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Preface

This book deals with today’s cryptography. Unlike past classical schemes
used for the concealment of diplomatic and military secrets of monarchs and
government officials at all levels, today’s cryptography must provide cost-
effective, secure approaches for protecting the vast amounts of digital data
gathered and communicated with electronic data processing (EDP) systems.
Consequently, the material in this book is intended for the increasing number
of both technical and nontechnical people concerned with computer data
security and privacy.

Advances in cryptography appeared with unprecedented frequency in the
1970s as strong encryption-based protocols and new cryptographic appli-
cations emerged. On January 15, 1977, the National Bureau of Standards
adopted an encryption algorithm as a Federal standard—The Data Encryp-
tion Standard (DES)—marking a milestone in cryptographic research and
development. Subsequently, in December 1980, the American National
Standards Institute adopted the same algorithm for commercial use in
the United States. Another milestone was set by the proposal of a new con-
cept called Public Key Cryptography, an approach still being developed
and no standard algorithm yet agreed upon.

Many readers may find themselves unacquainted with cryptography, but
confronted with problems of cryptographic design or the implementation of
cryptographic protection at some level within a communications network
or EDP system. To meet the approaching challenges to the technical world,
full coverage of these aspects of cryptography is provided.

It is noteworthy that cryptography is the only known practical means
for protecting information transmitted through a large communications
network, be it telephone line, microwave, or satellite. A detailed discus-
sion of how cryptography can be used to achieve communications security
(COMSEC) is provided. Moreover, various attack scenarios are discussed so
that the engineer and systems designer can understand and appreciate the
problems and difficulties involved in providing a cryptographically secure
COMSEC solution.

Cryptography can be used to achieve file security. A protocol is developed
for the encryption of data stored on removable media. Enhanced authentica-
tion protocols, including personal verification, message authentication, and
digital signatures, can also be achieved through cryptographic techniques.
These subjects are of particular interest to those concerned with electronic
funds transfer and credit card applications within the banking and finance
industry, or any other area where the originator, timeliness, contents, and
intended receiver of a message must be verified.

The banking and finance industry has been the leader in promoting the
use of cryptography for protecting assets transferred via messages sent
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through large networks of computers and terminals. To address this subject
properly, we have reprinted a significant portion of the PIN Manual, pre-
pared by the staff of MasterCard International, Inc., and previously available
only through MasterCard’s Security Department. This material is augmented
by our detailed analysis of EFT systems security. A set of EFT security re-
quirements is presented. It should be evaluated by those designing or plan-
ning EFT applications. Various implementations are discussed, including
design trade-offs and techniques for achieving superior security in future
systems.

Any key-controlled cryptographic algorithm, such as the DES, requires a
protocol for the management of its cryptographic keys. The details of a key
management scheme providing support for the protection of communications
between individual end users (end-to-end) and for the protection of data
stored or transported on removable media are given. Procedures for the safe
and secure generation, distribution, and installation of cryptographic keys
are also discussed.

Shannon’s treatment of cryptography (in his landmark paper on Secrecy
Systems) has been used as a starting point for the coverage of the subjects of
unicity distance and work factor. Both statistical and information theory
approaches are given, providing the reader with a more thorough understand-
ing of the approaches for achieving cryptographic strength.

This book is intended for those people interested in understanding the
role of cryptography in achieving high levels of computer data security. Per-
haps of even greater importance is the fact that cryptography is identified as
a complete solution to some data security problems. For others, it provides
only a partial solution, but this is equally important to an understanding of
what problems can and cannot be solved using cryptography. Engineers,
designers, planners, managers, academicians, and students can benefit from
one or more of the practical and theoretical subjects treated in the text.

The state-of-the-art material for this book was derived from our involve-
ment in research and development efforts in the field of cryptography, and
more generally from our work in the field of data security.

The views expressed in this book are those of the authors and not neces-
sarily those of the IBM Corporation.

Starting with the third printing, the function for generating redundant informa-
tion for a message integrity check has been changed from modulo two addition,
which was found to have certain undesirable properties, to modulo 2% addition.
The change affects pages 69, 79, 82-83, 101-105, 257-259, 361, 385, 399, 400-401,
411-415.

Carl H. Meyer
Stephen M. Matyas

Kingston, New York
July, 1982
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CHAPTER ONE

The Role of Cryptography in Electronic
Data Processing

CRYPTOGRAPHY, PRIVACY, AND DATA SECURITY

Organizations in both the public and private sectors have become increasingly
dependent on electronic data processing. Vast amounts of digital data are
now gathered and stored in large computer data bases and transmitted be-
tween computers and terminal devices linked together in complex communi-
cations networks. Without appropriate safeguards, these data are susceptible
to interception (e.g., via wiretaps) during transmission, or they may be
physically removed or copied while in storage. This could result in unwanted
exposures of data and potential invasions of privacy. Data are also susceptible
to unauthorized deletion, modification, or addition during transmission or
storage. This can result in illicit access to computing resources and services,
falsification of personal data or business records, or the conduct of fraudulent
transactions, including increases in credit authorizations, modification of
funds transfers, and the issuance of unauthorized payments.

Legislators, recognizing that the confidentiality and integrity of certain
data must be protected, have passed laws to help prevent these problems.
But laws alone cannot prevent attacks or eliminate threats to data processing
systems. Additional steps must be taken to preserve the secrecy and integrity
of computer data. Among the security measuras that should be considered
is cryptography, which embraces methods for rendering data unintelligible
to unauthorized parties.

Cryptography is the only known practical method for protecting informa-
tion transmitted through communications networks that use land lines,
communications satellites, and microwave facilities. In some instances it
can be the most economical way to protect stored data. Cryptographic
procedures can also be used for message authentication, digital signatures,
and personal identification for authorizing electronic funds transfer and
credit card transactions.

Attack Scenarios

The possibility exists that unauthorized individuals can intercept data by
eavesdropping. In fact, there are several methods of eavesdropping.
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Wiretapping. Interception of individual transmissions over communica-
tion lines by using hardwire connections.

Electromagnetic Eavesdropping. Interception of wireless transmissions,
for example, radio and microwave transmissions, or information-bearing
electromagnetic energy emanating from electronic devices.

Acoustic Eavesdropping. Interception of sound waves created by the
human voice or by printing, punching, or transmitting equipment. (This
method of eavesdropping is listed for reference only. In almost all cases,
physical security measures rather than cryptography are effective against
this threat.)

Eavesdropping is completely passive: the opponent only listens to or records
information being transmitted.! An attack involving only eavesdropping is
called a passive attack. If, in addition, the opponent modifies transmitted
information or injects information into the communication path, the attack
is called an active attack.

In a passive attack, a tape recording of digitial data intercepted from a
communication path is made. The data can be reconstructed by analyzing
the recording tape or playing it back into suitable receiving equipment
(e.g., a modem? and terminal). In an active attack, a terminal and modem
compatible with the transmission line are necessary, and, in some cases, a
minicomputer that can quickly modify intercepted information may be
required.

Cables running between building offices and telephone company junc-
tion boxes located inside the user’s premises are particularly vulnerable to
wiretapping. The many lines of a telephone cable are separated at the boxes
and usually are labeled. A wiretap can be performed by almost anyone; no
special technical skills are required and the necessary equipment is relatively
inexpensive. However, once the lines are outside the building, and until they
reach telephone company switching facilities, access to selected lines becomes
more difficult.? Effective attacks are nevertheless still possible.

Interception of radio and microwave transmissions poses a particularly
subtle threat because a physical connection (tap) to the transmission link is
not required. However, because microwave links, including those used in
satellite communications, can contain several thousand channels, sophisti-
cated and expensive equipment [ 1] may be required to intercept and separate
channel signals. Despite this cost, the reward for a successful attack can be
extremely great.

11t is common practice to use the term wiretapping to refer to the interception of all
forms of voice and data communications, regardless of whether that information is
transmitted via communication lines, radio, or microwave.

2 A modem is a device used to link a terminal (or other transmititing device) and the com-
munication channel. It modulates and demodulates, i.e., converts digital signals to analog,
and vice versa.

3Within telephone company switching facilities, interception may require collusion with
telephone company personnel.
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According to a July 1977 article in The New York Times [2]:

the Russians, using advanced scientific equipment, have been “plucking” from the
air many long-distance [telephone] calls transmiited by microwaves, or ultrahigh-
frequency radio signals. They then used massive high-speed computers to locate
sensitive information in the transmissions.

were purportedly used aslistening posts
ment telephone calls.

Every operating electronic device emits electromagnetic energy. For those
devices handling data, it is important to know whether the energy level of
any information-bearing emanations is high enough (and distinct enough)
for an opponent to detect and interpret the data contained therein. Usuaily
the answer is no. When the equipment in question has integral shielding that
can reduce the information-bearing emissions to below threshold levels for
all but the most sophisticated detection equipment, such eavesdropping is
difficult and expensive [1]. However, for unshielded digital electronic devices
employing slow-speed serial data streams, the complexity and costs of
eavesdropping diminish.

In the absence of strong cryptographic protection, an eavesdropping op-
ponent may learn enough about the operational procedures of the system,
including passwords, to defeat any security mechanisms.

In applications involving automated teller machines (ATMs) that have
the capacity to dispense cash, a passive wiretap may permit an opponent to
obtain information (personal identifier, password) needed to impersonate
legitimate ATM users. With an active wiretap, an opponent could inject
unauthorized messages to obtain funds illegally. In other applications in-
volving electronic funds transfer (EFT), the opponent, by masquerading as
one bank, could send a message to another bank specifying that money be
credited to an account previously established. The opponent could then
withdraw from the account before the deception could be detected through
normal auditing procedures.

Although there is little evidence publicly available to indicate how much
eavesdropping has actually taken place, the potential for such activity has
raised concerns about the confidentiality of personal affairs and business
transactions. It is reasonable to anticipate problems when eavesdropping is
the most practical means to achieve the desired result, especially when the
payoff is great enough and the nature of the punishment, if discovered, is
small enough to justify the crime!

EFT systems, which move many billions of dollars between financial
institutions linked together in a communications network, represent a
tempting target. Recognizing the threat, the Federal Reserve System has
begun to install cryptographic devices on some of its communication lines [3].

Cryptography is the only practical means for protecting the confidentiality

~ _“A o
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The Russian Embassy in Washington, D.C. and at least five other locatlons
t rm ate a

4Computers can locate certain words or sets of words, certain voice prints, and certain
dialed numbers for selection of which calls to monitor.
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it is elther 1mposs1b1e or impractical to protect the information by conven-
tional physical means. A cryptographic system properly implemented can
prevent much eavesdropping damage. Also, damage resulting from message
alteration, message insertion, and message deletion can be avoided. And in

some cases a cryptographic system can reduce the severity of problems

caused by the accidental exposure of misrouted information.

Administrative and physical security procedures often can provide ade-
quate protection for off-line data transport and storage. However, where
file security methods are either nonexistent or weak, encryption may provide
the most effective and economical protection.

A more complete treatment of eavesdropping techniques can be found in
James Martin’s Security, Accuracy and Privacy in Computer Systems [1}.

Technical Implications of Privacy Legislation

Privacy, as it involves collections of personal data, relates to the right of
individuals to control or influence what information about them may be
collected and stored, and by whom, for what specific reasons, and to whom
that information may then be disclosed. Privacy also relates to the right of
individuals to know that information about them has been compiled and
that it is correct and complete enough for the intended uses. Furthermore,
individuals should be able to expect that information relating to them will
not be made available tp others they have not authorized, and they should
have the right to challenge the accuracy of such information. (See Westin’s
Privacy and Freedom [4]).

From a technical viewpoint, the requirements of privacy legislation,
both enacted and pending, generally apply to the categories of data collec-
tion (record keeping, information manipulation, communication and storage)
and information controls (system accountability and integrity, and informa-
tion dissemination and presentation). Although privacy is a legal, social,
and moral concern, privacy legislation has specific technical implications.

To understand the technical implications of privacy statutes, one must
review such legislation and look to concepts borrowed from existing law in
an attempt to foresee how courts may interpret and apply new legislation.
To date, the Privacy Act of 1974 [5] has been the most significant piece of
legislation enacted in the United States concerning computers and data
security. The act is prefaced by several congressional findings, such as:

The increasing use of computers and sophisticated information technology, while
essential to the efficient operation of the government, has greatly magnified the
harm to individual privacy that can occur from any collection, maintenance, use,
or dissemination of personal information.

In view of these findings, the act provides for certain safeguards concerning
information systems. Although it is limited to federal agencies and certain
government contractors, several provisions are pertinent to a discussion of data
security in all computer applications. Each federal agency must accurately
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record disclosures of certain types of information under that agency’s con-
trol. The act also requires each agency to establish “rules of conduct” for
persons involved in the design, development, operation, or maintenance of

any system of records involving personal data.

The act further reqhires that each agency take certain steps to maintain
the confidentiality of records held by that agency. Each agency must

establish appropriate administrative, technical, and physical safeguards to ensure

the cacurity and caonfidentialitv of recorde and to nrotact aoaingt anv anticinated
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threats or hazards to their security or integrity which could result in substantial
harm, embarrassment, inconvenience, or unfairness to any individual on whom
information is maintained. [6]

In July 1977, the Privacy Protection Study Commission established under
the act urged, in its final report to the President and to Congress, that certain
corrections be made to the act so that obligations imposed by the law would
be more realistic. For example, the commission recommended that federal

agencies should be required to

establish reasonable administrative, technical, and physical safeguards to assure
the integrity, confidentiality and security of its individually identifiable records so
as to minimize the risk of substantial harm, embarrassment, inconvenience, or un-
fairness to the individual to whom the information pertains. [8]

The question of what are reasonable safeguards depends on two factors:
standard of care and state of the art. The standard of care as applied by the
courts would be the so-called standard of reasonable care—the care that
reasonable persons, similarly situated, would take under similar circumstances.
In the case of The T. J. Hooper [9], a federal court declared

In most cases, reasonable prudence is in fact common prudence; but strictly it is
never its measure; a whole calling may have unduly lagged in the adoption of new
and available devices. It never may set its own test, however persuasive be its usages.
Courts must in the end say what is required; there are precautions so imperative
that even their universal disregard will not excuse their omission.

How then will the courts decide what is required? Reasonable care depends
on the probability and gravity of the harm balanced against the burden and
cost of taking sufficient precautions to prevent the harm. A common sense
cost/benefit analysis is thus one method of determining what is reasonable.
State of the art concerns itself with whether a certain technological device
or process is technically feasible and commercially available. While to a sci-
entist the question of technology may be a relatively objective one, to a court
it may necessarily involve policy considerations. A court might well consider
the question of technological feasibility along with economic and public
interest considerations. What, then, can be said with regard to cryptography?
Although its cost may still be significant, cryptography currently is the
only known practical method to achieve communication security. It repre-
sents the only mechanism that can meet the state of the art requirement in
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providing such protection. Moreover, for some federal agencies and private
organizations, cryptography may be the only practical way to satisfy the
requirements of existing or proposed privacy legislation. With a strong en-
cryption procedure available to the general public, and with cryptographic
systems also publicly available, cryptographic protection of data has become
both technically feasible and commercially achievable.

Further incentive for the implementation of cryptography as a means of
protecting assets or data that represent assets may also come from the
Foreign Corrupt Practices Act of 1977 [10]. This amendment to the Securities
and Exchange Act of 1934 requires every issuer of stock listed on a national
exchange to make and keep books, records, and accounts which, in reasonable
detail, accurately and fairly reflect the transaction and disposition of corpor-
ate assets. The act obliges the corporation and its management to devise and
maintain a system of internal accounting controls to provide reasonable
assurance that “access to assets is permitted only in accordance with manage-
ment’s . . . authorization” [11].

These provisions apply to all corporate transactions, whether or not they
are “foreign’ or “‘corrupt.” In addition to corporate fines, criminal penalties
of fines and/or imprisonment may be imposed on officers and directors for
violations. Assuring that access to assets or data that represent assets is per-
mitted only with management’s authorization may require, in certain appli-
cations, the use of protective measures that cryptography can offer.

Since laws and regulations are constantly updated, specific applications
and security measures should be reviewed with one’s own legal counsel. For
additional reading material and references dealing with privacy legislation,

see Lance J. Hoffman’s Modern Methods for Computer Security and Privacy
[12].

THE DATA ENCRYPTION STANDARD

Martin [1] has stated, “If cryptography is worth using at all, it should be
used well.” In other words, high-quality cryptography must be the objective
of the algorithm designer. Less secure approaches, although attractive for
economic or performance reasons, can lead to a false sense of security. And
cryptography that is scarcely more than a nuisance to the opponent is there-
fore worse than no cryptography at all. Thus high-quality cryptography is
the best way to ensure effective cryptographic protection of data, even
though skilled and determined opponents will always present a threat.
Recognizing the need to adopt a standard algorithm® for the encryption
of computer data, the National Bureau of Standards (NBS) published a notice
in the Federal Register on May 15, 1973, in which it solicited proposals for

5 An algorithm is a procedure for calculating the value of some quantity or for finding the
solution to some mathematical problem that frequently involves repetition. (See also
Cryptographic Algorithms, Chapter 2.) Note that references outside a chapter are designated
by the heading and chapter number, whereas references within a chapter are designated only
by the heading.
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“cryptographic algorithms for [the] protection of computer data during
transmission and dormant storage’” [13]. In part, the notice read:

Ner thha 1o Annnda +tha hao hansn an ansalarating innvanon in tha aps
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tions and communication of digital data by government, industry and by other
organizations in the private sector. The contents of these communicated and stored
data often have very significant value and/or sensitivity. It is now common to find
data transmissions which constitute funds transfers of several million dollars, pur-
chase or sale of securities, warrants for arrests or arrest and conviction records being
communicated between law enforcement agencies, airline reservations and ticketing
representing investment and value both to the airline and passengers, and health
and patient care records transmitted among physicians and treatment centers.

The increasing volume, value and confidentiality of these records regularly trans-
mitted and stored hv commercial and government agencies has led to heishtened
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recognition and concern over their exposure to unauthorized access and use. This
misuse can be in the form of theft or defalcations of data records representing
money, malicious modification of business inventories or the interception and mis-
use of confidential information about people. The need for protection is then ap-
parent and urgent.

It is recognized that encryption (otherwise known as scrambling, enciphering or
privacy transformation) represents the only means of protecting such data during
transmission and a useful means of protecting the content of data stored on various
media, providing encryption of adequate strength can be devised and validated and
is inherently integrable into system architecture. The National Bureau of Standards
solicits proposed techniques and algorithms for computer data encryption. The
Bureau also solicits recommended techniques for implementing the cryptographic
function; for generating, evaluating, and protecting cryptographic keys; for main-
taining files encoded under expiring keys; for making partial updates to encrypted
files; and mixed clear and encrypted data to permit labeling, polling, routing, etc.
The Bureau in its role for establishing standards and aiding government and industry
in assessing technology, will arrange for the evaluation of protection methods in
order to prepare guidelines.

