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Preface

Crypto 2004, the 24th Annual Crypto Conference, was sponsored by the Inter-
national Association for Cryptologic Research (IACR) in cooperation with the
IEEE Computer Society Technical Committee on Security and Privacy and the
Computer Science Department of the University of California at Santa Barbara.

The program committee accepted 33 papers for presentation at the confer-
ence. These were selected from a total of 211 submissions. Each paper received
at least three independent reviews. The selection process included a Web-based
discussion phase, and a one-day program committee meeting at New York Uni-
versity.

These proceedings include updated versions of the 33 accepted papers. The
authors had a few weeks to revise them, aided by comments from the reviewers.
However, the revisions were not subjected to any editorial review.

The conference program included two invited lectures. Victor Shoup’s invited
talk was a survey on chosen ciphertext security in public-key encryption. Susan
Landau’s invited talk was entitled “Security, Liberty, and Electronic Communi-
cations” . Her extended abstract is included in these proceedings.

We continued the tradition of a Rump Session, chaired by Stuart Haber.
Those presentations (always short, often serious) are not included here.

I would like to thank everyone who contributed to the success of this confer-
ence. First and foremost, the global cryptographic community submitted their
scientific work for our consideration. The members of the Program Committee
worked hard throughout, and did an excellent job. Many external reviewers con-
tributed their time and expertise to aid our decision-making. James Hughes,
the General Chair, was supportive in a number of ways. Dan Boneh and Victor
Shoup gave valuable advice. Yevgeniy Dodis hosted the PC meeting at NYU.

It would have been hard to manage this task without the Web-based submis-
sion server (developed by Chanathip Namprempre, under the guidance of Mihir
Bellare) and review server (developed by Wim Moreau and Joris Claessens, under
the guidance of Bart Preneel). Terri Knight kept these servers running smoothly,
and helped with the preparation of these proceedings.

June 2004 Matt Franklin
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On Multiple Linear Approximations*

Alex Biryukov**, Christophe De Cannière***, and Michaël Quisquater***

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10,

B–3001 Leuven-Heverlee, Belgium
{abiryuko, cdecanni, mquisqua}@esat. kuleuven. ac. be

Abstract. In this paper we study the long standing problem of informa-
tion extraction from multiple linear approximations. We develop a formal
statistical framework for block cipher attacks based on this technique
and derive explicit and compact gain formulas for generalized versions of
Matsui’s Algorithm 1 and Algorithm 2. The theoretical framework allows
both approaches to be treated in a unified way, and predicts significantly
improved attack complexities compared to current linear attacks using
a single approximation. In order to substantiate the theoretical claims,
we benchmarked the attacks against reduced-round versions of DES and
observed a clear reduction of the data and time complexities, in almost
perfect correspondence with the predictions. The complexities are re-
duced by several orders of magnitude for Algorithm 1, and the significant
improvement in the case of Algorithm 2 suggests that this approach may
outperform the currently best attacks on the full DES algorithm.

Keywords: Linear cryptanalysis, multiple linear approximations,
stochastic systems of linear equations, maximum likelihood decoding,
key-ranking, DES, AES.

1 Introduction

Linear cryptanalysis [8] is one of the most powerful attacks against modern cryp-
tosystems. In 1994, Kaliski and Robshaw [5] proposed the idea of generalizing
this attack using multiple linear approximations (the previous approach consid-
ered only the best linear approximation). However, their technique was mostly
limited to cases where all approximations derive the same parity bit of the key.
Unfortunately, this approach imposes a very strong restriction on the approxima-
tions, and the additional information gained by the few surviving approximations
is often negligible.

In this paper we start by developing a theoretical framework for dealing with
multiple linear approximations. We first generalize Matsui’s Algorithm 1 based

* This work was supported in part by the Concerted Research Action (GOA) Mefisto-
2000/06 of the Flemish Government.

** F.W.O. Researcher, Fund for Scientific Research – Flanders (Belgium).
*** F.W.O. Research Assistant, Fund for Scientific Research – Flanders (Belgium).

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 1–22, 2004.
© International Association for Cryptologic Research 2004
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2 Alex Biryukov, Christophe De Cannière, and Michaël Quisquater

on this framework, and then reuse these results to generalize Matsui’s Algo-
rithm 2. Our approach allows to derive compact expressions for the performance
of the attacks in terms of the biases of the approximations and the amount of
data available to the attacker. The contribution of these theoretical expressions
is twofold. Not only do they clearly demonstrate that the use of multiple ap-
proximations can significantly improve classical linear attacks, they also shed a
new light on the relations between Algorithm 1 and Algorithm 2.

The main purpose of this paper is to provide a new generally applicable crypt-
analytic tool, which performs strictly better than standard linear cryptanalysis.
In order to illustrate the potential of this new approach, we implemented two
attacks against reduced-round versions of DES, using this cipher as a well estab-
lished benchmark for linear cryptanalysis. The experimental results, discussed
in the second part of this paper, are in almost perfect correspondence with our
theoretical predictions and show that the latter are well justified.

This paper is organized as follows: Sect. 2 describes a very general maximum
likelihood framework, which we will use in the rest of the paper; in Sect. 3 this
framework is applied to derive and analyze an optimal attack algorithm based
on multiple linear approximations. In the last part of this section, we provide
a more detailed theoretical analysis of the assumptions made in order to derive
the performance expressions. Sect. 4 presents experimental results on DES as
an example. Finally, Sect. 5 discusses possible further improvements and open
questions. A more detailed discussion of the practical aspects of the attacks and
an overview of previous work can be found in the appendices.

2 General Framework

In this section we discuss the main principles of statistical cryptanalysis and
set up a generalized framework for analyzing block ciphers based on maximum
likelihood. This framework can be seen as an adaptation or extension of earlier
frameworks for statistical attacks proposed by Murphy et al. [11], Junod and
Vaudenay [3,4,14] and Selçuk [12].

2.1 Attack Model

We consider a block cipher which maps a plaintext to a ciphertext
The mapping is invertible and depends on a secret key

We now assume that an adversary is given N different plaintext–ciphertext pairs
encrypted with a particular secret key (a known plaintext scenario),

and his task is to recover the key from this data. A general statistical approach —
also followed by Matsui’s original linear cryptanalysis — consists in performing
the following three steps:

Distillation phase. In a typical statistical attack, only a fraction of the infor-
mation contained in the N plaintext–ciphertext pairs is exploited. A first step
therefore consists in extracting the relevant parts of the data, and discarding

TEAM LinG



On Multiple Linear Approximations

all information which is not used by the attack. In our framework, the distil-
lation operation is denoted by a function which is applied to
each plaintext–ciphertext pair. The result is a vector with

which contains all relevant information. If which is
usually the case, we can further reduce the data by counting the occurrence of
each element of and only storing a vector of counters
In this paper we will not restrict ourselves to a single function but consider

separate functions each of which maps the text pairs into different sets
and generates a separate vector of counters

Analysis phase. This phase is the core of the attack and consists in generating
a list of key candidates from the information extracted in the previous step.
Usually, candidates can only be determined up to a set of equivalent keys,
i.e., typically, a majority of the key bits is transparent to the attack. In
general, the attack defines a function which maps each key
onto an equivalent key class The purpose of the analysis phase is
to determine which of these classes are the most likely to contain the true
key given the particular values of the counters

Search phase. In the last stage of the attack, the attacker exhaustively tries
all keys in the classes suggested by the previous step, until the correct key
is found. Note that the analysis and the searching phase may be intermixed:
the attacker might first generate a short list of candidates, try them out, and
then dynamically extend the list as long as none of the candidates turns out
to be correct.

2.2 Attack Complexities

When evaluating the performance of the general attack described above, we
need to consider both the data complexity and the computational complexity.
The data complexity is directly determined by N, the number of plaintext–
ciphertext pairs required by the attack. The computational complexity depends
on the total number of operations performed in the three phases of the attack.
In order to compare different types of attacks, we define a measure called the
gain of the attack:

Definition 1 (Gain).  If an attack is used to recover an key and is expected
to return the correct key after having checked on the average M candidates, then
the gain of the attack, expressed in bits, is defined as:

Let us illustrate this with an example where an attacker wants to recover an
key. If he does an exhaustive search, the number of trials before hitting

the correct key can be anywhere from 1 to The average number M is
and the gain according to the definition is 0. On the other hand, if the

attack immediately derives the correct candidate, M equals 1 and the gain is
There is an important caveat, however. Let us consider two attacks

3
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4 Alex Biryukov, Christophe De Cannière, and Michaël Quisquater

which both require a single plaintext–ciphertext pair. The first deterministically
recovers one bit of the key, while the second recovers the complete key, but
with a probability of 1/2. In this second attack, if the key is wrong and only
one plaintext–ciphertext pair is available, the attacker is forced to perform an
exhaustive search. According to the definition, both attacks have a gain of 1 bit
in this case. Of course, by repeating the second attack for different pairs, the
gain can be made arbitrary close to bits, while this is not the case for the first
attack.

2.3 Maximum Likelihood Approach

The design of a statistical attack consists of two important parts. First, we need
to decide on how to process the N plaintext–ciphertext pairs in the distillation
phase. We want the counters to be constructed in such a way that they con-
centrate as much information as possible about a specific part of the secret key
in a minimal amount of data. Once this decision has been made, we can proceed
to the next stage and try to design an algorithm which efficiently transforms this
information into a list of key candidates. In this section, we discuss a general
technique to optimize this second step. Notice that throughout this paper, we
will denote random variables by capital letters.

In order to minimize the amount of trials in the search phase, we want the
candidate classes which have the largest probability of being correct to be tried
first. If we consider the correct key class as a random variable Z and denote the
complete set of counters extracted from the observed data by t, then the ideal
output of the analysis phase would consist of a list of classes sorted according
to the conditional probability Taking the Bayesian approach, we
express this probability as follows:

The factor denotes the a priori probability that the class contains
the correct key and is equal to the constant with the total number
of classes, provided that the key was chosen at random. The denominator is
determined by the probability that the specific set of counters t is observed,
taken over all possible keys and plaintexts. The only expression in (2) that
depends on and thus affects the sorting, is the factor compactly
written as This quantity denotes the probability, taken over all possible
plaintexts, that a key from a given class produces a set of counters t. When
viewed as a function of for a fixed set t, the expression is also
called the likelihood of given t, and denoted by i.e.,

This likelihood and the actual probability have distinct values, but
they are proportional for a fixed t, as follows from (2). Typically, the likelihood
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On Multiple Linear Approximations 5

expression is simplified by applying a logarithmic transformation. The result is
denoted by

and called the log-likelihood. Note that this transformation does not affect the
sorting, since the logarithm is a monotonously increasing function.

Assuming that we can construct an efficient algorithm that accurately esti-
mates the likelihood of the key classes and returns a list sorted accordingly, we
are now ready to derive a general expression for the gain of the attack.

Let us assume that the plaintexts are encrypted with an secret key
contained in the equivalence class and let be the set of classes
different from The average number of classes checked during the searching
phase before the correct key is found, is given by the expression

where the random variable T represents the set of counters generated by a key
from the class given N random plaintexts. Note that this number includes
the correct key class, but since this class will be treated differently later on,
we do not include it in the sum. In order to compute the probabilities in this
expression, we define the sets Using this notation,
we can write

Knowing that each class contains different keys, we can now derive the
expected number of trials M*, given a secret key Note that the number of keys
that need to be checked in the correct equivalence class is only
on the average, yielding

This expression needs to be averaged over all possible secret keys in order to
find the expected value M, but in many cases1 we will find that M* does not
depend on the actual value of such that M = M*.  Finally, the gain of the
attack is computed by substituting this value of M into (1).

3 Application to Multiple Approximations

In this section, we apply the ideas discussed above to construct a general frame-
work for analyzing block ciphers using multiple linear approximations.

1 In some cases the variance of the gain over different keys would be very significant.
In these cases it might be worth to exploit this phenomenon in a weak-key attack
scenario, like in the case of the IDEA cipher.
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6 Alex Biryukov, Christophe De Cannière, and Michaël Quisquater

The starting point in linear cryptanalysis is the existence of unbalanced lin-
ear expressions involving plaintext bits, ciphertext bits, and key bits. In this
paper we assume that we can use such expressions (a method to find them is
presented in an extended version of this paper [1]):

with (P, C) a random plaintext–ciphertext pair encrypted with a random key K.
The notation stands for where represent
particular bits of X. The deviation is called the bias of the linear expression.

We now use the framework of Sect. 2.1 to design an attack which exploits
the information contained in (4). The first phase of the cryptanalysis consists in
extracting the relevant parts from the N plaintext–ciphertext pairs. The linear
expressions in (4) immediately suggest the following functions

with These values are then used to construct counter
vectors where and reflect the number of plaintext–
ciphertext pairs for which equals 0 and 1, respectively2.

In the second step of the framework, a list of candidate key classes needs to
be generated. We represent the equivalent key classes induced by the linear
expressions in (4) by an word with Note
that might possibly be much larger than the length of the key In this
case, only a subspace of all possible words corresponds to a valid key class.
The exact number of classes depends on the number of independent linear
approximations (i.e., the rank of the corresponding linear system).

3.1 Computing the Likelihoods of the Key Classes

We will for now assume that the linear expressions in (4) are statistically in-
dependent for different plaintext–ciphertext pairs and for different values of
(in the next section we will discuss this important point in more details). This
allows us to apply the maximum likelihood approach described earlier in a very
straightforward way. In order to simplify notations, we define the probabilities

and and the imbalances3 of the linear expressions as

We start by deriving a convenient expression for the probability To
simplify the calculation, we first give a derivation for the special key class
2 The vectors are only constructed to be consistent with the framework described

earlier. In practice of course, the attacker will only calculate (this is a minimal
sufficient statistic).

3 Also known in the literature as “correlations”.
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On Multiple Linear Approximations 7

Fig. 1. Geometrical interpretation for The correct key class has the second
largest likelihood in this example. The numbers in the picture represent the number of
trials M* when falls in the associated area.

Assuming independence of different approximations and of dif-
ferent pairs, the probability that this key generates the counters is
given by the product

In practice, and will be very close to 1/2, and N very large. Taking this
into account, we approximate the binomial distribution above by
an Gaussian distribution:

The variable is called the estimated imbalance and is derived from the counters
according to the relation For any key class we can repeat

the reasoning above, yielding the following general expression:

This formula has a useful geometrical interpretation: if we take a key from a
fixed key class and construct an vector by
encrypting N random plaintexts, then will be distributed around the vector

according to a Gaussian distribution with a
diagonal variance-covariance matrix where is an identity
matrix. This is illustrated in Fig. 1. From (6) we can now directly compute the
log-likelihood:

TEAM LinG



8 Alex Biryukov, Christophe De Cannière, and Michaël Quisquater

The constant C depends on and N only, and is irrelevant to the attack. From
this formula we immediately derive the following property.

Lemma 1. The relative likelihood of a key class is completely determined by
the Euclidean distance where is an vector containing
the estimated imbalances derived from the known texts, and

The lemma implies that if and only if This
type of result is common in coding theory.

3.2 Estimating the Gain of the Attack

Based on the geometrical interpretation given above, and using the results from
Sect. 2.3, we can now easily derive the gain of the attack.

Theorem 1. Given approximations and N independent pairs an
adversary can mount a linear attack with a gain equal to:

where  is the cumulative normal distribution function,
and is the number of key classes induced by the approximations.

Proof. The probability that the likelihood of a key class exceeds the likelihood
of the correct key class is given by the probability that the vector falls
into the half plane Considering the fact that
describes a Gaussian distribution around with a variance-covariance matrix

we need to integrate this Gaussian over the half plane and due to
the zero covariances, we immediately find:

By summing these probabilities as in (3) we find the expected number of trials:

The gain is obtained by substituting this expression for M* in equation (1).

The formula derived in the previous theorem can easily be evaluated as long as
is not too large. In order to estimate the gain in the other cases as well, we

need to make a few approximations.

TEAM LinG



On Multiple Linear Approximations 9

Corollary 1. If is sufficiently large, the gain derived in Theorem 1 can
accurately be approximated by

where

Proof. See App. A.

An interesting conclusion that can be drawn from the corollary above is that
the gain of the attack is mainly determined by the product As a result, if
we manage to increase by using more linear characteristics, then the required
number of known plaintext–ciphertext pairs N can be decreased by the same
factor, without affecting the gain. Since the quantity plays a very important
role in the attacks, we give it a name and define it explicitly.

Definition 2. The capacity of a system of approximations is defined as

3.3 Extension: Multiple Approximations and Matsui’s Algorithm 2

The approach taken in the previous section can be seen as an extension of Mat-
sui’s Algorithm 1. Just as in Algorithm 1, the adversary analyses parity bits
of the known plaintext–ciphertext pairs and then tries to determine parity bits
of internal round keys. An alternative approach, which is called Algorithm 2
and yields much more efficient attacks in practice, consists in guessing parts of
the round keys in the first and the last round, and determining the probability
that the guess was correct by exploiting linear characteristics over the remaining
rounds. In this section we will show that the results derived above can still be
applied in this situation, provided that we modify some definitions.

Let us denote by the set of possible guesses for the targeted subkeys of the
outer rounds (round 1 and round For each guess and for all N plaintext–
ciphertext pairs, the adversary does a partial encryption and decryption at the
top and bottom of the block cipher, and recovers the parity bits of the intermedi-
ate data blocks involved in different linear characteristics. Using
this data, he constructs counters which can be transformed
into a vector containing the estimated imbalances.

As explained in the previous section, the linear characteristics involve
parity bits of the key, and thus induce a set of equivalent key classes, which we
will here denote by (I from inner). Although not strictly necessary, we will
for simplicity assume that the sets and are independent, such that each
guess can be combined with any class thereby determining a
subclass of keys with
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At this point, the situation is very similar to the one described in the previous
section, the main difference being a higher dimension The only remaining
question is how to construct the vectors for each key class

To solve this problem, we will need to make some assumptions.
Remember that the coordinates of are determined by the expected imbalances
of the corresponding linear expressions, given that the data is encrypted with
a key from class For the counters that are constructed after guessing the
correct subkey the expected imbalances are determined by and equal to

For each of the other counters, however, we
will assume that the wrong guesses result in independent random-looking parity
bits, showing no imbalance at all4. Accordingly, the vector has the following
form:

With the modified definitions of and given above, both Theorem 1 and
Corollary 1 still hold (the proofs are given in App. A). Notice however that the
gain of the Algorithm-2-style linear attack will be significantly larger because it
depends on the capacity of linear characteristics over rounds instead of
rounds.

3.4 Influence of Dependencies

When deriving (5) in Sect. 3, we assumed statistical independence. This assump-
tion is not always fulfilled, however. In this section we discuss different potential
sources of dependencies and estimate how they might influence the cryptanalysis.

Dependent plaintext–ciphertext pairs. A first assumption made by equa-
tion (5) concerns the dependency of the parity bits with com-
puted with a single linear approximation for different plaintext–ciphertext pairs.
The equation assumes that the probability that the approximation holds for a
single pair equals regardless of what is observed for other pairs.
This is a very reasonable assumption if the N plaintexts are chosen randomly,
but even if they are picked in a systematic way, we can still safely assume that
the corresponding ciphertexts are sufficiently unrelated as to prevent statistical
dependencies.

Dependent text mask. The next source of dependencies is more fundamental
and is related to dependent text masks. Suppose for example that we want to use
three linear approximations with plaintext–ciphertext masks

and that It is immediately clear
that the parity bits computed for these three approximations cannot possibly be
independent: for all pairs, the bit computed for the 3rd approximation

is equal to

4 Note that for some ciphers, other assumptions may be more appropriate. The rea-
soning in this section can be applied to these cases just as well, yielding very similar
results.
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Even in such cases, however, we believe that the results derived in the pre-
vious section are still quite reasonable. In order to show this, we consider the
probability that a single random plaintext encrypted with an equivalent key
yields a vector5 of parity bits Let us denote by the con-
catenation of both text masks and Without loss of generality, we can
assume that the masks are linearly independent for and linearly
dependent (but different) for This implies that x is restricted to a

subspace We will only consider the key class in
order to simplify the equations. The probability we want to evaluate is:

These (unknown) probabilities determine the (known) imbalances of the linear
approximations through the following expression:

We now make the (in many cases reasonable) assumption that all masks
which depend linearly on the masks but which differ from the ones

considered by the attack, have negligible imbalances. In this case, the equation
above can be reversed (note the similarity with the Walsh-Hadamard transform),
and we find that:

Assuming that we can make the following approximation:

Apart from an irrelevant constant factor this is exactly what we need:
it implies that, even with dependent masks, we can still multiply probabilities
as we did in order to derive (5). This is an important conclusion, because it
indicates that the capacity of the approximations continues to grow, even when

exceeds twice the block size, in which case the masks are necessarily linearly
dependent.

Dependent trails. A third type of dependencies might be caused by merging
linear trails. When analyzing the best linear approximations for DES, for exam-
ple, we notice that most of the good linear approximations follow a very limited
number of trails through the inner rounds of the cipher, which might result in
dependencies. Although this effect did not appear to have any influence on our
experiments (with up to 100 different approximations), we cannot exclude at
this point that they will affect attacks using much more approximations.
5 Note a small abuse of notation here: the definition of x differs from the one used in

Sect. 2.1.
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Dependent key masks. We finally note that we did not make any assumption
about the dependency of key masks in the previous sections. This implies that
all results derived above remain valid for dependent key masks.

4 Experimental Results

In Sect. 3 we derived an optimal approach for cryptanalyzing block ciphers using
multiple linear approximations. In this section, we implement practical attack
algorithms based on this approach and evaluate their performance when applied
to DES, the standard benchmark for linear cryptanalysis. Our experiments show
that the attack complexities are in perfect correspondence with the theoretical
results derived in the previous sections.

4.1 Attack Algorithm MK 1

Table 1 summarizes the attack algorithm presented in Sect. 2 (we call this al-
gorithm Attack Algorithm MK 1). In order to verify the theoretical results, we
applied the attack algorithm to 8 rounds of DES. We picked 86 linear approx-
imations with a total capacity (see Definition 2). In order to speed
up the simulation, the approximations were picked to contain 10 linearly inde-
pendent key masks, such that Fig. 2 shows the simulated gain for
Algorithm MK 1 using these 86 approximations, and compares it to the gain of
Matsui’s Algorithm 1, which uses the best one only We clearly see
a significant improvement. While Matsui’s algorithm requires about pairs
to attain a gain close to 1 bit, only pairs suffice for Algorithm MK 1. The
theoretical curves shown in the figure were plotted by computing the gain using
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Fig. 2. Gain (in bits) as a function of data (known plaintext) for 8-round DES.

the exact expression for M* derived in Theorem 1 and using the approximation
from Corollary 1. Both fit nicely with the experimental results.

Note, that the attack presented in this section is just a proof of concept,
even higher gains would be possible with more optimized attacks. For a more
detailed discussion of the technical aspects playing a role in the implementation
of Algorithm MK 1, we refer to App. B.

4.2 Attack Algorithm MK 2

In this section, we discuss the experimental results for the generalization of Mat-
sui’s Algorithm 2 using multiple linear approximations (called Attack Algorithm
MK 2). We simulated the attack algorithm on 8 rounds of DES and compared
the results to the gain of the corresponding Algorithm 2 attack described in
Matsui’s paper [9].

Our attack uses eight linear approximations spanning six rounds with a total
capacity In order to compute the parity bits of these equations,
eight 6-bit subkeys need to be guessed in the first and the last rounds (how this
is done in practice is explained in App. B). Fig. 3 compares the gain of the attack
to Matsui’s Algorithm 2, which uses the two best approximations
For the same amount of data, the multiple linear attack clearly achieves a much
higher gain. This reduces the complexity of the search phase by multiple orders
of magnitude. On the other hand, for the same gain, the adversary can reduce
the amount of data by at least a factor 2. For example, for a gain of 12 bits, the
data complexity is reduced from to This is in a close correspondence
with the ratio between the capacities. Note that both simulations were carried
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Fig. 3. Gain (in bits) as a function of data (known plaintext) for 8-round DES.

out under the assumption of independent subkeys (this was also the case for
the simulations presented in [9]). Without this assumption, the gain will closely
follow the graphs on the figure, but stop increasing as soon as the gain equals
the number of independent key bits involved in the attack.

As in Sect. 4.1 our goal was not to provide the best attack on 8-round DES,
but to show that Algorithm-2 style attacks do gain from the use of multiple linear
approximations, with a data reduction proportional to the increase in the joint
capacity. We refer to App. B for the technical aspects of the implementation of
Algorithm MK 2.

4.3 Capacity – DES Case Study

In Sect. 3 we argued that the minimal amount of data needed to obtain a certain
gain compared to exhaustive search is determined by the capacity of the linear
approximations. In order to get a first estimate of the potential improvement of
using multiple approximations, we calculated the total capacity of the best
linear approximations of DES for The capacities were computed
using an adapted version of Matsui’s algorithm (see [1]). The results, plotted for
different number of rounds, are shown in Fig. 4 and 5, both for approximations
restricted to a single S-box per round and for the general case. Note that the
single best approximation is not visible on these figures due to the scale of the
graphs.

Kaliski and Robshaw [5] showed that the first 10 006 approximations with a
single active S-box per round have a joint capacity of for 14 rounds
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Fig. 4. Capacity (14 rounds). Fig. 5. Capacity (16 rounds).

of DES6. Fig. 4 shows that this capacity can be increased to when
multiple S-boxes are allowed. Comparing this to the capacity of Matsui’s best
approximation the factor 38 gained by Kaliski and Robshaw is
increased to 304 in our case. Practical techniques to turn this increased capacity
into an effective reduction of the data complexity are presented in this paper,
but exploiting the full gain of 10000 unrestricted approximations will require
additional techniques. In theory, however, it would be possible to reduce the
data complexity form (in Matsui’s case, using two approximations) to about

(using 10000 approximations).
In order to provide a more conservative (and probably rather realistic) es-

timation of the implications of our new attacks on full DES, we searched for
14-round approximations which only require three 6-bit subkeys to be guessed
simultaneously in the first and the last rounds. The capacity of the 108 best
approximations satisfying this restriction is This suggests that an
MK 2 attack exploiting these 108 approximations might reduce the data com-
plexity by a factor 4 compared to Matsui’s Algorithm 2 (i.e., instead of
This is comparable to the Knudsen-Mathiassen reduction [6], but would preserve
the advantage of being a known-plaintext attack rather than a chosen-plaintext
one.

Using very high numbers of approximations is somewhat easier in practice
for MK 1 because we do not have to impose restrictions on the plaintext and
ciphertext masks (see App. B). Analyzing the capacity for the 10000 best 16-
round approximations, we now find a capacity of If we restrict the
complexity of the search phase to an average of trials (i. e., a gain of 12 bits),
we expect that the attack will require known plaintexts. As expected, this
theoretical number is larger than for the MK 2 attack using the same amount
of approximations.

5 Future Work

In this paper we proposed a framework which allows to use the information
contained in multiple linear approximations in an optimal way. The topics below
are possible further improvements and open questions.

6 Note that Kaliski and Robshaw calculated the sum of squared biases:
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Application to 16-round DES. The results in this paper suggest that Algo-
rithms MK 1 and MK 2 could reduce the data complexity to known
plaintexts, or even less when the number of approximations is further in-
creased. An interesting problem related to this is how to merge multiple lists
of key classes (possibly with overlapping key-bits) efficiently.

Application to AES. Many recent ciphers, e.g., AES, are specifically designed
to minimize the bias of the best approximation. However, this artificial flat-
tening of the bias profile comes at the expense of a large increase in the
number of approximations having the same bias. This suggests that the gain
made by using multiple linear approximations could potentially be much
higher in this case than for a cipher like DES. Considering this, we expect
that one may need to add a few rounds when defining bounds of provable se-
curity against linear cryptanalysis, based only on best approximations. Still,
since AES has a large security margin against linear cryptanalysis we do not
believe that linear attacks enhanced with multiple linear approximations will
pose a practical threat to the security of the AES.

Performance of Algorithm MD. Using a very high number of independent
approximations seems impractical in Algorithms MK 1 and MK 2, but could
be feasible with Algorithm MD described in App. B.3. Additionally, this
method would allow to replace the multiple linear approximations by multi-
ple linear hulls.

Success rate. In this paper we derived simple formulas for the average number
of key candidates checked during the final search phase. Deriving a simple
expression for the distribution of this number is still an open problem. This
would allow to compute the success rate of the attack as a function of the
number of plaintexts and a given maximal number of trials.

6 Conclusions

In this paper, we have studied the problem of generalizing linear cryptanalytic
attacks given multiple linear approximations, which has been stated in 1994
by Kaliski and Robshaw [5]. In order to solve the problem, we have developed
a statistical framework based on maximum likelihood decoding. This approach
is optimal in the sense that it utilizes all the information that is present in the
multiple linear approximations. We have derived explicit and compact gain for-
mulas for the generalized linear attacks and have shown that for a constant gain,
the data-complexity N of the attack is proportional to the inverse joint capacity

of the multiple linear approximations: The gain formulas hold for
the generalized versions of both algorithms proposed by Matsui (Algorithm 1
and Algorithm 2).

In the second half of the paper we have proposed several practical methods
which deliver the theoretical gains derived in the first part of the paper. We
have proposed a key-recovery algorithm MK 1 which has a time complexity

and a data complexity where is the number of
solutions of the system of equations defined by the linear approximations. We
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have also designed an algorithm MK 2 which is a direct generalization of Matsui’s
Algorithm 2, as described in [9]. The performances of both algorithms are very
close to our theoretical estimations and confirm that the data-complexity of the
attack decreases proportionally to the increase in the joint capacity of multiple
approximations. We have used 8-round DES as a standard benchmark in our
experiments and in all cases our attacks perform significantly better than those
given by Matsui. However our goal in this paper was not to produce the most
optimal attack on DES, but to construct a new cryptanalytic tool applicable to
a variety of ciphers.
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A Proofs

A.1 Proof of Corollary 1

Corollary 1. If is sufficiently large, the gain derived in Theorem 1 can
accurately be approximated by

where is called the total capacity of the linear characteristics.

Proof. In order to show how (11) is derived from (8), we just need to construct
an approximation for the expression

We first define the function Denoting the average value
of a set of variables by we can reduce (12) to the compact expression

with By expanding into a Taylor series around the
average value we find

Provided that the higher order moments of are sufficiently small, we can use
the approximation Exploiting the fact that the jth coordinate
of each vector is either or we can easily calculate the average value

When is sufficiently large (say the right hand part can be ap-
proximated by (remember that and thus

Substituting this into the relation we find

By applying this approximation to the gain formula derived in Theorem 1, we
directly obtain expression (11).
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A.2 Gain Formulas for the Algorithm-2-Style Attack

With the modified definitions of and given in Sect. 3.3, Theorem 1 can
immediately be applied. This results in the following corollary.

Corollary 2. Given approximations and N independent pairs an
adversary can mount an Algorithm-2-style linear attack with a gain equal to:

The formula above involves a summation over all elements of Motivated
by the fact that is typically very large, we now derive
a more convenient approximated expression similar to Corollary 1. In order to
do this, we split the sum into two parts. The first part considers only keys

where the second part sums over
all remaining keys In this second case, we have that

for all such that

For the first part of the sum, we apply the approximation used to derive Corol-
lary 1 and obtain a very similar expression:

Combining both result we find the counterpart of Corollary 1 for an Algorithm-
2-style linear attack.

Corollary 3. If is sufficiently large, the gain derived in Theorem 2 can
accurately be approximated by

where is the total capacity of the linear characteristics.

Notice that although Corollary 1 and 3 contain identical formulas, the gain of
the Algorithm-2-style linear attack will be significantly larger because it depends
on the capacity of linear characteristics over rounds instead of rounds.

B Discussion – Practical Aspects

When attempting to calculate the optimal estimators derived in Sect. 3, the
attacker might be confronted with some practical limitations, which are often
cipher-dependent. In this section we discuss possible problems and propose ways
to deal with them.
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B.1 Attack Algorithm MK 1

When estimating the potential gain in Sect. 3, we did not impose any restrictions
on the number of approximations However, while it does reduce the complex-
ity of the search phase (since it increases the gain), having an excessively high
number increases both the time and the space complexity of the distillation
and the analysis phase. At some point the latter will dominate, cancelling out
any improvement made in the search phase.

Analyzing the complexities in Table 1, we can make a few observations. We
first note that the time complexity of the distillation phase should be compared
to the time needed to encrypt plaintext–ciphertext pairs. Given that
a single counting operation is much faster than an encryption, we expect the
complexity of the distillation to remain negligible compared to the encryption
time as long as is only a few orders of magnitude (say

The second observation is that the number of different key classes clearly
plays an important role, both for the time and the memory complexities of the
algorithm. In a practical situation, the memory is expected to be the strongest
limitation. Different approaches can be taken to deal with this problem:

Straightforward, but inefficient approach. Since the number of different
key classes is bounded by the most straightforward solution is to limit
the number of approximations. A realistic upper bound would be
The obvious drawback of this approach is that it will not allow to attain
very high capacities.

Exploiting dependent key masks. A better approach is to impose a bound
on the number of linearly independent key masks This way, we limit
the memory requirements to but still allow a large number of ap-
proximations (for ex. a few thousands). This approach restricts the choice
of approximations, however, and thus reduces the maximum attainable ca-
pacity. This is the approach taken in Sect. 4.1. Note also that the attack
described in [5] can be seen as a special case of this approach, with

Merging separate lists. A third strategy consists in constructing separate
lists and merging them dynamically. Suppose for simplicity that the key
masks considered in the attack are all independent. In this case, we can
apply the analysis phase twice, each time using approximations. This
will result in two sorted lists of intermediate key classes, both containing

classes. We can then dynamically compute a sorted sequence of final
key classes constructed by taking the product of both lists. The ranking of
the sequence is determined by the likelihood of these final classes, which is
just the sum of the likelihoods of the elements in the separate lists. This
approach slightly increases7 the time complexity of the analysis phase, but
will considerably reduce the memory requirements. Note that this approach
can be generalized in order to allow some dependencies in the key masks.

7 In cases where the gain of the attack is several bits, this approach will actually
decrease the complexity, since we expect that only a fraction of the final sequence
will need to be computed.
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B.2 Attack Algorithm MK 2

We now briefly discuss some practical aspects of the Algorithm-2-style multiple
linear attack, called Attack Algorithm MK 2. As discussed earlier, the ideas of
the attack are very similar to Attack Algorithm MK 1, but there are a number of
additional issues. In the following paragraphs, we denote the number of rounds
of the cipher by

Choice of characteristics. In order to limit the amount of guesses in rounds 1
and only parts of the subkeys in these rounds will be guessed. This restricts
the set of useful characteristics to those that only depend on
bits which can be derived from the plaintext, the ciphertext, and the partial
subkeys. This obviously reduces the maximum attainable capacity.

Efficiency of the distillation phase. During the distillation phase, all N
plaintexts need to be analyzed for all guesses Since is rather
large in practice, this could be very computational intensive. For example,
a naive implementation would require steps and even Matsui’s
counting trick would use steps. However, the distillation can
be performed in steps by gradually guessing parts of and
re-processing the counters.

Merging Separate lists. The idea of working with separate lists can be ap-
plied here just as for MK 1.

Computing distances. In order to compare the likelihoods of different keys,
we need to evaluate the distance for all classes The vectors

and are both When calculating this distance as
a sum of squares, most terms do not depend on however. This allows the
distance to be computed very efficiently, by summing only terms.

B.3 Attack Algorithm MD (distinguishing/key-recovery)

The main limitation of Algorithm MK 1 and MK 2 is the bound on the number
of key classes In this section, we show that this limitation disappears if
our sole purpose is to distinguish an encryption algorithm from a random
permutation R. As usual, the distinguisher can be extended into a key-recovery
attack by adding rounds at the top and at the bottom.

If we observe N plaintext–ciphertext pairs and assume for simplicity that the
a priori probability that they were constructed using the encryption algorithm
is 1/2, we can construct a distinguishing attack using the maximum likelihood
approach in a similar way as in Sect. 3. Assuming that all secret keys are equally
probable, one can easily derive the likelihood that the encryption algorithm was
used, given the values of the counters t:

This expression is correct if all text masks and key masks are independent, but
is still expected to be a good approximation, if this assumption does not hold
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(for the reasons discussed in Sect. 3.4). A similar likelihood can be calculated
for the random permutation:

Contrary to what was found for Algorithm MK 1, both likelihoods can be com-
puted in time proportional to i.e., independent of The complete distin-
guishing algorithm, called Attack Algorithm MD consists of two steps:

The analysis of this algorithm is a matter of further research.

C Previous Work: Linear Cryptanalysis

Since the introduction of linear cryptanalysis by Matsui [8–10], several gen-
eralizations of the linear cryptanalysis method have been proposed. Kaliski-
Robshaw [5] suggested to use many linear approximations instead of one, but
did provide an efficient method for doing so only for the case when all the ap-
proximations cover the same parity bit of the key. Realizing that this limited
the number of useful approximations, the authors also proposed a simple (but
somewhat inefficient) extension to their technique which removes this restriction
by guessing a relation between the different key bits. The idea of using non-
linear approximations has been suggested by Knudsen-Robshaw [7]. It was used
by Shimoyama-Kaneko [13] to marginally improve the linear attack on DES.
Knudsen-Mathiassen [6] suggest to convert linear cryptanalysis into a chosen
plaintext attack, which would gain the first round of approximation for free.
The gain is small, since Matsui’s attack gains the first round rather efficiently
as well.

A more detailed overview of the history of linear cryptanalysis can be found
in the extended version of this paper [1].

Distillation phase. Obtain N plaintext–ciphertext pairs For
count the number of pairs satisfying

Analysis phase. Compute and If
the plaintexts were encrypted with the algorithm (using some unknown
key

decide that
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Abstract. In this paper we introduce the method of bi-linear crypt-
analysis (BLC), designed specifically to attack Feistel ciphers. It allows
to construct periodic biased characteristics that combine for an arbitrary
number of rounds. In particular, we present a practical attack on DES
based on a 1-round invariant, the fastest known based on such invariant,
and about as fast as the best Matsui’s attack. For ciphers similar to DES,
based on small S-boxes, we claim that BLC is very closely related to LC,
and we do not expect to find a bi-linear attack much faster than by
LC. Nevertheless we have found bi-linear characteristics that are strictly
better than the best Matsui’s result for 3, 7, 11 and more rounds.
For more general Feistel schemes there is no reason whatsoever for BLC
to remain only a small improvement over LC. We present a construction
of a family of practical ciphers based on a big Rijndael-type S-box that
are strongly resistant against linear cryptanalysis (LC) but can be easily
broken by BLC, even with 16 or more rounds.

Keywords: Block ciphers, Feistel schemes, S-box design, inverse-based
S-box, DES, linear cryptanalysis, generalised linear cryptanalysis, I/O
sums, correlation attacks on block ciphers, multivariate quadratic equa-
tions.

1 Introduction

In spite of growing importance of AES, Feistel schemes and DES remain widely
used in practice, especially in financial/banking sector. The linear cryptanalysis
(LC), due to Gilbert and Matsui is the best known plaintext attack on DES, see
[4, 25, 27,16, 21]. (For chosen plaintext attacks, see [21, 2]).

A straightforward way of extending linear attacks is to consider nonlinear
multivariate equations. Exact multivariate equations can give a tiny improve-
ment to the last round of a linear attack, as shown at Crypto’98 [18]. A more
powerful idea is to use probabilistic multivariate equations, for every round, and
replace Matsui’s biased linear I/O sums by nonlinear I/O sums as proposed by
Harpes, Kramer, and Massey at Eurocrypt’95 [9]. This is known as Generalized
Linear Cryptanalysis (GLC). In [10,11] Harpes introduces partitioning crypt-
analysis (PC) and shows that it generalizes both LC and GLC. The correlation
cryptanalysis (CC) introduced in Jakobsen’s master thesis [13] is claimed even

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 23–40, 2004.
© International Association for Cryptologic Research 2004
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more general. Moreover, in [12] it is shown that all these attacks, including also
Differential Cryptanalysis are closely related and can be studied in terms of the
Fast Fourier Transform for the cipher round function. Unfortunately, computing
this transform is in general infeasible for a real-life cipher and up till now, non-
linear multivariate I/O sums played a marginal role in attacking real ciphers.
Accordingly, these attacks may be excessively general and there is probably no
substitute to finding and studying in details interesting special cases.

At Eurocrypt’96 Knudsen and Robshaw consider applying GLC to Feistel
schemes [20], and affirm that in this case non-linear characteristics cannot be
joined together. We will demonstrate that GLC can be applied to Feistel ciphers,
which is made possible with our “Bi-Linear Cryptanalysis” (BLC) attack.

2 Feistel Schemes and Bi-linear Functions

Differential [2] and linear attacks on DES [25,1] have periodic patterns with
invariant equations for some 1, 3 or 8 rounds. In this paper we will present
several new practical attacks with periodic structure for DES, including new
1-round invariants.

2.1 The Principle of the Bi-linear Attack on Feistel Schemes

In one round of a Feistel scheme, one half is unchanged, and one half is linearly
combined with the output of the component connected to the other half. This will
allow bi-linear I/O expressions on the round function to be combined together.
First we will give an example with one product, and extend it to arbitrary bi-
linear expressions. Then in Section 3 we explain the full method in details (with
linear parts present too) for an arbitrary Feistel schemes. Later we will apply it
to get concrete working attacks for DES and other ciphers.

In this paper we represent Feistel schemes in a completely “untwisted” way,
allowing to see more clearly the part that is not changed in one round. As a
consequence, the orientation changes compared to most of the papers and we
obtain an apparent (but extremely useful) distinction between odd and even
rounds of a Feistel scheme. Otherwise, our notations are very similar to these
used for DES in [23,18]. For example denotes a sum (XOR) of some subset

of bits of the left half of the plaintext. Combinations of inputs (or outputs) of
round function number are denoted by (or Our exact
notations for DES will be explained in more details when needed, in Section 6.1.
For the time being, we start with a simple rather self-explaining example (cf.
Figure 1 ) that works for any Feistel cipher.

Proposition 2.1.1 (Combining bi-linear expressions in a Feistel cipher).
For all (even unbalanced) Feistel ciphers operating on bits with arbitrary
round functions we have:
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Fig. 1. Fundamental remark: combining bi-linear expressions in a Feistel cipher

From one product this fundamental result extends immediately, by linearity,
to arbitrary bi-linear expressions. Moreover, we will see that these bi-linear ex-
pressions do not necessarily have to be the same in every round, and that they
can be freely combined with linear expressions (BLC contains LC).

3 Bi-linear Characteristics

For simplicity let In this section we construct a completely general
bi-linear characteristic for one round of a Feistel cipher. Then we show how it
combines for the next round. Here we study bits locally and denote them by

etc. Later for constructing attacks for many rounds of practical Feistel
ciphers we will use (again) the notations (cf. Section 6.1).

3.1 Constructing a Bi-linear Characteristic for One Round

Let be a homogeneous bi-linear Boolean function
Let

Let be the round function of a Feistel cipher. We assume that there exist
two linear combinations and such that the function:

is biased and equal to 0 with some probability with depending
in some way on the round key K.
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We have By bi-linearity (or from Proposition 2.1.1) the fol-
lowing holds:

From this, for the first round, (could be also any odd-numbered round), we
obtain the following characteristic:

Finally, we note that, the part linear in the can be arbitrarily split in two
parts: with for all

All this is summarized on the following picture:

Fig. 2. Constructing a bi-linear characteristic for an odd round of a Feistel cipher

3.2 Application to the Next (Even) Round

The same method can be applied to the next, even, round of a Feistel scheme,
with the only difference that the round function is connected in the inverse
direction. In this case, to obtain a characteristic true with probability we
need to have a bias in the function:

Fig. 3. Constructing a bi-linear characteristic for an even round of a Feistel cipher

TEAM LinG



Feistel Schemes and Bi-linear Cryptanalysis 27

3.3 Combining Approximations to Get a Bi-linear Attack
for an Arbitrary Number of Rounds

It is obvious that such I/O sums as specified above can be combined for an
arbitrary number of rounds (contradicting [20] page 226). To combine the two
characteristics specified above, we require the following three conditions:

1.
2.
3.

We need
We need
We need the homogenous quadratic parts et to be correlated (seen as
Boolean functions). They do not have to be the same (though in many
cases they will). In linear cryptanalysis (LC), a correlation between two
linear combinations means that these linear combinations have to be the
same. In generalized linear cryptanalysis (GLC) [9], and in particular here,
for bi-linear I/O sums, it is no longer true. Correlations between quadratic
Boolean functions are frequent, and does not imply that For these
reasons the number of possible bi-linear attacks is potentially very large.

Summary: We observe that bi-linear characteristics combine exactly as in LC
for their linear parts, and that their quadratic parts should be either identical
(with orientation that changes in every other round), or correlated.

4 Predicting the Behaviour of Bi-linear Attacks

The behaviour of LC is simple and the heuristic methods of Matsui [25] are
known to be able to predict the behaviour of the attacks with good precision
(see below). Some attacks work even better than predicted. As already suggested
in [9,20] the study of generalised linear cryptanalysis is much harder.

4.1 Computing the Bias of Combined Approximations

A bi-linear attack will use an I/O sum for the whole cipher, being a sum of I/O
sums for each round of the cipher such that the terms in the internal variables do
cancel. To compute the probability the resulting equation is true, is in general not
obvious. Assuming that the I/O sum uses balanced Boolean functions, (otherwise
it will be even harder to analyse) one can apply the Matsui’s Piling-up Lemma
from [25]. This however can fail. It is known from [9] that a sum of two very
strongly biased characteristics can have a bias much weaker than expected. The
resulting bias can even be exactly zero: an explicit example can be found in
Section 6.1. of [9]. Such a problem can arise when the connecting characteristics
are not independent. This will happen more frequently in BLC than in LC:
two linear Boolean functions are perfectly independent unless equal, for non-
linear Boolean functions, correlations are frequent. Accordingly, we do not sum
independent random variables and the Matsui’s lemma may fail.

At this stage there are two approaches: one can try to define a class of
attacks that can be proved to work, and restrict oneself only to studying such
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attacks, or try to explore all possible attacks, including those that do work
experimentally without proof. This first approach is adopted in [9]: the Lemma
6 gives a sufficient condition to guarantee that the Piling-up lemma will apply.
For this the probability, that the characteristic is true, for a random partial key,
should be independent of the input (e.g. the input of the whole round). This
explains why Matsui’s attacks indeed work well. In [9] it allows to prove that the
proposed family of GLC attacks based on homomorphic properties will work as
predicted. We will also use this argument in Section 5.

In this paper we frequently adopt rather the second approach: try find as
many working attacks as possible, even if current theory does not allow to pre-
dict their behaviour with accuracy. A price to pay for this is that each application
of Matsui’s Lemma will be systematically questioned and confronted to experi-
mental results.

4.2 Key Dependence in Bi-linear Attacks

Another important property of bi-linear cryptanalysis is that the existence of
a bias for one characteristic does frequently depend on the key. This does not
really happen for LC applied DES, because in DES all key bits are combined
linearly and a linear equation will be true with probability either or
depending on the key. However it will happen for LC and other ciphers, if key
bits are involved in a more complex way, for example for ICE [22].

In bi-linear cryptanalysis, the behaviour becomes complex already when the
key bits are combined linearly as in DES. Adding a constant (a key bit) to
an input of an S-box, does not only modify the constant part in a bi-linear
characteristic, but also the linear part. (We note that for DES only the linear
part in the output variables will be modified when the key changes). From this,
quite frequently two bi-linear characteristics for two parts of a cipher (e.g. for
S-boxes) will only connect together for some keys. Such attacks are still very
interesting and frequently also do work, with only a slightly weaker bias, for all
the other keys. For simplicity, no key bits are displayed in bi-linear characteristics
for one or several rounds of a cipher that are studied/displayed in this paper.
The values of biases we will present (unless otherwise stated) are given for the
reference key being zero. Yet typically we observed that they exist, and slightly
vary in value, also for any other key (chosen at random). In rare cases, the bias
works well only for a fraction of keys (e.g. 25 %): this happens in Appendix B.1.

4.3 Exploring Bi-linear Cryptanalysis

There are different approaches to finding interesting bi-linear attacks to block
ciphers. In few cases one can construct attacks that will provably or arguably
work (see [9] and later Section 5). Another method is to construct characteristics
“by hand” around some particularly strong bias found for one S-box.

We noted the two major difficulties: predicting the bias of combined charac-
teristics, and huge number of possible characteristics (including fragmentation
due to the fact they the bias does in general depend on the key). These make
it very difficult to have a systematic method (a computer program) that would

TEAM LinG



Feistel Schemes and Bi-linear Cryptanalysis 29

compute the best bi-linear characteristic for a given cipher. To check if an attack
indeed works requires to be able to generate as many plaintexts as for the real
attack. To find the best attack is even much harder. It requires to exhaustively
search and reject lots of other combinations that should work well but they don’t.
Each of them has to be tested on an equally large set of plaintexts.

5 The Killer Example for Bi-linear Cryptanalysis

We will construct a practical cipher that is very secure w.r.t. all known attacks
for block ciphers, in particular for LC, yet broken by BLC. It mixes two group
operations: the XOR and the multiplication in e.g. or 64. It uses
the inverse in (cf. Rijndael): let in when
and 0 otherwise. We build a Feistel cipher with the round function
being:

with being the partial key, and G being some function with S-boxes and
arbitrary components . In order to get an insecure cipher, we
need to assume that some linear combination of outputs of G is biased. For
example, let with probability 3/4. Building a cipher with G alone
would be insecure for LC, however here G is composed by a group operation ·
with Inv(X). The Inv(X) assures global diffusion and very high non-linearity
(cf. [3]). Accordingly our round function has very good resistance to linear and
differential cryptanalysis for most G, even when G = 0. But not against BLC.

First, we can consider a bi-linear attack with bi-linear equations over

Let with From (2), or if we prefer,
directly from Proposition 2.1.1 and by symmetry we get:

Now, with probability We rewrite it:

Then we use the linear output bias of with probability 3/4.
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The last expression is equal to come constant denoted with probability
3/4. Finally, we combine with (3) (or equivalently sum these bi-linear expressions
over the whole cipher with rounds).

What we obtained is a biased bi-linear I/O sum for the whole cipher. We can
distinguish this cipher from a random permutation given about plaintexts.
For example 16 rounds will be broken on a laptop PC.

Does it work as predicted? In general, as we explain in Section 4.1, it is hard
to predict accurately the behaviour of a composed bi-linear attack. However we
have little doubt it will work: the Inv(X) should render possible correlation
between approximations being combined negligible. In some case we can even
prove that this attack works: when G = 0, and also when one fixed linear com-
bination of output bits of G is 0, (the other parts can be arbitrary functions). In
these cases, dependencies cannot be a problem: we add equations (5) true with
probability 1 to get the equation (6) true with probability 1.

Related work: Similar results were previously obtained for some substitution-
permutation network (SPN) ciphers. In [9] Harpes, Kramer and Massey give
an example of 8-bit SPN that is secure against LC and DC, but insecure for
generalised linear cryptanalysis due to a probabilistic homomorphic property of
each round relative to quadratic residuosity function modulo The Jakobsen
attack for substitution ciphers that uses probabilistic univariate polynomials
from [15] can also be seen as a special case of GLC. However, it is the first time
that GLC allows to break a Feistel cipher, which contradicts the impossibility
professed by Knudsen and Robshaw [20]. This cipher is built with state-of-art
components (inverse in and can in addition incorporate any additional
fashionable component with lots of theory and designer tricks, as a part of G.
Due to G it will not have homomorphic properties. Moreover, by adjusting the
bias in G, the security of this cipher against BLC will be freely adjusted between
(nearly) zero and infinity. It can therefore be arbitrarily weak for BLC, and this
even for a very large number of rounds. Yet, the security against the usual attacks
(LC, DC) should remain equally good (due to the big Inv S-box).

6 Bi-linear Attacks on DES

6.1 Notation

We ignore the initial and final permutations of DES that have no incidence on the
attacks. We use the “untwisted method” of representing DES, as on the right-
hand figure, page 254 in [28]. The bit numbering is compatible with the FIPS
standard [8], and [23,18], and differs from Biham, Shamir [2] or Matsui [25,27].
We denote the bits of the left hand side of the plaintext by The
bits of the right hand side are Similarly, as in other papers, the
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plaintext after rounds will be except that we felt it necessary to have our
notations completely “untwisted” which implies that our and for an odd

will be inversed compared to [23, 18, 28], Then, we apply the popular
convention being For example is
the XOR of 4 bits of the left half of the plaintext that are added to the outputs
of S1 in the first round. We denote the input bits to the round function by

Similarly the output bits will be
For odd we have and
For even we have and

For individual S-boxes, we will denote the inputs/outputs by respectively
and with being directly the numbers 1..32 in the round function

of DES. For example O[8],O[14],O[25],O[3] are the outputs of S-box S5, and
J[16], . . . , J[21] are the inputs of this S-box S5. Depending on the key in round

we have or For better readability, we will avoid
naming precisely the key bits involved.

6.2 First Example of Bi-linear Cryptanalysis of DES

Our simulations on DES S-boxes (cf. Appendix A) show that the following two
bi-linear characteristics exist for DES S-boxes S1 and S5:

From these, acting as if all the key bits were zero we deduce
the following bi-linear characteristic for two rounds:

The explanation is given on the following picture:

Fig. 4. Our first example - an invariant bi-linear attack on DES
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We verified this bias experimentally, and the probability is (we were lucky)
equal to the probability that is predicted by Matsui’s Piling-Up Lemma.
Key Dependence: Very surprisingly, the above equation is biased, not only
when all key bits are 0, but for every DES key. This can be seen to come from
a couple of other (different) bi-linear characteristics from Appendix A.

More rounds: It is easy to see from the picture, and we verified it experimen-
tally, that is also biased for 1,2,3,4,5,6,7,8,9,10,11,... rounds of DES, and
all this happens to work about equally well for an arbitrary key.

Relation to LC: The bias of is closely related to some prominent equations
of Matsui, see the extended version of this paper.

6.3 Invariant Attacks on DES

The equation is an invariant equation, i.e. the input and the output bi-linear
expressions are the same. We have found a simple invariant bi-linear I/O sum
for DES that is biased for any key and for any number of rounds. For LC and
DES, such simple invariant characteristics do exist, have been found by Biham
(page 347 in [1]) in close relation to Davies-Murphy attack. The example
above is one of the best we found for DES, and so far it also the only known
non-linear 1-round invariant attack on DES that works really well in practice.
Our invariant on DES is stronger than Biham’s. We recall that Biham uses a
bias on a sum of some outputs for two successive DES S-boxes. The best bias
obtained by Biham (also exhibited by Matsui in [26] and contained unnoticed in
the earlier Davies-Murphy attack [6,7]) is equal to (35/64 – 1/2) for 2 rounds
and for S-boxes S7-S8. This gives for 12 rounds. Instead, gives
experimentally only about Accordingly, is the strongest known
1-round invariant attack on DES.

To break full DES requires a bias for 14 rounds (Matsui’s 2R method) and
the Biham’s invariant requires then plaintexts. Our invariant attack requires
about plaintexts (the bias of for 14 rounds is expected to be about
we did not dispose of a sufficient computing power to compute it exactly).

6.4 How Good Is Our First Example, BLC vs. LC

These new properties of DES give a chosen-plaintext attack on an arbitrary
number of rounds of DES, somewhat simpler than Matsui’s laborious search
for the best linear characteristic. If we try here to predict the resulting bias
for 14 rounds by applying the Matsui’s Piling-up formula, we would get for 14
rounds the bias of: which means an attack on full DES with only
known plaintexts (!?). Unfortunately, unlike for LC in DES, such predictions are
frequently not valid for BLC. Starting from 3 rounds, the bias of our invariant
does not follow the prediction at all, yet remains significative. For example if we
apply Matsui’s Piling-Up Lemma to predict the bias for 4 rounds as 2+2 rounds,
we obtain while in practice it is about Our invariant attack
seems very bad for 4 rounds, and unfortunately with we never get a bias better
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than obtained by Matsui. Yet, it is the best invariant attack on DES known, and
for more than 4 rounds the results are again not so bad. Only slightly worse
than Matsui. For example for 12 rounds the best result of Matsui from [25] gives

while for and a random key our simulation gives To
break full DES Matsui requires about plaintexts, and with we also need
about (and both are related). In the full version of this paper we give a
heuristic argumentation why for DES (but not in general !) the complexity of
the best bi-linear attack should be roughly the same than for LC.

For DES and 1-round invariants attacks extended to an arbitrary number of
rounds, BLC gives strictly better results than LC. It is also so for more complex
periodic constructions and we are going to see that BLC attacks can also be
strictly better than any existing linear attack.

6.5 Second Example of Bi-linear Cryptanalysis of DES

In order to exhibit biases really better than Matsui we looked what is the best
bi-linear characteristic that exists in DES:

for S5 with probability 61/64.

We note that this equation can be seen as “causing” the existence of the
Matsui’s best equation (A) for S5: their difference is highly biased. Based mainly
on this, we constructed a periodic characteristic for 3,7, 11 and more rounds that
is strictly better than the best results of Matsui for the same number of rounds.

Proposition 6.5.1 (Our Best Attack on 11 Rounds of DES). For all keys,
the following equation is biased for 11 rounds of DES:

The exact construction to achieve this is a bit complicated. (cf. Appendix
B). The bias of this equation is strictly better than the best linear characteristic
for 11 rounds obtained by Matsui (which gives for 11 rounds). It has
been verified by computer simulations at every stage. We note also that both
are closely related: their difference, is a biased Boolean function.

Our second example allows us to give an attack strictly better than Matsui
for 11+2=13 rounds of DES. For the full 16-round DES our results are roughly
as good as Matsui (but we hope to improve this soon too). For 17 rounds of
DES, as the construction of our second example is periodic, we expect that
for 11+4=15 rounds it should also be better than the best bias of Matsui, which
would allow to break 15+2=17 rounds of DES faster than by LC. We do not
dispose of a sufficient computing power to fully confirm this fact.

7 Conclusion

It was stated that for Feistel ciphers non-linear characteristics cannot be joined
together for several rounds, see [20]. In this paper we show that generalised linear
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cryptanalysis (GLC) is in fact possible for Feistel schemes. To achieve this goal,
we introduced bi-linear cryptanalysis (BLC). It gives a new (and the fastest
known) 1-round invariant attack on DES. Though more powerful, generalized
linear cryptanalysis is unfortunately much harder to study than LC. At present
heuristic constructions, to be confirmed (or not) by computer simulations are
the only method known to explore it. BLC is related to LC in multiple important
ways. It contains LC as a sub-set. LC can be used to construct good bi-linear
characteristics and vice-versa. BLC also contains LC as an extension: a combi-
nation of biased bi-linear characteristics may extend a concrete combination of
biased linear characteristics by adding quadratic polynomials. Yet BLC can be
strictly better than any (existing) linear attack. This was demonstrated for 3, 7,
11 and more rounds of DES, and also for

In this paper we only initiate the study of bi-linear cryptanalysis. BLC and
GLC extend the role of LC as an essential tool to evaluate the real-life security
of many practical ciphers. An interesting contribution of this paper is to point
out that, though GLC is excessively general to be systematically explored, the
properties of the top-level structure of a cryptographic scheme (e.g. being a
Feistel scheme) will determine the type of the attacks (e.g. BLC) that may indeed
work. Our new attack can be quite devastating: we constructed a large family of
practical ciphers based on big Rijndael-type S-box, that are strongly resistant
against LC and all previously known attacks on Feistel ciphers, yet can be broken
in practice with BLC for an important number of rounds. Fortunately, for DES,
BLC gave only slight improvements over LC and does not cause excessive trouble.
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A Selected Bi-linear Characteristics of DES S-Boxes

In this section we give some bi-linear characteristics for DES S-boxes. Our results
are not exhaustive: the number of possible bi-linear characteristics is huge and
we do not have a fast method to find all interesting characteristics. Accordingly
we are not certain to have found the best existing characteristics. It is certain
that there is no characteristics true with probability 1, as these are easy to check
algebraically. Otherwise we explored all cases that use up to two products and
we conjecture that the other does not have practical relevance for the security
of DES. We give here some interesting results we have found. More will appear
in the extended version of this paper.

B Improved Bi-linear Attacks for DES
The goal of this section is to find or construct examples where bi-linear crypt-
analysis gives strictly better bias on DES than the best Matsui’s result.

We look at the best Matsui’s characteristic on 3 rounds given at the last
page of [25]. By itself, it can be considered as very good, even compared to
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other Matsui’s characteristics: it uses twice the best element (A) of Matsui, and
nothing between them. Moreover, this element (A) is in itself the best linear
characteristic that exist in DES, first described by Shamir in [30]:

From this we get immediately, using Matsui’s Piling-Up Lemma from [25],
that for 3 rounds, and for any key, the following equation is biased:

We call Matsui-3 this equation.

B.1 Improving on Matsui-3

We will show that with bi-linear characteristics, there are strictly better equa-
tions than Matsui-3. Our simulations looking for the best bi-linear characteristics
for DES S-boxes (cf. Appendix A), showed that the best one is the following:

Remark: It is clearly related to, and can be seen as “causing” the existence of
the Matsui’s equation (A): their difference is naturally biased.

We will use this characteristic. Let KS5 denote the combination of the S-box
S5 and the key bits XORed to its inputs. It is easy to see that for KS5, if we
denote by K[sth] some constant linear combination of key bits, for any key, one
of the following equations is always strongly biased:

In our construction, we will use one of the above, and we will also use another,
naturally biased equation, which will be one of the following:

Now we are ready to construct characteristics for 3 rounds of DES.
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Fig. 5. Combining a1-b-a1 to get a characteristic for 3 rounds of DES

Fig. 6. Combining a2-c-a1 to get a characteristic for 3 rounds of DES

As one should expect, our construction goes as follows:

In round 1 and 3, depending on the key either a1 or a2 is strongly biased.
To connect a1 to a1, or a2 with a2, we can use b, as in Figure 5.
To connect a1 with a2 and the reverse, we use c, as in Figure 6.
For 3 rounds and for any key, we always have a strong bias on one of the
four possibilities: a1-b-a1, a1-c-a2, a2-c-a1, a2-b-a2.
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From Matsui’s Piling-Up Lemma, we expect that the whole characteristic
will be true with probability Our simulations show that it is
between and
Since, the choice of a1/a2 depends on a linear combination of key bits, We
can combine all these into one equation and we get the following result:

Proposition B.1.1 (Our Best Attack on 3 Rounds of DES). For all keys,
the following equation is biased for 3 rounds of DES:

In comparison, Matsui-3 gives Bi-linear cryptanalysis works
better than LC. In the next section we will extend this result (and again beat
Matsui) to 7, 11 and more rounds.
Remark: The equation above can be seen as 4 different equations, each of them
is highly biased for 1/4 of all keys. We observed that each of the 4 equations
is also biased for all DES keys, except that for 3/4 of them the bias is much
weaker, we get about

B.2 Extending the Result for 7, 11 and More Rounds

The idea is to find an element (maybe not very good in itself) that will allow to
connect together our (very good) characteristics on 3 rounds. For example, to
connect Figure 5 with Figure 6 we use the following element:

Fig. 7. Connecting the output of a1 to the input of a2

Simulations show that, for any key, this characteristic is true with probability
about 1/2 ± 0.8/64. The explanation is as follows: the bias is due to to the
combination of Matsui’s equation (C)

and of the fact that I[3] · O[16, 17, 20] is naturally biased. The same element
(Figure 7) does also work to connect a2 to a1.

It remains to be seen how the connection between a1 and a1 or a2 and a2.
This is done in a very similar way: we combine (C) with
that is also naturally biased.
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Summary: In every of 4 possible cases, there is a connecting element based
on (C). This means that, also for 7 rounds and for any key, again one of the
four possibilities is quite biased: a1-b-a1, a1-c-a2, a2-c-a1, a2-b-a2. Again we
can recompose it in a single attack:

Proposition B.2.1 (Extension to 7 Rounds of DES). For all keys, the
following equation is biased for 7 rounds of DES:

This bias is, depending on the key, sometimes better, sometimes worse than
Matsui-7 that gives

Finally, it is now obvious, that our construction works also for 11, 15, 19
rounds etc. We verified experimentally that for 11 rounds we have:

Proposition B.2.2 (Our Best Attack on 11 Rounds of DES). For all
keys, the following equation is biased for 11 rounds of DES:

For a few different keys we have tried (long computation on a PC) the bias
was always strictly better than Matsui-11 that gives
Remark: The best characteristics found by Matsui for 3 and 11 rounds [25]
are closely related to those presented here: their difference is a biased Boolean
function. BLC contains LC not only as a subset, but also as an extension allowing
to strictly improve the best linear attacks on DES by adding higher degree
monomials.

B.3 Beyond Bi-linear Attacks: Using Cubic Equations

We observed that, for 3 rounds, even better results can be achieved using cu-
bic partially bi-linear characteristics, instead of quadratic bi-linear (**) from
Proposition B.1.1. Our simulations show that, for an important fraction of keys:

The explanation why this works is quite similar. Though the non-linear part
of this equation is not bi-linear, it is well correlated with a truly bi-linear func-
tion:

Unfortunately, the bias of is worse for other keys. On average, the
best bias we know for 3 rounds remains from Proposition B.1.1. We also
observed that that works for any number of DES rounds and for any key,
but again the results are not as good as with
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Abstract. We construct a short group signature scheme. Signatures
in our scheme are approximately the size of a standard RSA signa-
ture with the same security. Security of our group signature is based
on the Strong Diffie-Hellman assumption and a new assumption in bilin-
ear groups called the Decision Linear assumption. We prove security of
our system, in the random oracle model, using a variant of the security
definition for group signatures recently given by Bellare, Micciancio, and
Warinschi.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [14], provide anonymity
for signers. Any member of the group can sign messages, but the resulting signa-
ture keeps the identity of the signer secret. In some systems there is a third party
that can trace the signature, or undo its anonymity, using a special trapdoor.
Some systems support revocation [12,4, 29,15] where group membership can be
selectively disabled without affecting the signing ability of unrevoked members.
Currently, the most efficient constructions [2,12,4] are based on the Strong-RSA
assumption introduced by Baric and Pfitzman [5].

In the last two years a number of projects have emerged that require the
properties of group signatures. The first is the Trusted Computing effort [28]
that, among other things, enables a desktop PC to prove to a remote party
what software it is running via a process called attestation. Group signatures
are needed for privacy-preserving attestation [17, Sect. 2.2]. Perhaps an even
more relevant project is the Vehicle Safety Communications (VSC) system from
the Department of Transportation in the U.S. [18]. The system embeds short-
range transmitters in cars; these transmit status information to other cars in
close proximity. For example, if a car executes an emergency brake, all cars in
its vicinity are alerted. To prevent message spoofing, all messages in the system
are signed by a tamper-resistant chip in each car. (MACs were ruled out for this
many-to-many broadcast environment.) Since VSC messages reveal the speed
and location of the car, there is a strong desire to provide user privacy so that
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M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 41–55, 2004.
© International Association for Cryptologic Research 2004
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the full identity of the car sending each message is kept private. Using group
signatures, where the group is the set of all cars, we can maintain privacy while
still being able to revoke a signing key in case the tamper resistant chip in a car
is compromised. Due to the number of cars transmitting concurrently there is a
hard requirement that the length of each signature be under 250 bytes.

The two examples above illustrate the need for efficient group signatures.
The second example also shows the need for short group signatures. Currently,
group signatures based on Strong-RSA are too long for this application.

We construct short group signatures whose length is under 200 bytes that
offer approximately the same level of security as a regular RSA signature of the
same length. The security of our scheme is based on the Strong Diffie-Hellman
(SDH) assumption [8] in groups with a bilinear map. We also introduce a new as-
sumption in bilinear groups, called the Linear assumption, described in Sect. 3.2.
The SDH assumption was recently used by Boneh and Boyen to construct short
signatures without random oracles [8]. A closely related assumption was used by
Mitsunari et al. [22] to construct a traitor-tracing system. The SDH assumption
has similar properties to the Strong-RSA assumption. We use these properties
to construct our short group signature scheme. Our results suggest that systems
based on SDH are simpler and shorter than their Strong-RSA counterparts.

Our system is based on a new Zero-Knowledge Proof of Knowledge (ZKPK)
of the solution to an SDH problem. We convert this ZKPK to a group signature
via the Fiat-Shamir heuristic [16] and prove security in the random oracle model.
Our security proofs use a variant of the security model for group signatures
proposed by Bellare, Micciancio, and Warinschi [6].

Recently, Camenisch and Lysyanskaya [13] proposed a signature scheme with
efficient protocols for obtaining and proving knowledge of signatures on commit-
ted values. They then derive a group signature scheme using these protocols as
building blocks. Their signature scheme is based on the LRSW assumption [21],
which, like SDH, is a discrete-logarithm-type assumption. Their methodology
can also be applied to the SDH assumption, yielding a different SDH-based
group signature.

The SDH group signature we construct is very flexible and we show how to
add a number of features to it. In Sect. 7 we show how to apply the revocation
mechanism of Camenisch and Lysyanskaya [12]. In Sect. 8 we briefly sketch how
to add strong exculpability.

2 Bilinear Groups

We first review a few concepts related to bilinear maps. We follow the notation
of Boneh, Lynn, and Shacham [9]:

and are two (multiplicative) cyclic groups of prime order
is a generator of and is a generator of
is a computable isomorphism from to with and
is a computable map with the following properties:

Bilinearity: for all and
Non-degeneracy:

1.
2.
3.
4.
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Throughout the paper, we consider bilinear maps where
all groups are multiplicative and of prime order One could set

However, we allow for the more general case where so that
our constructions can make use of certain families of non-supersingular elliptic
curves defined by Miyaji et al. [23]. In this paper we only use the fact that
can be of size approximately elements in are 171-bit strings, and that
discrete log in is as hard as discrete log in where is 1020 bits. We will
use these groups to construct short group signatures. We note that the bilinear
groups of Rubin and Silverberg [25] can also be used.

We say that two groups as above are a bilinear group pair if the
group action in and the map and the bilinear map are all efficiently
computable.

The isomorphism is only needed for the proofs of security. To keep the
discussion general, we simply assume that exists and is efficiently computable.
(When are subgroups of the group of points of an elliptic curve the
trace map on the curve can be used as this isomorphism. In this case,
and

3 Complexity Assumptions

3.1 The Strong Diffie-Hellman Assumption

Let be cyclic groups of prime order where possibly Let
be a generator of and a generator of Consider the following problem:

Diffie-Hellman Problem. The problem in is de-

fined as follows: given a as input,
output a pair where An algorithm has advantage
in solving in if

where the probability is over the random choice of in and the random
bits of

Definition 1. We say that the assumption holds in if
no algorithm has advantage at least in solving the problem in

Occasionally we drop the and and refer to the assumption rather
than the assumption. The assumption was recently used by
Boneh and Boyen [8] to construct a short signature scheme without random
oracles. To gain confidence in the assumption they prove that it holds in generic
groups in the sense of Shoup [27]. The assumption has similar properties
to the Strong-RSA assumption [5]. We use these properties to construct our
short group signature scheme.
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3.2 The Linear Diffie-Hellman Assumption

With as above, along with arbitrary generators and of
consider the following problem:

Decision Linear Problem in Given as input, out-
put yes if and no otherwise.

One can easily show that an algorithm for solving Decision Linear in gives
an algorithm for solving DDH in The converse is believed to be false. That
is, it is believed that Decision Linear is a hard problem even in bilinear groups
where DDH is easy. More precisely, we define the advantage of an algorithm
in deciding the Decision Linear problem in as

The probability is over the uniform random choice of the parameters to and
over the coin tosses of We say that an algorithm Decision
Linear in if runs in time at most and is at least

Definition 2. We say that the Linear Assumption (LA) holds in
if no algorithm has advantage at least in solving the Decision Linear

problem in

In the full version of the paper we show that the Decision Linear Assumption
holds in generic bilinear groups.

Linear Encryption. The Decision Linear problem gives rise to the Linear
encryption (LE) scheme, a natural extension of ElGamal encryption. Unlike
ElGamal encryption, Linear encryption can be secure even in groups where a
DDH-deciding algorithm exists. In this scheme, a user’s public key is a triple
of generators her private key is the exponents such that

To encrypt a message choose random values and
output the triple To recover the message from an encryption

, the user computes By a natural extension of the proof
of security of ElGamal, LE is semantically secure against a chosen-plaintext
attack, assuming Decision-LA holds.

4 A Zero-Knowledge Protocol for SDH

We are now ready to present the underlying building block for our group sig-
nature scheme. We present a protocol for proving possession of a solution to
an SDH problem. The public values are and Here

for some (secret) The protocol proves possession of a pair
where and such that Such a pair satisfies

We use a standard generalization of Schnorr’s protocol for
proving knowledge of discrete logarithm in a group of prime order [26].
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Protocol 1. Alice, the prover, selects exponents and computes a
Linear encryption of A:

She also computes two helper values and
Alice and Bob then undertake a proof of knowledge of values

satisfying the following five relations:

This proof proceeds as follows. Alice picks blinding values and
at random from She computes five values based on all these:

She then sends to the verifier. Bob, the verifier,
sends a challenge value chosen uniformly at random from Alice computes
and sends back and

Finally, Bob verifies the following five equations:

Bob accepts if all five hold.

Theorem 1. Protocol 1 is an honest-verifier zero-knowledge proof of knowledge
of an SDH pair under the Decision Linear assumption.

The proof of the theorem follows from the following lemmas that show that
the protocol is (1) complete (the verifier always accepts an interaction with
an honest prover), (2) zero-knowledge (can be simulated), and (3) a proof of
knowledge (has an extractor).

Lemma 1. Protocol 1 is complete.

Proof. If Alice is an honest prover in possession of an SDH pair she follows
the computations specified for her in the protocol. In this case,
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so (1) holds. For analogous reasons (2) holds. Further,

so (4) holds. For analogous reasons (5) holds. Finally,

so (3) holds.

Lemma 2. Transcripts of Protocol 1 can be simulated, under the Decision Lin-
ear assumption.

Proof. We describe a simulator that outputs transcripts of Protocol 1.
Pick and Set and

Assuming the Decision Linear assumption holds on the tuples
generated by the simulator are drawn from a distribution that is indistinguish-
able from the distribution output by any particular prover.

The remainder of this simulator does not assume knowledge of A, or
so it can also be used when and are pre-specified. When the pre-
specified are a random Linear encryption of some A, the remainder
of the transcript is simulated perfectly.

Now choose a challenge Select and set Then
(1) is satisfied. With and fixed, a choice for either of or determines
the other, and a uniform random choice of one gives a uniform random choice
of the other. Therefore and are distributed as in a real transcript. Choose

and analogously.

Select and set and Again, all
the computed values are distributed as in a real transcript. Finally set

This satisfies (3), and it, too, is properly distributed.
The transcript output is

As argued above, this transcript is distributed identically to transcripts of Pro-
tocol 1, assuming the Decision Linear assumption holds.

Lemma 3. There exists an extractor for Protocol 1.

Proof. Suppose that an extractor can rewind a prover in the protocol above to
the point just before the prover is given a challenge At the first step of the
protocol, the prover sends and Then, to challenge
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value the prover responds with and To challenge value
the prover responds with and If the prover is convincing,

all five verification equations (1–5) hold for each set of values.
For brevity, let and similarly for

and
Now consider (1) above. Dividing the two instances of this equation, we

obtain The exponents are in a group of known prime order, so we
can take roots; let Then Similarly, from (2), we obtain

such that
Consider (4) above. Dividing the two instances gives Substi-

tuting gives or Similarly, from (5) we
deduce that

Finally, dividing the two instances of (3), we obtain

Taking roots, and letting we obtain

This can be rearranged as

or, letting

Thus the extractor obtains an SDH tuple (Ã, Moreover, the Ã in this SDH
tuple is, perforce, the same as that in the Linear encryption

5 SDH Signatures of Knowledge

Armed with Theorem 1, we obtain from Protocol 1 a signature scheme secure in
the random oracle model by applying the Fiat-Shamir heuristic [16]. Signatures
obtained from a proof of knowledge via the Fiat-Shamir heuristic are often called
signatures of knowledge. We use a variant of the Fiat-Shamir heuristic, used also
by Ateniese et al. [2], where the challenge rather than the values is
transmitted in the signature; the output of the random oracle acts as a checksum
for those values not transmitted.

The signature scheme is defined as follows. The public key contains a hash
function (viewed as a random oracle) groups and with
respective generators and as in Sect. 2, the random generators and
of and where is chosen at random in The private key

TEAM LinG



48 Dan Boneh, Xavier Boyen, and Hovav Shacham

is an SDH pair i.e., a pair such that Any such pair is a valid
private key.

The signer signs a message using the private key as follows.
She first undertakes the computation specified in the first round of Protocol 1
to obtain She obtains the challenge by giving M
and her first-round values to the random oracle:

She then undertakes the computation specified in the third round of the protocol
using the challenge value to obtain Finally, she outputs the
signature computed as

The verifier uses equations (1–5) to re-derive and

He then checks that these, along with the other first-round messages included
in give the challenge i.e., that

He accepts if this check succeeds.
The Fiat-Shamir heuristic shows that this signature scheme is secure against

existential forgery in the random oracle model [1]. Note that a signature com-
prises three elements of and six of

6 Short Group Signatures from SDH
The signature scheme presented in Sect. 5 is, in fact, also a group signature
scheme. In describing the scheme, we follow the definitions given by Bellare
et al. [6].

Consider bilinear groups and with respective generators and
as in Sect. 2. Suppose further that the SDH assumption holds on
and the Linear assumption holds on The scheme employs a hash function

treated as a random oracle in the proof of security.

This randomized algorithm takes as input a parameter the
number of members of the group, and proceeds as follows. Select

and and set such that Select

and set Using generate for each user

an SDH tuple select and set The group
public key is The private key of the group manager
(the party able to trace signatures) is Each user’s private
key is her tuple No party is allowed to possess it is only
known to the private-key issuer.

TEAM LinG



Short Group Signatures 49

Given a group public key a
user’s key and a message compute and out-
put a signature of knowledge as in the
scheme of Sect. 5 (Equation (7)).

Given a group public key a mes-
sage M, and a group signature verify that is a valid signature of knowl-
edge in the scheme of Sect. 5 (Equation (8)).

This algorithm is used for tracing a signature to a
signer. It takes as input a group public key and
the corresponding group manager’s private key together
with a message M and a signature to
trace, and proceeds as follows. First, verify that is a valid signature on M.
Second, consider the first three elements as a Linear encryption,
and recover the user’s A as following the decryption
algorithm given at the end of Sect. 3.2. If the group manager is given the
elements of the users’ private keys, he can look up the user index
corresponding to the identity A recovered from the signature.

Signature Length. A group signature in the system above comprises three ele-
ments of and six elements of Using any of the families of curves described
in [9], one can take to be a 170-bit prime and use a group where each ele-
ment is 171 bits. Thus, the total group signature length is 1533 bits or 192 bytes.
With these parameters, security is approximately the same as a standard 1024-
bit RSA signature, which is 128 bytes.

Performance. The pairings and can be precomputed
and cached by both signers and verifiers. The signer can cache and, when
signing, compute without evaluating a pairing. Accordingly, creating a
group signature requires eight exponentiations (or multi-exponentiations) and
no pairing computations. The verifier can derive efficiently by collapsing the

and pairings into a single term. Thus verifying a
group signature requires six multi-exponentiations and one pairing computation.
With parameters selected as above, the exponents are in every case 170-bit
numbers. For the signer, all bases for exponentiation are fixed, which allows
further speedup by precomputation.

6.1 Group Signature Security
We now turn to proving security of the system. Bellare et al. [6] give three
properties that a group signature scheme must satisfy:

correctness, which ensures that honestly-generated signatures verify and
trace correctly;
full-anonymity, which ensures that signatures do not reveal their signer’s
identity; and
full-traceability, which ensures that all signatures, even those created by the
collusion of multiple users and the group manager, trace to a member of the
forging coalition.
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For the details of the definitions, see Bellare et al. [6]. We prove the security
of our scheme using a variation of these properties. In our proofs, we relax the
full-anonymity requirement. As presented [6, Sect. 2], the full-anonymity exper-
iment allows the adversary to query the opening (tracing) oracle before and
after receiving the challenge In this respect, the experiment mirrors the indis-
tinguishability experiment against an adaptive CCA2 adversary. We therefore
rename this experiment CCA2-full-anonymity. We define a corresponding exper-
iment, CPA-full-anonymity, in which the adversary cannot query the opening
oracle. We prove privacy in this slightly weaker model.

Access to the tracing functionality will likely be carefully controlled when
group signatures are deployed, so CPA-full-anonymity is a reasonable model to
consider. In any case, anonymity and unlinkability, the two traditional group
signature security requirements implied by full anonymity [6, Sect. 3], also fol-
low from CPA-full-anonymity. Thus a fully-traceable and CPA-fully-anonymous
group signature scheme is still secure in the traditional sense.

In the statements of the theorem, we use big-O notation to elide the specifics
of additive terms in time bounds, noting that, for given groups and
operations such as sampling, exponentiation, and bilinear map evaluation are all
constant-time.

Theorem 2. The SDH group signature scheme is correct.

Proof. For any group public key and for any user with
key the key generation algorithm guarantees that

so is an SDH tuple for A correct group signature is a
proof of knowledge, which is itself a transcript of the SDH protocol given in
Sect. 4. Verifying the signature entails verifying that the transcript is correct;
thus Lemma 1 shows that will always be accepted by the verifier.

Moreover, an honest signer outputs, as the first three components of any
signature values for some These
values form a Linear encryption of under public key which the group
manager, possessing the corresponding private key can always recover.
Therefore any valid signature will always be opened correctly.

Theorem 3. If Linear encryption is secure on then the
SDH group signature scheme is where and

Here is the number of hash function queries made by the
adversary and is the number of members of the group.

Proof. Suppose is an algorithm that the anonymity of the
group signature scheme. We show how to construct a algorithm
that breaks the semantic security of Linear encryption (Sect. 3.2) with advantage
at least

Algorithm is given a Linear encryption public key It generates the
remaining components of the group signature public key by following the group
signature’s key generation algorithm. It then provides to the group public
key and the users’ private keys
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At any time, can query the random oracle H. Algorithm responds with
elements selected uniformly at random from making sure to respond identi-
cally to repeated queries.

Algorithm requests its full-anonymity challenge by providing two indices,
and and a message M. Algorithm in turn, requests its indistinguishabil-

ity challenge by providing the two user private keys and as the messages
whose Linear encryption it must distinguish. It is given a Linear encryption

of where bit is chosen by the Linear encryption challenger.
Algorithm generates from this Linear encryption a protocol transcript

by means of the simulator of
Lemma 2. This simulator can generate a trace given even though
does not know or Since is a random Linear encryption of

the remainder of the transcript is distributed exactly as in a real protocol
with a prover whose secret A is

Algorithm then patches H at to equal
It encounters a collision only with negligible probability. In case of a collision,

declares failure and exits. Otherwise, it returns the valid group signature
to

Finally, outputs a bit Algorithm returns as the answer to its own
challenge. Since the encryption of is turned by into a group signature by
user answers its challenge correctly whenever does.

The keys given to and the answers to queries, are all valid and properly
distributed. Therefore succeeds in breaking the anonymity of the group signa-
ture with advantage and succeeds in distinguishing the Linear encryption

with the same advantage.
Algorithm running time exceeds by the amount it takes to answer
queries. Each hash query can be answered in constant time, and there are at

most of them. Algorithm can also create the challenge group signature
in constant time. If runs in time runs in time

The following theorem proves full traceability of our system. The proof is
based on the forking lemma [24] and is given in the full version of the paper.
Theorem 4. If SDH is on then the SDH group signature
scheme is where
and Here is the number of hash function queries made by the
adversary, is the number of signing queries made by the adversary, and is
the number of members of the group.

7 Revocation
We now discuss how to revoke users in the SDH group signature scheme of
Sect. 6. A number of revocation mechanisms for group signatures have been
proposed [4,12]. All these mechanisms can be applied to our system. Here we
describe a revocation mechanism along the lines of [12].

Recall that the group’s public key in our system is where
for random and random User private key

is a pair where
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Now, suppose we wish to revoke users without affecting the signing
capability of other users. To do so, the Revocation Authority (RA) publishes
a Revocation List (RL) containing the private keys of all revoked users. More
precisely, where Note that

Here the SDH secret is needed to compute the In the case
where equals then and consequently the Revocation List can be
derived directly from the private keys of revoked users without having to use

The list RL is given to all signers and verifiers in the system. It is used to
update the group public key used to verify signatures. Let

The new public key is where and
We show that, given RL, anyone can compute this new public key,

and any unrevoked user can update her private key locally so that it is well
formed with respect to this new public key. Revoked users are unable to do so.

We show how to revoke one private key at a time. By repeating the process
times (as the revocation list grows over time) we can revoke all private keys on
the Revocation List. We first show how given the public key
and one revoked private key anyone can construct the new public
key where and This
new public key is constructed simply as:

then and
as required.

Next, we show how unrevoked users update their own private keys. Con-
sider an unrevoked user whose private key is Given a revoked private
key, the user computes and sets his new
private key to be Then, indeed,

as required. Hence, is a valid private key with respect to
By repeating this process times (once for each revoked key in RL) anyone

can compute the updated public key defined above. Similarly,
an unrevoked user with private key can compute his updated private key

where We note that it is possible to process the entire
RL at once (as opposed to one element at a time) and compute
directly; however this is less efficient when keys are added to RL incrementally.

A revoked user cannot construct a private key for the new public key
In fact, the proof of Theorem 4 shows that, if a revoked user can generate

signatures for the new public key then that user can be used
to break the SDH assumption. Very briefly, the reason is that given an SDH
challenge one can easily generate a public key tuple along with
the private key for a revoked user Then an algorithm that can forge
signatures given these two tuples can be used to solve the SDH challenge.
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Brickell [11] proposes an alternate mechanism where revocation messages are
only sent to signature verifiers, so that there is no need for unrevoked signers to
update their keys. Similar mechanisms were also considered by Ateniese et al. [4]
and Kiayias et al. [19]. We refer to this as Verifier-Local Revocation (VLR) group
signatures. Boneh and Shacham [10] show how to modify our group signature
scheme to support this VLR revocation mechanism.

8 Exculpability

In Bellare et al. [6], exculpability (introduced by Ateniese and Tsudik [3]) is
informally defined as follows: No member of the group and not even the group
manager – the entity that is given the tracing key – can produce signatures on
behalf of other users. Thus, no user can be framed for producing a signature
he did not produce. They argue that a group signature secure in the sense of
full-traceability also has the exculpability property. Thus, in the terminology of
Bellare et al. [6], our group signature has the exculpability property.

A stronger notion of exculpability is considered in Ateniese et al. [2], where
one requires that even the entity that issues user keys cannot forge signatures
on behalf of users. Formalizations of strong exculpability have recently been
proposed by Kiayias and Yung [20] and by Bellare, Shi, and Zhang [7].

To achieve this stronger property the system of Ateniese et al. [2] uses a
protocol (called JOIN) to issue a key to a new user. At the end of the protocol,
the key issuer does not know the full private key given to the user and therefore
cannot forge signatures under the user’s key.

Our group signature scheme can be extended to provide strong exculpabil-
ity using a similar mechanism. Instead of simply giving user the private key

the user and key issuer engage in a JOIN protocol where at the end
of the protocol user has a triple such that for some
public parameter The value is chosen by the user and is kept secret from
the key issuer. The ZKPK of Sect. 4 can be modified to prove knowledge of such a
triple. The resulting system is a short group signature with strong exculpability.

9 Conclusions

We presented a group signature scheme based on the Strong Diffie-Hellman
(SDH) and Linear assumptions. The signature makes use of a bilinear map

When any of the curves described in [9] are used, the
group has a short representation and consequently we get a group signature
whose length is under 200 bytes – less than twice the length of an ordinary RSA
signature (128 bytes) with comparable security. Signature generation requires no
pairing computations, and verification requires a single pairing; both also require
a few exponentiations with short exponents.
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Abstract. We propose a new and efficient signature scheme that is prov-
ably secure in the plain model. The security of our scheme is based on a
discrete-logarithm-based assumption put forth by Lysyanskaya, Rivest,
Sahai, and Wolf (LRSW) who also showed that it holds for generic groups
and is independent of the decisional Diffie-Hellman assumption. We prove
security of our scheme under the LRSW assumption for groups with bi-
linear maps. We then show how our scheme can be used to construct
efficient anonymous credential systems as well as group signature and
identity escrow schemes. To this end, we provide efficient protocols that
allow one to prove in zero-knowledge the knowledge of a signature on a
committed (or encrypted) message and to obtain a signature on a com-
mitted message.

Introduction1
Digital signatures schemes, invented by Diffie and Hellman [20], and formalized
by Goldwasser, Micali and Rivest [26], not only provide the electronic equivalent
of signing a paper document with a pen but also are an important building block
for many cryptographic protocols such as anonymous voting schemes, e-cash, and
anonymous credential schemes, to name just a few.

Signature schemes exists if and only if one-way functions exist [32,35]. How-
ever, the efficiency of these general constructions, and also the fact that these
signature schemes require the signer’s secret key to change between invocations
of the signing algorithm, makes these solutions undesirable in practice.

Using an ideal random function (this is the so-called random-oracle model),
several, much more efficient signature schemes were shown to be secure. Most
notably, those are the RSA [34], the Fiat-Shamir [21], and the Schnorr [36]
signature schemes. However, ideal random functions cannot be implemented in
the plain model [13,25], and therefore in the plain model, these signature schemes
are not provably secure.

Over the years, many researchers have come up with signature schemes that
are efficient and at the same time provably secure in the plain model. The most
efficient ones provably secure in the standard model are based on the strong RSA
assumption [23,19,22,10]. However, no scheme based on an assumption related
to the discrete logarithm assumption in the plain (as opposed to random-oracle)
model comes close to the efficiency of these schemes.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 56–72, 2004.
© International Association for Cryptologic Research 2004
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In this paper, we propose a new signature scheme that is based on an assump-
tion introduced by Lysyanskaya, Rivest, Sahai, and Wolf [30] and uses bilinear
maps. This assumption was shown to hold for generic groups [30], and be in-
dependent of the decisional Diffie-Hellman assumption. Our signature scheme’s
efficiency is comparable to the schemes mentioned above that are based on the
Strong RSA assumption.

We further extend our basic signature scheme such that it can be used as a
building block for cryptographic protocols. To this end, we provide protocols to
prove knowledge of a signature on a committed message and to obtain a signa-
ture on a committed message. These protocols yield a group signature scheme
[17] or an anonymous credential system [14] (cf. [10]). That is, we obtain the
first efficient and secure credential system and group signature/identity escrow
schemes [28] that are based solely on discrete-logarithm-related assumptions.
We should mention that an anonymous credential system proposed by Verheul
[38] is also only based on discrete logarithm related assumptions; however, the
scheme is not proven secure. Also note that the recent scheme by Ateniese and de
Medeiros [2] requires the strong RSA assumption although no party is required
to know an RSA secret key during the operation of the system.

Note that not only are our group signature and anonymous credential schemes
interesting because they are based on a different assumption, but also because
they are much more efficient than any of the existing schemes. All prior schemes
[1,9,10,2] required proofs of knowledge of representations over groups modulo
large moduli (for example, modulo an RSA modulus, whose recommended length
is about 2K Bits).

Recently, independently from our work, Boneh and Boyen [4] put forth a
signature scheme that is also provably secure under a discrete-logarithm-type
assumption about groups with bilinear maps. In contrast to their work, our
main goal is not just an efficient signature scheme, but a set of efficient pro-
tocols to prove knowledge of signatures and to issue signatures on committed
(secret) messages. Our end goal is higher-level applications, i.e., group signature
and anonymous credential schemes that can be constructed based solely on an
assumption related to the discrete logarithm assumption.

In another recent independent work, Boneh, Boyen, and Shacham [5] con-
struct a group signature scheme based on different discrete-logarithm-type as-
sumptions about groups with bilinear pairings. Their scheme yields itself to the
design of a signature scheme with efficient protocols as well. In §5 we describe
their scheme and its connection to our work in more detail.

Outline of the Paper. In §2 we give our notation and some number-theoretic
preliminaries, including bilinear maps and the LRSW assumption. In §3, we
give our signature scheme and prove it secure. In §4 we show how our signature
yields itself to the design of an anonymous credential system: we give protocols
for obtaining a signature on a committed value, and for proving knowledge of a
signature on a committed value. In the end of that section, we show how to realize
a group signature scheme based on our new signature. Finally, in Section 5, we
show that the scheme of Boneh, Boeyn and Shacham can be extended so that
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a signature scheme with efficient protocols, similar to the one we describe in
Sections 3 and 4 can be obtained based on their assumptions as well.

2 Preliminaries

We use notation introduced by Micali [31] (also called the GMR notation), and
also notation introduced by Camenisch and Stadler [12]. Here we review it briefly;
the complete description can be found in the full version [CL04] of this paper.

If A is an algorithm, and be a Boolean function, then by
we denote the event that after was generated by running A on input
By we denote a Turing machine that makes queries to an oracle O. By

we denote the contents of the query tape once A
terminates, with oracle O and input

A function is negligible if for every positive polynomial and for
sufficiently large

Camenisch and Stadler [12] introduced notation for various proofs of knowl-
edge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For instance,

denotes a “zero-knowledge Proof of Knowledge of integers and such that
and holds, where where and are

elements of some groups and The convention
is that Greek letters denote quantities the knowledge of which is being proved,
while all other parameters are known to the verifier. We will sometimes apply
the Fiat-Shamir heuristic to turn such a proof into a signature on a message
which we will denote as, e.g.,

We also use the standard definition of a digital signature scheme [26].

2.1 Number-Theoretic Preliminaries

We now describe some number-theoretic preliminaries. Suppose that we have
a setup algorithm Setup that, on input the security parameter outputs the
setup for and two groups of prime order that have a
non-degenerate efficiently computable bilinear map More precisely: We assume
that associated with each group element, there is a unique binary string that
represents it. (For example, if then an element of G can be represented
as an integer between 1 and Following prior work (for example, Boneh
and Franklin [6]), is a function, such that

(Bilinear) For all for all
(Non-degenerate) There exists some such that where
1 is the identity of G.
(Efficient) There exists an efficient algorithm for computing
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We write: It is easy to see, from the first two
properties, and from the fact that G and G are both of the same prime order
that whenever is a generator of is a generator of G.

Such groups, based on the Weil and Tate pairings over elliptic curves (see
Silverman [37]), have been extensively relied upon in cryptographic literature
over the past few years (cf. [27,6,7,24] to name a few results).

Further, we make the following assumption about the groups G and G.

Assumption 21 (LRSW Assumption) Suppose that is a group cho-
sen by the setup algorithm Setup. Let Let
be an oracle that, on input a value outputs a triple
for a randomly chosen Then for all probabilistic polynomial time adversaries

defined as follows is a negligible function:

where Q is the set of queries that made to

This assumption was introduced by Lysyanskaya et al. [30], and considered
for groups that are not known to admit an efficient bilinear map. It was also
shown, in the same paper, that this assumption holds for generic groups. It is
not hard to see that the proof carries over to generic groups G and G with a
bilinear map between them.

3 Three Signature Schemes

First, we present a simple signature scheme (Scheme A) and prove it secure under
the LRSW assumption. Then, we modify this scheme to get signature schemes
that lend themselves more easily to the design of efficient protocols for issuing
a signature on a committed value and proving knowledge of a signature on a
committed value. The first generalization will allow to sign such that the signa-
ture produced is independent of the message (Scheme B), which we generalize
further into a scheme that allows to sign blocks of messages (Scheme C).

Schemes A and B are, in fact, special cases of Scheme C. So we really propose
just one new signature scheme, namely Scheme C. Schemes A and B are just
steps that simplify our presentation by making it more modular.

3.1 Scheme A: A Simple Signature Scheme

The signature scheme consists of the following algorithms:

Key generation. The key generation algorithm runs the Setup algorithm in
order to generate It then chooses and and
sets where and
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Signature. On input message secret key and public key
choose a random and output the signature

Verification. On input message and purported
signature check that the following verification equations hold.

Theorem 1. Signature Scheme A described above is correct and secure under
the LRSW assumption.

Proof. We first show correctness. The first verification equation holds as
and the second one holds because

We now show security. Without loss of generality, let
Consider the adversary interacting with the signer and outputting a valid

signature on some message that he did not query for. It is clear that the
signer acts the same way as the oracle defined in the LRSW assumption.
Therefore, in order to prove security, we must show that the forgery
that passes the verification equations, must be of the form and (**)

Let So, we wish to show that and that

Prom the first verification equation and the bilinearity of we get that

As g is a generator of G, we can take the logarithm base g on both sides, and
obtain  which gives us (*) as desired.

From the second verification equation, using the above, and, again, the fact
that g is a generator:

3.2 Scheme B: Where Signature Is Independent of the Message

For constructing anonymous credentials, we need a signature scheme where the
signature itself is distributed in a way that is information-theoretically indepen-
dent of the message being signed. In essence, what is being signed should be
an information-theoretically secure commitment (Pedersen commitment) of the
message. Thus, we modify Scheme A and obtain Scheme B as follows:

Key generation. Run the Setup algorithm to generate Choose
Let and Set
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Signature. On input message secret key and public key
do:

Choose a random
Let
Let
Let

Output
Verification. On input message and pur-

ported signature check the following:
1.
2.
3.

A was formed correctly:
and B were formed correctly: and
was formed correctly:

Note that the values are information-theoretically inde-
pendent of if is chosen randomly. This will become crucial when using this
signature scheme in the context of an anonymous credential system.

Theorem 2. Signature Scheme B described above is correct and secure under
the LRSW assumption.

The full proof of this theorem is found in the full version [CL04] of this paper.
Here we give a sketch. Correctness follows by inspection. To show security, we
consider two types of forgery. Type 1 forgery is on some message such
that for all previously queried we have Type 2 forgery
is when this is not the case.

The existence of Type-1 forger contradicts the LRSW assumption by reduc-
tion from Signature Scheme A. On input a public key
for Scheme A, our reduction forms a public key
for Scheme B by choosing and setting It then runs the forger
on input and answers signature queries of the form by transforming
them into queries  for the signature oracle for Scheme A.
It is easy to see that a Type 1 forgery on constitutes a successful forgery
for the message in Scheme A.

The existence of Type-2 forger contradicts the discrete logarithm assumption
(and therefore the LRSW assumption). The reduction takes as input

and sets up the public key for the signature scheme by choosing X and
Y. It then runs the forger, answers all the signature queries (since it generated
X and Y itself) and obtains a Type-2 forgery, namely such that

for some This immediately gives the discrete logarithm of Z
to the base

3.3 Scheme C: For Blocks of Messages

Scheme B allows us to generate a signature on in such a way that the signature
itself reveals no information about Namely, one can choose a random and
sign using Scheme B. In general, however, there is no reason that we should
limit ourselves to pairs when signing. In fact, the construction of Scheme
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B can be generalized to obtain Scheme C which can sign tuples
i.e., blocks of messages.

Scheme C consists of the following algorithms:

Key generation. Run the Setup algorithm to generate Choose
0 and for Let and, for

Set
Signature. On input message secret key

and public key do:
Choose a random
Let                 for
Let

Let
Output

Verification. On input message
and purported signature check the following:

1.
2.

3.

were formed correctly:
and were formed correctly: and

was formed correctly:

The proof that this scheme is secure and correct is deferred to Corollary 1.

4 Anonymous Credential System
and Group Signature Scheme

Following Camenisch and Lysyanskaya [10,29], in order to construct an anony-
mous credential system, it is sufficient to exhibit a commitment scheme, a sig-
nature scheme, and efficient protocols for (1) proving equality of two committed
values; (2) getting a signature on a committed value (without revealing this value
to the signer); and (3) proving knowledge of a signature on a committed value.
We provide all these tools in this section.

Constructing a group signatures scheme or identity escrow scheme addition-
ally requires an encryption scheme that is secure against adaptively chosen ci-
phertext attacks and a protocol that a committed value is contained in a cipher-
text (cf. [12,3,11]). Camenisch and Shoup provide an encryption scheme and
such a protocol [11]. However, in our case we could also use the Cramer-Shoup
encryption scheme [18], provided that the order of the group over which encryp-
tion is carried out is the same as the order of the group over which our signature
scheme is constructed. This will allow for a more efficient proof that a ciphertext
contains information to identify a group member and thus a more efficient group
signatures/identity escrow scheme. We will describe the details of this in §4.4.

The reason that our new signature schemes are particularly suitable for the
credential scheme application, is the fact that, given one signature on a given
message, it is easy to generate another one. Consider Signature Scheme A. From
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a signature on message it is very easy to compute a different
signature on the same message just choose a random and
let This alone is, of course, not sufficient, but this already
shows the way in which the pieces of our credential scheme will fall into place.

4.1 The Relevant Commitment Scheme

Recall the Pedersen commitment scheme [33]: given a group G of prime order
with generators and a commitment to is formed by choosing

a random and setting the commitment This commitment
scheme is information-theoretically hiding, and is binding under the discrete
logarithm assumption, which is implied by the LRSW assumption. Moreover,
there exist in the literature efficient protocols for proving knowledge and equality
of committed values (see, for example, [16,36,8,15]).

4.2 Obtaining a Signature on a Committed Value

When Information-Theoretic Hiding Is Not Needed. Consider the signing algo-
rithm for Scheme A. Note that, if the input to the signer is instead of
the algorithm will still work: on input output and

To maintain security of the signature scheme, however,
the user must prove knowledge of to the signer.

As we will discuss in more detail in §4.4, this leads to a natural application
to constructing group signatures: in order to join a group, a new member will
choose a secret give to the group manager, prove knowledge of and
obtain the membership certificate formed as above.

However, note here that the input to the signer, the value does not
unconditionally hide the value Thus, if the user wishes to become a member
in more than one group using the same secret (as is the case if we want to build
an anonymous credential system), the two group managers can discover that they
are talking to the same user. This is easy to see if both group managers use the
same generator for G, because in that case, the user will give to both of
them. But this is true even if one group manager uses while the other uses
recall that in groups with bilinear pairings, the decisional Diffie-Hellman problem
is easy, and so and can be correlated:

This is why we need Schemes B and C instead of Scheme A. However, we
note that for group signatures, Scheme A is sufficient. In the sequel, we will give
the description of the protocol for Scheme C, together with a proof of security.
Because Scheme A is a special case of Scheme C (in Scheme A, the
security of the protocols for A is implied by that for C.

Signing an Information-Theoretically Hidden Message. Signature Schemes B
and C are ideally suited for obtaining a signature on a committed value.

