ceived MAC. 33

The Reason for Doubly Encrypting KSTR

The explanation of why KSTR is doubly encrypted under KTR2 and Knode
rather than being encrypted only under Knode is now provided. If KSTR is
encrypted under both KTR2 and Knode, the message authentication process
associated with transaction response messages can be subverted (i.e., bogus
messages and MACs acceptable to the terminal could be generated) only
if both keys are compromised. An opponent must therefore compromise a
Knode key, or some other system key that would allow a Knode key to
be determined, and learn the value of KP on some intelligent secure card.
With knowledge of KP it would be an easy matter to calculate the value
of KTRl for a bogus PIN and ID entered at the terminal. The value of Tcard
could also be intercepted from the transmitted transaction request message,
which would allow KTR2 to be calculated. With knowledge of KTR2 and
Knode, the opponent (using an active wiretap) could then intercept and block
the transaction response message and send a fraudulent transaction response
message and MAC to the terminal in its place that would be accepted as
valid.

The suggested method of doubly encrypting KSTR under KTR2 and Knode
provides additional security (over a method of encrypting KSTR under Knode)
only if the cost or work factor to read or write a key on a card or manufacture
bogus cards is significant. If the card’s defenses can be overcome easily in a
laboratory at a low or moderate cost, encryption of KSTR under KTR2 does
not add significantly to the security of KSTR. In such a case, the protocol
could be modified so that Tcard and KTR2 are not generated by the intelli-
gent secure card and Tcard is eliminated from the transaction request message.
At the issuer, KSTR is encrypted only under Knode. Otherwise, the protocol
is the same.

33There is no need to protect the encrypted value of KSTR with a MAC since, if changed,
KSTR will not decrypt correctly and an incorrect MAC of reference will be generated.

560 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Security Module 1 D, i

r
Random Number

I
. .

KPi

I I- +
PINi

+
KTRli

Figure 11-24. Generation of KP, PIN, and KTRl in Issuer’s Security
Module - Initialization Process

PIN and KP Selection

While there are several ways in which PINS and personal keys could be selected,
it will be assumed that they are produced by the issuer using the security
module as a generator of pseudo-random numbers. The generated PIN is
printed on a PIN mailer and the corresponding KP is written on the bank
card. The PIN mailer and bank card are then forwarded to the designated
customer. KP and PIN are also Exclusive-ORed to form the intermediate
value KP @ PIN, which is then used as a key to decipher ID and generate a
transaction key, KTRl = DKP e PIN(ID).34 The generation of KP, PIN, and
KTRl is shown in Figure 1 l-24. KTRl is stored in the data base of the
issuer’s HPC encrypted under a variant of the host master key.

PIN and KP Validation

Each time the customer initiates a transaction at an EFT terminal, the entered
PIN is transferred to the bank card where it is Exclusive-ORed with KP to
form the intermediate value KP @ PIN (Figure 1 l-2.5), which in turn is used
with ID to generate KTRl. KTRl is then used to generate a MAC on the
transaction request message. A time-of-day clock value (time stamp) is in-
cluded in the message to ensure that it is time-variant. (A separate authenti-
cation parameter is not transmitted in the message since personal verification
is combined with message authentication by basing the MAC on KP and
PIN.)

At the issuer, the message is validated using a corresponding KTRl of

MFor an explanation of the advantage of making KTRl a one-way function of KP, PIN,
and ID, see footnote 27.

THE PIN/PERSONAL KEY/SYSTEM KEY APPROACH 561

PINi
(Via EFT Terminal)

Bank Card

KPi IDi

Transaction Key
used to Generate
MAC

I ä KTRli

Figure 11-25. Regeneration of the Transaction Key on the Bank Card -
Part of the Verification Process

reference which is filed under the user’s identifier (ID) in the data base of
the issuer’s HPC.35 The KTRl of reference and the received message are then
used to generate a MAC of reference. The MAC of reference and the received
MAC are compared for equality. If they are equal, the issuer concludes that
the content of the message is correct and that the secret information (KP
and PIN) used in the computation of the MAC is properly related to the
claimed ID thus verifying the user at the same time. By verifying that the
time stamp in the received message correlates properly with the corresponding
reference maintained by the issuer, the issuer can determine that the received
message is not a stale message. More details are provided below in the sections
A Hybrid Key Management Approach for Noninterchange, and A Hybrid
Key Management Approach for Interchange.

System Key Generation

The keys for an institution’s terminals are produced by that institution’s
security module, using the module as a generator of pseudo-random numbers.
The keys are transferred from the module to a secure device (e.g., a printer)
and they are then transported and installed in the appropriate EFT terminals.
Each terminal master key is also encrypted under a variant of the host master
key (derived in the issuer’s security module) and then stored in the data base
of the issuer’s HPC (filed under the terminal identifier, TID). It is assumed
that each terminal in the network has a unique identifier TID, and that the
TID is included in each transaction request message.

Key Management Considerations for the Hybrid Approach

The major objective of the PIN/personal key/system key approach is to use
externally supplied keys as well as system keys (but only to the extent that

35 It is assumed that the integrity of the data base can be guaranteed by the issuer’s HPC.
Various cryptographic techniques can be used to achieve data base integrity (see Authen-
tication of Time-Invariant Data, Chapter 8).

562 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

they are of maximum use). Since it is secure to base the required reference at
the issuer for MAC checking of the transaction request message entirely on
KP and PIN (as discussed above for the PIN/personal key approach), this
approach is also used in a hybrid key management scheme. As a consequence,
the personal verification process is separated among institutions. On the other
hand, since KP alone does not provide a secure method for MAC checking of
the transaction response message, the required reference at the entry point
is also based, in addition to KP, on a system key. This requires the pres-
ence of a terminal resident key (e.g., a terminal master key). In addition,
keys used for MAC checking at intermediate nodes must be shared among
institutions and thus the message authentication process cannot be isolated
to each individual institution. However, greater separation can be achieved
by coupling message authentication of transaction response messages to PIN
and KP. This is achieved in the implementation discussed here by introduc-
ing the end-toend transaction session key, KSTR, which is routed from the
issuer to the terminal encrypted under both KTR2 = DKTRl (Tcard) and
Knode. (A still higher degree of separation can be achieved if digital signa-
tures are used as discussed in the section below, Security Enhancements
with Digital Signatures.)

In summary, KTRl is used to generate the MAC on the transaction request
message, KSTR is used to generate the MAC on the transaction response mes-
sage, and KTR2 is one of the keys used to encrypt KSTR for transmission
from the issuer to the entry point.

In an interchange environment, the issuer has no knowledge of the acquirer’s
terminal master keys. In that case, an interchange key (KI), in addition to
KTR2, is used to encrypt and forward transaction session keys from one
institution to another, e.g., from one institution to a switch, from the switch
to an institution, or from one institution to another institution. It is assumed
here that interchange keys are generated on a bilateral basis, so that two
institutions (or an institution and its EFT switch) can share a common inter-
change key. An Interchange key is just one special form of node key (Knode).
A terminal master key is also a node key.

The MAC generated on the transaction response message using KSTR has
the advantage that it can be sent to the originating EFT terminal without
undergoing any cryptographic transformation. Only the key (Knode) which
protects EKTRZ(KSTR) changes as the transaction response message traverses
the network.36

Hybrid Key Management Approach for Noninterchange

Each time a customer initiates a transaction at an EFT terminal, the cus-
tomer’s card is inserted into the terminal, or suitable read/write device
attached to the terminal, and the customer enters his PIN via a suitable entry
device (PIN pad or keyboard). The PIN is routed to the card where it is
Exclusive-ORed with KP thus generating KTRl in the manner described

36A~ discussed above, EKnodeEKTRZ(KSTR) is routed back to the terminal which has
knowledge of KTR2. Encrypting with Knode, where Knode changes from node to node,
assures that attacks which manipulate KP will not succeed.

THE PIN/PERSONAL KEY/SYSTEM KEY APPROACH 563

above (Figure 1 l-25). The card also generates a random number, Tcard, which
is decrypted under KTRl to produce KTR2. KTR2 and Tcard are then routed
to the terminal where KTR2 is stored for later use in authenticating the
transaction response message.

Based on the customer’s request, the terminal formats a transaction request
message, which consists of a time stamp (TOD, time-of-day), time-variant
information generated by the terminal (Tterm, a message sequence number),
time-variant information generated by the card (Tcard), the user ID, the ter-
minal ID, the transaction type, and the transaction data (Figure 1 l-26). The
time stamp is obtained from the acquirer (which is also the issuer since a
local transaction is described),37 at the request of the EFT terminal. A dif-
ferent request could be made for each customer-initiated transaction. Another
possibility is that the acquirer periodically sends time information to the
terminal.

The purpose of the time-stamp is to provide the terminal with time-variant
data that can be used in the preparation of the transaction request message.
This permits the issuer (which, in this case, is the acquirer) to detect stale
transaction request messages that may be injected into the communication
path. It is assumed that the issuer’s HPC maintains a time-of-day clock that
can be read to obtain a time stamp.

The purpose of the message sequence number, generated by the EFT ter-
minal, is to provide the issuer with time-variant data that can be used in the
preparation of the transaction response message. This permits the EFT ter-
minal to detect stale transaction response messages injected into the com-
munication path. (Without authentication of the transaction response message,
a replay attack is possible.) The message sequence number is incremented on
each new transaction request message, independent of the customer initiating
the transaction.

The purpose of the time-variant information generated by the intelligent
secure card is to allow the terminal and issuer to establish a time-variant
key, KTR2 = D KTRl (Tcard), without involving other system nodes or relying
on these nodes to protect the secrecy of KTR2. In this manner the terminal

Time
stamp

(TOW

Time-Variant Time-Variant User Terminal Transaction Transaction
Information Information Identifier Identifier Tm Data
Controlled Controlled
By Card By Terminal

(Tcard) (Tterm) (IDI (TID)

Figure 11-26. Transaction Request Message Formatted at the EFT Terminal

37To eliminate the need for the terminal (acting on behalf of the user) to request a time
stamp from the issuer, the issuer could also record a current “time reference” for the user
in his HPC’s data base. For example, a message sequence number obtained from a one-up
counter on the bank card could be used in place of the time stamp.

564 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

and issuer share a key that allows end-toend authentication of Mresp with-
out jeopardizing the security of KTR I, KP, or PIN.

Once the transaction request message has been formatted, it is transferred
to the bank card where a MAC is generated using KTRl. The MAC is then
returned to the terminal. Generation of a transaction request message and
corresponding MAC is shown in Figure 1 l-27. The message and MAC are
then sent to the issuer.

As mentioned earlier, the issuer validates the message using a corresponding
KTRl of reference which is filed under the user’s ID in the data base of the
issuer’s HPC. The KTRl of reference and the received message are then used
to generate a MAC of reference, and the generated MAC of reference is com-
pared for equality with the received MAC. The time stamp is also checked
for currency. If both MACs are equal and the time stamp is within the pre-
scribed bounds, the message and user are validated. Message authentication
at the issuer’s HPC is shown in Figure 1 l-28.

If the received MAC and time stamp are valid and the transaction request
can be honored, the issuer’s HPC formats and sends a positive transaction re-
sponse message to the originating terminal. Otherwise, if any one of the con-
ditions is not met, a negative transaction response message is sent to the
originating terminal. Only the positive response is important to the discussion,
since a negative response could be defined as any response other than a posi-
tive response, e.g., a random bit pattern.

.A positive transaction response message consists of a doubly encrypted
transaction session key E xMrExrRZ(KSTR) and a MAC generated on the
transaction request message using KSTR. The procedure for generating a
positive transaction response message (Figure 1 l-29) is as follows: Using the
received TID, the HPC identifies the corresponding encrypted terminal master
key in its data base and passes this to the security module along with the
received transaction request message. The security module first generates a
random number, defined as a transaction session key (KSTR), which it then
uses to generate a MAC on the transaction request message. Next, KTRl is
recovered from the issuer’s data base and used together with the received
value of Tcard to generate KTR2 = D xTR1(Tcard). Finally, the encrypted
terminal master key is read from the issuer’s data base, decrypted, and used
with KTR2 to doubly encrypt KSTR. The doubly encrypted transaction ses-
sion key, ExMTExrRZ(KSTR), and MAC are returned to the issuer’s HPC
whereupon they are sent to the originating terminal.

At the terminal, the procedure for validating the transaction response mes-
sage (Figure 1 l-30) is as follows. The doubly encrypted transaction session
key, ExMrExr,,(KSTR), is decryted under the terminal master key (KMT)
resident in the terminal. Next E xrRZ(KSTR) is decrypted under the value
of KTR2 forwarded previously from the card to the terminal. KSTR is used
to generate a MAC of Reference on the original transaction request message
which is assumed to have been saved in the terminal. The MAC of reference
is then compared for equality with the received MAC. If the two MACs are
equal, the EFT terminal honors the requested transaction; otherwise, the
EFT terminal informs the customer that the requested transaction has been

Transaction Request

Bank Card

I
Tcard 4

3 D
c

I a I
v

Trnncnrtinn Rc=nlleSt Send to _ _ . -

i

KTR2 - forward to terminal

*A copy of the transaction request message is retained by the EFT terminal.
Figure 11-27. Generation of the Transaction Request Message and MAC at the EFT Terminal

566 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Time Tcard Ttenn UW Terminal TWlS. TWIS.
stamp ID ID (TID) Type Data MAC

(TOD)
I

Transaction Request Message

Encrypted
KTRl Table

Locate
encrypted
KTRl of

L reference

c

(indexed by
use, ID) and
decrypt to
recover KTR 1.

KTRl of
Reference Generate

MAC of
Reference

Rf

Note: A validated message also validates the user,
since KTRl is a function of KP, PIN,

Send Positive Send Negative
Response Response

Figure 1 l-28. Message Authentication at the Issuer’s EDP System

disallowed. In any case, the EFT terminal sends a message to the issuer, in-
forming the issuer of the final disposition of the requested transaction. A
MAC for this final message can be generated securely based on KSTR.

Hybrid Key Management Approach For Interchange

An interchange transaction originates in the same manner as does a local
transaction. The message and MAC based on KTRl are sent to the issuer
via the acquirer and switch. It is assumed that the proper message routing
can be determined from information contained in the message.38 (Current
bank card standards call for an institution code to be the first several digits
of the personal account number [161.)

%Once the destination has been determined, the network routing information will appear
in the message’s header.

THE PIN/PERSONAL KEY/SYSTEM KEY APPROACH

Authenticated Transaction Request Message
Time Tcard Tterm User Terminal Trans. Trans.
stamp ID ID (TID) Me Data
(TOW l-

I I

KTRi-Table
1 Encrypted

recover KMT.

c
KTR2

KSTR

t t
Transaction Response

Message E~~~E~~~z(KSTR) MAC

Send to Originating EFf Terminal __*

Figure 11-29. Generation of the Positive Transaction Response Message at the Issuer

The issuer validates the message using the KTRl of reference stored in its
data base, as previously described. The time stamp is also checked for cur-
rency (i.e., that the clock readings do not vary by more than some fixed
limit). In checking for timeliness, it is assumed that the clocks of all institu-
tions are synchronized and do not vary by more than small amounts. Where
transactions cross time zones, either automatic adjustments are assumed to
be present or a common fixed time is used (e.g., Universal Mean Time).

If the received MAC and time stamp are valid and the transaction request
can be honored, the issuer’s HPC formats and sends a positive transaction
response message to the originating terminal. Otherwise, a negative trans-
action response message (not discussed here) is sent to the originating terminal.

568 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

EKMTEKTR2(KSTR) rv IA(

I

KTR2

1

7

KSTR Generate
b MAC of

Reference

Yes No

+
Accept Reject
Transaction Transaction
Request Request

EFT Terminal

Figure 11-30. Message Authentication at the EFT Terminal

A positive transaction response message consists of a doubly encrypted
transaction session key (KSTR) and a MAC generated on the transaction re-
quest message using KSTR. The procedure for generating a positive transaction
response message is the same as in the case of a local transaction, except
that EKTRZ(KSTR) is encrypted under a key specified by the appropriate
node (an interchange key, KI) rather than a terminal master key. In that
case, EKI~.~~~ EKTRZ (KSTR) and MAC are produced and sent to the switch.
At the switch, EKIiss,sw EKT,,(KSTR) is translated from encipherment under
KIiss,sw (the issuer’s interchange key) to encipherment under KIsw,acq (the
acquirer’s interchange key). EKIsw,acq E,,,,(KTSR) and MAC are then sent
to the acquirer, where EKIsw,acqEK-rRZ (KSTR) is again translated from
encipherment under KIsw,acq (the acquirers interchange key) to enci-
pherment under KMTacq,term (the originating terminal’s master key).39
E KMTacqJerm EKTRZ(KSTR) and MAC are then sent to the originating termi-
nal. At the terminal, the procedure for validating the transaction response
message is the same as in the case of a local transaction.

3gTo thwart message misrouting attacks, the terminal could use KTR2 to generate a MAC
on the routing information contained in the message’s header.

THE PIN/PERSONAL KEY/SYSTEM KEY APPROACH 569

The general ideas as to the keys to be used as well as how data flows to
and from the issuer are shown in Tables 11-9, 1 l-l 0, and 1 l-l 1.

Cryptographic Considerations for an Intelligent Secure Card

Use of an intelligent secure card does require some additional consideration
in the design of secure procedures for personal verification and message
authentication. Computation of AP on the bank card poses a problem that is
not present when AP is computed inside the EFT terminal.

An authentication parameter computed inside an EFT terminal may or
may not involve time-variant information, but an authentication parameter
computed on the card must always involve time-variant information. The fol-
lowing example explains the reason. A transformation applied to secret user-
supplied information inside a terminal (such as a one-way function or
encryption under a secret terminal key) prevents an intercepted output from
being reentered (in its original form) as input to the terminal. Of course, the
issuer must trust that the terminal (acting on its behalf) will perform this
transformation with integrity. When an intelligent secure card is used, a
similar transformation performed on the card does not achieve the same end.
In this case, the issuer cannot trust the cardholder, since the cardholder may
be an opponent intent on committing fraud against the system. The issuer
also has no way to ensure that the card computes the authentication pa-
rameter. A bogus card could store an intercepted value and read it out of
storage and pass it to the terminal whenever prompted. To prevent this, the
issuer must require the authentication parameter to be a function of time-
variant information. This forces the intelligent secure card to compute AP
dynamically, and thus prevents the described attack. In the implementation
discussed above, this time variance is achieved with time of day (TOD)
information.

Security Enhancements with Digital Signatures

If institutions do not wish to share secret keys for purposes of authenticating
response messages, digital signatures based on either a conventional or public-
key algorithm could be used (see Digital Signatures, Chapter 9). A public-key
algorithm, however, is more practical, since there are no restrictions on the
number of signed messages that can be sent and received using a single pair
of keys, With a conventional algorithm, each digital signature must be
validated using a separate validation parameter (or pattern of bits).

Consider a digital signature procedure for authenticating transaction
response messages which is based on a public key algorithm. Each institution
would have a public and private key, PK and SK, respectively. The public
key is shared with each other institution and published in a major newspaper
to allow each public key to be independently validated.

In such an approach, the issuer transforms a received transaction request
using his secret key and sends the response to the originating acquirer. The
acquirer recovers the transaction request using the issuer’s public key (which
could be stored in the HPC’s data base). Since the issuer’s secret key is not

System
User

Intelligent
Secure

Bank Card
EFT

Terminal

System Nodes

Acquirer’s Issuer’s
Host Switch’s Host

(Inst. X) Host (Inst. Y)

Permanently Installed Master Keys

none KP KMT KMHacq KMHsw KMHiss

Permanently Installed Interchange Keys

none none none KIacq,sw KIacq,sw
KIsw,iss KIsw,iss

Keys Used for MAC Generation for Transaction Request Message, Mreq

none KTRl card&s
(dynamically
generated from
KP and PIN)

none none none KTRI cardjss for all mem-
bers of institution Y

Keys Used to Protect the Transaction Session Key
Used for MAC Generation of the Transaction Response Message, Mresp

none KSTR received
from issuer;
KTR2cardjss
dynamically
generated from
KTRl card,iss
and Tcard, i.e.,
DKTRI(TC~~Q

KMTacq,term KMTacq,term KIiss,sw
KIsw,acq KIsw,acq

KIiss,sw;
KSTR randomly generated
by issuer; KTR2cardjss
regenerated based on
Tcard and KTRlcard,iss

Note: Keys associated with personal verification at the issuer (and perhaps the switch) are not shown.

Legend:

KMT: Terminal master key
KMH: Host master key

KTRl : Message Authentication Key for Request Messages (Mreq) (e.g., KTRl = DKP~PII-J(ID))
KTR2: Message Authentication Key for Response Messages (Mresp)

KP: Personal Key
KI: Interchange key

Table 11-9. Keys Referenced in the Hybrid Approach

System Nodes

Intelligent
System Secure EFT Acquirer’s Switch’s Issuer’s

User Bank Card Terminal Host Host Host

1 2 3 10 11 12
Enter PIN and Generate Tcard Read card information Forward received Mreq Forward received Mreq Check received
transfer to card and transfer to and formulate Mreq and MAC 1 card jss to and MAC 1 card,iss to MAClcard,iss with
via terminal. terminal. which includes Tterm, switch. issuer. KTRlcard,iss of

Tcard, and TODacq,term. reference and TODiss
5 of reference.

Compute 4 13
MAClcardjss Send Mreq to intelligent Verify user.
with secure card.
KTRlcardJss.

8
6 Store Mreq and KTR2

Generate KTR2 in terminal.
(randomly based
on Tcard, i.e., 9
KTR2 = Forward received Mreq,
D~=nr (Tcard)). MAClcard,iss to acquirer.

7
Send Mreq,
MAClcard,iss
and KTR2 to
terminal.

14
Decide if Mreq is to be
honored.

Note: It is assumed that the acquirer periodically sends time-of-day information (TODacq) to the terminals in its domain. The terminal, on the
other hand, generates random information (Tterm) and sends it to the issuer. This can be done as part of the initiation protocol (Figure
1 l-l 5). The card also generates time-variant information (Tcard) which is transmitted to the issuer. The TOD stored at the other network
host nodes (TODsw at the switch and TODiss at the issuer) is assumed to be equal to TODacq within an allowable range (ATOD).
The integers l-l 4 in the table show the sequence of steps in the transaction.

Table 11-10. Information flow from Terminal to Issuer-Hybrid Approach

System
User

Intelligent
Secure

Bank Card

System Nodes

EFT Acquirer’s Switch’s Issuer’s
Terminal Host Host Host

Decrypt Eg~~~sf~(Q) Translate rzc?eived
21 14

Translate received Decide if Mreq is to be
with KMTacq,term
to obtain Q =
EKTRZ(KSTR)-

26
Decrypt Q with KTR2
of reference to obtain
KSTR of reference.

E ~~swgxq(Q)to

hwracq,term@).

24
Send MAC2iss,card
and E rarracq,term (Q)
to terminal.

E~~iss&Q)to

E~~v,,cq(Qh

22
Send MAC2iss,acq
and E ~rswgcq(Q)
to acquirer.

honored. -

15
Generate KSTR randomly.

16
Compute MAC2iss,term
on received Mreq with
KSTR.

27
Generate MAC2iss,term
of reference on stored
Mresp with KSTR of
reference.

17
Generate KTR2 using
KTRlcardjss of reference
and received Tcard.

575

576 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

shared with the acquirer, an improvement in security is obtained. Further-
more, the message authentication process is now isolated among institutions.
Thus requirement 17 is satisfied.

A MAC based on an acquirer-generated time-variant key (KSTR) is next
produced and the MAC and KSTR encrypted under the terminal master key,
KMT, is forwarded to the originating terminal. The terminal generates a
MAC of reference using the stored KMT, KSTR, and the message of reference,
and compares the result for equality with the received MAC. If the two
MACs were equal, the terminal honors the request; otherwise not.

In effect, a transaction request transformed under the issuer’s secret
key provides the acquirer with the equivalent of a signed message authorizing
the transaction. The acquirer logs all such signed messages until after they
have been cleared via normal accounting methods between respective
institutions.

With such an approach, the acquirer has proof of authorization from the
issuer, and the issuer need not fear that, unwarranted and unprovable claims
will be brought against him from other acquirers. The terminal responds only
to the orders given it by its owning institution (the acquirer), whereas the
acquirer directs the terminal to honor a transaction request only after receiv-
ing a signed transaction response message from the issuer.

Advantages

The PIN/personal key/system key approach using an intelligent secure card
satisfies the EFT security requirement to a much higher degree than either
the PIN/system key or the PIN/personal key approaches. The intelligent
secure card

prevents skimming of KP information during routine operations.

It is assumed that cardholders will take appropriate steps to protect their
cards during periods of nonuse and that they will promptly report lost or
stolen cards. Computations involving KP are performed on the card which
means that KP is not read into the EFT terminal. Therefore,

KP is not exposed to a fake equipment attack,
KP is not exposed to probing or bugging of EFT terminals.

Except for the PIN, which is assumed to be entered into the EFT terminal
where it exists momentarily before being transferred to the intelligent secure
card, secret user-supplied information used in the process of personal verifi-
cation is known only to the cardholder and issuer. Because KP and PIN
together have more than 56 independent secret bits,

exhaustive attacks (trying all PIN and KP combinations) at the point of entry are
infeasible,
dictionary and exhaustive attacks (on the system) are infeasible,
a one-way function of PIN and KP is possible,

which implies that it is not possible to deduce PIN and KP or to determine

KEY MANAGEMENT CONSlDERATlONS 577

equivalent values of PIN and KP from information transmitted throughout
the system, and

there is no need to involve or depend on encryption under secret system keys.

The result is that personal verification and authentication of transaction
request messages can be isolated to a very high degree, since only the card-
holder and issuer are involved. True end-toend cryptographic protection is
thus achieved between the cardholder and issuer, and requirement 5 is
satisfied. System keys (in addition to personal keys) are used for the authen-
tication of transaction response messages, which means that

EFT terminals are not exposed to a misuse of a personal key attack or a fake personal
key attack.

However, complete isolation with regard to the authentication of transaction
response messages (requirement 17) is achieved only if a scheme for digital
signatures is used by the institutions in the interchange network. With
digital signatures,

no sharing of secret keys among institutions or with a switch would be required, no
cryptographic translations of data as they traverse the network would be required, and
the acquirer would have an electronically signed receipt for each transaction request
authorized by the issuer.

KEY MANAGEMENT CONSIDERATIONS-SYMMETRIC
VERSUS ASYMMETRIC ALGORITHMS

Frequently, the argument is made that key management is simplified with
public-key (asymmetric) algorithms as opposed to conventional (symmetric)
algorithms like the DES. 4o To prove or disprove such a general statement,
however, is a nontrivial problem.

It must be recognized at the outset that to initialize a system employing
symmetric algorithms requires a secure path to distribute the secret keys
(e.g., by courier). A system employing asymmetric algorithms also needs a
secure path for it’s secret keys. But to distribute public keys requires only
a channel with integrity (i.e., it must be assured that the correct public keys
are distributed). An asymmetric system will obviously not be much simpler
than a symmetric system if the number of secret keys to be distributed is
comparable. Thus it will depend on the particular application if key manage-
ment will or will not be simpler with a public-key algorithm.

In the EFT design discussed below (see A Cryptographic System Using an
Intelligent Secure Card and A Public-Key Algorithm) an implementation is
suggested which uses only public keys at system entry points. Secret keys are
required at host nodes and on bank cards in the form of personal keys. Such

40The term asymmetric indicates that the encrypting and decrypting keys are different
whereas the term symmetric indicates that the encrypting and decrypting keys are (basic-
ally) the same.

578 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

an implementation offers an advantage over the hybrid key management
approach discussed above since it provides a higher degree of isolation among
institutions. Before embarking further into EFT system designs, some general
ideas are worth examining.

In particular, it is important to distinguish between implementations where
(1) cryptographic authentication alone or authentication as well as secrecy is
required and (2) where secrecy but not authentication is required. In the
former case it is not generally clear if there is a major difference in key
management complexity between both approaches. However, in the latter
case (secrecy without authentication) the public-key approach definitely
results in simpler key management. Comparisons are made here in terms of
the number of keys stored in the system. The details of how the system must
be initiated are not given. Thus the final verdict of which approach is simpler
may very well depend on the protocols which must be used to initialize the
system.

Authentication With and Without Secrecy

An implementation that comes to mind first is probably one where n users in
the system wish to communicate with each other using personal keys. Sys-
tem involvement is thus minimized in such an approach.

In the asymmetric (e.g., RSA) approach, each user defines his own secret
key and corresponding public key. Since the integrity of the public keys
must be assured (otherwise authentication is not possible) they will most
likely be stored at a system node defined as the key distribution center
(KDC).41 The process of storing public keys requires that users are identified
before a public key is accepted by the KDC. (Otherwise an opponent could
masquerade as a legitimate system user.) Once this process is completed, the
KDC has the added responsibility to route public keys to the appropriate
system entry point in such a way that they can be authenticated by the re-
quester. This requires the presence of a secret key belonging to and stored
within the KDC. Consequently, a secret key (SKu, or universal secret key)
and corresponding public key (PKu) are defined by the KDC.

If user i wants to communicate with user j, he would request user j’s
public key, PKj, from the KDC. To assure that correct (current, not stale)
PKs are received, a handshake protocol between the requesting user and the
KDC is defined wherein user i sends a random number, RNi, together with
other information, to the KDC in the form IDi, IDj, . . . , EPKu(DsKj(IDi,RNi)).
The KDC would then look up user i’s public key based on IDi obtained from
the request message to recover RNi (using SKu and PKi). The quantity
EPKi(DsK” (IDi, PKj, RNi)) is created next and sent to user i who subsequently
deciphers with SKi and enciphers with PKu to recover PKj and RN. If the

41 One might also consider an approach in which the set of public keys are published in a
directory, eliminating the need for a KDC. But this requires that users input data (i.e.,
with the RSA algorithm on the order of 200 decimal digits each, see Chapter 2). In addi-
tion, a practical method must be found to periodically update the directory. Furthermore,
the integrity of the public keys must be assured. A KDC solves all of these problems very
efficiently.

KEY MANAGEMENT CONSIDERATIONS 579

Key Distribution Center

IDI; PKl; D,,,Pl, PKl)
ID2; PK2 ; Ds,,(ID2, PW

IDn; PKn ; &,K,,(IDn, PKn)

Note: The KDC stores its secret key, SKu, separate from the
above table (i.e., in secure hardware). The signatures
DsK,,(IDi, PKi), i = 1,2, . . . , n, allow the stored
public keys to be authenticated.

User Identification Card

IDi . . . user i’s identification
PKu . . . public key of KDC
PKi . . . user i’s public key
SKi . . . user i’s secret key

Figure 11-31. Personal Key Approach with Asymmetric Al-
gorithm (RSA)-Information Stored in the System and on the
User Identification Card

recovered RN is identical to the RN originally generated (and presumed
saved) by user i, user i concludes that PKj was in fact sent from the KDC and
thus is user j’s public key. This protocol is repeated by user j who must later
obtain user i’s public key to participate in a meaningful conversation. The
information needed by the KDC and the information supplied by the user
(as read from a magnetic stripe on an appropriate identification card, for
example), is shown in Figure 1 l-3 1. The above suggested handshake protocol
is illustrated in Figure 1 I-32.

A personal key approach using the DES could be implemented by also
using a KDC but storing each user’s secret personal key KP instead of storing

User i obtains PKj as:

IDi, IDj, EpK,,(DsK2(IDi, RNi)) - to KDC
IDi, IDj, EpKl(D,K,(IDi, PKj, RNi)) - from KDC

User i subsequently recovers PKj using SKi and PKu

User j obtains PKi as:

ID& IDi, bK&Kj@j, RN)) - to KDC
IDj, IDi, Ep&Dc&IDj, PKi, RNj)) - from KDC

User j subsequently recovers PKi using SKj and PKu

Figure 1 l-32. Personal Key Approach with Asymmetric Algo-
rithm (RSA)-Protocol to Establish Authenticated Public Keys

580 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Key Distribution Center

IDI; Encrypted KPl
ID2; Encrypted KP2

IDn; Encrypted KPn

Note: The KDC stores its secret master key used to encrypt
personal keys separate from the above table (i.e., in
secure hardware)

User Identification Card

IDi . . . user i’s identification
KPi . . . user i’s secret personal key

Figure 11-33. Personal Key Approach with Symmetric Algo-
rithm (DES)-Information Stored in the System and on the
User Identification Card

public keys. The information stored at the KDC and on each user’s bank
card is shown in Figure 1 l-33, These secret keys could then be used to se-
curely distribute and authenticate a session key (KS) randomly generated by
the KDC (Figure 1 l-34). To determine that a received session key has indeed
originated with the KDC, a random number is generated by the user and
sent, encrypted under his personal key, to the KDC. Only if the KDC returns
that same random number together with a session key encrypted under the
user’s personal key, will the session key be accepted as genuine.

The key management requirements of RSA and DES are not much dif-
ferent as far as the user-supplied input information is concerned. The KDC
must, in the former case, assure the integrity of n public keys and the in-
tegrity and secrecy of its secret key (SKu). In the latter case the integrity

User i obtains KS as:

IDi, IDj, E,i(IDi, RNi)- to KDC
IDi, IDj, EK,i(IDi, RNi, KS)- from KDC

User i recovers KS using KPi

User j obtains KS as:

IDj, IDi, E,j(IDj, RNj) - to KDC
IDj, IDi, EKpj(IDj, RNj, KS) - from KDC

User j recovers KS using KPj

Figure 11-34. Personal Key Approach with Symmetric Algo-
rithm (DES)-Protocol to Establish Authenticated Session Keys

KEY MANAGEMENT CONSIDERATIONS 581

Asymmetric (RSA) Symmetric (DES)
Algorithm Algorithm

Number of secret
keys per user

Number of public
keys per user

Number of secret
keys in KDC

Number of public
keys in KDC

1

none

n user keys
1 KDC master key

none

Table 11-12. Required Number of Keys for Asymmetric and Symmetric Algorithms-
Personal Key Approach

and secrecy of n user keys and the master key of the KDC must be assured.
Either approach requires a secure system node (the KDC). These conclusions
are summarized in Table 1 l-l 2.

Let it next be assumed that n nodes in a network communicate with each
other such that cryptography is transparent to the user (i.e., the user is not
required to provide cryptographic parameters). Let it furthermore be as-
sumed that secrecy and authentication are required. This can be achieved
(using for example the RSA algorithm) by deciphering with the sender’s
secret key and enciphering with the receiver’s public key as shown in An Ap-
proach Using Public Key-Algorithms, Chapter 9.

In a symmetric system, authentication and secrecy are automatically
achieved by defining one secret key and performing one operation only (i.e.,
encryption). Starting with a symmetric system, let KCi,j (where KC denotes
a communication key) define the secret key which operates on messages sent
from node i to node j. For a three node network, six secret keys (as shown in
Figure 1 l-35) must be defined for complete node to node communication
assuming each node manages keys independently of each other node.

For a n node network there are 2(n - 1) keys per node required (i.e.,
n - 1 keys to operate on data sent from one node to the n - 1 other nodes
and n - 1 keys to operate on data received by one node from the n - 1
other nodes). Hence there are a total of 2n(n - 1) keys in the system.
Since some identical keys are stored in different nodes (e.g., KC&j appears
in node i and node j), there are only n(n - 1) different keys in the network.

If different keys are not needed to protect data flowing in opposite direc-
tions between two nodes, then KCij may be identical to KCj,i. This reduces
the number of keys required at each node from 2(n - 1) to (n - 1). The
total number of keys in the network then becomes n(n - 1) and the total
number of different keys in the network becomes n(n - 1)/2.

Let an asymmetric system (e.g., the RSA algorithm) be discussed next and
let SKI define the secret key used at node i to operate on (decipher) data
sent to any other node. The corresponding public key, PKi, is made available

582 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Node 1 Node 2 Node 3

KC1,2 - KC1,2
KC2,l - KC2,l
KC1,3 : KC1,3
KC3,l - KC3,l

KC23 - KC23
KC3,2 - KC3,2

The arrow indicates data flow direction and the corresponding entries indicate the keys
to be used.

Figure 1 l-35. Symmetric Algorithm-Keys Required to Achieve Authentication and
Secrecy in a Three Node Network

to other system nodes to authenticate messages received from node i. Com-
munications from node i to node j take the form EPKjDsE(Xi,j) where Xij
are the data sent from node i to node j whose integrity and secrecy must be
maintained. For a three node network, three secret and three public keys
must be defined as shown in Figure 1 l-36.

In an n node network, each node stores one secret key and (n - 1) public
keys. There are thus a total number of n secret keys in the network and
(n - 1)n public keys. The total nu,mber of different keys is less because the
public key of node i appears in (n - 1) nodes. Hence there are n different
secret keys and n different public keys in the network.

If only authCntication (not secrecy) is required, the data Xi, j sent from
node i to node j are of the form Ds&,Xi, j) instead of EP&Ds&Xi, j)). At
the receiver (node j), PKi is used to authenticate Xi, j. Hence the same
keys defined above for authentication and secrecy are required for authepti-
cation even when secrecy is not required. A summary is given in Table 1 l-l 3.

Node 1 Node 2 Node 3

PK2;SKl - PK 1 ;SK2
SK 1 ;PK2 - SK2;PK2
PK3;SKl i PKl ;SK3
SK1 ;PK3 N SK3 ;PK 1

PK3 ;SK2 - PK2;SK3
SK2;PK3 - SK3;PK2

Note: Secrecy as well as integrity of the SKs must be assured whereas for the PKs only
integrity must be assured.

The arrow indicates data flow direction and the corresponding entries indicate the
keys to be used.

Figure 1 l-36. Asymmetric Algorithm-Keys Required to Achieve Authentication and
Secrecy in a Three-Node Network.

KEY MANAGEMENT CONSIDERATIONS 583

Number of secret
keys per node

Number of public
keys per node

Total number of secret
keys in network

Total number of public
keys in network

Total number of different
secret keys in network

Total number of different
public keys in network

Asymmetric (RSA)
Algorithm

1

(n-1)

n

n(n- 1)

n

n

Symmetric (DES)
Algorithm

2(n-1) w/ unidirectionality
(n-l) w/o unidirectionality

none

2n(n-1) w/ unidirectionality
n(n-1) w/o unidirectionality

none

n(n-1) w/ unidirectionality
n(n-1)/2 w/o unidirectionality

none

Note: It is assumed that all n nodes of the network communicate with each other with-
out user involvement.

Table 11-13. Required Number of Keys for Asymmetric and Symmetric Algorithms-
Transparent Case where Each Node Stores the Required Keys

From Table 1 l-l 3 one could easily conclude that key management be-
comes less complex with asymmetric systems since fewer keys are managed.
To make a true comparison, however, system design concepts must also be
considered. Most likely an approach where each node stores a set of KCs
will not be used. Instead, one would define one secret key per node (KNCi
for node i) and store all n of the required keys in a common key distribution
center (KDC). Thus the KDC would be the trusted node in the system and
would be called upon to generate and distribute session keys to nodes re-
questing to communicate with one another. For example, a randomly gen-
erated session key (KS) would be distributed to nodes i and j in the form
E xNci(KS) and ExNcj(KS), respectively.

The KDC could also be used with an asymmetric algorithm. In that case
the KDC would store all n public keys and route them to the system nodes
as required. Based on the number of keys stored at the KDC (Table 1 l-14),
one cannot conclude which system (asymmetric or symmetric) is easier to
implement. Other investigators analyzing asymmetric and symmetric crypto-
systems have concluded that protocols in both systems are strikingly similar
[17, 181.

Secrecy Without Authentication

In this section the question to be addressed is: What security penalty (if
any) is there if permanently installed keys are not used? The rationale is that
each node could generate its public and secret keys dynamically. For ex-

584 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Asymmetric (RSA) Symmetric (DES)
Algorithm Algorithm

Number of secret
keys per system node

Number of public
keys per system node

Number of secret
keys in KDC

Number of public
keys in KDC

1

none

n user keys
1 KDC master key

none

Table 11-14. Required Number of Keys for Asymmetric and Symmetric Algorithms-
User Transparent Case with Key Distribution Center

ample, the public key generated at node i could be sent over a nonsecure
channel to node j. Node j could then encrypt messages for node i with node
i’s public key (PKi). Only node i, having generated the corresponding secret
key SKi can decrypt such a message. Thus, off hand it seems that an ac-
ceptable solution has been found for key distribution and key initialization.
(For example, the keys required in the three node network shown in Figure
1 l-36 can easily be generated on demand.)

But there is a major difference between the static situation where keys at
each node are defined in an initialization process and the dynamic situation
where keys are generated as they are needed. Due to the fact that the keys
listed in Figure 1 l-36 are defined ahead of time as part of system initializa-
tion, the corresponding nodes are coupled. After initialization, the sender
(node i) has no control over the use of a key by another node (node j). This
is in contrast to the case where the keys are generated dynamically. As a
consequence there is no way for a node to check the identity of the sender,
since the public key sent to the receiving node could have originated with
any system node, including a bogus node. The sender, on the other hand,
does not really know who is using his personal key to encrypt data addressed
to him. To take advantage of these security weaknesses requires, however, an
active attack since data on a communications line must be altered enroute.
Therefore the described method of dynamically generating keys in lieu of
initializing the system with predetermined keys provides data security if the
opponent has only the capacity to eavesdrop.

To illustrate the consequences of implementing a cryptographic system
without authentication, consider the following case. To send a secret docu-
ment from A to B, let it be locked in a suitcase. To start with, A seals the
suitcase with lock A, which only A can open. After B receives the suitcase,
B in turn seals the suitcase with lock B, which only B can open. The doubly
locked suitcase is then returned to A. Upon receipt, A removes (his) lock A.
The suitcase, still locked with lock B, is returned to B whereupon B removes
his lock and retrieves the secret document (Figure 1 l-37).

B

-------- n-- ------- -,
Send to B

m Lock A Pi Lock

1 .- a ------- el- --a -------
Lock B

Send to B

1 , --a ------ - - El--
B Obtains

Secret Document
Figure 11-37. Protocol to Send Secret Document from A to B

585

A

--cl

0
---- --

A Inserts
Secret Document

Opponent C substitutes
himself for B and intercepts

1 suitcase sent from A.
C

t

t

1

PI ____----
Lock A

,pj-------Q
1

-cl --------

Send to B

i

PI _------- cl --
Lock A

1

-PI Lock C

I Opponent Obtains
Secret Document

Figure 11-38. Interception of Secret Document by Opponent

588

1 suitcase sent from A.
n R L

-@I

-- ä t -------
Send to B a- -------

El-
Lock A Lock C Send to B

Opponent C substitutes
himself for A and interceots I
suitcase sent from B.

pqq-+gJQj

Figure 1 l-39. Routing of Bogus Document

-cl me------
@I-.

-a -----__
Lock B Send to B

El- Lock

588 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

There are two basic attacks which may be successful in this instance:
rerouting and masquerading.

Since A cannot distinguish between B’s lock and one supplied by an
opponent (due to lack of authentication), it is possible for an opponent to
intercept the suitcase and apply his own lock, thus preventing B from apply-
ing his lock. As a result the suitcase, sealed with the opponent’s lock would
be returned to A for removal of A’s lock. Once A’s lock is removed, the op-
ponent again intercepts the suitcase, removes his lock, and thereby obtains
the secret document (Figure 1 l-38).

In the second attack the opponent again intercepts the suitcase (with A’s
lock in place) only this time the suitcase and secret document are discarded.
The opponent replaces the suitcase with one of his own, complete with a
bogus secret document, locks the suitcase with his lock, and forwards the
suitcase to B. The protocol requires B to apply his lock and return the suit-
case to A, which B does. The opponent again intercepts the suitcase, removes
his lock, and returns the case to B. B eventually opens his lock and removes
the bogus secret document thinking it originated with A (Figure 1 l-39). The
opponent (posing as B) also sends a bogus suitcase to A to prevent A from
detecting the deception.

Figures 11-38 and 1 l-39 illustrate two attacks against a public-key crypto-
system implementing the particular communication protocol described in
Figure 1 l-37. In general, a public-key cryptosystem’s communication proto-
col is always exposed to active attack if that cryptosystem does not employ
preinitialized keys. Although, for applications in which active attacks are
considered not a threat, the tradeoff between security and key management
complexity may be an attractive one.

A CRYPTOGRAPHIC SYSTEM USING AN INTELLIGENT SECURE CARD
AND A PUBLIC-KEY ALGORITHM

The PIN/personal key approach, which was shown to be nonsecure, demon-
strates the need for having system keys installed in the EFT terminals. This
is true whether a conventional (symmetric) or public-key (asymmetric) al-
gorithm is used, If a conventional algorithm is employed, the terminals must
store secret keys. If a public-key algorithm is employed, the terminals may
store secret keys, public keys, or both, although, typically, the terminals
would store only public keys. (These public keys would be used to authenti-
cate transaction response messages.) When a public-key algorithm is used,
one therefore attempts to improve the process of message authentication by
eliminating the need for a secret key in the EFT terminal. The requirement
for keeping the necessary terminal resident keys secret and assuring their
integrity in a conventional approach is thus replaced by the requirement of
assuring only the integrity of public terminal resident keys in a public-key
approach.

Authentication of transaction request messages, on the other hand, always
requires a secret key at the entry point. This key must be supplied by the
system user, since otherwise the terminal would have to store a secret key
(which is to be avoided).