In a second notice on August 27, 1974, the NBS again solicited crypto-
graphic algorithms. Basically, the two notices stated that the NBS recognized
the “‘apparent and urgent” need for data protection within government and the
private sector, and that encryption is the “only means’ for protecting commu-
nicated data, and a “useful means” for protecting stored data. The NBS there-
fore solicited “proposals for algorithms for the encryption of computer data”
and agreed to ““arrange for the evaluation’ of these algorithms in order to “se-
lect those algorithms suitable for commercial and non-defense goverment use.”

The requirements that NBS imposed for acceptable encryption algorithms
included the following.

1. They must be completely specified and unambiguous.

2. They must provide a known level of protection, normally expressed
in length of time or number of operations required to recover the key
in terms of the perceived threat.

Next Chapter
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3. They must have methods of protection based only on the secrecy of
the keys.

4. They must not discriminate against any user or supplier.

On August 6, 1974, International Business Machines Corporation (IBM)
submitted a candidate algorithm that had been jointly developed by person-
nel at the company’s research laboratory in Yorktown Heights, New York
and at its Kingston, New York development laboratory.

According to the NBS, only one algorithm (the one submitted by IBM)
was found acceptable. (Because cryptographic expertise within the govern-
ment is almost totally resident within the National Security Agency (NSA),
and NSA is the national communications security authority, NBS requested
and obtained assistance from NSA in assessing the strength of candidate
algorithms [14]). This wrﬂ'gorithm formed the basis for the proposed Data
Encryption Standard (DES). On March 17, 1975, the NBS published the
algorithm stating its intent to have it considered as a Federal Information
Processing Standard and requesting comments on the algorithm and its
submission as a standard. On July 15, 1977, the proposed DES became a
federal standard.

DES applies only to federal departments and agencies for the cryptographic
protection of computer data not classified according to the National Security
Act of 1974, as amended, or the Atomic Energy Act of 1954, as amended
[151.% However, since the standard may be adopted and used by organiza-
tions outside the federal government, the NBS has provided the private
sector with a cryptographic algorithm that has been found, after intensive
analysis,” to be free from any known shortcut solution. DES has also been
adopted by the American National Standards Institute (ANSI), on the rec-
ommendation of the Committee on Computers and Information Processing
(X3), as the standard industry algorithm (““Data Encryption Algorithm,”
X3.92).

Incorporation of DES in computers and related peripheral devices can
eliminate cryptographic algorithm incompatability between different manu-
facturers’ equipment. Moreover, costs associated with the development and
validation of comparable cryptographic algorithms can be avoided.

For a more detailed history of DES, see Ruth M. Davis’ “The Data Encryp-
tion Standard in Perspective’ [16].

DEMONSTRATING EFFECTIVE CRYPTOGRAPHIC SECURITY

Developing a strong cryptographic algorithm involves two endeavors: design
and validation. Algorithm design consists of specifying criteria and inventing

6Supplemental interpretation of the standard has allowed its use in selected classified
areas [17].

"Seventeen man-years of effort were expended by IBM personnel to design and validate
DES. Several consultants were employed by IBM to provide additional assistance and
analysis. Subsequently, an independent validation of the algorithm was initiated by the
NBS and performed by the NSA.
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a candidate algorithm that satisfies those criteria. Algorithm validation con-
sists of subjecting the candidate algorithm to a thorough, intensive, and rig-
orous analysis (cryptanalysis).

Algorithm validation is performed by an ‘“‘attack’ team playing the role
of opponent or antagonist. Attempts are made to uncover weaknesses that
might lead to an attack against the algorithm, and to break the algorithm by
using all known methods of attack for that type of algorithm. In the absolute
sense, a cryptographic algorithm is attack-proof (perfectly strong) only if
there is no procedure or method that can be successfully used to attack
(break) it. Thus, to certify that an algorithm is attack-proof requires the
proof of a negative hypothesis: the nonexistence of a procedure for breaking
the algorithm. In general, such proofs are impossible.®

Since it is impossible to prove that an algorithm is attack-proof, a compro-
mise is necessary. The dilemma must be resolved (to an acceptable point)
by performing algorithm validation on a best-effort basis. An algorithm is
considered strong (resistant to certain types of attack) if no exploitable
weakness can be uncovered during the validation effort. Thus the basis for
developing or creating a strong cryptographic algorithm requires an extensive
knowledge of how to break cryptographic algorithms. The proper applica-
tion of this knowledge helps to build a strong algorithm. In turn, the quality
of this measure of strength depends on the knowledge and expertise of the
attack team, and the scope, intensity, and duration of the investigation.
Ideally, the two tasks—design and validation—are performed by two indepen-
dent, and possibly competitive, groups. In practice, however, the design
and validation groups may interact. Such interaction is intended to provide
the means to uncover flaws and defects, thereby permitting the algorithm’s
designers to incorporate any necessary improvements.

A properly validated cryptographic algorithm of demonstrated strength
is the foundation upon which more sophisticated encryption-based protec-
tion schemes (communication and file security, message authentication, and
so forth) can be implemented. With any nonsecret, key-controlled crypto-
graphic algorithm, such as DES, the protection achieved through encryption
ultimately depends on how well the secrecy of the cryptographic keys can
be maintained. An opponent who obtains the key(s), as well as the encrypted
data, does not need to perform a cryptanalysis; since the algorithm is publicly
available, the key will directly “‘unlock” the data. Thus a strong cryptographic
algorithm alone does not automatically guarantee protection. Effective secu-
rity requires both a strong algorithm and secure procedures for generating,
distributing, installing, and managing keys.

It is not surprising that the problems encountered in cryptographic
algorithm design are also encountered in the design of encryption-based
protection schemes. These schemes are designed and validated in the same
manner as cryptographic algorithms. A favorable validation leads to a conclu-

8Such a proof is possible for the so-called one-time tape system (see Designing an
Algorithm, Chapter 2). A certifiably unbreakable cipher is obtained if a plaintext is
combined bit-by-bit or character-by-character with a truly random sequence of bits or
characters using a single, elementary, reversible operation (e.g., modulo 2 addition).
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sion that penetration of the system, although not certifiably impossible, is
at least demonstrably difficult or unlikely.

THE OUTLOOK FOR CRYPTOGRAPHY

In the late 1960s and early 1970s, data security began to be recognized as a
major design concern for data processing (DP) systems. During this period,
systems were designed to operate reliably only in environments subjected to
“random noise”—power line disturbances, spurious electromagnetic radiation,
equipment malfunction, programming errors, and the like. Few, if any,
precautions were taken to protect the secrecy of computer data, or to defend
it against ‘““‘intelligent noise”—the deliberate actions of people intent on sub-
version. As a result, many systems were vulnerable to attack. Transmitted
data could be intercepted and data could be modified, deleted, or added to a
system. But today data processing system designers are more aware of these
threats, and cryptography is recognized as an important factor in the design
of secure systems.

Within the computer industry there is a movement toward more secure
systems. Cryptography is being used in selected high-risk applications. For
example, significant numbers of cash-issuing terminals employ DES to verify
the identity of customers. At IBM’s Thomas J. Watson Research Center at
Yorktown Heights, New York, a DES-based cryptographic system, known as
the Information Protection System (IPS), is used to protect stored computer
data [18]. International Flavors and Fragrances, Inc., uses DES to protect
valuable formulas transmitted via voice-grade public telephone lines [19].
Other designs for new and better cryptographic applications are being devel-
oped. Therefore, those responsible for the security of computer operations
and data should be prepared to include cryptographic measures in their
security system. Although many companies might not feel the need to en-
crypt their data, and even if they do, they might not use DES, according to
a statement in the December 1979 issue of EDP Analyzer, “there is a fairly
good chance they would be making a mistake on both counts—and particu-
larly the second” [20].

However, to derive the maximum benefits from cryptography, significant
planning is required to integrate it into system architectures properly, and
standards are necessary to assure cryptographic compatibility within applica-
tions and among devices implementing DES. In addition to establishing the
standard for computer data encryption [15], the NBS has published a stan-
dard on modes of DES operation [21] and is investigating file encryption
in order to issue yet another standard for this cryptographic application.

Efforts by the Technical Committee on Encryption (X3.T1) on behalf of
the American National Standards Institute (ANSI) have resulted in the adop-
tion of DES as an ANSI standard [22]. In addition, the committee is de-
veloping standards for DES modes of operation and DES devices operating at
the communications link level. Work is in progress to develop additional
cryptographic standards for higher levels of communication protection as
well as for removable file media.
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ANSI technical committees involved with the finance industry are devel-
oping application standards to address the broad subject of electronic funds
transfer systems, including methods using DES for consumer-initiated elec-
tronic financial transactions as well as transaction data authentication.

Other government agencies besides the NBS have drafted additional
application standards involving DES and DES equipment. Proposed Federal
Standard 1026 [23] specifies the interoperability and security requirements
for use of DES. Proposed Federal Standard 1027 [24] specifies the minimum
physical and electrical security features of devices implementing DES.

The development of cryptographic standards is a lengthy process. Pro-
posed Federal Standard 1026, for example, represents more than three years
of work. ANSI adopted DES more than three years after its adoption by the
U.S. Federal Government. The time necessary to draft and adopt crypto-
graphic standards is relative to the time necessary to design, test, manufacture,
and install cryptographic computer equipment. Thus to meet the challenges
and demands in the emerging field of system security, data processing people
should begin their cryptographic education, research, and planning now.
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CHAPTER TWO

A basic problem in cryptography is devising procedures to transform mes-
sages (plaintext) into cryptograms (ciphertext) that can withstand intense
cryptanalysis—the techniques used by opponents to penetrate encrypted
communications and recover the original information.

The procedures used to accomplish such transformations involve either a
code system or a cipher system. Code systems require a code book or dic-
tionary that translates words, phrases, and sentences of plaintext vocabulary
into their equivalent ciphertext code groups. However, the number of plain-
text groups that can be converted depends on the size of the code book.
Therefore, not every message can be encoded, and the versatility of these
code systems is limited.

On the other hand, cipher systems are versatile. They require two basic
elements: a cryptographic algorithm (a procedure, or a set of rules or steps
that are constant in nature); and a set of variable cryptographic keys. A key
is a relatively short, secret sequence of numbers or characters selected by
the user.

After introducing several concepts relevant to ciphers, this chapter dis-
cusses two particularly useful ciphers: block ciphers and stream ciphers.
Both conventional algorithms (e.g., DES) and public-key algorithms (e.g.,
the RSA algorithm and the trapdoor knapsack algorithm) are covered under
the subject of block ciphers.

Both block and stream ciphers can be used in communications and data
processing systems. With a block cipher, data are encrypted and decrypted
in blocks, whose length are predetermined by the algorithm’s designer. With
a stream cipher, the algorithm’s user determines the length of data to be en-
crypted and decrypted. This flexibility requires that stream ciphers, in addi-
tion to the algorithm and key, employ another parameter defined as an
initializing vector.

Different modes of encryption can be obtained with block and stream
ciphers by employing feedback methods (chaining), which establish depen-
dencies to past information. Chaining not only strengthens a cipher, but can
also be used to authenticate data even when privacy is not required. At the
end of the chapter, a comparison is made between block and stream ciphers.
Their relative strengths and ease of implementation are discussed.

13
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CRYPTOGRAPHIC ALGORITHMS

The cryptographic algorithm can be thought of as an extremely large number
of transformations, the particular transformation in effect depending on the
cryptographic key being used. Each transformation changes sequences of
intelligible data (plaintext) into sequences of apparently random data
(ciphertext). The transformation from plaintext to ciphertext is known as
encipherment or encryption. Each transformation must have a unique in-
verse operation, also identified by a cryptographic key. The inverse trans-
formation from ciphertext to plaintext is called decipherment or decryption.
(The term that encompasses both enciphering and deciphering operations is
ciphering.)

There are two types of cryptographic algorithms, conventional and public-
key. With a conventional cryptographic algorithm, the enciphering and de-
ciphering keys are either identical, or, if different, are such that each key can
be easily computed from the other. Thus knowledge of the enciphering key
is equivalent to knowledge of the deciphering key—when you have one, you
also have the other.!

A public-key algorithm, on the other hand, permits many users or nodes
within a communications system to encipher data using the same public key,
but only the specific user or node possessing the secret deciphering key can
“unlock™ or recover the data. In contrast, a conventional cryptographic
algorithm provides effective data security between two users or nodes within
a communications system only if these users or nodes have knowledge of the
same secret key.2

A parameter of a cryptographic algorithm that provides security because
of its secrecy is defined as a cryptographic variable. The cryptographic key
used in a conventional cryptographic algorithm and the private key used in a
public-key algorithm are examples of cryptographic variables. They are anal-
ogous to the secret combination for a safe.

Enciphering And Deciphering

Consider a representation for the process of enciphering and deciphering
with a cryptographic algorithm. (Boldface capital letters are used to define
sets, whereas set members are identified by either the corresponding lower-
case letters or in some cases the same capital letter not in boldface.) Let P
represent the collection of all possible plaintext combinations, and C the col-

'1n a conventional cryptographic algorithm it is common to treat the enciphering key and
corresponding deciphering key as identical quantities, even though they may differ.

2 The assumption is made here that the algorithm is known to the opponent and therefore
that the strength of the system depends on the key. Moreover, to be useful, the ap-
proaches described above must be based on a cryptographic algorithm of validated
strength (e.g., DES). The public-key concept is relatively new, and even though several
public-key algorithms have recently evolved, their strength has yet to be validated. There-

fore, emphasis is given here to encryption schemes based on conventional algorithms such
as DES.
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lection of all possible ciphertext combinations. The sets P and C are de-
scribed by displaying their members inside braces.

P={p13p23""pn}
C={c;,ca,...,Cmn}

The notation |P| represents the number of elements contained in the set P.
Hence |P| =n and |C| = m.

The enciphering process (Figure 2-1) can be described by a rule (E for en-
cipher) that associates with each element p in P a single element, ¢ = E(p), in C.
Each plaintext combination is assigned to a single ciphertext combination.

The deciphering process is described by another rule (D for decipher) that
relates each ciphertext element E(p) in C with its original plaintext, thus
assuring that the plaintext is correctly recovered from the ciphertext. It is
assumed here that the number of ciphertext combinations (six in Figure 2-1,
i.e., ¢; through cg) is larger than the number of plaintext combinations

C

-
-
-

—— . —

Set P contains all
plaintext combinations

Set C contains all
ciphertext combinations

Rule E (encryption process, solid lines) assigns to each element in P one ele-
ment in C.

Rule D (decryption process, broken lines) assigns to each of the elements in

C previously selected by Rule E, one element in P, such that the correct
plaintext combination is recovered.

Figure 2-1. The Ciphering Process
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(three in Figure 2-1, i.e., p; through p;). This situation can be illustrated
with a trivial example where plaintext consists of 26 alphabetic characters
and ciphertext consists of 26 alphabetic and 10 numeric characters. Thus
any one of the 36 ciphertext symbols can be used as a substitute for any one
of the 26 plaintext symbols.

The ideas discussed so far can be expressed in mathematical terms by
using the concept of a function. A function may also be called a transforma-
tion, an operator, or a mapping. This concept can be explained in terms of
the ciphering operation illustrated in Figure 2-1. The function is defined by
the following:

A set P called the domain of the function.
A set C called the co-domain of the function.

w o=

A rule E which associates with each element p of P a single element ¢
of C.

The function that describes the encipher operation is defined by two sets
(P and C) and a rule which assigns to each element in P one element in C.
Hence the encipher operation can be described by the notation (P, C, E). It
is customary to use the same symbol for the function and its rule. Hence, if
(P, C, E) is a function, then it is said that E is a function from P to C. This
statement can be written as

E:P—>C

If p is an element in P and ¢ the element in C that correponds to it under the
transformation (function) E, then one writes

E(p)=c

The set of all E(p) in P, also expressed as E(P), is defined as the range (or
image) of E. Hence the range E(P) is a subset of C. In Figure 2-1, the domain
of E is P, whereas the range of E is the set of elements {c,, c3, cs}

There are two properties of functions that need to be distinguished at this
point. A function f : P = C is called one-to-one whenever no two different
elements in P are represented by the same element in C; that is, whenever
p; # p; for p; and p;in P implies that f(p;) # f(p;). An equivalent statement is
that if f(p;)) = f(p;), then p; = p;if f is a one-to-one function. Since plaintext
can be recovered correctly only if each ciphertext element represents one
and only one plaintext element, all functions representing a cryptographic
algorithm must be one-to-one. Otherwise, upon decipherment there would
be more than one possible recovered plaintext, thus introducing ambiguity
into the decipherment process.

The number of possible one-to-one functions from the set of plaintext
elements (P) to the set of ciphertext\ elements (C) is determined as follows.
The first plaintext element may be transformed to any of |C| elements, the
second plaintext element to |C| — 1 elements, whereas the last plaintext ele-
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ment may be mapped to any of (|C| — |P|) + 1 elements. Therefore, the
total number of one-to-one functions is equal to the product of the number
of elements in C available to each plaintext element, namely

|C|.(|c|—1)-...'(|C|—|P|+1)=(|_C[_|%I)—!

where
nl=1+2+3+...*n (called n factorial)

(Note that 0! = 1.) In the example shown in Figure 2-1, where |P| = 3 and
|C| = 6, there are 120 possible one-to-one functions (6 + 5 - 4 = 120), of
which only one is shown.

If S denotes the set of possible one-to-one functions from P to C, then
there are [S| such functions, any one of which is a candidate to be used for
ciphering. Specifying a cipher key is the same as selecting one of these func-
tions. (How this is achieved in an actual design is explained in Chapter 3).
Since the cryptographic key is a cryptographic variable, the symbol v is used
to denote a key and the symbol V to denote a set of keys. (The symbols V
and v are used here to avoid conflicts with the symbols K and k, which are
used below to denote specific keys.) Since the total number of possible keys
is equal to r = | V], the set V can be expressed as

V= {V15V23 e ,Vr}
Let
E = {E,,E\,,...,E}

specify the corresponding set of functions defining the encipherment pro-
cedure, and let

D= {D,,,D Dy}

Var e e
specify the corresponding set of functions defining the decipherment pro-
cedure. Thus the algorithm consists of enciphering (E) and deciphering (D)
procedures, where E represents the set of all possible enciphering functions
(or transformations) and D represents the set of all possible deciphering
functions.

If the number of keys which can be independently specified exceeds the
number of one-to-one functions (i.e., |V| > |S|) there must be cases where
all plaintext-to-ciphertext correspondences are identical even though different
keys are used (ie., E,, = E,, even though v; # v;). Such keys are called
equivalent keys. Even if the number of Keys is less than the number of one-
to-one functions, |V| < |S|, equivalent keys may exist. In fact, for highly
complex algorithms, it may be too difficult to prove or disprove the exis-
tence of equivalent keys.
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Nevertheless, a good design principle that reduces the likelihood of equiv-
alent keys is to ensure that the number of possible keys is much less than the
number of possible one-to-one functions, (i.e., the condition |V| < [S] is
satisfied). For DES, the following conditions hold.

|P| = |C| = 2% (64 binary digits of data are enciphered at a time)
V| = 2% (56 binary digits uniquely identify a key)
IS| = (2%%)!

Since 2(64—5%6) = 256, it follows that
S| =256« |V|- (2% — 1)

and therefore it can be seen that | V| <€ |S| for DES.