Consider Signature Scheme B. Note that to generate a valid signature, the
signer need not know Instead, it is sufficient that the signer know

The values are not a function of – so the signer need
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not know to generate them. Suppose that the signer generates them as
follows: choose and let Choose A , and B as prescribed
by the signing algorithm. Finally, the signer can compute as

This will be correct, because:

More generally, in Signature Scheme C, all the signer needs is the value
He can then compute as prescribed,

and let as above.
We do not know how to prove such a method for signing secure under the

LRSW assumption: the difference from the usual method is that here, the ad-
versary may win by asking a signature query for M for which he does not know
the representation in terms of and Z.

Thus, in order to obtain a signature on a committed value, the protocol needs
to be amended by having a recipient of the signature prove that he knows the
representation of M in bases and Z.

Let us give the protocol in detail now. We give the protocol for Signature
Scheme C, the ones for Signature Schemes A and B follow from this as they are
special cases of Signature Scheme C.

Obtaining a Signature C on a Committed Value. Suppose that
is a commitment to a set of messages whose signature the

user wishes to obtain. Then the user and the signer run the following protocol:

Common Input. The public key and a com-
mitment M.

User’s Input. Values such that
Signer’s Input. Signing key
Protocol. First, the user gives a zero-knowledge proof of knowledge of the open-

ing of the commitment:

Next, the signer computes as described above, namely:

The user outputs the signature

For let Then set and for let
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Theorem 3. The protocol above is a secure two-party computation of a signa-
ture on a discrete-logarithm representation of M under the signer’s public key.

Proof. (Sketch) From the signer’s point of view, this protocol is as secure as
when the user submits his signature queries in the clear. This is because of the
proof of knowledge: there exists an extractor that can discover the value of the
message being signed, and ask it of the signer in the clear.

From the user’s point of view, as the only place where the user’s secret input
is used is the zero-knowledge proof of knowledge of these values,

the only thing that the signer finds out about the message is
the input value M. Note that if is distributed uniformly at random, then
M information-theoretically hides the values

4.3 Proving Knowledge of a Signature

We first present a protocol to prove knowledge of a signature that works for
Scheme A. We then explain why the protocol does not generalize to Scheme B
(and thus also Scheme C), show how Scheme C needs to be extended to fix this
problem, and obtain Scheme D. We then give a proof of security of Scheme D and
a zero-knowledge protocol for proving knowledge of a signature under Scheme
D. We note that the protocol to sign a committed (secret) message also works
for Scheme D.

The following protocol is a zero-knowledge proof of knowledge of a signed
message for Scheme A.

Common input. The public key
Prover’s input. The message and signature
Protocol. The prover does the following:

1.

2.

Compute a blinded version of his signature Choose random
and blind the signature to form
Send to the verifier.
Let the and be as follows:

The Prover and Verifier compute these values (locally) and then carry
out the following zero-knowledge proof protocol:

The Verifier accepts if it accepts the proof above and

Theorem 4. The protocol above is a zero knowledge proof of knowledge of a
signature on a message under Signature Scheme A.

Proof. First, we prove the zero-knowledge property. The values that the verifier
receives from the prover in Step 1 are independent of the actual signature: and
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are just random values satisfying and is random in G because
for a randomly chosen Therefore, consider the following simulator S:

Choose random and and set Then is
distributed correctly, and so Step 1 is simulated correctly. Then, because in
Step 2, the Prover and Verifier execute a zero-knowledge proof, it follows that
there exists a simulator for this step; just run It is easy to see that S
constructed this way is the zero-knowledge simulator for this protocol.

Next, let us prove that this protocol is a proof of knowledge. That is to say, we
must exhibit a knowledge extractor algorithm E that, given access to a Prover
such that the Verifier’s acceptance probability is non-negligible, outputs a value

such that is a valid signature. Suppose that we are given such a prover.
The extractor proceeds as follows: first, it runs the extractor for the proof of
knowledge protocol of Step 2. As a result, it obtains the values such
that Then:

And therefore the triple satisfies the verification equation (1) and
hence is a signature on the message so our extractor outputs

Let us now try to adapt this protocol for Signature Scheme C. There is one
subtlety that arises here: The zero-knowledge simulator needs to be able to come
up with something that looks like a blinded signature (let us call it simulated
signature), even though the simulator is not given any signature. In Signature
Scheme A this turned out not to be a problem: the simulator simply picked a
random and set and Here, this is not going to work, because,
in addition to and the simulated signature needs to include the values
and Now, forming is not a problem: But how do we compute

without knowing or
To that end, we may augment the public key for signature scheme C to

include a signature on some dummy message, so that the simulator will be given
some valid signature that includes the correctly formed tuple
and then, in order to obtain the simulated signature, the simulator will pick a
random and let and

An even better solution, in terms of reducing the size of the public key, is
actually to include the values in the public key, instead of the signature
on the dummy message. It is easy to see that this has no effect on the security
of the signature scheme.

Let us now give this new, augmented signature scheme, and prove it secure.
Signature Scheme D. This signature scheme is the same as Signature Scheme
C, except that the public key also includes the values

Key generation. Run the Setup algorithm to generate Choose
and for Let

and, for and Set
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The signature and verification algorithm are identical to the ones of Scheme C.

Theorem 5. Signature Scheme D is correct and secure under the LRSW as-
sumption.

The detailed proof of this theorem is given in the full version of this paper.
The main idea of the proof of security is that the proof for Scheme B generalizes
to the case when we have several

As a forger for Scheme C is also a forger for Scheme D, we have:

Corollary 1. Signature Scheme C is correct and secure under the LRSW as-
sumption.

The full description of the protocol and proof of security follow.

Common input. The public key
Prover’s input. The block of messages and signature

1. Compute a blinded version of his signature Choose random
Form as follows:

Further, blind to obtain a value that it is distributed independently
of everything else:
Send to the verifier.

2. Let and be as follows:

The Prover and Verifier compute these values (locally) and then carry
out the following zero-knowledge proof protocol:

The Verifier accepts if it accepts the proof above and (a) were
formed correctly: and (b) and were formed
correctly: and

Theorem 6. The protocol above is a zero knowledge proof of knowledge of a
signature on a block of messages under Signature Scheme D.

The proof of this theorem follows the proof of Theorem 4 and is provided in the
full version of this paper.

Protocol. The prover does the following:
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4.4 An Efficient Group Signature Scheme Secure
under the LSWR-Assumption

We now present the first efficient group signature (and identity escrow) scheme
whose security relies solely on assumptions related to the discrete logarithm
problem (in the random oracle model). In contrast, all previous efficient schemes
rely on the strong RSA assumption plus the decisional Diffie-Hellman assump-
tion.

Recall that a group signatures scheme allows members of a group to sign
anonymously on the group’s behalf. In case of disputes, there exists a trusted
third party called revocation manager who will be able to open a signature and
reveal the identity of the signer. A group signature scheme consists of five proce-
dures: (1) a key generation procedure that produces the public key of the group
(and also some keys for the group and revocation manager), (2) a join protocol
for a member to get admitted by the group manager, (3) a sign algorithm for an
admitted member to sign a message, (4) a verification algorithm to check group
signatures for validity with respect to the group’s public key, and (5) an opening
algorithm that allows the revocation manager to reveal the identity of a signer.
A group signature scheme is secure if only the revocation manager can reveal
the identity of the signer (anonymity) and if the revocation manager can do this
for all valid signatures (traceability) [3].

Our construction follows the approach introduced by Camenisch and Stadler
[12]: A member gets a certificate on a membership public key from the group
manager when she joins the group. When she wants to sign on behalf of the
group, she encrypts her membership public key under the encryption key of the
party who will later be able to open group signatures (revocation manager) and
then proves that she possesses a certificate on the encrypted membership public
key and that she knows its secret key. To make this proof a signature, one usually
applies the Fiat-Shamir heuristic to this proof [21].

The public key of the group manager is the public key of our Scheme A, i.e.,
and his secret key is and

The public key of the revocation manager is the public key of the Cramer-Shoup

and where are the
revocation manager’s secret key1. Finally, let be a collision
resistant hash function (modeled as a random oracle in the proof of security).

The join protocol is as follows. The future group member chooses her mem-
bership secret key sets sends P authentically to the group
manager, and proves to the group manager the knowledge of The group
manager replies with a Scheme A signature on the message committed
by P, i.e., computes and where

1 The Cramer-Shoup cryptosystem is secure under the decisional Diffie-Hellman
(DDH) assumption. Therefore, we cannot use it over group G, because the exis-
tence of a bilinear map implies that the DDH problem is tractable. Thus, we use the
CS cryptosystem in group G instead.

encryption scheme [18] in the group                  i.e., with
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The group manager stores together with P and the identity of the
new group member.

To sign a message on behalf of the group, the user computes
and a blinded version of the certificate by choosing random and

computing Next, she encrypts P under
the revocation manager’s public key i.e., she chooses computes

and Then she computes the
following proof-signature (cf. §2):

where and A group signature consists
of and is valid if is a valid SPK as defined above
and if holds.

To open such a group signature, the revocation managers needs to decrypt
to obtain P which identifies the group member.

It is not hard to see that, in the random oracle model, this is a secure group
signatures scheme under the LRSW and the decisional Diffie-Hellman assump-
tion in G. Let us give a proof sketch for security under the Bellare et al. [3]
definition. If an adversary can break anonymity, then one can break the encryp-
tion scheme as are random values and is derived from an honest-verifier
zero-knowledge proof. If an adversary can produce a signature that cannot be
opened, i.e., linked to a registered member by the revocation manager, then one
can use rewinding to extract a forged signature and break the signature scheme
(cf. analysis of the protocol to prove knowledge of a signatures in §4.3). If used as
an identity escrow scheme (i.e., if is not a proof-signature but a real protocol
between a group member and a verifier), the security proof need not to assume
random oracles.

The scheme just described can be extended in several ways. For instance,
we could use Scheme D instead of Scheme A and include the user’s identity
id directly into her membership key P, e.g., That is, in the join
protocol, the user would send (and prove knowledge of and the
group manager would then compute P as to ensure that indeed id is contained in
P. Then, instead of encrypting P, one could use the Camenisch-Shoup encryption
scheme [11] to directly encrypt the identity as one of the discrete logarithms the
knowledge of which is proven when proving knowledge of a signature.

5 Constructions Based on the BBS Group Signature

Recently and independently of this work, Boneh, Boyen and Shacham [5] pre-
sented a group signature scheme secure under the strong Diffie-Hellman and the
Linear assumptions. They showed that, under these assumptions in groups with
bilinear pairings, it is hard, on input to sample tuples of the form
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where (in other words, even given a polynomial
number of such samples. In their group signature scheme, such a tuple is a
user’s group membership certificate, while is the public key of the group.
At the heart of their construction are (1) a zero-knowledge proof of knowledge
of such a tuple; and (2) a scheme for encrypting They prove the resulting
construction secure under a slightly weaker variant of the Bellare, Micciancio,
and Warinschi [3] definition of security.

Boneh, Boyen, and Shacham also modify their main group signature scheme
to achieve exculpability, as follows. The public key of the group is augmented
by an additional value it is now The membership certificate of a
group member is such that This membership certificate
is created via a protocol in which the group manager only learns the value

but not the value The unforgeability of membership certificates in this
modified scheme can be derived from that of their main scheme. They achieve
exculpability because a proof of knowledge of a membership certificate requires
the knowledge of the value

Note that this latter signature scheme gives rise to the equivalent of our
Signature Scheme A, but under a different assumption. Namely, the membership
certificate is a signature on the value Just as in our Scheme A, a group
member obtains his group membership certificate in such a way that the group
manager learns the value but not the value itself.

Not surprisingly, this signature scheme can be extended to the equivalent of
our Schemes B and C using techniques similar to the ones described above. As
a result, we can obtain signature schemes with efficient protocols based on the
BBS signature. Let us give a sketch for the equivalent for Scheme C. A public key
would be A signature on a block of messages
consists of values such that In order to obtain a signature
on a committed block of messages, a user will have to supply the signer with
the value and prove knowledge of its representation in the bases

If is chosen at random, then Y information-theoretically hides
The signer will then generate the signature. A proof of knowledge

of a signature on a committed value can be obtained by appropriate modifications
to the BBS group signature protocol.
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Abstract. Let be a one-way function. A function
is called a hard-core function for if, when given

for a (secret) drawn uniformly from it is computationally
infeasible to distinguish from a uniformly random string. A
(randomized) function is a general hard-
core function if it is hard-core for every one-way function

where the second input to is a uniform random string
Hard-core functions are a crucial tool in cryptography, in particular

for the construction of pseudo-random generators and pseudo-random
functions from any one-way function.
The first general hard-core predicate, proposed by Goldreich and Levin,
and several subsequently proposed hard-core functions, are bilinear func-
tions in the two arguments and In this paper we introduce a param-
eter of bilinear functions called expo-
nential rank loss, and prove that it characterizes exactly whether or not

is a general hard-core function. The security proofs for the previously
proposed bilinear hard-core functions follow as simple consequences. Our
results are obtained by extending the class of list-decodable codes and by
generalizing Hast’s list-decoding algorithm from the Reed-Muller code to
general codes.

Keywords: List-decoding, hard-core functions, Goldreich-Levin predi-
cate.

1 Introduction

Blum and Micali [BM84] showed a hard-core predicate1 for the exponentiation
function modulo a prime, which is widely conjectured to be one-way (except
for special primes). They also showed how to construct a pseudo-random gen-
erator based on it. Hard-core predicates are also known for some other specific
(conjectured) one-way functions.

In a seminal paper [GL89], Goldreich and Levin proved that for any one-
way function the XOR of a random subset of the bits

1 The term predicate is used throughout to denote a function with range {0,1}.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 73–91, 2004.
© International Association for Cryptologic Research 2004

TEAM LinG



74 Thomas Holenstein, Ueli Maurer, and Johan Sjödin

of the input constitutes a hard-core predicate. This function is randomized
(because of the choice of a random subset), and it is easy to see that any general
hard-core function must be randomized. An alternative view is to interpret the
randomizing input of the hard-core function as an extra input and output of a
modified one-way function defined by

which now has a deterministic hard-core function 2. The Goldreich-Levin
hard-core function is simply the inner product of and which is a bilinear
function

Any such bilinear map is characterized by a binary matrix M, where
For the Goldreich-Levin predicate, M is simply the identity

matrix.
One can show (see [Lub96]) that independent Goldreich-Levin

predicates are jointly hard-core, i.e., they form a hard-core function
An important issue is to reduce the required amount of

randomness in a hard-core function. A construction presented in [GL89] (see
also [Go101]) requires only instead of mn random bits for an hard-
core function. Goldreich, Rubinfeld, and Sudan [GRS00] reduced the number of
random bits down to as for the Goldreich-Levin function which produces only
one (rather than bits. While some of the proofs of these results as they appear
in the literature are non-trivial, they will all follow as simple consequences of
our main theorem.

More generally, one can consider bilinear functions for vector spaces over
any finite field  i.e., functions We are interested in
characterizing which of these functions are general hard-core functions. This
characterization turns out to be given by a quite simple parameter of such a
bilinear function. The characterization is complete in the sense that when the
parameter is below a certain threshold, then the function is hard-core, and other-
wise there exist one-way functions (under some reasonable complexity-theoretic
assumption) such that is not a hard-core function for

Let us discuss this parameter. For any linear function the
function is a bilinear function which can be characterized
by an matrix over The parameter of interest, which we call exponential
rank loss, is defined as the expected value of the exponentially weighted rank of
this matrix, when averaged over all non-zero functions

The main technical part of [GL89] consists in showing that an error-correcting
code has certain list-decoding properties, i.e., that it is possible to find a list of
all codewords in a Hamming ball of a certain size. In this paper we show how
to list-decode a larger class of codes. The stated characterization of hard-core
functions will then follow.

An application of one-way functions and hard-core predicates are pseudoran-
dom generators. It is easy to obtain a pseudorandom generator from any one-way
2 Yao’s method (implicit in [Yao82]) of using several copies of a one-way function and

computing the XOR of some of the inputs can also be seen in the same light.
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permutation by iterating and after each iteration extracting a (the same)
hard-core predicate. It is much more complicated and less efficient to use any
one-way function (see [HILL99]).

The security of a cryptographic scheme that uses a pseudo-random generator
is proven by showing that an algorithm breaking the scheme could distinguish
the pseudo-randomness from real randomness. Hast [Has03] showed that in many
cryptographic applications, breaking the scheme is actually stronger than just
distinguishing the randomness from pseudorandomness with small probability,
in the sense that if an algorithm is given a pseudo-random or random input and
it breaks the scheme, then it is almost certain that the input was pseudo-random
rather than random. Hast then shows that this leads to an improved security
analysis for many constructions. The main technical tool is an extension of the
list-decoding algorithm to the case where erasures in the codewords are allowed.
We use this extension, and furthermore generalize Hast’s result by giving list-
decoding algorithms that are able to handle erasures for more general codes.

Section 2 introduces the notation and discusses bilinear functions and list-
decoding, the main technical tool of the paper. Previous work is also summarized
in this section. In Section 3, we analyze a special case of bilinear functions,
namely these for which all matrices mentioned above (i.e., for all non-zero linear
functions) have full rank. This special case already suffices to prove previous
results in the literature. We generalize the algorithm in Section 4 such that it
works with any bilinear code, where the running time and the produced list will
grow linearly with the exponential rank loss of the code. In Section 5 we discuss
the application to characterizing hard-core functions.

2 Preliminaries

We use calligraphic letters to denote sets. Capital letters denote random variables
over the corresponding sets; and lowercase letters denote specific values of these
random variables, i.e., values in the sets.

The notation is used to denote a function from the domain
to the range Sometimes, functions take additional randomness (i.e., for every
input the function only specifies a probability distribution over In
this case we write a notation which also will be used to denote
randomized algorithms with domain and range If an algorithm has access
to a randomized function, we use the term oracle for the randomized function.

2.1 Bilinear Functions

Let be the finite field with elements and let be the
vector space of over As a special case, we identify {0,1}

with GF(2), and the bitstrings of length with the vector
space over GF(2).

A linear function can be specified by a vector such that
We use to denote the set of all linear functions
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Furthermore, 0 will denote the zero function and we use
for the set of all linear functions excluding 0.

A bilinear map can be specified by a matrix
such that The rank of a bilinear map is just the rank of this
matrix. A bilinear function is a function where every entry
in the output vector is specified by a bilinear map. Note that for any function

the concatenation is a bilinear map. If L is a uniformly chosen
random linear function from the exponential rank loss is defined as

We say that a bilinear function is full-rank, if for every
(in which case

2.2 List-Decoding

The main tool in the construction of hard-core functions is the notion of a list-
decodable code. Such a code has the property that, given a noisy codeword, it
is possible to find a list of all codewords which have a certain agreement with
the noisy codeword.

Consider a code given as a function Note that the input
to the function (usually the message) is an element of while the output (the
codeword) is a over The Hamming distance of two words of is
the number of coordinates in which the words differ. List-decoding is the task
of finding for a given all the values for which has a Hamming
distance from that is smaller than some predefined bound. This is in contrast
to usual error-correcting, where one aims to find the one codeword which is
closest to the received word. The most ambitious task is to list-decode close to
the noise barrier: given any one wants to find all values for which
has a Hamming distance of at most from a given word. Since a
random word has expected distance from any codeword, this is clearly
the best one can expect to achieve.

Instead of considering the function one can equivalently consider a
function such that is the value of at the

position. More generally we consider functions for any
domain Analogous, we assume that we have oracle access to the noisy word
to be decoded: instead of reading the complete word it will be convenient to
assume that an oracle on input returns the symbol at position
This allows us to list-decode in sublinear time, i.e., without looking at every
position of the word, which in turn allows the codewords to be exponentially
large. The oracle is stateless, but may be randomized and is not required to
return the same symbol if queried twice with the same input. The agreement of
an oracle with a codeword is then expressed as where the
probability is over the choices of Y and the randomness of the oracle.

Additionally, we allow erasures in the word which will be denoted by Thus,
the oracle is a randomized function The rate of such an
oracle is the probability that a symbol in is returned,
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For a fixed word the advantage of is defined as

This motivates the following definition:

Definition 1 (List-decodable code).3 The function is
with oracle calls and list size if there exists an oracle algorithm

with running time which, after at most oracle calls to an
oracle with rate at least generates a set of size at most
such that for every with the set
satisfies

2.3 Hard-Core Functions

Informally, a one-way function is a function which is easy to evaluate but hard
to invert.

Definition 2 (One-way function). An efficiently computable function fam-
ily with is a one-way function if for
every probabilistic polynomial time (in algorithm A the inverting probability

is negligible.

A hard-core function can intuitively extract
bits from the input of a one-way function such that these bits look random,
even given We can distinguish (strong) hard-core functions, where the
output is indistinguishable from a random string of length (which we denote
by and weak hard-core functions, where the output of the function is hard
to predict.

Definition 3 (Strong hard-core function). An efficiently computable family
of functions, with is a

(strong) hard-core function if, for every one way function
and every probabilistic polynomial time algorithm A, the distinguishing advantage
given by is negligible
in

Definition 4 (Weak hard-core function). An efficiently computable family
with of functions is a

weak hard-core function if, for every one-way function
and every probabilistic polynomial time algorithm A, the advantage of A in guess-
ing on input and defined as is
negligible in
3 We require the list-decoding algorithm to work in time Note that

in some cases, will be superpolynomial in the input size and
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In general, weak hard-core functions are easier to construct than strong ones.
However, we will see that for small outputs the notions are equivalent.

As shown in [Sud00], any list-decodable code
as defined above yields a weak hard-core function. To prove this, one assumes for
the sake of contradiction that an algorithm B is given which on input and
predicts with probability higher than for some non-negligible4

After arguing that B needs to have a reasonable success probability for a sig-
nificant subset of the possible values for one then uses B as the oracle in the
list-decoding algorithm. The resulting list, which is small, then contains with
non-negligible probability, and one can find a preimage of by applying to
all values in the list.

In such a reduction, the running time of the resulting algorithm is dominated
by the running time of B. Thus, one is interested in the exact number of oracle
calls, while the exponent in the running time of the (polynomial) algorithm
is of minor importance. In this application, the second input (from
corresponds to a random string. As randomness is an expensive resource, one
wants to be as small as possible. We show how to achieve for any

2.4 Previous Work

The fundamental result on bilinear list-decodable codes implicitly appears in
[GL89], stating that the Reed-Muller code of first order, defined as

has an algorithm which efficiently
list-decodes it up to an error rate of for any

The standard proof used today was found independently by Levin and Rack-
off and is given in [Gol0l] (see also [Lev87]). In [Has03], Hast introduces the
extension of list-decoding algorithms for oracles with erasures. The existence of
the resulting algorithm is asserted in the following theorem:

Theorem 5 (Goldreich-Levin, cf. [Has03]). For any the function
is with list size

and oracle calls. The list-decoding algorithm needs as input.

This theorem is slightly stronger than the original version in [Has03], where
an additional factor appears in the number of oracle calls and the list size.
The version as stated here can be obtained by applying a trick that appears in
[Gol0l, Section 2.5.2.4]5.

It is natural to generalize this theorem to vector spaces over any finite field.
For this, the best known result is given in [GRS00].

Theorem 6. For any the function
is with list size and oracle
calls. The list-decoding algorithm needs as input.

4 We use non-negligible to denote a function which is not negligible.
5 Basically, one uses a linear, asymptotically optimal error-correcting code to find

instead of finding the bits one by one.
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The algorithm which is used to prove Theorem 6 is similar to the original
algorithm given in [GL89]. The exponents in are rather high, so
we refrain from stating them explicitly.

Näslund shows in [Näs95] that for any one-way function a hard-core
predicate can be obtained if one interprets as a value in and outputs
any bit of for randomly chosen and a result which also follows from
the characterization in this paper. Furthermore, he proves that for randomly
chosen and prime the least significant bit of is a hard-core
predicate. More generally, in [Näs96] he shows that all bits of are
hard-core.

In a different line of research, in [STV01] Sudan et al. give very strong list-
decodable codes which are not bilinear, based on Reed-Muller codes. These codes
can also be used to obtain hard-core functions for any one-way function.

In [AGS03], Akavia et al. show that list-decoding can also be used to prove
specific hard-core results. For example, they give a proof based on list-decodable
codes that the least significant bit of RSA is hard-core (which was first shown
in [ACGS88]).

3 Full-Rank Bilinear Functions

The main technical goal of this paper is to give a list-decoding procedure for
any bilinear function In this section, we will first consider
a simple, but very general subset of bilinear functions, namely full-rank bilinear
functions (i.e., for every We show that these functions
have very good list-decoding algorithms.

In a second step we will construct full-rank bilinear functions
which are optimal in the sense that for fixed the dimension is made as

small as possible, while for every value is possible. This allows us
to give a very large class of strong hard-core functions.

3.1 List-Decoding of Full-Rank Functions

In this section, we give a list-decoding algorithm for every full-rank bilinear
function In particular, for the case we will show
that there exists a list-decoding algorithm for which is as strong as the one
guaranteed in Theorem 5.

Theorem 7. Let be a full rank bilinear function.
For any the function is with list size
and oracle calls. The list-decoding algorithm needs as input.

For general finite fields, analogously to Theorem 6, the following holds.

Theorem 8. Let be a full-rank bilinear function. For any
the function is with list size

and oracle calls. The list-decoding algorithm needs as input.
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To prove Theorems 7 and 8, we describe an algorithm which, on access to an
oracle with rate outputs a list of all which satisfy

For this purpose we convert to an oracle with the same rate and related
advantage, but for a different code. Namely, will have advantage on
for any which satisfies (1), i.e.,
Applying Theorems 5 and 6, respectively, then yields the result.

In the following, let L be a uniform random function from i.e., L is a
random variable taking as values functions from We show that if a value
returned by the oracle is better than a random guess for then is
better than a random guess for as well. To see why this holds, we first
compute the probability that equals for two distinct values and
this probability is close to

Lemma 9. For any distinct

Proof. First note that for
some If is chosen uniformly at random from all functions in (not
excluding 0), then and since for every we can
write

which implies the lemma.

Now we can estimate the probability that equals for two random
variables and Later, will be and a guess of an oracle
for

Lemma 10. Let be a random variable over and a random
variable over If, for any

then

Proof. Obviously, if we also have for every
Using Lemma 9 we obtain
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Next, we translate a uniform query into a uniform pair
such that We will be able to use this by giving to the
oracle which predicts and then apply to get a prediction for
Since is uniform we will know the advantage of the oracle in predicting
and since is uniform, we can apply Lemma 10.

Lemma 11. Let be a full-rank bilinear function. There
exists an efficiently computable random mapping which,
for a uniformly chosen input outputs a uniform random pair such that

for every

Proof. The algorithm implementing first chooses an uniformly at
random. For a fixed let M be the matrix for which note
that As a second step, the algorithm chooses as a uniform
random solution of and returns the pair For every fixed if is
uniformly distributed; the vector will be uniformly distributed. Furthermore,

The next lemma proves the claimed conversion; i.e., given an oracle which
predicts we implement an oracle which predicts For this, on input
the algorithm first gets a pair using Lemma 11. Then, it queries the given
oracle with applies to the output and returns the result.

Lemma 12. Let be a full-rank bilinear function. There is
an efficient oracle algorithm A such that for any every and any
oracle which satisfies

algorithm satisfies

and Algorithm A makes one oracle call to

Proof. Given a uniformly chosen the algorithm first evaluates the function
as guaranteed by Lemma 11, to get a uniform pair with
It then queries the oracle with In case the answer is not it returns

otherwise it returns
Let be fixed such that

Lemma 10 implies that

Since is uniformly distributed this together with con-
cludes the proof.
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Lemma 12 can be seen as a reduction of a code to another one, in the sense
that given a noisy codeword of one code we can generate a noisy codeword of a
related code such that the Hamming distances to codewords are related in some
sense. The proofs of Theorems 7 and 8 are now obvious.

Proof (of Theorems 7 and 8). Use Lemma 12, and apply Theorems 5 and 6,
respectively.

3.2 Construction of Full-Rank Functions

As mentioned before, a list-decodable code can be used to obtain a hard-core
function, which means that a family of full-rank bilinear functions can be used
as a hard-core function. This is stated in the following proposition (a more exact
version will be given in Theorem 25, Section 5).

Proposition 13. Any efficiently computable family of full-rank bilinear func-
tions where and is a
strong hard-core function.

The proposition implies that in order to give a hard-core function it is suf-
ficient to construct a full-rank bilinear function family. In this section, we will
present constructions which appear in the literature as hard-core functions, and
show that they satisfy for every

As usual in the context of hard-core functions, we will explain the construc-
tions for vector spaces over {0,1}. However, all constructions immediately gen-
eralize to vector spaces over any finite field.

Recall that any bilinear function can be de-
scribed by a sequence of matrices over GF(2) as

It follows that for every there exists a non-empty sub-
set such that the function can be written as

In order to get a full-rank bilinear function it is therefore sufficient to give
matrices which satisfy

Example 14. In [Lub96] it is shown that independent inner product
bits give a hard-core function. This function is
defined by matrices such that consists of all zeros, except that
from column to ni it contains a identity matrix. Here it is
obvious that (2) is satisfied.

Example 15. In order to keep the dimension small, one can obtain a full-rank
bilinear function with the construction
given in [Gol01] and [GL89]. There, is a matrix of size which
contains only zeros with the exception of an identity matrix starting at
column Again, it is obvious that (2) holds.
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Note that since cannot be larger than for any it is necessary
to have If is small enough this is indeed sufficient:

Theorem 16. Let vector spaces and over {0, 1} be given.
If and then there exists a full-rank bilinear function

Proof. We first note that it is sufficient to give a full-rank bilinear function
for every since one can first obtain a bilinear

function by ignoring some of the output coordinates,
and in a second step one can get a full-rank bilinear function

by setting some of the inputs to the first arguments to zero.
To construct a full-rank bilinear function we

observe that the finite field            is a vector space over {0,1} of dimension
and for every the map is linear. Let be a basis
of and let be the matrix which describes the linear mapping in
this basis. Since for any the matrix describes the linear mapping

for some non-zero this map is invertible and thus has rank

The bilinear function used in this proof is strongly related to the hard-core
function given at the end of [GRS00], and indeed the function given there also
satisfies the rank condition needed for Theorem 86.

4 General Bilinear Functions

In this section we give a list-decoding algorithm for every (possibly non full-
rank) bilinear function. Using the same technique as in Section 3.1 we prove the
following analogue of Theorem 7 (recall that

Theorem 17. Let be any bilinear function. After
a preprocessing phase taking time the function is

with list size and an expected number of oracle
calls. The algorithm needs as input.

Note that is the expected number of queries. For general finite fields
Theorem 18 holds.

Theorem 18. Let be any bilinear function over After
a preprocessing phase taking time the function is

with list size and an expected number of
oracle calls. The list-decoding algorithm needs as input.

6 The functions are not identical, but if one considers the “cube” given by stacking
the matrices for different linear maps then the functions are obtained from each
other by a rotation of this cube. It is possible to show that for any two cubes which
are obtained by rotation from each other, the corresponding function satisfies the
full-rank condition if and only if the same holds for the other cube.
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As before we prove these theorems by converting a given oracle which on
input predicts to an oracle which on input predicts We use
Lemma 10 again (and thus Lemma 9), but we modify Lemmas 11 and 12.

A problem is that for some it may be impossible to choose a pair
with for every This will force our reduction to return on
input since there is no way to get a reasonable guess for from Further-
more, the pair must be uniformly distributed which makes the conversion
return more often. We get the following generalization of Lemma 11:

Lemma 19. Let be a bilinear function. There exists an
efficiently computable mapping  which, on uniformly
distributed input outputs with probability and otherwise a uniform
random pair satisfying for all The algorithm uses a
precomputation with time complexity

Proof. First, as a precomputation, for every the algorithm calculates
and stores it in such a way that later it is possible to efficiently

draw an element with probability where

After the precomputation, on input the algorithm chooses according to
this probability distribution and obtains the matrix M with
If the system is solvable, it chooses a solution uniformly at random
and returns otherwise it returns

Note that the precomputation can obviously be done in time
and every returned pair satisfies

For a fixed and uniformly chosen the probability that there exists a
such that is Furthermore, conditioned on the
event that the system above is solvable, every vector has the same probability.
This implies that the probability that a fixed pair is returned is

We point out that the probability of not returning cannot be made any
higher. To see why, first note that a pair can only be the answer for one
specific input Furthermore, there are possible pairs which can
only be output for implying that every pair can occur with probability at
most

Along the same line of reasoning as in Section 3, we can now prove the
generalized version of Lemma 12.

Lemma 20. Let be a bilinear function. There is an efficient
oracle algorithm A such that for any every and any oracle

which satisfies

which is independent of the pair Summing over all possible pairs we
get
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algorithm satisfies

and The algorithm makes one query

to with probability It uses a preprocessing phase with time complexity

Proof. The preprocessing is the one needed for of Lemma 19. On input
the algorithm first uses to obtain either a pair or In the second
case, the algorithm returns and does not make an oracle query; this happens
with probability If a pair is returned, the algorithm makes one
query If the algorithm returns otherwise it returns

We fix and such that Lemma 10
implies that Conditioned on
the event that A makes a query to the pair is uniformly distributed
and satisfies Also, when A does not make a query to it
returns This implies

Finally, we see that A does not return if both of Lemma 19 and do not
return which happens with probability

Using this conversion, the proofs of Theorems 17 and 18 are now straightforward.

Proof (of Theorems 17 and 18). Use Lemma 20 and apply Theorems 5 and 6,
respectively.

5 Implications for Hard-Core Functions

The results of the previous sections have implications in cryptography, namely
for one-way functions. In particular, under a reasonable complexity-theoretic
assumption the results allow us to classify basically every bilinear function family

according to whether it is a strong hard-core
function or not.

We formulate our results in the context of uniform algorithms, but they
immediately generalize to a non-uniform context.

5.1 Weak vs. Strong Hard-Core Functions

In general, it is easier to construct weak hard-core functions than to construct
strong ones. For example the identity function is a weak hard-core
function for any one-way function (predicting given is the same as
inverting but not a strong hard-core function (given it is easy to distin-
guish from a random value).
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For small output values the two notions are equivalent: every weak hard-core
function for is also a strong one. This
follows from the fact that any distinguisher for such a function can be converted
to a predictor. More concretely, assume that an oracle has advantage in
distinguishing from a random value. It is well known that one can get a
predictor with advantage from (see for example [Lub96]). The following
lemma improves this fact by following the idea of Hast that, in cryptographic
applications, a distinguisher often comes from an algorithm which tries to break
a scheme; if it succeeds then it is almost certain that the input was not random.
This can be used to obtain a predictor with lower rate but higher advantage. In
the following lemma we use this idea since the probability that a distinguisher
answers 1 on random input can be very small. By replacing with a uniform
random output one obtains the well-known version mentioned above.

Lemma 21. There exists a randomized oracle algorithm A such that for any
oracle with

and defined by

algorithm A queries once and outputs a value from such that

and

Proof. Algorithm A chooses a uniform random value It then queries
and outputs if the oracle outputs 1. Otherwise, it outputs

The probability that A outputs is The probability that A outputs
is and thus the probability that A outputs conditioned on the
event that it does not output is

As a corollary we obtain the following result:

Corollary 22. Let be a weak hard-core function
and Then, is a strong hard-core function.

Proof. Assume that is not a strong hard-core function. Then, there exists an
algorithm A which on input can distinguish from a uniform
random string with non-negligible advantage According to Lemma 21 we can
use this algorithm to obtain an algorithm which predicts the same string with
success probability at least and thus is not a weak hard-core function.
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5.2 List-Decodable Codes and Weak Hard-Core Functions

Every list-decodable code can be used as a weak hard-core function. The idea to
prove this is to assume that the function is not a weak hard-core function, and
to use the algorithm A which predicts given and together with
the list-decoding algorithm to find a list which contains with probability at
least Applying to each element of the list and comparing the input we are
guaranteed to find a preimage of with high probability.

In our case, we would like to use the algorithm guaranteed in Theorem 17.
This algorithm requires to know the product and works as long as the correct
value is at least as large as the value given to the algorithm.

Note that the value of is fixed during a run of algorithm A. Consequently
such an algorithm can only be successful if the rate and advantage for
a fixed is large enough. However, typically only the rate and advantage
averaged over all is guaranteed to have a certain value. In order to show that
this is sufficient we first prove that In the following lemma, it is
useful to think of Z as an indicator variable which is 1 if the predictor guesses
correctly; 0 on a wrong guess and if the predictor refuses to produce a guess.
The random variable X corresponds to the value of

Lemma 23. Let X be a uniformly distributed random variable over and let Z
be some random variable in Let and

Fix any constant and let and
Then,

Proof. First we observe that Furthermore we have

and thus To show that

we note that this is equivalent to

which follows directly from the Cauchy-Schwarz inequality.
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We now show how to use the list-decoding algorithm to invert a function
The following lemma is usually used when is a one-way function,
and in which case it states that is a weak hard-core function.

Lemma 24. Let be any efficiently computable function
family. Let  be any efficiently computable bilinear
function with There exists an oracle algorithm A such that for any

which satisfies
and algorithm is
running in time and satisfies

while making an expected number of oracle calls to Algorithm A
needs as an input.

If is a full-rank bilinear function, the term in the running time
can be omitted.

Proof. For any fixed let and
Using Lemma 23 we obtain

Since

5.3 Bilinear Hard-Core Functions

Lemma 21 converts a distinguisher to a predictor, while Lemma 24 uses a pre-
dictor to invert a function. Combining these two lemmas gives the following
theorem:

Theorem 25. Let be any efficiently computable function.
Let be any efficiently computable bilinear function
with There exists an oracle algorithm A such that for and
any which satisfies

for any we can apply Markov’s inequality
to obtain A run of the algorithm guaranteed in Theo-
rem 17 with input thus gives a set of size at most containing
with probability at least while doing an expected number of ora-
cle calls. Applying to each and testing if it is correct yields the claimed
result.

algorithm A satisfies

and makes an expected number of
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oracle queries to Algorithm A runs in time and
needs as input.

Proof. Combine Lemma 21 with Lemma 24.

This theorem implies that any bilinear function
with and can be used as a hard-core function.

Corollary 26. Let be a bilinear function with
and Then is a strong hard-core function.

Proof. Assume otherwise and use Theorem 25 to arrive at a contradiction.

5.4 Bilinear Functions not Suitable as Hard-Core Functions

In this section we also consider bilinear functions
for which or One can show that
implies the existence of a function which is infinitely often smaller
than Analogously, implies the existence of a function which
is strictly superpolynomial (i.e., and infinitely often smaller
than We say that a hard-core function is regular if or a
polynomial time computable function as above exists; and or a
polynomial time computable as above exists.

We show that any regular bilinear function not satisfying the conditions of
Corollary 26 is not a hard-core function if some reasonable complexity-theoretic
assumption holds, namely the existence of a one-way permutation with expo-
nential security.

Definition 27 (Very strong one-way permutation).7 A family of polyno-
mial time computable functions is a very strong one-way
permutation if there exists a constant such that for every algorithm A
with running time at most the inverting probability
is at most for all but finitely many

Proving that no such functions exist would be a breakthrough in complexity
theory. Furthermore, Gennaro and Trevisan show in [GT00] that in relativized
worlds such functions exist, and thus our results exclude a relativizing hard-
core result for any bilinear function which does not satisfy the conditions of
Corollary 26 unconditionally.

As a first step, we show that it is impossible to use a bilinear function to
extract hard bits from Such a lemma was already hinted at in [GL89].

Lemma 28. Let be a regular bilinear function
with If a very strong one-way permutation exists, then is not a
strong hard-core function.

7 We use permutations for the sake of simplicity. It is easy to see that arbitrary one-way
functions with exponential security suffice to prove Theorem 30.
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Proof. Since and is regular, there exists a polynomial-time com-
putable function with for infinitely many

We define a one-way function for which it is easy to
give a distinguisher for For this purpose, let be
a very strong one-way permutation. On input split the input into
two parts, and The output of is then
concatenated with We see that is a one-way function, since an algorithm A
which inverts in with non-negligible success probability can be
used to invert in time with probability for infinitely many

Furthermore, for any with it is easy to distinguish
from a random string, given and First, we find from Since

we see that for fixed and only a subspace of dimension at
most is possible as output value for Also, it is easy to check whether
a given value is within this subspace or not. Since a random value will be in the
subspace with probability at most cannot be a hard-core function.

Using basically the same technique, we can now show that only functions
with nearly full rank can be used as hard-core functions.

Lemma 29. Let be a regular bilinear function
with and If a very strong one-way permutation
exists, then is not a strong hard-core function.

Proof. Since is regular and there exists a function such that
and for infinitely many

As in the proof of Lemma 28, we construct a one-way function
by embedding a preimage of size to a very strong one-

way permutation Consider an for which For such an it
is easy to find a linear map to embed the preimage to such that for some

the value of does not depend on the input to As in the
proof of Lemma 28 it follows immediately that is a one-way function, and
since only depends on a part of which can be found by a linear
transformation of the output, cannot be a hard-core function.

Together, this implies the following theorem.

Theorem 30. Let be a regular bilinear function,
and assume the existence of a very strong one-way permutation. Then is a
strong hard-core function if and only if and

Proof. If and then is a hard-core function
according to Corollary 26. If and then is not
a hard-core function according to Lemma 29. If then is not a
hard-core function according to Lemma 28.
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Abstract. Many cryptographic primitives begin with parameter gener-
ation, which picks a primitive from a family. Such generation can use pub-
lic coins (e.g., in the discrete-logarithm-based case) or secret coins (e.g.,
in the factoring-based case). We study the relationship between public-
coin and secret-coin collision-resistant hash function families (CRHFs).
Specifically, we demonstrate that:

there is a lack of attention to the distinction between secret-coin
and public-coin definitions in the literature, which has led to some
problems in the case of CRHFs;
in some cases, public-coin CRHFs can be built out of secret-coin
CRHFs;
the distinction between the two notions is meaningful, because in
general secret-coin CRHFs are unlikely to imply public-coin CRHFs.

The last statement above is our main result, which states that there is no
black-box reduction from public-coin CRHFs to secret-coin CRHFs. Our
proof for this result, while employing oracle separations, uses a novel ap-
proach, which demonstrates that there is no black-box reduction without
demonstrating that there is no relativizing reduction.

1 Introduction

1.1 Background
Collision-Resistant Hashing. Collision-resistant (CR) hashing is one of the
earliest primitives of modern cryptography, finding its first uses in digital signa-
tures [Rab78,Rab79] and Merkle trees [Mer82,Mer89]. A hash function, of course,
maps (potentially long) inputs to short outputs. Informally, a hash function is
collision-resistant if it is infeasible to find two inputs that map to the same
output.

It is easy to see there is no meaningful way to formalize the notion of collision-
resistance for a single fixed-output-length hash function. Indeed, at least half of
the possible 161-bit inputs to SHA-1 [NIS95] have collisions (because SHA-1
has 160-bit outputs). Hence, an algorithm finding collisions for SHA-1 is quite
simple: it just has, hardwired in it, two 161-bit strings that collide. It exists,
even if no one currently knows how to write it down.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 92–105, 2004.
© International Association for Cryptologic Research 2004
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Due to this simple observation, formal definitions of collision-resistant hash-
ing (first given by Damgård [Dam87]) usually speak of collision-resistant function
families (CRHFs)1. A hash function family is collision-resistant if any adversary,
given a function chosen randomly from the family, is unable to output a collision
for it.

How to Choose from a Family? Most definitions of CRHFs do not dwell on
the issue of how a hash function is to be chosen from a family. In this paper, we
point out that this aspect of the definition is crucial. Indeed, in any application
of collision-resistant hashing, some party P must choose a function from the
family by flipping some random coins to produce the function description. As
we demonstrate, it is important to distinguish between two cases. In the public-
coin case these random coins can be revealed as part of the function description.
In the secret-coin case, on the other hand, knowledge of the random coins may
allow one to find collisions, and thus P must keep the coins secret after the
description is produced. (For examples of both cases, see Section 2.) We note
that the original definition of [Dam87] is secret-coin, and that the secret-coin
definition is more general: clearly, a public-coin CRHF will also work if one
chooses to keep the coins secret.

1.2 Initial Observations
Importance of the Distinction. The distinction between public-coin and
secret-coin CRHFs is commonly overlooked. Some works modify the secret-coin
definition of [Dam87] to a public-coin definition, without explicitly mentioning
the change (e.g., [BR97,Sim98]). Some definitions (e.g., [Mir01]) are ambiguous
on this point. This state of affairs leads to confusion and potential problems, as
discussed in three examples below.

Example 1. Some applications use the wrong definition of CRHF. For in-
stance, in Zero-Knowledge Sets of Micali, Rabin and Kilian [MRK03], the
prover uses a hash function to commit to a set. The hash function is chosen
via a shared random string, which is necessary because the prover cannot be
trusted to choose his own hash function (since a dishonest prover could ben-
efit from finding collisions), and interaction with the verifier is not allowed at
the commit stage (indeed, the prover does not yet know who the verifier(s)
will be). In such a setting, one cannot use secret-coin CRHFs (however, in
an apparent oversight, [MRK03] defines only secret-coin CRHFs). A clear
distinction between public-coin and secret-coin CRHFs would make it easier
to precisely state the assumptions needed in such protocols.

Example 2. The result of Simon [Sim98] seems to claim less than the proof
implies. Namely, the [Sim98] theorem that one-way permutations are unlikely
to imply CRHFs is stated only for public-coin CRHFs, because that is the

1 It is possible to define a single hash function (with variable output-length; cf. previous
paragraph) instead of a collection of them. In this case, it can be collision-resistant
only against a uniform adversary.
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definition [Sim98] uses. It appears to hold also for secret-coin CRHFs, but
this requires re-examining the proof. Such re-examination could be avoided
had the definitional confusion been resolved.
Example 3. The original result of Goldwasser and Kalai [GK03] on the
security of the Fiat-Shamir transform without random oracles has a gap
due to the different notions of CRHF (the gap was subsequently closed,
see below). Essentially, the work first shows that if no secret-coin CRHFs
exist, then the Fiat-Shamir transform can never work. It then proceeds to
show, in a sophisticated argument, that if public-coin CRHFs exist, then it
is possible to construct a secure identification scheme for which the Fiat-
Shamir transform always results in an insecure signature scheme. This gap
in the result would be more apparent with proper definitions.

Let us elaborate on the third example, as it was the motivating example for our
work. It is not obvious how to modify the [GK03] proof to cover the case when
secret-coin CRHFs exist, but public-coin ones do not. Very recently, Goldwasser
and Kalai [GK] closed this gap by modifying the identification scheme of the
second case to show that the Fiat-Shamir transform is insecure if secret-coin
(rather than public-coin) CRHFs exist. Briefly, the modification is to let the
honest prover choose the hash function during key generation (instead of the
public-coin Fiat-Shamir verifier choosing it during the interaction, as in the
earlier version).

Despite the quick resolution of this particular gap, it and other examples
above demonstrate the importance of distinguishing between the two types of
collision-resistant hashing. Of course, it is conceivable that the two types are
equivalent, and the distinction between them is without a difference. We there-
fore set out to discover whether the distinction between public-coin and secret-
coin hashing is real, i.e., whether it is possible that public-coin CRHFs do not
exist, but secret-coin CRHFs do.

1.3 Our Results

Recall that public-coin hashing trivially implies secret-coin hashing. We prove
the following results:

1.
2.

Dense2 secret-coin CRHFs imply public-coin CRHFs; but
There is no black-box reduction from secret-coin CRHFs to public-coin
CRHFs.

The first result is quite simple. The second, which is more involved, is obtained by
constructing oracles that separate secret-coin CRHFs from public-coin CRHFs.
Our technique for this oracle separation is different from previous separations
(such as as explained below. We note
that our second result, as most oracle separations, applies only to uniform ad-
versaries (a notable exception to this is [GT00]).
2 A CRHF is dense if a noticeable subset of all keys of a particular length is secure;

see Section 3.
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Our results suggest that a gap between secret-coin and public-coin CRHFs
exists, but only if no dense secret-coin CRHFs exist. They highlight the impor-
tance of distinguishing between the two definitions of CRHFs.

In addition to these main results, Section 5 addresses secret vs. public coins
in other cryptographic primitives.

1.4 On Oracle Separations

Usually when one constructs a cryptographic primitive P (e.g., a pseudorandom
generator [BM84]) out of another cryptographic primitive Q (e.g., a one-way
permutation), P uses Q as a subroutine, oblivious to how Q implemented. The
security proof for P usually constructs an adversary for Q using any adversary
for P as a subroutine. This is known as a “black-box reduction from P to Q.”

Note that to show that no general reduction from P to Q exists requires
proving that Q does not exist, which is impossible given the current state of
knowledge. However, it is often possible to show that no black-box reduction
from P to Q exists; this is important because most cryptographic reductions are
black-box.

The first such statement in cryptography is due to Impagliazzo and
Rudich [IR89]. Specifically, they constructed an oracle relative to which key
agreement does not exist, but one-way permutations do. This means that any
construction of key agreement from one-way permutations does not relativize
(i.e., does not hold relative to an oracle). Hence no black-box reduction from key
agreement to one-way permutations is possible, because black-box reductions
relativize.

The result of [IR89] was followed by other results about “no black-box
reduction from P to Q exists,” for a variety of primitives P and Q (e.g.,

Most of them, except [GMR01], actually
proved the slightly stronger statement that no relativizing reduction from P
to Q exists, by using the technique of constructing an oracle.

Our proof differs from most others in that it directly proves that no black-box
reduction exists, without proving that no relativizing reduction exists. We do so
by constructing different oracles for the construction of P from Q and for the
security reduction from adversary for P to adversary for Q. This proof technique
seems more powerful than the one restricted to a single oracle, although it proves
a slightly weaker result. The weaker result is still interesting, however, because it
still rules out the most common method of cryptographic reduction. Moreover,
the stronger proof technique may yield separations that have not been achievable
before.

We note that [GMR01] also directly prove that no black-box reduction exists,
without proving that no relativizing reduction exists. Our approach is different
from [GMR01], whose approach is to show that for every reduction, there is an
oracle relative to which this reduction fails.

For a detailed discussion on black-box reductions, see [RTV04]. All reductions
in this paper are what they refer to as fully black-box reductions.
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2 Definitions of Public-Coin and Secret-Coin CRHFs
Examples. Before we define public-coin and secret-coin hashing formally, con-
sider the following two example hash function families. The first one, keyed by
a prime with a large prime and two elements of order
computes where and are two halves of (here we
think of as an element of 3. The second one, keyed by a product of
two primes  and  and a value computes

4.
The first hash function family is secure as long as discrete logarithm is hard.

Thus, if one publishes the random coins used to generate and the hash
function remain secure (as long as the generation algorithm doesn’t do anything
esoteric, such as computing as a random power of On the other hand, the
second hash function family is secure based on factoring, and is entirely insecure
if the factors of are known. Thus, publishing the random coins used to generate

and renders the hash function insecure, and the coins must be kept secret5.

Definitions. We say that a function is negligible if it vanishes faster than any
inverse polynomial. We let PPTM stand for a probabilistic polynomial-time Tur-
ing machine. We use to denote an oracle Turing machine, and to denote
M instantiated with oracle A.

Let be the security parameter, and let be a (length) function that does
not expand or shrink its input more than a polynomial amount. Below we de-
fine two kinds of CRHFs: namely, secret-coin and public-coin. The secret-coin
CRHFs definition is originally due to Damgård [Dam87], and the definition here
is adapted from [Rus95].

Definition 1. A Secret-Coin Collision Resistant Hash Family is a collection
of functions for some index set where

and

1.

2.

3.

There exists a PPTM GEN, called the generating algorithm, so that

There exists a PPTM EVA, called the function evaluation algorithm, so that
and

For all PPTM ADV, the probability that outputs a pair such
that is negligible in where the probability is taken over the
random choices of GEN in generating and the random choices of ADV.

3 This family is derived from Pedersen commitments [Ped91].
4 This is essentially the construction of [Dam87] based on the claw-free permutations

of [GMR88].
5 It should be noted, of course, whether it is secure to publish the coins depends not

only on the family, but also on the key generating algorithm itself: indeed, the first
family can be made insecure if the coins are used to generate as a power of
rather than pick directly. Likewise, the second family could be made secure if it
were possible to generate “directly,” without revealing and (we are not aware
of an algorithm to do so, however).
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Definition 2. A Public-Coin Collision Resistant Hash Family is a collection of
functions where and

1.

2.

3.

A PPTM GEN on input outputs a uniformly distributed string of length

There exists a PPTM EVA, called the function evaluation algorithm, so that
and

For all PPTM ADV, the probability that outputs a pair such
that is negligible in where the probability is taken over the
random choices of GEN in generating and the random choices of ADV.

A pair such that is called a collision for

Remarks. The generating algorithm in the public-coin case is trivially satisfied.
We keep it here for comparison with the secret-coin case. Note that in both
cases, on security parameter GEN outputs a function that maps
to This may seem restrictive as the hash functions only compress one
bit. However, it is easy to see that can be extended to for any and
remain collision-resistant with outputs, by the following construction:

where
denotes the bit of the input string

3 Dense Secret-Coin CRHFs Imply Public-Coin CRHFs

The notion of dense public-key cryptosystems was introduced by De Santis and
Persiano in [DP92]. By “dense” they mean that a uniformly distributed string,
with some noticeable probability, is a secure public key. We adapt the notion of
denseness in public-key cryptosystems from [DP92] to the context of CRHFs.
Informally, a secret-coin CRHF is a secret-coin CRHF with the following
additional property: if we pick a string at random, then we have probability
at least of picking an index for a collision-resistant function6.

Note that, for example, the factoring-based secret-coin CRHF from Section 2
is dense, because the proportion of integers that are products of two equal-
length primes is In fact, we are not aware of any natural examples of
secret-coin CRHFs that are not dense (artificial examples, however, are easy to
construct).

Given a secret-coin CRHF, if we pick strings of length at
random, then with high probability, at least one of them defines a collision-
resistant hash function.

Hence, we can build a public-coin CRHF from such dense secret-coin CRHF
as follows.

6 Confusingly, sometimes the term dense is used to denote a function family where
each function has a dense domain, e.g., [Hai04]. This is unrelated to our use of the
term.
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1.

2.

3.

Generate random strings, independently. These strings specify
hash functions in the secret-coin CRHF (strictly speak-

ing, some strings may not define functions at all, because they are not pro-
duced by GEN ; however, simply define if does not
produce an output of length in the requisite number of steps).
Through the construction described in Section 2, extend the domain of each
of these function to binary strings of length Let the resulting
functions be
On an input of length output concatenation of

The resulting hash maps binary strings of length to binary
strings of length and is collision-resistant because at least one of

is. (If an adversary could find a collision in the resulting hash
function, then the same collision would work for collision-resistant hash function
among immediately leading to a contradiction.)

The above discussion yields the following theorem.

Theorem 1. The existence of dense secret-coin CRHF implies the existence of
public-coin CRHF.

4 Separating Public-Coin CRHFs
from Secret-Coin CRHFs

4.1 Black-Box Reductions

Impagliazzo and Rudich [IR89] provided an informal definition of black-box re-
ductions, and Gertner et al. formalized it. We recall their formaliza-
tion.

Definition 3. A black-box reduction from primitive P to primitive Q consists
of two oracle PPTMs M and satisfying the following two conditions:

If Q can be implemented, so can P: (not necessarily PPTM) imple-
menting Q, implements P; and

If P is broken, so is Q: (not necessarily PPTM) breaking (as an
implementation of P), breaks N (as an implementation of Q).

The first condition is only a functional requirement; i.e., the term “implement”
says nothing about security, but merely says an algorithm satisfies the syntax of
the primitive.

4.2 The Main Result

Theorem 2. There is no black-box reduction from public-coin CRHF to secret-
coin CRHF.
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Proof. The following proposition is at the heart of our approach: it shows that
it is sufficient to construct different oracles F and G, such that G is used in the
implementations, while F and G are used for the adversaries. This is in contrast
to the single-oracle approach usually taken to prove black-box separations.

Proposition 1. To show that there is no black-box reduction from public-coin
collision resistant hashing (P) to secret-coin collision resistant hashing (Q), it
suffices to construct two oracles F and G such that,

1.

2.

3.

there is an oracle PPTM L such that implements secret-coin hash-
ing;
for all oracle PPTM M, if  implements public-coin hashing, then there
exists a probabilistic polynomial time adversary A such that finds
a collision for
there is no oracle PPTM B such that finds a collision for N.

Proof. To show that there is no black-box reduction from public-coin collision
resistant hashing (P) to secret-coin collision resistant hashing (Q), we need to
negate the definition of black-box reduction from Section 2; i.e., we need to show
that for every oracle PPTMs M and

Q can be implemented: that implements Q, and if implements P,
then

P can be broken, without breaking Q: that breaks (as an imple-
mentation of P), while does not break N (as an implementation of
Q).

Recall that “implement” here has only functional meaning.
The first condition clearly implies that Q can be implemented. The second

condition also clearly implies that P can be broken: one simply observes that
and L is a PPTM; hence, writing is equivalent to writing

The third condition implies that P can be broken without breaking Q,
essentially because Q can never be broken. More precisely, the third condition
is actually stronger than what we need: all we need is that for each there is

that breaks while does not break N. Instead, we will show that
a single essentially works for all namely, for a fixed oracle
F and a polynomial-time A. Such breaks however, as condition 3 in
the proposition statement implies, will be unable to break N, because

for some oracle PPTM B.

Remarks. Note that if the implementation has access to not only G but also
F, it becomes the usual single-oracle separation. The reason why we do not give
the implementation access to F is to avoid “self-referencing” when defining F.
To see this, note that F is the “collision finder” and is defined according to the
oracles that the implementation has access to7.
7 Similar concern occurs in [Sim98], where constructing the collision-finder requires

more careful design.

TEAM LinG



100 Chun-Yuan Hsiao and Leonid Reyzin

The rest of this section is devoted to constructing such F and G and proving
that they work.

4.3 The Oracles F and G

In constructing F and G, we will use the Borel-Cantelli Lemma (see, e.g., [AG96]),
which states that if the sum of the probabilities of a sequence of events converges,
then the probability that infinitely many of these events happen is zero. Formally,

Lemma 1 (Borel-Cantelli Lemma). Let be a sequence of
events on the same probability space. Then implies

G consists of two collections of functions and where
each is a random function from to We will call a binary
string valid if it is in the range of and invalid if not. Each is a random
function from to if is valid, and is a constant function

if is invalid. We will call queries to valid (resp. invalid) if is valid
(resp. invalid).
F takes a deterministic oracle machine and as input, and outputs a
collision of length for if satisfies the following conditions.
1. maps to
2. never queries for some not obtained by previously querying

I.e., whenever queries this is the answer to some that
has previously asked.

When both conditions hold, F picks a random from that has a
collision, then a random that collides to (i.e.,
and outputs Otherwise F outputs
Observe that when F outputs not only but also is uniformly
distributed over all points that have a collision. Indeed, let C be the to-
tal number of points that have a collision, and suppose has colli-
sions then

Remarks. The reason for being length-doubling is to have a “sparse” function
family. More specifically, it should be hard to get a value in the range of without
applying it.

As in [Sim98], there are various ways of constructing F (the collision-finding
oracle): one can choose a random pair that collides, or a random then a ran-
dom (possibly equal to that collides to The second construction has the
advantage, in analysis, that both and are uniformly distributed but does
not always give a “correct” collision, like the first one does. Our F has both
properties.

We first construct “random” F (collision-finder) and G (secret-coin hash),
and then use the above lemma to show that at least one pair of F and G works.

Intuitively, we want F to break any public-coin hashing but not break some
secret-coin hashing. More precisely, F will find a collision if it is supplied with
the coins of the generating algorithm and will refuse to do so without the coins.
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4.4 Secret-Coin Collision-Resistant Hash Family Based on G

In this section we construct a secret-coin CRHF. The construction is straight-
forward given the oracle G: the generating algorithm uses and the hashing
uses More precisely, on input the generating algorithm picks a random
seed and outputs The hash function is Note that the
adversary A (who is trying to find a collision) is given only but not We will
show that for measure one of oracles F and G, the probability over and A’s
coin tosses that A finds a collision for is negligible. Recall that A has access
to both F and G.

Define D as the event that A outputs a collision for in the following
experiment:

And in the same experiment, define B as the event that during its computation,
A queries F on where is some deterministic oracle machine that queries
its oracle on a preimage of under (i.e., intuitively, has hardwired in it).
Suppose A’s running time is bounded by for some constant The probability
that B happens is at most the probability of inverting the random function
If has a unique preimage, this is at most the probability that has two
or more preimages is at most (because it’s the probability that collides
with another value under hence The probability that
D happens conditioned on is at most the probability of finding a collision
for random function which is bounded by Recall that A can be
randomized. We thus have

By the Markov inequality, Since
converges, the Borel-Cantelli lemma implies that for only measure zero

of F and G, can there be infinitely many for which event D happens with prob-
ability (over and A’s coins) greater than or equal to This implies
that for measure one of F and G, event D happens with probability (over and
A ’s coins) smaller than (a negligible function) for all large enough
There are only countably many adversaries A, so we have the following lemma.

Lemma 2. For measure one of F and G, there is a CRHF using G, which is
secure against adversaries using G and F.

4.5 No Public-Coin Collision-Resistant Hash Family Based on G

In this section we show that any implementation of public-coin hashing using
oracle G cannot be collision-resistant against adversaries with oracle access to
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both F and G 8. More precisely, let be the public randomness used
by the generating algorithm for a family of hash functions, and let be the
evaluation algorithm. I.e., is the hash function specified by Assume
that maps to where is a function that
does not expand or shrink the input by more than a polynomial amount. We
will show how to find   and of length such that

An immediate attempt is to query but notice that may
query for arbitrary 9, which prevents F from finding a collision for us.
However, these are likely to be invalid, and hence oracle answers to these
queries are likely to be So we can construct a machine that behaves
“similar” to but only after getting from does it query And instead of
finding collision for we find collision for which can be done by simply
querying

Suppose the running time of is bounded by for some constant
Before simulating queries on all inputs of length smaller than or equal
to This takes steps. Now simulates step by step, except
for queries to If is the answer to one of the queries already asked of G
(either before the beginning of the simulation or when simulating then
actually queries Else it returns as the answer to without querying

Now fix  and For every the probability, over random G, that
is at most the probability, over G, that queries for some valid of

length greater than without receiving it from 10. Consider the very first
time that makes such a “long” valid query. Let be the number of queries
to on inputs longer than and be the number of invalid queries
to prior to this point. Then the probability in question is upper bounded by

which is at most For every fixed G and call an “bad”

if We have

Next, notice that there are at most half of that have no collisions, and F
would pick its answer uniformly, from those points that have a collision.
So for a fixed G, the probability over F that is bad is at most twice the
probability over random that is bad. Also recall that the
distribution of is the same as So for every

If none of is bad, this pair would be a collision not only for but also
for We have

8 In fact, only F is needed to find a collision.
9 In particular, those not obtained by previously querying

10 Recall that is length-doubling.

TEAM LinG



Finding Collisions on a Public Road 103

then

Since converges, the Borel-Cantelli lemma implies that for only
measure zero of F and G, can we have is not a collision of

for infinitely many In other words, for measure one of F and G,
is a collision of for all large enough There are only

countably many oracle machines each of which can be collision resistant for
only measure zero of F and G. We conclude the following.

Lemma 3. For measure one of F and G, any implementation of public-coin
hash function families using G cannot be collision-resistant against adversaries
using F.

This concludes the proof of Theorem 2.

5 Public Coins vs. Secret Coins for Other Primitives

Perhaps the lack of attention in the literature to the distinction between secret-
and public-coin primitives is due, in part, to the fact that this distinction is often
not meaningful.

For example, for one-way function families, these two notions are equivalent,
because a secret-coin one-way function family implies a single one-way function
(which trivially implies a public-coin one-way function family). Indeed, take
the generating algorithm and evaluation algorithm and define

this is one-way because an adversary who can come up with
such that and can be directly used to

invert since
On the other hand, for trapdoor permutations (and public-key schemes),

the notion of public-coin generation is meaningless: indeed the trapdoor (or the
secret key) must be kept secret.

However, it seems that this distinction is interesting for some primitives in ad-
dition to collision-resistant hash functions. The relationships between public-coin
and secret-coin versions of one-way permutation families and claw-free permuta-
tion families are unknown11. In particular, claw-free permutations are related to
collision-resistant hashing [Dam87,Rus95], which suggests that the distinction
for claw-free permutations is related to the distinction for CRHFs.

Acknowledgments.  We thank Yael Tauman Kalai for many helpful discus-
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11 We believe that the same construction of F and G (up to slight modifications) sepa-
rates public-coin and secret-coin one-way permutation families.
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Security of Random Feistel Schemes
with 5 or More Rounds
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Abstract. We study cryptographic attacks on random Feistel schemes.
We denote by the number of plaintext/ciphertext pairs, and by the
number of rounds. In their famous paper [3], M. Luby and C. Rackoff have
completely solved the cases m the schemes are secure against
all adaptive chosen plaintext attacks (CPA-2) when and against
all adaptive chosen plaintext and chosen ciphertext attacks (CPCA-2)
when (for this second result a proof is given in [9]).
In this paper we study the cases We will use the “coefficients
H technique” of proof to analyze known plaintext attacks (KPA), adap-
tive or non-adaptive chosen plaitext attacks (CPA-1 and CPA-2) and
adaptive or non-adaptive chosen plaitext and chosen ciphertext attacks
(CPCA-1 and CPCA-2). In the first part of this paper, we will show
that when the schemes are secure against all KPA when
against all CPA-2 when and against all CPCA-2 attacks when

This solves an open problem of [1], [14], and it improves the result
of [14] (where more rounds were needed and was obtained
instead of The number 5 of rounds is minimal since CPA-2
attacks on 4 rounds are known when (see [1], [10]). Further-
more, in all these cases we have always obtained an explicit majoration
for the distinguishing probability. In the second part of this paper, we
present some improved generic attacks. For rounds, we present a
KPA with and a non-adaptive chosen plaintext attack (CPA-
1) with For rounds we also show some improved attacks
against random Feistel generators (with more than one permutation to
analyze and computations).

Introduction1
A “Luby - Rackoff construction with rounds”, which is also known as a “ran-
dom Feistel cipher” is a Feistel cipher in which the round functions
are independently chosen as truly random functions (see section 2 for precise
definitions).

Since the famous original paper [3] of M. Luby and C. Rackoff, these con-
structions have inspired a considerable amount of research. In [8] and [14] a
summary of existing works on this topic is given.

We will denote by the number of rounds and by the integer such that
the Feistel cipher is a permutation of                    In [3] it was proved

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 106–122, 2004.
© International Association for Cryptologic Research 2004
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that when these Feistel ciphers are secure against all adaptative chosen
plaintext attacks (CPA-2) when the number of queries (i.e. plaintext/ciphertext
pairs obtained) is Moreover when they are secure against all
adaptative chosen plaintext and chosen ciphertext attacks (CPCA-2) when the
number of queries is (a proof of this second result is given in [9]).

These results are valid if the adversary has unbounded computing power as
long as he does only queries.

These results can be applied in two different ways: directly using truly
random functions (that requires significant storage), or in a hybrid
setting, in which instead of using truly random functions we use
pseudo-random functions. These two ways are both interesting for cryptography.
The first way gives “locally random permutations” where we have proofs of
security without any unproven hypothesis (but we need a lot of storage), and the
second way gives constructions for block encryption schemes where the security
can be relied on a pseudo-random number generator, or on any one-way function.

In this paper, we will study security when instead of
for the original paper of M. Luby and C. Rackoff. For this we must have
since for some CPA-2 attacks when exist (see [1], [10]).
Moreover the bound is the larger bound that we can get, since an
adversary with unlimited computing power can always distinguish a
random Feistel scheme from a random permutation with queries and

computations by simply guessing all the round functions (it is also
possible to do less computing with the same number of queries by using collisions,
see [13]).

The bound is called the ‘birthday bound’, i.e. it is about the square
root of the optimal bound against an adversary with unbounded computing
power. In [1] W. Aiello and R. Venkatesan have found a construction of locally
random functions (‘Benes’) where the optimal bound is obtained
instead of the birthday bound. However here the functions are not permutations.
Similarly, in [4], U. Maurer has found some other construction of locally random
functions (not permutations) where he can get as close as wanted to the optimal
bound (i.e. and for all he has a construction). In [8] the
security of unbalanced Feistel schemes is studied and a security proof in
is obtained, instead of but for much larger round functions (from bits
to bits, instead of bits to bits). This bound is basically again the birthday
bound for these functions.

In this paper we will show that 5-round random Feistel schemes resist all
CPA-2 attacks when and that 6-round random Feistel schemes resist all
CPCA-2 attacks when Here we are very near the optimal bound, and we
have permutations. This solves an open problem of [1], [10]. It also significantly
improves the results of [6] in which the security is only obtained when the
number of rounds tends to infinity, and the result of [14] where security
was proved for CPA-2 after 7 rounds (instead of 5 here) and for CPCA-2 after 10
rounds (instead of 6 here). Moreover we will obtain in this paper some explicit
and simple majorations for the distinguishing probabilities. We will also present
some improved generic attacks. All these results are summarized in appendix A.
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2 Notations
General notations

denotes the set of the binary strings of length
The set of all functions from to is Thus
For any denotes the usual composition of functions.
For any will be the string of length of which is the
concatenation of and
For stands for bit by bit exclusive or of and
Let be a function of Let L, R, S and T be four n-bit strings in
Then by definition

Let be functions of Then by definition:

The permutation is called a ‘Feistel scheme with rounds’
or shortly When are randomly and independently chosen in
then is called a ‘random Feistel scheme with rounds’ or a ‘Luby-
Rackoff construction with rounds’.

We will first study 4 rounds (with some limitations on the inputs/outputs),
then prove our cryptographic results by adding one or two rounds.

Notations for 4 rounds

We will denote by the  cleartexts. These cleartexts
can be assumed to be pairwise distinct, i.e. or
We call “index” any integer between 1 and

is the output after one round, i.e.

is the output after two rounds, i.e.

is the output after three rounds, i.e.

is the output after 4 rounds, i.e.

Notations for 5 rounds. We keep the same notations for Now
and is still the output: and

TEAM LinG



Security of Random Feistel Schemes with 5 or More Rounds 109

Part I: Security Results

3 The General Proof Strategy

We will first study the properties of 4-round schemes. Our result on 4-round
schemes for proving KPA security will be:

Theorem 3.1 (4 rounds) For random values
such that the are pairwise distinct, with probability
we  have:

the number H of such that1.

satisfies:

2. and can be chosen when

For 5 rounds, we will have:

Theorem 3.2 (5 rounds) There are some values and and there
is a subset such that:

for all pairwise distinct and for all sequences
of E the number H of such that

1.

satisfies:

and and can be chosen when2.

Remark

Here the set E does not depend on the and it will give security
against CPA-2. If E depends on the we will obtain security against
CPA-1 only.
Instead of fixing a set E, as in theorem 3.2, we can formulate a similar
theorem in term of expectancy of the deviation of H from the average value
(see[15]: there is a formulation for CPA-1 and another for CPA-2). From
these formulas we will get security when

1.

2.

For 6 rounds, we will have:
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Theorem 3.3 (6 rounds) There are some values and and there
is a subset such that:

for all of E, the number H of
such that

1.

satisfies:

For all super distinguishing circuit with oracle gates, the probability that
be in E is when acts on a random

permutation of (here denotes the
successive or that will
appear).

and can be chosen when

2.

3.

Now from these theorems and from the general “coefficients H technique”
theorems given in [11], [12], we will get immediately that when is
secure against all KPA, against all CPA-2 and against all CPCA-2.

4 Circles

One of the terms of the the deviation of   from random permutations will be
the probability to get “circles” in the variables, as we will explain below.

Definition. We will say that we have ‘a circle in R, X, Y’ if there are  indices
with and such that:

are pairwise distinct and
we have at least one of the three following conditions:

1.
2.

Example. If and then we have a circle in R, X, Y. If
then we have a circle in R, X, Y.

or
or

We will prove the following theorems.

Theorem 4.1 (For 4 rounds) When are pairwise distinct
and randomly chosen, the probability  to obtain a circle in R, X ,Y with at least
one equation in Y when are randomly chosen in satisfies:
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Theorem 4.2 (For 5 rounds) For all pairwise distinct
and for all value such that and we have: the probability
to obtain a circle in X, Y, Z with at least one equation when
are randomly chosen in satisfies:

Corollary 4.1 From this theorem 4.2 we get immediately that if then
can be chosen such that), is very small. So when the probability

to have a circle in X, Y, Z with at least one equation is negligible.

Remark. In [15] we show that the condition ‘with at least one equation
is important: sometime we cannot avoid some circles in X, Y.

With 6 rounds, we can get a simpler formula:

Theorem 4.3 (For 6 rounds) For all (such that
the probability to obtain a circle in X, Y, Z with at

least one equation in Z when are randomly chosen in satisfies:

Proof of theorem 4.1, 4.2, 4.3 are given in the extended version of this paper
([15]). A basic tool for these proofs is:

Theorem 4.4  for all pairwise distinct when
is randomly chosen in we have a probability that the number N of

satisfies:

Proof. This result comes immediately from this lemma:

Lemma 4.1 For all (such that
the number of such that is

Proof of lemma 4.1. means This implies
(because and Thus, when is fixed,

the number of such that is exactly if and exactly 0 if
Therefore, since we have at most values

the total number of such that is as claimed.

or
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5 Properties of H with 4 Rounds

We give here the main ideas. See the extended version of this paper for more
details ([15]). We will first prove that if the are given, (i.e. the
output after 3 rounds), then the variables will look random as long as
(but the variables will not look random in general). Then, with one more
round and the same argument, we will obtain that the variables will look
random as long as We want to evaluate the number H of such
that: with (1).

Remarks

If with then So the variables are not perfectly
random in when the are given. However, here we just say that the

must be pairwise distinct, since is a permutation.
If is a constant for example), then all the
variables must be pairwise distinct, and in (1) is then fixed on exactly

points. However the probability for to be such that all the are
pairwise distinct is very small. So in this case
Let us consider that instead of (1) we had to evaluate the number J of

such that with
(i.e. here we do not have the term Then, for random
and for random we will have about 2 times more collisions

compared with a random variable So if is random, in this
case. For (1) we will prove (among other results) that, unlike here for J,
when the are random, we always have

1.

2.

3.

Analysis of (1). (In appendix B an example is given on what we do here) We
will consider that all the are given (as well as the and we want
to study how H can depend on the values If H has almost always the same
value for all the then (by summation on all the we will get and
for all the will look random, as wanted, when are randomly
chosen in (this is an indirect way to evaluate H).

In (1), when we have a new value whatever is, is exactly fixed
on this point by (1). However if is not a new value, we have

For each equation we will introduce
a value We want to evaluate the number of such
that:

We will fix the points where i.e. we look for solutions
such that exactly on these and, again, we want to evaluate how
the number of can depend on the values (i.e. on the values

We will group the equations (2) by the same i.e. by “blocks in
R, X, Y”: two indices and are in the same block if we can go from to
by equations or or (Since

and from these
relations, we can replace the variable by the variable instead).
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Finally, the only dependencies on the come when we want to evaluate the
number of such that: are pairwise distinct, where
is the number of that we want pairwise distinct (if wanted we can assume

since variables with no equation in R, X or Y create no problem).
Each has an expression like this: (where is an
expression in of some values), or like this: This gives a
number of solutions for that depends only of the fact that some equations of
degree one in the variables are satisfied or not.

(These equations are where are in the same block
in R, X, Y and are in the same block in R, X, Y, so these equations can be
written only the and variables).

Example. In the example given in appendix B, is one
of these equations, that can be true or not when the values are fixed (here it
comes from

Analysis of the dependencies in the First, we can notice that if the system has
no solution due to an incompatibility (for example if we want
and to be distinct) then we have a circle in R, X, Y with at
least one equation in Y. The probability to get such circles has been evaluated
in section 4 and is negligible if . So we will assume that we have no
incompatibility in the system that says that the variables considered are
pairwise distinct. Let be the number of variables that satisfied at least one
of these equations among the equations considered for the evaluation of

Each of the special values can have at most exceptional relations.
So for a like this, we have: The value can
be but since we have exceptional relations of degree one on variables

the weight of these values (i.e. the number of that give these
values multiplied by the number of these values) satisfies:

(since we have possible equations). We have:

So the weight becomes negligible as soon as

Remark. If these variables generate almost all the possible relations with
these variables, then the weight of these variables is even smaller since we just
have to choose these variables among the variables and then they are fixed
(since almost all the equations are satisfied, many of these equations give equiv-
alent values for the special So we will have a instead of
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Finally we have obtain:

Theorem 5.1 Let be the set of values that we fix: i.e. in we have the values
of the and all the indices where we have all the equations Then
if S and are two sequences of values of such that:

(and
No circle in R, X, Y can be created from the equalities

and

1.
2.

Then the number of solutions satisfies:

where comes from the with very few special equalities, and is a
very small term related to the weight of the with a lot of special equalities (as
we have seen is negligible when

We can do the same for as we did for So, since by summation,
we must obtain all the with no circles, from theorem 5.1 we will
get our results. Here the set depends on E, so this works for non-adaptive
attacks. For adaptive attacks see [15] (then we have to eliminate some equations
by conditions in independently of or to study the expectancy of
the deviation of H).

Remark. Another possibility is to use the result of [5]: with 2 times more rounds,
security in CPA-1 can be changed in security in CPCA-2. However we would get
like this CPCA-2 for 10 rounds (exactly as in [14]) instead of 6 rounds.

6 Comparing [14] and This Paper

Technically the main differences between [14] and this paper are:

Here we introduce a condition: no more than indices
such that (instead of no more than pairwise distinct indices such
that of [14]). this gives us security when
(instead of or of [14]).
In [14], 3 rounds are needed for half the variables to look random, and then 4
more rounds for the Here we show that the will look random after
4 rounds even if the are public (with a probability near 1 when
So for the we can use the same result with only one more round. Like
this, we need less rounds in this paper compared with [14].
In this paper we study that come for from (or similarly

while in [14] all possible can be fixed.

1.

2.

3.

TEAM LinG



Security of Random Feistel Schemes with 5 or More Rounds 115

Part II: Best Found Attacks

7 Generic Attacks on

We will present here the two best generic attacks that we have found on

A CPA-1 attack on with and computations (This is
an improvement compared with and of [13]).
A KPA on with and (This is an
improvement compared with and of [13]).

Remarks
(a) By storing the values and looking for collisions, the complexity

is in
With a single value for we will get very few collisions. However this
attack becomes significant if we have a few values and for all these
values about values

(b)

2. KPA on
The CPA attack can immediately be transformed in a KPA: for random

we will simply count the number N of such that
and We will get about such collisions

for and about for a random permutation. This KPA is efficient
when becomes not negligible compared with i.e. when about

Remark. These attacks are very similar with the attacks on 5-round Feistel
schemes described by Knudsen (cf [2]) in the case where (unlike us) and
are permutations (therefore, not random functions). Knudsen attacks are based
on this theorem:

Theorem 7.1 (Knudsen, see [2])  Let and be two inputs of
a 5-round Feistel scheme, and let and be the outputs. Let us
assume that the round functions and are permutations (therefore they are
not random functions of Then, if and it is impossible to
have simultaneously and

1.

2.

1. CPA-1 attack on
Let us assume that We will simply
count the number N of such that and
This number N will be about double for compared with a truly random
permutation.
Proof:
If

This will occur if or if these values are
distinct but have the same images by so the probability is about two
times larger.
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Proof. This comes immediately from (#) above.

8 Generic Attacks on Generators,

has always an even signature. This gives an attack in if we want to dis-
tinguish     from random permutations (see [13]) and if we have all the possible
cleartext/ciphertext. In this appendix, we will present the best attacks that we
know when we want to distinguish    from random permutations with an even
signature, or when we do not have exactly all the possible cleartext/ciphertext.

KPA with  even.
Let be two indices, such that and
From [10] or [11] p.146, we know the exact value of H in this case, when
is even. We have:

1.

where

i.e.  is the average value of H on two cleartext/ciphertext. So there is a
small deviation, of about from the average value.
So in a KPA, when the are chosen at random, and if the
are chosen at random, we will get slightly more with
and
permutation. This can be detected if we have enough cleartext/ciphertext
pairs from many permutations. In first approximation, these relations
will act like independent Bernoulli variables (in reality the equations are
not truly independent, but this is expected to create only a modification of
second order).

However, if we have available permutations, with about cleartext/ci-
phertext for each of these permutations, then (here we know these

permutations almost on every possible cleartext. If not, will be larger
and we will do more computations). gives This is
an attack with permutations and computations.
KPA with   odd .
In [15], a KPA with odd is given (it has the same properties as the attack
above for even).

2.

If we have N possibilities for and if X is the number of
and we expect to have:

permutation. So we want

functions

from a (with even) than from a truly random

We want in order to distinguish from a random
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9 Conclusion

For a block cipher from  we generally want to have no better
attack than attacks with computations. If this block cipher is a Feistel
scheme we then need to have rounds since (as shown in this paper) there is
a generic attack on 5 rounds with computations in CPA-1 and compu-
tations in KPA.

In this paper we have also shown that however, in the model where the
adversaries have unlimited computing power but have access to only cleart-
ext/ciphertext pairs, the maximum possible security (i.e. is obtained
already for 5 rounds for CPA-1 and CPA-2 attacks. This solves an open prob-
lem of [1] and [14]. Moreover 6-round Feistel schemes can resist all CPCA-1
and CPCA-2 attacks when (For CPCA-1 or CPCA-2 the case
rounds is still unclear: we only know that the security is between and

When is small (for example to generate 1000 pseudorandom per-
mutations with an even signature of then more than 6 rounds
are needed. In this paper we have studied such attacks, and we have extended
the “coefficients H technique” to various cryptographic attacks.

We think that our proof strategy is very general and should be also efficient in
the future to study different kinds of functions or permutation generators, such
as, for example, Feistel schemes with a different group law than or unbalanced
Feistel schemes.
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Appendices

A Summary of the Known Results
on Random Feistel Schemes

KPA denotes known plaintext attacks. CPA-1 denotes non-adaptive chosen plain-
text attacks. CPA-2 denotes adaptive chosen plaintext attacks. CPCA-1 denotes
non-adaptive chosen plaintext and ciphertext attacks. CPCA-2 denotes adaptive
chosen plaintext and chosen ciphertext attacks. Non-Homogeneous properties are
defined in [12].

This figure 1 present the best known results against unbounded adversaries
limited by oracle queries.

Fig. 1. Minimum number of queries to distinguish   from  a random permutation
of For simplicity we denote for i.e. when we have security as long
as means best security proved.
* comes from [13] and comes from [7].
** with even and with exceptional equations, so if we need more than
one permutation for this property.
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Fig. 2. Minimum number of computations needed to distinguish a generator
(with one or many such permutations available) from random permutations with an
even signature of For simplicity we denote for means best known
attack.

* If these attacks analyze about permutations of the generator and if
only one permutation is needed.

History for For the best results of security against CPA-2 was:

In 1988: (cf [3]).
In 1998: (cf [12]).
In 2003: (cf [13]).
In 2004: (cf this paper).

However CPCA-2 for is still unclear: so far we only have the original result
of Luby and Rackoff

B Example for Theorem 3.1

We will illustrate here theorem 3.1 on a small toy example. Let 1,2,3,4,5,6,7
be our indices Let us assume that is fixed such that
and are our only equations Let us assume that the

are given, and that and are the only equations
Then we want to show that and look random, where

and when are randomly chosen. For this, we fix   and
and we look for the number H of that give these values.

We want to prove that this number H does not depend significantly on and
(except for well detected values of small weight). H is the number of

such that (here we put only pairwise distinct variables):

and (these
two equations do not create any problem: they just fix    on two points).
Block

1.

2.
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Block

Block

Let us assume that, for example, all the are pairwise distinct. Then
we want to evaluate the number of functions such that all the are pairwise
distinct. These conditions are more difficult to analyze since here we do not want
equalities, but non equalities.

If or we have no solution (these values
give a circle in R, X, Y).
For the to be pairwise distinct, we must choose such that:

is not in A, where A is a set of 9 values (or less if we have collisions):

C Examples of Unusual Values of H for

Example 1: Large value for H
With when and then

So here the value of H is about double than average with only

Remark: has always such large H with small if
is even), we say that is not homogeneous”: see [12]. However, when

the probability that such inputs/outputs exist is generally negligible if we study
only one single specific permutation.

Example 2: Small value for H
Here our example cannot be with since we know that we always

have

(the proof is the same for and
However, we will show that when H can be much smaller than

average (i.e. is not necessary, is enough). In this example 2,
we will assume:

In the proof of theorem 3.1, we analyze the possible dependencies of with
the values.
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1.
2.
3. (in example 3 below we will

not need this condition 3).

To get condition 3, we may assume, for example, that
and where is well chosen. So

From 1 we have:
From 2 we have:
H is the number of such that:

So H is times the number of such that:

Since all the are pairwise distinct, all the must be pairwise distinct.
So for we have exactly: solutions.

Now when are fixed,       and are fixed on exactly
pairwise distinct points. So

Let  be the average value of H (when the are pairwise distinct).

So here:

So when is not negligible compared with H will be significatively
smaller than , as claimed.

Remark 1. Here is not random (since is constant), and
is not random (in example 3 below we will remove this condition on
These hypothesis are generally unrealistic in a cryptographic attack, where

or and or cannot be chosen.
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Remark 2. If we start, as here, from values with constant, then the
values are pairwise distinct, so the values are perfectly random (if we

define only from the relation However, the values are
not perfectly random (since the probability to have is the
probability to have so is about double than average). Similarly,
the values are not perfectly random since the probability to have
and is in relation with the probability to have
so is about double than average. We will use again this idea in example 3 below.

Remark 3. Here when we can have circles in Y, S, (and circles in
R, Y) and this is a way to explain why in this example H can be much smaller
than .

Example 3: Small value for H, with random and
In this example 3, we will assume:

1.
2.
3. Let Then is random. More precisely it will

be enough to assume that the number N of collisions is
to show that H is small compared with the average value . For

random values we have so it is the case

As in example 2, H is times the number of such that:

Let be a sequence of values of We want to evaluate the
number of such that: Let be the average
value for (average on all sequences We have For random values

and random functions will have about 2 times more collisions
than average sequences

So  for random values is and for values with 2 times more
collisions than average is This shows that if in this example 3 is
random, then

Since all the are pairwise distinct, and all the are
pairwise distinct, and are fixed on exactly points when
is fixed.

So H is times the number of such that:
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Abstract. The most common method for computing exponentiation of
random elements in Abelian groups are sliding window schemes, which
enhance the efficiency of the binary method at the expense of some
precomputation. In groups where inversion is easy (e.g. elliptic curves),
signed representations of the exponent are meaningful because they de-
crease the amount of required precomputation. The asymptotic best
signed method is wNAF, because it minimizes the precomputation effort
whilst the non-zero density is nearly optimal. Unfortunately, wNAF can
be computed only from the least significant bit, i.e. right-to-left. How-
ever, in connection with memory constraint devices left-to-right recoding
schemes are by far more valuable.
In this paper we define the MOF (Mutual Opposite Form), a new canon-
ical representation of signed binary strings, which can be computed in
any order. Therefore we obtain the first left-to-right signed exponent-
recoding scheme for general width by applying the width sliding
window conversion on MOF left-to-right. Moreover, the analogue right-
to-left conversion on MOF yields wNAF, which indicates that the new
class is the natural left-to-right analogue to the useful wNAF. Indeed,
the new class inherits the outstanding properties of wNAF, namely the
required precomputation and the achieved non-zero density are exactly
the same.

Keywords: addition-subtraction chains, exponentiation, scalar multipli-
cation, signed binary, elliptic curve cryptosystem, efficient computation,
non-adjacent form (NAF), mutual opposite form (MOF), left-to-right

1 Introduction

In modern cryptosystems one of the most important basic operations is expo-
nentiation where is an element of an Abelian group G and is an integer.
A non-zero positive integer is uniquely represented by a binary string:

where denotes the concatenation of bits and for

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 123–139, 2004.
© International Association for Cryptologic Research 2004
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The most common method for performing an exponentiation is the square-
and-multiply algorithm, which computes according to the bits (therefore it
is often called binary method). The efficiency of this procedure may be enhanced
if precomputation is allowed. In this case, we consider more general represen-
tations of the exponent, where each non-zero bit is not restricted to be 1,
but is an element of a suitable digit set of integers. We call a

if holds for each In general,
loose the property of uniqueness. The left-to-right square-and-multiply algorithm
is easily adjusted to work with a of the exponent, namely multi-
plication by the base is replaced with multiplication by precomputed elements

where is the appropriate digit of Therefore, the important fea-
tures of a are the number of non-zero digits and the cardinality
of because they determine the required time and memory consumption for
computing respectively. The research problem here is to find optimized rep-
resentation classes in the sense of trade-off between high non-zero density and
low memory consumption.

1.1 New Motivation for Exponentiation Algorithms

As the ubiquitous computing devices are penetrating our daily life, the impor-
tance of memory constraint devices (e.g. smart cards) in cryptography is increas-
ing. Smart cards are equipped with several Kbytes RAM only and most of them
are reserved for OS and stack. Thus, cryptographic algorithms should be opti-
mized in terms of memory. For this reason we are reluctant to consume memory
except the necessary precomputation related to for computing exponentia-
tion. Note that in connection with memory constraint devices, the most popular
cryptosystems are based on elliptic curves [Kob87,Mil86], because elliptic curve
cryptosystems (ECC) provide high security with moderate key-lengths. As ellip-
tic curve groups are written additively, exponentiation has to be understood as
scalar multiplication in this context.

Exponent recoding, i.e. the rewriting of the binary exponent to a
may be performed from the least significant bit (we say “right-to-left”)

and from the most significant bit (“left-to-right”), respectively. For the pur-
pose of ECC on memory constraint devices we prefer left-to-right to right-to-left
recoding methods. The reason is as follows: In the case of elliptic curve scalar
multiplication, the left-to-right evaluation stage is the natural choice (see Section
5 for details). If the exponent recoding is done right-to-left, it is necessary to fin-
ish the recoding and to store the recoded string before starting the left-to-right
evaluation stage. In other words, we require additional (i.e. exponential
size RAM for the right-to-left exponent recoding, where is the bit size
of the scalar.

On the contrary, if a left-to-right recoding technique is available, the recoding
and evaluation stage may be merged to obtain an efficient exponentiation on the
fly, without storing the recoded exponent at all. Therefore it is an important
task to construct a left-to-right recoding scheme, even if the size of and the
non-zero density are not improved.
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1.2 Known Solutions

The most established techniques for generating representations are window
methods (see, e.g., the textbooks [Knu81,MOV96] and the survey paper [Gor98]).
Loosely speaking, in the window method with width successively consecutive
bits of the binary exponent are scanned and, if necessary, replaced by a table-
entry according to We distinguish fixed window methods like the
method, where the window segmentation of the binary string is predetermined
and the more advanced sliding window methods, where zero runs are skipped.
As an example, let us consider the sliding window method with width In
this case, equals {1,3,5,7}. During the recoding stage, the binary exponent
is rewritten by performing the following replacements:
and Note that the sliding window conversion can be performed
left-to-right and right-to-left as well. The results may differ syntactically, but
the asymptotic non-zero density of both representations is the same, namely

In the unsigned case (i.e. consists only of positive integers), sliding
window techniques are the method of choice.

However, a nice property of elliptic curves is that inversion is computed vir-
tually for free. In this case, it is meaningful to consider digit sets containing
negative integers, too. This reduces precomputation effort, because may be
computed from on the fly, such that only the elements for have
to be precomputed. However, the question arises how to construct a signed
representation. In general, there are two strategies. The first one is to construct a
{–1, +1} representation of (also called a signed binary representation) and to
apply window methods afterwards. Here, the most common signed binary rep-
resentation is NAF (non-adjacent-form) [Rei60,IEEE], which can be obtained
from the binary representation by applying the conversion
repeatedly, where denotes –1 and stands for any binary digit. However, the
carry-over +1 occurring in the first digit forces the recoding to be performed
from the least significant bit, i.e. right-to-left. The second strategy is to gen-
eralize the NAF recoding for in order to obtain wNAF [Sol00,BSS99]
(here, the non-adjacent property states that among any adjacent bits, at
most one is non-zero). According to [BSS99], this strategy is the optimal one
for But unfortunately, this strategy suffers from the same drawback as
the first one, namely as carry-overs are required, the recoding is restricted to be
done right-to-left. Consequently, all exponentiation strategies based on signed

require bits of RAM additional memory to store the
recoded exponent. Solely in the case of Joye and Yen proposed a left-
to-right binary recoding algorithm [JY00]. But it has been an unsolved problem
to generate a left-to-right recoding algorithm for a general width Note
that the asymptotic non-zero density of wNAF is the same as for the unsigned
sliding window method on binary, namely Therefore, wNAF can be
seen as its natural signed analogue, and we guess that there could be a carry-
free generation method for wNAF. In this paper, the term carry-free refers to
an algorithm that transforms the input string in situ, i.e. in each step only the
knowledge of a fixed number of consecutive input bits is necessary.
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1.3 Our Contributions

The aim of this paper is to solve both problems as follows: (1) we define a new
canonical representation class of signed binary. We call it MOF (Mutual Opposite
Form) and prove that each integer can be uniquely represented as a MOF. But
the outstanding property of MOF is that it can be efficiently developed from a
binary string right-to-left or left-to-right, likewise. Consequently, analogue to the
unsigned case, sliding window methods may be applied to receive left-to-right
and right-to-left recoding schemes for general width Surprisingly, applying the
right-to-left width sliding window method on MOF yields wNAF. However,
the observation that in the unsigned case right-to-left sliding window yields
an unsigned string with non-adjacent property stresses the analogy between
unsigned Binary and signed MOF. Therefore we achieve a carry-free wNAF
generation, a benefit of its own.

(2) Our major aim is to develop a left-to-right recoding algorithm, and this
is achieved straightforwardly by applying the width sliding window method
left-to-right on MOF. We call the so-defined class wMOF and prove that each
integer can be uniquely represented as a wMOF and that the asymptotic non-
zero density of wMOF equals which is the same as for wNAF. Therefore
the classes wNAF and wMOF may be seen as dual to each other. In general our
proposed algorithm asymptotically requires additional bits of RAM, which
is independent from the bit size and dramatically reduces the required space
comparing with previous methods. Consequently, due to its left-to-right nature,
the new scheme is by far more convenient with respect to memory consumption
than previous schemes. Interestingly, a straight-forward proof shows that for

the proposed method produces the same output as the Joye-Yen recoding,
but 2MOF is more efficient in terms of counting the number of basic operations.

We finish this work with some explicit algorithms, proving that the proposed
schemes are indeed useful for practical purposes. For example, we develop gen-
erating algorithms for wMOF based on efficient table-lookups, and we show how
to exploit wMOF for implementing on-the-fly elliptic curve scalar multiplication.

2 Signed Representations

In this section we review some signed representations, which are important in
connection with elliptic curve scalar multiplication. For the sake of simplicity,
we only deal with non-negative integers in the following. We call
a if is a set of integers and holds for each

If contains negative integers, we speak of signed representations, and if
equals {±1}, of signed binary representations. In general, signed binary repre-
sentations are redundant. The most established one is NAF (non-adjacent form),
introduced by Reitwiesner 1960 [Rei60]. A generalization of Reitwiesner’s NAF
recoding idea can be found in [Pro00,Avi61]. NAF can be easily defined by the
property that at most one out of two consecutive digits is non-zero. Reitwiesner
was able to show that ignoring leading zeros each integer has a unique NAF
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representation. For this reason, some authors call NAF a canonical signed bi-
nary representation [EK94]. In addition, as shown among others by Jedwab and
Mitchell [JM89], NAF representation provides the minimal Hamming weight.
Consequently, the NAF representation of the exponent is the optimal choice if
signed methods are meaningful and no precomputation is considered. It was first
pointed out by Morain and Olivos that NAF can be used to speed up elliptic
curve scalar multiplication [MO90].

However, the situation is less clear if extra memory is available and precom-
putation is admitted. In this case, signed representations using larger digit sets

should be taken into account. One strategy to construct a signed representa-
tion is to apply sliding window methods on signed binary representations. But as
signed binary representation is redundant, the question arises which representa-
tion is the best for this purpose. Indeed, this is assumed to be an open problem
by De Win et al. [WMPW98]. There are several methods to construct signed
binary representations as a base for sliding window schemes [KT92,WMPW98],
but none of these can be performed left-to-right. In this paper, we will develop a
left-to-right recoding scheme, which is of high value in connection with memory
constraint devices.

A different approach is wNAF. Instead of applying window techniques to
signed binary representations, wNAF is computed directly from binary strings
using a generalization of NAF recoding. First we review the definition of wNAF
as stated in [Sol00].

Definition 1 (wNAF). A sequence of signed digits is called wNAF iff the fol-
lowing three properties hold:

1.
2.
3.

The most significant non-zero bit is positive.
Among any consecutive digits, at most one is non-zero.
Each non-zero digit is odd and less than in absolute value.

Note that 2NAF and NAF are the same. Algorithm 1 describes the generation
of wNAF as proposed by Solinas [Sol00].
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Here “mods” means the signed modulo, namely mods is defined as mod
and The algorithm generates wNAF from the least signif-
icant bit, that is right-to-left generation again. The average density of non-
zero bits is asymptotically for and the digit set equals

which seems to be minimal. Thus wNAF and
its variants like modified window NAF [Möl02] are optimal in the sense of the
trade-off between speed and memory for [BSS99,BHLM01]. There are
several other algorithms for generating wNAF, for example see [BSS99,MOC97]
but each method needs carry-overs. Note that in the worst case all remaining
bits are affected by the carry, therefore the previously known wNAF algorithms
can not be considered as local methods. By inspecting Algorithm 1 closely, we
observe that this generation can be seen as the natural signed analogue to the
right-to-left sliding window method on (unsigned) Binary (here, mod instead of
mods is computed). Indeed, the latter method produces a representation that
fulfills the nonadjacent requirement (see Definition 1, property 3). Consequently,
we conjecture that there might be a signed binary representation that produces
wNAF when handled with sliding window conversions. The signed binary rep-
resentation introduced in the next section will also serve for this purpose.

3 MOF: New Canonical Representation
for Signed Binary Strings

In this section we present a new signed representation of integers. The proofs of
the propositions in this section are in the full version of this paper [OSST04].
In order to achieve a unique representation, we introduce the following special
class of signed binary strings, called the mutual opposite form (MOF).

Definition 2 (MOF).The mutual opposite form (MOF) is an  signed
binary string that satisfies the following properties:

1.

2.

The signs of adjacent non-zero bits (without considering zero bits) are oppo-
site.
The most non-zero bit and the least non-zero bit are 1 and respectively,
unless all bits are zero.

Some zero bits are inserted between non-zero bits that have a mutual opposite
sign. An example of MOF is An important observation is that
each positive integer can be uniquely represented by MOF. Indeed, we have the
following theorem.

Theorem 1. Let be a positive integer. MOF has pair-wise
different representations. There is the bijective map between elements of

MOF and binary strings.

From this theorem, any binary string can be uniquely represented by
MOF. We obviously have the following corollary about the non-zero

density of MOF.

Corollary 1. The average non-zero density of MOF is 1/2 for
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3.1 Converting Binary String to MOF

We show a simple and flexible conversion from     binary string to
MOF.

The crucial point is the following observation. The binary string     can
be converted to a signed binary string by computing where
stands for a bitwise subtraction. Indeed, we convert as follows:

Here the signed bit of is denoted by namely for
and We can prove that the signed representation

is MOF.

Proposition 1. The operation converts binary string to its MOF

Algorithm 2 provides an explicit conversion from Binary to MOF.

In order to generate the bit Algorithm 2 stores just two consecutive
bits and This algorithm converts a binary string to MOF from the most
significant bit in an efficient way. Note that it is also possible to convert a binary
string to MOF right-to-left. Thus MOF representation is highly flexible.

Remark 1. Interestingly, the MOF representation of an integer equals the re-
coding performed by the classical Booth algorithm for binary multiplication
[Boo51]. The classical Booth algorithm successively scans two consecutive bits
of the multiplier A (right-to-left). Depending on these bits, one of the following
operations is performed:

No operation,
Subtract multiplicand B from the partial product,
Add multiplicand B to the partial product,

where is defined as 0. Of course, the design goal of this algorithm was to
speed up multiplication when there are consecutive ones in the multiplier A, and
to provide a multiplication method that works for signed and unsigned numbers
as well. To our knowledge, this representation never served as a fundament of
theoretical treatment of signed binary strings.

if
if
if
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4 Window Methods on MOF

In this section we show how to decrease the non-zero density of MOF by ap-
plying window methods on it. First we consider the right-to-left width sliding
window method which surprisingly yields the familiar wNAF. In contrast to pre-
viously known generation methods, the new one is carry-free, i.e. in each step
the knowledge of at most consecutive input bits is sufficient.

Then we define the dual new class wMOF as the result of the analogue left-
to-right width sliding window method on MOF. This conversion leads to the
first left-to-right signed recoding scheme for general width

4.1 Right-to-Left Case: wNAF

In order to describe the proposed scheme, we need the conversion table for width
First, we define the conversions for MOF windows of length such that the

first and the last bit is non-zero:

In addition, we have analogue conversions with all signs changed. To generate
the complete table for width we have to consider all conversions of length

If holds, the window is filled with leading zeros.

Example: In the case of we use the following table for the right-to-left
sliding window method:

In an analogue way is defined for general Based on this table,
Algorithm 3 provides a simple carry-free wNAF generation.

TEAM LinG



Signed Binary Representations Revisited 131

Obviously, the output of Algorithm 3 meets the notations of Definition 1,
therefore it is wNAF. If we knew that Definition 1 provides a unique represen-
tation, we could deduce that Algorithm 3 outputs the same as Algorithm 1.
This is true, although we could not find a proof in literature. For the sake of
completeness, we prove the following theorem in the full version of this paper
[OSST04] via exploiting the uniqueness of MOF representation.

Theorem 2. Every non-negative integer has a representation as wNAF, which
is unique except for the number of leading zeros.

4.2 Left-to-Right Case: wMOF

In this section we introduce our new proposed scheme. The crucial observation
is that as the generation Binary MOF can be performed left-to-right, the
combination of this generation and left-to-right sliding window method leads to
a complete signed left-to-right recoding scheme dual to wNAF.