INTELLIGENT SECURE CARD AND A PUBLIC-KEY ALGORITHM 589

The main features of the system are thus as follows. Personal verification
and authentication of transaction request messages (sent from the terminal
to the issuer) are based on a secret user-supplied key derived from the PIN
and secret card information and a corresponding public user key stored at
the issuer (different for each of the institutions’s customers)42. Authentica-
tion of transaction response messages is based on a secret key available in the
security module of the issuer’s EDP system and a corresponding public key
established at each terminal.

In the described system there is total isolation of the personal verification
processes of the various institutions and almost total isolation in the authen-
tication of transaction requests sent from the user to the issuer. These proce-
dures are effected and established solely between the user and the issuer. No
secret keys involved in the processes are exposed at the entry point, although
the integrity of the public keys must be assured. In an interchange, the
acquirer and switch merely act as network routing points to pass nonsecret
information to the issuer.

In addition, there is a digital signature capability for transaction responses.
The acquirer honors a request from the cardholder only after the issuer has
sent a signed message to the acquirer (or to the originating terminal) author-
izing the transaction. (Note that this advantage is also obtained with the
DES/public-key approach discussed in the section Security Enhancements
with Digital Signatures.)

Description of a Public-Key Management Approach

The system discussed here is composed of host processing centers and EFT
terminals, interconnected in an EFT network supporting interchange. Each
network node has a public-key cryptographic capability that is either inte-
grated into the node or contained in a security module attached to the node
via a secure, local cable. Each security module has a set of cryptographic
operations that may be invoked by the supporting device or EDP system via
a defined interface. No clear cryptographic keys ever exist outside the security
module except during periods when they are initially generated or entered
into the system.

Each customer is provided with an intelligent secure bank card, which has
an installed public-key algorithm and storage for secret and nonsecret infor-
mation (e.g., keys, encrypted keys, and account-related information). Keys
stored in a security module are protected by implementing adequate physi-
cal security measures and/or providing a set of interlocks that will erase all
secret information if penetration of the security module or containing device
is detected.

A secret user key (SKc, where c stands for customer) is used to generate a
quantity (DGSreq) which will enable the issuer to authenticate the transaction

42PIN secrecy depends entirely on maintaining the secrecy of certain card information
(i.e., it is not achieved because of the public-key algorithm). If relevant card information
were available to an opponent, the PIN could be derived easily from information in an
intercepted transaction request message, The intelligent secure card provides the means
to adequately protect card information.

590 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

request message, Mreq. In the conventional approach this quantity was called
a MAC. Since a public-key approach provides a digital signature capability,
the term DGS is used instead of MAC. To demonstrate the parallelism be-
tween the public-key and conventional algorithm approaches, assume that
(Mreq, DGSreq) is routed to the issuer and define DGSreq as

DGSreq = DsKc [CE(Mreq)]

where CE(Mreq) represents the compressed encoding of Mreq. As discussed
in Chapter 9, CE(M) is a one-way function of M and can be generated with
publicly known keys for symmetric as welI as asymmetric algorithms. In the
implementation discussed here it suffices to specify one public key for gen-
erating CE(M) without, at the same time, specifying the corresponding secret
key. This is so because the sender and receiver use the same procedure for
generating CE(M). To check the signature, the issuer generates the compressed
encoding of the received message and compares it with Erkc(DGSreq) (i.e.,
the received DGSreq encrypted under PKc). If both quantities agree Mreq
is accepted; otherwise, not.

This check on DGSreq can be used also to verify the user (e.g., if SKc is
defined as SKc = SKc* @ PIN, where SKc* is a secret parameter stored on
the card). Since the digital signature (DGS) is now also a function of PIN,
personal verification as well as message authentication are combined in one
procedure. [The same idea was used in the hybrid key management approach
by defining KTR = D krts PN (ID) and is repeated here for the sake of uni-
formity in the discussion.]

A digital signature on the response message (DGSresp) is generated using
a secret key SKb, uniquely defined for each institution (where b stands for
bank). Thus,

DGSresp = DsKb [CE(Mresp)]

To check the received Mresp at the terminal, the public key, PKb, corre-
sponding to SKb, must be available. In the implementation suggested here,
PKb and its digital signature DsKu [CE(IDb, PKb)] are stored on the bank
card. The key SKu (where u stands for universal) is a key known only to a
trusted node or key distribution center. By storing the corresponding pub-
lic key, PKu, in all terminals, PKb can be authenticated at the terminal
before it is used to authenticate Mresp. Authentication of PKb is achieved by
enciphering D SKu[CE(IDb, PKb)l with PKu and checking that the result is
equal to the compressed encoding of (IDb, PKb), where PKb is the received
public key and IDb is the known bank identifier.

To initialize the operation, each institution produces a public and private
key-pair (PKb, SKb) for its own use. The private bank key (SKb) is retained
in the institution’s security module. The public bank key (PKb) is distributed
to each other institution in the interchange, and it is also sent (e.g., via a
courier) to a key distribution center or designated trusted party. Public keys
are distributed securely to assure their integrity (e.g., to avoid masquerading
attacks).

INTELLIGENT SECURE CARD AND A PUBLIC-KEY ALGORITHM 591

Prior to receiving each institution’s PKb, the key distribution center pro-
duces its own public and private key pair (PKu, SKu) for the purpose of
interchange. The secret key, SKu, is employed to generate a digital signature
for PKb in the form Ds,[CE(IDb, PKb)] . The user supplies this quantity
together with IDb and PKb to the terminal where PKu resides. This enables
the terminal to check the DGS and thus authenticate PKb.

The public key of the key distribution center (PKu) and the public bank
keys, together with their DGSs, are distributed to each of the respective insti-
tutions (banks). SKu is also stored in a safe or vault for recovery purposes.
Securely maintaining SKU will also allow other institutions to later join the
interchange. The key distribution center can also publish PKu (e.g., in a major
newspaper like the New York Times), which will allow each institution to
validate the received PKu independently.

Upon receipt of this information from the key distribution center, each
issuer validates PKu (by comparing the received PKu with the published PKu)
and transfers PKu to its security module where it can be safely stored and
used as necessary. The public keys of each bank and their corresponding
digital signatures (computed from SKu) are stored in the data base of the
institution’s EDP system (Figure 1 l-40).

The issuer also generates a DGS for each users public key, PKc, with
the aid of SKb (e.g., D skt, [CE(IDc, PKc)]). The quantities IDc, PKc,
and the DGS for PKc, are then stored in the data base of the institution’s
EDP system (Figure 1 l-40) and written on the user’s bank card (Figure
11-41). A copy of the institution’s public bank key PKb and signature
Dsx,[CE(IDb, PKb)] are also written on the user’s bank card. Each institu-
tion also installs PKu in each of its terminals (Figure 1 l-42).

PIN Selection

For this discussion, PINS are assumed to be produced by the issuer using the
security module as a generator of pseudorandom numbers. The generated
PIN is printed on a PIN mailer and the mailer is sent to the customer. PINS
may also be encrypted under a PIN master key and stored off-line for purposes
of backup.

Generation of the User’s Public and Private Keys

The issuer will produce (in addition to PIN) a public and private key pair
(PKc, SKc) for each customer. The user’s private key and PIN are Exclusive-
ORed to produce a secret card parameter, SKc* (i.e., SKc* = SKc @ PIN),
which is then written on the user’s intelligent secure card.

Validation of the User’s PIN and Card Key

Each time the customer initiates a transaction at a terminal, the customer’s
PIN is entered via a PIN pad or keyboard and transferred to the card. (If the
card has its own keyboard, the PIN would not be exposed in the terminal.)
On the card, PIN is Exclusive-ORed with the secret card parameter (SKc*) to
produce the user’s private key, SKc, and SKc is then used to generate a DGS

592 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

Secondary Storage

IDcl: PKcl, DSKb [CE (IDcl, PKcl)]
IDc2: PKc2, Ds,, [CE (IDc2, PKc2)]

.

.

.
IDcn: PKcn, DsKt, [CE (IDcn, PKcn)]

Secondary Storage

IDbl: PKbl, DsKu [CE (IDbl, PKbl)
IDb2: PKb2, DsKu [CE (IDb2, PKb2)

.

.

.

IDbn: PKbn, DsKu [CE (IDbn, PKbn)]

Security Module

SKb - Private Bank Key
PKb - Public Bank Key
PKu - Public Interchange Key

Each customer’s identi-
fier, public key, and digi-
tal signature (generated
with the issuing banks
private key) are produced
by the issuing bank and
stored on the appropriate
bank card.

Each bank’s identifier,
public key, and digital sig-
nature (generated with the
private interchange key)
are produced by the key
distribution center and
sent to each institution.
This enables each institu-
tion to check digital signa-
tures with PKu.

PKb and PKu are stored
in the security module to
protect their integrity.
SKb is stored in the secu-
rity module to protect its
secrecy and integrity.

Figure 11-40. Information Stored in the Data Base of the
Issuer’s EDP System and in the Issuer’s Security Module

on the transaction request message via the public-key algorithm. A time-of-
day (TOD) clock obtained from the acquirer via the terminal (as described
earlier) is included in the message to ensure that it is time-variant.

At the issuer, the corresponding PKc of reference, which is filed under the
user’s identifier, is read from the EDP system’s data base43 and used to

43See footnote 35.

INTELLIGENT SECURE CARD AND A PUBLIC-KEY ALGORITHM

IDc: PKc, DsKb [CE (IDc, PKc)]

Customer’s identifier, public key, and digital signature
on IDc and PKc computed with the bank’s private key

IDb: PKb, D SKu W (IN PKb)l

Issuing bank’s identifier, public key, and digital signature
on IDb and PKb computed with the private interchange key

SKc* = SKc @ PIN

Customer’s Private Card Key

Figure 11-41. Information Stored on the Intelligent Secure Card

593

encrypt the received DGSreq. This result is compared for equality with the
compressed encoding calculated on the received message Mreq. Furthermore,
the received TOD is checked for currency against a TOD of reference stored
in the issuer’s EDP system. If both tests succeed, the issuer concludes that
the content of the message is correct, the message is not a stale message, and
the secret information entered by the customer at the entry point (SKc* and
PIN) is properly related to the claimed ID.

Key Management Considerations for Asymmetric Algorithms

To take maximum advantage of the public key idea, secret terminal resident
keys should be unnecessary. Only the public keys permanently stored in the
terminals are needed to authenticate transaction response messages. To
authenticate transaction request messages, however, requires a secret key
at the entry point, although a public key can be used at the destination
where these messages are checked. Such a secret key must therefore be sup-
plied by the user since, by definition, no secret key should be stored in the
terminal permanently. Such a design therefore dictates a personal key ap-

I PKu - Public Interchange Key
I

Figure 11-42. Information Stored in the EFT Terminal

594 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

preach, where the personal key is equal to the secret key required in the
public key approach. The corresponding public key stored at the issuer is
used to authenticate request messages.

The most straightforward approach for authenticating transaction response
messages would be to store PKu at each EFT terminal and store SKu at each
cooperating institution’s HPC. A digital signature computed on Mresp at any
institution using SKu could be checked at any terminal using PKu. However,
this has the disadvantage that institutions share the secret key SKu-an un-
desirable situation. If SKu should become compromised, an opponent could
generate a valid digital signature on any transaction response message.

To avoid sharing secret information and thereby realize separation among
the institutions, each subscriber bank can define its own keys (PKb, SKb,
where b represents bank). The secret key SKb is used by an individual insti-
tution to compute a digital signature on the transaction response message,
Mresp. At the EFT terminal, the public key PKb is used to authenticate Mresp
and its digital signature. However, such a solution requires that the public
key of each institution be available at the entry point. Due to storage limita-
tions (at EFT terminals), such an approach is impractical if there are a large
number of subscriber institutions in the interchange network.

The disadvantage of storing a common SKu at each institution in the inter-
change, or of storing the PKb of each bank in each EFT terminal, can be
avoided as follows. A trusted system node or key distribution center is desig-
nated to manage the universal secret key, SKu. The individual institutions still
define their own (SKb, PKb) key pairs. To establish the correct PKb at an
arbitrary entry point, the trusted node generates a digital signature on (IDb,
PKb) using SKu. The terminals in which PKu is stored authenticate PKb by
encrypting Ds,,[CE(IDb, PKb)] with PKu and comparing the result for
equality with the compressed encoding of the supplied (IDb, PKb) stored on
the bank card. Note that DSKu [CE(IDb, PKb)] is also stored on the bank
card. Thus, a hierarchical public-key’ approach is used in which a universal
secret key, SKu, is the dominant system key. This key, known only to the
trusted node, provides the means (via the digital signature) for each in-
stitution to authenticate the public keys of each other institution (PKbl,
PKb2,. . . , etc.). Thus each PKb is checked before being used to authenti-
cate transaction response messages at the entry point. Secret user keys, on
the other hand, are used (in conjunction with PINS) to generate digital
signatures on the transaction request messages, which in turn allows the
issuer (who has the corresponding public keys) to verify users and authenti-
cate transaction request messages.

Off-Line Use

Figure 1 l-43 illustrates an offline transaction. The customer’s card is placed
in a card read/write device coupled to or integrated within the terminal. The
customer then enters his PIN via a suitable entry device (PIN pad or key-
board). The PIN is transferred to the card where it is Exclusive-ORed with the
secret parameter SKc* on the card to form the user’s private key, SKc,
namely: SKc = SKc* @ PIN. SKc is temporarily stored on the card, i.e., until
transaction processing is complete.

INTELLIGENT SECURE CARD AND A PUBLIC-KEY ALGORITHM 595

Intelligent
Terminal Secure Card

- SKc*
.

Enter PIN b
Transfer PIN b

Exclusive-OR PIN and
SKc* to obtain SKc.

Transfer
IDb, PKb, DS&E (IDb, PKb)]
IDc, PKc, D,,[CE (IDc, PKc)]
4

Authenticate PKb
using PKu. Validate
PKc using PKb.
Generate random
number RN. Save as
RN of reference.

Transfer RN b
Decipher RN
under SKc.

Transfer D,,,(RN)
4

Recover RN using
PKc. Compare RN
for equality with
RN of reference.
Figure 11-43. Off-Line Use

The two public keys, PKc and PKb, which were originally written on the
card by the issuer, are then transferred from the card to the terminal together
with their respective digital signatures. This enables the terminal to authen-
ticate PKb and PKc with the aid of PKu (stored in the terminal).

To validate the user, the terminal performs a handshake with the card, as
follows: The terminal generates a random number RN, which it transfers to
the card and requests that the card decipher the random number under SKc.
Upon deciphering the random number under SKc, the card transfers the
result to the terminal. The terminal then enciphers the received value under
PKc (which it previously authenticated) to recover RN. The recovered value
of RN is compared for equality with the RN of reference. If the two quantities
are equal, the terminal concludes that (1) the card is capable of cryptographic
operations and (2) the card generated the proper SKc. Since SKc is a function
of the secret card parameter (SKc*) as well as PIN, personal verification is
achieved. The transaction request is then honored according to whatever es-
tablished limits and prior protocols and arrangements have been implemented.

A variation of the method is for each terminal to also store the public key,

596 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

PKb, of the local bank. In that case, if a customer performs an off-line trans-
action at a terminal belonging to his own bank, the terminal can authenticate
PKc directly from DSKb[CE(IDc, PKc)] and avoid the intermediate step of
authenticating PKb from DSKu [CE(IDb, PKb)] .

On-Line Use in Interchange and Noninterchange

In describing both local and interchange transactions it will be noted that
there is no difference in the protocols. Only message routing is different,
since different parts of the interchange network are traversed.

The data and computing capability of the customer’s card are made avail-
able to the terminal (Figure 1 l-44) when the card is inserted into a suitable
read/write device. The customer then enters his PIN via a suitable entry
device, the PIN is routed to the card, and the PIN is Exclusive-ORed with the
secret card parameter SKc * to form the user’s private key, SKc, which is
temporarily stored on the card.

0

T

EFT
Terminal

Intelligent
Secure Card
t

SKc*

Enter PIN b
Transfer PIN

b
Exclusive-OR PIN and
SKC* to obtain SKc.

Transfer Customer’s ID
Format transaction
request message
(Mreq), which includes
TOD obtained from
acquirer and message
sequence number
(Tterm) generated by
terminal.

Transfer Mreq
b
Generate Digital
Signature on Mreq,
DGSreq = D,,,[CE (Mreq)].

Transfer Mreq, DGSreq
Send to issuer Transfer
(see Figure 1 l-45).

1:

IDb, PKb, D,,,[CE (IDb, PKb)]
IDc, PKc, D,,,,[CE (IDc, PKc)]

Figure 11-44. On-Line Use-EFT Terminal

INTELLIGENT SECURE CARD AND A PUBLIC-KEY ALGORITHM 597

To allow the issuer to validate the transaction request message, a DGS is
generated using SKc (i.e., D sKc [CE(Mreq)]). This is accomplished by trans-
ferring the assembled message to the card where the compressed encoding of
Mreq is generated and in turn deciphered under SKc. The message and
signature are returned to the terminal for transmittal to the issuer (identical
to the acquirer for a local transaction, different from the acquirer for inter-
change). If it is desired to allow intermediate nodes to authenticate and read
the message, the quantities IDb, PKb, Ds,[CE(IDb, PKb)] and IDc, PKc,
DSKb[CE(IDc, PKc)] can be read from the card and sent together with the
transaction request message.

At the issuer (Figure 1145), the corresponding PKc of reference is
stored in the EDP system’s data base, for example, in the form IDc, PKc,
DSKb [CE(IDc, PKc)] . Prior to its use, PKc of reference is authenticated using
PKb. The received message is then authenticated by generating its compressed
encoding and comparing the result for equality with the received DGSreq
encrypted under PKb (i.e., with EPKb (DGSreq) = EPKb [DsKb (CE(Mreq))]).
If they are identical, and if the TOD checks, then the issuer concludes that
the content of the message is correct, the message is not stale, and the secret
information supplied by the user, SKc* and PIN, is properly related to the
claimed ID. If the requested transaction can be honored, a positive response
is sent to the originating terminal. Otherwise, a negative response is sent to
the originating terminal.

To send a response, the issuer generates a digital signature on the response
message Mresp using SKb (i.e., DGSresp = DsKb [CE(Mresp)l). Mresp and
DGSresp are then sent to the EFT terminal. A positive response could con-
sist of sending back the request message (i.e., Mresp = Mreq and DGSresp =
DsKb [CE(Mreq)l). This will be assumed here. A negative response can be
anything other than a positive response.

To authenticate the response message, the terminal reads IDb, PKb,
DsKu [CE(IDb, PKb)] from the card and validates PKb using PKu (stored in
the terminal). (If PKb is stored in the terminal, the prior step can be elimi-
nated). The received DGSresp is then enciphered under PKb and the result
is compared for equality with the compressed encoding of the Mreq of
reference. If the two quantities are equal, the terminal honors the transac-
tion; otherwise, the transaction is denied (Figure 1 l-46).

A summary of the keys required with the described public key approach
is provided in Table 1 l-l 5. Tables 1 l-l 6 and 1 l-l 7 show the flows of infor-
mation from the card to the issuer (via the EFT terminal) and from the issuer
to the EFT terminal. Comparing these tables with those of the hybrid approach
(Tables 1 l-9 through 11-l l), one observes that only public quantities
are shared among institutions. Thus a higher degree of isolation is achieved
with the public key approach. On the other hand, it must be realized that
the approach requires a secret universal key. If that key becomes com-
promised, the security of the entire system is lost. The described public key
approach depends, therefore, on one node or key distribution center which is
trusted by everyone in the system, and that one party controls and manages
the universal secret key.

598 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

EDP System Security Module

SKb
PKb
PKu

Transfer
IDc, PKc, D,,,[CE (IDc, PKc)],

Mreq, DGSreq
l

Authenticate PKc with
PKb. Authenticate
Mreq with PKc. If
check is positive the
user and message are
validated.

Positive/Negative
Form transaction
response message
(Mresp). If request
can be honored then
request DGS on
Mresp .

Transfer Mresp b
If check above was
positive, generate
DGS with SKb, where
DGSresp = D,,,[CE (Mresp)].

Transfer
Mresp, DGSresp

Send to EFf terminal
(see Figure 11-46).

Otherwise, if check
above was negative,
do not generate DGS.

Note: To reduce information to be sent, DGSresp can be defined as
DGSresp = DsKb [CE (Mreq) 1. In this case the response message is
identical to the request message and does not have to be sent. Thus
only DGSresp is returned to the terminal as a positive response.

Figure 11-45. On-Line Use-Issuer’s EDP System

Additional Comments

In the described approach, PIN secrecy depends on SKc* secrecy. If
SKc* were known to an opponent, PIN could be derived easily using only
PKc (nonsecret and assumed available). Since PIN has relatively’ few com-
binations, and assuming SKc* (Figure 1143) is available, an opponent could

INTELLIGENT SECURE CARD AND A PUBLIC-KEY ALGORITHM 599

Information in EFT Terminal

IDb, PKb, and
DSKu WE (IDb, PKb)l
Read from Card

Received from Issuer

DsKb (Message)

Transaction Request
Message of Reference

PKu Permanently
Stored

v
Authenticate PKb

+ with aid of
DSKu W (IDb, PKb)l
and PKu.

Not
Authentic Authentic . v

Abort +
PKb

v

I Message

Message of Reference

OK Not OK

+
Honor Reject

Transaction Transaction
Request Request

Figure 11-46. On-Line Use-El3 Terminal

enumerate all possible candidates for SKc via the relation SKctrial = SKc* @
PINtrial. SKc is determined by finding the SKctrial satisfying the relation
D SKctrialEPKc (‘) = ‘-

In an off-line environment, PIN-related information must always be stored
on the card, and thus this type of attack will always succeed if c&-d informa-
tion is available to an opponent. Defense against the attack is therefore based
on the high level of data protection afforded by the intelligent secure card.
Hence, strictly speaking requirement 8 (see EFT Security Requirements)
cannot be satisfied when a public-key algorithm is used in an off-line environ-
ment (i.e., PIN information can always be obtained from card information).

System Nodes

System
User

Intelligent
Secure

Bank Card EFT Terminal
Acquirer’s

Host (Inst. X) Switch’s Host
Issuer’s Host

(Inst. Y)

Permanently Installed Keys/Parameters

none KP
SKc*
PKc
PKb

PKu none none SKMiSS
PKMiss

Keys Used for Generating and Authenticating Digital Signatures (DSG) on the Transaction Request Messages, Mreqs

none SKc none none none PKc is stored for all
(Dynamically members of institution Y.
Generated from
SKc* and PIN,
e.g., SKc =
SKc* @PIN)

Keys Used for Generating and Authenticating Digital Signatures on the Transaction Response Messages, Mresps

none PKb PKu (Used to
(Authenticated Authenticate PKb)
Using IDb and
DSKU WWb, PKb)l,
Also Stored on
Rank Card)

none none SKb is defined by
institution Y.

Note: Keys associated with personal verification at the issuer (and, perhaps, the switch) are not shown.

Legend:

SKM: Secret host master key
PKM: Public host master key
SKb: Secret institution (bank) key
PKb: Public institution (bank) key
SKc: Secret user (customer) key

SKc*: Secret card parameter
PKc: Public user (customer) key
SKu: Secret universal key
PKu: Public universal key
IDb: Institution (bank) identifier
IDc: User (customer) Identifier

Table 1 l-15. Keys Defined for the Public Key Approach Using an Intelligent Secure Card

System Nodes

Intelligent

8 System Secure EFT Acquirer’s Switch’s Issuer’s
h) User Bank Card Terminal Host Host Host

1 2
Enter PIN Generate SKc =
and transfer SKc* @ PIN.
to card via
terminal. 3

Read IDb,PKb,
&KU [CWW’Kb)l

IDc, PKc and
&KU WWW’Kc)l

from card and
transfer to
terminal.

7
Compute DGSreq
with SKc (i.e.,
DSK~ [CE@Jw)l >-

8
Send Mreq and
DGSreq to
terminal.

4
Authenticate PKb with
PKu and PKc with PKb.

5
Read card information
and formulate Mreq
which includes TODacq
and Tterm.

6
Send Mreq to intelligent
secure card.

9
Forward received Mreq
and DGSreq to acquirer.

10 11 12
Forward received Mreq. Forward received Mreq. Check received DGSreq
and DGSreq to switch. and DGSreq to issuer. with PKc of reference

and TODsw of
reference.

13
Verify user.

14
Decide if Mreq is to be
honored.

15
Formulate Mresp which
Includes Tterm.

Note: It is assumed that the acquirer periodically sends time-of-day information (TODacq,term) to the terminals in its domain. The TOD
stored at the other network host nodes (TODsw at the switch and TODiss at the issuer) is assumed to be equal to TODacq within an
allowable range (ATOD). The terminal also generates time-variant information (Tterm) which is transmitted to the issuer.

The integers l-l 5 in the table show the sequence of steps in the transaction.

Table 11-16. Information Flow from Card to Issuer-Public Key Approach with Intelligent Secure Card

20 19
Check received DGSresp Forward received Mresp,
with PKb of reference and DGSresp to terminal
and Tterm of reference.

21
Decide if Mresp should
be accepted or rejected.

22
Notify terminal to
process transaction if
Mresp is accepted;
otherwise, abort
transaction request.

System
User

Intelligent
Secure

Bank Card
EFT Acquirer’s

Terminal Host

System Nodes

Switch’s Issuer’s
Host Host

.

18 15
Forward received Mresp, Formulate Mresp which
and DGSresp to acquirer. includes Tterm.

16
Generate DGSresp on
Mresp using SKb .

17
Send Mresp and DGSresp
to intelligent secure
card via switch, acquirer,
and terminal.

The integers 15-22 in the table show the sequence of steps in the transaction.

Table 1 l-17. Information Flow from Issuer to Terminal-Public Key Approach with Intelligent Secure Card

8

604 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

In an on-line environment, this exposure can be avoided by decoupling
SKc and PIN (i.e., by not making SKc a function of PIN). The relation
SKc = SKc* @ PIN was used in the present discussion for the sake of uni-
formity with the approach described in the preceding section, the PIN/
Personal Key/System (Hybrid Key Management) Approach Using an In-
telligent Secure Card. For example, a better approach would be to define
SKc = SKc* and transmit PIN 11 RN (i.e., PIN concatenated with a random
number generated on the card) encrypted under PKb. This approach requires
an additional PIN verification step at the issuer, but has the advantage that
knowledge of any one of the parameters SKc or PIN does not reveal informa-
tion about the other.

CONCLUDING REMARKS

The purpose of this chapter has been to suggest various techniques that may
be used for cryptographic authentication in future EFT systems. For the
present and near term, it appears that PIN/system key-based EFT systems
using magnetic stripe cards will predominate. In such systems, a reasonable
level of protection can be achieved with existing technology and current
banking practices and standards.

In future systems, a nominal increase in security can be achieved if personal
keys are combined with the present PIN/system key designs (e.g., using
hybrid key management). However, a significant increase in security is achiev-
able if a hybrid key management is implemented in conjunction with intelli-
gent secure cards.

Finally, further enhancements in security are possible by introducing
public-key encryption at financial institutions, thereby providing a means
for the issuer to give the acquirer an electronically signed receipt for each
transaction request authorized by the issuer.

GLOSSARY

For the analysis of the authentication process, the following quantities are
defined.

AP = authentication parameter
cc = communications controller
DES = data encrypting standard
DGS = digital signature
HPC = host processing center
ID = user identifier
KA = authentication key
KC = communication key
KDC = key distribution center
KI = interchange key

Knode =
KP =
KPG =
KPN =
KMT =
KNC =
KSTR =
KT =
KTR =
MAC =
PAC =
PAN =
PIN =
PK =
PKC =
RN =
Tcard =
TID =
TOD =
Tterm =
SK =
TR =
Rf =
Z =

REFERENCES 605

node key
personal cryptographic key
personal key generating key used to generate KP from ID
PIN generating key used to generate PIN from ID
terminal master key
secondary communication key
transaction session key
resident terminal key
transaction key
message authentication code
personal authentication code
primary account number
personal identification number
public key in a public-key cryptosystem
public-key cryptosystem
random number
time-variant information generated by bank card
terminal identifier
time of day
time-variant information generated by terminal
secret key in a public-key cryptosystem
transaction request
reference
initializing vector

The notation Ex(X) = Y defines encipherment of the quantity X under the
cipher key K, resulting in ciphertext Y. The notation D,(Y) = X defines
decipherment of Y under cipher key K, resulting in plaintext X.

REFERENCES

1. Introduction to EFT Security, Division of Management Systems and Economic
Analysis, Federal Deposit Insurance Corporation, Washington, DC (August 1976).

2. Diffie, W. and Hellman, M. E., “New Directions in Cryptography,” IEEE Transac-
tions on Information Theory, IT-22, NO. 6,644-654 (1976).

3. Rivest, R. L., Shamir, A. and Adelman, L., “A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems,” Communications of the ACM, 21, No. 2,
120-l 26 (1978).

4. Hirsch, P., “French Bring ‘Smart’ Credit Card to U.S.,” Computerworld, 16, No. 43,
1, 8 (October 20, 1980).

5. Orr, W., “The Chip Card is Here, but Where is it Going?,” ABA Banking Journal, 72,
No. 9,93-95 (1980).

6. Herbst, N. M. and Liu, C. N., “Automatic Signature Verification Based on Acceler-
ometry,” IBM Journal of Research and Development, 21, No. 3,245-253 (1977).

606 APPLYING CRYPTOGRAPHY TO ELECTRONIC FUNDS TRANSFER SYSTEMS

7. Meyer, C. H., Matyas, S. M., and Lennon, R. E., “Required Cryptographic Authenti-
cation Criteria for Electronic Funds Transfer Systems,” fioceedings of the 1981
Symposium on Security and Privacy, IEEE Computer Society, Oakland, CA, 89-98
(April 1981).

8. Campbell, C. M., Jr., “A Microprocessor-Based Module to Provide Security in Elec-
tronic Funds Transfer Systems,” Proceedings COMPCON 79, 148-153 (1979).

9’. American National Standard for Personal Identification Number Management and
Security, Draft Standard, American National Standards Institute, Technical Com-
mittee X9.A3, Revision 5 (November 5, 1980).

10. Kaufman, D. and Auerbach, K., “A Secure National System for Electronic Funds
Transfer,” AFIPS Conference Proceedings 1976 NCC, 46, 129-138 (June 1976).

11. Evans, A., Kantrowitz, W., and Weiss, E., “A User Authentication System Not Re-
quiring Secrecy in the Computer,” Communications of the ACM, 17, No. 8, 431-
442 (1974).

12. Purdy, G. B., “A High Security Log-in Procedure,” Communications of the ACM,
17, No. 8,442-445 (1974).

13. Lennon, R. E. and Matyas, S. M., “Cryptographic Key Distribution Using Composite
Keys,” Conference Record, 1978 National Telecommunications Conference, 2,

’ 26.1.1-26.1.6 (December 1978).
14. Matyas, S. M. and Meyer, C. H., “Cryptographic Authentication Techniques in Elec-

tronic Funds Transfer Systems,” Proceedings of the National Electronics Conference,
35, Chicago, 309-314 (October 1981).

15. PIN Manual: A Guide to the Use of Personal Identification Numbers in Interchange,
Mastercard International, Inc. (formerly Interbank Card Association), New York
(1980).

16. Proposed American National Standard X4.16, Magnetic Stripe Encoding for Finan-
cial Transaction Cards, American National Standards Institute, X4 (Draft, October
1980).

17. Kent, S. T., “Comparison of Some Aspects of Public-Key and Conventional Crypto-
systems,” Conference Record of the 1979 International Conference on Communica-
tions, 1, Boston, 04.3.1-04.3.5 (June 1979).

18. Needham, R. M. and Schroeder, M. D., “Using Encryption for Authentication in
Large Networks of Computers,” Communications of the ACM, 21, No. 12, 993-999
(1978).

Other Publications of Interest

19. Lennon, R. E. and Matyas, S. M., “Cryptographic PIN Processing in EFT Systems,”
Proceedings COMPCON 79,142-147 (September 1979).

20. Meyer, C. H. and Matyas, S. M., “Some Cryptographic Principles of Authentication
in Electronic Funds Transfer Systems,” Proceedings of the Seventh Data Security
Symposium, Mexico City, Mexico, 73-88 (October 1981).

Measures of Secrecy for Cryptographic 606........
ELEMENTS OF MATHEMATICAL 606.................

Information Flow in a Conventional 606......................
Figure 12-1. Information Flow in a 609...................

A Cipher with Message and Key Probabilities 609.....
Figure 12-2. A Cipher with Message and 611........
Figure 123. Example in which Cryptogram 613......

The Random Cipher 614...
Number of Meaningful Messages in a 615..................

Table 12-1. Individual Letter Frequencies 616.......
PROBABILISTIC MEASURES OF 618.................

Probability of Obtaining the Key 618...........................
When Only Ciphertext Is Available for Analysis 618...

Table 12-2. p(SK) Values for a Random 621.........
An Example of Simple Substitution on English 621....

Table 123. Average Number of Different 622.........
Table 12-4. Values of p(SK) for N Near ud 624.....

Probability of Obtaining the Key When 624................
Probability of Obtaining the Key When 624................
Probability of Obtaining the Plaintext 626...................

Table 12-5. Values of p(SM) and E(U) 6 2 5............
AN EXPANSION OF SHANNON�S 627................

Information Measures9 628..
Unicity Distance for a Cipher When Only 629.............
Unicity Distance for a Cipher When Plaintext 631......
Relationships Among Ho(IY), H(lllV), and 632............
Unicity Distance for the Data Encryption 635..............

WORK FACTOR AS A MEASURE OF 636..........
The Cost and Time to Break a Cipher 636..................
Simple Substitution on English-Some 637..................

Table 12-6. Values of �a� and �1 -a� for 638............
Empirical Results for Simple Substitution 640............

Table 12-7. Statistical Estimates for 641................
Empirical Results for Simple Substitution 642............
ETAOINSRHLDCUMFPGWYBVKXJQZ 642..............
Comparison of Results 642...

Table 12-8. Statistical Estimates for Key 648.........
Table 12-9. Statistical Estimates for 6 4 6................
Figure 12-6. Comparison of p(SM) as a 646..........

REFERENCES 647...

Other Publications of Interest 647..........................

-1 CHAPTER TWELVE I-

Measures of Secrecy for Cryptographic
Systems

We agree with the statement that “cryptography is currently an engineering
subject in which there are more facts and rules of thumb than theorems or
systematic developments” [1] . The science of cryptography has evolved
only recently as a result of attempts to explain or define in mathematical
terms the facts and rules of thumb that have evolved from the practiced
art of cryptography. This chapter reflects this quality and of necessity com-
bines a wide variety of material ranging from the very simple to the very
complex.

Cryptographic protection (secrecy) is attainable if plaintext can be re-
covered from ciphertext only by those authorized. There are in fact two
types of secrecy that can be achieved with a cryptographic algorithm: fheo-
retical secrecy and practical secrecy.

Theoretical secrecy is based on a single axiom: that the information avail-
able to or intercepted by an opponent is insufficient for the derivation of a
unique cipher solution. In other words, there is always a measure of uncer-
tainty, regardless of what method of analysis is used, as to which candidate
among a set of possible values (keys or messages) is correct. For example,
cryptographic protection may be based on the assumption that an opponent
has only ciphertext available (called a ciphertext-only attack), and that the
amount of ciphertext intercepted by an opponent would be insufficient to
allow the plaintext or key to be recovered.’ Today, with the vast amounts
of data being transmitted in communication networks, such an assumption
cannot be justified. In fact, the designers of a cryptographic system should
assume that an opponent can obtain plaintext and matching ciphertext in
sufficient quantities to determine the key uniquely (see Cryptographic
Algorithms, Chapter 2).Therefore, by and large, theoretical secrecy is unat-
tainable in today’s data processing systems and networks.

On the other hand, practical secrecy assumes sufficient information is
available to break the cipher, and is measured by the work (work factor)

1 The following are examples of ciphertext-only attacks in which there are multiple solu-
tions. With transposition on English, cryptogram “nde” would have at least two solutions:
“den” and “end.” With a simple substitution on English, cryptogram “nde” would have
several solutions: “the,” “and,” “but,” and so forth.

607

606 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

required to find the solution to a given cryptanalytical problem (see Crypto-
graphic Algorithms, Chapter 2). This type of secrecy is achieved (e.g., in the
DES) by designing the cryptographic algorithm so that it is computationally
infeasible to solve for a message or key, even if the analyst has specific knowl-
edge of the cryptographic algorithm and large amounts of chosen ciphertext/
plaintext and corresponding plaintext/ciphertext.

Experience has shown that it is difficult to devise a cryptographically
strong algorithm. (Note for example the successful cryptanalysis of the
German Enigma Cipher and the Japanese PURPLE Cipher used during
World War II). To understand why this is so, it is helpful to investigate the
mathematical foundations of cryptography. (Theoretical secrecy, which is
primarily of value to a general study of cryptography, has been the subject
of extensive mathematical analyses. Significant results have been obtained.
Practical secrecy, which is significant to the specialized study of crypto-
graphic algorithms, has also been widely investigated; but few substantive
results have been obtained.)

Shannon [2,3] invented a particularly useful theoretical model called a
random cipher. Using information theory, he described the relationship
between the amount of intercepted ciphertext and the likelihood of a suc-
cessful attack. With the model, he was able to determine the unicity distance
(ud) of a cipher, which he described as follows: with more than ud charac-
ters of ciphertext there is only one solution to the cipher, with less than that
amount there are several so-called solutions.

More accurate results can be obtained if other probabilistic measures (not
based on information theory) are used. The amount of (intercepted) cipher-
text defines a specific probability that the ciphertext has a unique solution
(only one meaningful decipherment is obtained using the set of all possible
keys). By calculating the probability that a correct key or correct plaintext
can be obtained for a given amount of ciphertext, more precise statements
can be made concerning a cipher’s vulnerability.

ELEMENTS OF MATHEMATICAL CRYPTOGRAPHY

The analysis that follows assumes a conventional cryptographic algorithm
(an algorithm in which the enciphering and deciphering keys are equal).
However, the results can be adapted to public-key algorithms as well. (For
a definition of conventional and public-key algorithms, see Cryptographic
Algorithms, Chapter 2.)

Information Flow in a Conventional Cryptographic System

Figure 12-1 illustrates the information flow in a conventional cryptographic
system. A message (plaintext x) is generated by the sender. An enciphering
algorithm E, which depends on a secret key k, is used to encipher x into a
cryptogram (ciphertext y):

b(X) = Y

ELEMENTS OF MATHEMATICAL CRYPTOGRAPHY 609

A priori information about:
cryptographic algorithm, messages,
keys, cryptographic system,
relationships among them
and the intercepted information.

I3 I 1
Cryptanalysis

g -B’

Receiver
X----,

Transmitter
Ek

----+X
(Nonsecure Path) Dk

l 4

k (Secure Path)

Figure 12-1. Information Flow in a Conventional Cryptographic System

Cryptogram y is then transmitted to the receiver where the deciphering
algorithm D, which also depends on secret key k, is used to recover x:

h(Y) = X

It is assumed that an opponent does not possess k, and hence cannot recover
x from y using D. (Note that algorithms D and E may or may not be kept
secret.) In order for k to remain secret, a secure communication path is
needed between the sender and receiver.

The opponent’s initial information is a variable that can be as little as
only ciphertext or as much as complete knowledge of the system (except
for the key). If B represents the information available to an opponent and g
represents the process of cryptanalysis, then the deduced information, B’,
can be expressed as

B’ = g(B)

Practical secrecy assumes that the computational resources and time avail-
able for analysis must be within practical bounds. By making these bounds
high enough, a sufficiently high work factor is achieved. Theoretical secrecy,
on the other hand, assumes that the analyst has unlimited computational
resources.

A Cipher with Message and Key Probabilities

A mathematical analysis of ciphers is made possible by assigning probabilities
to messages and keys and by making certain simplifying assumptions about

Message SpaceX:

X={xi : i--l, 2, r }) Y={yj:j=l,2,...,r} \

p(xi) is the probability of
elementary event { xi }.

p(yj) = t p(kl)*p(xi) is the
probability of elementary
event { yj }, where the summation
extends over all kl in &

&= @I: I= 1,2, II }

p(kl) is the probability of
elementary event { kl }.

Figure 12-2. A Cipher with Message and Key Probabilities

ELEMENTS OF MATHEMATICAL CRYPTOGRAPHY 611

the enciphering and deciphering transformations, messages, cryptograms,
and keys (Figure 12-2). For given enciphering (E) and deciphering (D)
algorithms, they are:

1. X = Ixi:i = 1, 2, . . . , r) is a finite set of r unique messages having
associated probabilities of occurrence, p(xl), p(x2), . . . , p(xr).

2. Es, = {kZ:Z = 1, 2, . . . , nl is a finite set of n unique keys having associ-
ated probabilities of occurrence, p(kl), p(k2), . . . , p(kn).

3. J$ = {Ek:k = kl, k2, . . . , kn1is a finite set of one-to-one enciphering
functions from the message space (X) to the cryptogram space (Y).

4. For every key (kl in K) and message (xi in X) there is a cryptogram
(yj in 1) such that Ew(xi) = yj. The probability of elementary event
{yj)is given by

p(YJ’) = I: PWMxO

where the summation extends over all k2 in K and xi in X such that
Edxi) = yj. It is assumed that messages and keys are independently
chosen, that is, p(kZ, xi) = p(kl)p(xi).

5. The condition that Ew is a one-to-one function means that the number
of elements in y, denoted 1x1, must be equal to or greater than the
number of elements in X. For the special case where IX!= 1x1, each
enciphering function in E is not only one-to-one but also onto (see
Cryptographic Algorithms, Chapter 2), and Dk is the inverse function
of Ek. To simplify the analysis, assume that 1 Xl = 1x1. Therefore,

y = {yj:j = 1, 2, . . . , r)

is a finite set of r unique cryptograms, and

D = {Dk:k = kl, k2,. . . , kn}

is a finite set of one-to-one deciphering functions from the cryptogram
space (Y) to the message space (X).

When no ambiguity exists, the indices (i, j, and I) associated with x, y, and k
will be omitted from the discussion.

The probabilities assigned to messages and keys represent the analyst’s
prior knowledge (or assumptions) about the messages and keys selected for
encipherment. For example, if there were a known bias in the key selection
process, the analyst would assign highest probability to those keys with the
greatest chance of being selected. In effect, this would reduce the average
number of keys needed to be searched before finding the correct key. How-
ever, if keys are randomly selected, or if the selection process is unknown,
the analyst would assign equal probability to each key:

p(k) = l/n for each k in K

612 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

In the analysis that follows, keys are assumed to be equally probable. Proba-
bilities are assigned to messages using a method suggested by Shannon [2,3] .
The message space (X) is divided into two sets:, (1) a set of s meaningfully
distinct, or meaningful messages, denoted by X’, and (2) a set of r-s meaning-
less messages denoted by &“. By assuming that almost all enciphered mes-
sages will be meaningful, it follows that the sum of the probabilities of the
messages in X’ is approximately equal to one, and the sum of the probabilities
of the messages in 8” is approximately equal to zero. In the analysis below,
assume that the sums of the possibilities of the messages in X’ and s” are
one and zero, respectively.2

For mathematical simplicity, assume that the analyst has no prior knowl-
edge of the messages’ contents and that each message in X’ is assigned equal
probability:

P(X) = l/s for each x in X’

The cryptogram space (Y) can therefore be divided into a set of possible
cryptograms (those that can be generated from at least one meaningful
message), denoted by y’,

Y’ = CE,(x):k in & and x in X’)

and a set of impossible cryptograms (those that can be generated only from
meaningless messages), denoted by y”,

where y - Y’ is the difference of Y_ and x’, defined as the elements in Y
that are not-in Y’. (The probability, p(y), of each cryptogram (y) in p
is determined by the probabilities of the various messages and keys, as
shown above.)

In the definitions given below, y stands for an intercepted cryptogram,
that is, y is an element of the set y’.

1. M is the random variable defined as the number of keys that will de-
cipher a given intercepted cryptogram (yj) into a meaningful message.

2. M’ is the random variable defined as the number of keys, except for
the key originally used to produce the given cryptogram, that will
decipher the intercepted cryptogram into a meaningful message (M’
= M - 1).

3. U is the random variable defined as the number of different meaning-
ful messages that are produced when a given intercepted cryptogram
(yj) is deciphered with all possible keys.

2 Of course, if the sender purposely enciphers random data, then r = s.

ELEMENTS OF MATHEMATICAL CRYPTOGRAPHY 613

4. U’ is the random variable defined as the number of different meaning-
ful messages, except for the message originally used to produce the
given cryptogram, that are produced when the intercepted crypto-
gram is deciphered with all possible keys (U’ = U - 1).

The relationship between M and U is illustrated by the following example
in which xl and kl are a message and key originally used to produce crypto-
gram yl; x2 and x3 are incorrect meaningful decipherments; and k2, k3,
and k4 are incorrect keys leading to meaningful decipherments (Figure 12-3).

Since 4 keys produce only 3 different meaningful decipherments, it fol-
lows that M = 4 and U = 3. It can be seen from the example that the follow-
ing relations hold in general:

u&m

m’=m-1

u’=u-1

(m and u denote specific values of the random variablesM and U, respectively.)
The probability distribution of M (the probabilities associated with the

occurrence of all possible values of M) is of primary interest to the analyst
since the probability of solving successfully for the correct key, denoted by
p(SK) (where S stands for success), can be evaluated from M.