A function f : P = C is called onto if the range of f is all of C (i.e., for
any given ¢ in C there exists at least one p in P such that f(p) = ¢). The func-
tion shown in Figure 2-1 is not onto, since some ciphertext combinations
(c,, ¢4, and cg) will not be generated as a result of enciphering all possible
plaintext combinations.

It has been established that all functions associated with a cryptographic
algorithm must be one-to-one. If they are also onto, then the number of ele-
ments in the sets P and C will be equal (i.e., the number of plaintext combin-
ations is equal to the number of ciphertext combinations). Figure 2-2 shows
two such cases, where there are 3 * 2 + 1 = 3! functions that are one-to-one
and onto. In general, there are [P|! such functions if |P| = |C|. In mathemat-
ical terms, this implies that each function f, has an inverse function, f,”!:

c = f,(p)

and

p=1£f,""'(c)
Work Factor

To implement a cryptographic algorithm conveniently, the key must be
fixed in length, relatively short, and capable of being used repeatedly without
weakening security. However, an algorithm that uses a finite key can, theo-
retically, always be broken (if by no other means than trial and error using
every possible key). The only question concerns how much work and resources
the opponent must expend. Fortunately, it is not necessary to implement
unbreakable algorithms provided that the work (or work factor) required to
break the algorithm is sufficiently great to discourage an opponent from
attacking it.

Work factor measures what is needed to carry out a specific analysis or
attack against a cryptographic algorithm. The attack is conducted under a
given set of assumptions which includes the information available to achieve
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Encipherment: denoted by a solid line

Decipherment: denoted by a broken line

Figure 2-2, Examples of Functions that are One-To-One and Onto

a predetermined goal such as the recovery of the plaintext or key.3? A good
cryptographic algorithm design maximizes the amount of work that an
opponent must expend to break it. Thus, for a given algorithm and set of
assumptions, the work factor is an expression of the minimum amount of
work necessary for a successful attack.

In practice, there is no universally accepted, fixed set of parameters used
to express the work factor. However, it is frequently measured in one or
more of the following: cryptanalyst hours, number of mathematical or
logical operations, computing resources (such as data storage and processing
requirements), special hardware, and calendar time. To be useful, the work
factor should be expressed using parameters which can be translated for the
purpose of comparison into a common base, such as cost in dollars.

3With some cryptographic attacks, there may only be a probability of success associated
with the recovery of the plaintext or key.
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Types of Attacks

In an exhaustive attack, an attempt is made to recover the plaintext or key
by using direct search methods. For example, in key exhaustion, a known
plaintext is enciphered with a trial key and the result is compared for equality
with the known corresponding ciphertext.® If only ciphertext is available, it
can be decrypted with the trial key and the resulting plaintext can be in-
spected to see if it makes any sense. In this way, it can be determined if the
trial key is a candidate for the unknown key or not.

Exhaustive attacks can be thwarted by making the number of required
trials very large. However, the work factor of an exhaustive attack, which is
directly proportional to the number of trials, is easily determined even when
the number of trials is so large that the attack is not feasible. This is not the
case with some other attacks.

In an analytical attack, a set of mathematical equations (obtained from a
definition of the cryptographic algorithm)® is solved for the variable or vari-
ables representing the unknown message or key. One way to thwart this
purely mathematical attack is to construct the algorithm so that each plain-
text bit is a sufficiently complex mathematical function of the ciphertext
and key, and each key bit is a sufficiently complex mathematical function of
the ciphertext and plaintext. If the mathematical equations describing the
algorithm’s operation are so complex that an analytical attack cannot be
successful, then a work factor for this method cannot be calculated. In that
case, one usually says that the work factor is very large, implying that the
algorithm cannot be broken in the practical sense.

Designing an Algorithm

It is possible to design unbreakable ciphers [1]. To do so, the key must
be randomly selected (i.e., each key must have the same chance of being
chosen) and used only once. Furthermore, the length of the key must be
equal to or greater than the length of the plaintext to be enciphered.® Un-
fortunately, long keys of this type, known as one-time tapes, are impractical
for most applications where there is considerable message traffic, since a
large number of keys must be transported and stored before communications
can be established.

There are two ways to design a strong cryptographic algorithm [2]. First,
one can study the possible methods of solution available to the cryptanalyst
—describing them in the most general terms possible—and then define a set
of design rules to thwart any one of these methods. An algorithm is then
constructed which can resist these general methods of solution. Second,
one can construct an algorithm in such a way that breaking it requires the

# This attack method assumes that the opponent knows the cryptographic algorithm and
possesses a fragment of plaintext and corresponding ciphertext.

5 The attack assumes that the opponent has knowledge of the cryptographic algorithm.

$The cipher is unbreakable because every message of the same length is equally likely
to have yielded the given ciphertext.
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solution of some known problem, but one that is difficult to solve. The
DES algorithm was designed using the first approach (Chapter 3), whereas
some public-key algorithms have been designed using the second approach
(Chapter 2).

Any procedure for attacking a cryptographic algorithm requires that
certain cryptographic information (such as ciphertext, plaintext and cor-
responding ciphertext) be available to carry out the attack. Therefore, the
set of procedures that can be used to attack an algorithm depends on the
information available to an opponent. Knowing the cryptographic informa-
tion an opponent might reasonably be able to obtain is thus the basis for de-
termining the class of attacks that the algorithm must be designed to resist.

The cryptographic algorithm, as well as the key, could be kept secret—an
approach employed by the military where tight security measures can be
enforced. (However, even here, it is ordinarily assumed during threat analyses
that attackers have everything except keys and, where applicable, sequencing
variables.) In nonmilitary sectors, however, where comparable security mea-
sures are impractical or unenforceable, it is unlikely that the secrecy of an
algorithm installed at many locations with differinglevels of physical security
can be maintained for an extended period of time. Moreover, where there are
many competing organizations and businesses, a policy of keeping the algo-
rithm secret would promote the widespread use of differing and therefore
incompatible algorithms with varying levels of cryptographic strength. An
approach that overcomes these difficulties is to adopt a single standard algo-
rithm whose strength has been carefully validated. Such an algorithm would
be in the public domain, and its security would depend only on the secrecy
of the cryptographic key. This strategy was used by the NBS in adopting the
DES algorithm.

Data useful in attacking cryptographic algorithms can be categorized as

follows.
1. Ciphertext only.
2. Unselected plaintext and corresponding ciphertext.
3. Selected plaintext and corresponding ciphertext.
4. Selected ciphertext and corresponding plaintext.

Encrypted messages (ciphertext) can be intercepted by wiretapping during
transmission; encrypted data files can be copied or stolen from their storage
locations (see Attack Scenarios, Chapter 1).

A fragment of plaintext can usually be deduced from some intercepted
ciphertext because of the highly formatted text present in most messages
and data files. On the other hand, an opponent who could obtain the use of
a cryptographic device containing a secret key might (depending on the par-
ticular implementation) be able to encipher selected plaintext or decipher
selected ciphertext. However, proper physical security and access control
procedures are an effective means to prevent unauthorized use of crypto-
graphic devices.

While an opponent’s access to certain information (such as ciphertext)
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cannot be denied, other information may become known as a result of one
or more of the following:

1. A deliberate act that depends on the opponent’s skill, daring, and
persistence.

2. An unintentional act involving carelessness or ignorance on the part
of a cryptographic system’s user.

3. An unknown and hence unanticipated event for which no present
defense exists.

Except in rare cases, it is impossible to state absolutely that certain informa-
tion will never become available to an opponent under all operating conditions
and environments in which the algorithm may be implemented. Therefore,
a conservative approach must be used in algorithm design. It is assumed that
the opponent has a wide range of information that might be useful in attack-
ing the algorithm. The algorithm is then designed to resist all known attacks
made possible by this information.

Also, it is impossible to state absolutely that an algorithm is free from all
possible attacks. Therefore, a conservative approach must likewise be used in
the design of a system, such as a communication or file security system, which
implements a cryptographic algorithm. It is assumed that the opponent has
knowledge of a wide range of attacks that might be capable of breaking the
algorithm. The system is then designed to deny the opponent the information
needed to carry out the attacks.

In summary, the design of a strong cryptographic algorithm must satisfy
the following conditions:

1. The mathematical equations describing the algorithm’s operation are
so complex that, for all practical purposes, it is not possible to solve
them using analytical methods.

2. The cost or time required to recover the message or key is too great
when using methods that are mathematically less complicated, because
either too many computational steps are required (as in the case of
message or key exhaustion), or too much data storage is required (as
in the case of attacks requiring large accumulations of information
such as frequency tables and dictionaries).

Furthermore, it is assumed that the above conditions are satisfied even when
the opponent has the following advantages:

1. Relatively large amounts of plaintext (specified by the opponent, if
he so desires) and corresponding ciphertext are available.

2. Relatively large amounts of ciphertext (specified by the opponent)
and corresponding plaintext are available.

3. All details of the algorithm are available. (It is not assumed that
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cryptographic strength depends on maintaining the secrecy of the
algorithm.)

4. A number of large high-speed computers (determined by the resources
available to the opponent) can be used for cryptanalysis.

The distinction between strong and unbreakable should be apparent. While
in theory a strong algorithm can always be broken, in the practical sense it
cannot. Unbreakable is an absolute attribute and means that even with an
unlimited amount of computational power, data storage, and calendar time,
there is no way to obtain the message or key through cryptanalysis. So to
speak, strong is a variable, and unbreakable is its maximum value.

Block ciphers and stream ciphers are two fundamentally different ap-
proaches which can be used to achieve strong encryption-based protection
schemes. The study of these two approaches is thus basic to an understanding,
and even a full appreciation, of the direction in which cryptography is cur-
rently moving.

Since the main thrust here is to show how cryptography can be used in
computer systems, all cryptographic discussion will assume that information
is expressed in binary form. The treatment is still general, since any characters
can be encoded into binary equivalents.

BLOCK CIPHERS

A block cipher (Figure 2-3) transforms a string of input bits of fixed length
(an input block) into a string of output bits of fixed length (an output block).
The enciphering and deciphering functions are such that every bit in the out-
put block depends jointly on every bit in the input block and on every bit
in the key.

A cipher’s blocksize (the number of bits in a block) is determined by
considerations of cryptographic strength, and it must be large enough to

Input Block Input Block
(Plaintext) (Ciphertext)
Key . Key
(Enciphering Key) »| Encipher (Deciphering Key) »| Decipher
Output Block Output Block
(Ciphertext) (Recovered Plaintext)
(@ ®

Figure 2-3. Block Cipher



Previous Chapter Previous Page Home Next page Next Chapter

24 BLOCK CIPHERS AND STREAM CIPHERS

foil simple message exhaustion attacks. For example, by enciphering all
possible plaintext combinations with a given key, an opponent could build
a dictionary of ciphertext (sorted into sequence) and corresponding plain-
text. A message could then be recovered by searching the dictionary and
relating each intercepted ciphertext block to its corresponding plaintext
block. However, if the blocksize is large enough, the dictionary will be too
large to construct or store.

In the method of message exhaustion described above, the opponent
must be able to encipher data with a key being used by the cryptographic
system. In a publickey cryptographic system, the public enciphering-key (or
enciphering-transformation) is available to anyone. In a conventional crypto-
graphic system, a conservative assumption is made that the opponent has
access to a cryptographic device containing a secret key, even though proper
physical security and access control are effective measures against such un-
authorized access.” (While the opponent can encipher data using the crypto-
graphic device, the key remains unknown.)

Other attacks must also be considered before arriving at an acceptable
blocksize. For example, advantage could be taken of the fact that some data
blocks are more likely to occur than others. Therefore, the frequency of
occurrence should be taken into account. This type of attack is called block
frequency analysis and uses statistical methods. It is similar to an analysis
which could be performed on a simple substitution cipher by taking into
account letter frequencies.

By expressing cipher operations in purely mathematical form as a set of
equations, it may be possible to solve for the unknown variables directly
using analytical methods. This approach is called a deterministic attack. To
foil deterministic attacks, every bit in the output block must be a sufficiently
complex mathematical function of every bit in the input block and key. This
property is defined as strong intersymbol dependence. From the discussion
of work factor, it thus follows that a complex mathematical function must
be one for which it is computationally infeasible to solve for the key, even if
plaintext and corresponding ciphertext are known (i.e., the work factor is
too high).

As part of a mathematical structure for further analysis, several terms use-
ful in a discussion of block ciphers and stream ciphers are defined below.

X: Input (plaintext)

Y: Output (ciphertext)

K: Cryptographic (or cipher) key
Z: Initializing vector (seed value)
U: Intermediate initializing vector
R: Cryptographic bit-stream

7 Another form of message exhaustion does not require access to the cryptographic device.
Instead, each possible plaintext combination is enciphered with each possible key. The
opponent then builds a dictionary of plaintext and corresponding ciphertext for each
possible key. Later, interception of plaintext and corresponding ciphertext allows the
unknown key to be determined.



Previous Chapter Previous Page Home Next page Next Chapter

BLOCK CIPHERS 25

Since computer data are in binary format, vector notation is used to express
such quantities. An input block (X) of b bits is thus denoted by

X = (X1,X2, -+ - » Xp)

where x; isa QO or 1 foreach i = 1, 2,...,b. Using, as before, the notation
| *| to represent the number of elements in *, the number of elements in the
vector X is denoted |X|. Note that in the example above, the length of X is b,
(i.e., |X] = b). In some situations, it is helpful to speak of a sequence or time-
sequence of vectors. Here, a sequence of n input blocks is denoted by

(X(1), X(2), ..., X(n))

and specifies the time sequence or relative order of encipherment of each
block. If each input block contains b bits, then the vector of input bits at
time i is denoted by

X(@) = (x1(1), X2 (D), . . ., Xp(1))

and | X(@{)| =b.

In describing a block cipher, it is not necessary to distinguish between the
encipherment of block X at time i and the encipherment of the same block
X at time j. Simply, encipherment of block X at any time will result in the
same block Y. Of course, it is assumed that the same cryptographic key is
used. This independence with regard to the order of encipherment does not
hold when block chaining is used (a concept discussed later).

Before further details are introduced, a frequently used operation, modulo
2 addition or Exclusive OR (symbol @), is defined (Table 2-1).

A B A®B
0 0 0
0 1 1
1 0 1
1 1 0

Table 2-1. Modulo 2 Addition

From the rules for modulo 2 addition, it follows that
A2A=0
Ao Q0 =A
Ael=A
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where A is the complement of A. A is obtained by inverting the bits in A,
that is, O becomes 1 and 1 becomes 0. It follows that if

AeB=C
then

A=CoB

B=CeoA

(Notethat A BeB=Ae0=A=CeB.)

Let X be a key in the set {K1,K2, ..., Kn}of possible keys and let fx be
a function in the set {fx,, fx2, - - . , fkn}Of One-to-one functions correspond-
ing to these keys that transforms an input block (X) of b bits into an output
block (Y) of b bits, (i.e., | Y| = |X| = b). Hence there are 2° possible plaintext
combinations and 2° possible ciphertext combinations within the domain
and co-domain of each function fg, respectively. In general, only the condi-
tion Y| 2 |X| need be satisfied to yield an unambiguous system (a system
where no two plaintext combinations map to the same ciphertext combina-
tion). For engineering reasons, however, the choice | Y| = | X] is usually made.
In that case, the function fx is one-to-one as well as onto, and hence the in-
verse function (fg!) also exists (Figure 2-2).

Conventional Algorithms

A block-cipher design similar to that used in DES algorithm is now considered.
The operations of encipherment and decipherment are described as follows
(Figure 2-4).

fxX)=Y
for encipherment, and
f'(Y)=X

for decipherment. Subscript K designates which particular key (and hence
function, fx) is selected out of the set of all possible keys (and hence functions).

Although fx must be one-to-one for decipherment to be possible, it is
interesting that a one-to-one function fx can in the most simple case be con-
structed from a many-to-one function (a function that produces the same
output for several different inputs). Let such a many-to-one function be
defined as gg. The idea here is to exercise g in the encipherment as well as
in the decipherment process.

To achieve this, the input block (X) consisting of b bits is split into two
blocks, L(0) (left) and R(0) (right), each consisting of b/2 bits. Hence X can
be expressed as a concatenation of L(0) and R(0):

X =L(0),R(0)
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Encipherment: Decipherment:
Plaintext Vector X Ciphertext Vector Y
X=(Xl,x2, ---,xb) Y=(y1, YZ9 caey yb)
Key Vector K —» f Key Vector K—» !
Ciphertext Vector Y Plaintext Vector X
Y=(y1,Y2a---, Yb) X=(X1,X2,...,Xb)

Figure 2-4. Block Cipher (Conventional Cryptographic Algorithm)

g transforms R(0) into gg (R(0)) under control of cipher key K; as indi-
cated in Figure 2-5. L(0) is brought into play by adding it modulo 2 to
gx (R(0)) to obtain R(1):

R(1) = L(0) @ gx(R(0))
The operation is completed by setting L(1) equal to R(0).
If L(1),R(1) represents the ciphertext or scrambled version of L(0),R(0),
then the question arises how this ciphertext could be unscrambled without

introducing an inverse operation for function gg. With this goal in mind, the
reader should observe that since the ciphertext contains L(1) and since L(1)

X=L(0), R(0)

L(0) R©)

L(1)=R(0) R()=L(0) & g (R()

Figure 2-5. Transformation of Input Block (L.(0), R(0))
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R(1)=L(0) @ g (R(0) L(1)=R(O)
4
K —» g
»{(+

R(1) & g (R(0)=L(0)

Figure 2-6. Recovery of L(0)

equals R(0), half of the original plaintext is immediately recovered. The
remaining half, L(0), can also be recovered, as indicated in Figure 2-6, by
recreating gx (R(0)) from R(0) and adding gk (R(0)) modulo 2 to R(1):

R(1) @ g (R(0)) = L(0) & gk (R(0)) & gk (R(0))
= L(0)

However, to use the procedure in Figure 2-5 for encipherment as well as
decipherment, the left and right halves of the output are interchanged. That
is, the ciphertext (Y) is defined as

Y = [L(0) & g (R(0))], R(0)

This scheme is, of course, extremely weak, since half of the input block,
namely R(0), remains unenciphered in the output block. However, crypto-
graphic strength can be obtained by repeating the process (exercising g) n
times, where n is called the number of rounds, and by using a different key
for each round. The basic idea for a two-round system is illustrated in
Figure 2-7. The reader should understand that deciphering in such a system
is possible only if the internal keys, K(1) and K(2) in Figure 2-7, are exercised
in the order K(1), K(2) for encipherment and K(2), K(1) for decipherment.
In general, the plaintext can be recovered in an n-round system by exercising
the internal keys in the order K(1), K(2), ..., K(n — 1), K(n) for encipher-
ment and K(n), K(n—1), ..., K(2), K(1) for decipherment.