In order to describe the proposed scheme, we need the conversion table for
width The conversions for MOF windows of length such that the first and
the last bit is non-zero, are defined in exactly the same way as in the right-to-
left case (see the table in section (4.1) and reflect the assignments). To generate
the complete table for width we have to consider all conversions of length

as before. The only difference is that if holds, the window
is filled with closing zeros instead of leading ones. As an example, we construct
the conversion table for width 4:

The table is complete due to the properties of MOF. Note that because of the
equalities usually two different MOF-strings are converted
to the same pattern. In an analogue way, is defined for general width

In this case the digit set equals which is
the same as for wNAF. Therefore, the scheme requires only precomputed
elements. Algorithm 4 makes use of this table to generate wMOF left-to-right.

In order to deepen the duality between wNAF and wMOF, we give a formal
definition of wMOF and prove that it leads to a unique representation of non-
negative integers.

Definition 3. A sequence of signed digits is called wMOF iff the following three
properties hold:

1.
2.

The most significant non-zero bit is positive.
All but the least significant non-zero digit are adjoint by zeros as
follows:

in case of for an integer the pattern
equals
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in case of either the pattern equals and the next lower

non-zero digit has opposite sign from or the pattern equals

and the next lower non-zero digit has the same sign as
If is the least significant non-zero digit, it is possible that the number of
right-hand adjacent zeros is smaller than stated above. In addition it is not
possible that the last non-zero digit is a 1 following any non-zero digit.
Each non-zero digit is odd and less than in absolute value.3.

This definition is directly related to the generation of wMOF. Note that the
exceptional case corresponding to the least significant bit takes in account that
the last window may be shorter than

Regarding the uniqueness and the non-zero density of wMOF, we have the
following two theorems, proven in the full version of this paper [OSST04].

Theorem 3. Every non-negative integer has a representation as wMOF, which
is unique except for the number of leading zeros.

Theorem 4. The average non-zero density of wMOF is asymptotically
for

We finish this section with a detailed example of the conversion from Binary
to MOF and the effects of several sliding window methods.
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4.3 Left-to-Right Generation of

Although in the preceding section we have presented left-to-right generated
signed representations that are at least as useful as from a theoretical
point of view it is still an interesting question how to generate the from
the most significant bit. The reason for the difficulty is a carry caused by the
statement of Algorithm 1. To illustrate the problem, note that the bi-
nary strings 101010 and 101011 that only differ in the last digit are converted to
the NAFs 101010 and respectively, which differ completely. Intuitively,
it is not possible to generate NAF left-to-right without scanning any higher bits.
In this section we exploit the MOF representation to discuss how many bits have
to be scanned and how many additional storage is required.

Note that we obtain NAF if we apply the conversions and
right-to-left on MOF. However, performing the same conversions left-to-right
may yield a different result. The critical sequence is of the shape

Note that this sequence corresponds to the binary string 1010 . . . 011. If the
length of the sequence of alternating bits is even, then both of left-to-right and
right-to-left conversions uniquely generate the same string, namely

 for                  But if the length is odd, left-to-right we obtain
whereas right-to-left generates Consequently,

if this sequence appears, we have to scan it completely in order to compute the
corresponding NAF. However, the first bit and the length of the critical sequence
can uniquely determine the corresponding NAF, hence it is not necessary to store
the sequence. Thus, the additional required storage in RAM is at most a few bits,
namely the bit length of the critical sequence. Therefore, we obtain Algorithm 5.
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It is also possible to construct a left-to-right generation algorithm of wNAF,
In this case, the critical sequence is of the following shape

where the most and least bits are zero and no zero run of length
appears in If it is possible to convert the critical sequence (1)
left-to-right to wNAF, then we can generate wNAF from any MOF. In order
to find the corresponding wNAF of (1), we scan the whole sequence right-to-
left and obtain the segmentations that are produced by the right-to-left sliding
window conversion MOF   wNAF. Note that there is no need to store the width

windows, but we must detect and store the length of the zero runs between
any two windows. In addition, the content of the left-most window, which may
be smaller than has to be transfered. Afterwards, the sequence (1) can be
rewritten as follows:

where consists of at most consecutive bits of MOF (and may be the
empty word and each is a length pattern of

MOF, corresponding to an entry of Here we have to store and the
Based on these informations, the corresponding wNAF is completely determined
left-to-right. Thus we need to store at most bits.

4.4 Comparison with Previous Methods

In this section we clarify the difference to previous schemes for generating signed
representations.

In 1992, Koyama and Tsuruoka developed a new recoding technique to con-
vert a binary string to a signed binary string [KT92]. Following this step, a
left-to-right sliding window method is applied. The new signed binary represen-
tation has the benefit that it reduces the asymptotic non-zero density, but it
requires the sub-optimal digit set If the sliding
window method is directly applied to NAF, due to the NAF property fewer pos-
sible window contents have to be taken into account, resulting in a smaller digit
set An easy calculation shows that the largest odd NAF consisting of at most

digits equals for odd (cf. 1010...01) and for
even (cf. 1010 . . . 1001). For this reason, De Win et al. prefer the latter method
for elliptic curve scalar multiplication [WMPW98]. Although there are slightly
more point operations needed to evaluate the scalar multiplication if the expo-
nent is represented as wNAF compared to the [WMPW98] representation, the
required precomputation is less in the wNAF case because of the smaller digit
set. Indeed, Blake et al. proved that wNAF is asymptotically better than sliding
window on NAF schemes if [BSS99]. In the context of memory constraint
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devices, a small digit set is even more valuable, because fewer precomputed el-
ements have to be stored. But as none of the preceding methods is a left-to-right
scheme, each one requires additional memory to store the recoded string
before starting the left-to-right evaluation of the scalar product. Note that in
the context of sliding window on signed binary schemes like [KT92,WMPW98]
the sliding window conversion may be performed left-to-right, but to obtain the
signed binary representation we have to proceed right-to-left in either case.

In contrast, wMOF turns out as a complete left-to-right scheme. Conse-
quently, there is no additional memory required for performing the scalar mul-
tiplication. In addition, due to the properties of MOF, the digit set of wMOF is
the same as for wNAF and therefore minimal.

In order to compare the proposed algorithms with previous ones, we summa-
rize the memory requirements of the new left-to-right schemes in the following
theorem.

Theorem 5. Algorithm 4 requires only bits memory for generating wMOF.
Algorithm 5 requires at most bits memory for generating NAF left-to-
right. For general width there is a left-to-right algorithm that generates wNAF
with at most bit memory.

Next, we compare the characterizing properties for the proposed schemes and
some previous ones. In the second column, the value equals the number
of elements, that have to be precomputed and stored. In the last column, we
describe the amount of memory (in bits) that is required additionally to this
storage, e.g. to construct the signed representation or to store the converted
string in right-to-left schemes. As usual, equals the bit-length of the scalar,
and SW is an abbreviation for sliding window.

5 Applications to Elliptic Curve Scalar Multiplication

Let be a finite field, where is a prime. Let E be an elliptic
curve over K. The elliptic curve E has an Abelian group structure with identity
element called the point of infinity. A point is represented as
The inverse of point is equal to hence it can be
computed virtually for free. The elliptic curve additions and 2P are
denoted by ECADD and ECDBL, respectively, where

TEAM LinG



136 Katsuyuki Okeya et al.

As elliptic curves are written additively, exponentiation has to be under-
stood as scalar multiplication. The familiar binary algorithms are adopted by
computing ECADD instead of multiplying and ECDBL instead of squaring.

In general, we distinguish two main concepts of performing scalar multiplica-
tion: left-to-right and right-to-left. Here, is represented as

Though in general both methods provide the same efficiency, the left-to-right
method is preferable due to the following reasons:

1.

2.

3.

The left-to-right method can be adjusted for general of
like wNAF or wMOF in a more efficient way than the right-to-left method.
The ECADD step in the left-to-right method has the fixed input tP,
Therefore it is possible to speed up these steps if tP is expressed in affine
coordinates for each since some operations are negligible in this case.
The improvement for a 160-bit scalar multiplication is about 15% with NAF
over right-to-left scheme in the Jacobian coordinates [CMO98].
The right-to-left method needs an auxiliary register for storing

5.1 Explicit Implementation for

In the following we show how the ideas of Section 4.2 lead to an efficient left-to-
right scalar multiplication algorithm. For the sake of simplicity, we begin with
the special case The treatment for general width can be found in the
full version of this paper [OSST04].

Let be a binary string. The MOF and 2MOF representation of are
denoted by and respectively. The proposed scheme scans the two bits
of from the most significant bit, and if the sequences or appear, we
perform the following conversions: and Two consecutive
bits of determine the corresponding bit of MOF Thus, three consecutive
bits of can generate the corresponding bit of the 2MOF In order to find
an efficient implementation, we discuss the relationship of bit representation
among and The bits of are denoted by respec-
tively. Because of the relation we know if and only
if The other 3-bit binary strings where
are only corresponding to

Thus, there is a one-to-one map be-
tween and leading to the explicit Algorithm 6.

TEAM LinG



Signed Binary Representations Revisited 137

Finally, Algorithm 7 merges the recoding stage and evaluation stage of scalar
multiplication.

The advantage of the previous algorithm is that it reduces the memory re-
quirement since it does not store the converted representation of
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6 Conclusion
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Abstract. Pairing-based cryptosystems rely on bilinear non-degenerate
maps called pairings, such as the Tate and Weil pairings defined over
certain elliptic curve groups. In this paper we show how to compress
pairing values, how to couple this technique with that of point compres-
sion, and how to benefit from the compressed representation to speed
up exponentiations involving pairing values, as required in many pairing
based protocols.

Keywords: pairing-based cryptosystem, efficient implementation.

1 Introduction

With the discovery of a viable identity-based encryption scheme based on the
Weil pairing [5], pairing-based cryptography has become of great interest to
cryptographers. Since then, pairing-based protocols – many with novel properties
– have been proposed for key exchange [30], digital signature [6], encryption [5],
and signcryption [28]. Although the Weil pairing was initially proposed as a
suitable construct for the realisation of such protocols, it is now usually accepted
that the Tate pairing is preferable for its greater efficiency. Supersingular elliptic
curves were originally proposed as a suitable setting for pairing-based schemes;
recent work has shown that certain ordinary curves are equally suitable, and
offer greater flexibility in the choice of security parameters [3, 26]. Fast computer
algorithms for the computation of the Tate pairing on both supersingular and
ordinary curves have been suggested in [1, 3, 12].

The Tate pairing calculation involves an application of Miller’s algorithm [24]
coupled to a final exponentiation to get a unique value. A typical protocol step
requires the calculation of a pairing value followed by a further exponentiation
of the result.

In this paper we explore the concept of compressed pairings, their efficient
computation, and the subsequent processing (typically exponentiation) of pairing
values. Our main contribution is to show that one can effectively reduce the

*  Supported in part by Enterprise Ireland RIF grant IF/2002/0312/N

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 140–156, 2004.
© International Association for Cryptologic Research 2004
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bandwidth occupied by pairing values without impairing security nor processing
time; in some cases, one even obtains a 30%–40% speed enhancement. Our work
gives further motivation for the approach of Galbraith et al. [14], who investigate
the bit security of pairing values and show that taking the trace causes no loss
of security.

This paper is organized as follows. Section 2 introduces basic mathemati-
cal concepts. Section 3 discusses laddering exponentiation of pairing values, and
introduces a laddering variant of the BKLS [1] algorithm to compute pairings.
Section 4 describes how to compress pairing values to half length, and establishes
a connection with the techniques of point compression and point reduction. Sec-
tion 5 defines a ternary exponentiation ladder for finite fields in characteristic 3.
Section 6 describes how to compress pairing values to one third of their length,
presents a more efficient and slightly simpler version of the Duursma-Lee algo-
rithm [11] that enables pairing computation in compressed form, and discusses
improved variants of point compression and point reduction in characteristic 3.
We summarise our work in section 7.

2 Mathematical Preliminaries

The theory behind elliptic curve cryptography is well documented in standard
texts. The reader is referred to [23] for more background.

Let be a prime number, a positive integer and the finite field with
elements; is said to be the characteristic of and is its extension

degree. Unless otherwise stated, we assume throughout this paper.
Let An elliptic curve is the set of solutions over to

an equation of form where
together with an additional point at infinity, denoted O. The same equation
defines curves over for (although note that the remain in The
number of points on an elliptic curve denoted is called the
order of the curve over the field

An (additive) Abelian group structure is defined on E by the well known
secant-and-tangent method [29]. Let The order of a point
is the least nonzero integer such that rP = O, where rP is the sum of terms
equal to P. The order of a point divides the curve order. For a given integer
the set of all points such that rP = O is denoted We say that
has embedding degree if and for any In this
paper we assume It is in fact not difficult to find suitable curves with
this property for relatively small values of as described in [2, 7, 10]. We are
interested here in curves where is even, as this case facilitates fast calculation
of the Tate pairing [3].

For our purposes, a divisor is a formal sum of points on
the curve An Abelian group structure is defined on the set of divisors
by the addition of corresponding coefficients in their formal sums; in particular,

The degree of a divisor is the sum
Let be a function on the curve and let We define
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The divisor of a function is A
divisor is called principal if for some function A divisor is
principal if and only if and [23, theorem 2.25]. Two
divisors and are equivalent, if their difference is a principal
divisor. Let where is coprime to and let be a divisor
equivalent to (P) – (O); under these circumstances the divisor is principal,
and hence there is a function such that The
(reduced) Tate pairing of order is the map given

by for some divisor The Tate pairing
is bilinear and non-degenerate; assuming one gets if Q is
chosen from a coset containing a point of order which is linearly independent
from P. The computation of is achieved by an application of Miller’s
algorithm [24], whose output is only defined up to an power in The final
exponentiation to the power of is needed to produce a unique result,
and it also makes it possible to compute rather than [1]. Sometimes
we will drop the subscript of the Tate pairing, writing simply

2.1 Lucas Sequences

Lucas sequences provide a relatively cheap way of implementing exponen-
tiation in a subgroup whose order divides They have been extensively
studied in the literature, and a fast “laddering” algorithm for their computa-
tion has been developed [18,19,32], using ideas originally developed by Lehmer
and Montgomery [20,27]. Lucas sequences have been suggested as a suitable
vehicle for certain public-key schemes (see [4]). The laddering algorithm can in
fact be used as an alternative to the standard square-and-multiply approach to
exponentiation in any Abelian group, but it is particularly well-suited for Lu-
cas sequences and certain parameterisations of elliptic curves [19]. The authors
of [19] go on to emphasise that the laddering algorithm requires very little mem-
ory, facilitates parallel computing, and has a natural resistance to side-channel
attacks when used in a cryptographic context.

The Lucas sequence consists of a pair of functions
Commonly one is interested in computing and for some field
element P, in which case we write simply and or omit the arguments
altogether. For this distinguished case the sequences are defined as

Only the sequence needs to be explicitly evaluated, as we also have the
relationship

The fast laddering algorithm is described in Appendix A. Lucas sequences
are useful in the exponentiation of certain field elements, as we will see next.
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3 Exponentiating Pairing Values

We consider first the case of embedding degree (although the following
discussion also covers the case with the substitution Recall that
we assume the characteristic to be odd.

We represent an element of the field as where and
for some quadratic non-residue Assume in what follows that all

arithmetic is in the field
The final exponentiation in this case consists of a raising to the power of

This can be considered in two parts – exponentiation to the
power of followed by exponentiation to the power of Now if the
output of Miller’s algorithm is then

which is obviously much quicker than the standard square-and-multiply algo-
rithm. The element calculated in this fashion has the
property:

where is called the norm of this property, easily verified by simple
substitution, is maintained under any subsequent exponentiation. An element of
this form in is called unitary [16]. Also observe that
for a unitary element. In fact, any element of whose order divides will
have this property.

A unitary element can obviously be determined up to the sign of from
alone, using equation 1. And this is our first observation - the output of the Tate
algorithm contains some considerable redundancy. It could be represented by a
single element of and a single bit to represent the sign of rather than as a
full element of

One can efficiently raise a unitary element of to a power by means of
Lucas sequences. This is a consequence of the observation that

as one can verify by induction. As pointed out above, only needs to be
explicitly calculated.

If M is a multiplication and S a squaring in then the computational cost
of this method to compute is therefore 1M + 1S per step, where a
step involves the processing associated with a single bit of (see appendix A).
The conventional binary exponentiation algorithm in takes 1 squaring and
about 1/2 multiplication in for an overall cost of roughly 2S + 5M/2 per
step. If then this can be reduced to 2S + 3M/2 per step1. Thus the
improved algorithm costs about 60% as much as the basic binary square-and-
multiply method. When memory is not an issue the binary algorithm can be
1 If is unitary and one can compute as

and as where
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implemented by using windowing techniques, as described in [15]. However the
laddering algorithm proposed here for unitary elements will always be faster
than a conventional binary algorithm for a general element in

Note that this improvement is relevant not only for the second part of the
final exponentiation of the Tate pairing, but for any exponentiation directly
involving pairing values, as happens in many pairing-based protocols [5,17,28].

3.1 A Laddering Pairing Algorithm

For U, define to be the line through U and V. For all
the line function satisfies

Let and for let be a function with divisor
One can show that

up to a constant nonzero factor. This is called Miller’s for-
mula. In the computation of the Tate pairing for even and a careful
choice of P and Q (see [1, 3]), this formula can be simplified to

Laddering BKLS algorithm to compute

Although this algorithm has no computational advantage over the original
BKLS, it may be useful in the same context of the laddering algorithms described
in [19].

4 Compressing Pairings to Half Length

Instead of keeping the full value of the Tate pairing, it may be possible
for cryptographic purposes to discard altogether, leaving the values defined

Let be the binary representation of By coupling Miller's simpli-
fied formula with Montgomery's scalar multiplication ladder, we get a laddering
version of the BKLS algorithm [1] to compute
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only up to conjugation, which means one of the pairing arguments will only be
defined up to a sign:

This is similar to the point reduction technique, whereby instead of keeping
one only keeps the abscissa

Definition 1. The of an element is the sum of the conjugates
of

Notice that in effect discarding the
imaginary part. We define the compressed Tate pairing as 2.

4.1 Point Reduction

Point reduction is an optimization technique introduced by Miller in 1985 [25]. It
consists of basing cryptographic protocols solely on the coordinate of the points
involved rather than using both coordinates. This setting is possible because the

coordinate of any multiple of a given point P depends only on the coordinate
of P. A related but less efficient technique is that of point compression, which
consists of keeping not only the coordinate but also a single bit from the
coordinate to choose between the two roots

Some pairing-based cryptosystems have been originally defined to take profit
from point reduction. An example is the BLS signature scheme [6], where the
signature of a message represented by a curve point M under the signing key is
the coordinate of the point S = sM. This means that, implicitly, the actual
signature is ±S rather than S alone. To verify a BLS signature, the verifier checks
whether where the verification key is V = sQ. Incidentally,
the verification key itself can be reduced to its coordinate (say, even though
this possibility does not seem to have been considered by the authors of BLS.

4.2 Coupling Point Reduction with Compressed Pairings

Verifying a BLS signature involves computing a point from
a point from and checking whether or

Using the property that any pairing value is unitary
(and hence one can simply check whether
This is especially interesting, since a compressed pairing is precisely

An important aside is that exponentiation of compressed pairings must take
into account the fact that they are actually traces of full pairings. This means
one cannot exponentiate a pairing as if it were a simple value; rather, one
must always handle it as a Lucas sequence element.
2 Rubin and Silverberg [13] use traces to compress BLS signatures, but in an entirely

different manner, and with a compression factor much closer to 1.

TEAM LinG



146 Michael Scott and Paulo S.L.M. Barreto

5 A Ternary Exponentiation Ladder

Supersingular curves in characteristic 3 are a popular choice of underlying al-
gebraic structure for pairing-based cryptosystems, since many optimisations are
possible in such a setting [1, 11, 12]. Pairing compression is possible for those
systems, and we now propose a ternary ladder for Lucas sequences in charac-
teristic 3 that keeps the exponentiation cost in within about 33% of the
exponentiation cost in

Assume the sequence element index is written in signed ternary notation,
with At step (counting downwards from

to 0), we want to compute where Thus, by definition,

Similarly, for we write down the formulas to compute
and

In each case, the second and third relations constitute a simple linear system.
Solving them, we get these expressions for and

If and are precomputed, computing and one of
or involves two products and two cubes, and the computation

can be carried out using only and one of or We can
therefore keep track of which value between these two actually accompanies

and compute and at the cost of only 2 products and two

For we write down the formulas to compute
and
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cubes per step. Besides, since we are working in characteristic 3, the cost of
cubing is negligible compared to the cost of multiplying.

The binary ladder computes and at the cost of one squaring
and one product, or about 1.8 product, per step. However, the step count of
the ternary ladder is only about 1/ lg(3) of its binary counterpart, and hence
its total cost is about 70% of the binary ladder. We point out that the ternary
ladder can be used for plain exponentiation in characteristic 3 as an independent
technique, even in contexts where compressed pairings are not desired or not an
option.

A detailed ternary ladder algorithm is described in Appendix A.

6 Compressing Pairings to a Third of Their Length

Definition 2. The of an element is the value

The trace is for any and
When the elliptic curve has an embedding degree the Tate pairing

algorithm outputs an element of of order where divides but not
for Now Therefore the output

of the Tate pairing is an element of order which divides
For these are precisely the type of points considered in the
XTR public key scheme [21] (which is based on the ideas of [8]), and all of the
time/space optimizations that have been developed for this scheme [21,31] apply
here as well. In particular, we note that laddering algorithms again appear to be
optimal [31], and the Tate pairing output can be represented by its and
hence compressed by a factor of 3. Observe that the compressed value, being a
trace, must be implicitly exponentiated using the Lenstra-Verheul algorithm [21,
Algorithm 2.3.7] – the trace value per se is not even a point of order

For supersingular curves in characteristic 3 we can do better than merely take
the trace – rather, it is possible to do nearly all computations without resorting
to arithmetic any more complex than that on

6.1 Simpler Arithmetic for Pairing Computation in Characteristic 3

Let for some let and let be
elements satisfying and The modified Tate pairing
on the supersingular curve is the mapping

where is the distortion map

Duursma and Lee showed [11, Theorem 5] that the modified Tate pairing for
points and can be written as a product of factors of form

This expression can be rewritten as
where and Specifically, the Duursma-Lee
algorithm to compute is as follows (cf. [11, Algorithm 4]):
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Duursma-Lee algorithm to compute

The output is an element We now show that this algorithm can
be modified to compute instead, by maintaining a ladder of three values

Since is initialized to 1, the initial ladder can be com-
puted from alone, namely, as one readily deduces
from the definition of

Theorem 1. Let for some  and let satisfy
Then and

At each step of the loop, we compute according to
the following theorem:

Theorem 2.

Proof. From it follows by induction that and hence
and so that

Moreover,
so that

Proof. Using the of the trace and the defining property
we have Similarly,

Finally,

Therefore, defining and using
the matrix A defined above, the modified algorithm to compute pairing traces
reads:
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A laddering algorithm to compute

However, to obtain a unique pairing value suitable for pairing-based protocols
we need rather than Let The
simplest (and seemingly the most efficient) way to do it is to recover from all
three components of

We use the of the trace and fact that is a basis of
with respect to i.e. any element can be written as
where . The trick is straightforward:

Thus we recover from the pairing ladder essentially for free. Now one must
compute and then take the trace of This can be efficiently done
using the techniques described in [1, Appendix A.2], at a cost roughly equivalent
to a few extra steps of the laddering algorithm.

Each step of this laddering algorithm takes 17 multiplications. This com-
pares well with the original Duursma-Lee algorithm where each step takes 20
multiplications, and avoids arithmetic in the main loop.

6.2 Implicit Exponentiation in Characteristic 3

It is quite commonplace that the pairing value undergoes further exponentiation
as dictated by the underlying cryptographic protocol. We are thus confronted
with the task of computing given the value of The Lenstra-Verheul
algorithm [21, Algorithm 2.3.7] performs this task for characteristic

We now describe a variant tailored for characteristic 3.
Let and let with roots

One can show [21, Lemma 2.2.1] that, if is an element
of order dividing then the roots of are the

of Defining one can further show [21,
Lemmas 2.3.2 and 2.3.4] (see also [9]) that and

The proofs of these properties are independent of the field characteristic.

1.
2.

3.
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From the above properties, one easily deduces the following relations that
hold in characteristic 3:

Computing takes two multiplications, takes four multiplications,
and takes six multiplications.

Define Using the above formulas,
one can compute any one of               or         from at the
cost of 12 multiplications:

From the definition of it is clear that if Hence,
if then The total cost of
this algorithm, about 7.6 lg multiplications, matches the complexity of the
ternary ladder introduced in section 5 for exponentiation. Appendix B
lists this algorithm in detail. We point out that this ternary ladder can also be
the basis of a characteristic 3 variant of the XTR cryptosystem.

6.3 Coupling Pairing Compression with Point Reduction

A nice feature of this algorithm is that it is compatible with a variant of the
point reduction technique.

The conventional approach to compress a point is to keep only
and a single bit of point reduction discards altogether. In characteristic 3, it
is more advantageous to discard instead, keeping and a trit of to distinguish
among the solutions of the curve equation alternatively,
one can reduce R by keeping only and modifying the cryptographic protocols
to allow for any of the three points and that share the same Thus,
we will show that the input to the laddering algorithm of section 6.1 can be only

(or the corresponding (or can be easily recovered except for a trit,
and the actual choice of this trit does not affect the compressed pairing value.

Let where for odd and assume the order of divides
The conjugates of are and or equivalently

and since and The trace
of is the sum of the conjugates, [21]. Consider the
super singular elliptic curve E : whose order is [23,
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section 5.2.2] where is the
trace of the Frobenius.

Let and let be a linearly independent
point. The conjugates of are and

The following property holds:

Lemma 1. If  points P, and –qP share precisely the same
coordinate.

Proof. Let A simple inspection of the group law for characteristic 3 [1]
reveals that and hence Thus

We see that, for (mod 3), the coordinates of and
are the three solutions to which are exactly
Obviously, the traces of the pairings computed from the conjugates of P are all
equal, since is simply the sum of the conjugates of Thus,
the actual solution to the curve equation above used to compute is
irrelevant. Also, computing from is very efficient, since it amounts to solving
a linear system (see appendix C).

7 Conclusions

We have introduced the notion of compressed pairings, and suggested how they
can be realised as traces of ordinary Tate pairings. We also described how com-
pressed pairings can be computed and implicitly exponentiated by means of
laddering algorithms, with a compression ratio of 1/2 in characteristic
and 1/3 in characteristic 3; our algorithms thus reduce bandwidth requirements
without impairing performance. Finally, we showed how to couple compressed
pairings with the technique of point compression or point reduction. As a side
result, we proposed an efficient laddering algorithm for plain exponentitation in
characteristic 3, which can be used even in contexts where compressed pairings
are not desired.

Our work constitutes evidence that the security of pairing-based cryptosys-
tems is linked to the security of the Lucas/XTR schemes, and gives further
motivation for the approach of Galbraith et al. regarding the use of traces to
prevent security losses.

We leave it as an open problem to find a method to compute pairings directly
in compressed form when the compression ratio is 1/3 or better on ordinary
(non-supersingular) curves in characteristic

where we used the fact that for any Similarly,
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A Computation of Lucas Sequence Elements

The Lucas sequence for some field element P is defined by the following
recurrence relations:

Let be an integer in binary representation, with The
Lucas sequence element can be computed as:

Let be the signed ternary representation of The
Lucas sequence element in characteristic 3 (as needed for the implicit
exponentiation of  of values) can be computed using the following
algorithm:
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B Implicit Exponentiation of

Let be the plain ternary representation of The following
algorithm computes the of an element from its

C Solving the Curve Equation in Characteristic 3

Definition 3. The absolute trace of a field element is the linear form:

The absolute trace will always be in as one can easily check by noticing
from the above definition that for all Being surjective
and linear over it can always be represented as a (usually sparse) dual vector

in a given basis, so that one can compute in no more than
time. In a normal basis with computing amounts to

summing up all coefficients of
The coordinates of a curve point are constrained by the curve

equation to satisfy Thus one can represent a point as either
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where indicates which of the two roots correspond to
or else by where indicates which of the three solutions one has to
take of the equation In characteristic 3, cubing is a linear
operation, which makes the second possibility more advantageous.

Consider the special equation for a given which is
relevant for supersingular curves in characteristic 3. This equation has a solution
if, and only if, [22, theorem 2.25]. This is the case for 1/3 of the elements
in since the trace function is linear and surjective. The complexity of solving
the cubic equation is only as we show now.

Let be defined by The kernel of is [22,
chapter 2,section 1], hence the rank of is [16, section 3.1, theorem 2].

Theorem 3. The equation over can be solved in
steps.

Proof. If is represented in standard polynomial basis, the cubic equation
reduces to a system of linear equations with coefficients in and can be solved
in no more than steps. This is achieved by first checking whether the
system has solutions, i.e. whether If so, since the rank of is
one obtains an invertible matrix A by leaving out the one row
and correspondingly one column of the matrix representation of on the given
basis. A solution of the cubic equation is then given by an arbitrary element

and by the solution of system which is obtained as
in time.

Using a normal basis to represent field elements, it is not difficult to see
that the cubic equation can be efficiently solved in time by the following
algorithm (the proof is straightforward and left as an exercise):

Cubic equation solving in normal basis:
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Abstract. We introduce a compact and efficient representation of ele-
ments of the algebraic torus. This allows us to design a new discrete-
log based public-key system achieving the optimal communication rate,
partially answering the conjecture in [4]. For the product of distinct
primes, we construct efficient ElGamal signature and encryption schemes
in a subgroup of in which the number of bits exchanged is only a

fraction of that required in traditional schemes, while the se-
curity offered remains the same. We also present a Diffie-Hellman key
exchange protocol averaging only bits of communication per
key. For the cryptographically important cases of and
we transmit a 4/5 and a 24/35 fraction, respectively, of the number of
bits required in XTR [14] and recent CEILIDH [24] cryptosystems.

1 Introduction

In classical Diffie-Hellman key exchange there are two fixed system parameters
- a large prime and a generator of the multiplicative group of the field

In [10], the idea of working in finite extension fields instead of prime fields
was proposed, but no computational or communication advantages were implied.
In [26] Schnorr proposed working in a relatively small subgroup of of prime
order, improving the computational complexity of classical DH, but requiring
the same amount of communication.

In [4] it is shown how to combine these two ideas so that the number of bits
exchanged in DH key exchange is reduced by a factor of 3. Specifically, it is shown
that elements of an order subgroup G of can be efficiently represented
using bits if divides which is one third of the bits
required for elements of Since the smallest field containing G is one
can show [13] that with respect to attacks known today, the security of working
in G is the same as that of working in for large enough. In [14,15] the
XTR public key system was developed using the method of [4] together with an
efficient arithmetic to achieve both computational and communication savings.
These papers also show how to reduce communication in ElGamal encryption
and signature schemes in

*  Supported by an NDSEG fellowship.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 157–178, 2004.
© International Association for Cryptologic Research 2004
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In [4] it was conjectured that one can extend this technique to any by
working in the subgroup of of order where denotes the nth
cyclotomic polynomial. Since the degree of is where is the Euler
function, one could transmit a fraction of the number of bits needed in
classical DH, while achieving the same level of security. For the product of
the first primes, as so the savings get better and better.
In [3,24], evidence that the techniques of [4] cannot generalize to arbitrary
was presented, and in [3,24], some specific versions of the conjecture in [4] made
in [3] were shown to be false. Also in [24,25,23] it is shown that the group of
order is isomorphic to the well-studied algebraic torus [30] and
that a positive answer to the conjecture in [4] is possible if one can construct
an efficient rational parameterization of However, such a construction
is only known when is a prime power or the product of two prime powers,
although it is conjectured to exist for all [24,30]. In [24] a construction is
given for which is the basis for the CEILIDH public-key cryptosystem.
CEILIDH achieves the same communication as XTR with a few computational
differences.

In this paper we finally break the barrier” by constructing, for every
efficient ElGamal encryption and signature schemes in which require

transmitting at most a fraction of the bits required in their classical
counterparts. Further, we present an asymptotical variant of DH key exchange
in which the average number of bits exchanged per key approaches
The key property that we use is the fact that is stably rational (see [30],
section 5.1). Specifically, our enabling technique is the construction of efficiently
computable bijections and with

where × denotes direct product, and is the Möbius function1. This allows
us to bypass the torus conjecture of [24], by relaxing the problem of efficiently
representing a single symbol of to the problem of efficiently representing
a sequence of symbols in Our bijections enable us to compactly represent

elements of with bits, which for large
enough is roughly bits per element. We stress that while our key
exchange protocol achieves the optimal reduction factor asymptotically,
our encryption and signature schemes achieve this even for the encrypting or
signing of a single message.

Note that the domain and range of need not be isomorphic. Indeed, letting
denote the cyclic group of order if and then the domain

of is isomorphic to while the range is isomorphic to We show,
however, that can be decomposed into isomorphisms plus a map requiring a
table lookup. We show how to choose so that constructing and querying this
table is extremely efficient.

For an integer if if has a repeated factor, and
if is a product of distinct primes (see [11], section 16.3).

1
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Our choice of and for fixed will also affect the security of our scheme.
We give an efficient heuristic for choosing and for the practical cases of

and where we achieve a communication reduction by factors
of 15/4 and 35/8, respectively. Further, for any we give an efficient algorithm
for choosing and with a theoretical guarantee on its performance. This latter
algorithm is primarily of theoretical interest, showing how to optimally choose

and when tends to infinity for a sufficiently large security requirement.
While our main focus and contribution is on the communication complexity,

we also calculate the amount of computation necessary to evaluate and
for general and we attempt to minimize the number of modular exponentia-
tions. We show that our representation enjoys some of the same computational
advantages of CEILIDH over XTR, including the ability to multiply elements
of directly. This allows us to come close to the non-hybrid version of El-
Gamal encryption in [24]. Indeed, in addition to constructing a hybrid ElGamal
encryption scheme, we construct a scheme in which to encrypt messages, we
form ElGamal encryptions in plus one additional encryption using a
symmetric cipher. Unfortunately, the computational complexity of our scheme
is not that practical, whereas XTR for instance, permits very efficient compu-
tations if just exponentiation is required. For we hand-optimize the
computation of and Our analysis for general shows that all of our pro-
tocols and algorithms are (theoretically) efficient in and the sizes of and

Outline: Section 2 discusses the algebraic and number-theoretic tools we use. In
section 3 we construct the bijections and Section 4 shows how to choose
system parameters to guarantee security and efficiency, giving both a practical
algorithm for and and a theoretical algorithm for general

In section 5 we discuss our cryptographic applications. Section 6 treats the
computational complexity of our bijections, and we conclude in section 7.

2 Preliminaries

2.1 Cyclotomic Polynomials and Algebraic Tori

We first state a few facts about the cyclotomic polynomials. See [19] for more
background.

Definition 1. Let be a positive integer and let The nth cyclotomic
polynomial is defined by:

It is easy to see that the degree of is where is the Euler-totient
function. We also have:
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and using the Möbius function

It can be shown that the cyclotomic polynomials are irreducible polynomials
over with integer coefficients. For a prime power, let denote the finite
field with elements. For integers we define the algebraic torus2

2.2 Number Theory

The following is the celebrated prime number theorem (see [11], chapter 22):

Theorem 1. For large enough the number of primes less than or equal to
is

We also need the fact that for any and for the prod-
uct of the first  distinct primes, We use the following
density theorem in our analysis:

Theorem 2. (Chebotarev [5,16]) For any integer and any the
density of primes (among the set of all primes) with is

3 The Bijection

Let be a prime power, a positive integer, the multiplicative group of
the field of order and the algebraic torus over
For an integer let The goal of this section is to construct
efficiently computable bijections and where

Our strategy is to first find efficient bijections and where

Note that in general and need not be isomorphic. Let de-
note the cyclic group of order We first need a few lemmas. The following is
an immediate consequence of the structure theorem of abelian groups, but for
completeness and to exhibit the efficient isomorphisms, we include it:

Lemma 1. Suppose for pairwise relatively prime positive inte-
gers Then there exist efficiently computable isomorphisms

and

2 Technically, just refers to the points of the algebraic torus rather than
the torus itself (see [24,30]).
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Proof. For put Since the are pairwise relatively prime,
so there exist integers for which For

 define Since maps elements of
to elements in the product group For define

where multiplication occurs in

The claim is that and are inverse isomorphisms between and
For we have Similarly, for

we have

Now, if so in this case  Also,
for an integer so Hence, which shows

and are inverses. Observe that
and similarly

which shows that the maps
are isomorphisms. Computing and just requires multiplication and exponen-
tiation, which can be made efficient by repeated squaring.

Let be the smallest positive integer for which
for all with and

Lemma 2. For let Then
Furthermore, the isomorphisms are efficiently computable.

Proof. By lemma 1 it suffices to show (1) (2) for all
and (3) for all

Using the fact that the following establishes (1):

where the second equality follows from the definition of U. For (2), observe that

since if prime by minimality of U there exist for which
so if then a contra-

diction. To see (3), note that by the
definition of U.
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We use the following bijections with complexity proportional to U, which we
later show to be negligible for an appropriate choice of

Lemma 3. For let There exist bijections between
and   requiring time to evaluate and

space for any

Proof. Using the definition of U,

so there exists a bijection between the two groups. Choose a generator of
and generators of For each make a table entry mapping

to a unique tuple Since the sum of the divisors of is less than
for any     ([H], section 18.3), the table consumes

space. We sort the entries in both directions so that both bijections are efficient.
Evaluations of either bijection can then be performed with a binary search in

time.

We need another auxiliary map:

Lemma 4. Let and be as in the previous two lemmas. Then,
Furthermore, the isomorphisms are efficiently com-

putable.

Proof. It suffices to show for any and that this isomor-
phism is efficiently computable. Note that

since by the definition of U. By the same observa-
tion, Lemma 1 establishes the claim.

The following is immediate from the previous 3 lemmas:

Lemma 5. Assuming the maps of lemma 3 are efficient, there exist efficiently
computable bijections and where

We now have the bijection claimed at the beginning:

Theorem 3. Assuming the maps of lemma 3 are efficient, there exist efficiently

computable bijections and where

Proof. Lemma 5 gives efficient bijections between

and and also between
and By permuting coordinates, the theorem will fol-
low if we show the multiset equality
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From section 2, in the polyno-
mial ring Decomposing this equation into irreducible polynomials, we have

and since is a unique
factorization domain, the irreducible polynomials on the left must be the same
as those on the right. This gives the desired multiset equality.

4 Parameter Selection

The two constraints on choosing and for fixed are security and efficiency
constraints, the latter measured by the size of the tables needed in our
bijections. We first discuss the role of security in parameter selection:

4.1 Security Measures

Our schemes derive their security from the same assumptions of XTR and
CEILIDH. That is, if there is a successful attack against one of our crypto-
graphic primitives, then there is a successful attack against the corresponding
primitive in the underlying group we use, which we assume is impossible. Let

be a multiplicative group of order with generator The security of
our applications relies on the hardness of both the Computational Diffie-Hellman
problem (CDH) and the Decisional Diffie-Hellman problem (DDH) in The
former is the problem of computing given and and the latter is that
of distinguishing triples of the form from for random
and The hardness of both of these problems implies the hardness of the dis-
crete logarithm problem (DL) in find given Due to the Pohlig-Hellman
algorithm [21], the DL problem in can be reduced to the DL problem in all
prime order subgroups of so we might as well assume that is prime.

There are two known approaches to solving the DL problem in [1,7,9,13,
20,27,28], one which attacks the full multiplicative group of itself using the
Discrete Logarithm variant of the Number Field Sieve, and one which concen-
trates directly on the subgroup using Pollard’s Birthday Paradox based rho
method [22]. Let be the smallest divisor of for which can be embedded in

The heuristic expected running time of the first attack is
where If is small, e.g. then
the constant 1.923 can be replaced with 1.53. The second attack, due to Pollard,
takes operations in

Hence we see that the difficulty of solving the DL problem in depends
on both the size of the minimal surrounding subfield and on the size of its
prime order If is itself the minimal surrounding subfield, as is the case
if we choose with then for sufficiently large the DL, CDH,
and DDH problems in are widely believed to be just as hard as solving
their classical counterparts w.r.t. an element of prime order in the prime
field of cardinality [14]. As mentioned in [14], when and

solving the DL problem in is generally believed to be harder
than factoring an 1024-bit RSA modulus provided is not too small.
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4.2 Practical Algorithm for and

Based on our security discussion, it is shown in [4] that, assuming an RSA key
length between 1024 and 2048 bits gives adequate security, for we should
choose to be a prime between 35 and 70 bits long, and for we should
choose to be a prime between 5 and 10 bits long. Note that for the next value
of for which we achieve a communication savings, the
field size will have to be at least 2310 bits, so any setting of already exceeds
the 2048 bits needed for adequate security.

In [13] it is shown how to quickly find a and an meeting these requirements
for fixed The algorithm is heuristic, and involves choosing random of a
certain size and checking if contains a sufficiently large prime factor
by trial division with the primes up to roughly On a 166MHz processor,
for it was shown that it takes 12 seconds to find an of size between
214 and 251 bits for of size 32 bits. Note that for we actually need

to be slightly smaller, as claimed in the previous paragraph. This way we
can achieve the largest efficiency gain for a fixed security guarantee. Using the
algorithm of [13], fixing the size of to be approximately 161 bits and searching
for an appropriate took three hours instead of the 12 seconds needed previously.
However, there are three reasons we do not consider this to be problematic. First,
CPU speeds are easily ten times as fast these days. Second, we don’t need to fix
the size of to be exactly 161 bits; we just need to find an of approximately
this size. And third, finding the system parameters is a one-time cost and can
be done offline, or even by a trusted third party.

From the efficiency analysis in the next section and lemma 6, one can show
that the table size resulting from choosing at random subject to the
above constraints is likely to be small with good probability. Hence, this heuristic
algorithm is likely to find a and an so that both security and efficiency
constraints are met in a reasonable amount of time.

4.3 Theoretical Algorithm for General
with Probabilistic Guarantees

In this section we use properties of the density of primes to design a parame-
ter selection algorithm and rigorously analyze its performance. Unfortunately,
since the factorization of for random primes does not seem to be well-
understood, we are forced to choose which with respect to attacks known
today, doesn’t allow for choosing the optimal and for and
if we just want 2048 bit RSA security. A straightforward calculation shows that
for the following algorithm gives us the largest efficiency gain for a fixed
security guarantee if and only if is at least 558 bits. Hence, we should view
the algorithm as theoretical in nature, and apply the heuristic of the previous
section for small

Let be a positive integer tending to infinity and let be the product of the
first primes. We want to choose so that:
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1.
2.
3.

is sufficiently large.
There exists a large prime factor of

is small.

We say an integer is squarefree if it contains no repeated factors. The selection
algorithm is as follows:

Parameter Selection Algorithm

1.

2.
3.

4.

Let S be the subset of the first primes for which is squarefree, and
put
Find an R-bit prime for which and find a of order
Find a Q-bit prime for some integer such that:
(a)

(b)

For all , where denotes the order of
in
For all

Find a generator of the subgroup of order of Output and

We first claim that if the PSA algorithm terminates, then and meet the
aforementioned properties. By setting Q large enough, the first property holds.
We have for some integer and since

Hence by choosing R sufficiently large, the second
property holds. To show is small, we need the following lemma:

Lemma 6. Let be a prime and an integer such that Then if and
only if In case of the latter, if and only if

Proof. By minimality of U, if and only if there exist divisors of
for which Fix two such divisors and let
and suppose Since

Since we
have so or Similarly, But then

contradicting our choice of Hence, which means
and

Suppose there is another divisor of for which Then by the
above, and and since contradicting the fact
that is squarefree. This means that is the unique pair of divisors for which

Since and since
Put and Then is the smallest positive

integer for which so Also,
Hence if

then and Conversely, if then for these

We have shown if and only if The above shows that
if then and conversely if

then
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Remark 1. Note that since on the one hand we have
and on the other hand we have

Hence if then
so it follows that

The following lemma provides tight asymptotic bounds on

Lemma 7. If the PSA algorithm terminates, where is
Artin’s constant.

Proof. By the previous lemma, if then so Now if
is not squarefree, so by step 3b, so On the other

hand, if is a product of distinct primes in so
and hence Combining this with the remark above, step 3a of the PSA
algorithm, and the previous lemma, we conclude that U is exactly the square of
the product of primes in S and that the PSA algorithm chooses so that U is
minimal.

To obtain the bound on U it suffices to show that the density of primes
for which is squarefree is C, where C is Artin’s constant [8]. The bound
will then hold for large enough For a prime is not squarefree if and
only if for a prime By the inclusion-exclusion principle, the
multiplicativity of and theorem 2, the density of primes for which
is squarefree is:

By theorem 1, for sufficiently large and where the
approximation is up to low order terms. Hence,

Finally, we show the PSA algorithm terminates quickly in expectation:

Efficiency Analysis: By theorem 1, and Determining
S and T in step 1 can therefore be done by trial division in time. We
can perform step 2 by choosing a random R-bit number efficiently checking
if is prime, and checking if This requires an expected

samples To find   we choose a random set

and check that for all proper divisors of In expectation,
after O(logR) trials one such will be a generator of for which setting

gives with Conversely, if for all proper divisors of
we have  then Since the number of proper divisors

of is for any ([11], section 18.1), the check in step 2 is efficient.

For step 3, for each we can find an element with
by simply trying each of the elements of until we succeed.
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We then choose a random integer for which is a Q-bit number and
efficiently check if is prime. If so, then for each we can compute in

time, then check if by repeated squaring. For each
we check if

The claim is that the number of random samples needed in step 3 is only
Using the fact that the density of primes amongst integers of the

form is an integer for which is prime can be found
with O(Q) samples in expectation. By independence, the density of primes

which are for every is where C is
Artin’s constant. Fix any By theorem 2, for all but a negligible fraction
of primes for a generator of Since is a generator,

if and only if is a multiple of and there are only
such multiples. By theorem 2, it is equally likely that for

any so the density of primes for which is at least
By independence, the density of for which for all

is at least Applying independence

one last time, we conclude that can be found with an expected
samples

Finally, step 4 can be implemented by choosing a random and making
sure that The number of generators of is which is

so the expected number of samples needed is

5 Cryptographic Applications

Let be the product of the first primes, and let and be public param-
eters generated as in section 4. Define and

and observe that From section 3,
we have an efficiently computable bijection and its inverse with

From the proof of theorem 3, we see that there are a number of choices
for depending on which coordinate permutation is chosen. While this choice
does not affect the communication of our protocols or the size of our encryp-
tions/signatures, it can affect the computational costs. In section 6 we choose a
specific permutation and analyze the computational requirements for

We will think of and as efficiently computatble maps between

and by fixing polynomial representations of with An ele-

ment of is then just a list of coefficients with respect to these
polynomials, and can be treated as an element of Let

denote the coordinates of an element corresponding
to the coefficients of with respect to the irreducible polynomial for Our
map may not be well-defined because we may have

TEAM LinG



168 Marten van Dijk and David Woodruff

However, if is chosen randomly, the probability that some coordinate
of is zero is less than for any which is negligible.

The same is true of a randomly chosen element of Hence, if we apply

and to random and and
are well-defined with overwhelming probability.

It is possible to modify and if one wants more than a probabilistic
guarantee. Define and We
can efficiently extend to the well-defined map

where for each and for each with
if we replace with 1, obtaining a new string
and define where for all if and only
if for the jth divisor Note that the inverse of
restricted to the image of is also well-defined. Similarly, letting denote
we can extend to a well-defined map

and construct
The next sections describe our cryptographic applications. For simplicity,

in our security analyses we assume and are actually bijections between
and although it should be understood that our pro-

tocols can be slightly modified so that or can be used without affecting
the security. The only application where this is not immediately obvious is the
non-hybrid ElGamal encryption, but step 3 of that protocol can be modified to
additionally encrypt the “extra bits” from using, say, the same key used in
step 3.

5.1 Diffie-Hellman Key Agreement

For Alice and Bob to agree on a sequence of secret keys they engage in
the following protocol:

1.

2.

3.
4.

Alice and Bob choose random and in respectively,

and treat them as elements of
For to
(a)

(b)

Alice selects a random integer with sets com-

putes and transmits to Bob.
Bob selects a random integer with sets computes

and transmits to Alice.
Alice sends to Bob and Bob sends to Alice.
For to 1.
(a)
(b)

Alice computes and sets
Bob computes and sets
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The number of bits sent from Alice to Bob (and from Bob to Alice) is about
so the rate approaches the optimal bits per key

as gets large. This beats all known schemes for In particular, for
our scheme requires only bits per shared key while generalizing

the scheme in section 4.11 of [14] to gives a scheme requiring bits
per key exchange. The scheme in [24] would also achieve our rate, but needs an
unproven conjecture concerning the rationality of

Observe that and are random, and since is a bijection, the
last coordinates of are of a random element in
Hence the probability that some coordinate of is zero is even less than that for
a random element in which is negligible. One can then verify that every
application of or is on a random element. It follows from the foregoing
discussion and the union bound that the probability of either Alice or Bob ever
attempting to apply or on an element outside of the domain is negligible.
For deterministic guarantees, one can replace and with and negligibly
changing the rate to for any Given the overwhelming
probability guarantees for and this does not seem necessary.

Security: An eavesdropper obtains and Since
and are efficient bijections, this is equivalent to obtaining

and Since and are random, determining a shared secret
is equivalent to solving the CDH problem in given

5.2 ElGamal Signature Schemes

Suppose the message M to be signed is at least bits long. If
this is not the case, one can wait until there are messages to be signed
for which then define M to be the concatenation

and sign M. For a random let be Alice’s
private key and her public key. Let be a cryptographic
hash function. We have the following generalized ElGamal signature scheme (see
p.458 of [18] for background):

Signature Generation (M):

1.
2.
3.

Alice selects a random secret integer and computes
Alice then computes
Alice expresses as computes
and outputs (S, T) as her signature.

Signature Verification ( M, S, T ):

1.
2.

Bob computes and constructs M and from R and S.
Bob accepts the signature if and only if

The communication of this scheme is at the optimal for
ElGamal signature schemes, even for one message (as long as M is large enough).
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This beats the communication of the scheme in [4,17]
when in particular for the practical values and Our
communication is the same as that in [24], but we do not rely on any conjectures.

Note that our map may fail since M need not be random. One can avoid
this by excluding the negligibly few M for which is not defined (as in RSA
or the schemes of [24]), or one can replace with as defined above, and
communicate an additional bits of overhead. Alternatively Alice can use
a pseudorandom generator to randomize M and communicate the small seed
used to Bob, requiring even less communication than the already asymptotically
negligible bits.

We note that a simple modification of our protocol, making it similar in
spirit to our key exchange protocol, can allow Alice to sign each individually,
allowing for incremental verification.

Security: In this scheme the verifier obtains (S,T), which is equivalent to ob-
taining M, and Thus, the security of this scheme reduces to the security of
the generalized ElGamal signature scheme in

5.3 ElGamal Encryption

We present two flavors of ElGamal encryption. The first is a hybrid scheme with
shorter encryptions than the one in [14], while the second is essentially a non-
hybrid analogue of ElGamal in In the second, to encrypt a sequence of

messages, encryptions are created and of them are performed directly
in The first scheme achieves optimal communication, while the second
is asymptotically optimal.

Hybrid ElGamal. For random let be Bob’s private key and

his public key. Suppose Alice wants to encrypt the message
with Bob’s public key. Let E be an agreed upon symmetric encryption scheme

with domain We have the following protocol:

Encryption (M):

1.
2.
3.

4.

Alice selects a random secret integer and computes
From B Alice computes
From Alice derives a key Q for E and computes the encryption of M,

E(M), under key Q. Alice writes E(M) as
Alice computes and outputs her encryption (S,T).

Decryption (S,T):

1.
2.
3.

Bob computes
From and Bob computes
From Bob derives Q and decrypts E(M) = (R, S) to obtain and output
M.

The communication of this scheme is at the optimal bits
for hybrid ElGamal encryption. As in our protocol for signature schemes, we
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achieve this rate even for a single message. This beats the
bit scheme in [14] for

It is unlikely that or is applied to an element with any zero coordinates
since is random and E(M) is likely to “look random” in practice, so is

likely to be a random element of for which it is extremely unlikely that
any coordinates are zero. An exact analysis, though, depends on one’s choice
of E. As in our protocol for signature schemes, one can randomize E(M) to
decrease the error probability or replace with for a deterministic guarantee
at the cost of a few bits of communication.

Security: An adversary learns (S,T), which is equivalent to learning and
E(M). Assuming the CDH problem is hard in the security of this scheme
is just that of the symmetric scheme E, assuming the key Q to E is chosen
reasonably from To derive Q from one can extract bits that are hard to
compute by an eavesdropper, see [2].

Almost Non-hybrid ElGamal. In the following, Alice will encrypt a sequence
of messages each in She will form encryptions,
of which are encryptions in and one requiring the use of an agreed upon
symmetric encryption scheme E.

In the encryption phase of our scheme we will apply . to for some

For semantic security, for all it must hold that

which in general may be strictly contained in
For this we adopt the technique in section 3.7 of [25]. Namely, by reserving a
few bits of each to be “redundancy bits”, if has small enough index in

then for any R we need only try a few random settings of these bits until

which we can test by checking
if In the following protocol description we ignore this issue and assume
whenever is applied, its image is in

For random let be Bob’s private keys and
be his public keys. We have the following scheme:

Encryption (M):

1.
2.

3.

4.

5.

Alice chooses a random
For to
(a)
(b)

Alice computes
Alice chooses a random secret integer and forms the
encryption

Alice uses the hybrid ElGamal encryption scheme with symmetric cipher
E and public key to encrypt as with and

For to 1,
(a)

(b)
Alice computes
Alice computes

Alice outputs S as her encryption of
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Decryption

1. For to
(a)
(b)
(c)

Bob computes
Bob computes
Bob computes

2.

3.
4.

Bob uses and S, together with in the decryption procedure of the
hybrid ElGamal scheme to recover
For to 1, Bob computes
Bob outputs

The communication of this scheme is bits.
Hence, as grows, the rate of this scheme approaches which is
optimal for ElGamal type encryption.

Note that the need not be random, and consequently
may not be well-defined. Choosing random will increase the chances that

is always defined. Alternatively, one can use the ideas of section
5.2 to randomize or one can use instead of Again, since

needn’t be random even if E is semantically secure, one may want to
use in place of This adds a negligible amount to the communication, and as
stated earlier, encrypting the extra bits of can be done in step 3.

Security: An adversary learns S, which is equivalent
to learning where is the semantically secure
hybrid encryption scheme. Assuming DDH is hard in is a semantically
secure encryption of for all The security of the scheme then follows
from the fact that the keypairs and of are independent.

6 Computational Complexity

In this section we present efficient algorithms for computing and analyze
their complexity, and suggest an alternative way of improving computational
costs with slightly more communication. Each of these is described in turn.

6.1 Algorithm

Before describing and we need some notation:

For let be the smallest integer for which
for all with and
For we define and

Generalizing section 3, we can find and s.t.

Further, we can find and for which
Let for

be a bijective mapping and define
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A naive implementation of consists of the following steps:

1.

2.

3.

4.

5.

We first use an isomorphism

By using a table lookup we map
and we use an isomorphism
By the structure theorem of Abelian groups there is an isomorphism

for each with and
By using a permutation we obtain a mapping

By the structure theorem of Abelian groups there is, for each with
and an isomorphism By using a

table lookup we map and we use
an isomorphism
In the last step we use an isomorphism

Each of the isomorphisms are defined by taking simultaneous exponentiations.
An improved implementation combines different isomorphisms in a single simul-
taneous exponentiation. Each table lookup followed by an exponentiation can
be implemented as a single table lookup. This reduces the number of exponen-
tiations and multiplications.

Computation of for

and

1.

2.
3.

4.
5.

For

(a)

(b)

Compute and map it to by using
a table look up.

Compute

Compute
For
(a)

(b)

Map to by using a table look up.

Compute
which is in

Multiply with

The ideas in section 3 can be used to show the algorithm above is well-defined.
The improved computation of is similar, where we make sure to use the
inverse of the coordinate permutation used in
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6.2 Complexity

For background on efficient computations in fields and subgroups, see [6,12,29].
Consider the algorithm for In step 1, for we perform

exponentiations in Notice that, in step 1b we do not need to compute
since it can be combined with the table lookup in step 1a (there is an entry

in the table corresponding to for every Step 2 costs 1 exponentiation in

For or we precompute This
costs multiplications in By using the results of the precomputation, an
exponentiation for some in costs on average multiplications
in (the bit length of the exponent is and roughly half the time a
bit is equal to 1). Each multiplication in costs multiplications in

Summarizing, steps 1 and 2 cost about

multiplications in
In step 3, for we need to perform, for each with

one exponentiation in We do not need to compute which
can be combined with the table lookup in step 1a.

The cost of step 3, measured in multiplications in the base field is on
average approximately Since
defines a permutation, this expression is equal to

The total cost is multiplications in where we neglect the cost of table
lookups, addition, and multiplication modulo an integer. Since
we have

since the sum of divisors of is for any This proves

The same techniques show requires multiplications in

6.3 Efficiency Improvements

To improve the efficiency we may use exponentiation algorithms for fixed expo-
nents using vector addition chains. Also, we may group several exponentiations
of together into one exponentiation by appropriately choosing the bijections

If is not too large, we may use simultaneous exponentiation to speed up
the computations. Full simultaneous exponentiations in every step requires a
precomputation of multiplications. We may optimize by using simultaneous
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exponentiation to compute intermediate results which we multiply together to
compute the full exponentiation. Finally, we may combine the exponentiations
required in our applications with the evaluation of

Notice that is much more efficient if, for with
Then, for with and Table

lookups can be avoided. Therefore each for with can
be computed by a single simultaneous exponentiation of

with fixed exponents in step 3. To make use of this, we define
a new map which maps into and

the table entries of This increases the communication
cost by

bits which in practice is much less than So at the cost of a small increase
in communication we improve the computational efficiency.

Computation of and

1.
2.

For compute
Compute

for with Multiply with
3.

4.
5.

Compute
Compute

for with where
6.

For and
We define

We use
and [31]. In step 1, we

compute and using single exponentiations by using the square
and multiply method [18, p. 614]. This costs in total

multiplications in
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In step 2, is computed as a simultaneous exponentiation [18, p. 618]in
In a precomputation we

compute for each of the possible sets the product
The whole precomputation costs at most multiplications in In

the computation of the exponents of etc., have bit lengths
etc. This means that in the second half of the simultaneous

exponentiation (the last bits of the exponents) we only need to
square or square-and-multiply with So the average costs in the second
half of the simultaneous multiplication is equal to multiplications
in The simultaneous exponentiation corresponding to the bits ranging from
position to involves square or square and multiply with
or This costs on average multiplications (5 is the difference
between 15 and 10, on average we need 1 multiplication in 1 out of 4 cases
and 2 multiplications in 3 out of 4 cases). Notice that we treat squaring as a
single multiplication in this excersise. Continuing this argument we need in total

multiplications in comes from preprocessing).
The outputs and are single multiplications in and

respectively costing a total of mul-
tiplications. Concluding, the computation of costs approximately
multiplications in A single exponentiation in costs

multiplications. Hence, costs about 2.32 exponentiations in
In the implementation of we compute as a single exponentiation in

costing multiplications. In step 5, is a simul-
taneous exponentiation in and (and a table look up for the exponentiation
in This costs multiplications.
Similarly, costs and costs

multiplications. We compute as
a single exponentiation in costing multipli-
cations. Concluding, the computation of costs approximately
multiplications, which is equivalent to 2.67 exponentiations in

7 Conclusions and Open Problems

Our fundamental contribution is a compact and efficient representation of ele-
ments of namely, the construction of bijections and of section 3.
This allows us to construct ElGamal signature and encryption schemes meeting
the optimal rate of communication, as well as a secret key exchange protocol
meeting this rate asymptotically. If the torus conjecture of [24] is proven, the
schemes in that paper will also achieve this rate, and moreover, their scheme for
DH key exchange will meet the optimal rate even for a single key exchanged.
Hence, resolving their conjecture is an important problem. Another important
question is whether the computational cost of our schemes can be reduced to
a more practical level. Finally, our representation of may have other
applications.
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Abstract. Ordinarily, RSA and Rabin ciphertexts and signatures are
log N bits, where N is a composite modulus; here, we describe how to
“compress” Rabin ciphertexts and signatures (among other things) down
to about (2/3) log N bits, while maintaining a tight provable reduction
from factoring in the random oracle model. The computational overhead
of our compression algorithms is small. We also improve upon Coron’s re-
sults regarding partial-domain-hash signature schemes, reducing by over
300 bits the hash output size necessary to prove adequate security.

1 Introduction

The hardness of factoring is one of the most fundamental and frequently used
assumptions of public-key cryptography; yet cryptosystems that rely on the fac-
toring assumption have relatively poor performance in terms of bandwidth. For
example, RSA and Rabin ciphertexts and signatures are typically at least as
many bits as the composite modulus N, while recent advances in hardware-based
approaches to factoring (e.g., [32]) suggest that N must be more than 1024 bits
for strong security. So, factoring-based cryptosystems often do not compare fa-
vorably with cryptosystems based on alternative hard problems – e.g., ECC for
encryption or DSA for signatures.

Bandwidth consumption is important, in part because fundamental limita-
tions of wireless technology put bandwidth at a premium. For example, Barr
and [2] note that wireless transmission of a single bit can cost more
than 1000 times as much energy as a 32-bit computation. Since battery efficiency
is growing relatively slowly, energy consumption (particularly through wireless
transmission) may become a significant bottleneck.

Moreover, signal interference places physical limits on how much data can
be transmitted wirelessly in a given region. This was not a problem in wired
networks. These limitations are compounded by the lossiness of wireless channels,
which necessitates additional bandwidth in the form of forward error correction
(FEC). FEC is particularly important for cryptographic transmissions, where
partial recovery of a ciphertext or digital signature is typically useless.

These considerations make compression algorithms very attractive. In fact, in
recent years, substantial progress has been made in constructing “compressed”
cryptosystems. For example, XTR [22] and CEILIDH [30] both use “compact

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 179–200, 2004.
© International Association for Cryptologic Research 2004
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representations” of certain elements to achieve a bandwidth savings. There are
also a variety of hybrid cryptosystems, such as signcryption and aggregate sig-
nature schemes, in which multiple cryptographic functionalities are somehow
represented by a single, relatively short string. However, although such hybrid
cryptosystems exist for RSA and Rabin, none of them breaks the “(log N)-bit
barrier.”

OUR DESIGN GOALS. In light of these considerations, we would like to construct
a compression algorithm that is broadly applicable to factoring-based schemes,
such as RSA and Rabin. Ideally, the compression algorithm should allow RSA
and Rabin ciphertexts and signatures to be substantially less than log N bits
without sacrificing any security – i.e., while still using (and retaining the secu-
rity of) a (log N)-bit modulus. Moreover, the compression algorithm should add
minimal computational overhead. If the compression algorithm requires addi-
tional computation, this computation should not require use of the secret key,
so that it can be performed (more quickly) outside of a “secure environment,”
such as a smart card.

OUR RESULTS. We essentially achieve our design goals, except that our tech-
niques work only for Rabin-type cryptosystems, not for RSA. Along the way, we
also substantially improve upon Coron’s results on partial-domain-hash Rabin
signature schemes (Rabin-PDH).

Coron [16] proved the security of a variant of the Rabin signing scheme
(Rabin-PDH) in which the hash function that is used to hash the message out-
puts strings of length It turns out that this has a large effect
in practice; if the simulator in the security proof wishes to generate a distribution
of signatures whose statistical distance from uniform is less than Coron’s
method requires that the hash output length be at least at We
provide a perfectly uniform drawing algorithm that reduces the necessary hash
output length to only moreover, our security proof is tighter.

Our main result, however, is a compression algorithm that allows a 33%
reduction in the bit-length of Rabin signatures and ciphertexts, without any
sacrifice in security. (Notice that Coron’s result is not a compression algorithm;
although the hash output length of Coron’s Rabin-PDH scheme may be less
than log N bits, the Rabin-PDH signature itself, which is essentially a modular
square root of the hash output, is a (log N)-bit value.) For our improved version
of Rabin-PDH signatures, the “entropy” of the hash output is just over
bits; thus, it is theoretically possible that the signature could also be expressed in
about In fact, up to the loss of a few bits, this is precisely what we
achieve: a Rabin-PDH signature, with a tight reduction from
factoring N.

Our lossless compression algorithm also works for Rabin encryption, but in
reverse. A plaintext is “decompressed” by mapping it to a (log N)-
bit number that has a modular square. This modular square
is a “compressed” Rabin ciphertext. Numerous other cryptosystems also involve
computing square roots modulo a composite modulus N, including Fiat-Shamir,
Cocks’s identity-based encryption scheme, as well as various schemes enabling
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ring signatures, signcryption, and so on. Our techniques enable a similar 33%
bandwidth reduction for these schemes.

RELATED WORK. Like Coron’s work, our techniques build upon Brigitte Vallée’s
elegant analysis of the distribution, in of integers in

for – i.e., integers with modular
squares in a “narrow” interval. We provide a self-contained discussion of her
results in section 3.

Some previous work has been done on compressing Rabin and low-exponent
RSA signatures – in particular, Bernstein [7] mentions that one can simply re-
move the least significant bits of any regular Rabin or RSA signature,
and the verifier can use Coppersmith’s method [17] to recover those bits. Ble-
ichenbacher [8] describes an improvement: the signer can use continued fractions
to express the signature as where is about bits and

is about bits, and send as the signature. The verifier checks that
is an power (namely over The drawback of

these methods, though they arguably reduce Rabin signature length to
bits, is that they do not allow message recovery; the verifier needs before
verifying, which effectively adds to the signature length. These methods also do
not appear to be very broadly applicable; e.g., they do not appear to lead to
low-bit-length encryption, signcryption and aggregate signature schemes.

As mentioned above, Coron [16] uses a “compressed” output space for the
hash function in a Rabin signature scheme, but the partial-domain hash signa-
tures themselves are still log N bits.

ORGANIZATION OF THE PAPER. This paper is organized as follows. After noting
some preliminaries in Section 2, we describe Vallée’s distributional observations
and her “quasi-uniform” drawing algorithm in section 3. In section 4, we describe
our perfectly uniform drawing algorithm, and our improvement upon Coron’s
results regarding Rabin-PDH. We describe our compression algorithm in section
5, after which we describe compressed Rabin encryption and signature schemes
in section 6. Finally, in Section 7, we mention other cryptosystems – such as
signcryption, aggregate signature and ring signature schemes – for which our
compression algorithm allows a 33% bandwidth reduction.

2 Preliminaries

We gather some mathematical notation here for convenience. Let {0,1}* denote
the set of all bit strings, and let denote the set of all bit-strings of length

For a real number denotes the ceiling of that is, the smallest integer
value greater than or equal to Similarly, denotes the floor of that is,
the largest integer value less than or equal to Finally, denotes the closest
integer to Let the symbol denote concatenation.

Throughout, N will denote a suitable integer modulus. To be suitable, N
should at least be computationally hard to factor using any modern factoring
algorithm. In practice, one often generates N as the product of two large prime
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numbers and – e.g., 512 bits apiece. However, one could choose N differently
for our schemes, if desired. For example, setting for can lead to
efficiency advantages, though one should be wary of setting too large [11].

Let for integers and and
suitable modulus N - i.e., the set of integers with modular squares in Let
B be shorthand for when N, and are understood.

A “lattice” consists of the set of all vectors that can be generated as integer
linear combinations of a set of basis vectors. For example, if and are
two basis vectors in two-dimensional space, the lattice that they generate is the
set of vectors

3 Distribution of Numbers with Small Modular Squares

Developing a compressed representation of numbers in that is efficiently
computable and invertible requires an understanding of how numbers in
are distributed in [0, N/ 2). The compression algorithm works, at a high level, by
taking this distribution into account.

In [33], Vallée describes the “global” distribution of in [0,N/2) in
terms of its “local” distribution in each of a set of Farey intervals that covers
[0, N/2). She then describes each local distribution in terms of points of a lattice
that lie in the region between two parabolas. For the distri-
bution of among the Farey intervals is “quasi-independent,”
allowing her to construct an algorithm that draws integers from “quasi-
uniformly.” Since Vallée’s analysis forms the basis of our compression algorithm,
we review it in detail in this section.

3.1 Farey Sequences

Some properties of Farey sequences are collected in [20]; we recall them below.

Definition 1 (Farey Sequence). The Farey sequence of order is the
ascending sequence of fractions with and

The characteristic property of Farey sequences is expressed in the following the-
orem [20]:

Theorem 1. If  and are consecutive in then

Another useful theorem concerning Farey sequences is the following:

Theorem 2. If  and are consecutive in then

The latter theorem follows from the fact that the so-
called “mediant” of and is between and and
would be in if Farey sequences lead naturally to the notion
of a Farey partition, in which the set of mediants partition the interval [0, N/2)
into subintervals. The formal definition is as follows.
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Definition 2 (Farey Partition). The Farey partition of order of the interval
[0, N/2) is the set of intervals where is
the term in

So that each “end” of [0, N/ 2) is covered by the partition, we set
and where is the final fraction in the

Farey sequence.
Vallée found it convenient to use another set of intervals called

“Farey intervals,” that are related to

Definition 3 (Farey Interval). The Farey interval of order is the
open interval with center and radius where is the term in

Using Theorems 1 and 2, one can easily prove that contains and
that the interval is no more than twice as wide as the interval
[1]. One can also prove that every number in [0, N/ 2) is covered by at least one,
and at most two, Farey intervals – e.g., by showing that, for every
intersects but neither nor contains the center
of Vallée probably favored using the Farey intervals rather than the

in her analysis, because (roughly speaking) the fact that each
is symmetric about makes her analysis cleaner. A “Farey Covering,”
which is analogous to a Farey partition, is then defined as follows.

Definition 4 (Farey Covering). The Farey covering of order of the interval
[0, N/ 2) is the set Farey intervals of order

3.2 The Connection between Farey Sequences and B’s Distribution

Although it is far from obvious, Farey sequences have a close connection with
the distribution in of integers in Vallée observed that the gaps
between consecutive integers in B vary widely close to the rationals of
small denominator Close to these rationals, the distribution might be called
“clumpy,” with large gaps separating sequences of small gaps. However, as one
considers wider intervals centered at the distribution of B-elements
provably “evens out” – i.e., the ratio of the number of B-elements in the in-
terval, versus the number one would expect if the B-elements were distributed
uniformly, approaches 1. Roughly speaking, the width of interval needed before
the “clumpiness” can be disregarded is inversely proportional to This is one
reason why Farey intervals are useful for analyzing B’s distribution; the diameter
of is also inversely proportional to

Building on the above observations, Vallée ultimately proved that the number
of in is essentially proportional to the width of
(as one would expect), as long as is large enough. Formally, Vallée proved
the following theorem [33].

Theorem 3. For and the subset and the
Farey covering of order are quasi-independent.

Vallée defines quasi-independence as follows.
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Definition 5 (Quasi-Independence). A subset X and a covering of
are quasi-independent if, for all the sets X and are

for some positive constants and – i.e.,

Clearly, this definition is meaningless unless and are independent of N.
Vallée proves that and suffice when and
This means that, for these parameters, any given Farey interval has no more
than times the “density” of than any other Farey
interval.

Interestingly, Vallée’s proof of Theorem 3 is essentially constructive. To an-
alyze the distribution of in the “local” region Vallée
associates each with a point that is in a particular lattice and
that lies in the region between two particular parabolas. She then partitions the
lattice into a set of parallel lines. The number of lines may be very large – e.g.,
superpolynomial in log N. Her distribution analysis then becomes “even more
local”; she provides upper and lower bounds on how many associated lattice
points can occur on each line (except for at most 6 of the lines, for which she
only provides upper bounds). These bounds imply similar bounds on the num-
ber of in Her constructive approach results in what
one may call a “quasi-enumeration” of in in which
each element is indexed first by the line of its associated lattice point, and then
by the lattice point’s position on the line. This quasi-enumeration is crucial
to Vallée’s “quasi-uniform” drawing algorithm (subsection 3.3), to our uniform
drawing algorithm (section 4), and to our algorithms for losslessly compressing

(section 5).
Before discussing these algorithms, we review the details of Vallée’s analysis.

Set to be the closest integer to (the center of the Farey interval). If
is in then Now, let be the

lattice generated by the vectors and (0, N). Then, is in
precisely when there is a such that and The
latter requirement implies that is in between the two parabolas defined,
in variables and by the formulas and

It may seem like a fairly complicated task to approximate how many lattice
points in are between the two parabolas defined above1, but, as Vallée
describes, it is possible to find a lattice basis of in which the basis vectors
are each short, with one basis vector being “quasi-horizontal” and the other
being “quasi-vertical.” The basis is with:

1 Indeed, finding all of the points on a single parabola is equivalent to finding
all of a number’s modular square roots, which is equivalent to factoring.

Thus, if we set then each corresponds to
a lattice point in:
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Recall that and with
Having computed this short lattice basis, Vallée considers the distribution of

(and hence B-elements) on individual lines parallel to vecr. Each
point in lies on a quasi-horizontal line that intersects the vertical axis at
ordinate for some rational index
where and where consecutive indices differ by 1. For lines with
indices from to which intersect
the region between the two parabolas in an area she dubs the “legs” (which is
in between the “chest” and the “feet”), Vallée proves the following theorem:

Theorem 4. The number of points in on the line with index in
the legs satisfies:

Her bounds on each individual line in the legs imply lower and upper bounds on
the total number of lattice points in the legs, using the inequalities:

For lines with indices in or
that intersect the “chest” or “feet,” Vallée provides no nontrivial

lower bounds on the number of they may contain, only upper
bounds. For one can verify Vallée’s results that there are at most
4 lines in the chest, each with fewer than points, and that
there are at most 2 lines in the feet, each with fewer than 8 points. Ultimately,
Vallée proves Theorem 3 using her lower bounds for the legs, and upper bounds
for the chest, legs and feet.

3.3 Vallée’s Quasi-uniform Drawing Algorithm

Vallée uses the above results, particularly her lower and upper bounds for the
legs, to obtain a concrete algorithm for drawing integers from quasi-
uniformly when For a quasi-uniform drawing algorithm, the
respective probabilities of any two being drawn are within a
constant factor of each other; formally:

Definition 6 (Quasi-Uniform). A drawing algorithm C, defined over a finite
set U and with values in a subset X of  is said to be (or quasi-
uniform) for constants and if, for all
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Vallée’s algorithm is as follows:

1.

2.

3.

4.

5.

Randomly Select a Starting Point: Pick random integer with
uniform distribution.
Determine Farey Interval: Use continued fractions to compute for
which
Evaluate the Number of Points in Compute count
exactly the number of points in the chest and feet, and obtain a lower
bound on the number of points in the legs using Vallée’s lower bounds
(with Equation 4).
Pick a Point from Randomly select an integer in
with uniform distribution. If output the appropriate point from
the chest or feet. Else, use Equation 4 to determine which quasi-horizontal
line would contain the point in the legs if each line met Vallée’s lower
bounds, and randomly choose a point in on that line with uniform
distribution.

Remark 1. In Step 3, one can quickly can get an exact count for how many points
are in the chest and the feet by counting the exact number of points on each
line, using simple geometry. (Recall that there are at most 4 lines in the chest,
2 in the feet.) A line intersects one of the two parabolas in at most 4 locations,
possibly cutting the line into two segments that lie in between the parabolas.
After finding the first and last lattice points on each segment, extrapolating
the total number of points on each segment is easy since the of
consecutive lattice points differ by (see Equation 2). Vallée avoids counting
the number of points on lines in the legs, since the number of lines in the legs
may be super-polynomial in log N.

The drawing algorithm outputs an that is in the same
interval as A wider interval (recall that has diameter for

and that is at least half as wide as has a higher chance
of being chosen in the first two steps. However, once an interval is chosen, any
given B-element in that interval has a lower probability of being chosen if the
interval is wide than if it is narrow. On balance, these factors even out (this is
quasi-independence), and the drawing algorithm is quasi-uniform.

In computing there are three things to consider. First, different Farey
intervals may have different “densities” of specifically, the ratio
may be as much as 20 (see discussion after Theorem 3). Second, in Step 2, we
used rather than since is between 1 and 2 times as
wide as this costs us another factor of 2. Finally, within the
interval, different lines may be closer to the lower bounds or closer to the upper
bounds, leading to a factor of Thus, is at most

Compute from the Chosen Point in Let be the lattice
point output by the previous step. Set
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4 Improving Vallée’s and Coron’s Results

In this section, we describe how to modify Vallée’s quasi-uniform drawing al-
gorithm to make it perfectly uniform. Our perfectly uniform drawing algorithm
gives us an immediate improvement upon Coron’s proof of security for Rabin-
PDH; in particular, it allows us to reduce the output size of the partial domain
hash function (see subsection 4.2). More generally, the fact that a simulator
can draw B-elements uniformly in responding to an adversary’s hash queries
allows us (when combined with the compression schemes of Section 5) to reduce
the bandwidth of several signature-related cryptosystems, including aggregate
signature schemes, ring signature schemes and signcryption schemes.

4.1 A Perfectly Uniform Drawing Algorithm

Modifying Vallée’s quasi-uniform drawing algorithm to make it perfectly uni-
form is surprisingly simple. Our modification is based on our observation that,
for any (with as required by Vallée), anyone can
efficiently compute the exact probability that Vallée’s quasi-uniform draw-
ing algorithm will output For example, a simulator in a security proof can
compute this probability (without, of course, needing the factorization of N).

Assume, for now, that we can efficiently compute for any given Let
be a lower bound on such probabilities over all Then, the

improved drawing algorithm is as follows:

1.
2.
3.
4.

Use Vallée’s method to pick an quasi-uniformly.
Compute
Goto Step 1 with probability
Otherwise, output

Since Vallée’s drawing algorithm is quasi-uniform, the expected number of
“Goto” loops per draw is a small constant; thus, the simulator’s estimated time-
complexity increases only by a constant factor. The probability that is cho-
sen in Step 1 and that it “survives” Step 3 is the same for all – namely,

for this reason, and since each run of Vallée’s
algorithm is independent, the algorithm is perfectly uniform.

Now, given how does one (say, a simulator) compute First, the sim-
ulator determines the at most two Farey intervals and
that contain For the simulator computes the index of the quasi-
horizontal line that contains the lattice point associated to and
the exact number of lattice points on Similarly, if there is a second
Farey interval that contains the simulator computes

and Then, using the variables and from Vallée’s draw-
ing algorithm, the probability that will be chosen is:
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where we use to denote the probability that the choice of in Step
4 of Vallée’s algorithm will map to the line

Remark 2. So that the above terminology works when (or
lies in the chest or feet, we can pretend that these points lie on a single
“line.”

Focusing on the first summand in the expression above, the simulator can
compute each of the two probabilities in this term efficiently. First, the simu-
lator computes the number of integers in denoting this number by

is simply Next, for the second probability, suppose
that is the approximation used in Step 4 of Vallée’s algorithm derived
from her lower bounds (namely, for the legs, and

that is her approximation for the number
of points on (Warning: our notation collides here with Vallée’s definition
of and Then, In a similar
fashion, the simulator can compute the necessary probabilities for
thereby obtaining a perfectly uniform drawing algorithm.

Vallée was presumably content with finding a quasi-uniform drawing al-
gorithm, since a uniform algorithm would not have improved her result of a
provable factoring algorithm by a significant
amount. However, as described below, our uniform drawing algorithm has a
significant practical impact on Coron’s partial-domain hash variant of Rabin’s
signature scheme.

4.2 Improving Coron’s Results for Rabin-PDH

Coron [16] provided a random-oracle security proof for a partial-domain hash
Rabin signature scheme (Rabin-PDH), in which the signature is a modular
square root (up to a fudge factor) of where H is a partial-
domain hash with output space for is a possibly
constant function, and is a constant. In Rabin signing, a common fudge factor
is to accept the signature if for any

when N = pq for and In this case,
is an integer in for and if is positive,

or for and if is negative. Coron’s proof requires
that be very small in magnitude (e.g., 16 or 256) [16], so that
is sufficiently small. One reason that Rabin-PDH was an interesting problem
for Coron to analyze was that partial-domain hashes were already being used by
standardized encoding schemes. For example, ISO 9796-2 defined the encoding

As mentioned above, Coron provides a proof of security for Rabin-PDH when
is at least but this can be quite large in practice.

Coron’s security proof relies completely on his algorithm for drawing integers
from with a distribution whose distance from uniform is at most
This statistical distance must be very small, so that an adversary cannot distin-
guish a real attack from a simulated attack, in which the simulator uses Coron’s
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drawing algorithm to respond to hash queries. For the statistical distance to be at
most we must have that which implies that

This implies that is at least When
for example, must be at least This means that,

for Coron’s technique does not reduce the minimum output size of the
hash function at all, until N is at least 3 · 364 = 1092 bits!

We get a better, and much more practical, provable security result by using
our perfectly uniform drawing algorithm. In particular, since our algorithm al-
lows us to draw uniformly for we can prove
a reduction from factoring to Rabin-PDH when is only
over 300 bits less than Coron’s result for Moreover, the proof of security
is tighter than Coron’s proof for two reasons: 1) the adversary cannot possi-
bly distinguish the simulated distribution from uniform; and 2) Coron’s proof,
which adapts his proof for RSA-FDH [15], does not provide a tight reduction
from factoring (cf. Bernstein [6]).

For completeness, we prove the security of a specific variant of our improved
Rabin-PDH, though it should be clear that our drawing algorithm can work
with essentially any variant. We pick the one (succintly) described below for
its simplicity. Other variants may have advantages; e.g., Bernstein’s [6] security
reduction is tighter by a small constant, and Bellare and Rogaway [3] describe
an encoding scheme that allows (at least partial) recovery of the message being
signed.

Let N be the public key, with N = pq for and
Let be the unique number modulo N that satisfies and

Let be the partial-domain hash function
with and be a keyed
hash function, with the key known only to the signer. To sign M, the signer first
computes and then:

1.
2.

Sets if else, sets
Sends mod

To verify, the recipient checks that either or
This scheme can be easily modified, à la Bernstein [6], to avoid

the computation of Jacobi symbols.
In Appendix A, we prove the following theorem.

Theorem 5. Assume that there is a chosen-message attack adversary that
breaks our Rabin-PDH scheme for modulus N in time with probability Then,
in the random oracle model, there is an algorithm that factors N in time
with probability where and

5 The Compression Algorithms

In the previous section, we reduced the permissible output size of the hash
function in Rabin-PDH to about but Rabin-PDH signatures are
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still log N bits. In this section, we describe compression algorithms that allow
us to compress not only Rabin-PDH signatures, but also Rabin ciphertexts (not
to mention aggregate signatures, ring signatures, signcryptions, and so on).

A prerequisite of any compression algorithm is to understand the distribu-
tion of what is being compressed. Vallée gives a constructive characterization
of the distribution, in of integers in we leverage her character-
ization to construct a lossless compression algorithms. Roughly speaking, we
associate to strings of about bits that specify the

Farey interval and its “address” (according to Vallée’s rough
enumeration) within that interval. For a B-element in a wider Farey interval,
we use fewer bits of the bit string to specify the Farey interval and more bits to
specify its address; on balance, it evens out.

Our compression algorithms involve two nondeterministic quasi-bijections,
(used in the signature schemes) and
(used in the encryption scheme), for

small nonnegative constants and These mappings are not actual bijections;
we call them “nondeterministic quasi-bijections” since the image of an element
under each mapping or its inverse has a small constant cardinality; formally:

Definition 7 (Nondeterministic Quasi-bijection). For sets and
constants we say is an

For all the cardinality of is in
For all the cardinality of with is in

1.
2.

Above, is an auxiliary set – e.g., it may be used as a source of (a small number
of) random dummy bits if one wishes to make randomized. The purpose of
is simply to make an actual “mapping,” with a single output for a given input
(even though for a single there may be multiple outputs). Notice that an
actual bijection is a (1,1,1,1)-quasi-bijection.

Roughly speaking, our signature scheme uses to compress, without loss,
a Rabin-PDH signature (an element of to a short bit string. Since the
“entropy” of the hash output in Rabin-PDH is about one may hope
that a Rabin-PDH signature can also be this short; in fact, within a few bits, this
is precisely the case. To verify the compressed signature, it is decompressed to
recover the ordinary Rabin-PDH signature, which is then verified in the normal
fashion. Our encryption scheme uses to map encoded bit strings to integers in

which are then squared to create short ciphertexts. Both and are
efficiently computable and efficiently invertible – i.e., it is easy to recover from

or from – without any trapdoor information.
Why don’t we just replace with Indeed, we could if were a bijec-

tion, but (unfortunately) maps each to possibly several short
strings; if we used to map short encoded messages to mul-
tiple plaintexts would correspond to the same ciphertext, which we wish to avoid.
Thus, although the only real difference between and is that we reduce the

if:
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size of domain to ensure that it is an injection, we find it convenient to keep
the notation separate.

5.1 Mapping B-Elements to Short Strings (The Quasi-bijection)

Below, we give one approach to the quasi-bijection. Roughly speaking,
re-expresses a according to its Farey interval and its “address”
(using Vallée’s lattice) within the Farey interval. For example, a “naive” way to
re-express is as where defines Farey interval, is the
index of the quasi-horizontal line that contains the lattice point associated to
and represents the lattice point’s position on the line. In this format, has at
most two representations, one corresponding to each Farey interval that contains

the only effect of is to pick one of these representations. We describe a
different format below that has tighter compression and does not suffer from the
parsing problems of the naive approach.

The quasi-bijection below maps to a short string in
where is a parameter whose value will be calibrated later.

Computing

1.
2.

3.

4.

Determine for which is in
Compute the smallest integer in with in
and the largest integer in with in
Compute the number of lattice points in the chest and feet of
and an upper bound for the number of points in the legs.
Using Vallée’s enumeration, select one integer in (there may
be several) that corresponds to the lattice point that is associated to

More specifically:
If is the point in the chest or feet, set
Otherwise, let be Vallée’s upper bound for the number of leg lattice

points on quasi-horizontal lines with index at most Compute the index
of the line containing Let be the actual number of lattice points
on the line with index and let be Vallée’s upper-bound
estimate. Suppose that is the lattice point on the line. Pick an integer

Pick an integer Set

Although not mentioned explicitly in the algorithm description above, Vallée’s
quasi-enumeration, and the steps that use this quasi-enumeration, depend on
the values of and (which we assume to be public, and which could be
most conveniently be set to 0 and Shortly, we will calibrate so that

is larger than (but within a constant of) In computing
is used – either deterministically or as a source of random bits – to

pick the values of and Given one can recover the value of as
follows:
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Computing

1.
2.

3.

4.

Determine for which is in
Compute the smallest integer in with in
and the largest integer in with in
Compute the number of lattice points in the chest and feet of
and an upper bound for the number of points in the legs.
Compute From and compute the value of If

let be the point in the chest or feet. Otherwise, compute
the index such that as well as the value of

(defined as above), and let be the point on the quasi-horizontal
line with index
Set5.

Now, we calibrate to be as small as possible while still allowing the prop-
erty that at least one bit string in is uniquely associated to each
element. We can ensure this property if, for every interval,

– i.e., the number of bit strings associated to is at least the
number of points in

Since and are separated by a distance greater than the
width of we get that where the latter term

is the half of the diameter of thus, we get

5.2 Mapping Short Strings to B-Elements (The Quasi-bijection)

Like the quasi-bijection maps short strings to However,
we would like to map short strings (e.g., plaintext strings) into injec-
tively (e.g., to allow correct decryption); thus, the set of short strings is smaller
than the set of (rather than the reverse). For that reason,
uses Vallée’s lower bounds (unlike Since is otherwise similar to we
relegate a precise description of to Appendix B.

In terms of performance, all steps of the and quasi-bijections and their
inverses are except (possibly) the determination of the Farey interval,
which uses continued fractions. However, even the continued fraction step can
be computed in time – e.g., using adaptations of techniques from [14].

To determine an for which we use an upper bound

proven by Vallée [33]: Thus, if
then As long as the estimate is an integer, this
implies that as desired. So, we can set
For this value of the mapping compresses to within 3 bits
of the theoretical minimum. The reader can verify that outputs an answer for
every (i.e., and that has exactly one possible output for each
(i.e.,
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6 Compressed Rabin-PDH Signing
and Compressed Rabin-OAEP+ Encryption

In this section, we describe how to use the and quasi-permutations to achieve
a 33% reduction in the size of Rabin signatures and Rabin ciphertexts.

The signature case is easy to describe. Recall that, in Section 4.2, we de-
scribed how to construct a Rabin-PDH signature that satisfies either

or for where
For simplicity, let’s assume that the

other cases can be handled similarly. In this case, we simply set the compressed
Rabin-PDH signature to be – i.e., the quasi-permutation’s com-
pression of for modulus N and parameters and To verify the compressed
Rabin-PDH signature, the verifier simply recovers from and then
verifies in the normal fashion. Note that anybody can create a compressed
Rabin-PDH signature from a (non-compressed) Rabin-PDH signature, and vice
versa, without needing trapdoor information – i.e., the compression algorithm is
completely separate from the signing process.

The proof of security for compressed Rabin-PDH follows easily from the proof
of security for (non-compressed) Rabin-PDH. Specifically, let be a chosen-
message attack adversary against Compressed Rabin-PDH, and let be chosen-
message attack adversary against Rabin-PDH that interacts both with a “chal-
lenger” and with To respond to signature query on M, queries the
challenger regarding M, receives back Rabin-PDH signature and sends to

where Eventually, aborts or sends a forgery on a
message M*  that it has never queried. aborts or computes
and sends to the challenger as its forgery.

The encryption case is more complicated, because the compression algorithm
cannot be separated from the encryption process. Unfortunately, this fact –
together with the fact the encryption scheme is not quite a one-way permutation
as required by OAEP+, but rather a quasi-bijection – requires us redo the entire
OAEP+ security proof, albeit with relatively minor modifications. At a high
level, encryption and decryption proceed as follows:
Encryption:

1.
2.
3.
4.

Compute an encoding of M.
Compute
Compute
Output as the ciphertext.

Decryption:

1.
2.
3.
4.

5.

Recover from and
such thatCompute each

For each compute the values of
For each undo the message encoding, and confirm that the message M is
encoded correctly.
If an is encoded correctly, output the decryption; otherwise, indicate de-
cryption failure.
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For Vallée’s parameters, for a given there are at most two values of in Step
3 – i.e., – so the encoding of at most 4 values of must be checked.
As mentioned in section 5 and further discussed in Appendix B, our preferred
parameters are and

Although we could use any of a variety of encoding schemes, we prove that
Compressed Rabin-OAEP+ has a tight reduction to factoring. The OAEP+
encoding scheme uses three hash functions:

and

where are security parameters. The quantities and should
be negligible. Let To encode message

the sender:

1.
2.
3.

Picks a random
Sets and
Sets an integer.

In Step 4 of Decryption, the recipient decodes by parsing each candidate into
for and and then parsing into for for

and For each the recipient computes
and and tests whether If there is a unique

for which the condition is satisfied, the recipient outputs as the correct
plaintext; otherwise, it indicates a decryption failure. For technical reasons in
the security proof, we require that – i.e., that the encrypter use as the
random bits in the computation of – and that the decrypter indicate
a decryption failure if this is not done. For compressed Rabin-OAEP+, we prove
the following theorem in Appendix C.

Theorem 6. Let be an IND-CCA2 adversary that breaks Compressed Rabin-
OAEP+ in time with advantage for modulus N. Then

where is the success probability that a particular
algorithm can factor, and

is the complexity of encryption.

7 Extensions

In the full version of the paper, we describe compressed signcryption, aggregate
signature and ring signature schemes, in which we achieve a 33% bandwidth
reduction in comparison to Rabin-variants of the schemes in [24], [23] and [29].
We also note that our compression algorithms can be applied to allow shorter
identity-based secret and public keys for the Fiat-Shamir signature scheme and
Cocks’ identity-based encryption scheme.
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A Security Proof for Improved Rabin-PDH

To prove our scheme secure against existential forgery under chosen-message
attacks, we construct the following game:

Setup: gives the public key N, retaining for use as a random oracle.

Hash Queries: can make a query to the at any time. If
has received an identical query before, it responds as it did before. Other-
wise, responds by first generating a random value with
uniform distribution. It then generates a number with uni-
form distribution and sets It logs into its

(When there is a small complication – namely, must be cho-
sen s.t. not only but also

The simulator can accomplish this easily
simply by discarding the sampled that don’t satisfy the latter inequality
(50%  of  them  for

Signature Queries: can make a query to the at any time.
responds by using to recover from its it then sends
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Forgery: Eventually, the adversary either aborts or outputs a signature on a
message M for which it has not made a signature query.

One can easily confirm that responses, as well as its signature
responses, are indistinguishable from uniform; in fact, they are perfectly uniform.

Any forgery that manages to generate for message M must satisfy
or If made no at M,

then its probability of success is at most If did make an at M,
then recovers the value associated to M from its With probability

gives a nontrivial factor of N. Thus, and

B Details of the Quasi-bijection

Let where is a parameter whose value will be calibrated later.
The quasi-permutations sends to an element of as follows.

Computing

1.
2.

3.

4.

Compute and determine for which the result is in
Compute the smallest integer in with in
and the largest integer in with in
Compute the number of lattice points in the chest and feet of
and a lower bound for the number of points in the legs.
Using Vallée’s enumeration, select one lattice point (there may be
several) that corresponds to More specifically:

Pick an integer in
If pick the lattice point that has enumeration in the

chest or feet.
Otherwise, let be Vallée’s lower-bound for the number of leg lattice

points on quasi-horizontal lines with index at most Compute such that
Let be the number of lattice points on the line

with index and let be Vallée’s lower-bound estimate. Pick an integer
and set to be the point

in on the line.
Set where Output5.

We omit the description of since it should be clear from the above. Now,
we mention some of the properties of the quasi-permutation.

Choosing the parameters such that – i.e.,
such that the lower bound on the number of points in is greater than
the number of bit strings associated to – ensures that is at least 1,
since one can always find a value for in the computation of Notice that

where the latter term is the diameter of

This implies that Now, consider the parameters used
by Vallée. Vallée considered the case — so that
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For this value of Vallée proved a lower bound of

(see [33]). Thus, if then As long
as the estimate is an integer, this implies that as
desired. To ensure that is never zero, we want that

where the latter is the diameter of the narrowest

Farey interval. So, we can set to be anything between and
values closer to the latter involve less ciphertext expansion.

On the other hand, we would like and to be small positive constants.
This ensures that picking (and uniformly and outputting is a quasi-
uniform drawing algorithm for (this helps get a tight security proof for
the encryption scheme). The computation of outputs up to two values
of exactly one for each Farey interval that contains thus We
use Vallée’s upper bounds to bound Specifically, Vallée’s computations allow

to be upper bounded by
allowing us to upper bound the number of possible values of by 4, for Also,
there are at most (see Vallée’s Leg Theorem) possible values of so

is at most 4 × 4 = 16. Accordingly, for and one
gets a (1,16,1, 2) quasi-bijection.

C Security Proof for Compressed Rabin-OAEP+

Recall the standard definition of security against adaptive chosen-ciphertext at-
tack. An algorithm “breaks” the encryption scheme if, in the following game,
it outputs the correct value of in the final stage with more than negligible
advantage:

Setup: The challenger generates a Rabin modulus N and hash functions G,
and H, defined as above. It sends to
Phase 1: requests the challenger to decrypt ciphertexts of choosing.
Challenge: chooses two plaintexts and and sends them to the chal-
lenger. The challenger randomly chooses bit encrypts and sends
the ciphertext to
Phase 2: again requests the challenger to decrypt ciphertexts of choosing,
other than the Challenge ciphertext.
Output: Finally, outputs a bit

We define advantage as:
In the game above, algorithm plays the part of the challenger, using its

its control over the random oracles G, and H to respond to decryption
queries. We say that the system is if no attacker
limited to time to decryption queries, to G-queries, to
and to H-queries, has advantage more than Now, we define aspects of the
game more precisely.

Hash queries: can query G, or H at any time. In responding to these
queries, maintains a G-list, and H-list logging queries and responses. If
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makes a query that is contained in one of lists, responds the same way
it did before. Otherwise, for G, it generates a random string with uniform
distribution, sends this to as its G-query response, and logs G-query and
its response on its G-list. It responds similarly to and H-queries. We
use the convention that before makes an on it makes a
G-query on and an H-query on

Challenge: At some point, produces two plaintexts on
which it wishes to be challenged. picks a random and encrypts
in the usual way. Let be the resulting ciphertext, and let and
M* denote the values corresponding to that would be obtained through the
decryption process.

Decryption Queries and Probability Analysis: can make decryption
queries at any time, subject to the constraint that it cannot query the Challenge
ciphertext in Phase 2. Our treatment of decryption queries closely tracks Shoup’s
analysis for trapdoor permutations encoded using OAEP+. Shoup’s analysis con-
sists of a sequence of games for each game a slight modification
of the previous one, where represents the attack on the encryption scheme,
and is a certain attack in which an adversary obviously has no advantage.
Shoup bounds for where is an adversary’s
probability of success in game thereby bounding an adversary’s advantage
in To reduce space, our proof draws heavily from Shoup’s proof.

In game the decryption oracle decrypts ciphertext as usual, recovering
and in the process. The decryption oracle is identical to (e.g.,

it can find modular square roots) except that the decryption oracle in rejects
whenever is not on its G-list. Let be the event that a ciphertext rejected in

would not have been rejected in Consider a ciphertext submitted
to the decryption oracle. If and then since there is only a
single legitimate ciphertext generated from and M* (recall that we use
as the random bits in the quasi-bijection), would also have rejected. Our
analysis of the case of or is identical to Shoup’s, leading to
the conclusion that

In game the decryption oracle is identical to that of except it rejects
when is not on its .H-list. Let be the event that a ciphertext rejected in
would not have been rejected in For ciphertext with not on the
H-list, we consider two cases:
Case 1: Now, and implies (again because we
made deterministic given Shoup’s remaining analysis of this case also works
for our situation.
Case 2: Our analysis here is again identical.
Like Shoup, we obtain

In game the decryption oracle does not have access to a trapdoor, but
instead maintains a ciphertext-list. After receiving an it com-
putes all possible values of and It
logs these ciphertexts in its ciphertext-list. Shoup’s probability analysis applies
to our case: His time-complexity analysis also applies: over the
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course of the decryption oracle’s complexity is
where is the complexity of the encryption function.

Game in which Shoup replaces the original random oracles with different
but identically distribute variables, also works in our case. (See [31] for details
of Note the new encryption oracle in is identically distributed to the old
one, even though is not a permutation in our case, since Shoup’s changes
only affect input, not itself.

Game is the same as (we skipped describing except that the
encryption oracle chooses random strings and and
it uses these values in the computation of the ciphertext, as described in [31].
Since is only used to mask M*, Like Shoup, we also obtain in
our case that where is the event that queries
G at However, our proofs finally diverge significantly at this point. Shoup
describes an auxiliary game in which the encryption oracle is modified again
to simply output a random number in the ciphertext space (in our case,

and then he uses the fact that, for a permutation, comes
from a distribution identical to We cannot do this, since the quasi-bijection
chooses from – and thus from the ciphertext space – only quasi-
uniformly.

Instead, we define our as for chosen randomly with
uniform distribution, and (as always) and are defined with respect to this
ciphertext. Then, for reasons analogous to those used by Shoup, if we define
to be the event that queries G at in game we have
Letting be the event that queries H at in game we have that

Now, we claim that, if is an quasi-bijection, then
For brevity, denote the probability – i.e., the probability

and occur given the value for as chosen above – by
where will be treated as a random variable. Notice that, for any

there exists a such that and is a nontrivial
factor of N; in fact, we can “pair off” the numbers in so that each
corresponds to exactly one Suppose that and
correspond to If queries and (which occurs
with probability then can use to find a nontrivial factor of N
by taking every pair queried by deriving the corresponding computing

and checking whether is a nontrivial factor.
Overall, we have that This proba-

bilility is less than by quasi-uniformity, where each
is paired off with a that gives a nontrivial factor. However, the probability

is less than probability of success, which proves
the claim.

For the same reason as in [31], Thus, we get
Collecting all of the results, we get the time and complexity

stated in the theorem.
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Abstract. In this paper, we study the bounded sum-of-digits discrete
logarithm problem in finite fields. Our results concern primarily with
fields where The fields are called kummer extensions of
It is known that we can efficiently construct an element with order
greater than in the fields. Let be the function from integers
to the sum of digits in their expansions. We first present an algo-
rithm that given finds in random polynomial time,
provided that We then show that the problem is solvable in
random polynomial time for most of the exponent with
by exploring an interesting connection between the discrete logarithm
problem and the problem of list decoding of Reed-Solomon codes, and
applying the Guruswami-Sudan algorithm. As a side result, we obtain a
sharper lower bound on the number of congruent polynomials generated
by linear factors than the one based on Stothers-Mason ABC-theorem.
We also prove that in the field  the bounded sum-of-digits dis-
crete logarithm with respect to can be computed in random time

where is a subexponential function and is the
bound on the sum-of-digits of the exponent, hence the problem is
fixed parameter tractable. These results are shown to be generalized to
Artin-Schreier extension where is a prime. Since every finite field
has an extension of reasonable degree which is a Kummer extension, our
result reveals an unexpected property of the discrete logarithm problem,
namely, the bounded sum-of-digits discrete logarithm problem in any
given finite field becomes polynomial time solvable in certain low degree
extensions.

1 Introduction and Motivations

Most of practical public key cryptosystems base their security on the hardness
of solving the integer factorization problem or the discrete logarithm problem
in finite fields. Both of the problems admit subexponential algorithms, thus we
have to use long parameters, which make the encryption/decryption costly if
the parameters are randomly chosen. Parameters of low Hamming weight, or
more generally, of small sum-of-digits, offer some remedy. Using them speeds

* This research is partially supported by NSF Career Award CCR-0237845.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 201–212, 2004.
© International Association for Cryptologic Research 2004
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up the system while seeming to keep the security intact. In particular, in the
cryptosystem based on the discrete logarithm problem in finite fields of small
characteristic, using small sum-of-digits exponents is very attractive, due to the
existence of normal bases [1]. It is proposed and implemented for smart cards and
mobile devices, where the computing power is severely limited. Although attacks
exploring the specialty were proposed [14], none of them have polynomial time
complexity.