Assume that m different keys will decipher an intercepted cryptogram
into meaningful messages. Since any of these m keys could be the correct
key (the key originally used to produce the given cryptogram), the proba-

Figure 123. Example in which Cryptogram yl has Four Meaningful Decipherments

614 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

bility of guessing or randomly selecting the correct key from among this set
is thus

p(SKIM = m) = l/m

Since m can range from 1 to n (note that n is the total number of keys, see
Figure 12-2), the probability of obtaining the correct key is given by:

P(SK) = 2 (l/m)p(M = m)
In =l

(12-1)

where p(M = m) is the probability that M = m. Similarly, the distribution
of U allows the probability of successfully solving for the correct message,
denoted by p(SM), to be calculated:

S

PCW = c (1 /U)(PW = u)
u=l

(12-2)

(s is the total number of meaningful messages.) In general, the mathematical
relationships that define a cipher-the complex structural relationships dic-
tated by the enciphering and deciphering functions as applied to the set
of messages-render it impossible to determine the distributions of M and U.
At best, only approximations to these distributions can be found.

Shannon [23 overcame this problem by defining a special theoretical
cipher, called a random cipher, with the property that the distribution of M
is easily determined. He demonstrated that the results obtained with a ran-
dom cipher are consistent with those obtained with some actual ciphers.

The Random Cipher

Let Q denote the set of all possible one-to-one and onto functions from the
set of messages & to the set of cryptograms X. Select at random, with re-
placemen t,3 n enciphering functions, fl, f2, . . . , fn from Q and denote this
set bylj:

E={fi:i=1,2,...,n)

Corresponding to each enciphering function fi in Q, there is an inverse (de-
ciphering) function, fi -’ also in Q, such that

fi-‘(t?(x)) = x

for all x in X. Let it be assumed that for each enciphering function fi selected

3The term “with replacement” means that each selected element is replaced before the
next element is selected.

ELEMENTS OF MATHEMATICAL CRYPTOGRAPHY 615

from Q, the corresponding inverse (deciphering) function ti-’ is also selected
from Q. Thus the set of selected enciphering functions _E defines a set of
associated deciphering functions D:

D = {ii-’ :i = 1,2, . . . , n)

If f is replaced by E, ti-’ is replaced by D, and subscripts are redefined as
keys, then E and D can be rewritten as

B={Ek:k=kl,k2,...,kn1

D=‘(Dk:k=kl,k2,...,kn)

A random cipher can thus be described in terms of the notation used in prior
chapters. There is also a natural one-to-one correspondence among ki, Eki,
and Dki; selecting any one of the elements is the same as selecting all three
elements. The definition of a random cipher given here is different from that
given by Shannon [21. Shannon’s random cipher is not a true cipher, since it
is possible for the same key to decipher two different cryptograms into the
same message. The random cipher defined here eliminates this problem-it
is a true cipher.

However, in eliminating one problem, another is created. Because func-
tions are selected from Q with replacement, it may happen that _E contains
two enciphering functions, fi and fj (selected at the ith and jth trials, re-
spectively, such that ti = fj and i # j (in other words, E_ may contain an Eld
and E, such that Eki = E, and ki # kj). That is, equivalent enciphering
functions (keys) can occur. But the occurrence of equivalent keys in the
definition of a random cipher is not a problem if the total number of such
keys remains very small. (Note that in some ciphers it is nearly impossible
to prove that equivalent keys do or do not exist.)

Consider a random cipher used to model the DES algorithm. Such a cipher
could be constructed by randomly selecting (with replacement) 256 functions
(or keys) from Q, where Q contains (2@‘)! different one-to-one and onto
functions from the set of all 64-bit messages to the set of all 64bit crypto-
grams. Since 256 is very small in comparison to (261)!, the probability of
selecting the same function (key) twice would be extremely small.

Before proceeding with a mathematical analysis of the random cipher, a
computational procedure used to estimate the number of meaningful mes-
sages in x is discussed. This will allow the results obtained with the random
cipher to be applied to several examples of actual ciphers.

Number of Meaningful Messages in a Redundant Language4

If an opponent has only ciphertext, but enough is available for analysis,
then a necessary and generally sufficient condition for breaking a cipher via

4 A detailed analysis of the number or meaningful messages is given in Appendix F. SOme
of the important results derived there are summarized in this section.

616 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

the brute-force methods discussed below is that the underlying language
from which the messages are selected possess the property known as re-
dundancy. A language has redundancy if for any N it can be shown that the
possible sequences of N letters are not all equally probable. All natural
languages possess redundancy. That English is redundant is demonstrated by
a table of the number of times each letter appears in a sample of text. The
results of such an experiment using 4 million letters of English text are
shown in Table 12-l.

Exactly how redundancy facilitates the process of cryptanalysis can be
stated in the following way:

Redundancy is essentially a series of conditions on the letters of a message, which
insure that it be statistically reasonable. These consistency conditions produce cor-
responding consistency conditions in the cryptogram. The key gives a certain
amount of freedom to the cryptogram but, as more and more letters are intercepted,
the consistency conditions use up the freedom allowed by the key. Eventually,
there is only one [combination of] message and key which satisfies all the condi-
tions and we have a unique solution. [21

In effect, the reason that a cryptogram eventually has a unique solution, if
enough text is available for analysis, is that in a redundant language the mes-
sages of N letters can be divided into two sets, those which are intelligible or
meaningful and those which are not, and as N is increased the ratio of mean-
ingful to meaningless messages approaches zero. In the English language, for

a Fw (a) p(a) a Freq (a) p(a)

A 321712 .0804
B 61472 .0154
C 122403 .0306
D 159726 .0399
E 500334 .1251
F 92100 .0230
G 78434 .0196
H 219481 .0549
I 290559 .0726
J 6424 .0016
K 26972 .0067
L 165559 .0414
M 101339 .0253

N
0

6
R
s
T
U

’ s

’ i:
Z

283561 .0709
303844 .0760
79845 .02!IO
4226 .OOll

244867 Ml2
261470 A654
370072 .0925
108516 .027 1
39504 do99
76673 .0192
7779 JO19

69334 .0173
3794 .ooo9

p(a) = Freq(a)/4,000,000.
Based on a sample of 8000 excerpts of 500 letters taken from the
Brown University Corpus of Present-Day American English. [3]

Table 12-1. Individual Letter Frequencies in 4 Million Characters of English Text

ELEMENTS OF MATHEMATICAL CRYPTOGRAPHY 617

example, the meaningful sequences are just those that are encountered in
normal text.

An approximation of s, the number of meaningful messages in JC, can be
obtained using a zero-order approximation of message probability (Equation
F-2 in Appendix F). When message length N is very large, each message con-
tains about Npl occurrences of the first letter, Np2 occurrences of the
second letter, and so on, where pi is the probability of occurrence of letter i.
Hence, for N very large, most messages have a probability p approximately
equal to (-)

p I: plNp’p2Np2. . . pnNPn

where n is the number of different characters in the language. Ignoring
statistical variations in p between messages, assume as a first order approxi-
mation that all s meaningful sequences have the same probability p. Since
the probabilities of all meaningful sequences add .up to 1 (as assumed before),
it follows that sp % 1 and thus

S’ l/p

Hence,

log,s = -log, p
n

a-N c pi log,pi
i=l

If

Gi = - 2 pi log,pi
i=l

is defined as the entropy per character (measured in bits per character)5
for the message source, it follows that

(See Appendix F.) Using the values for p(a) in Table 12-1, a value of 4.17
bits per character is obtained for G1. Thus s can be expressed as

s ‘v 2N4.17

Taking into account probabilities of pairs of letters (digrams), triplets
(trigrams), and so on, it is possible to obtain a correspondingly higher-

’ Since NGl denotes the number of bits required to represent s messages and N is the
number of characters in each message, Gl is expressed in bits per character.

618 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

order approximation for s (see Appendix F). Groups of n (n = 1, 2,)
contiguous letters are also referred to as n-grams.

As N approaches infinity (all statistical information about the language is
known), one obtains

Lim (log,s)/N = R
N-t=

and therefore

where R, called the rate of the language, is a constant determined by the partic-
ular language. For English (26 letters), R is about 1.2 bits per character [4].

PROBABILISTIC MEASURES OF SECRECY USING A RANDOM CIPHER

Probability of Obtaining the Key
When Only Ciphertext Is Available for Analysis

Given a random cipher, let y be an intercepted cryptogram which has been
enciphered from an unknown meaningful message x. The opponent, who has
intercepted y, knows only that x is an element of X’ and y is an element of
y’. Assume that kj is the key originally used to encipher x into y. Hence the
probability that kj deciphers y into a meaningful message is 1:

p[Dkj(y) is meaningful] = 1

In the construction of a random cipher, the enciphering functions in E are in-
dependently selected from the set Q. Therefore, the process of deciphering
y with each of the (n - 1) incorrect keys

kl,k2 ,..., kj-l,kj+l,..., kn

can be thought of as (n - 1) Bernoulli trials,(j where s/r represents the proba-
bility that a key will successfully decipher y into a meaningful message:

p[Dki(y) is meaningful] = s/r

and 1 - (s/r) is the probability that a key will fail to decipher y into a mean-
ingful message :

p[Dki(y) is meaningless] = 1 - (s/r)

6Many problems in probability theory involve independent, repeated trials of an experi-
ment whose outcomes can be classified into two categories called successes and failures.
An experiment which has only two possible outcomes is called a Bernoulli trial [51.

PROBABILISTIC MEASURES OF SECRECY USING A RANDOM CIPHER 619

for all values of i not equal to j. Hence it follows that M’ has a binomial
distribution [5] :

p(M’ = m’) = r: l)(s/r)m’(1 - (s/r))“- ’ -m’
(12-3a)

form’=O,l,...,n-1

The expected value (E) and variance (Var) of M’ are, respectively,

E(M’) = (n - l)(s/r) = h’ = h(n - 1)/n

Var(M’) = (n - l)(s/r)(l - (s/r)) = h’(1 - (s/r))

where parameter X equals ns/r. For s/r much less than 1 (written s/r Q l), the
binomial distribution (Equation 12-3a) can be approximated by the Poisson
distribution IS], so that

p(M’ = m’) ‘Y e-h’(X’)“‘/m’! for s/r Q 1 (12-3b)

Since m’ equals m - 1, it follows that

p(M = m) =

form= 1,2,...,n
(12-4a)

The expected value and variance of M are, respectively,

E(M)=E(M’+ 1)=X’+ 1 =(X(n-1)/n)+ 1 (12-4b)

Var(M) = Var(M’ + 1) = h’(1 - (s/r)) (12-4~)

The Poisson approximation for p(M = m) is given by

p(M = m) N eWL’(h’)” -l/(m - l)! for s/r 4 1

Using information theory and the above mathematical relationships, Shannon
defined the unicity distance of a random cipher (the point where there is no
uncertainty over which key was used for enciphering) as the value of N(N =
cryptogram length in characters) for which h(h = ns/r) becomes equal to
one [21. (See also An Expansion of Shannon’s Approach Using Information
Theory.)

Essentially, when language redundancy is present, the ratio s/r gets smaller
as message length (or cryptogram length) gets larger. At some point, s/r is
small enough so that ns/r equals 1. However, if data are composed of random,
independently-selected characters, in which case there is no language redun-
dancy, s equals r and unicity distance equals infinity.

Unicity distance is often given the following interpretation. BeZow the uni-

620 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

city distance (N < ud), an attack on the key will not succeed; above the
unicity distance (N > ud), an attack on the key will succeed.

However, the interpretation is not strictly correct; there is no abrupt
change between the point where the key is (N > ud) and is not (N < ud)
obtainable. A more precise statement would be that for every cryptogram of ,
N characters, there is an associated probability, p(SK), of obtaining the key
used to produce that given (known) cryptogram from the selected (unknown)
message.

If information measures are used to determine unicity distance, one con-
cludes that a cipher is vulnerable to attack when h is close to one. But how
vulnerable the cipher is cannot be said. If a probabilistic approach is used
instead, more precise statements can be made about the cipher’s vulnerability.
A value for the probability of successfully obtaining the correct key, p(SK),
is derived by combining Equations 12-l and 12-4a:

PW) = 2 (l/mMM = ml = (l/X)(1 - (1 -(h/n))“) (12-5)
m =l

Using the Taylor [61 series expansion for ln(1 - (X/n))“, it follows that

p(SK) a (l/A)(1 - e- h) for h/2 < 1 (12-6)

(In is the natural logarithm to the base e = 2.7 182818. . . .) The accurate
result for p(SK) (Equation 12-5) depends on n as well as X, whereas the ap-
proximation for p(SK) (Equation 12-6) depends only on h.

Equations 12-5 and 12-6 show that p(SK) equals one if either the number
of keys in K is equal to one (n = l), or X = 0 (e.g., if the number of charac-
ters in the intercepted cryptogram approaches infinity, N + 00). Except for
the trivial case where K contains only one key, the result implies that a
random cipher can be broken with certainty only when an infinite amount
of ciphertext is available for analysis.

Table 12-2 contains computed values of p(SK) for different values of
log21 and login. The values of n for n much greater than 1 (n >> 1) are com-
puted using the approximation for p(SK) (Equation 12-6), while the re-
mainder of the table entries are computed using the accurate expression for
p(SK) (Equation 12-5). It can be seen from Table 12-2 that the approxima-
tion for p(SK) can be used in all situations where log,n is greater than 10,
without much loss of accuracy. Furthermore, it can be seen that the values
of interest are all located in a narrow band on either side of the point where
log21 equals 0.

Shannon [21 defined unicity distance (ud) as the value of N for which h
equals 1. Note that the condition {X = 1) is equivalent to the condition
{log,h = 01. Thus when N = ud, it follows from Equation 12-6 that

p(SK) = (e - 1)/e = 0.6321 fern% 1

However, if p(SK) is plotted against N, one observes that the transition be

PROBABILISTIC MEASURES OF SECRECY USING A RANDOM CIPHER 621

log2A (Bits) logln (Bits)
0 1 5 10 n>>l

- 14 1.0000 0.9999 0.9999 0.9999 0.9999
- 12 1.0000 0.9999 0.9999 0.9999 0.9999
- 10 1.0000 0.9998 0.9995 0.9995 0.9995
-9 1.0000 0.9995 0.9990 0.9990 0.9990
-8 1.0000 0.9990 0.9981 0.998 1 0.9980
-7 1.0000 0.9980 0.9962 0.9961 0.9961
-6 1.0000 0.9961 0.9925 0.9922 0.9922
-5 1.0000 0.9922 0.9850 0.9845 0.9845
-4 1.0000 0.9844 0.9703 0.9694 0.9693
-3 1.0000 0.9688 0.9418 0.9401 0.9400
-2 1.0000 0.9375 0.8879 0.8849 0.8848
- 1 1.0000 0.8750 0.7917 0.7871 0.7869

0 1.0000 0.7500 0.6379 0.6323 0.6321
1 0.0 0.5000 0.4366 0.4325 0.4323
2 0.0 0.2465 0.2455 0.2454
3 0.1250 0.1250 0.1250
4 0.0625 0.0625 0.0625
5 0.0313 0.0313 0.0313
6 0.0 0.0156 0.0156
7 0.0078 0.0078
8 0.0039 0.0039
9 0.0020 0.0020

10 0.0010 0.0010
12 0.0 0.0002
14 0.0

Values in the column denoted “n >> 1” were computed using the equation p(SK) N (l/A) (1 -em”),
which holds when A/2n << 1. Values in all other columns were computed using the equation
p(SK) = (1 /A) (1 - (1 - (A/n))“).

Table 12-2. p(SK) Values for a Random Cipher

tween p(SK) N 0 and p(SK) * 1 is indeed very sharp. This is illustrated
below in an example of simple substitution on English. Hence the loose in-
terpretation of unicity distance resulting from information theory is quite
good.

An Example of Simple Substitution on English (Ciphertext Only)

An example is given below in which a random cipher is used to model simple
substitution on English. It is shown that the unicity distance is about 22
characters, which agrees quite well with reported values for simple substi-
tution ciphers.

In simple substitution on English, there are n = 26! ways in which a 26-
letter plain alphabet can be transformed into a 264etter cipher alphabet
(i.e., the maximum number of possible keys is 26!). However, for small and

622 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

moderate values of N, the number of different letters in the message is
usually less than 26. Therefore, the effective number of keys is less than 26!.

The average numbers of different letters that occur in messages of N char-
acters, for values of N from 5 to 1500 characters, are shown in Table 12-3.
Messages of 25 characters contain about 14 different letters. Therefore, the
effective number of keys the analyst must cope with is about

n = (26)(25)(24). . . (13)

26’ =A
12!

= 8.4 x 10”

instead of

26! = 4.0 X 10”

Message Length Average Number
N of Different

(Characters) Letters per Message

5 4.5
10 7.8
15 10.2
20 12.0
25 13.4
30 14.5
40 16.1
50 17.3
75 19.2

100 20.4
200 22.4
300 23.0
400 23.4
500 23.7
700 24.2

loo0 24.6
1500 25.2

The samples were taken from the Brown University
Corpus of Present-Day English. [3]
Number of sampled messages = 1000.
On the average, 13.4 different letters occur
in a sample of 1000 messages of 25 characters.

Table 123. Average Number of Different Letters in N Letters of English Text

PROBABILISTIC MEASURES OF SECRECY USING A RANDOM CIPHER 623

Since the unicity distance for simple substitution on English is shown to be
about 22 characters, no more than 22-gram statistics should be used to ap-
proximate s. In the present analysis, 15gram statistics are used.

Recall that when J-gram statistics are used (J > l), the number of meaning-
ful messages (sN, r _ i) can be approximated by

SN, J - 1 N 2NFJ

(See Equation F-14 in Appendix F) where N (>J) is the number of charac-
ters in the sample messages, J - 1 is the order of the Markov approximation
to message probability, and Fr (see Equation F-9 in Appendix F) is a mea-
sure of the conditional entropy of the message source.

Using the value Fr5 = 2.02 bits per character,’ sN,r4 WalUateS t0

sN,14 -
- 2N2”2

(To simplify the notation in the discussion below, let s be used in place of
sN i4.) The total number of messages r is equal to 26N, which can also be
written as

Therefore, it follows that

log, X = log, (ns/r)

= log,n + log2s- log,r

- 59.5 + 2.02N - 4.7ON

which can be used to show that log,h is close to 0, or equivalently, that X
is close to 1, when

N = 22.2 characters

This result is interpreted to mean that the unicity distance for simple sub-
stitution on English is 22.2 characters when the values of n, s, and r are
taken as 26!/12!, 22D2N, and 24*70N, respectively. That is, ud = 22.2 charac-
ters provided that the message contains about 14 different letters and the
cryptanalysis makes use of 15-gram statistics.

Referring now to Table 12-2, one finds that

PC=) = 0.63

for a random cipher in which n = 26!, s = 22D2N, r = 24*70N, and N = ud.
Just how rapidly p(SK) approaches 1 for values of N above 22.2 charao

‘F15 is computed, using Equation F-18 and values from Table F-3, as follows: F1s =
(5.5/4.5)((2.1 - 1.2)/2) = 2.02.

624 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

N (Characters) I 18.9 20.0 21.1 22.2 23.3 24.4 25.6

P(SW I .0020 .0156 .1250 .6321 .9400 .9922 .9990

Values of p(SK) were obtained from Table 12-2 using log, A; values of log, X were calcu-
lated from the expression (log,X = 59.5 t 2.02N - 4.70N) using N.

Table 12-4. Values of p(SK) for N Near ud Given that a Random Cipher is used to
Model Simple Substitution

ters, and 0 for values of N below 22.2 characters, can be seen from Table
12-4.

The p(SK) values obtained with a random cipher agree with empirical ob
servations for simple substitution on English. Friedman indicates that

Practically every example of 25 or more characters representing monoalphabetic
encipherment of a ‘sensible’ message in English can be readily solved [7].

According to Shannon,

The unicity point . . . can be shown experimentally to lie between the limits 20
and 30.. With 30 letters there is nearly always a unique solution to a cryptogram of
this type and with 20 it is usually easy to find a number of solutions [2].

Such a close agreement between theoretical and empirical results indicates
that the underlying assumptions of a random cipher are good. This same
general agreement holds for other ciphers as well (e.g., Caesar, transposition,
and Vigenere) 121. A more detailed treatment of unicity distance computa-
tions can be found in Appendix G.

Probability of Obtaining the Key When Plaintext and
Corresponding Ciphertext Are Available for Analysis

Consider now a cryptanalysis involving plaintext and corresponding cipher-
text. Again, a random cipher is assumed. Let y be the cryptogram produced
when a known message x is enciphered with an unknown key kj. In the
analysis that follows, x may be a meaningful or meaningless message (i.e., x
may be any of the r messages in X). As before, the probability that kj de
ciphers y into x is 1:

P[Dkj(Y) equals XI = 1

Likewise, the process of deciphering y with each of the (n - 1) incorrect
keys, kl, k2, . . . , kj - 1, kj + 1, , . . , kn, can be thought of as (n - 1)
Bernoulli trials, except now the probability that a key will successfully de-
cipher y into x is l/r:

ptDki(y) equals x] = l/r

PROBABILISTIC MEASURES OF SECRECY USING A RANDOM CIPHER 626

and the probability that a key will fail to decipher y into x is 1 - l/r:

paddy) not equal xl = 1 - l/r

for all values of i not equal to j.
Clearly, cryptanalysis involving plaintext and corresponding ciphertext

(where the number of meaningful messages s equals 1) is a special case of the
previous analysis. It follows therefore that p(SK) can be calculated from
Equations 12-S and 12-6, except that h equals n/r instead of ns/r. Since h is
reduced by a factor of s, it is not surprising that the cipher is more vulnerable
to attack.

Probability of Obtaining the Plaintext

The emphasis here is on analyzing a random cipher from the viewpoint of
obtaining the correct plaintext for a given intercepted cryptogram, without
regard to whether one obtains the correct key. Recall that U is defined as
the number of meaningful messages that can be recovered from the inter-
cepted cryptogram.

In Appendix H, accurate expressions are derived for the distribution of
U (see Equations H-l a and H-3). Using these equations, accurate values were
computed for the expected value of U, denoted E(U), and the probability
of successfully obtaining the correct plaintext, denoted by p(SM) (see Table
12-5). In particular, values of E(U) and p(SM) are given for the case where
the number of keys n equals 32 (log,n = 5), and for different values
of the number of meaningful messages (s = 1, 4, 8, 16, and 32) and X(X =
2-6, 2-3, 2-2, 2-1, 25 2l 22 and 23). Recall that h = ns/r, that is, h equals
the number of keys n multiblied by the number of meaningful messages s
divided by the number of cryptograms r.

For purposes of comparison, values for p(SK) from Table 12-2 and
values for E(M) computed from Equation 12-4b are also given in Table 12-5.
This shows that the difference between p(SM) and p(SK), and the difference
between E(U) and E(M), are not too great even for small values of s and n.
In an actual cipher, s and n would be much larger than 32; thus no distinc-
tion needs to be made between p(SK) and p(SM).

Approximations for p(U = u), E(U), and p(SM) are as follows (see also
Equations H-7 thru H-9 in Appendix H):

p(U = u) 3 p(M’ = u - l)[1 + h’/s +
Lr-‘=l’:‘- 1)/2s-(u- 1 12/2sl

I
E(U) - E(M)[1 - @‘/2$(X + (2/X’) + l)]

PCW 3 p(SK)(l + X’/2s)

where p(M’ = u - 1) can be deduced from Equation 12-4a, since p(M’ =
u - 1) equals p(M = u). The values obtained with these approximations
differ by less than 5 percent from the corresponding more accurate values
given in Table 12-5.

log*” = 5

h32A
(Bits)

-6 0.9962 0.9943 0.9934 0.9929 0.9927 0.9925
-3 0.9706 0.9561 0.9490 0.9454 0.9436 0.9418
-2 0.9430 0.9153 0.9016 0.8949 0.8915 0.8879
-1 0.8925 0.8416 0.8168 0.8047 0.7986 0.7917

0 0.8080 0.7211 0.6800 0.6600 0.6502 0.6379
1 0.6869 0.5533 0.4928 0.4642 0.4503 0.4366
2 0.5676 0.3891 0.3130 0.2785 0.2622 0.2465
3 0.5080 0.2882 0.1974 0.1587 0.1412 0.1250

-6 1 A08 1.0113 1.0132 1.0142 1.0147 1.0151
-3 1.060 1.0895 1.1052 1.1131 1.1171 1.1211
-2 1.1140 1.1763 1.2087 1.2253 1.2337 1.2422
-1 1.2151 1.3421 1.4113 1 A473 1.4657 1.4844

0 1.3839 1 A453 1.7983 1.8813 1.9244 1.9688
1 1.6263 2.1588 2.5109 2.7139 2.8230 2.9375
2 1.8648 2.8788 3.7040 4.2376 4.5420 4.875
3 1.9841 3.5943 5.3839 6.7940 7.6910 8.75

1

PWW
log2s (Bits)

2 3 4 5

E(U) E(M)

PC=)

Note that 0 < s/r < 1, 0 G A= ns/r & n, and p(SK) =0 for A > n.

Table 12-5. Values of p(SM) and E(U) where the Number of Keys is Fixed (n = 32)

AN EXPANSION OF SHANNON’S APPROACH USING INFORMATION THEORY 627

AN EXPANSION OF SHANNON’S APPROACH
USING INFORMATION THEORY

In this section, the unicity distance of a cipher with message and key proba-
bilities is discussed in terms of information theory [83. (No assumption is
made about the distribution of M, that is, the discussion is not limited to
random ciphers but pertains to ciphers in general.)

Consider a message to be a string of symbols, where the symbols belong to
a source alphabet. Information theory applies a numerical measure of infor-
mation to a message, whose value is frequently given in “bits”.8 Based upon
this measure is the notion of entropy, whose value is frequently given in
terms of “bits per symbol”. The value of the entropy depends on the sta-
tistical or probabilistic properties of the set of messages composed from
the source alphabet, rather than the semantics of the particular message. Let
X=(x1,x2,... , xr) denote r different messages with probabilities p 1, p2,
. . . , pr. The information measure associated with the selection of one mem-
ber xi from X, is “-log, pi” bits of information. When each message is
equally likely, the probability of each message is “l/r” bits, and each mes-
sage has information value “log, r”. This is often written as “-log, (l/r)“;
which is the negative of the log, of the probability. For set X, the average
information per message is defined to be the entropy of X, denoted H(x).
Entropy is defined by the expression:

H(X) = 2 -(pi)log,(pO
i=l

If the messages are equally likely, then H(X) assumes its maximum value of
log,r. In that case, log,r bits are needed to encode or represent each message
and the message bears all the information that is received (i.e., the receiver
has no information about which message is selected and sent). For example,
if X = {xl, x2, x3, x4) and pl = p2 = p3 = p4 = l/4, H(X) equals 2. Thus
two bits are needed to represent each message.

However, if the messages are unequally likely, one has in advance some-
thing that any gambler, speculator, or forecaster would instantly recognize
as information. The additional information contributed by the received mes-
sage is lessened by that amount. For example, if the 4 messages above are
assigned probabilities pl = l/2, p2 = l/4, and p3 = p4 = l/8, then H(x)
equals 1.75 bits. On the other hand, if pl = 1 and p2 = p3 = p4 = 0, then
H(g) equals 0. That is, the received message, which is predictable, provides
no additional information.

Alternatively, H(X), the entropy function of pl, p2, . . . , pr, can be inter-
preted as a measure of the uncertainty over which message the sender will
select and transmit to the receiver. (Recall that H(X) assumes values in the
interval 0 to log,r.) When H(X) = 1og2r, there is maximum uncertainty (i.e.,
the receiver has no information about the message that will be transmitted).

8 In the pure binary system, a bit is either 0 and 1.

628 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

When H(x) = 0, there is no uncertainty (i.e., the receiver knows in advance
which message will be transmitted).

Information theory relies heavily on the mathematical science of proba-
bility. For this reason, information theory has been applied to other prob-
abilistic studies in communication theory, cryptanalysis, and the like. In the
study of cryptanalysis, H(X) and H(g) represent the analyst’s prior informa-
tion over which message and key are selected for encipherment.

Information measures provide an alternative approach for discussing
unicity distance. However, because of certain required approximations,
the results obtained with this approach are different from those obtained
using other probabilistic measures (not based on information theory). In
the former case, the relationship between the probability of obtaining the
key (or data) and cryptogram length is a step function: the probability is
zero when the cryptogram’s length is less than the unicity distance, and one
when its length is greater than the unicity distance. However, because the
transition region-defined by the values of N for which the probability of
obtaining the key (or data) is neither close to zero nor close to one-is very
small, either approach provides useful results.

Information Measures9

The following is a list of common information measures useful to a discussion
of theoretical secrecy.

1. Entropy of U:

H(U) = -c p(uNog,p(u)
u

2. Conditional entropy of U given element v:

WJIv) = -&.M9log,pW)
u

3. Equivocation of U given V:

HWIV) =~PWWW)
”

(12-7a)

(12-7b)

(12-7~)

4. Entropy of U and V:

WJ, V) = -c P(U, vYog,p(u, v) (12-7d)
u,v

5. Equivocation of U given V and W:

WJIV, W) = - c P(U, v, wNogzp(4v, WI (12-7e)
u,v,w

6. Equivocation of U and V given W:

H(u, vlw) = - c P(U, V, W)lOgzP(U, VbJ) w7f)
u,v,w

91nformation measures are discussed in greater detail in Appendix F. See also reference 9.

AN EXPANSION OF SHANNON’S APPROACH USING INFORMATION THEORY 629

7. Entropy of U, V, and W:
WJ, V, W> = - c P(U, v, w)log,P(u, v, w> (12-W

u,v,w

The following is a list of information identities and relations the proofs of
which are left to the reader.

1. H(U,V)=H(UlV)+H(V) (12-7h)

2. H(U, V, W) = H(UIV, W) + H(V, W)
= H(U, VlW) + H(W) (12-7i)

3. H(U) = H(UlV); if U and V are independent,
i. e., ~64 v> = PWPW

4. H(U) > H(UIV); if U and V are dependent,
i. e., p(u, v) f P(u)P(V)

5. H(UlV,W)+H(VlW)=H(VlU,W)+H(UlW)

(12-7j)

(12-7k)

(12-71)

In the expressions above, U, V, and W are finite sets whose elements have
been assigned probabilities such that

1 P(U) =c P(V) = 1 p(w) = 1
U V W

Unicity Distance for a Cipher When Only Ciphertext
Is Available for Analysis

Let it be shown first that H(IC, y) equals H(IC, 8). From the general relation

H(U, V, W) = H(UlV, W) + H(V, W)

(see Equation 12-7i) it follows, with an appropriate change of variables, that

and

MY, K, X> = WY Is, X> + H(K, X>

Hence it follows that

WK, Y) - HUL 15) = WYIK, Xl - WXIK, Y)

But since a cipher satisfies y = Ek(x) and x = D,(y), a knowledge of k and y
permits x to be derived, and a knowledge of k and x permits y to be derived. lo

lo An exception to this rule is a homophonic substitution cipher (see Appendix G) where
Ek(x) defines a set of cryptograms. Encipherment includes the additional step of selecting
(usually randomly) one of the cryptograms from this set.

630 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

Therefore,

H(XIK,Y)=WYlIS,X)=O

and consequently

ML Xl = H(K, X)

But, by Equation 12-7h, H(IC, x) can be rewritten as

WK, Y) = H(KIY) + H@)

Moreover, since messages and keys are selected independently, that is,
p(x, k) = p(x)p(k) for all x in X and k in I& it follows that

I-W, 10 = H(K) + H(X)

A general equation for H(ICJY) is thus obtained:

WKIX) = H(K) - H(Y) + I-W

This relationship can now be used to derive the unicity distance of a cipher.
Since

H(s(IY) =c P(YYSKIY)
Y

H(ICIY) measures the average uncertainty over which key was used to en-
cipher the selected (unknown) message into the given (known) cryptogram.
The condition {H(IClY = 0) implies that there is no uncertainty over which
key was used for enciphering (the produced cryptogram is assumed available
for analysis). The following definition for unicity distance can now be given.

The unicity distance (ud) of a cipher in which only ciphertext is available
for analysis is the value of N for which

H(IC) - H(Y) + H(X) = 0 (12-8)

provided that such an N exists.
Assume that the analyst has no prior information concerning which mes-

sage(s) and key(s) are selected for encipherment. In that case, the analyst
considers keys to be equally likely, and therefore assigns equal probability
to each key in I& Hence,

H(IC) = log,n

(n denotes the number of keys in IC). From the concept of meaningful and
meaningless messages, it follows that

H(X) = log+

AN EXPANSION OF SHANNON’S APPROACH USING INFORMATION THEORY 631

(s denotes the number of meaningful messages). Assuming that cryptograms
are nearly equally probable, it follows that

H(Y)= log,r

(r denotes the number of cryptograms in x). An approximation for H(IClY)
is therefore obtained as follows:

H(KIY)=H(K)-H(Y)+H(X)
= log,n - log,r f logZs

= log,(ns/r)

= log,X

(12-9)

Equation 12-9 shows that H(KIY) is near zero when X equals 1, and there-
fore that no uncertainty should remain regarding which key was used to en-
cipher the selected (unknown) message into the given (known) cryptogram.
However, the results obtained with a random cipher (Table 12-2) are differ-
ent. When h equals 1, the probability of obtaining the correct key, p(SK),
is 0.632.1. The reason for the discrepancy is as follows. In a random cipher,
H(Y) is about equal to logsr only when X (h = ns/r) is much greater than 1.
When X is near 1 the approximation (H(Y) y log,r) is no longer valid. In
that case, the value of H(Y_) is strictly less than logzr. This means that the
value of N for which the expression H(KIY) - H(Y) + H(X) equals zero is
greater than the value of N for which h equals 1. (Since the number of keys
n is constant, if an N exists for which H(Klx) equals zero, then as N becomes
very large the ratio s/r will approach 1 /n and X will approach 1.) Equation
12-9 therefore permits only a rough approximation of unicity distance.

Unicity Distance for a Cipher When Plaintext and
Corresponding Ciphertext Are Available for Analysis

From the general relationship

H(UIV, W)+H(VIW)=H(VlU,W)+H(UlW)

(see Equation 12-71) and an appropriate change of variables, it follows that

H(KIY,X)+H(YIX)=H(YIK,X)+H(KlX)

But since a knowledge of k in K and x in X implies a knowledge of y =
E&d in Y,

H(YIK,X) = 0

and keys and messages are selected independently,

H(KlZ)=H(K)

632 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

it follows that

WKIY,X)=WK)-WYIX)

The condition IH(KIY, z) = zero) means that there is no uncertainty re-
garding which key was used to encipher the given (known) plaintext into
the given (known) ciphertext. Therefore, the unicity distance (ud) of a
cipher in which plaintext and corresponding ciphertext are available is the
value of N for which

H(K) - NYIX) = 0 (12-10)

provided that such an N exists. Recall that Shannon defined the ud of a
random cipher as the value of N for which ns/r (ns/r = h) equals one (see
Probability of Obtaining the Key When Only Ciphertext is Available for
Analysis).

When plaintext and corresponding ciphertext are available for analysis,
the set of meaningful messages can be thought of as containing only a single
element (the given plaintext):

s= 1

The remaining r - 1 messages are therefore treated as meaningless. Thus the
ud of a random cipher in which plaintext and corresponding ciphertext are
available for analysis is the value of N for which n/r equals 1. By taking the
logarithm (base 2) of each side of the equation and replacing log,n with
H(K), ud becomes the value of N for which

H(K) - log,r = 0

Comparing this with Equation 12-l 0, one can see that the derived expression
provides only a rough approximation to ud. The condition (H(YIX) N log,r)
does not hold when n/r (n/r = h) is near 1.

Relationships Among Ho(IY), H(lllV), and H&l& V)

The information measures H(XIY), H(KlY), and H(KI& y) are of particu-
lar interest in cryptanalysis. In each case, the value of N for which the re-
spective measure is equal to zero can be used to define the ud of the cipher.
The measure H(XlY) corresponds to the case where the analyst solves for
the plaintext instead of the key, under the assumption that only ciphertext
is available for analysis. The measures H(KlY) and H&IX, y) have already
been discussed.

From Equation 12-71 and an appropriate change of variables, it follows
that

H(KlX, Y) + H(XIY) = MXIK, Y> + WKIY)

AN EXPANSION OF SHANNON’S APPROACH USING INFORMATION THEORY 633

But a knowledge of k in K and y in y implies a knowledge of x = Dk(y)
in &:

H(XI K, XI = 0

Therefore, it follows that

But

implies that

WXIY) = WKIY) - HMX, X> (12-11)

Thus in a cipher where H(XIY) and H(KIY) approach zero as N becomes
large and the number of keys in K remains constant, it follows that the infor-
mation measures H(XIY), H(KIY), and H(K(X, X) can be plotted as depicted
in Figure 12-4. This conclusion can be reached via the following:

1. When N equals zero, it is assumed that X and Y each contain one ele-
ment (i.e., X contains a null message x0, and Y_ contains a null crypto-
gram ~0). Each of the n keys in K map xo to yo. Hence H(KIY) and
H&IX, 41) are both equal to H(K), and H(XlY) is equal to zero.

2. Generally, when plaintext and corresponding cipher-text are available
for analysis, one can solve for the key more easily than when only
cipher-text is available for analysis. Thus when N is greater than zero,
the value H(KIX, 1) is strictly less than the value H&(Y):

WKI Y > WKI X, Y)

for N > 0. This means that H(KI X, y) will approach zero more rapidly
than will H(KI y).

3. When H&IX, y) is near zero, Equation 12-l 0 indicates that H(X(Y)
is approximately equal to H(KIY):

WXIY) m H(Kl41)

This in turn says that H(X(Y) and H(KIY) will nearly coincide and
approach zero together. That H(XIY) is about equal to H(KJY) at the
ud where H(K(Y_) equals zero agrees with the previous result for a
random cipher (Table 12-5) indicating that p(SK) is about equal to
p(SM) at the ud (when X equals 1).

634

AN EXPANSION OF SHANNON’S APPROACH USING INFORMATION THEORY 635

Unicity Distance for the Data Encryption Standard

If plaintext and corresponding ciphertext are available for analysis, the
unicity distance of the DES algorithm can be approximated using Equation
12-l 0. That is, ud is the value of N for which

H(K) - WYIX) = 0

Since there are 256 possible keys in DES, it follows that

H(K) = 56

and therefore, ud is the value of N (in 8-bit characters) for which H(YlX) =
56. From Equations 12-7b and 12-7c,

WYIX) = -c P(Y, xYog,p(ylx)
Y,X

Thus, H(Y_JX) = 56 when p(y)x) = 1/256 for each x and each y produced
from x, and p(ylx) = 0 for each x and each y not produced form x (i.e.,
when no two keys map x to the same cryptogram).

If the 256 cryptograms produced by mapping x under each of the 256
keys are considered to be selected at random using replacement from the set
of 2*n possible cryptograms, then almost all of the cryptograms will be
unique for values of N greater than 8. Thus, a ud of about 8 characters is
obtained for DES (i.e., one block of ciphertext is ordinarily enough to deter-
mine the key). The precise calculations are omitted.

If only ciphertext is available for analysis, then ud is the value of N for
which

H(IC) - H(Y) + H(X) = 0

(see Equation 12-8). If messages in X consist of English text (26 letter alpha-
bet with no spaces) and each letter& represented by an 8-bit character, then
26 of the 256 possible 8-bit characters have probabilities corresponding to
normal English text, and the other 230 characters have zero probability.

When individual letter probabilities are taken into consideration, the num-
ber of meaningful N-character messages, s, can be approximated as follows:

s N 24.17N

(See Number of Meaningful Messages in a Redundant Language.) Therefore,
it follows that

H(X) = 4.17N

636 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

As a first order approximation, assume that each cryptogram in y is equally
probable, and hence that

H(Y) s log,r
* 8N

Substituting the values H(K) = 56, H(Y) = 8N, and H(X) = 4.17N into equa-
tion (H(K) - H(Y) + H(X) = 01, one obtains:

N = 56/(8 - 4.17)

= 14.6 characters

Thus 15 characters or 2 blocks (after rounding up to the nearest block) of
ciphertext are enough in theory to solve for the key.

The fact that the ud of DES is only a few characters clearly demonstrates
that a cipher which has good practical secrecy does not necessarily have good
theoretical secrecy. The strength of DES is based entirely on the prohibitive
amount of time and resources required to break it. (See Work Factor as a
Measure of Secrecy in this chapter, and Cryptographic Algorithms, Chapter 2.)

Other examples of unicity distance computations can be found in
Appendix G.

WORK FACTOR AS A MEASURE OF SECRECY

To show the relationship among the work factor (the time and resources it
takes to break a cipher), the sophistication of the attack, and the amount of
information available to the cryptanalyst, a simple substitution cipher is
analyzed. Although the example is that of a weak cipher, the analysis pro-
vides an insight into the approach to be taken with stronger ciphers.

The Cost and Time to Break a Cipher

No matter what method of cryptanalysis is used, the analyst must always
expend some amount of time and resources (defined as work factor) to
reach his goal. Usually, there is a cost associated with each of the resources
used, permitting the overall cost of recovering the key or message to be
determined. By increasing available resources, such as computing power,
storage, human efforts, and the like, the time required to attack the cipher
successfully can often be reduced. Consequently, there is a relationship
between cost and time for any given cryptanalytic attack against a cipher.

The information obtained by breaking a cipher also has a value (expressed
in financial terms) based on what it is worth to the opponent. Usually, the
information decreases in value over its lifetime, which permits a relationship
to be established between value and time similar to that between cost and
time. The relationships between cost and time and between value and time
can then be used in determining the practical secrecy of the cipher.

WORK FACTOR AS A MEASURE OF SECRECY 637

The cost and time to break a cipher are functions of how it is attacked.
Since there may be many different ways to cryptanalyze a cipher, many
cost-time relationships are possible. Usually, the cost of breaking a cipher is
estimated on the basis of the best known method of attack, even though it
may not be the best method altogether.

Cryptanalysis involves high-speed computers and complex, sophisticated
computer programs. This includes the following:

1. Computer processors, including special-purpose hardware used to exe
cute the logical and arithmetic operations needed to obtain the solution.

2. Computer storage for the analysis programs and data.
3. Human resources to devise and write analysis programs, gather data,

and oversee the analysis.

Simple Substitution on English-Some Preliminaries

An example of simple substitution on English (in which only ciphertext
is available for analysis) shows the relationships existing among the cost and
time for analysis, the language statistics used for analysis, and the amount
of available cipher-text. Results are obtained empirically.

Two different approaches are considered: single-letter frequency analysis,
and digram-frequency analysis. To evaluate both approaches, a plaintext
is enciphered with a randomly chosen key. The resulting ciphertext is then
analyzed to determine how many characters of the key and how many char-
acters of the plaintext are correctly obtained. An important factor is know-
ing how much better the obtained solution is than a result obtained by pure
guessing (random selection).

Let t be the number of characters in the key and p(w) be the probability
that w characters of the key are properly obtained by random choice, 0 <
w G t. It can be shown [S] that

t-w

p(w) = (l/w!) C (-l)‘(l/i!)
i=O

(12-12)

For a large t, the finite series above can be replaced by an infinite series
whose sum is given by l/e:

Lim p(w) = (l/w!)(l/e) = (l/w!)O.368
t+-

(12-13)

which represents the Poisson distribution with mean equal to 1.
A comparison with the Poisson distribution shows that for t > 10, the

values obtained with Equations 12-l 2 and 12-13 agree to 4 decimal places.
Thus when t = 26 (26 letters) or t = 27 (26 letters and space), the Poisson
distribution is an excellent approximation to Equation 12- 12. Let

p(number of correctly guessed key symbols > c) = a (12-14a)

638 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

p(number of correctly guessed key symbols < c) = 1 - a (12-14b)

where c can be any value from 0 to t (t = the number of characters in the
key). With the aid of a table of Poisson probabilities, the values of a and
1 - a can be evaluated for different values of c (Table 12-6).

If the number of correctly obtained key characters is greater than 5, as
one might anticipate when cryptanalysis is performed, then the hypothesis
that keys were obtained by random guessing can be rejected at a level of
confidence of 99.94% (Table 12-6).

C 6 5 4 3 2 1

a JO01 A006 Jo37 .0190 .0803 .2692
l-a .9999 .9994 .9963 .9810 .9197 .7358

Table 12-6. Values of “a” and “1 -a” for Different Values of c

In one set of tests, using a single-letter frequency analysis on simple sub-
stitution on English (26 letters and space), it was determined that about 6
key characters are recovered from a plaintext containing 250 characters.
This result is not too useful by itself, since text with only 6 correct (21 in-
correct) characters looks more like a cryptogram than an intelligent mes-
sage. However, a single-letter frequency analysis is helpful if it is used to
obtain an initial key for a more powerful digram-frequency analysis. This
initial key is usually better than could be obtained using random selection.

In a digram-frequency analysis an initial key (obtained via a single-letter
frequency analysis), is used to decipher the cryptogram. The new digram
statistics associated with the trial decipherment are then evaluated and used
as a basis for adjusting the initial key. This process is repeated several times,
so that the final key is likely to contain more correct characters than the
starting key. During these iterations, a certain element of randomness is
purposely introduced into the algorithm. This has the effect that repeated
analysis of the same cryptogram does not (except with low probability)
produce the same path to a solution. In that case, repeated analyses with the
algorithm can be considered as statistically independent events, and there-
fore the probability of success (breaking the cipher) can be increased by
increasing the number of trials. It is assumed that the probability of success
at each trial is the same and that the number of trials are selected in advance.
With the assumption of statistical independence, the distribution of the
number of successful trials is therefore given by the binomial distribution.