So far it has been assumed that the same key had to be used for encipher-
ment and decipherment, that is,

fcX)=Y (for encipherment)
fxr1(Y)=X  (for decipherment)
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where the internal keys are derived from the external key K (the key supplied
by the user). However, in the n-round system, the following relations also
hold:

fxX) =Y

fx(Y)=X

The external keys, K and K’, are defined to have the following schedule of
internal keys:

round: 1, 2, ...,n—1, n
K: K(1), K(2), ..., K(n—1), K(n) 2-1
K': K(n), K(n—1),...,K(), K(1) (2-2)

Hence, it follows that fg! is equivalent to fx'.
As discussed earlier, the ciphering process can in general be described by a
set of functions, namely

E = {Evla EV2) A ] Evr}
for encipherment, and

D= {DVI,D -,Dv,}

vy -

for decipherment. Selecting a common key (K) for encipherment and de-
cipherment thus determines the enciphering transformation (Ex) as well as
the deciphering transformation (Dg). A cryptographic system using the
approach shown in Figure 2-7 could, however, be described by defining only
one set of functions, that is, by defining only E. The set of functions for the
deciphering process does not have to be separately specified, since for each
key K that is used for enciphering with function (Eg) there is a key K' that
can be used for deciphering with function (Eg'). In the former case, a com-
mon key is used together with the sets of enciphering and deciphering func-
tions (E and D, respectively) and in the latter case two different keys are
used for enciphering and deciphering together with one set of enciphering
functions, E. It follows, therefore, that

Ex(Ex(X)) = Ex(Ex (X)) = X

for all possible plaintext (X). And, if K and K’ were to have a much more
complex relationship than the one indicated by Equations 2-1 and 2-2, the
cryptographic scheme shown in Figure 2-7 could be used as a public-key
cryptographic algorithm.
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(Encipherment)
X
Input: v
L(0)
1st Round Output:
L(1)=R(0) R(1)=L(0) & gg (1) R(0)
K (2)—] g
2nd Round Output:
L@)=R() R(2)=R(0) ® gg(3) LO) ® gg (1) RO)
Final Output:

R(O) @ g (3) LO @ gk (1) RO)

v
Y

Figure 2-7. A Two-Round Block Cipher
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(Decipherment)
Y
Input: ¢

Ist Round Output:

L(0) ® gk (1) RO) R(©0)

2nd Round Output:
R (0) L)
Final Output:
L(0) R(0)
v
X

Figure 2-7 (cont’d). A Two-Round Block Cipher

31

Next Chapter



Previous Chapter Previous Page Home Next page Next Chapter

32 BLOCK CIPHERS AND STREAM CIPHERS
Public-Key Algorithms

Public-key cryptography [3] uses an enciphering key (PK) which is in the
public domain and a deciphering key (SK) which is kept secret. Anyone
can encipher data using the public key of another user, but only those users
with knowledge of the secret key can decipher enciphered data. The enci-
phering algorithm (E) and the deciphering algorithm (D) might be different,
though it is possible for E and D to be identical. (In the discussion that
follows, it is assumed that E and D are made public.)

To be used privately, or for private data communications, a public-key
algorithm must have the following properties:

1. Users must be able to compute a pair of public and private keys,
PK and SK, efficiently.

2. Knowledge of PK must not permit SK to be computed efficiently.
(Note: There is no requirement that knowledge of SK prevent PK
from being computed efficiently.)

3. Encipherment followed by decipherment causes the original message
(X) to be recovered, that is,

Dek (Epx (X)) = X
for all X in the domain of Ep .

If, in addition to meeting conditions (1) and (2), the public-key algorithm
is such that decipherment followed by encipherment causes the original
message (X) to be recovered, that is,

Epk (Dsx (X)) = X

for all X in the domain of Dg , then the algorithm can be used to generate a
digital signature® that authenticates the message’s sender (see Chapter 9).

Greater design restrictions are placed on a public-key algorithm than on a
conventional algorithm because the public key represents additional informa-
tion which the opponent can use to attack the algorithm. A public-key algo-
rithm must be designed to withstand attacks made possible by this additional
information. (See Cryptographic Strength Considerations.)

In a conventional algorithm, such as DES, the designer has complete free-
dom to choose the substitutions, permutation, number of rounds, and key
schedule (i.e., key bits used in each round) without considering whether the
enciphering process reveals the deciphering process. In DES, the deciphering
process can be automatically determined if the enciphering key is known,
since all steps taken in the enciphering process can easily be retraced to
obtain the deciphering process.

On the other hand, in a public-key algorithm it must not be possible to

8 Merkle and Hellman [4] have shown that digital signatures can be obtained if
Epk (Dgk(X)) = X holds for only a fraction of the set of possible Xs.
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retrace the steps in the enciphering process to determine the deciphering
process. Enciphering follows one path and deciphering follows a different
path, and knowledge of the former must not reveal the latter.

There are other notable differences between conventional and public-key
algorithms. The public-key algorithms invented thus far [4-6] are easily
described in mathematical terms, and rely for their strength on the under-
lying assumption that a particular, known mathematical problem is difficult
to solve. On the other hand, a conventional algorithm like DES is designed so
that the mathematical equations describing its operation are so complex that
for all practical purposes it is not possible to solve them using analytical
methods.

Another difference relates to the disciplines needed to attack an algorithm.
With a public-key algorithm, these disciplines appear to be few in number
and fixed by the algorithm’s mathematical description. With a conventional
algorithm, on the other hand, the designer has the freedom to ensure that
many (possibly chosen) disciplines are required.

Also, the manner in which keys are generated is different for conventional
and public-kkey algorithms. In a conventional algorithm, the key can be
randomly selected in a straightforward way, since knowledge of the enci-
phering key is equivalent to knowledge of the deciphering key, and vice
versa. Hgowever, in a public-key algorithm, the relationship between the
public and private keys is purposely made obscure (i.e., knowledge of the
public key does not reveal the private key). Thus, a special procedure is
needed to compute the public and private keys, and this procedure must also
be computationally efficient.

RSA Algorithm

The RSA algorithm [5] (named for the algorithm’s inventors: Rivest, Shamir,
and Adleman) is based on the fact that in the current computing art factori-
zation of composite numbers with large prime factors involves overwhelm-
ing computations. Indeed, cumulative experience has shown this prob-
lem to be intractable [7]. (For more details, see Cryptographic Strength
Considerations.)

A number p (p = 1, 2, 3, ... )'is called prime if its only divisors are the
trivial ones, £1 and *p, otherwise it is called composite. The primes below
100 are

2 13 31 53 73
3 17 37 59 79
5 19 41 61 83
7 23 43 67 89
11 29 47 71 97

All primes are odd except for the number 2. Every composite number can
be factored uniquely into prime factors. For example, 6 is a composite num-
ber whose factors are 2 and 3 (i.e., 6 = 2 * 3). The composite number 999,999
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on the other hand is factored by the prime numbers 3, 7, 11, 13, and 37 (i.e.,
999999 =33 -7+ 1113+ 37).
To describe the RSA algorithm, the following quantities are defined.

1. pand q are primes (secret)
2. r=p-*q (nonsecret)
3. o) =(@—1q—1) (secret)
4, SK is the private key (secret)
5. PKis the public key (nonsecret)
6. X is the message (plaintext) (secret)
7. Y is the ciphertext (nonsecret)

Because the suggested approach involves modulo arithmetic, congruences are
defined in the way they were first introduced by Gauss. Two integers a and b
are congruent for the modulus m if their difference a — b is divisible by the
integer m.° This is expressed in the symbolic statement

a=b (mod m)

When a and b are not congruent, they are called incongruent for the modulus
m, and this is written

a# b (mod m)

For any pair of integers a and b, one or the other alternative holds (i.e., a
and b are either congruent or incongruent). For example,

16=1 (mod)3)
—7=15(mod 11)
—7%# 15 (mod 3)

One can state the congruence a = b (mod m) slightly differently by saying
that b is congruent to a when it differs from a by some multiple (c) of m.

b=a+cm

The RSA algorithm is based on an extension of Euler’s theorem [7], which
states that

a®® =1 (modr)

 Congruent means agreeing with or corresponding to while modulus (shortened to mod)
signifies “little measure.”
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where

1. a must be relatively prime to r. (Integers a and b are relatively prime if
their greatest common divisor, gcd, is one.)

2. ¢@) =r(1 — 1/p))(1 —1/py)...(1—1/p,), where p;, Py, . . . , Py are
the prime factors of r.

¢(r) is Euler’s ¢-function of r (also called indicator or totient) which deter-
mines how many of the numbers 1, 2, . . ., r are relatively prime to r.

For example, the composite number 20 = 22 - 5 has two prime factors, 2
and 5. Thus there are $(20) = 20(1 —1)(1 — 1) = 8 integers which are rela-
tively prime to 20 (i.e., which have neither 2 or 5 as a factor):

1,3,7,9,11,13,17, 19

In the discussion that follows, the reader is expected to be familiar with ele-
mentary number theory [7].

To obtain the mathematical relationship between the public and private
keys, PK and SK, Euler’s result is extended as follows. First, it is shown that
a = b (mod r) implies that a™ = b™ (mod r) for any exponent m [7]. Thus
Euler’s formula a®® = 1 (mod r) can be rewirtten as

a™9® =1 (modr) (2-3)

where, as before, a is relatively prime to r. From the fact that a =b (mod r)

implies that ac = bc (mod r) for any integer c, and from Equation 2-3, it
follows that

Xme® +1 =X (modr) 2-4)

where plaintext X is relatively prime to r (a restriction that is removed below).
Let the public key (PK) and the secret key (SK) be chosen so that

SK-PK = m¢(r) + 1 (2-5)
or, equivalently,
SK-PK = 1 (mod ¢(r)) (2-6)

(A method for finding SK and PK satisfying this equation is discussed below.)
Equation 24 can therefore be rewritten as

XSKPK = X (mod r)
which holds true for any plaintext (X) that is relatively prime to the modulus

(r). (Actually, as shown below, the relation holds for any plaintext (X), and
thus the restriction can be removed.)
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Encipherment and decipherment can now be interpreted as follows:

Epx(X) =Y = X¥ (mod r) 2-7
Dk (Y) = YSK (mod r) = XPX 5K (mod r) = X (mod 1) (2-8)

Moreover, because multiplication is a commutative operation (i.e., SK-PK =
PK-SK), it follows that encipherment followed by decipherment is equiva-
lent to decipherment followed by encipherment:

Dgk (Epx (X)) = Epx (Dgk (X)) = X (mod 1) (2-9)

As mentioned above, this property is useful for generating digital signatures
(see Digital Signatures, Chapter 10).

Because XFX (mod r) = (X + mr)’¥ (mod r) for any integer m, each plain-
text X, X+r, X+2r,. .., results in the same ciphertext. Thus the transforma-
tion from plaintext to ciphertext is many-to-one. But restricting X to the set
{0, 1, ..., r— 1} makes the transformation one-to-one, and thus encipher-
ment and decipherment can be achieved as described in Equations 2-7 and 2-8.

Consider the example in which r equals 2 + 3 = 6 and ¢(r) therefore equals
1 -+ 2 = 2. As predicted by Euler’s theorem, X?® = 1 (mod r) for values of X
in the set {0, 1, ..., 5} which are relatively prime to r = 6. However, one
observes that X?®™ * ! =X (mod r) for all values of X in the set {0, 1, ..., 5}, as
shown in Table 2-2. A proof is now given that the relationship X™¢®+1 =X

X x¢@) mod 1) X4 +1 (mod )
0 0 0

1 1 1

2 4 2

3 3 3

4 4 4

5 1 5

Legend:

p=2,q=3, r=6, ¢(I‘)=2

Set of Xs relatively prime to r: {1, 5}

Set of Xs relatively prime to p: {1, 3, 5}
Set of Xs relatively prime to q: {1, 2, 4, 5}

Table 2-2. Evaluation of X‘Nr) +1 {mod r)
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(mod 1) holds for any plaintext, X, where r = pq is the product of two prime
factors and X is restricted to the set {0, 1, ..., r— 1}—a condition which is
necessary for encipherment and decipherment.

The theorem holds trivially for X = 0, and so only the case X > 0 must be
considered. If X is not relatively prime to r = pq, then X must contain
either p or q as a factor. Suppose p is a factor of X, so that the relation
X = cp holds for some positive integer c. Since X is restricted to the set
{0, 1, ..., r— 1} and r equals pq, it follows that X must be relatively prime
to q. Otherwise, X would also contain q as a factor, in which case it would
exceed r — 1. Using Euler’s theorem, we have

x?@ =1 (mod q)
where ¢(q) = q— 1. But
Xmp—1o@ = mP—1 =1 (mod q)
for any integer m, and (p — 1)¢(q) = (p — 1)(q — 1) = ¢(1), so that
X™mo®) =1 (mod q)
or, for some integer n
1 = X™¢® 4 nq
Multiplying each side by X = cp results in
X =Xm?O* 1 + (nq)(cp)
=XmoW+1 4 ner
or

Xmém +1 =X (mod r)

The case in which q is a factor of X can be handled in the same manner, thus
completing the proof.

Procedures are now discussed for using the proposed algorithm. In particu-
lar it is shown how a user can create a pair of keys: public key (PK) and
secret key (SK).

The user selects two prime numbers, p and q, where p # q. The product
r = pq is made public, but p and q are kept secret. Note, for example, that
the choice p = q is unacceptable, since p could then be obtained by taking
the square root of the publicly known modulus (r). Even if the difference
d = (p — q) is nonzero, d must still be unpredictable, since otherwise p and q
could be determined from r. Note that (p + q) is the square root of (p—q)? +
4r, and q is half the difference of (p + q) and (p — q).
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The public and secret keys must now be selected such that they satisfy
Equation 2-6, that is,

PK - SK =1 (mod ¢(r))

t be easy to compute PK and SK. The question thus arises
SK can be chosen to satisfy these requirements. The fol-
lowing theorem [7] provides the answer.

Let the notation d = (a, n) be used to indicate that d is the greatest com-
mon divisor (gcd) of a and n. Then the congruence aX = b (mod n) is solvable
(i.e., an integer X can be found that satisfies the congruence) only if the gcd
of a and n divides b, and when this is the case there are d solutions [7].

If a and n are respectively defined as SK and ¢(r), then ged (SK, ¢(r))
divides 1 if and only if gcd (SK, ¢(r)) = 1, that is, if and only if SK is rela-
tively prime to ¢(r). And so, the congruence SK * X =1 (mod ¢(r)), where X
is defined as PK, has a solution only if SK is relatively prime to ¢(r). (Note
that if a = PK, the solution X would be SK.) Moreover, because Euclid’s al-
gorithm (discussed below) provides an efficient method both to test whether
a randomly chosen SK is relatively prime to ¢(r) and to find the solution (X)
of the congruence SK * X =1 (mod ¢(r)), the theorem above provides an
efficient means of finding PK and SK.

For example, let p = 47 and q = 61. (Methods for generating prime num-
bers are treated separately. See Testing for Primality.) Thusr = pq = 2867
and ¢(r) = (p — 1)Xq — 1) = 2760.

The method for determining the gcd of two integers, and therefore, a test
as to whether two integers are relatively prime, is based on the Euclidean
algorithm (from Euclid’s Elementa, seventh book, circa 300 B.C.); namely,
if a = bn + ¢, then the gcd of a and b equals the gcd of b and ¢. Thus, one
can solve for ged (a, b) by progressively reducing the size of the numbers
whose gcd we are trying to find. For purposes of illustration, let a = 38 =
2+ 19and b = 26 = 2 + 13. Observe that 19 and 13 are primes, and there-
fore that 2 is the greatest common divisor of a and b. The same result is ob-
tained with Euclid’s algorithm.

1. 38=26+1+12 26 divides 38 one time with a remainder of 12
2. 26=12-2+4+2 12 divides 26 two times with a remainder of 2
3. 12=2-6

The last nonvanishing remainder (the value of 2 in the above example) is the
ged of a = 38 and b = 26. Even for very large integers, the Euclidean algorithm
requires only a small number of steps to find the gcd.

With the aid of Euclid’s algorithm, it can now be shown (for the example

p = 47, q = 61, and ¢(r) = 2760) that SK = 167 is a candidate for the secret
key.

2760 =167 - 16 + 88 (2-10a)
167=88-1+79 (2-10b)
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88=79-1+9 (2-10c)
79=9-8+7 (2-10d)

9=7-1+2 (2-10e)
7=2+3+1 (1 is the last nonvanishing remainder) (2-10f)
17=1-2 (2-10g)

The value of PK can be found by using a variation of Euclid’s algorithm,
which has already been used in computing the gcd of SK and ¢(r). The goal
is to rewrite Equations 2-10a thrdugh 2-10g in such a way that the final
result is in the form

(factor; * SK) + (factor, * ¢(r)) = 1

in which case, factor; is interpreted as PK. (Note that this expression is
equivalent to PK - SK = 1 (mod ¢(1)).)
Let SK = 167 and ¢(r) = 2760, where p = 47 and q = 61. The public
key can be computed using Equation 2-10f.
1=7—2-3 (2-11a)
Substituting 2 = 9 — 7 * 1 (Equation 2-10e) into Equation 2-11a results in
1=7—9-34+7:-3=7-4—9-3 (2-11b)
Substituting 7 = 79 — 9 - 8 (Equation 2-10d) into Equation 2-11b results in
1=79-4—9-32—9-3=79:4—9-35 (2-11¢)
Substituting 9 = 88 — 79 - 1 (Equation 2-10c¢) into Equation 2-11¢ results in
1=79+-4—88-35+79-35=79-39—88-35 (2-114d)
Substituting 79 = 167 — 88 - 1 (Equation 2-10b) into Equation 2-11d resultsin
1=167-39—88-39—88-35=167-39—88-74 (2-11e)

Finally, substituting 88 = 2760 — 167 * 16 (Equation 2-10a) into Equation
2-11e results in

1=167+1223—2760 - 74 (2-11f)
From Equation 2-11f, it can be seen that 1223 is the multiplicative inverse

of 167 modulo 2760, and therefore that PK = 1223 is the public key cor-
responding to SK = 167.
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In summary, the following numerical values were obtained in the example.

p =47 (chosen)

q =61 (chosen)
r=pq=47 - 61 =2867 (derived)
d()=(p—1)(q—1)=46 - 60=2760 (derived)
SK =167 (chosen)
PK = 1223 (derived)

A message to be enciphered is first divided into a series of blocks such that
the value of each block does not exceed r — 1. (Otherwise, a unique plain-
text representation is not possible.) This could be achieved by substituting a
two-digit number for each letter of the message). For example, blank = 00,
A =01,B=02,...,Z=26. Thus, the message “RSA ALGORITHM”
would be written in blocks as

1819 0100 0112 0715 1809 2008 1300

The first plaintext block, 1819, is enciphered by raising it to the power PK =
1223, dividing by r = 2867, and taking the remainder, 2756, as the cipher-
text. Likewise, 2756 is deciphered by raising it to the power SK = 167,
dividing by r = 2867, and taking the remainder, 1819, as the recovered plain-
text. The total ciphertext of the example is as follows:

2756 2001 0542 0669 2347 0408 1815

Since PK = 10011000111 in binary (or 21© + 27 + 26 + 22 4+ 2! + 2% or
1024 + 128 + 64 + 4 + 2 + 1), the first plaintext block, 1819, is enciphered
as:

18191223 = 18191024 - 1819128 - 1819% - 1819% - 18192 - 1819!
= 2756 (mod 2867)

Since PK contains 11 bits, there are 10 repeated squaring operations needed
to compute the intermediate quantities: 18192, 18194, 18198, ..., 18191024,
The cumulative total is then multiplied by each intermediate result if there is
a corresponding 1 bit in the key.!® Except for the value of the exponent, the
operations of encipherment and decipherment are the same.