Let be a finite field. For if form a linear
basis of over we call them a normal basis. It is known that a normal
basis exists for every pair of prime power and a positive integer [11, Page
29]. Every element in can be represented as

where for The power of is a linear operation, thus

Hence to compute the power, we only need to shift the digits, which can be
done very fast, possibly on the hardware level. Let be an integer with
expansion

The sum-of-digits of in the expansion is defined as
When the sum-of-digits becomes the famous Hamming weight. To com-
pute we only need to do shiftings and at most many of multiplications.
Furthermore, the exponentiation algorithm can be parallelized, which is a prop-
erty not enjoyed by the large characteristic fields. For details, see [16].

1.1 Related Work

The discrete logarithm problem in finite field  is to compute an integer such
that given a generator of a subgroup of and in the subgroup.
The general purpose algorithms to solve the discrete logarithm problem are the
number field sieve and the function field sieve (for a survey see [13]). They have
time complexity

for some constant when is small, or is small.
Suppose we want to compute the discrete logarithm of with respect to

base in the finite field  If we know that the Hamming weight of is equal
to there is an algorithm proposed by Coppersmith (described in [14]), which
works well if is very small. It is a clever adaption of the baby-step giant-
step idea, and runs in random time It is proved in [14] that
the average-case complexity achieves only a constant factor speed-up over the
worst case. It is not clear how his idea can be generalized when the exponent
has small sum-of-digits in the base However, we can consider the very

TEAM LinG



On the Bounded Sum-of-Digits Discrete Logarithm Problem in Finite Fields 203

If the sum-of-digits of the exponent is bounded by is there an algo-
rithm which runs in time and solves the discrete logarithm problem
in for some function and a constant A similar problem has been raised
from the parametric point of view by Fellows and Koblitz [10], where they con-
sider the prime finite fields and the bounded Hamming weight exponents. Their
problem is listed among the most important open problems in the theory of
parameterized complexity [9]. From the above discussions, it is certainly more
relevant to cryptography to treat the finite fields with small characteristic and
exponents with bounded sum-of-digits.

Unlike the case of the integer factorization, where a lot of special purpose
algorithms exist, the discrete logarithm problem is considered more intractable
in general. As an example, one should not use a RSA modulus of about 1000 bits
with one prime factor of 160 bits. It would be vulnerable to the elliptic curve
factorization algorithm. However, in the Digital Signature Standard, adopted by
the U.S. government, the finite field has cardinality about or larger, while
the encryption/decryption is done in a subgroup of cardinality about As
another example, one should search for a secret prime as random as possible in
RSA, while in the case of the discrete logarithm problem, one may use a finite
field of small characteristic, hence the group of very special order. It is believed
that no trapdoor can be placed in the group order, as long as it has a large
prime factor (see the panel report on this issue in the Proceeding of Eurocrypt
1992). In order to have an efficient algorithm to solve the discrete logarithm,
we need that every prime factor of the group order is bounded by a polynomial
function on the logarithm of the cardinality of the field. Given the current state
of analytic number theory, it is very hard, if not impossible, to decide whether
there exists infinitely many finite fields of even (or constant) characteristic, where
the discrete logarithm can be solved in polynomial time.

In summary, there are several common perceptions about the discrete loga-
rithm problem in finite fields:

As long as the group order has a big prime factor, the discrete logarithm
problem is hard. We may use exponents with small sum-of-digits, since the
discrete logarithm problem in that case seems to be fixed parameter in-
tractable. We gain advantage in speed by using bounded sum-of-digits ex-
ponents, and at the same time keep the problem as infeasible as using the
general exponents.
If computing discrete logarithm is difficult, it should be difficult for any
generator of the group. The discrete logarithm problem with respect to one
generator can be reduced to the discrete logarithm problem with respect
to any generator. Even though in the small sum-of-digits case, a reduction
is not available, it is not known that changing the generator of the group
affects the hardness of the discrete logarithm problem.

1.

2.

special case where for and
Recall that are the digits of in the expansion. It can be verified
that Coppersmith’s algorithm can be applied in this case. The time complexity
becomes If it is much worse than the time complexity
of the function field sieve on a general exponent.
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1.2 Our Results

In this paper, we show that those assumptions taken in combination are incor-
rect. We study the discrete logarithm problem in large multiplicative subgroups
of the Kummer and Artin-Schreier extensions with a prescribed base, and prove
that the bounded sum-of-digits discrete logarithm are easy in those groups. More
precisely we prove constructively:

Theorem 1. (Main) There exists a random algorithm to find the integer  given
and in in time polynomial in under the conditions:

and
where and

1.
2.
3.

Moreover, there does not exist an integer satisfying that
and

The theorem leads directly to a parameterized complexity result concerning
the bounded sum-of-digits discrete logarithm, which answers an important open
question for special, yet non-negligibly many, cases.

Corollary 1. There exists an element of order greater than in such
that the discrete logarithm problem with respect to the generator can be solved
in time where is a subexponential function and is the bound
of the sum-of-digits of the exponent in expansion.

A few comments are in order:

For a finite field if then there exists satisfying the
condition in the theorem, in the other words, there exists an irreducible
polynomial of form over if there exists such that

and then
As a comparison, Coppersmith’s algorithm runs in exponential time in the
case where for and while our
algorithm runs in polynomial time in that case. On the other hand, Copper-
smith’s algorithm works for every finite field, while our algorithm works in
Kummer extensions. Our result has an indirect affect on an arbitrary finite
field though, since every finite field has extensions of degree close to a given
number, which are Kummer extensions. As an example, suppose we want
to find such an extension of with degree about We first pick a
random close to such that Let be the order of in Z/nZ.
The field is a Kummer extension of and an extension of Ac-
cording to Theorem 1, there is a polynomial time algorithm which computes
the discrete logarithm to some element in provided that the sum-
of-digits of the exponent in the expansion is less than Hence our
result reveals an unexpected property of the discrete logarithm problem in
finite fields: the difficulty of bounded sum-of-digits discrete logarithm prob-
lem drops dramatically if we move up to extensions and increase the base of
the exponent accordingly.
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Numerical evidences suggest that the order of is often equal to the group
order and is close to the group order otherwise. However, it seems
hard to prove it. In fact, this is one of the main obstacles in improving the
efficiency of AKS-style primality testing algorithm [2]. We make the following
conjecture.

Conjecture 1. Suppose that a finite field  and an element in the field
satisfy the conditions in Theorem 1. In addition, The order of
is greater than for an absolute constant

Even though we can not prove that the largest prime factor of the order of
is very big, it seems, as supported by numerical evidences, that the order of

which is a factor of bigger than is rarely smooth. For instance,
in the any generates the whole group The order

contains a prime factor of 749 bits. One should not attempt to apply
the Silver-Pohlig-Hellman algorithm here.

A natural question arises: can the restriction on the sum-of-digits in Theo-
rem 1 be relaxed? Clearly if we can solve the problem under condition

in polynomial time, then the discrete logarithm problem in subgroup
generated by is broken. If is a generator of then the discrete logarithm
problem in and any of its subfields to any base are broken. We find a sur-
prising relationship between the relaxed problem and the list decoding problem
of Reed-Solomon codes. We are able to prove:

Theorem 2. Suppose is chosen randomly from the set

There exists an algorithm given and in to find in time polynomial in
with probability greater than for some constant greater than

1, under the conditions:

where and
1.
2.

Given a polynomial ring it is an important problem to deter-
mine the size of multiplicative subgroup generated by
where is a list of distinct elements in and for all

The lower bound of the order directly affects the time complex-
ity of AKS-style primality proving algorithm. In that context, we usually have
deg Assume that deg For a list of integers
we denote

by One can estimate the number of distinct congruent polynomi-
als of form modulo for E in certain set. It is obvious that if

then all the polynomials are in
different congruent classes. This gives a lower bound of Through a clever
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use of Stothers-Mason ABC-theorem, Voloch [15] and Berstein [5] proved that
if then at most 4 such polynomials can fall in the same congruent
class, hence obtained a lower bound of We improve their result and
obtain a lower bound of

Theorem 3. Use the above notations. Let C be

If there exist pairwise different element such that

then Note that

By allowing negative exponents, Voloch [15] obtained a bound of Our
bound is smaller than his. However, starting from our method
gives better bounds. Details are left in the full paper. A distinct feature of our
bound is that it relates to the list decoding algorithm of Reed-Solomon codes.
If a better list decoding algorithm is found, then our bound can be improved
accordingly.

1.3 Organization of the Paper
The paper is organized as follows. In Section 2, we list some results of counting
numbers with small sum-of-digits. In Section 3, we present the basic idea and
the algorithm, and prove Theorem 1 and Corollary 1. In Section 4, we prove
Theorem 2 and Theorem 3. In Section 5, we extend the results to Artin-Schreier
extensions. We conclude our paper with discussions of open problems.

2 Numbers with Small Sum-of-Digits
Suppose that the expansion of a positive integer is

where  for all How many nonnegative integers less
than satisfy Denote the number by Then
equals the number of nonnegative integral solutions of

under the conditions that for all The generating
function for is

If then the conditions can be removed, we have that
It is easy to see that if we have that

In the later section, we will need to estimate where is times
a small constant less than 2. Since
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Hence if

3 The Basic Ideas and the Algorithm

The basic idea of our algorithm is adopted from the index calculus algorithm. Let
be a Kummer extension of namely, Assume that where

is the characteristic. The field  is usually given as where
is an irreducible polynomial of degree dn over If satisfies the condition in
Theorem 1, then must be an irreducible polynomial over Denote

by To implement our algorithm, it is necessary that we work in another
model of namely, Fortunately the isomorphism

can be efficiently computed. To compute where is a polynomial
of degree at most dn – 1 over all we have to do is to factor over

and to evaluate at one of the roots. Factoring polynomials
over finite fields is a well-studied problem in computational number theory, we
refer to [3] for a complete survey of results. The random algorithm runs in
expected time and the deterministic algorithm
runs in time From now on we assume the model

Consider the subgroup generated by in recall
that and The generator has order greater than

[8], and has a very nice property as follows. Denote by we have

and more generally

In other words, we obtain a set of relations: for
This corresponds to the precomputation stage of the index calculus.
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The difference is that, in our case, the stage finishes in polynomial time, while
generally it requires subexponential time. For a general exponent

If is an element in where is a polynomial of degree less
than and and then due to unique factorization
in can be completely split into the product of linear factors over
We can read the discrete logarithm from the factorizations, after the coefficients
are normalized. The algorithm is described as follows.

Algorithm 1 Input: in satisfying the conditions in
Theorem 1.

Output:

Define an order in (for example, use the lexicographic order). Compute
and sort the list
Suppose that is represented by where has degree less
than Factoring over let where

are in
(Normalization) Normalize the coefficients and reorder the factors of
such that their constant coefficients are and

where
Output

1.

2.

3.

4.

The step 1 takes time The
most time-consuming part is to factor a polynomial over with degree at most

The random algorithm runs in expected time and
the deterministic algorithm runs in time
Normalization and reordering can be done in time since we have
a sorted list of Thus the algorithm can be finished in
random time and in deterministic time
This concludes the proof of the main theorem.

Now we are ready to prove Corollary 1. Any where
is congruent to a product of at most linear factors

modulo If we have an algorithm running in time
according to Theorem 1. So we only need to consider the case when
The general purpose algorithm will run in random time where
is a subexponential function. Theorem 1 follows from the fact that

4 The Application of the List Decoding Algorithm
of Reed-Solomon Codes

A natural question arises: can we relax the bound on the sum-of-digits and
still get a polynomial time algorithm? Solving the problem under the condition
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basically renders the discrete logarithm problems in and
any of its subfields easy. Suppose that where has degree
less than Using the same notations as in the previous section, we have

Hence there exists a polynomial with degree such that

If the cardinality of is greater than then the curve will pass
at least points in the set

To find all the polynomials of degree which pass at least
points in a given set of points, is an instance of the list decoding problem of
Reed-Solomon codes. It turns out that there are only a few of such polynomials,
and they can be found efficiently as long as

Proposition 1. (Guruswami-Sudan [12] ) Given distinct elements
values and a natural number there are

at most many univariate polynomials of degree at most
such that for at least many points. Moreover, these polynomials
can be found in random polynomial time.

For each we use the Cantor-Zassenhaus algorithm to factor
There must exist a such that the polynomial can

be completely factored into a product of linear factors in
and is computed as a consequence.

4.1 The Proof of Theorem 2

In this section, we consider the case when If there are at least
number of nonzero then we can apply the Guruswami-

Sudan algorithm to find all the In order to prove Theorem 2, it remains to
show:

Lemma 1. Define as

and as

We have

for some constant when is sufficiently large.

and  for

TEAM LinG



210 Qi Cheng

This proves the lemma with

4.2 The Proof of Theorem 3

Proof. Let be a positive real number less than 1. Define

Given if there exists such that
(mod there must exist a polynomial such that

and is a solution for the list decoding problem with input
According to Propostion 1, there are at most solutions. Thus the

number of congruent classes modulo that has is
greater than We have

It takes the maximum value at

5 Artin-Schreier Extensions

Let be a prime. The Artin-Schreier extension of a finite field  is It is
easy to show that is an irreducible polynomial in for any

So we may take Let
For any we have

and similarly

Proof. The cardinality of is
The cardinality of is less than The summands
maximize at if Hence we have
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Hence the results for Kummer extensions can be adopted to Artin-Schreier ex-
tensions. For the subgroup generated by we have a polynomial algorithm
to solve the discrete logarithm if the exponent has sum-of-digits less than

Note that may be 0 in this case.

Theorem 4. There exists an algorithm to find the integer given and in
in time polynomial in under the conditions:

and
where and

1.
2.

Moreover, there does not exist an integer satisfying that
and

Theorem 5. There exists an element of order greater than in such
that the discrete logarithm problem with respect to can be solved in time

where is a subexponential function and is the bound of
the sum-of-digits of the exponent in the expansion.

Theorem 6. Suppose that where and
Suppose is chosen in random from the set

There exists an algorithm given and in to find  in time polynomial in
with probability greater than for some constant greater than 1.

6 Concluding Remarks

A novel idea in the celebrated AKS primality testing algorithm, is to construct a
subgroup of large cardinality through linear elements in finite fields. The subse-
quent improvements [6,7,4] rely on constructing a single element of large order.
It is speculated that these ideas will be useful in attacking the integer factor-
ization problem. In this paper, we show that they do affect the discrete loga-
rithm problem in finite fields. We give an efficient algorithm which computes
the bounded sum-of-digits discrete logarithm with respect to prescribed bases
in Kummer extensions. We believe that this is more than a result which deals
with only special cases, as every finite field has extensions of reasonable degrees
which are Kummer extensions. For instance, if we need to compute the discrete
logarithm of in base we can construct a suitable Kummer extention
and try to solve the discrete logarithms of and with respect to a selected base
in the extension. This approach is worth studying. Another interesting problems
is to further relax the restriction on the sum-of-digits of the exponent. It is also
important to prove or disprove Conjecture 1. If that conjecture is true, the AKS-
style primality proving can be made compatible or even better than ECPP or
the cyclotomic testing in practice.
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Polynomial Time Equivalent to Factoring
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Abstract. We address one of the most fundamental problems concern-
ing the RSA cryptoscheme: Does the knowledge of the RSA public key/
secret key pair yield the factorization of N = pq in polynomial
time? It is well-known that there is a probabilistic polynomial time algo-
rithm that on input outputs the factors and We present the
first deterministic polynomial time algorithm that factors N provided
that and that the factors are of the same bit-size. Our
approach is an application of Coppersmith’s technique for finding small
roots of bivariate integer polynomials.

Keywords: RSA, Coppersmith’s method

1 Introduction

One of the most important tasks in public key cryptography is to establish the
polynomial time equivalence of

the problem of computing the secret key from the public information to
a well-known hard problem P that is believed to be computational infeasible.

This reduction establishes the security of the secret key under the assumption
that the problem P is computational infeasible. On the other hand, such a re-
duction does not provide any security for a public key system itself, since there
might be ways to break a system without computing the secret key.

Now let us look at the RSA scheme. We briefly define the RSA parameters:
Let N = pq be a product of two primes of the same bit-size. Furthermore, let
be integers such that where is Euler’s totient function.

For the RSA scheme, we know that there exists a probabilistic polynomial
time equivalence between the secret key computation and the problem of fac-
toring the modulus N. The proof is given in the original RSA paper by Rivest,
Shamir and Adleman [9] and is based on a work by Miller [8].

In this paper, we present a deterministic polynomial time algorithm that on
input outputs the factors provided that and are of the same
bit-size and that

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 213–219, 2004.
© International Association for Cryptologic Research 2004
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In the normal RSA-case we have since axe defined modulo
This implies that as required. Thus, our algorithm establishes the

deterministic polynomial time equivalence between the secret key computation
and the factorization problem in the most common RSA case. We reduce the
problem of factoring N to the problem of computing the reduction in the
opposite direction is trivial.

Our approach is an application of Coppersmith’s method [4] for finding small
roots of bivariate integer polynomials. We want to point out that some crypt-
analytic results [1,2] are based on Coppersmith’s technique for solving modular
bivariate polynomial equations. In contrast to these, we make use of Copper-
smith’s algorithm for bivariate polynomials with a small root over the integers.
Therefore, our result does not depend on the usual heuristic for modular multi-
variate polynomial equations but is rigorous.

To the best of our knowledge, the only known application of Coppersmith’s
method for bivariate polynomials with a root over the integers is the so-called
“factoring with high bits known” [4]: Given half of the most significant bits of

one can factor N in polynomial time. Howgrave-Graham [6] showed that this
problem can be solved alternatively using an univariate modular approach (see
also [5]).

Since our approach directly uses Coppersmith’s method for bivariate integer
polynomials, the proof of our reduction is brief and simple.

The paper is organized as follows. First, we present in Sect. 2 a deterministic
polynomial time algorithm that factors N on input provided that

This more restricted result is interesting, since RSA is frequently used with
small in practice. Additionally, we need only elementary arithmetic in order to
prove the result. As a consequence, the underlying algorithm has running time

Second, we show in Sect. 3 how to improve the previous result to the desired
bound by applying Coppersmith’s method for solving bivariate integer
polynomials. We conclude by giving experimental results in Sect. 4.

2 An Algorithm for

In this work, we always assume that N is a product of two different prime factors
of the same bitsize, wlog This implies

We obtain the following useful estimates:

Let us denote by the smallest integer greater or equal to Furthermore, we
denote by the ring of invertible integers modulo
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In the following theorem, we present a very efficient algorithm that on input
outputs the factors of N provided that

Theorem 1 Let N = pq be an RSA-modulus, where and are of the same
bit-size. Suppose we know integers with ed > 1,

Then N can be factored in time

Proof: Since we know that

Next, we show that can be computed up to a small constant for our choice of
and Therefore, let us define as an underestimate of We observe

that

Using the inequalities and we conclude that

Since we know that Thus, one of the six values
must be equal to We test these six candidates successively. For

the right choice we can compute

From the value we can easily find the factorization of N.
Our approach uses only elementary arithmetic on integers of size log (N).

Thus, the running time is which concludes the proof of the theorem.

3 The Main Result

In this section, we present a polynomial time algorithm that on input
outputs the factorization of N provided that This improves upon the
result of Theorem 1. However, the algorithm is less efficient, especially when we
get close to the bound

Our approach makes use of the following result of Coppersmith [4] for finding
small roots of bivariate integer polynomials.

TEAM LinG



216 Alexander May

Theorem 2 (Coppersmith) Let be an irreducible polynomial in two
variables over of maximum degree in each variable separately. Let X, Y be
bounds on the desired solution Let W be the absolute value of the largest
entry in the coefficient vector of If

then in time polynomial in log W and we can find all integer pairs
with and

Now, let us prove our main theorem.

Theorem 3 Let N = pq be an RSA-modulus, where and are of the same
bit-size. Suppose we know integers with ed > 1,

Then N can be factored in time polynomial in the bit-size of N.

Proof: Let us start with the equation

Analogous to the proof of Theorem 1, we define the underestimate of
Using (1), we know that

Let us denote Therefore, we have an approximation for the unknown
parameter in (2) up to an additive error of

Next, we also want to find an approximation for the second unknown param-
eter in (2). Note that

That is, lies in the interval We can easily guess an estimate
of with additive error at most by doing a brute-force search on the
most significant bits of

Let denote the term for the right choice of That is, we know
for some unknown with

Plugging our approximations for and in (2) leads to

More precisely, we divide the interval into 6 sub-interval of
length with centers For the correct choice of

we have
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Let us round and to the next integers. Here we omit the rounding brackets
for ease of simplicity. Notice that the effect of this rounding on the

bounds of the estimation errors and can be neglected becomes even
smaller). Thus, we assume in the following that are integers. Therefore, we
can define the following bivariate integer polynomial

with a root over the integers.
In order to apply Coppersmith’s theorem (Theorem 2), we have to bound

the size of the root We define and Then,
and
Let W denote the of the coefficient vector of We have

By Coppersmith’s theorem, we have to satisfy the condition Using
our bounds, we obtain

Thus, we can find the root in time polynomial in the bit-size of W using
Coppersmith’s method. Note that the running time is also polynomial in the
bit-size of N since Finally, the term yields
the factorization of N. This concludes the proof of the theorem.

We want to point out that Theorem 3 can be easily generalized to the case,
where I.e., we do not necessarily need that and are
of the same bit-size. All that we have to require is that they are balanced up to
some polylogarithmic factor in N.

The following theorem is a direct consequence of Theorem 3. It establishes
the polynomial time equivalence of computing and factoring N in the common
RSA case, where

4 Experiments

We want to provide some experimental results. We implemented the algorithm
introduced in the previous section on an 1GHz Linux-PC. Our implementation
of Coppersmith’s method follows the description given by Coron [4].
reduction [7] is done using Shoup’s NTL library [10].

Theorem 4 Let N = pq be an RSA-modulus, where and are of the same
bit-size. Furthermore, let be an RSA public exponent.

Suppose we have an algorithm that on input outputs in deterministic
polynomial time the RSA secret exponent satisfying
Then N can be factored in deterministic polynomial time.
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We choose randomly. Therefore, in every experiment the product
ed is very close to the bound Notice that in Theorem 3, we have to do a
small brute-force search on the most significant bits of in order to prove
the desired bound. The polynomial time algorithm of Coppersmith given by
Theorem 2 requires a similar brute-force search on the most significant bits.

In Table 1, we added a column that states the total number of bits that one
has to guess in order to find a sufficiently small lattice vector. Thus, we have to
multiply the running time of the lattice reduction algorithm by a factor of
As the results indicate, the number heavily depends on the lattice dimension.
Coppersmith’s technique yields a polynomial time algorithm when the lattice
dimension is of size However, we only tested our algorithm for lattices
of small fixed dimensions 16, 25 and 36.

Our experiments compare well to the experimental results of Coron [3]: One
cannot come close to the bounds of Coppersmith’s theorem without reducing
lattices of large dimension. Notice that we have to guess a large number of bits.
In contrast, by the proof of Coppersmith’s theorem (see [4]) the number of bits
that one has to guess for lattice dimension is a small constant. However,
it is a non-trivial task to handle lattices of these dimensions in practice.
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One might conclude that our method is of purely theoretical interest. But let
us point out that we have a worst case for our approach when the product ed is
very close to the bound In Table 2, we provide some more practical results
for the case
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Abstract. We introduce the notion of multi-trapdoor commitments
which is a stronger form of trapdoor commitment schemes. We then
construct two very efficient instantiations of multi-trapdoor commitment
schemes, one based on the Strong RSA Assumption and the other on the
Strong Diffie-Hellman Assumption.
The main application of our new notion is the construction of a compiler
that takes any proof of knowledge and transforms it into one which is
secure against a concurrent man-in-the-middle attack (in the common
reference string model). When using our specific implementations, this
compiler is very efficient (requires no more than four exponentiations)
and maintains the round complexity of the original proof of knowledge.
The main practical applications of our results are concurrently secure
identification protocols. For these applications our results are the first
simple and efficient solutions based on the Strong RSA or Diffie-Hellman
Assumption.

1 Introduction

A proof of knowledge allows a Prover to convince a Verifier that he knows some
secret information (for example a witness for an N P-statement Since
must remain secret, one must ensure that the proof does not reveal any informa-
tion about to the Verifier (who may not necessarily act honestly and follow the
protocol). Proofs of knowledge have several applications, chief among them iden-
tification protocols where a party, who is associated with a public key, identifies
himself by proving knowledge of the matching secret key.

However when proofs of knowledge are performed on an open network, like
the Internet, one has to worry about an active attacker manipulating the con-
versation between honest parties. In such a network, also, we cannot expect to
control the timing of message delivery, thus we should assume that the adversary
has control on when messages are delivered to honest parties.

Extended Abstract. The full version of the paper is available at
http://eprint.iacr.org/2003/214/

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 220–236, 2004.
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The adversary could play the “man-in-the-middle” role, between honest
provers and verifiers. In such an attack the adversary will act as a prover with
an honest verifier, trying to make her accept a proof, even if the adversary does
not know the corresponding secret information. During this attack, the adver-
sary will have access to honest provers proving other statements. In the most
powerful attack, the adversary will start several such sessions at the same time,
and interleave the messages in any arbitrary way.

Informally, we say that a proof of knowledge is concurrently non-malleable,
if such an adversary will never be able to convince a verifier when she does not
know the relevant secret information (unless, of course, the adversary simply
relays messages unchanged from an honest prover to an honest verifier).

OUR MAIN CONTRIBUTION. We present a general transformation that takes any
proof of knowledge and makes it concurrently non-malleable. The transformation
preserves the round complexity of the original scheme and it requires a common
reference string shared by all parties.

The crucial technical tool to construct such compiler is the notion of multi-
trapdoor commitments (MTC) which we introduce in this paper. After defining
the notion we show specific number-theoretic constructions based on the Strong
RSA Assumption and the recently introduced Strong Diffie-Hellman Assump-
tion. These constructions are very efficient, and when applied to the concurrent
compiler described above, this is the whole overhead.

MULTI-TRAPDOOR COMMITMENTS. Recall that a commitment scheme consist
of two phases, the first one in which a sender commits to a message (think of it
as putting it inside a sealed envelope on the table) and a second one in which
the sender reveals the committed message (opens the envelope).

A trapdoor commitment scheme allows a sender to commit to a message with
information-theoretic privacy. I.e., given the transcript of the commitment phase
the receiver, even with infinite computing power, cannot guess the committed
message better than at random. On the other hand when it comes to open-
ing the message, the sender is only computationally bound to the committed
message. Indeed the scheme admits a trapdoor whose knowledge allows to open
a commitment in any possible way. This trapdoor should be hard to compute
efficiently.

A multi-trapdoor commitment scheme consists of a family of trapdoor com-
mitments. Each scheme in the family is information-theoretically private. The
family admits a master trapdoor whose knowledge allows to open any commit-
ment in the family in any way it is desired. Moreover each commitment scheme
in the family admits its own specific trapdoor. The crucial property in the def-
inition of multi-trapdoor commitments is that when given the trapdoor of one
scheme in the family it is infeasible to compute the trapdoor of another scheme
(unless the master trapdoor is known).

CONCURRENT COMPOSITION IN DETAIL. When considering a man-in-the-middle
attacker for proofs of knowledge we must be careful to define exactly what kind
of concurrent composition we allow.
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Above we described the case in which the attacker acts as a verifier in sev-
eral concurrent executions of the proof, with several provers. We call this left-
concurrency (as usually the provers are positioned on the left of the picture). On
the other hand right-concurrency means that the adversary could start several
concurrent executions as a prover with several verifiers.

Under these attacks, we need to prove that the protocols are zero-knowledge
(i.e. simulatable) and also proofs of knowledge (i.e. one can extract the wit-
ness from the adversary). When it comes to extraction one also has to make
the distinction between on-line and post-protocol extraction [27]. In an on-line
extraction, the witness is extracted as soon as the prover successfully convinces
the verifier. In a post-protocol extraction procedure, the extractor waits for the
end of all the concurrent executions to extract the witnesses of the successful
executions.

In the common reference string it is well known how to fully (i.e. both left and
right) simulate proofs of knowledge efficiently, using the result of Damgård [16].
We use his techniques, so our protocols are fully concurrently zero-knowledge.
Extraction is more complicated. Lindell in [30] shows how to do post-protocol
extraction for the case of right concurrency. We can use his techniques as well.
But for many applications what really matters is on-line extraction. We are able
to do that only under left-concurrency1. This is however enough to build fully
concurrently secure applications like identification protocols.

PRIOR WORK. Zero-knowledge protocols were introduced in [24]. The notion of
proof of knowledge (already implicit in [24]) was formalized in [21,6].

Concurrent zero-knowledge was introduced in [20]. They point out that the
typical simulation paradigm to prove that a protocol is zero-knowledge fails to
work in a concurrent model. This work sparked a long series of papers culmi-
nating in the discovery of non-constant upper and lower bounds on the round
complexity of concurrent zero-knowledge in the black-box model [13,34], unless
extra assumptions are used such as a common reference string. Moreover, in a
breakthrough result, Barak [2] shows a constant round non-black-box concurrent
zero-knowledge protocol, which however is very inefficient in practice.

If one is willing to augment the computational model with a common refer-
ence string, Damgård [16] shows how to construct very efficient 3-round protocols
which are concurrent (black-box) zero-knowledge.

However all these works focus only on the issue of zero-knowledge, where one
has to prove that a verifier who may engage with several provers in a concurrent
fashion, does not learn any information. Our work focuses more on the issue
of malleability in proofs of knowledge, i.e. security against a man-in-the-middle
who may start concurrent sessions.

The problem of malleability in cryptographic algorithms, and specifically
in zero-knowledge proofs, was formalized by Dolev et al. in [19], where a non-
malleable ZK proof with a polylogarithmic number of rounds is presented. This
protocol, however, is only sequentially non-malleable, i.e. the adversary can only
1 However, as we explain later in the Introduction, we could achieve also right-

concurrency if we use so-called
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start sessions sequentially (and non concurrently) with the prover. Barak in [3]
shows a constant round non-malleable ZK proof in the non-black-box model (and
thus very inefficient).

Using the taxonomy introduced by Lindell [29], we can think of concurrent
composition as the most general form of composition of a protocol with itself
(i.e. in a world where only this protocol is run). On the other hand it would
be desirable to have protocols that arbitrarily compose, not only with them-
selves, but with any other “secure” protocol in the environment they run in.
This is the notion of universal composable security as defined by Canetti [11].
Universally composable zero-knowledge protocols are in particular concurrently
non-malleable. In the common reference string model (which is necessary as
proven in [11]), a UCZK protocols for Hamiltonian Cycle was presented in [12].
Thus UCZK protocols for any NP problem can be constructed, but they are
usually inefficient in practice since they require a reduction to the Hamiltonian
Cycle problem.

As it turns out, the common reference string model is necessary also to
achieve concurrent non-malleability (see [30]). In this model, the first theoretical
solution to our problem was presented in [17]. Following on the ideas presented
in [17] more efficient solutions were presented in [27,22,31].

Our compiler uses ideas from both the works of Damgård [16] and Katz [27],
with the only difference that it uses multi-trapdoor instead of regular trapdoor
commitments in order to achieve concurrent non-malleability.

SIMULATION-SOUND TRAPDOOR COMMITMENTS. The notion of Simulation-
Sound Trapdoor Commitments (SSTC), introduced in [22] and later refined and
improved in [31], is very related to our notion of MTC. The notion was introduced
for analogue purposes: to compile (in a way similar to ours) any into
one which is left-concurrently non-malleable. They show generic constructions
of SSTC and specific direct constructions based on the Strong RSA Assumption
and the security of the DSA signature algorithm.

The concept of SSTC is related to ours, though we define a weaker notion
of commitment (we elaborate on the difference in Section 3). The important
contribution of our paper with respect to [22,31] is twofold: (i) we show that
this weaker notion is sufficient to construct concurrently non-malleable proofs;
(ii) because our notion is weaker, we are able to construct more efficient number
theoretic instantiations. Indeed our Strong RSA construction is about a factor of
2 faster than the one presented in [31]. This efficiency improvement is inherited
by the concurrently non-malleable proof of knowledge, since in both cases the
computation of the commitment is the whole overhead2.

2 In [22,31] are introduced, which dispense of the need for rewinding when
extracting and thus can be proven to be left and right-concurrently non-malleable
(and with some extra modification even universally composable). It should be noted
that if we apply our transformation to the so-called introduced by [22],
then we obtain on-line extraction under both left and right concurrency. However we
know how to construct efficient direct constructions of only for knowl-
edge of discrete logarithms, and even that is not particularly efficient. Since for the
applications we had in mind left-concurrency was sufficient, we did not follow this
path in this paper. TEAM LinG
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REMARK. Because of space limitations, all the proofs of the Theorems, and
various technical details are omitted and can be found in the full version of the
paper.

2 Preliminaries
In the following we say that function is negligible if for every polynomial
Q(·) there exists an index such that for all

Also if A(·) is a randomized algorithm, with we denote the event
that A outputs the string With we denote the probability
of event B happening after

2.1 One-Time Signatures
Our construction requires a strong one-time signature scheme which is secure
against chosen message attack. Informally this means that the adversary is given
the public key and signatures on any messages of her choice (adaptively chosen
after seeing the public key). Then it is infeasible for the adversary to compute a
signature of a new message, or a different signature on a message already asked.
The following definition is adapted from [25].

Definition 1. (SG,Sig, Ver) is a strong one-time secure signature if for every
probabilistic polynomial time forger the following

is negligible in

One-time signatures can be constructed more efficiently than general signatures
since they do not require public key operations (see [7, 8, 28]). Virtually all the
efficient one-time signature schemes are strong.

2.2 The Strong RSA Assumption

Let N be the product of two primes, N = pq. With we denote the Euler
function of N, i.e. With we denote the set of integers
between 0 and N – 1 and relatively prime to N.

Let be an integer relatively prime to The RSA Assumption [35]
states that it is infeasible to compute in I.e. given a random element

it is hard to find such that
The Strong RSA Assumption (introduced in [4]) states that given a random

element in it is hard to find            such that                    The
assumption differs from the traditional RSA assumption in that we allow the
adversary to freely choose the exponent for which she will be able to compute

We now give formal definitions. Let be the set of integers N, such
that N is the product of two primes.
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Assumption 1 We say that the Strong RSA Assumption holds, if for all prob-
abilistic polynomial time adversaries the following probability

is negligible in

A more efficient variant of our protocol requires that N is selected as the product
of two safe primes, i.e. N = pq where and both
are primes. We denote with the set of integers N, such that N is the
product of two safe primes. In this case the assumptions above must be
restated replacing with

2.3 The Strong Diffie-Hellman Assumption

We now briefly recall the Strong Diffie-Hellman (SDH) Assumption, recently
introduced by Boneh and Boyen in [9].

Let G be cyclic group of prime order generated by The SDH Assumption
can be thought as an equivalent of the Strong RSA Assumption over cyclic
groups. It basically says that no attacker on input for some
random should be able to come up with a pair such that

Assumption 2 We say that the Assumption holds over a cyclic group
G of prime order generated by if for all probabilistic polynomial time adver-
saries the following probability

is negligible in

Notice that, depending on the group G, there may not be an efficient way to
determine if succeeded in outputting as above. Indeed in order to check
if when all we have is we need to solve the Decisional Diffie-
Hellman (DDH) problem on the triple Thus, although Assumption
2 is well defined on any cyclic group G, we are going to use it on the so-called
gap-DDH groups, i.e. groups in which there is an efficient test to determine (with
probability 1) on input if  or not. The gap-DDH property
will also be required by our construction of multi-trapdoor commitments that
uses the SDH Assumption3.

2.4 Definition of Concurrent Proofs of Knowledge

POLYNOMIAL TIME RELATIONSHIPS. Let be a polynomial time computable
relationship, i.e. a language of pairs such that it can be decided in polyno-
mial time in if or not. With we denote the language induced
by i.e.
3 Gap-DDH groups where Assumption 2 is believed to hold can be constructed using

bilinear maps introduced in the cryptographic literature by [10].
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More formally an ensemble of polynomial time relationships consists
of a collection of families where each is a family of
polynomial time relationships To an ensemble we associate a random-
ized instance generator algorithm IG that on input outputs the description of
a relationship In the following we will drop the suffix when obvious from
the context.

PROOFS OF KNOWLEDGE. In a proof of knowledge for a relationship two
parties, Prover P and Verifier V, interact on a common input P also holds a
secret input such that The goal of the protocol is to convince V
that P indeed knows such Ideally this proof should not reveal any information
about to the verifier, i.e. be zero-knowledge.

The protocol should thus satisfy certain constraints. In particular it must be
complete: if the Prover knows then the Verifier should accept. It should be
sound: for any (possibly dishonest) prover who does not know the verifier
should almost always reject. Finally it should be zero-knowledge: no (poly-time)
verifier (no matter what possibly dishonest strategy she follows during the proof)
can learn any information about

Many proofs of knowledge belong to a class of protocols called
These are 3-move protocols for a polynomial time relationship in

which the prover sends the first message the verifier answers with a random
challenge and the prover answers with a third message Then the verifier
applies a local decision test on to accept or not.

satisfy two special constraints:

Special soundness. A cheating prover can only answer one possible challenge
In other words we can compute the witness from two accepting conver-

sations of the form and
Special zero-knowledge. Given the statement and a challenge we can

produce (in polynomial time) an accepting conversation with the
same distribution of real accepting conversations, without knowing the wit-
ness Special zero-knowledge implies zero-knowledge with respect to the
honest verifier.

All the most important proofs of knowledge used in cryptographic applications
are (e.g. [36, 26]).

We will denote with the process of selecting the first message
according to the protocol Similarly we denote and

MAN-IN-THE-MIDDLE ATTACKS. Consider now an adversary that engages
with a verifier V in a proof of knowledge. At the same time acts as the verifier
in another proof with a prover P. Even if the protocol is a proof of knowledge
according to the definition in [6], it is still possible for to make the verifier
accept even without knowing the relevant secret information, by using P as an
oracle. Of course could always copy the messages from P to V, but it is not
hard to show (see for example [27]) that she can actually prove even a different
statement to V.
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In a concurrent attack, the adversary is activating several sessions with
several provers, in any arbitrary interleaving. We call such an adversary a con-
current man-in-the-middle. We say that a proof of knowledge is concurrently
non-malleable if such an adversary fails to convince the verifier in a proof in
which he does not know the secret information. In other words a proof of knowl-
edge is concurrently non-malleable, if for any such adversary that makes the
verifier accept with non-negligible probability we can extract a witness.

Since we work in the common reference string model we define a proof sys-
tem as tuple (crsG,P,V), where crsG is a randomized algorithm that on input
the security parameter outputs the common reference string crs. In our def-
inition we limit the prover to be a probabilistic polynomial time machine, thus
technically our protocols are arguments and not proofs. But for the rest of the
paper we will refer to them as proofs.

If is a concurrent man-in-the-middle adversary, let be the probability
that the verifier V accepts. That is

where the statements are adaptively chosen by Also we denote
with the view of at the end of the interaction with P and V
on common reference string crs.

Definition 2. We say that (crsG,P,V) is a concurrently non-malleable proof of
knowledge for a relationship if the following properties are satisfied:

Completeness. For all (for all we have that
Witness Extraction. There exist a probabilistic polynomial time knowledge

extractor KE, a function  and a negligible function
such that for all probabilistic polynomial time concurrent man-in-the-middle
adversary if then KE, given rewind access to computes

such that with probability at least
Zero-Knowledge. There exist a probabilistic polynomial time simulator

such that the two random variables

are indistinguishable.

Notice that in the definition of zero-knowledge the simulator does not have the
power to rewind the adversary. This will guarantee that the zero-knowledge
property will hold in a concurrent scenario. Notice also that the definition of
witness extraction assumes only left-concurrency (i.e. the adversary has access
to many provers but only to one verifier).

3 Multi-trapdoor Commitment Schemes

A trapdoor commitment scheme allows a sender to commit to a message with
information-theoretic privacy. I.e., given the transcript of the commitment phase
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the receiver, even with infinite computing power, cannot guess the committed
message better than at random. On the other hand when it comes to opening
the message, the sender is only computationally bound to the committed mes-
sage. Indeed the scheme admits a trapdoor whose knowledge allows to open a
commitment in any possible way (we will refer to this also as equivocate the
commitment). This trapdoor should be hard to compute efficiently.

A multi-trapdoor commitment scheme consists of a family of trapdoor com-
mitments. Each scheme in the family is information-theoretically private. We
require the following properties from a multi-trapdoor commitment scheme:

The family admits a master trapdoor whose knowledge allows to open any
commitment in the family in any way it is desired.
Each commitment scheme in the family admits its own specific trapdoor,
which allows to equivocate that specific scheme.
For any commitment scheme in the family, it is infeasible to open it in
two different ways, unless the trapdoor is known. However we do allow the
adversary to equivocate on a few schemes in the family, by giving it access
to an oracle that opens a given committed value in any desired way. The
adversary must selects this schemes, before seeing the definition of the whole
family. It should remain infeasible for the adversary to equivocate any other
scheme in the family.

1.

2.

3.

The main difference between our definition and the notion of SSTC [22,31]
is that SSTC allow the adversary to choose the schemes in which it wants to
equivocate even after seeing the definition of the family. Clearly SSTC are a
stronger requirement, which is probably why we are able to obtain more efficient
constructions.

We now give a formal definition. A (non-interactive) multi-trapdoor com-
mitment scheme consists of five algorithms: CKG, Sel, Tkg, Com, Open with the
following properties.

CKG is the master key generation algorithm, on input the security parameter
it outputs a pair PK, TK where PK is the master public key associated with the
family of commitment schemes, and TK is called the master trapdoor.

The algorithm Sel selects a commitment in the family. On input PK it outputs
a specific public key pk that identifies one of the schemes.

Tkg is the specific trapdoor generation algorithm. On input PK,TK,pk it
outputs the specific trapdoor information tk relative to pk.

Com is the commitment algorithm. On input PK,pk and a message M it
outputs C(M) = Com(PK, pk, M, R) where R are the coin tosses. To open a
commitment the sender reveals M, R and the receiver recomputes C.

Open is the algorithm that opens a commitment in any possible way given
the trapdoor information. It takes as input the keys PK,pk, a commitment C(M)
and its opening M, R, a message and a string T. If T = TK or T = tk
then Open outputs such that

We require the following properties. Assume PK and all the pk’s are chosen
according to the distributions induced by CKG and Tkg.
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Information Theoretic Security. For every message pair M, the distri-
butions C(M) and are statistically close.

Secure Binding. Consider the following game. The adversary selects
strings It is then given a public key PK for a multi-trapdoor
commitment family, generated with the same distribution as the ones gen-
erated by CKG. Also, is given access to an oracle (for Equivocator),
which is queried on the following string C = Com(PK, pk, M, R), M, R, pk
and a message If for some and is a valid public key,
then answers with such that otherwise it
outputs nil. We say that wins if it outputs C, M, R, pk such that

and for
all We require that for all efficient algorithms the probability that
wins is negligible in the security parameter.

We can define a stronger version of the Secure Binding property by requiring
that the adversary receives the trapdoors matching the public keys
instead of access to the equivocator oracle In this case we say that the
multi-trapdoor commitment family is strong4.

3.1 A Scheme Based on the Strong RSA Assumption

The starting point for the our construction of multi-trapdoor commitments based
on the Strong RSA Assumption, is a commitment scheme based on the (regular)
RSA Assumption, which has been widely used in the literature before (e.g. [14,
15]).

The master public key is a number N product of two large primes and
a random element of The master trapdoor is the factorization of N, i.e. the
integers The public key of a scheme in the family is an prime number

such that The specific trapdoor of the scheme with public
key is the of i.e. a value such that

To commit to the sender chooses and computes
To decommit the sender reveals and the previous equation is

verified by the receiver.

Proposition 1. Under the Strong RSA Assumption the scheme described above
is a multi-trapdoor commitment scheme.

Sketch of Proof: Each scheme in the family is unconditionally secret. Given a
value we note that for each value there exists a unique value

such that Indeed this value is the of Observe,
moreover that can be computed efficiently as thus knowledge of
allows to open a commitment (for which we know an opening) in any desired
way.
4 This was actually our original definition of multi-trapdoor commitments. Phil

MacKenzie suggested the possibility of using the weaker approach of giving access to
an equivocator oracle (as done in [31]) and we decided to modify our main definition
to the weaker one, since it suffices for our application. However the strong definition
may also have applications, so we decided to present it as well.
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We now argue the Secure Binding property under the Strong RSA As-
sumption. Assume we are given a Strong RSA problem istance N, Let’s now

Let Since and and the are all distinct primes we have
that We can find integers such that Now
we can compute (using Shamir’s GCD trick [37] and Eq.(1))

By taking on both sides we find that

Remark: The commitment scheme can be easily extended to any message do-
main by using a collision-resistant hash function H from to In
this case the commitment is computed as In our application we will use
a collision resistant function like SHA-1 that maps inputs to 160-bit integers and
then choose larger than

3.2 A Scheme Based on the SDH Assumption

Let G be a cyclic group of prime order generated by We assume that G
is a gap-DDH group, i.e. a group such that deciding Diffie-Hellman triplets is
easy. More formally we assume the existence of an efficient algorithm DDH-Test
which on input a triplet of elements in G outputs 1 if and only if,

 We also assume that the Assumption 2 holds in G.
The master key generation algorithm selects a random which will be

the master trapdoor. The master public key will be the pair where
in G. Each commitment in the family will be identified by a specific public key
pk which is simply an element The specific trapdoor tk of this scheme is
the value in G, such that

To commit to a message with public key the sender chooses at
random and computes It then runs Pedersen’s commitment
[33] with bases i.e., it selects a random and computes
The commitment to is the value A.

To open a commitment the sender reveals  and The receiver
accepts the opening if

run the Secure Binding game. The adversary is going to select public keys
which in this case are primes, We set where
and return N, as the public key of the multi-trapdoor commitment family. This
will easily allow us to simulate the oracle as we know the of i.e.
the trapdoors of the schemes identified by

Assume now that the adversary equivocates a commitment scheme in the
family identified by a prime The adversary returns a commitment A and
two distinct openings of it and Thus
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Proposition 2. Under the SDH Assumption the scheme described above is a
multi-trapdoor commitment scheme.

Sketch of Proof: Each scheme in the family is easily seen to be unconditionally
secret. The proof of the Secure Binding property follows from the proof of
Lemma 1 in [9], where it is proven that the trapdoors can be considered
“weak signatures”. In other words the adversary can obtain several
for values chosen before seeing the public key and still will not be
able (under the to compute for a new

The proof is then completed if we can show that opening a commitment in
two different ways for a specific is equivalent to finding

Assume we can open a committment in two ways and
with The DDH-Test tells us that and

thus or

By the same reasoning, if we know and we have an opening F, and we want
to open it as we need to set

4 The Protocol

In this section we describe our full solution for non-malleable proofs of knowledge
secure under concurrent composition using multi-trapdoor commitments.

INFORMAL DESCRIPTION. We start from a as described in Section
2. That is the prover P wants to prove to a verifier V that he knows a witness
for some statement The prover sends a first message The verifier challenges
the prover with a random value and the prover answers with his response

We modify this in the following way. We assume that the parties
share a common reference string that contains the master public key PK for a
multi-trapdoor commitment scheme. The common reference string also contains
a collision-resistant hash function H from the set of verification keys vk of the
one-time signature scheme, to the set of public keys pk in the multi-trapdoor
commitment scheme determined by the master public key PK.

The prover chooses a key pair (sk, vk) for a one-time strong signature scheme.
The prover computes pk= H(vk) and where is the first
message of the and is chosen at random (as prescribed by the
definition of Com). The prover sends vk, A to the verifier. The crucial trick is that
we use the verification key vk to determine the value pk used in the commitment
scheme.

The verifier sends the challenge The prover sends back as an opening
of A and the answer of the It also sends sig a signature over the
whole transcript, computed using sk. The verifier checks that is a correct
opening of A, that sig is a valid signature over the transcript using vk and also
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Fig. 1. A Concurrently Non-malleable Proof of Knowledge

that is an accepting conversation for the The protocol is
described in Figure 1.

Theorem 1. If multi-trapdoor commitments exist, if H is a collision-resistant
hash function, and if (SG,Sig,Ver) is a strong one-time signature scheme, then
CNM-POK is a concurrently non-malleable proof of knowledge (see Definition 2).

4.1 The Strong RSA Version

In this section we are going to add a few comments on the specific implementa-
tions of our protocol, when using the number-theoretic constructions described
in Sections 3.1 and 3.2. The main technical question is how to implement the
collision resistant hash function H which maps inputs to public keys for the
multi-trapdoor commitment scheme.

The SDH implementation is basically ready to use “as is”. Indeed the public
keys pk of the multi-trapdoor commitment scheme are simply elements of
thus all is needed is a collision-resistant hash function with output in

On the other hand, for the Strong RSA based multi-trapdoor commitment,
the public keys are prime numbers of the appropriate length. A prime-outputting
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collision-resistant hash function is described in [23]. However we can do better
than that, by modifying slightly the whole protocol. We describe the modifica-
tions (inspired by [32, 15]) in this section.

MODIFYING THE ONE-TIME SIGNATURES. First of all, we require the one-time
signature scheme (SG,Sig,Ver) to have an extra property: i.e. that the distribution
induced by SG over the verification keys vk is the uniform one5. Virtually all the
known efficient one-time signature schemes have this property.

Then we assume that the collision resistant hash function used in the pro-
tocol is drawn from a family which is both a collision-resistant collection and a
collection of families of universal hash functions6.

Assume that we have a randomly chosen hash function H from such a collec-
tion mapping strings (the verification keys) into strings and a prime

H(vk) follows a distribution over strings which is statistically close to
uniform; thus using results on the density of primes in arithmetic progres-
sions (see [1], the results hold under the Generalized Riemann Hypothesis)
we know that this process will stop in polynomial time, i.e. after an expected

iterations.
Since is of the form 2PR + 1, and primality testing of all the
candidates can be done deterministically and very efficiently (see Lemma 2
in [32]).

Thus this is quite an efficient way to associate primes to the verification keys.

Notice that we are not compromising the security of the modified signature
scheme. Indeed the keys of the modified scheme are a polynomially large fraction
of the original universe of keys. Thus if a forger could forge signature on this
modified scheme, then the original scheme is not secure as well.

ON THE LENGTH OF THE PRIMES. In our application we need the prime to
be relatively prime to where N is the RSA modulus used in the protocol.
This can be achieved by setting (i.e. In typical applications
(i.e. this is about 512 bits (we can obtain this by setting
and the length of the hash function output, to 160). Since the number of
iterations to choose vk depends on the length of it would be nice to find a way
to shorten it.

5 This requirement can be relaxed to asking that the distribution has enough min-
entropy.

6 This is a reasonable assumption that can be made on families built out of a collision-
resistant hash function (such as SHA-1). See also [18] for analysis of this type of
function families.

We modify the key generation of our signature scheme as follows. We run
SG repeatedly until we get a verification key vk such that
is a prime. Notice that Let us denote with this modified key
generation algorithm.

We note the following facts:
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If we use safe RSA moduli, then we can enforce that by
choosing small enough (for 1024-bit safe moduli we need them to be smaller
than 500 bits). In this case the collision-resistant property will become the limit-
ing factor in choosing the length. By today’s standards we need to be at least
160. So the resulting primes will be bits long.

4.2 Identification Protocols

The main application of our result is the construction of concurrently secure
identification protocols. In an identification protocol, a prover, associated with
a public key pk, communicates with a verifier and tries to convince her to be
the legitimate prover (i.e. the person knowing the matching secret key sk.) An
adversary tries to mount an impersonation attack, i.e. tries to make the verifier
accept without knowing the secret key sk.

The adversary could be limited to interact with the real prover only before
mounting the actual impersonation attack [21]. On the other hand a more re-
alistic approach is to consider the adversary a “man-in-the-middle” possibly in
a concurrent fashion [5]. Clearly such an attacker can always relays messages
unchanged between the prover and the verifier. In order to make a security def-
inition meaningful, one defines a successful impersonation attack as one with a
transcript different from the ones between the attacker and the real prover7.

It is not hard to see that CNM-POK is indeed a concurrently secure identifi-
cation protocol. It is important to notice that we achieve full concurrency here,
indeed the extraction procedure in the proof of Theorem 1 does not “care” if
there are many other executions in which the adversary is acting as a prover.
Indeed we do not need to rewind all executions, but only one in order to extract
the one witness we need. Thus if there are other such executions “nested” inside
the one we are rewinding, we just run them as the honest verifier.
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Abstract. In the bare public-key model (BPK in short), each verifier
is assumed to have deposited a public key in a file that is accessible by
all users at all times. In this model, introduced by Canetti et al. [STOC
2000], constant-round black-box concurrent and resettable zero knowl-
edge is possible as opposed to the standard model for zero knowledge. As
pointed out by Micali and Reyzin [Crypto 2001], the notion of soundness
in this model is more subtle and complex than in the classical model
and indeed four distinct notions have been introduced (from weakest to
strongest): one-time, sequential, concurrent and resettable soundness.
In this paper we present the first constant-round concurrently sound re-
settable zero-knowledge argument system in the bare public-key model
for More specifically, we present a 4-round protocol, which is opti-
mal as far as the number of rounds is concerned. Our result solves the
main open problem on resettable zero knowledge in the BPK model and
improves the previous works of Micali and Reyzin [EuroCrypt 2001] and
Zhao et al. [EuroCrypt 2003] since they achieved concurrent soundness
in stronger models.

1 Introduction

The classical notion of a zero-knowledge proof has been introduced in [1]. Roughly
speaking, in a zero-knowledge proof a prover can prove to a verifier the validity of
a statement without releasing any additional information. In order to prove that
a zero-knowledge protocol does not leak information it is required to show the
existence of a probabilistic polynomial-time algorithm, referred to as Simulator,
whose output is indistinguishable from the output of the interaction between the
prover and the verifier. Since its introduction, the concept of a zero-knowledge
proof and the simulation paradigm have been widely used to prove the security
of many protocols. More recently, it has been recognized that in several practical
settings the original notion of zero knowledge (which in its original formulation

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 237–253, 2004.
© International Association for Cryptologic Research 2004
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only considered one prover and one verifier that carried out the proof proce-
dure in isolation) was insufficient. For example, the notion of concurrent zero
knowledge [2] formalizes security in a scenario in which several verifiers access
concurrently the same prover and maliciously coordinate their actions so to ex-
tract information from the prover. Motivated by considerations regarding smart
cards, the notion of resettable zero knowledge (rZK, in short) was introduced
in [3]. An rZK proof remains “secure” even if the verifier is allowed to tamper
with the prover and to reset the prover in the middle of a proof to any previous
state and then asks different questions. It is easy to see that concurrent zero
knowledge is a special case of resettable zero knowledge and, currently, rZK is
the strongest notion of zero knowledge that has been studied. Unfortunately,
if we only consider black-box zero knowledge, constant-round concurrent zero
knowledge is only possible for trivial languages (see [4]). Moreover, the existence
of a constant-round concurrent zero-knowledge argument in the non-black-box
model (see [5] for the main results in the non-black-box model) is currently an
open question. Such negative results have motivated the introduction of the bare
public-key model [3] (BPK, in short). Here each possible verifier deposits a public
key pk in a public file and keeps private the associated secret information sk.
From then on, all provers interacting with such a verifier will use pk and the
verifier cannot change pk from proof to proof. Canetti et al. [3] showed that
constant-round rZK is possible in the BPK model. However, the fact that the
verifier has a public key means that it is vulnerable to an attack by a mali-
cious prover that opens several sessions with the same verifier in order to violate
the soundness condition. This is to be contrasted with the standard models for
interactive zero knowledge [1] or non-interactive zero knowledge [6] where, as
far as soundness is concerned, it does not matter whether a malicious prover is
interacting once or multiple times with the same verifier.

Indeed, in [7], Micali and Reyzin pointed out, among other contributions,
that the known constant-round rZK arguments in the BPK model did not seem
to be sound if a prover was allowed to concurrently interact with several instances
of the same verifier. In other words, the known rZK arguments in the BPK were
not concurrently sound.

Micali and Reyzin gave in [7] a 4-round argument system which is sequentially
sound (i.e., the soundness holds if a prover can play only sequential sessions)
and probably is not concurrently sound, and they also showed that the same
holds for the five-round protocol of Canetti et al. [3]. Moreover they proved that
resettable soundness cannot be achieved in the black-box model. In [8], Barak
et al. used non-black-box techniques in order to obtain a constant-round rZK
argument of knowledge but their protocol enjoys only sequential soundness.

In order to design a concurrently sound resettable zero-knowledge argument
system, Micali and Reyzin proposed (see [9]) the upper bounded public-key
(UPK, in short) model in which a honest verifier possesses a counter and uses
the same private key no more than a fixed polynomial number of times. A weaker
model than the UPK model but still stronger than the BPK model is the weak
public-key (WPK, in short) model introduced in [10]. In this model an honest

TEAM LinG



Constant-Round Resettable Zero Knowledge with Concurrent Soundness 239

verifier can use the same key no more than a fixed polynomial number of times
for each statement to be proved.

Other models were proposed in order to achieve constant-round concur-
rent zero knowledge. In particular, in [2, 11] a constant-round concurrent zero-
knowledge proof system is presented by relaxing the asynchrony of the model or
the zero-knowledge property. In [12] a constant-round concurrent zero-knowledge
proof system is presented by requiring a pre-processing stage in which both the
provers and the verifiers are involved. In [13] a constant-round concurrent zero-
knowledge proof is presented assuming the existence of a trusted auxiliary string.
All these models are considered stronger than the BPK model.

Our results. In this paper we present the first constant-round concurrently sound
resettable zero-knowledge argument system in the BPK model for In par-
ticular we show a 4-round argument that is optimal in light of a lower bound for
concurrent soundness proved in [7]. We stress that our result is the best one can
hope for in terms of combined security against malicious provers and verifiers if
we restrict ourselves to black-box zero knowledge, since in this setting simulta-
neously achieving resettable soundness and zero knowledge has been shown to
be possible only for languages in BPP by [7]. Our construction employs the tech-
nique of complexity leveraging used in the previous results [3,7, 10] in order to
prove the soundness of their protocols and is based on the existence of a verifiably
binding cryptosystem semantically secure against subexponential adversaries.
The existence of cryptographic primitives secure against subexponential adver-
saries is used also in [3,7, 10] and the existence of a constant-round black-box
rZK argument system in the BPK model assuming only cryptographic primitives
secure against polynomial-time adversaries is an interesting open question.

Finally, we describe a simple 3-round sequentially sound and sequential zero-
knowledge argument system in the BPK model for all

2 Definitions

The BPK model. The Bare Public-Key (BPK, in short) model assumes that:
there exists a public file F that is a collection of records, each containing a
public key;
an (honest) prover is an interactive deterministic polynomial-time algorithm
that takes as input a security parameter F, an string such that

and L is an NP-language, an auxiliary input a reference to an entry
of F and a random tape;
an (honest) verifier V is an interactive deterministic polynomial-time algo-
rithm that works in the following two stages: 1) in a first stage on input a
security parameter and a random tape, V generates a key pair (pk, sk)
and stores pk in one entry of the file F; 2) in the second stage, V takes as
input sk, a statement and a random string, V performs an interactive
protocol with a prover, and outputs “accept” or “reject”;
the first interaction of each prover starts after that all verifiers have com-
pleted their first stage.

1.

2.

3.

4.
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Definition 1. Given an NP-language L and its corresponding relation we
say that a pair is complete for L, if for all strings and any
witness such that the probability that V interacting with P on
input outputs “reject”is negligible in

Malicious provers in the BPK model. Let be a positive polynomial and P* be
a probabilistic polynomial-time algorithm that takes as first input

P* is an malicious prover if it runs in at most stages in the
following way: in stage 1, P* receives a public key pk and outputs an string

In every even stage, P* starts from the final configuration of the previous
stage, sends and receives messages of a single interactive protocol on input pk
and can decide to abort the stage in any moment and to start the next one.
In every odd stage P* starts from the final configuration of the previous
stage and outputs an string

P* is an malicious prover if on input a public key pk of V,
can perform the following interactive protocols with V: 1) if P* is already
running protocols he can start a new protocol with V choosing
the new statement to be proved; 2) he can output a message for any running
protocol, receive immediately the response from V and continue.

Attacks in the BPK model. In [7] the following attacks have been defined.
Given an malicious prover P* and an honest verifier V, a se-

quential attack is performed in the following way: 1) the first stage of V is run
on input and a random string so that a pair (pk, sk) is obtained; 2) the first
stage of P* is run on input and pk and is obtained; 3) for
the stage of P* is run letting it interact with V that receives as input sk,
and a random string while the stage of P* is run to obtain

Given an malicious prover P* and an honest verifier V, a con-
current attack is performed in the following way: 1) the first stage of V is run on
input and a random string so that a pair (pk, sk) is obtained; 2) P* is run on
input and pk; 3) whenever P* starts a new protocol choosing a statement, V
is run on inputs the new statement, a new random string and sk.

Definition 2. Given a complete pair for an NP-language L in the BPK
model, then is a concurrently (resp. sequentially) sound interactive ar-
gument system for L if for all positive polynomial for all (resp

malicious prover P*, for any false statement the proba-
bility that in an execution of a concurrent (resp. sequential) attack V outputs
“accept” for such a statement is negligible in

The strongest notion of zero knowledge, referred to as resettable zero knowledge,
gives to a verifier the ability to rewind the prover to a previous state. This is
significantly different from a scenario of multiple interactions between prover
and verifier since after a rewinding the prover uses the same random bits.

We now give the formal definition of a black-box resettable zero-knowledge
argument system for in the bare public-key model.
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Definition 3. An interactive argument system in the BPK model is
black-box resettable zero-knowledge if there exists a probabilistic polynomial-time
algorithm S such that for any probabilistic polynomial time V*, for any polyno-
mials for any V* runs in at most steps
and the following two distributions are indistinguishable:

An important tool used this paper is that of a non-interactive zero-knowledge
argument system.

Definition 4. A pair of probabilistic polynomial-time algorithms (NIPK,NIVK)
is a non-interactive zero-knowledge argument system for an language L if
there exists a polynomial

(Completeness) for all with and NP-witness for1.

(Soundness) for all2.

is negligible.
(Simulatability) there exists a probabilistic polynomial-time algorithm S such
that the family of distributions

3.

are computationally indistinguishable.

We assume, without loss of generality, that a random reference string of length
is sufficient for proving theorems of length (that is, we assume

Concurrently Sound rZK Argument System for
in the BPK Model

3

In this section we present a constant-round concurrently sound resettable zero-
knowledge argument in the BPK model for all languages.

In our construction we assume the existence of an encryption scheme that is
secure with respect to sub-exponential adversaries and that is verifiably binding.
We next review the notion of semantic security adapted for sub-exponential
adversaries and present the notion of a verifiably binding cryptosystem.

1. the output of V* that generates F with entries and interacts (even
concurrently) a polynomial number of times with each where

is a witness for and is a random tape for

2. the output of S interacting with V* on input
Moreover we define such an adversarial verifier V* as an                       mali-
cious verifier.
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An encryption scheme is a triple of efficient algorithmsPK = (G,E,D). The key
generator algorithm G on input a random string (the security parameter)
outputs a pair (pk,sk) of public and private key. The public key pk is used to
encrypt a string by computing where is a random string of length

Semantic security [14] is defined by considering the following experiment for
encryption scheme PK = (G,E,D) involving a two-part adversary
The key generator G is run on a random string and keys (pk,sk) are given
in output. Two strings and are returned by on input pk.
Then is taken at random from {0,1} and an encryption of is computed. We
say that adversary is successful forPK if the probability that outputs on
inputpk, and is non-negligibly (in greater than 1/2. We say that PK is

if no adversary running in time is successful. The classical notion
of semantic security is instead obtained by requiring that no polynomial-time
adversary is successful.

Roughly speaking, a verifiably binding cryptosystem PK is a cryptosystem for
which 1) given a string pk and an integer it is easy to verify that pk is a legal
public key with security parameter and 2) to each ciphertext corresponds at
most one plaintext.

More formally,

Definition 5. An encryption scheme PK = (G,E,D) is verifiably bind-
ing iff:

1. (binding): for any probabilistic polynomial-time algorithm it holds that

is negligible in
2. (verifiability): there exists a probabilistic polynomial-time algorithm VER

such that if pk belongs to the output space of G on input a string then
otherwise.

Assumptions. To prove the properties of our protocol we make the following
complexity theoretic assumptions:

The existence of an verifiably binding encryption scheme PK =
(G,E,D) for some
We briefly note that the El Gamal encryption scheme [15] is verifiably bind-
ing since an exponentiation in is one to one and it can be easily verified
that a positive integer is a prime.
The existence of a one-to-one length-preserving one-way function

which, in turn, implies the existence of a pseudo-random family of
functions
The existence of a non-interactive zero-knowledge proof system (NIZK, in
short) (NIPM, NIVM) for an language.

1.

2.

3.

TEAM LinG



Constant-Round Resettable Zero Knowledge with Concurrent Soundness 243

The existence of a 3-round witness indistinguishable argument of knowledge
for a specific polynomial-time relation that we define

in the following way. Let be a one-to-one length-preserving one-way func-
tion and let PK be an verifiably binding encryption scheme. Then
define the polynomial-time relation as consisting of all pairs

where pk is a public key of the output space of G and is a
string and eitherwit = sk and (pk,sk) is in the output space ofG or
and

Before describing our protocol formally, let us try to convey the main idea
behind it. Fix an language L and let be the input statement. The prover
generates a puzzle (in our construction, the puzzle consists of a string and
solving the puzzle consists in finding the inverse of the one-to-one length-
preserving one-way function and sends it to the verifier. The verifier uses WI
to prove knowledge of the private key associated to her public key or
knowledge of the solution of the puzzle given to her by the prover. Moreover,
the prover and the verifier play a coin tossing protocol, based on the encryption
scheme PK to generate a reference string for the NIZK proof that

In our implementation of the FLS-paradigm [16], in the interaction between
the prover and the verifier, the verifier will use his knowledge of the private key
to run WI. In order to prove concurrent soundness, we show an algorithm that
interacts with a (possibly) cheating prover P* and breaks an encryption
scheme in time The puzzle helps algorithm in simulating the verifier
with respect to a challenge public key pk for which it does not have access to the
private key. Indeed, instead of proving knowledge of the private key associated
to pk proves knowledge of the solution of the puzzle by performing exhaustive
search. By carefully picking the size of the puzzle (and thus the time required
to solve it) we can make sure runs in time

Note that when inverts the one-to-one length-preserving one-way function
and computes the witness-indistinguishable argument of knowledge, it runs in
subexponential time in order to simulate the verifier without performing rewinds.
Straight-line quasi-polynomial time simulatable argument systems were studied
in detail in [17], where this relaxed simulation notion is used to decrease the
round complexity of argument systems. We use a similar technique but for sub-
exponential time simulation of arguments of knowledge.

If the steps described above were executed sequentially, we would have an
8-round protocol (one round for the prover to send the puzzle, three rounds
for the coin tossing, three rounds for the witness-indistinguishable argument of
knowledge, and one round for the NIZK). However, observe that the coin-tossing
protocol and the 3-round witness-indistinguishable argument of knowledge can
be performed in parallel thus reducing the the round complexity to 5 rounds.
Moreover, we can save one more round, by letting the prover send the puzzle
in parallel with the second round of the witness indistinguishable argument of
knowledge. To do so, we need a special implementation of this primitive since,
when the protocol starts, only the size of the statement is known and the state-
ment itself is part of the second round. Let us now give the details of our con-
struction.

4.
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The public file. The public file F contains entries consisting in public keys with
security parameter for the public-key cryptosystem PK.

Private inputs. The private input of the prover consists of a witness for
The private input of the verifier consists of the secret key corresponding to
the public key

The protocol. Suppose that the prover wants to prove that and denote
by the length of We denote by the index of the verifier in the
public file so that the verifier knows the private key associated with the
public key of the public file F.

In the first round V randomly picks an string that will be used as
V’s contribution to the reference string for the non-interactive zero-knowledge
protocol. V compute the encryption of using an string as random-
ness and by using public key Moreover, V runs in order to compute the
first message of the witness-indistinguishable argument of knowledge. Then
V sends to P. In the second round P verifies that is a legal public key
forPK with as security parameter and then computes its contribution to the
random string to be used for the non-interactive argument by picking a random
seed and computing denotes concate-
nation) where is a family of pseudorandom functions. The string has
length (to be determined later) whereas has length and is P’s con-
tribution for the reference string. P runs to compute the second message
of the witness-indistinguishable argument of knowledge. Moreover P computes

where is a one-to-one length-preserving one-way function and sends
to the verifier. In the third round of the protocol V uses his knowledge

of the private key to run obtaining so that she proves that she knows ei-
ther the private key associated with or V then sends and to
P. In the last round of the protocol P verifies that the witness-indistinguishable
argument of knowledge is correct and that is an encryption of Then P runs
algorithm NIPM on input and using as reference string obtaining
a proof that is sent to V. A more formal description of the protocols is found
in Figure 1.

Theorem 1. If there exists an verifiably binding encryption scheme,
a one-to-one length-preserving one-way function then there exists a constant-
round concurrently sound resettable zero-knowledge argument for all languages
in in the BPK model.

Proof. Consider the protocol found in Figure 1.

Completeness. If then P can always compute the proof and V accepts
it.

Concurrent soundness. Assume by contradiction that the protocol is not con-
currently sound. Thus there exists an malicious prover P* that by,
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Fig. 1. The 4-round concurrently sound rZK argument system for in the BPK
model. The values and are determined as functions of in the proof of concurrent
soundness.

concurrently interacting with V, has non-negligible probability of making
the verifier accept some of length We assume we know the index of
the session in which the prover will succeed in cheating (this assumption will
be later removed) and exhibit an algorithm that has black-box access to P*
(i.e., simulates the work of a verifier V) and breaks the encryption scheme PK
in steps, thus reaching a contradiction.

We now describe algorithm runs in two stages. First, on input the
challenge public key pk, randomly picks two strings and of the same
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length as the length of the reference string used by (NIPM,NIVM) for inputs of
length Then receives as a challenge an encryption of computed using
public keypk and task is to guess with a non-negligible
advantage over 1/2 (we assume that is randomly chosen).

For all the sessions, interacts with the an prover P* mounting
a concurrent attack, and simulates the verifier by computing the two messages
as explained below. When reaches session outputs her guess for bit

Session
At V-round-1, sends an encryption of a randomly chosen string
computed with as randomness and sends the first round of the witness-
indistinguishable argument of knowledge Upon receiving message

from P*, inverts the one-to-one length-preserving one-way function
on obtaining by performing exhaustive search in

then computes by running on input instance               and witness
and sends to P* the triple
Note that plays round V-round-1 identically to the honest verifier while

plays round V-round-3 by using a different witness w.r.t. V for the non-
interactive zero-knowledge argument of knowledge that however is concur-
rent witness indistinguishable.
Session
At V-round-1, computes the first message of the witness-indistinguishable
argument of knowledge and sets equal to the challenge encryption
Then sends to V.
At V-round-3, cannot continue with this session since she does not know
the decryption of (remember that and thus can not play the third
round. However, by assumption P* can produce with non-negligible prob-
ability a string that is accepted by NIVM on input and reference
string Let be an upper bound on the length of such a
non-interactive zero-knowledge argument. checks, by exhaustive search, if
there exists such that NIVM accepts on input and as
reference string. Then searches for a string by considering

as reference string. If a proof is found and no proof is found then
outputs 0; in the opposite case outputs 1; otherwise (that is, if both or

neither proof exists) randomly guesses the bit
We note that the distribution of the first message of session is still identical
to the distribution of the honest verifier’s message.

Let us now show that the probability that correctly guesses is non-
negligibly larger that 1/2. We have that

1.

2.

TEAM LinG



Constant-Round Resettable Zero Knowledge with Concurrent Soundness 247

The last equality follows from the observation that, by the completeness of the
NIZK, the events and can happen only if Now, we have

Now, since the string is picked at random and P* has no information
about it, the string is random and thus, by the soundness of (NIPM,NIVM),

is negligible. Therefore, the probability that correctly
guesses is non-negligibly larger than 1/2.

Resettable Zero Knowledge. Let V* be an verifier. We now present
a probabilistic polynomial-time algorithm that has black-box access to
V* and whose output is computationally indistinguishable from the view of the
interactions between P and V*.

We start with an informal discussion. The construction of S is very similar
to the construction of the simulator for the constant-round (sequentially sound)
resettable zero-knowledge argument for any NP language and in the BPK model,
given in [3] (protocol 6.2). In particular, note that both the protocol of Figure 1
and protocol 6.2 in [3] can be abstractly described as follows. The prover and
the verifier run a 3-round argument of knowledge, where the verifier, acting as
a prover, proves knowledge to the prover, acting as verifier, of some trapdoor
information. Knowledge of the trapdoor information allows for efficient simula-
tion of the interaction between the prover and the verifier. In [3], the trapdoor
information is the private key associated with the verifier’s public key. In our
protocol, the trapdoor information is either the private key associated with the
verifier’s public key (for the real verifier) or the inverse of an output of a one-to-
one length-preserving one-way function sent from the prover to the verifier. Note
that just to obtain round optimality we use a special witness-indistinguishable
argument of knowledge where the statement is known only after that the second
round is played while its size is known from the beginning. Due to this difference,
our simulator only differs from the one of [3] in the fact that we need to prove
that when the simulator runs the extractor of the argument of knowledge, with
high probability it extracts the verifier’s private key (rather than The
rest of the construction of our simulator is conceptually identical to that of [3],
but we still review a more precise description here for completeness.

We note that algorithm takes time Writing as
for some constant we pick and so that and We thus
have that breaks an verifiably binding cryptosystem in time bounded
by

Therefore the existence of contradicts the of the cryptosystem.
In our proof we assumed that knows the value If this is not the case that

can simply guess the values and the same analysis applies and the probability
that correctly guesses decreases by a polynomial factor.
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First of all, without loss of generality, we make the following two simplifying
assumptions. Recall that, since our protocol is a resettable zero-knowledge ar-
gument system, V* is allowed to reset the prover. However, in [3] Canetti et al.
proved that in such a setting a verifier that concurrently interacts with many in-
carnations of the prover does not get any advantage with respect to a sequential
(resetting) verifier (that is, a verifier that runs a new session only after having
terminated the previous one). Thus in this proof we will consider V* as a se-
quential (resetting) verifier. A second assumption is that we can define S for a
modification of our protocol in which the prover uses a truly random function
rather than a pseudo-random one to compute her random bits. Proving that the
two views are computationally indistinguishable is rather standard.

S runs the first stage of V* so that the public file composed by entries
is obtained. In the second stage, the aim of the simulator is to obtain the private
keys corresponding to the public keys of the public file. Let V*(F) be the state
of V* at the end of the first stage.

In the following, we say that a session is solved by S if S has the private key
corresponding to the public key used by V* in this session. The work of S in the
second stage of the simulation is composed by at most sequential phases.
In each phase, either S has a chance of terminating the simulation or S learns
one more private key. At the end of each phase 5 rewinds V* to state V*(F).
The simulation ends as soon as S manages to solve all sessions of a phase.

We describe now the work of S during a phase. Once a session is started,
S receives the first message from V*. Then there are two cases. If the session
is solved by S then S can simulate the prover; otherwise, S tries to obtain the
private key used in this session so that all future sessions involving this verifier
will be solved by 5.

Specifically, first consider the simpler case of a solved session. We distinguish
two sub-cases. First, we consider the sub-case where the first message in the
session has not appeared before for the same incarnation of the prover,
i.e., has not appeared before for the same prover oracle accessed by V*
with the same random tape, same witness and same theorem. Then S runs the
simulator for (NIPM,NIVM) on input and obtains a pair and then
forces equal to in the following way. Since S knows the verifier’s secret-key
(we are assuming in this sub-case that the session is solved), S can decrypt
and thus obtain the string computed by the verifier at the first round. Thus
S sets Consequently, in round P-round-4, S will send “proof”

(that is computationally indistinguishable from the proof computed by the
real prover). We use here the binding property of the encryption scheme since
S must decrypt obtaining the same value that will be sent by V* in round
V-round-3.

Now we consider the sub-case where the first message in the session
has already appeared in such a phase for the same incarnation of the prover. Here
S sends the same strings and the same string that was sent in the
previous session containing as first message for the same incarnation of
the prover. Even for the case of the third message of a session that has already
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appeared for the same incarnation of the prover, S replies with the same round
P-round-4 played before.

We now consider the harder case of a session which is not solved by S. In this
case S uses the argument of knowledge of V* to obtain the private key used in
this session. Specifically, in any unsolved session, the simulator uses the extractor
E associated with the witness-indistinguishable argument of knowledge used by
the verifier.

Recall that we denote by the first message sent by the verifier in the
current session, by the verifier’s public key and by the puzzle sent
by the simulator when simulating the prover’s first message. We now distinguish
three possible cases.

Case 1: The message has not yet appeared in a previous session for
the same incarnation of the prover and the extractor E obtains as witness.
Note that S obtains the verifier’s private key by running E. This is the most
benign of the three cases since the session is now solved.

Case 2: The message has not yet appeared in a previous session for the
same incarnation of the prover and the extractor E obtains as witness.
Note however that the value has been chosen by S itself. If this case happens
with non-negligible probability then we can use V* to invert the one-way function

We stress that this case is the only conceptual difference between our proof
and the proof of rZK of protocol 6.2 in [3].

Case 3: The message has already appeared in a previous session for the
same incarnation of the prover. Note that since we are assuming that the current
session is not solved by S, this means that in at least one previous session, V*
sent but then did not continue with such a session. This prevents S from
simulating as in case 2 since the simulation would not be correct. (Specifically, as
discussed in [3], in a real execution of the argument, the pseudo-random string
used as random string for the prover’s first message is determined by the previous
uncompleted session (the input of is the same in both cases and the seed
is taken from the same random string) and therefore cannot be reset by S to
simulate this case by running an independent execution of E.) This problem is
bypassed precisely as in [3]. That is, S tries to continue the simulation from the
maximal sequence of executions which does not contain as a first step of
the verifier for such an incarnation of the prover, using a new random function.

The same analysis in [3] shows that this simulation strategy ends in expected
polynomial time and returns a distribution indistinguishable from a real execu-
tion of the argument.

3-Round WI Argument of Knowledge. As already pointed out above, we can save
one round (and thus obtain a 4-round argument system instead of 5-round one)
by having the prover send the puzzle after the verifier has started the witness-
indistinguishable argument of knowledge. In this argument of knowledge, the
verifier acts as a prover and shows knowledge of either the secret key associated
with his private key or of a solution of the puzzle. Consequently, the input
statement of such an argument of knowledge is not known from the start and
actually, when the first message is produced, only its length is known.
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Next we briefly describe such an argument of knowledge by adapting to our
needs the technique used by [16] to obtain a non-interactive zero-knowledge proof
system for Hamiltonicity.
1. The prover commits to randomly generated Hamiltonian cycles (each edge

is hidden in a committed adjacency matrix of degree
2. the graph G is presented to the prover and the verifier and verifier sends an

random challenge;
3. if the bit of the challenge is 0 then the prover opens the Hamiltonian

cycle;
4. if the bit of the challenge is 1 then the prover sends a permutation

and shows that each edge that is missing in the graph corresponds to
a commitment of 0 in the committed Hamiltonian cycle.

Completeness, soundness and witness indistinguishability can be easily verified.
The protocol is an argument of knowledge since an extractor that rewinds the
prover and changes the challenge obtains a Hamiltonian cycle of G.

4 Sequentially Sound Sequential Zero Knowledge for
in the BPK Model

In this section we give a 3-round sequentially sound sequential zero-knowledge
argument in the BPK model for any language in

Assumptions. We start by listing the tools and the complexity-theoretic assump-
tions we need for the construction of this section.

We assume the existence of an signature schemeSS = (SigG,Sig,
Ver). Here SigG denotes the key generator algorithm that receives the secu-
rity parameter (in unary) and returns a pair (pk,sk) of public keys; Sig
is the signature algorithm that takes as input a message and a private
key sk and returns a signature of and Ver is the signature verification
algorithm that takes a message a signature and a public key pk and
verifies that is a valid signature.
The scheme SS is in the sense that no algorithm running in time

that has access to a signature oracle but not to the private key can
forge the signature of a message for which it has not queried the oracle.
It is well known that if sub-exponentially strong one-way functions exist then
it is possible to construct secure signature schemes [18].
We assume that signatures of messages produced by using keys with
security parameter have length This is not generally true as for each
signature scheme we have a constant  such that signatures of messages
have length but this has the advantage of not overburdening the notation.
It is understood that all our proofs continue to hold if this assumption is
removed.

1.
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2.

3.

We assume the existence of a one-round perfectly binding computationally
hiding commitment scheme. The scheme is in the
sense that there exists an extractor algorithm E that on input a commitment,
computes in time the committed value.
Such a commitment schemes are known to exist under the assumption of the
existence of sub-exponentially strong one-to-one length-preserving one-way
functions.
We also assume the existence of ZAPs for all (see [19]).

In sums, our construction is based on the existence of subexponentially strong
one-to-one length preserving one-way functions and one-way trapdoor permuta-
tions.

We start by briefly describing the main idea of our protocol. The prover
and the verifier play the following game: the prover picks a random message

computes a commitment of and asks the verifier to sign the
verifier signs the commitment and sends back to the prover such a signature
and a message Finally the prover, constructs an extractable commitment
com of a random message and proves to the verifier using a ZAP that either

or com is the extractable commitment of a signature of a commitment
of Let us now informally argue about sequential soundness and sequential
zero-knowledge of the argument system described. For the sequential soundness,
we observe that, since is chosen at random by the verifier for each sequential
execution of the protocol, it is unlikely that the prover knows the signature of
a commitment of For the zero-knowledge property instead, the simulator,
once is received, rewinds V* and opens a new session with the verifier in
which he sets computes a commitment of and sends it to
the verifier that thus produces a signature of a commitment of Going back
to the original session, the simulator has a witness for the ZAP and can thus
complete the simulation.

Theorem 2. If there exist subexponentially strong one-to-one length-preserving
one-way functions and trapdoor permutations then there exists a 3-round sequen-
tially sound sequential zero-knowledge argument for in the BPK model.

Proof. Completeness and Sequential soundness can be easily proved. For the
Sequential Zero Knowledge, we now describe a simulator S. We consider a ma-
licious verifier V* that in the first stage outputs the public file F and in the
second stage interacts with P by considering possible theorems and
possible entries of F. However V* is now a sequential verifier and thus he cannot
run twice the same incarnation of P, neither he can run two concurrent sessions
with P. Thus the simulation proceeds session by session and we can focus only
in the simulation of a generic session.

Let be the state of V* at the beginning of a given session. The simulator
sends in the first round a message that is distributed identically w.r.t. the one
of the prover. Then V* replies by sending a message let the state of V*
in such a step. The simulator rewinds V* to state and plays again the first
round but this time he sets The simulator repeats this first round
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with a different randomness as long as the verifier sends a valid second message
that therefore contains a signature of a commitment of The simulator can
use the signature of a commitment of as witness for the third round of the
original proof, that can be given by rewinding V* to state More precisely,
S rewinds V* to state and computes as a commitment of a commitment
of and as a commitment of the previously received signature. Then S has
a witness for playing the ZAP.

The previously described rewind strategy allows the simulator to complete
the simulation in expected polynomial-time and, moreover, the indistinguisha-
bility of the ZAP and the hiding of the commitment scheme guarantee that the
distribution of the output is computationally indistinguishable from an interac-
tion between a real prover and V*.

We remark that it is possible to base our construction on primitives secure
against polynomial-time adversaries by employing a 3-round witness indistin-
guishable argument where the statement is chosen by the prover before produc-
ing the third message.

5 Conclusions

In an asynchronous environment like the Internet resettable zero-knowledge pro-
tocols that are not concurrently sound in the BPK model cannot be considered
secure and previous concurrently sound protocols required stronger assumptions
than the BPK model.

In this work we have positively closed one of the main open problems regard-
ing zero knowledge in the BPK model. We have shown that a constant-round con-
currently sound resettable zero-knowledge argument system in the BPK model
exists. In particular, we have shown a 4-round protocol which is optimal for the
black-box model.
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Abstract. The concept of zero-knowledge (ZK) has become of funda-
mental importance in cryptography. However, in a setting where entities
are modeled by quantum computers, classical arguments for proving ZK
fail to hold since, in the quantum setting, the concept of rewinding is
not generally applicable. Moreover, known classical techniques that avoid
rewinding have various shortcomings in the quantum setting.
We propose new techniques for building quantum zero-knowledge (QZK)
protocols, which remain secure even under (active) quantum attacks.
We obtain computational QZK proofs and perfect QZK arguments for
any NP language in the common reference string model. This is based
on a general method converting an important class of classical honest-
verifier ZK (HVZK) proofs into QZK proofs. This leads to quite practical
protocols if the underlying HVZK proof is efficient. These are the first
proof protocols enjoying these properties, in particular the first to achieve
perfect QZK.
As part of our construction, we propose a general framework for building
unconditionally hiding (trapdoor) string commitment schemes, secure
against quantum attacks, as well as concrete instantiations based on
specific (believed to be) hard problems. This is of independent interest,
as these are the first unconditionally hiding string commitment schemes
withstanding quantum attacks.
Finally, we give a partial answer to the question whether QZK is possible
in the plain model. We propose a new notion of QZK, non-oblivious
verifier QZK, which is strictly stronger than honest-verifier QZK but
weaker than full QZK, and we show that this notion can be achieved by
means of efficient (quantum) protocols.

1 Introduction

Since its introduction by Goldwasser, Micali and Rackoff [14], the concept of
zero-knowledge (ZK) proof has become a fundamental tool in cryptography. In-
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formally, in a ZK proof of a statement, the verifier learns nothing beyond the
validity of the statement. In particular, everything the verifier can do as a result
of the interaction with the prover during the ZK proof, the verifier could also
do “from scratch”, i.e., without interacting with the prover. This is argued by
the existence of an efficient simulator which produces a simulated transcript of
the execution, indistinguishable from a real transcript. ZK protocols exist for
any NP language if one-way functions exist [2,3,15], also more efficient solu-
tions are known for specific languages like Quadratic-Residuosity [14] or Graph-
Isomorphism [15].

From a theoretical point of view, it is natural to ask whether such classical
protocols are still secure if cheating players are allowed to run (polynomial time
bounded) quantum computers. But the question also has some practical rele-
vance: although quantum computers may not be available to the general public
in any foreseeable future, even a single large scale quantum computer could be
used to attack the security of existing protocols.

To study this question, two issues are important. First, the computational
assumption on which the protocol is based must remain true even if the adversary
is quantum. This rules out many assumptions such as hardness of factoring or
extracting discrete logs [23], but a few candidates still remain, for instance some
problems related to lattices or error correcting codes. In general, it is widely
believed that quantum one-way functions exist, i.e., functions that are easy to
compute classically, but hard to invert, even on a quantum computer.

A second and more difficult question is whether the proof of security remains
valid against a quantum adversary. A major problem in this context comes from
the fact that in the classical definition of ZK, the simulator is allowed to rewind
the verifier in order to generate a simulated transcript of the protocol execution.
However, if prover and verifier are allowed to run quantum computers, rewinding
is not generally applicable, as it was originally pointed out by Van de Graaf [27].
We discuss this in more detail later, but intuitively, the reason is that when
a quantum computer must produce a classical output, such as a message to
be sent, a (partial) measurement on its state must be done. This causes an
irreversible collapse of the state, so that it is not generally possible to reconstruct
the original state. Moreover, copying the verifier’s state before the measurement
is forbidden by the no-cloning theorem. Therefore, protocols that are proven
ZK in the classical sense using rewinding of the verifier may not be secure with
respect to a quantum verifier. This severe breakdown of the classical concept of
ZK in a quantum world is the motivation of this work.

It is well known that rewinding can cause “problems” already in a classi-
cal setting. In particular, it has been realized that rewinding the verifier limits
the composability of ZK protocols. As a result, techniques have been proposed
that avoid rewinding the verifier, for instance the non-black-box ZK technique
from [1], or – in the common reference string model – techniques providing con-
current ZK [13,22,9], non-interactive ZK [4] or universally-composable (UC)
ZK [5,6,11] and related models [21]. One might hope that some of these ideas
would translate easily to the quantum setting.
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However, the non-black box technique from [1] is based on the simulator us-
ing the verifier’s program and current state to predict its reaction to a given
message. Doing so for a quantum verifier will collapse its state when a measure-
ment is done to determine its next message, so it is not clear that this technique
will generalize to a quantum setting. The known constructions of UCZK pro-
tocols and non-interactive ZK are all based on computational assumptions that
are either false in a quantum setting or for which we have no good candidate
for concrete instantiations: the most general sufficient assumption is the exis-
tence of one-way trapdoor permutations (i.e. as far as we know) but all known
candidates are easy to invert on a quantum computer. Regardless of this type
of problem, great care has to be taken with the security proof: despite the fact
that the simulator in the UC model must not use rewinding, it is not true that
a security proof in the UC model automatically implies security against quan-
tum adversaries - we discuss this in more details later in the paper. Finally, the
technique for concurrent ZK from [9] avoids rewinding the verifier but instead
rewinds the prover to prove soundness, leading to similar problems.

Before describing our results, we note that quantum zero-knowledge proof
systems were already studied from a complexity theoretic point of view by Wa-
trous in [26]. The proof systems considered there all assume the prover to be
computationally unbounded and the zero-knowledge condition is only enforced
against honest verifiers. Clearly, these restrictions make those proof systems
unsuitable for cryptographic applications. In this paper, we focus on efficient
quantum zero-knowledge protocols in a cryptographic setting.

We propose three distinct techniques applicable to an important class of
(classical) honest-verifier ZK (HVZK) proofs (in which the verifier is guaranteed
to follow the protocol), namely so-called (3-move public-coin pro-
tocols). We convert such protocols into quantum zero-knowledge (QZK) proofs,
which are ZK (as well as sound) even with respect to (active) quantum attacks.
In all cases, the new proof protocol proceeds in three moves like the underly-
ing and its overhead in terms of communication is reasonable. To
the best of our knowledge, these are the first (practical) zero-knowledge proofs
withstanding active quantum attacks.

The first technique assumes the existence of an unconditionally hiding trap-
door string commitment scheme (secure against quantum attacks) and can be
proven secure in the common-reference-string (CRS) model. It requires only clas-
sical computation and communication and achieves perfect or statistical QZK,
assuming the underlying was perfect or statistical HVZK, and is an
interactive argument (computationally sound). The communication overhead of
the new QZK protocol in comparison with the underlying is essen-
tially given by communicating and opening one string commitment. The tech-
nique directly implies perfect or statistical QZK arguments for NP.

This first approach requires addressing the problem of constructing uncondi-
tionally hiding and computationally binding trapdoor string commitment
schemes withstanding quantum attacks. This is non-trivial since the classical
definition of computational binding cannot be used for a quantum adversary as
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it was pointed out in [12] with respect to bit commitments and in [8] with respect
to string commitments. In fact, it was not even clear how computational binding
for a string commitment should be defined. In [8], a computational binding con-
dition was introduced with their application in mind but no concrete instance
was proposed.

We propose a new definition of computational binding that is strong enough
for our (and other) applications. On the other hand, we propose a generic
construction for schemes satisfying our definition based on special-sound

for hard-to-decide languages, and we give examples based on concrete
intractability assumptions. Our construction yields the first unconditionally hid-
ing string commitment schemes withstanding quantum attacks, under concrete
as well as under general intractability assumptions. Moreover, since our defini-
tion implies the one from [8], our schemes can be used to provide secure quantum
oblivious transfer.

The second technique assumes the existence of any quantum one-way func-
tion and is also secure in the CRS model. It requires classical communication
and computation and produces computational QZK interactive proofs for any
NP language. It can be efficiently instantiated under more specific complexity
assumptions.

The last technique requires no computational assumption and is provably se-
cure in the plain model (no CRS). However, it requires quantum computation and
communication and does not achieve full QZK but what we call non-oblivious
verifier QZK. This new notion is weaker than QZK but strictly stronger than
honest-verifier QZK (as defined in [26]). Essentially, a non-oblivious verifier may
arbitrarily deviate from the protocol but still generates all private and pub-
lic classical random variables available to the honest verifier according the same
distribution. The (quantum) communication complexity of the non-oblivious ver-
ifier QZK proof essentially equals the (classical) communication complexity of
the underlying

The paper is organized as follows. In Sect. 2, we introduce some relevant
notations. We also argue why rewinding causes a problem in a quantum setting
and why UCZK does not imply QZK. In Sect. 3, we define and construct the
unconditionally hiding (trapdoor) commitment schemes used in Sect. 4 for QZK
proofs in the common-reference-string model. Finally, the non-oblivious verifier
QZK proof in the plain model is presented in Sect. 5.

Due to space limitations, some descriptions and discussions appear in a short-
ened form in this proceedings version, they appear in full in the full version [10].

2 Preliminaries
2.1 Zero-Knowledge Interactive Proofs

The Classical Case: We assume the reader to be familiar with the classical
notions of (HV)ZK interactive proofs (and arguments) and of (special-sound)

We merely fix some notation and terminology here. For an intro-
duction to these concepts we refer to the full version of this paper [10] or to the
literature.
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Let be a binary relation. Write for
the language defined by R. For any such that is called
a witness (for and we write for the set of
witnesses for We assume that the size of the witnesses for are
polynomially bounded by the size of and that R is poly-time testable.

We refer to a (P, V) for a language L by a triple (a, c,z), where we
understand a, c and z as the processes of choosing/computing the first message

the (random) challenge and the corresponding answer respectively, as
specified by the protocol (with some input and we write
and respectively, for the execution of these processes. Furthermore,
we write for the verification predicate which is applied by V and whose
output accept or reject, respectively 0 or 1, determines whether V should
accept the proof or not. We stress that when considering a computationally
bounded (honest) prover P as we do here the answer is typically not computed
by P as a function of and (as the notation might suggest),
but rather as a function of the randomness used to generate of the challenge

and of a witness Per default, we understand a to
be unconditionally sound. Clearly, for a fixed the soundness error of
such a is given by the maximum over all possible first messages of
the fraction of the possible challenges for that allow an answer which is
accepted by V.

It is known that statistical ZK only exist for languages
Most of the well-known are proof-system for languages that

are trivial on a quantum computers. However, some languages like graph isomor-
phism (i.e. GI) have special sound and are not known to be trivial
on a quantum computer. This is also the case for some recently proposed lattice
problems [19]. It is not known whether co-AM can be efficiently recognized by
a quantum computer.

The Quantum Case: ZK quantum interactive proof systems are defined as the
natural generalization of their classical counterpart and were introduced and first
studied by Watrous [24,26]. Quantum ZK (QZK) is defined as for the classical
case except that the quantum simulator is required to produce a state that
is exponentially close, in the trace-norm sense, to the verifier’s view. Formal
definitions for QZK proof systems can be found in the full version [10].

2.2 The Problem with Quantum Rewinding
Rewinding a party to a previous state is a common proof technique for showing
the security of many different kinds of protocols in the computational model.
In general, this technique cannot be applied when the party is modeled by a
quantum computer. Originally observed by Van de Graaf [27], this implies that
security proofs of many well-established classical protocols do not hold if one
party is running a quantum computer even if the underlying assumption under
which the security proof holds withstands quantum attacks.

Rewinding is in general not possible since taking a snapshot of a quantum
memory is tantamount to quantum cloning. Unlike in the classical case, there
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is no way to copy a quantum memory regardless of what the memory contains.
The only generic way to restore a quantum memory requires to re-generate it
from scratch. Proceeding that way may not be possible efficiently.

One consequence of the no quantum rewinding paradigm is particularly rel-
evant to us. Sequential repetitions of an HVZK for a language L
results in a ZK protocol for L with negligible soundness error. It follows that
this straightforward construction is not guaranteed to be secure against quantum
verifiers.

Another example is the use of rewinding for proving secure applications of
computationally binding commitment schemes. Such a security proof is done by
showing that an attacker that breaks the application can be used to compute two
different openings of a commitment and thus to break the binding property of
the commitment scheme. This reduction, however, requires typically to rewind
of the attacker, and thus by the no quantum rewinding paradigm does not yield
a valid security proof in a quantum setting.

More details can be found in the full version [10].

2.3 UCZK Does Not Imply QZK

In [5], Canetti proposes a new framework for defining and proving cryptographic
protocols secure: the universal composability (UC) framework. This framework
allows to define and prove secure cryptographic protocols as stand-alone proto-
cols, while at the same time guaranteeing security in any application by means
of a general composition theorem. The UC security definition essentially requires
that the view of any adversary attacking the protocol can be simulated while
in fact running an idealized version of the protocol, which essentially consists
of a trusted party called ideal functionality. The simulation should be indistin-
guishable for any distinguisher, called environment, which may be on-line, and
provides the inputs and receives the outputs. Furthermore, the UC definition
explicitly prohibits rewinding of the environment and thus of the adversary (as
it may communicate with the environment). This restriction is crucial for the
proof of the composition theorem. We refer to [5] for more details.

Since the UC framework forbids rewinding the adversary, it seems that UCZK
implies QZK, assuming the underlying computational assumption withstands
quantum attacks. This intuition is false in general. The reason being that even
though the UC framework does not allow the simulator to rewind the adversary,
it is still allowed to use rewinding as a proof-technique in order to show that the
simulator produces a “good” simulation. For instance, it is allowed to argue that
if an environment can distinguish the simulation from a real protocol execution,
then by rewinding the environment together with the adversary one can solve
efficiently a problem assumed to be hard. We illustrate this on a concrete example
in [10].

3 Unconditionally Hiding (Trapdoor) Commitments

In this section we study and construct classical (trapdoor) commitment schemes
secure against quantum attacks. In contrast to quantum commitment schemes,
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such schemes do not require quantum computation (in order to compute, open
or verify commitments), but they are guaranteed to remain secure even under
quantum attacks. Our construction, which is based on hard-to-decide languages
with special-sound yields the first unconditionally hiding string
commitment schemes withstanding quantum attacks. In Sect. 4, we use these
commitments to construct QZK proofs. A further application of our commitment
schemes is given in [10], where it is shown how they give rise to quantumly secure
oblivious transfer.

3.1 Defining Security in a Quantum Setting

Informally, by publishing a commitment for a random
a commitment scheme allows a party to commit to a secret such that the
commitment C reveals nothing about the secret (hiding property) while on the
other hand the committed party can open C to by publishing but only
to (binding property).

Formally, a commitment scheme (of the kind we consider) consists of two
poly-time algorithms: A key-generation algorithm which takes as input the se-
curity parameter and specifies an instance of the scheme by generating a public-
key pk, and an algorithm commit which allows to compute
given a public-key pk as well as and chosen from appropriate finite sets and

(specified by pk). is called the domain of the commitment scheme. Classi-
cally, the hiding property is formalized by the non-existence of a distinguisher
which is able to distinguish from with
non-negligible advantage, where are chosen by the distinguisher and

are random. On the other hand, the binding property is formalized by
the non-existence of a forger able to compute and such that

but If the distinguisher respectively the
forger is restricted to be poly-time, then the scheme is said to be computation-
ally hiding respectively binding, while without restriction on the distinguisher
respectively the forger, it is said to be unconditionally hiding respectively bind-
ing.

In order to define security of such a commitment scheme commit) in a
quantum setting, the (computational or unconditional) hiding property can be
adapted in a straightforward manner by allowing the distinguisher to be quan-
tum. The same holds for the unconditional binding property, which is equivalent
to requiring that every C uniquely defines such that for
some However, adapting the computational binding property in a similar man-
ner simply by allowing the forger to be quantum results in a too weak definition.
The reason being that in order to prove secure an application of a commitment
scheme, which is done by showing that an attacker that breaks the application
can be transformed in a black-box manner into a forger that violates the binding
property, the attacker typically needs to be rewound, which cannot be justified
in a quantum setting by the no-quantum-rewinding paradigm as discussed in
Sect. 2.2. The following definition for the computational binding property of a
commitment scheme with respect to quantum attacks is strong enough to prove
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secure applications (as in Sect. 4 and in [10]) based on the security of the un-
derlying commitment scheme, but it is still weak enough in order to prove the
binding property for concrete commitment schemes (see Sect. 3.2 and 3.3).

Let commit) be a commitment scheme as introduced above, and let
denote its domain. Informally, we require that it is infeasible to produce a
list of commitments and then open (a subset of) them in a certain specified
way with a probability significantly greater than expected. We formalize this
as follows. Let Q be a predicate of the following form. Q takes three inputs:
(1) a non-empty set where N is upper bounded by a polyno-
mial in (2) a tuple with and (3) an element
where is some finite set; and it outputs We do not
require Q to be efficiently computable. Consider a polynomially bounded quan-
tum forger in the following game: takes as input pk, generated by
and announces commitments Then, it is given a random
and it outputs A, and is said to win the
game if and for every We re-
quire that every forger has essentially the same success probability in win-
ning the game as when using an ideal (meaning unconditionally binding) com-
mitment scheme (where every uniquely defines In the latter case, the
success probability is obviously given by with

where stands for the restriction of
to its coordinates with In this definition, Q models a condition that

must be satisfied by the opened value in order for the opening to be useful for
the committer. For each application scenario, such a predicate can be defined.

Definition 1. A commitment scheme commit) is called computational Q-
binding if for every predicate Q, every polynomially bounded quantum forger
wins the above game with probability where adv, the advantage
of is (negative or) negligible (in

It is not hard to verify that in a classical setting (where is allowed to
be rewound), the classical computational binding property is equivalent to the
above computational Q-binding property. Furthermore, it is rather obvious that
the computational Q-binding property for a commitment scheme with domain

implies the computational Q-binding property for the natural extension of the
scheme to the domain (for any by committing componentwise. Note that
this desirable preservation of the binding property does not hold for the binding
property introduced in [8].

Finally, we define a trapdoor commitment scheme1 as a commitment scheme
in the above sense with the following additional property. Besides the public-
key pk, the generator also outputs a trapdoor which allows to break either
the hiding or the binding property. Specifically, if the scheme is unconditionally
binding, then allows to efficiently compute from and if
it is unconditionally hiding, then allows to efficiently compute commitments
C and correctly open them to any

1 Depending on its flavor, a trapdoor commitment scheme is also known as an ex-
tractable respectively as an equivocable or a chameleon commitment scheme.
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3.2 A General Framework

In this section, we propose a general framework for constructing unconditionally
hiding and computationally Q-binding (trapdoor) string commitment schemes.
For that, consider a language and assume that

1.
2.

3.

L admits a (statistical) HVZK special-sound  2,
there exists an efficient generator generating together with a
witness (more precisely, takes as input security parameter
and outputs of bit size and and
for all poly-size quantum circuits and polynomials if is large
enough then there exists of bit size such that for generated by

(on input

Note that 3. only requires that for every distinguisher it is hard to distinguish
a randomly generated yes-instance from some no-instance which
in particular may depend on

Given such L, the construction in Fig. 1 provides an unconditionally hiding
trapdoor commitment scheme. We assume that c samples challenge randomly
from for some

Fig. 1. Trapdoor commitment scheme commit).