Based on the observation that a text which is 90% recovered can still be
read, the analysis is considered a success if at least 90% of the plaintext char-
acters are successfully recovered. A partial printout of a message which is
9 1.7% correct (2 1 correct key characters) is shown below.

NATIONAL BUREAU 0 W STANFARFS CR YPTODRAPHIC ALDORITHMS WOR
PROTECTION 0 W COMPUTER FATA FURIND TRANSMISSION ANF FORMANT

WORK FACTOR AS A MEASURE OF SECRECY 639

STORADE SOLICITATION OW PROPOSALS THE NATIONAL BUREAU OW
STANFARFS UNFER FEPARTMENT OW COMMERCE AUTHORITIES ANF
RESPONSIBILITIES WOR WOSTERIND PR OMOTIND ANF FE VELOPIND US
TRAFE AND COMMERCE ANF BASEF ON THE NATIONAL BUREAU OW
STANFARFS RESPONSIBILITY WOR THE CUSTOFY MAINTENANCE ANF
FEVELOPMENT OW THE NATIONAL STANFARFS OW MEASUREMENT ANF
PROVISION OW MEANS ANF METHOFS WOR MAKIND MEASUREMENTS
CONSISTENT GITH THOSE STANFARFS SOLICITS PROPOSALS WOR THE
ENCR YPTION 0 W COMPUTER FA TA

Let

p(SM) = the probability that at least 90% of the plaintext
is recovered as the result of cryptanalysis

(12 15)

Using a method of confidence limits 191, it can be shown that

p(pmin G p(SM) G pmax) = y

where

pmin = x/(x + (n - x + 1)F-y)

pmax = (x + l)Fr/((n - x) + (x + 1)Fy)

x = the number of successful attacks in n trials

(12-16)

Fr is the F distribution with [2(n - x + l), 2x1 degrees of freedom in
pmin, and [2(x + I), 2(n - x)] degrees of freedom in pmax. Thus x/n can
be used as an estimate for p(SM).

When a binomial distribution can be approximated by a normal distribu-
tion (whenever Var(x) > 3), the following mathematically more convenient
approach can be used [lo].

pmin = (l/(n + z2))[x - 0.5 + (z2/2)
- z[(x - 0.5) ((n - x +0.5)/n) +(z2/4)1 1/2l (12-17a)

pmax = (l/(n + z2))[x + 0.5 + (z2[2)

+ z[(x + 0.5) ((n - x - 0.5)/n) + (z2/4)l ‘I2 1
(12-17b)

The value of z is determined by the chosen level of confidence y (Equation
12-16) and the normal distribution function Cp (whose mean is 0 and vari-
ance is 1) as follows

Q(z) - W-z) = y

If Y = 0.95, then z = 1.96. Since the intent here is only to demonstrate the
basic approach, the approximations given by Equations 12-17a and 12-17b
are used in the computations.

640 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

Now, let

p(SM, m) = th e probability that at least 90% of the
plaintext is recovered in at least one out
of m repeated trials of the analysis

(12-18)

By evaluating p(SM), one is able to approximate p(SM, m). From earlier
remarks, it follows that

PC% 1) = p(W (12-19a)

p(SM, m) = 1 - (1 - p(SM, l))m (12-19b)

In practical situations, Equation 12-l 9b will be useful for moderate values of
p(SM). If p(SM) is very small, it means that there is not enough ciphertext
available for analysis. Hence allowing large values of m will not result in a
significant improvement. Furthermore, as m becomes large, it also becomes
impractical for a person to scan all the recovered plaintext solutions. (Re-
member that the figure of 90% is based on a person’s ability to enlarge upon
a solution known to be incomplete.)

Empirical Results for Simple Substitution
on English Using a Digram-Frequency Analysis

The first part of the analysis provides a statistical estimate for p(SM) (defined
in Equation 12-15). The following procedure is used. A plaintext and ran-
dom key are selected and used to produce the cipher-text to be analyzed.
Prior to each cryptanalysis of the ciphertext, a starting key is produced using
a single-letter frequency analysis. The success of the attack varies according
to the search characteristics (determined by a random process). The pro-
cedure is executed n times as n independent trials of an experiment. Thus an
estimate for p(SM) can be obtained using a sample size of n.

The basic idea (attributed to D. Coppersmith, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, N.Y.) is to make repeated pairwise changes
to the starting key, eventually producing a final key close or equal to the
actual key. The method used is to interchange the plain characters assigned
to two randomly selected cipher characters. If the new digram matrix based
on these changes is closer to a standard digram matrix, the key is changed.
The measure of closeness is based on whether the dot product of the vec-
tors, defined by the affected rows and columns of the two digram matrices,
increases or not.

Analysis is carried out with ciphertext of length N = 250, 275, 300,
350, 400, 500, 600, 700, 800, 900, and 1000 characters, respectively, and
a value of n = 120. By rearranging the 120 observed values into 40 groups of
3 each, one obtains an estimate for the probability of success of a multiple
digram-frequency analysis with 3 repetitions. If at least 90% of the plaintext
is recovered in at least one of the 3 trials, the attack is considered a success.

WORK FACTOR AS A MEASURE OF SECRECY 641

Plaintext*
Length

N

250 .008 .OOO .052 .025 .OOl .147
275 .025 .006 .077 .075 .020 .215
300 .200 .135 .285 .525 .363 .682
350 .433 .344 .527 .a50 .695 .938
400 .508 .416 A00 .850 .695 .938
500 .567 .473 .656 .925 .785 .980
600 .817 .733 .879 1.000 .891 1.000
700 .942 .879 .974 1.000 .891 1.000
800 .958 ,901 .985 1.000 .891 l.ooo
900 .967 .912 .989 1.000 .891 1.000

1000 .900 .828 .945 1.000 .891 1.ooo

Sample Size, n = 120

PCN Confidence
Limits

y =95%

*Alphabet consists of 26 letters and space.

Sample Size, n = 40

PM, 3) Confidence
Limits

y=95%

Table 12-7. Statistical Estimates for Probability of Successful Message Attack for Simple
Substitution on English Using a Digram Frequency Analysis

Thus with 40 groups of 3 trials each, the number of successes can range from
0 to 40. In this way, the value for p(SM, 3) can be estimated for each value
of N. The point estimates for p(SM) and p(SM, 3) are given in Table 12-7.
The confidence intervals are computed using equations 12-l 7a and 12- 17b,
at a 95% level of confidence (z = 1.96). l1

In addition to p(SM) and p(SM, 3), the mean and standard deviation for
the number of correctly recovered plaintext characters, the number of cor-
rectly recovered key characters and the computation time to perform the
analysis are also evaluated. Assuming a normal distribution for the under-
lying population, which may not be strictly justified, the confidence limits
for each of these parameters are obtained via [9]

51- (t,/2)(s/n1/2) < u <X + (t,/2)(s/n1/2)

where

u = parameter whose confidence limits are determined

X = sample mean = (l/n) 2 xi
i=1

(12-20)

I1 It was shown before that the distribution of successes, which is a binomial distribution,
led to Equation 12-l 6 and that Equation 12-l 7 is an approximation of Equation 12-l 6.

642 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

s = sample standard deviation = [(i/(n - 1)) 2 (K - xi)2] ‘I2
i=l

n = sample size

(xl, x2,. . . , xn} = the observed values

t is the student’s t distribution with n degrees of freedom, and t,/2 is
related to the level of confidence y. For 7 = 0.95, which implies cy =
1-r = O.O5,oneobtainsavalueoft,/2 = 1.98whenn = 120.

The results are shown in Table 12-8. More elaborate statistical tests could
certainly be devised, but the emphasis here is to illustrate only the principles
involved.

Empirical Results for Simple Substitution
on English Using Single-Letter Frequency Analysis

A single-letter frequency analysis is quite elementary. It is discussed here so
that the reader can contrast these results with those obtained for the digram-
frequency analysis. The following procedure is used in conjunction with
plaintext consisting of 26 letters (no space). First the letters are rearranged
according to their relative frequency, from highest to lowest:

ETAOINSRHLDCUMFPGWYBVKXJQZ

For each cryptogram under analysis, this vector is used as the basis for as-
signing plaintext equivalents to each character of the cryptogram (i.e., the
most frequently occurring character in the cryptogram is assigned letter E,
the next most frequently occurring character in the cryptogram is assigned
letter T, etc.) The recovered plaintext is then compared to the original so
that its correctness can be evaluated. The results of this experiment are
given in Table 12-9.

Comparison of Results

Figures 12-5 and 12-6 illustrate the superiority of the digram-frequency
analysis over the single-letter frequency analysis. They also confirm that the
unicity distance is a function of the language statistics used to attack the
cipher, and that ud becomes lower as more language statistics are effectively
incorporated into the analysis. From Figure 12-6, it can be deduced that
analysis with 3-grams, 4-grams, and so on, would give rise to a series of
similar curves to the left of that obtained with digrams (the digram curve).
In the limit, this series of curves would approach a curve that corresponds to
a cryptanalysis performed by a human (90% recovery or more).

Each analysis (l-gram, 2-gram, etc.) has a certain cost associated with it.
The single-letter frequency analysis took less than 1.5 CPU seconds on the
IBM System 370, Model 168, not counting the input of the ciphertext itself,
and required 500 bytes of storage. The digram-frequency analysis, on the

Plaintext*
Length

N

250 10.3 4.8 56.7 23.6 27.6 6.1
275 11.1 4.5 60.2 22.1 28.7 7.4
300 13.8 5.4 69.3 24.4 27.5 8.1
350 20.1 3.8 86.3 14.3 28.8 6.7
400 19.5 4.3 84.6 16.4 30.2 6.7
500 23.2 3.8 90.8 12.8 28.0 6.3
600 24.8 3.3 95.1 11.4 31.0 6.3
700 25.4 2.5 97.6 9.9 31.0 7.2
800 25.9 2.5 97.1 8.2 31.3 6.3
900 25.9 1.8 97.2 6.0 29.6 6.0

1000 25.3 3.2 94.4 12.6 28.9 5.8

Sample Size = 120.
Analysis was performed on an IBM System/370, model 168.
*Alphabet consists of 26 letters and space.

Sample Mean and Standard
Deviation

Characters
of Key

Correctly
Recovered

9% of
Plaintext
Correctly
Recovered

CPU Time
(se4

Confidence Limits for the Mean
at Level of Confidence y = 95%

Characters
of Key

Correctly
Recovered

% of
Plaintext
Correctly
Recovered

CPU Time
(SW

9.5 11.2 52.5 61.0 26.5 28.7
10.3 12.0 56.2 69.2 27.4 30.0
12.9 14.8 64.9 73.7 26.1 29.0
19.4 20.8 83.7 88.9 27.6 30.0
18.8 20.3 81.7 87.6 29.0 31.4
22.5 23.9 88.5 93.1 26.9 29.2
24.2 25.4 93.0 97.2 29.9 32.2
24.9 25.8 95.8 99.4 29.7 32.3
25.4 26.3 95.6 98.6 30.2 32.5
25.6 26.2 96.1 98.3 28.5 30.7
24.7 25.8 92.2 96.7 27.8 30.0

Table 12-8. Statistical Estimates for Key Recovery, Message Recovery, and Processing Time
Using a Digram Frequency Analysis

Plaintext
Length*

N

200 120
300 120
500 120
700 120

1000 120
1500 120
2000 120
3000 120
5000 120
7000 120

10000 120
15000 120
30000 120
50000 80

1OOOOO 40
5OOwO 8

Sample
Size

*26 Letters (No Space)

P(SM) Confidence
Limits

y=95%

(Eqs. 12-17a
and 12-17b,

z= 1.96)

.017 .003 .065

.025 .006 .077

.025 .006 .077

.lOO .047 .193

.150 .062 .306

.375 .102 .741

Sample Mean and
Standard Deviation

Characters % of
of Key Plaintext

Correctly Correctly
Recovered Recovered

5.1 2.1 24.5 12.8
6.2 2.5 29.3 14.5
7.0 2.1 31.7 12.0
7.7 2.6 35.1 11.7
7.9 2.9 36.4 12.4
8.2 2.9 38.8 12.4
9.1 2.9 41.6 12.7

10.0 3.0 45.4 13.1
11.4 3.2 50.5 13.7
12.6 3.2 55.0 13.3
12.9 3.7 55.7 14.7
14.1 3.3 60.5 15.3
14.4 3.8 61.6 14.7
14.6 5.3 64.8 18.0
16.4 6.0 70.7 18.8
19.5 6.8 79.2 20.1

Confidence Limits
for Mean at Level of
Confidence y = 95 %

(Eq. 12-20)

Characters % of
of Key Plaintext

Correctly Correctly
Recovered Recovered

4.7 5.5 22.1 26.8
5.7 6.7 26.6 31.9
6.5 7.3 29.5 33.9
7.2 8.2 33.0 37.2
7.3 8.4 34.1 38.6
7.6 8.7 36.6 41.1
8.5 9.6 39.3 43.9
9.4 10.6 43.0 47.8

10.7 12.0 48.0 53.0
11.9 13.1 52.6 57.4
12.2 13.6 53.0 58.4
13.5 14.8 57.7 63.3
13.6 15.1. 58.9 64.3
13.4 15.8 60.7 68.8
14.4 18.3 64.6 76.7
13.8 25.2 62.4 96.0

Table 12-9. Statistical Estimates for Probability of Successful Message Attack, Key Recovery, and Message Recovery
for Simple Substitution on English Using a Single-Letter Frequency Analysis

I I

-

645

1 Human Analysis:
100 Percent Recovery
nf PlaintPvt

P ‘Digram Analysis:
90 Percent or Greater

T Recovery of Plaintext

li I 0

T

%ingle Letter Analysis:
90 Percent or Greater T I
Recovery of Plaintext

N (Characters)

‘Digram Analysis Using 26 Letters and Space
single Letter Frequency Analysis Using 26 Letters (No Space)

Figure 12-6. Comparison of p(SM) as a Function of Ciphertext Length Using a Single-Letter Frequency Analysis
and a Digram Frequency Analysis for Simple Substitution on English

REFERENCES 647

other hand, required about 30 CPU seconds on the same machine, and re-
quired 3000 bytes of storage. Both CPU time and storage can easily be con-
verted to a monetary value. Hence it generally follows that the more powerful
the attack (when higher order language statistics are used), the greater the
associated cost. It follows also that the opponent may have some degree of
freedom in selecting a method of analysis which will both be successful and
keep his cost to a minimum. For example, with simple substitution on
English, 1000 characters of cipher-text are not enough to allow a solution
using only l-grams. On the other hand, there may be no advantage in using
trigrams in the analysis when digrams will do the job.

The analysis using digrams presented here shows that about 500 characters
of cipher-text are needed for a successful attack. A more recent result obtained
by Bahl [111 indicates that only about 300 characters are required.

1.

2.

3.

4.

5.
6.

7.
8.

9.

10.

11.

12.

13.

14.

15.

REFERENCES

Diffie, W. and Hellman, M. E., “Privacy and Authentication: An Introduction to
Cryptography,“Proceedings of the IEEE, 67, No. 3,397-427 (1979).
Shannon, C. E., “Communication Theory of Secrecy Systems,” Bell System Tech-
nical Journal, 28, 656-7 15 (1949).
Francis, W., A Standard Sample of Present-Day Edited American English for Use
with Digital Computers, Linguistics Department, Brown University, Providence,
RI, 1964.
Shannon, C. E., “Predictions of entropy in printed English,” Bell System Technical
Journal, 30, SO-64 (195 1).
Parzen, E., Modern Probability Theory and Its Applications, Wiley, New York, 1960.
Hildebrand, F. B., Advanced Calculus for Applications, Prentice-Hall, Englewood
Cliffs, NJ, 1962.
Friedman, W. F., “Cryptology,” Encyclopedia Britannica, p. 848 (1973).
Raisbeck, G., Information Theory, An Introduction for Scientists and Engineers,
M.I.T. Press, Cambridge, 1964.
Gallagher, R., Information Theory and Reliable Communication, Wiley, New York,
1968.
Browlee, K. A., Statistical Theory and Methodology in Science and Engineering,
Wiley, New York, 196 1.
Bahl, L. R., An Algorithm For Solving Simple Substitution Cryptograms, Interna-
tional Symposium on Information Theory, Ithaca, NY, October 1 O-l 4, 1977.

Other Publications of Interest

Peleg, S. and Rosenfeld, A., “Breaking Substitution Ciphers Using a Relaxation
Algorithm,” Communications of the ACM, 22, No. 11,598-605 (1979).
Hellman, M. E., “An Extension of the Shannon Theory Approach to Cryptography,”
IEEE Transactions on Information Theory, IT-23, No. 3,289-294 (1977).
Blom, R. J., “Bounds on Key Equivocation for Simple Substitution Ciphers,” IEEE
Transactions on Information Theory, IT-25, No. 1,8-l 8 (1979).
Lu, s. c., “The Existence of Good Cryptosystems for Key Rates Greater than the
Message Redundancy,” IEEE Transactions on Information Theory, IT-25, No. 4,
475-480 (1979).

646 MEASURES OF SECRECY FOR CRYPTOGRAPHIC SYSTEMS

16. Lu, S. C., “Random Ciphering Bounds on a Class of Secrecy Systems and Discrete
Message Sources,” IEEE Transactions on Information Theory, IT-25, No. 4, 405
414 (1979).

17. Kullback, S., Statistical Methods in Cryptanalysis, Aegean Park Press, Laguna Hills,
CA, 1976.

18. Dunham, J. G., “On Message Equivocation for Simple Substitution Ciphers,” IEEE
Transactions on Information Theory, IT-26, No. 5,522~527 (1980).

APPENDIX A 649..
FIPS Publication 46 649......................................

APPENDIX B 671..
Further Computations of Interest 671..................

APPENDIX C 675..
Plastic Card Encoding Practices and 675............

APPENDIX D 679..
Some Cryptographic Concepts and 679..............

APPENDIX E 713..
Cryptographic PIN Security-Proposed 713..........

APPENDIX F 717..
Analysis of the Number of Meaningful 717..........

APPENDIX G 728..
Unicity Distance Computations 728.....................

APPENDIX H 741..
Derivation of p(u) and p(SM) 741........................

Index 747...

APPENDIX A

FIPS Publication 46

FIPS PUB 46

FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION

1977 JANUARY 15

DATA
ENCRYPTION

STANDARD

I
CATEGORY: ADP OPERATIONS
SUBCATEGORY: COMPUTER SECURITY

APPENDIX A. FIPS PUBLICATION 46

U.S. DEPARTMENT OF COMMERCE l Elliot L. Richardson, Secretary
Edward 0. Vetter. Under Secm?4xg

Dr. Betsy Anckedohnson, Amidant Secretary for Science and Techndogy

NATIONAL BUBEAU OF STANDARDS l Ernest Ambler, Acting Director

Foreword

The Federal Information Rwessinp Standards Publication Senes of the Netwnal

Bunw~ of Standards is the offkial publication relating to standards adopted and pmmul-

-ted under the provisions of Public Law 88306 (Brooks Bill) and under Part 6 of Title 15.

Code of Federal Bepulations. These legislative and executive mandates have Riven the

Secretary of Commerce important responsibdities for impmvinr the utilization and man-

wment of computers and automatic data processing systems m the Federal Covemment.

To carry out the Secretary’s responsibilities. the NBS, through its Institute for Coq~puter

Sciences mnd Technology. provides leadershIp. technical puldanre. and roordinatmn of

mvernment efforts in the development of trchnwal widelinen and standards m there

areas.

The serws 1s used to announre Federal Information Rwenamg Standards. and to

provide standards informatmn of general mterest and an Index of relevant standards

publications and specnficst8ons. Publirntlons that announce adoption of standards pmvnde

the necessary policy. administrative. and Ruidancr mformatmn for effwtw rtandardr.

implcment~tion and uw. The technical specifwations uf the standard are unually sttachrd

to the publication. otherwise a reference source is &d.

Comments covering Federal Information ProcessinK Standards and Publwstwnr aw

wckomed. and should be addressed to the Associate Dire&x for ADP Standards. Institute

for Computer Saenccs and Technology, Nstmnal Bureau of Standards. Warhm@tun. US

20334. Such comments will be either considered by NBS or forwarded to the respnnxablr

activity as appropriate.

ERNEST AMBLER Acting Director

Abstract

The selective applvation of technololpral and related procedural safefwards is an

important responsibility of every Federal orpnnizatmn m prowdinp adequate srrunty to lt?.

ADP systems. This publiratlon provides a standard to be used by Federal organizations

when thee organizations specify that cryptographic pmtrctmn IS to be used for sensitwe

or valuable computer data. Protection of computer date durlw transmission between

elcrtmnic components or while m storage may be necessary to mamtain the contidentialtity

and integrity of the mformatmn represented by that data. The standard sperlfwx an

encryption algorithm whwh is to be implemented m an electronw den-e for use in Federal

ADP systems and networks. The algorithm uniquely dehnea the mathematical steps

required to transform computer data into a crypto~ephic cipher. It also sperlfles the steps

required to transform the cipher back to its original form. A deuce performmu thas

algorithm may be used m many applications areas where cryptographic data protection IS

needed. Within the context of a total secunty program compnsinp physical security

pmceduns. good information management practwes and computer system/network access

controla. the Data Encryptwan Standard IS being made available for use by Federal

agencies.

Key Words: ADP security; computer security; encryptlo”; Federal lnformatmn Processmg
Standard.

Nat. Bur. Stand. (U.S.), Fed. Info. Process. Stand. Publ. ,FIPS PUB, 46. 17 pea (1977)

CODEN: “PPAT

APPENDIX A. FIPS PUBLICATION 46 653

Federal Information

FIPR PUB 46

Processing Standards Publication 46

1977 January 15

ANNOUNCING THE

DATA ENCRYPTION STANDARD
4 Federal lnformntion Processing Standards are issued by the National Bureau of Standards punusnt to the Federsl
Property and Administrative Services Act of 1949. as amended. Public Law 89399(79 Stat 1127). Executive Order 11717
(39 FR 12316, dated May 11. 1973). and Part 6 of Title 15 Code of Federal Regulations (CFR).

Name of Standard: Data Encryption Standard (DES).

Category of Standardz Operations, Computer Security.

Explanation The Data Encryption Standard (DES) specifies an algorithm to be implemented in
electronic hardware devices and used for the cryptographic protection of computer data. This
publication provides a complete description of a mathematical algorithm for encrypting fencipher-
ing) and decrypting (deciphering) binary coded information. Encrypting data converts it to an
unintelligible form called cipher. Decrypting cipher converts the data back to its original form. The
algorithm described in this standard specifies both enciphering and deciphering operations which
are based on a binary number called a key. The key consists of 64 binary digits (“0% or “1”s) of
which 56 bits are used directly by the algorithm and 8 bits are used for error detection.

Binary coded data may be cryptographically protected using the DES algorithm in conjunction
with a key. The key is generated in such a way that each of the 56 bits used directly by the
algorithm are random and the 8 error detecting bits are set to make the parity of each &bit byte of
the key odd, i.e.. there is an odd number of “1”s in each &bit byte. Each member of a group of
authorized users of encrypted computer data must have the key that was used to encipher the data
in order to use it. This key, held by each member in common, is used to decipher the data received
in cipher form from other members of the group. The encryption algorithm specified in this
standard is commonly known among those using the standard. The unique key chosen for use in a
particular application makes the results of encrypting data using the algorithm unique. Selection of
a different key causes the cipher that is produced for any given set of inputs to be different. The
cryptographic security of the data depends on the security provided for the key used to encipher
and decipher the data.

Data can be recovered from cipher only by using exactly the same key used to encipher it.
Unauthorized recipients of the cipher who know the algorithm but do not have the correct key
cannot derive the original data algorithmically. However, anyone who does have the key and the
algorithm can easily decipher the cipher and obtain the original data. A standard algorithm based
on a secure key thus provides a basis for exchanging encrypted computer data by issuing the key
used to encipher it to those authorized to have the data. Additional FIPS guidelines for
implementing and using the DES are being developed and will be published by NBS.

Approving Authority: Secretary of Commerce.

Maintemmce Agency: Institute for Computer Sciences and Technology, National Bureau of
Standards.

bMmbility: This standard will be used by Federal departments and agencies for the crypto
graphic protection of computer data when the following conditions apply:

1

654 APPENDIX A. f IPS PUBLICATION 46

FIPS F’UB 46

1. An authorized official or manager responsible for data security or the security of any
computer system decides that cryptographic protection is requind; and

2. The data is not classified according to the National Security Act of 1947, as amended, or the
Atomic Energy Act of 1954, as amended.

However, Federal agencies or departments which use cryptographic devices for protecting data
classified according to either of these acts can use those devices for protecting unclassified data in
lieu of the standard.

In addition, this standard may be adopted and used by non-Federal Government organizations.
Such use is encouraged when it provides the desired security for commercial and private
organizations.

Data that is considered sensitive by the responsible authority, data that has a high value, or data
that represents a high value should be cryptographically protected if it is vulnerable to unauthor-
ised disclosure or undetected modification during transmission or while in storage. A risk analysis
should be performed under the direction of a responsible authority to determine potential threats.
FIE’S PUB 31 (Guidelines for Automatic Data Processing Physical Security and Risk Management1
and FIPS PUB 41 (Computer Security Guidelines for Implementing the Privacy Act of 19741
provide guidance for making such an analysis. The costs of providing cryptographic protection
using this standard as well as alternative methods of providing this protection and their respective
costs should be projected. A responsible authority then should make a decision, based on these
analyses, whether or not to use cryptographic protection and this standard.

AppIicationrx Data encryption (cryptography) may be utilized in various applications and in various
environments. The specific utilization of encryption and the implementation of the DES will be
based on many factors particular to the computer system and its associated components. In
general, cryptography is used to protect data while it is being communicated between two points or
while it is stored in a medium vulnerable to physical theft. Communication security provides
protection to data by enciphering it at the transmitting point and deciphering it at the receiving
point. File security provides protection to data by enciphering it when it is recorded on a storage
medium and deciphering it when it is read back from the storage medium. In the first case, the key
must be available at the transmitter and receiver simultaneously during communication. In the
second case, the key must be maintained and accessible for the duration of the storage period.

Hardware ImplementatIom The algorithm specified in this standard is to be implemented in
computer or related data communication devices using hardware (not software) technology. The
specific implementation may depend on several factors such as the application, the environment,
the technology used, etc. Implementations which comply with thii standard include Large Scale
Integration (LSD “chips” in individual electronic packages, devices built from Medium Scale
Integration (MS11 electronic components, or other electronic devices dedicated to performing the
operations of the algorithm. Micro-processors using Read Only Memory (ROM) or micro-pro-
grammed devices using microcode for hardware level control instructions are examples of the
latter. Hardware implementations of the algorithm which are tested and validated by NBS will be
considered as complying with the standard. Procedures for testing and validating equipment for
conformance with this standard are available from the Systems and Software Division, National
Bureau of Standards, Washington, D.C. 29234. Software implementations in general purpose
computers are not in compliance with this standard. Information regarding devices which have
been tested and validated will be made available to all FIPS points of contact.

Export Control: Cryptographic devices and technical data regarding them are subject to Federal
Government export controls as specified in Title 22. Code of Federal Regulations, Parts 121 through
128. Cryptographic devices implementing this standard and technical data regarding them must
comply with these Federal regulations.

2

APPENDIX A. FIPS PUBLICATION 46 655

FIPS PUB 46

Patentaz Crytographic devices implementing this standard may be covered by U.S. and foreign
patents issued to the International Business Machines Corporation. However, IBM has granted
nonexclusive, royalty-free licenses under the patents to make, use and sell’apparatus which
complies with the standard. The terms, conditions and scope of the licenses are set out in notices
published in the May 13. 1975 and August 31, 1976 issues of the Ofllcial Gazette of the United
States Patent and Trademark Office (934 0. G. 452 and 949 0. G. 1717).

Alternative Modes of Using the DES: The “Guidelines for implementing and Using the Data
Encryption Standard” describe two different modes for using the algorithm described in this
standard. Blocks of data containing 64 bits may be directly entered into the device where 64bit
cipher blocks are generated under control of the key. This is called the electronic rode book mode.
Alternatively, the device may be used as a binary stream generator to produce statistically random
binary bits which are then combined with the clear (unencrypted) data (l-64 bits) using an
“exclusive-or” logic operation. In order to assure that the enciphering device and the deciphering
device are synchronized, their inputs are .always set to the previous 64 bits of cipher that were
transmitted or received. This second mode of using tbe encryption algorithm is called the cipher
feedback (CFB) mode. The electronic codebook mode generates blocks of 64 cipher bits. The cipher
feedback mode generates cipher having the same number of bits as the plain text. Each block of
cipher is independent of all others when the electronic codebook mode is used while each byte
(group of bits) of cipher depends on the previous 64 cipher bits when the cipher feedback mode is
used. The modes of operation briefly described here are further explained in the FlPS “Guidelines
for implementing and Using the Data Encryption Standard.”

Implementation of this standard: This standard becomes effective six months after the publication
date of this FIPS PUB. It applies to all Federal ADP systems and associated telecommunications
networks under development as well as to installed systems when it is determined that crypto-
graphic protection is required. Each Federal department or agency will issue internal directives for
the use of this standard by their operating units based on their data security requirement
determinations.

NBS will provide assistance to Federal organizations by developing and issuing additional
technical guidelines on computer security and by providing technical assistance in using data
encryption. A data encryption testbed has been established within NBS for use in providing this
technical assistance. The National Security Agency assists Federal departments and agencies in
communications security and in determining specific security requirements. Instructions and
regulations for procuring data processing equipment utilizing this standard will be provided by the
General Services Administration.

Specitkations: Federal Information Processing Standard (FIPS 46) Data Encryption Standard
(DES) (affixed).

Cross Index:

a. FlPS PUB 31. “Guidelines to ADP Physical Security and Risk Management”

b. FIPS PUB 39, “Glossary for Computer Systems Security”

c. FIPS PUB 41, “Computer Security Guidelines for Implementing the Privacy Act of 1974”

d. FIPS PUB-, “Guidelines for Implementing and Using the Data Encryption. Standard” (to
be published)

e. Other FIPS and Federal Standards are applicable to the implementation and use of this
standard. In particular, the American Standard Code for Information Intemhange (FIPS PUB I)

3

656 APPENDIX A. FIPS PUBLICATION 46

FM’S PUB 46

and other related data storage media or data communications standards should be used in
conjunction with this standard. A list of currently approved FIPS may be obtained from the Office
of ADP Standards Management, lnstitute for Computer Sciences and Technology, National Bureau
of Standards. Washington, D.C. 20234.

Qualifications: The cryptographic algorithm specified in this standard transforms a 64-bit binary
value into a unique 64-bit binary value based on a 56bit variable. If the complete 64-bit input is
used (Le.. none of the input bits should be predetermined from block to block) and if the 56-bit
variable is randomly chosen, no technique other than trying all possible keys using known input
and output for the DES will guarantee finding the chosen key. As there are over
70,000,000,000,000.600 (seventy quadrillion) possible keys of 56 bits, the feasibility of deriving a
particular key in this way is extremely unlikely in typical threat environments. Moreover, if the
key is changed t&quently. the risk of this event is greatly diminished. However, users should be
aware that it is theoretically possible to derive the key in fewer trials (with a correspondingly lower
probability of success depending on the number of keys tried) and should be cautioned to rhangc
the key as often as practical. Users must change the key and provide it a high level of protection in
order to minimize the potential risks of its unauthorized computation or acquisition. The feasibility
of computing the correct key may change with advances in technology. A more complete
description of the strength of this algorithm against various threats will be contained in the
Guidelines for Implementing and Using the DES.

When correctly implemented and properly used, this standard will provide a high level of
cryptographic protection to computer data. NBS, supported by the technical assistance of Govern-
ment agencies responsible for communication security, has determined that the algorithm specified
in this standard will provide a high level of protection for a time period beyond the normal life cycle
of its associated ADP equipment. The protection provided by this algorithm against potential new
threats will be reviewed within five years to assess its adequacy. In addition, both the standard and
possible threats reducing the security provided through the use of this standard will undergo
continual review by NBS and other cognizant Federal organizations. The new technology available
at that time will be evaluated to determine its impact on the standard. In addition, the awareness
of any breakthrough in technology or any mathematical weakness of the algorithm will cause NBS
to reevaluate this standard and provide necessary revisions.

Comments: Comments and suggestions regarding this standard and its use arc welcomed and
should be addressed to the Associate Director for ADP Standards, Institute for Computer Sciences
and Technology, National Bureau of Standards. Washington, DC. 202X-1.

Waiver Procedure: The head of a Federal agency may waive the provisions of this FIPS PUB after
the conditions and justifications for the waiver have been coordinated with the National Bureau of
Standards. A waiver is necessary if cryptographic devices performing an algorithm other than that
which is specified in this standard are to be used by a Federal agency for data subject to
cryptographic protection under this standard. No waiver is necessary if classified communications
security equipment is to be used. Software implementations of this algorithm for operational use in
general purpose computer systems do not comply with this standard and each such implementation
must also receive a waiver. Implementation of the algorithm in’ software for testing or evaluation
does not require waiver approval. Implementation of other special purpose cryptographic algo-
rithms in software for limited use within a computer system (e.g., encrypting password files) 01
implementations of cryptographic algorithms in software which were being utilized in computer
systems before the effective date of this standard do not require a waiver. However, these limited
uses should bc converted to the use of this standard when the system or equipment involved is
upgraded or redesigned to include general cryptographic protection of computer data. Letters
describing the nature of and reasons for the waiver should be addressed to the Associate Director
for ADP Standards as previously noted.

4

APPENDIX A. FIPS PUBLICATION 46 657

FIPS PUB 46

Sixty days should be allowed for review and response by NBS. The waiver shall not be approved
until a response from NBS is received; however, the final decision for granting the waiver is the
responsibility of the head of the particular agency involved.

Where to Obtain Copies of the Standard:

Copies of this publication are for sale by the National Technical Information Service, U. S.
Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. Order by FIPS PUB
number and title. Prices are published by NTIS in current catalogs and other issuances. Payment
may be made by check, money order, deposit account or charged to a credit card accepted by NTIS.

5

APPENDIX A. FIPS PUBLICATION 46

FIPS PUB 46

Federal Information
Processing Standards Publication 46

1977January15

SPECIFICATIONS FOR THE

DATA ENCRYF’TION STANDARD

The Data Encryption Standard (DES) shall consist of the following Data Encryption Algorithm to
be implemented in special purpose electronic devices. These devices shall be designed in such a way
that they may be used in a computer system or network to provide cryptographic protection to
binary coded data. The method of implementation will depend on the application and environment.
The devices shall be implemented in such a way that they may be tested and validated as
accurately performing the transformations specified in the following algorithm.

DATA ENCRYPTION ALGORITHM

lntmduction

The algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control
of a 64bit key. Deciphering must be accomplished by using the same key as for enciphering, but
with the schedule of addressing the key bits altered so that the deciphering process is the reverse of
the enciphering process. A block to be enciphered is subjected to an initial permutation IP, then to
a complex key-dependent computation and finally to a permutation which is the inverse of the
initial permutation IP-‘. The key-dependent computation can be simply defined in terms of a
function f, called the cipher function, and a function KS, called the key schedule. A description of
the computation is given first, along with details as to how the algorithm is used for encipherment.
Next, the use of the algorithm for decipherment is described. Finally, a definition of the cipher
functionfis given in terms of primitive functions which are called the selection functions SI and the
permutation function P. Sb P and KS of the algorithm are contained in the Appendii.

The following notation is convenient: Given two blocks L and R of bits, LR denotes the block
consisting of the bits of L followed by the bits of R. Since concatenation is associative B,B, . . . B,,
for example, denotes the block consisting of the bits of B, followed by the bite of B, . followed by
the bits of B,.

A sketch of the enciphering computation is given in figure 1.

7

660

PIPS PUB 46

APPENDIX A. FIPS PUBLICATION 46

INPUT 1

1
f INITIAL PERMUTATIONS

PERMUTED
INPUT

PREOUTPUT 16=h5@f(R15,4(16) L16=R15
I I

FIGURE 1. Enciphering eompu&tion.

8

APPENDIX A. FIPS PUBLICATION 46 661

FIPS PUB 46

The 64 bita of the input block to be enciphered are first subjected to the following permutation,
called the initial permutation IP:

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

That is the permuted input has bit 58 of the input as its first bit, bit 50 as its second bit, and so on
with bit 7 as its last bit. The permuted input block is then the input to a complex key-dependent
computation described below. The output of that computation, called the preoutput, is then
subjected to the following permutation which is the inverse of the initial permutation:

IP-'

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 56 18 58 26
33 1 41 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8 as ita
second bit, and so on, until bit 25 of the preoutput block is the last bit of the output.

The computation which uses the permuted input block as its input to produce the preoutput block
consists, but for a final interchange of blocks, of 16 iterations of a calculation that is described below
in terms of the cipher function f which operates on two blocks, one of 32 bits and one of 48 bits. and
produces a block of 32 bits.

Let the 64 bits of the input block to an iteration consist of a 32 bit block L followed by a 32 bit block
R. Using the notation defined in the introduction, the input block is then LJL

Let K be a block of 48 bits chosen from the 64-bit key. Then the output L’R’ of an iteration with
input LR is defined by:

(1) L'=R
R'=L@ftR,K)

where 8 denotes bit-by-bit addition modulo 2.

As remarked before, the input of the first iteration of the calculation is the permuted input
block. If L'R' is the output of the 16th iteration then R'L' is the preoutput block. At each
iteration a different block K of key bits is chosen from the 64-bit key designated by KEY.

9

662 APPENDIX A. FIPS PUBLICATION 46

FIPS PUB 46

With more notation we can describe the iterations of the computation in more detail. Let KS
be a function which takes an integer n in the range from 1 to 16 and a 64bit block KEY as

input and yields as output a &bit block K. which is a permuted selection of bits from KEY.
That is

(2) K. = KS(n,KEY)

with K. determined by the bits in 48 distinct bit positions of KEY. KS is called the key
schedule because the block K used in the n’th iteration of (1) is the block K. determined by (2).

As before, let the permuted input block be LR. Finally, let L,, and R,, be respectively L and R
and let L. and R. be respectively L’ and R’ of (1) when L and R are respectively L.., and R..,.
and K is K.; that is. when n is in the range from 1 to 16,

(3) L. = R.-,
R. = I+, @f(R.-,, K.)

The preoutput block is then R,&,,

The key schedule KS of the algorithm is described in detail in the Appendix. The key schedule
produces the 16 K. which are required for the algorithm.

Deciphering

The permutation IP-’ applied to the preoutput block is the inverse of the initial permutation
IP applied to the input. Further, from (1) it follows that:

(4) R =L’
L = R’ @fcL’, K)

Consequently, to decipher it is only necessary to apply the oerg came atgoritkm to an enciphered
message btock, taking care that at each iteration of the computation 1Le same block of ke# 6th
K is used during decipherment as was used during the encipherment of the block. Using the
notation of the previous section, this can be expressed by the equations:

(5) R.., = L.
L, = R. @AL., K.)

where now R,. L,. is the permuted input block for the deciphering calculation and L. R, is the
preoutput block. That is, for the decipherment calculation with R,. L,, as the permuted input,
K,, is used in the first iteration, K,, in the second, and so on, with K, used in the 16th
iteration.

The Cipher Function f

A sketch of the calculation offf R. K) is given in figure 2.

10

APPENDIX A. FIPS PUBLICATION 46 663

FIPS PUB 46

I 32 BITS I

FIGURE 2. Calculntion off (R, K).

Let E denote a function which takes a block of 32 bits as input and yields a block of 48 bits as
output. Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are
obtained by selecting the bits in its inputs in order according to the following table:

E BIT-SELECTION TABLE

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Thus the first three bits of E(R) are the bits in positions 32, 1 and 2 of R while the last 2 bits
of E(R) are the bits in positions 32 and 1.

11

APPENDIX A. FIPS PUBLICATION 46

PIPS PUB 46

Each of the unique selection functions S,, S *, . ., S, takes a 6bit block as input and yields a4
bit block as output and is illustrated by using a table containing the recommended S,:

S -!

Column Number

Row
No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 a 2 4 9 1 7 5 11 3 14 10 0 6 13

If S, is the function defined in this table and B is a block of 6 bits, then S, (B) is determined as
follows: The first and last bits of B represent in base 2 a number in the range 0 to 3. Let that
number be i. The middle 4 bits of B represent in base 2 a number in the range 0 to 15. Let that
number be j. Look up in the table the number in the i’th row and j’th column. It is a number
in the range 0 to 15 and is uniquely represented by a 4 bit block. That block is the output
S,(B) of S, for the input B. For example, for input 011011 the row is 01, that is row 1, and the
column is determined by 1101, that is column 13. In row 1 column 13 appears 5 so that the
output is 0101. Selection functions S,, S,. . ., S, of the algorithm appear in the Appendix.

The permutation function P yields a 32bit output from a 32bit input by permuting the bits of
the input block. Such a function is defined by the following table:

16 7 20 21
29 12 28 17

1 15 23 26
5 18 31 10
2 8 24 14

32 21 3 9
19 13 30 6
22 11 4 25

The output P(L) for the function P defined by this table is obtained from the input L by
taking the 16th bit of L as the first bit of P(L), the 7th bit as the second bit of P(L). and so on
until the 25th bit of L is taken as the 32nd bit of P(L). The permutation function P of the
algorithm is repeated in the Appendix..

Now let S,, . ., S. be eight distinct selection functions, let P be the permutation function and
let E be the function defined above.

To defineft R, If) we first define B,, . . ., B, to be blocks of 6 bits each for which

(6) B,B,... B,=K@E(R)

The blockf(R, K) is then defined to be

(7) P(S,(B,)S,(Bd . ..SJB.))

12

APPENDIX A. FIPS PUBLICATION 46

FIPS PUB 46

Thus K @E(R) is first divided into the 8 blocks as indicated in (6). Then each B, is taken as an
input to S, and the 8 blocks S,(B,). S,(B,), . . ., S,(B& of 4 bits each are consolidated into a
single block of 32 bits which forms the input to P. The output (7) is then the output of the
function f for the inputs R and K.

13

APPENDIX A. FIPS PUBLICATION 46 667

APPENDIX

PRIMITIVEFUNCTIONSFORTRE
DATAENCRYPTIONALGORITHM

The choice of the primitive functions KS. S,, . . ., S, and P is critical to the strength of an
encipherment resulting from the algorithm. Specified below is the recommended set of functions.
describing S,, . . ., S, and P in the same way they are described in the algorithm. For the
interpretation of the tables describing these functions, see the discussion in the body of the
algorithm.

The primitive functions S,, . . ., S, are:

S,

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 ‘7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

SE

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

&

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 815 3 011 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S,

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

&

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

15

666 APPENDIX A. FIPS PUBLICATION 46

FIPS PUB 46

S,

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S,

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

The primitive function P is:

16 7 20 21
29 12 28 17

1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

Recall that K., for 1% 516, is the block of 48 bits in (2) of the algorithm. Hence, to describe KS, it is
sufficient to describe the calculation of K. from KEY for n = 1, 2, ., 16. That calculation is
illustrated in figure 3. To complete the definition of KS it is therefore sufficient to describe the two
parmuted choices, as well as the schedule of left shifts. One bit in each &bit byte of the KEY
may be utilized for error detection in kev generation. distribution and storage. Bits 8, 16, ., 64 are
for-use in assuring that each byte is of odd parity.

Permuted choice 1 is determined by the following table:

PC-1

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36

63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

The table has been divided into two parts, with the first part determining how the bits of C,, are
chosen, and the second part determining how the bits of D,, are chosen. The bits of KEY are
numbered 1 through 64. The bits of C,, are respectively bits 57, 49, 41. . . ., 44 and 36 of KEY, with
the bits of D,, being bits 63, 55, 47, . . ., 12 and 4 of KEY.

With C,, and D,, defined, we now define how the blocks C. and D. are obtained from the blocks C.-,
and D..,, respectively, for R = 1. 2, . ., 16. That is accomplished by adhering to the following
schedule of left shifts of the individual blocks:

16

APPENDIX A. FIPS PUBLICATION 46 669

FIPS PUB 46

KEY
I

I

CO 1 I DO

I I
LEFT LEFT

SHIFT SHIFT

s t
Cl6

I I
D16

1 1

FIGURES. Kayschsdubcakuhtia.

17

670 APPENDIX A. FIPS PUBLICATION 46

PIPS PUB 46

Iteration Number of
Number Left Shifts -__

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1

10 2
11 2
12 2
13 2
1.4 2
15. 2
16 1

For example, C:, and D, are obtained from C, and D,. respectively. by two left shifts, and Ca and D,.
are obtained from Cs and D,, respectively, by one left shift. In all cases, by a single left shift is
meant a rotation of the bits one place to the left, so that after one left shift the bits in the 28
positions are the bits that were previously in positions 2. 3. . ., 2X. 1.