The following summary describes the procedure for selecting keys and
performing the steps of encipherment and decipherment:

1. Two secret prime numbers, p and q, are selected randomly.

The computation is easier than it may seem, since the mod r can be applied to each
intermediate result with the same end result.
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2. The public modulus, r = pq, is calculated.
The secret Euler totient function, ¢(r) = (p — 1)(q — 1), is calculated.

> ow

A quantity, K, is selected, which is relatively prime to ¢(r). K is de-
fined as either the secret key, SK, or the public key, PK.

5. The multiplicative inverse of K modulo ¢(r) is calculated using Euclid’s
algorithm, and this quantity is defined to be either the public key, PK,
or the secret key, SK, depending on the choice made in (4).

6. Encipherment is performed by raising the plaintext, X (whose value is
in the range O tor — 1), to the power of PK modulo r, thus producing
the ciphertext, Y (whose value is also in the range O tor — 1).

7. Decipherment is performed by raising the ciphertext, Y, to the power
of SK modulo r.

The Distribution of Primes

To thwart an opponent using exhaustive methods to obtain the secret primes,
one must choose p and q from a sufficiently large set. But at the same time
the method used to find p and q must be computationally efficient.

The largest tables of prime numbers ordinarily contain only a few thousand
entries and are too small to be of use. On the other hand, computing and
storing a table of prime numbers large enough to provide adequate security is
clearly out of the question.

At the present, the most practical method of selecting primes suitable for
use in the RSA algorithm is to test randomly selected integers until the re-
quired number of primes have been found. The approach works only because
the proportion of primes to nonprimes is high enough.

By actual count, one finds that each group of 100 numbers from 1 to 1000
(1 to 100, 101 to 200, etc.) contains respectively, the following number of
primes:

25,21, 16,16, 17, 14, 16, 14, 15, 14

In each group of 100 numbers from 1,000,001 to 1,001,000, the correspond-
ing frequency of primes is

6,10,8,8,7,7,10,5,6,8
and from 10,000,001 to 10,001,000 the corresponding frequency is
2,6,6,6,5,4,7,10,9, 6
A computation by M. Kraitchik [7] shows that for each group of 100 num-
bers in the interval from 10'2 + 1 to 10!2 + 1000 the corresponding frequency

of primes is

4,6,2,4,2,4,3,5,1,6
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Even though the prime numbers gradually become more scarce as the num-
bers within the groups become larger, there are still infinitely many primes.

According to the prime number theorem, the ratio of 7(x), the number of
primes in the interval from 2 to x, and x/In(x) approaches 1 as x becomes
very large, that is,

lim 7(x) _
X > x/ln(x)
where In(x) is the (natural) logarithm of x to the base e = 2.71828 . .. For

different intervals, a comparison of the actual number of primes [7] to the
estimated number of primes (given by x/In(x)) is shown in Table 2-3.!!

X a b a’/b

m (X) x/1n(x)
1,000 168 145 1.159
10,000 1,229 1,086 1.132
100,000 9,592 8,686 1.104
1,000,000 78,498 72,382 1.084
10,000,000 664,579 620,421 1.071
100,000,000 5,761,455 5,428,681 1.061
1,000,000,000 50,847,478 48,254,942 1.054

Table 2-3. Number of Primes in Interval 2 to x

The probability that a randomly selected value in the interval from 2 to x
is prime is approximately equal to 7(x)/(x — 1), that is, the ratio of the num-
ber of primes (7(x)) to the total number of integers (x — 1). It can be shown
that on the average about (x — 1)/7(x) = In(x) values must be tested before a
prime is found.'? For example, if the magnitude of p and q were on the
order of 2, then about 1n(2**) = 140 trials (or 70 trials using odd numbers) would
be needed to find a prime. (See Cyptographic Strength Considerations for a discus-
sion of the magnitude of r.)

Testing for Primality

Several methods can be used to test arandomly selected number for primality.
However, the most straightforward approaches are not computationally

11 A better approximation of #(x) can be obtained by evaluating the integral f3 dt/1n(t).
121f the probability of finding a prime number is equal to p at each trial, then it takes on
the average 1/p trials to find a prime number, assuming that the trials are statistically in-
dependent.
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feasible. For example, a test could be based on Wilson’s theorem [7], which
states that

(p— D!'=—1(modp) ifpisprime
where
p—=2+3-...-(p— D
In all other cases (except n = 4), it can be shown that
(n—1)!'=0(modn) if nisnot prime
Several examples are shown below,

2—D!'=—1(mod 2) (7T—D!'=—1(mod 7)

B —1H!=—1 (mod 3) @—D!'= 0(mod?B8)
@4—NDI'= 2 (mod 4) @—D!'= 0(mod9)
(5 —D!'=—1 (mod 5) (10—1D!'= 0(mod 10)
6—ND!= 0(mod 6) (A1—1D!'=—1(mod 11)

It should be obvious, however, that a test based on Wilson’s theorem is use-
less for large values of p, since too many multiplications would be required
to compute (p — 1)!. ,

A different test could be based on the simple fact that if a number n is not
prime, then n must contain a factor less than or equal to the square root of n.
But even here the test is useless for large primes p, since to show that p is not
divisible by any number between 2 and v/p, and thus prove that p is prime,
would still require too many computations.

The methods described thus far will determine with absolute certainty
whether a number is prime or composite. However, adopting a procedure
that is less reliable permits a favorable trade-off between computation time
and the risk of accepting a number as prime when it is really composite.
(Efficient procedures for testing a large number for primality are given in
references 8 through 11.) To test a large number n for primality, one could
use the elegant “probabilistic’” algorithm of Solovay and Strassen [8]. It
picks a random number a from a uniform distribution (1, 2,...,n— 1) and
tests whether

gcd(@,n)=1 and J(a,n)=a™ " Y2 (mod n) (2-12)

where J(a, n) is the Jacobi symbol [12}. If n is prime, then Equation 2-12
always holds. If n is composite, the Equation 2-12 will be false with prob-
ability of at least 1/2.

The number n can now be tested for primality by using a set of integers,
A ={a;,a,,...,a,}, where each a in A is less than n. The test requires that,
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for each value of a in A, Equation 2-12 holds. Thus n is found to be compos-
ite if there is an a in A for which Equation 2-12 does not hold; otherwise n is
accepted as prime.

The procedure does not guarantee that a selected number is prime, but
only that it has not failed the test of primality. The greater the number of
integers in A, the greater the probability that a selected number is prime.
This can be argued as follows. If A contains m randomly selected integers
from 1 to n — 1, then the probability that Equation 2-12 holds when n is
composite is less than 0.5 for each value of a in A, So for a composite num-
ber, the probability that Equation 2-12 holds for all m values in A is less
than 0.5™. In other words, the probability that a composite number will
pass the primality test is less than 0.5™. If m is large, then the chance for
error is small. For example, 0.5™ is 0.00098 and 0.00000095 for m = 10
and m = 20, respectively.

When n is odd, a < n, and gcd (a, n) = 1, the Jacobi symbol, J(a, n), has
avalue in {—1, 1}and can be efficiently computed by the following recursive
procedure [5]:

J(a,n) = if a = 1 then 1 else
if a is even then J(a/2, n)(—1)®* — /8
else J(n (mod a), a)(—1)@ — D —1/4

A simple numerical example of testing a number for primality illustrates a
different approach, one based on Euler’s theorem. (The method is not rec-
ommended, but is given here because it is easy to understand.) Recall that
Euler’s theorem states that if p is prime, then

aP ! =1 (mod p)

where a and p are relatively prime.

The number p is tested for primality by using a set of integers A = {a;, a,,

., am } where each a in A is less than p. The test consists of ensuring that
for each value of a in A, 1 is the remainder obtained when aP ! is divided
by p. (The procedure for evaluating a? —! (mod p) is the same as that de-
scribed earlier for enciphering and deciphering data with the RSA algorithm.)
Thus p is found to be composite if there is an a in A for which 1 is not the
remainder obtained when aP —! is divided by p; otherwise p is accepted as
prime.

A further example illustrates the procedure’s result when a prime number
(p = 1151) and a composite number (n = 1147) are tested for primality
using the set of integers A = {106, 750, 479, 808, 1111, 223, 55, 848, 378,
729} (Table 2-4). If the test for primality was based on the set A = {750,
1111, 223}, then an incorrect conclusion would have been reached for the

value n = 1147 (i.e., one would have said that the composite number 1147
is prime).
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a aP~! (mod p) a1 (mod n)
106 1 915
750 1 1
479 1 566
808 1 591
1111 1 1
223 1 1
55 1 841
848 1 1120
378 1 776
729 1 667

Table 2-4. Test of a Prime Number (p = 1151) and a Composite Number
(n = 1147) for Primality

Cryptographic Strength Considerations

One approach that enables an opponent to break the RSA algorithm is to
factor r. Once p and q are known, (p — 1) and (q — 1) can be used to com-
pute ¢(r) = (p — 1)(q — 1), and then SK could be calculated from ¢(r) and
PK by using Euclid’s algorithm.

However, in the proposed scheme, each user chooses a pair of secret
primes (p and q) which are large enough so that factorization of the non-
secret modulus (r = pq) is not feasible, even with the help of high-speed
computers, and given the fastest known method of factoring. It is there-
fore absolutely essential that r is large enough to make the work needed to
factor r sufficiently great.

The fastest known factoring algorithm is that of Richard Schroeppel [5].
It can factor r in approximately In(r)sart(n(®/In(n())) gteps (In denotes the
natural logarithm function.) As a first order approximation, assume that the
computation time needed to perform one step in the Schroeppel algorithm is
the same as that to search one key in a hypothetical exhaustive attack
against DES. In this case a blocksize of 388 bits would mean that the work
needed to factor r is equivalent to the work needed to exhaust 2°¢ DES keys.
Instead, if the computation time required to perform a step in the Schroeppel
algorithm were 1000 (1 million) times greater than that required to search a
single key in DES, then a blocksize of 280 (186) bits would be required to
maintain equivalency.

According to the algorithm’s inventors [5], additional protection against
sophisticated factoring algorithms can be achieved by ensuring that the
following conditions are met:

1. pand q differ in length by only a few bits.
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2. Each number (p — 1) and (q — 1) contains a large prime factor, p’
and q’, respectively.

3. Theged of (p — 1) and (q — 1) is small.

Moreover, it has also been pointed out that further protection is possible
by ensuring that (p' — 1) and (q' — 1) have large prime factors, p" and q"',
respectively [13,14].

To find a suitable p, first find a large prime p'’ and let p’ be the first prime
in the sequencei * p"' + 1, fori = 2, 4, 6, ..., etc. Repeating the process,
let p be the first prime in the sequencei - p' + 1,fori=2,4,6,...,and so
on. (A value for q can be found in a similar fashion.)

Without regard for the usual methods of factoring composite numbers, it
is noteworthy that r could easily be factored if either ¢(r) or SK were
available. The significance of this fact is that it is just as hard to determine
o(r) or SK as it is to factor r. By way of an illustration, if ¢(r) were available,
then r could be obtained by the following steps:

1. Obtain(p +q) fromrando(r)=r—(p+q) + 1.

2. Obtain (p—q) from theequation(p+q)? =p2 +2r+q?2=(p—q)? +4r
by taking the square root of (p + q)? — 4r.

3. Obtain q as half the difference of (p + q) and (p — q).

On the other hand, having SK would permit SK + PK — 1 to be computed,
which is a multiple of ¢(r). But an efficient method of factoring r is available
if a multiple of ¢(r) is known [9].

It should be obvious that finding a number (X) not relatively prime to r
would be equivalent to breaking the algorithm. This is because the gcd of X
and r would be equal to either p or q, and its value could be easily computed
using Euclid’s algorithm. However, in the practical sense, there is no need to
be concerned that the algorithm will be broken by finding such a number
(X), provided that r is sufficiently large. In the interval from 1 to r there are

p)=(p—Da—D=pa—(p+q +1
numbers relatively prime to r, and
r—¢@=(p+q—1

numbers not relatively prime to r. The probability of accidentally discovering
a number having p or q as a factor is therefore equal to

r— ¢(r) _1__¢(r) _ptaq—1
r r pq

1 1
&~ 4 —
qQ p

which is extremely small for large values of p and q.
Factoring large numbers is a well-known problem that has engaged mathe-
maticians for many hundreds of years. Experience has shown it to be an in-
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tractable problem. Yet this evidence does not prove that the cryptographic
approach is strong. In fact, until the advent of high-speed computers, mathe-
maticians weren’t looking for methods that might require very complicated
tests. Furthermore, the general problem of factoring and the special case of
factoring associated with the RSA algorithm are different. The classical
problem of factoring, not yet solved despite a considerable effort, can be
stated as follows:

Factor a composite number r, where r may be any product of two or more prime
Jactors.

The cryptographic problem, which must take into account attacks using
selected ciphertext and is not yet sufficiently investigated, can be stated as
follows:

Factor a composite number r, where r is the product of two prime factors'® (r = pq)
and where there exists a public key PK and a secret key SK that satisfies the relation

PK - SK =1 ({mod(p—1)qg—1))

such that the opponent has knowledge of chosen ciphertext, Y;, Y, . .., and corre-
sponding recovered plaintext, X;, X, . . . (without having knowledge of SK} which
satisfy the relation

Y =X, (modr)

In the cryptographic problem, knowledge of PX (i.e., a value relatively prime
to (p — 1Xq — 1)) does not provide an opponent with much information
beyond that present in the classical problem. This is because in the classical
problem it would be a simple matter to select a large prime (i.e., a value
relatively prime to (p — 1)(q@ — 1)) that could be used as a public key to
carry out a chosen plaintext attack. However, in the cryptographic problem,
the public key can be used in conjunction with a chosen ciphertext attack to
produce quantities that are functions of both PK and SK. In this sense, the
public key is potentially of greater value in the cryptographic problem than
it is in the classical problem.

As yet there is no evidence to support a claim that the additional informa-
tion available to the opponent in the cryptographic problem will allow the
modulus to be factored. However, one cannot conclude that the problem of
factoring in the cryptographic problem is hard merely on the basis that the
classical problem of factoring is known to be hard. And while factoring the
modulus in the RSA algorithm leads to breaking the algorithm, there is no
proof that breaking the algorithm is the same as solving the classical problem
of factoring.

It is entirely possible that the proposed RSA algorithm is cryptographically
strong. However, this conclusion cannot be reached from previous work
done to solve the theoretic problems of factoring composite numbers. It can
only be reached by taking into account the requirements that must be satis-

131n a more general approach, the RSA algorithm could specify that r is the product of
more than two prime factors.
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fied for strong algorithms and by performing a thorough validation. Since
the algorithm is in the public domain and has become a topic of great interest
among academicians and cryptologists [15-21], it is only fair to say that a
validation effort of sorts has already begun. Nevertheless, in addition to such
an effort, a well-organized approach by a group of dedicated people whose
only task is to uncover weaknesses in the algorithm is needed. Finally, it
would be highly desirable for the National Security Agency, where significant
cryptographic expertise resides, to certify the algorithm’s strength. This cer-
tification would be based on a similar government-organized validation effort.

Trapdoor Knapsack Algorithm!4

A publickey algorithm can also be based on the classical problem in number
theory known as the knapsack problem [4] . The following is an introduction
to this approach. Let A be a nonsecret (published) vector of nintegers(a, ,a,,

. ., a,) and let X be a secret vector of n binary digits (Os and 1s) whose
components are designated (x,, X,, ..., X,), that is,

A:(alsa)l,"'aan)

X=(Xy,X2,...,Xp)

Defining Y to be the dof product of A and X results, by definition, in
n
Y=A -X=aX;+a,%x, +...+a,x, = 2 aX;
i'=1

Calculation of Y is simple, involving only a sum of at most n integers. How-
ever, finding X from Y and A is generally difficult when n is large and A is
properly chosen. This is called the knapsack problem.

Let the knapsack problem be illustrated by the following simple example:
If

X=( 1, 0, 1, 1, 0, 0, 0, D
A = (2453, 6394, 941, 1076, 4791, 4404, 9549, 6639)
then

Y=A'*X=2453+941+ 1076 + 6639 = 11109

In the knapsack problem, one is asked to find X such that A + X =Y, where
A and Y are given. In the most general case, one would like to have a function
g to calculate X from A and Y such that g satisfies the relation X = g(A, Y).

One way to find X is by the method of direct search, (In the above ex-
ample, there are 28 = 256 values for X.) This consists of computing A * X

14 At the time of publication of this book, the trapdoor knapsack algorithm reportedly
has been broken [22].
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for each enumerated value of X, and comparing the result with Y for equal-
ity. Function g, in this case, is a procedure to test all possibilities for X, and
select the first which works. However, if the number of elements in A (and
thus in X) is large, and A is properly chosen, then such an exhaustive ap-
proach is not practical. A different method of solution would be required.

In the described public-key algorithm, A represents the public key. Anyone
can produce ciphertext Y from plaintext X by the equation Y = A + X. But
for this approach to be cryptographically strong, it must not be computa-
tionally feasible to obtain X from information assumed to be known to the
cryptanalyst, thus preventing the process from being inverted by discovery
of function g.

An example of a cryptographically weak approach (since it allows the
process to be easily inverted) is a public key A whose elements satisfy the
following conditions:

i
ai+1>a1+a2+...+ai=2a,-; i=1,2,...,n—1
i=1

Using the notation

Y, = x,3,

Y, =x,a; + x,a,

Y, =x;a; + X33, +...+Xx,3a,

where Y = Y|, is the ciphertext, one can recover X from Y, and A as follows.
If Y, is less than a,, then x, is set equal to 0 and Y, __, is set equal to Y,,.
Otherwise, x, is set equal to 1 and Y, _, is set equal to Y, — a,. Now, using
the computed value of Y,_,, one can compute the values of x,_; and
Y, _, in a similar manner. The procedure continues until X = (x,, X,, .
Xn) has been recovered.

The recovery of X can be illustrated by the following example:

sy

A =(15,92,108, 279, 563, 1172, 2243, 4468) (2-13)
Y=A" X=4870

Thus

xg =1, since Yg(= 4870) > ag(= 4468)
x7 =0, since Y,(= 402) <a,(= 2243)
x¢ =0, since Yqo(= 402) <aq(=1172)
Xs =0, since Ys(= 402) <as;(= 563)
Xq =1, since Y (= 402) > a,(= 279)
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x3 =1, since Y3(= 123) > a;(= 108)

x; =0, since Y, (= 15) <a,(=92)

x; =1, sinceY (=15)=a,(=15)
and the valueof Xis (1,0, 1,1,0,0, 0, 1).