If is special HVZK, meaning that can be simulated for a given
then the commitment scheme can be slightly simplified: is generated
such that and C is simply set to be

Theorem 1. Under assumption 3., commit) in Fig. 1 is an unconditionally
hiding and computationally Q-binding trapdoor commitment scheme.

2 As will become clear, the prover’s efficiency in the does not influence
the efficiency of the resulting commitment scheme as far as the committer and the
receiver are concerned. An efficient prover is only required if one wants to take
advantage of the trapdoor.
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As will become clear from the proof below, if the underlying
is perfect HVZK, then commit) is perfectly binding in the sense that there
exists no distinguisher with non-zero advantage, meaning that a commitment C
for is statistically independent of

Proof. It is clear that a correct opening is accepted. It is also rather obvious that
the scheme is unconditionally hiding: The distribution of generated by
the HVZK simulator is statistically close to the distribution of generated
by the protocol. There, however, is chosen independently of Therefore,
gives essentially no information on and thus gives essentially no
information on (as acts as a one-time pad). The trapdoor property can
be seen as follows. Knowing the trapdoor put where
and is randomly sampled from      Given arbitrary compute

and using the witness (and the randomness for the
generation of It is obvious that opens C correctly to

It remains to show the computational Q-binding property. We show that if
there exists a forger that can break the Q-binding property of the commit-
ment scheme (without knowing the trapdoor) for some predicate Q according to
Definition 1, then there exists a circuit that contradicts assumption 3. is
illustrated in Figure 2 and is quantum if and only if is.

Fig. 2. Distinguisher for versus

If is generated by then is a valid public-key for the commitment
scheme with the right distribution and thus
where adv is advantage. On the other hand, if then by the special
soundness property of given there is only one that allows an answer
such that Hence, for any there is only one to
which can be successfully opened. Therefore, If adv
is (positive and) non-negligible, then this contradicts 3.

We would like to point out once more that our definition of the (computa-
tional) binding property inherits the following feature. If a commitment scheme
with domain is computational Q-binding, then its natural extension to a
commitment scheme with domain by committing componentwise (with the
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same pk) is also computational Q-binding. In particular, any computational Q-
binding bit commitment scheme gives rise to a computational Q-binding string
commitment scheme.

3.3 Concrete Instantiations

We propose three concrete languages which are believed to be hard to de-
cide as required in the above section and which admit HVZK special-sound

The first language is based on a problem from coding theory: the
Code-Equivalence (CE) problem. It requires to decide whether two generator
matrices generate the same code up to a permutation of the coordinates, and it
is known to be at least as hard (in the worst case) as the Graph-Isomorphism
(GI) problem. Furthermore, it admits a similar as GI. Finally, and
in contrast to GI, there is a generator believed to produce hard yes-instances.
More details are given in [10].

The next two languages are gap versions of the famous lattice problems
Shortest-Vector and Closest-Vector, where the no-instances are promised to be
“not too close” to the yes-instances. for these problems were recently
proposed in [19], where the generation of hard instances is also addressed. Again,
more details are given in [10].

These languages give rise to concrete instantiations of the commitment
scheme developed in the above section, based on concrete computational as-
sumptions.

4 Quantum Zero-Knowledge Proofs

4.1 Common-Reference-String Model

The common-reference-string (CRS) model assumes that there is a string (hon-
estly) generated according to some distribution and available to all parties from
the start of the protocol. In the CRS model, an interactive proof (or argument)
is (Q)ZK if there exists a simulator which can simulate the (possibly dishonest)
verifier’s view of the protocol execution together with a CRS having correct
joint distribution as in a real execution.

4.2 Efficient QZK Arguments

We show how to convert any HVZK into a quantum zero-knowledge
(QZK) argument. The construction is based on a trapdoor commitment scheme
and can be proven secure in the CRS model.

It is actually very simple. P and V simply execute the but instead
of sending message in the first move, P sends a commitment to which he
then opens when he sends the answer to the challenge in the third move. The
zero-knowledge property then follows essentially by observing that the simulator
(who knows the trapdoor of the commitment scheme) can cheat in the opening
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of the commitment. So far, the strategy for the QZK proof is the same as in
Damgård’s concurrent ZK proof [9]; the proof of soundness however will be
different since [9] requires to rewind the prover, which cannot be justified in
our case by the no-quantum-rewinding paradigm. In order not to rely on the
special HVZK property (as introduced and explained in Sect. 3.2), the protocol
is slightly more involved than sketched here, though the idea remains.

Let a HVZK for a language be given. Let
denote its soundness error. We assume without loss of generality that a and c

sample first messages and challenges of fixed bit lengths and respectively.
Furthermore, let an unconditionally hiding and computationally Q-binding trap-
door commitment scheme commit) be given (where the knowledge of the
trapdoor allows to break the binding property of the scheme). We assume that
its domain contains Consider Protocol 1 illustrated in Fig. 3.

Fig. 3. QZK proof protocol in the CRS model.

As mentioned above, Protocol 1 can be slightly simplified in case is special
HVZK in that P commits to (rather than to and computes with respect
to the challenge provided by V.

Theorem 2. Under the assumption that commit) is an unconditionally hid-
ing and computationally Q-binding trapdoor commitment scheme, Protocol 2 is
a QZK (quantum) argument for L in the CRS model. Its soundness error is

where negl is negligible (in the security parameter).

Concerning the flavor of QZK, Protocol 2 is computational QZK if the under-
lying is computational HVZK, and it is statistical QZK provided
that is statistical or perfect HVZK. In case commit) is perfectly (rather
than unconditionally) hiding, the flavor of QZK of Protocol 2 is exactly given
by the flavor of HVZK of

Proof. As mentioned above, the zero-knowledge property is rather straight for-
ward: The simulator generates a public-key for the commitment scheme together
with a trapdoor and outputs the public-key as CRS. Then, on input it
generates a commitment C (which he can open to an arbitrary value using the
trapdoor) and sends it to On receiving from the simulator simulates
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an accepting conversation for the original using the HVZK
property, it sets and computes such that
using the trapdoor, and it sends and to

For the soundness property, it has to be shown that given a (quantum) prover
which succeeds in making (honest) V accept the proof for an with a

probability exceeding by a non-negligible amount, can be used to break
the Q-binding property of the commitment scheme for some predicate Q. Fix

We define Q as follows. N = 1, and is given by the set of all possible
challenges sampled by c. For and where is parsed as

with and we set if and only
if the challenge for the first message allows an answer such
that Note that A = {1} is the only legitimate choice
for A. By construction of Q, making V accept the proof means that opens C
(correctly) to such that Furthermore, It
follows that if succeeds in making V accept the proof with probability greater
that by a non-negligible amount, then is a forger that breaks the Q-binding
property of commit). This completes the proof.

4.3 QZK Arguments for All of NP

Consider a (generic) ZK argument for an A/P-complete language using (ordinary)
unconditionally hiding commitments. For instance, consider the classical inter-
active proof for Circuit-Satisfiability due to Brassard, Chaum and Crépeau [3]:
the prover “scrambles” the wires and the gates’ truth tables of the circuit and
commits upon it, and he answers the challenge by opening all commit-
ments and showing that the scrambling is done correctly and the challenge
by opening the (scrambled) wires and rows of the gates’ truth tables that are
activated by the satisfying input. Following the lines of the proof of Theorem 2
above, it is straightforward to prove that replacing the commitment scheme in
this construction by an unconditionally hiding and computationally Q-binding
commitment scheme results in a QZK argument in the CRS model for Circuit-
Satisfiability, and thus for all languages in NP.

4.4 Computational QZK Proofs

We sketch how to construct rather efficient computational QZK proofs for lan-
guages that allow (computational) HVZK based on specific in-
tractability assumptions, as well as computational QZK proofs for all of NP
based on any quantum one-way function.

Consider any of the languages with HVZK on which
the commitment construction from Sect. 3.2 is based, except that we allow the

to be computational HVZK. Assume in addition that there is also a
generator that produces no-instances that cannot be distinguished from the
yes-instances produced by

Then, put a no-instance in the reference string. The prover can now
prove any statement S that can be proved by an HVZK by us-
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ing a standard witness-indistinguishable HVZK proof for proving that S is true
or [7]. Here, we allow the to be computational HVZK,
in particular might be the for Circuit-Satisfiability sketched in
Sect. 4.3 above but based on an unconditionally binding and computationally
hiding commitment scheme (secure against quantum attacks), which can be con-
structed from any (quantum) one-way function (see below).

This is clearly unconditionally sound, and can be simulated, where the sim-
ulator uses a yes-instance in place of and uses its witness
to complete the protocol without rewinding. A distinguisher would have to con-
tradict the HVZK property of one of the underlying or the indis-
tinguishability of yes- and no-instances.

This can be instantiated efficiently if we are willing to assume about the
coding or lattice problem or some other candidate problem that it also satisfies
this stronger version of indistinguishability of yes- and no-instances. But it can
also be instantiated in a version that can be be based on any one-way function:
First, the (unconditionally binding and computationally hiding) commitment
scheme of Naor [20] is also secure against quantum adversaries, and exists if
any one-way function exists. So consider the language of pairs (pk, O) where pk
is a public-key for the commitment scheme and O is a commitment of 0. This
language has a computational HVZK using generic ZK techniques,
driven by Naor’s commitments. Furthermore, the set of no-instances (pk, E)
where E is a commitment to 1 is easy to generate and hard to distinguish from
the yes-instances.

5 Relaxed Honest-Verifier Quantum Proofs
It is a natural question whether QZK proof systems exist without having to
rely upon common reference strings. In this section, we answer this question
partially. We define a quantum interactive proof system associated to any

Our scheme is QZK against a relaxed version of honest verifiers that
we call non-oblivious. Intuitively, a non-oblivious verifier is a verifier having
access to the same classical variables than the honest verifier. We show that any
HVZK can be turned into a non-oblivious verifier QZK proof using
quantum communication.

5.1 Quantum Circuits for
Assume has a classical HVZK We specify
unitary transforms and depending on which implement
quantum versions of the computations specified by z and verify. Throughout, we
assume without loss of generality that c samples uniformly from for
some

The answer to challenge when was announced during the
first round can be computed quantumly through some unitary transform
depending upon the initial announcement That is, provided quantum registers
P and X, we have:
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Similarly, the testing process performed by V can also be executed by a quan-
tum circuit depending on the announcement of Transformation
stores the output of the verification process in an extra one-qubit register T:

If and can be classically computed in polynomial time
(given the randomness of the computation of and a witness for
the former), circuits and can be implemented by poly-size quantum
circuits.

5.2 EPR-Pairs Based Proofs

The idea behind the protocol is as follows. P chooses and sends the
answer to all possible challenges in quantum superposition to V. V then verifies
quantumly that all answers in the superposition are correct. In a further step,
P convinces V that the state contains the answer to more than one challenge.
Since is assumed to be special sound, it follows that

Concretely, P starts by choosing and by preparing EPR pairs in
state:

The two equivalent ways of writing shows that it exhibits the same corre-
lation between registers P and V in both the computational and the diagonal
bases. This property will be used later in the protocol. Now, P adds an extra
register X initially in state before applying upon registers P and X.
This results in state,

where every in the superposition is computed as P then announces
and sends registers V and X to V allowing him to apply the verification

quantum circuit after adding an extra register T initially in state
That is,

V then measures register T in the computational basis and rejects if is not
observed. Provided P was honest, the test will always be successful by assumption
on the original and the verification process does not affect the
state V then returns register X back to P, who can recover shared EPR
pairs by running the inverse of Finally, P measures register P in
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Fig. 4. Non-oblivious verifier QZK proof.

the diagonal basis and announces the outcome to V. V does the same to register
V and verifies that the same outcome is obtained. By the properties of EPR
pairs (1), it follows that the measurements coincide provided P was honest. A
compact description of the protocol is given by Protocol 2 in Fig. 4.

5.3 Soundness
Consider We show that in Protocol 2, any prover has probability at
most to convince V, given that is special sound. Let be announced
by at step 1. By the special soundness property of if passes the test
at step 2. then the state shared between and V is of the following form:

where is the unique challenge that can be answered
given the announcement of Since after register X has been sent back to
register V is in pure state, it follows that only one answer is possible when V is
measured in the computational basis. That is, is guaranteed to be observed.
However, V’s final test involves a measurement of that same register in the
diagonal basis, and it is easy to see that the outcome of a measurement in the
diagonal basis applied to is uniformly distributed over This is a special
case of the entropic uncertainty relations [18]. It follows:

Theorem 3. If is a special-sound HVZK for language
where c samples in then Protocol 2 is a quantum interactive proof for L
with soundness error

It should be mentioned that being special sound is not a strict necessary
condition for Protocol 2 to be sound. A more careful analysis can handle the
case where is “not too far away” from special sound. For simplicity, in this
paper we only address the case of special sound

5.4 Non-oblivious Verifier Quantum Zero-Knowledge

Classical with large challenges are not known to be ZK against a
dishonest verifier. This is due to the fact that rewinding allows the simulator
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to succeed only if it has a non-negligible probability to guess the challenge that
the verifier will pick. This is true even with respect to verifiers that submit a
uniformly distributed challenge and are able to do the verification
test as prescribed. To see this, let be a one-way permutation
and let us assume for simplicity that and a samples from If
announces challenge for random and announced
by P as first message, then the simulator must generate since it is
part of view. However, the simulator typically can compute only after
having picked which means that it has to compute as Note
that even though is not necessarily uniformly distributed, it seems that
the simulator has typically not enough control over the value in order to
compute

Notice that a verifier acting as described above rejects a false statement
with the same probability and chooses the challenge with the same distribution
as an honest verifier, yet there is no known efficient simulator for In this
section we show that Protocol 2 is quantum zero-knowledge provided that is
non-oblivious of the value needed for the verification at step 4. More generally,
we define non-oblivious verifiers the following way:

Definition 2. A verifier is said to be non-oblivious if it produces the same
(public and private) variables as honest V according the same distribution.

As illustrated above, in contrast to an honest verifier a non-oblivious verifier
can produce his variables in an arbitrary manner, as long as they are correctly
distributed.

In Protocol 2, a non-oblivious verifier has access to the string so it can
be made available to the simulator. Indeed, this allows to produce a simulation of
the interaction between P and It is straightforward to verify that the simulator
described in Fig. 5 generates the same view as when interacts with P:

Fig. 5. Simulator for Protocol 2.

Theorem 4. Protocol 2 built from a special-sound (statistical/perfect) HVZK
is (statistical/perfect) QZK provided is non-oblivious.

A weaker assumption about behavior would be obtained if the only con-
straint was that detects false statements with the same probability as the
honest verifier V. Let us say that such a verifier is verification-enabled. In gen-
eral, a verification-enabled verifier is not necessarily non-oblivious since in
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order to verify announcement, does not necessarily have to be deter-
mined by without P’s help. However, it can be shown that for
with challenges of polylogarithmic size, any verification-enabled in Protocol 2
is also non-oblivious.

Acknowledgements

The authors are grateful to Claude Crépeau for having introduced the problem
to one of us and discussed its relevance. We would also like to thank Jesper
Nielsen for enlightening discussions.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

BARAK, B., How to Go Beyond the Black-box Simulation Barrier, in 42th Annual
Symposium on Foundations of Computer Science (FOCS), 2001.
BRASSARD, G., and C. CRÉPEAU, Zero-Knowledge Simulation for Boolean Cir-
cuits, in Advances in Cryptology - CRYPTO 86, Lecture Notes in Computer
Science, vol. 263, Springer-Verlag, 1987.
BRASSARD, G., D. CHAUM, and C. CRÉPEAU, Minimum Disclosure Proofs of
Knowledge, JCSS, 37(2), 1988.
BLUM, M., P. FELDMAN and S. MICALI, Non-Interactive Zero-Knowledge and
Its Applications, in 20th Annual Symposium on Theory Of Computing (STOC),
1988.
CANETTI, R., Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols, in 42th Annual Symposium on Foundations of Computer Sci-
ence (FOCS), 2001.
CANETTI, R., and M. FISCHLIN, Universally Composable Commitments, in Ad-
vances in Cryptology - CRYPTO 01, Lecture Notes in Computer Science,
vol. 2139, Springer-Verlag, 2001.
CRAMER, R., I. DAMGåRD, and B. SCHOENMAKERS, Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols, in Advances in Cryptology -
CRYPTO 94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag, 1994.
CRÉPEAU, C., P. DUMAIS D. MAYERS and L. SALVAIL,Computational Collapse of
Quantum State with Application to Oblivious Transfer, in Advances in Cryptology
– TCC 04, Lecture Notes in Computer Science, vol. 2951, Springer-Verlag, 2004.
DAMGåRD, I., Efficient Concurrent Zero-Knowledge in the Auxiliary String
Model, in Advances in Cryptology - EUROCRYPT 00, Lecture Notes in Com-
puter Science, vol. 1807, Springer-Verlag, 2000.
DAMGåRD, I.,S. FEHR, and L. SALVAIL, Zero-Knowledge Proofs and String Com-
mitments Withstanding Quantum Attacks, full version of this paper, BRICS report
nr. RS-04-9, available at www.brics.dk/RS/04/9, 2004.
DAMGÅRD, I., and J. NIELSEN, Perfect Hiding and Perfect Binding Universally
Composable Commitment Schemes with Constant Expansion Factor, in Advances
in Cryptology - CRYPTO 02, Lecture Notes in Computer Science, vol. 2442,
Springer-Verlag, 2002.
DUMAIS, P., D. MAYERS, and L. SALVAIL, Perfectly Concealing Quantum Bit
Commitment From Any Quantum One-Way Permutation, in Advances in Cryp-
tology - EUROCRYPT 00, Lecture Notes in Computer Science, vol. 1807,
Springer-Verlag, 2000.

TEAM LinG



272 Ivan Damgård, Serge Fehr, and Louis Salvail

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

DWORK, C., M. NAOR, and A. SAHAI, Concurrent Zero-Knowledge, in 30th An-
nual Symposium on Theory Of Computing (STOC), 1998.
GOLDWASSER, S., S. MICALI, and C. RACKOFF, The Knowledge Complexity of
Interactive Proof Systems, in 17th Annual Symposium on Theory Of Computing
(STOC), 1985.
GOLDREICH, O., S. MICALI, and A. WIGDERSON, Proofs that Yield Nothing
but their Validity, or All Languages in NP Have Zero-Knowledge Proof Systems,
J. ACM., 38(3), 1991.
FIAT, A., and A. SHAMIR, How to Prove Yourself: Practical Solutions to the
Identification and Signature Problem, in Advances in Cryptology - CRYPTO 86,
Lecture Notes in Computer Science, vol. 263, Springer-Verlag, 1987.
KITAEV, A., and J. WATROUS, Parallelization, Amplification, and Exponential
Time Simulation of Quantum Interactive Proof Systems, in 32nd Annual Sympo-
sium on Theory of Computing (STOC), 2000.
MAASSEN, H., and J.B.M. UFFINK, Generalized Entropic Uncertainty Relations,
Phys. Rev. Letters, vol. 60, 1988.
MICCIANCIO, D., and S. P. VADHAN, Statistical Zero-Knowledge Proofs with
Efficient Provers: Lattice Problems and More, in Advances in Cryptology -
CRYPTO 03, Lecture Notes in Computer Science, vol. 2729, Springer-Verlag,
2003.
NAOR, M., Bit Commitment Using Pseudorandomness, Journal of Cryptology,
vol. 4, no. 2, 1991.
PFITZMANN, B., and M. WAIDNER,Composition and Integrity Preservation of
Secure Reactive Systems, in 7th ACM Conference on Computer and Communica-
tions Security, 2000.
RICHARDSON, R. and J. KILIAN, On the Concurrent Composition of Zero-
Knowledge Proofs, in Advances in Cryptology - EUROCRYPT 99, Lecture Notes
in Computer Science, vol. 1592, Springer-Verlag, 1999.
SHOR, P., Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring, in 35th Annual Symposium on Foundations of Computer Science (FOCS),
1994.
WATROUS, J,PSPACE has Constant-Round Quantum Interactive Proof Systems,
in 40th Annual Symposium on Foundations of Computer Science (FOCS), 1999.
WATROUS, J.,Succinct Quantum Proofs for Properties of Finite Groups, Proceed-
ings of the 41st Annual Symposium on Foundations of Computer Science, 2000.
WATROUS, J., Limits on the Power of Quantum Statistical Zero-Knowledge, in
43rd Annual Symposium on the Foundations of Computer Science (FOCS), 2002.
VAN DE GRAAF, J., Towards a Formal Definition of Security for Quantum Pro-
tocols, Ph.D. thesis, Computer Science and Operational Research Department,
Université de Montréal, 1997.

TEAM LinG



The Knowledge-of-Exponent Assumptions
and 3-Round Zero-Knowledge Protocols

Mihir Bellare and Adriana Palacio

Dept. of Computer Science & Engineering, University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093, USA

{mihir,apalacio}@cs.ucsd.edu

http://www-cse.ucsd.edu/users/{mihir,apalacio}

Abstract. Hada and Tanaka [11,12] showed the existence of 3-round,
negligible-error zero-knowledge arguments for NP based on a pair of
non-standard assumptions, here called KEA1 and KEA2. In this paper
we show that KEA2 is false. This renders vacuous the results of [11,
12]. We recover these results, however, under a suitably modified new
assumption called KEA3. What we believe is most interesting is that we
show that it is possible to “falsify” assumptions like KEA2 that, due to
their nature and quantifier-structure, do not lend themselves easily to
“efficient falsification” (Naor [15]).

1 Introduction

A classical question in the theory of zero knowledge (ZK) [10] is whether there
exist 3-round, negligible-error ZK proofs or arguments for NP. The difficulty in
answering this question stems from the fact that such protocols would have to
be non-black-box simulation ZK [9], and there are few approaches or techniques
to this end. A positive answer has, however, been provided, by Hada and Tanaka
[11,12]. Their result (a negligible-error, 3-round ZK argument for NP) requires
a pair of non-standard assumptions that we will denote by KEA1 and KEA2.

THE ASSUMPTIONS, ROUGHLY. Let be a prime such that is also prime,
and let be a generator of the order subgroup of Suppose we are given
input and want to output a pair (C, Y) such that One way to
do this is to pick some let and let Intuitively, KEA1
can be viewed as saying that this is the “only” way to produce such a pair. The
assumption captures this by saying that any adversary outputting such a pair
must “know” an exponent such that The formalization asks that there
be an “extractor” that can return Roughly:

For any adversary A that takes input and returns (C, Y)
with there exists an “extractor” which given the same
inputs as A returns such that

Suppose we are given input and want to output a pair (C, Y )
such that One way to do this is to pick some let

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 273–289, 2004.
© International Association for Cryptologic Research 2004

KEA1:
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and let Another way is to pick some let and let
Intuitively, KEA2 can be viewed as saying that these are the “only”

ways to produce such a pair. The assumption captures this by saying that any
adversary outputting such a pair must “know” an exponent such that either

or The formalization asks that there be an “extractor” that
can return Roughly:

For any adversary A that takes input and returns
(C, Y) with there exists an “extractor” which given the
same inputs as A returns such that either or

As per [11,12], adversaries and extractors are poly-size families of (deterministic)
circuits. See Assumption 2 for a formalization of KEA2, and Assumption 4 for
a formalization of KEA1.

HISTORY AND NOMENCLATURE OF THE ASSUMPTIONS. KEA1 is due to Damgård
[7], and is used by [11,12] to prove their protocol is ZK. To prove soundness of
their protocol, Hada and Tanaka [11,12] introduce and use KEA2. (In addition,
they make the Discrete Logarithm Assumption, DLA.) The preliminary version
of their work [11] referred to the assumptions as SDHA1 and SDHA2 (Strong
Diffie-Hellman Assumptions 1 and 2), respectively. However, the full version
[12] points out that the formalizations in the preliminary version are flawed, and
provides corrected versions called non-uniform-DA1 and non-uniform-DA2. The
latter are the assumptions considered in this paper, but we use the terminol-
ogy of Naor [15] which we feel is more reflective of the content of the assump-
tion: “KEA” stands for “Knowledge of Exponent Assumption”, the exponent
being the value above.

FALSIFYING KEA2. In this paper we show that KEA2 is false. What is interest-
ing about this —besides the fact that it renders the results of [11,12] vacuous—
is that we are able to “falsify” an assumption whose nature, as pointed out by
Naor [15], does not lend itself easily to “efficient falsification.” Let us explain
this issue before expanding more on the result itself.

The most standard format for an assumption is to ask that the probabil-
ity that an adversary produces a certain output on certain inputs is negligible.
For example, the Factoring assumption is of this type, asking that the probabil-
ity that a polynomial-time adversary can output the prime factors of an integer
(chosen by multipling a pair of random primes) is negligible. To show such an as-
sumption is false, we can present an “attack,” in the form of an adversary whose
success probability is not negligible. (For example, a polynomial-time factoring
algorithm.) KEA1 and KEA2 are not of this standard format. They involve a
more complex quantification: “For every adversary there exists an extractor such
that ...”. To show KEA2 is false, we must show there is an adversary for which
there exists no extractor. As we will see later, it is relatively simple to identify an
adversary for which there does not appear to exist an extractor, but how can we
actually show that none of the infinite number of possible extractors succeeds?

KEA2:
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AN ANALOGY. The difficulty of falsifying an assumption with the quantifier
format of KEA2 may be better appreciated via an analogy. The definition of
ZK has a similar quantifier format: “For every (cheating) verifier there exists
a simulator such that ...”. This makes it hard to show a protocol is not ZK,
for, even though we may be able to identify a cheating verifier strategy that
appears hard to simulate, it is not clear how we can actually show no simulator
exists. (For example, it is hard to imagine how one could find a simulator for the
cheating verifier, for Blum’s ZK proof of Hamiltonian Cycle [5], that produces its
challenges by hashing the permuted graphs sent by the prover in the first step.
But there is to date no proof that such a simulator does not exist). However it
has been possible to show protocols are not black-box simulation ZK [9], taking
advantage of the fact that the quantification in this definition is different from
that of ZK itself. It has also been possible to show conditional results, for example
that the parallel version of the Fiat-Shamir [8] protocol is not ZK, unless there is
no hash function that, when applied to collapse this protocol, results in a secure
signature scheme [16]. Our result too is conditional.

FALSIFICATION RESULT. At an intuitive level, the weakness in KEA2 is easy
to see, and indeed it is surprising this was not noted before. Namely, consider
an adversary A that on input picks in some fashion, and
outputs (C, Y) where and Then
but this adversary does not appear to “know” such that either or

The difficulty, however, as indicated above, is to prove that there
does not exist an extractor. We do this by first specifying a particular strategy
for choosing and and then showing that if there exists an extractor for
the resulting adversary, then this extractor can be used to solve the discrete
logarithm problem (DLP). Thus, our result (cf. Theorem 1) is that if the DLP
is hard then KEA2 is false. Note that if the DLP is easy, then KEA2 is true, for
the extractor can simply compute a discrete logarithm of C and output it, and
thus the assumption that it is hard is necessary to falsify KEA2.

REMARK. We emphasize that we have not found any weaknesses in KEA1, an
assumption used not only in [7,11,12] but also elsewhere.

KEA3. Providing a 3-round, negligible-error ZK protocol for NP is a challenging
problem that has attracted considerable research effort. The fact that KEA2 is
false means that we “lose” one of the only positive results [11,12] that we had
on this subject. Accordingly, we would like to “recover” it. To this end, we
propose a modification of KEA2 that addresses the weakness we found. The
new assumption is, roughly, as follows:

KEA3: For any adversary A that takes input and returns
(C, Y) with there exists an “extractor” which given
the same inputs as A returns such that
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Before proceeding to use this assumption, we note a relation that we consider
interesting, namely, that KEA3 implies KEA1 (cf. Proposition 2)1. The relation
means that KEA3 is a natural extension of KEA1. It also allows us to simplify
result statements, assuming only KEA3 rather than both this assumption and
KEA1.

RECOVERING THE ZK RESULT. Let HTP denote the 3-round protocol of Hada
and Tanaka, which they claim to be sound (i.e., have negligible error) and ZK.
The falsity of KEA2 invalidates their proof of soundness. However, this does
not mean that HTP is not sound: perhaps it is and this could be proved under
another assumption, such as KEA3. This turns out to be almost, but not quite,
true. We identify a small bug in HTP based on which we can present a successful
cheating prover strategy, showing that HTP is not sound. This is easily fixed,
however, to yield a protocol we call pHTP (patched HTP). This protocol is
close enough to HTP that the proof of ZK (based on KEA1) is unchanged. On
the other hand, the proof of soundness of HTP provided in [12] extends with
very minor modifications to prove soundness of pHTP based on KEA3 and DLA
(cf. Theorem 2). In summary, assuming KEA3 and DLA, there exists a 3-round,
negligible error ZK argument for NP.

STRENGTH OF THE ASSUMPTIONS. The knowledge-of-exponent assumptions are
strong and non-standard ones, and have been criticized for assuming that one
can perform what some people call “reverse engineering” of an adversary. These
critiques are certainly valid. Our falsification of KEA2 does not provide infor-
mation on this aspect of the assumptions, uncovering, rather, other kinds of
problems. However, by showing that such assumptions can be falsified, we open
the door to further analyses.

We also stress that in recovering the result of [12] on 3-round ZK we have not
succeeded in weakening the assumptions on which it is based, for KEA3 certainly
remains a strong assumption of the same non-standard nature as KEA1.

RELATED WORK. Since [11,12] there has been more progress with regard to the
design of non-black-box simulation ZK protocols [1]. However, this work does
not provide a 3-round, negligible-error ZK protocol for NP. To date, there have
been only two positive results. One is that of [11,12], broken and recovered in
this paper. The other, which builds a proof system rather than an argument, is
reported in [14] and further documented in [13]. It also relies on non-standard
assumptions, but different from the Knowledge of Exponent type ones. Roughly,
they assume the existence of a hash function such that a certain discrete-log-
based protocol, that uses this hash function and is related to the non-interactive
OT of [3], is a proof of knowledge.

1 KEA2 was not shown by [12] to imply KEA1. Our proof of Proposition 2 does extend
to establish it, but the point is moot since KEA2 is false and hence of course implies
everything anyway.
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2 Preliminaries

If is a binary string, then denotes its length, and if is an integer, then
denotes the length of its binary encoding, meaning the unique integer such

that The empty string is denoted We let be the
set of positive integers. If is a prime number such that is also prime, then
we denote by the subgroup of quadratic residues of (Operations are
modulo but we will omit writing  for simplicity.) Recall this is
a cyclic subgroup of order If is a generator of then we let

denote the associated discrete logarithm function, meaning
for any We let

are primes and is a generator of

For any we let be the set of all such that the length of
the binary representation of is bits, i.e.,

Assumption 1. [DLA] Let be a family of randomized circuits,
and v: a function. We associate to any and any
the following experiment:

Experiment

If then return 1 else return 0

We let

denote the advantage of I on inputs the probability being over the random
choice of and the coins of if any. We say that I has success bound v if

The above formulation of the DLA, which, as we have indicated, follows [12], has
some non-standard features that are important for their results. Let us discuss
these briefly.

First, we note that the definition of the success bound is not with respect
to being chosen according to some distribution as is standard, but rather
makes the stronger requirement that the advantage of I is small for all

Assumptions and problems in [11,12] involve circuits. A family of circuits
contains one circuit for each value of It is poly-size if there is

a polynomial such that the size of is at most for all Unless
otherwise stated, circuits are deterministic. If they are randomized, we will say
so explicitly. We now recall the DLA following [12].

We say that the Discrete Logarithm Assumption (DLA) holds if for every poly-
size family of circuits I there exists a negligible function v such that I has success
bound v.
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Second, we stress that the assumption only requires poly-size families of de-
terministic circuits to have a negligible success bound. However, in their proofs,
which aim to contradict the DLA, Hada and Tanaka [11,12] build adversaries
that are poly-size families of randomized circuits, and then argue that these can
be converted to related poly-size families of deterministic circuits that do not
have a negligible success bound. We will also need to build such randomized
adversaries, but, rather than using ad hoc conversion arguments repeated across
proofs, we note the following more general Proposition, which simply says that
DLA, as per Assumption 1, implies that poly-size families of randomized circuits
also have a negligible success bound. We will appeal to this in several later places
in this paper.

Proposition 1. Assume the DLA, and let be a poly-size family
of randomized circuits. Then there exists a negligible function v such that J has
success bound v.

As is typical in such claims, the proof proceeds by showing that for every there
exists a “good” choice of coins for and by embedding these coins we get a
deterministic circuit. For completeness, we provide the proof in the full version
of this paper [4].

3 KEA2 Is False

Assumption 2. [KEA2] Let and be families of
circuits, and a function. We associate to any any

and any the following experiment:

Experiment

If AND AND then return 1 else return 0

We let

denote the advantage of A relative to on inputs A.  We say that is a
kea2-extractor for A with error bound v if

We say that KEA2 holds if for every poly-size family of circuits A there exists
a poly-size family of circuits and a negligible function v such that is a
kea2-extractor for A with error bound v.

We begin by recalling the assumption. Our presentation is slightly different from,
but clearly equivalent to, that of [12]: we have merged the two separate condi-
tions of their formalization into one. Recall that they refer to this assumption
as “non-uniform-DA2,” and it was referred to, under a different and incorrect
formalization, as SDHA2 in [11].
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We stress again that in the above formulations, following [12], both the adversary
and the extractor are families of deterministic circuits. One can consider various
variants of the assumptions, including an extension to families of randomized
ciruits, and we discuss these variants following the theorem below.

Theorem 1. If the DLA holds then KEA2 is false.

The basic idea behind the failure of the assumption, as sketched in Section 1,
is simple. Consider an adversary given input A,B,X, where

and The assumption says that there are only two ways for the
adversary to output a pair C, Y satisfying One way is to pick some
let and let The other way is to pick some let and
let The assumption thus states that the adversary “knows” c such that
either (i.e., or (i.e., This
ignores the possibility of performing a linear combination of the two steps above.
In other words, an adversary might pick let and
In this case, but the adversary does not appear to necessarily know

or
However, going from this intuition to an actual proof that the assumption

is false takes some work, for several reasons. The above may be intuition that
there exists an adversary for which there would not exist an extractor, but we
need to prove that there is no extractor. This cannot be done unconditionally,
since certainly if the discrete logarithm problem (DLP) is easy, then in fact there
is an extractor: it simply computes and returns it. Accordingly, our
strategy will be to present an adversary A for which we can prove that if there
exists an extractor then there is a method to efficiently compute the discrete
logarithm of A.

An issue in implementing this is that the natural adversary A arising from
the above intuition is randomized, picking at random and forming C, Y as
indicated, but our adversaries must be deterministic. We resolve this by designing
an adversary that makes certain specific choices of We now proceed to the
formal proof.

PROOF OF THEOREM 1. Assume to the contrary that KEA2 is true. We show
that the DLP is easy.

The outline of the proof is as follows. We first construct an adversary A
for the KEA2 problem. By assumption, there exists for it an extractor with
negligible error bound. Using we then present a poly-size family of randomized
circuits and show that it does not have a negligible success bound.
By Proposition 1, this contradicts the DLA.

The poly-size family of circuits is presented in Figure 1. Now,
under KEA2, there exists a poly-size family of circuits and a
negligible function v such that is an extractor for A with error bound v. Using

we define the poly-size family of circuits shown in Figure 1.

Claim 1. For all all and all
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Fig. 1. Adversary for the KEA2 problem and adversary
for the DLP, for the proof of Theorem 1.

Note the claim shows much more than we need. Namely, J does not merely have
a success bound that is not negligible. In fact, it succeeds with probability almost
one.

Proof (Claim 1). We let Pr[·] denote the probability in the experiment of exe-
cuting We first write some inequalities leading to the claim and then
justify them:

We justify Equation (1) by showing that if or then First
assume Since we have whence Since we
set we have Next assume Since
we have whence Now observe that because otherwise

(Since is a generator, it is not equal to 1). Since and is
prime, has an inverse modulo which we have denoted by Raising both
sides of the equation to the power we get

returns 1 exactly when and and
By construction of A, we have and Y = BX, and thus so

returns 1 exactly when and This justifies
Equation (2).

Equation (3) is justified by the assumption that is an extractor for A with
error bound v.

Claim 1 implies that J does not have a negligible success bound, which, by
Proposition 1, shows that the DLP is not hard, contradicting the assumption
made in this Theorem. This completes the proof of Theorem 1.

EXTENSIONS AND VARIANTS. There are many ways in which the formalization
of Assumption 2 can be varied to capture the same basic intuition. However,
Theorem 1 extends to these variants as well. Let us discuss this briefly.
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As mentioned above, we might want to allow the adversary to be randomized.
(In that case, it is important that the extractor get the coins of the adversary as
an additional input, since otherwise the assumption is clearly false.) Theorem 1
remains true for the resulting assumption, in particular because it is stronger
than the original assumption. (Note however that the proof of the theorem would
be easier for this stronger assumption.)

Another variant is that adversaries and extractors are uniform, namely stan-
dard algorithms, not circuits. (In this case we should certainly allow both to
be randomized, and should again give the extractor the coins of the adversary.)
Again, it is easy to see that Theorem 1 extends to show that the assumption
remains false.

4 The KEA3 Assumption

The obvious fix to KEA2 is to take into account the possibility of linear combi-
nations by saying this is the only thing the adversary can do. This leads to the
following.

Assumption 3. [KEA3] Let and be families of
circuits, and v: a function. We associate to any any

and any the following experiment:

Experiment

We let

denote the advantage of A relative to on inputs A. We say that is a
kea3-extractor for A with error bound v if

We say that KEA3 holds if for every poly-size family of circuits A there exists
a poly-size family of circuits and a negligible function v such that is a
kea3-extractor for A with error bound v.

We have formulated this assumption in the style of the formalization of KEA2
of [12] given in Assumption 2. Naturally, variants such as discussed above are
possible. Namely, we could strengthen the assumption to allow the adversary
to be a family of randomized circuits, of course then giving the extractor the
adversary’s coins as an additional input. We do not do this because we do not
need it for what follows. We could also formulate a uniform-complexity version
of the assumption. We do not do this because it does not suffice to prove the
results that follow. However, these extensions or variations might be useful in
other contexts.

If then return 1 else return 0
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In Appendix A we recall the formalization of KEA1 and prove the following:

Proposition 2. KEA3 implies KEA1.

This indicates that KEA3 is a natural extension of KEA1.

5 Three-Round Zero Knowledge

The falsity of KEA2 renders vacuous the result of [11,12] saying that there
exists a negligible-error, 3-round ZK argument for NP. In this section we look
at recovering this result.

We first consider the protocol of [11,12], here called HTP. What has been
lost is the proof of soundness (i.e., of negligible error). The simplest thing one
could hope for is to re-prove soundness of HTP under KEA3 without modifying
the protocol. However, we identify a bug in HTP that renders it unsound. This
bug has nothing to do with the assumptions on which the proof of soundness
was or can be based.

The bug is, however, small and easily fixed. We consider a modified protocol
which we call pHTP. We are able to show it is sound (i.e., has negligible error)
under KEA3. Since we have modified the protocol we need to re-establish ZK
under KEA1 as well, but this is easily done.

ARGUMENTS. We begin by recalling some definitions. An argument for an NP
language L [6] is a two-party protocol in which a polynomial-time prover tries
to “convince” a polynomial-time verifier that their common input belongs to
L. (A party is said to be polynomial time if its running time is polynomial in
the length of the common input.) In addition to the prover has an auxiliary
input The protocol is a message exchange at the end of which the verifier
outputs a bit indicating its decision to accept or reject. The probability (over
the coin tosses of both parties) that the verifier accepts is denoted
The formal definition follows.

Definition 1. A two-party protocol (P, V), where P and V are both polynomial
time, is an argument for L with error probability if the following
conditions are satisfied:

COMPLETENESS: For all there exists such that

SOUNDNESS: For all probabilistic polynomial-time algorithms  all sufficiently
long and all

We say (P, V) is a negligible-error argument for L if there exists a negligible func-
tion such that (P, V) is an argument for L with error probability

CANONICAL PROTOCOLS. The 3-round protocol proposed by [11,12], which we
call HTP, is based on a 3-round argument for an NP-complete language
L with the following properties:
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(1)

(2)

(3)

The protocol is of the form depicted in Figure 2. The prover is identified with
a function that given an incoming message (this is when the prover is
initiating the protocol) and its current state St, returns an outgoing message

and an updated state. The initial state of the prover is where
is the common input, is an auxiliary input and R is a random tape. The

prover’s first message is called its commitment. This is a tuple consisting of
a string CMT, a prime number and an element where
The verifier selects a challenge CH uniformly at random from and, upon
receiving a response Rsp from the prover, applies a deterministic decision
predicate CH, RSP) to compute a boolean decision.

For any and any commitment where there
is at most one challenge for which there exists a response

such that CH, RSP) = 1. This property is called
strong soundness.

The protocol is honest-verifier zero knowledge (HVZK),meaning there ex-
ists a probabilistic polynomial-time simulator S such that the following two
ensembles are computationally indistinguishable:

where W is any function that given an input in L returns a witness to its
membership in L, and is a random variable taking value

internal coin tosses and the sequence of messages it receives during an
interaction between prover (with auxiliary input and verifier on
common input

Fig. 2. A 3-round argument. The common input is Prover has auxiliary input
and random tape R, and maintains state St. Verifier V returns boolean decision
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Fig. 3. HTP and pHTP. Verifier V of protocol HTP = (P, V) does not include the
highlighted portion. Verifier of protocol does.

If is a 3-round argument for an NP-complete language, meeting the three
conditions above, then we refer to as a canonical argument. In what
follows, we assume that we have such canonical arguments. They can be con-
structed in various ways. For example, a canonical argument can be constructed
by modifying the parallel composition of Blum’s zero-knowledge protocol for the
Hamiltonian circuit problem [5], as described in [11,12].

THE HADA-TANAKA PROTOCOL. Let be a canonical argument for an
NP-complete language L, and let DEC be the verifier’s decision predicate. The
Hada-Tanaka protocol HTP = (P, V) is described in Figure 3. Note V’s decision
predicate does not include the highlighted portion of its code.

We now observe that the HTP protocol is unsound. More precisely, there
exist canonical arguments such that the HTP protocol based on them does not
have negligible error. This is true for any canonical argument satisfying
the extra condition that for infinitely many there exists a commitment

for which there is a response to challenge 1 that will make
the verifier accept. There are many such canonical arguments. For instance, a
canonical argument satisfying this condition results from using an appropriate
encoding of group elements in Hada and Tanaka’s modification of the paral-
lel composition of Blum’s zero-knowledge protocol for the Hamiltonian circuit
problem.
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Proposition 3. Let HTP be the Hada-Tanaka protocol based on a canonical
argument satisfying the condition stated above. Then there exists a polynomial-
time prover for HTP that can make the verifier accept with probability one for
infinitely many common inputs not in L.

Proof (Proposition 3). Let be the canonical argument and let V be the
verifier of the corresponding protocol HTP. Consider a cheating prover that
on initial state selects an exponent uni-
formly at random, and sends as its commitment to verifier
V. Upon receiving a challenge (B, X), it checks if  If not, it aborts.
Otherwise, it sends as its response to V. By the assumption about
protocol for infinitely many there exists an auxiliary input

such that

PROTOCOL PHTP. The above attack can be avoided by modifying the verifier
to include the highlighted portion of the code in Figure 3. We call the resulting
verifier The following guarantees that the protocol is sound
under KEA3, if the DLP is hard.

Theorem 2. If KEA3 holds, the DLA holds, and is a canonical 3-round
argument for an NP-complete language L, then as defined in
Figure 3 is a negligible-error argument for L.

PROOF OF THEOREM 2. The proof is almost identical to that of [12]. For com-
pleteness, however, we provide it.

Completeness follows directly from the completeness of protocol To
prove soundness, we proceed by contradiction. Assume that pHTP is not sound,
i.e., there is no negligible function such that the soundness condition in
Definition 1 holds with respect to We show that the DLP is easy under KEA3.

By the assumption that pHTP is not sound and a result of [2], there exists
a probabilistic polynomial-time algorithm such that the function

is not negligible. Hence there exists a probabilistic polynomial-time algorithm
a polynomial and an infinite set

such that for every

and such that is infinite.
Since takes an auxiliary input we may assume, without loss of generality,

that is deterministic. We also assume that, if is commit-
ment on input when the initial state is for some with

then (There exists a prover for which

2 We note that this set is finite since is a polynomial-time algorithm and

depends only on the first  bits of where is the running time of
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Fig. 4. Adversary for the KEA3 problem and adversary
for the DLP, for the proof of Theorem 2.

for every and this assumption holds.) We will use to
construct an adversary A for the KEA3 problem. By assumption, there exists for
it an extractor with negligible error bound. Using and we then present
a poly-size family of randomized circuits and show that it does not
have a negligible success bound. By Proposition 1, this shows that the DLP is
not hard.

Let  such that We observe that K is
an infinite set. For each fix  such that The poly-size
family of circuits is presented in Figure 4. Now, under KEA3,
there exists a poly-size family of circuits and a negligible function
v such that is an extractor for A with error bound v. For each let

where is commitment on input when
the initial state is Using we define the poly-size family of circuits

shown in Figure 4. The proof of the following is in [4].
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Claim 2. For infinitely many there exists such that for every

Claim 2 implies that J does not have a negligible success bound, which, by
Proposition 1, shows that the DLP is not hard, contradicting the assumption
made in this Theorem.

ZERO KNOWLEDGE OF PHTP. Having modified HTP, we need to revisit the zero
knowledge. Hada and Tanaka proved that if the canonical argument is HVZK
(property (3) above) then HTP is zero knowledge under KEA1. However, we
observe that pHTP modifies only the verifier, not the prover. Furthermore, only
the decision predicate of the verifier is modified, not the messages it sends. This
means that the view (i.e., the internal coin tosses and the sequence of messages
received during an interaction with a prover P) of verifier of pHTP is identical
to that of verifier V of HTP. Thus, zero knowledge of pHTP follows from zero
knowledge of HTP, and in particular is true under the same assumptions, namely
KEA1.

SUMMARY. In summary, pHTP is a 3-round protocol that we have shown is a
negligible-error argument for NP assuming DLA and KEA3, and is ZK assuming
KEA1. Given Proposition 2, this means we have shown that assuming DLA and
KEA3 there exists a 3-round negligible-error ZK argument for NP.
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A KEA3 Implies KEA1

We recall KEA1, following [12], but applying the same simplifications as we did
for KEA2 so as to merge their two conditions into one:

Assumption 4. [KEA1] Let and be families of
circuits, and v: a function. We associate to any any

and any the following experiment:

Experiment

We let

If AND then return 1 else return 0
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denote the advantage of A relative to on inputs We say that is a
kea1- extractor for A with error bound v if

Adversary

Return (C, Y)

We say that KEA1 holds if for every poly-size family of circuits A there exists
a poly-size family of circuits and a negligible function v such that is a
keal-extractor for A with error bound v.

Proof (Proposition 2). Let A be an adversary (poly-size family of circuits) for
KEA1. We need to show there exists a negligible function v and a poly-size
family of circuits such that is a keal-extractor for A with error-bound v.

We begin by constructing from A the following adversary for KEA3:

We have assumed KEA3. Thus there exists a negligible function v and an ex-
tractor such that is a kea3-extractor for with error bound v. Now we
define an extractor for A as follows:

Extractor

Return

We claim that  is a keal-extractor for A with error bound v. To see this, as-
sume is successful, meaning Then

is successful as well.
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Abstract. In this paper we find two near-collisions of the full compres-
sion function of SHA-0, in which up to 142 of the 160 bits of the output
are equal. We also find many full collisions of 65-round reduced SHA-0,
which is a large improvement to the best previous result of 35 rounds.
We use the very surprising fact that the messages have many neutral
bits, some of which do not affect the differences for about 15–20 rounds.
We also show that 82-round SHA-0 is much weaker than the (80-round)
SHA-0, although it has more rounds. This fact demonstrates that the
strength of SHA-0 is not monotonous in the number of rounds.

1 Introduction
SHA-0 is a cryptographic hash function, which was issued as a Federal Infor-
mation Processing Standard (FIPS-180) by NIST in 1993 [8]. It is based on the
principles of MD4 [12] and MD5 [13]. The algorithm takes a message of any
length up to bits and computes a 160-bit hash value. A technical revision,
called SHA-1, which specifies an additional rotate operation to the algorithm,
was issued as FIPS-180-1 [9] in 1995. The purpose of the revision according to
NIST is to improve the security provided by the hash function.

Finding collisions of hash functions is not an easy task. The known cases
of successful finding of collisions (such as the attack on Snefru [14, 2], and the
attack on MD4 [12,4]) are rare, and use detailed weaknesses of the broken func-
tions. It is widely believed that finding near-collisions (i.e., two messages that
hash to almost the same value, with a difference of only a few bits) are as diffi-
cult, or almost as difficult, as finding a full collision. The Handbook of Applied
Cryptography [7] defines near-collision resistance by

near-collision resistance. It should be hard to find any two inputs
such that and differ in only a small number of bits.

and states that it may serve as a certificational property. In some designs of hash
functions, such as SHA-2/224 [10], SHA-2/384 [11], and Tiger [1], the designers
that wish to allow several hash sizes for their design, base the version with the
smaller size on the one with the larger size, and discard some of the output bits,
thus showing the confidence of the designers in the difficulty of finding near-
collisions. Near-collisions were also used in the cryptanalysis of MD4 [15,4].

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 290–305, 2004.
© International Association for Cryptologic Research 2004
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Near-collisions are the simplest example of forbidden relations between outputs
of the hash function. Another proposed forbidden relation of the hash results
is division intractability [5] where finding messages hashed to a divisor of other
hashes should be difficult.

In [3] Chabaud and Joux proposed a theoretical attack on the full SHA-0
with complexity of Using their technique they found a collision of SHA-0
reduced to 35 rounds.

In this paper we improve over the results of [3], and present attacks with
lower complexities. We present collisions of 65-round reduced SHA-0, and near-
collisions of the full compression function of SHA-0 in which up to 142 of the
160 bits of the hash value are equal. We use the very surprising observation that
many bits of the message are neutral bits, i.e., they do not affect the differences of
the intermediate data for 15–20 rounds. We observe that the strength of SHA-0 is
not monotonous, i.e., collisions of 82 rounds are easier to find than of 80 rounds,
and use it in our search for near-collisions. We also present several observations
on variants of SHA-0.

A comparison of Chabaud and Joux’ results with our results is given in
Table 1.

Table 2 shows the complexity of finding collisions of reduced and extended
SHA-0, as a function of the number of rounds. The table demonstrates that
the strength of SHA-0 is not monotonous with the number of rounds. In the
complexity calculations we assume that for the extended SHA-0, the additional
rounds after the original 80 rounds are performed with the function being
XOR, like in rounds 60, . . . , 79 that preceed them. We also assume that the first
22 rounds can be gained for free by using the neutral bits.

A comparison between finding near-collisions using a generic attack and our
attack is given in Table 3. Note that the generic attack hashes a large number
of random messages, all of them are then kept in memory. Due to the birth-
day paradox, it is expected to have a collision or near-collision with complexity
(number of messages) about
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where is the Hamming weight of the difference. As this attack is generic, it
uses no special properties on SHA-0, and thus cannot be used to gain insight on
its design.

This paper is organized as follows: Section 2 describes the SHA-0 algorithm,
and a few notations. Section 3 describes the attack of Chabaud and Joux. Our
improved attack is presented in Section 4. Two pairs of near-collisions of the
compression function of SHA-0 and full collision of 65-round reduced SHA-0 are
given in section 5. Section 6 describes small variations of SHA-0 that largely
affect its security. Finally, Section 7 summarizes the paper.

2 Description of SHA-0

SHA-0 hashes messages of any length in blocks of 512 bits, and produces a
message digest of 160 bits.

1.

2.

The message is padded with a single bit ‘1’, followed by 0–511 bits ‘0’,
followed by a 64-bit representation of the message length, where the number
of zeroes is selected to ensure the total length of the padded message is
a multiple of 512 bits. The padded message is divided to 512-bit blocks

A 5-word buffer is initialized to
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3.

4.

Each block in turn is subjected to the compression function, along with
the current value of the buffer The output is a new value for

is the output of the hash function.

1.
2.

The compression function is:

Divide the 512-bit block to 16 32-bit words
Expand the 16 words to 80 words by the recurrence equation:

We denote expansion of a block to 80 words by this equation by exp(·), and
note that

3. Divide to the five registers A, B, C, D, and E by

4. Iterate the following round function 80 times

where the functions and constants used in each round are described in Ta-
ble 4.

5. The output of the compression function is

In the remainder of the paper we consider only 512-bit messages and only the
first application of the compression function. We denote the bit of by

and similarly we denote the bits of and by
and We also use the notation to denote the output of

in round and denotes the bit of
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3 Description of Chabaud and Joux Attack

In the attack of Chabaud and Joux [3] messages are constructed with specific
differences, such that the effect of the differences of the messages on the difference
of the registers A, ..., E can be canceled within a few rounds. The cancellation
is performed by applying correcting patterns by additional differences in the
messages.

The attack is initiated by a selection of a difference that is later used as the
difference of the two colliding messages. The difference is selected with various
disturbances and corrections, where the corrections are additional differences
used to correct the differences caused by the disturbances. The disturbances are
always selected in bit 1 of the message words. Due to the rotations by 5 and
30 bits in the round function, corrections are made in bits 1, 6, and 31 of the
words. These disturbances and corrections are aimed to limit the evolution of
differences to other bits. The result is that in an expected run, and can
only differ in bit 1 (i.e., and each time they differ,
they cause differences in the other registers in the following rounds, which are
then corrected by differences of the messages (or

A disturbance starts by setting bit 1 in one of the input words of as
the complement of the corresponding bit of M. We now show how applying a
correction sequence on bits 6, 1, 31, 31, 31 on the following words may cancel
the differences at the end of the sequence. Suppose the initial disturbance is in

This input difference causes registers A and to differ at bit 1. On
each consequent round the difference moves to the next register (B, C, D or E),
while the corrections of bits 6, 1, 31, 31, 31 in the input words
respectively, keep registers A and equal in these rounds. After this sequence
of a single disturbance and five corrections, the registers’ contents are equal. By
generating from M by applying this mask, and calculating the difference of
A and at each round we can get the differences described in Table 5 with a
non negligible probability. The table describes a disturbance with and

and the required corrections. A similar disturbance and corrections
can be applied for a ‘1’ to ‘0’ difference. The notation refer to a change
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where a bit is ‘0’ in W and ‘1’ in The notation means that there is a
change either from ‘0’ to ‘1’ or from ‘1’ to ‘0’.

Let be a vector of 80 words, which correspond to the 80 rounds of the
compression function. Each word in the vector is set to ‘1’ if there is a disturbance
in the corresponding round, and is set to ‘0’ otherwise. We call this vector the
disturbance vector. Since getting a collision for the full function requires five
correcting rounds, full collisions require the last five words of the disturbance
vector to be zero (but for near-collisions this property is not required). Let

be the vector of 80 words received by prepending zero words to the
first words of (i.e., a non-cyclic shift operation of the words). Then,
the corrections are made in bit 6 in the rounds which correspond to non-zero
words in in bit 1 in and in bit 31 in and and

Thus, the expansion of to 80 round can be written in the form

where denotes shift of each word of the vector separately. In addition, since
is expanded by the linear feedback shift register of Equation (1), the dis-

turbance vector is also generatable by this linear feedback shift register. See [3]
for additional details on the attack, and the additional required constraints.

We expect that the value of be if all the corrections
succeed (i.e., only disturbances in the current round affect the difference after
the round). Thus, the vector of the expected values of
which we denote by is

(note that the indices of are 1, . . . , 80, rather than 0, . . . , 79).
As the correction process is probabilistic, and assuming each disturbance has

the same probability for correction, we are interested in the disturbance vector
with the least Hamming weight for getting the least search complexity (but
note that the correction probabilities vary, and depend on the used in the
correction rounds).

4 Our Improved Attack

Our attack is based on the attack of Chabaud and Joux with enhancements that
increase the probability of finding collisions and near-collisions.

The main idea is to start the collision search from some intermediate round,
thus eliminating the probabilistic behavior of prior rounds. In order to start the
collision search from round we build a pair of messages M and with a
difference and with the two additional properties described below.
Before we describe these properties we wish to make the following definitions:

TEAM LinG



296 Eli Biham and Rafi Chen

Definition 1. Given the difference of two messages, the attack of Chabaud
and Joux defines the expected differences of the values of register A in each
round. We say that a pair of messages conforms to if for every

(which means that the differences at the output of the first
rounds 0, . . . , are as expected).

Definition 2. Let M and be a pair of messages that conforms to for some
We say that the bit of the messages is a neutral bit

with respect to M and if the pair of messages received by complementing the
bits of M and also conform to We say that the pair of the and

bits is neutral with respect to M and if all the pairs of messages received by
complementing any subset of these bits or in both messages M
and also conform to We say that a set of bits is neutral
with respect to M and if all pairs of messages received by complementing
any subset of the bits in S in both messages M and also conform to We
say that a subset of the bits of the messages is a 2-neutral set
with respect to M and if every bit in S is neutral, and every pair of bits in
S is neutral.

We denote the size of the maximal 2-neutral set (for given messages and
by We are now ready to describe the two additional properties:

1.

2.

The message pair conforms to Having the required sequence of
implies that all other differences (i.e., are
also as required.
The message pair has a large-enough 2-neutral set of bits. We expect that a
large fraction of the subsets of the bits in the 2-neutral set are also neutral.

Given a pair of messages with these properties, we can construct a set of
message pairs by complementing subsets of the bits of the 2-neutral set. Since a
large fraction of these pairs conform to while the probability of random pairs
is much smaller, it is advisable to use these pairs for the attack.

How and are determined? Starting the search from round we can
calculate the probability

of successful corrections in all the rounds given messages that conform to
(where is the probability of successful corrections in round or 1 if no cor-
rection is performed). When the disturbance vector has zeroes at the last five
rounds, is the probability for getting a collision (otherwise, a near-collision
is expected). The number of conforming pairs we need to test is expected to be
about Since every subset of neutral bits can be used, we can try
pairs using with these bits. Thus, we should select that satisfies
In fact, we select the largest that satisfies this inequality.

TEAM LinG



Near-Collisions of SHA-0 297

4.1 Finding 2-Neutral Sets of Bits of a Given Pair

The following algorithm finds a 2-neutral set of bits. The input to the algorithm
is a pair of messages M, with a difference that conforms to The
algorithm generates 512 candidate pairs by complementing single bits in M,
(leaving their difference unchanged). Let denote a message
whose value has a single bit ‘1’, and 511 bits ‘0’, where the bit ‘1’ is in the
location. The candidate pairs can be written by

Each candidate pair is tested to conform to If a candidate pair conforms to
then bit is a neutral bit.
In order to find a 2-neutral set of bits we define a graph whose vertices cor-

respond to the neutral bits. We then add an edge for each pair of bits whose
simultaneous complementations does not affect conformance. This graph de-
scribes all the bits whose complementation does not affect conformance, and
all the pairs of these bits whose simultaneous complementations does not affect
conformance. We are now interested to find the maximal clique (or an almost
maximal clique) in this graph, i.e., the maximal subset of vertices for which any
vertex in the subset is connected to any other vertex in the subset by an edge.
Although in general finding a maximal clique is an NP-complete problem, in our
case finding a large enough clique is not difficult, as many vertices are connected
to all other vertices by edges.

We are now ready to make some very important observations, on which the
success of our attack is based:

Observation 1 When we perform a search with the set of message pairs,
about 1/8 of the pairs (i.e., about pairs) conform to

Let

be the probability that a pair that conforms to also conforms to and notice
that

Observation 2 Let and be some rounds where By
trying the generated message pairs, we get the expected number of pairs
conforming to but surprisingly a fraction of the pairs that conform to
also conform to which we would expect to get with a larger set of about

where and

In the actual attack we improve the algorithm further by searching for pairs
of non-neutral bits whose simultaneous complementation create pairs that also
conform to (and similarly search for triplets of bits, or larger sets of bits).
Using this method we receive a larger number of neutral “bits” that can be used
for our analysis with higher rounds.
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An example of a pair of messages with its neutral set of bits, is given in
Table 6. In this example and the size of the neutral set is
In particular, the quadruplet 229 137 108 71 consists of bits of rounds 7, 4, 3,
and 2, so the changes at round 2 are successfully corrected by the changes in the
other rounds so the difference is unaffected for 20 rounds, and even from round
7 there are 15 additional rounds whose difference is not affected.

Observation 3 In many cases pairs of bits that are simultaneously neutral, but

each bit is not, are of the form for small Similarly triplets
(and quartets, etc.) of non-neutral bits, whose simultaneous complementation is

neutral are of the same form, i.e., and for two different small
We call such sets of bits simultaneous-neutral sets, and in case of pairs of

bits simultaneous-neutral pairs.

4.2 Finding a Pair with a Larger 2-Neutral Set

For the attack, we are interested in finding a message pair with a maximal 2-
neutral set of bits. Assume that we are already given a pair conforming to We
are now modifying this pair slightly in order to get another pair that conforms
to with a larger 2-neutral set of bits.

This algorithm takes the given message pair as a base, modifies it in a certain
way that we describe later, and calls the algorithm that finds the 2-neutral set
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of the new pair. If the size of this set is larger than the set of the base pair, the
base pair is replaced by the new pair, and the algorithm restarts with the new
pair as the base.

By modifying the current message pair we create a new pair that hopefully
conforms to The modifications are made in bits that maximize the probability
of success. In order to create a new conforming pair, we modify several neutral
bits (and simultaneously-neutral sets of bits), and check whether the resultant
pair conforms to

In some cases we can improve further. In rounds where bit 1 differs, i.e.,
the carry from bit 1 to the next can create a difference in the next

bit. The probability for this carry to make this difference is 1/2. In such case
and thus the new pair does not conform to

Observation 4 If the differences of the carry is changed, the change can be
canceled by complementing and or by complementing other bits in the
message that affect indirectly.

Such bits are also and (which affect and then after the

rotate operation), or
for other small Each such complementation has probability 1/2 to cancel the
difference in the carry.

This algorithm can be simplified as follows: The algorithm takes as an in-
put a message and modifies a few subsequent bits in several subsequent words,
with the shift of five bits as mentioned above. For example, the modified bits
cover all (non-empty) subsets of

Then, the pattern of modification is shifted by all 31 possible
rotations. Finally, we proceed and make the same analysis starting from
then etc. The modification process ends when the algorithm starts with

This simplification lacks consideration of some optimizations and details
given earlier, whose incorporation is vital for an optimized implementation.

4.3 Increasing the Number of Conforming Rounds

In order to start the search at a higher round we need to construct a pair that
conforms to where This pair is constructed using the last pair with the
maximal number of neutral bit we have. The pair undergoes small modifications
of the form described above. Once a message conforms to is found, we use
the algorithms described in Subsections 4.1 and 4.2 to find a 2-neutral set, and
then to find a pair with the largest 2-neutral set.

4.4 Final Search

After computing the 2-neutral set, we start the final search by complementing
sequentially every subset of the bits in the 2-neutral set (a total of trials).
Since a large fraction of the resulting pairs of messages conform to then the
search effectively starts at round If in addition then we expect

andorand
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to find a collision or a near-collision, depending on the expected difference after
rounds. If for some then we expect to find a collision

(or a near-collision) of rounds reduced (or extended) SHA-0.

5 Results

In our search we used that is optimized for finding 82-round collisions (thus
also near-collisions of 80 rounds). This is not suitable for finding full collisions
of 80 rounds, as it has two disturbances at the last five rounds. However, its
corresponding 80-round probability is much higher than the probability of a

that allows a full collision. Although this cannot provide full collisions,
it can lead to collisions of 65-round reduced SHA-0 and of 82-round extended
SHA-0. The overall probability of successful corrections in 82-round SHA-0 is

A probability summary for each set of 20 consecutive rounds
(i.e., the IF, XOR, MAJ, XOR rounds) is described in Table 7 (in rounds 80 and
81 the probability is 1 if Using our technique with the
overall probability is reduced to Our algorithm finds a 2-neutral set with
40 neutral and simultaneous-neutral bits (see Table 6), thus we expect to find
near-collisions of the compression function after 73 rounds in two computation
days on a PC. Our actual findings (using an earlier set of neutral bits) are near-
collisions of the compression function with a difference of only three bits (of

after 76 rounds (that still conform to which are also
near-collisions of the full compression function (but do not conform to and
full collisions of 65-round reduced SHA-0. The near collisions were found after
about a day of computation for each pair, which is equivalent to a search with
a complexity of Finding 65-round near-collisions take about half an hour.
Two such pairs of messages (in 32-bit hex words) are:

1.

AC418FC2 415D5A54 6FFA5AAB
5EE5A5B5 7621F42F 0AE2F4CA 77ACF74B
3144B4E3 5164DF05 C61AD50C 558336D9
EF0BB38B B6468AC7 CD4323B9 06088696

AC418FC2 415D5A54 6FFA5AA9
5EE5A5F5 7621F42D 8AE2F4CA F7ACF74B
B144B4E1 5164DF45 C61AD50C D5833699
6F0BB389 B6468AC5 4D4323F9 86088694
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F0722904 009D8999 5AFB3337
37D5D6A8 9E843D80 69229FB9 06D589AA
4AD89B67 CFCCCD2C A9BAE20D 6F18C150
43F89DA4 2E54FE2E AE7B7A15 80A09D3D

F0722904 009D8999 5AFB3335
37D5D6E8 9E843D82 E9229FB9 86D589AA
CAD89B65 CFCCCD6C A9BAE20D EF18C110
C3F89DA6 2E54FE2C 2E7B7A55 OOA09D3F

The differences of the results of hashing and with the full SHA-0 are
described in Table 8 along with the number of differing bits. Tables 9 and 10
show detailed information of the evolution of differences in each round of the
compression function, including the expanded messages, their differences, the
differences the probability of conformance of each round (in log
form), and the rounds where the values collide, or the number of differing bits
of the five registers. Both messages collide after 65 rounds, and have only small
differences afterwards. If we consider SHA-0 reduced to 76 rounds, our results
show a near collision with difference of only three bits before the feed forward
and three and four bits difference after the feed forward when using and

6 SHA-0 Variants

In this section we analyze some variants of SHA-0 that show strengths and
weaknesses of the hash function.

6.1 Increasing the Number of Rounds

There are that lead to collision after 82 rounds, whose probability
is considerably larger than the probability of the best that leads
to an 80-round collision. Therefore, increasing the number of rounds of SHA-0
from 80 to 82 would make it much easier to find collisions.

2.
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6.2 Different Order of Functions

Modifying the order of the functions can reduce the complexity of the at-
tack. For example, if the order would be IF, XOR, MAJ, XOR, .. . , IF, XOR,
MAJ, XOR, where in each round the function changes, the restrictions caused
by two consecutive IF round would be removed, and thus with much higher
probabilities could be chosen.

6.3 SHA-1

Since in SHA-1 Equation (1) is replaced by

which makes the mixing of the message bits much more effective, and since the
techniques used in this paper uses the properties inherited from equation (1),
the presented attacks are not applicable to SHA-1.

7 Summary

In this paper we described how to find near-collisions of SHA-0 using the surpris-
ing existence of many neutral bits. The near-collisions were found within a day
on our PC. Our technique also improves the complexity of finding full collisions
of SHA-0, but we concentrated on near-collisions due to the very low complexity
of finding them. The observation that the strength of SHA-0 is not monotonous
with the number of rounds is used here to find near-collisions of 80 rounds by
applying the much more efficient attack on SHA-0 extended to 82 rounds. We
expect that finding full collisions will take a month of computation time, and
intend to check it in the continuation of our research. Due to the additional
rotate operation, the results of this paper are not applicable to SHA-1.
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Abstract. In this paper, we study the existence of multicollisions in it-
erated hash functions. We show that finding multicollisions, i.e.
of messages that all hash to the same value, is not much harder than
finding ordinary collisions, i.e. pairs of messages, even for extremely large
values of More precisely, the ratio of the complexities of the attacks
is approximately equal to the logarithm of Then, using large multi-
collisions as a tool, we solve a long standing open problem and prove
that concatenating the results of several iterated hash functions in or-
der to build a larger one does not yield a secure construction. We also
discuss the potential impact of our attack on several published schemes.
Quite surprisingly, for subtle reasons, the schemes we study happen to
be immune to our attack.

1 Introduction
One-Way hash functions are widely used cryptographic primitives, they operate
on messages of almost arbitrary length1 and output a fixed size value. Cryp-
tographic hash functions should satisfy many security properties, such as the
impossibility from a given hash to recover an associated message. However, the
main security requirement for a hash function is its collision resistance. Infor-
mally, given a good hash function, no attacker should be able to find a pair of
different messages M and leading to identical hash values. It is a well-known
fact that all hash functions suffer from a generic birthday paradox based attack.
More precisely, if H is a hash function that outputs values, then among the
hash values of different messages, there exists a collision with non negligible
probability. For this reason, hash functions that output values smaller than 160
bits are considered as deprecated. Yet, in the past, 128–bit hash functions were
proposed and for legacy reasons they are still encountered in applications.

In practice, building a cryptographic function with an input of variable size
is not a simple task. For this reason, most hash functions are based on an it-
erated construction that makes use of a so-called compression function, whose
inputs have fixed sizes. Examples of such a construction are Snefru [7], MD4 [12],
MD5 [13] or SHA [9]. In this paper, we specifically study one-way hash-functions
built by iterating a compression function.
1 The length is often bounded by a very large number such as However, this is

irrelevant for the attacks presented here.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 306–316, 2004.
© International Association for Cryptologic Research 2004
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Our main goal is to solve a long standing open problem: Is the concatenation
of two independent hash values more secure than a single hash-value ? This
question is of general interest and has appeared in many contexts. As far as we
know, this construction first appeared as a generic transform in the PhD thesis
of B. Preneel [10] and was called cascading. It was presented there as a mean to
increase the security level at the cost of a decreased performance.

In fact, this idea of cascading hash functions is likely to be encountered in
applications, for example, a construction called SHA-1x was used at some point
in PGP and involves the computation of two SHA-1 values with a different
set of initial constants. Similarly, the authors of RIPEMD [4] propose optional
extensions of their hash functions to 256 and 320 bits values. In this case, the use
of two hashing is extremely efficient since the original 128 and 160 bits algorithms
already involve two parallel hashing whose results are normally added together.

Yet, according to [4], one should not expect to improve the security level with
these constructions since unwanted dependencies between two slightly different
instances of the same hash function may yield unforeseen attacks. In the same
vein, a length doubling transform is suggested in the hash function chapter
of [14], together with a warning that while no attacks are known several people
have serious reservations about the construct.

As a consequence, the security of hash functions cascading is not very clear.
Roughly, the cryptographic folklore states that the construction is good when
two “independent” hash functions are cascaded. Clearly, this is true for random
oracles and the generalization seems natural. For reference about this folklore
knowledge, the interested reader may look up fact 9-27 in [6], that states that
such a cascade is secure and that one could hope for a security of the order of
the product of the security of the initial hash functions. However, we show in
section 4 that this construction is in fact insecure, whenever an iterated hash
function is involved in the cascading. Even cascading a 160-bit iterated hash
function and a 160-bit random oracle does not really increase security above the
initial level for collision resistance and above for preimage (or second
preimage) resistance.

In order to solve this problem and prove that cascading two hash values is in
fact insecure, we first address the simpler question of constructed multicollisions
in an iterated hash function. This notion of multicollisions was first used by
Merkle in [8] to study the security of a hash function based on DES. A related
security property, namely freeness, has been suggested as a useful
tool for building efficient cryptographic primitives. It was used for the micro-
payment scheme Micromint of Rivest and Shamir [11], for identification schemes
by Girault and Stern in [5] and for signature schemes by Brickell and al. in [1].
The intuition behind this problem is that constructing different messages with
the same hash values should be much harder than constructing only two such
messages. Once again, this is true when using random oracles. However, when
iterated hash functions are involved, this intuition is false and multicollisions
can be easily constructed.

The paper is organized as follows. In section 2 we recall some basic facts
about iterated hash function and the possible security properties of hash func-
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tions. In section 3, we describe the basic attack for constructing multicollisions
in iterated hash functions. In section 4, we use this attack as a tool and show
that the security obtained when cascading several hash values is far from opti-
mal. Unintuitively, this attack works even when two completely unrelated hash
functions are cascaded and does not stem from any unforeseen correlation be-
tween similar hash functions. Finally, in section 5, we study the impact of our
construction on several concrete schemes that rely on cascading or multicolli-
sion resistance. Very surprisingly, in all published examples, we encounter some
obstruction which prevents the attack from working.

2 Basic Facts About Iterated Hash Functions

An iterated hash function H is built by iterating a basic compression function.
The compression function takes two inputs, a chaining variable and a message
block, it outputs the next value of the chaining variable. Before processing, the
message is first padded and split into elementary blocks. The padding itself is
generally performed by appending a single ‘1’ bit, followed by as many ‘0’ bits
as needed. To avoid some attacks, the binary encoding of the message length
can also be added to complete the padding. This is called a Merkle-Damgard
strengthening [8,3]. Once the padded message is split into blocks,

the chaining variable is set to some fixed initial value and the iteration is
performed. To summarize, the hashing process works as follows:

Pad the original message and split it into blocks
Set to the initial value IV.
For from 1 to let
Output

Given such an iterated hash function, defining its security is a tricky matter.
Ideally, the hash function is often seen as a concrete substitute for random oracles
in cryptographic construction. Of course, it is well known (see [2]) that this
extreme level of security is in fact impossible to reach. Thus, the security level of
hash function is usually characterized by considering “easier” security goals. The
most frequently encountered goal is the impossibility for a bounded adversary
to find a collision in the hash function. We recall that a collision is a pair of
different messages M and such that Due to the birthday
paradox, there is a generic attack that find collisions after about evaluations
of the hash function, where is the size in bits of the hash values. The attack
works by randomly choosing messages and computing their hash values until a
collision occurs. Typically, with iterated hash functions, the size of messages’
blocks is often larger than the size of the hash values themselves, and this attack
usually works on the compression function itself. Other important security goals
for hash functions are preimage resistance and second-preimage resistance. An
attack against preimage resistance is an attack that, given some target value

finds a message M such that An attack against second preimage
resistance, given a message M, finds another message such that
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The best generic attacks against these security goals cost about evaluation
of the function H.

The notion of collision can easily be generalized to that of collision
(or, for short, A is simply a of messages

such that Assuming as above that the
hash values behave almost randomly, finding an could be done by
hashing about messages. When becomes large, this tends to Due
to this fact, relying on freeness in cryptographic construction seems a
good way to gain more security without increasing the size of the hash functions.
This is very tempting in some applications such as identification schemes [5] and
signature schemes [1]. The next section demonstrates that, in fact, in
iterated hash functions are not much harder to construct than ordinary collisions,
even for very large values of

3 Constructing Multicollisions

In this section, we show that constructing multicollisions in iterated hash func-
tion can be done quite efficiently. More precisely, constructing costs

times as much as building ordinary 2-collisions. Before describing the attack,
let us remark that the padding process can be ignored as long as we consider
collisions between messages of the same length. Indeed, in that case, the blocks
of padding are identical. Moreover, if the intermediate hash chaining values col-
lide at some point in the hash computation of two messages, the following values
remain equal as soon as the ends of the messages are identical. Thus, on mes-
sages of the same length, collisions without the padding clearly lead to collisions
with the padding.

For simplicity of exposure, we assume that the size of the message blocks is
bigger than the size of the hash (and chaining) values. However, the attack can
be easily generalized to the other case. We also assume that we can access a
collision finding machine C, that given as input a chaining value outputs two
different blocks B and such that This collision finding
machine may use the generic birthday attack or any specific attack based on a
weakness of The most relevant property is that C should work properly for
all chaining values2. To illustrate the basic idea, we first show how 4-collisions
can be obtained with two calls to C. Starting from the initial value IV, we use a
first call to C to obtain two different blocks, and that yield a collision, i.e.

Let denotes this common value and using a second call
to C, find two other blocks and such that Putting
these two steps together, we obtain the following 4-collision:

We now claim that this basic idea can be extended to much larger collisions
by using more calls to the machine C. More precisely, using calls, we can build

in H. The attack works as follows:
2 Or at least on a fixed proportion of them.

TEAM LinG



310 Antoine Joux

Let be equal to the initial value IV of H.
For from 1 to do:

Call C and find and such that
Let

Pad and output the messages of the form Padding) where is
one of the two blocks or

Clearly, the different messages built as above all reach the same final value.
In fact, they have an even stronger property. Namely, all the intermediate hash
values are equal, since all of the hashing processes go through

A schematic representation of these messages together with their common
intermediate hash values is drawn in figure 1.

Fig. 1. Schematic representation of multicollision construction

Some generalizations. If works on messages blocks which are smaller that
the chaining values, the natural way to proceed is to group a few consecutive
applications of For example, we can consider the function

which composes two rounds of the compression function. As soon
as the total size of the input blocks exceed the size of one chaining value, we can
apply the original attack to the composed compression function.

Another generalization is to build from a 2-collision attack ma-
chine C that works only on a fixed proportion of the chaining values. Of
course, this is not the case with the generic birthday attack, however, it may
happen with some specific attacks. In that case, the basic attack described above
only works with probability Indeed, if any of the does not belong to
the set of chaining values that C can attack, we are in trouble. However, this
bad behavior can be easily corrected by inserted a randomization step between
two consecutive applications of C. Namely, after finding and such that

choose a random block and let:

If fails to be in the scope of C, change to get another candidate. Altogether,
this randomization technique leads to a global complexity of the attack of the
order of calls to C.

4 On the Security of Cascaded Hash Functions

A natural construction to build large hash values is to concatenate several smaller
hashes. For example, given two hash functions F and G, it seems reasonable given
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a message M to form the large hash value In this construction,
F and G can either be two completely different hash functions or two slightly
different instances of the same hash function3. If F and G are good iterated hash
functions with no attack better than the generic birthday paradox attack, we
claim that the hash function obtained by concatenating F and G is not
really more secure that F or G by itself. Moreover, this result applies both to
collision resistance, preimage resistance and second preimage resistance.

4.1 Collision Resistance

Assume that F outputs an hash value and G an value. Then, with
respect to collision resistance, the security level of F is and the level of
G is If was a good hash function, the complexity of the best attack
would be We claim that there exists a much better attack which find
collisions on with complexity of the order of if
(respectively if Assuming than the attack
works as follows.

First, using the multicollision algorithm of section 3 with equal to
rounded up, construct a on F. This costs calls to the basic birthday
paradox attack on the compression function of i.e. about operations.
This yields different messages with the same hash value on the F side. Since

we can perform direct application of the birthday paradox on this set
of elements and, with reasonable probability, expect that a collision occurs
among the hashes of these messages by G. To increase the probability
of success, it suffices to increase the value of and add a few more calls to the
basic attack on F.

Note that when evaluating the complexity of the attack, one must take into
account the contribution of applying G to different messages of size With
a naive implementation, this would cost calls to the compression function
of G. However, using the tree structure of the messages, this can be reduced to

evaluations, assuming that the compression functions of F and G operate on
the same size of blocks. Otherwise, it is necessary to add some padding between
blocks in order to resynchronize the two functions.

A very important fact about this attack is that it does not require of G to be
an iterative hash function. Any hash function will do, and this attack on cascaded
hash works even when G is replaced by a random oracle4. Since a random oracle
is independent from any function, this shows that the folklore knowledge about
cascading hash functions is false. Thus, at least in that case, cascading two
good and independent hash functions does not significatively improve collision
resistance.

3 E.g., two instances of SHA-1 with different constants.
4 The only difference in that case is the fact that the evaluations of G on the

messages can no longer be simplified. As a consequence, assuming that the cost of
calling the random oracle G is linear in the size of the message, the contribution of
G to the complexity becomes
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4.2 Preimage and Second-Preimage Resistance

Concerning preimage resistance, it is already known that cascading two hash
functions is, at least in some cases, the cascade is no stronger than the weakest
hash function. Indeed, assume that we are hashing messages from a relatively
small set, say a set of messages. Clearly, the best generic attack to find a
preimage in that case is to perform exhaustive search on the set of messages,
which costs steps. Assume that the output of each the two hash functions
being cascaded is larger than bit and that on this set of messages, one of the
two hash functions, say F, has a shortcut attack. Then, we can clearly use this
attack to recover a candidate preimage. Once this is done, it suffices to check
that this candidate is also a preimage for the other function. The new attack
presented in this section deals with a different case, where the entropy of the
message space is much larger. It shows that even then the cascaded hash is no
more secure than F itself.

Assume again that F outputs an hash value and G an value.
Then, with respect to preimage resistance, the security level of F is and the
level of G is Indeed, the best known generic algorithm to break preimage
resistance is to try random messages until the expected hash value is reached.
This amounts to exhaustive search on the set of possible hash values. If
was a good hash function, the complexity of this exhaustive search attack would
be As with collision resistance, there exists a much better attack which
find a preimage on with complexity of the order of if

(respectively if Assuming than
the attack works as follows.

First, using the multicollision algorithm of section 3 with equal to
construct a on F. This costs calls to the basic birthday paradox
attack on the compression function of i.e. about operations. Then,
search for an additional block that maps the last chaining value to the target
value of F. Note that when looking for this additional block, we need to compute
the output of the complete F function, including the padding of the message.
However, this is a simple matter. After, this last step, we obtain different
messages with the expected hash value on the F side. Since we expect
that, with constant probability, at least one of these messages also match the
expected value on the G side. Once again, the probability of success can
be improved by adding a few more steps to the attack. Note that this attack
on preimage resistance does not either require for G to be an iterative hash
function. As before, it also works when G is replaced by a random oracle.

Clearly, the above attack finds a preimage for the target value which is essen-
tially random. As a consequence, it can be applied directly without any change
when a second preimage is requested.

4.3 Extensions and Open Problems

Given these attacks, it is natural to ask whether they generalizes to three or more
concatenated hash values. In this section, we focus on the possibility of generaliz-
ing the collision search attack. We show that it does and that the generalization
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is almost straightforward. Indeed, assume that H is a third hash function on
bits, then using the above attack on a couple of times, say times,
it is possible as in section 3 to build a on Among these mes-
sages, we expect a collision of H. All in all, this yields a simultaneous collision
on F, G and H. When the expression of the complexity
simplifies and is of the order of More generally, a simultaneous colli-
sion on different iterative hash functions can be found with complexity

Thus, the security of such a construction stays within a polynomial
factor of the security of a single good iterative hash function of the same size.
Similarly, variants of the attack on preimage resistance can be adapted to the
case of different hash functions. However, since they are more complicated, we
do not present them here. One possible variant is described in appendix.

Another generalization of the above attack is also worth noting. In [14],
B. Schneier described a different way of building a long hash from a hash function
F. In this method, F(M) is concatenated with (or
At first view, this is more complicated than the construction. However, the
very same attack can be applied. Indeed, when a is found on F(M),
this fixes F(M) in the first half of the big hash and also the copy of F(M)
in the call to G, thus a collision on the G part is expected exactly as before.
The preimage attack also works as before. We leave open the problem of finding
a related construction making calls to hash function and with security
higher than with respect to collision resistance.

One can also study a related question, how does the security of the concate-
nated hash behaves, when F and G have non-generic attacks better than
the birthday paradox collision search ? In that case, can be significantly
more secure than the best of F and G ?

For the sake of simplicity, assume once again that Then, if F has
a collision finding algorithm C as in section 3 with complexity or better
and G has no shortcut attack better than the birthday paradox, the security of

is essentially the same as the security of G itself. On the other hand, if
G also admits a shortcut attack (as in section 3), it is unclear whether the two
shortcut attacks may be used together to improve the composed attack against

Yet, some other type of attacks against G can be integrated into a better
composed attack on To give an example, let denote the compression
function of G. Assume that there exists a shortcut attack which given a large
set of chaining values finds a message block B and two indices and

such that in time N. Clearly, such a merging attack could
be used to turn an N-collision on F into a full collision on Thus, it is safer
to assume that is essentially as secure as the best of F and G, no more.

5 Potential Applications

While the ideas of cascaded construction and multicollisions are frequently en-
countered in the cryptographic folklore, they are somewhat avoided in published
papers. As a consequence, we were not able to find a single research paper that
can be cryptanalyzed using the attacks presented here. In this section, we de-
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scribe some published construction which were likely candidates and explain why
the attacks failed.

Cascaded hash functions. Among the frequently encountered hash function,
RIPEMD is the most suited to the cascaded construction. Indeed, the basic
algorithm already consists of two separate hash computations which are put to-
gether at the end of the round function. Thus, using the result of the two chains
to form a longer hash would be both natural and efficient. In fact, the authors
of RIPEMD propose in [4] optional extensions to 256 and 320 bits by using this
idea. These extensions are not fully specified, but a sketch is given. In this sketch,
the authors of RIPEMD recommend to add to the basic cascade some interaction
between the two parallel compression functions. More precisely, they propose to
swap one register from the first chain and its counterpart in the second chain
after each round of the compression function (5 rounds in RIPEMD-160 and
4 rounds in RIPEMD-128). This interaction was introduced as an additional
security measure and, with respect to our attack, this countermeasure is very
efficient and completely voids it.

Use of multicollisions. Among the published constructions that make use of
multicollisions, one can cite the micropayment scheme Micromint [11], the iden-
tification scheme of Girault and Stern [5] and the signature scheme of Brickell
and al. [1]. In these three applications, multicollisions are indeed used, how-
ever, in the proposed instances of the schemes, no iterated hash functions with
a small internal memory is used. Instead, one encounters either a block cipher
based compression function with a small block size but without iteration or a
truncation of an iterated hash function with a relatively large output size. In
both cases, our attack is unapplicable. In the first case, the required iteration is
not available, in the second, the attack needs collisions on the full internal states
of the hash function, rather than on the truncated states.

6 Conclusion

In this paper, we have shown that multicollisions in iterated hash functions are
not really harder to find than ordinary collision. This yields the first effective
attack against a natural construction that extend the size of hash values by
concatenating several independent results. While considered suspect by some,
especially when used with related hash functions, this construction had never
been attacked before. The cryptanalysis we presented here yields attacks against
collision resistance, preimage resistance and second preimage resistance. As a
consequence, it leaves open the problem of constructing secure hash functions
with variable-output length, which is a important primitive to instantiate some
cryptographic paradigm such as the full domain hash.

Another important theoretical result is the fact that iterated hash functions
cannot be used as entropy-smoothing functions on arbitrary sets of inputs. De-
vising good cryptographic entropy-smoothing functions would be a nice topic for
future research.
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A Preimage Resistance
with Many Hash Functions Cascaded

While the attack against collision resistance described in section 4.1 is easily
generalized to hash functions and yields an attack with complexity
assuming that each function outputs bits, this is not the case for the attack
on preimage resistance. Indeed, the attack we described in section 4.2 is not
straightforward to generalize. The goal of this section is to present a variant
of the attack that can be easily generalized. The drawback is that this variant
is slightly more complicated than the initial attack. In this variant, each hash
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function is attacked in two steps. Each of these steps is constructed in a way
that ensures compatibility with the previous hash functions. The first step within
each hash function is to find two different sequences of blocks that, through the
iterated hash process, sends the initial value back to itself. The cost of this
amounts to twice exhaustive search on the set of possible chaining values. The
second step is to find a terminating sequence of blocks that sends this chaining
value to the target value for the current hash function. This costs about one
exhaustive search on the same set.

When processing the first message, we look for single block sequences. More-
over, the terminating block should be correctly padded. A slight technical prob-
lem is that padding requires a priori knowledge of the final message size. How-
ever, we show at the end of this section that this size can be fixed in advance
before launching the attack. Let T denotes this size, then we consider as inputs
to the first hash functions the messages formed of T–1 blocks, each chosen
among the two basic blocks that send the initial value to itself and one final
block which sends to the target value A representation of these messages
is given in figure reffig:preim

Fig. 2. First step of the preimage attack

With the second hash function, the looping sequences are constructed by
concatenating blocks chosen among the two (B and that makes the first
hash function loop (a few more blocks can be added to increase the probability
of finding good sequences). Clearly, when applying one of these sequences both
the first and the second hash functions are going back to their initial values. The
final sequence is constructed by concatenating many copies of the looping blocks
B or and a single instance of the final block, in order to send the second hash
function to its expected destination. Clearly, such a sequence also sends the first
hash function to its target value. The advantage of this attack compared to that
of section 4.2 is that additional hash functions can be processed by iterating
the previous procedure. A notable exception is the computation of the last hash
function which requires no looping part and can thus be simplified. The total
runtime is clearly bounded by a polynomial times the cost of exhaustive
search. The length T of the message can be easily predetermined and is of the
order of
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Abstract. We propose the first distributed discrete-log key generation
(DLKG) protocol from scratch which is adaptively-secure in the non-
erasure model, and at the same time completely avoids the use of in-
teractive zero-knowledge proofs. As a consequence, the protocol can be
proven secure in a universally-composable (UC) like framework which
prohibits rewinding. We prove the security in what we call the single-
inconsistent-player UC model, which guarantees arbitrary composition
as long as all protocols are executed by the same players. As an applica-
tion, we propose a fully UC threshold Schnorr signature scheme.
Our results are based on a new adaptively-secure Feldman VSS scheme.
Although adaptive security was already addressed by Feldman in the
original paper, the scheme requires secure communication, secure era-
sure, and either a linear number of rounds or digital signatures to re-
solve disputes. Our scheme overcomes all of these shortcomings, but on
the other hand requires some restriction on the corruption behavior of
the adversary, which however disappears in some applications including
our new DLKG protocol.
We also propose several new adaptively-secure protocols, which may find
other applications, like a sender non-committing encryption scheme, a
distributed trapdoor-key generation protocol for Pedersen’s commitment
scheme, or distributed-verifier proofs for proving relations among com-
mitments or even any NP relations in general.

1 Introduction

A distributed key generation protocol is an essential component in threshold
cryptography. It allows a set of players to jointly generate a key pair, (pk, sk),
that follows the distribution defined by the target cryptosystem, without the
need for a trusted party. While the public-key pk is output in clear, the corre-
sponding secret-key sk remains hidden and is maintained in a shared manner

*  Research was carried out while at the Centre for Advanced Computing - Algorithms
and Cryptography, Department of Computing, Macquarie University, Australia.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 317–334, 2004.
© International Association for Cryptologic Research 2004
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among the players via a secret sharing scheme. This should allow the play-
ers to later use sk without explicitly having to reconstruct it. The distributed
key-generation for discrete-log based schemes, DLKG in short, amounts to the
joint generation of a random group element as public-key and a sharing of its
discrete-log (DL) as secret-key with regard to some given base A
DLKG protocol must remain secure in the presence of a malicious adversary who
may corrupt up to a minority of the players and make them behave in an arbi-
trary way. Informally, it is required that, for any adversary, must be uniformly
distributed, and the adversary must learn nothing about beyond

DLKG was first addressed by Pedersen in [14]. Gennaro et al. pointed out that
Pedersen’s scheme is not secure against a rushing adversary (and even against a
non-rushing adversary) and proposed a new (statically) secure scheme [12]. Then
Frankel et al. and Canetti et al. introduced in [11] respectively [7] adaptively
secure schemes in the erasure model, and Jarecki and Lysyanskaya improved the
schemes to work in the non-erasure model and to remain secure under concurrent
composition [13].

These DLKG protocols which are secure against an adaptive adversary rely
heavily on the use of interactive zero-knowledge proofs. This poses the question
whether this is an inherent phenomenon for adaptively secure DLKG. We an-
swer this question in the negative. Concretely, we propose an adaptively-secure
distributed key-generation protocol from scratch which completely avoids the
use of interactive zero-knowledge proofs. As a consequence, the protocol can be
and is proven secure in a relaxed version of Canetti’s universally-composable
(UC) framework [4], which prohibits rewinding. We show the usefulness of our
distributed key-generation protocol by showing how it gives rise to a (fully) UC
threshold Schnorr signature scheme. To the best of our knowledge, this is the
first threshold scheme proven secure in the UC framework.

The relaxed UC framework, which we call the single-inconsistent-player (SIP)
UC framework, coincides with the original UC framework, except that the sim-
ulator is allowed to fail in case the adversary corrupts some designated player

which is chosen at random from the set of all players and announced to (and
only to) the simulator. This relaxation still allows for a powerful composition
theorem in that protocols may be arbitrary composed, as long as all subsidiary
protocols involve the same set of players.

We stress once more that this relaxation only applies to the proposed dis-
tributed key-generation protocol but not to its application for the threshold
Schnorr signature scheme.

Our DLKG protocol (and thus the threshold Schnorr signature scheme) is
based on a new adaptively-secure version of Feldman’s famous (statically se-
cure) VSS scheme. Although adaptive security was already addressed by Feld-
man in the original paper [10], and besides the well known standard Feldman
VSS scheme he also proposed an adaptively-secure version, the proposed scheme
has several shortcomings: (1) it requires the players to be able to reliably erase
data, (2) it either proceeds over a linear number of rounds or otherwise needs to
incorporate signatures as we will point, and (3) it requires secure communica-
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tion channels (or expensive non-committing encryption schemes). We propose a
new variant of Feldman’s VSS scheme which overcomes all of these limitations.
Even though the proposed scheme is not fully adaptively secure but requires
some restriction on the corruption behavior of the adversary, this restriction is
acceptable in that it disappears in the above applications to threshold cryptog-
raphy.

Furthermore, as building blocks for the above schemes or as related construc-
tions, we also propose a sender non-committing encryption scheme, a new adap-
tively secure distributed trapdoor-key generation protocol for Pedersen’s com-
mitment scheme, as well as adaptively secure distributed-verifier zero-knowledge
proofs, which all may very well find other applications. Finally, in the full ver-
sion of this paper [3], we propose several additional applications and/or related
adaptively-secure constructions of independent interest: a simple modification
of Feldman’s adaptively-secure VSS scheme which overcomes (1) and (2) above,
though not (3), but is fully adaptively-secure, an adaptively secure version of
Pedersen’s VSS scheme as a committed VSS, a threshold version of the DSS
signature scheme in the UC model, a threshold version of the Cramer-Shoup
cryptosystem in the SIP UC model, and a common-reference-string generator
with applications to zero-knowledge proofs in the UC model.

The paper is organized as follows. Section 2 reviews the model we are con-
sidering. It includes a short introduction to the UC framework of Canetti and
the new SIP UC framework. In Sect. 3 we recall Feldman’s statically and adap-
tively secure VSS schemes, and we point out an obstacle in the dispute resolu-
tion phase of the adaptive scheme, before we construct our version in Sect. 4.
Finally, Sect. 5 shows the applications to adaptively-secure DLKG, universally-
composable threshold cryptography and distributed-verifier proofs.

Due to space limitations, many definitions and proofs could only be sketched
in this proceedings version of the paper; the formal treatment can be found in
the full version [3].

2 Preliminaries

2.1 Communication and Adversary

We consider a synchronized authenticated-link model where a message from
to is delivered within a constant delay and accepted by if and only if it is
sent from to Moreover, we assume a broadcast channel with which every
player sends a message authentically and all players receives the same message.

We consider a central adversary which may corrupt players at will. Cor-
rupting a player allows to read internal state and to act on behalf
from that point on. In the non-erasure model, additionally gains com-
plete history. is called if it corrupts at most players. Furthermore,

is called static if it corrupts the players before the protocol starts, and is
called adaptive if it corrupts the players during the execution of the protocol,
depending on what it has seen so far.
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2.2 Canetti’s Universally Composable Framework

In order to formally specify and prove the security of our protocols, we will use
the universally composable (UC) framework of Canetti [4]. We briefly sketch
this framework here; for a more elaborate description we refer to the full ver-
sion of the paper [3] or to the literature. The UC framework allows to define and
prove secure cryptographic protocols as stand-alone protocols, while at the same
time guaranteeing security in any application by means of a general composition
theorem. In order to define a protocol secure, it is compared with an ideal func-
tionality Such a functionality can be thought of as a trusted party with whom
every player can communicate privately and which honestly executes a number
of specified commands. The UC security definition essentially requires that for
every (real-life) adversary attacking the protocol there exists an ideal-life
adversary also called simulator, which gets to attack the ideal-life scenario
where only the players and are present, such that achieves “the same” as
could have achieved by an attack on the real protocol. In the framework, this is
formalized by considering an environment which provides inputs to and col-
lects outputs from the honest players and communicates in the real-life execution
with and in the ideal-life execution with It is required that it cannot tell
the difference between the real-life and the ideal-life executions, meaning that
its respective outputs in the two cases are computationally indistinguishable.

As mentioned above, the UC framework provides a very general composition
theorem: For any protocol that securely realizes functionality in the so-called

model, meaning that it may use as a subroutine, composed protocol
that replaces with a secure protocol also securely realizes (in the

real-life model).

2.3 Single-Inconsistent-Player UC Framework

The single-inconsistent-player (SIP) technique of [7] is often used to achieve
both adaptive security and efficiency. A protocol in the SIP model is secure
(i.e. securely simulatable in the classical model of computation) if the adversary
does not corrupt a designated player which is chosen independently at random
before the protocol starts. Using the terms of the UC framework, it means that
the simulator is given as input the identity of a randomly chosen player
and is required to work well as long as is uncorrupt. In the case of

adversary with this reduces success probability by a factor
of 1/2. This still guarantees security in that whatever can do in the real-
life model, has a good chance in achieving the same in the ideal-life model.
Indeed, in the classical sense, a simulator is considered successful if it works
better than with negligible probability. However, with such a simulator the
composition theorem no longer works in its full generality. To minimize the
effect of the SIP approach, we have to limit the set of players to be the same
in all subsidiary protocols. This way, can be sampled once and for all, and
the condition that remains uncorrupt applies to (and either holds or does
not hold) simultaneously for all protocols. With this limitation, the composition
theorem essentially works as before. See also the full version of the paper [3].
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2.4 Some Functionalities

We briefly introduce some functionalities we use throughout the paper. For for-
mal descriptions and more elaborate discussions, we refer to [3].

Secure-Message-Transmission Functionalities: The secure-message-transmission
functionality, as defined in [4], is denoted by On receiving (send, sid,
from sends (sid, to and (sid, to the (ideal-life) adversary

and halts. If the length of may vary, it is also given to
Due to some subtle technicalities, cannot be securely realized in a syn-

chronized communication model against an active adversary. The reason is that
in any (interactive) candidate realization the adversary can corrupt the
sender during the execution of the protocol and change the message to be se-
curely transmitted (or abort the protocol), while this cannot be achieved by
Indeed, once is invoked it is always completed with the initial input (and
the output is delivered to the receiver). To overcome this problem, we introduce
spooled SMT. This is captured by which first spools the sent message
and only delivers the spooled message (or a possibly different in case of a
corrupt when receiving another (the actual) send command from This
allows to change after has been launched simply by corrupting
after the spool- but before the send-command.

can be realized over a public network using non-committing encryption
as introduced by Canetti et al. in [6]. However, this is rather expensive as the best
known schemes [9] still bear a ciphertext expansion Instead, our results
are based on efficient though not fully adaptively secure realizations.

In our construction, we will also use an extended version of the function-
ality which allows in case of a dispute, to convince the other players of the
message sent to This is specified by spooled SMT with opening,
which works as except that it additionally allows an open-command sent
from (and only from upon which it announces the transmitted message

 to all players.

Committed- VSS Functionalities: An advantage of using Feldman and Pedersen
VSS in protocol design is that besides producing a (correct) sharing, they also
commit the dealer to the shared secret. Often, this commitment can be and
is used in upper-level protocols. However, in the definition of UC-secure VSS
given in [4], such a commitment is hidden in the protocol and not part of the
functionality, and thus not available for external protocols. We introduce the
notion of committed VSS to overcome this inconvenience.

Let be a (efficiently computable) commitment func-
tion, indexed by a commitment key K. Typically, K is sampled by a poly-time
generator (on input the security parameter). A commitment for a secret
is computed as where we use the semicolon ‘;’ to express that
the second argument, is chosen randomly (from unless it is explicitly
given.

A committed VSS (with respect to commitment scheme is specified
by functionality which sends (shared, sid, to all players

TEAM LinG



322 Masayuki Abe and Serge Fehr

and on receiving(share, sid, from the dealer, and later, on receiving
(open, sid) from distinct players, it sends (opened, sid, to all players and

Due to the same technical problem as above, if the dealer may be adaptively
corrupted, we need to incorporate spooling into the committed VSS function-
ality: first spools (and gives to before awaiting and
executing the actual share-command (for the original or a new

We would like to mention that for certain candidate protocols for com-
mitted VSS (with spooling), whose security relies on the commitment scheme

the generation of the key K needs to be added to the VSS functionality
in order to be able to prove secure in the UC framework. This is for instance
the case for Pedersen’s VSS scheme as discussed in [3].

2.5 The Discrete-Log Setting

Let be a security parameter and be a prime of size Let denote a group
of order and let be its generator. We use multiplicative notation for the
group operation of Some of our constructions require to be the
multiplicative subgroup of with prime Unless otherwise noted,
all arithmetics are done in or and should in each case be clear from the
context.

3 The Original Feldman VSS

The Basic Scheme: Let be distinct and non-zero. In order to
share a (random) secret the dealer selects a Shamir sharing polynomial

and sends privately to
Additionally, he broadcasts as well as for Each
player now verifies whether

If it does not hold for some then player broadcasts an accusation against
the dealer, who has to respond by broadcasting such that (1) holds. If he
fails, then the execution is rejected, while otherwise uses the new as his
share. Correct reconstruction is achieved simply by filtering out shares that do
not satisfy (1).

This scheme is proved secure against a static adversary: Assume that
corrupts Given the simulator simply chooses random

plies the discrete-log assumption for given a random it is
computationally infeasible to compute

Throughout, we assume that such is given to all players, and that
the Decision Diffie-Hellman problem for is intractable, meaning that
the respective uniform distributions over
and are computationally indistinguishable. This assumption im-
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shares for the corrupted players, and it computes
with the right distribution from and by applying appropriate
Lagrange interpolation coefficients “in the exponent”. Informally, this shows that

learns nothing about beyond
This simulation-based proof though fails completely if the adversary may

corrupt players adaptively, i.e., during or even after the execution of the protocol.
The problem is that given needs to come up with such
that if corrupts some player at some later point, can serve with
such that (1) is satisfied. However, it is not known how to successfully provide
such for any dynamic choice of without knowing unless corrupts the
dealer to start with.