Permuted choice 2 is determined by the following table:

PC-2

11 17 11 21 1 5
3 28 15 6 21 10

23 19 12 4 26 X
16 7 27 20 13 2
41 52 31 37 17 55
30 40 51 -45 33 4x
44 49 39 56 34 53
46 42 50 36 29 32

Therefore, the first bit of Km is the 14th bit of Cp., the second bit the 17th. and so on with the 17th
bit the 22th. and the -Hth bit the 32nd.

18

--I APPENDIX B I-

Further Computations of Interest

TIME-MEMORY TRADE-OFF

In certain cases, the number of trials needed in a cryptographic attack can
be significantly reduced by making use of a table of precomputed values.
In effect, the attack is made more efficient by trading off computational
time for memory. The technique is referred to as a time-memory trade-off. A
method of searching key space using a time-memory trade-off is described by
Hellman [11. (Storage requirements may be quite large depending on the
size of the precomputed table.)

Let R represent the total number of combinations associated with a par-
ticular cryptographic parameter under attack. For example, an attack against
CE(M) is possible by precomputing the CE of R = 2” messages, where m
is the number of bits in CE(M). If R different CEs are computed and the
messages and CEs are stored in a table, an opponent can replace any inter-
cepted message with another one by finding a message in the table with the
same CE-value. Although only one table look-up is necessary, the attack
requires R CE-values and messages to be stored.

The attack can be made more efficient by finding a better trade-off be-
tween table size and computation time. To illustrate this, let rl be the num-
ber of precomputed values and r2 the number of intercepted values. Note
that the attack succeeds if there is at least one match between the two sets;
otherwise, the attack fails. Let p be the probability of success and q = 1 - p
the probability of failure. Assuming statistical independence, one obtains

q = (1 - rl/R)r2

Taking the logarithm of each side of the equation and replacing ln(1 - rl/R)
by its series expansion, one obtains

lnq=r2ln(l -rl/R)

= r2[-(rl/R) + (1/2)(rl/R)* - (1/3)(rl/R)3 . . . 1

for rl /R # 1, where In stands for the natural logarithm. Thus q becomes

q = etr2rl/R)[1 - (l/*)(rl/R)*. . .]

671

672 APPENDIX B. FURTHER COMPUTATIONS OF INTEREST

The probability of success is thus

p = 1 - q = 1 - &rWR)I 1 - OP)W/R). . . I

Since, in most cases, rl/R 4 1, the probability of success is approximated by

p N 1 - e(-rZWR)

Moreover, since rl is a measure of storage (as well as of preattack computa-
tion time) and r2 is a measure of computation time, a trade-off can be made
between rl and r2. For example, if rl = r2 = R112, there is a probability of
success of p = 1 - (l/e) = 0.63.

BIRTHDAY PARADOX

A closely related, but different example is the celebrated problem of repeated
birthdays, or birthday paradox [2]. Suppose there are r people gathered
together. What is the probability q that no two persons have the same birth-
day. To answer this question, assume that each person can have his birthday
on any one of the 365 days in the year and that each day of the year is
equally likely to be the person’s birthday. Each group of r people can then
be characterized by r numbers between 1 and 365, where each number refers
to a specific birth date. There are thus 365’ such sets of numbers. To assure
that no two birthdays (no two numbers in each set of r numbers) are equal,
any one of the 365 days can be chosen for the first person, any one of the
remaining 364 can be chosen for the second person, and so on. Thus, for the
rth person, there are 365 - r + 1 days that can be chosen. Altogether there
are (365)(364) . . . (365 - r + 1) different ways in which r birthdays can be
selected. Thus, q is evaluated as follows:

q = (365)(364) . . . (365 - (r - 1))/365’

The probability that two or more of the r people have the same birthday is
given by p = 1 - q. Table B-l gives the values for p and 1 - p for different
values of r. From the list, one sees that p is about 0.5 for r = 23. Thus, if 23
people are gathered together, there is about a 50-50 chance that some two
of them have the same birthday, which is a much smaller number than most
people would guess.

In general, if one can choose among R (instead of 365) outcomes, the
probability for q becomes

q = R(R - l)(R - 2) . . . (R - (r - 1)/R’

=(l-l/R)(l-22/R)...(l-(r--)/R)

Using again the logarithmic transformation, one obtains

f-1

lnq = c ln(l-i/R)
i=l

REFERENCES 673

r Q P

4 0.984 0.016
8 0.926 0.074

12 0.833 0.167
16 0.716 0.284
20 0.589 0.411
22 0.524 0.476
23 0.493 0.507
24 0.462 0.538
28 0.346 0.654
32 0.247 0.753
40 0.109 0.891
48 0.039 0.961
56 0.012 0.988
64 0.003 0.997

r denotes number of people and p denotes the probability that
two or more of the r people have the same birthday.

Table B-l. Probabilities for the Birthday Problem

If (r - 1)/R Q 1, then In q can be approximated by using only the first term
in the series expansion of In, which results in

r-1

lnq=-z i/R
i=l

=-
(r - l)WN

For r S 1, this reduces further to

q = e-r2/2R

Thus, p is given by

p = 1 - q = 1 - e-r2/2R

In that case, the probability of at least one match (p) is about l/2 when
er2/2R = 2 or r2 = 2R(ln2). For the case where R = 365, one obtains r =
22.5, which is in good agreement with the actual result (Table B-l).

REFERENCES

1. Hellman, M. E., “A Cryptanalytic Time-Memory Trade-Off,” IEEE Transactions on

674 REFERENCES

Information Theory, IT-26, No. 4,401-406 (1980).
2. Parzen, E., Modern Probability Theory and Its Applications, Wiley, New York, 1960.

APPENDIX C

Plastic Card Encoding Practices and
Standards

GENERAL PHYSICAL CHARACTERISTICS

A strip of magnetic material applied to the back of a plastic card has the
capacity to handle multiple bands of encoded data. Track 1 is encoded as
the uppermost band followed by Track 2 and then Track 3. Original specifi-
cations for the magnetic material allowed for Tracks 1 and 2 only, which are
read only tracks. The additional Track 3 provides a capability for read or
write or both.

TRACK 1

The International Airlines Transportation Association promulgated the de-
velopment of Track 1 as the official track for airline use and, in fact, even
defined the data and encoding format(s) for the [American National Stan-
dards Institute (ANSI)] standard. Its reason for developing this standard was
to allow for use of customer-operated ticket dispensing machines to alleviate
the congestion at airport ticket counters [11..

Today, other parties besides the airlines are interested in Track 1 because
it is the only encoded track that permits the encoding of the cardholder’s
name. With this alphanumeric capacity, the cardholder’s name can be printed
on an EFT terminal receipt inexpensively; otherwise, the name would have
to be sent from the computer which, most likely, will be more time con-
suming and costly [11.

There are 26 formats for Track 1, which are designated by format codes
A through Z. The Track 1 format corresponding to format code B is shown
below (proposed revised format [21).

Field Name
Start sentinel
Format code = “B”
Primary Account Number
Separator (SEP)

Length
(characters)

1
1 (alpha only)
up to 19
1

675

676 APPENDIX C. PLASTIC CARD ENCODING PRACTICES AND STANDARDS

Field Name

Country Code
Name

Surname
Surname separator = “I”
First name or initial
Space (when required)
Middle Name or Initial
Period (when followed by title)
Title (when used)

SEP
Expiration Date or SEP
Discretionary Data

End sentinel
Longitudinal Redundancy Check (LRC)

Length
(characters)

3
2 to 26

1
4or 1
(the balance up to

maximum record length)
1
1

MAXIMUM TOTAL 79

Format code A is reserved for proprietary use by the card issuer. Format
codes C through M are reserved for ANSI use in connection with other data
formats of Track 1. Format codes N through Z are available for use by
individual card issuers.

TRACK 2

The American Bankers Association (ABA) led the development of Track 2
on behalf of the two credit card companies (Interbank and Visa) and their
members. The intent was to have a standardized plastic card which could be
used at point-of-sale (POS) terminals to obtain authorization for credit
card transactions [11.

Today, in the financial industry, Track 2 is the most widely used encoding
method for plastic cards. It has a strong following because most EFT termi-
nals are connected (on-line) directly to a computer that accesses the card-
holder’s account data files. Also, it is the preferred choice of the ABA and is
the only track recognized and supported by Visa and MasterCard in their
debit/credit programs [11.

The format of Track 2 is shown below (proposed revised format [23).

Field Name
Start sentinel
Primary Account Number
Separator (SEP)

Length
(characters)

1
up to 19
1

TRACK 3 677

Field Name
Length

(characters)

Country Code
Expiration date or SEP
Discretionary Data

End Sentinel
Longitudinal redundancy check (LRC)

3
4 or 1
(the balance up to

maximum record length)
1
1

MAXIMUM TOTAL 40

Although Track 2 is widely accepted, there is a serious potential concern
about it because of its limited encoding capacity-only 40 positions. The
argument supporting the current capacity stresses that all the necessary in-
formation to authorize a transaction is at the data center thereby eliminating
the need to encode extraneous data. On the other hand, those suggesting
that capacity be increased feel that greater capacity would allow certain
transactions to be approved directly at the terminal, or, at least, minimize
the data sent between terminal and computer for each transaction. Those who
hold this view are investigating the alternatives of using Tracks 1 and 3 with
their on-line terminals in order to take advantage of the increased capacity [11.

TRACK 3

Track 3 was developed for use in off-line EFT terminals but was designed to
be compatible with the other current plastic card standards. Thus, Track 3
is compatible with the ANSI standard for embossing plastic cards (ANSI
X4.13-1 979) and the ANSI standard for physical characteristics of mag-
netic stripes (ANSI X4.1 6-1973). More recently, financial institutions have
started to consider its use in on-line systems because of its greater data
storage capacity [11.

The format of Track 3 follows [3] :

Field Name Usage l Status2
Length

(Characters)
Start sentinel
Format code
Primary account number (PAN)
Separator (SEP)
Country code or SEP
Currency
Currency exponent
Amount authorized per cycle period
Amount remaining this cycle
Cycle begin

M
M
M
M
M
M
M
M
M
M

S 1
S 2
S 19
s 1
S 3 or 1
S 3
S 1
S 4
D 4
D 4

67% APPENDIX C. PLASTIC CARD ENCODING PRACTICES AND STANDARDS

Length
Field Name Usage l Status2 (Characters)

Cycle length M
Retry count M
PIN control parameters or SEP M
Interchange control M
Type of account and

service restriction (PAN) M
Type of account and

service restriction (SAN- 1) M
Type of account and

service restriction (SAN-2) M
Expiration date or SEP M
Card sequence number M
Card security number or SEP M
First subsidiary account

number (SAN-l) 0
SEP M
Second subsidiary account

number (SAN-2) 0
SEP M
Relay marker M
Crypto check digits or SEP M
Discretionary data 0
End sentinel M
Longitudinal redundancy check (LRC) M

MAXIMUM TOTAL

S

S

S
S
S
D

S
S

S
S
S
D
D
S
D

2
1
6 or 1
1

2
4 or 1
1
9 or 1

variable3
1

variable
1
1
6 or 1

variable
1
1

r “M” indicates that usage is mandatory; “0” that it is optional.
2 Dynamic fields (denoted by “D”) shall be updated as appropriate by interchange partners.
Static fields (denoted by “S”) shall be updated by the card issuer only.
3There is no maximum length for a variable length field, except that the total number of
characters in track 3 must not exceed 107.

Details of the specific data elements encoded on Track 3 are contained in
reference 3.

REFERENCES

1. Thomas, 0. T. “Funds Transfer Research Department Working Paper #4,” United
States League of Savings Associations, Chicago, IL (June 1980).

2. Proposed American National Standard X4.16, Magnetic Stripe Encoding for Finan-
cial Transaction Cards, American National Standards Institute, X4, New York (Draft,
October 1980).

3. American National Standard X9.1-1980, Magnetic Stripe Data Content for Truck 3,
American National Standards Institute, X9, New York, 1980.

,-I APPENDIX D I-

Some Cryptographic Concepts and
Methods of Attack

FURTHER DISCUSSION OF AUTHENTICATION PARAMETERS

One Way Functions

As stated in Chapter 11, a one-way function is defined as follows:

A function f is a one-way function if for any argument x in the domain off. it is easy
to compute the corresponding value y = f(x); yet for almost ally in the range off, it
is computationally infeasible, given a value of y and knowledge off to calculate any x
whatsoever with the property that f(x) = y. It is important to note that a junction is
defined which is not invertible from a computational point of view, but whose non-
invertibility is entirely different from that normally encountered in mathematics. A
function f is normally called “noninvertible” when the inverse of a point y is not
unique, Le., there exist distinct points xl and x2 such that ffxl) = y = ffx2). This is
not the sort of inversion difficultv that is required here. Rather, it must be overwhelm-
ingly difficult, given a value y and knowledge off, to calculate any x whatsoever with
the property that ffx) = y [I].

The intent of this section is to demonstrate that the design of one-way func-
tions is not as straightforward as might be expected at the onset. It is par-
ticularly true if constraints are introduced. This is shown by discussing the
case where a growth path is provided from a system using an authentication
parameter which is not one-way (i.e., PIN @ ID) to one which is one-way
[i.e., PIN 8 ID 8 f(KP, PIN, ID)].

To discuss details, let it be assumed that personal verification is achieved
with the aid of authentication parameters stored in a verification table to-
gether with the corresponding user ID (Table D-l). (The APs are generated
at the entry point and compared with the appropriate AP of reference at the
issuer as discussed in Chapter 11). Also, let AP be a one-way function f of
KP, PIN, and ID, i.e.,

AP = f(KP, PIN, ID)

Since AP is one-way, a secure implementation must allow that AP be public.
(An opponent could get AP information, for example, if he could read the
verification table.)

679

680 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

IDl, APl of Reference
ID2, AP2 of Reference

.

IDn, APn of Reference

Table D-l. Verification Table

The condition that KP and PIN must not be derivable from AP and
ID is usually easily satisfied by treating KP and PIN as keys. For example,
AP = EKP o PIN(ID) satisfies such a condition. But a more stringent condition
is that it must not be possible to derive a set of KPs and PINS such that the
same AP is generated with the appropriate ID (assumed to be known). In
other words, it must not be computationally feasible to find equivalent values
KP* and PIN* (Figure D-l) such that

AP = f(KP*, PIN*, ID)

This condition is also satisfied with AP = E Kp a PIN(ID), since the evaluation
of KP* @ PIN* = KP CB PIN for a given ID, AP pair is equivalent to the effort
of key exhaustion. (ID can be considered plaintext and AP the corresponding
ciphertext for which the key must be found.)

An example of a weak one-way function is

AP = EKP a &ID @ PIN)

because a KP* and PIN* can be found such that

ExP* e r&ID @ PIN*) = EKP s mN(ID @ PIN)

ID

”

To Find: KP* and PIN* where EKP*ePIN+(ID) = AP
Define: RN = KP*ePIN*

KPePIN E RN can only be found with exhaustive methods,
i.e., the following equation must be solved

AP = El&ID) implies 0 = AP @ E&ID)
or ID = D,,(AP) implies 0 = ID @ D,,(AP)

AP = EKpep~~(ID)

Figure D-l. Example of a Strong One-Way Function

FURTHER DISCUSSION OF AUTHENTICATION PARAMETERS 681

To show this, let RN = KP* @ PIN* be an arbitrarily selected quantity. The
equation for AP can thus be rewritten as

AP = ERN(ID @ PIN*)

from which it follows that

PIN* = ID 6+ DRN(AP)

(It is assumed that the implementation allows up to 16digit PINS even
though 4digit PINS may be used most frequently.) Furthermore, from the
definition of RN, one concludes that

KP” = RN @ PIN* = ID @ RN @ DRN(AP)

Thus, the equivalent values are only an easily computed function of the given
ID, AP pair and an arbitrary quantity RN. The reason for the weakness is
that changing the argument from ID in AP = Exr e rm(ID) to ID @ PIN intro-
duces an additional degree of freedom which allows the evaluation of equiv-
alent KPs and PINS.

In Figure D-2 it is shown that AP = EKP 8 PIN(ID @ KP) and AP = KP @
EKP a rm(ID) are not one-way functions either.

Attack Using Repeated Trials

The weak examples discussed so far have allowed the direct evaluation of
equivalent parameters. But even if this is not the case, a candidate for a one-
way function must be tested under the assumption that an opponent has a
large set of (ID, AP) values, since he may, for example, obtain access to a
verification table storing these values (Table D-2). Let the number of (ID,
AP) pairs available to an opponent be equal to n and let the total number of
possible AP values be N (i.e., 2@ if AP is represented by one block of the
DES output).

If m trials are performed to obtain KP* and PIN*, the probability, q, of
not generating a correct table entry is thus

q= 121m
() N

Taking the natural logarithm (In) on both sides yields

Using the first two terms in a series expansion of In’ results in

In q z -m(n/N) + m(n2/2N2)

ID

PIN +

“c

KPePIN E

To Find: KP* and PIN* where
E,,*,,,,s(ID@PIN*) = AP

Define: RN = KP*@PIN*

Thus, PIN* and KP* are solved as follows:
PIN* = ID @ D,(AP)
KP* = RN e PIN*

AP = EKPePIN(ID@PIN)

= ID @ RN @ D,,(AP)

ID

KP +

4

KPePIN E

To Find: KP* and PIN* where
EKP+ePIN*(ID@ KP*) = AP

Define: RN = KP*@PIN*

Thus, KP* and PIN* are solved as follows:
KP* = ID @ D,,(AP)

PIN* = RN @ KP*

AP = E,,,,,,(ID@KP)
= ID @ RN @ D&AP)

ID

To Find: KP* and PIN* where

KPePIN E

3

KP* @ EKPaePIN*(ID) = AP
Define: RN = KP*@PIN*

Thus, KP* and PIN* are solved as follows:
KP +

KP* =AP TV E&ID)
PIN* = RN @ KP*

=AP $ RN e E&ID)

AP = KP @ E,, $&ID)

Figure D-2. Examples of Functions that are Not One-Way

682

FURTHER DISCUSSION OF AUTHENTICATION PARAMETERS 683

If n2/2N2 < n/N or n/2N Q 1 (which is an easily satisfied condition), then
the second term can be neglected and one obtains

In q = -m(n/N)
q = e-mn/N

The probability, p, of finding at least one correct table value is thus p =
1 -4, or

P = 1 - e-mnN ; n/2N Q 1

Values of p as a function of mn/N are given in Table D-2.
For mn/2N 4 1, the probability p can be expressed as

P = mn/N; mn/2N & 1

If m and n are given, p is determined entirely by the number of bits (log,(N))
in the output (or range) of the one-way function. The minimum tolerable
number of test combinations for AP is therefore determined by (1) how
many trials (m) can be economically performed by an opponent and (2) how
much information (n) the opponent has available. Since this information can
be thought of as a dictionary, the attack falls into the category of dictionary
attacks (discussed in Chapter 2) and will be labeled as such.

mn/N e---/N p= 1 -e-mW

16 o.ooo+ 1 .ooo-
8 o.ooo+ 1 .ooo-
4 0.018 0.982
3 0.050 0.950
2 0.135 0.865
1.5 0.223 0.777
1.0 0.368 0.632
0.5 0.607 0.393
0.25 0.779 0.221
0.20 0.819 0.181
0.10 0.905 0.095
0.05 0.951 0.049
0.01 0.990 0.010

Legend :

N = total number of possible AP values
n = number of AP, ID pairs available to an opponent

m = number of exhaustion trials to obtain equivalent values for
KP and PIN

Table D-2. Values of p as a Function of mn/N

684 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

ID

KP

KP

AP

Figure D-3. Example of One-Way Function Which Yields to a Dictionary Attack

A weak one-way function which yields to the dictionary attack is AP =
KP @ Exr e AN(ID @ KP). AP can be thought of as the cipher-text correspond
ing to a triply encrypted ID. Two encryption steps are defined by modulo 2
addition and the third by the DES (Figure D-3).

An equivalent way of looking at it is to consider X = (ID @ KP) to be the
plaintext and Y = AP @ KP to be the corresponding ciphertext (Figure D-4).
The weakness which can be exploited is that X @ Y = AP 8 ID, since KP is
canceled out in the operation. But knowledge of a set of valid (ID, AP) pairs
also implies knowledge of a valid set of (AP @ ID) pairs.

To solve for

AI’ = I@* @ EKp* a mN*(ID e KP”)

X=ID@KP

KP@PIN

Y = AP@KP

Note that X@Y = APeID.
Figure D-4. Equivalent Representation of the One Way Function in Figure D-3.

FURTHER DISCUSSION OF AUTHENTICATION PARAMETERS 685

select two arbitrary quantities, RN1 and RN2, and define them to be

RN1 = ID d KP*

RN2 = KP* @PIN*

According to Figure D-4, RN1 can be considered equivalent plaintext, X*,
and ERN2(RNl) can be considered equivalent ciphertext, Y*. The attack of
finding equivalent values for RNi and KP succeeds when X* d Y * is an ele-
ment in the set of known AP d ID values.

Thus RN 1 is encrypted with RN2 and the result is added modulo 2 to RN 1.
If this quantity is in the set of known (AP @ ID) values, the attack has suc-
ceeded, since in that case, it can be concluded that

RN1 @ ERN2(RNl) = ID o AP

i.e., plaintext added modulo 2 to ciphertext equals an element in the given
table. But, by definition

RN1 = ID @ KP”

Thus

KP* = AP @ E~N*(RN~)

and

PIN” = RN2 d KP” = AP @ RN2 d EaN2(RNl)

If there is no match with a given table entry, a different RN1 and RN2 are
selected and the process continues (RN2 could actually be fixed and RN1
could be variable, or vice versa). By making N sufficiently large the attack
can be blocked (Table D-2).

To further illustrate the problems associated with designing one-way func-
tions, consider a design in which a weak authentication parameter (AP =
ID @ PIN) is to be made into a strong one (which is one-way) at some future
time by simply Exclusive-ORing ID @ PIN with an additional quantity. To
solve the problem, let

AP = (ID o PIN) @ f(KP, PIN, ID)

where AP and f(KP, PIN, ID) must be strong one-way functions of KP, PIN,
and ID. Again, it must be assumed that KP and PIN cannot be deduced from
ID and AP. Furthermore, it must not be possible to find equivalent values
such that

AP = (ID d PIN*) @ f(KP*, PIN*, ID)

686 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

Function f
ID

KP

KPePIN

KP

IDePIN

4 Weakening Constraint:
AP = (ID @ PIN) e f(KP, PIN, ID)

r
-4

1
AP

Figure D-5. Example of a One-Way Function Even with a Weakening Constraint

The problem at hand is more difficult than the one previously discussed, since
the presence of (ID @ PIN) makes it more difficult to design a strong one-
way function. For example, let

f(KP, PIN, ID) = ED e mN(ID)

which was shown to be strong if used alone to define AP. In this case, AP is
now defined as

AP = (ID @ PIN) o EKP e &ID)

Again, consider whether it is possible to solve for a KP* and PIN* such that

AP = (ID @ PIN*) 8 Ewe Q r&ID)

Defining, as before,

RN = KP* @PIN*

AUTHENTICATION PARAMETERS AND PERSONAL AUTHENTICATION CODES 687

one obtains

PIN* = AP @ ID 8 EaN(ID)

KP” = PIN* 8 RN = AP o ID @ RN @ E&ID)

Thus, choosing an appropriate ID, AP pair, together with an arbitrary quantity,
allows the evaluation of PIN* and KP* in one trial. Therefore, the suggested
AP is extremely weak. The lesson to be learned is as follows.

Coupling a strong one-way function with additional information may result in a weak
one-way function.

To make sure that no exploitable degrees of freedom are introduced, a func-
tion f is defined that uses triple encryption (Figure D-S). The function
defining AP is thought to be a strong one-way function of KP, PIN, and ID.

FURTHER DISCUSSION OF AUTHENTICATION PARAMETERS
AND PERSONAL AUTHENTICATION CODES

Implementation Examples

To analyze the authentication parameter AP = ID 8 PIN, let two cases be
assumed.

1. Personal verification is done with the aid of a verification table which
stores the following quantities

ID1 EM(ID1 @ PINl) of reference

ID2 EU(ID2 @ PIN2) of reference
1 . .

IDn EU(IDn o PINn) of reference

where @ indicates modulo 2 addition and KA is a system key. In this
approach, ID and ID d PIN are routed through the network securely,
and ID @ PIN is translated into E KA (ID @ PIN) at the issuer. If this
quantity is identical to the stored reference, the user is accepted.
Otherwise, he is rejected.

2. Instead of storing ExA(ID @ PIN) in a verification table, it is stored
on the bank card as a Personal Authentication Code (PAC). The au-
thentication key, KA, is stored at the node where authentication takes
place (e.g., the issuer, the switch, or at any other designated node). In
this approach, ID, PIN Q ID, as well as PAC are routed throughout the
network.

688 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

At the authenticating node, the received ID @ PIN is encrypted, as before,
with the stored authentication key, KA. The result is compared with the re-
ceived PAC. If both quantities are identical, the user is accepted; otherwise,
the user is rejected.

Attack Against a 16-Digit PIN

Consider the following attack against implementation method 2 above. An
opponent opens an account at a bank. The assigned ID and PIN, and the
calculated value of ID 8 PIN, are thus known quantities. The opponent also
knows PAC = EKA (ID @ PIN) since it is stored on the bank card.

If he wants to attack account number ID*, he only has to use an equiva-
lent PIN defined PIN*, which can be evaluated as follows.

PIN* = (ID @ PIN) @ ID* (D-1)

The appropriate PAC* is

PAC” = EU(ID* @PIN*) = EKA(ID o PIN) = PAC (D-2)

which is identical to his own PAC, since by definition (Equation D-l)

PIN* @ ID* = ID @ PIN

Even with method 1, the system is vulnerable since an opponent knows how
to change the reference in the verification table (which could be done tem-
porarily during the attack). He only has to change the PAC of the user under
attack to his own PAC according to Equation D-2.

Attack Against a 12-Digit PIN

To show an attack against a shorter PIN (i.e., 12 digits), the PIN and ID
blocks are defined using the proposed ANSI method (see PIN Block Con-
struction and Account Block Construction, Appendix E). If the PIN block
and the account number block are added together, modulo 2, the result is
as follows.

AP = C, N, Pl, P2, Al @ P3, (A2 8 P4) @ F,

(A10 @ P12) @F, Al 1 @F, Al2 @ F . . . , (D-3)

The nature of the attack is to make the input to the algorithm equal to a
known value. In that case, the resulting output is also known. In other words,
the personal authentication code arrived at by encrypting the authentication
parameter is predictable.

From Equation D-3 it follows that for a 12digit PIN all quantities except
the last two (i.e., Al 1 Q F and Al2 @ F) are constant or can be controlled by
an opponent. The control field C, is fixed and determined by the character

AUTHENTICATION PARAMETERS AND PERSONAL AUTHENTICATION CODES 689

set. The PIN length field, N, is determined by the institution and hence is
also fixed. (It is assumed that every user of the institution has a 12digit
PIN.) The next two fields (Pl, P2) can be controlled by an opponent who
knows what PIN information he has. The next ten quantities, Al @ P3
through (A10 @ P12) @ F, can be made equal to a predetermined value by
requiring that

AN@P =AN*@P*

P* = AN@AN*@P; N=1,2,...,10

where AN and P are the parameters associated with the account the opponent
opened. AN* is the nth digit of the account number to be attacked, and P*
is the (n + 2)nd PIN digit the opponent must use to attack the system.

Thus the only two quantities not constant or under the control of the
opponent are Al 1 @ F and Al2 @ F. Any account number to be attacked
must therefore have Al 1 and Al2 as the least significant digits. Since they
represent only a total of 100 combinations, 1% of all accounts can be at-
tacked. However, the probability of success can be increased if the opponent
opens several accounts. If he opens ten accounts, roughly 10% of all ac-
counts can be attacked. If he opens a few hundred accounts, then all or
nearly all the accounts can be attacked.

Proposals for Authentication Parameters and Personal Authentication Codes

A recommended solution to the general method of attack against PIN given
above is to redefine the authentication parameter AP as

AP = E,,.PIN(ID) (D-4

where CI represents information stored on a user’s card. This would be im-
plemented in addition to the authentication parameter recommended by the
American Bankers Association (ABA):

AP = IDllPIN (D-5)

where IDllPIN represents the concatenation of ID and PIN. (Since this is a
preliminary proposal, the information is subject to change.)

If CI is public, both authentication parameters (Equations D-4 and D-5)
have equal cryptographic security. In either case, AP is routed through the
network in enciphered form. If CI represents secret card information (e.g., a
personal key), then the first method is stronger since AP is, in that case, a
one-way function of CI and PIN. Since the system must be able to determine
which authentication parameter is used, a bit is stored on the card to indi-
cate this.

A preliminary ABA proposal for the computation of a PAC is shown in
Figure D-6. To generate n PIN digits, the set of 16 hexadecimal digits in the
triply encrypted PINIIID are scanned for digits that fall in the range 0 to 9

690 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

PINIIID

Kl

Kl

PAC
Note: I(denotes concatenation.
Figure D-6. Preliminary ABA Proposal for Personal Authentication Code

(i.e. decimal digits). If the number of decimal digits found is equal to or
larger than n, the first n digits are defined the PIN. If the number is less than
n, say r, then n-r additional decimal digits are generated from the first n-r
hexadecimal digits in the range A to F by subtracting 10 from their values.
The scheme has two disadvantages.

1. The transformation is biased towards certain digits (0 through 5),
which reduces the effective number of PIN combinations.

2. Only a limited number of PIN digits are used (e.g., up to four).

To eliminate the first disadvantage, a different transformation could be de-
vised. For example, instead of generating 64 bits (16 hexadecimal digits)
with one triple encryption step, 128 bits (32 hexadecimal digits) could be
generated using two triple encryption steps. In that case, the probability of
obtaining decimal digits directly is much higher (i.e., there are fewer in-
stances in which it is necessary to transform hexadecimal digits A through F
to decimal digits). The second disadvantage could be overcome by allocating

AUTHENTICATION PARAMETERS AND PERSONAL AUTHENTICATION CODES 691

64 bits for both the ID and PIN and couple both by introducing another en-
cryption under Kl as shown in Figure D-7. In a more secure approach, PIN
is replaced by a one-way function of CI and ID as shown in Figure D-8. If
the additional encryption of ID with CI is not acceptable, ID could be
coupled to AP as shown in Figure D-9. The entry of ID at both points
[labeled (a) and (b) in Figure D-91 is necessary. If only one entry were used,
the approach would be weak for the case where Kl = K2.

ID PIN = AP

v

Kl b E

I

Proposed Change
v

Kl+ E

+

K2+ D

Kl+ E

+
PAC

Note: The proposed change allows the use of up to 16 PIN
digits and, at the same time, achieves coupling with ID.

Figure D-7. Modified Preliminary ABA Scheme

Kl

ID
PIN 1 .

ID l E

CI v
AP

E
t

I

Kl b E

i

K2+ D

Kl- E

Transform to

PAC
Legend: AP = Authentication Parameter

CI =Card Information
ID = Used Identifier
PIN = Personal Identification Number
PAC = Personal Authentication Code

Note: During initialization at the issuer, an AP is calculated for each
given ID, PIN, and CI. ID and AP are also used to calculate
PAC, which is stored on the bank card. During personal
verification, AP is calculated at the entry point from the entered
values of ID, PIN, and CI. The entered ID and AP, and the
calculated PAC are then sent to the authenticator.

Figure D-8. Generation of Authentication Parameter
and Personal Authentication Code-Method 1

ID

1 I AP
+

ID Kl+ E

K2+ D

Transform to
Decimal Digits

Note: During initialization at the issuer, an AP is calculated for each
given ID, PIN, and CI. ID and AP are also used to calculate
PAC, which is stored on the bank card. During personal verifica-
tion, AP is calculated at the entry point from the entered values of
ID, PIN, and CI. The entered ID and AP, and the calculated PAC
are then sent to the authenticator.

Figure D-9. Generation of Authentication Parameter
and Personal Authentication Code-Method 2

693

694 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

ID
PIN

ID b D

*

b E

PIN

PIN - D

ID

1
f(C1, PIN, ID)

Concatenate

I
AP = ID I I f(C1, PIN, ID)

Figure D-10. Computation of AP with Migration Properties.

The AP value defined in Figure D-10 has the advantage that it provides
a migration path to a very secure approach incorporating secret card infor-
mation. Thus when CI # 0, AP = IDllf(ID, PIN, CI), where f(ID, PIN, CI)
is a one-way function and CI is secret card information. In the degenerate
case (where CI = 0), AP = IDllPIN (i.e., the output of the function is equiva-
lent to that defined by the ABA proposal, Figure D-6.

The Advantage of an AP that Depends on ID

The advantage of using ID as well as PIN in generating an authentication
parameter is shown by the analysis of three different methods, where AP is a
function of

1. PIN only, e.g., AP = PIN
2. PIN and ID, e.g., AP = EHN(ID)
3. PIN, KP, and ID, e.g., AP = EKP e PIN(ID)

AUTHENTICATION PARAMETERS AND PERSONAL AUTHENTICATION CODES 695

Furthermore, let m be the number of different PIN combinations and n the
number of different user IDS. To simplify the discussion, the assumption
n < m shall be made such that each user has a unique PIN. (Although, in gen-
eral, this assumption will not hold, it is nevertheless useful to analyze this
simple case to demonstrate the usefulness of coupling ID and PIN.) In that
case, there are then m PIN choices for user 1, m - 1 PIN choices for user 2,
and so on. In general, there are m - (i - 1) PIN choices for the ith user.

Assume also that PAC = EKA(AP) is stored in a verification table and that
it is possible to obtain E=(AP*) for a trial value of AP*. (A good key man-
agement scheme would prevent this.) If EKA(EmN.(ID)) can be related to
each table entry EKP;(EmN(ID)), there are at most m (on the average about
m/2) trials required to obtain the correct PIN for a given ID. On the other
hand, to obtain all PIN/ID correspondences, the maximum number of trials
needed would be:

S = m + (m - 1) + . . . + [m - (n - l)]

= mn - [1 + 2 + . . . + (n - l)] = mn - [n(n - 1)/2]

=n[m-(n-1)/2]; n<m

whereas on the average only about half of that number (S/2) are required.
To simplify the computation, assume that there are as many users as there

are PIN combinations (m = n). Then the number of trials an opponent needs
to get all PIN/ID combinations is equal to the number of trials when n =
m - 1 (because the last (nth) PIN is automatically determined if all the others
are known). Using the above equation for S (with n = m - 1) yields

S = (m - l)[m -(m - 2)/2]

=(m-l)(m/2+ 1); n=m

It should be pointed out that the number of trials is drastically reduced if
PAC is only a function of the PIN and not of the ID. For example, let PAC =
Ea(PIN). Then EKA(PIN*) can be related uniquely to EKA(PIN) and thus
a proper ID can be evaluated with certainty for each trial of PIN (provided
that the PIN is currently assigned to some user). Hence, the advantage of

Maximum Number of Trials Needed to Exhaust the Combinations of PIN, i.e.,
to Obtain the Correct PIN/ID Relationship

Goal of Attack AP = PIN AP = E~IN(ID) AP = Em e pIrq(ID)

Arbitrary 1 m more than
(ID, PIN) 101’

Particular m m more than
(ID, PIN) 10”

All m (m - l)(m/2 + 1) w (m*/2) + (m/2) - 1 more than
(ID, PIN)s 10”

Table D-3. Maximum Number of Trials Needed to Exhaust the Combinations of PIN

696 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

coupling the ID together with the PIN is clearly demonstrated for the case
where n = m. The results are summarized in Table D-3. The same advantage
can be gained for the case where n > m, although the computations are
omitted from the discussion.

INCREASING EXHAUSTIVE ATTACK WORK FACTOR
BY IMPLEMENTATION METHODS

Multiple Encryption and Block Chaining

Usually the main emphasis is placed on the strength of the algorithm. An
equally important factor on overall strength, however, is how the algorithm
is implemented. For example, the work factor for exhaustive attacks can be
significantly increased by using the DES with multiple encryption. A partic-
ularly attractive approach is one which allows compatibility between a basic
single encryption scheme and a more secure multiple encryption scheme. This
can be achieved by defining the cryptographic operations

y = E~1h&atX)
x = DKI EKzDKI(Y)

where Kl and K2 are independently chosen (56-bit) keys [21 as shown in
Figure D-l 1. This operation has the property that for the case where Kl =
K2 = K, the relationships Y = Ex(X) and X = D,(Y) hold.

Thus a high security multiple encryption implementation using Kl and K2
could communicate with a less secure single encryption scheme just by setting
Kl equal to K2. Although, technically speaking, the method is not quite as
strong as a method using three different keys, it is much stronger than
double encryption with two different keys as analyzed below.

If arbitrary plaintext and corresponding ciphertext are known, (single
encryption is assumed), the key can be determined by enciphering the plain-
text with one key after the other until the correct ciphertext is produced.
This requires, on the average, 2 55 trials for the DES. Such an attack is,
in theory, always possible regardless of the implementation. This is so be-
cause it must be assumed that some encrypted data will at some time be-
come public.

A significant decrease in the exhaustive work factor is possible if plaintext
(selected by an opponent) and corresponding ciphertext can be obtained
(called a selected plaintext attack). One way to defend against the selected
plaintext attack is to introduce “noise” into the encryption procedures such
that the system itself does not encrypt the plaintext selected by the op-
ponent. Block chaining achieves this via an initializing vector, as discussed in
Chapter 2. As a consequence, all attacks described below will fail when block
chaining is used (a recommended mode of DES operation). This represents
an additional powerful argument in favor of chaining methods.

To determine the consequence of a weak implementation which allows a
selected plaintext attack, some cryptanalytic techniques are discussed em-

INCREASING EXHAUSTIVE ATTACK WORK FACTOR 697

Plaintext

Kl---, E

Kl----+ E

I

E,,(D&E,,(Plaittext))) = Ciphertext
Note: EKI(DK2(EK1(Plaintext))) = EK1(Plaintext)

when Kl =K2.
Figure D-11. Multiple Encryption Process with
Migration Properties Using Two Indepepdent Keys

phasizing the possible tradeoffs between them in terms of the storage require-
ments and time requirements needed to conduct the analysis. To show how
such an attack, if it were possible, reduces the exhaustion work factor, let it
be assumed that EK (P) = C (where C represents ciphertext) is available to an
opponent who can select the plaintext, P.

The attacks discussed below are mostly of academic interest. As a practi-
cal matter, it appears that a viable business case cannot be made for develop-
ment of a special purpose computer capable of key exhaustion, and storage
of large tables, on the order of 256 entries, is technically infeasible.

Reduction of Exhaustion Work Factor for Selected Plaintext Attack

Time-Memory Tradeoff: Approach 1

The time needed to attack a key after ciphertext C for selected plaintext P
has been obtained (i.e., C = EK (P)) can be minimized if a table of all plain-
text and matching ciphertext is precomputed for each possible key (kl,
k2,. . . , kn), where n = 256 as shown in Table D-4. All ciphertext values are
then sorted and properly stored. Once this initial task is completed (which
may require years or even hundreds of years depending upon the capability
of the opponent), the attack against any key requires now a lengthy table
lookup but no exhaustive encryption procedure since that was done before-
hand. In this case the attack time against any key is drastically reduced at
the expense of precomputing, sorting, and storing a table with 256 entries.

698 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

kl
k2

kn

Ek l(p> = cl
&z(P) = c2

.

L(P) = Cn

Table D-4. Precomputed Ciphertext Values for a Selected
Plaintext, P, Using a Single Encryption Step

This attack is the most straightforward one and it trades maximum storage
space for minimum time needed to attack any key once the appropriate cryp-
togram (i.e., E,(P)) has been obtained. A variation of this procedure suggested
by Professor Martin Hellman of Stanford University, at the 1977 National
Computer Conference held in Anaheim, California, is possible by reducing
storage requirements at the expense of computation time.

Time-Memory Tradeoff: Approach 2

Instead of storing Ci = E%(P) in a table together with Ki, a string of encryp-
tions, say t, is performed for a selected starter key, ki, as shown in Figure
D-12. Let there be T tables of m double word entries and let a key (ran-
domly or systematically) selected out of the N possible keys (N = 256)
be stored in the first word of each of the possible Tm table entries. (Note
that t is related to computation time and m is related to memory size.)

Each key stored in the first word of each table entry is used to calculate
a corresponding ciphertext (using t encryption processes as indicated in
Figure D-12), which is stored in the second word of the table entry. Let the
transformation shown in Figure D-12 be different for each of the T tables
for reasons explained below. In that case, mt encryption steps are needed
to create each table containing starter keys kl ,l through km,1 and corres-
ponding cipher-text Cl ,t through Cm,t where each ciphertext is arrived at by
encrypting a selected plaintext, P, a number of times, t, in the way shown in
Figure D-12. After that the ciphertexts (C) are sorted for each of the T
tables. This completes the process of precomputation.

The attack against an unknown key, K, proceeds as follows: If the ob-
tained Y 1 = Ex (P) is equal to a table entry, Cr,t = Ek,,t(P), then it can be
concluded that K is equal to kr,t.’ Since the seed key in that case is equal to
kr,l the unknown key, equal to kr,t, can be obtained by performing t - 1
encryption steps starting with kr,l according to Figure D-12. (A different
transform from 64 to 56 bits is used depending on which one of the T tables
Cr,t is found in.) If Y 1 = Ex (P) is not found in any of the tables, Y 1 (which
is 64 bits long) is transformed with the T different transforms to create
Yltransl,Yltrans:!, . . . , Y 1 transT (which are 56 bits long).

‘To avoid unnecessary complexity, a third subscript to indicate a particular table is not
introduced. It should be understood that the starter keys for each table are different (as
well as the transformations).

I Ci, 1

J

P

I Ci, 2

Transform cl-- from 64 J

to 56 Bits

ki,t - 1
-0 . .

ki,t
-b E

I Ci,t- 1 Ci,t- 1
v

r-i-- Transform
from 64

to 56 Bits

Transform
from 64 .

to 56 Bits
P

Ci, t

Figure D-12. Precomputed Ciphertext for a Selected Plaintext P
Using a Sequence of Encryption Steps

700 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

P is next encrypted with Y 1 transl through Y 1 transT. If EYltransl (P) is equal
to the value Cs,t in Table 1, then it can be concluded that ks,t - 1 is the cor-
rect key and that ks, 1 is the corresponding seed key to generate ks,t - 1. To
generate the correct key, ks,t - 1, requires, in this case, t - 2 encryption steps
starting with ks,l in addition to the T encryptions with Yltransl through
Y 1 transT and the one to generate Ex (P). If EYltransl (P) is not in table 1, a test
is then made to determine if EYltrans2 (P) is in table 2; if EYltraneZ (P) is not in
table 2, a test is then made to determine if EYltrans3(P) is in table 3; and so
on. If no match is found, then EYltransl (P) through EYltransT (P) are trans-
formed under their respective 64-bit to 56-bit transformations to produce
Y2trans1, Y2trans2, . . . , Y2transT and these values are used as keys to en-
crypt P to ProPuce %transl 0% %trans2 G’), . . . , EY2transT (P). Again,
E Y2transl (P) is checked against table 1, EYZtrans2 (P) is checked against table 2,
and so forth. If no match is found, the entire procedure is repeated until the
t-l encryptions are exhausted (i.e., the procedure ends with EYt-rtrans. (P),
Ewtrans2 (p), - - ‘a 3 En-1trans-r (P)). In any case, if the correct key is kr,s, then
there are s - 1 encryption steps performed starting with kr,l . In addition,
there is the initial step to create E,(P) (which is performed on the system
storing the secret key K) plus (t - s)T steps (maximum) to pinpoint the
correct row (s in this case) in the precomputed T tables. Hence altogether
there are (s - 1) + 1 + (t - s)T = s + (t - s)T encryption steps required.

The parameters mT (number of starter keys) and t (number of encryptions
to arrive at C from the appropriate starter key) must be selected such that
the key to be attacked can, for all practical purposes, be obtained with high
probability. Since the total number of keys which come into play in the table
generation process is equal to mtT, the attack will always succeed if all N
possible keys (i.e., 256 for DES) are present. To evaluate the probability,
po(mt,N), that none of the N keys are missing in the mtT possible locations,
the following approach can be taken.

From a probabilistic point of view the different mtT slots in the table gen-
eration process can be considered balls which are placed randomly into N
cells. If a cell is not selected it means that the key corresponding to that cell
cannot be obtained with this method. The probability, po(mtT,N), that all
N cells are selected (i.e., that none of them is empty), is evaluated in refer-
ence 3 as follows.

po(mtT,N) = 2 (-1: (r) [1 - (i/N)mfT]
i=O

where

N 0
N!

i = i! (N - i)!

(D-6)

The direct numerical evaluation of the equation is practical only for the case

INCREASING EXHAUSTIVE ATTACK WORK FACTOR 701

of relatively small N and mtT. For larger values of interest, a good approxi-
mation can be found [3 I if

(D-7)

remains bounded. Since this is the case here (as shown below) one can use

po(mtT,N) = e-* uw

Solving for mtT/N yields

mtT/N = In(N) - lnIln[l/po(mtT,N)l]= ln{N/ln[l/po(mtT,N)]) (D-9)

Choosing different values for N and po(mtT,N), the required ratio mtT/N
can be evaluated. The results are shown in Table D-5. Note that N = 256,
2112, and 2168 can be related to the situation where a time-memory tradeoff
is used to attack single encryption, double encryption, and triple encryption,
respectively. It is, however, shown below that double encryption can be at-
tacked more efficiently with another exhaustive technique. For triple encryp-
tion, on the other hand, the work factor is so high that no viable exhaustion
method is available.