A trapdoor knapsack [4] is one in which the careful choice of vector A
allows the designer to recover X from Y easily using the secret trapdoor
(identified by the secret key), but which makes it difficult for anyone else
to find the solution. The introduction of a secret quantity makes it possible
to find a transformation such that X = g' (A, Y, secret quantity), where the

function g’ is easily calculated. The way the problem is solved here is to
transform Y to Y' by the following method:

1. Choose secret integers, r and t, which are relatively prime.

2. Calculate another quantity, s (also kept secret) from r and t, which is
the multiplicative inverse of t modulo r.

In that case, the relations

Y =Ys(modr)

Y' =A'X
exist which allow easy recovery of X, since A’ falls into the class of knapsack
problems which have easy solutions. In other words, a trapdoor is introduced
(identified by the secret parameters r and t) that transforms a hard knapsack
problem (vector A) into a trivial knapsack problem (vector A').

To construct a trapdoor knapsack, let A’ = (aj, a3, . . ., a,) be a secret
vector of n integers such that a; > a} +a; + ... + a;_, for all i. The vector

A’ =(15,92,108, 279,563, 1172, 2243, 4468)

used in the last example (Equation 2-13) satisfies this condition. Now choose
secret integers r and t such that these three conditions hold:

1. r>al+ay+...+a;,

2. >t

3. rand t are relatively prime (i.e., ged (r, t) = 1)

The choice r = 9291 and t = 2393 satisfies the necessary conditions. That
they are relatively prime can be shown as follows, using Euclid’s algorithm:
9291 =2393 - 3+ 2112
2393 =2112 - 1 + 281
2112 =281 -7+ 145
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281 =145-1+ 136
145=136-1+9
136 =9-15+1
9=1-9
The last nonvanishing remainder (the value 1 in the above computation) is
the gcd of 9291 and 2393.

The easily solved knapsack vector A’ is now transformed into a trapdoor
knapsack vector A via the relation

a; = ajt (mod r)

Since

it follows that

Y= [ajt (mod N]x;

i=1

n

= z ajx;t (mod r)
i=1
Defining
Y= ax=A'-X

i=1

to be the transformed ciphertext from which X can be easily recovered,
since A' is chosen that way, one obtains

Y=Yt (modr) (2-14)
The idea here is to use the secret quantities t and r to transform Y to Y' and
thus transform the hard knapsack problem into an easy one. To achieve this
let a quantity s be defined such that

st=1 (modr)

Hence s is the multiplicative inverse of t modulo r. If one defines t and r to
be relatively prime (as stated in condition 3), there is a unique solution for s.

Next Chapter
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(This was discussed before in conjunction with the RSA algorithm. See
Equations 2-10a through 2-10g.) Furthermore, to assure a unique relation
between plaintext and ciphertext, choose a value of r that exceeds the maxi-
mum value of Y, that is,

r>2ai

i=1

which satisfies condition 1.
Multiplying Y by s (see Equation 2-14) results in

Ys=Y'st (modr) =Y (modr)
or equivalently
Y' =Ys (modr)

which is the desired result.
In the current example,a; =8022=15 - 2393 (mod 9291), a, = 6463=92 -
2393 (mod 9291), and so on, and therefore vector A can be computed to be

A = (8022, 6463, 7587, 7986, 64, 8005, 6592, 7274)

Vector A (the public key) is published by the user. Anyone desiring to com-
municate a message (X) to the user enciphers the message using vector A. The

n
ciphertext (Y) is obtained via the relation Y=A - X = Z a;x;. To recover
=1
the original message (X) from the ciphertext (Y), Y is transformed into Y’
using s, namely

Y=Y smodr

and the solution is obtained using the knapsack vector A'.
In the present example, the value of s is computed by rewriting the equa-
tions previously obtained with Euclid’s algorithm:
1=136—9-15
1=16 136 —16 145
1=16"-281—31-145
1=1233-281—31-2112
1=1233-2393 —-264-2112
1 =1025 - 2393 —264 - 9291

Thus s = 1025 is the multiplicative inverse of t = 2393 modulo r = 9291.



Previous Chapter Previous Page Home Next page Next Chapter

T P YT V] 53

The trapdoor knapsack public-key algorithm is illustrated by the follow-
ing example:

A'=(15,92,108, 279, 563, (secret, chosen)
1172, 2243, 4468)
r= 9291 (secret, chosen)
t=2393 (secret, chosen)
s = 1025 (secret, derived)
A = (8022, 6463, 7587, 7986, (nonsecret, derived)

65, 8005, 6592, 7274)
A message
X=@{,0110,0,0,1)
is enciphered using vector A, as follows.
Y=A"'X=(8022+ 7587 + 7986 + 7274) = 30869
Multiplying Y by the secret value of s results in
Y' =Y - s(modr) = 30869 + 1025 (mod 9291) = 4870

Subsequently, X = (1,0, 1, 1, 0, 0, 0, 1) is recovered from Y' = 4870 and
vector A', as previously shown in Equation 2-13.

STREAM CIPHERS

A stream cipher (Figure 2-8) employs a bit-stream generator to produce a
stream of binary digits called a cryptographic bit-stream,*® which is then
combined either with plaintext (via the B operator) to produce ciphertext,
or with ciphertext (via the 8! operator) to recover plaintext.

Vernam [23] was the first to recognize the merit of a cipher in which
ciphertext (Y) is produced from plaintext (X) by combining it with a secret
bit-stream (R) via a simple and efficient operation. In his cipher, Vernam
used an Exclusive-OR operation, or modulo 2 addition (Table 2-1), to com-
bine the bit-streams. Thus encipherment and decipherment are defined by
Xe®R=Yand Y ® R = X, respectively, and the condition 8 = 81 =& s
satisfied. Since in most stream cipher designs modulo 2 addition is used as
the combining operation, it will be used in the remainder of the discussion
on stream ciphers.

15Traditionally, the term key-stream has been used to denote the output of the bit-stream
generator. Instead, the term cryptographic bit-stream is used here to avoid possible
confusion with a fixed-length cryptographic key in cases where a cryptographic algorithm
is used as the bit-stream generator.
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Bit-Stream Bit-Stream
Generator Generator
Cryptographic Cryptographic
Bit-Stream Bit-Stream
(R) (R)
Plaintext Ciphertext Plaintext
(X) ) X)

Figure 2-8. Stream Cipher Concept

If the bit-stream generator were truly random, an unbreakable cipher
could be obtained by Exclusive-ORing the plaintext and cryptographic bit-
stream. (See the discussion of one-time tape systems, Cryptographic Algo-
rithms.) In that case, the cryptographic bit-stream is used directly as the key
and is equal in length to the message. But because the cryptographic bit-
stream is random, it must be provided to the users in advance via some
independent and secure channel. This, of course, introduces insurmountable
logistical problems if the intended data traffic is very large. Hence, for
practical reasons, the bit-stream generator must be implemented as an
algorithmic procedure, so that the cryptographic bit-stream can be produced
by both users. In such an approach (Figure 2-9), the bit-stream generator is a
key-controlled algorithm and must produce a cryptographic bit-stream which
is cryptographically strong.

When modulo 2 addition is used as the combining operation, each bit in the
output ciphertext (recovered plaintext), is dependent upon the corresponding
bit in the input plaintext (ciphertext), but not upon any other bits in the
input plaintext (ciphertext). This is in marked contrast to the block cipher
which exhibits a much more complex relationship between bits in the plain-
text (ciphertext) and bits in the ciphertext (recovered plaintext). Both ap-
proaches, however, have comparable strength.

In a stream cipher, the ciphering algorithm (G) uses a cipher key (v) to

Key —{ Algorithm Key —{ Algorithm
Cryptographic Cryptographic
Bit-Stream Bit-Stream
(R) (R)
Plaintext Ciphertext Plaintext
X ) X)

Figure 2-9. Stream Cipher Using an Algorithmic Bit-Stream Generator
and Modulo 2 Addition
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generate a cryptographic bit-stream (R). If the set of keys is represented, as
before, by

V={V13V2a---’vr}

it follows that the set of enciphering and deciphering functions (G) can be
expressed as follows.

G= {gvl) gV29 LR ] gvr}

where g, represents a key-selected transformation which generates a par-
ticular bit-stream. Function g should not be confused with the function
introduced earlier for the block cipher design (Figure 2-7).

In a stream cipher, the algorithm may generate its bit-stream on a bit-by-
bit basis, or in blocks of bits. This is of no real consequence. All such systems
are stream ciphers, or variations thereof. Some variations, however, have
important characteristics. Moreover, since bit streams can be generated in
blocks, it is always possible for 4 block cipher to be used to obtain a stream
cipher. However, in a communications system, because both the sender and
receiver must produce cryptographic bit-streams that are equal and secret,
their keys must also be equal and secret. In effect, this means that a public-
key algorithm can be used to obtain a stream cipher only if it is used as a
conventional algorithm. That is, both sender and receiver use the same algo-
rithm (E or D) and the same key. But the key must be kept secret.

Consider the general case where an input block (X) of b bits is enciphered
by generating a cryptographic bit-stream (R) of b bits and Exclusive-ORing
R with X to produce b bits of ciphertext (Y).

Y=XeoR

From the rules of modulo 2 addition (Table 2-1), it follows that X can be

recovered by adding the same cryptographic bit-stream (R) to the cipher-
text (Y).

X=YeR

The ciphering procedure using modulo 2 addition is thus extremely simple
and easy to implement. However, care must be taken to achieve a crypto-
graphically strong design. If, for example, the opponent knows that modulo 2
addition has been performed, and plaintext (X) and corresponding ciphertext
(Y) become available, he then could add both quantities together (modulo 2)
and recover the cryptographic bit-stream.

XeY=Xe(X®R)=R

Since the cryptographic key (K) is a constant quantity, it follows that the
cryptographic bit-stream (R), or block of bits produced at each iteration of
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the ciphering algorithm, will not change if it depends only on K. In this case,
once the opponent has obtained R, he can decipher any intercepted cipher-
text without ever knowing the key (K). This, of course, is unacceptable,

The stream cipher must not start from the same initial conditions in a
predictable way, and thereby regenerate the same cryptographic bit-stream
at each iteration of the algorithm. In other words, the stream cipher must
not reoriginate. 1%

Since the key, even though it is secret, does not ensure an unpredictable
cryptographic bit-stream, another quantity, defined as the initializing vector
(Z), must be introduced into the ciphering process. (Other terms used are
seed and fill.) In effect, different initializing vectors cause different crypto-
graphic bit-streams to be generated. And the cryptographic bit-stream is
unpredictable as long as the initializing vector satisfies one of the following
conditions.

1. Random. Z is produced by some natural phenomenon whose statistics
have been demonstrated to be random, and Z has enough combina-
tions so that the probability of repeating is extremely small.

2. Pseudo-random. Z is produced by a deterministic process whose
period (the interval between equal recurring values) is extremely large
compared to the length of Z, and whose values have the statistical
properties of randomness.

3. Nonrepeating. Under certain conditions, Z can be produced by a
process that may be predictable, but whose period before repeating
is so large that for practical purposes it is of no concern. A 64-bit non-
resettable counter would satisfy this condition. Even if the opponent
obtains the cryptographic bit-stream associated with one counter
setting, he cannot determine what the bit-stream will be for a differ-
ent counter setting.

In contrast to the cipher key, which must be kept secret, the initializing
vector may be a nonsecret quantity. This is because the initializing vector
either does not repeat, or else repeats with only a small probability (de-
termined by the length of the initializing vector).

The cryptographic bit-stream R generated by the function g can now be
expressed by

R =gk(Z)
The encipher and decipher operations are thus defined by

Y=XoR=Xog(Z)
X=YeR=Yog(Z)
6This is not a requirement for the block cipher, since knowledge of plaintext and cor-

responding ciphertext does not permit an opponent to decipher without knowledge of
the key.
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It follows that the set of functions G, which determines the cryptographic
bit stream, does not have to be a collection of one-to-one functions since an
inverse operation is never needed. On the other hand, a set of functions
F = {fx z}does exist which relates plaintext and ciphertext using the keys
and initializing vector as parameters

Y= fK,z(X)
X = fg'2(Y)

where fx ; is, of course, a one-to-one function. Since the length of the
ciphertext is equal to the length of the plaintext, the number of plaintext
combinations is equal to the number of ciphertext combinations. Hence
fx,z is also an onto function. (Note that the domain of fy  is the set of all
plaintext combinations, the co-domain is the set of all ciphertext combi-
nations.) The basic idea of a stream cipher is shown in Figure 2-10.

In a stream cipher, Z is used not only for providing cryptographic strength
but also for establishing synchronization between communicating crypto-
graphic devices. It assures that the same cryptographic bit-streams are

|

e je¢— N

K —pf g K —»
Cryptographic
R Bit-Stream R
Y=X®R
X o +(H— X
Input Output Output
Data Bit-Stream Data Bit-Stream Data Bit-Stream
After Encipherment After Decipherment
(Plaintext) (Ciphertext) (Plaintext)

Legend: example of encipherment and decipherment

® PlainteXxt ... ..ottt i i e e 0101
Cryptographic Bit-Stream .............coiiiiiin... 0011
L071) 173 o (>, AR N 0110

® Ciphertext. . ..o i e e 0110
Cryptographic Bit-Stream .....................ovovn.. 0011
Recovered Plaintext...........coivvin i iinnnnennn.. 0101

Figure 2-10. Stream Cipher
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generated for the sender and the receiver. This may be accomplished by
generating Z at the sending device and transmitting it in clear form to the
receiver. An alternative method is for the receiver to determine Z by trans-
mitting it to the sender. But this requires an additional initialization message,
and hence is less efficient. However, it does provide a way to introduce a
time-dependent parameter controlled by the receiver.

Recall that for a strong cryptographic algorithm it is assumed that the
opponent has the advantage of relatively large amounts of selected plain-
text and corresponding ciphertext. However, when the algorithm is a stream
cipher this means that the opponent also has knowledge of large portions of
the cryptographic bit-stream, since the cryptographic bit-stream can be recon-
structed by modulo 2 addition of known plaintext and corresponding
ciphertext. (Note that if Y = X @ R, then Y ® X = R.) It is important,
therefore, that knowledge of part of the cryptographic bit-stream does not
allow portions of the remaining cryptographic bit-stream to be determined.
Hence, a necessary, although insufficient condition to achieve cryptographic
strength with the stream cipher is for the bit-stream produced by the algorithm
to be pseudo-random.

A bit-stream is considered to be pseudo-random if on statistical grounds
one cannot reject the hypothesis that it is random (i.e., it passes all con-
ceivable tests of randomness). Pseudo-randomness assures that it will be
difficult for an opponent to use statistical attacks successfully against the
cryptographic algorithm.

In addition to the opponent knowing relatively large amounts of selected
plaintext and corresponding ciphertext, it is assumed for a strong stream'
cipher that the opponent knows the initializing vectors corresponding to
the given plaintext and ciphertext.

Cryptographic systems usually treat initializing vectors as nonsecret quanti-
ties. Thus in a communications system, initializing vectors are no more difficult
to intercept than ciphertext. Since the algorithm and cryptographic key are
fixed, a variable cryptographic bit-stream is obtained by varying the initial-
izing vector. One way to do this is to use a new initializing vector for each
iteration of the ciphering algorithm (i.e., for each new block of bits produced
in the cryptographic bit-stream). However, in a communications system, this
has the disadvantage of increasing the amount of transmitted data, since the
initializing vector bits are now added to each block of ciphertext bits. A
more efficient approach is to use a single initializing vector for each message.
(In general, a message consists of several blocks.) At the first iteration of the
ciphering algorithm, the initializing vector is used (as before) to produce a
block of bits in the cryptographic bit-stream, and these bits are then used to
encipher the first block of plaintext. At all subsequent iterations of the
ciphering algorithm, the initializing vector is altered by or determined from
information obtained using feedback techniques. In this case, the bit-streams
available at time i are used to produce an intermediate initializing vector,
U, which is then used in the ciphering process at time i + 1.

A feedback can be obtained from several places: the cryptographic bit-
stream, the plaintext, the ciphertext, or some combination thereof. Each of
these approaches can give rise to a cryptographic system with differing char-
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*
Z —D{> h
u@) K U(2)
b
g feedback from any
one or a combination

R() of R(1), X(1), and Y(1)
X(1) () > Y (1)

Note: The cryptographic bit-stream used to encipher the first block of
plaintext bits depends only on the secret key and the non-secret
initializing vector.

Figure 2-11. Encipherment of First Block of Plaintext Using a Stream
Cipher

acteristics with respect to recovery from ciphertext errors. But regardless of
what feedback technique is used, the first block of plaintext, X(1), is en-
ciphered by a cryptographic bit-stream, R(1), which depends only on an
initializing vector, Z, and a cipher key, K (Figure 2-11).

In the most general case, the length of the intermediate initializing vector
(U) may not equal the length of the initializing vector (Z). For example,
U(1) might be obtained by concatenating zero bits to Z. To accommodate
such situations, a function h* is introduced to define how U(1) is obtained
from Z:

U(1) = h*(2)
where encipherment of the first block of plaintext is given by
Y(1) = X(1) ® g (U(1))

A method for generating the initial condition U(2) is considered next. Let
the intermediate initializing vector at time i, U(i), be a function h of the
previous initializing vector, Ui — 1), as well as an additional feedback
quantity:

U@) = h[U(i — 1), feedback quantity]
However, since U(1) equals h*(Z), it follows that U(2) is given by

U(2) = h[h*(Z), feedback quantity]

as shown in Figure 2-11. It should be understood that the intermediate
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initializing vectors must satisfy the same conditions as the initializing vector
Z. The function h must therefore not introduce a bias into the ciphering
process that could make the U values predictable.

The special case where the feedback is obtained from the cryptographic
bit-stream is shown in Figure 2-12 and is defined as the key auto-key cipher.
One property of this cipher is that an error in the ciphertext produces an
error only in the corresponding bit positions of the recovered plaintext (i.e.,
there is no error expansion due to the ciphering process).

There are many ways to design a key auto-key cipher. The component
common to all of these designs is that the feedback must be obtained from
the cryptographic bit-stream. In general, the following relationships hold for
a key auto-key cipher:

Y(@{) = X(i) ® R()
X(@{@) = Y(@) e R@)

where

R(@ =gx(U@); 1<ist
h*(Z); i=1

U@ = { . . .
hUG— 1D, RE—1); i>1
where U(1) = h*(Z) is the initial seed value, U(i) is the new seed at iteration
i> 1, and h is a simple function of two arguments.
Some of the differences between block and stream ciphers can now be
stated.

1. The block cipher enciphers a single block of data at one time. It re-
quires a minimum blocksize determined by considerations of crypto-
graphic strength. The stream cipher requires no minimum blocksize;
it can be used to encipher, in the extreme case, on a bit-by-bit basis.

2. In the block cipher, every ciphertext bit is a complex function of
every plaintext bit in the corresponding input block. In the stream
cipher, every ciphertext bit y(i) is related to its corresponding plain-
text bit x(i) by the relationship y(i) = x(i) ® r(i).

3. The block cipher may or may not require an initializing vector (Z);
it is allowed to reoriginate. This is because knowledge of plaintext
and corresponding ciphertext does not reveal information in the same
way that it would in the case of the stream cipher.!” A cryptograph-

ically strong stream cipher must not reoriginate, and thus requires an
initializing vector (Z).