Adaptive Security with Erasure: Feldman addressed adaptive security by pro-
viding a set-up phase where the dealer assigns a private X-coordinate

to every Additionally, he needs to convince the players of the
uniqueness of their This is done in the following way. Let E be a semantically-
secure public-key encryption function, with public-key chosen by the dealer.

The dealer computes an encryption (with random for
every and he chooses as a random permutation
of Then, he broadcasts ordered in such a way that
appears in position, and he privately sends to
Each locates in position and verifies whether and, if
it holds, erases The dealer erases too.

1.

2.

After the erasure is completed, the dealer performs the basic Feldman VSS with
X-coordinates We stress that it is important that the erasures of the

must be done before entering to the sharing phase. On reconstruction, each
player broadcasts

Since each can be opened only to player is convinced of the unique-
ness of Simulation against an adaptive adversary is argued separately for
each phase. If a player gets corrupted in the set-up phase, the simulator just
honestly gives the internal state of the corrupt player to the adversary. Nothing
needs to be simulated. Then, the sharing phase is simulated similar as for the
static adversary, except that, since does not know which players will be cor-
rupted, it predetermines shares for a random subset of size of the X-coordinates

and whenever a player gets corrupted one of these prepared X-
coordinates is assigned to as his Since has already been erased, it is
computationally infeasible to determine whether in position is an encryp-
tion of or not.

An Obstacle in Dispute Resolution: We identify a problem in the dispute reso-
lution of the above scheme1. Suppose that honest accuses the dealer, and that

1 No dispute resolution procedure is shown in [10]. It is said that a player simply
rejects the dealer when he receives an incorrect share (and the dealer is disqualified
if more than players rejects). But this works only if
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instead of publishing correct the corrupt dealer responds by publishing
of another honest player Since and have been already erased,

both and have no way to prove that the published is different from the
original assignment.

To efficiently settle such a dispute, digital signature scheme will be needed.
That is, the dealer sends with his signature in the set-up phase. This allows

to publish the signature when he accuses the dealer in the sharing phase.
Without using digital signatures, additional rounds are needed to settle the
dispute: If observes that his is published to respond to the accusation
from also accuses the dealer and the dealer publishes the data for this
time. After repeating this accuse-then-publish process at most times, the
dealer either gets stuck or exposes correct shares.

4 Adaptive Security Without Overheads and Erasures

The goal of this section is an adaptively secure Feldman VSS that provides (1)
security without the need for reliably erasing data, (2) efficient dispute resolution
without digital signatures, and (3) efficient realization over a public network, i.e.
without secure channels (or expensive non-committing encryptions).

The first two goals are achieved by a simple modification of the original Feld-
man VSS. The idea is to replace the encryption function E with instantiations
of a trapdoor commitment scheme with certain properties whose commitment
keys are provided separately from each player so that the trapdoors are not
known to the dealer. We show this modified Feldman VSS and the security
proof in [3]. Since Pedersen’s commitment scheme turns out to be good enough
for this purpose, we have a scheme that meets (1) and (2) solely under the DL
assumption. Furthermore, the modified scheme is more efficient in the number
of communication rounds over the original adaptively-secure Feldman VSS.

Hence, what the secure-channels model is concerned, we are done. Unfortu-
nately, we do not know how to efficiently implement the above scheme efficiently
over a public network, even when limiting the power of the adversary as we do in
Sect. 4.2 below. Therefore, we design a new scheme which allows to seamlessly
install our efficient components for public communication presented later.

4.1 Construction in a Hybrid Model

Our approach is to let each player select a random non-zero X-coordinate
and send it privately to the dealer. When corrupted, a simulated player

reveals a (fake) X-coordinate that has been prepared in advance to be consistent
with the transcript, as in Feldman’s approach. On the other hand, in case of a
dispute, each player should be able to convince the other players of his This
is achieved by initially sending to the dealer using secure message transmission
with opening, as specified in Sect. 2.4 by functionality The scheme is
detailed in Fig. 1 in the model.

Consider Feldman’s commitment scheme with base a commitment
for a secret is computed as (without using
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Fig. 1. Adaptively secure Feldman-VSS in model.

Proposition 1. Protocol shown in Fig. 1 securely realizes in the
model against adaptive adversary for

The proof is given in [3]. Essentially, it uses the same idea as Feldman’s version:
the simulator prepares (random) shares for X-coordinates
and assigns to every newly corrupt player one of these X-coordinates as
and the corresponding share as

4.2 Efficient Composition to the Real-Life Protocol

This section provides protocols that realize and over the public
network with broadcast, i.e., without secure channels. Then, by applying the
composition theorem, one can have adaptively secure Feldman VSS as a real-life
protocol. As we shall see, these realizations are efficient but have some limitation
on the adversary, which though can be successfully overcome in our applications.

Our constructions require an efficient bidirectional mapping between and
while the DDH problem should be hard to solve. This is the case when is

Receiver Non-committing Message Transmission: By we denote a proto-
col that realizes (or with receiver non-committing feature. That is,

the multiplicative subgroup of with prime Indeed, encoding
can be done by where is identified with

its representant in This encoder is denoted by and
the corresponding decoder by
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remains secure even if the receiver is adaptively corrupted (in the non-erasure
model), while the sender may only be statically corrupted. Note that with such a
restriction on the sender, can be realized (without spooling). We review the
construction by [13] (adapted to accept messages which is originally
designed in a classical model but can fit to the UC model. A proof is given in
the full version of the paper [3].

Fig. 2. Protocol for receiver non-committing transmission.

Lemma 1. Under the DDH assumption, protocol securely realizes
(or against an adaptive adversary if the sender is only statically corrupt
and is aware of with

The assumption that the ideal-life adversary is aware of the DL of
seems quite restrictive for to be a general stand-alone tool. It is however
acceptable for our purpose as will be chosen by in an upper-level protocol
(playing the role of the to-be-corrupted sender) such that it knows the DL of

We stress that this assumption does not mean at all that is given
any kind of power to solve the DL problem.

Sender Non-committing Message Transmission with Opening: A protocol
that realizes with sender non-committing feature follows easily from
The receiver simply uses to securely send a randomly chosen
to the sender (precisely, sends the message and then

sends to who computes as
We also consider the following variant of which we denote by All
communication is done over the broadcast channel, and in an additional phase,
the opening phase, the sender publishes and privately sampled for
the secure transmission of and every player verifies whether and
computes and

Lemma 2. Under the DDH assumption, protocol securely realizes and
securely realizes against an adaptive adversary if the receiver is

only statically corrupt and is aware of with

The proof of Lemma 2 is similar to that of Lemma 1, although slightly more
involved. For completeness, it is included in [3].

Composition with the Efficient Realizations: We now show that when the func-
tionalities and in the hybrid-protocol are implemented by

TEAM LinG



Adaptively Secure Feldman VSS and Applications 327

Proof. The claim follows essentially from Proposition 1, Lemma 1 and 2, and
the composition theorem. It remains to show that the assumptions for Lemma 1
and 2 are satisfied. By assumption (1) it is guaranteed that the receiver in
and the sender in (which in both cases is the dealer) is only statically cor-
rupt. Furthermore, by (2) and the way works in the proof of Proposition 1, the
messages, which are supposedly send through and and for which
has to convince as being the messages sent through respectively
are the values and all chosen randomly from (respec-
tively by Hence, could sample them just as well by choosing
and computing such that the conditions for Lemma 1 and 2 are
indeed satisfied. Finally, as the dealer may only be statically corrupted, we do
not need to care about spooling. Thus and are equivalent here.

5 Applications to Threshold Cryptography

In this section, we propose several applications of the adaptively-secure Feldman
VSS scheme from the previous section. Our main applications are a DLKG proto-
col and a UC threshold Schnorr signature scheme, though we also propose some
related applications which might be of independent interest like a trapdoor-key
generation protocol for Pedersen’s commitment scheme and distributed-verifier
UC proofs of knowledge. Interestingly, even though our Feldman VSS scheme
has restricted adaptive security, the applications remain fully adaptively secure
in the (SIP) UC model and do not underly restrictions as posed in Theorem 1.

To simplify terminology, from now on when referring to protocol we
mean from Fig. 1 with and replaced by and as
specified in Theorem 1. Furthermore, it will at some point be convenient to use
a different basis, say rather than the public parameter in the core part of

such that for instance will be published as C. This will be denoted by
and obviously securely realizes We stress that this modification

is not meant to affect the sub-protocols and

5.1 How to Generate the First Trapdoor Commitment-Key

In many protocols, a trapdoor commitment-key is considered as given by some
trusted party so that the trapdoor information is unknown to any player. If the
trusted party is replaced with multi-party computation, as we usually do, the

respectively, then the composed protocol securely realizes
in some weakened sense as stated below.

Theorem 1. Implementing the functionality in step F-1 of the hybrid-
protocol from by and in step F-2 by results in a
secure realization of in the real-life model, assumed that (1)
the adversary corrupts the dealer only statically, and (2) the adversary corrupts
players only before the reconstruction phase.

and

Fig. 1.
(or

or
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protocol should be designed not to use any common trapdoor commitment-key.
In this section, we show a protocol that meets this requirement.

The players execute protocol in Fig. 3. We assume that it is triggered
by a player who sends init to all players. The protocol outputs a (trapdoor)
commitment-key for Pedersen’s commitment scheme. Note that the
corresponding trapdoor is not shared among the players (in
the usual way).

Fig. 3. Commitment-key generation protocol in model.

Unfortunately, one cannot expect to be random as a rushing party can affect
its distribution. However, the protocol inherits the following two properties which
are sufficient for our purpose. (1) A simulator that simulates can compute
the DL of and (2) given a simulator can embed Y into so that
given the simulator can compute The latter in particular implies
that the adversary is not able to compute the trapdoor

Our idea for formally capturing such a notion is that the ideal functionality
challenges the adversary by sending a random and allows to ran-
domize it so that is transformed into such that knows the trapdoor for
if and only if it knows it for This clearly captures (1) and (2) above.

Definition 1 (Commitment-Key Generation Functionality:
1.
2.

On receiving (generate, sid) from choose and send to
On receiving from compute and send (com-key, sid, to
all players and

Proposition 2. Protocol in Fig. 3 securely realizes against
adaptive adversary for in the SIP UC model.

The proof is given in the full version of the paper. Essentially, on receiving
from simulates the SIP call to with input and it sends

to
We claim that in can be securely realized by the protocol

from Theorem 1. This may look contradictory since is secure only against
static corruption of the dealer as stated in Theorem 1, while in every
player acts as a dealer and may be adaptively corrupted. However, looking at
the proof, except for the run launched by the SIP simulates all runs of

honestly with true inputs. Hence, for these simulations, the situation is
exactly as in the case where the dealer is statically corrupted and the secret is
known to the simulator at the beginning. Furthermore, the reconstruction phase
of is never invoked in Thus, the following holds.
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Theorem 2. Implementing in of Fig. 3 by results in a secure
realization of  against adaptive adversary for in the (real-
life) SIP UC model.

5.2 DL-Key Generation

This section constructs an adaptively secure protocol for DLKG, whose function-
ality is defined below. Clearly, from such a key-generation protocol (respectively
functionality), one expects that it outputs a public-key and in some hidden way
produces the corresponding secret-key (typically by having it shared among
the players), such that can be used to do some cryptographic task like signing
or decrypting if enough of the players agree [16]. However, as we want to view
our protocol as a generic building block for threshold schemes, we simply require
that the secret-key can be opened rather than be used for some specific task.
In Sect. 5.3 we then show a concrete example threshold scheme based on our
DLKG protocol.

Definition 2 (Threshold DL Key Generation Functionality:

1.

2.

On receiving (generate, sid) from select compute and
send (key, sid, to all players and
On receiving (open, sid) from players, send (private, sid, to all players
and

Our realization of is illustrated in Fig. 5 below, and makes use of (or-
dinary) Pedersen’s VSS scheme given in Fig. 4.

Fig. 4. Pedersen’s VSS scheme:

We do not prove Pedersen’s VSS secure in the UC framework, and in fact it
is not (as a committed VSS against an adaptive adversary). The only security
requirement we need is covered by the following well-known fact.
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Lemma 3. Except with negligible probability, after the sharing phase of Peder-
sen’s VSS, both the and of the uncorrupt players are correct sharings of

and such that and such that is reconstructed in the reconstruction
phase (and and coincide with the dealer’s choice in case he remains honest),
or otherwise can be efficiently extracted from the adversary.

We write to denote an execution of the
sharing phase of Pedersen’s VSS with secret and player acting as dealer,
and with values C generated as described in Fig. 4.

Fig. 5. Threshold DLKG protocol in model.

Note that in the additive shares are used to reconstruct the secret-
key rather than the threshold-shares implicitly given by The
reason is that even though using the threshold shares can be proven secure in
the hybrid-model, it resists a security proof when the ideal functionality
in Pedersen’s VSS is replaced by as we do (due to the DL condition from
Lemma 1). In [3] we show how to modify the scheme in order to be able to use
the threshold-shares as secret-key shares. Also note that using the terminology
introduced in [2], based on the results in [1], step K-3 can be seen as a distributed-
verifier zero-knowledge proof of knowledge of and such that and

(see also Sect. 5.4).

Theorem 3. Implementing in the DLKG protocol from Fig. 5 the func-
tionalities and by and
respectively, results in a secure realization of against adaptive
adversary for in the SIP UC model.
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Using the UC with joint state framework [8], one can prove using similar
arguments that the commitment-key can be generated once and for all invoca-
tions of Furthermore, concerning efficiency, the communication complexity
of the key-generation phase is comparable to that of the schemes by [13]: it re-
quires bits to be sent over the bilateral public channels and another

bits to be broadcast.
The full proof of Theorem 3 is given in the full version of the paper. We

simply sketch its idea here. First, the simulator simulates the generation of
such that it knows the DL of while step K-2 is executed as prescribed.

Then, it reconstructs the of the corrupt players, and it computes and
for the SIP such that and where

is the value provided by Then it simulates the two Feldman VSSes with
as dealer, while the other executions are followed as prescribed (with inputs

respectively As a result, the output of the key-generation phase is
In the opening phase, having received from simply adapts

initial such that and it uses the DL of to open to
(the new) The only difference in the adversary’s and thus the environment’s
view between the simulation and a real execution lies in the encrypted Pedersen
shares of (the initial) given to the uncorrupt players. By the property of
this cannot be distinguished by the environment.

From now on, when referring to protocol we mean from Fig. 5
with the functionalities replaces by real-life protocols as specified in Theorem 3.

5.3 Universally-Composable Threshold Schnorr-Signatures

As an example application of our DL-key generation protocol, we propose a
threshold variant of Schnorr’s signature scheme [15], provable secure in the UC
framework. The scheme is illustrated in Fig. 6. Recall, a Schnorr signature for
message under public-key consists of such that satisfies

where H is a cryptographic hash-function. Such a signature is
computed by the signer (in the single-signer variant), who knows the secret-
key by choosing and computing and
Schnorr’s signature scheme can be proven secure, in the sense of existential
unforgability against chosen message attacks, in the random oracle model.

Consider the ideal threshold signature functionality by adapting the
(single-signer) signature functionality from [5] in the obvious way.

Theorem 4. Protocol securely realizes against adaptive ad-
versary for in the UC model, under the DDH assumption and under the
assumption that the standard Schnorr signature scheme is secure.

We stress that interestingly securely realizes in the standard rather
than the SIP UC model.

Proof. (Sketch) The simulator simply executes honestly Note that the
public-key is not dictated by but rather asks to provide it. In
order to prove that this is a good simulation, we argue as follows. The only
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Fig. 6. Threshold Schnorr-signature scheme

way may see a difference is when breaks the signature scheme, i.e., when
a player provides at some point a valid signature on a message that has not
been signed. However, if there exist and that can enforce such an event
with non-negligible probability, then there exists a forger F that breaks the
existential unforgability against chosen message attacks of the standard (single-
signer) Schnorr signature scheme. F works as follows. F runs and and
it simulates the action of i.e. the execution of as follows. It uses the
SIP simulator for the key-generation phase of to force the output of the
key-generation to be the given public-key Furthermore, to sign a message
it asks the signing oracle for a signatures on it forces as above the
outcome of S-1 to be and it uses a straightforward modification of
the SIP simulator for the opening phase of to simulate the signing phase:
the simulated opens to in step S-2 (rather than to

forcing the output of the signing phase to be the given signature
Additionally, whenever a message-signature pair is asked to be

verified, F first checks whether was never signed before and if is a valid
signature on Once such a pair is found, F outputs that pair and halts.
Similar to the proof of Theorem 3, one can show that if does not corrupt the
SIP then cannot distinguish between the real execution of (executed by
the simulator and the SIP simulation (executed by the forger F). Hence, by
assumption on and F outputs a signature on a message not signed by the
signing oracle with non-negligible probability.

5.4 Adaptively Secure Distributed-Verifier Proofs

In designing threshold cryptography, it is quite common to prove some re-
lation (or knowledge) about committed witnesses in zero-knowledge manner.
In the UC framework, however, zero-knowledge proofs are extremely expen-
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sive components: they are realized by combining a generic non-interactive zero-
knowledge proof with a common-reference string generator, or UC-secure com-
mitment scheme (which anyway needs common reference string) with generic
zero-knowledge proof system for an NP-complete language such as Hamiltonian.
They are generic and powerful, but cannot be directly used for practical subjects
such as showing equality of discrete-logs or knowledge of a representation.

Combining our results with techniques developed in [1,2], one can construct
adaptively secure efficient distributed-verifier zero-knowledge proofs in univer-
sally composable way for many practical subjects. We illustrate a concrete ex-
ample. Suppose that a prover needs to show that a triple is in DH,
i.e. satisfies This can be done as follows. A prover shares twice:
once using the sharing phase of and once using that of with
base Furthermore, in the second execution, the same sharing polynomial and
X-coordinates as in the first execution are used. Hence the second execution is
completed only by broadcasting a new commitment of the sharing polynomial,
which is verified by the players by using the same share and X-coordinate re-
ceived in the first execution. This guarantees that indeed the same secret,
has been shared. Note that supposed to be is published in the sec-
ond execution. Finally, the prover shares (or using the sharing phase of

with base If all sharing phases are accepted, the proof is accepted.
Given can simulate the prover by simulating the dealer in each
execution of In the case of corrupt prover who completes the proof,
can extract and from the set of uncorrupt players. Hence the simulator can
extract a witness needed to invoke ideal zero-knowledge functionality.

The techniques of [1,2] also apply to other commitment schemes that Feld-
man’s, and allow to prove other relations as well like equality and additive and
inverse relations among committed values. From these building blocks, one can
even construct an adaptive distributed verifier proof for any NP relation by
following the construction in [2].
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Abstract. We consider the central cryptographic task of secure two-
party computation: two parties wish to compute some function of their
private inputs (each receiving possibly different outputs) where security
should hold with respect to arbitrarily-malicious behavior of either of the
participants. Despite extensive research in this area, the exact round-
complexity of this fundamental problem (i.e., the number of rounds re-
quired to compute an arbitrary poly-time functionality) was not previ-
ously known.
Here, we establish the exact round complexity of secure two-party com-
putation with respect to black-box proofs of security. We first show a
lower bound establishing (unconditionally) that four rounds are not suf-
ficient to securely compute the coin-tossing functionality for any super-
logarithmic number of coins; this rules out 4-round protocols for other
natural functionalities as well. Next, we construct protocols for securely
computing any (randomized) functionality using only five rounds. Our
protocols may be based either on certified trapdoor permutations or ho-
momorphic encryption schemes satisfying certain additional properties.
The former assumption is implied by, e.g., the RSA assumption for large
public exponents, while the latter is implied by, e.g., the DDH assump-
tion. Finally, we show how our protocols may be modified – without
increasing their round complexity and without requiring erasures – to
tolerate an adaptive malicious adversary.

1 Introduction

Round complexity measures the number of messages that parties need to ex-
change in order to perform some joint task. Round complexity is a central mea-
sure of efficiency for any interactive protocol, and much research has focused on
improving bounds on the round complexity of various cryptographic tasks. As
representative examples (this list is not exhaustive), we mention work on upper-
and lower-bounds for zero-knowledge proofs and arguments [6,7,19,27,28,40],
concurrent zero-knowledge [13,15,17,35,41,42], and secure two-party and multi-
party computation [4,5,10,11,14,21–23,31–34,37,43]. The study of secure two-
party computation is fundamental in this regard: not only does it encompasses
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**  Part of this work was supported by a gift from the Teradata Corporation.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 335–354, 2004.
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functionalities whose round-complexity is of independent interest (such as coin
tossing or the zero-knowledge functionality), but it also serves as an important
special case in the study of secure computation.

Yao [43] presented a constant-round protocol for secure two-party computa-
tion when the adversarial party is assumed to be honest-but-curious (or passive).
Goldreich, Micali, and Wigderson [25,29] extended Yao’s result, and showed a
protocol for secure multi-party computation (and two-party computation in par-
ticular) tolerating malicious (or active) adversaries. Unfortunately, their proto-
col does not run in a constant number of rounds. Recently, Lindell [37] gave the
first constant-round protocol for secure two-party computation in the presence of
malicious adversaries; he achieves this result by constructing the first constant-
round coin-tossing protocol (for polynomially-many coins) and then applying
the techniques of [29]. The number of rounds in the resulting protocol for secure
two-party computation is not specified by Lindell, but is on the order of 20–30.

The above works all focus on the case of a non-adaptive adversary. A general
methodology for constructing protocols secure against an adaptive adversary is
known [12], and typically requires additional rounds of interaction.

Lower bounds on the round-complexity of secure two-party computation with
respect to black-box1 proofs of security have also been given. (We comment
further on black-box bounds in Section 1.2.) Goldreich and Krawczyk [28] showed
that, assuming NP BPP, zero-knowledge (ZK) proofs or arguments for NP
require 4 rounds. Since ZK proofs (of knowledge) are a particular example of
a two-party functionality, this establishes a lower bound of 4 rounds for secure
two-party computation. Under the same complexity assumption, Lindell [38] has
shown that for some polynomial secure coin-tossing of coins requires at
least 4 rounds.

1.1 Our Results

Here, we exactly characterize the (black-box) round complexity of secure two-
party computation by improving the known bounds. In particular:

Lower bound: We show that 5 rounds are necessary for securely tossing any
super-logarithmic (in the security parameter) number of coins, with respect to
black-box proofs of security. Thus implies a 5-round black-box lower bound for
a number of other (deterministic) functionalities as well. Beyond the implica-
tions for the round complexity of secure computation, we believe the result is
of independent interest due to the many applications of coin-tossing to other
cryptographic tasks.

The result of Goldreich and Krawczyk [28] mentioned above implies a black-
box lower bound of five rounds for the “symmetric” ZK functionality (where the
parties simultaneously prove statements to each other) – and hence the same
lower bound on the black-box round complexity of secure two-party computation

1 Throughout this paper, “black-box” refers to black-box use of an adversary’s
code/circuit (and not black-box use of a cryptographic primitive, as in [30]). A defi-
nition of black-box proofs of security is given in Appendix A.
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of general functionalities – assuming NP BPP. In contrast, our lower bound
holds unconditionally.

Matching upper bound: As our main result, we construct 5-round protocols
for securely computing any (randomized) poly-time functionality in the presence
of a malicious adversary. Our protocols may be based on various cryptographic
assumptions, including certified, enhanced trapdoor permutations (see Defini-
tion 1 and Remark 1), or homomorphic encryption schemes satisfying certain
additional properties. The former may be based on, for example, the RSA as-
sumption for large public exponents, while the latter may be based on, for ex-
ample, the decisional Diffie-Hellman (DDH) assumption in certain groups. Due
to space limitations, we focus on the (more difficult) case of certified trapdoor
permutations, and refer the reader to the full version for protocols based on
alternate assumptions.

In Section 4.1, we sketch how our protocols can be extended – without in-
creasing the round complexity and without requiring erasures – to tolerate an
adaptive adversary. The necessary cryptographic assumptions are described in
more detail there.

1.2 A Note on Black-Box Lower Bounds

Until the recent work of Barak [1,2], a black-box impossibility result was gen-
erally viewed as strong evidence for the “true” impossibility of a given task.
Barak showed, however, that non-black-box use of an adversary’s code could,
in fact, be used to circumvent certain black-box impossibility results [1]. Never-
theless, we believe there is still an important place in cryptography for black-box
impossibility results for at least the following reasons:

1.

2.

A black-box impossibility result is useful insofar as it rules out a certain
class of techniques for solving a given problem.
With respect to our current understanding, protocols constructed using non-
black-box techniques, currently seem inherently less efficient than those con-
structed using black-box techniques.

It remains an interesting open question to beat the lower bound given in this
paper using non-black-box techniques, or to prove that this is impossible.

1.3 Discussion

Yao’s results [43] give a 4-round protocol secure against honest-but-curious ad-
versaries, assuming the existence of enhanced [26, Sec. C.1] trapdoor permuta-
tions (an optimal 3-round protocol secure against honest-but-curious adversaries
can be constructed based on the existence of homomorphic encryption schemes).
Our lower bound shows that additional rounds are necessary to achieve security
against the stronger class of malicious adversaries. Our upper bound, however,
shows that (at least in the case of trapdoor permutations) a single (i.e., fifth)
additional round suffices.
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Our technique for achieving security against adaptive adversaries applies only
to adversaries who corrupt at most one of the players. An interesting open ques-
tion is to construct a constant-round protocol tolerating an adaptive adversary
who can potentially corrupt both players.

2 Definitions and Cryptographic Preliminaries

We omit the (completely standard) definitions of security for two-party com-
putation used in this work, which follow [9,10,25,39]. However, we provide in
Appendix A our definition of black-box simulation which is used to prove the
lower bound of Section 3.

We assume the reader is familiar with the cryptographic tools we use and refer
the reader elsewhere for definitions of non-interactive (perfectly binding) com-
mitment schemes [24], 3-round witness-indistinguishable (WI) proofs of knowl-
edge [20,24], witness-extended emulation for proofs/arguments of knowledge [37],
and the Feige-Shamir 4-round ZK argument of knowledge [18,19]. We note that
all the above may be constructed based on the existence of certified, enhanced
trapdoor permutations.

To establish notation, we provide here our working definitions of trapdoor
permutations, hard-core bits, and Yao’s garbled circuit technique. We also discuss
equivocal commitment, and show a new construction of this primitive.
Trapdoor permutations. For the purposes of the present abstract, we use the
following simplified definition of trapdoor permutations (but see Remark 1):

Definition 1. Let be a triple of PPT algorithms (Gen, Eval, Invert) such that
if outputs a pair td), then is a permutation over
and lnvert(td, ·) is its inverse. is a trapdoor permutation family if the
following is negligible in for all poly-size circuit families

We additionally assume that satisfies (a weak variant of) “certifiability”:
namely, given some it is possible to decide in polynomial time whether
is a permutation over

For notational convenience, we let td) be implicit and will simply let f(·)
denote and denote Invert(td,·) (where td are understood from
the context). Of course, can only be efficiently evaluated if td is known.
Remark 1. The above definition is somewhat less general than others that have
been considered (e.g., that of [24, Def. 2.4.5]); in particular, the present defini-
tion assumes a domain of and therefore no “domain sampling” algorithm
is necessary. Furthermore, the protocol of Section 4 does not immediately gener-
alize for trapdoor permutations requiring such domain sampling. Nevertheless,
by introducing additional machinery it is possible to modify our protocol so that
it may be based on any family of enhanced trapdoor permutations (cf. [26, Sec.
C.1]) satisfying the certifiability condition noted above. For simplicity, however,
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we use the above definition in proving our results and defer the more complicated
protocol (and proof) to the full version.

Hard-core bits. We assume the reader is familiar with the notion of hard-core
bits for any trapdoor permutation family (see [24]), and thus we merely describe
the notation we use. Let be a hard-core bit for some
trapdoor permutation family (we will let be implicit, and set thus
(informally), is “hard” to predict given We extend this notation to a
vector of hard-core bits in the following way:

Now (informally), “looks pseudorandom” given

Yao’s “garbled circuit”. Our secure computation protocol uses as a building
block the “garbled circuit” technique of Yao [43] which enables constant-round
secure computation for honest-but-curious adversaries. We abstract Yao’s tech-
nique, and only consider those aspects of it which are necessary for our proof of
security. In what follows, F is a description of a two-input/single-output circuit
whose inputs and output have the same length (yet the technique may be
generalized for inputs and output of arbitrary polynomial lengths). Yao’s results
give PPT algorithms for which:

is a randomized algorithm which takes as input a security parameter
a circuit F, and a string It outputs a “garbled circuit” circuit and
input-wire labels The “garbled circuit”
may be viewed as representing the function

is a deterministic algorithm which takes as input a “garbled cir-
cuit” circuit, and values It outputs either an invalid
symbol or a value

(When is clear from the context, we omit it.)
We briefly describe how the above algorithms may be used for secure com-

putation in the honest-but-curious setting. Let player 1 (resp., 2) hold input
and assume that player 1 is to obtain the output First,

player 2 computes and sends circuit to player 1.
Then, the two players engage in instances of oblivious transfer: in the in-
stance, player 1 enters with “input” player 2 enters with “input”

and player 1 obtains the “output” Player 1 then computes
and outputs

A 3-round protocol for oblivious transfer (OT) based on trapdoor permu-
tations may be constructed as follows (we remark that using number-theoretic
assumptions, 2-round OT is possible): Let player 1 have input and player 2 have
input strings (the goal is for player 1 to obtain Player 2 be-
gins by generating trapdoor permutation (f, and sending f to player 1. Next,
player 1 chooses random sets and and sends

to player 2. Finally, player 2 computes computes
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analogously, and sends to player 1. Player 1 can then easily recover
(A proof of security for essentially the above protocol appears in [25].) Note

that in the honest-but-curious setting it is secure to run polynomially-many
executions of the above in parallel.

Putting everything together, we obtain the following 3-round protocol for
secure computation of any single-output functionality in the honest-but-curious
setting:

Round 1 Player 2 runs to generate He then sends circuit
and the f’s for oblivious transfer.

Round 2 Player 1 sends pairs
Round 3 Player 2 sends pairs
Output computation Player 1 can now recover the appropriate and thus

compute the output value using as discussed above.

Finally, any protocol for secure computation of single-output functionalities can
be used for secure computation of two-output functionalities using only one
additional round [25, Prop. 7.2.11]. Furthermore, any protocol for secure com-
putation of deterministic functionalities may be used for secure computation of
randomized ones (with the same round complexity) [25, Prop. 7.4.4].

With the above in mind, we describe the properties required of
We first require correctness: for any F, any output of
and any we have The algorithms also
satisfy the following notion of security: there exists a simulator Yao-Sim which
takes as input, and which outputs circuit and a set of input-wire labels
furthermore, the following distributions are computationally indistinguishable
(by poly-size circuit families):

Algorithms satisfying the above definitions may be constructed as-
suming the existence of one-way functions.

Equivocal commitment. Although various notions of equivocal commitment
have appeared previously, we present here a definition and construction specific
to our application. Informally, an equivocal commitment scheme is an interactive
protocol between a sender and a receiver which is computationally hiding and
computationally binding in a real execution of the protocol. However, in a simu-
lated execution of the protocol (where the simulator interacts with the receiver),
the simulator is not bound to any particular value but can instead open the com-
mitment to any desired value. Furthermore, for any (non-uniform) PPT receiver
R and any string the view of R when the real sender commits/decommits to

is computationally indistinguishable from the view of R when the simulator
“commits” in an equivocal way and later opens this commitment as We defer
a formal definition, especially since one follows easily from the construction we
now provide.
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We construct an equivocal commitment scheme for a single bit in the follow-
ing way: let Com be a non-interactive (perfectly binding) commitment scheme.
To commit to a bit the sender chooses coins and computes

It sends C to the receiver and per-
forms a zero-knowledge proof/argument that C was constructed correctly (i.e.,
that there exist such that The receiver rejects in
case the proof/argument fails. To decommit, the sender chooses a bit at ran-
dom and reveals Note that a simulator can “equivocate” the commitment
by setting (where is chosen at random in {0,1}),
simulating the zero-knowledge step, and then revealing or depending on

and the bit to be revealed. By committing bit-by-bit, the above extends easily
to yield an equivocal commitment scheme for polynomial-length strings.

3 The Round Complexity of Coin Tossing

We show that any protocol for securely flipping a super-logarithmic number of
coins (which is proven secure via black-box simulation) requires at least 5 rounds.
(The reader is referred to Appendix A for a definition of black-box simulation.)
More formally:

Theorem 1. Let where is the security parameter. Then there
does not exist a 4-round protocol for tossing coins which can be proven secure
via black-box simulation.

The above theorem refers to the case where both parties are supposed to receive
the resulting coin as output.

Before starting our proof, we note that the above theorem is “tight” in the
following two regards: first, for any 3-round protocols (proven
secure using black-box simulation) for tossing coins are known [8, 25, 29],
assuming the existence of a non-interactive commitment scheme. Furthermore,
our results of Section 4 imply a 5-round protocol (based on the existence of
trapdoor permutations) for tossing any polynomial number of coins. In fact,
we can also construct a 5-round protocol for tossing any polynomial number of
coins based on the existence of a non-interactive commitment scheme; details
will appear in the final version.

Proof (sketch). We assume (toward a contradiction) some 4-round protocol
for tossing coins. Without loss of generality, we may assume that player
1 sends the final message of (since in the ideal model, only player 1 has the
ability to abort the trusted party); hence, player 2 must send the first message of

Consider a real-model adversary corrupting player 1, who acts as follows:
Let be some set of “small” but noticeable size, whose exact
size we will fix later. runs protocol honestly until it receives the third
message, and then computes the value of the tossed coin. If then
completes execution of the protocol honestly and outputs some function of its
view; otherwise, aborts with output
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tionality (i.e., on inputs of super-logarithmic length, since any
such protocol could be used to toss a super-logarithmic number of coins (in the
same number of rounds). This can be generalized in the obvious way.

4 A 5-Round Protocol for Secure Computation

Here, we prove the existence of a 5-round protocol for secure computation of gen-
eral functionalities based on the existence of (certified) trapdoor permutations
(see Definition 1 and Remark 1). To simplify matters, we describe a 4-round
protocol for secure computation of deterministic functionalities in which only
the first party receives output; this suffices for our main result since any such
protocol can be used for secure computation of randomized functionalities in
which both parties receive (possibly different) outputs, at the cost of one more
(i.e., fifth) additional round [25, Propositions 7.2.11 and 7.4.4].

Before describing our protocol, we provide some intuition about the “high-
level” structure of our protocol and highlight some techniques developed in the
course of its construction. We stress that our protocol does not merely involve

Black-box security of implies the existence of a black-box ideal-model
adversary satisfying the following property (informally): conditioned upon
receiving a coin from the trusted party, with all but negligible proba-
bility “forces” an execution with in which does not abort and hence

view is consistent with some coin (for our proof, it does not
matter whether or not).

We next define a real-model adversary corrupting player 2, acting as
follows: incorporates the code of and – simulating the trusted party for

– feeds a coin randomly chosen from Good. By the above, can
with overwhelming probability “force” an execution with in which sees a
view consistent with some We show that we can use to “force”
an execution with (the honest) in which outputs some with
sufficiently high probability. Of course, (and hence interacts with the
honest and not with adversarial thus, in particular, (and hence
cannot rewind However, since acts “essentially” like the honest (with
the only difference being due to aborts), we can show that “forces” to
output a coin with at least some inverse polynomial probability
where relates to the number of queries makes to its oracle for

Choosing Good such that we derive a contradiction:
in any ideal-model execution, an honest player 1 outputs a coin in Good with
probability at most in the real world, however, forces an honest
to output a coin in Good with probability at least This implies a simple,
poly-time distinguisher with non-negligible advantage at least

Remark 2. Theorem 1 immediately extends to rule out 4-round, black-box
protocols for other functionalities (when both parties are supposed to receive
output), and in particular some natural, deterministic ones. For example, the
theorem implies that 4 rounds are not sufficient for computing the “xor” func-
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“collapsing” rounds by running things in parallel – new techniques are needed to
obtain a round-optimal protocol. At the core of our protocol is Yao’s 3-round pro-
tocol tolerating honest-but-curious adversaries (it will be helpful in what follows
to refer to the description of Yao’s “basic” protocol in Section 2). The standard
way of adding robustness against malicious adversaries (see [25]) is to “compile”
this protocol by having the parties (1) commit to their inputs; (2) run (modified)
coin-tossing protocols, so each party ends up with a random tape and the other
party receives a commitment to this tape; and (3) run the basic Yao protocol
with ZK proofs/arguments of correct behavior (given the committed values of
the input and random tape) at each round. We may immediately note this ap-
proach will not suffice to obtain a 4-round protocol, since a ZK proof/argument
for the first round of Yao’s protocol alone will already require 4 rounds. Instead,
we briefly (and informally) summarize some of the techniques we use to achieve
a 4-round protocol. In the following (but not in the more formal description
that follows), we number the rounds from 0–3, where round 0 corresponds to an
“initialization” round, and rounds 1–3 correspond to rounds 1–3 of Yao’s basic
protocol.

We first observe that in Yao’s protocol a malicious player 2 gains nothing by
using a non-random tape and thus coin-tossing for this party is not needed.
It is essential, however, that player 1 is unable to choose his coins in round
two. However, full-blown coin-tossing is unnecessary, and we instead use a 3-
round sub-protocol which “forces” player 1 to use an appropriate set of coins.
(This sub-protocol is run in rounds 0–2.) This component and its analysis
are based loosely on earlier work of Barak and Lindell [3].
When compiling Yao’s protocol, player 1 may send his round-two message
before the proof of correctness for round one (being given by player 2) is com-
plete (here, we use the fact that the trapdoor permutation family being used
is “certifiable”). We thus construct our protocol so the proof of correctness
for round one completes in round three. To obtain a proof of security, we
require player 2 to delay revealing circuit until round three. Yet, a proof of
security also requires player 2 to be committed to a circuit at the end of the
round one. We resolve this dilemma by having player 2 commit to circuit in
round one using an equivocal commitment scheme.
Finally, use a specific WI proof of knowledge (from [36]; see also [18]) with the
property that the statement to be proved (and, by implication, a witness) need
not be known until the last round of the protocol, yet soundness, completeness,
and witness-indistinguishability still hold. (The proof of knowledge aspect
must be dealt with more carefully; see Appendix B.) Furthermore, this proof
system has the property that the first message from the prover is computed
independently of the statement being proved (as well as its witness); we use
this fact when constructing an adaptively-secure protocol in Section 4.1.

We also construct a novel 4-round ZK argument of knowledge with similar
properties (see Appendix B), by modifying the Feige-Shamir ZK argument
of knowledge [19]. Our new protocol may be of independent interest.
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Let be a polynomial-size (deterministic) circuit family repre-
senting the functionality of interest, where takes two inputs and re-
turns a output to player 1. (Clearly, the protocol extends for arbitrary
input/output lengths. We have also mentioned earlier how the protocol may be
extended for randomized, two-output functionalities.) When is understood, we
write F instead of Let represent the input of player 1,
let represent the input of player 2, and let In
the following, always ranges from 1 to and ranges from 0 to 1.

First round. The protocol begins with first player proceeding as follows:

1.

2.

Player 1 chooses values at random from
It then chooses random coins and computes

where Com is any perfectly-binding commitment scheme.
Player 1 also prepares the first message (which we call of a 3-round
witness indistinguishable proof of knowledge (for a statement which will
be fully determined in the third round; see the earlier remarks). For later
reference, define as the following:

(Informally, represents the fact that player 1 “knows” either the
decommitment of or the decommitment of for each
Player 1 also prepares the first message (acting as the verifier) of the modified
Feige-Shamir ZK argument of knowledge (see Appendix B). We denote this
message by
The message sent by player 1 contains and

3.

4.

Second round. Player 2 proceeds as follows:

1.

2.

3.

4.

Player 2 generates trapdoor permutations (denoted using
invocations of chooses values at random from and
prepares the second message (denoted for the WI proof of knowledge
initiated by player 1 in the previous round.
Next, player 2 generates a “garbled circuit” (cf. Section 2) for the func-
tionality F, based on its own input This involves choosing random coins

and computing Player 2 also computes
commitments to the that is, it chooses coins and computes

(a)
(b) and

Player 2 next chooses random coins and generates an equivocal commit-
ment
Next, player 2 prepares the second message (denoted for the modified
Feige-Shamir ZK argument of knowledge (for a statement which will be fully
determined in the fourth round; cf. Appendix B). For future reference, let

be the following: there exist circuit,   s.t.:
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(c)
(Informally, states that player 2 performed the preceding two
steps correctly.)
The message includes  Equiv, and5.

Third round. Player 1 proceeds as follows:

1. If any of the are not valid2, player 1 aborts. Otherwise, player 1 will
use parallel invocations of oblivious transfer to obtain the input-wire labels
corresponding to its input Formally, for each player 1 prepares values

in the following way:
If choose random and set Also, set

(recall, was committed to by player 1 in the first
round, and was obtained from player 2 in the second round).
If choose random set and set

2. Define as follows:
s.t.

or

Informally, this says that player 1 correctly constructed the values.
Player 1 then prepares the final message (denoted for the proof of
knowledge begun in round 1. The statement3 to be proved is:

Player 1 also prepares the third message for the modified Feige-
Shamir ZK protocol (denoted
The message includes and

3.

4.

Fourth round. The second player proceeds as follows:

1. If either or would cause rejection, player 2 aborts. Otherwise,
player 2 completes the oblivious transfer in the standard way. Namely, for
each sent in the previous round, player 2 computes and
xor’s the resulting hard-core bits with the corresponding input-wire labels
thusly:

2. Define as follows:
s.t.

Informally, this says that player 2 performed the oblivious transfer correctly.
Player 2 prepares the final messages (denoted for the modified Feige-
Shamir protocol. The statement to be proved is:

3.

2 Recall (cf. Definition 1) that the trapdoor permutation family is certifiable.
3 An honest player 1 actually knows multiple witnesses for For concrete-

ness, we have the player choose one of these at random to complete the proof.
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4.

5.

Finally, player 2 decommits Equiv as circuit (recall from Section 2 how de-
commitment is done for equivocal commitments).
The message includes the circuit (and the corresponding decommit-
ment), and

Output computation. The first player concludes the protocol as follows: If
or the decommitment of circuit would cause rejection, player 1 aborts.

Otherwise, by completing the oblivious transfer (in the standard way) player
1 obtains (recall, is the input of player 1) and computes

If it outputs Otherwise, it aborts.

Sufficient assumptions. As noted in Section 2, every component of the above
protocol may be based on the existence of a trapdoor permutation family (the
certifiability property is only needed for the verification performed by player 1 at
the beginning of the third round). Furthermore, as noted in Remark 1, although
the description of the protocol (and its proof of security) use the definition of
a trapdoor permutation family given by Definition 1, it is possible to adapt the
protocol so that its security may be based on any family of (certified) enhanced
trapdoor permutations, as per the definitions of [24, 26].

Theorem 2. Assuming the existence of a trapdoor permutation family, the above
protocol securely computes functionality F.

Proof. We separately prove two lemmas dealing with possible malicious behavior
of each of the parties; the theorem follows. We first consider the case when
player 2 is malicious:

Lemma 1. Let be a pair of (non-uniform) PPT machines in which
is honest. There exist a pair of (non-uniform) expected polynomial-time machines

such that

Proof (sketch). Clearly, we may take to be honest. We assume that is
deterministic, and construct using black-box access to as follows:

1. runs a copy of internally, passing to it any auxiliary information
To emulate the first round of the protocol, acts exactly as an honest
player 1, generates a first-round message, and passes this message to
In return, receives a second-round message which includes, in particular,

If an honest player 1 would abort after receiving this second-round
message, aborts (without sending any input to the trusted party) and
outputs whatever outputs.
Otherwise generates a third-round message exactly as an honest player 1
would, with the following exception: for all it sets Note
in particular that can easily compute since both and

are true. It passes the third-round message to and receives
in return a fourth-round message.

2.
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3.

4.

If an honest player 1 would abort after receiving the fourth-round message,
aborts (without sending any input to the trusted party) and outputs

whatever outputs. Otherwise, attempts to extract4 from an input
value (cf. step 4 of the second round in the description of the protocol). If
extraction fails, aborts and outputs fail.
Otherwise, sends to the trusted party. It then stops and outputs what-
ever outputs.

We may note the following differences between the ideal world and the real
world: (1) in the second round, sets for all whereas an
honest player 1 does this only for such that also (2) passes the
input value to the trusted party (and hence player 1 will receive the value

from this party), whereas in the real world player 1 will compute an
output value based on the circuit and other values it receives from in the
fourth round. Nevertheless, we claim that Equation (1) holds based on (1) the
hiding property of the commitment scheme used in the first round and (2) the
argument of knowledge (and hence soundness) property of the modified Feige-
Shamir protocol (cf. Appendix B), as well as the correctness of the Yao “garbled
circuit” construction. A complete proof appears in the full version.

Lemma 2. Let be a pair of (non-uniform) PPT machines in which
is honest. There exist a pair of (non-uniform) expected polynomial-time machines

such that

Proof (sketch). Clearly, we may take to be honest. We assume that is
deterministic, and construct using black-box access to as follows:

1. runs a copy of internally, passing to it any auxiliary information
and receiving a first-round message from Next, emulates the sec-
ond round of the protocol as follows: it generates and
exactly as an honest player 2. All the commitments however, are
random commitments to Furthermore, commitment Equiv is set up in
an “equivocal” way (cf. Section 2) so that will later be able to open this
commitment to any value of its choice. prepares using the ZK sim-
ulator for the modified Feige-Shamir protocol (cf. Appendix B). passes
the second-round message thus constructed to and receives in return a
third-round message. If an honest player 2 would abort after receiving this
message, aborts (without sending any input to the trusted party) and
outputs whatever outputs.

4 Technically, runs a witness-extended emulator [37] for the modified Feige-Shamir
proof system, which results in a transcript and a witness This is what we mean
when we informally say that “attempts to extract”.
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2. Otherwise, attempts to extract (cf. footnote 4) values
corresponding to (half) the commitments sent by in the first
round. If extraction fails, outputs fail. Otherwise, let be such
that then defines a string as follows:

is “guess” as to which input-wire label is “interested in”.)
sends the string thus defined to the trusted party, and receives a value in
return. It then runs to generate a garbled circuit circuit along
with input-wire labels (cf. Section 2). then prepares the “answers”

to the oblivious transfer as follows, for each it correctly sets
but chooses at random.

3. emulates the fourth round of the protocol as follows: it sends the
as computed above, sends circuit as computed above (note that the cor-
responding decommitment can be given since Equiv was constructed in an
“equivocal” way), and uses the simulator for the modified Feige-Shamir pro-
tocol to compute (cf. Appendix B). passes the final message thus
constructed to and outputs whatever outputs.

We note (informally) the following differences between the ideal world and the
real world: (1) are commitments to rather than to “real” input-wire
labels; (2) Equiv is set up so that can “equivocate” and later open this as
any value it chooses; (3) the modified Feige-Shamir ZK argument is simulated
rather than real; (4) the answers are “garbage” (where is guess as
to the “input” of and (5) the garbled circuit is constructed using Yao-Sim
rather than Nevertheless, we claim that Equation (2) holds. Due to lack
of space, a complete proof appears in the full version.

4.1 Handling Adaptive Adversaries

We briefly sketch how the protocol above can be modified – without increasing
the round complexity – to provide security against an adaptive adversary who
can monitor communication between the parties and decide whom to corrupt
at any point during the protocol based on this information. (We consider only
an adversary who can corrupt at most one of the parties.) In brief, we modify
the protocol by using a (public-key) adaptively-secure encryption scheme [12] to
encrypt the communication between the two parties. Two issues arise:

1.

2.

The encryption scheme of [12] requires a key-generation phase which would
necessitate additional rounds. We avoid this extra phase using the assump-
tion of simulatable public-key cryptosystems [16] (see below). The existence
of such cryptosystems is implied in particular by the DDH assumption [16];
see there for constructions based on alternate assumptions.
Regardless of the encryption scheme used, one additional round seems nec-
essary just to exchange public keys. To avoid this, we do not encrypt the
first message from player 1 to player 2. Nevertheless, the modified protocol
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is adaptively-secure: the proof uses the fact that the first round (as well as
the internal state after the first round) is identical in both the real execution
and the simulation for a malicious player 2 (cf. the proof of Lemma 1).

The modified protocol. Before describing our construction of an adaptively-
secure encryption scheme, we outline how it will be used to achieve adaptive
security for our protocol. Let denote the protocol given in the previous section.
Our adaptively-secure protocol proceeds as follows: in the first round of

player 1 sends a message just as in the first round of but also sends
sufficiently-many public keys (for an adaptively-secure encryption scheme) to
enable player 2 to encrypt the messages of rounds two and four. (The adaptively-
secure encryption scheme we use only allows encryption of a single bit; therefore,
the number of public keys sent by player 1 is equal to the bit-length of messages
two and four in In the second round of player 2 constructs a message as in

encrypts this message using the corresponding public keys sent in round one,
and additionally sends sufficiently-many public keys (for an adaptively-secure
encryption scheme) to enable player 1 to encrypt the messages of rounds three
and five. proceeds by having the players construct a message just as in the
corresponding round of and then having them encrypt these messages using
the appropriate public keys sent by the other player.

We defer a proof of security for this construction to the final version.

An adaptively-secure encryption scheme. Informally, a public-key cryp-
tosystem for single-bit plaintexts is simulatable if (1) it is possible to obliviously
generate a public key without learning the corresponding secret key, and also
(2) given a public key, it is possible to obliviously sample a random (valid) ci-
phertext without learning the corresponding message. We assume further that
if a ciphertext is obliviously sampled in this way, then the probability that the
corresponding plaintext will be a 0 or 1 is equal (or statistically close). See [16,
Def. 2] for a formal definition.

Given such a cryptosystem, our construction of an adaptively-secure en-
cryption scheme for a single-bit is as follows: the receiver generates pairs

of public keys by generating one key of each pair (selected at ran-
dom) using the key-generation algorithm, and the other key using the oblivious
sampling algorithm. This also results in a set of secret keys (one for each pair
of public keys). To encrypt a bit the sender proceeds as follows: for each
index choose a random bit set and choose using the
oblivious sampling algorithm. Then send the ciphertext pairs

To decrypt, the receiver decrypts one ciphertext out of each pair using the
secret key it knows, and sets the decrypted message equal to the majority of the
recovered bits. Note that correctness holds with all but negligible probability
since (on average) 3/4 of the ciphertexts constructed by the sender decrypt to
the desired message (namely, the ciphertexts encrypted using the legitimate
encryption algorithm, along with (on average) 1/2 of the remaining ciphertexts
chosen via the oblivious sampling algorithm).

We defer a proof that this scheme is adaptively secure to the full version.
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A Black-Box Simulation

Typical definitions of security for two-party computation only require that for
every pair of admissible real-world adversaries there exists a pair of ideal-world
adversaries satisfying some relevant criterion (namely, indistinguishability of
the resulting output distributions). Most work in this area, however, (and espe-
cially prior to the work of Barak [1]) proves the existence of such a via what
is known as a black-box simulation; this means that the ideal-model adversary

corresponding to the dishonest real-model adversary is constructed using
only oracle access to

More formally, a black-box simulation for party 1 (with a completely anal-
ogous definition for black-box simulation for party 2) implies the existence of
a simulator for which the following holds: For any real-model adversary
let (where are the inputs of and are the
random coins of be defined by where de-
notes the next-message function of on the given inputs and random coins
(we stress that is not explicitly given the auxiliary input nor the random
coins Then and (where are just the hon-
est algorithms) satisfy the relevant criterion. Furthermore, runs in expected
polynomial-time, where each oracle call to is counted as a single
step. Finally (although this is not essential to our results), it is typical to as-
sume that is a uniform algorithm. Note that if runs in strict polynomial
time, the above implies that the entire algorithm runs in expected polynomial
time; furthermore, if is uniform then so is (on the other hand, if is
a non-uniform machine, then will be too). We say that a protocol is proven
secure via black-box simulation if the simulations for both parties are black-box.

We stress a crucial point about the above: when we say runs in expected
polynomial-time, we mean that there is a fixed polynomial such that the
expected running time of on input when interacting with any (and
counting queries to as a single step), is On the other hand, the expected
running time of (including the steps of and no longer counting each query
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to as a single step) cannot be bounded a priori by any fixed polynomial, as
the running time of will of course depend on the running time of Of
course, as noted above, if runs in strict polynomial time then runs in
expected time (at most) which is polynomial. (Note that this definition
of black-box simulation avoids the technical problem of, e.g., [28] regarding the
need for to feed coins whose length depends on and is not bounded
a priori by any polynomial.)

B Proof Systems Used in This Work

We provide here a laconic sketch of the proof systems claimed in Section 4;
further details and proofs will appear in the full version. We first describe the
WI proof of knowledge of [36] (as described in [18]).

We will be working with the NP-complete language HC of graph Hamil-
tonicity, and thus assume statements to be proved take the form of graphs,
while witnesses correspond to Hamilton cycles. If thm is a graph, we abuse no-
tation and also let thm denote the statement “thm HC”. We show how the
proof system can be used to prove the following statement: where
thm will be included as part of the first message, while is only included in
the last round (indeed, it will not be fixed until the third round begins). The
proof system runs parallel executions of the following 3-round protocol:

1.

2.
3.

4.

The prover commits to two adjacency matrices for two randomly-chosen cycle
graphs C, The commitment is done bit-by-bit using a perfectly-binding
commitment scheme.
The verifier responds with a single bit chosen at random.
If the prover opens all commitments. If the prover sends two
permutations mapping the cycle in thm (resp., to C (resp., For
each non-edge in thm (resp., the prover opens the commitment at the
corresponding position in C (resp.,
The verifier checks that all commitments were opened correctly. If the
verifier additionally checks whether both decommitted graphs are indeed
cycle graphs. If the verifier checks whether each non-edge in thm
(resp., corresponds to a non-edge in C (resp.,

Note that the prover does not need to know either thm or (or the corre-
sponding witnesses) until the beginning of the third round. However, we assume
thm is fixed as part of the first-round message because this will enable us to
claim stronger properties about the above proof system.

Very informally, we claim that the proof system above satisfies the following:

It is complete and sound. In particular, the probability that an all-powerful
prover can cause a verifier to accept when either thm or are not true
is at most We stress that this holds even if the prover can adaptively
choose after viewing the second-round message of the verifier.
It is witness indistinguishable.
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It is a proof of knowledge for thm. (More formally, we can achieve a notion
similar to that of witness-extended emulation [37] for thm .) We do not know
whether such a claim holds for

Note also that the first round of the above proof system (as well as the
internal state of the prover immediately following this round) is independent of
thm or the associated witness. We rely on this fact in Section 4.1.

Next, we informally describe our modification of the Feige-Shamir ZK argu-
ment of knowledge [19] which will allow the prover to prove where
thm is sent as part of the second round yet is only sent as part of the last
round (indeed, it need not be known until the beginning of that round). We use
the notation used in the description of the Feige-Shamir protocol in [18, Prot.
8.2.62]. Our modified protocol proceeds as follows:

1.
2.

3.

4.

5.

6.

The first round is as in the original protocol, and includes values
The prover chooses a random and computes
(cf. Section 2). Let ok denote the statement that Equiv was formed correctly.
Let denote the statement: (this
statement is reduced to a single graph The prover sends Equiv and also
the first message of the WI proof system described above.
The verifier’s third message is as in the original protocol, except that the
verifier additionally chooses and sends a random
The prover decommits (as in Sec. 2) to R. Let prg be the statement that

is pseudorandom (i.e., s.t. for G a PRG). Let
be the statement (reduced to a single graph The prover

completes the WI proof system, as above, for the statement
The verifier checks the decommitment of R, and verifies the proof as before.

We claim the following about the above proof system:

It is complete and sound (for a poly-time prover) for thm and (As
argued earlier, rounds 2–4 constitute a proof of knowledge for As in [18]
– relying on the one-wayness of – this implies that if a poly-time prover
can cause a verifier to accept with “high” probability, then a witness for

can be extracted with essentially the same probability. If ok is true,
then with all but negligible probability prg will not be true. Soundness of
the proof of knowledge sub-protocol then implies that is true. But this
means that is true.)
It is zero-knowledge. (In addition to simulating for as in [18], the sim-
ulator also uses the equivocal commitment property to decommit to an R
such that prg is true.)
It is an argument of knowledge for thm (we have already argued as much
above).
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1 Introduction

We live in perilous times. We live in times where a dirty bomb going off in lower
Manhattan is not unimaginable. We live in times where the CIA interrogations
of al Qaeda leaders were so harsh that the FBI would not let its agent participate
[36]. We live in times when security and liberty are both endangered.

We also live in times of unimaginable technical creativity. It is faster to use
Instant Messaging to query a colleague halfway across the world than it is to
walk down the hallway and ask the question, when Google can search four billion
web pages faster than the time it takes to pull the right volume of the Oxford
English Dictionary off the library shelf. We live surrounded by a plethora of
communicating and computing devices — telephones, PDAs, cell phones, lap-
tops, PCs, computers — and this is only the beginning of the communications
revolution.

September 11th presaged a radical change in terrorist intent, a radical change
that few had anticipated. The U.S. government responded to September 11th
in a number of ways, including the passage of the U.S.A. Patriot Act, which
qualitatively extended the government’s electronic-surveillance capabilities. The
Patriot Act engendered strong debate (though not in Congress, where the law
passed handily). The most controversial issue regarding the changes in electronic-
surveillance law was that the requirement that foreign intelligence be a “primary”
reason for a Foreign Intelligence Surveillance Act (FISA) wiretap was modified
to foreign intelligence need only be a “significant” reason for a FISA tap.

Absent from the debates on the Patriot Act was an acknowledgement of
the radical changes that had occurred in communications technologies since the
passage of the first Federal wiretap statute in 1968. Communications technol-
ogy has changed in numerous ways over the past forty years — there is now
wide availability of mobile communications, a vast increase in connectivity, and
packet-switched systems are being employed for telephony — but there has been
no commensurate review of electronic-surveillance laws. We are in a peculiar
state: we communicate using mobiles phones and laptops, but the laws govern-
ing electronic surveillance were developed at a time of fixed-location circuit-based
switching systems. Instead of a full-scale reevaluation of surveillance laws, over
the last two decades we have pursued a path of minor tweaks to the electronic-
surveillance laws. The result is an electronic-surveillance regime that may be well

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 355–372, 2004.
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out of sync with the times. This has serious implications for security, liberty, tech-
nology, and innovation. In this paper, we examine electronic-surveillance laws in
light of current threats and new technologies. We begin by examining the climate
in which wiretap laws came to be enacted.

2 The Political Climate at the Time of the Wiretap Act

The sixties were a time of turmoil in the United States, a time of political
protest, and civil unrest. In 1963, President John Kennedy was assassinated in
a motorcade in Dallas, Texas. In 1965 Malcolm X was killed as he delivered
a speech in an auditorium in Harlem. In April 1968, Martin Luther King was
killed, and two months later, Robert Kennedy, who was running for President,
was shot moments after he learned he had won the California primary. There had
been civil rights marches in Washington in the early 1960s, and anti-Vietnam
protests in the latter half of the decade. In the summer of 1964, downtown
Newark burned; in 1965, the Watts section of Los Angeles; in 1967, downtown
Detroit.

It was against this backdrop that the President’s Commission on Law En-
forcement and Administration of Justice presented its report. Organized crime
had been a problem in the United States since Prohibition, but, because FBI Di-
rector J. Edgar Hoover ignored it, so did the Federal government. Several events
in the late 1950s and early 1960s changed that.

The first was the discovery, on November 15, 1957, by a New York state
trooper, of a meeting of organized crime bosses. The trooper was doing routine
morning rounds when he discovered far too many black limousines for the tiny
upstate town of Apalachin. The trooper set up a roadblock; the crime bosses
fled, and “the next day, the nation awoke to headlines like ‘Royal Clambake for
Underworld Cooled by Police,’ and ‘Police Ponder NY Mob Meeting; All Claim
They Were Visiting Sick Friend’ [13, pp. 168-9]. Meanwhile, while counsel to the
Senate Select Committee on Improper Activities in the Labor or Management
Field, Robert Kennedy had uncovered ties between the unions and organized
crime. When he became attorney general, Kennedy made organized crime a
priority [29]. And finally, an organized crime turncoat, Joseph Valachi, broke
the code of silence by testifying to a Senate investigating committee in 1963.

This confluence of events made pursuing organized crime a law-enforcement
priority in the late 1960s. The complications of investigating organized crime
— the reluctance of victims to testify, so-called victimless crimes (e.g., prostitu-
tion), and the corruption of local law enforcement made electronic surveillance
a particularly valuable tool. The Commission concluded, “A majority of the
members of the Commission believe that legislation should be enacted granting
carefully circumscribed authority for electronic surveillance to law enforcement
officers. . .” [33, p. 203].

But, as noted in [13, p. 170],:

Not all experts agreed with the commission’s conclusions. Attorney Gen-
eral Clark prohibited all use of wiretaps by federal law-enforcement of-
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ficers. He told Congress: ‘I know of no Federal conviction based upon
any wiretapping or electronic surveillance, and there have been a lot of
big ones.… I also think that we make cases effectively without wire-
tapping or electronic surveillance. I think it may well be that with the
commitment of the same manpower to other techniques, even more con-
victions could be secured, because in terms of manpower, wiretapping,
and electronic surveillance is very expensive.” [8, p. 320] Clark pointed
out that in 1967, without using wiretaps, federal strike forces had ob-
tained indictments against organized-crime figures in nine states, and
that “each strike force has obtained more indictments in its target city
than all federal indictments in the nation against organized crime in as
recent a year as 1960” [8, pp. 79-80]

President Johnson publicly supported Clark’s opposition to wiretapping, and
the President proposed limiting wiretapping to national-security cases [9, p. 222].
But political turmoil and the Crime Commission’s report led Congress in a differ-
ent direction, and in 1968 it passed the Omnibus Crime Control and Safe Streets
Act of 1968 (18 USC §2510–2521), Title III of which legalized law-enforcement
wiretaps in criminal investigations. Because of the very invasive nature of the
search, wiretaps were limited to a list of twenty-six crimes specified in the act,
including murder, kidnapping, extortion, gambling, counterfeiting, and sale of
marijuana. The Judiciary Committee’s report explained that “each offense was
chosen because it was intrinsically serious or because it is characteristic of the
operations of organized crime,” [44, p. 97].

President Johnson was ambivalent about wiretaps. He had used them — on
Martin Luther King during the Democratic convention in 1964 and on Vice Pres-
ident Humphrey in 1968 — but the President described the Title III provisions
for wiretapping as undesirable [9, p. 1842]. Nonetheless Johnson signed the bill.
Because of the invasive nature of electronic surveillance, Congress decided that
there should be stringent oversight, and that review of a federal wiretap warrant
application must be done by a federal district court judge.

The judge must determine that (i) there is probable cause to believe that an
individual is committing, has committed, or is about to commit an indictable
offense; (ii) there is probable cause to believe that communications about the
offense will be obtained through the interception; (iii) normal investigative pro-
cedures have been tried and either have failed, appear unlikely to succeed, or
are too dangerous; and (iv) there is probable cause to believe that the facilities
subject to surveillance are being used or will be used in the commission of the
crime (§2518 (3)(a-d)).

Title III covers procedures for obtaining wiretaps for law-enforcement inves-
tigation. In 1972, in a court case involving “domestic national-security issues,”
the Supreme Court ordered an end to warrantless wiretapping, even for national-
security purposes. Because of Watergate, and the discovery of numerous so-called
national-security wiretaps that were actually wiretaps for political purposes [42],
it took until 1978 before Congress was actually able to frame and pass legisla-
tion authorizing procedures for obtaining wiretaps for national-security investi-
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gations: the Foreign Intelligence Surveillance Act. The judge, a member of the
Foreign Intelligence Surveillance Court, a court of eleven judges appointed from
seven of the United States judicial circuits (§1803 (a)), must determine (i) that
there is probable cause that the target is a foreign or target of a foreign power,
(ii) that there is probable cause that the targeted communications device is be-
ing used by the foreign power or its agent, that (iii) that a primary purpose of
the surveillance is to obtain foreign intelligence information, and that (iv) such
information cannot reasonably by obtained by other investigative techniques. 1

Title III and FISA form the basis for U.S. wiretap law. There are also state
statutes (approximately half of all criminal wiretaps in the United States are
done under state wiretap warrants). The rules governing state wiretaps must be
at least as restrictive as those governing Title III.

There have been several updates and modifications to the federal wiretap
statutes, which will be discussed after examining the changes in communications
technology over the last four decades.

3 Current Threats

In the U.S. we are currently seeing a strident debate on surveillance technologies,
most especially datamining. This paper is not the place for a full discussion of the
methods and means used in terrorist investigations. In the context of reexamin-
ing electronic-surveillance laws, however, it is useful to make some observations
about terrorism and terrorist investigations.

By any measure, terrorism is a very difficult offense to investigate or prevent.
In many cases, the first crime committed is the only crime. There is no trail.
The investigative reporter, Seymour Hersh, described CIA efforts in southern
Lebanon during the 1980s,

... when the C.I.A. started to go after the Islamic Jihad, a radical Lebanese
group linked to a series of kidnappings in the Reagan years, ‘its people
systematically went through documents all over Beirut, even destroying
student records.’

One of the hallmarks of modern terrorist groups is the shifting and diffuse
organizational structure [39, p. 271]. On the one hand, this means that elimi-
nating the leadership does not necessarily eliminate the problem. On the other,
diffuse and ever-changing structures create weaknesses within the organization.
One that can be exploited is the terrorists’ need for communication.

In this situation, traffic analysis often proves more useful than wiretapping.
Wiretaps can be confused by encryption, even encryption of a very simple sort.
Seymour Hersh reported that,

1 The law provides that “[N]o United States person may be considered a foreign power
or an agent of a foreign power solely upon the basis of activities protected by the
first amendment to the Constitution of the United States” (§1805(a)(3)(A)).
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The terrorists coped with the American ability to intercept conversations
worldwide by constantly changing codes — often doing little more than
changing the meanings of commonly used phrases.

The problem is being unable to decode the language is not new. It can even
occur without deliberate intent by the criminal or terrorist group. The National
Research Council report, Cryptography’s Role in Securing the Information So-
ciety described an FBI wiretap of police officers who were allegedly guarding a
drug shipment. The FBI agents overhead a conversation in which the officers
discussed murdering an individual who had filed a police brutality complaint.
The bureau was unable to decode a participant’s “street slang,” and was thus
unable to prevent the murder [10, p. 88].

The inability to understand surveilled conversations does not mean that the
surveillance is useless. In particular, traffic analysis has become an extremely
valuable aspect of surveillance, and one cannot confuse traffic-analysis efforts in
quite the same way as one confuses content analysis. One example of the value
of traffic analysis is that Osama Bin Laden stopped using a cell phone in late
2001 because of the tracking capabilities of U.S. intelligence.

Even “anonymous” cellphones can be used for tracking. In a case in 2002,
investigators tracked al Qaeda members through terrorists use of prepaid Swiss-
com phonecards. These had been purchased in bulk — anonymously. But when
investigators discovered through a wiretap on an intercepted call that “lasted
less than a minute and involved not a single word of conversation” that they
were on to an al Qaeda group, the agents tracked the users of the bulk purchase
[45]. The result was the arrest of a number of operatives and the break-up of
al Qaeda cells. You can run, but you can’t hide. Anonymity is not all that it is
cracked up to be.

One important aspect of terrorist investigations is to “follow the money.”
Many terrorist groups hide behind legitimate charitable groups, but these are
groups with money trails [39, p. 274]. (We should note, however, that “following
the money” is not a straightforward issue in terms of civil liberties. The Patriot
Act section dealing with money laundering and terrorist financing is controversial
admidst claims that its provisions have been applied to charitable groups with
no ties to terrorist activities.) Money trails can be complicated to follow, and
the terrorists do a good job of hiding trails by passing money through many
intermediaries, but the fact is that there is a trail. Once there is trail, it can be
investigated.

The current terrorist threat is very different from earlier terrorist movements.
A different from earlier terrorism threats, such as the Russian nihilists of the
nineteenth century or the Palestinian terrorists of the 1970s, is the huge reser-
voir of potential recruits. Globalization complicates the problem. (Indeed, one
legitimately argue that globalization is a large part of the problem — but that
is a topic for a different paper.) In the late 1990s, Senators Hart and Rudman
chaired a national security commission study to examine emerging threats. In
a prescient observation, the Hart-Rudman report in early 2001 warned of the
likelihood of catastropic domestic attacks caused by international terrorism. The
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report observed, “All borders will become more porous.” [41, p. 2] This has al-
ready happened in Europe. While the borders have become porous, apparently
cooperation between different nations’ law enforcement has not yet followed suit.

Terrorism is not a passing phenomenon. It will be with us for a long time. It
is important that we respond to the threat in a way that simultaneously protects
our security and our liberty.

4 Changing Communications Technology

The first hundred of years the telephone saw change: from local systems entirely
mediated by operators to global networks entirely run by electronic switching
systems. There was innovation: mobile phone, first deployed n 1946 [6, 215],
faxes, and modems. There was development of infrastructure: optical fibers and
communication satellites, as well the digitization of the backbone network.

Yet slightly more than a generation ago, the telephone remained a fixed
device: a black machine with a rotary dial that transmitted voice (also data;
from the beginning, the telephone was also a data-transmission network data,
e.g., telegraph). In the sixties innovation was the introduction of the “Princess”
phone (in colors!: white, beige, pink, blue, or turquoise) and Touchtone ser-
vice (buttons instead of rotary dials), while industry got Centrex, an automatic
switching exchange for large offices, and “data-phones” (modems) [6, p. 266].
What occurred in the first century was growth: ten million phone users in 1900,
one hundred million in 1960, five hundred million in 19902.

The innovation of the first hundred years of the telephone pales in contrast
to the growth and changes of the last decade and a half. There were 1.4 billion
users in 2000, 400 million of those cell phone users. There probably has been as
much innovation in telephony in the last quarter century as there had been in
the previous one hundred years.

Recent telecommunications growth has been spurred by three technical de-
velopments: mobile technology, greater bandwidth, and the Internet. AT&T has
had car phones since 1946 [6, p. 215], but such service was rare and expensive
until the early 1990s. Mobile technology took off with the 1983 development of
“cell” technology. In under a decade, cell phones have become ubiquitous, as has
the wireless Internet. Once the Web appeared, the race to install broadband was
on. In 1999, less than 10% of U.S. households had broadband; by early 2004,
the percentage was 45% [32]. The shift to Internet communications is the most
fundamental of the changes. The Internet enabled email, (which is the killer app
of the Internet) [34], Instant Messaging, and the nascent technology: VoIP (voice
over IP).

This is only the beginning of the communications revolution. We are moving
from a circuit-based system based on transmitting voice to a high-speed, packet-
switched network transmitting data. The pervasiveness of our communication
systems will shift all that we do. These social and technological changes should
be taken into account the discussion of electronic-surveillance laws.
2 These numbers are international.

TEAM LinG



Security, Liberty, and Electronic Communications 361

5 The 2004 Questions

5.1 What Is the Current Legal Framework?

Title III and FISA set the framework for U.S. electronic-surveillance laws. Since
their passage (in 1968 and 1978 respectively), there have been three major Fed-
eral laws that affected wiretapping: the Electronic Communications Privacy Act
(ECPA), the Communications Assistance for Law Enforcement Act (CALEA),
and the U.S.A. Patriot Act.

ECPA updated Title III and FISA to apply to “electronic communications,”
defined as communications carried by wire or radio and not involving the human
voice. ECPA was less strict about the type of crimes for which there could be in-
terception: any federal felony may be investigated using interception of electronic
communications. ECPA also modified the rules for electronic communications.
In contrast to Title III and FISA, which required naming the device and person
to be tapped, ECPA allowed for “roving wiretaps” — wiretaps with unspecified
locations — if there was demonstration of probable cause that the subject was
attempting to evade surveillance by switching telephones. In recognition of the
greater ease in obtaining signalling information, ECPA provided for traffic anal-
ysis. Under ECPA, a subpoena is needed for all pen registers, which record all
numbers dialed from a phone, and all trap-and-trace devices, which record all
numbers dialed to a phone. Furthermore, under ECPA, law enforcement only
needs a search warrant, rather than the more stringent wiretap warrant, to ac-
cess stored communications (voice mail or email that has been read and then
stored).

The Communications Assistance for Law Enforcement Act (CALEA) in 1994
was very controversial. In 1992 the FBI pressed for a “Digital Telephony” bill,
which required that all telephone-switching equipment be designed to accom-
modate wiretapping. Civil-liberties groups and the telecommunications industry
opposed the bill, and there were no sponsors of it.

The FBI returned to Congress in 1994 with a modified version, the “Commu-
nications Assistance for Law Enforcement Act,” which included a $500 million
authorization (but not appropriation) to the telecommunications companies for
modifications to old equipment (this caused the telecommunications companies
to drop their opposition). The bill required that any equipment deployed after
January 1, 1995 would have to meet law-enforcement interception standard; the
Department of Justice would determine which would be the standards-setting or-
ganization. This bill passed in the waning days of 1994 after certain civil-liberties
groups dropped their opposition.

From the start, implementation of CALEA went badly. The Department of
Justice put the FBI, an agency not known for expertise in telecommunications,
in charge of setting the implementation standards. In October 1995 the FBI
announced its requirements, which would have entailed capacity to simultane-
ously monitor thirty thousand lines [19] [20] [13, p. 197], a striking number at
a time when the total number of annual Title III and FISA surveillances, in-
cluding pen registers and trap-and-trace devices, was a quarter of that. (In 1995
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the average Title III wiretap ran for 29 days [1, p. 13]. There is no public in-
formation about the length of FISA taps.) There were strong objections to the
methodology the FBI used to arrive at this figure and the bureau decided to
reexamine the capacity issue. Their new methodology required capacity to run
sixty-thousand surveillances simultaneously3 [20][13, p. 198]. Recognizing that
the delay in developing compliance standards made it impossible for the telecom-
munication companies to meet the law’s deadline (October 1, 1998, four years
after the passage of CALEA), the FCC granted an extension til June 2000 [22].

There was also a fight about location information for cellular calls. During
hearings on CALEA, FBI Director Freeh had promised that the bill would not
expand wiretapping powers[24, p. 29], and the legislative report stated that
“call-identifying information shall not include any information that may disclose
the physical location of the subscriber” (CALEA §103 a2B). Nonetheless the
FBI proposed that the cellular telecommunications group adopt a standard that
would enable law enforcement to quickly establish the location of a wireless
user [30]. In a 2000 decision, the U.S. Court of Appeals upheld the location
standard implementedas a result of CALEA (United States Telecommunications
Association et al. v. FCC and U.S., 99-1442, U.S. Court of Appeals).

In CALEA, Congress defined “information services,” distinguishing it from
“telecommunications services.” Information services were defined as “(A) mean[ing]
the offering of a capability generating, acquiring, storing, transforming, process-
ing, retrieving, utilizing, or making available information via telecommunica-
tions; and (B) includes– (i) a service that permits a customer to retrieve stored
information from, or file information for storage in, information storage facilities;
(ii) electronic publishing; and (iii) electronic messaging services; but (C) does
not include any capability for a telecommunications carrier’s internal manage-
ment, control, or operation of its telecommunications network” (CALEA §102
(6)). The bill explicitly states that the interception requirements do not apply
to information services (CALEA §103 (b)(2)(A)).

Over time, the list of crimes for which Title III is applicable grew substan-
tially. It now lists 98 offenses, including computer fraud and abuse (18 U.S.C.
§2516). Even though the vast majority of wiretapping investigations concentrate
on drug trafficking and organized crime[2, Table 3], the law is not so tightly
focused as had been at its inception.

5.2 How Exposed Is Personal Information?

Changes in technology as well as social norms means that individuals leave tracks
wherever they go in modern society. A generation ago, individuals scrawled their
names on a card inside the book they borrowed from a library; now book bor-
rowing records library are entered into a central database. A generation ago,
individuals received a hotel key; now the “key” is a plastic card that includes a

3 In both cases, the proposed monitoring capacity appears as a percentage of phone
lines. Thus, if number of phone lines increases, required monitoring capacity would
do so proportionally.
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strip that may or may not have the lodger’s name and credit-card information
on it. A generation ago, an individual gave a name for a plane ticket, and then
may have sold the ticket to a friend; now the name on government-issued IDs
must match name on the the ticket. As Jeffrey Rosen has observed, we are the
“naked crowd” [37].

One significant change over the last several decades is the major loss of
anonymity that has resulted from credit cards becoming the payment method
of choice. The financial dossiers created enable tracking and identification of
individuals in a way that plunking three hundred dollars down for a used car
does not. Because credit cards have essentially become required for travel (at
least for car rental and hotel reservations), credit-card records provide excellent
after-the-fact records of where individuals have been, when (and, in some cases,
with whom). Evidence of this is in the tracking of the September 11th hijackers.
By September 14, 2001, law enforcement had put together a impressive dossier
on the hijackers: where and how they had purchased their tickets, where they
were living before the attacks, and where they had gone to and flight school (not
all of them had) [23]. It was in the ubiquitous trail that individuals leave as part
of modern life.

We leave video tracks not just at the airport and the ATM, but at totally
unexpected stops. Timothy McVeigh had no intention of leaving a trail when he
rented a truck in Junction City Kansas but, as noted in [13, p. 267], he had.

Investigators … used photos from several days before the explosion to
prove that Timothy McVeigh was the “Robert D. Kling” who, on the
afternoon of April 17, 1995, in Junction City, Kansas, rented the Ryder
truck used in the bombing. Days and weeks after the bombing inves-
tigators meticulously reconstructed McVeigh’s movements on April 17.
Surveillance photos taken at a McDonalds about a mile from the Ry-
der agency showed McVeigh at the restaurant at 3:49 and 3:57 PM on
that day. Shortly afterward, “Kling” rented the truck. When prosecutors
claimed that the McDonalds’s photo was of McVeigh, his lawyer did not
dispute the point. The photo was taken several days before there was
any hint it would be useful in a criminal case —and then the evidence
was available when needed[5].

Imminent changes in technology will create even more detailed trails. Sensors,
low-cost wireless devices, will monitor the environment and report back: “The
elderly patient has a blood pressure of 110/70,” “The room is at 75 degrees.”
RFID (Radio Frequency ID) devices will report about items an individual carries
on his person: clothes, currency, a book. The sensor and RFID communications
will often occur without the individual’s knowledge4.

It is not clear how an expiring milk carton informing the supermarket that
it is time for a new dairy order will benefit tracking of terrorists and criminals.
But one wouldn’t necessarily have anticipated that an intercepted phone call in
which no words were spoken and that was paid for via an anonymously-purchased
4 The Internet will be the communications medium.
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prepaid card would have led to a major breakthrough in a terrorist investigation
either. The fact that data storage is dropping in price encourages the storage of
transactional information, information that will be accessible to investigators.

It is not currently the case that an individual’s data is arbitrarily subject to
law enforcement perusal. The question of under what circumstances government
can do data mining is currently a subject of much debate and some studies (e.g.,
[40]). In thinking about federal wiretap statutes, it is important to put the issue
in context, and in particular to be cognizant that there is much more data easily
accessible on individuals than there was at the time of the passage of the Wiretap
Act. Under appropriate circumstances, that data is available to law-enforcement
and national-security officials.

5.3 What Is the Effect of Communications Surveillance on Liberty?

We have briefly examined the changes in communications technology and in the
accessibility of individual’s private data at the dawn of the twenty-first century.
We need to begin at the beginning, the time of the founding of the United States.
As Whitfield Diffie has remarked,

[P]rior to the electronic era conversing in complete privacy required nei-
ther special equipment nor advanced planning. Walking a short distance
away from other people and looking around to be sure that no one
was hiding nearby was sufficient. Before tape recorders, parabolic mi-
crophones, and laser interferometers, it was not possible to intercept a
conversation held out of sight and earshot of other people. No matter
how much George III might have wanted to learn the contents of Han-
cock’s private conversations with Adams, he had no hope of doing so
unless he could induce one or the other to defect to the Crown[13, p. 2].

In the United States, the founders reacted to the broad searches by British
solders under general writs of assistance by restricting government power through
the Fourth Amendment of the U.S. Constitution,

The right of the people to be secure in their persons, houses, papers and
effects against unreasonable searches and seizures shall not be violated,
and no Warrants shall issue but upon probable cause, supported by Oath
or affirmation, and particularly describing the place to be searched, and
the persons or things to be seized.

“No warrants shall issue but upon probable cause … and particularly de-
scribing the place to be searched, and the persons or things to be seized.” This
would be significant when it came time to apply the Fourth Amendment to com-
munications surveillance. Justice Louis Brandeis wrote in his famous dissent in
the Olmstead case,

The evil incident to invasion of the privacy of the telephone is far greater
than that involved in tampering with the mails. Whenever a telephone
line is tapped, the privacy of the persons at both ends of the line is
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invaded, and all conversations between them upon any subject, and al-
though proper, confidential, and privileged, may be overheard. Moreover,
the tapping of one man’s telephone line involves the tapping of the tele-
phone of every other person whom he may call, or who may call him. As
a means of espionage, writs of assistance and general warrants are but
puny instruments of tyranny and oppression when compared with wire
tapping [4, pp. 475-6].

Experiences with government surveillance, extensively described elsewhere
(see e.g., [13, pp. 137-150, 172-179, 271-2], [42], demonstrated serious dangers to
political discourse and public expression. During the period from the 1940s to the
1970s, for example, Supreme Court justices, White House staffers, members of
the National Security Council, Congressional staffers, civil-rights leaders, includ-
ing Martin Luther King and Ralph Abernathy Jr, anti-Vietnam War protesters,
and journalists were wiretapped. These breaches made Congress wary of provid-
ing law-enforcement and national-security investigators with such a potentially
invasive tool. This is why the requirements for a wiretap warrant are significantly
more stringent than those for a “normal” search warrant 5.

Wiretaps intrude on a conversation between two people and thus require the
high level of wiretap search warrant before tapping can commence. But there
is no similar level of protection for transactional information on what number
is being called and what number is calling. The legal rationale is that such
transactional information is already being shared with a third party (in this
case, the telephone switch) and the communicating parties do not have any
expectation of privacy on the data. Thus a subpoena, which can be obtained
from a magistrate, suffices for pen registers and trap-and-trace devices6.

5 It is also why public reporting of Title III wiretaps is required; each year, the Admin-
istrative Office of the U.S. Courts produces a report listing each Title III wiretap of
the previous year (ongoing taps are not reported until they have ceased to be used),
including the D.A., the judge issuing the wiretap search warrant, the length of or-
der, the “most” serious crime for which the wiretap was ordered (there may be more
than one for a single wiretap), the number of incriminating and non-incriminating
calls picked up on the wiretap, the cost of the surveillance, etc. (Except for annually
reporting to Congress the number of surveillances, there are no public disclosure
requirements for FISA wiretaps.)

6 This paper concentrates on the technology side of the electronic-surveillance issues,
not the policy. Nonetheless, we would be remiss if we did not point out that traffic
analysis, though usually less intrusive than content surveillance, may nonetheless
cause severe privacy breaches. One such example occurred in the 1980s FBI investi-
gation of CISPES, the Committee in Solidarity with the People of El Salvador, an
American group which supported the opposition to the El Salvadorian government.
On the basis of an informer’s information, the FBI started an investigation of CIS-
PES, eventually culminating in files on more than twenty-three hundred individuals.
Much of the information was obtained through phone records. The investigation was
not justified; the group was not a terrorist organization, and in 1988, FBI Direc-
tor William Sessions told Congress that, “[T]here was no reason … to expand the
investigation so widely” [38, p. 122].
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In this paper we are focusing our discussion on technology implications of
wiretapping rather than policy issues. Nonetheless, as we consider the role of
surveillance in current communications technology, we must never lose sight of
Brandeis’s words, “As a means of espionage, writs of assistance and general
warrants are but puny instruments of tyranny and oppression when compared
with wire tapping [4, pp. 476].”

6 Telephony and the Internet:
Two Different Architectures

The Public Switched Telephone Network (PSTN) was built to maximize the
quality of voice transmissions and everything in the network was designed to
that end. The Internet was designed for reliability, a very different quality. The
PSTN uses circuit switching to transmit information from sender to receiver,
the Internet, packet switching. The PSTN and the Internet have fundamentally
different architectures. This simple fact means that many of the surveillance
tasks do not directly translate from one domain to the other.

6.1 Electronic Surveillance on the Internet

Consider, for example, the effect of packet-based technology on the transmittal
of transactional information. In telephony, signaling information appears at the
beginning of the call and is separated from call contents. In packet-switched
systems such as the Internet, because data is broken into “packets,” each one of
which has the addressing information, contents do not have the same physical
separation from the “signalling” information (probably more properly called
transactional information in this case).

Furthermore, electronic communications typically present more personally-
identifiable information present in the so-called transactional information. At a
minimum, this may simply include place of business, e.g., susan.landau@sun.com.
But it may include much more, e.g., if the transactional information is the result
of a google search, the URL will reveal the search terms 7.

7 That “pen registers” and “trap-and-trace devices” garner additional information
when used in packet-switching network systems than they do in traditional circuit-
switched telephony systems did not escape the notice of technologists and civil-
liberties groups. When the news of Carnivore, the FBI’s Internet monitoring system
became public in the summer of 2000, one of the criticisms of the system was that
the transactional information that Carnivore was sweeping up was more than the
government was entitled to under the limited subpoena power used for pen regis-
ters and trap-and-trace devices. Carnivore was quite controversial. In the summer
of 2001, it looked as if there might Congressional action limiting Carnivore’s use.
Instead September 11th happened. The Patriot Act gave law enforcement explicit
power to use subpoenas for pen registers and trap-and-trace devices on electronic
communications (§216).
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An even more crucial different between the PSTN and the Internet is that in
the Internet, the intelligence is at the endpoints. The underlying network system
is simple, while the endpoints can deploy complex systems. This fundamental
architectural idea is what makes the Internet so versatile. Applications can be
designed far beyond what the original designers of the Internet had in mind. And
indeed, innovation has flourished because the endpoints competed and created
new services. No one needs to depend on the infrastructure company to do the
innovation for them.

The design flexibility comes at a price that we do not often think of as a price:
the Internet is hard to control. This does not mean political or border controls
(though those are also often difficult to implement on the Internet) but design
control. This is not a bug; it is an extremely attractive feature. In a sharp, and
deliberate, distinction from the telephony network, the Internet was designed
to be loosely controlled. The layered approach to network design provides that
effect and is what has enabled much of Internet innovation.

For those that choose to invest the effort, Internet communications can be
fully protected. The Internet design of intelligence at the endpoints complicates
wiretapping, which is useless if end systems adequately protect their commu-
nications (although a wiretapped encrypted conversation will still provide traf-
fic information). In recent years, protecting the privacy of communications has
become an important security goal. Indeed, the U.S. government has moved
in the direction of simplifying the deployment of communications security in
commercial equipment, partially as a result of the government’s move to pur-
chasing COTS (commercial off the shelf) equipment rather than the purchase of
custom-designed systems. Instead of restricting the use of cryptography, the U.S.
government has recently encouraged a number of security efforts, including the
development of the 128-bit Advanced Encryption Standard and the deployment
of Elliptic Curve Cryptosystems. Attempts to build wiretapping capabilities into
Internet protocols would seem to go against these efforts.

At the same time, as an IETF Network Working Group studying the issue of
architecting wiretap requirements into Internet protocols observed, “the use of
existing network features, if deployed intelligently, provide extensive opportuni-
ties for wireteapping” [35].

6.2 The Risks Wiretapping Poses to Internet Security

Under CALEA, telecommunications systems deployed after January 1, 1995
must be built wiretap accessible. Suppose one were to call for that same require-
ment on the Internet. Does such an obligation make sense? Can it be architected
in? What does it do to security requirements?

Wiretapping is an architected security breach. Saying that Internet commu-
nication protocols necessarily must have wiretapping requirements built in is to
say that security loopholes must be built into communication protocols. It means
that privacy of the communication must be deliberately violated and in a way
that does not alert the sender or recipient.
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Of course, U.S. law-enforcement and national-security agents are not the only
ones interested in wiretapping the Internet; foreign governments are as well. Any
technology that is designed to simplify Internet wiretapping by U.S. intelligence
may well be exploited by foreign-intelligence services. During the discussions on
CALEA, there were concerns about the security problems created by “building
in” wiretapping capablities for digital telephony [15]. Such fears pale when mea-
sured against designing such capabilities for the Internet. Internet wiretapping
technology, found and reverse engineered by foreign-intelligence services, could
enable massive surveillance of U.S. “persons” (citizens and corporations). Used
in combination with inexpensive automated search technology, this could lead
to serious security breaches.

There is risk to the U.S. economy (the potential loss of corporate informa-
tion). There is risk to U.S. national security (through the provision of cost-
effective massive intelligence gathering). There is risk to the freedom of U.S.
citizens. These are the risks [7] that the European governments responded to
when, in 1999, they decided to liberalize their cryptographic export-control pol-
icy. As did the United States when it liberalized its cryptographic export-control
policies shortly afterwards [14].

If we were to build access for U.S. law enforcement or national security into
Internet communications, such protocol design would have be done very carefully.
Can it be? It is highly doubtful. As the IETF Network Working Group observed,
any protocol designed with wiretapping capabilities built in is inherently less
secure than it would be without the wiretapping capability. Building wiretapping
requirements into network protocols makes the protocols more complex. As is
well known, complex protocols are prone to security flaws. The secure Internet is
a challenge. Despite best efforts, security breaches slip into many protocols. No
one wants to see deliberately-architected security breaches. In 2000 the IETF
Network Working Group decided not to consider requirements for wiretapping
as part of the IETF standards process [35].

7 What Is the Right Tradeoff
for Communications Surveillance?

What are the costs to communications technology of continuing to enable wire-
taps? A recent FBI petition to the FCC gives an illustration. The bureau argued
that “CALEA’s purpose is to help lawful electronic surveillance keep pace with
changes in telecommunications technology as telecommunications services mi-
grate to new technologies” [21, pp. 3-4] and stated that thus “CALEA is appli-
cable not only to entities and services that employ circuit-mode technology, but
also to entities and services that employ packet-mode technology” [21, p. 6]. The
Bureau urged the FCC to declare that any service providing voice communica-
tions, including Voice over IP (VoIP), should be viewed as a “telecommunications
carrier.”

The breadth of this claim is startling. Were the FCC to grant the peti-
tion (unknown at the time of this writing), this would put the FBI squarely in
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the middle of designing IETF protocols. What would the technological cost of
granting this petition be? One can scarcely imagine. At a minimum, granting the
petition would “drive up costs, impair and delay innovation, threaten privacy,
and force development of the latest Internet innovations offshore” according to
a response filed by a coalition of industry and civil-liberties groups [26]. As we
have observed earlier, it would also threaten security.

Does the value of wiretapping justify trying to preserve the tool? This, of
course, depends on whom you ask. As the FBI was pressing the Digital Telephony
bill in the early 1990s, the bureau argued that wiretapping was a critical tool in
the fight against organized crime. The FBI presented claims that court-ordered
wiretaps resulted in over seven thousand convictions, three hundred million dol-
lars in fines levied, and over three-quarters of a billion dollars in recoveries,
restitutions, and court-ordered forfeitures over a six-year period [18]. But White
House staffers [3], the Treasury Department [28], and the Vice-President’s office
[31] all disputed the FBI numbers.

There is no question that wiretapping can be effective in some cases. Its most
important value may be as a deterrent: knowing that law enforcement is listen-
ing in, criminals and terrorists stay off the line. Or they speak in code: “The
big guy is coming. He will be here soon.” [45] Making the use of electronic com-
munications difficult for criminals and terrorists denies them one of the greatest
technological advances of the last century.

As we have seen, greater surveillance value may come from traffic analy-
sis, which has already shown remarkable benefits in the fight against terrorism.
Given the U.S. government’s shift on cryptographic export controls, one might
reasonably argue that intelligence agencies have come to the same conclusion.

The debate about electronic surveillance must not occur in isolation. U.S.
wiretapping laws were passed when the opportunity to easily obtain massive,
automatically-created, data trails did not exist. Video cameras in McDonalds,
at ATM machines, E-Z pass automatically recording the trip through the toll
booths, sensors and RFID tags are all aspects of this changing technology. One
has just to look at disappearance of pay phones8 to realize how much the way we
communicate, both in frequency and in mode, has substantially changed from
only a generation ago.

If Congress were not to preserve law-enforcement’s capability to wiretap,
what investigative tools might be offered in trade? A clear one is easy access to
communications transactional information. One of the non-controversial aspects
of the Patriot Act is that it simplified the procedure for obtaining pen register
and trap-and-trace orders, no longer requiring an application in each jurisdiction,
but letting a single application suffice. Traffic analysis has become significantly
easier to obtain and it may be appropriate to trade further capabilities in this
direction. For example, the decreasing costs of storage have made record saving
much less onerous. Might it be appropriate to require service providers to keep
records of communications (which numbers, when, for how long) for a specified

8 The new wing at Bradley Airport in Hartford, Connecticut, which has twelve gates,
has exactly two pay phones.
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period in exchange for deciding that communications systems will not be required
to be built wiretap accessible?

The threat of terrorism will confront our society for a long time. But we
should not necessarily be extending a 1960s wiretap law into the twenty-first
century. Instead we should be examining first principles to determine what
surveillance laws are appropriate for current challenges. Wiretapping became
a law-enforcement tool in the late 1920s; its use was codified in the 1960s and
1970s. If attempting to preserve the tool in order to enable investigators to hold
onto this capability would freeze communications in an antiquated technology,
that may be the wrong route for our society to take. It may be that few security
benefits accrue from the requirement that electronic communications be designed
“wiretap accessible” while efforts to do so significantly impede innovation. It is
time to fully examine electronic surveillance: it value, needs, and costs. Such a
discussion is a necessity in our complicated times. It is crucial as we attempt to
solve the current threats to security and liberty.
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Abstract. In this paper we propose a new key recovery attack on ir-
regular clocked keystream generators where the stream is filtered by a
nonlinear Boolean function. We show that the attack is much more ef-
ficient than expected from previous analytic methods, and we believe it
improves all previous attacks on the cipher model.

Keywords: Correlation attack, Stream cipher, Boolean functions, Irreg-
ular clocked shift registers.

1 Introduction

In this paper we present a new key recovery correlation attack on ciphers based
on an irregular clocked linear feedback shift register (LFSR) filtered by a Boolean
function. The cipher model we attack is composed of two components, the clock
control generator and the data generator and is shown in Fig. 1.

The data generator sub system consists of of length and the non-
linear multivariate function The internal state of is filtered by a
Boolean function The output from is the high linear complexity bit
stream v.
The clock control sub system consists of of length where the output
from is sent through the clock function D(). The output from D() is
the clock control sequence of integers, c, which is used to clock

The effect of the irregular clocking is that v is irregularly decimated and the
positions of the bits in the stream are altered. The result from this decimation
is the keystream z. The secret key in this cipher is the initialization bits
for and

To attack this encryption scheme we need to know the positions the keystream
bits z had in the stream v before v was irregularly decimated. The previous
effective algorithms are not specially designed to attack irregular clocked and

* This work was supported by the Norwegian Research Council.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 373–389, 2004.
(c) International Association for Cryptologic Research 2004
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Fig. 1. The general cipher model we attack in this article

filtered generators. But there exist effective attacks on the data generator sub
system[6,1,10,3,4]. To deal with the irregular clocking, one of two techniques
are often used:

1.

2.

Do the attack on the data generator times [7]. The attack is done
one time for each guess for the possible initialization states for If
the attack on the sub system has complexity O(K) the full attack will have
complexity
Ignore the clock control generator [3,14,4]. If the attack on the data
generator subsystem needs M keystream bits, we can use the fact[14] that
we know the original v position of every bit in the keystream z. Thus
we can only use every keystream bit in the attack, which means that
we need keystream bits to succeed.

None of these techniques are optimal. The first one leads to large runtime com-
plexity, the second leads to the need for a large number of keystream bits.

Our attack is not designed to attack the data generator subsystem only, but
is especially aimed at irregular clocked and filtered keystream generators as one
system. First we guess the initialization state for From this we can
reconstruct the positions the bits in z had in v. Using the iteration algorithm
from[11] this reconstruction is done using just a couple of operations per guess,
exploiting the cyclic redundancies in This method is fully explained in
Section 4.3. This method gives the guess
where are some keystream bits and the stars are the deleted bits. Then
we test  to see if it is likely that the stream is generated by the data generator
subsystem and Hence, we only use a distinguisher test on the the
stream to decide if the guess for is correct. This is easier than to actually
decode the stream to find and then decide if we have found the correct

When is determined, we can use one of the previous attacks on the data
generator sub system to determine

The distinguisher test is to evaluate a large number of low weight parity
check equations on the bit stream All equations are derived from one mul-
tiple of weight 4 of the generator polynomial Surprisingly this test
works much better than expected from previous evaluation methods. In previ-
ous correlation attacks, the Piling up lemma[9] is often used to calculate the
correlation[1,7,6] which the algorithm must decode. Since our algorithm only
uses a distinguisher on  we can use a correlation property of the function
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which gives much higher correlation between and the keystream z. Thus we
need fewer parity check equations. This correlation property exists even if the
function is correlation immune in the normal sense.

Our attack has complexity independently of the length of
A cipher based on the model we attack in this paper is LILI-128. To attack the
LILI-128 cipher our algorithm needs about parity check equations. In LILI-
128, thus the runtime for our attack is parity checks, with
virtually no precomputation. We have implemented and tested the attack, and
it works on computers having under 300 MB of RAM, and needs only around
68 Mbyte of keystream data. The precomputation has low runtime complexity
and is negligible. When is found, we can use one of the previous algorithms
to attack the data generator sub system.

A comparable previous correlation attack by Johansson and Jönsson is pre-
sented in [7]. The runtime for the attack is parity checks and the precom-
putations is table lookups. The keystream length is approximately This
attack uses the first technique to handle the irregular clocking.

Recently new algebraic attacks have been proposed by Courtois and Meier[3,
4]. This attack uses the second technique to handle the irregular clocking in
LILI-128. Although the attack has an impressive runtime complexity (an
optimistic estimation for some unknown constant C), the attack needs about
keystream bits to succeed, which is unpractical.

There is also a time-memory trade-off attack against LILI-128 by Markku-
Juhani Olavi Saarinen[14]. This attack needs approximately bits of com-
puter memory and keystream bits. The runtime complexity is claimed to be

DES operations, which is not easy to compare with our runtime complexity.
But the high use of computer memory and keystream bits also makes this attack
unpractical.

2 A Correlation Property of Nonlinear Functions

Let and let be a balanced Boolean function from V to We start
by analyzing the boolean function for a correlation property that we will
use in the attack. A similar property is analyzed in [18] where they look at the
nonhomomorphicity of functions. In this paper we identify the probability

which is crucial for our attacks success rate.

2.1 The Correlation Property

Let and let denote the inner product of
and Define the Walsh coefficients of by
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Lemma 1. Let be a function from to and let for
Let and let N denote the number of solutions of

Then

Proof. Each term in the sum below gives a contribution for each solution of
the system of equations, and zero otherwise. Therefore, we have

where the first term comes from the case and a = 0, and the last term
from the case

Corollary 1. If is a balanced function then the number of solutions N of
the system of equations above is,

Proof. Since is balanced we obtain It follows

from Parseval’s identity that the average value of is Hence, it follows

from the Cauchy-Schwartz inequality that which
substituted in the lemma above gives the result.

Corollary 2. The expected number of solutions N of the system of equations
above is,

Proof. An average estimate of N can be found as follows. When there exist two
equal vectors in Equation (2), the two other vectors will also
be equal. When this occurs it follows that the Equation (3) will sum to zero.
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This gives the unbalance that causes the high correlation. Equation (2) implies
Then there are triples in where all

the are distinct and there are therefore triples with one or two pairs
Using this fact and substituting Equation (2) into Equation (3), we

can write

Since for an arbitrary function we can expect that and
take on all binary quadruples approximately equally often when

we expect in the average the last term to be 0. This implies
the result.

Corollary 3. Let be an arbitrary balanced function, and let denote the prob-
ability

then is expected to be and its minimum is

Proof. Since Equation (2) has solutions, it follows from Corollary 1 that the
expected probability is equal to Further from Corollary

2 we obtain that the minimum is

Corollary 4. Given a specific balanced function the probability

is

Proof. Using the N from Lemma 1 we get

It is straightforward to extend Lemma 1 to compute the number of common
solutions of the two equations

and show that the corresponding probability
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equals which reduces to the result of Corollary 4 when

2.2 Analysis of Some Functions

In Table 1 we have analyzed some functions using Corollary 4. This correlation
is surprisingly high. Let be the best linear approximation to
the LILI-128 function. Due to the design of the previous attacks[6,7,10] the
channel noise has been independent of the stream u generated by Thus
the Piling up lemma [9], is used to evaluate the
crossover correlation which the algorithms must be able to decode. Using
the Piling up lemma for weight equations, the correlation for LILI-128
will be From Table 1 we have the correlation
The reason for the higher correlation, is that our attack only uses a distinguisher
on the data generator sub system, and not a complete decoder. Hence, in our
key recovery attack on the clock control system, we can use Corollary 4 from
Section 2.1 to calculate the correlation. To test the corollary we generated 2000
random and balanced Boolean tables for and calculated the average
correlation. The result was that the average was 0.501466 which is close to the
theoretical expected

3 A General Model

Here we define a general model for irregular clocked and filtered stream ciphers,
and some well known properties for the model.

In the case we can calculate the expected value of a balanced Boolean
function, with a given to be This implies that
the bias is the same for the case as for Similar arguments for
equations with show that these equations give too low correlation, which
would lead to a high runtime complexity for our attack. It turns out that for

the attack needs much more keystream bits to succeed, see the Sections
4.1 and 5.2. Since the correlation bias is exactly the same for and
it is optimal to use
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3.1 General Model

Let and be the feedback polynomials for the shift registers
of length and of length We let and

be the initialization states for and The initial-
ization states define the secret key for the given cipher system.

From we can calculate a clock control sequence c in the following way.
Let be a function where the input

is the inner state of after feedback shifts and A is the number of
values that can take. Let be the probability

produces the stream which is filtered by The output
from is or the equivalent The
clock decides how many times is clocked before the output bit is
taken as keystream bit Thus the keystream is produced by
where is the total sum of the clock at time that is
This gives the following definition for the clocking of

Definition 1. Given bit stream v and clock control sequence c, let z = Q(c, v)
be the function that generates z of length M by

where

If the function Q(c, v) can be considered as a deletion
channel with input v and output z. The deletion rate is

The D() function described above can in this model be among others the shrink-
ing generator, the step-1/step-2 generator and the stop and go generator. Next
we define the (not complete) reverse of Definition 1.