It must be realized that Table D-5 covers the (unrealistic) case where it
is possible to recover any key. In the practical situation, one is content with
recovering a certain percentage of keys. Hence, in that case, it is not neces-
sary to have all keys represented in the matrix of mtT entries. Let it there-
fore be assumed, that on the average, a certain fraction of the keys cannot
be evaluated. In that case the ratio mtT/N can be smaller than the ones
quoted in Table D-5. For example, the probability pr(mtT,N) that exactly
r keys out of the total N keys are missing in the matrix of mtT entries can
be evaluated as [3]

pr(mtT,N) = evA A’/t!
A = Ne-mtT/N

This represents the Poisson distribution. The expected value of the number
of keys that cannot be recovered is thus A with a variance also equal to A.

The expected (average) value of the fraction of keys which cannot be re-
covered is thus

E(r/N) = E(r)/N = A/N = e-(mtT/N) (D-10)

and the variance is

Var (r/N) = Var (r)/N2 = esmtTiN/N (D-l 1)

AS long as E(r/N)/[Var(r/N)] O-5 % 1 (i.e., [NemmaiN] Os5 % 1), the distribu-

702 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

N

po(mtT,N)
2% 2112 21ea

In(N) = 38.816 In(N) = 77.633 In(N) = 116.449

UN 35.2 73.3 111.7
lo-” 35.5 74.3 113.1
lo-lo 35.6 74.4 113.2
0.000001 36.2 74.9 113.7
0.00001 36.4 75.0 113.8
0.0001 36.6 75.4 114.2
0.001 36.9 75.7 114.5
0.01 37.3 76.1 114.9
0.1 38.0 76.8 115.6
0.25 38.5 773 116.1
0.5 39.2 78.0 116.8
0.75 40.1 78.9 117.7
0.9 41.1 79.9 118.7
0.99 43.4 82.2 121.0
0.999 45.7 84.5 123.3
0.9999 48.0 86.8 125.7
0.99999 50.3 89.1 128.0
0.999999 52.6 91.4 130.3
l-lo-l0 61.8 93.7 132.6
l-10-‘” 64.1 96.0 134.9
l--U/N) 77.6 155.3 232.9

Legend:

mtT: Number of keys generated in the table generation procedure
N: Total number of possible key combinations

mtT/N = In (N/ln[l/po(mtT,N)] }

Table D-5. Ratios mtT/N for Different Probabilities, po(mtT,N), of Haying All Keys
Present in the Precalculation Process

tion of r (Poisson) does not have to be considered. In that case the expected
value alone (which is only a function of the ratio mtT/N) determines mtT/N.

Thus for a given expected value E(r/N) the quantity mtT/N can be evaluated
as follows.

mtT/N = ln[l/E(r/N)l (D-12)

Some numerical results are given in Table D-6.
The difference between the results shown in Table D-5 and Table D-6 is as

follows. In Table D-5 a value of mtT/N can be obtained as a function of the
probability that all keys are represented in the precomputed matrix requiring
mtT computations. In Table D-6 a value of mtT/N can be obtained as a
function of the average fraction of nonrecoverable keys. Choosing, for

INCREASING EXHAUSTIVE ATTACK WORK FACTOR 703

WN mtT/N

Fraction of Keys Which,
on the Average, Cannot
Be Obtained

Total Number of Precalcula-
tions Divided by Total
Number of Keys

lo-” 25.3
lo-lo 23 .O
0.000001 13.8
0.00001 11.5
0.0001 9.2
0.001 6.9
0.01 4.6
0.1 2.3
0.25 1.4
0.3679 1 .o

Legend :

mtT: Number of keys generated in the table generation
procedure

N: Total number of possible key combinations
mtT/N = ln[1 /E(r/N)]

Table D-6. Ratio mtT/N for Different Average Fractions of
Nonrecoverable Keys E(r/N)

example, mtT/N = 11.5, practically guarantees that 99.999% of the keys
can be obtained (Table D-6).

The underlying assumption made so far is that all keys occur at random.
To justify the assumption that keys are generated randomly requires that
certain conditions for m and t are met to prevent (with high probability) the
following situation from happening. Assume that a key is duplicated in two
rows of one of the T tables (e.g., ki,r = kj,s). In that case this accidental
equivalence of two row entries leads to an equivalence of the rest of the two
rows.

To evaluate the probability of such an event, let pi represent the probabil-
ity that all keys in row i are different from each other and are different also
from the previously generated keys (i - 1)t. Thus

pi= h [N-(i-l)t-(j--1)1/N
j=l

Since the last term (j = t) represents the smallest factor, (N - it f 1)/N,
which in turn is larger than [1 - (it/N)], a lower bound for pi can be found
as follows.

pi > [1 - it/N)] t

704 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

Taking the natural logarithm and approximating ln[1 - (it/N)] with (-it/N)
results in

pi > e-W2/W ; it/N<<1 (D-l 3)

Since pi is close to one, the number of different keys in each of the T
tables can be made close to mt by requiring that mt2 Q N. Furthermore, by
choosing a different 64-bit to 56-bit transformation for each of the T tables
it can also be assumed that the key generation processes in the different
tables are statistically independent.

If the transformation selects 56 bits out of the 64 bits, there are actually
(64) (63) (62) . . - (IO) (9) = 64!/8! such transformations. With such a
scheme accidental equivalence of two row entries in the different T matrices
does not lead to an equivalence of the rest of the two rows. Thus choosing
individual transformations for each table entry justifies the assumption of
random generation of keys.

Now consider the problem from a different point of view. In principle,
the relationship between mt and N is arbitrary. However, the ratio mt/N
represents the average number of balls per cell (i.e., the average number of
keys in the table generation process per possible key). If this ratio is exces-
sively large, then there will probably be no empty cells (i.e., the attack will
always work). In this case po(mt,N) is near unity. On the other hand, if mt/N
tends to zero, then practically all cells must be empty (i.e., the attack will
most likely not succeed). In this case po(mt,N) is near zero.

An approximation for this latter case can be derived as follows. Assuming
that mt g N, one can also assume that all mt keys in the table generation
process are different. The probability of finding the correct key is then mt/N.
To increase the probability of success one could generate T tables. In that
case the probability, q, of not finding the correct key is q = [1 - (mt/N)l T
provided that all keys in the T tables are different. (The justification for
treating the key generation process in the different tables as independent
is that each of them uses a different transformation.)

Taking the logarithm and using the fact that mt2 4 N one arrives at

In(q) = T ln(1 - (mt/N)) = -mtT/N
q = e-wT/N

The probability of finding the correct key is p = 1 - q and hence

p= 1 -emmtvN; mt<N

(D-14)

This is the same result obtained in Equation D-12. Solving for mtT/N one
obtains

mtT/N = ln(l/q)

INCREASING EXHAUSTIVE ATTACK WORK FACTOR 705

The Meet-in-the-Middle Attack Against Double Encryption

Method Using an Off-Line Attack

Let Y = Ex2 Exi (X) represent the double encryption scheme to be analyzed
where Kl and K2 are independently chosen as shown in Figure D-l 3. Assum-
ing, as before, that selected plaintext, P, can be used, a table of ciphertext
EH(P) is constructed for all possible keys, after which the ciphertext is
sorted (see also Table D-4). To evaluate the unknown keys, the given Y
(i.e., P enciphered under the unknown keys Kl and K2) is decrypted with a
trial key, DxZtriai(Y), and the value is located in the aforementioned table.
The corresponding key from the selected table entry is the trial key for Kl
(i.e., Kltrial). It is clear that EKztrialEKltrial(P) = Y by design. To check if
Kl trial is indeed equal to Kl and K2trial is indeed equal to K2, some addi-
tional pairs of plaintext and corresponding ciphertext (in the order of ten)
must be used. This can be done by encrypting additional plaintext (arbitrary
in this case) with the unknown keys. If these additional pairs can also be
generated with Kltrial and K2trial the keys are accepted as correct. Other-
wise, the procedure is repeated.

This attack requires precomputation and sorting of 256 ciphertexts (as in
Table D-4) as was the case in the attack against a single encryption scheme.
In addition, about 255 trial values, DK2tZtrial(Y), must be generated which are
used to determine a candidate for Kl (i.e., Kltrial) before the correct keys
are determined. To evaluate the actual work factor also requires taking into
account the sorting procedure and table lookup time to find the match of

Kl

t
Legend:

P = Plaintext
Y = E&Exi(P)) = Ciphertext

Figure D-13. Double Encryption Process

706 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

EKltridP) with D KZtrtil(Y). But, importantly, it is possible to do all this on a
system that is under the control of the opponent (off-line attack).

Method Using Combinations of Off-Line and On-Line Attacks

A reduction of the exhaustion time (after ciphertext for selected plaintext is
obtained) to attack a key is possible at the expense of additional precompu-
tations. These precomputations, however, must be done on the system that
contains the key or keys to be attacked (on-line attack).

Assume that an input (PP for piaintext to be doubly encrypted) is used in
a double encryption scheme to yield a known bit pattern P as an intermediate
result as suggested by Figure D-14. Let YY be the ciphertext obtained using
PP and a method of double encryption. Since PP and YY are correspond-
ing pairs of plaintext and ciphertext for double encryption, there is only a
certain set of keys (Kl and K2) which satisfy the condition that the inter-
mediate result is equal to a selected value, P.

To evaluate the set of these keys, a relationship between Kl and PP and
between K2 and YY must be established. To do this two tables are created
as shown in Table D-7. Each of the quantities PPi [Table D-7 (a)] are doubly
encrypted with the (unknown) keys Kl and K2, which are to be evaluated.
But since unknown keys are involved, this set (in contrast to the ones in
Table D-7) must be created on the system that contains Kl and K2. In other
words, an on-line attack is necessary to generate the needed quantities
enumerated in Table D-8.

PP

Kl

K2

E,#‘)

Legend:
PP = Chosen Plaintext
YY = EKZ(EKI(PP)) = Corresponding Ciphertext

Figure D-14. Generation of Selected Plaintext Set (PP) for
On-Line Attack on Double Encryption

INCREASING EXHAUSTIVE ATTACK WORK FACTOR 707

kl
k2

Dkl(P) = PPl
&2(P) = PP2

.

kl
k2

&l(P) = cl
E&P) = C2

kN &N(P) = PPN kN El&) = CN

Note: The entries in the table can be obtained on a system different from the one in
which the keys to be attacked are installed.

Table D-7. Relationship Between Plaintext (PP), Ciphertext (C), and Keys (kl, . . . , kN)
for a Given Selected Intermediate Result (P)

Table D-8 can now be used to find a trial key Kltrial determined by PP
[with the aid of Table D-7 (a)] and a trial key K2trial determined by YY =
C [with the aid of Table D-7 (b)] for each PP/YY pair in Table D-8. In each
case the relationship EKltrial(PP) = P, DK2trial(YY) = P, and EK1tria1EK2t,tii(PP)
= YY holds. To check for the correct keys (i.e., if Kltrial = Kl and K2trial
= K2), additional plaintext and corresponding ciphertext values must be
used as discussed above.

Since Table D-8 contains a large set of PP/YY pairs, these table entries
could also be used to do the actual checking. To summarize, the attack takes
place as follows.

1. All N (256) keys are exhausted to generate a table [Table D-7 (a)]
whose entries are (ki, D,,(P) = PPi; i = 1,2, . . . , N). Since in the on-
line attack these PP values are used as selected plaintext against the
double encryption method, the table does (not have to be sorted.
(Note that one PP value after the other can be used as originally
generated.)

2. All N (256) keys are exhausted to generate a table [Table D-7 (b)]
whose entries are (ki, Eti(P) = Ci; i = 1,2, . . . , N). The C values must

PPl ExaExr @‘PI) = Wl
PP2 E,,E,,@P2) = w2

. .

. .

. .

PPN B,E,(PPN) = YYN

Note: The entries in the table can only be obtained on the
system which allows operations with the unknown
keys (Kl and K2) to be performed.

Table D-S. Relationship Between Selected Plaintext Set (PP)
and Corresponding Ciphertext Set (YY) for Double Encryption

706 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

be sorted to locate the proper entry satisfying the condition YY = C.
in step 5 below.

3. All‘N (256) PP values created in step 1 are now used as selected plain-
text in the double encryption scheme to be attacked. The resulting
ciphertext values are recorded serially in a table where entries are
{PPi, Ek2Ekl (PPi) = YYi; i = 1, 2, . . . , N}. Since Kl and K2 are the
actual keys, the entries in this table can only be created on the system
which allows operations with Kl and K2 to be performed (on-line
attack).

4. From Table D-7 (a) the key associated with PPl is identified with
Kl trial.

5. From Table D-7 (b) the key associated with YYl = Cj is identified
with K2trial provided that such a match occurs.

6. A sufficient number of PP/YY pairs are selected from Table D-8. (e.g.,
ten) to check if Kl trial = Kl and K2trial= K2. This is done by doubly
encrypting each of the selected PP values with Kl trial and K2trial and
checking for equality with the corresponding YY values. Only if all
tests are positive are the keys Kltrial and K2trial accepted as being
correct. Otherwise, Steps 4, 5, and 6 are repeated using PP2 and YY2
next, thence PP3 and YY3, and so on; in which case, at each iteration
different keys for K 1 trial and K2trial are selected (steps 4 and 5) and
tested (step 6).

The major disadvantage of this method is the requirement of an on-line attack
to create Table D-8 (step 3). As a matter of fact, it can be stated that such an
attack is not a viable one since it will take an enormous amount of time to
create such a table. A special purpose computer cannot be used, since the
attack must take place on the system wherein the keys to be attacked have
been installed. Furthermore, this activity must continually be conducted
in secrecy if it is to be of any value.

The reason for this discussion is to highlight a concept. If precomputation
is performed on a system under the control of an opponent (which allows
the use of special purpose computers), then there exists at least the possibility
of a meaningful time-memory tradeoff. On the other hand, if precomputa-
tion must also involve the use of the system to be attacked to any significant
degree, then such an attack is really only of academic value and thus not of
much practical interest.

Thus the most viable attack against double encryption is the one discussed
above using an off-line attack. This involves creating a table of 256 sorted
entries and about 255 encryption steps using a selected plaintext/ciphertext
pair.

Attack Against Triple Encryption With Three Independent Keys

To attack the triple encryption scheme of Figure D-l 5 using a combination
of on-line and off-line attacks, the basic ideas discussed to attack a double
encryption scheme (Figure D-14) also apply. The fundamental concept re-

INCREASING EXHAUSTIVE ATTACK WORK FACTOR 709

PPP D&?
Kl -b E

point 1 P
I

K2

-0

D

point 2
I

I&&P) = DK,(YYY)

K3 E

5

1
YYY

Figure D-15. Generation of Selected Plaintext Set (PPP)
for On-Line Attack on Triple Encryption

quires that a preselected intermediate value P exist, as shown in Figure D-15.
Going backwards, this allows the generation of a set of preselected plaintext
(PPP) for any possible key (Kl). This is accomplished by creating the entries
in Table D-9 (see also Table D-7).

The same table can be used to determinethe result at point 2 in Figure D-l 5
for any selected trial key K2trial. Thus only one table is needed here in con-
trast to the attack on double encryption (Table D-7). This is because the
double encryption method of Figure D-14 employs the E-E operation whereas
the triple encryption method of Figure D-15 uses the E-D-E operation. (This
is the security price paid, although a small one, for the migration property.)

kl
k2

&l(P) = PPPl
&2(P) = PPP2

kN DkN(P) = PPPN

Note: The entries in the table can be obtained on a system
different from the one in which the keys to be obtained
are installed.

Table D-9. Relationship Between Plaintext (PPP) and Keys (kl ,
k2,..., kN) for a Given Selected Intermediate Plaintext (P)

710 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

PPPl E,,DK~EK~(PPP~) = ml
PPP2 EK~DK~ EKE @‘PP2) = m:!

PPPN E,DK2EK1(PPPN) = YYYN

Note: The entries in the table can only be obtained on the
system to be attacked (i.e., on the system where en-
cryptions/decryptions under the unknown keys Kl , K2,
and K3 can be performed). This requirement puts the
attack into the class of attacks that are of academic
interest only (i.e., the attack is not viable).

Table D-10. Relationship Between Selected Plaintext Set
(PPP) and Corresponding Ciphertext Set (YYY) for Triple
Encryption

Each of the PPPi quantities in Table D-9 are next used as input data and
triply encrypted with the (unknown) keys Kl, K2, and K3. But since the
unknown keys are involved, this set (in contrast to Table D-9) must be
created on the system that contains Kl , K2, K3. In other words, an on-line
attack is necessary to generate the needed quantities enumerated in Table
D-10.

This attack falls into the category described in Reference 4. Since the
groundwork to understand this attack has already been de cribed in the pre-
vious section, only a summary of the attack is given here.

1. All N (256) keys are exhausted to generate a table (Table D-9) whose
entries are (ki, D,,(P) = PPPi; i = 1, 2, . . . , NJ. Since in the on-line
attack these PPP values are used as selected plaintext against the triple
encryption method, the table does not have to be sorted. This estab-
lishes the set {PPPi; i = 1, 2, . . . , N) to be used in the selected plain-
text on-line attack. Since the second operation is a decrypt operation
in the multiple encryption scheme, the same table can be used to pre-
dict the output at point 2 (Figure D-15). This requires Table D-9 to
be sorted.

2. All N (256) PPP values created in step 1 are now used as selected plain-
text in the triple encryption scheme to be attacked. The resulting
ciphertext values are recorded serially in a table whose entries are
{PPPi, EKsDK2 Exr (PPPi) = YYYi; i = 1, 2, . . . , NJ. Since Kl, K2,
and K3 are the actual keys, the entries in this table can only be created
on the system which allows operations with Kl, K2, K3 to be per-
formed (on-line attack).

3. A value for K3trial is selected and used to decrypt YYYl to create
D KJt&r(YYYl). Using this value with the table created in step 1
(Table D-9), a match is sought and if found identifies the correspond-
ing key as K2trial. If no match is found, another K3trial is selected

INCREASING EXHAUSTIVE ATTACK WORK FACTOR 711

and the procedure repeated. The possible values of K3trial are thus ex-
hausted until a value is found such that Dxatriar(YYY 1) matches some
PPP value in Table D-9. If a match is found, the procedure continues
with steps 4 and 5. If steps 4 and 5 fail to recover Kl , K2, and K3,
then step 3 is continued. That is, values of K3trial are again selected
and tested until all N (256) trial values have been exhausted. At this
point, the trial ciphertext YYYl is discarded and step 3 is repeated
using ciphertext YYY2 (i.e., the 2 56 K3trial keys are again tested, if
necessary, using YYY2 as the trial ciphertext). If YYY2 fails to re-
cover the keys Kl , K2, and K3, then YYY3 is used, and so on. Even-
tually a value of YYY, say YYYi, will be tested that allows Kl, K2,
and K3 to be recovered. This will occur, on the average, after 255
YYY values have been tested. Note that up to this point 256 K3trial
keys are tested for each trial YYY value.

4. From Table D-9, the key associated with PPPi (PPPl if YYYl is the
ciphertext selected at step 3, PPP2 if YYY2 is selected at step 3, and
so on) is identified with Kl trial.

5. A sufficient number of PPP/YYY pairs are selected from Table D-10
(e.g., ten) to check if Kltrial = Kl, K2trial = K2, and K3trial = K3.
This is done by triply encrypting each of the selected PPP values with
Kl trial, K2tria1, and K3trial. By checking for equality with the cor-
responding YYY values, a decision can be made to accept or reject the
trial keys. Only if all tests are positive are the keys accepted as being
correct. Otherwise, step 3 is continued until another match is found,
whereupon steps 4 and 5 are again repeated.

Therefore the attack against three independent keys requires:

1. Generating and sorting a table of 256 entries via an off-line attack (i.e.,
Table D-9).

2. Generation of 256 related plaintext and corresponding ciphertext values
via an on-line attack (i.e., Table D-l 0).

3. Generation of 256 candidates for K3 for about 255 PPP/YYY pairs,
which must take place after the on-line attack is completed.

4. Test for correctness of trial keys via selected elements in Table D-10.

Thus the attack takes in the order of 2“j words of memory and 2112 opera-
tions. The described attack is presented only to illustrate exhaustion of
E-D-E using three independent keys. Other more advantageous tradeoffs
between memory space and computation time are very likely possible.

Attack Against Triple Encryption with Two Independent Keys

In this case Kl = K3, so that a selected PPP also determines Kl and K3.
Thus trial keys for K3 do not have to be generated. Hence the 256 trials to
arrive at the correct K3 can be eliminated, and the attack reduces to:

712 APPENDIX D. SOME CRYPTOGRAPHIC CONCEPTS AND METHODS OF ATTACK

1. Generate and sort a table of 256 entries (i.e., Table D-9).
2. Generate 256 selected plaintext and corresponding ciphertext values

in an on-line attack (i.e., Table D-10).
3. Select PPPl/YYYl. The value of PPPl is used with Table D-9 to

determine kl, which is the value for Kl trial. YYYl is deciphered
under Kl trial and a check is made to see if Dxitriai(YYY 1) matches
some value of PPP (say PPPj) in Table D-9. If a match occurs, then the
value of PPPj determines a key, kj, where kj becomes the trial key
K2trial. Kltrial and K2trial are then tested via selected elements in
Table D-10 (e.g., 10) created in step 2 (i.e., the plaintext PPP is triply
encrypted using Kltrial and K2trial and the result is compared for
equality with the corresponding ciphertext YYY). If there is cipher-
text agreement, then Kl trial and K2trial are accepted as Kl and K2.
Otherwise, reject Kltrial and K2trial and repeat step 3 using PPP2/
YYY2. If PPP2/YYY2 fails to recover Kl and K2, then step 3 is
repeated using PPP3/YYY3, and so on. Eventually (after about 255
trials) a PPPi/YYYi will be found that recovers Kl and K2.

Thus the attack takes in the order of 256 words of memory and 2” operations.

REFERENCES

1. Diffie, W. and Hellman, M. E., “New Directions in Cryptography,” IEEE Transactions
on Information Theory, IT-22, No. 6,644-654 (1976).

2. Matyas, S. M. and Meyer, C. H., Cryptographic System Using Multiple Encipherment,
Filed US Patent Office (June 1980).

3. Feller, W., An Introduction to Probability Theory and Its Applications, Third Edition,
Wiley, New York, 1968.

4. Hellman, M. E. and Merkle, R., C., “On the Security of Multiple Encryption,” Com-
munications of the ACM, 24, No. 7, 465-467 (July 1981).

APPENDIX E -

Cryptographic PIN Security-Proposed
ANSI Method’

STORAGE OF PINS

When stored, the PIN must always be encrypted. Encryption for PIN storage
may be reversible or irreversible. 2 The encryption must conform to the fol-
lowing requirements:

1. The Data Encryption Algorithm (DEA) is used with a 56-bit secret
cryptographic key composed of 56 random bits.3

2. PIN encryption (reversible or irreversible) must incorporate the ac-
count number (or some other card or account related data), or a por-
tion thereof, in such a way that the verification process would provide
detection of substitution of one stored value for another stored value.

When derived PINS are calculated for use in verification, any temporary or
transient computer storage area used in the calculation must be cleared im-
mediately after use.

TRANSMISSION OF PINS

Whenver the PIN is electronically transmitted, it must be provided with a
high level of protection. This protection may be provided through physical
means whenever the transmission medium (wire, cable, fiber-optics, etc.)
or network nodes can be physically protected. Whenever the communica-

’ The material in this appendix is based on an ANSI (American National Standards In-
stitute) Draft Standard for PIN Identification Number Management and Security [11,
which is subject to change.
‘Reversible encryption is defined as a cryptographic transformation of plaintext to
ciphertext such that the ciphertext can be converted back to the original plaintext.
Irreversible encryption is defined as a cryptographic transformation of plaintext to
ciphertext such that the ciphertext cannot be converted back to the original plaintext
by other than exhaustive procedures.
3The DEA is the ANSI equivalent of the DES.

713

714 APPENDIX E. CRYPTOGRAPHIC PIN SECURITY-PROPOSED ANSI METHOD

tion medium and/or network nodes cannot be physically protected (e.g.,
common carrier facilities, circuit switched facilities, EDP facilities), the PIN
is cryptographically protected using the DEA. Additional requirements to
assure that the PIN has not been replaced or modified during transmission
will be set forth in another ANSI document.

In an interchange environment, the minimum level of protection provided
to the PIN anywhere in the path of transmission is to be equal to the highest
level required by any financial institution whose liability for a financial
transaction can be affected by the misuse of the PIN.

Reversible PIN Encryption

For the purpose of security of the PIN between financial institutions, DEA
shall be used in a reversible encryption mode as specified by the technique
described in this section. The technique specifies the number, position, and
function of bits within a 64-bit block used as input to the DEA operating
in the Electronic Code Book (ECB) mode (64 bits in, 64 bits out). The 64
bit output of the DEA is transmitted (or stored in the case of file protec-
tion) in its entirety.

Cleartext PIN Block Format

The PIN is assumed to consist of 4-l 2 decimal digits which the customer
enters, with the first digit entered referred to as digit 1 and the last referred
to as digit N. The cleartext PIN format specified must be used in interchange
and may be used in the terminal to acquirer segment of the network. Bit
positions are specified based on numbering the bits in the DEA input block,
i.e., 1 to 64 from left to right.

The cleartext PIN and customer’s account number are constructed as
follows:

PIN Block Construction
B 11222334445566
:15937159371593714

C N P P P P/F P/F P/F P/F P/F P/F P/F P/F P/F F F

C - Control field. Currently, the only defined value is 0000 (binary) which
designates the block as containing 4 to 12 four-bit decimal PIN digits
representing user-entered characters. Further use of different values of
this field could accommodate different character sets.

N - PIN length entered field. Four-bit binary number with permissible values
ofO1OO(=4)to 1100(=12).

P - PIN digit. Four-bit field having possible values from OOtlO to 1001 (the
binary representation of the decimal numbers 0 through 9).

TRANSMISSION OF PINS 715

F - Fill digit. A hexadecimal digit “F” (1111 binary) which must not depend
upon PIN value.

P/F - PIN digit or fill digit, as determined by PIN length entered field (N).

Account Number Block Construction
B

:15 9 3 11222334445566 7 15 9 3 7 15 9 3 7 14

0 0 0 0 Al A2 A3 A4 A5 A6 A7

A - The first 12 digits of the account number where Al2 is the least signifi-
cant digit (right-most) and Al is the most significant digit (left-most).
Account number check digits are excluded.

0 - A decimal pad digit-zero. The first four-bit fields of the account number
block are always padded with this value.

Next the PIN and account number blocks are Exclusive-ORed and the
result is transferred to the DEA input register. Any network or interchange
node having access to the cleartext PIN block (i.e., during a decryption/
reencryption or during PIN verification) should reject transactions having
any of the following:

1. Initially a PIN format field of value other than 0.
2. A PIN length field of value less than 4 or greater than 12.
3. Any PIN digit from Pl through PN of value greater than 9 (binary

1001).

This serves as a reasonableness check on PIN encryption/dlcryption process-
ing but does not serve as any indication of validity of the customer-entered
PIN.

Ciphertext PIN Format

The formatted cleartext PIN block, defined above, is then encrypted using
the DEA in Electronic Codebook Mode (ECB). The 64-bit output cipher
block is called the reversibly encrypted PIN (or encrypted PIN). The en-
crypted PIN is transmitted between financial institutions as a 64-bit entity
in bit-oriented communications, as eight &bit bytes in 8-bit transparent
character oriented communications, as sixteen characters representing hexa-
decimal digits (0, 1, . . . , 9, A, . . . , F), or by any other data representation
agreed upon by sender and receiver.

The order of transmission is from left to right. For example, in &bit
transparent communications the first byte transmitted will contain bits 1

716 APPENDIX E. CRYPTOGRAPHIC PIN SECURITY-PROPOSED ANSI METHOD

through 8 of the DEA output block; the eighth byte will contain bits 57
through 64 of the DEA output block.

Received Ciphertext PIN

The receiver collects the 64-bit encrypted PIN as transmitted and enters it
into the decrypting DEA device which must contain the same cryptographic
key that was used to encrypt it. The decrypted PIN must then be physically
protected while it is being verified or while it is being reencrypted using a
different cryptographic key.

A PIN that does not verify must not be accepted. The entire transaction
must be suspect until a PIN is received from the acquiring source that does
verify in its entirety.

REFERENCES

1. American National Standard for Personal Identification Number Mangement and
Security, Draft Standard, American National Standards Institute, Technical Com-
mittee X9.A3, Revision 5 (November 5, 1980).

APPENDIX F

Analysis of the Number of Meaningful
Messages in a Redundant Language

A language is redundant whenever for some value N it can be shown that not
all possible sequences of N characters occur with equal probability. That
English is a redundant language is easily demonstrated by examining the
probabilities of individual letters: p(A) = .080, p(B) = .015, . . . , p(Z) =
.OOl (based on a count of individual letters in a large sample of English
text, see Table 12-1). Similar nonuniform distributions are observed for
digrams, trigrams, and longer phrases. For example, the phrase “Hit th-
ball” (where - denotes a missing letter) is clearly understood to mean
“Hit the ball,” which demonstrates that the various choices for the missing
letter (and the resulting phrases upon substitution) are not equally likely.

If the 26-character English alphabet (no blanks) is reduced to a 2-character
alphabet consisting of a vowel marker (“v”) and a consonant marker (“c”),
where vowels = {A, E, I, 0, U), the resulting language is also redundant.
Table F-l contains vowel and consonant N-grams for English (N 4 5).

An approximation for the number of meaningful messages of N charac-
ters can be obtained by using a discrete Markov process to simulate the
creation of text. A discrete Markov process consists of a finite number of
states, ql, q2, . . . , qn, and a set of transition probabilities {pi(j)), where
pi(j) represents the probability that the system will go to state qj given that
it is in the state qi. If each state transition produces an output symbol, the
Markov process can be treated as an information source that produces a
stream of output characters.

For an nth order Markov process, the probability that a given character
will be the next one depends on the previous n output characters, but not
on characters preceeding those. Conforming to this model, a Jth order
Markov approximation for message probability is given by

p(ala2. . . aN) ‘v Pbla2 . . . aJ) ii PB,(ai> (F-1)
i=J+l

where

Pha2 . . . aN) is the probability of message a, a2 . . . aN ,

717

718 APPENDIX F. ANALYSIS OF THE NUMBER OF MEANINGFUL MESSAGES

S-gram 4-gram 3-gmm 2-gram l-gram

vvvvv 1
vvvvc 165
vvvcv 2476
vvvcc 5417
vvcvv 8500
vvcvc 65543
vvccv 14499
vvccc 51585
vcvvv 3634
vcvvc 89192
VCVCV 200227
VCVCC 260828
vccvv 65403
VCCVC 387921
vcccv 220012
vcccc 82956
cvvvv 167
cvvvc 1129
cvvcv 71580
CVVCC 126698
cvcvv 84921
CVCVC 395481
CVCCV 378868
CVCCC 245362
ccvvv 4266
CCVVC 108434
CCVCV 280141
CCVCC 363438
cccvv 47306
CCCVC 255599
ccccv 82943
ccccc 22096

vvvv 172

vvvc 1893

vvcv 74043

VVCC 132084

vcvv 93426

VCVC 461055

vccv 453314

VCCC 302968

cvvv 7896

CVVC 198278

CVCV 480408

CVCC 624230

CCVV 112700

ccvc 643579

CCCV 302905

cccc 105039

vvv 8065

vvc 206127

vcv 554481

vcc 156292

cvv 206174

cvc 1104638

ccv 156279

ccc 407944

vv 214192

vc 1310773 v 1524965

CV 1310812

CC 1164223 c 2475035

Based on a sample of 8000 excerpts of 504 letters taken from the Brown University
Corpus of Present-Day American English [1 1. Vowels = { A, E, I, 0, U }.

Table F-l. Vowel-Consonant N-gram Frequencies in 4 Million Characters of English
Text (NQ5)

pa,(ai) is the conditional probability that character ai
follows block Bi, and

Bi=ai-Jai-r +I.. . ai - i is a block of J characters.

The symbol N denotes approximately equal to.
In a zero-order approximation, output characters are independent. Hence,

for a zero-order approximation, message probability can be expressed by

N
0, a2 . . . aN) E n p(ai) (F-2)

i=l

NUMBER OF MEANINGFUL MESSAGES IN A REDUNDANT LANGUAGE 719

where p(aJ is the probability that character ai appears next. For example,
with the values for p(a) given in Table 12-l) the probability for the word
CIPHER is approximated by

PW’HER) = P(C>P(I>P(P>P(H)P(E>P(R)

‘v (.03 1)(.073)(.020)(.055)(. 125)(.06 1)

1: 1.90 x 10-a

Suppose that the word CIPHER is reduced to its corresponding vowel-
consonant pattern, cvccvc. A first-order approximation for the probability
of cvccvc is given by

Using the N-gram frequencies in Table F- 1, it follows that

p(c) = 2,475,035/4,000,000 = .6 19

p,(v) ‘v 1,310,812/2,475,035 = .530

p,(c) = 1,310,773/1,524,965 = .860

p,(c) = 1,164,223/2,475,035 = .470

and therefore p(cvccvc) is computed as

P(CVCCVC) * P~~~P,~~~P,~~~P,~~~P,~~~P,~C~

= (.619)(.530)(.860)(.470)(.530)(.860) = .060

An approximation for the number of meaningful messages in message space
X can be obtained using the zeroorder approximation of message proba-
bility given by Equation F-2. When message length (N) is very large, each
message will contain about Npl occurrences of the first character, Np2
occurrences of the second character, and so on. Hence for very large N,
most messages will have roughly the same probability, p, i.e.,

p = plNP’p2NpZ . . . pnNPn (F-3)

where n is the number of different characters.
If s is the number of different sequences with probability p, then s is

approximated by

S” l/p

‘Pl P -NP~ 2-Np2 . . . pn-Npn

-,6, l/piNpi

720 APPENDIX F. ANALYSIS OF THE NUMBER OF MEANINGFUL MESSAGES

1 log2 ;; piNPi
N 2 i=l 1

C

n
-N z pilog2Pi N 2 i=l 1

where

(F-4)

is called the entropy per character for the message source.
Using the values for p(a) in Table 12-l) the value for Gi is computed as

4.17. Moreover, using this value for G1 allows the zero-order approxima-
tion of s, given by Equation F-4, to be written as

s = 2N4.17

When a higher-order approximation for message probability is used (see Equa-
tion F-l), it is possible to obtain a correspondingly higher-order approxima-
tion for s. Before this result can be derived, a few terms must be defined.

Let U be a discrete probability space in which the elementary events
(ul), (u2), . . .) (un) have probabilities p(ul), p(u2), . . . , p(un). The
entropy of U is defined as

H(U) = -c p(u)logzp(u) (F-5)

(The notation, c , means that the summation is over all elements u in the
set U.) u

H is an information theoretic measure of uncertainty which can vary be-
tween the limits 0 and log2n, where n is the total number of elements in
the probability space U. It can be shown that H(U) = 0 if and only if
there is a single u in U such that p(u) = 1. Consequently, when there is a
single u in U such that p(u) = 1, so that no uncertainty exists over which
event in U will occur, the measure H(U) has the value zero. But H(U) = 0 is
interpreted to mean that there is no uncertainty over which event in U will
occur. Moreover, it can be shown that H(U) = log,n if and only if each of
the n elements in U is equally probable. Consequently, when there is maxi-
mum uncertainty over which event in U will occur, the measure H(U) is
maximized.

When the entropy measure H is applied to the message (plaintext), trans-
formation (key), and cryptogram (ciphertext) spaces, the following inter-
pretation is obtained. H(X) and H(I() represent the uncertainty over which
message and key were used during encipherment; H(Y) represents the un-
certainty over which cryptogram was produced.

NUMBER OF MEANINGFUL MESSAGES IN A REDUNDANT LANGUAGE 721

Let GN represent the entropy per character of blocks of N characters.
GN is expressed as

GN = -& 2 p(B)logzp(B>
B

(F-6)

where

B is a block of N characters, and

p(B) is the probability that B is produced by the message source.

Let the union of U and V be a joint discrete probability space. The condi-
tional entropy of U given v, an element of V, is defined as

H(W) = -c pW9log,p(ulv)
u

(F-7)

where p(ulv) is the conditional probability of u given v. The average condi-
tional entropy of U given V, or the equivocation of U given V is defined as

WJIV) = 1 p(v)JWlv)
Y

W-8)

Conditional entropy and equivocation have the following meanings when
applied to enciphering systems. H(Xl y) measures the uncertainty regarding
which message in X was enciphered to produce cryptogram y. H(XIY), on
the other hand, measures this same uncertainty, except that it is averaged
over all possible cryptograms. H(&IY) = 0 may be interpreted to mean that
regardless of the particular cryptogram y there is no uncertainty regarding
which message produced it. Moreover, H(XIY) = 0 implies that H(Xly) = 0
for each cryptogram in y.

The conditional entropy of the message source is a measure of the un-
certainty regarding the nature of the Nth character given that the previous
N - 1 characters are known. As N increases, this measure accounts for more
and more of the interdependencies between characters.

Let

FN = -c P@, ak%,Pdd
B,a

where

(F-9)

B is a block of N - 1 characters,
a is a single character following B,
p(B, a) is the probability of N-gram (B, a), and
p&a) is the conditional probability that character a follows block B and
is equal to p(B, a)/p(B).

722 APPENDIX F. ANALYSIS OF THE NUMBER OF MEANINGFUL MESSAGES

From Equations F-6 and F-9, it follows that

FN = NGN -(NW 1)GN -1 (F-10)

GN and FN are two different measures which allow the entropy per character
of a message source to be evaluated. It can be shown that both GN and FN
are monotonically decreasing with N and bounded below by 0. Moreover,
according to [2, Theorem 5 1, the limit of GN, as N approaches infinity (00))
exists and is equal to R, called the rate of the language,

lim GN = R (F-l 1)
N-)m

and, moreover, according to [2, Theorem 61

FN <GN (F-12a)

and

lim FN = R
N-*0

(F-12b)

From the asymptotic equipartition property [2, Appendix 31, it can be
shown that when a Jth-order approximation to message probability is used
and N P J, then most sequences produced by the message source will have
the same probability of occurrence, p, and the number of different sequences,
s, with probability p is approximated by

s= l/p=2NF~ +I (F-l 3)

(The notation 9 means much greater than.) According to the asymptotic
equipartition property, for all practical purposes, the possible messages of
N characters can be divided into two groups: one group of high and fairly
uniform probability, the second group of negligibly small total probability.
The high probability group consists of those messages that are intelligible or
meaningful. It contains approximately 2NFJ + 1 sequences. The low proba-
bility group contains those messages that are meaningless.

Actually, the Equation F-13 demonstrates that s is a function of message
length, N, and the order of the approximation of message probability, J.
This relationship can be expressed notationally by defining sn, J as

sN,J = 2NF~ + 1 (F-14)

The following interpretation of sn, J can now be made with respect to cryp
tanalysis. The situation in which FJ + i is used to compute s (i.e., when a Jth-
order approximation of message probability is employed) is comparable to
the situation where the analyst has no more than (J + l>grams, or (J + l)-
order statistics, available to attack the system. Consequently, if digrams are

NUMBER OF MEANINGFUL MESSAGES IN A REDUNDANT LANGUAGE 723

used to attack an enciphering system, then the number of meaningful mes-
sages that the analyst must cope with ought to be 2NF2. The cryptographer
or designer of acryptographic system, on the other hand, is interested in
knowing what is the minimum number of meaningful messages that the
analyst must always cope with. This number applies, of course, when the
analyst is able to employ high-order statistics to attack the system. From
Equations F-l 2b and F-l 4, it follows that

lim s - 2NR;N>J
J+ce N9J-

(F-15)

where

SN,~>SN,~>“‘>SN,J>SN,J+~>“‘~ > p

for all N > 0. It follows from this discussion, then, that meaningful messages
are actually those which the decision procedure admits as being meaningful,
whatever the sequences may be. The disparity between what a computer
procedure admits as meaningful when, for example, digram statistics are
used, and what the human recognizes as meaningful, may be substantial.

If X is the set of all N-letter messages, it follows from Equation F-5 that

H(X) = -1 p(xkg,p(x)
x

where p(x) is the probability of message x (see Equation F-5). But, when the
analyst uses (J + l)-gram statistics to attack the system, p(x) must be com-
puted via Equation F-l, and it follows that

p(x) = P(ala2. . . aN)

N

3 p(a, a2 . . . aJ) n PB,(ai)
i=J +l

(see Equation F-l).
Hence, when Equation F-l is used together with Equation F-5, it follows

that

H(X)*NFr +r;NSJ (F-16)

and so, from Equation F-14, it follows that

SN J = 2H(X); N % J (F-17)

The important aspect of this result is that H(X) depends on the order of the
Markov approximation for message probability.

For small values of N (N < 3), GN and FN can be computed directly from
Equations F-6 and F-9 using N-gram frequencies (see Table F-2 for com-

724 APPENDIX F. ANALYSIS OF THE NUMBER OF MEANINGFUL MESSAGES

Alphabet Type FO Fl F2
(Bits per Character)

F3

26-letter’ 4.70 4.17 3.62 3.22

26-letter* 4.70 4.14 3.56 3.30

27-letter3 4.76 4.03 3.32 3.10

‘Computed from a sample of 1 million N-grams.
20btained from Reference 3.
3Space (blank) is include! as an additional letter.
Fe is defined as log*(Alphabet Size).

Table F-2. Computed Values of F, for English (N93)

puted values of FN). However, N-gram frequencies could not be used to
evaluate R, as illustrated by the following example. Suppose that R is equal
to 1 bit per character (R = 1 .O bpc). This means that, on the average, 100
bits would be required, to represent a block of 100 characters, and there
would be roughly 21°0 meaningful English sequences of 100 characters (21°0
is approximately equal to

1,000,000,000,000,000,000,000,000,000,000

or 1 03’). Since most of these (1 03’) sequences have never even been written
down, it is impossible to measure their relative frequencies or estimate their
respective probabilities.

In order to determine the value or R, one must be able to evaluate F, for
N > 3. One such way, described in reference 3, is based on the fact that any-
one who can read and write a language possesses an enormous built-in knowl-
edge of the statistics of that language. This can be demonstrated by measuring
a person’s ability to predict the Nth character in a message after seeing the
preceeding N - 1 characters. Table F-2 gives upper and lower bounds on FN
that were obtained in this manner from an actual experiment involving a
human subject [3,4]. In this experiment, a 27-letter English alphabet was
employed (26 letters plus blank). Since the blank is almost completely re-
dundant when sequences of one or more words are involved, the values of
FN in the 27-letter case will be 4.5/5.5 of FN for the 26-letter alphabet when
N is reasonably large [3] . Thus, FN for a 26-letter alphabet can be obtained
from FN for a 27-letter alphabet via the relation

F,(26 letters) = (5.5/4.5)FN(27 letters) (F-l 8)

According to Shannon [31 (Table F-3), the value of R for a 27 letter English
alphabet is approximately 1.0 bits per character. From Equation F-18, it
can be seen that the value of R for a 26 letter English alphabet thus becomes
about 1.22 bits per character.

NUMBER OF MEANINGFUL MESSAGES IN A REDUNDANT LANGUAGE 725

1

N

(Characters)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
17
33
65

100
129

2

FN FN

Upper Lower
Bound Bound

(Bits per Character)

4.03 3.19
3.42 2.50
3.0 2.1
2.6 1.7
2.7 1.7
2.2 1.3
2.8 1.8
1.8 1.0
1.9 1.0
2.1 1.0
2.2 1.3
2.3 1.3
2.1 1.2
1.7 0.9
2.1 1.2

1.3 0.6

3

FN FN

Upper Lower
Bound Bound

(Bits per Character)

4.72
3.81
3.34

2.9

2.5

2.4
1.9
2.0

1.9

3.95
3.19
2.44

2.2

1.9

1.3
1.1
1.2

1.1

‘Based on a 27 letter English alphabet (includes blank).
20btained from Reference 3.
30btained from Reference 4.
Table F-3. Bounds on FN for a 27-Letter English Alphabet
(Human Prediction Experiment in which the Preceding N-l
Characters were Known)

When the 26-letter English alphabet is reduced to a 2-character alphabet
consisting of vowels and consonants, Equations F-6 and F-9 can be used to
compute values of GN and FN for larger values of N than can be computed
when a 26-letter alphabet is considered. Table F-4 contains computed values
of GN and FN for N < 10 that were obtained from an N-gram analysis using
4 million characters of English text. It can be seen that FN rapidly approaches
a value of R = .8O bits per character.

A vowel-consonant alphabet also permits the accuracy of the approxima-
tion for SN, J (given by Equation F-14) to be evaluated in situations where N
and J are small. Let J = 1 (use a first-order approximation of message proba-
bility) and let N take on values 2, 3, . . . , 15. For each value of N, compute

726 APPENDIX F. ANALYSIS OF THE NUMBER OF MEANINGFUL MESSAGES

N GN FN

(Characters) (Bits per Character)

0 1.000 1.000
I .959 .959
2 Jo! .840
3 .871 .812
4 .855 .807
5 .845 .806
6 .838 .805
7 .834 .805
8 .830 .805
9 .827 .804

10 .825 .804

GN is computed from 4 million English N-grams using Equation F-6.
FN is computed from the relation FN = N(GN) - (N-l) (GN-1).