17 Although an initializing vector is not always a requirement for a block cipher, it is
nevertheless used in block chaining. But even there the block cipher may reoriginate,
since the initializing vector could be reused for a limited period of time.
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BLOCK CIPHERS WITH CHAINING

The overall strength of a cryptographic system can be enhanced by using a
technique known as chaining. Chaining is a procedure used during the
ciphering process which makes an output block dependent not only on the
current input block and key, but also on earlier input and/or output.

In certain applications, data to be enciphered may contain patterns that
are longer than the cipher’s blocksize. Such patterns in the plaintext may
result in similar patterns in the ciphertext which could be exploited by an
opponent. Chaining significantly reduces the presence of repetitive patterns
in the ciphertext, because with chaining two identical blocks of plaintext
will, upon encipherment, result in different ciphertext blocks.

Patterns Within Data

Patterns within data may occur because of a definite arrangement or inter-
relation between the characters or strings of characters that span a data
record, that is, because of the data’s structure. Patterns may also occur
within data because only relatively few of the possible characters or strings
of characters tend to repeat, that is, because of the data’s redundancy.

The structural relationship that may exist within data is illustrated by an
example of several assembler language statements punched onto 80-column
cards (Figure 2-13). When this plaintext is enciphered using DES (no chaining),
patterns within the ciphertext are still discernible (Figure 2-14).

Similarly, data intended for visual display may also contain patterns be-
cause of a rigidly defined format. For example, a format for medical records
might well include such displayed keywords as name, age, height, weight,
and the like. These constant portions of the displayed data could allow its
overall structure to be determined, even though enciphered. Once this under-
lying structure is known, variable portions of the data may be further
exposed to analysis.

If data are highly redundant, then encryption with a block cipher may not
prevent cryptanalysis using block frequency analysis. Block frequency analy-
sis determines the frequency of each ciphertext block from a large sample of
intercepted ciphertext. By relating the observed frequencies of the ciphertext
blocks to the expected frequencies of the plaintext blocks, an opponent may
be able to draw certain inferences concerning the nature of the plaintext
corresponding to a given ciphertext.

Data redundancy can be exploited to attack a cryptographic system by
the method illustrated in the following example. Assume that a cryptographic
system uses a block cipher (no chaining) to protect messages transmitted
among the nodes of a communication network. Assume further that each
pair of nodes shares a different cipher key for messages transmitted between
them.

At each node, the cipher keys are managed by the system and the user is
not aware of the ciphering operations. Most importantly, the cipher keys
are kept secret from users, even though users may request that messages be
enciphered and deciphered using cipher keys.
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Spaces represent nonprintable characters

K =Hex '85CDCBIC9BD0851A ' is the parity-adjusted key used for encipherment. Hexadecimal, or ‘‘Hex”’ for short,
is a base-sixteen system for representing numbers. The numbers 0 through 15 are represented by digits 0 through 9, and
letters A through F, respectively.

Figure 2-14. Ciphertext Obtained when Plaintext in Figure 2-13 is Encrypted Using the DES

(No Chaining)
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Although the cryptographic system described above protects users from
outsiders, it does not necessarily protect one user from another. For example,
a large amount of known plaintext could be transmitted between any two
selected nodes by one of the system’s users. This user could then recover his
own ciphertext, if necessary, by performing a wiretap. A dictionary of
equivalent plaintext and ciphertext blocks could then be constructed. This
dictionary would permit the user to recover portions of intercepted cipher-
text transmitted by another system’s user between the same pair of com-
munication nodes.

If the data normally transmitted in the communications network have
enough redundancy, then the number of possible meaningful plaintext
blocks will be small enough to permit a dictionary to be constructed. For
example, 1 million different eight-character groups can be transmitted over a
4800 bit-per-second (baud) line in about four hours. And a dictionary of
1 million plaintext and ciphertext equivalents could easily be stored within
most computer systems. Even with a dictionary of 1 million entries, it is
likely that some blocks of intercepted ciphertext could be recovered directly
from the dictionary. Once a few plaintext blocks have been correctly re-
covered, new suppositions concerning the content of adjacent blocks can be
made. These hypotheses could be tested by transmitting additional blocks of
plaintext and intercepting the corresponding ciphertext to determine if the
suppositions were correct. Therefore, through a process of trial and error, it
may be possible for additional portions of an intercepted message to be
recovered.

One way to eliminate the undesirable effects of redundancy and structure
within data is by Exclusive-ORing a different random or pseudo-random bit
pattern Z with each block of plaintext prior to its encryption. In effect, the
previously existing patterns within the data (should they occur) are canceled
as a result of the noise vector Z.

However, if the values of Z (chaining values) are selected using a process
that cannot be duplicated at the time decipherment takes place, then each
chaining value must also be transmitted or stored with each block of cipher-
text so that recovery of the plaintext is possible. This requirement is most
disadvantageous since it causes the amount of information that must be
transmitted or stored to be doubled.

Chaining eliminates the problem of transmitting or storing a separate Z-
value for each block of ciphertext, since at each step in the ciphering process
an equivalent chaining value is computed from information used within the
ciphering process (such as prior plaintext, ciphertext, or key). The chaining
value used at the first step in the ciphering process is called the initial chaining
value or initializing vector (Z), and if it is to be used it must be supplied as
input to the ciphering process.

In effect, the chaining value permits noise to be introduced into the
ciphering process. The way in which this chaining value is derived and ap-
plied determines the type of chaining used. Several different block chaining
techniques are discussed below.
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Block Chaining Using a Variable Key

One way to obtain block chaining is to change cipher keys internally at each
step in the ciphering process. This could be accomplished by using a feed-
back from some intermediate value derived within the ciphering function
(Figure 2-15).

It must be possible to derive the same intermediate value used for feed-
back during both encipherment and decipherment. For example, if DES
were used, then such an intermediate value could be obtained after the
eighth round of encipherment/decipherment. (See Chapter 3 for a discus-
sion of the DES algorithm.)

The cryptographic function f defines the relationship between plaintext
and ciphertext. Since the length of plaintext X equals the length of cipher-
text Y, function f is one-to-one as well as onto. Function h defines how the
cipher keys are changed or altered through the introduction of the initializing
vector Z or the feedback vectors U(1), U(2),..., U(n — 1). Note that func-
tion h may be a many-to-one function since identical inputs to this function
will be available during both encipherment and decipherment.

From Figure 2-15, it follows that

K@D =hKGi—1),UGi—1));, i=1 (2-15)
where

an intermediate result of the ciphering
u@g) = loperation that is identical during both i>0
enciphering and deciphering operations;

UO0)=Z
K@) =K

and = denotes “identically equal to.” Hence, encipherment and decipher-
ment are expressed as

Y() = fx (X(@);  i>1 (2-16a)

and
X(@1) = f;z(li)(Y(i)); i=1 (2-16b)

respectively. Even if the initializing vector (Z) is held constant, patterns in
the input data will be eliminated. This is because cipher key K(i) is different
from cipher key K(j) so that ciphertext Y(i) is different from ciphertext
Y(j), even if plaintext X(i) equals plaintext X(j). In contrast, stereotyped
messages (such as may occur in a terminal-to-computer inquiry system where
frequent yes and no responses are transmitted) are not masked when Z is
constant, since identical messages will always result in identical cryptograms.
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To eliminate the problem of stereotyped data records, a variable initializing
vector (Z) must be used.

Since U(i) is an intermediate result of the encipherment of block X(i),
it can be expressed as a function /2, of K(i) and X(i):

U@ = 1, (K@, X(@)); i=1 (2-17a)

Similarly, U(i) is an intermediate result of the decipherment of block Y(i),
and so it can also be expressed as a function k2, of K(i) and Y(i):

UQ@G) = h, (K@), Y(E);, i=1 (2-17b)
But, by the recursive nature of Equations 2-15 and 2-17a, it follows that
there exist functions ¢, ¢,, . . . , ; such that
K@) = oK, X(0), X(1),...,X(i—1)); i=1 (2-18a)
where X(0) = Z. Likewise from Equations 2-15 and 2-17b, it follows that
there exist functions ¥, Y5, . . ., ¥;such that
K@) = ¥iX, Y(0), Y(1),...,YG—1)); i=1 (2-18b)

where Y(0) = Z.
But from Equations 2-16a and 2-18a, it follows that there exist functions
H,, H,, . .., H;such that the generated ciphertext, Y(i), is given by

Y(i) = Hi(K, X(0), X(1),...,X(@{); i=>1 (2-19a)

and from Equations 2-16b and 2-17b, it follows that there exist functions
G., G,, . .., Gisuch that the recovered plaintext, X(i), is given by

X1 =G(X, Y(0), Y(1),...,Y(1); i=1 (2-19b)

where X(0) =Y(0)=Z. .

Equation 2-19a enables us to determine the most general block cipher.
Since the ciphering process is entirely deterministic, an output ciphertext
block at time i, Y(i), can depend only on the inputs to the ciphering process
from time 1 through time i, namely the cipher key (K), the initializing vector
(Z), and all plaintext blocks X(1) through X(i). It follows, therefore, that
Equation 2-19a represents the most general relation that could be established
for a block cipher. Moreover, since ciphertext block Y(i) depends on the
initial conditions established at the beginning of the ciphering process, namely
at time 1, it is said that Y(i) is origin-dependent.

For similar reasons, it follows that a recovered plaintext block at time i,
X(), can depend only on the cipher key (K), the initializing vector (Z), and
all ciphertext blocks Y(1) through Y(i). Equation 2-19b, therefore, repre-
sents the most general relation that could be established for a block cipher.
In like manner, X(i) is also origin-dependent.
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A block cipher which satisfies the general relations expressed in Equations
2-19a and 2-19b is defined as a general block cipher. A block cipher for
which every bit in the recovered plaintext block X(i) is a function of every bit
in ciphertext blocks Y(1) through Y(i) is said to have the property of error
propagation. Since the corruption of only a single bit of ciphertext may cause
each subsequent bit of recovered plaintext to be in error, error propagation
can be used as a means for detecting the occurrence of such errors (see
Cryptographic Message Authentication Using Chaining Techniques).

Since strong intersymbol dependence is one property of a block cipher, it
follows that error propagation is automatically achieved in a general block
cipher. However, since a bit in output block (i) does not depend on bits
within input blocks (i + 1), (i + 2), . .., the dependence is not defined as
strong intersymbol dependence but rather as intersymbol dependence.

Block Chaining Using Plaintext and Ciphertext Feedback

Another way to obtain block chaining is to hold the cipher key constant and
modify the input plaintext by making it a function of both the previous
block of plaintext and the previous block of ciphertext (Figure 2-16). In
this case, encipherment and decipherment are given by

YO =fxkX@ e UGy, 1>1 (2-20a)
and
X)) = Y@ e UG), i=>1 (2-20b)
respectively, where
) =‘ “ -l (2-21)
hXG—D,YG—1); i>1

Suppose that h is simple addition modulo 2.
Ui =XG-D+Yli—-1Dmod2% i>1
Then, from Equation 2-20a, it follows that
Y(@) = £(X(@) & (X — 1) + Y — 1) mod 2%)); i>1
and so, there exist functions H;, H,, . . ., H; such that
Y(i) = Hi(K, X(0), X(1),...,X@3@)); i=>1 (2-22a)
where X(0) = Z. Similarly, from Equation 2-20b, it follows that

iy = T OO 27 =1
YT RION@) @ (YG ~ ) + XG - Dmod2%) i>1
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and so, there exist functions G, G,, . .., G;such that
X)) = G(X, Y(0), Y(1),..., Y(D); i=1 (2-22b)

where Y(0) = Z. From Equations 2-22a and 2-22b, it can be seen that origin-
dependence has been achieved for X(i) and Y(i), and that Equations 2-19a
and 2-19b have been satisfied for the general block cipher.

A Self-Synchronizing Scheme Using Ciphertext Feedback

A cryptographic procedure or device is said to be self-synchronizing if after
an error has occurred the ciphering operation automatically corrects itself
(i.e., all plaintext can be recovered correctly except the portion affected by
the error). Consider the case of two cryptographic devices that produce
identical outputs for identical inputs. Suppose that an error is now intro-
duced into the ciphering process of one device, so that the outputs of the
two devices are different. If after some period of time the outputs again be-
come equal, then the devices are said to be self-synchronizing.

A self-synchronizing block chaining scheme can be obtained by omitting
the plaintext feedback in Figure 2-16 (referred to as Cipher Block Chaining,
CBC [26]). Mathematically, this can be expressed by defining function h in
Equation 2-21 as follows.

hXG—D,YA—1)=Y@{—1); i=1
Hence, encipherment and decipherment can be expressed by
Y@ =fkX@DeoYi—1), i=1
and
X@G) = gY@y eYi—1); i=>1
where X(0) = Y(0) = Z (see Figure 2-17).

Again, it follows that there exist functions H,, H,, . . . , H; and G,, G,,
. .., Gjsuch that

Y(i) = Hi(K, X(0), X(1),...,XH); 1i=1 (2-22¢)

and
XD =G(K, YG— 1), Y@, i=1 (2-22d)
From Equations 2-22¢ and 2-22d, it follows that patterns within the input
data are masked since ciphertext block Y(i) depends on plaintext blocks
X(1), X(2), . . ., X(i). However, since the recovered plaintext block X(i)

does not depend on all ciphertext blocks Y(1), Y(2), ..., Y(i), the scheme
is not a general block cipher.
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Encipherment:
X(1) X@2) X(n)
Z
K—» f K—» f K—» f
i‘ [ BN BN J
4 3
Y() Y2 Y (n)
Decipherment:
Y(1) Y(2) Y (n)
[ 3K BN ]
\ 4 y
K—» f~ ! K —» f 1 K —p f— 1
zZ
X1 X(2) X(n)

Figure 2-17. Block Cipher with Block Chaining
(Block Chaining Using Ciphertext Feedback)

An error occurring in ciphertext block Y(i — 1) can affect every bit in the
recovered plaintext block X(i — I), but it will affect only the corresponding
bit positions in the recovered plaintext block X(i). In other words, if the
seventh and thirteenth bits in Y(i — 1) are in error, then the seventh and
thirteenth bits in X(i) are in error. None of the bits in the recovered plain-
text blocks X(i + 1), X(i + 2), and so forth, will be affected by an error
occurring in ciphertext block Y(i — 1). Since most of the plaintext can be
recovered, even when an error occurs in the ciphertext, the scheme is said to
be self-synchronizing.

However, since an error in ciphertext does not propagate, the scheme can-
not be directly used for message authentication (see Cryptographic Message
Authentication Using Chaining Techniques). Hence the choice of a block
chaining method must involve the weighing of the benefit of direct crypto-
graphic authentication against that of self-synchronization.
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A practical application for the self-synchronizing approach is the protec-
tion of stored data. When cryptography is used for communication security,
one can recover from an error in transmission simply by retransmitting the
original message. When a file is encrypted, recovery from an error must be
effected with ciphertext alone. If a ciphering procedure with error propaga-
tion is used for file security, subsequent inability to read a portion of the
ciphertext, because of damage either to the physical medium or to the
recorded bits, may prevent all following ciphertext from being deciphered.
In certain applications for cryptography, therefore, a self-synchronizing
approach may be the most desirable.

Examples of Block Chaining

To illustrate how block chaining can be used to eliminate patterns within
data, the plaintext in Figure 2-13 was enciphered using block chaining with
ciphertext feedback (Figure 2-17). Figure 2-18 illustrates the situation where
each 80-character line or 80-column card is enciphered as a separate data
record so that only the blocks within each line or card are chained together.
Figure 2-19 illustrates the case where the entire text is enciphered as a single
data record so that all blocks are chained together.

Short Block Encryption

Since a block cipher enciphers and deciphers only blocks of bits at a time, it
is important to know how a block cipher can cope with data whose length
is not an integral multiple of the cipher’s blocksize. A block whose length is
less than the cipher’s blocksize is called a short block, whereas a block whose
length is equal to the blocksize is called a block or standard block.

A short block will always occur as the last block of data when the data’s
length is not an integral multiple of the cipher’s blocksize. A short block
will also occur as the first (and only) block of data when the data’s length is
less than the cipher’s blocksize.

If a short block is first padded with enough additional bits to produce
a standard block, it is always possible to encipher a short block in a secure
way using a block cipher (see Effects of Padding and Initializing Vectors).
Padding is the operation of appending additional data bits (or bytes) to
plaintext so that its length becomes a multiple of the cipher’s blocksize. For
security purposes, it is best if pad characters are produced by a random
process, although in most cases a pseudo-random process is sufficient. If
pad characters could be predicted by an opponent, then, in terms of the
work factor, the blocksize would be effectively reduced. The technique of
short block encryption using padding is illustrated below (Figure 2-20).

Generally, when cryptography is used for communication security, pad-
ding is an acceptable solution for handling messages that may be variable in
length. This, however, is not always the case when cryptography is used for
file security, because padding bits may cause overflow of secondary storage.

When ciphering operations are not length-preserving, it may no longer be
convenient, practical, or even possible to substitute ciphertext freely for
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Spaces represent nonprintable characters.

Z=Hex '5555555555555555 ' is the constant initializing vector, which is the same for each line of plaintext to be
encrypted.

K =Hex '85CDCBIC9BD0851A ' is the parity-adjusted key used for encipherment.

Figure 2-18. Ciphertext Obtained when the Plaintext in Figure 2-13 is Encrypted Line-By-Line
Using the DES Block Cipher with Ciphertext Feedback
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Spaces represent nonprintable characters.
Z=Hex' 5555555555555555 ' is the initializing vector.
K=Hex ' 85CDCB1C9BD0851A ' is the parity-adjusted key used for encipherment.

Figure 2-19. Ciphertext Obtained when the Plaintext in Figure 2-13 is Encrypted as a Single
Aggregate Message Using the DES Block Cipher with Ciphertext Feedback
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j Bits b-j Bits
Short Block Pad

A ¥
Encipher
(Block Cipher Mode)

b Bits
Ciphertext

Figure 2-20. Encipherment of a Short Data Block Using
Block Cipher Mode

plaintext within a computer data base. Expanded ciphertext may cause a
file to overflow the physical boundaries of the recording medium. Encipher-
ment of selected fields within records, or of selected records within files may
require that record formats be redefined and may in tumn require existing
files to be restructured. Such dependencies between the encryption algorithm
and stored data are undesirable.

Cryptographic
Bit-Stream Generator
(Stream Cipher Mode)

j Bits j Bits

Short Block »{ -+ ${ Ciphertext

Figure 2-21. Encipherment of a Short Data Block Using Stream
Cipher Mode

One way to avoid data expansion would be to use the stream cipher mode
of operation to handle the special situations of short blocks (Figure 2-21). In
this mixed mode of operation, the block cipher mode is used for ciphering
standard blocks and the stream cipher mode is used for ciphering short
blocks. One way to implement the stream cipher mode is to generate the
cryptographic bit-stream by reenciphering the previous block of ciphertext
or, in the case of the first block, by enciphering the initializing vector. This
scheme is shown in Figure 2-22.

Consider the following plaintext whose length is greater than, but not an
integral multiple of, the cipher’s blocksize.

b Bits b Bits j Bits
XM e X(n-1) Xm) j1
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Encipherment:
X(mn-1) X(n)
| }
K—» f K—» f
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*
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Y(n-1) Y (n)
Decipherment:
Y(n-1) Y (n)
Y Y
K—» ! K—>
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%
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X(n-1) X (n)

* | X(n) | bits are used to encipher X(n), where | X(n) | is the length of
X (n) in bits. If n= 1, then the initializing vector (Z) is enciphered under
K to produce the cryptographic bit-stream.