Definition 2. Given the clock control sequence c and keystream z, let the func-
tion be the (not complete) reverse of Q, defined as

where and for the entries  in where is deleted.
When this occurs we say that is not defined.

The length of  will be Given a stream z of length M, the
expected length N of the stream v is
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Note that the only difference between this definition and Definition 1, is that v
and z have switched sides. Thus is a reverse of Q(c, v). But since some
bits are deleted, the reverse is not complete and we get the stream

The probability for a bit being defined is This happens
when holds for some It follows that the sum

will be defined if and only if all of the bits in the sum are defined.
Thus the sum will be defined for given in  with probability

4 The Attack

4.1 Equations of Weight 4

To succeed with our attack we need to find exactly one weight 4 equation

that holds over all u generated by for This corresponds to finding a
multiple of weight 4. There exist several algorithms for finding
such a multiple, see among others [13,2,5,17,12].

In this paper we use the fast search algorithm in [12,11], which is a modified
version of the David Wagner’s Generalized Birthday Algorithm[17]. If the stream
u has length N, this algorithm has runtime complexity O(N logN) and memory
complexity O(N), where N is of order The algorithm is effective in practice,
and we have succeeded in finding multiples of the generator polynomial of high
degree, see Section 6.3 for an example. We refer to Appendix C in [11] for the
details for this search algorithm.

Next, we let the input vector to the Boolean function be

where defines the tapping positions from the internal state
of after feedback shifts. Substituting the vector (9) into the Equation
(8) we have that always holds for Since

we have from Corollary 4 that the equation

will hold for with probability

Remark 1. In [8] the multiple of of weight is exploited to define
an iterative decoding attack on regularly clocked LFSRs filtered by Boolean
functions. The constrained system
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is analyzed. This system is similar to the one we use in this paper, but it is used
differently. Since there are limited solutions to this system, the a posteriori prob-
abilities for each of the input bits in
can be calculated. Then these probabilities are put into a Gallager like prob-
abilistic decoding algorithm(SOJA) which outputs However the correlation
property in Corollary 4 is neither identified or exploited in [8].

4.2 Naive Algorithm

Let be a guess for the initialization state Given the keystream z of length
M, we generate and of length

Then we test if is likely to have been generated by
using the following method.

Find entries in where the equation is defined. From this we get a set of
equations. We test the equations, and let the metric for the guess be the

number of equations that hold. When we have the correct guess for we expect
pm of the equations to hold, where is calculated using Corollary 4. Thus, this
is a maximum likelihood decoding algorithm.

The runtime complexity for the attack will be of order since
we have to generate the bit stream of length N for each of the guesses. In
a real attack, N will be a large number and the naive algorithm will have very
high runtime complexity.

4.3 Some Observations

If we use the technique in the previous section the attack has the runtime
In [11, Sec. 3.3] two important observations were made that re-

duce the complexity down to Since these observations will speed
up the attack considerably. We start with an initial guess and
let the guess be the internal state of after feedback shifts, that is

Let be the guess for the clock control sequence
defined by Let be the
corresponding guess for of length We can now give a iterative
method for generating from

Lemma 2. We can transform into using the following
method: Delete the first entries in append the
entries at the end, and replace with  for

Proof. See Appendix B.1 in [11].

Lemma 2 shows that we can generate each using just a few operations instead
of N operations, when implemented properly (See Appendix A.1 for the imple-
mentation details). This gives a fast method for generating all possible guesses
for  given a keystream z. But using this lemma we still have to search for
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entries in  where the equations are defined. Since on average we must search
through entries in  per equation, we want to avoid this search. In the
next theorem we show how this can be done. The theorem proves that we can
reuse the equation set for in

Theorem 1. If the sum

is defined over then the sum

is defined over

Proof. See Appendix B.2 in [11].

The main result from this theorem is that the equation set defined over will
be defined over when we shift the equations entries to the left over
This means that we can just shift the equations one entry to the left over z, and
we will have a sum that is defined for the guess Thus,
the theorem shows that we can avoid a lot of computations if we let the
guess for the inner state of be

Remark 2. To use the lemma and theorem above we do not put the actual bit
values and restore them to the position in  given by  Instead
we store the index (the pointer to the position in z) in This means
that holds the position which the keystream bit have in z. But when
we evaluate an equation we use the indices to put in the actual bit values.

4.4 An Efficient Algorithm

Assume we have found an equation The
equation holds over v with probability calculated using Corollary 4. Let the
first guess for the initialization state for s be generate
by and Next we try to find
entries in where the equation is defined. From this we get
the equation set

Since every in this equation set is defined in and we can
replace with the corresponding bit from the keystream z. Thus, is
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a sequence of pointers to z and we can write the equations over z as the equation
set

We are now finished with the precomputation. Let be the number of
equations in that hold. We iterate as follows:

Input The keystream z of length M, the equation the equation set the
index sequence the states and and let

Calculate
Use Lemma 2 to generate and lower all indexes in the
equation set by one. Theorem 1 guarantees that the equations are defined
over
If the first equation in gets a negative index, then remove the equation
from Find a new index at the end of where is defined, and add
the new equation over z to
Calculate metric as the number of equations in that hold.
If set and
Set and go to step 1.
Output as the initialization state for

1.
2.

3.

4.
5.
6.
7.

Remark 3. The algorithm is presented this way to make it readable and to show
the basic idea. To reach the complexity a few technical details on
the implementation of the algorithm are needed. These details are given in Ap-
pendix A.

5 Theoretical Properties

5.1 Success Formula

We can let an (unusual) encoder be defined by removing the Boolean function
from the cipher. Then we can use coding theory to evaluate the attack. Let the
initialization state for define the information bits in such a system.

Let be the (not filtered) irregular clocked stream from
that is y = Q(c, u) and Then the bitstream y defines

the codeword that is sent over a noisy channel. Let the keystream z = Q(c, v)
(the filtered version of y) be the received codeword.

Assume we have the wrong guess for then approximately of the equa-
tions in the set (13) will hold. Now assume we have have guessed the correct

According to the observation in Section 2.1 the equations in the set (13) will
hold with probability independently of the initializa-
tion bits
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Let define the channel ‘noise’. The uncertainty is defined by
and the channel capacity is given by

We can approximate with Following Shannon’s noisy
coding theorem we can set up this bound for success.

Proposition 1. The attack will succeed with if the number of
parity check equations is

where and where is the number of input bits
in

When is close to we expect the probability for success to be close to 1,
see [15]. The simulations of our algorithm show that if we set the
success rate is approximately 99%.

5.2 Keystream Length

If the generator polynomial has weight we must find a multiple
of of weight 4 and a degree We need at least the v stream to be

of length In addition, to find entries in v where the equation is defined v
must at least have length

From the expectation (6) of N we get
which proves the following proposition:

Proposition 2. Let an equation over v be defined by of weight 4 and degree
To obtain an equation set of equations over z, the length of the z stream

must be

The keystream length M depends on the number of equations the deletion
rate and the degree of The degree is then again highly dependent
on the search algorithm we use to find When we use the search algorithm
in [11,17] the degree of will be of order which is close to
the theoretical expected degree [5] for

5.3 Runtime Complexity

The runtime complexity for our attack is

parity check tests, where is calculated using Corollary 4. Note that the runtime
is independent of the length of
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5.4 Memory Complexity

If we implement the attack directly as described in Sections 4.3 and 4.4 the
algorithm will need around bits of computer memory. The reason
for the 32N term is that of length N is a sequence
of pointers of 32 bits. In appendix A.2 we show how we can store using
N memory bits without affecting the runtime complexity. The total amount of
memory bytes needed is then

6 Simulations of the Attack

The LILI-128 cipher[16] is based on the general model we attack in this paper.
To be able to compare our attack with previous attacks, we have tested the
attack on this cipher.

6.1 The LILI-128 Cipher

In the LILI cipher the clock control generator is defined by

and The data generator sub system is

and de-
fined by a Boolean table of size 1024. Further on we get and

for and The number of keybits in the secret key
is 39 + 89 = 128.

6.2 Simulations

We have done the simulations on some versions of the LILI-128 cipher with
LFSRs of different lengths to empirically verify the success formula in Section
5.1. See Table 2 for the simulations. Note that we use the full size from
the LILI cipher in the three attacks in the bottom of the table. For and

we get
We have implemented the attack in C code using the Intel icc compiler on a

Pentium IV processor. Using the full 32-bit capability and all the implementation
tricks explained in Appendix A our implementation uses only approximately 7
cycles per parity check test. Hence the algorithm works fast in practice and will
take processor cycles.

Each attack is run 100 times, and the table shows that the estimated success
rate holds and that the algorithm is efficient.
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6.3 A Complete Attack on LILI-128

Preprocessing. For the LILI cipher, we have found a multiple
which corresponds to the recursion

and we have that

This precomputation took only 5 hours and 40 Gbyte hard disk space. We see
that

Finding We have and
To be almost sure to succeed we use equations. Hence, the

runtime for attacking LILI-128 is

parity checks. Using our implementation this corresponds to processor
cycles. Using Proposition 2 with we need a keystream of length

The attack needs about 290 Mbyte of RAM. It can easily be parallelized
and distributed among processors with virtually no overhead, since there is no
need for communcation between the processor, and no need for shared memory.
If we have 1024 Pentium IV 2.53 GHz processors, each having access to about
290 MB of memory, the attack would take about 4.5 months using 68 Mbyte of
keystream data.

Finding when is known. Our attack only finds the initialization bits
for It is possible to combine the Quick Metricfrom [12] with the previous
attack against LILI in [7] to find when is given. Since this is not the scope
of this paper we will not go into details, and we refer to [7,12] for the exact
description. The preprosessing stage will have complexity of order memory
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lookups, and runtime complexity of order parity checks. The complexity
for the method above is much lower than the complexity for finding and will
therefore have little effect on the overall runtime for a full attack.

7 Conclusion

We have proposed a new key recovery correlation attack on irregular clocked
keystream generators where the stream is filtered by a nonlinear Boolean func-
tion. Our attack uses a correlation property of Boolean functions, that gives
higher correlation than previous methods. Thus we need fewer equations to suc-
ceed. The property holds even if the function is correlation immune. Using this
property together with the iteration techniques from [11] we get a low runtime
and low memory complexity algorithm for attacking the model. The algorithm
outputs the initialization bits for Knowing there exist previous
algorithms which can determine efficiently.
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Appendix

A Implementation Details

To reach the runtime complexity and memory complexity down to
bits, the implementation of the algorithm has some tricks. Since not

all of these tricks are obvious we give more detailed descriptions of them below.

A.1 Runtime Details
Sliding window. In Lemma 2 we get by among other things deleting the

first bits of This is done using the sliding window technique, which means
that we move the viewing to the right instead of shifting the whole sequence to
the left. This way the shifting can be done in just a couple of operations. To
avoid heavy use of memory, we slide the window over an array of fixed length
N, so that the entries that become free at the beginning of the array are reused.
Thus, the left and right indexes of the sliding window after iterations will be

where for all
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The same sliding window technique is also used on the equation set when
equations are deleted and added to the equation set.

Updating the indices. In Lemma 2 every pointer in  is replaced with
for every which would take M operations. If we skip the replacements
we note that after iterations the entry in  will become It is also
important to note that when we write the entries

are pointers from  to z. They are not the actual key bits.
Thus, in the implementation we do not replace with But when we after
iterations in the search for equations find an equation
that is defined, we replace the corresponding equation with

to compensate.

Reducing the memory access time. When we test an equation we must use
pointers to pointers to the keystream. Then each equation test will have high
memory access time. We can reduce this significantly by testing the equations
on 32 states simultaneously. This is possible since the next state is tested
by shifting all the equations one entry to the left over z. We can now take the
bits for each of the term in the equations and
put them into 32 bit registers. Now we can test the states and add one to the
metrics of the states that satisfy the equation. This speeds up the runtime by a
factor of approximately 20.

A.2 Memory Details
Reducing the use of memory. Instead of storing all the pointers, we set 1
in where the bits are defined and 0 otherwise. When we search in to find
entries where the equation is defined, we keep track of where in z the four
terms in points to by counting the number of 1’s we pass during the search.
This is done for each of the 4 terms in the equation This way we always
know where in z the given equation of points to. Using this trick the number
of memory bits needed during an attack is reduced from bits to

Implementing this trick will not affect the runtime of the attack.

TEAM LinG



Rewriting Variables: The Complexity
of Fast Algebraic Attacks on Stream Ciphers
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Abstract. Recently proposed algebraic attacks [2,6] and fast algebraic
attacks [1,5] have provided the best analyses against some deployed
LFSR-based ciphers. The process complexity is exponential in the de-
gree of the equations. Fast algebraic attacks were introduced [5] as a
way of reducing run-time complexity by reducing the degree of the sys-
tem of equations. Previous reports on fast algebraic attacks [1,5] have
underestimated the complexity of substituting the keystream into the
system of equations, which in some cases dominates the attack. We also
show how the Fast Fourier Transform (FFT) [4] can be applied to de-
crease the complexity of the substitution step. Finally, it is shown that
all functions of degree satisfy a common, function-independent linear
combination that may be used in the pre-computation step of the fast
algebraic attack. An explicit factorization of the corresponding charac-
teristic polynomial yields the fastest known method for performing the
pre-computation step.

1 Introduction
Many popular stream ciphers are based on linear feedback shift registers (LF-
SRs) [11]. Such ciphers include E0 [3], LILI-128 [12] and Toyocrypt(see [10]).
They consist of a memory register called the state that is updated (changed)
every time a keystream output is produced, and an additional device, called the
nonlinear combiner. The nonlinear combiner computes a keystream output as
a function of the current LFSR state1. The sequence of states produced by an
LFSR depends on the initial state of LFSR, which is always presumed to be se-
cret. Since recovering this initial state allows prediction of unknown keystream,
we follow the convention of [5] and call it K as if it was actually the key. Most
practical stream ciphers initialize this state from the real key and a nonce. The
advantages of LFSRs are many. LFSRs can be constructed very efficiently in
hardware and some recent designs are also very efficient in software. LFSRs can
be chosen such that the produced sequence has a high period and good statistical
properties.
1 Some LFSR-based stream ciphers have a non-linear filter that maintains some bits of

memory, but research has shown that such ciphers can be analyzed in the same way
as ciphers without memory. Some designs use multiple LFSRs, but again these are
usually equivalent to a single LFSR. Some modern stream ciphers use units larger
than bits, but this discussion applies equally to such ciphers, so we will talk only in
terms of bits.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 390–406, 2004.
© International Association for Cryptologic Research 2004
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While there are many approaches to the cryptanalysis of LFSR-based stream
ciphers, this paper is concerned primarily with the recently proposed algebraic
attacks [2,6] and fast algebraic attacks [1,5]. Such attacks have provided the
best analyses against some theoretical and deployed ciphers.

An algebraic attack consists of three steps. The first step is to find a system
of algebraic equations that relate the bits of the initial state K and bits of the
keystream Some methods [2,6] have been proposed for finding “lo-
calized” equations (where the keystream bits are in a small range
This first step is a pre-computation: the attacker must compute these equations
before attacking a key-stream. Furthermore, the computation need only be per-
formed once, and the attacker can use the same equations for attacking multiple
key-streams. The second and third steps are performed after the attacker has
observed some keystream. In the second step, the observed keystream bits are
substituted into the algebraic equations (from the first step) to obtain a system
of algebraic equations in the bits of K. The third step is to solve these algebraic
equations to determine K. This will be possible if the equations are of low degree
in the bits of K, and a sufficient number of equations can be obtained from the
observed keystream.

The process complexity of the third step is exponential in the degree of the
equations. Fast algebraic attacks were introduced by Courtois at Crypto 2003 [5]
as a way of reducing run-time complexity by reducing the degree of the system
of equations. This method requires an additional pre-computation step; this step
determines a linear combination of equations in the initial system that cancels
out terms of high degree (provided the algebraic equations are of a special form).
This yields a second system of equations relating K and the keystream Z that
contains only terms of low degree. In the second step, the appropriate keystream
values are now substituted into this second system to obtain a new system of
algebraic equations in the bits of K. Solving the new system (in the third step)
is easier than solving the old system because the new system contains only terms
of low degree.

Courtois [5] proposes using a method based on the Berlekamp-Massey algo-
rithm [8] for determining the linear combination obtained in the additional pre-
computation step. The normal Berlekamp-Massey algorithm has a complexity of

while an asymptotically-fast implementation has a complexity of C·D(log D)
for some large constant C. It is unclear which method would be best for the size
of D considered in these attacks. Armknecht [1] provides a method for improving
the complexity when the cipher consists of multiple LFSRs.

Contributions of this paper. The first contribution is to note that previous
reports on fast algebraic attacks (such as [1,5]) appear to have underestimated
the complexity of substituting the keystream into the second system of equa-
tions2. The complexity was originally underestimated as only O(DE) [5], where
D is the size of the linear combination and E is the size of the second system

2 We are aware (via private communication) of other proposed algebraic attacks in
which the substitution complexities were initially ignored. In one case, the complexity
of simple substitution was almost the square of the complexity of solving the system.
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of equations. Table 1 lists the values of O(DE) for previously published attacks
from [1,5]. However, simple substitution would require a complexity of
(see Section 2.3), and no other method was suggested for reducing the complex-
ity. It is true that E bitwise operations of the substitution can be performed
in parallel, reducing the time complexity to but in cases where E is
large, the process complexity should still be considered in the absence of
specialized hardware. In many cases actually exceeds the complexity of
solving the system of equations, as shown in Table 13. The second contribution
of this paper is to show how the Fast Fourier Transform (FFT) [4] can be applied
to decrease the complexity of the substitution step to D. The resulting
complexities of the FFT approach are also listed in Table 1.

method for computing this linear combination (based on the work of Key [7]).
This method requires operations for small constant

This is a significant improvement on the complexities of previous methods.

This paper is organized as follows: Section 2 describes fast algebraic attacks.
In Section 3 we discuss the complexity of substitution step for fast algebraic
attacks. Section 4 reviews the Fast Fourier Transform and Section 5 describes
3 The attack on LILI-128 requires only every bit from a keystream of

length The process complexity of selecting these bits is ignored in the literature,
and could be an area for useful discussion.

The final contribution of this paper is to provide an efficient method for
determining the linear combination obtained in the additional pre-computation
step of the fast algebraic attack. First, we make the observation that all functions
of degree satisfy a common function-independent linear combination of length

that is defined exclusively by the LFSR. Then we provide a direct
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how the FFT can speed up the substitution step. Section 6 contains some ob-
servations on the pre-computation step. Section 7 concludes the paper.

2 Fast Algebraic Attacks

The length of the LFSR is that is the internal state of the LFSR is
A state is derived from the previous state by applying

an (invertible) linear mapping with The
function L can be represented by an matrix over GF(2), which is called the
state update matrix. Notice that we can write Each keystream bit
is generated by first updating the LFSR state (by applying L) and then applying
a Boolean function to the bits of the LFSR state. For the purposes of this paper,
everything about the cipher is presumed to be known to the attacker, except the
initial state of the LFSR and any subsequent state derived from it.

Linearization: Recall that the first two steps of the attack result in a system
of nonlinear algebraic equations in a small number of unknown variables (these
variables being the bits of the initial state). The most successful algebraic attacks
(to date), have been based on linearization. The basis of this technique is to
“linearize” a system of nonlinear algebraic equations by assigning a new unknown
variable to each monomial term that appears in the system. The same monomial
term appearing in distinct equations is assigned the same new unknown variable.
The system of equations then changes from a system of non-linear equations
(with few unknown variables) into a system of linear equations (with a large
number of unknown variables). If the number of linear equations exceeds the
number of new unknown variables, then an attacker can solve the system to
obtain the new unknown variables of the linear system (which will in turn reveal
the unknown variables of the non-linear system). The advantage of linearization
is that the attacker can use the large body of knowledge about the solution of
linear systems.

2.1 The Monomial State

This section introduces some notation that is useful for describing linearization.
For a given value of the state and for a given degree we shall let (the
monomial state) denote the GF(2) column vector with each component being a

Example 1. If (that is, and then there are
D = 11 monomials of degree 2:

corresponding monomial of degree or less. The number of such monomials is
so contains D components. The initial monomial

state corresponds to the initial state K.
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where “T” denotes the transpose of the matrix to make a column vector. For
the values of the monomial components of are:

The ordering of the monomial components is arbitrary; for consistency we will
enumerate using lower subscripts first, as shown.

Expressing Functions of the LFSR State. We can express any Boolean
function of the LFSR state as a product of the matrix with a row vector.

Example 2. Consider a Boolean function of the state (using
the LFSR state from Example 1). This function can be expressed:

where the addition and multiplication operations are performed in GF(2). We
have now expressed the Boolean function as the product of the matrix

with a row vector

that selects the values of the specific monomials required to evaluate

The row vector f depends only on the function and is independent of the
LFSR feedback polynomial, the value of the initial state, and the index

The Monomial State Rewriting Matrix. The mapping from one LFSR state
to the next LFSR state can be expressed as a matrix product It
is also possible to determine the mapping from one monomial state to the next
monomial state as a matrix product

Example 3. Consider a 4-bit LFSR as in Example 1 with monomial state
If the LFSR has is

of the form then the next state has a corresponding next
monomial state
which is related to the original monomial state as follows (only some relation-
ships have been shown in order to save space):
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Each component of the next monomial state is a linear function of the original
monomial state. These linear functions for can be combined into
a matrix (the “rewriting matrix”) such that

Notice that the matrix depends only on the LFSR and the degree This
example generalizes: for every LFSR and degree there is a “monomial state
rewriting matrix” such that Moreover, for every

the monomial state after clocks of the LFSR can be expressed as a GF(2)
matrix operation

where is the initial monomial state. Combining equations (1) and (2), we
get another expression for

where the vector depends solely on the function the monomial
state update matrix and the number of clocks (all of which are known to
the attacker). For example, the vectors corresponding to the
function in Example 2 are:

2.2 Algebraic Attacks

We always assume that the monomial state is unknown; it is the goal of algebraic
attacks to determine the initial monomial state (and thereby determine the
initial LFSR state).

Step 1. The first step in an algebraic attack is to find a Boolean function such
that the equation
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is true for all clocks (or indices) The degree of with respect to the bits
of we shall denote by Various methods have been proposed for finding
such equations (see [2,6]). These equations typically have small values for For
simplicity we shall hereafter combine the keystream bit values into
a keystream vector

For the linearization approach, it is convenient to obtain an expression for
in terms of keystream bits and bits of the initial monomial state

Express as the inner product of and a keystream-dependent
vector

1.

Now, Equation (2) can be substituted into Equation (5);2.

where
3. Equation (4) is thereby transformed to the form:

The components of depend on: (a) the function
(b) the monomial state rewriting matrix associated with the monomials of
degree of degree or less; (c) the number of clocks and (d) the small keystream
vector An attacker has access to all of this information, so the attacker is able
to compute all of the components of This means that the only unknowns
in Equation (6) are the components of the initial monomial state

Step 2. The second step of an algebraic attack consists of substituting the
observed keystream vector into the components of the vectors and then
computing the vector The vectors are evaluated for
many indices Each of the evaluated vectors provides the attacker with
a linear equation in the D unknown bits of the initial monomial state
Since there are D unknowns, around D linear equations will be required to
obtain a solvable system. An initial choice of D equations may contain linearly
dependent equations, so more than D equations may be required in order to get a
completely solvable system. It is thought that not many more than D equations
will be required in practice (see remark at the end of section 5.1 of [5]), so we
will assume D equations are sufficient.

Step 3. The third step recovers by solving the resulting system of linear
equations. The system can be solved by Gaussian elimination or more efficient
methods [13]. The complexity of solving such a system of equations is estimated
to be where (known as the Gaussian co efficient) is estimated to be

In general, D will be about
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Complexities. The complexities of an algebraic attack are as follows:

The complexity of finding the equation depends on many factors
and is beyond the scope of this paper.
The amount of keystream required for the second step (the data complexity)
is
The complexity of the second step (substituting the keystream into the equa-
tions) is assuming that the functions are rela-
tively simple functions of the keystream; and
the complexity of solving the system in the third step is

Note 1. The complexity is exponential in the degree Hence, a low degree is
required for an efficient attack. Therefore, an attacker using an algebraic attack
will always try to find a system of low degree equations.

2.3 Fast Algebraic Attacks

Courtois [5] proposed “fast algebraic attacks”, as a method for decreasing the
degree of a given system of equations. For fast algebraic attacks, we presume
that the function can be written in the form

where is a vector with D
components (all of which are independent of the keystream); and

where is a vector
with E components (some of which are dependent on the keystream).

Equation (7) is then transformed to:

In the fast algebraic attack pre-computation step, the attacker finds (D + 1)
coefficients  such that

where is of degree in the bits of is of degree in the bits of
and only depends on the keystream. Since the functions and are of two
distinct degrees (in the bits of it is simplest to consider them as depending
on distinct monomial states and with corresponding monomial state

monomials ofrewriting matrices and There are
degree or less, and monomials of degree or less.

A fast algebraic attack gains an advantage over the normal algebraic attacks
by including an additional pre-computation step in which the attacker deter-
mines linear combinations of equation (7) that will cancel out the high-degree
monomials of degree that occur in but not in

As in equation (3), and are written as vector inner-products:
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Equations (8) and (9) can be combined:

Thus, we obtain a linear expression in

The second step of a fast algebraic attack is to evaluate many vectors
by substituting observed keystream vectors into the vectors in equa-
tion (11). Each of the evaluated vectors provides the attacker with a linear
equation in the E unknown bits of the initial monomial state Equation (10)
involves fewer unknowns than the initial equation (7); this means that the fast
algebraic attack requires fewer equations in order to solve for the unknowns.
Reducing the number of unknowns and equations significantly improves the third
step of the attack as solving the system of E equations (10) takes significantly
less time than solving the system of D equations of (6). The complexity of the
third step is now

Courtois [5] and Armknecht [1] have proposed efficient methods for finding
the coefficients of equation (9). The details are not relevant to this paper, but
the complexities are provided in Table 2 for the purposes of comparison with
the method proposed in Section 6 of this paper.

Data Complexity. Evaluating the vector (for each equation (10)) requires
substituting the bits from the D keystream vectors Obtaining
E equations (10) can be achieved using the set of keystream vectors

These keystream vectors can be
obtained from the keystream bits Hence, the attack can
be performed using as few as keystream bits.

3 Substitution Complexity of Fast Algebraic attacks

Normal algebraic attacks and fast algebraic attacks differ in the complexity of
substituting the keystream into the equations in Step 2. The vector is a
function of a small number of keystream bits but the vector

is a function of a large number of keystream bits
As discussed in the introduction, a misunderstanding resulted the attacks [1,5]
failing to account for this difference.

The naïve approach to substituting the keystream is to compute the vectors
first and then substitute these vectors into the equations (11) individually4.

Computing a single component of the vector for a single
value of will require complexity D/2, since (on average) half of the coefficients

4 We ignore the cost of computing as this cost is independent of the cost of
determining from the values of
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are expected to be zero. There are E components in each vector so the
complexity of substituting the keystream to obtain a single vector using
equation (11) is E × (D/2) = ED/2. That is, obtaining a single equation (11)
has complexity is ED/2. Since E equations are required in order to solve the
system, the total cost of simple substitution will be
Table 3 lists the complexity of simple substitution for the fast algebraic attacks
in the literature. Note that simple substitution is significantly more complex than
solving the linear system of equations in these cases.

4 The Discrete Fourier Transform

Real Spectral Analysis: First, we’ll consider a quick tangential topic. A com-
mon tool in analyzing a real-valued function (such as a sound wave) eval-
uated on a real domain is to represents the function as a sum
of simple periodic functions (cosine and sine curves) where the function is
specified by the amplitudes of these periodic functions:

with amplitudes and assigned for each frequency The sequences
and are the Fourier series for and evaluating the amplitudes is called
a spectral analysis.

Discrete Spectral Analysis: Suppose is a function defined at discrete
values and the values of lie in a field Such discrete
functions are equivalent to sequences written Discrete spectral anal-
ysis of like real spectral analysis, represents using simple periodic sequences
with period P. These periodic sequences are of the form
where and is an element of multiplicative order P in some
field these functions are analogous to the sine and cosine curves.

In some cases, has elements of multiplicative order P, and can be an
element of that is, In other cases, must be chosen in an a larger
field that is an extension field of In either case, the field is a vector space
over that is, elements of are of the form for some basis

Elements are mapped to elements where

TEAM LinG



400 Philip Hawkes and Gregory G. Rose

is the identity element of Thus, the sequence of elements of is mapped
to the sequence with elements of A discrete spectral analysis determines
a sequence of P “amplitudes” such that the
sequence can be expressed as:

In this way, each sequence value is represented as a linear combination of
sum of P periodic sequences It is well known that the
sequence of amplitudes A can be computed directly from the sequence as:

The calculation of A from as in (13) is called the Discrete Fourier Transform
(DFT), while the calculation of from A is the Inverse DFT. The most efficient
method for performing the DFT, known as the Fast Fourier Transform (FFT) [4],
requires a total of operations in the field There is also an Inverse
FFT that uses the same amount of computation to invert the DFT.

Convolutions and the DFT. The convolution of two discrete sequences and
of period P is another sequences of period P with

These are sequences of elements from the field It is common
to write Computing the convolution according to first principles
would take multiplication and addition operations in the field However,
the Convolution Property provides us with an alternative method.

Convolution Property if and only if

The convolution can be computed by applying the FFT to and to form A
and B, forming and finally applying the inverse FFT to Y
in order to form The total complexity is
operations in the field In the cases where the FFT method is faster
by a factor of In other cases, computations in cost more than
computations in and the advantage is less. This “trick” has been applied in
many areas such as the fast multiplication of larger numbers and polynomials
(the product of two polynomials is the convolution of the two corresponding
sequences of coefficients). We shall use this trick in the next two sections.

5 Applying the FFT to the Substitution Step

The calculation in equation (11) is performed component-wise, so we will begin
by focussing on the sequence of values for only one of the monomial components

of the vectors and the
corresponding components of the vectors Assume that the attacker
has observed a sufficient amount of keystream, evaluated the values of in
equation (8) for and determined the values The

TEAM LinG



Rewriting Variables: The Complexity of Fast Algebraic Attacks 401

attacker now needs fast way to determine the values
(see equation (11)) from the values

The inefficiency of using simple substitution is indicated by two things:

This problem appears similar to computing for an appropriate
sequence Indeed, if is defined as and

then for Thus, the FFT may
be combined with the Convolution Property for computing The sequences

and are defined on the field  so will be a field of the form
We choose to be the smallest value such that and define

This choice seems best because it uses the smallest number of bits
to represent elements of

Basic DFT-Based Substitution Algorithm

1.
2.
3.
4.
5.
6.

Map the sequences and in to sequences and in
Apply the DFT to obtain the sequence of amplitudes B from
Apply the DFT to obtain the sequence of amplitudes V from
Compute
Apply the inverse DFT to obtain from Q. Note
Extract from if else

Complexity. This may seem like a strange way to compute but the
algorithm is very efficient when the FFT is used to compute the DFTs:

The values are computed via the FFT using          field  operations
(operations in the  field    For given values the same sequence

is used for each monomial component and for each attacked keystream.
The attacker should pre-compute and store B to save time.
The values are computed via the FFT using          field  operations.
The values are computing using (D + E) field multiplications.
The sequence can be obtained from by applying the standard Inverse
FFT; this requires in time          field  operations.

The pre-computation of B requires         field  operations. The run-time
total complexity for computing the value of from the values is ap-
proximately         field  operations. These field operations are more complex
than GF(2) (logical) operations. To a good approximation, each field opera-
tion is equal in complexity to logical operations (much of this can be
parallelized). Thus, for our calculations, the run-time complexity of the above
algorithm is equivalent to around logical operations.

Improvement 1. The above algorithm computes all (D + E) values of but
only E of these values are ever used. An efficient alternative is to divide the
linear combination into segments of length and perform the FFTs

Equations (11) often re-use the same values of when computing

Equations (11) all use the same linear combination;
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on these segments using a smaller field         where
If we define appropriate sequences then we may write:

with sub-sequences Now, if

and only if Thus, computing requires: pre-
computing the FFTs of computing the FFTS of computing and
applying the inverse FFT to Q to obtain and thus The FFTs and Inverse
FFT dominate the complexity, requiring logical operations at
run-time, where The basic algorithm above uses The optimal
choice for (providing the lowest complexity) depends on D and E.

Improvement 2. The DFT-based substitution algorithm computes the values
of for only one component of the vectors
There are a total of E monomial components for each
such vector; thus if each component is computed separately, then the total
complexity of computing all components of every vector would be ap-
proximately           field  operations, or logical
operations. Fortunately, monomial components can be packed into each com-
putation. For a set of monomial indices we define a sequence

Then

provides values for the price of one, dividing the total complexity by

Improved DFT-Based Substitution Algorithm
Inputs:
Outputs:

1.
2.
3.
4.
5.
6.
7.

The run-time complexity, after applying these two improvements, is

Table 4 shows the complexities of the FFT method for substitution for the
current fast algebraic attacks in literature. In the case of E0, the improvement
has been significant, and the substitution step no-longer dominates the run-time

Form
Form sub-sequences
Apply DFT to obtain from
Compute
Apply inverse DFT to obtain
Set
Output

from Q .
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complexity. The improvement in the substitution complexity is less noticeable
required for LILI-128, and insignificant for Toyocrypt. The substitution step still
comprises a significant portion of the complexity for these attacks.

In all cases, the first improvement did not affect the complexity significantly;
the largest improvement was by a factor of 4. Interestingly, the optimal value of

was for which and The corresponding complexity
is around

6 Improving the Pre-computation Step

A square matrix satisfies its characteristic polynomial. That is, if
is the characteristic polynomial of then

where 0 represents the all-zero matrix. Suppose the coefficients of
Equation (9) are assigned the values of the coefficients of the charac-
teristic polynomial of Then, for any function of degree

The characteristic polynomial of depends on the LFSR and the degree and
is otherwise independent of the function Thus, the coefficients
(of the characteristic polynomial of can be substituted for the coefficients

in equations (9) and (11) for all functions of degree
Most functions of degree have a minimal polynomial of degree

(see [9, Fact 6.55]); the minimal polynomial for these functions will
be However, there are functions the minimal polynomial is a smaller
factor of For example, in the attack on E0 [1], has length D =
11,017,633; while the minimal polynomial of the Boolean function used in the
attack is of slightly smaller length Using in the attack
on E0 (instead of using the minimal polynomial) would increase the complexity
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by a small amount. An advantage of the methods proposed in [1,5] is that those
method will find the minimal polynomial for a specified Boolean function, even
if the minimal polynomial is smaller than

It is not difficult to show that the polynomial divides This
suggests that the linear combination may also be zero, thus
resulting in a trivial equation that provides no information about the
initial monomial state. The probability of this cancellation occurring is small;
the vectors in the sum depend
on the keystream. Nonetheless, this suggests that a better approach would be
to cancel only those components corresponding to monomials of degree greater
than using the polynomial

The linear combination cancels components corresponding
to monomials of degree in the range but will not cancel components
corresponding to monomials of degree or less. Hence,
can be considered as an E-dimensional vector for some vector
Equation 10 would then become

The probability that will depend on the probability that
for a random z. Unless v(z) is constant, this probability will
be less than 1/2. After substitution of many such vectors, the probability that

will be very small and Equation (15) is highly unlikely to be
trivial.

6.1 Direct Computation of the Linear Combination

Suppose an LFSR state of length is updated according to state update
matrix L, and the characteristic polynomial of L is primitive5. The following
theorem, while not explicitly stated by Key [7], is a fairly obvious consequence
of Key’s ideas, so no proof is given. This result provides a direct method for
computing

Theorem1. (Largely due to Key [7]) If is a root of the char-
acteristic polynomial of the LFSR state update matrix, then the characteristic
polynomial of is where and
denotes the Hamming weight of (that is, the number of 1’s in the radix-2 rep-
resentation of the integer

Factoring into GF(2) polynomials Computing the entire
product while in would be costly. Fortunately, the

5 This approach can be extended to cases where the characteristic polynomial is not
primitive; for example, when the keystream is a function of more than one LFSR.
See Key [7] for more details.
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factors in can be easily grouped into GF(2) polynomials of degree
or less. We define an equivalence relation where if and only if

for some value Since the set is closed under
multiplication by 2, the polynomial has coefficients
that are either 0 or the identity element I. That is, the product can be
represented as a GF(2) polynomial. Thus, can compute in two phases:

1.
2.

Compute the GF(2) polynomials for all of weight or less.
Multiply the GF(2) polynomials to form

Computing The FFT over may be used to compute the poly-
nomials First, apply the FFT to the sequences corresponding to
for to obtain sequences Second, form sequence with

Finally, apply the inverse FFT to to obtain The
first step is the most costly; it requires logical operations for each factor.
There are D factors, so the total combined cost is logical operations.

Multiplying to form The second phase has polynomials with
coefficients in GF(2) and uses FFT’s in extension fields of GF(2). Multiplying
two GF(2) polynomials in to get a product of degree less than can be
performed (via the FFT) using operations in the
extension field         this is equal to logical operations6. Use the
FFT to first multiply pairs of polynomials of degree to get polynomials of
degree Then multiply pairs of polynomials of degree to get polynomials
of degree and so forth until is formed. The total complexity is

The combined complexity for the two phases is In Ta-
ble 2, the complexity of this method is compared against the previous methods.

7 Conclusion

We have shown that some published “fast algebraic attacks” on stream ciphers
underestimate the process complexity of one of the steps, and we provide correct
complexity estimates for these cases. We then show an improved method, us-
ing Fast Fourier Transforms, for substituting keystream bits into the system of
equations needing to be solved. We also made some observations about the linear
combination used in the pre-computation step of the fast algebraic attack. In par-
ticular, we found the fastest known method for performing the pre-computation.
The fast algebraic attack remains an extremely powerful technique for analyzing
LFSR-based stream ciphers.
6 The attacker can “pack” multiple GF(2) polynomials into a single sequence

and thereby compute the convolution of multiple pairs GF(2) polynomials using the
same amount of computation. This reduces complexity by a relatively small factor.
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Abstract. We study both distinguishing and key-recovery attacks
against E0, the keystream generator used in Bluetooth by means of cor-
relation. First, a powerful computation method of correlations is formu-
lated by a recursive expression, which makes it easier to calculate corre-
lations of the finite state machine output sequences up to 26 bits for E0
and allows us to verify the two known correlations to be the largest for
the first time. Second, we apply the concept of convolution to the analy-
sis of the distinguisher based on all correlations, and propose an efficient
distinguisher due to the linear dependency of the largest correlations.
Last, we propose a novel maximum likelihood decoding algorithm based
on fast Walsh transform to recover the closest codeword for any linear
code of dimension L and length It requires time and
memory This can speed up many attacks such as fast corre-
lation attacks. We apply it to E0, and our best key-recovery attack works
in time given consecutive bits after precomputation. This
is the best known attack against E0 so far.

1 Background

Correlation properties play an important role in the security of nonlinear LFSR-
based combination generators in stream ciphers. As name implies, the word
correlation in stream ciphers is frequently referred to as the intrinsic relation
between the keystream and a subset of the LFSR subsequences. The earliest
studies dated back to [21,25,27] in the 80’s and the concept of correlation im-
munity was proposed as a security criterion. In the 90’s Meier-Staffelbach [22]
analyzed correlation properties of combiners with one memory bit, followed by

[12] focusing on correlation properties of a general combiner with
memory. Recently, a series of fast correlation attacks sprang up, to name but a
few [5–7,16,24]. Thereupon we dedicate this paper to the generalized correlation
attacks against E0, a combiner with 4-bit memory used in the short-range wire-
less technology Bluetooth. Prior to our work, existed various attacks [1,8,10,11,
13–15,17,26] against E0. The best key-recovery attacks are algebraic attacks [1,

* Supported in part by the National Competence Center in Research on Mobile Infor-
mation and Communication Systems (NCCR-MICS), a center of the Swiss National
Science Foundation under the grant number 5005-67322.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 407–425, 2004.
© International Association for Cryptologic Research 2004
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8], whose basic approach is to use the polynomial canceling all memory bits and
involving only key bits, instead of considering the multiple polynomial to cancel
the key bits in the distinguishing attack; besides, [9,13,14] discussed correlations
of E0. In [14], Hermelin-Nyberg for the first time presented a rough computation
method to compute the correlation (called bias for our purpose), but neither did
they formalize the computation systematically, nor did they attempt to find a
larger correlation. In [9,13], two larger correlations for a short sequence of up to
6 bits were exposed. However, due to the limit of the computation method, no
one was certain about the existence of a larger correlation for a longer sequence,
which is critical to the security of E0.

Our first contribution in the paper is that based on Hermelin-Nyberg [14] we
formulate a powerful computation method of correlations by a recursive expres-
sion, which makes it easier to calculate correlations of the Finite State Machine
(FSM) output sequences up to 26 bits for E0 (and allows us to prove the two
known correlations to be the only largest for the first time). Second, we apply
the concept of convolution to the analysis of the distinguisher based on all cor-
relations, which allows us to build an efficient distinguisher that halves the data
complexity of the basic uni-bias-based distinguisher due to the linear depen-
dency of the two largest biases. Our best distinguishing attack takes time
given keystream with precomputation1. Finally, by means of Fast
Walsh Transform (FWT), we propose a novel Maximum Likelihood Decoding
(MLD) algorithm to recover the closest codeword for any linear code. Our pro-
posed algorithm can be easily applied to speed up a class of fast correlation
attacks. Furthermore the algorithm is optimal when the length of the code
and the dimension L satisfy the relation which is the case when we ap-
ply it to recover for E0. Our best key-recovery attack works in time given

consecutive bits after precomputation. Compared with the minimum
time complexity in algebraic attacks [1,8], this is the best known attack
against E0.

This paper is structured as follows: in Section 2, a description of E0 is given.
In Section 3, we analyze the bias inside E0 systematically. Then based on one
largest bias, we build a primary distinguisher for E0 in Section 4; an efficient
way is shown in Section 5 that makes full use of all the largest biases to advance
the distinguisher. In Section 6 we investigate the MLD algorithm for a linear
code; the result is then applied to a key-recovery attack against E0 in Section 7.
Finally we conclude in Section 8.

2 Description of the Bluetooth Keystream Generator E0

As specified in [3], the keystream generator E0 used in Bluetooth belongs to a
combination generator with four memory bits2, denoted by at
time where The whole system (Fig.1) uses four Linear Feedback

1 Throughout this paper, O(·) is used to provide a rough estimate on complexities, eg.
here means operations, where is a small constant.

2 The description of E0 (sometimes called one-level E0) here only involves the
keystream generation after the initialization.
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Fig. 1. Outline of E0

Shift Registers (LFSRs) denoted by with lengths
and primitive feedback polynomials

respectively. At clock cycle the four LFSRs’ output bits will be
added as integers. The sum is represented in the binary system.
Let denote its least significant bit A 16-state machine (the
dashed box in Fig.1) emits one bit out of its state and takes the
input to update by Finally, the keystream is obtained by xoring

with That is,

The detailed mechanism of the FSM is beyond the scope of the paper except
the fact that the embedded delay cell (the box labeled in Fig.1) makes

depend only on the initial state of the FSM as well as the past vectors
For completeness, we briefly outline it: given together with

the state the FSM moves into the state Table 1 shows the state transi-
tion of the FSM, where the four-bit state is represented in the quaternary system
(e.g. the FSM changes from into by the input

More formally, by introducing two temporary bits each
clock, the following indirect iterative expressions between and suffice
to update
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One can check Table 1 by those equations. We denote hereafter the content
of LFSRs at time Then the state of E0 at time is fully represented by the
pair

3 Biases Inside E0

Property 1. Assuming holds for then

Proof. It’s easy to verify that the state transition given (the third bottom
row in Table 1) is indeed a linear transformation over that actually
satisfies the recurrence relation: where states are
represented by column vectors of and A is the following 4 × 4
square matrix over GF(2):

Note that is the minimal polynomial of A, from which we
deduce

Remark 2. Since this seemingly suggests that

As mentioned in [9,13] (without relating to the above special case), this bit
exhibits a much higher bias as shown later in Corollary 7. We will now introduce
essential material in order to find a systematic algorithm to compute biases.

Proposition 3.  If  is random and uniformly distributed, then for any

is random and uniformly distributed,
is independent of
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Proof (sketch). The former half of the theorem is justified by the fact that
is a permutation of for any About the latter half of theorem, first,
we know that is random and uniformly distributed by previous
conclusion. Thus, are i.i.d. random variables all independent of
both and By Eq.(2,3,4), we complete the proof.

Interestingly, we deduce that if is uniformly distributed, then any se-
quence of 39-bit consecutive E0 keystream is uniformly distributed; in particular,
no better key-recovery attack against E0 exists other than tradeoffs given a se-
quence of 39-bit consecutive keystream.

The following definition is derived from normalized correlation [22, p.71].

Definition 4. The bias of a random Boolean variable X is defined as

The normalized correlation between two random Boolean variables X and Y
is just the bias of Assuming that is the sum of four balanced inde-
pendent random bits and that is uniformly distributed, then we know that

is a constant for any denoted by
Table 2 shows computed by Eq.(2), where dashed entries are zeros. The
following important lemma (see Appendix A for proof) inspired by [14], gives an
easy way of computing the bias for iterative structures.

Lemma 5. Given and let
X and Y be two independent random variables in and respectively.
Assuming that is uniformly distributed in for any
we have

Corollary 6. We set to be a permutation defined
over and where

Assuming is uniformly distributed, for any we have
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Proof. By Eq.(2,3,4) we have

Then we apply Lemma 5 with
and and we

obtain

Note that the assumption of Lemma 5 holds by Proposition 3.

Now we use Corollary 6 iteratively to deduce some important biases of with
Table 2 and the initial values and for A
full list of nonzero triplets is given below for illustration:

Corollary 7. Assuming is random and uniformly distributed, we have

Note that both biases were mentioned in [9,13] (without formal proof). Now by
Corollary 6, we can easily prove it as shown next.

Proof. We show the equivalent of the first bias as follows:

The second bias is similarly proved from

Also, we computed all biases for and found that
are the only largest ones. All biases for are listed in Ta-

ble 14, Appendix C. Throughout the paper we let
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4 A Primary Distinguisher for E0

4.1 The Connection Polynomial of the Equivalent Single LFSR

Let be the order of the connection polynomial of for
Since all are primitive polynomials, furthermore, by Lemma
6.57 of [18, p.218], the equivalent LFSR to generate the same sequence of the sum
of the four original LFSRs outputs over GF(2) has the connection polynomial

with order (by Lemma 6.50, [18, p.214])
and degree

4.2 Finding the Multiple Polynomial with Low Weight

Let be the degree of a general polynomial We use the standard approx-
imation to estimate the minimal weight of multiples of with degree at
most by the following constraint: is the smallest such that

Listed in Table 3 is the estimated3 corresponding to with
by solving Inequality (5).

To find multiples with low weight, efficient algorithms like [4] exist provided
the degree is low, say, less than 2000, which does not apply to E0. So we can use
the conventional birthday paradox to find      with the minimal (i.e.
which takes precomputation time or we apply the generalized
birthday problem [29] to find     of same weight but higher degree with much
less precomputation as tradeoff. Table 4 compares the two algorithms. In Ap-
pendix B, we also provide some non-optimal multiples as examples, including

with and

4.3 Building a Uni-Bias-Based Distinguisher for E0

Let be the normalized multiple of with degree
and weight where As holds for
all by Eq.(l), we deduce

3 Two special cases occur for and because we know the exact value of

TEAM LinG



414 Yi Lu and Serge Vaudenay

By the Piling-up Lemma [20] and Corollary 7, we know the right-hand side
of Eq.(6) is equal to zero with probability With standard linear
cryptanalysis techniques, we can distinguish the keystream of E0 from a
truly random sequence with samples, simply by checking the left-hand
side of Eq.(6) equals zero most of the time. Based on with and we
minimize the data complexity by choosing Table 5 shows the
minimum is achieved with Table 6 summarizes the
best performance of our primary distinguisher for E0 based on either the use of

with weight 4 in Appendix B, or a search of

5 The Advanced Multi-bias-Based Distinguisher for E0

5.1 Preliminaries

Definition 8. Given for we define

1.

2.

3.

4. where 1 denotes a constant function equal to 1
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Note that the first two definitions correspond to convolution and Walsh trans-
form respectively. We recall these basic facts: for any we
have

if is a distribution, i.e. and for all then
the distribution of the XOR of i.i.d. random vectors with distribution
is moreover,
If the random Boolean variable A follows the distribution then

where is defined in Definition 4.

5.2 An Efficient Way to Deploy Multi-biases in E0 Simultaneously

Given a linear mapping of rank we define vectors
and Note that can be derived from

the keystream directly. Except for accidentally bad choices of we make
a heuristic assumption that all are independent. Let be the probability
distribution of the vector and let be the probability
distribution of the vector The Walsh transforms of and are linked
by

Now we discuss how to design in order to reduce data complexity. From
Baignères [2, Theorem 3, p.10], we know that we can distinguish a distribution

of random vectors from a uniform distribution with samples.
Here, the distribution of is So the modified distinguisher needs
data complexity

Let be the number of the largest Walsh coefficients over all nonzero
with absolute value4 Since we obtain

In order to lower it’s necessary to have This implies the largest
coefficients are linearly dependent, which happens to be true in E0: recall that
the 6-bit vectors of the three largest biases satisfy the linear relation,

As a simple solution we may just pick
and (where denotes the row of then we obtain
4 Note that from Subsection 4.3 we have for regardless of and
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And is reduced to a factor of for negligible Indeed, recall that we
proved by computation that the largest Walsh coefficient for are either
(0,.. .,0,1,1,1,1,1,0,...,0) or (0,...,0,1,0,0,0,0,1,0,...,0). Thus

This leads to a more general solution, if we pick and the
row of as

then we obtain And so the improved factor of data complexity
tends to for negligible when goes to infinity; however, because of the
underlying assumption for E0, is restricted to no larger than 26, i.e.
To conclude, we show that the modified distinguisher (Algorithm 1) needs data
complexity

Observe that Section 4 actually deals with the special case of Table 7
shows the best improvement achieved with We see that the minimum
drops from previous to

6 A Maximum Likelihood Decoding Algorithm

We restate the MLD problem for a general linear code (see [19] for details)
of length and dimension L with generator matrix G (let denote the
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column vector of G): find the closest codeword to the received vector
and decode the message such that i.e.

find such r that minimizes

6.1 The Time-Domain Analysis

Obviously, the trivial approach (yet common in most correlation attacks) to
find r is an exhaustive search in time-domain: for every message we compute
the distance and keep the smallest. The final record leads to r. The time
complexity is with memory

6.2 The Frequency-Domain Analysis

We introduce an integer-valued function,

for all where denotes the matrix transpose. We compute the
Walsh transform of as follows:

We thereby reach the theorem below.

Theorem 9.

for all where is defined by Eq.(8).

This generalizes the result [19, p. 414] of a special case when and
corresponds to the binary representation of So we just compute the table
of perform FWT [30], and find the maximal The time and memory
complexities of FWT are respectively. Since the precomputation
of takes time with memory we conclude that our improved MLD
algorithm runs in with memory (additionally, using linear
transformation allows to compute FWT over with memory where

Note that when the time complexity corresponds to
which is optimal in the sense that it stands on the same order of magnitude
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as the data complexity does. Table 8 compares the original exhaustive search
algorithm with the improved frequency transformation algorithm. Note that the
technique of FWT was used in another context [7] to speed up other kinds of
fast correlation attacks. In the next section we will see how it helps to speed up
the attack [10] by a factor of We estimate similar correlation attacks like [6]
can be speeded up by a factor of 10; undoubtedly, some other attacks can be
significantly improved by our algorithm as well.

6.3 A More Generalized MLD Algorithm

We further generalize the preceding problem by finding the L-bit vector r such
that given a sequence of vectors and together
with matrices of size L by the sequence of vectors
defined by minimizes Note that previous
subsections are merely a special case of and for

Define a real function by:

for all We compute the Walsh transform of as follows:

Algorithm 2 directly follows above computation. The total running time of our
algorithm is with memory To speed up the computation
of we could precompute the inner products of all pairs of vectors in
time with memory Thus, the total running time of the algorithm
is with memory
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In the special case that is applicable to E0 (as is done in the next section):
for we precompute another table to map any L-

bit vector to It takes time with memory The total time of the
algorithm is thus , with memory

7 The Key-Recovery Attack Against E0

We approach similarly as in [10] to transform our distinguisher of Subsection 4.3
into a key-recovery attack. Our main contribution, however, is to decrease the
time complexity by applying the preceding algorithm.

Let be the multiple polynomial of with
degree and weight Using techniques in Subsection 4.2 to find       with
(precomputation) complexity PC, we list the corresponding triplets
for small in Table 9.

Let be a guess for the initial state of which generates the keystream
together with the other three fixed LFSRs. Denote the output bit of

with the initial state at time We define
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It can be shown that the second addend in Eq.(9) is also an generated
by the same LFSR. For brevity, we set

for (it corresponds to the data complexity We rewrite Eq. (9)
as

Given sequence of we count the occurrences5 of ones, i.e.
Using the analysis of [28], we estimate is the

smallest of all with

Note that this estimated figure is actually comparable to the conventional esti-
mation [6,16] on critical data complexity in correlation attacks, where

and is the binary entropy function6. According to [6] simulations showed the
probability of success is close to 1 for which is
consistent with our analysis. Table 10 shows our estimated minimal for
to achieve a top rank corresponding to Now define
where Clearly our current problem
to recover right fits into the MLD problem in Subsection 6.2. So we use
the preceding MLD algorithm to recover r first, then apply linear transform to
solve Finally we conduct the same analysis as in Section 5 to decrease data
complexity down to and we apply the technique introduced
in Subsection 6.3 to obtain the reduced time complexity
So, choosing we can halve the time and data complexities. The attack
complexities to recover for E0 are listed in Table 11. Once we recover we
target next based on multiple of Last, we use the technique of
guess and determine in [11] to solve and with knowledge of the shortest
two LFSRs. The detailed complexities of each step are shown in Table 12. A
comparison of our attacks with the similar attack7 [10] and the best two algebraic
attacks [1,8] is shown in Table 13.

5 is fixed in the attack, so we omit it in the notation
6 for
7 The estimate of data complexity in [10] uses a different heuristic formula than ours.

However we believe that their estimate and ours in Attack B are essentially the
same.
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8 Conclusions

This paper formulates a systematic computation method of correlations by a
recursive expression, which makes it easier to calculate correlations of the FSM
output sequences up to 26 bits for E0 (and allows us to prove for the first time
that the two known biases are the only largest). Then we successfully apply the
concept of convolution to the analysis of the distinguisher based on all corre-
lations, which allows us to build an efficient distinguisher that halves the data
complexity of the basic uni-bias-based distinguisher due to the linear dependency
of the two largest biases. Finally, by means of FWT, we propose a novel MLD
algorithm to recover the closest codeword for any linear code. Our proposed
algorithm can be easily adapted to speed up a class of fast correlation attacks.
Furthermore the algorithm is optimal when the length of the code and the
dimension L satisfy the relation which is the case when we apply it to
recover for E0. This results in the best known key-recovery attack against
E0. Considering a maximal keystream length of 2745 bits for practical E0 in
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Bluetooth, our results still remain the academic interest. Meanwhile, our attack
successfully illustrates the attack methodology of Baignères et al.8
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Appendix

A. Proof of Lemma 5

Let be a random variable independent of X with uniform distribu-
tion. We have

which is

B. Examples of Multiple Polynomials

Example of  with Low Degree. Here is a multiple polynomial of degree
less than 855 with weight 31:

Observe that is not optimal as from Table 3.

Examples of with Weight Four. Recall that is the
order of for By definition, On the other hand,

for hence we deduce the
following three multiple polynomials of with weight 4 with ease:

where

The degrees of are approximately respectively.
Note that we may also expect optimal multiples with degree in the same order
of magnitude and weight 3.
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C. Table of for
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Abstract. In this paper, we show that a key encapsulation mechanism
(KEM) does not have to be IND-CCA secure in the construction of hy-
brid encryption schemes, as was previously believed. That is, we present a
more efficient hybrid encryption scheme than Shoup [12] by using a KEM
which is not necessarily IND-CCA secure. Nevertheless, our scheme is
secure in the sense of IND-CCA under the DDH assumption in the stan-
dard model. This result is further generalized to projective
hash families.

Keywords: hybrid encryption, KEM, standard model

1 Introduction

1.1 Background

Cramer and Shoup showed the first provably secure practical public-key encryp-
tion scheme in the standard model [3,6]. It is secure against adaptive chosen
ciphertext attack (IND-CCA) under the Decisional Diffie-Hellman (DDH) as-
sumption. They further generalized their scheme to projective hash families [4].
(In the random oracle model [1], many practical schemes have been proven to
be IND-CCA, for example, OAEP+ [13], SAEP [2] , RSA-OAEP [8], etc. [7].
However, while the random oracle model is a useful tool, it does not rule out all
possible attacks.)

On the other hand, a hybrid encryption scheme uses public-key encryption
techniques to derive a shared key that is then used to encrypt the actual messages
using symmetric-key techniques.

For hybrid encryption schemes, Shoup formalized the notion of a key en-
capsulation mechanism (KEM), and an appropriate notion of security against
adaptive chosen ciphertext attack [12,6]. A KEM works just like a public key
encryption scheme, except that the encryption algorithm takes no input other
than the recipient’s public key. The encryption algorithm can only be used to
generate and encrypt a key for a symmetric-key encryption scheme. (One can
always use a public-key encryption scheme for this purpose. However, one can
construct a KEM in other ways as well.) A secure KEM, combined with an ap-
propriately secure symmetric-key encryption scheme, yields a hybrid encryption
scheme which is secure in the sense of IND-CCA [12].

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 426–442, 2004.
© International Association for Cryptologic Research 2004
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Shoup presented a secure KEM under the DDH assumption [12]. As a result,
his hybrid encryption scheme is secure in the sense of IND-CCA under the DDH
assumption in the standard model [12].

1.2 Our Contribution

In order to prove the security of hybrid encryption schemes, one has believed
that it is essential for KEM to be secure in the sense of IND-CCA, as stated in
[6, Remark 7.2, page 207].

In this paper, however, we disprove this belief. That is, it is shown that
KEM does not have to be CCA secure, as was previously believed. On a more
concrete level, we present a more efficient hybrid encryption scheme than Shoup
[12] by using a KEM which is not necessarily secure in the sense of IND-CCA.
Nevertheless, we prove that the proposed scheme is secure in the sense of IND-
CCA under the DDH assumption in the standard model.

In a typical implementation, the underlying Abelian group may be a subgroup
of where is a large prime. In this case, the size of our ciphertexts is bits
shorter than that of Shoup [12]. The number of exponentiations per encryption
and that of per decryption are also smaller. (Further, our scheme is more efficient
than the basic Cramer-Shoup scheme [3,6].)

This shows that one can start with a weak KEM and repair it with a hy-
brid construction. Eventually, more efficient hybrid encryption schemes could be
obtained.

Our KEM is essentially a projective hash family [4]. We present a
generalization of our scheme to projective hash families also.

The only (conceptual) cost one pays is that one needs to assume a simple
condition on the symmetric encryption scheme. Namely, any fixed ciphertext is
rejected with overwhelming probability, where the probability is taken over keys
K. This property is already satisfied by the symmetric encryption scheme SKE
which is used in the hybrid construction of Shoup [12]. Hence the SKE can be
used in our hybrid construction too.

Our result gives new light to Cramer-Shoup encryption schemes [3,4,6] and
opens a door to design more efficient hybrid encryption schemes.

2 Preliminaries

We denote by a security parameter. PPT denotes probabilistic polynomial
time.

2.1 Notation and Definitions

denotes the cardinality of S if S is a set. denotes the bit length of
if is a string or a number. If A(·,·, · · ·) is a probabilistic algorithm, then

denotes the experiment of running A on input and
letting be the outcome. If S is a set, denotes the experiment of choosing

at random.
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2.2 Public-Key Encryption Scheme (PKE)

A public-key encryption scheme is a three tuple of algorithms

The key generation algorithm generates a pair where pk
is a public key and sk is a secret key. The encryption algorithm takes a public

key pk and a plaintext and returns a ciphertext The decryp-
tion algorithm takes a secret key sk and a ciphertext and returns or
reject.

The chosen plaintext attack (IND-CPA) game is defined as follows. We imag-
ine a PPT adversary A that runs in two stages. In the “find” stage, A takes a
public key pk and queries a pair of equal length messages and to an
encryption oracle. The encryption oracle chooses and computes a
challenge ciphertext of randomly. In the “guess” stage, given A out-
puts a bit and halts.

The adaptive chosen ciphertext attack (IND-CCA) game is defined similarly.
The difference is that the adversary A is given access to a decryption oracle,
where A cannot query the challenge ciphertext itself in the guess stage.

Definition 1. We say that PKE is secure in the sense of IND-CCA if
is negligible in the IND-CCA game for any PPT adversary A.

In particular, we define the IND-CCA advantage of A as follows:

For any and define where the maxi-
mum is taken over all A which runs in time and makes at most queries to
the decryption oracle.

2.3 Diffie-Hellman Assumptions

Let G be an Abelian group of order Q, where Q is a large prime. Let be a
generator of G. Let

The decisional Diffie-Hellman (DDH) assumption claims that DH and Random
are indistinguishable.

For a distinguisher D, consider the following two experiments. In experiment
0, let In experiment 1, let
Define

where

For any define where the maximum is taken
over all D which runs in time
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2.4 Target Collision Resistant Hash Function

The notion of target collision resistant TCR family of hash functions was shown
by Cramer and Shoup [6]. It is a special case of universal one-way hash function
UOWH family introduced by Naor and Yung [10], where a UOWH family can be
built from arbitrary one-way functions [10,11].

In a TCR family, given a randomly chosen tuple of group elements for
some and a randomly chosen hash function H, it is infeasible for an adversary
A to find  such that (In a UOWH family, is chosen by the
adversary.) In practice, one can use a dedicated cryptographic hash function,
like SHA-1. Define

For any define where the maximum is taken
over all A which runs in time

3 Previous Results on KEM

It is known that by combining a KEM and a one-time symmetric encryption
scheme which are both secure in the sense of IND-CCA, we can obtain a hybrid
encryption scheme which is secure in the sense of IND-CCA.

3.1 KEM [12] [6, Sec.7.1]

A key encapsulation mechanism KEM consists of the following algorithms.

A key generation algorithm KEM.Gen that on input outputs a pub-
lic/secret key pair (pk,sk).
An encryption algorithm KEM.Enc that on input and a public key pk,
outputs a pair where K is a key and is a ciphertext.
A key K is a bit string of length where is another
parameter of KEM.
A decryption algorithm KEM.Dec that on input a secret key sk, a string
(in particular a ciphertext) outputs either a key K or the special symbol
reject.

KEM.Gen and KEM.Enc are PPT algorithms and KEM.Dec is a deterministic
polynomial time algorithm.

In the chosen ciphertext attack (IND-CCA) game, we imagine a PPT adver-
sary A that runs in two stages. In the find stage, A takes a public key pk and
queries an encryption oracle. The encryption oracle computes:

where and responds with the pair In the guess stage,
given the adversary A outputs a bit and halts.
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The adversary A is also given access to a decryption oracle. For each decryp-
tion oracle query, the adversary A submits a ciphertext and the decryption
oracle responds with where A cannot query the challenge
ciphertext itself in the guess stage.

Definition 2. We say that KEM is secure in the sense of IND-CCA if
is negligible in the above game for any PPT adversary A.

3.2 One-Time Symmetric-Key Encryption [6, Sec.7.2]

A one-time symmetric-key encryption scheme SKE consists of two algorithms:

A deterministic polynomial time encryption algorithm SKE.Enc that takes
as input a key K and a message and outputs a ciphertext
A deterministic polynomial time decryption algorithm SKE.Dec that takes
as input a key K and a ciphertext and outputs a message or the
special symbol reject.

The key K is a bit string of length where is a parameter
of the encryption scheme.

In the passive attack game, we imagine a PPT adversary A that runs in two
stages. In the “find” stage, A takes and queries a pair of equal length messages

and to an encryption oracle. The encryption oracle generates a random
key K of length along with random and encrypts
using the key K. In the “guess” stage, given the resulting ciphertext A
outputs a bit and halts.

In the chosen ciphertext attack (IND-CCA) model, the adversary A is also
given access to a decryption oracle in the guess stage. In each decryption oracle
query, A submits a ciphertext and obtains the decryption of under
the key K.

Definition 3. We say that SKE is secure in the sense of IND-CCA if
is negligible in the IND-CCA game for any PPT adversary A.

In particular, we define the IND-CCA advantage of A as follows.

For any and define where the maximum
is taken over all A which runs in time and makes at most queries to the
decryption oracle.

3.3 Construction of SKE

Shoup showed a construction of a one-time symmetric-key encryption scheme
as follows [12, page 281]. Let PRBG be a pseudo-random bit generator which
stretches strings to strings of arbitrary (polynomial) length. We assume
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that is a negligible quantity. In a practical implementation, it is perfectly
reasonable to stretch the key by using it as the key to a dedicated block
cipher, and then evaluate the block cipher at successive points (so called “counter
mode”) to obtain a sequence of pseudo-random bits [6, Sec.7.2.2].

Let AXUH be a hash function which is suitable for message authentication,
i.e., an almost XOR-universal hash function [9]. We assume that AXUH is keyed
by an string and hashes arbitrary bit string to strings. Many efficient
constructions for AXUH exist that do not require any intractability assumptions.

To encrypt a message by using a key we apply PRBG
to to obtain an string Then we compute

The ciphertext is where is called a tag. (We can generate K by
applying PRBG to a shorter key.)

To decrypt using a key we first test if eq.(4)
holds. If it does not hold, then we reject. Otherwise, we output

3.4 A Hybrid Construction

Let KEM be a key encapsulation mechanism and let SKE be a one-time symmetric
key encryption scheme such that for all Let HPKE
be the hybrid public-key encryption scheme obtained from KEM and SKE.

Proposition 1. [6, Theorem 7.2] If KEM and SKE are secure in the sense of
IND-CCA, then so is HPKE.

4 Proposed Hybrid Encryption Scheme

In this section, we show a more efficient hybrid encryption scheme than before
[12,6] by using a KEM which is not necessarily secure in the sense of IND-
CCA. Nevertheless, we prove that the proposed scheme is secure in the sense of
IND-CCA under the DDH assumption in the standard model.

4.1 Overview

A KEM works just like a public key encryption scheme, except that the encryp-
tion algorithm takes no input other than the recipient’s public key. Instead, the
encryption algorithm generates a pair where K is a key of SKE and
is an encryption of K. The decryption algorithm applied to yields K. In our
hybrid encryption scheme,

The notion of IND-CCA is adapted to KEM as follows. The adversary does
not give two messages to the encryption oracle. Rather, the encryption oracle
runs the KEM encryption algorithm to obtain a pair The encryption
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oracle then gives the adversary either or where is an inde-
pendent random bit string; the choice of K versus depends on the value of
the random bit chosen by the encryption oracle.

Up to now, in order to prove the security of the hybrid encryption scheme, it
has been believed to be essential for KEM to be secure in the sense of IND-CCA,
as stated in [6, Remark 7.2, page 207].

However, we know of no way to prove that our KEM is secure in the sense of
IND-CCA. Nevertheless, we prove that the proposed hybrid encryption scheme
is secure in the sense of IND-CCA. This shows that one can start with a weak
KEM and repair it with a hybrid construction. Eventually, more efficient hybrid
encryption schemes could be obtained.

A generalization of our scheme to projective hash families [4] will
be given in Sec.8.

4.2 Secure

We require that a one-time symmetric-key encryption scheme SKE satisfies the
following property: any bit string is rejected by the decryption algorithm with
overwhelming probability. Formally, we say that SKE is secure if for
any bit string

where the probability is taken over K.
This property is already satisfied by the one-time symmetric-key encryption

scheme shown in Sec.3.3. Indeed, for any fixed  eq.(4) holds with
probability because is random. Therefore, this encryption scheme is

secure for

4.3 Proposed Scheme

The proposed hybrid encryption scheme is based on the basic Cramer-Shoup
scheme [3,6]. However, it does not use as the validity check as in [3,6], but
rather it is used to derive the encapsulated key K. This saves the value which
was previously used to encapsulate the key, and one exponentiation encryp-
tion/decryption. It also makes the public key and the secret key one element
shorter.

Let G be an Abelian group of order Q, where Q is a large prime. Let SKE
be a one-time symmetric-key encryption scheme.

Let be a hash function, where We assume
that is uniformly distributed over if is uniformly distributed over
G. This is a very weak requirement on H, and we can use SHA-1, for example.

Key Generation. Generate two distinct generators of G at random.
Choose at random. Compute
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Finally, a random indexing a target collision resistant hash function TCR (see
Sec.2.4) is chosen. The public-key is and the secret key is

Encryption. To encrypt a message choose at random and compute

The ciphertext is (In the ciphertext, the KEM part is

Decryption. For a ciphertext compute

Then decrypt under K using SKE.Dec, and output the resulting decryption
may be reject.)

4.4 Security

Theorem 1. The proposed hybrid encryption scheme Hybrid is secure in the
sense of IND-CCA under the DDH assumption if SKE is secure in the sense of
IND-CCA and it is secure for negligible In particular,

where are essentially the same as

A proof will be given in the next section.

4.5 Efficiency Comparison

In the hybrid encryption scheme of Shoup [12] and in the Cramer-Shoup scheme
[3],

is included in the ciphertext C to check the validity of C.
is included in a public-key to generate a key K of SKE.

In our scheme, on the other hand,

is not included in the ciphertext, but it is used to derive a key K of SKE.
is not necessary at all.

In a typical implementation, the underlying Abelian group G may be a sub-
group of where is a large prime. Table 1 shows an efficiency comparison
among the proposed hybrid encryption scheme, the hybrid encryption scheme of
Shoup [12] and the basic Cramer-Shoup scheme [3]. (In the table, denotes the
tag of SKE as shown in Sec.3.3.)

We can see that
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We can see that
the size of our ciphertext is bits shorter than that of Shoup [12].
the size of our public-key is bits shorter than that of Shoup [12].
The number of exponentiations per encryption and that of per decryption
of our scheme are also smaller.

Further, our scheme is more efficient than the Cramer-Shoup scheme [3] for
Moreover, in Cramer-Shoup [3] must belong to G (so

while in ours and Shoup’s [12] (polynomial length).

5 Proof of Theorem 1

5.1 Outline

The following lemma is simple but useful.

Lemma 1. [6, Lemma 6.2] Let and F be events defined on some proba-
bility space. Suppose that the event occurs if and only if occurs.
Then

Let A be an adversary who breaks the proposed scheme in the sense of
IND-CCA. The attack game is as described in Sec.2.2. Suppose that the public
key is and the secret key is The target ciphertext
is denoted by We also denote by the values
corresponding with K related to 

Suppose that A queries at most times to the decryption oracle in the find
stage, and at most times to the decryption oracle in the guess stage, where

We say that a ciphertext is valid if and
for some Otherwise, we say that C is invalid.

Let log(·) denote and let Then

Let be the original attack game, let denote the output of A,
and let be the event that in Therefore,
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We shall define a sequence of modified attack games. For any
we let be the event that in game

In game we modify the encryption oracle as follows: is
replaced by

This change is purely conceptual, and
In game we modify the encryption oracle again, so that is re-

placed by a random pair with Under the DDH assumption,
A will hardly notice, and is negligible. More precisely, we have

Lemma 2. There exists a PPT algorithm whose running time is essentially
the same as that of A, such that

The proof is the same as that of [6, Lemma 6.3].
In game we modify the decryption oracle, so that it applies the following

special rejection rule: In the guess stage, if the adversary submits a ciphertext
but then the decryption oracle immediately outputs

reject and halts. Let be the event that the decryption oracle in game
rejects a ciphertext using the special rejection rule. It is clear that games
and proceed identically until the event occurs. In particular, the event

and are identical. So by Lemma 1, we have

Lemma 3. There exists a PPT algorithm whose running time is essentially
the same as that of A, such that

The proof is the same as that of [6, Lemma 6.5].
In game we modify the decryption oracle, so that it rejects all invalid

ciphertexts C in the find stage. Let be the event that a ciphertext is rejected
in that would not have been rejected under the rules of game It is
clear that games and proceed identically until the event occurs. In
particular, the event and are identical. So by Lemma 1, we
have

Lemma 4. (For the proof, see Section 5.2.)

In game we modify the encryption oracle as follows.
is randomly chosen in such a way that an event does not occur, where is
the event that for some invalid ciphertext which A
queries in the find stage. It is clear that the event and are
identical. So by Lemma 1, we have

TEAM LinG



436 Kaoru Kurosawa and Yvo Desmedt

Lemma 5. (For the proof, see Section 5.3.)

In game we modify the decryption oracle, so that it rejects all invalid
ciphertexts C in the guess stage. Let be the event that a ciphertext is rejected
in that would not have been rejected under the rules of game It is
clear that games and proceed identically until the event occurs. In
particular, the event and are identical. So by Lemma 1, we
have

Lemma 6. (For the proof, see Section 5.4.)

In game we modify the encryption oracle and the decryption oracle, so
that  is replaced by a random key

Lemma 7. (For the proof, see Section 5.5.)

Lemma 8. There exists a PPT algorithm whose running time is essentially
the same as that of A, such that

For the proof, see Section 5.6.
From the above results, we immediately obtain that

5.2 Proof of Lemma 4

From the A’s view, is a random point satisfying eq.(5) and eq.(6).
Suppose that A queries an invalid ciphertext to the decryption oracle,
where  and with Let
where Then

It is clear that eq.(5),(6) and (7) are linearly independent. This means that
can take any value. In other words, is uniformly distributed over G. Hence

is uniformly distributed over Now since SKE is
secure, the decryption oracle accepts with probability at most Con-
sequently, we obtain this lemma.

5.3 Proof of Lemma 5

For  any  fixed

because is randomly chosen in such a way that
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5.4 Proof of Lemma 6

As the worst case, we assume that A knows Then from the A’s view,
is a random point satisfying eq.(5), (6) and

In the guess stage, suppose that A queries an invalid ciphertext
to the decryption oracle, where and with Let

where Then

Now

Therefore, eq.(5), (6), (8) and (9) are linearly independent. This means that
is uniformly distributed over G. Hence is uniformly distributed

over Now since SKE is secure, the decryption oracle accepts
with probability at most

Consequently, we obtain this lemma.

5.5 Proof of Lemma 7

In game from the A’s view, is a random point satisfying eq.(5)
and eq.(6). Further, it is clear that eq.(5),(6) and (8) are linearly independent.
This means that can take any value. In other words, is uniformly distributed
over G. Hence is uniformly distributed over Consequently,
we obtain this lemma.

5.6 Proof of Lemma 8

We describe Algorithm Algorithm provides an environment for A as
follows. First, runs the key generation algorithm of Hybrid to generate a
public-key and the secret-key In partic-
ular, chooses randomly and computes It then gives pk to
A.

In the find stage, whenever A submits a ciphertext C to the decryption oracle,
applies the decryption rule of game using the secret-key sk and
When A submits to the encryption oracle, submits to

her encryption oracle.
The encryption oracle of chooses a random key along with

a random bit and encrypts using the key It then returns the resulting
ciphertext to
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generates according to the encryption rule of game It then
returns the target ciphertext to A.

In the guess stage, suppose that A submits a ciphertext to
the decryption oracle. If then applies the decryption rule
of game using the secret-key sk and Otherwise, queries to her
decryption oracle, where the decryption oracle decrypts by using then
returns the answer to A.

When A outputs outputs and halts. That completes the description
of

It is clear that perfectly simulates the environment of A. Therefore,

On the other hand,

Consequently, we obtain this lemma.

6 Discussion

We have argued that a KEM does not have to be CCA-secure in the construction
of hybrid encryption schemes, as was previously believed.

In the IND-CCA definition of hybrid encryption schemes, the decryption
oracle returns the message for a queried ciphertext where
is the KEM part and is the symmetric encryption ciphertext. On the other
hand, in the IND-CCA definition of KEM, the decryption oracle returns the
symmetric key K for a queried Hence, the IND-CCA definition of KEM is
too demanding because the decryption oracle reveals much more information
than the decryption oracle of the hybrid encryption scheme does.

Then one may consider to define a weaker condition on KEM such that
when coupled with CCA-secure symmetric encryption (with the extra condition
of Section 3.4), it would yield a CCA-secure hybrid encryption scheme. However,
it seems to be impossible because the security of KEM and that of the symmetric
encryption scheme are intertwined (as in our scheme).

7 Hash Proof System

Cramer and Shoup introduced a notion of Hash Proof System (HPS) [4,5] in or-
der to generalize their encryption scheme based on the DDH assumption [3]. By
using HPS, they showed new CCA-secure encryption schemes under Quadratic
Residuosity assumption and Paillier’s Decision Composite Residuosity assump-
tion, respectively.

In this section, we give the definition of a slight variant of HPS, where
is replaced by strongly
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7.1 Subset Membership Problem [4, 5]

A subset membership problem Mem specifies a collection such
that for every is a probability distribution over problem instances

Each specifies the following:

Define, non-empty sets, X, L and W such that
A binary relation such that iff for some witness

We require that the following PPT algorithms exist.

Instance sampling: samples an instance according to on
Subset sampling: outputs a random together with a witness
for on input and
Element sampling: outputs a random

1.
2.

3.

We say that Mem is hard if and are indistinguishable for a
random and a random

7.2 Projective Hash Family

Let X and be finite, non-empty sets. Let be a set of
functions indexed by I. We call (F, I, X, a universal hash family [4,5].

Let Let S be a finite, non-empty set, and let be a function.
Set

Definition 4. [4, 5] is called a projective hash
family if for all the action of on L is determined3 by

In other words, the value is determined by if We next define
the notion of strongly projective hash, a variant of Cramer-Shoup’s

projective hash.

Definition 5. Let be a projective hash family.
Consider the probability space defined by choosing at random. We say
that Project is strongly if

for all and

Project is strongly means that for any the value of is
uniformly distributed over conditioned on a fixed value of and it is also
uniformly distributed over conditioned on fixed values of and for

with
3 For a further clarification, see Section 7.3.

and for all with and
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7.3 Hash Proof System [4,5]

P provides several algorithms to carry out basic operations: and com-
puting given The private evaluation algorithm for P computes

given and The public evaluation algorithm for P com-
putes given and where is a witness for

8 Proposed Hybrid Construction Based on HPS

In this section, we generalize our hybrid encryption scheme of Sec.4.3 by using
the variant of HPS shown above. Then efficient hybrid encryption schemes are
obtained which are secure in the sense of IND-CCA under Quadratic Resid-
uosity assumption and Paillier’s Decision Composite Residuosity assumption,
respectively, in the standard model.

8.1 Hybrid Construction

Let Mem be a subset membership problem and P be a hash proof system for
Mem. Let SKE be a one-time symmetric-key encryption scheme.

Key Generation. Generate an instance using the instance sampling
algorithm of Mem. Suppose that P associates with a projective
hash family Choose at random and compute

The public key is and the secret key is Let be a hash
function, where We assume that is uniformly distributed
over if is uniformly distributed over This is a very weak requirement
on H, and we can use SHA-1, for example.

Encryption. To encrypt a message generate at random together with
a witness for using the subset sampling algorithm of Mem. Compute

using the public evaluation algorithm for P on inputs and
Compute and The ciphertext is

Decryption. To decrypt a ciphertext compute using the private
evaluation algorithm for P on inputs and Then decrypt under K using
SKE.Dec, and outputs the resulting decryption may be reject.)

8.2 Security

Theorem 2. In the above construction, suppose that Mem is hard, and the asso-
ciated projective hash family is strongly
for each instance of Mem. Moreover, suppose that the one-time

Let Mem be a subset membership problem. A hash proof system (HPS) P for
Mem associates with each instance of Mem a projective hash family
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symmetric-key encryption scheme SKE is secure in the sense of IND-CCA and it
is secure for negligible Then the proposed hybrid encryption scheme
is secure in the sense of IND-CCA.

A proof is a generalization of that of Theorem 1. Roughly speaking, in the
proof, if the challenge ciphertext is based upon application of the projective
universal hash function to an element then the attack works as in the
real case.

If then the following happens: At the beginning of the CCA attack,
(which is used as the symmetric key by is totally

uniform and secret from the point of view of the adversary. This is due to the
strongly property of the projective hash family Project. This informa-
tion theoretic property of the symmetric key K* remains as the attack progresses
due to the fact that invalid queries are not decrypted due to the prop-
erty of the SKE, where a ciphertext is invalid if

8.3 Examples

From [4,5]. Let G be an Abelian group of order Q, where Q is a large prime.
Let where are two distinct
generators of G. Then it is clear that the related membership problem Mem is
hard if and only if the DDH assumption holds.

Let be an injective function for some Let and

Define

where for For let
and define

(1) is a projective hash family because if
then

(2) Consider the probability space defined by choosing
at random. For the example of [4,5] we now have:

For any is uniformly distributed
over G conditioned on fixed values of
For any with we easily see that:

is uniformly distributed over G conditioned on fixed
values of and
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Hence Project is strongly
Now from Sec.8.1, a concrete hybrid encryption scheme is obtained such that

the ciphertext is where and is given by
eq.(10). From Theorem 2, it is secure in the sense of IND-CCA if SKE satisfies
the condition of the theorem. (This scheme is a TCR-free variant of Sec.4.3.)

Similarly, we can obtain efficient hybrid encryption schemes which are secure
in the sense of IND-CCA under Quadratic Residuosity assumption and Paillier’s
Decision Composite Residuosity assumption, respectively.
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Abstract. We present a fully secure Identity Based Encryption scheme
whose proof of security does not rely on the random oracle heuristic.
Security is based on the Decision Bilinear Diffie-Hellman assumption.
This solves an open problem posed by Boneh and Franklin in 2001.

1 Introduction

Identity Based Encryption (IBE) provides a public key encryption mechanism
where a public key is an arbitrary string such as an email address or a telephone
number. The corresponding private key can only be generated by a Private Key
Generator (PKG) who has knowledge of a master secret. In an IBE system, users
authenticate themselves to the PKG and obtain private keys corresponding to
their identities. Although Identity based encryption was proposed two decades
ago [Sha84], and a few early precursors suggested over the years [Tan87,MY96],
it is only recently that the first working implementations were proposed. Boneh
and Franklin [BF01,BF03] defined a security model for Identity Based Encryp-
tion and gave a construction based on the bilinear Diffie-Hellman problem.
Cocks [Coc01] describes another construction using quadratic residues modulo
a composite. The security of these systems requires cryptographic hash func-
tions that are modeled as random oracles, i.e., these systems are proven secure
in the random oracle model [BR93]. The same holds for several other identity
based systems featuring signatures [CC03], key exchange [SOK00], hierarchical
identities [GS02], and signcryption [Boy03].

It is natural to ask whether secure IBE systems can exist in the standard
model, i.e., without resorting to the random oracle heuristic. This question is
especially relevant in light of several uninstantiable random oracle cryptosys-
tems [CGH98,BBP04], which are secure in the random oracle model, but are
trivially insecure under any instantiation of the oracle. Towards this goal, sev-
eral recent results [CHK03,BB04,HK04] construct IBE systems secure without
random oracles in weaker versions of the Boneh-Franklin model. However, until
now, building a fully secure IBE remained open.

*  Supported by NSF and the Packard Foundation.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 443–459, 2004.
© International Association for Cryptologic Research 2004
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In this paper we construct an IBE system that is secure in the Boneh-Franklin
model without using random oracles. Security is based on the decisional version
of the bilinear Dime-Hellman assumption. Our system demonstrates that fully
secure IBE systems can exist without random oracles. The main shortcoming of
the proposed system is that it is inefficient; consequently, we mostly view our
construction as an existence proof.

2 Preliminaries

Before presenting our results we briefly review a definition of security for an IBE
system. We also review the definition for groups with a bilinear map. First, we
introduce some notation.

2.1 Notation

For a finite set S we use to define a random variable that picks
an element of S uniformly at random. For a randomized algorithm we use

to define a random variable that is the output of algorithm on
input We let denote the probability that the predicate

is true where is the random variable defined by For a vector
we use to denote the component of

2.2 Secure IBE Systems

Recall that an Identity Based Encryption system (IBE) consists of four algo-
rithms [Sha84,BF01]: Setup, KeyGen, Encrypt, Decrypt. The Setup algorithm
generates system parameters, denoted by params, and a master key master-key.
The KeyGen algorithm uses the master key to generate the private key corre-
sponding to a given identity. The encryption algorithm encrypts messages for
a given identity (using the system parameters) and the decryption algorithm
decrypts ciphertexts using the private key.

Boneh and Franklin [BF01] define chosen ciphertext security for IBE systems
under a chosen identity attack. In their model the adversary is allowed to adap-
tively chose the public key it wishes to attack (the public key on which it will
be challenged). More precisely, security for an IBE system is defined using the
following two probabilistic experiments and

Experiment for an algorithm and a bit define the
following game between a challenger and

Setup: A challenger runs the Setup algorithm. It gives the resulting system
parameters params. It keeps the corresponding master-key to itself.

Phase 1: Algorithm issues queries where each query is one of:
Private key query for an identity The challenger responds by running

algorithm KeyGen to generate the private key corresponding to the
public key It sends to
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Decryption query for a ciphertext and an identity The challenger
responds by running algorithm KeyGen to generate the private key
corresponding to It then runs algorithm Decrypt to decrypt the
ciphertext using the private key It gives the resulting plaintext.

These queries may be asked adaptively, that is, each query may depend
on the replies to

Challenge: Once decides that Phase 1 is over it outputs an identity
and two equal length plaintexts that it wishes to be chal-
lenged on, under the constraint that it had not previously asked for the
private key of  The challenger sets the challenge ciphertext to

It sends  as the challenge to
Phase 2: Algorithm issues more queries where is one of:

Definition 1. We say that an WE system is chosen
ciphertext secure under a chosen identity attack if for any IND-ID-CCA
adversary  that makes at most chosen private key queries and at most
chosen decryption queries we have that As shorthand, we say that

is secure.

Semantic Security. As usual, we define chosen plaintext security for an IBE
system as in the game above, except that the adversary is not allowed to issue any
decryption queries. The adversary may still issue adaptive private key queries.
The resulting system is semantically secure under an adaptive chosen identity
attack.

Definition 2. We say that an IBE system is chosen plaintext se-
cure under a chosen identity attack if is ciphertext secure
under a chosen identity attack. As shorthand, we say that is

secure.

For we use to denote the experiment where
cannot make any decryption queries.

Private key query for any identity where The challenger
responds as in Phase 1.
Decryption query for identity  where The challenger
responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.
Guess: Finally, outputs a guess

We call the output of the game and define the random variable
as The probability is over the random bits used by the
challenger and the adversary. We define adversary advantage in attacking
the IBE system as:
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2.3 Bilinear Groups

We say that is a bilinear group if the group action in can be computed
efficiently and there exists a group and an efficiently computable bilinear
map as above. Note that is symmetric since

3 Complexity Assumptions

Let be a bilinear group of prime order and be a generator of We
review the standard Bilinear Diffie-Hellman (BDH) assumption as well as the
definition for binary biased Pseudo Random Functions (PRF’s) and collision
resistant functions.

3.1 Bilinear Diffie-Hellman Assumption

The BDH problem [Jou00,BF01] in is as follows: given a tuple
as input, output An algorithm has advantage in solving
BDH in if

where the probability is over the random choice of in and the random
bits of

Similarly, we say that an algorithm that outputs has advantage
in solving the decision BDH problem in if

where the probability is over the random choice of in the random choice
of and the random bits of We use the following notation:

We denote the distribution over 5-tuples in the left term of (1) by
We denote the distribution over 5-tuples in the right term of (1) by

Definition 3. We say that the BDH assumption holds in
if no algorithm has advantage at least in solving the (decision) BDH
problem in

Occasionally we drop the and and refer to the BDH and Decision BDH
assumptions in

We briefly review the necessary facts about bilinear maps and bilinear map
groups.
1.
2.
3.

and are two (multiplicative) cyclic groups of prime order
is a generator of
is a bilinear map

Let and be two groups as above. A bilinear map is a map
with the following properties:
1.
2.

Bilinear: for all and
Non-degenerate:
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3.2 Biased Binary Pseudo-random Functions

Next we review the definition of a Pseudo Random Function (PRF) with bias
Let F be a function We say that F has bias if the
expectation of F over all inputs in is i.e.,

We let denote the set of all functions with bias
We also let denote a set of keys. For an algorithm we define the following
value:

Here denotes the output of algorithm when it is given oracle access
to the function F and input The input is a dummy input needed only so
that takes the same input as the below.

The biased Pseudo Random Functions that we will be using are parameter-
ized by two random values, say and The parameter is kept
secret while is public. To capture this concept we consider a set of functions

For such a family of functions
and an algorithm we define the following value:

Note that is given but is not given

Definition 4. Let be a set of func-
tions. We say that is a if for any oracle algo-
rithm making at most queries to its oracle we have:

We say that the parameter is kept secret while is public.

3.3 Collision Resistance

We briefly review the definition of collision resistant hash functions.

Definition 5. Let be an alphabet of size and let be some positive inte-
ger. We say that a family of functions is

resistant if for any algorithm we have

It is well known that collision resistant hash functions can be constructed
from a finite cyclic group for which the discrete log problem is intractable. Since
the Decision BDH assumption in implies that discrete-log in is intractable
it follows that the existence of collision resistant hash functions is implied by the
Decision BDH assumption. Consequently, rather than saying that our construc-
tion depends on both Decision BDH and collision-resistance we can say that our
construction depends on Decision BDH alone for security. Nevertheless, in our
security theorems we state collision resistance as an explicit assumption so that
one can use any cryptographic hash function such as SHA-1, if so desired.

TEAM LinG



448 Dan Boneh and Xavier Boyen

4 Secure IBE Construction

Before presenting our secure IBE system we first introduce a specific construction
for a biased binary PRF from any collision resistant hash function. Later, in
Section 5, we prove that it is indeed a PRF with overwhelming probability.

4.1 A Special Biased Binary PRF

Let be an alphabet of size and let For denote
by the set of vectors in that have exactly components in For
any vector with and any function
with we define the bias map as

Observe that when H is a random function, the bias map has an expecta-
tion of over the inputs

Definition 6. Let be positive integers with Let be an al-
phabet of size and set We say that a hash function fam-
ily is if the function family

is a PRF. Here is public and K is
secret.

In Section 5 we show how an admissible hash function family can be con-
structed given a collision resistant hash function family. In the rest of this section,
we show how to use admissible hash functions to construct a secure IBE in the
standard model.

4.2 Secure IBE Using Admissible Hash Functions

We are now ready to present our secure IBE system. It is based on a recent
HIBE construction without random oracles by Boneh and Boyen [BB04] (secure
in a selective identity attack model), itself inspired from a random oracle HIBE
construction due to Gentry and Silverberg [GS02].

The system makes use of a collision resistant hash function and security is
based on the Decision BDH assumption. Let be a bilinear group of prime
order and be a generator of Let be the bilinear map. We
assume that the messages to be encrypted are elements of

Throughout the section we let be an alphabet of size
although later we restrict our attention to the binary case We also let

be a family of hash functions. For now, we assume
that public keys (ID) are elements in We later extend the construction
to public keys over  by first hashing ID using a collision resistant hash

The IBE system works as follows:
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Setup: To generate system parameters the algorithm picks a random
and sets Next, it picks a random and a random
matrix where each is random in Finally, the algorithm
picks a random as a hash function key. The system parameters are

the master key is
KeyGen(params, ID, master-key): To generate the private key for an identity

the algorithm lets and picks
random The private key is:

Encrypt(params, ID, M): To encrypt a message under the public
key        first set  then pick a random

and output

Note that can be precomputed so that encryptiondoes not require
any pairing computations.

: To decrypt a ciphertext using
the private key output:

Let Then, indeed, for a valid ciphertext we
have:

This completes the description of the system.

4.3 Security

We now turn to proving security of the IBE above. The system makes use of
an admissible hash function family and security is based on the Decision BDH
assumption. We prove security in the standard model, i.e., without random or-
acles.

Theorem 1. Let Suppose the BDH assumption holds
in Furthermore, suppose is a

family of hash functions. Set and
Assume that Then the IBE system above is plaintext
(IND-ID-CPA) secure for any
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We note that taking leads to Then, ignoring
we have that Hence, in groups where BDH
holds we obtain a secure IBE system without random oracles.

To prove the theorem we need to show that for any algorithm that
makes at most private key queries we have

To do so we first define two additional experiments.

Experiment 1: Let be an algorithm, be a bit
in {0,1}, and a 5-tuple where and Define
the following game between a simulator and

Setup: To start, the simulator generates system parameters by first picking a
random vector It then generates an matrix

as follows. For each and it picks a random
and sets

Next, the simulator picks a random as a hash function key. It gives
the system parameters Note that the correspond-
ing (unknown) master key is where

Phase 1. issues up to private key queries. Consider a query for the private
key Let If for all

then the simulator terminates the experiment and outputs abort.
Otherwise, there exists an such that The simulator derives
the private key for ID by first picking random elements and
then setting

We note that is a valid random private key for ID.
To see this, let Then we have that

It follows that the key defined in (2) satisfies:

where are uniform in This matches the definition for
a private key for ID and hence is a valid private key for ID.
The simulator gives this key to
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Challenge. outputs an identity and two messages                          Let
If there exists an such then

the simulator terminates the experiment and outputs abort. Otherwise, the
simulator responds with the challenge ciphertext

Suppose Then, we note that since for all we have
that:

Hence, if then the challenge C is a valid encryption
of under

Phase 2. issues more private key queries for identities The simu-
lator responds as before.

Guess. Finally, outputs a guess The simulator outputs as the
result of the experiment.

We define to be the random variable denoting the
simulator’s output in the above experiment. It takes one of three values: 0, 1, or
abort.

Experiment 2: Let be an algorithm, be a bit in {0,1},
F be a function F : and Define the following game
between a simulator and

Setup: To generate system parameters the simulator picks a random
and sets Next, it picks random and a random matrix

where each It gives the system parameters
and keeps to itself the master key

Phase 1: issues up to adaptive private key queries. Consider a query for
the private key If F(ID) = 1 the simulator terminates the
experiment and outputs abort. Otherwise, the simulator uses master-key to
generate the private key for ID and gives the result to

Challenge. outputs an identity  and two messages If
F(ID) = 0 the simulator terminates the experiment and outputs abort. Oth-
erwise, the simulator creates the encryption of and gives the resulting
challenge ciphertext to

Phase 2. issues more private key queries for identities The simu-
lator responds as before (aborting as necessary).

Guess. Finally, outputs a guess The simulator outputs as the
result of the experiment.

We define to be the random variable denoting the simulator’s
output in the above experiment. It takes one of three values: 0, 1, or abort.

Next, we state four facts about these experiments, which we prove in the full
version of the paper. The proof of Theorem 1 will follow immediately from these
facts. We define the following notation:
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1.
2.
3.
4.

5.

Define the random variable
For define the random variable
For define the value
We let denote the distribution sampled by the following algorithm:
pick a random and a random and output the (function,
key) pair
We set and

Claim 1. Consider Then for the random variable
is identical to the random variable

Claim 2. For we have that is equal to

Claim 3. Let Then for

The proofs of these claims are given in the full version of the paper. The
main theorem follows easily.

Proof (Proof of Theorem 1). The theorem follows directly from Claims 2 and 4.
The two claims together show that for any algorithm that makes at
most private key queries, we have

5 Constructing Admissible Hash Functions

It remains to show how an admissible hash function family can be constructed
given a collision resistant hash function family. We do this in two steps: we first
present some idealized sufficient conditions for a hash function family to be ad-
missible, then show how these conditions can be achieved in the case of a binary
alphabet given a family of collision resistant hash functions. As previously men-
tioned, the Decision BDH assumption can be used to realize collision resistance,
although we are free to use more practical hash functions.

For simplicity, we define the following shorthand notation. We let be
the universe of the possible values of the secret index K. For a hash function H,
we respectively define the H-null-set and the H-kernel of any as:

Clearly, for any the sets and form a partition of such that
and For binary alphabets,

we have

Before delving into the construction, we need to precise the following notions.

Claim 4. We have that

as required.
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Adversarial Uncertainty. We formalize the information made available to the
adversary using the notion of knowledge state. At any time during the interaction
of an algorithm with a bias map oracle where H is public and K is
secret, the algorithm’s available knowledge about the oracle is captured by a
distribution of the secret K. Initially the distribution is uniform over
since K is chosen uniformly in this set. Now, suppose that prior to the next
interaction with the oracle the distribution is uniform over some set S, then the
distribution after the next oracle query is uniform over a subset
such that

It follows that after learning the responses to any set
of queries the algorithm’s knowledge state regarding K is
completely captured by the uniform distribution over the set given by

Here, and are respectively defined as the sets of values of
that are compatible with the “negative” and the “positive” responses from the
set of oracle responses Notice that reordering the
queries has no effect on the knowledge state.

Hamming Separation Property. For two vectors we write for
the Hamming distance between and We say that a hash function family

satisfies the separation property if and
such that it also holds that

In other words, any distinct and must take differing values in at
least coordinates (and thus have at most coordinates in common).

In Section 5.2, we show how to achieve the Hamming separation property
from collision resistance using coding theory.

5.1 Sufficient Conditions for Admissibility

The following theorem gives a set of sufficient conditions for a hash family to be
admissible as defined in Definition 6. We focus on binary alphabets

Theorem 2. Let be positive integers such that and Let
be an alphabet of size and let Assume that

is some resistant hash function
family that satisfies the separation property. Pose
If for some arbitrary then the family is

provided that and for some arbitrary
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Proof. It suffices to show that, in the view of any algorithm interacting with a
bias map oracle for random and where K is secret, the
first outputs of the oracle are distributed identically to the first  outcomes of
a binomial random process of expectation with probability at least

We henceforth omit the subscripts K and since there is no ambiguity, and
write for We use the abbreviations

and
We compute the distribution of the first  oracle answers under the stated

assumptions, treating the algorithm as an adversary that adaptively selects
the points at which F is queried. For now, we assume that

(and by the separation property,
By the resistance assumption on this is true with probability
at least We correct for this assumption at the end.

Suppose that before step the adversary has learned the
values respectively taken by at arbitrary query points
Our goal is to find lower and upper bounds on the conditional probability that

given the history of past queries and answers, in the adversary’s view,
uniformly for all choices of the next query point

Let where
and and write

for the probability we seek to bound. Observe that the two sets and
together capture all relevant information about the query history just before the

query, since the order of the queries is irrelevant. We have

where we have posed and

We can use this general expression and the separation property
to bound for query histories that contain either zero or one positive answer.
We later show that the other cases are together very unlikely. Namely, we seek:
1.

2.

a uniform bounding interval on for all query histories with
(i.e., containing only negative answers);
a uniform upper bound on for all query histories such that
(i.e., containing one positive answer).

We obtain non-trivial uniform bounds of three different kinds, given by

Detailed calculations for these bounds are given in the full version of the paper.
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Subject to the above inequalities, we set out to bound the probability that
the biased PRF oracle F deviates from a sequence of outcomes from a genuine
memoryless binomial process of expectation over a sequence of length

Consider R, a binomial process of expectation We construct a modified
process whose outcome is defined as Here, M is a control
process whose purpose is to randomly decide whether should assume the
value of or its opposite, with a probability that depends on the previous
outcomes and the current drawing By properly choosing M,
we can make behave exactly as F, i.e., have the of achieve the
same joint distribution as the of F. In particular, this means that the
event that the processes R and F behave similarly over a sequence of length is
at least as likely as the event that for all since in this case
R and have the same first outcomes. It remains to bound such probability.
Here is the gist of the argument.

The goal is to devise an that perfectly simulates any of
for (unknown) random K, and bound the influence of M needed to do so.

Suppose that for some query history the conditional expectation

of as viewed by the adversary exceeds the
expectation of the binomial process One can make the
simulated process assume the expected law of conditionally on this specific
history by letting the control process take with conditional probability

when and with probability 0 when More
generally, we find that for the process to perfectly simulate F, it suffices that
for the conditional law of given satisfies

Let us write for the event We outline how to use the above
results to upper bound the unconditional probability for First, from
the law of M we get which we can

bound further using our previous bounds on in the cases where

Next, we need to bound the probabilities of the conditioning

events. The difficultly here is that the random variables derive from
the complicated process Fortunately, conditionally on the event the
process identifies with the binomial process R so that these probabilities have
nice expressions in function of and Note that these probabilities vanish

quickly as increases, which is why we bounded for only.
Thus, we have just reduced the upper bound computation of to that

of Carrying this idea through, after some calculations we obtain

The formal derivation of this result may be found in the full version of the paper.
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To conclude, we correct for the probability of finding a hash collision in the
allotted time which in the worst scenario could yield an infallible discriminator
between F and R. It follows that the probability that the F and R oracles can
be distinguished admits the upper bound as required.

5.2 Admissibility from Collision Resistance

We now show how to construct an admissible hash function family
in the sense of Theorem 2, given an “ordinary” family of

resistant hash functions We
give an explicit construction for the specific case of a binary alphabet

Theorem 3. Let be an efficiently com-
putable resistant hash function family. Then for any
there exists an efficiently computable function family

that satisfies both the resistance property and the
bitunse separation property, where and

Proof. Let be the smallest positive integer such that
and define

Let be any bijection. Define the injection
that, on input partitions in fragments of  bits each (padding
the last fragment as necessary), applies the map to each fragment, and con-
catenates all the outputs.

Let be a Reed-Solomon error correcting code with parameters
i.e., a linear code that takes input words of size over the alphabet

and produces codewords of length with minimum pairwise Hamming
distance

Let be the injection that maps any field element
to the vector given by the row of a Hadamard

matrix. Recall that a binary Hadamard matrix is such that any two
distinct rows or columns agree on exactly coordinates; it is well known
that a Hadamard matrix exists and is easy to construct for all
Define the function that applies individually to each
coordinate of its input word and concatenates the resulting Hadamard vectors.

The desired hash family is then given by
where

It remains to show that has the desired properties.
First, since is an injection, the resistance of entails

the same for
Next, by the stated properties of the Reed-Solomon code, produces code-

words of size with minimum pairwise Hamming distance in Since
turns any two distinct elements of into vectors that differ in

positions, it follows that produces binary vectors of size with
minimum pairwise Hamming distance in The corresponding
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ratio is bounded as follows. Since is chosen such that
we have hence follows that

as claimed.
Last, we have that

as required.