Table F-4. Computed Values of GN and FN for English
Vowel-and-Consonant N-grams

N

2
3 .
4
5
6
7
8
9

10
11
I2
13
14
15

2N 2N(F& p(zNfFz) most probable)

4 3.2 0.96
8 5.7 0.93

16 10.3, 0.93
32 18.4 0.92
64 33.0 0.91

128 59.0 0.90
256 110 0.90
512 189 0.90

1024 339 0.89
2048 607 0.89
4096 1086 0.88
8192 1945 0.88

16384 3482 0.87 I
I 32768 6434 0.87

P(~~(~J + 1) most probable) represents the sum of the probabilities of the 2N(FJ + 1)
most probable messages out of the 2N total messages, the probability of which is
approximated by Equation F-l under the condition that J = 1.
Vowels = { A, E, I, 0, U }.

Table F-5. Accuracy of Approximation (sN,J = 2N(FJ + I)) Using a Vowel-Consonant
English Alphabet.

REFERENCES 727

the probability for each of the 2N possible N character messages using Equa-
tion F-l. This list of 2N messages is then sorted in descending sequence
according to the computed value of message probability (most probable
message to least probable message). Using this sorted list, obtain the sum of
the probabilities for the first 2 NFJ + 1 messages. This value is denoted by
p[2NFJ + 1 most probable]. The amount that p[2NFJ + 1 most probable]
differs from 1 is a measure of the accuracy of the approximation. Table F-5
contains the results of this analysis.

REFERENCES

1. Francis, W., A Standard Sample of Present-Day Edited American English for Use with
Digital Computers, Linguistics Department, Brown University, Providence, RI, 1964.

2. Shannon, C. E., “A Mathematical Theory of Communication,” Bell System Technical
Journal, 27, Part 1479-523, Part II 623-656 (1948).

3. Shannon, C. E., “Predictions of entropy in printed English,” Bell System Technical
Journal, 30, SO-64 (195 1).

4. Burton, N. G., and Licklider, J. C. R., “Long-Range Constraints in The Statistical
Structure of Printed English,” American Journal of Psychology, 68, 650-653 (1955).

- APPENDIX G

Unicity Distance Computations

In the following discussion of unicity distance computations, it is assumed
that only ciphertext is available for analysis. It is further assumed that the
reader is familiar with the information measures and unicity distance results
given in An Expansion of Shannon’s Approach Using Information Theory,
Chapter 12.

TRANSPOSITION

Let x = ala2 . . . aN be a message of N characters, which has been segmented
into j blocks of T characters:

X = BIB,. . . Bj

where

Bi = al(i), a2(i), . . . , a&)

In a transposition cipher, encipherment is performed by rearranging the char-
acters in each block of x according to a permutation function f:

Decipherment is performed using the corresponding inverse permutation
function f-r :

f-‘(y) = f-‘(Ci), f-‘(C,), * * . 3 f-‘(Cj) = X

For example, suppose

f 7 4 5 1 8 3 2 6 =
1 2 3 4 5 6 7 8

728

TRANSPOSITION 729

is a permutation of the integers 1, 2, . . . , 8, which is interpreted to mean
that the character in position 7 is written in position 1, the character in posi-
tion 4 is written in position 2, and so on. Then encipherment of the message
x = “data encryption standard” with spaces removed and appropriate fill
characters added, results in cryptogram

Y = f(x)

= f(dataencr), f(yptionst), f(andardxx)

= caedrtan sioyttpn xaraxdnd

In this case, decipherment would be carried out with the inverse permutation

f-l= I 47623815
12345678

Since there are T characters in each block, the number of possible per-
mutation functions is (T)(T - 1) . . . (1) = T!.’ Effectively, encipherment
cancels or breaks down the usual 2-gram’, 3-gram, and so on, language sta-
tistics between adjacent and neighboring characters, and spreads them over
the entire block. Except for interblock dependencies, which can be ignored
for moderate and large values of T, only the frequencies of individual char-
acters remain undisturbed or unaltered.

The unicity distance for a transposition cipher is the value of N for which

H(g) - H(Y) + H(X) = 0

where

H(K) = log,(T!)

H(Y) = NF; + r

H(X) = NFJ +I

(see Equation 12-8). Fi + i is a measure of the entropy per character of the
cryptogram space, y (see Equation F-9). Substituting and solving for N(ud),
one obtains:

ud = l%(T!)I(F; + I - FJ + 11 (G-1)

Consider a transposition cipher on English in which l-gram language

‘Actually, if one omits the arrangement in which the block is unchanged, there are T! - 1
permutation functions. Hqwever, for moderate values of T, the difference between T!
and T! - 1 is negligible.

730 APPENDIX G. UNICITV DISTANCE COMPUTATIONS

statistics are used to attack the cipher. In that case, J = 0 and the entropy
per character in the cryptogram space is

26

Fi = -C P(bi)log,P(bi)
i=l

where bl, b2, . . . , b26 denotes the cipher alphabet, al, a2, . . . , a26 denotes
the plain alphabet, and b1 = a,, b2 = a2, . . . b26 = a26. Since there are
about 8.0% As, 1.5% Bs, 3.1% Cs, and so on, in the messages being enci-
phered, there will also be about 8.0% As, 1.5% Bs, 3.1% Cs, and so on, in
the produced cryptograms. In that case, p(bi) = p(ai), F’, = F, = 4.17, and
ud equals infinity. This shows that l-grams cannot be used to break a trans-
position cipher.

For large T, the usual 2-gram, 3-gram, and so on, language statistics in the
message space are no longer present in the cryptogram space. This implies
that F;, F;, and so on, are about equal to Fi (4.17). Thus Equation G-l can
be written as

ud = logz(T!)/(4.17 - FJ + 1); for large T (G-2)

In situations where J and T are of comparable magnitudes, values for F; and
I;; can be evaluated as follows. A large sample of English text is enciphered
with each of the T! permutation functions. The resulting T! cryptograms are
combined to form a single sample, which can then be used to determine the
frequency of each (J + 1)-gram. The (J + 1)-grams are then used with Equa-
tion F-9 to compute F; + 1.

Unicity distances for transposition on English (26 character alphabet)
are given in Table G-l. These values were computed from Equation G-2
using T and J as variables.

J FJ+l T
(Characters per Block)

10 20 50 loo loo0

0 4.17 co 03 co cm

1 3.62 40 111 390 954 15;2
2 3.22 65 226 553 9473
6 2.81 150 386 6269

14 2.02 244 3966
99 1.22 2890

00 denotes infinity. For each value of J, (J t l)-grams are presumed to be used to
attack the cipher. F,, F,, and F, were obtained from Table F-2. F,, F15, and F,,
were computed from Equation F-l 8 using an average of the upper and lower bounds
on F, for a 27character alphabet (see column 1, Table F-3). Unicity distance was
computed using Equation G-2.

Table G-l. Unicity Distance in Characters for Transposition on English (26 Letter
Alphabet)

SIMPLE SUBSTITUTION 731

SIMPLE SUBSTITUTION

In Chapter 12, the unicity distance for simple substitution on English was
computed with a random cipher in which the approximation {H(x) N log,r =
N4.70) was made. A more accurate value of H(Y), derived below, shows that
for small N, the approximation {H(Y) * log,r) G fairly good.

A cipher is pure if the keys in g are equally likely and, for every kl, k2,
and k3, in I& there is a k4 such that

Ek 1 (Dk2@&))) = EdX) for all x in X

(see reference 1). For example, simple substitution is a pure cipher if its
keys are equally likely. In a pure cipher, the messages and cryptograms can
be divided into sets of residue classes Cr , C2, . . . , C,, and C; , C; , . . . , Cg,
respectively, such that

1. Each message and cryptogram is an element of one and only one resi-
due class.

2. Enciphering any message in Ci with any key produces a cryptogram in
Cl. Deciphering any cryptogram in Cl with any key leads to a message
in Ci.

3. The number of messages in Cry say tip is equal to the number of crypto-
grams in Cl and is a divisor of n the number of keys.

4. Each message in Ci can be enciphered into each cryptogram in Cl by
exactly n/ti different keys. The same is true for decipherment.

In a simple substitution cipher, the residue class corresponding to a given
cryptogram y is the set of all cryptograms that are obtained from y via the
operation Eki(Dkj(y)), where ki and kj vary over each key in I$. Thus all the
cryptograms in a residue class have the same pattern of repeated letters.
For example, if cryptogram abaabc is in residue class Cl, then so are the
cryptograms babbax, abaabd, jqjjqt, mammae, and pippin. Therefore, each
y in C’, is equally likely and

P(Y 1 = P(Q/ti ; for each y in Cl (G-3)

where p(Cr) is the probability of residue class Ci and ti is the number of dif-
ferent cryptograms in Cr’. Hence, H(Y) is computed, as described in reference
1, by

H(Y) = -1 ti(p(Ci)/ti)log2(p(Ci)/ti)
i

c = - PtciNOg2 (P(Q/ti>
i

(G-4)

Values of H(Y)/N (N = 1, 2, . . . , 8) were computed for simple substitution
on English u&g Equation G-4 (Table G-2). Values for p(Cr) were obtained

732 APPENDIX G. UNICITY DISTANCE COMPUTATIONS

Ciphertext Number of
Length Residue

N Classes

WYVN

N-gram Sample Size
50,ooo 100,000 500,000 l,OOO,OOO

1
2
5

15
52

203
877

4140

- - - 4.700
- - - 4.700
- - - 4.699

4.695 4.696 4.696 -
4.690 4.692 4.692 -
4.684 4.686 4.686 -
4.677 4.679 4.680 -
4.666 4.670 4.673 -

H(Y)/N =4.70 for the Random Cipher.

Table G-2. Computed Values of H(Y)/N for Simple Substitution on English
(26 letter alphabet)

from samples of English text by counting the number of N-grams in each
residue class Ci and dividing the result by the sample size. For values of N
greater than 8, the number of residue classes rapidly becomes large. In that
case, it is not possible to obtain accurate estimates for p(Ci) unless very large
sample sizes are used.

The approximation (H(y) = log,r = N4.70) is quite good for small values
of N. This could account for the close agreement between computed unicity
distance and the observed number of characters needed to break simple sub-
stitution on English when high-order language statistics are used in the
cryptanalysis, since the observed value of N = 25 is still reasonably small.
However, for large values of N, the approximation {H(Y) = log,r = N4.70)
no longer holds. This could account for the disparity between computed
unicity distance and the observed number of characters needed to break

J FJ+l Expected Number Number Unicity Approximate Value of
of Different of Distance N to Break the Cipher

Letters Keys W) (Observed Values)

0 4.17 26 26!
1 3.62 24 26!/2!
2 3.22 23 26!/3!

14 2.02 14 26!/12!

167.0 Several Thousand (Fig. 12-S)
81.0 About 500 (Fig. 12-5)
58.0 About 100 (Ref. 2)
22.2 About 25 (Ref. 3)

Unicity distance is computed from Equation 1 l-8. It is assumed that H(x) 2 N4.70.
For an explanation of J and FJ + , , see Table G- 1.

Table G-3. Unicity Distance in Characters for Simple Substitution on English (16 Letter\
Alphabet)

HOMOPHONIC SUBSTITUTION 733

simple substitution on English when low-order language statistics are used in
the cryptanalysis, since the observed values of N are much larger (Table G-3).

When unicity distance is computed with Equation 12-8 using FJ + r = 4.17
(J = l), a value of ud = 167 characters is obtained. However, observed results
indicate that several thousand characters of ciphertext are needed to break a
simple substitution cipher when only single letter probabilities are used (see
Figure 12-5).

HOMOPHONIC SUBSTITUTION

In a homophonic substitution cipher (sometimes called substitution with
variants, substitution with multiple substitutes, or multiple substitution),
each character in the plain alphabet al, a2, . . . , a,, has a corresponding set
of unique cipher characters, or substitutes, Si, S2, . . . , S,, such that

1. The cipher characters in each set, Si, are different from those in any
other set, Sj.

2. Li denotes the number of characters in Si (Li = 1Sil).
3. L denotes the total number of characters in the cipher alphabet (L =

Li + L2 + . . . + L,).

Simple substitution is therefore just a special case of homophonic substitu-
tion in which Li = L2 = . . . = Lt = 1. In all other cases, log, L (the bits
needed to represent a character in the cipher alphabet) is greater than log,t
(the bits needed to represent a character in the plain alphabet), thus indi-
cating that homophonic substitution is an expansion cipher.

Encipherment is accomplished by replacing each character in the message
with one of its allowed substitutes: plain character al is replaced by an ele-
ment in Si, a2 is replaced by an element in S2, and so on. (It is assumed that
substitutes are selected randomly, i.e., the probability of selecting any par-
ticular element in Si is l/L,.) Decipherment is the reverse of this process:
cipher characters in Si are replaced by al, cipher characters in S2 are re-
placed by a2, and so on.

Consider an example in which the substitutes for each character in the
plain alphabet are as follows:

e:cu7 r: 19 m:2 v: h
t:erw h:b f:s k:o
a: p0 1: k p:q x:a
0: 3 5 d: d g: x j: i

i: f8 c: g w: t q: z
n:j v u: 6 y:m z:4
s: n# b: y

The message “data encryption standard,” with spaces removed, can be en-

734 APPENDIX G. UNICITY DISTANCE COMPUTATIONS

ciphered in 1 X 2 X 3 X . . . X 2 X 1 = 33 1,776 ways. One character can be
substituted for d, two characters can be substituted for a, three characters
for “t,” and so on, as shown below:

plaintext: d a t a e n c r y p t i on s t a n d a r d

lstchoice: dpe pc j gl mqe f 3 j ne pj dpl d
2nd choice: OrOuv 9 r85v#rOv 09
3rd choice: w 7 W W

In a homophonic substitution cipher, encipherment of message xj with key
ki defines a set of candidate cryptograms, Yij:

Eki(xj) = Yij

where, as part of the encipherment process, the communicant selects or
generates (usually randomly and on a character-by-character basis) one of
the cryptograms in Yij. However, only one message is recovered upon
decipherment:

Dki(yij) = xj ; for each yij in Yij

Since ki determines a set of cryptograms instead of one cryptogram, homo-
phonic substitution does not satisfy our definition for a cipher (see Chapter
12, A Cipher with Message and Key Probabilities). The problem is easily
avoided if one assumes that the enciphering algorithm E has a fixed rule for
deciding which of the substitutes should be used to encipher each plaintext
letter. For example, substitutes could be selected on a rotating basis, on the
basis of the plaintext letter’s position in the message, on the basis of the
message’s context (surrounding letters), and so forth. However, this has not
been done here, since it would introduce an additional degree of complexity
that can be avoided in the present discussion.

Since each ki defines a set of cryptograms, the assumptions leading to
Equation 12-8 are not satisfied (i.e., Equation 12-8 cannot be used to cal-
culate unicity distance). Hence, a new equation for computing unicity dis-
tance is derived.

From the general relation

H(U, V, W) = H(UlV, W) + H(V, W)

(see Equation 12-7i) it follows, with an appropriate change of variables,
that

H(X,K,Y)=H(XII<,Y)+H(K,Y)

and

HOMOPHONIC SUBSTITUTION

Hence, it follows that

735

H(K,Y)--H(K_,X)=H(YlK,X)--H(XlK,41)

In a homophonic substitution cipher, since x = Dk(y) (i.e., a knowledge of
k and y permits x to be recovered), it follows that

WXIK, Y> = 0

and consequently that

H(K,Y)=H(YlI(,X)+H(K,X)

(Note that H(JJK, X> > 0, since Ek(x) defines a set instead of only one
element.) But, by Equation 12-7h, H(IC, J!) can be rewritten as

HKY)=fKKlY)+J-KY)

Moreover, since messages and keys are selected independently, it follows
from Equations 12-7h and 12-7j that

H(K, Xl = H(K) + H(X)

A general equation for H(ICIY) is thus obtained:

H(KlY)=H(K_)--H(Y)+H(YIK,X)+H(X)

The unicity distance of a homophonic substitution cipher in which only
ciphertext is available for analysis is the value of N (N = cryptogram length
in characters) for which

H(K)--H(Y)+H(Y_IK,25)+H(X)=O (G-5)

provided that such an N exists. Except for the extra term, H(YIK, X), Equa-
tion G-5 is the same as Equation 12-8.

How many keys there are in a homophonic substitution cipher depends on
whether the information is requested by the communicant who uses the ci-
pher or the opponent who attacks it. The opponent’s idea of how many keys
there are in the cipher can be quite different from that of the communicant.
For example, the number of substitutes per character in the plain alphabet
(Ll, L2, - - * > L,) and the number of characters in the cipher alphabet (L),
are apt to be secret parameters of the cipher system. They would be known
to the communicant but not to the opponent. An intercepted cryptogram
would not always reveal the entire cipher alphabet. Thus, if L’ denotes
the number of different characters in the intercepted cryptogram, the
analyst would not know whether L’ < L or L’ = L. In that case, the op
ponent would have to approximate n, the number of keys, without knowing
Li, L2, . . . , L, or L.

736 APPENDIX G. UNICITY DISTANCE COMPUTATIONS

Since any character in the cipher alphabet can be assigned to any character
in the plain alphabet, an upper bound on n is obtained as follows:

In the worst case, where the analyst has no knowledge about the structure
of the key space, tT could be used for n. This would provide an upper bound
on unicity distance.

However, if the analyst has a prior knowledge of L,, L2, . . . , Lt, the
number of keys can be obtained as follows:

= L!/[(L,!)(L,!). . . (L,!)]

In those cases where the analyst does not know Li, L2, . . . , L,, but has
some knowledge of the key space, it may still be possible to approximate n
using Equation G-7. For example, if the analyst knows or suspects that each
plain character has an equal number of substitutes (L, = L2 = . . . = LJ,
then this value can be approximated by L’/t, the observed number of charac-
ters in the cipher alphabet divided by the number of characters in the plain
alphabet. If the analyst knows or suspects that the number of substitutes
per character is proportional to the probability of that character appearing
in the plain alphabet, Li = (pi)(L), then Lf can be approximated by (pi)(L’)
(rounding up or down to the nearest whole number, as appropriate).2

Theorem : In a homophonic substitution cipher

t

WYI!L XI = N 1 p(aiNog2Li; N>l
i=l

G-8)

where al, a2,. . . , a, are the characters in the plain alphabet of X.

Proof: The proof follows directly from Equation 12-7e if the relationship

P(bilbi2 * . - h) = P(ailaiz . . . arN)(l/Lri)(l/Li2). . . (l/LiN)

is used, where biibi, . . . biN is an arbitrary cryptogram in 1 (over the alpha-
bet bi, b2, . . . , bL), ariai . . . ain is the corresponding message in X (over
the alphabet a,, a2, . . . , a,), and bii is one of the Lri substitutes for an, bi2
is one of the Liz substitutes for ai2, and so on.

2A better approximation of n could be obtained if Li were allowed to assume values in
an interval about (pi)(L’) (e.g., the interval obtained using a method of confidence limits
for some chosen level of confidence).

HOMOPHONIC SUBSTITUTION 737

Corollary: From the above theorem, it follows that

1. IfL,=Lz=...= L,, then H(YI K, X) = N(log,L - log,t)
2. If Li ‘v p(ai)(L) for i = 1, 2, . . . , t, then H(YlI<, X) = N(log,L - F,)

where F, is a measure of the entropy of X.
If the approximation Nlog,L is used for H(Y) and the values

H(K) = log,n

H(Y) = Nlog,L

WY1 K, X> = N 2 p(aJlog2Li
i=l

H(X) = NFJ + 1

are substituted into Equation G-5, one obtains (solving for N):

t

N = log,n/[log,L- FJ + 1 - c P(4lW2 Lil G-9)
i=l

From the above corollary, when L1 = L2 = . . . = L, Equation G-9 reduces
to

N = log2n/(log2t - FJ + 1) (G-10)

For English, log2t = log226 = 4.70. Hence Equation G-l 0 shows that the
analyst can attack the cipher using l-grams (J = 0). This confirms one’s
intuition that L, = L2 = . . . = L, should not cause l-gram, 2-gram, and
so on, language statistics to be destroyed during encipherment. However,
from the corollary, when Lr * p(ar)(L), Equation G-9 reduces to

N = log2n/(Fl - FJ + 1) (G-l 1)

For English, the value of F, is 4.17. Hence Equation G-l 1 shows that the
analyst can no longer attack the cipher using l-grams (J = 0). Again, this
confirms one’s intuition that l-gram language statistics are destroyed during
encipherment, since Li is proportional to pi.

Two notable examples of homophonic substitution are the Beale Ciphers
[4] and the Zodiac Murder Ciphers [51. The Beale Ciphers consist of three
numeric cryptograms, denoted Bl, B2, B3, allegedly constructed by one
Thomas Jefferson Beale in the year 1820. The purpose of these cryptograms
was to describe the location, contents and respective heirs of a treasure in
gold, silver, and jewels. B2, which describes the contents of the treasure, was
broken several decades later, after Beale’s key to B2 was discovered. This key

3

Cryptogram N L’ Low Unicity Distance in Characters
(Length in (Cryptogram (n =Number F, F, F, Fl5 Floe
Characters) Alphabet Size) of keys) 3.62 3.22 2.81 2.02 1.22

Bl 520 279 1094.7 1990 1152 805 509 371
B2 763 179 685.5 1246 722 504 319 232
B3 618 263 1029.0 1871 1083 757 479 349
Zl 408 46 151.5 275 159 111 .70 51
22 340 63 217.6 396 229 160 101 74

“B” denotes Beale Ciphers; “Z” denotes Zodiac Murder Ciphers.
B2 and Zl have been solved; Bl, B3, and 22 have not been solved.
Unicity distance is computed using Equation G-l 1.

Table G-4. Computed Unicity Distances for the Beale Ciphers and the Zodiac Murder Ciphers

HOMOPHONIC SUBSTITUTION 739

was constructed by sequentially numbering each word in the Declaration of
Independence (“When in the course of . . .“) and assigning each number to
the corresponding initial letter of each word (1 = w, 2 = i, 3 = t, 4 = c,
5 = o, etc.). The key to B2 did not, however, provide the solution to Bl or
B3. Subsequently, amateur and professional cryptanalysts have expended
untold amounts of time and money attempting to decipher the remaining
cryptograms. No solution is known to exist.

The Zodiac Murder Ciphers, denoted Zl and 22, were constructed by the
so-called Zodiac Killer who haunted the San Francisco Bay area in the late
1960s. Zl was broken by an amateur cryptanalyst shortly after it was pub-
lished by the news media. No solution to 22 is known to exist.

Will cryptanalysts, or even amateur cryptogram buffs ever be successful
in decoding these yet unbroken cryptograms? Some insight into this ques-
tion can be gained if the unicity distances for these cryptograms are com-
puted (Table G-4).

In each case, the number of keys (n) was calculated from L’ (the number
of different characters in the cryptogram) using the following procedure:
Let pl, ~2,. . . , p26 represent the values of p(a) in Table 12- 1, which have
been sorted into descending sequence (i.e., pl > p2 > . . . etc.). The values
of L;, L;, . . .) L& were calculated as follows:

Lf = qi - qi - i ; i=l,2,...,26

where

90 = 0
i

9i= L’ 1 Pj; i= 1,2,...,26
j=l

and the values of qr are rounded off to the nearest whole number.
For example, the values of L;, Lh, . . . , L& for cryptogram Bl in Table

G-4 were obtained from L’ = 279 as shown in Table G-5:

i Character (i) P(i)
j=l

i
L ’ 2 Pci)

j=l

Li’

E .1251 .1251 34.9 35
T .0925 .2176 60.7 26
A .0804 .2980 83.1 22
0 .0760 .3740 104.3 21
I .0726 .4466 124.6 21

Remainder of Computation is not Shown

Table G-5. Computation of L[, L.$. . . , L& for L’ = 279

740 APPENDIX G. UNICITY DISTANCE COMPUTATIONS

The procedure guarantees that L; + L; + . . . + Lk6 = L’.
There are two interesting results obtained as a consequence of these com-

putations. Zl, which was broken by an amateur analyst, is well beyond the .
unicity distance, even when only digram statistics are used to attack the CI-
pher. On the other hand, even when 7-gram language statistics are employed,
B 1 and B3 are still below the unicity distance. Moreover, Bl and B3 remain
unsolved, even though they have been subjected to repeated cryptanalysis
for more than 100 years. Thus, theoretical results (and the conclusions
naturally inferred from these results) agree with observed results.

REFERENCES

1. Shannon, C. E., “Communication Theory of Secrecy Systems,” Be21 System Technical
Journal, 28, 656-7 15 (1949).

2. Matyas, 8. M., A Computer Oriented Cryptanalytic Solution for Multiple Substitution
Enciphering Systems, Doctoral Thesis, University of Iowa (1974).

3. Friedman, W. F., “Cryptology,” Encyclopedia Britannica, p. 848 (1973).
4. Ward, J. B., The Beale Papers, Virginia Book and Job Print, Lynchburg, Virginia,

1885.
5. “Vallejo Mass Murder,” San Francisco Examiner and Chronicle, August 3, 1969,

Section A, p. 9; August 10, 1969, Section A, p. 26.

Other Publications of Interest

6. Deavours, C. A., “Unicity Points in Cryptanalysis,” Cryptologia, 1, No. 1,46-68 (1977).
(1977).

7. Lu, S. C. and Lee, L. N., “Message Redundancy Reduction by Multiple Substitution,”
COMSAT Technical Review 9, No. 1,37-47 (Spring 1979).

8. Tanaka, H. and Kaneku, S., “Data Compression Approach to Cryptography,” Pro-
ceedings 1979 Carnahan Conference on Crime Countermeasures, University of Ken-
tucky, Lexington (May 16-l 8, 1979).

9. Reeds, J. “Entropy Calculations and Particular Methods of Cryptanalysis,” Cryptologiu, 1,
No.3,235-254(1977).

APPENDIX H

Derivation of p(u) and p(SM)

In this appendix, emphasis is placed on analysis of the random cipher with
the objective of obtaining the correct message for an intercepted cryutogram,
but not necessarily the correct key. Primarily, this analysis is cartied out to
provide the reader with additional insight into the problems of cryptanalysis.

In the definitions given below, y represents an intercepted cryptogram
(i.e., y is an element of the set y’). Recall that

1. M is the random variable defined as the number of keys that will
decipher an intercepted cryptogram into a meaningful message.

2. M’ is the random variable defined as the number of keys, except for
the key originally used to produce the given cryptogram, that will
decipher an intercepted cryptogram into a meaningful message.

3. U is the random variable defined as the number of different meaning-
ful messages produced when an intercepted cryptogram is deciphered
with all possible keys.

Now let the mutually exclusive events Ul and U2 be defined as follows:

1. Event Ul occurs if at least one incorrect key deciphers the intercepted
cryptogram into the correct message when an intercepted cryptogram
is deciphered with all possible keys.

2. Event U2 occurs if no incorrect key deciphers the intercepted crypto-
gram into the correct message when an intercepted cryptogram is
deciphered with all possible keys..

(See Figures H-l and H-2.)
It follows from the definition of U, Ul, and U2 that

p(U = u) = p(U = u, Ul) + p(U = u, U2)

(Note that event Ul or U2 can occur, but not both.) For the case where u = 1
occurs in conjunction with Ul, it is implied that all m’ (m’ > 1) incorrect keys

741

742 APPENDIX H. DERIVATION OF p(u) AND p(SM)

Figure H-l. Example in which U = 3 and Event Ul Occurs

must decipher the intercepted cryptogram into the correct message, and so

n-l
p(U = 1, Ul) = 1 (i)m’p(m’)

m’=l

On the other hand, u = 1 in conjunction with U2 implies that there cannot
be any incorrect keys that decipher the intercepted cryptogram into a mean-
ingful message, and so

p(U = 1, U2) = p(m’ = 0)

Consequently,

n-1

PW = 1) = p(m’ = 0) + 1 (+r’p(m’)
m’=l

(H- 1 a)

and so, from Equation 12-3b, it follows that

(H-lb)

For the case where u > 2, conditional probabilities can be used to obtain

n-l

P(U = u) = C P(U = u, Ul Im’)p(m’) +

n-l

m’ = u
2 p(U = u, U2lm’)p(m’)

m’=u-1

DERIVATION OF p(u) AND p(SM) 743

X - x.

Figure H-2. Example in which U =3 and Event U2 Occurs

Consider the situation where m’ balls are randomly placed into u cells. The
probability that each cell will contain at least one ball is given by

U

po(m’, u) = jxo (--I)‘(# -3”’

(see reference 1). Because m’ decipherments produce only messages within
the set of u specific messages, it follows for a random cipher that po(m’, u)
represents the probability that these m’ decipherments will lead to each of
the u specific messages at least once. A special case of interest is m’ = u,
which results in

po(u, u) = u!/u” (H-2)

Consider the situation in which m’ decipherments result in any of s possible
messages. If u specific messages are designated out of s possible messages,
then the probability that the m’ decipherments will lead only to the desig-
nated u messages, and that these m decipherments will lead to each of the
u messages, at least once, is given by

W)“‘w(m’, u)

Since for Ul to occur the correct message must always be included, there are

different ways to select u messages out of s possibilities. Hence it fol-

lows that

PW = u, Ul Im’) =(:I lJer’po(m’, u)

744 APPENDIX H. DERIVATION OF p(u) AND p(SM)

Using similar reasoning, it follows that

PW = u, U21m’) = (:I :)(+r’po(m’, u - 1)

and so,

n-l

p(U = u) = (i 1:) C (:r ‘po(m’, u)p(m’)
m’=u

n-l

1

(H-3)

+ 1 (q PO06 u - Mm’) ; s>u>2
m’=u-1

In order for the process of cryptanalysis to be successful, the value of u
should be much less than s. In that case, the following approximation for

is obtained:

s-l () u-l = &I+! g1 (1 - ;)

su - 1
elu(u - 1)/2s. u<s

(H-4)

- (u - l)!
7

Using Equations H-2 and H-4 together with the change of variable m’ = u + i
allows Equation H-3 to be rewritten as

p(U = u) = p(m’ = u - l)e-“(u-1)/2S

n-l-u

(H-5)
L

n-l-u
~-l’+~pO(Ll+ l,u- l)p(m’=u+i)

+ c s-
i=O () Po(u- l,u- 1 l)pbn’=u-1)

for u > 2.
Equation 12-3a, which is the accurate expression for p(m’), can now be

used in Equation H-5. In the present situation, where it may be assumed
that s/r 4 1, the Poisson approximation to the binomial given by Equation
12-3b is used for p(m’). Hence it follows that

p(m’ = u + i)/p(m’ = u - 1) = (A’)’ + l (u - l)!/(u + i)!

DERIVATION OF p(u) AND p(SM) 745

which can be substituted into Equation H-5 to obtain

p(U = u) = p(m’ = u - l)e-NU- 1)/2s

n-l-u

x l +
W-6)

n-l-u

+ izo s [1 X’(u - l)‘+ r (u-l)!Po(u+i,u- 1) 1 (u+i)!po(u- l,u-1,

for u > 2.
Neglecting terms of order (1 /s)~ and higher, and using

po(u,u - 1) u -- =-
po(u- l,u- 1) 2

whose derivation is left to the reader as an exercise, Equation H-6 can be
written as

p(U = u) ‘v p(m’ = u - l)[1 + X’/s

+ (u - 1)(X’ - 1)/2s - (u - 1)2/2sl
(H-7)

Neglecting terms of order (l/s)’ and higher in the accurate equation for
p(U = l), Equation H-la, it follows that

PW = 1) N e”‘(1 + X’/s) = p(m’ = O)(1 + h’/s)

Hence, it follows that Equation H-7 is valid for u > 1. Recognizing that
the first three moments of the Poisson distribution are A’, (A’)2 + h’, and
(X’)3 + 3(X’)2 + A’, respectively, and using Equation 12-3b for p(m’), results
in the expected value

E(U) = f: u p(U = u)
u=1

r” (A’ + l)[1 - (X’/2s)(h’ + (2/X’) + l)] W-8)
N E(M)[1 - (X’/2s)(X’ + (2/X’) + I)]

From Equation H-8, it can thus be seen that E(U) G E(M), as expected.
Recall, from Equation 12-2, that p(SM) is the probability of solving for

the correct message. Hence it follows from Equation H-7 that

PCW = f: (l/uhW = u>
u=1

= (l/X)(1 - emh)(l + (X’/2s))

‘v p(SK)(1 + (X’/2s))
(H-9)

746 APPENDIX H. DERIVATION OF p(u) AND p(SMJ

From Equation H-9, it can be seen that p(SM) > p(SK) as expected. However,
the factor by which p(SM) is larger than p(SK) is 1 + h’/2s. At the unicity
point for the random cipher, where h = 1, it is observed that 1 + h’/2s = 1.
Consequently, when X < 1, it is the case that p(SM) = p(SK). Therefore,
Equation H-9 gives the reader additional insight into cryptanalysis, but does
not provide an equation for the computation of p(SM) that would be used in
practice.

REFERENCE

1. Feller, W., An Introduction to Probability Theory and its Applications, 3rd ed.,
Wiley, New York, 1968.

Index

ABA (American Bankers Association), see
Authentication parameter; Personal
authentication code

Acquirer, 415
Active attack, 2
Algorithm:

asymmetric, 5 77
conventional, 14,26
definition of, 6
DES, 141
designing, 20, 137
Euclidean, 38
LUCIFER, 115
public key, 14,32
RSA, 33
strong, 22
symmetric, 577
trapdoor knapsack, 48
unbreakable, 20
validation of, 9

American Bankers Association (ABA),
see Authentication parameter; Personal
authentication code

American National Standards Institute (ANSI):
adoption of DES, 8
attack against 12-digit PIN, 688689
encryption efforts, 20
PIN security, 7 13
plastic card standard, 675

Analysis:
block frequency, 24
digram frequency, 640
letter frequency, 642
linear, 118,121,129
single letter frequency, 642
traffic, 200

ANSI, see American National Standards
Institute

AP, see Authentication parameter
Arbiter, 409
Arbitrated signatures with DES, 412
Arithmetic, modulo, 34
Assymetric algorithms, see Public-key

algorithms
Attack:

active, 2
analytical, 20, 138
brute force, 137, 139

chosen ciphertext, see Selected
ciphertext

chosen plaintext, see Selected
plaintext

ciphertext only, 21, 607
deterministic, 24, 118
dictionary, 24
exhaustive, 20,137
fake equipment, 480
fake personal key, 550
insider, 490
key exhaustion, 20, 137
meet in the middle, 705
message exhaustion, 24, 137
midnight, 351
misrouting, 536
misuse of personal key, 550
off-line, 706
on-line, 706
outsider, 490
passive, 2
selected ciphertext, 21, 697
selected plaintext, 21
statistical, 118, 138
time-memory tradeoff, 671,698
see also Cryptanalysis; Cryptanalytical

methods
Authenticating node, 487
Authentication:

cryptographic keys, 382
dynamic quantities, 100
message content, 359
message destination, 364
with message encryption, 361,

364
without message encryption,

363
message origin, 354
message timeliness, 358
passwords, 368
static quantities, 371
time invariant data, 367,371
time variant data, 100

Authentication code:
definition of (AC), 100
message (MAC), 457,486
personal (PAC), 474,486

Authentication key, 488,503

747

INDEX

Authentication parameter (AP), 474
American Bankers Association proposal,

689
definition of, 484485
discussion and design of, 679-696
function of ID, 694-696

Authenticator, 487
Autoclave in DES, 156, 168
Automated Teller Machine (ATM),

47s
Avalanche effect (in DES), see Intersymbol

dependence

Bank card, 475
counterfeit, 445
ideal intelligent secure, 518,551-553
intelligent secure, 482, 518, 556
lost, 445, 527
magnetic stripe, 675
practical intelligent secure, 5 1 a-519,

553-556
secure, 481
smart, 482
stolen, 445,528
track one of, 675
track two of, 676
track three of, 677

Beale ciphers, 737-739
Bernoulli trial, 6 18
Binary synchronous communication (BSC),

204. See also Characters (BSC)
Binomial distribution, 6 19
Birthday paradox, 672
Birthday problem, see Birthday paradox
Bit-stream generator, 54
Block chaining:

ciphertext feedback, 71-73, 536-537
plaintext/ciphertext feedback, 70
variable key, 67

Block cipher:
basic design of, 26
building blocks of, 27
with chaining, 62
without chaining, 23
definition of, 23
general, 69
stream cipher comparison, 105

Boolean representation of DES S-boxes,
163

Breaking a cipher using:
linear shift registers, 121, 129
two key-tapes, 118

Caesar substitution, 114
CBC (cipher block chaining), 71. See also

Block chaining, ciphertext feedback
CE, see Compressed encoding

CFB, see Cipher feedback
Chaining:

block cipher with, 62
definition of, 62
example of, 74, 75
record, a3
self synchronizing, 72
stream cipher with, 85

Chaining value:
initial, 56, 65
intermediate. 59

Change of master keys, 3 11
Characters (BSC):

block check (BCC), 204
end of text (ETX), 204
pad (PAD) 204
start of header (SOH), 204
start of text (STX), 204
synch (SYN), 204

Chosen ciphertext, see Selected
ciphertext

Chosen plaintext, see Selected
plaintext

Cipher block chaining (CBC), 71.
See also Block chaining, ciphertext
feedback

Cipher feedback (CFB):
definition of, 91
example of, 97

Ciphering process, 15
Ciphers:

Beale, 737-739
block, 23
Caesar, 114
cipher feedback, 91
ciphertext auto-key, 89
classes of, 113
design of, 20, 137
enciphering process, 15
general block, 69
general stream, 88
homophonic substitution,

133-740
key auto-key, 61
monoalphabetic substitution, 621-624,

637-647, 731-733
multiple substitution, 733-740
product, 115
public key, 14, 32
random, 608,614
RSA, 33
scytale, 114
simple substitution, 621-624, 637647,

731-133
stream, 53
substitution, 113
transposition (permutation), 113

INDEX 749

unbreakable, 20
zodiac murder, 739-740

Cipher system:
definition of, 13
with message and key probabilities,

609611
Ciphertext:

definition, 13
only, 13,21
selected, 21

Ciphertext auto-key cipher, 89
Cleartext, see Plaintext
Code system, 13
Communications architecture, 331
Communication security (COMSEC):

host to host, 343
multiple domain, 285,343
single domain, 271,274,285
terminal to host, 336
see also DES cryptographic system

Complementary property of DES:
definition, 116
for key checking, 3 19

Compressed encoding (CE), 398-399
COMSEC, see Communication security
Congruent, 34
Control, line, 211
Control character (in binary synchronous

communication):
block check (BCC), 206
end of text (ETX), 204
general, 204
pad (PAD), 204
start of header (SOH), 206
start of text (STX), 206
synch (SYN), 204

Conventional (symmetrical) algorithm,
14

Corresponding plaintext and ciphertext,
21

Cryptanalysis:
cost and time to break a cipher,

636-637
ground rules for, 21-23
of simple substitution on English,

637647
see also Attack; Cryptanalytical

methods
Cryptanalytical methods:

analytical, 20,138
deterministic, 24, 138
frequency analysis, see Frequency

analysis
short cut, 137
statistical, 138
see also Attack; Cryptanalysis

Cryptogram, 13

impossible, 6 12
possible, 6 12
unique solution, 6 16

Cryptogram space, 610611
Cryptographics:

algorithm, 14. See also Ciphers;
Enciphering process

bit-stream (key stream), 53
dependent parameter, 499
facility, 207,210,222, 234. Seealso

Key notarization facility; Security
module

independent parameter, 499
isolation, 5 19
key, 13
key data set (KDC), 208,267
operations at host, 243
operations at terminal, 239
separation, 507,514
strength considerations, 21
transformation, 14,311,519
translation, 535
variable, 14
verification, (CRV), 335

Cryptographic facility, see Cryptographic
facility

Cryptographic operations:
authenticate forward (AF), 371,

376
authenticate reverse (AR), 371,

376
decipher data at host (DCPH), 243
decipher key (DECK), 239
decipher only (DECO), 422
decipher at terminal (DEC), 239
encipher data at host (ECPH), 243
encipher under master key (EMK),

246
encipher only (ENCO), 422
encipher at terminal (ENC), 239
generate key (GKEY), 423
generate session key 1 (GSKl),

295
generate session key 2 (GSKZ),

296
load key direct (LKD), 239
merge key (MGK), 297
reencipher from master key (RFMK),

244
reencipher to master key (RTMK),

244
set master key (SMK), 243
write master key (WMK), 239

Cryptographic strength:
block versus stream ciphers, 105
DES, 139
RSA, 45

750 INDEX

Cryptographic system, see DES cryptographic
system; EFT security; Public-key
cryptosystems

Cryptography:
application directed, 332
end-user, 3 3 1
mandatory, 332
outlook for, 10
private, 331,339
session level, 331, 343
transparent, 332

Cryptosystem, see DES cryptographic system;
EFT security; Public-key cryptosystems

Data:
circuit-terminating equipment (DCE),

201
encryption equipment (DEE), 201
terminal equipment (DTE), 201

Data encryption algorithm (DEA), see
Data encryption standard

Data encryption standard (DES):
chaining in, 62, 85, 167
complementary property of, 116
criticism of, 140
cryptanalysis of, 139
definition of, 113
design of, 162
FIPS publication 46,651-670
history of, 6-8
initial permutation in, 116,155
intersymbol dependence in, 165
inverse initial permutation, 116
iterations (rounds), 141
key length in, 14 1
key schedule of, 141
one round example, 160
parameters of the, 116
P-box in, 159
with public key properties, 4 17
S-boxes in, 116,156
semiweak keys in, 150
stream encipherment using, 54
weak keys in, 147
see also DES cryptographic system

Deciphering process, 15
DES, see Data encryption standard;

DES cryptographic system
DES cryptographic system:

composite keys, 294-299
COMSEC, see Communication

security
cryptographic facility, 207, 210,222,

234. See also Key notarization
facility; Security module

key distribution, 326-327. See also
Key distribution

key generation, 300-317. See also Key
generation

key installation, 3 17-326
key management (end-toend, COMSEC

and FILESEC), 206-269,271-299
lost keys, 327-329
see also EFT security; Electronic funds

transfer
Digital signature methods:

Diffe and Lamport, 396-397
Matyas and Meyer, 406409
Rabin, 402406
RSA, 33-48
see also Digital signatures

Digital signatures, 412
arbitrated, 409,412
general, 391
initial written agreement, 390,

424425
legalizing, 423
legal significance, 386-390
true, 391
universal, 391
see also Digital signature methods

Digrams, definition of, 617
Distribution of primes, 41
Domain:

multiple, 271
single, 271

Eavesdropping:
acoustic, 2
electromagnetic, 2
wiretapping, 2

ECB (electronic codebook), see Block
cipher, without chaining

EFT, see EFT security; Electronic funds
transfer

EFT security:
PIN/personal key approach, 546-557
PIN/personal key/system key approach,

557-577,588-604
PIN/system key approach, 454473,

519-520,530-545
using intelligent secure card, 551-577,

588-604
using magnetic stripe card, 454-473,

530-545, 546-551
see also Electronic funds transfer; Personal

verification
Electronic codebook (ECB), see Block

cipher, without chaining
Electronic funds transfer (EFT):

interchange, 475
messages, see Messages
security requirements, 490
terminal, 475

INDEX 751

see also EFT security
Enciphering process, 15
Encryption:

definition of, 14
end-to-end, 195
irreversible, 497
link, 195
multiple, see Multiple encryption
node, 195
reversible, 497
short block, 73

End-to-End encryption, definition of,
195. See also DES cryptographic
system

Entropy, 627-628. See also Information
measures

Entropy per character, 617,720
Equivalent keys, 17
Error propagation:

block cipher, 86
definition of, 106
stream cipher, 86

Euclid’s algorithm, 38
Euler’s theorem, 34
Euler’s totient function, 35
Exclusive-OR operation, 25

Factorial, 17
Factoring, see Factorization
Factorization (factoring):

classic problem, 33,47
cryptographic problem, 47

Fake equipment, 462463,480481
Fake personal key, 550
Feedback:

cipher, 91
ciphertext, 72
plaintext/ciphertext, 69

Flag:
leading, 206
trailing, 206

FILESEC, see File security
File security (FILESEC):

within host, 283
host to host, 288
multiple domain, 288
single domain, 278
see also DES cryptographic system

Fill, see Initializing vector
Frame, 206
Frequency analysis:

block, 24
digram, 640-642
single letter, 642

Function:
cipher, 116
co-domain of, 16

deciphering, 15, 17
definition of, 16
domain of, 16
enciphering, 15, 17
Euler’s indicator, totient, 35
image of, 16
inverse, la
linear, 9
many-to-one, 26
mixing, 116
nonaffine, 168
one-to-one, 16
one-way, 496,679
onto, la
range of, 16

Generation:
data-encrypting key, 314,316
host master key, 301
initializing vector, 92
key-encrypting key, 303

Greatest common divisor, 35,38

Handshaking, 35 1
Hexadecimal representation, 302
Hierarchy of cipher keys, 232
Homophones, 733
Homophonic substitution, see

Ciphers
Host master key, 201. See also Variants

of master key
Host processing center (HPC), 475

Incongruent, 34
Information measures:

conditional entropy, 628, 721
entropy, 627-629,720
equations for, 628629
equivocation, 628,721