Figure 2-22. Stream Cipher Mode for Encipherment of Short Blocks

where

Instead of using a mixed mode of operation (i.e., a block cipher for standard
blocks and a stream cipher for short blocks) one can use a block cipher to
encipher short blocks provided that the data’s length is greater than the

cipher’s blocksize.

Another approach for enciphering a short block, X(n), is to make use of a

b = blocksize

1<j<b

77

technique called ciphertext-stealing mode (Figure 2-23). In this mode, the
short block, X(n), is first padded by stealing (removing) just enough bits
from the ciphertext Y(n — 1) to make the length of X(n) equal to the
cipher’s blocksize. This results in Y(n — 1) becoming a short block and Y(n)

Next Chapter
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Encipherment:
X(n-1) X(n)

K—» f B 1X(n)

dl
r

B K—p f

K—» 7!

v
K—»} 17! B 1 X(m)
- — |
X(n-1) X (n)

Figure 2-23. Ciphertext-Stealing Mode for Encipherment
of Short Blocks

becoming a standard block. Since the number of bits removed from Y(n — 1)
equals the number of bits added to X(n), no expansion occurs. The encipher-
ing process is reversed by deciphering Y(n) prior to Y(n — 1) and recovering
the original stolen bits from Y(n — 1). The reconstructed value of Y(n — 1)
is then deciphered.

Both the stream cipher mode and the ciphertext-stealing mode display a
certain awkwardness in the manner in which short blocks are handled. With
the stream cipher mode, the cryptographic bit-stream is generated by en-
cipherment of Y(n — 1) regardless of whether encipherment or decipherment
is taking place. Complete symmetry between encipherment and decipher-
ment is therefore lost. With the ciphertext-stealing mode, the serial fashion
in which blocks are normally enciphered or deciphered is not preserved. Here,
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the two trailing ciphertext blocks are deciphered in reverse order. Again,
complete symmetry between encipherment and decipherment is lost.

The encryption of short blocks also affects error propagation. In the
stream cipher mode (Figure 2-22), a bit change in Y(n — 1) will affect all
bits in the recovered plaintext, (X(n — 1), X(n)), whereas a bit change in Y(n)
will cause only a corresponding bit change in the recovered plaintext, X(n).
Hence the error propagation property discussed earlier for the general block
cipher is lost as far as the last short block of ciphertext is concerned. (There
is no strong intersymbol dependence between plaintext and ciphertext in
the last block.) In the ciphertext-stealing mode (Figure 2-23), any bit change
in the short ciphertext block Y(n — 1) will affect only the recovery of plain-
text block X(n — 1), but will not affect the recovery of plaintext short block
X(n). Hence, any error in ciphertext block Y(n — 1) will not propagate, and
again the error propagation property is affected.

When implemented properly, the stream cipher and ciphertext-stealing
modes provide equivalent cryptographic strength, although a somewhat
unlikely set of circumstances can be found in which these two techniques are
not equivalent. Suppose that these two techniques are implemented in a
cryptographic system which uses a block cipher with no chaining. Assume
further that it is possible for an opponent to request enciphering operations
but not deciphering operations, and that the cipher keys are managed by the
system (i.e., unknown to the system’s users). If the stream cipher mode is
used, the short block X(n) can be recovered by intercepting Y(n — 1) and
Y(n) via a wiretap, retransmitting Y(n — 1) as text in a second message,
intercepting the ciphered version of Y(n — 1) via a second wiretap, and
finally, Exclusive-ORing Y(n) with the ciphered version of Y(n — 1). This
attack could be prevented either by using X(n — 1) + Y(n — 1) mod 2* instead of
Y(n — 1) as the value to be ciphered, or by using chaining.

Figures 2-24 through 2-27 illustrate how the stream cipher and ciphertext-
stealing modes can be used in conjunction with the block chaining schemes
previously discussed. Without loss of generality, only two full blocks are
shown, X(1) and X(2), respectively. Block X(3) is a short block. Generally
speaking, all of these schemes are equivalent in cryptographic strength
provided that the basic cryptographic algorithm is strong (i.e., an algorithm
comparable in strength to DES is used).

In each case (Figure 2-24 and 2-26), the stream cipher mode is imple-
mented in such a way that it is not possible for an opponent to recover X(3)
by intercepting Y(2) and Y(3) via a wiretap, retransmitting Y(2) as data,
intercepting the encipherment of Y(2) via a second wiretap, and finally
Exclusive-ORing the enciphered version of Y(2) with Y(3). In Figure 2-24,
the attack is not possible because Y(2) is enciphered with a variable key that
is chained back to the origin. In Figure 2-26, the attack is not possible be-
cause the cryptographic bit-stream used to encipher X(3) via the Exclusive-OR
operation is a function of both plaintext and ciphertext.

For all practical purposes, the ciphertext-stealing mode is implemented in
such a way that a frequency analysis on the short block is not possible. In
Figure 2-25, observe that the variable key K(2) used to encipher X(2) is the
same key used to encipher the quantity 8 concatenated with X(3), and that
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Encipherment:
X(1)
K1) A 4
Z o f L,
K
Decipherment: <
Y(1)
K(1) A 4
72— _1®
K——>>T' f
v
X (1)

Home Next page
X2 X@®3)
—¢ |
B 1X(3)
v
K@) K(2)
> R
A
a | B
y ‘——'— v
Y(2) Y(3)
\ 4 {
a i B
4 2
L, K® K(2)
h £! —» !
A
B 1X(3)
¥ “—] L 4
X(2) X@3)

Note: Function h could be an Exclusive-OR operation in an actual imple-
mentation. A change in Y (2) affects only the recovery of X(2), and
hence the error does not propagate in that case. A change of any
other ciphertext bit is propagated, and the effect on the recovered

plaintext is unpredictable.

Figure 2-25. Block Cipher with Block Chaining (Block Chaining Using

Variable Key, and Ciphertext-Stealing Mode for Short Blocks)
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Encipherment:

[x0) ]

Decipherment: )

(Y]

&
<+

[

K— f

uQ
zAé; > 200

X3 B

A 4 \ 4
[x1 ] xa)
Note: (1) C is a constant, say all zero bits.
(2) Function h could be addition modulo 2% in an actual implementa-
tion; or a self-synchronizing system could be obtained by making
h depend only on the ciphertext feedback.
A change in Y (2) affects only the recovery of X(2), and hence the
error does not propagate in that case. A change of any other
ciphertext bit is propagated, and the effect on the recovered
plaintext is unpredictable.
Figure 2-27. Block Cipher with Block Chaining (Block Chaining Using
Plaintext-Ciphertext Feedback and Ciphertext-Stealing Mode for Short
Blocks)
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K(2) is chained to the origin. Since X(2) is enciphered prior to X(3) and
Y(3) is deciphered prior to Y(2), the same cipher key, K(2), is used for both
the encipherment and decipherment of the second and third blocks of plain-
text and ciphertext, respectively. In Figure 2-27, observe that the short
block is chained using only a ciphertext feedback. Since the last two blocks
must be treated in reverse order, using a feedback from the plaintext would
prevent recovery.

Observe that the method for implementing the ciphertext-stealing mode in
Figure 2-27 is slightly different from that shown in Figure 2-23. In
addition to stealing ciphertext and concatenating it with short block X(3),
ciphertext is also stolen and Exclusive-ORed with X(3). This extra step is
important because for all practical purposes it prevents a successful block
frequency analysis on Y(3). With the technique shown in Figure 2-23, this
is not necessarily true when the number of bits concatenated to X(n) is small,
(e.g., if § were only one bit and the number of plaintext combinations for
X{(n) were small).

As pointed out in Figure 2-22, the encipherment of data consisting of a
single short block of j < b bits can be accomplished by Exclusive-ORing the
first j bits of the encipherment of the initializing vector Z. However, such a
procedure would be weak if the same Z were used repeatedly to encipher a
sequence of short blocks, e.g., a file of records in which each record consists
of a single short block. In effect, each short block would be protected using
the same cryptographic bit-stream, which would thus allow the plaintext
associated with these short blocks to be recovered via a simple cryptanalysis.

In the case of file security, a strong procedure for the encipherment of
data records consisting of repeated short blocks is to use a method of record
chaining [24,25]. Here, the value of Z is a variable that changes for each
record to be enciphered. In the recommended approach, Z, (the initializing
vector for the ith record) is specified as the rightmost 64 bits (‘‘right64”’) of
the concatenation ([|) of Z;_; and the just-constructed ciphertext (the
ciphertext of record i — 1), i.e.,

Z; = right64{Z;_ || ciphertext of record i — 1]

Thus, the first record is enciphered using the initial value of Z (defined as
Z,). All subsequent records are enciphered using a computed value of Z, as
described above.

With record chaining, the chaining process continues across record bound-
aries. To correctly decipher a record (given the key), only that record and
the preceding 64 bits of ciphertext (and possibly the initial value of Z if
less than 64 bits of ciphertext are present) are required. Record chaining is
ideally suited for sequentially organized files. For nonsequential files, block
chaining is best suited. But for block chaining to be strong, each record must
have its own (unique or randomly selected) 64-bit initializing vector, Z.

The inherent cryptographic weaknesses associated with the encryption of
groups of short data blocks in a sequentially organized file can also be
avoided via the implementation. For example, data blocks (of any length)
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can be temporarily joined (concatenated) into an ‘“‘artificial’> data unit (or
cipher unit) which is then enciphered as if it were one, large record or col-
lection of data.

In the case of communication security, padding is the preferred technique
for short block encryption. Here, the physical boundary limitations that can
lead to data overflow, which apply to file security, do not exist.

STREAM CIPHERS WITH CHAINING

In a block cipher, chaining can be used to acquire two important properties.
First, it can mask repetitive patterns within data by making each block of
ciphertext, Y(i), dependent upon all prior blocks of plaintext, X(1), X(2),
..., X(@i— 1), as well as on the present plaintext block X(i). In a sense, this
chaining technique extends the effective blocksize of the cipher. Second,
it can extend error propagation across block boundaries by making each
block of recovered plaintext, X(i), dependent upon all prior blocks of cipher-
text, Y(1), Y(2), ..., Y(i — 1), as well as on the present ciphertext block,
Y(@{).

In a stream cipher, patterns occurring within the input plaintext are
automatically eliminated as a consequence of Exclusive-ORing the plain-
text with the cryptographic bit-stream (Figure 2-10). The cryptographic
bit-stream introduces pseudo-random noise into the ciphering process and
hence eliminates exploitable statistics associated with the plaintext. The
changing initializing vector Z assures that stereotyped messages (if they
occur) will result in different ciphertext. Thus chaining is not needed in a
stream cipher to mask patterns within the data or to mask stereotyped mes-
sages. It can, however, be useful in a stream cipher to achieve either the pro-
perty of error propagation, if one desires secrecy and authentication in one
operation, or self-synchronization, in which case the system does not have to
be reinitialized after an error condition occurs.

In the stream cipher, it can be assumed that the cryptographic bit-stream
is produced as a series of blocks:

R(1), R(2),...,R({)
where
R@) = (r (@), 1,(0), . . ., (D))

is a block of b bits generated at iteration i, and b is the blocksize. Encipher-
ment and decipherment are defined as

Y@ =X eR3G@),; i=1 (2-23a)
and

X =Y@DeR3dH;, i=1 (2-23b)
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A Chaining Method with the Property of Error Propagation

Error propagation is present in a block cipher whenever each bit in the
recovered plaintext block X(i) is a function of every bit in ciphertext blocks
Y(1) through Y(). In a stream cipher, however, because of the modulo 2
addition shown in Equation 2-23b, the jth bit in the recovered plaintext
block X(i) depends on the jth bit in the ciphertext block Y (i), but not on
any other bits in ciphertext block Y(i). At best, a scheme could be devised
where the jth bit in X(i) is a function of every bit in Y(1) through Y(i — 1).
If this were the case, then an error occurring in any of the ciphertext blocks
Y(1) through Y(i — 1) could propagate to the recovered plaintext block X(i).

To achieve this dependence, a feedback could be provided from either the
plaintext X, the initializing vector Z, or a combination of both, in addition
to the feedback from the ciphertext. A stream cipher with the property of
error propagation is shown in Figure 2-28.

Note, however, that error propagation due to corruption of the ciphertext
could be obtained by providing a feedback only from the plaintext. That is,
encipherment is expressed by

Y()=X(D)eg(Z);, i=1
Y =XMogeXi—1) i>1

and decipherment is expressed by

X(D=Y()oex(Z); 1=1 (2-24)
XM =YD o gXi—1); i>1

It follows that each bit in the recovered plaintext block X(i) depends on
each bit in the initializing vector (Z) and on each bit in the ciphertext blocks
Y(1) through Y(i — 1), by the recursive relation shown in Equation 2-24.

If a feedback from plaintext were used, patterns in the plaintext would result
in patterns in the ciphertext. This is because Y(i) is not origin-dependent.
Recall that patterns were destroyed in the key auto-key cipher (Figure 2-12)
because the feedback was taken from the cryptographic bit-stream.

From Figure 2-28 it follows that encipherment and decipherment can be
expressed as

Y@ = X(i) © g (U@D); i=1 (2-252)

and

X =Y@)og(U@®); 1=>1 (2-25b)
respectively, where
h*(Z); i=1

hUG—1),YG—1); i>1 (2-26)

U(@) ={
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Legend: encipherment mode: —¢» , decipherment mode: —»

Note: Z, U, R, X and Y are blocks of n bits; h could be an Exclusive-OR function

Figure 2-28. Stream Cipher with Error Propagation
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Function h* is again introduced to allow Z to be different in length from U.
From the recursive nature of Equation 2-26, it follows that there exist
functions G4, G5, ..., Gyand H,, H,, . . ., H; such that

Y(@) = X(@) @ H(K, X(0), X(1),...,X@Gi—1)); i=1 (2-27a)
and
XD =YD e GK, YO, Y(),...,YG—1)); i=1 (2-27b)

where X(0)=Y(Q)=Z.

Using the same arguments that led to the definition of a general block
cipher (see Block Chaining Using a Variable Key), the reader can see that
Equations 2-27a and 2-27b represent the most general relation that can be
established for a stream cipher. Whenever such relations hold for a stream
cipher, it is called a general stream cipher.

It follows (Equation 2-27a) that the jth bit in ciphertext block Y(i) is
affected by only the jth bit in plaintext block X(i), whereas it is potentially
affected by every bit in plaintext blocks X(1) through X(i — 1). In like
manner, it follows (Equation 2-27b) that the jth bit in the recovered plain-
text block X(@i) is affected by only the jth bit in ciphertext block Y(i),
whereas it is potentially affected by every bit in ciphertext blocks Y(1)
through Y(i — 1).

Since the recovered plaintext block X(i) is potentially affected by every
bit in ciphertext blocks Y(1) through Y(i — 1), error propagation is achieved.
However, because the jth bit in the recovered plaintext block X(i) depends
only on the jth bit in ciphertext block Y(i), the following statements may be
made. For the general stream cipher, intersymbol dependence can be achieved
for all but the final block. For the general block cipher, there is intersymbol
dependence throughout all blocks. This is an important difference between
block ciphers and stream ciphers.

A Chaining Method with the Property of Self-Synchronization

A self-synchronizing stream cipher can be obtained from Figure 2-28 by
defining function h as

h(UG— D, YG—1)=YG—1); i>1

that is, by feeding back the ciphertext as input to the algorithm. By defining
Y(0)=Z, it follows that

gx(UG)) =g (YG—1)); i=21

and so, from Equations 2-25a and 2-25b, encipherment and decipherment
can be expressed as

YA =X@@egk(Yi—1)); i=>1 (2-28a)
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and
X@ =YD egg(YG—1);, i=1 (2-28b)

respectively.

It follows (Equation 2-28b) that an error in ciphertext block Y(i — 1)
can potentially affect every bit in the computed quantity gg(Y(@i — 1)), and
hence can cause every bit in the recovered plaintext block X(i) to be in
error. Moreover, it follows (Equation 2-28b) that an error in ciphertext
block Y(i — 1) will cause the corresponding bit positions in the recovered
plaintext block X(i — 1) to be in error. That is, if the third, fifth, and eleventh
ciphertext bits in Y(1 — 1) are in error, then the third, fifth, and eleventh re-
covered plaintext bits in X(i — 1) will be in error. Finally, it follows (Equa-
tion 2-28b) that an error in ciphertext block Y(i — 1) will at most affect
only the recovery of plaintext blocks X(i — 1) and X(i), but it will not affect
the recovery of subsequent plaintext blocks X(@i + 1), X + 2), and so forth.
Hence the scheme is self-synchronizing.

A specific example of a self-synchronizing stream cipher, the ciphertext
autokey cipher, is shown in Figure 2-29. The cryptographic bit-stream is
produced in blocks of 64 bits by enciphering the contents of a 64-bit input
register, denoted by Y for the sender and Y' for the receiver, and storing the
result in a 64-bit output register, denoted by R for the sender and R’ for the

Sender Receiver

: Y(t-1) : : Y'(t-1) :

: ' : |

|t | =t |

! DES I | DES {
K=+ o || K= "o | |

| I ) |

| i | :

: v : : \ 4 :

| rRo | 'l R |

[ t | |

[ d [ E I

Y(t Y(t
X(t) —»é——y—Q—L . .‘A——()——pé—b X'(1)
Plaintext Ciphertext Deciphered Text

Att=1: XO=Z; Yt-1) #Y'(t—1)

Att>1: Y(t-1)=Y'(t—1) implies in synchronization
Y(t—1)#Y'(t—1) implies out of synchronization

Figure 2-29. Ciphertext Auto-Key Cipher
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receiver. The contents of registers Y, Y', R, and R’ at time t are denoted by
Y(t), Y'(t), R(t), and R'(t), respectively.

Before communication within the system is possible, the sender and
receiver must be synchronized. This is necessary since registers Y and Y’
are assumed to be volatile (i.e., stored information is lost when power to
the cryptographic device is turned off). Therefore, it is assumed that at time
t=20

Y(0) # Y'(0)

At time t = 1, synchronization is accomplished by transmitting a 64-bit
initializing vector Z, instead of the usual block of plaintext. This causes
the same block of ciphertext to be gated into registers Y and Y’ so that Y(1)
equals Y'(1), and hence synchronization is achieved. However, unlike sub-
sequent blocks of transmitted plaintext, the first block (the initializing
vector) is not presented to the user at the receiving end.

At time t > 0, the input Y(t — 1) is enciphered using key K to obtain

R(t) = fx(Y(t — 1))
R(t) is Exclusive-ORed with the data block X(t) to obtain
Y(t) = R(t) e X(1)

Y(t) is then transmitted to the receiving end where the input Y'(t — 1) is
enciphered using key K to obtain

R'(t) = fx(Y'(t — 1))

R'(t) is Exclusive-ORed with the ciphertext block Y(t) to obtain the re-
covered plaintext, X'(t).

X' =Yt e fk(¥'(t—1)

If the first data block X(1) is defined as the init