Information theory, 627. See also
Information measures

Initial chaining value, 65
Initializing vector (IV), 56,65

generation of, 92
intermediate, 59
requirements for, 56

Intelligent secure card, see Bank card
Interbank Card Association, see Mastercard

International, Inc.
Interchange, 475
Interdependence (for DES) between:

ciphertext and key, 178
ciphertext and plaintext, 168

Intersymbol dependence in DES, 24,69,
165,167

Issuer, 475
Iteration (round), 141

INDEX

IV, see Initializing vector

Joint distribution of:
ciphertext and key, 630
plaintext and’ciphertext, 630
plaintext and key, 630

Key:
allocation, 208
distribution center, 578
entry, 317,323
exhaustion, 20
generator, 234
hierarchy, 232
manager, 236
notarization, 4 17
parity, 249,301
partitioning, 250
storage, 207
transformation, 311, 519
translation, 535
type of:

authentication, 488,503
composite, 293
cross domain, 344
dataencrypting, 206
equivalent, 17
file (KF), 207, 212
host master (KMH), 207
interchange (Kl), 531
key-encrypting, 207
master, 207, 213
node (Knode), 562
node application (KNA), 344
personal (KP), 211,483,519
personal-key generating (KPG),

500
PIN generating (KPN), 500
primary communication (KC),

212
primary file (KF), 212
public ins.itution, 590
public universal, 590
public user, 591
secondary (KN), 213
secondary communication (KNC),

213
secondary file (KNF), 213
secret institution, 590
secret universal, 590
secret user, 591
semiweak, 150
session (KS), 207
system activation, 379
terminal master (KMT), 207
transaction (KTR), 531
transaction session (KSTR), 588

variants, see Variants of master
key

weak, 147
working, 209

Key auto-key cipher, 61
Key checking, 319,382
Key distribution:

with assymmetric algorithm,
577

description, 326
with symmetric algorithm, 577
symmetric vs. assymetric algorithm,

577
Key entry:

direct, 318
at host, 317
indirect, 321
at terminal, 323

Key generation:
of data encrypting keys, 314,316
of host master keys, 301
of key encrypting keys, 303
manual, 301
pseudo-random, 304
of public keys in RSA, 37
of secret keys in RSA, 37
strong, 304
weak, 306

Key length:
in DES, 141
in RSA, 45

Key management, see DES cryptographic
system; EFT security; Public-key
cryptosystems

Key notarization, 417421
Key notarization facility, 418
Key recovery techniques, 328
Key schedule in DES, 141
Key selection, see Key generation
Key space, 17,610-611
Key stream, see Cryptographic, bit-stream
Key trial, 20
Knapsack problem, 48

Language:
rate of, 618, 722
redundancy of, 616

Letter frequency, 641
Linear shift register, 121
Link:

header, 206
trailer, 206

Link encryption:
asynchronous, 203
bit synchronous, 206
byte-synchronous, 204
description, 195

INDEX 753

synchronous, 203
see also Protocol, link encryption

Logical unit (LU), 331
primary (PLU), 3 33
secondary (SLU), 333

MAC, see Authentication code
Macro instruction:

CIPHER, 253
GENKEY, 260
RETKEY, 261

Magnetic stripe card, see Bank card
Mapping:

one-to-one, 16
onto, ia

Markov process:
approximation of message probability,

617,717
definition of, 717

MasterCard International, Inc., 429.
See also PIN manual

Master key:
host, 207
terminal, 207
variants of, 231
see also Variants of master key

Master key concept, 228
Message authentication, 354,475
Message authentication code (MAC),

see Authentication code
Message certification, 390
Messages:

meaningful, 612,717
meaningless, 6 12
number of meaningful, 615-618,

717-127
stereotyped, 67
transaction request (in EFT), 477,

519
transaction response (in EFT), 5 19

Message space, 610-611
Midnight attack, 351
Misuse of personal key, 550
Mode:

ciphertext stealing, 7 7
invertible, 497
irreversible, 497
noninvertible, 497
nontransparent, 339
off-host, 477,511
off-line, 477, 511
on-line, 477,499
reversible, 497
transparent, 333

Modulo arithmetic, 34
Modulo two addition, 25
Monoalphabetic substitution, see Ciphers

Multiple encryption, 696-712
compatibility with single encyrption,

696
double, 705
triple, 708, 711

Multiple master keys, 229
Multiplicative inverse, 39

National Bureau of Standards (NBS),
algorithm solicitation, 7

National Security Agency (NSA), validation
of DES, 8,141

N-gram, definition of, 618
Node encryption, definition of, 195
Numbers:

composite, 33
prime, 33
pseudo random, 56
random, 303

Offset, 502
One-time pad (system, tape), 20
One-to-one mapping, 16
One-way function:

defmition of, 496,679
design of, 679
weak, 680

Opponent’s initial information, 609

PAC, see Personal authentication code
Pad count, 98
Padding, 73,98
Pad indicator bit, 98
Partitioning of keys, 250
Passive attack, 2
P-box (in DES), 159
Personal authentication code (PAC),

474
definition of, 486
discussion and design of, 687694
modified preliminary ABA proposal,

691-692
preliminary ABA proposal, 689-690

Personal authentication parameter, see
Authentication parameter

Personal identification number (PIN):
definition of, 430
dependent, 499
entry of, 433
independent, 499,502
issuance of, 434
proposed ANSI method, 713-716
secrecy of, 43 1
selection of, 503,560
translation of, 535

Personal identifier (ID), 485
Personal key, 369

754 INDEX

dependent, 500
fake, 519,550
independent, 502
misuse of, 550
selection of, 504,560

Personal verification:
definition of, 475
in off-line and off-host modes,

511-516
in on-line mode, 499-5 11
requirements for, 483-499

PIN, see Personal identification number
PIN manual, reprint of, 429473
PIN validation, see Personal verification
Plaintext:

chosen (selected), 21
deftition of, 13
selected, 21
structured, 62

Plaintext and ciphertext, joint distribution
of, 630

Poisson approximation, 6 19
Poisson distribution, 619
Practical secrecy, see Secrecy
Primary account number (PAN), 475
Primary logical unit (PLU), 333
Prime numbers:

definition of, 33
distribution of, 4 1
number of, 42
testing for, 43

Prime number theorem, 41
Primitive cryptographic operations, see

Cryptographic operations
Privacy, 4
Product cipher, 115
Programming call:

generate key (GENKEY), 208
retrieve key (RETKEY), 208

Protocol:
communication security, 285-288
composite keys, 294-299
ftie security, 288-291
link encryption:

asynchronous, 203
bit-synchronous, 206
byte-synchronous, 204
definition of, 331
link control, 203
synchronous, 203

Pseudo random numbers, generation of,
307,315,316

Public-key algorithms (asymmetric):
Diftie and Hellman public-key concept,

32-33, 392-394
Merkle-Hellman trapdoor knapsack,

48-53

RSA, 3348
see also Key distribution; Public-key

cryptosystems
Public-key cryptosystems (assymetric):

Diftie and Hellman public-key concept,
32-33,392-394

key management considerations, 577-
588

see also Public-key algorithms
Public-key directory, see Key, distribution

center
Public key distribution, 577
Public key properties with DES, 417

Random cipher, 608,614-615
Rate of a language, 618,722
Redundancy, 616,717
Reference:

AP of, 487
dynamic, 480
KP of, 500
MAC of, 490
PAC of, 488
system generated time, 524
universal time, 524

Relative prime integers, 35
Request/response header (RH), 332
Request/response unit (RU), 332
Right-64,83
Rivest, Shamir, Adleman (RSA) algorithm,

3348
Round (iteration), 141
RSA algorithm, 33-48

S-boxes in DES, 156
boolean representation of, 163
design criteria of, 162

Secondary logical unit (SLU), 323
Secrecy:

practical, 607608
theoretical, 607

Secrecy system, see Cipher system
Secure hardware, see Cryptographic facility
Security module, 464,558. See also

Cryptographic facility
Seed, see Initializing vector
Selected ciphertext, 21
Selected plaintext, 21
Self-keying feature, 156, 168
Self-synchronizing scheme:

with block cipher, 72
defmition, 7 1
with stream cipher, 91

Semiweak keys of DES, 150
Session initiation, 276
Session key generation, 315,317
Session level cryptography, 331,343

INDEX

Shannon, 608,614.615
Short block encryption:

ciphertext stealing mode, 77
description of, 73
stream cipher mode, 76

Short cut method, 138
Signatures, see Digital signatures
Signed messages, see Digital signatures
Simple substitution, see Ciphers
Storage of key, 207
Stream cipher:

basic design of, 57
with chaining, 85
cipher feedback, 91
ciphertext auto-key, 89
comparison with block cipher, 105
definition of, 53
example of, 97
general, 88
initial seed in, 56
key auto-key, 61

Substitution, see Ciphers
Superencipherment, see Multiple

encryption
Symmetrical (conventional) algorithm,

14
Synchronous data link control (SDLC), 206
System integrity, 229,367,478
System network architecture (SNA), 33 1
System services control point (SSCP), 334

Terminal master key (KMT), 207
Terminal security, 479
Testing for primality, 42
Test pattern for:

key checking, 3 82
password verification, 373
verification table, 371

Theoretical secrecy, see Secrecy
Time-memory tradeoff, 671,697-698
Time reference:

system generated, 524
universal, 524

Time stamp, see Time reference
Totient function, 35
Traffic analysis, 200
Transaction request message, 477, 519
Transaction response message, 5 19
Transformation:

cryptographic, 14,519
deciphering, 14
enciphering, 14

see also Function
Translation of keys, 535
Transporting:

existing file, 289
new tile, 288

Transposition cipher, 113
Trapdoor function, 48
Trapdoor knapsack algorithm, 48
Trigram, definition of, 617
Trusted authority, see Arbiter;

Key distribution center

ud, see Unicity distance
Unicity distance:

defmition, 608,619-620
for DES, 635-636
for homophonic substitution, 733-740
for simple substitution, 621-624,731-

733
for transposition, 729-730

Universal time reference, 529
User characteristics:

nontransferable, 482
transferable, 482

Validation:
of host master key, 318
of terminal master key, 323

Variants of master key:
derivation of, 231
fifth, 375
first, 248, 275
fourth, 315
second, 248,280
third, 295

Verification pattern, 371
Verification procedures:

with clear password, 368
with encrypted password, 369
with test pattern, 371

Verification table, 486, 503
Vernam system, 53

Weak keys of DES, 147
Wilson’s theorem, 43
Wiretapping:

active, 2
passive, 2

Work factor, 18,636
Wrong key entry probability, 320

Zodiac murder ciphers, 739-740

	CRYPTOGRAPHY: A NEW DIMENSION IN COMPUTER DATA SECURITY
	A Guide for the Design and Implementation of Secure Systems
	JOHN WILEY&SONS

	Preface
	Acknowledgments
	Abbreviations
	The Role of Cryptography in Electronic Data Processing
	CRYPTOGRAPHY, PRIVACY, AND DATA SECURITY
	Attack Scenarios
	Technical Implications of Privacy Legislation

	THE DATA ENCRYPTION STANDARD
	DEMONSTRATING EFFECTIVE CRYPTOGRAPHIC SECURITY
	THE OUTLOOK FOR CRYPTOGRAPHY
	REFERENCES
	Other Publications of Interest

	Block Ciphers and Stream Ciphers
	Enciphering And Deciphering
	Figure 2-1.
	Figure 2-2.

	Types of Attacks
	Designing an Algorithm
	Figure 2-3.
	Table 2-1.

	Conventional Algorithms
	Figure 2.4
	Figure 2.5
	Figure 2-6.
	Figure 2-7.
	Figure 2-7 (cont’d).

	Public-Key Algorithms
	Table 2-2.

	The Distribution of Primes
	Table 2-3.

	Testing for Primality
	Table 2-4.

	Cryptographic Strength Considerations
	Trapdoor Knapsack AlgorithmI
	Figure 2.8
	Figure 2.9
	1. Random.
	2. Pseudo-random.
	3. Nonrepeating.

	Figure 2.10
	Figure 2-11.

	Patterns Within Data
	Block Chaining Using a Variable Key
	Block Chaining Using Plaintext and Ciphertext Feedback
	A Self-Synchronizing Scheme Using Ciphertext Feedback
	Figure 2-17.

	Examples of Block Chaining
	Short Block Encryption
	Figure 2-18.
	Figure 2-19.
	Figure 2-20.
	Figure 2-21.
	Figure 2-22.
	Figure 2-23.
	Figure 2-25.
	Figure 2-27.

	A Chaining Method with the Property of Error Propagation
	Figure 2-28.

	A Chaining Method with the Property of Self-Synchronization
	Figure 2-29.

	Cipher Feedback Stream Cipher
	An Example of Seed Generation
	Figure 2.30
	Figure 2-31.
	Figure 2-32.

	Examples of Cipher Feedback
	Figure 2-33.
	Figure 2-34.
	Figure 2-35
	Figure 2-35.
	Figure 2-37.
	Figure 2-39.

	Message Authentication - Method 2 Accept Message
	Figure 2-40.
	Table 2-5.
	Initializing Vector Z Not mandatory, but highly Required for all applications. desirable. If used, Z can In the practical case, Z must be constant over a session. be frequently changed. To achieve Z should be 64 bits for DES. maximum security, Z shoul
	Figure 2-41.
	Figure 2-42.

	Other Publications of Interest

	The Data Encryption Standard
	CLASSES OF CIPHERS
	Figure 3-1.
	Figure 3.2
	Figure 3.3
	 Figure 3-4.

	DESIGN CRITERIA
	Breaking a System with Two Key-Tapes
	Breaking a Key Auto-Key Cipher Using Linear Shift Registers
	Figure 3-5.
	Figure 3-6.
	Table 3-1. Analysis of a Key Auto-Key Cipher that Uses a 3-Stage Linear Shift Register
	Table 3-3. Pseudo-Random Bit Streams Produced by a 3-Stage Linear Shift
	Table 3-5. Solution of Feedback Switch Positions for a 3-Stage Linear Shift Register
	Table 3-2. Solutions for the Key in a Key Auto-Key Cipher
	Table 3-3. Pseudo-Random Bit Streams Produced by a 3-Stage Linear Shift
	Table 3-4. Output from the First Stage of a 3-Stage Linear Shift Register
	Table 3-5. Solution of Feedback Switch Positions for a 3-Stage Linear

	Breaking a Plaintext Auto-Key Cipher Using Linear Shift Registers4
	Figure 3-7.
	Figure 3-8.
	Figure 3-9.
	Figure 3-10.
	Table 3-6. Chosen Plaintext Attack Against a Plaintext Auto-Key Cipher

	Designing a Cipher’
	Shortcut Methods
	Brute Force Methods
	Classified Design Principles

	DESCRIPTION OF THE DATA ENCRYPTION STANDARD
	Figure 3-11.
	Table 3-7. Shift Schedule for Encipherment
	Generation of Key Vectors Used for Each Round of DES
	Table 3-8. Key Bits Stored in Register (C) for Each lndividual Round
	Table 3-9. Key Bits Stored in Register (D) for Each Individual Round

	Weak and Semiweak Keys
	Table 3-10. First Set of 24 Key Bits in K(i), the Key Used at Round (i)
	Table 3-11. Second Set of 24 Key Bits in K(i), the Key Used at Round (i)
	Table 3-12. Example of an Enciphering Key Which Produces Only TWO
	Table 3-13. List of Semiweak Keys Represented as (Parity-Adjusted)
	Table 3-14. Pairs of Semiweak Keys (K, K’) that
	Table 3-15. Example of an Enciphering Key which Produces Only Four

	Details of the DES Algorithm
	Table 3-16. Partial List of (Parity-Adjusted) External Keys that Produces Four Equally Recurring Internal Keys
	Figure 3-12. Details of Enciphering Function (g)

	Summary of the DES Procedure
	Numerical Example
	Some Remarks about the DES Design
	Implementation Considerations for the S-Box Design
	Figure 3-14. Basic Block Cipher Design Used by the Data Encryption Standard
	Table 3-17. Distribution of Minterms for a Preliminary Design of the S-box
	Table 3-18. Distribution of Minterms for Final Design of S-box

	ANALYSIS OF INTERSYMBOL DEPENDENCIES
	Interdependence between Ciphertext and Plaintext
	Table 3-19. Functional Relationships
	Figure 3-15. Functional Dependence of R(i) on R(i- 1) without
	Figure 3-16. Functional Dependence of R(i) on R(i - l), Matrix G(r;“l
	Figure 3-17. Functional Relationship between
	Figure 3-18. Evaluation of Functional Dependence of

	Summary of the Procedure
	Figure 3-19. Functional Dependence of R(i + 1) on R(i - l), Matrix Gf”+fi_ 1
	Figure 3-20. Functional Dependence of 4th Bit of R(i+ 1) on R(i - 1)

	Minimum Number of Rounds Required to Achieve
	Figure 3-21. Graphical Presentation of Proof that Gi:‘F{ _ , = Gi”;k) _ 1
	Table 3-20. CiphertexUPlaintext Intersymbol Dependence

	Interdependence Between Cipher-text and Key
	Table 3-21. Functional Relationships
	Figure 3-22. Functional Dependence of R(i) on K(i) without Permutation
	Figure 3-23. Functional Dependence of R(i) on K(i)
	Figure 3-24. Functional Dependence of R(1) on U, Matrix FIR)
	Figure 3-27. Funtional Dependence of R(2) on U, Matrix FzCR)
	Figure 3-28. Functional Dependence of 4th Bit of R(3) on U
	Figure 3-29. Functional Dependence of R(3) on U, Matrix Fy)
	Table 3-22. Ciphertext/Key Intersymbol Dependence

	Summary and Conclusions

	REFERENCES
	Other Publications that Treat Cryptanalysis

	Communication Security and File Security Using Cryptography’
	NETWORK ENCRYPTION MODES
	Figure 4-1. Data Processing Network
	Figure 4-2. Link Encryption
	Figure 4-3. Node Encryption
	Figure 4-5. Message and Header Encryption

	FUNDAMENTALS OF LINK ENCRYPTION
	Figure 4-6a. DTE/DCE and Link Control Interface
	Figure 4-6b. DEE Placement-Link Encryption
	Asynchronous
	Byte-Synchronous
	Figure 4-7. Example of Extent of Encryption, by Protocol
	Bit-Synchronous

	AN OVERVIEW OF END-TO-END ENCRYPTION
	Cryptographic Key Data Set

	CIPHER KEY ALLOCATION
	Specification of Cipher Keys
	Figure 4-8. Terminal End User
	Figure 4-9. Host End Users
	Figure 4-10. Cryptographic Facility-General Concept
	Figure 4-11. Transmission of Enciphered Data from
	Figure 4-12. Shorthand Notation Representing
	Figure 4-13. Shorthand Notation Representing
	Figure 4-15. Communication Phase
	Figure 4-16. Allocation of Secondary Keys in a Four Node System
	Figure 4-17. Allocation of Secondary Communication Keys
	Figure 4-18. Allocation of Secondary Communication Keys in a
	Figure 4-19. Allocation of Secondary File Keys
	Figure 4-20. Allocation of Secondary File Keys in

	An Example of the Encryption of Transmitted Data
	Figure 4-21. Initial Configuration
	Figure 4-22. Session Key Generation/Encryption-Host i
	Figure 4-23. Session Key Transformation-Host j
	Figure 4-24. Session Key Recovery at Terminal 1 and Terminal 2
	Figure 4-25. Initial Configuration

	An Example of the Encryption of a Data File

	THE CRYPTOGRAPHIC FACILITY
	Figure 4-26. File Key Generation and Encipher Data Operations-Host i
	Figure 4-27. File Key Recovery and Decipher Data Operations-Host j
	Figure 4-28. Cryptographic Facility
	Figure 4-29. “Primitive” Operations of Encipherment and Decipherment

	CIPHER KEY PROTECTION
	Protection of Terminal Keys
	Figure 4-30. Session Key Recovery at the Terminal’s Cryptographic Facility

	Multiple Master Keys
	Protection of Host Keys
	The Master Key Concept
	Encrypted vs. Unencrypted Primary Keys
	Master Key Variants
	Figure 4-31. An Implementation Using Three Independent Host
	Figure 4-32. Implementation in which Multiple Master Keys are Derived
	Figure 4-33. Derivation of Variants within the Cryptographic

	Hierarchy of Cipher Keys
	Figure 4-34. Host Cipher Key Protection-Summary
	Figure 4-35. Hierarchy of Key Protection

	THE HOST CRYPTOGRAPHIC SYSTEMI’
	Figure 4-36. Summary of Cipher Keys

	BASIC CRYPTOGRAPHIC OPERATIONS
	Figure 4-37. Host Cryptographic System

	Cryptographic Operations at a Terminal
	LOAD KEY DIRECT
	WRITE MASTER KEY
	Figure 4-38. Load Key Direct Operation at Terminal

	DECIPHER KEY
	ENCIPHER
	Figure 4-39. Write Master Key Operation at Terminal

	DECIPHER

	Cryptographic Operations at a Host
	Figure 4-40. Decipher Key Operation at Terminal
	Figure 4-41. Encipher Operation at Terminal
	Figure 4-42. Decipher Operation at Terminal
	ENCIPHER DATA
	Figure 4-43. Encipher Data Operation at Host System

	DECIPHER DATA
	Key Management Operations
	SET MASTER KEY
	ENCIPHER UNDER MASTER KEY
	Figure 4-45. Set Master Key Operation at Host System
	Figure 4-46. Encipher Under Master Key Operation at Host System

	Figure 4-44. Decipher Data Operation at Host System

	REENCIPHER FROM MASTER KEY
	REENCIPHER TO MASTER KEY
	Partitioning of Cipher Keys
	Figure 4-47. Reencipher From Master Key Operation at Host System
	Figure 4-48. Reencipher To Master Key Operation at Host System
	Figure 4-49. Encipherment and Decipherment Under the Variants of the
	Figure 4-50. Hypothetical Scheme for the Protection of Keys
	Figure 4-51. Correct and Incorrect Use of OPl and OP2

	CIPHER MACRO INSTRUCTION
	Figure 4-52. Ciphering Operation Using the BLK Function
	Figure 4-53. Ciphering Operation,Using the CHR Function
	Figure 4-54. Ciphering Operation Using the PLNCHR Function
	Figure 4-55. Procedure for Computing OCV
	Figure 4-56. Padding of Short Blocks
	Figure 4-57. Ciphering a Short Block Using the STREAM Parameter
	Key Parity
	Partitioning of Cipher Keys
	Figure 4-49. Encipherment and Decipherment Under the Variants of the
	Figure 4-50. Hypothetical Scheme for the Protection of Keys
	Figure 4-51. Correct and Incorrect Use of OPl and OP2

	CIPHER MACRO INSTRUCTION
	Figure 4-52. Ciphering Operation Using the BLK Function
	Figure 4-53. Ciphering Operation,Using the CHR Function
	Figure 4-54. Ciphering Operation Using the PLNCHR Function
	Figure 4-55. Procedure for Computing OCV
	Figure 4-56. Padding of Short Blocks
	Figure 4-57. Ciphering a Short Block Using the STREAM Parameter

	KEY MANAGEMENT MACRO INSTRUCTIONS
	GENKEY and RETKEY Macros
	Figure 4-60. Session Key Translation at Host j
	Table 4-1. Resources, Keys, and Key Storage Locations
	Table 4-2. Valid and Invalid Parameter Combinations in the GENKEY Macro
	Table 4-3. Valid and Invalid Parameter Combinations in the RETKEY Macro
	Using GENKEY and RETKEY
	Figure 4-58. Initial Configuration
	Figure 4-59. Session Key Generation at Host i
	Figure 4-60. Session Key Translation at Host j

	THE CRYPTOGRAPHIC KEY DATA SET
	Table 4-4. CKDS Record Format
	Figure 4-62. CKDS Entries

	SUMMARY
	REFERENCES
	Other Publications that Treat Key Management in Conventional and/or

	The Host System Cryptographic Operations’
	SINGLE-DOMAIN COMMUNICATION SECURITY USING PREGENERATED PRIMARY KEYS
	SINGLE-DOMAIN COMMUNICATION SECURITY USING DYNAMICALLY GENERATED PRIMARY KEYS
	Two Master Keys
	Encipherment Under KM 1
	An Example of Communications Encryption
	Requirements

	SINGLE-DOMAIN COMMUNICATION SECURITY AND FILE SECURITY USING DYNAMICALLY GENERATED PRIMARY KEYS
	Problems Associated with Storing Enciphered Data
	Three Master Keys
	Host Key Protection
	Encipherment under KM1 and KM2
	File Key Generation
	An Example of File Encryption

	File Create:
	File Recovery:
	Requirements

	MULTIPLE-DOMAIN ENCRYPTION
	A Protocol For Communication Security
	A Protocol For File Security
	Transporting a New File
	Transporting an Existing File

	ADDITIONAL CONSIDERATIONS
	EXTENDED CRYPTOGRAPHIC OPERATIONS
	Cryptographic Key Distribution Using Composite Keys5
	A Composite Key Protocol

	Generate Session Key 2 (GSKZ):
	Random Number Generator
	Merge Key (MGK):
	SUMMARY
	REFERENCES

	Generation, Distribution, and Installation
	GENERATION OF THE HOST MASTER KEY
	Tossing Coins
	Table 6-1. Results of Coin-Tossing Converted to Binary and

	Throwing Dice
	Table 6-2. Parity-Adjusted Hexadecimal Digits (Odd Parity)

	Random Number Table

	GENERATION OF KEY-ENCRYPTING KEYS
	A Weak Key-Generating Procedure
	A Strong Key-Generating Procedure
	Figure 6-1. Basic Approach for Generating Keys Using the DES

	An Alternate Approach for Generating Key-Encrypting Keys
	Encipherment of Keys under the Master Key’s Variants
	Figure 6-3. Encipherment of Cryptographic Keys for Local Storage

	Transforming Cryptographic Keys
	Figure 6-4. Reencipherment of Cryptographic Keys from an Old to a New Master Key
	Figure 6-5. General Procedure for Reencipherment of Keys
	Figure 6-5 (cont’d). General Procedure for Reencipherment of Keys

	GENERATION OF DATA-ENCRYPTING KEYS
	An Approach for Generating Keys with the Cryptographic Facility
	Figure 6-6. Procedure for Generating Pseudo-Random Numbers with

	An Alternate Approach for Generating Data-Encrypting Keys
	Figure 6-7. DES-Based Pseudo-Random Number Generator for Data-

	ENTERING A MASTER KEY AT THE HOST PROCESSOR
	Hard-Wired Entry
	Figure 6-8. Validation of the Master Key as it is Entered at the Host

	Indirect Entry

	ATTACK VIA EXTERNAL MANIPULATIONS
	MASTER KEY ENTRY AT A TERMINAL
	On-Line Checking
	Off-Line Checking
	Figure 6-9. Procedure, at the Host Processor, to Crea
	Figure 6-10. Procedure for Entering and Validating Terminal Master Keys

	DISTRIBUTION OF CRYPTOGRAPHIC KEYS
	LOST CRYPTOGRAPHIC KEYS
	RECOVERY TECHNIQUES
	Figure 6-11. Encipherment Using a Corrupted Key and Decipherment

	SUMMARY
	REFERENCES

	Incorporation of Cryptography into a
	Figure 7-1. RH/RU Relationship
	Figure 7-2. Cryptography Selection Process
	SESSION-LEVEL CRYPTOGRAPHY IN A SINGLE-DOMAIN NETWORK
	Transparent Mode of Operation
	Figure 7-3. SNA Session Initiation Command Flow
	Figure 7-4. Cryptographic Verification Procedure for Session Keys
	Figure 7-7. Session-Level Cryptography in a Single-Domain Network
	Nontransparent Mode of Operation

	PRIVATE CRYPTOGRAPHY IN A SINGLE-DOMAIN NETWORK
	Figure 7-8. Session-Level Cryptography in a Single-Domain Network
	Figure 7-9. Session-Level Cryptography in a Single-Domain Network
	Table 7-1. Summary of Approaches Using System Managed Keys and

	SESSION-LEVEL CRYPTOGRAPHY IN A MULTIDOMAIN NETWORK
	Figure 7-11. SNA Session Initiation Command Flow in a Multi-Domain
	PO Figure 7-12. Session-Level Cryptography in a Multi-Domain Network
	Figure 7-13. Session-Level Cryptography in a Multi-Domain Network (Transparent Mode, System Keys, System Managed)

	APPLICATION PROGRAM-TO-APPLICATION PROGRAM CRYPTOGRAPHY
	Figure 7-14. Session-Level Cryptography in a Multi-Domain Network (Application Program-to-Application Program Cryptography)

	PADDING CONSIDERATIONS
	REFERENCES
	Other Publications of Interest

	Authentication Techniques Using Cryptography
	FUNDAMENTAL CONCEPTS
	HANDSHAKING
	Figure 8-1. Authentication of System Nodes via Handshaking

	MESSAGE AUTHENTICATION
	Authentication of a Message’s Origin
	Figure 8-2. Message Encipherment Between A and B
	Figure 8-4. Authentication of the Identity of a Message’s Sender Using Constant Passwords

	Authentication of a Message’s Timeliness
	Authentication of a Message’s Contents
	Authentication by an Encryption Method
	Figure 8-5. Authentication of the Content of a Message Using Chained

	Authentication by an Encryption Method
	Authentication Without Message Encryption
	Authentication of a Message’s Receiver
	A Procedure for Message Authentication
	Figure 8-7 (cont’d).

	AUTHENTICATION OF TIME-INVARIANT DATA
	Authentication of Passwords
	Figure 8-8. Authentication Using a Stored Table of Passwords
	Figure 8-9. Authentication of Passwords that have been Transformed

	Authentication Using Test Patterns Generated from the Host Master Key
	Figure 8-10. Authentication Based Upon a Table of Test Patterns

	A Short Analysis
	Implementing AF and AR
	Table 8-1. Comparison of Different Verification Procedures
	Figure 8-11. The AF and AR Operations

	An Implementation Using the Cryptographic Operations Proposed for
	Figure 8-12. Generation of the System Authentication Key E,,,(D,,,(C))=A

	A Procedure for Authentication of Cryptographic Keys
	Figure 8-14. Authentication of Cryptographic Keys Using Test Patterns
	Figure 8-15. The AF and AR Operations

	REFERENCES
	Other Publications of Interest

	Digital Signatures’
	SIGNIFICANCE OF SIGNATURES3
	Law of Acknowledgments
	Law of Agency
	Uniform Commercial Code
	Contributory Negligence

	OBTAINING DIGITAL SIGNATURES
	UNIVERSAL SIGNATURES
	Figure 9-1. A General Approach for Exchanging Universal Signatures
	Figure 9-2. Public-Key Cryptographic System Used for Privacy
	Figure 9-3. Public-Key Cryptographic System Used for Digital
	Figure 9-4. Public-Key Cryptographic System Used for Both Privacy and Digital Signatures
	Figure 9-5. Nonsecret Enciphkring Keys and Secret Deciphering Keys
	An Approach Using Conventional Algorithms
	Method One

	Compressed Encoding Function
	Figure 9-6. The Compressed Encoding Function
	Method One-Improved
	Figure 9-8. A Digital Signature Composed of a List of Cryptographic Keys

	Method Two
	Method Three-Matrix Method
	Figure 9-11. 31 x 31 Matrix of Secret Keys used by the Sender to Form a Signature
	Figure 9-12. 30 x 3 1 Matrix of Nonsecret Code Words

	ARBITRATED SIGNATURES”
	Figure 9-13. Arbitrated Digital Signatures
	An Approach Using the DES Algorithm
	Figure 9-14. Individual Secret Keys Shared With the Arbiter

	An Example of Arbitrating a Signature
	A Weak Approach
	Additional Weaknesses

	USING DES TO OBTAIN PUBLIC-KEY PROPERTIES
	A Key Notarization System for Computer Networksl’
	System Design
	Identifiers and Key Notarization
	User Authentication
	Commands
	Digital Signatures
	A Method Using Variants of the Host Master Key16

	LEGALIZING DIGITAL SIGNATURES’8
	Initial Written Agreement
	Choice of Law
	Judicial Notice Recognized

	REFERENCES
	Other Publications of Interest

	Applying Cryptography to Pin-Based
	INTRODUCTION
	SECTION ONE: BASIC PIN CONCEPTS
	Why PINS?
	PI N Secrecy
	PIN Length
	Allowable PIN Entry Attempts
	PIN Issuance
	Bank Selected PIN
	Cardholder Selected PIN
	Consider each of these techniques:
	Comparison of Bank Selected PIN and Cardholder Selected PIN
	The Forgotten PIN
	On-Line PIN Validation
	Off-Line PIN Validation
	PIN Validation for Interchange Transactions
	Conclusions

	SECTION TWO: EFT FRAUD THREATS
	E FT Fraud Categories
	Passive Fraud Threats
	The Delivery System
	The Cardholder
	The EFT System
	Relative Risks
	Active Fraud Threats
	Communications Lines
	E DP Systems
	Fraud and Liability
	Conclusions

	SECTION THREE: PRINCIPLES OF FRAUD PREVENTION
	Cryptography, The Tool for Fraud Prevention
	Preventing Passive Fraud Threats
	PIN Encryption
	Protection of Cryptographic Keys
	Physical Protection of PINS and Cryptographic Keys
	Preventing Active Fraud Threats
	Data Modification
	Replay of Debit Authorization
	Fraudulent Credits
	Encrypted PIN Substitution
	Fraud Prevention in Interchange
	Countering the Fake Equipment Threat
	Conclusions

	SECTION FOUR: IMPLEMENTATION OF FRAUD PREVENTION TECHNIQUES
	Suggested Characteristics of Hardware Security Module Implementation
	Suggested Capabilities6
	Bank Selected Random PIN
	Customer-Selected PIN
	PIN Validation
	Key Management
	MAC Generation’
	Utilization
	Figure 10-l. Issuer’s PIN Validation - Local Transaction
	Figure 10-2. PIN in Interchange

	Conclusions
	REFERENCES

	Applying Cryptography to Electronic Funds i’ Transfer Systems- Personal Identification Transfer Systems- Personal Identification
	BACKGROUND
	Communication Link Security
	Computer Security3
	Terminal Security
	EFT Terminals in Nonsecure Environments
	Fake Equipment Attack
	Bank Card Security
	Magnetic Stripe Card
	Intelligent Secure Card
	IDENTIFICATION AND AUTHENTICATION OF SYSTEM USERS
	Transferable User Characteristics
	Nontransferable User Characteristics

	REQUIREMENTS FOR PERSONAL VERIFICATION
	Figure 11-2. The Personal Verification Process
	Authentication Parameter
	Figure 11-3. Transformation of User-Supplied Verification Information

	Personal Authentication Code
	Personal Verification Using AP Only
	Personal Verification Using AP and PAC
	Figure 11-4. A Method for Achieving Personal Verification

	Message Authentication Using a MAC
	FT Security RequirementsI
	Figure 11-5. A Method for Achieving Message Authentication

	PERSONAL VERIFICATION IN THE ON-LINE MODE
	Personal Verification with Dependent PINS and Dependent Personal Keys
	Figure 11.6. Personal Verification using a PIN Generating KEY (KPN) and a

	Personal Verification with Independent PINS and Independent Personal Keys
	Figure 11-7. Personal Verification Using a PIN Offset
	Figure 11-8. Personal Verification using Table Lookup
	Figure 11-9. Personal Verification Using a Secret Authentication Key and Personal
	Figure 11-9 (cont’d)

	Minimizing Card Storage Requirements

	PERSONAL VERIFICATION IN THE OFF-LINE AND OFF-HOST MODES
	PAC of Reference = leftmost m bits of EKA(EKA(ID) @ AP)
	Figure 11-10. Calculation of KP such that Cl =C2
	Figure 11-11. Personal Verification Using a Secret Authentication
	Figure 1 l-l 1 (co&d)

	Personal Verification with System-Selected PINS
	Figure 11-12. An Example of Off-Line Personal Verification

	Personal Verification with User-Selected PINS Employing Offsets
	Personal Verification with User-Selected PINS Employing PACs
	Figure 11-13. An Example of Off-Line Personal Verification
	Figure 11-14. Off-Line Personal Verification - PACoffi stored on Bank Card

	GUIDELINES FOR CRYPTOGRAPHIC DESIGNS
	Threats to PIN Secrecy
	Observation of the PIN
	Table 1 l-l. Security Properties of Different Cryptographic Methods-Separation of Personal Verification Process.
	Table 11-2. Security Properties of Different Cryptographic Methods-Separation of Message Authentication Process

	Bugging of Input Information at E FT Terminals
	Insertion of Fake Equipment
	Key Management Requirements
	Figure 1 l-15. Concepts Associated with Authentication
	Figure 11-16. Message Authentication-Universal Time Reference and Static Authentica-

	Threats to the Secrecy of a Key Stored on a Magnetic Stripe Card
	Figure 11-17. Message Authentication-System-Generated Time Reference and Static

	Lost Cards
	Stolen Cards
	Figure 11-19. Message Authentication-System-Generated Time Reference and Dynamic

	Copying Card Information
	Bugging of Input Information at EFT Terminals
	Insertion of Fake Equipment

	THE PIN/SYSTEM KEY APPROACH
	Table 11-3. Keys Used for Message Authentication-PIN/System Key Approach
	Table 11-4. Information Flow from Terminal to Issuer-PIN/System Key Approach
	Table 1 l-5. Information Flow from Issuer to Terminal-PIN/System Key Approach
	Key Management Considerations for PIN/System Key Approach
	Sharing of Secret Keys
	Cryptographic Translations
	Translation at the Issuer
	Protection Against Misrouted Data
	Defending Against the Misrouting Attack
	Figure 11-21. Generation of Test Pattern
	Figure 11-22. Authenticating a Translate Key using a Test Pattern

	A PIN/System Key Approach for Noninterchange
	A PIN/System Key Approach for Interchange
	Figure 1 l-23. TRANSLATE Operation - Encrypted Keys (Case 2)

	Disadvantages of the PIN/System Key Approach
	Exposure of Keys at the Entry Point
	Key Management is Not Robust
	Advantages of the PIN/System Key Approach

	THE PIN/PERSONAL KEY APPROACH
	Description of a PIN/Personal Key Approach Using a Magnetic Stripe Card
	Key Management Considerations for PIN/Personal Key Approach
	Advantages of the PIN/Personal Key Approach
	End-To-End Protection Between the User and Issuer
	Objections to the PIN/Personal Key Approach Using a Magnetic Stripe Card
	A Key on the Magnetic Stripe Card Cannot be Protected
	A Key on the Magnetic Stripe Card Must be Shared with the Terminal
	Exposure Due to Misuse of Personal Keys and Fake Personal Keys
	No Interlocking with KP
	Personal Key Approach with an Intelligent Secure Card
	An Ideal Intelligent Secure Card
	Table 11-6. Keys Defined for the PIN/Personal Key Approach Using an Intelligent Secure Card

	A Practical Intelligent Secure Card
	Table 11-7. Information Flow from Card to Issuer-PIN/Personal Key Approach with Intelligent Secure Card
	Table 1 l-8. Information Flow from Issuer to Terminal-PIN/Personal Key Approach with Intelligent Secure Card

	THE PIN/PERSONAL KEY/SYSTEM KEY (HYBRID KEY MANAGEMENT)
	Description of a Hybrid Key Management Approach
	The Reason for Doubly Encrypting KSTR
	Figure 11-24. Generation of KP, PIN, and KTRl in Issuer’s Security

	PIN and KP Selection
	PIN and KP Validation
	Figure 11-25. Regeneration of the Transaction Key on the Bank Card -

	System Key Generation
	Key Management Considerations for the Hybrid Approach
	Hybrid Key Management Approach for Noninterchange
	Figure 11-26. Transaction Request Message Formatted at the EFT Terminal
	Figure 11-27. Generation of the Transaction Request Message and MAC at the EFT Terminal
	Figure 1 l-28. Message Authentication at the Issuer’s EDP System

	Hybrid Key Management Approach For Interchange
	Figure 11-29. Generation of the Positive Transaction Response Message at the Issuer
	Figure 11-30. Message Authentication at the EFT Terminal

	Cryptographic Considerations for an Intelligent Secure Card
	Security Enhancements with Digital Signatures
	Table 11-9. Keys Referenced in the Hybrid Approach
	Table 11-10. Information flow from Terminal to Issuer-Hybrid Approach

	Advantages

	KEY MANAGEMENT CONSIDERATIONS-SYMMETRIC
	Figure 11-31. Personal Key Approach with Asymmetric Al-
	Figure 1 l-32. Personal Key Approach with Asymmetric Algo-
	Figure 11-33. Personal Key Approach with Symmetric Algo-
	Figure 11-34. Personal Key Approach with Symmetric Algo-
	Table 11-12. Required Number of Keys for Asymmetric and Symmetric Algorithms-
	Figure 1 l-35. Symmetric Algorithm-Keys Required to Achieve Authentication and
	Figure 1 l-36. Asymmetric Algorithm-Keys Required to Achieve Authentication and
	Table 11-13. Required Number of Keys for Asymmetric and Symmetric Algorithms-
	Secrecy Without Authentication
	Table 11-14. Required Number of Keys for Asymmetric and Symmetric Algorithms-
	Figure 11-37. Protocol to Send Secret Document from A to B
	Figure 11-38. Interception of Secret Document by Opponent
	Figure 1 l-39. Routing of Bogus Document

	A CRYPTOGRAPHIC SYSTEM USING AN INTELLIGENT SECURE CARD
	Description of a Public-Key Management Approach
	DGSreq = DsKc [CE(Mreq)]
	DGSresp = DsKb [CE(Mresp)]
	PIN Selection
	Generation of the User’s Public and Private Keys
	Validation of the User’s PIN and Card Key
	Figure 11-40. Information Stored in the Data Base of the
	Figure 11-41. Information Stored on the Intelligent Secure Card

	Key Management Considerations for Asymmetric Algorithms
	Figure 11-42. Information Stored in the EFT Terminal

	Off-Line Use
	Figure 11-43. Off-Line Use

	On-Line Use in Interchange and Noninterchange
	Figure 11-44. On-Line Use-EFT Terminal
	Figure 11-45. On-Line Use-Issuer’s EDP System

	Additional Comments
	Figure 11-46. On-Line Use-El3 Terminal
	Table 1 l-15. Keys Defined for the Public Key Approach Using an Intelligent Secure Card
	Table 11-16. Information Flow from Card to Issuer-Public Key Approach with Intelligent Secure Card
	Table 1 l-17. Information Flow from Issuer to Terminal-Public Key Approach with Intelligent Secure Card

	CONCLUDING REMARKS
	GLOSSARY
	REFERENCES
	Other Publications of Interest

	Measures of Secrecy for Cryptographic
	ELEMENTS OF MATHEMATICAL CRYPTOGRAPHY
	Information Flow in a Conventional Cryptographic System
	Figure 12-1. Information Flow in a Conventional Cryptographic System

	A Cipher with Message and Key Probabilities
	Figure 12-2. A Cipher with Message and Key Probabilities
	Figure 123. Example in which Cryptogram yl has Four Meaningful Decipherments

	The Random Cipher
	Number of Meaningful Messages in a Redundant Language4
	Table 12-1. Individual Letter Frequencies in 4 Million Characters of English Text

	PROBABILISTIC MEASURES OF SECRECY USING A RANDOM CIPHER
	Probability of Obtaining the Key
	When Only Ciphertext Is Available for Analysis
	Table 12-2. p(SK) Values for a Random Cipher

	An Example of Simple Substitution on English (Ciphertext Only)
	Table 123. Average Number of Different Letters in N Letters of English Text
	Table 12-4. Values of p(SK) for N Near ud Given that a Random Cipher is used to

	Probability of Obtaining the Key When Plaintext and
	Probability of Obtaining the Key When Plaintext and
	Probability of Obtaining the Plaintext
	Table 12-5. Values of p(SM) and E(U) where the Number of Keys is Fixed (n = 32)

	AN EXPANSION OF SHANNON’S APPROACH
	Information Measures9
	Unicity Distance for a Cipher When Only Ciphertext
	Unicity Distance for a Cipher When Plaintext and
	Relationships Among Ho(IY), H(lllV), and H&l& V)
	Unicity Distance for the Data Encryption Standard

	WORK FACTOR AS A MEASURE OF SECRECY
	The Cost and Time to Break a Cipher
	Simple Substitution on English-Some Preliminaries
	Table 12-6. Values of “a” and “1 -a” for Different Values of c

	Empirical Results for Simple Substitution
	Table 12-7. Statistical Estimates for Probability of Successful Message Attack for Simple

	Empirical Results for Simple Substitution
	ETAOINSRHLDCUMFPGWYBVKXJQZ
	Comparison of Results
	Table 12-8. Statistical Estimates for Key Recovery, Message Recovery, and Processing Time
	Table 12-9. Statistical Estimates for Probability of Successful Message Attack, Key Recovery, and Message Recovery
	Figure 12-6. Comparison of p(SM) as a Function of Ciphertext Length Using a Single-Letter Frequency Analysis

	REFERENCES
	Other Publications of Interest

	APPENDIX A
	FIPS Publication 46

	APPENDIX B
	Further Computations of Interest

	APPENDIX C
	Plastic Card Encoding Practices and

	APPENDIX D
	Some Cryptographic Concepts and

	APPENDIX E
	Cryptographic PIN Security-Proposed

	APPENDIX F
	Analysis of the Number of Meaningful

	APPENDIX G
	Unicity Distance Computations

	APPENDIX H
	Derivation of p(u) and p(SM)

	Index