5.3 Putting It All Together – Concrete Bounds

It is useful to assign a more concrete meaning to the values taken by the parame-
ters intervening in Theorems 2 and 3. We assume to be given (the adversarial
advantage against the collision resistant hash functions), (the collision resis-
tant hash output length in bits), and (the allowed number of PRF queries),
under the “birthday paradox” constraint that Our task is to find a
suitable set of parameters so that (1) the security of the IBE system of Sec-
tion 4.2 is within a polynomial factor of and (2) the complexity of the four
IBE operations takes polynomial time in the security parameters. For we
require that and

We describe two settings of the parameters; one favoring security, the other
favoring performance.

Favoring security. We first show how to satisfy the requirements for the PRF
construction with a binary alphabet when the intrinsic PRF error prob-
ability (defined as in the notation of Theorem 2) is pegged to

We arbitrarily choose and successively derive:
s.t.

and
Evidently, the total PRF loss is

negligible and the bandwidth coefficient is polynomial
in and The price to pay for such a low value of is a fairly large

Favoring performance. We can attain better bounds by adjusting the PRF loss to
best match the intrinsic loss incurred by the IBE construction itself, in function of

as follows. Assuming that the loss due to hash collisions is negligible, under
the BDH assumption Theorem 1 gives a IBE
such that We can
minimize for a prescribed value of by seeking For
this gives us a total IBE security loss under the
improved bandwidth requirement

We note that the optimal value of varies and is tied to the coding construc-
tion. We defer to the full paper the question of optimizing for all parameters.

6 Extensions

We very briefly outline a few simple extensions of the IBE system of Section 4.2.
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Hierarchical IBE. Introduced by Horowitz and Lynn [HL02], HIBE was first
constructed by Gentry and Silverberg [GS02] in the random oracle model. The
IBE system of Section 4.2 generalizes naturally to give a semantically secure
HIBE under an adaptive chosen identity attack (IND-ID-CPA) without random
oracles. For a hierarchy of depth both the ciphertext and private key contain

blocks where each block contains components. Thus, a private key at depth
is an element of As our IBE, the HIBE uses collision resistant hash

functions and is provably secure without random oracles whenever the Decision
BDH assumption holds. The construction is similar to the construction of a
(selective identity secure) HIBE without random oracles based on Decision BDH
recently proposed by Boneh and Boyen [BB04]. The details are deferred to the
full version of the paper.

Chosen Ciphertext Security. A recent result of Canetti et al. [CHK04] gives
an efficient way to build a chosen ciphertext IBE (IND-ID-CCA) from a chosen
plaintext 2-HIBE (IND-ID-CPA). Thus, by the previous paragraph, we obtain a
full chosen identity, chosen ciphertext IBE (IND-ID-CCA) that is provably secure
without random oracles. More generally, by starting from an a
fully secure can be similarly constructed without random oracles.

Arbitrary Identities. We can extend our IBE system to handle identities
(as opposed to by first hashing ID using a collision resistant

hash function prior to key generation and encryption. A
standard argument shows that if the scheme of Section 4.2 is IND-ID-CPA secure
then so is the scheme with the additional hash. This holds for the HIBE and the
chosen ciphertext secure system and as well.

7 Conclusions

We presented an Identity Based cryptosystem and proved its security without
using the random oracle heuristic under the decisional Bilinear Diffie-Hellman
assumption. Our results prove that secure IBE systems exist in the standard
model. This resolves an open problem posed by Boneh and Franklin in 2001.
However, the present system is not very practical and mostly serves as an exis-
tence proof. It is still a wonderful problem to find a practical IBE system secure
without random oracles based on Decision BDH or a comparable assumption.
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Abstract. A timestamping scheme is non-interactive if a stamper can
stamp a document without communicating with any other player. The
only communication done is at validation time. Non-Interactive times-
tamping has many advantages, such as information theoretic privacy and
enhanced robustness. Unfortunately, no such scheme exists against poly-
nomial time adversaries that have unbounded storage at their disposal.
In this paper we show non-interactive timestamping is possible in the
bounded storage model. In this model it is assumed that all parties par-
ticipating in the protocol have small storage, and that in the beginning of
the protocol a very long random string (which is too long to be stored by
the players) is transmitted. To the best of our knowledge, this is the first
example of a cryptographic task that is possible in the bounded storage
model, but is impossible in the “standard cryptographic setting”, even
assuming cryptographic assumptions.
We give an explicit construction that is secure against all bounded stor-
age adversaries, and a significantly more efficient construction secure
against all bounded storage adversaries that run in polynomial time.

Keywords: timestamping, bounded storage model, expander graphs,
extractors

1 Introduction

The date on which a document was created is often a significant issue. Patents,
contracts, wills and countless other legal documents critically depend on the
date they were signed, drafted, etc. A timestamp for a document provides con-
vincing proof that it existed at a certain time. For physical documents, many
methods are known and widely used for timestamping: publication, witnessed
signing and placing copies in escrow are among the most common. Techniques
for timestamping digital documents, which are increasingly being used to replace
their physical counterparts, have also become necessary.

Loosely speaking, a timestamping scheme consists of two mechanisms: A
stamping mechanism which allows a user to stamp a document at some specific
time and a verification mechanism which allows a recipient to verify at a later
time that the document was indeed stamped at time

* Research supported by the Koshland Scholarship.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 460–476, 2004.
© International Association for Cryptologic Research 2004
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Previous Work

Digital timestamping systems were first introduced in Haber and Stornetta [16],
where three timestamping systems are described. In the naïve timestamping
protocol, the stamper sends the document to all the verifiers during timestamp
generation. In the linking scheme, the stamper sends a one-way hash of the
document to a trusted timestamping server. The server holds a current hash,
which it updates by hashing it with the value sent by the stamper. This links
the document to the previous documents and to the succeeding ones. In the
distributed trust scheme, the document is used to select a subset of verifiers, to
which the stamper sends a hash of the document. Bayer, Haber and Stornetta
[3] improve upon the linking scheme, reducing the communication and storage
requirements of the system and increasing its robustness, by replacing the linear
list with a tree. Further work [17,7,6,8,5,4] is mainly focused on additional
improvements in terms of storage, robustness and reducing the trust required in
the timestamping server (s).

One common feature of all the above protocols is that they require the stam-
per to send messages to a central authority (or a distributed set of servers) at
timestamp generation.

Non-interactive Timestamping

We call a timestamping scheme non-interactive if it does not require the stam-
per to send messages at timestamp generation. Non-interactive timestamping
schemes, if they exist, have a number of obvious advantages over active schemes.
However, the notion of non-interactive timestamping seems self-contradictory.
How can we prevent an adversary from faking timestamps, if no action is taken
at timestamp generation? More precisely, suppose that an adversary “learns”
some document at time and wants to convince a verifier that he stamped
the document at time He can simulate the behavior of an “honest stamper”
who signs the document at time and generate a timestamp for the document.
Note that the “honest stamper” does not need to send any messages before
time and therefore the adversary will be able to convince a verifier that the
document was stamped at time

A crucial point in the argument above is that in order to perform this sim-
ulation the adversary must store all the information available to the “honest
stamper” at time We show that non-interactive timestamping is possible in a
scenario in which parties have bounded storage.

The Bounded Storage Model

In contrast to the usual approach in modern Cryptography, Maurer’s bounded
storage model [19] bounds the storage (memory size) of dishonest players rather
than their running time.

In a typical protocol in the bounded storage model a long random string of
length R is initially broadcast and the interaction between the polynomial-time
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participants is conducted based on storing small portions of The security of
such protocols should be guaranteed even against dishonest parties which have a
lot of storage (much more than the honest parties) as long as they cannot store
the whole string. Most of the previous work on the bounded storage model con-
centrated on private key encryption [19,10,2,1,14,15,18, 25], Key Agreement
[10] and Oblivious Transfer [9,12,13]. In contrast, the notion of non-interactive
timestamping cannot be implemented in the “standard cryptographic setting”.
To the best of our knowledge this is the first example of a protocol in the bounded
storage model which achieves a task that is impossible in the “standard crypto-
graphic setting”.

Non-interactive Timestamping in the Bounded Storage Model

We now explain our setting for non-interactive timestamping in the bounded
storage model. We assume that there are rounds and at every round
a long random string of length R is transmitted1.

The Stamping Mechanism: To stamp a document doc at time the scheme
specifies a function whose output is short. To stamp the document
doc, the stamper stores Intuitively, an adversary (who does not
know doc at time is not able to store the relevant information and therefore
is unable to stamp doc.

The Verification Mechanism: The verifier stores a short “sketch” of (denoted by
for every time At a later time the stamper can send the timestamp

and the verifier checks whether this timestamp is “consistent”
with his sketch.

Efficiency of a Timestamping Scheme: We say that a timestamping scheme is
(T, V) efficient if the stamper’s algorithm runs online (that is, in one pass) using
space T and polynomial time and the verifier’s algorithm runs online using space
V and polynomial time. We want T and V to be small as functions of R.

Our Notion of Security

Loosely speaking, we want to ensure that even an adversary with a lot of storage
(say storage for some constant cannot forge a timestamp.
Note, however, that a stamper with storage M > T can easily stamp

documents by running the stamping mechanism on some documents and
storing the generated timestamp (which is of length at most T). We will therefore
say that a scheme is secure if no adversary with space M can successfully stamp
significantly more than M/T documents.

1 One can imagine that random bits are transmitted at high rate continuously by a
trusted party, and that the string consists of the bits transmitted between time
and time
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One can also consider a probabilistic notion of security: given a randomly
chosen document, after the random string has passed, the adversary will not be
able to stamp the document with more than negligible probability. We note that
our notion of security implies this probabilistic notion as well.

Security of a Timestamping Scheme: Given a (T, V)-efficient timestamping
scheme. Let be the bound on the storage of the most powerful adver-
sary. The scheme is if, for every no adversary
with space M can successfully stamp more than documents (for a formal
definition of “successful stamping” see definition 4).

Notice that the definition above requires for every
Requiring for only, would have allowed adversaries with

to produce stamped documents, contradicting the definition’s
spirit. The definition in its current form assures us that any adversary, weak or
strong, with at most memory, can honestly stamp the same number of
documents if given slightly more resources (storage instead of M).

Our Results

In this paper we give two explicit constructions of non-interactive timestamping
schemes in the bounded storage model. The first is secure in an information-
theoretic sense (in the spirit of previous constructions in the bounded storage
model). It requires no unproven assumptions and is secure against any adversary
with arbitrary computational power as long as its storage capability is bounded.
We now state this result (precise definitions appear in Section 3).

Theorem 1 For every and large enough R there exists a timestamping
scheme that is and O(1)-optimal.
More precisely, every adversary with space has probabil-
ity at most to successfully stamp more than  documents. The
timestamping scheme allows stamping documents of length and allows

rounds.

Our second system is more efficient. To achieve this efficiency it relies on
cryptographic assumptions and is therefore secure only against adversaries that,
in addition to being storage bounded, are required to run in polynomial time.

Theorem 2. Assume that there exist collision resistant hash functions. There
exists a timestamping scheme that is

and O(log R)-optimal. More precisely, every adversary with space
and running time polynomial in R has negligible probability to

successfully stamp more than  documents. The timestamping
scheme allows stamping documents of length R and allows R rounds.

We remark that our technique can potentially reduce T and V to
This improvement requires an explicit construction of certain “expander graphs”
that is not known today. More details will appear in the full version of the paper.

TEAM LinG



464 Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma

Advantages of Our Non-interactive Timestamping Scheme
Non-interactive timestamp systems have some significant advantages over the
interactive systems known to date. We summarize some of these below:

The only communication made before the verification process is the trans-
mission of the random string This allows the timestamp system to be
used in situations where communication is infeasible or undesirable. E.g.,
communication may be asymmetric: one central agency can broadcast all
other users, while the users can not send messages to the agency.
Everyone can stamp and everyone can verify and no central control or ac-
quaintance between stamper and verifier is needed. The decentralized na-
ture of this scheme overcomes many of the “trust” problems with interactive
timestamp systems. Even in distributed interactive systems, some measure
of trust must be given to third parties. Our non-interactive timestamp sys-
tem requires only that the random string be truly random and receivable by
all parties.
Privacy. The scheme hides the fact that timestamping occurred at all, e.g.,
an inventor can safeguard her inventions without revealing even the fact of
their existence. This also ensures privacy in an information-theoretic sense.
Our schemes solve some of the robustness problems that plague interactive
timestamping systems. In particular, it is much more difficult to mount a
denial-of-service attack: there is no central point that can shut down the sys-
tem, and even temporarily shutting down communications will not prevent
the creation of new timestamps. The lack of communication also makes it
difficult for an attacker to tell whether such an attack has succeeded.

The setup is the following: A string of length R is transmitted and the stamper
wants to convince a verifier that he “knew” a document prior to the transmission
of this string.

Using the Document to Select Indices: We implement the function
as follows: Each document doc specifies some D indices that the stamper will
remember from the long string. For that we use a bipartite graph where the
left-hand vertices are all possible documents, the right-hand vertices are indices

and every left vertex has D neighbors. The indices selected by a
document doc are the neighbors of doc. We want to force a stamper who would
like to stamp documents to store many indices. Intuitively, this is equivalent
to the requirement that every documents on the left have many different
neighbors. This naturally leads to using an expander graph. (A bipartite graph
is a if every vertices on the left have at least kc neighbors
on the right)2.
2 We stress that we need to use unbalanced graphs (graphs which have many more

vertices on the left than on the right-hand side). Such graphs were constructed in
[24, 23]. However, we need graphs with somewhat different parameters. We construct
such graphs by combining the constructions of [24] and a slight modification of [23,
21] (which in turn relies on explicit constructions of “randomness extractors” from
[21,22]).

Overview of the “Information-Theoretic” Construction
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To stamp a document doc, the stamper stores the content of the long string
at the indices specified by doc. We use graphs with expansion therefore
to correctly stamp documents simultaneously an honest stamper must store
roughly kD bits.

Using Random Sets for Verification: The function is implemented as
follows. The verifier chooses a random subset of size from the indices
of and stores the content of at these indices. After the transmission of the
random string a stamper may send a timestamp of a document doc (that
consists of the content of at the D indices defined by doc). By the birthday
problem, with high probability (over the choice of the verifier’s random set)
some of these indices were also stored by the verifier. The verifier checks that
the content sent by the stamper is consistent with what he stored.

For a fixed string and document doc, we say that a timestamp is “incorrect”
if it differs from the “correct” timestamp of doc in many indices. The verification
process we described guarantees that, with high probability, the verifier will
reject an “incorrect” timestamp.

A Sketch of the Security Proof: The basic intuition for the security proof is
the following: Suppose that an adversary is able to successfully stamp some

documents. This means that he correctly stamped these documents (as
otherwise he is caught by the verifier). However, correctly stamping documents
requires storing kD indices, therefore if the storage of the adversary is

he can successfully stamp at most documents. This is the best we
can hope for (by our notion of security) as he could have stamped documents
by simply running the “stamping mechanism” on any documents.

However, the argument above is not sufficient. It does not rule out the pos-
sibility that the adversary can stamp many documents such that the identity of
these documents depend on the random string Our security definition requires
that for every adversary, with high probability (over the choice of there do
not exist documents which the adversary can successfully stamp. To prove
the security of our scheme we use a “reconstruction argument” and show that
any adversary which breaks the security guarantee can be used to compress the
string into a shorter string in a way that does not lose a lot of information. As
the string is random, we get a contradiction. The details are given in Section 4.

Overview of the “Computationally-Bounded” Construction

In the previous construction we chose so that a random subset of size
in [R] would intersect a subset of size D. We chose allowing

both the honest stamper and the verifier to store only bits. We now show
how to increase the efficiency and reduce the storage of honest parties to only

bits.
We use the same index selection mechanism as before. However, this time

we choose (this precise choice of parameters corresponds to
certain expander graphs). The verifier stores a short “hash” of the string When
stamping a document the stamper also supplies a short “proof” that the indices
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he sent are consistent with the hashed value held by the verifier. We implement
such a hashing scheme using Merkle trees [20]. We show that if collision resistant
hash functions exist then a polynomial time adversary with bounded storage
cannot produce an incorrect timestamp of a document. More precisely, we show
that after the transmission of the random string no polynomial time adversary
can generate many documents and stamp them correctly.

Hashing Documents Before Stamping Them: A bottleneck of our scheme is that
when using expanders of degree D we can only handle documents of length D 3

.

However, in a computational setting (as we have already assumed the existence
of collision resistant hash functions) we can stamp longer documents by first
hashing them to shorter strings and then stamping them.

2 Preliminaries
2.1 Notation

The following conventions will be used throughout the paper.

Random String: We refer to the random string as its length is denoted by
R, and we think of it as composed of N blocks of length denoted
For any subset the expression will be taken to mean the string
generated by concatenating the blocks for all

Hamming Distance: The Hamming Distance between two strings and is
the number of blocks on which the two strings differ.

Online Space: For a family of functions F, we denote by Space(F) the maximum
space used by any function in F. We say a function can be computed online
with space if there is an algorithm using space at most which reads its input
bits one by one and computes in one pass.

2.2 Unbalanced Expander Graphs

A graph is expanding if every sufficiently small set has a lot of neighbors. Our
timestamping scheme relies on unbalanced expanders.

Definition 1 (unbalanced expander graphs). A bipartite graph
is if, for any set of cardinality at most

the set of its neighbors is of size at least

Note that we do not require that In fact, in our timestamping
scheme we will use graphs in which In this paper we need unbal-
anced expanders with very specific requirements. Loosely speaking we want a
3 This is because in unbalanced expander graphs, the degree must be logarithmic in

the number of left-hand vertices. Thus, shooting for degree D we can at most get
that the left-hand set (which is the set of documents) is of size
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graph with as small as possible degree D and right-
hand side of size roughly We use some existing constructions of unbal-
anced graphs [24] as well as a modification of [23] to prove the next theorem
(the proof will appear in the full version of the paper).

Theorem 3. There exists a fixed constant such that for every
there exists a bipartite graph with left degree D that is

expanding with and
Furthermore, this graph is explicit in the sense that given a vertex

and an integer one can compute the neighbor of in time
polynomial in

3 One Round Timestamping: The Model

In this section we formally define our model for timestamping in the bounded
storage model. The definitions are only for a single round. Definitions for multiple
rounds are straightforward generalizations and will appear in the full version.

A long random string of length R is transmitted. The verifier takes a short
sketch of the random string and remembers it. An honest stamper,
who wants to stamp a document calculates
When, at a later stage, the stamper wants to prove he knew the document doc at
stamping time, he sends to the verifier who computes
and decides whether to accept or reject. More formally,

Definition 2 (Non-Interactive timestamping scheme). A non-interactive
timestamping scheme consists of three functions:

A stamping function
A sketch function (we allow Sketch to be a probabilistic function).
A verification function

We require that for every string and document doc, the function
accepts.

We define efficiency:

Definition 3 (Efficiency). A non-interactive timestamping scheme is (T, V) -
efficient if Stamp can be computed online in space T = T(R) and time polynomial
in R, and Sketch can be computed online in space V = V(R) and time polynomial
in R.

An honest stamper with space M can easily stamp M/T documents by run-
ning the function Stamp in parallel. We require that no adversary with memory
M* can successfully stamp significantly more than  documents. We first
define our model for adversaries:

Definition 4 (adversary). An adversary consists of two functions:
which produces a short string and which, given a document
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doc and attempts to produce a timestamp for doc. The space  of an adver-
sary is the maximal length of  4. An adversary stamps a
document doc at (some fixed)  if

Note that this probability is over the coin tosses of Sketch and the internal
random coins of the adversary. Note that when the adversary is not computation-
ally bounded, we can assume w.l.o.g. that the adversary is deterministic (does
not use random coins)

We define security as:

Definition 5 (Security). We say that a (T,V)-efficient timestamping scheme
is (for and if for every
and every adversary A with space 

Definition 5 is very strong. It guarantees that whenever the sketch size is
small, no matter how powerful the adversary is, the number of documents the
adversary can successfully stamp is very small.

3.1 Security Against Feasibly Generated Documents

Until now, we have allowed the adversary to run in arbitrary time. When the
adversary is time-bounded, we can imagine scenarios where Definition 5 does
not hold, yet the system is secure because the adversary does not have the com-
putational power to find the documents he can illegally stamp. It makes sense to
require security only against “feasibly generated documents”. We model feasi-
bly generated documents by a probabilistic polynomial time machine
which, on input and an integer outputs documents (all different).

Definition 6 (Security against feasibly generated documents). We say
that a (T, V ) -efficient timestamping scheme is (for

and against feasibly generated documents, if for every
every adversary A with space  and every polynomial time machine

where the probability is over the choice of and the random coins of
and A.
4 Note that the adversary is not required to run online in space  The function

can be an arbitrary function of
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4 A Scheme with Information-Theoretic Security

In this section we describe a timestamping scheme which is information theoret-
ically secure against arbitrary adversaries with small storage.

4.1 The Stamping Scheme

Let R, N and be integers such that Given a string
we partition it into N blocks of bits. We use to denote the block of
Let denote the set of all documents which can be stamped. Let G be a

bipartite expander with left degree D, where the “left”
set is and the “right” set is [N]. We define the three procedures
Sketch, Stamp and Verify:

where has elements selected at random from [N].

Notice that contains the restriction of to the indices of and
therefore in particular contains the restriction of to the indices of
and contains the restriction of to and therefore in particular contains
the restriction of to the indices of

Theorem 4. Let G be a graph, and Fix
large enough such that and assume that If

then the scheme is and
for and

Plugging in parameters, a corollary of this is:

Corollary 1. For every and large enough R we construct a timestamping
scheme which is and O(1)-optimal with

and The timestamping scheme allows
stamping documents of length

We prove the corollary in the full version of the paper. We remark that
a probabilistic argument shows that there exist bipartite graphs of degree D
which have expansion (1 – o(1))D and using such non-explicit graphs in our
construction (and setting gives optimality (whereas
the theorem below only achieves In the remainder of the section we
prove Theorem 4.

4.2 Efficiency

The verifier first chooses a random set and stores it, and then stores This
can indeed be done online with space We now explain how

TEAM LinG



470 Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma

the stamper can run online in space T = Dn. Observe that it can calculate the
indices it will need to store before the random string goes by (since it knows doc
before it sees the random string). As the indices take D log N < Dn space, it
can work in place, replacing each index with the contents of the block as it goes
by. We now turn to proving security.

4.3 Security

In Definition 4 we defined “successful stamping”. Without loss of generality, we
assume the adversary is deterministic. Let denote
the set of random strings on which the adversary stamps at least

documents. We would like to prove that has small probability. We
first define a similar notion of “correct stamping”:

Definition 7. An adversary correctly stamps a document doc at if
An adversary correctly stamps a document

doc at with at most err errors, if the Hamming distance between
and is at most err.

We let denote the set of random strings for
which there are at least documents that the adversary correctly stamps with at
most err errors.

The security proof has two parts.

Lemma 1. Assume and For every
and any adversary with space we have

We then relate and

Lemma 2. Assume For every

Together,

Proof. (of Theorem 4) We need show that no adversary with space  can
stamp more than documents. Notice that for

and Hence,
where the

first inequality follows by Lemma 2 and the second inequality follows by Lemma
1. The third inequality is because

4.4 The Proof of Lemma 1

We first define a compression function for Let
Suppose are the documents that the adversary cor-

rectly stamps at with at most err errors. Denote that
is the set of all indices which are selected by one of the documents. Denote
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that is the set of all indices which are bad for at
least one of the documents. We call an index useful. We choose

to be:

We define a “decompression” function that gets as input and
tries to recover Let be a string from i.e., a string on which the stam-
per correctly stamps with at most err errors. From
that appear in we recover the set and from we learn which
indices are in the subset Now, for every we recover as
follows:

If then we use the information in to find
If then we use the information in to find
If then we find an such that

We run and take from its output.

The only case where we do not take the value of directly from is for
However, all such indices are useful, and therefore we correctly

decode them. Therefore, for every we have
We now analyze the output length of the compression function Com. The

documents take bits space. by def-
inition. As G is expanding and and therefore

We represent by a binary vector of length which
has a “one” for indices in and a “zero” for indices in Each of
the documents is correctly stamped at with at most err errors, and therefore
for every such document we have and The
representation of is therefore bounded by We conclude that the
total length of the output of Com is at most

We denote this quantity
As every has a small description (of length we have

and therefore We have
(for large enough We also have and by our assump-

tion Altogether, We get
that As we get as
desired.

4.5 The Proof of Lemma 2

Claim. Fix an adversary, a string and a document doc. If the adversary
stamps doc at then it correctly stamps doc at with at most

errors.

Proof. We prove the contrapositive. Suppose for some and the
timestamp provided by the adversary for doc has  incorrect indices.
Denote by the set of incorrect indices. The verifier catches the
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adversary iff i.e. if one of the incorrect indices is in (the
set of indices stored by Sketch). For each index in the probability that it
hits is and the probability that none of them hits is

(assuming the set is chosen with repetition). Hence,

the adversary stamps doc with Turning that around,
if the adversary stamps doc, then

In particular, for every and doc for which the stamper is successful,
Hence, the stamper correctly stamps doc at with at

most It follows that as desired.

5 An Efficient Scheme Secure
Against Polynomial Time Adversaries

The scheme suggested in Section 4 requires the honest parties (stamper and
verifier) to store many bits, namely TV >> R where T is the stamp size, V
the sketch size and R the random string length. In other words, if the stamp
size is very small then the sketch size V is almost all of the random string.
Our second scheme has small sketch and stamp size. This is achieved by using
the previous stamping scheme with a small T and using a different verification
method that allows the verifier to use much less storage. This verification method
is valid only against computationally bounded adversaries and takes advantage
of the bounded computational capabilities of the cheating party. In this section
we briefly describe the scheme and give a sketch of the proof. Due to space
constraints, the exact details will appear in the full version. We assume the
reader has some familiarity with collision resistant hash functions5 [11] (CRHFs)
and Merkle trees [20].

5.1 The Stamping Scheme

is of length log H and for is of length The string (which didn’t
appear in the previous scheme) serves as a “key” to the “hash function”. We use
the same “index selection” mechanism as in Section 4; G is a bipartite graph
with left degree D, where the left set is the set and the right set is the set
[N]. We now describe the stamp, sketch and verify procedures:

5 Also called “collision intractable” or “collision free” hash functions
6 Informally, this means that no computationally bounded adversary can find

such that when given a random function in the family. In this
paper we require hash functions which are hard even for adversaries which run in
time slightly super-polynomial in This is because the adversary runs in time
polynomial in R, whereas can be very small compared to R.

Let be a family of CRHFs6 and
We partition a string into N +1 blocks, denoted where
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The verifier stores and the root of a Merkle tree whose leaves are
using the hash function specified by 7. Note that is

deterministic (unlike the case of the previous section where Sketch is prob-
abilistic).

Given a document the stamper uses the function Stamp
of the previous section, and for every stores along with the
Merkle-path from to the root of the tree8.

Given a document doc, a “root” and a stamp composed of D Merkle-
paths, the function accepts iff all paths are valid (that is,
the label of the tree root computed from the Merkle-paths is consistent with
that stored by the verifier).

We note that both and can be computed online in small
space, using the standard method for computing Merkle-trees online. For our
choice of parameters, this gives the required efficiency. Using the expander con-
struction of Theorem 3 for G, we obtain a scheme with efficiency
(and thus prove Theorem 2). It is possible to get an even more efficient scheme
with However, this result requires a better graph than the
one constructed in Theorem 3. It is folklore that such graphs exist by a proba-
bilistic argument. However, at this point no such explicit construction is known.
In the remainder of the section we sketch the proof of security of the scheme
(The complete proof of Theorem 2 appears in the full version of the paper).

5.2 Security

We follow the outline of the correctness proof of the information-theoretic version
of Section 4, except that now we work with security for generated documents. We
show that if the adversary successfully stamps many documents then he correctly
stamps many documents which is impossible by the “reconstruction argument”
of the previous section.

Fix some adversary with memory  and running time polynomial in R. We
use coins to denote the concatenation of the random coins used by and

We define to be the set of pairs coins) such that, for
every the Merkle paths output by
are correct (i.e. that they are actual paths in the Merkle tree whose leaves are
the blocks of In particular, this implies that the leaves of the paths are a
“correct” timestamp for the documents output by in the sense
of Section 4.

7 Informally, a Merkle tree of using the hash function is a labeled binary
tree, where the leaves are labeled by and the label of each internal node
is given by applying to the concatenation of its children’s labels.

8 A Merkle-path from consists of along with the labels of the siblings of all
nodes on the path from to the root of the Merkle tree. Such as sequence contains
sufficient information to compute the labels of all nodes on the path to the root node
(by repeatedly applying the hash function).
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We now want to define the computational analogue of and relate it
to We define to be the set of all pairs coins) for which
the adversary successfully stamps the documents output by
(i.e. for all the the Merkle paths output by

are accepted by the verifier). This definition of success
corresponds to the notion of security in Definition 6.

We prove that (where
neg is a negligible function of This is because we can imagine a machine which,
when given a random hash function uniformly selects the pair coins) and
runs the adversary. The claim follows, as for every pair coins)

this machine can find a collision for Thus we have a computational
analogue of Lemma 2.

We then show (using Lemma 1) that every random string for which the
adversary can correctly stamp many documents can be compressed, which gives
a bound on the probability that this occurs.

6 Discussion and Open Problems

Dealing with Errors: Most protocols in the Bounded Storage Model, and ours
among them, assume the broadcast random string is received identically and
without errors by all parties. However, in many natural implementations of such
protocols, this assumption may not be realistic (e.g. when the random string has
a natural source).

Our information-theoretic scheme can be made to work even with errors
(provided the error rate is low enough) by allowing the verifier to accept a
timestamp even if the the blocks in the intersection differ by a small amount.
The proof of Lemma 1 already allows the adversary to make some errors when
stamping, and still be considered successful. Increasing the error rate by a small
amount will not invalidate the lemma (although the parameters suffer slightly).

The computational scheme, on the other hand, currently requires the random
string to be received perfectly by all parties. It is an interesting open question
whether this requirement can be removed.

Removing the Need for Constant Monitoring: Our timestamping schemes require
the verifier to run the Sketch function in every round for which it may, someday,
want to verify documents. The verifier must therefore constantly monitor the
random string, which is too much to ask from a casual user of the system.

An implementation of our timestamp systems can overcome this difficulty by
using “verification centers”: dedicated third parties who act as verifiers. In some
sense, such third parties appear in all previous timestamp protocols. This raises
the issue of how much trust the user must place in the verification center.

In the computational version of our protocol, the verification center is also
easily auditable by casual users: the verifier is deterministic and has no secret
information. Any user can act as a verifier for a single round, and compare its
state to that of the verification center: any inconsistency will be instantly visible.
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Online Versus Locally-Computable: The strategies for the honest players are
efficient in the sense that they work online using small space and polynomial
time. A stronger notion of efficiency called “locally-computable” was suggested in
[25]. It requires the honest players to store a small substring of the string More
precisely, the players need to choose a subset before the random string
is transmitted and only store We point out that the “information-theoretic”
scheme (Section 4) has this additional property, whereas the “computationally-
bounded” scheme (Section 5) does not9. Natural open problems are whether the
“information-theoretic” scheme can be improved to yield better parameters, and
whether the “computationally-bounded” scheme can be improved to run with
strategies that are locally computable.
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Abstract. In this paper we revisit one of the most popular password-
based key exchange protocols, namely the OKE (for Open Key Exchange)
scheme, proposed by Luck in 1997. Our results can be highlighted as fol-
lows. First we define a new primitive that we call trapdoor hard-to-invert
isomorphisms, and give some candidates. Then we present a generic
password-based key exchange construction, that admits a security proof
assuming that these objects exist. Finally, we instantiate our general
scheme with some concrete examples, such as the Diffie-Hellman func-
tion and the RSA function, but more interestingly the modular square
root function, which leads to the first scheme with security related to
the integer factorization problem. Furthermore, the latter variant is very
efficient for one party (the server). Our results hold in the random-oracle
model.

1 Introduction

Shortly after the introduction of the revolutionary concept of asymmetric cryp-
tography, proposed in the seminal paper by Diffie and Hellman [9], people real-
ized that properly managing keys is not a trivial task. In particular private keys
tend to be pretty large objects, that have to be safely stored in order to preserve
whatever kind of security. Specific devices have thus been developed in order
to help human beings in storing their secrets, but it is clear that even the most
technologically advanced device may become useless if lost or stolen. In principle
the best way to store a secret is to keep it in mind. In practice, however, human
beings are very bad at remembering large secrets (even if they are passwords or
pass-phrases) and very often they need to write passwords down on a piece of
paper in order to be able to keep track of them. As a consequence, either one
uses a short (and memorable) password, or writes/stores it somewhere. In the
latter case, security eventually relies on the mode of storage (which is often the
weakest part in the system: a human-controlled storage). In the former case, a
short password is subject to exhaustive search.

Indeed, by using a short password, one cannot prevent a brute force on-line
exhaustive search attack: the adversary just tries some passwords of its own
choice in order to try to impersonate a party. If it guesses the correct password,

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 477–493, 2004.
© International Association for Cryptologic Research 2004
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it can get in, otherwise it has to try with another password. In many applications,
however, the number of such active attacks can be limited in various ways. For
example one may impose some delay between different trials, or even closing the
account after some fixed number of consecutive failures. Of course the specific
limitations depend very much on the context – other kind of attacks, such as
Denial of Service ones, for example, should be made hard to mount either. In
any case, the important point we want to make here is that the impact of on-
line exhaustive search can be limited. However on-line attacks are not the only
possible threats to the security of a password-based system. Imagine for example
an adversary who has access to several transcripts of communication between a
server and a client. Clearly the transcript of a “real” communication somehow
depends on the actual password. This means that a valid transcript (or several
ones) could be used to “test” the validity of some password: the adversary chooses
a random password and simply checks if the produced transcript is the same as
the received one. In this way it is possible to mount an (off-line) exhaustive search
attack that can be much more effective than the on-line one, simply because, in
this scenario, the adversary can try all the possible passwords just until it finds
the correct one. Such an off-line exhaustive search is usually called “dictionary
attack”.

1.1 Related Work

A password-based key exchange is an interactive protocol between two parties
A and B, who initially share a short password pw, that allows A and B to
exchange a session key sk. One expects from this key to be semantically secure
w.r.t. any party, but A and B who should know it at the end of the protocol.
The study of password-based protocols resistant to dictionary attacks started
with the seminal work of Bellovin and Merritt [3], where they proposed the so-
called Encrypted Key Exchange protocol (EKE). The basic idea of their solution
is the following: A generates a public key and sends it to B encrypted – using a
symmetric encryption scheme – with the common password. B uses the password
to decrypt the received ciphertext. Then it proceeds by encrypting some value

using the obtained public key. The resulting ciphertext is then re-encrypted
(once again using the password) and finally sent to A. Now A can easily recover

using both his own private key and the common password. A shared session
key is then derived from using standard techniques.

A classical way to break password-based schemes is the partition attack [4].
The basic idea is that if the cleartexts encrypted with the password have any
redundancy, or lie in a strict subset, a dictionary attack can be successfully
mounted: considering one flow (obtained by eavesdropping) one first chooses a
password, decrypts the ciphertext and checks whether the redundancy is present
or not (or whether the plaintext lies in the correct range.) This technique allows
to quickly select probable passwords, and eventually extract the correct one.

The partition attack can be mounted on many implementations of EKE,
essentially because a public key usually contains important “redundancy” (as
a matter of fact a public key – or at least its encoding – is not in general
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a random-looking string). Note that in the described approach (for EKE), the
same symmetric encryption (using the same password) is used to encrypt both
the public key, and the ciphertext generated with this key. This may create ad-
ditional problems basically because these two objects (i.e. the public key and
the ciphertext) are very often defined on completely unrelated sets. A nice ex-
ception to this general rule are ElGamal keys [12]. This is thus the sole effective
application of EKE.

As noticed by the original authors [3], and emphasized by Lucks [17], it is
“counter-intuitive (. . .) to use a secret key to encrypt a public key”. For this
reason Lucks [17] proposed OKE, (which stands for Open Key Exchange). The
underlying idea of this solution is to send the public key in clear and to en-
crypt the second flow only. Adopting this new approach, additional public-key
encryption schemes can be considered (and in particular RSA [23] for instance).
However, one has to be careful when using RSA. The problem is that the RSA
function is guaranteed to be a permutation only if the user behaves honestly
and chooses his public key correctly. In real life, however, a malicious user may
decide to generate keys that do not lead to a permutation at all. In such a
case a partition attack becomes possible: an RSA-ciphertext would lie in a strict
subset if For this reason Lucks proposed a variant of his scheme, known
as Protected OKE, to properly deal with the case of RSA. Later on, however,
MacKenzie et al. [19,18] proved that the scheme was flawed by presenting a way
to attack it. At the same time they showed how to repair the original solution
by proposing a new protocol they called SNAPI (for Secure Network Authen-
tication with Password Identification), for which they provided a full proof of
security in the random-oracle model. This proof, however, is specific to RSA, in
the random-oracle model, and very intricate.

Interestingly enough, in the standard model, the problem of secure password-
based protocols was not treated rigorously until very recently. The first rigorous
treatment of the problem was proposed by Halevi and Krawczyk [15] who, how-
ever, proposed a solution that requires other setup assumptions on top of that
of the human password. Later on, Goldreich and Lindell [14] proposed a very
elegant solution that achieves security without any additional setup assumption.
The Goldreich and Lindell proposal is based on sole existence of trapdoor per-
mutations and, even though very appealing from a theoretical point of view, is
definitely not practical. The first practical solution was proposed by Katz, Os-
trovsky and Yung [16]. Their solution is based on the Decisional Diffie-Hellman
assumption and assumes that all parties have access to a set of public parameters
(which is of course a stronger set-up assumption than assuming that only human
passwords are shared, but still a weaker one with respect to the Halevi-Krawczyk
ones for example). Even more recently Gennaro and Lindell [13] presented an
abstraction of the Katz, Ostrovsky and Yung [16] protocol that allowed them to
construct a general framework for authenticated password-based key exchange
in the common reference string model.

We note here that even though from a mathematical point of view a proof in
the standard model is always preferable to a proof in the random-oracle model,
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all the constructions in the standard model presented so far are way less efficient
with respect to those known in the random-oracle model. It is true that a proof
in the random-oracle model should be interpreted with care, more as a heuristic
proof than a real one. On the other hand in many applications efficiency is a big
issue and it may be preferable to have a very efficient protocol with a heuristic
proof of security than a much less efficient one with a complete proof of security.

1.2 Our Contributions

In this paper, we revisit the generic OKE construction by clearly stating the
requirements about the primitive to be used: we need a family of isomorphisms
with some specific computational properties that we call trapdoor hard-to-invert
isomorphisms (see next section for a formal definition for these objects). Very
roughly a trapdoor hard-to-invert isomorphism, can be seen as an isomorphic
function that is in general hard to invert, unless some additional information
(the trapdoor) is provided. Note that such an object is different with respect to
traditional trapdoor functions. A trapdoor one-way function is always easy to
compute, whereas a trapdoor hard-to-invert function may be not only hard to
invert, but – at least in some cases – also hard to compute [10]. As it will become
apparent in the next sections, this requirement is not strong because basically
all the classical public-key encryption schemes fit it (RSA [23], Rabin with Blum
moduli [22], ElGamal [12], and even the recent Okamoto-Uchiyama’s [20] and
Paillier’s schemes [21]). More precisely our results can be described as follows.

First, after having described our security model, we present a very general
construction – denoted IPAKE for Isomorphism for Password-based Authenticated
Key Exchange – and we prove it is secure. Our security result relies on the com-
putational properties of the chosen trapdoor hard-to-invert isomorphism family,
in the random-oracle model. As a second result we pass instantiating the general
construction with specific encryption schemes. We indeed show that trapdoor
hard-to-invert isomorphisms can be based on the Diffie-Hellman problem, on
the RSA problem, and even on integer factoring.

For lack of space, we refer to the full version [8] for the two first applications,
since they are not really new. Plugging ElGamal directly leads to one of the
AuthA variants, proposed to IEEE P1363 [2], or to PAK [5]. The security has
already been studied in several ideal models [5–7]. The case of RSA leads to
a scheme similar to RSA-OKE, SNAPI [19,18], or to the scheme proposed by
Zhu et al. [26].

More interestingly using such methods we can construct a very efficient solu-
tion from the Rabin function. To our knowledge this is the first efficient password-
based authenticated key exchange scheme based on factoring.

2 Preliminaries

Denote with the set of natural numbers and with the set of positive real
numbers. We say that a function is negligible if and only if for every
polynomial there exists an such that for all
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If A is a set, then indicates the process of selecting at random and
uniformly over A (which in particular assumes that A can be sampled efficiently).

2.1 Trapdoor Hard-to-Invert Isomorphisms
Let I be a set of indices. Informally a family of trapdoor hard-to-invert isomor-
phisms is a set satisfying the following conditions:

one can easily generate an index which provides a description of the func-
tion – a morphism –, its domain and range (which are assumed
to be isomorphic groups), and a trapdoor
for a given one can efficiently sample pairs with uniformly
distributed in
for a given one can efficiently decide
given the trapdoor one can efficiently invert and thus recover
without the trapdoor, inverting is hard.

1.

2.

3.
4.
5.

This is almost the same definition as for trapdoor one-way permutations with
homomorphic properties. There is a crucial difference however: one can sample
pairs, but may not necessarily be able to compute for a given (point 2
above). As a consequence, the function is hard-to-invert, but it may be hard to
compute as well.

More formally we say that F defined as above is a family of trapdoor hard-
to-invert isomorphisms if the following conditions hold:

There exist a polynomial and a probabilistic polynomial time Turing
Machine Gen which on input (where is a security parameter) outputs
pairs where is uniformly distributed in I and The
index defines and which are isomorphic groups, an isomorphism

from onto and a set of values uniformly samplable, which
will be used to sample pairs. The information is referred as
the trapdoor.
There exists a polynomial time Turing Machine which on input

and outputs Furthermore, for any the machine
implements a bijection from onto

There exists a polynomial time Turing Machine such that on in-
put and it outputs for Therefore,

where is a negligible function.

The last property is our formal hard-to-invert notion, which is quite similar to
the usual one-way notion: they just differ if is one-way.

1

2.1

2.2

3

4

5

There exists a polynomial time Turing Machine which, on input
and any answers whether or not.

There exists a (deterministic) polynomial time Turing Machine Inv such
that for all and for all
For every probabilistic polynomial time Turing Machine we have that,
for large enough
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2.2 Verifiable Sub-family of Trapdoor Hard-to-Invert Isomorphisms

In the above definition, it is clear that for any the function is an
isomorphism from the group onto However, in practice, the family of
functions maybe indexed by a potentially larger set S (i.e.
for which there may exist some indices that do not lead to an isomorphism.
Therefore, we require more properties to be satisfied.

there exists a large subset such that is a
family of trapdoor hard-to-invert isomorphisms;
there exists a set J, of indices which provide an isomorphism – such that

which admits an efficient zero-knowledge proof of membership.

The last property turns out to be crucial for the application we have in mind. In
our setting the client has to choose the specific function to use in the protocol.
This means that a dishonest client (i.e. one that does not share a password
with the server) could propose an index whose corresponding function is not
an isomorphism. This would give him the ability to run a partition attack (as
already explained for RSA). For this reason we require the client to produce a
function together with a proof that it is actually an isomorphism.

2.3 Zero-Knowledge Proofs of Membership

As noticed above, the only property we want to be able to verify is the isomor-
phic one, and thus the fact that the index actually lies in J: we just want
the adversary not to be able to prove a wrong statement, we do not care about
malleability [11]. One second point is that the zero-knowledge property will be
required in the security proof: a valid index is given, one tries to use the adver-
sary to solve a hard problem related to Thus, we need to be able to provide a
proof of validity of without any witness. Note however that the simulation is
performed for valid statements only, and thus simulation soundness [24] is not
required. Moreover, since we just have to simulate one proof without the wit-
ness (other executions will be performed as in an actual execution) concurrent
zero-knowledge is not needed either.

For efficiency reasons, we will focus on a specific class of zero-knowledge
proofs: for a given statement the verifier sends a random seed seed and then
the prover non-interactively provides a proof using a
witness that w.r.t. the random seed seed; the proof can be checked
without the witness In our protocol, honest players will sam-
ple and thus together the trapdoor This trapdoor will generally be a
good witness. More formally we require:

Completeness – and are two efficient (polynomial time) al-
gorithms, and for any and any challenge seed, a witness helps to build
a proof which is always accepted:
accepts;
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Soundness – for any the probability for any adversary (on its random
tape and the random seed seed) to forge a valid proof (accepted by the

algorithm) is negligible within time will denote the
maximal success probability for any adversary within time
ROM-simulatability – granted the programmability of the random oracle, for
any and any seed, there exists an efficient way to perfectly simulate
an accepted proof.

2.4 Concrete Examples

The Diffie-Hellman Family. The most natural example of family of trapdoor
hard-to-invert isomorphisms is the Diffie-Hellman one. The machine Gen, on
input the security parameter does as follows. First it chooses a random prime

of size and a prime such that divides Next, it chooses a subgroup
of order in and a corresponding generator Finally it chooses a random

element in it sets  and outputs the pair where
and is an encoding of This defines our set I.

Now is instantiated as follows. Set and
is defined1 as  Moreover is defined

as (for any
Clearly, to efficiently evaluate on a random point X, one should know

either the trapdoor information or any such that (assuming,
of course, that the computational Diffie-Hellman problem is infeasible in

Similarly knowledge of the trapdoor is sufficient to invert
on a random point However inverting the function without
knowing the trapdoor seems to be infeasible. Nevertheless, is efficiently
decidable: simply checks whether  or not.

For our functions to be isomorphisms, one just needs to be co-prime with
where is actually the order of For better efficiency, the group informations

can be fixed, and considered as common trusted parameters. Therefore,
Gen just chooses and sets  one just needs to check that

and no witness is required, nor additional proof:
does not need any witness for outputting any proof, since simply checks
the above equality/inequality.

The RSA Family. Another natural example is the RSA permutation. In this
case the machine Gen on input the security parameter does as follows. First it
chooses two random primes of size and sets Next, it chooses a
public exponent such that Finally it outputs the pair
where and is an encoding of This defines our set I.

The function is instantiated as follows. Set and
is the identity function, i.e. The function

1 Note that we allow a slight misuse of notation here. Actually the function
should be defined as However we prefer to adopt a simpler
(and somehow incorrect) notation for visual comfort.
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is defined as (for any  Hence,
The Inv algorithm is straightforward, granted the trapdoor. And the

algorithm simply has to check whether the element is prime to
As already noticed, since is easy to invert, the RSA family is not

only a trapdoor hard-to-invert isomorphism family, but also a trapdoor one-way
permutation family. However, to actually be an isomorphism, does not
really need to lie in I, which would be very costly to prove (while still possible).
It just needs to satisfy which defines our set J. An efficient
proof of validity is provided in the full version [8], where both and
are formally defined.

The Squaring Family. As a final example, we suggest the squaring function
which is defined as the RSA function with the variant that A problem
here arises from the fact that squaring is not a permutation over simply
because 2 is not co-prime with However, if one considers Blum moduli
(i.e. composites of the form where  then it is easy to
check that the squaring function becomes an automorphism onto the group of
quadratic residues modulo (in the following we refer to this group as to
However this is not enough for our purposes. An additional difficulty comes from
the fact that we need an efficient way to check if a given element belongs to
(which would be here): the need of an efficient algorithm The most
natural extension of is the subset of which contains all the elements
with Jacobi symbol equal to +1. Note that for a Blum modulus this
set is isomorphic to (this is because –1 has a Jacobi symbol
equal to +1, but is not a square). By these positions we get the signed squaring2

isomorphism:

For this family, the machine Gen, on input the security parameter does as
follows. First it chooses two random Blum primes of size and sets

Then it outputs the pair where and is an encoding
of This thus defines our set I. The function is instantiated as follows.
Set and

is the identity function, i.e. The function
is defined as (for any

Hence, The Inv algorithm is straightforward, granted
the trapdoor. And the algorithm simply computes the Jacobi symbol.

As above, since is easy to invert, the squaring family is not only a
trapdoor hard-to-invert isomorphism family, but also a trapdoor one-way per-
mutation family. However, to actually be an isomorphism, does not really need
to be a Blum modulus, which would be very costly to prove. What we need is
just that –1 has Jacobi symbol +1 and any square in admits exactly 4 roots.
A validity proof is provided, with the mathematical justification, in the section 6,
which thus formally defines both and
2 By signed, we mean that the output of the function has a sign (plus or minus).
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3 The Formal Model

3.1 Security Model

Players. We denote by A and B two parties that can participate in the key
exchange protocol P. Each of them may have several instances called oracles
involved in distinct, possibly concurrent, executions of P. We denote A (resp.
B) instances by (resp. or by U when we consider any user instance. The
two parties share a low-entropy secret pw which is drawn from a small dictionary
Password, according to a distribution In the following, we use the notation

for the probability to be in the most probable set of passwords:

If we denote by the uniform distribution among N passwords,

Queries. We use the security model introduced by Bellare et al. [1], to which
paper we refer for more details. In this model, the adversary has the entire
control of the network, which is formalized by allowing to ask the following
queries:

This query models passive attacks, where the adversary
gets access to honest executions of P between the instances and by
eavesdropping.
Reveal(U): This query models the misuse of the session key by any instance
U (use of a weak encryption scheme, leakage after use, etc). The query is
only available to if the attacked instance actually “holds” a session key
and it releases the latter to

This query models sending a message to instance U. The
adversary gets back the response U generates in processing the message

according to the protocol P. A query initializes the key
exchange algorithm, and thus the adversary receives the flow A should send
out to B.

In the active scenario, the Execute-query may seem rather useless: after all the
Send-query already gives the adversary the ability to carry out honest executions
of P among parties. However, even in the active scenario, Execute-queries are
essential to properly deal with dictionary attacks. Actually the number of
Send-queries directly asked by the adversary does not take into account the
number of Execute-queries. Therefore, represents the number of flows the
adversary may have built by itself, and thus the number of passwords it may
have tried. Even better, is an upper-bound on the number of passwords
it may have tried, where (and resp.) is the number of A (B resp.) instances
involved in the attack. For the sake of simplicity, we restricted queries to A and
B only. One can indeed easily extend the model, and the proof, to the more
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general case, keeping in mind that we are interested in the security of executions
involving at least A or B, with the password pw shared by them. Additional
queries would indeed use distinct passwords, which could be assumed public in
the security analysis (known to our simulator).

3.2 Security Notions

Two main security notions have been defined for key exchange protocols. The
first one is the semantic security of the key, which means that the exchanged key
is unknown to anybody else than the players. The second one is unilateral or
mutual authentication, which means that either one, or both, of the participants
actually know the key.

AKE Security. The semantic security of the session key is modeled by an
additional query Test(U). The Test-query can be asked at most once by the
adversary and is only available to if the attacked instance U is Fresh. The
freshness notion captures the intuitive fact that a session key is not “obviously”
known to the adversary. An instance is said to be Fresh if the instance has
accepted (i.e. the flag accept is set to true) and neither it nor its partner (i.e. the
other instance with same session tag —or SID— which is defined as the view
the player has of the protocol —the flows— before it accepts) have been asked
for a Reveal-query. The Test-query is answered as follows: one flips a (private)
coin and forwards sk (the value Reveal(U) would output) if or a random
value if

We denote the AKE advantage as the probability that correctly guesses
the value of More precisely we define where the
probability space is over the password, all the random coins of the adversary
and all the oracles, and is the output guess of for the bit involved in the
Test-query. The protocol P is said to be if advantage is
smaller than for any adversary running with time

Entity Authentication. Another goal of the adversary is to impersonate a
party. We may consider unilateral authentication of either A (A-Auth) or B (B-
Auth), thus we denote by the probability
that successfully impersonates an A instance (resp. a B instance) in an exe-
cution of P, which means that B (resp. A) terminates (i.e. the terminate flag is
set to true) even though it does not actually share the key with any accepting
partner A (resp. B).

A protocol P is said to be if success for breaking
either A-Auth or B-Auth is smaller than for any adversary running with
time This protocol then provides mutual authentication.

4 Algorithmic Assumptions

In this section we state some algorithmic assumptions we need in order to con-
struct an IPAKE protocol. As already sketched in section 1.2, our basic building
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block is a family of trapdoor hard-to-invert bijections More precisely each
bijection needs to be a group isomorphism from a group into a
group where is the inverse operation of
As additional assumption we require the existence of a generalized full-domain
hash function which on a new input outputs a uniformly distributed
element in This is the reason why we need the decidability of in practice,

will be implemented by iterating a hash function until the output is in
The non-invertibility of the functions in the family is measured by the

“ability”, for any adversary in inverting a random function (in on a random
point, uniformly drawn from

More precisely, we denote by the maximal success probability for all
the adversaries running within time A simpler task for the adversary may be
to output a list of elements which contains the solutions:

As above, we denote by the maximal success probability for all
the adversaries running within time which output sets of size

4.1 The RSA Family:

As described in section 2.4 the function is defined by and
And, for any  For a correctly generated and a valid

(i.e an such that the non-invertibility of the function is
equivalent to the, widely conjectured, one-wayness of RSA. This leads to the
following

where is an upper-bound on the time required to perform an exponentiation.

4.2 The Diffie-Hellman Family:

Let be any cyclic group of (preferably) prime order As sketched in
section 2.4, the function is defined by a point (and thus

and For any
attacker, in the finite cyclic group of prime order gen-

erated by is a probabilistic machine running in time such that

3 For visual comfort in the following we adopt the symbols rather than
(respectively)
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Fig. 1. An execution of the IPAKE protocol: Auth is computed by Alice (Bob resp.)
as and sk is computed by
Alice (Bob resp.) as resp.)

where the probability is taken over the random values and in As usual,
we denote by the maximal success probability over every adversary
running within time Then, when and are fixed,
Using Shoup’s result [25] about “self-correcting Diffie-Hellman”, one can see that
if then for some

4.3 The Squaring Family:

As discussed in section 2.4 if one assumes that the modulus is the product
of two Blum primes, the signed squaring function becomes an isomorphism
from onto Furthermore, for a correctly generated the non-
invertibility of is trivially equivalent to the one-wayness of factoring Blum
composites. This leads us to the following inequality

which provides a very tight bound because, in this case, represents the time
required to perform a single modular multiplication (i.e. to square).

5 Security Proof for the IPAKE Protocol

5.1 Description and Notations

In this section we show that the IPAKE protocol distributes session keys that
are semantically secure and provides unilateral authentication for the client A.
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The specification of the protocol can be found on Figure 1. Some remarks, about
notation, are in order

We assume to be a correct family, with a verifiable sub-family of trapdoor
hard-to-invert isomorphisms from into In the following, we identify

to and thus We denote by the size of I. Furthermore, we denote
by a lower bound on the size of any
For this choice of parameters for the family we can define the function

which is assumed to behave like a generalized full-domain random oracle.
In particular we model as follows: on input a couple it outputs a
random element, uniformly distributed in

Since we only consider unilateral authentication (of A to B), we just introduce
a terminate flag for B.

5.2 Security Proof

Theorem 1 (AKE/UA Security). Let us consider the protocol I PAKE, over
a family of trapdoor hard-to-invert isomorphisms, with parameter where
Password is a dictionary equipped with the distribution For any adversary
within a time bound with less than active interactions with the parties (Send-
queries) and passive eavesdroppings (Execute-queries), and asking and
hash queries to and any respectively: and

with upper-bounded by

where and denote the number of A and B instances involved during the
attack (each upper-bounded by and denotes
the number of involved instances and is the time needed
for evaluating one law operation. Let us remind that is the output length of

(the authenticator.)

For lack of space, we refer to the full version [8] for the full proof, here we justify
the main terms in the security result.

Ideally, when one considers a password-based authenticated key exchange,
one would like to prove that the two above success/advantage are upper-bounded
by plus some negligible terms. For technical reasons in the proof (to
get a clear proof) we have a small additional constant factor. This main term is
indeed the basic attack one cannot avoid: the adversary guesses a password and
makes an on-line trial. Other ways for it to break the protocol are:

use a function that is not a permutation, and in particular not a surjection.
With the view of the adversary tries all the passwords, and only a strict
fraction leads to in the image of this is a partition attack. But for that,
it has to forge a proof of validity for Hence the term
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use the authenticator Auth to check the correct password. But this requires
the ability to compute Hence the term
send a correct authenticator Auth, but being lucky. Hence the term

Additional negligible terms come from very unlikely collisions. All the remaining
kinds of attacks need some information about the password.

6 A Concrete Example: The SQRT-IPAKE Protocol

An important contribution of this work (at least from a practical point of view)
is the first efficient and provably secure password-based key exchange protocol
based on factoring. The formal protocol appears in Figure 2. Here we describe
the details of this specific implementation.

Fig. 2. SQRT – IPAKE protocol

6.1 Description of the SQRT-IPAKE Protocol

In order for the protocol to be correct we need to make sure that the adopted
function is actually an isomorphism. As seen in section 2.4 this is the case if
one assumes that the modulus is the product of two Blum primes, and

is the signed squaring function.
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We thus set and and, of course, the internal
law is the multiplication in the group In order for the password PW to be
generated correctly, we need a hash function onto Constructing such
a function is pretty easy: we start from a hash function onto and we
iterate it until we get an output in The details of this technique are deferred
to the full version of this paper [8]. Here we stress that if then very
few iterations are sufficient. As already noticed, we require Alice to prove the
following about the modulus so that the function is actually an isomorphism:

The modulus is in the correct range
The Jacobi symbol of –1 is +1 in (this is to make sure that is actually
a morphism);
The signed squaring function is actually an isomorphism from
onto (this is to make sure that any square in has exactly 4 roots).

Proving the first two statements is trivial. For the third one we need some new
machinery.

6.2 Proof of Correct Modulus

With the following theorem (whose proof can be found in the full version of this
paper [8]) we show that if is a composite modulus (with at least two different
prime factors) then the proposed function is an isomorphism.

Theorem 2. Let be a composite modulus containing at least two different
prime factors and such that –1 has Jacobi symbol +1 in Moreover let be
the morphism defined above. The following facts are true

If is surjective then it is an isomorphism.
If is not surjective, then at most half of the elements in have a pre-
image.

The theorem above leads to the protocol Prove-Surjective (see Figure 3). The
basic idea of this protocol is that we prove that our function is a bijection by
proving it is surjective. Soundness follows from the second statement. However,
in order to fall into the hypotheses of the theorem, we need to make sure
is actually a composite modulus of the required form (i.e. with at least two
distinct prime factors). We achieve this with the Prove-Composite protocol
(see Figure 3). The correctness (completeness, soundness and zero-knowledge
properties) of these protocols is deferred to the full version of this paper [8].

Remark 3. We point out that our protocol is very efficient, for the verifier, in
terms of modular multiplications. It is also possible for Alice to use the same
modulus for different sessions.
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Fig. 3. Proof of Correct Modulus

References

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Se-
cure Against Dictionary Attacks. In Eurocrypt ’00, LNCS 1807, pages 139–155.
Springer-Verlag, Berlin, 2000.
M. Bellare and P. Rogaway. The AuthA Protocol for Password-Based Authenti-
cated Key Exchange. Contributions to IEEE P1363. March 2000.
S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols Secure against Dictionary Attacks. In Proc. of the Symposium on Security
and Privacy, pages 72–84. IEEE, 1992.
C. Boyd, P. Montague, and K. Nguyen. Elliptic Curve Based Password Authen-
ticated Key Exchange Protocols. In ACISP ’01, LNCS 2119, pages 487–501.
Springer-Verlag, Berlin, 2001.
V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authenticated
Key Exchange Using Diffie-Hellman. In Eurocrypt ’00, LNCS 1807, pages 156–171.
Springer-Verlag, Berlin, 2000.
Full version available at: http://cm.bell-labs.com/who/philmac/research/.
E. Bresson, O. Chevassut, and D. Pointcheval. Security Proofs for Efficient
Password-Based Key Exchange. In Proc. of the 10th CCS, pages 241–250. ACM
Press, New York, 2003.

1.

2.

3.

4.

5.

6.

TEAM LinG



IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange 493

E. Bresson, O. Chevassut, and D. Pointcheval. New Security Results on Encrypted
Key Exchange. In PKC ’04, LNCS, pages 145–159. Springer-Verlag, Berlin, 2004.
D. Catalano, D. Pointcheval, and T. Pornin. IPAKE: Isomorphisms for Password-
based Authenticated Key Exchange. In Crypto ’04, LNCS. Springer-Verlag, Berlin,
2004. Full version available from http://www.di.ens.fr/users/pointche/.
W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT–22(6):644–654, November 1976.
Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Schemes.
In PKC ’03, LNCS, pages 130–144. Springer-Verlag, Berlin, 2003.
D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.
T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, IT–31(4):469–
472, July 1985.
R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key
Exchange. In Eurocrypt ’03, LNCS 2656, pages 524–543. Springer-Verlag, Berlin,
2003.
O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords
Only. In Crypto ’01, LNCS 2139, pages 408–432. Springer-Verlag, Berlin, 2001.
S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols.
In Proc. of the 5th CCS. ACM Press, New York, 1998.
J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Ex-
change Using Human-Memorizable Passwords. In Eurocrypt ’01, LNCS 2045, pages
475–494. Springer-Verlag, Berlin, 2001.
S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without En-
crypting Public Keys. In Proc. of the Security Protocols Workshop, LNCS 1361.
Springer-Verlag, Berlin, 1997.
P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Ex-
change Based on RSA. In Asiacrypt ’00, LNCS 1976, pages 599–613. Springer-
Verlag, Berlin, 2000.
P. MacKenzie and R. Swaminathan. Secure Network Authentication with Password
Identification. Submission to IEEE P1363a. August 1999.
T. Okamoto and S. Uchiyama. A New Public Key Cryptosystem as Secure as
Factoring. In Eurocrypt ’98, LNCS 1403, pages 308–318. Springer-Verlag, Berlin,
1998.
P. Paillier. Public-Key Cryptosystems Based on Discrete Logarithms Residues. In
Eurocrypt ’99, LNCS 1592, pages 223–238. Springer-Verlag, Berlin, 1999.
M. O. Rabin. Digitalized Signatures. In R. Lipton and R. De Millo, editors,
Foundations of Secure Computation, pages 155–166. Academic Press, New York,
1978.
R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.
A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Chosen-Ciphertext
Security. In Proc. of the 40th FOCS. IEEE, New York, 1999.
V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In
Eurocrypt ’97, LNCS 1233, pages 256–266. Springer-Verlag, Berlin, 1997.
F. Zhu, A. H. Chan, D. S. Wong, and R. Ye. Password Authenticated Key Exchange
based on RSA for Imbalanced Wireless Network. In Proc. of ISC ’02, LNCS 2433,
pages 150–161. Springer-Verlag, Berlin, 2002.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

TEAM LinG



Randomness Extraction and Key Derivation
Using the CBC, Cascade and HMAC Modes*

Yevgeniy Dodis1, Rosario Gennaro2, Johan Håstad3,
Hugo Krawczyk4, and Tal Rabin2

1 New York University
dodis@cs.nyu.edu

2 IBM Research
{rosario,talr}@watson.ibm.com

3 Royal Institute, Sweden
johanh@nada.kth.se

4 Technion, Israel, and IBM Research
hugo@ee.technion.ac.il

Abstract. We study the suitability of common pseudorandomness
modes associated with cryptographic hash functions and block ciphers
(CBC-MAC, Cascade and HMAC) for the task of “randomness extrac-
tion” , namely, the derivation of keying material from semi-secret and/or
semi-random sources. Important applications for such extractors include
the derivation of strong cryptographic keys from non-uniform sources of
randomness (for example, to extract a seed for a pseudorandom genera-
tor from a weak source of physical or digital noise), and the derivation
of pseudorandom keys from a Diffie-Hellman value.
Extractors are closely related in their applications to pseudorandom
functions and thus it is attractive to (re)use the common pseudoran-
dom modes as randomness extractors. Yet, the crucial difference between
pseudorandom generation and randomness extraction is that the former
uses random secret keys while the latter uses random but known keys. We
show that under a variety of assumptions on the underlying primitives
(block ciphers and compression functions), ranging from ideal random-
ness assumptions to realistic universal-hashing properties, these modes
induce good extractors. Hence, these schemes represent a more practical
alternative to combinatorial extractors (that are seldom used in prac-
tice) , and a better-analyzed alternative to the common practice of using
SHA-1 or MD5 (as a single un-keyed function) for randomness extraction.
In particular, our results serve to validate the method of key extraction
and key derivation from Diffie-Hellman values used in the IKE (IPsec’s
Key Exchange) protocol.

1 Introduction

1.1 Key Derivation and Randomness Extractors

Key derivation is a central functionality in cryptography concerned with the
process of deriving secret and random cryptographic keys from some source of

* Extended abstract. Full version available at eprint.iacr.org/2004/

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 494–510, 2004.
© International Association for Cryptologic Research 2004
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semi-secret randomness. In general, it is sufficient to derive a single random and
secret key (say of length 128) which can then be used to key a pseudorandom
function (or a pseudorandom generator) to obtain further pseudorandom keys
as needed. Thus, a basic question, which motivates the work presented here,
is how to derive such a random and secret key when all that is given is an
imperfect source of randomness which contains some good amount of secret
(computational) entropy, but this entropy is not presented in a direct form of
uniformly (or pseudorandomly) distributed secret bits. This problem arises in
a variety of scenarios such as when deriving keys from a non-uniform source of
noise (as used, for example, by physical random generators) or from semi-random
data (say, coming from user’s input or the sampling of computer events, etc.).
This is also the case when deriving keys from a Diffie-Hellman (DH) exchange.
Let us elaborate on the latter case.

Let’s assume that two parties run a DH protocol in order to agree on a shared
secret key, namely, they exchange DH exponentials and and compute the
DH value In this case, and as seen by the attacker fully determine

Yet, it is assumed (by the Decisional Diffie-Hellman, DDH, assumption)
that a computationally-bounded attacker cannot distinguish from a random
element in the group generated by Thus, one can assume that contains

bits of computational entropy relative to the view of the
attacker (for a formal treatment of computational entropy in the DH context
see [GKR04]). However, this entropy is spread over the whole value which
may be significantly longer than Thus, we are in a situation similar to that of
an imperfect source of randomness as discussed above. In particular, cannot
be used directly as a cryptographic key, but rather as a source from which to
extract a shorter string (say, of length 128) of full computational entropy which
can then be used as a cryptographic key.

The tools used to derive a uniform key from these sources of imperfect ran-
domness are often referred to as randomness extractors. The amount of theo-
retical results in this area is impressive; moreover, some of the constructions
that have proven extraction guarantees are also efficient (see [Sha02] for a recent
survey). One such example is the so called “pairwise independent universal hash
functions” (also called “strongly universal”) [CW79] which have quite efficient
implementations and provable extraction properties. In particular, [HILL99]
shows (see also [Lub96,Gol01]) that if an input distribution has sufficient min-
entropy (meaning that no single value is assigned a too-large probability even
though the distribution may be far from uniform) then hashing this input into a
(sufficiently) shorter output using a function chosen at random from a family of
strongly universal hash functions results in an output that is statistically-close
to uniform. (This result is often referred to as the “Leftover Hash Lemma”.)

For example, consider that is an element of prime order in (i.e., and
are primes and and that and In this case the

DDH assumption guarantees that the value hides (from the attacker) 512 bits of
computational entropy, yet these bits are spread in some unknown way among the
1024 bits of

1
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Yet, in spite of these results and an extensive literature studying their ap-
plication to real cryptographic problems (such as those mentioned earlier, and
in particular for the DH case [GKR04]) one seldom encounters in practice the
use of strong universal hashing or other proven extractors. Instead, the common
practice is to use cryptographic hash functions (such as MD5 and SHA-1) for
the purpose of randomness extraction. A main reason for this practice, justified
by engineering considerations, is that cryptographic hash functions are readily
available in software and hardware implementations, and are required by most
cryptographic applications for purposes other than randomness extraction (e.g.,
as pseudorandom functions). Therefore, it is attractive and convenient to use
them for key extraction as well. Also, the common perception that these hash
functions behave as random functions (formalized via the notion of “random
oracles”) make them intuitively appealing for the extraction applications.

1.2 Randomness Extraction via Common Chaining Modes

In this paper we attempt to bridge between the world of provable extraction
and the common practice of relying on idealized hash functions. The question
that we ask is what is the best way to use cryptographic hash functions, or
other widely available cryptographic tools such as block ciphers, for the task of
randomness extraction. Specifically, we consider three common modes of oper-
ation: CBC chaining, cascade (or Merkle-Damgard) chaining, and HMAC, and
analyze the appropriateness of these modes as extraction tools. Since the goal is
to provide as general (and generic) as possible results, we do not investigate the
extraction properties of specific functions (say SHA-1 or AES) but rather ab-
stract the basic primitives (the compression functions in the case of the cascade
and HMAC modes, and block ciphers in the case of CBC), as random functions
or permutations2.

Before going on with the description of our results, it is worth considering
the following issue. Given that the common practice is to extract randomness
using a hash function modeled as a random oracle, then how much do we gain
by analyzing the above modes under the weaker, but still idealized, randomness
assumption on the underlying basic primitives. There are several aspects to this
question.

The first thing to note is that modeling the compression function of SHA-
1, for example, as a random function, or as a family of random functions, is a
strict relaxation to modeling SHA-1 (as a single un-keyed function) as a ran-
dom function. This is easily seen from the fact that even if one starts with a
random function as the compression function the result of the cascade chain-
ing (which is how SHA-1 is derived) is not a random function. (For example,
in the cascade construction, the probability that two L-block inputs that differ
only in their first block are mapped to the same output is while for

2 In the case of HMAC we obtain results based on non-ideal assumptions on the
underlying basic primitives (see Section 1.3).
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a random function this probability is Another important point is that
cryptographic design work focuses on building the basic blocks, i.e. a compres-
sion function or a block cipher. Thus, making an assumption on these primitives
will represent the design goals which there can be an attempt to satisfy. Also
analysis of the type presented here, rather than implying the security of any spe-
cific implementation of these functions, serves to validate the suitability of the
corresponding chaining modes for some defined goal (in our case the goal is ran-
domness extraction). Indeed, the common approach for analyzing such modes
(e.g., [Dam89,BKR94,BCK96a,BCK96b]) is to make some assumption on the
basic primitive (for example, assuming the underlying compression function to
be a pseudorandom function, or a secure MAC, or a collision-resistant hash func-
tion) and then proving that these or other properties are preserved or implied
by the chaining operation.

In addition, the “monolithic” randomness assumption on a single (unkeyed)
function such as SHA-1 is inappropriate for the setting of randomness extraction
as no single function (even if fully random) can extract a close-to-uniform distri-
bution from arbitrary high-entropy input distributions. This is so, since once the
function is fixed (even if to purely random values) then there are high-entropy
input distributions that will be mapped to small subsets of outputs3. Therefore,
the viable approach for randomness extraction is to consider a family (or col-
lection) of functions indexed by a set of keys. When an application requires the
hashing of an input for the purpose of extracting randomness, then a random
element (i.e., a function) from this family is chosen and the function is applied
to the given input. While there may be specific input distributions that interact
badly with specific functions in the family, a good randomness-extraction family
will make this “bad event” happen with very small probability. Universal hash
families, mentioned before, are examples of this approach. An important point
here is that, while the choice of a function from the family is done by selecting
a random index, or key, this key does not need to be kept secret (this is im-
portant in applications that use extraction to generate secret keys; otherwise,
if we required this index to be secret then we would have a “chicken and egg”
problem).

In our setting, families of keyed functions come up naturally with block ci-
phers and compression functions (for the latter we consider, as in HMAC, the
variable IV as the key to the function). These functions are defined on fixed
length inputs (e.g., 512 bits in the case of compression function of SHA-1, or
128 in the case of AES). Then, to hash arbitrarily long inputs, we extend these
families by the appropriate chaining mode: cascade chaining (or HMAC) for com-
pression functions, and CBC-MAC in the case of block ciphers. What makes the
analysis of these functions challenging (in the setting of randomness extraction)
is that, as discussed before, the key to the function is random but known. For ex-

3 For example, let F be a random function from to bits and let S denote the subset
of that is mapped by F to outputs with a low-order bit of zero. If we consider
the uniform distribution on 5 as the input distribution, then this distribution has
almost full entropy, yet the output of F on S is trivially distinguishable from uniform.
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ample, the fact that the above functions are widely believed to be pseudorandom
does not help much here since, once the key is revealed, the pseudorandom prop-
erties may be lost completely (see full paper). Yet, as we will see in Section 4.2,
we do use the pseudorandom property in some of our analysis. Also worth not-
ing is that using families that are pseudorandom for extraction is particularly
convenient since these same functions can then be used by the same application
(for example, a key-exchange protocol, a random generator, etc.) for further key
derivation (using the extracted key to key the pseudorandom function).

The last question is how to generate the random known keys used by the
extractor. Technically this is not hard, as the parties can generate the appropri-
ate randomness, but the exact details depend on the application. For example,
in the DH key exchange discussed earlier, the parties exchange in the clear ran-
domly chosen values, which are then combined to generate a single key for the
extractor family (e.g. HMAC-SHA1). The shared key is set to
We note that this is substantially the procedure in place in the IKE protocol
[RFC2409,IKEv2] (see also [Kra03]), and this paper presents the first formal
analysis of this design.

A similar DH key extraction step is required in non-interactive scenarios,
such as ElGamal or Cramer-Shoup encryption. There the extractor key can
be chosen either by the encryptor and appended to the ciphertext, or chosen by
the decryptor and included in the public key (this choice is mandatory in case
we want CCA-security, as we don’t want to leave the choice of in the hands
of the adversary). For a different example, consider a cryptographic hardware
device, containing a physical random generator that samples some imperfect
source of noise. In this case the application can choose a random hash function
in the family and wire-in its key into the randomness generation circuit [BST03].
Notice that by using our results, it will be possible to perform the extraction
step using circuitry (such as a block-cipher or a cryptographic hash function)
which is very likely to already be part of the device.

1.3 Our Results

The Extraction Properties of CBC-MAC Mode. We show, in Section 3, that if
is a random permutation over and is an input distribution with

min-entropy of at least then the statistical distance between (where F
represents the function computed in CBC-MAC mode over L blocks) and the
uniform distribution on is As an example, in the application
(discussed before) in which we use the CBC-MAC function F to hash a Diffie-
Hellman value computed over a DDH group of order larger than we get that
the output distribution is computationally indistinguishable from a dis-
tribution whose distance from uniform is at most hence proving (under
DDH) that the output from is computationally indistinguishable
from uniform (and thus suitable for use as a cryptographic key). Note that if
one works over for 1024-bit and then all we need to assume is a
min-entropy of 256 out of the 1024 bits of In the full paper we show that
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for input distributions with particularly high entropy (in particular those that
contain a block of almost-full entropy) the CBC-MAC mode guarantees an
almost-uniform output for any family of permutations.

The Extraction Properties of Cascade Chaining. In Section 4 we study the cas-
cade (or Merkle-Damgard) chaining used in common hash functions such as
MD5 and SHA-1. We show these families to be good extractors when modeling
the underlying compression function as a family of random functions. However,
in this case we need a stronger assumption on the entropy of the input dis-
tribution. Specifically, if the output of the compression function is long
(typically, or 160) we assume a min-entropy of over the whole input,
and “enough” min-entropy over the distribution induced on the last block of
input (typically of length 512 bits). For example, if the last block has bits of
min-entropy, and we assume L blocks, then the statistical distance between the
output of the cascade construction and the uniform distribution (on is
at most We note that the above restriction on the last-block distribu-
tion is particularly problematic in the case of practical functions such as MD5
and SHA since the input-padding conventions of these functions may cause a
full fixed block to be added as the last block of input. In this case, the output
distribution is provably far from uniform. Fortunately, we show that our anal-
ysis is applicable also to the padded-input case. However, instead of proving a
negligible statistical distance, what we show is that the output of the “padded
cascade” is computationally indistinguishable from uniform, a result that suffices
for the cryptographic applications of extraction. Finally, we prove that when ev-
ery block of input has large-enough min-entropy (conditioned on the distribution
of previous blocks), then the above extraction results hold under the sole (and
non-ideal) assumption that the underlying compression function is a family of

functions (for sufficiently small

The Extraction Properties of HMAC. HMAC is the most widely used pseudoran-
dom mode based on functions such as MD5 or SHA, thus proving its extraction
properties is extremely important. Our main result concerning the good extrac-
tion properties of HMAC is proven on the basis of a high min-entropy bits)
in the input distribution without relying on any particular entropy in the
last block of input. Specifically, let F denote the keyed hash function underlying
an instantiation of HMAC (e.g., F is SHA-1 with random IV) and let be the
corresponding outer compression function. Then we show that if F is collision
resistant and is modeled as a random function then the output of HMAC (on
input drawn from the distribution is indistinguishable from uniform for any
attacker that is restricted in the number of queries to the function Moreover,
if the compression function itself is a good extractor, then HMAC is a good
extractor too. However, in this latter case if we are interested in an output of
close-to-uniform bits then the key to the underlying compression function needs
to be sufficiently larger than As a concrete example, if (e.g., we need
to generate a pseudorandom key of length 160) then we can use HMAC with
SHA2-512. Note that this result is particularly interesting in the sense that it
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uses no idealized assumptions, and yet the output of HMAC is provably close to
uniform (even against completely unbounded attackers, including attackers that
can break the collision resistance of F).

Remark (Pseudorandom functions with known keys). It is tempting to use the
pseudorandomness properties enjoyed by the modes studied here as a basis to
claim good (computational) extraction properties. For example, in spite of the
fact that the output of these functions may be statistically very-far from uniform,
it is still true that no (efficient) standard statistical test will be able to tell apart
this output from random (simply because such a test does not use the knowledge
of the key even if this key is known.) Yet, for cryptographic applications using a
family of functions as extractors, based solely on the assumption that the family
is pseudorandom, may be totally insecure. We illustrate this point by showing,
in the full paper, an example of a secure pseudorandom family whose output is
trivially distinguishable from randomness once the key is known.
All proofs appear in the full version of the paper.

2 Universal Hashing and Randomness Extraction

Preliminaries. For a probability distribution we use the notation to
mean that is chosen according to the distribution For a set S, S is used
to mean that is chosen from S with uniform probability. Also, for a probability
distribution we use the notation to denote the probability assigned by

to the value (We often omit the subscript when the probability distribution
is clear from the context.) Throughout the paper, we will use to denote the
maximal numbers of divisors of any number smaller or equal to L. As a very
crude upper bound, we will sometimes use the fact that

MIN-ENTROPY AND COLLISION PROBABILITY. For a probability distribution
over we define its min-entropy as the minimum integer such that for
all We denote the min-entropy of such by
The collision probability of is
and the Renyi (or collision) entropy of is It is easy to
see that these two notions of entropy are related:
In particular, we will frequently use the fact that

STATISTICAL DISTANCE. Let be two probability distributions over the
set S. The statistical distance between the distributions and is defined as

If two distributions have statistical
distance of (at most) then we refer to them as We note that
distributions cannot be distinguished with probability better than even by a
computationally unbounded adversary. It is also well known that if has support
on some set S and U is the uniform distribution over this set, then
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Definition 1. Let and be integers, and be a family of hash functions
with domain range and key space We say that the family

is universal if for every pair of different inputs from
it holds that where the probability is taken over
For a given probability distribution on we say that

is w.r.t. if where the probability is taken over
and conditioned to

Clearly, a family is if it is w.r.t. all distributions on
The notion of universal hashing originates with the seminal papers by Carter
and Wegman [CW79,WC81]; the variant used here was first formulated in
[Sti94]. The main usefulness of this notion comes from the following lemma whose
proof is immediately obtained by conditioning on whether the two independent
samples from collide or not (below E denotes the expected value).

Lemma 1. If is w.r.t. then

Now, using the above lemma and Eq. (1), the lemma below extends the
well-known “Leftover Hash Lemma” (LHL) from [HILL99] in two ways. First,
it relaxes the pairwise-independence condition assumed by that lemma on the
family of hash functions, and allows for “imperfect” families in which the collision
probability is only to perfect (i.e., instead of Second, it
allows for the collision probability to depend on the input distribution rather
than being an absolute property of the family of hash functions. We use these
straightforward extensions of the LHL in an essential way for achieving our
results. We also note that the standard LHL can be obtained from Lemma 2
below by setting

Lemma 2. Let and be integers, let be a probability distribution over
and let be a family of hash function with domain and

range If is universal w.r.t. U is uniform
over and is uniform over then

Remark 1. It is important to note that for the above lemma to be useful one
needs or otherwise the derived bound on the statistical closeness ap-
proaches 1. Moreover, this fact is not a result of a sub-optimal analysis but rather
there are examples of families with (i.e., families) that gen-
erate outputs that are easily distinguishable from uniform. For example, if
is a family of pairwise independent hash functions with outputs, and we de-
fine a new family which is identical to except that it replaces the last
bit of output with 0, then the new family has collision probability of yet its
output (which has a fixed bit of output) is trivially distinguishable from uniform.
The fact that we need (say, makes the analysis of CBC and
the cascade construction presented in the next sections non-trivial. In particular,
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the existing analyses of these functions (such as [BKR94,BCK96b]) are too weak
for our purposes as they yield upper bounds on the collision probability of these
constructions that are larger than

3 The CBC-MAC Construction

Here we study the suitability of the CBC-MAC mode as a randomness extractor.
Recall that for a given permutation on the CBC-MAC computation
of on an input with L blocks in is defined as
where the latter value is set by the recursion: for

We denote the output of the above CBC-MAC process by
Our main result in this section states the extraction properties of CBC-MAC

for a random permutation on elements. To state it more compactly,
we let and notice that
when (here we use the fact that

Theorem 1. Let F denote the CBC-MAC mode over a random permutation
on and let be an input distribution to F defined over L-block

strings. Then the statistical distance between and the uniform distribu-
tion on is at most

In particular, assuming and the above statistical distance
is at most

The proof of the theorem follows from Lemma 2 in combination with the
following lemma that shows that CBC-MAC mode with a random permutation
is for sufficiently small

Lemma 3. Let F denote the CBC-MAC mode over a permutation on
For any if then where
the probability is over the choice of a random permutation

4 The Cascade Construction

We first recall the Merkle-Damgard approach to the design of cryptographic hash
functions and introduce some notation and terminology. For given integers and

let be a family of functions such that and
for all the function maps bits into bits. On the basis of this family
we build another family that works on inputs of any length which
is a multiple of and produces a output. For each the function

is defined as follows. Let for some and
(for all denote the input to we define L variables (each of length
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as and set For processing
inputs of arbitrary length one needs a rule for padding inputs to a length that is
a multiple of Specific functions that build on the above approach, such as MD5
and SHA-1, define their specific padding; we expand on this issue in Section 4.2.
For the moment we assume inputs of length Lb for some L. Some more notation:
Sometimes we use F to denote the family and we write to denote
the random variable for Finally, we use K to denote

The family is called the “compression function(s)” and the family
is referred to as the “cascade construction” (over the compression func-

tion Typical values for the parameters of the compression function are
and

4.1 The Basic Cascade Construction

The main result of this section is the following. Assume is an input distribu-
tion with bits of (overall) min-entropy and “enough” bits of min-entropy in
its last block (“enough” will be quantified below). For the cascade con-
structions we model the underlying family of compression functions as a family
of random functions (with outputs). Then the output of F on the distribu-
tion is statistically close to uniform. This result is formalized in the following
theorem. As in Section 3, we let and notice
that when

Theorem 2. Let be the cascade construction defined, as above, over
a family of random functions Let be the input distribution to F defined
over L-block strings, and denote the probability distribution induced by on
the last block for Then, if U is the uniform distribution over
we have

In particular, if and then

The proof of the theorem follows from Lemma 2 in combination with the
following lemma that shows that the cascade construction with a random family
of compression functions is for sufficiently small

Lemma 4. Let be the cascade construction defined over a family of
random functions Let be an input distribution as assumed in Theorem 2,
where Then, the family F is
w. r. t.

The proof of this lemma is based on the following two propositions: the first
analyzes the collision probability of the cascade function F over random com-
pression functions on inputs that differ (at least) in the last block (Proposition 1);
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then we extend the analysis to the general case, i.e. for any two different and
(Proposition 2). All proofs appear in the final paper.

Proposition 1. Let be the cascade construction defined over a family
of random functions Let be two inputs to F that differ (at least) in the
last block, namely, and let be any value of the initial key. Then

where the probability is taken over the
choice of random functions in F.

Proposition 2. Let F be defined as above, let be two different inputs to
F, and let be any value of the initial key. Then

where the probability is taken over the choice of random functions
in F.

THE VALUE OF THE INITIAL KEY We note that the above analysis holds for
any value of the initial key when the functions are truly random, which means
that in principle can be fixed to a constant. However, in practice not all the
functions of the function family satisfy this requirement. Thus, choosing
at random allows, for example, to extend our analysis to the situation where a
negligible fraction of functions in F are not close to random functions.

NECESSITY OF MIN-ENTROPY IN THE LAST BLOCK. We argue that assuming
non-trivial min-entropy in the last block is required, even if the family of
compression functions is completely random. Assume an input distribution in
which the last block is fixed to a value B. The first L – 1 blocks induce some dis-
tribution for the last key in the sequence. Examining the distribution on
induced by (any) distribution on it is easy to see that this distribution is sta-
tistically far from the uniform distribution. In particular, we expected with high
probability a constant fraction of elements will not appear in the distribution.

4.2 The Cascade Construction with Input Padding

The conditions imposed by Theorem 2 on the input distribution conflict with a
technical detail of the practical implementations of the cascade paradigm (such
as MD5 and SHA-1): rather than applying the cascade process to the input

these functions modify by concatenating enough padding bits as to
obtain a new input whose length is a full multiple of the block length. In some
cases this padding results in a full fixed block appended to Therefore, even
if has the property that the last block of input has relatively high entropy
(as required by Theorem 2) the actual input to the cascade does not have
this property any more. This fact is sufficient to make our main result from
Section 4.1 irrelevant to these real-world functions; luckily, however, we show
here that this serious obstacle can be lifted.

In order to better understand this problem we first describe the actual way
this padding is performed. We consider the concrete value used as the
block length in these functions. Let denote the length of the input and let
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If then is padded with the binary string
followed by a 64-bit representation of If then a whole new block
is added with a padding similar to the one described above (with the binary
representation of occupying the last 64 bits of the added block). From this
description, we see that if, for example, the original input had a length which
was an exact multiple of 512, then  where B is a whole new block
(and represents the concatenation operation). Moreover, the value of B is the
same (and fixed) for all inputs of the length of In particular, if we consider
the case in which we hash Diffie-Hellman values of length of 1024 or 2048 bits
(this is the common case when working over groups), then we get that the
padded input will always have a fixed last block. In other words, regardless
of the entropy existing in the original input the actual input to the cascade
process now has a zero-entropy last block.

For this case, in which the last block is fixed, we show here that a somewhat
weaker (but still very useful) result holds. Specifically, combining Theorem 2 with
the assumption that the family of (compression) functions is pseudorandom,
we can prove that the output from the cascade construction is pseudorandom,
i.e., computationally indistinguishable from uniform (and thus sufficient for most
cryptographic applications) This result holds even though the key to the cascade
function F is revealed! We note that the assumption that the family is
pseudorandom is clearly implied by the modeling (from the previous subsection)
of these functions as random. But we also note that assuming the compression
function (family) of actual schemes such as MD5 or SHA-1 to be pseudorandom
is a standard and widely-used cryptographic assumption (see [BCK96b] for some
analytical results on these PRF constructions).

Lemma 5. Let be a family of pseudorandom functions which is
from random for attackers restricted to time T and a sin-

gle query. Let denote the cascade construction over the family
Further, let be a probability distribution on L-block strings from

which the inputs to F are chosen, and B be a fixed block. If the output distri-
bution with random but known key is close to uniform,
then the distribution (for random but known is

from uniform by attackers that run time T.

The above lemma together with Theorem 2 show that if is a family of
random functions then the cascade construction with a fixed last block block
is indistinguishable from random, provided that the original input distribution
(before padding!) satisfies the conditions of Theorem 2.

It is also worth noting that Lemma 5 can be generalized to input distributions
that can be described as the concatenation of two probability distributions

and where satisfies the conditions of Theorem 2, and is an arbitrary
(polynomial-time samplable) distribution independent from

A PRACTICAL CONSIDERATION. Note that the application of Lemma 5 on an
input distribution still requires the last block of (before padding) to have
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relatively high min-entropy. To maximize this last-block min-entropy it is advis-
able that any input whose length is not a multiple of be “shifted to
the right” (to a block boundary) by prepending a sufficient number of bits (say,
all zeros) to the beginning of This way, the resultant string is of length a
multiple of and, more importantly, its last block contains the full entropy of
the last bits in Also, this shifting forces the appended padding described
earlier to add a full block as assumed in Lemma 54.

4.3 Modeling the Compression Function as a Family

In Section 4.1 we presented an analysis of the basic cascade construction under
the modeling of the compression function as a family of random functions. Here
we study the question of what can be guaranteed on the output distribution of
the cascade under the simple assumption that the family of compression func-
tions is a good extractor (or more generally that this family is Clearly
this is a more realistic assumption on the underlying compression function. On
the other hand, in order to prove a close-to-uniform output in this case we are
going to require a stronger assumption on the input distribution. Specifically, we
are going to assume that the distribution on every block of input has a high min-
entropy (e.g., bits of min-entropy out of the bits in the block), conditioned
on the distribution of the previous blocks. We prove below that under these
conditions the output of the cascade function is statistically close to uniform.

We note that the above requirement on the input distribution, while strin-
gent, is met in some important cases, such as applications that extract keys from
a Diffie-Hellman value computed over a high-entropy group. In particular, this
requirement is satisfied by the DH groups in use with the IKE protocol.

CONDITIONAL ENTROPY.  Let and be two probability distributions over
and respectively. If we denote with the distribution

conditioned to the event that the string is selected according to Then
we can define the conditional min-entropy of (and denote it as
as the minimum integer such that for all

We define the conditional min-entropy of with respect to as the expec-
tation over of

Lemma 6. Assume that the family of compression functions from to
bits has the property that for any probability distribution defined over

with min-entropy of  the output distribution for and is
to uniform (for some given Further, assume that is an

input distribution on L blocks with the property that for each

4 For example, assume the inputs from the distribution to be of length 1800 bits.
Given such an input we prepend to it 248 ‘0’s resulting in a 4-block string

Now when this input is processed by, say, SHA-1 an additional fifth block
is added to The important thing is that the last block of receives as much
entropy from the last 512 bits of as possible.
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the distribution induced by on the block has conditional min-entropy
with respect to the distribution induced by on blocks and that
Then, the cascade construction over the family applied to the distribution

is to uniform.

In particular, if we assume that the family is and the
min-entropy of each input block (as defined above) is at least then we
get (using Lemma 2) a statistical distance between the cascade construction on
L blocks and the uniform distribution on of at most

Combining Lemmas 6 and 5 we get that, under the above assumption on
the input distribution, if the family of compression functions is both and
pseudorandom then the output of the padded cascade (see Section 4.2) is pseu-
dorandom (i.e. indistinguishable from uniform).

5 HMAC Construction

We now turn to the study of HMAC [BCK96a] as a randomness extraction
family. HMAC (and its underlying family NMAC) is defined using the cascade
construction over a family of compression functions with domain
range and (as usual we denote The family of
functions NMAC uses two independent keys drawn from and is defined over
{0,1}* as where both and the result from
are padded as described in Section 4.2. On the basis of NMAC one defines the
family HMAC as where and

the value iv is fixed to the IV defined by the underlying
hash function, and are two different fixed strings of length The
analysis of HMAC is based on that of NMAC under the specialized assumption
that the keys and are “essentially independent”. We keep this assumption
and develop our analysis on NMAC. (The reason of this form of derivation of
the keys in HMAC is to allow for the use, without modification, of the
underlying hash function; in particular, without having to replace the fixed IV
with a variable value.)

We start by observing that if one considers the family as a
family then we get This is so since for any two inputs the

probability that NMAC sends both values to the same output is the sum of the
probability that (which is at least 1/K) plus the probability
that but maps these two different results to the same value
(which is also at least 1/K) . Therefore we cannot apply the results of Section 2
directly to the analysis of NMAC.

However, we provide three analyses, which, under different assumptions, es-
tablish the security of NMAC as a randomness extractor.

DROPPING SOME OUTPUT BITS. Specifically, we assume the “outer” function
outputs bits (e.g., in case is a random function outputting

bits, one can simply drop the last bits and view it as a random function
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outputting bits). In this case, a straightforward application of Lemma 1
and Lemma 2 shows that if the family is w.r.t. and is

then NMAC extracts bits of statistical distance at most
from uniform. Assuming now that both families con-

sist of random functions, then and Proposition 2 implies that
This means that if

and then NMAC extracts bits which are to uniform. In
fact, the same is true even if the outer function family is merely a good
extractor (e.g., if it is pairwise independent). In any case, we get that dropping
roughly (logL + 160) bits from the output of the NMAC construction makes it
a good extractor. To make this result meaningful, however, we must consider
compression functions whose key is non-trivially larger than 160 bits, such as
the compression function for SHA2-512.

COMPUTATIONAL SECURITY. Our second approach to analyzing NMAC is sim-
ilar to the analysis of the padded cascade from Lemma 5. We will present it in
the full version.

MODELING AS A RANDOM ORACLE. As we remarked, even if is truly
random, the value cannot be statistically close to uniform, even
if was perfectly uniform. This was argued under an extremely strong
distinguisher that can evaluate at all of its inputs. This is different
from the typical modeling of as a random oracle. Namely, in the random
oracle model it is assumed that the adversary can evaluate at most a bounded
number of points, This assumption can be seen as restrictive, but in fact
a realistic characterization of the adversary’s capabilities. Thus, we show that
when we model the outer function of NMAC, as a random oracle then the
construction is a good randomness extractor. We start by showing the general
result about the quality of using a random oracle as an extractor, and then
apply it to the NMAC construction.

5.1 Random Oracle as an Extractor

In this section, we show that by utilizing the power of the random oracle to the
fullest, we can provide some provable guarantees on the quality of the random
oracle as a randomness extractor. Our precise modeling of the random oracle

is the following. The adversary is allowed to adaptively
query the random oracle at upto points, and possibly make the distribution
depend on these queries. However, we assume that the remaining “unqueried”

values of are chosen randomly and independently of and are never
given to the adversary5. Finally, given a distribution and a number we let

denote the probability mass of the heaviest elements under

5 We stress that this is very different from our modeling of a random function from
before, where the adversary first chooses the distribution after which is chosen
at random (independently from and given to the adversary in its entirety.
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Lemma 7. Assume is a random oracle from bits to bits, and the adversary
can evaluate in at most points. Then, for any distribution on
the maximal probability the adversary can distinguish from the uniform
distribution over is at most

Remark 2. We already remarked that no single function can be a universally
good extractor, which means that one has to use a function family instead,
indexed by some key On the other hand, in the idealized random oracle
model, we manage to use a single random oracle in Lemma 7. This is not
a contradiction since we critically assumed that the adversary cannot read the
entire description of the random oracle. In essence, the choice of the random
oracle can be viewed as a key but the distinguisher cannot read the entire
key (although it has a choice which parts of it to read) and therefore cannot
adversarially choose a bad distribution Put differently, in our analysis we
could assume that a large part of the key (i.e., is chosen independently of
which is consistent with the conventional extractors such as those obtained by the
LHL. However, unlike the conventional extractors, we (restrictively) assume that
the adversary never learns the entire description of the key (i.e., the unqueried
parts of which allowed us to get a much stronger bound that what we could
get with the LHL. For example, LHL required while Lemma 7
only requires

We will also use the following Corollary of Eq. (4) and Lemma 1.

Corollary 1. If a family of functions is universal w.r.t.
is a random oracle, U is the uniform distribution of  and the adversary

can make at most queries to the random oracle, then the maximal probabil-
ity the adversary can distinguish the pair from is at most

The above corollary implies that the composition of a collision-resistant hash
function and a random oracle could be viewed as a relatively good extractor. This
is because a (computational) collision-resistant function must be (information-
theoretically) almost universal. More precisely, if a function family is
collision-resistant with exact security against non-uniform adversaries running
in linear time, it must also be universal. For uniform adversaries running
in time T, must be universal w.r.t. any which is samplable in time
T/2.

APPLICATION TO NMAC. We can now apply Corollary 1 to the case of NMAC
assuming that the outer function is a random oracle which can be eval-
uated in at most places. By Proposition 2, the family is when the
function family is chosen at random, for (when
Thus, Corollary 1 implies that NMAC extracts bits which cannot be dis-
tinguished from random with probability more than
which is negligible if
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Abstract. We study the problem of broadcasting confidential informa-
tion to a collection of devices while providing the ability to revoke
an arbitrary subset of those devices (and tolerating collusion among the
revoked devices). In this paper, we restrict our attention to low-memory
devices, that is, devices that can store at most keys. We consider
solutions for both zero-state and low-state cases, where such devices are
organized in a tree structure T. We allow the group controller to encrypt
broadcasts to any subtree of T, even if the tree is based on an multi-way
organizational chart or a severely unbalanced multicast tree.

1 Introduction

In the group broadcast problem, we have a group S of devices and a group
controller (GC) that periodically broadcasts messages to all the devices over
an insecure channel [8]. Such broadcast messages are encrypted so that only
valid devices can decrypt them. For example, the messages could be important
instructions from headquarters being sent to PDAs carried by employees in a
large corporation. We would like to provide for revocation, that is, for an arbi-
trary subset we would like to prevent any device in R from decrypting
the messages.

We are interested in schemes that work efficiently with low-memory devices,
that is, devices that can store at most secret keys. Such a scenario
models the likely situation where the devices are small and the secure firmware
dedicated to storing keys is smaller still. We refer to this as the log-key restriction.
We consider two variants of this model.

A static or zero-state version: the keys on each device cannot be
changed once the device is deployed. For example, memory for the devices
could be written into secure firmware at deployment.
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The dynamic or low-state version: any of the keys on each device
can be updated in response to broadcast messages. For example, such de-
vices might have a small tamper-resistant secure cache in which to store and
update secret keys.

Organizing Devices Using Trees. The schemes we consider organize the set
of devices in a tree structure, associating each device with a different leaf in
the tree. In fact, we consider three possible kinds of trees that the devices can
conceptually be organized into.

1.

2.

3.

A balanced  tree. In this case, the devices are associated with the leaves
of a balanced tree where each internal node has a constant number of
children; hence, each is at depth This tree is usually chosen purely
for the sake of efficiency, and, in fact, has been the only tree considered in
previous related work we are familiar with. For example, it forms the basis of
the Logical Key Hierarchy (LKH) scheme [26, 28], the One-way Function Tree
(OFT) scheme [21], the Subset-Difference Revocation (SDR) scheme [16],
and the Layered Subset Difference (LSD) scheme [10].
An organizational chart. In this case, the devices are associated with the
leaves of a tree that represents an organizational chart, such as that of a
corporation or university. For example, internal nodes could correspond to
campuses, colleges, and departments. The height of this tree is assumed
to be but the number of children of an internal is not assumed
to be bounded by a constant. Thus, the straightforward conversion of this
tree into an equivalent bounded-degree tree may cause the height to become

In using trees, particularly in the latter two cases, we feel it is important to
provide the capability to the group controller of encrypting a message so that it
may be decrypted only by the devices associated with nodes in a certain subtree.
For instance, a sporting event might be broadcast to just a single region, or a
directive from headquarters might be intended just for a single division. We call
such a broadcast a subtree broadcast, which can also be modeled by multiple
GCs, each assigned to a different subtree. We continue in this case to assume
the network transmits a message to the entire group, even the revoked devices,
but it should only be readable by the (unrevoked) devices in the specified subtree
when the message is sent in a subtree broadcast. The motivation for organizing
devices into trees and allowing for subtree broadcasts is derived from the way
many organizations are naturally structured. For example, the ICS Company
may have several departments divided into groups, and groups may in turn have
divisions located in different cities.

A multicast tree. In this case, the devices are associated with the nodes of
a multicast tree rooted at the group controller. The logical structure of this
tree could be determined in an ad hoc manner so that no bound is assumed
on either the tree height or the degree of internal nodes. Thus, this tree
may be quite imbalanced and could in fact have height that is exponentially
greater than the number of keys each device can hold.

TEAM LinG



Efficient Tree-Based Revocation in Groups of Low-State Devices 513

After a secure broadcast system is set up, we need to have the ability to
revoke devices to avoid revealing messages beyond the current members. (We
also consider the complexities of adding new devices, but the need for revocation
is better motivated, since additions will typically be done in large blocks.) Thus,
we are interested in the following complexity measures for a set of devices.

Broadcast cost: the number of messages the group controller (GC) must send
in order to reach a subtree containing revoked devices.
Revocation cost: the number of messages the GC must send in order to revoke
a device. Note that this cost is zero in the zero-state case.
Insertion cost: the number of messages the GC must send in order to add a
device. Note that this cost parameter does not apply to the zero-state case.

Related Work. Broadcast/multicast encryption was first formally studied by
Fiat and Naor [8], for the model where all the device keys are dynamic. Their al-
gorithms satisfy the log-key restriction, however, only if no more than a constant
number of revoked devices collude, which is probably not a realistic assumption.
Several subsequent approaches have therefore strengthened the collusion resis-
tance for broadcast encryption, and have done so using approaches where the
group is represented by a fixed-degree tree with the group controller (GC) being
the root and devices (users) being associated with leaves [3–7,11,13–15,23, 24,
26, 28].

Of particular note is the logical key hierarchy (LKH) scheme proposed by
Wallner et al. [26] and by Wong and Lam [28], which achieves O(1) broadcast
cost and revocation cost under the log-key restriction (for the dynamic
case). The main idea of the LKH scheme is to associate devices with the leaves
of a complete binary tree, assign unique secret keys to each node in this tree,
and store at each device the keys stored in the path from leaf to the
root. Some improvements of this scheme within the same asymptotic bounds are
given by Canetti et al. [4, 5]. Using Boolean function minimization techniques,
Chang et al. [6] deal with cumulative multi-user revocations and reduces the
space complexity of the GC, i.e., the number of keys stored at the GC, from

to Wong et al. [27] generalize the results from binary trees to
key graphs. In addition, Sherman and McGrew [21] improve the constant factors
of the LKH scheme using a technique they call one-way function trees (OFT),
to reduce the size of revocation messages. Naor and Pinkas [17] and Kumar et
al. [12] also study multi-user revocations withstanding coalitions of colluding
users, and Pinkas [18] studies how to restore an off-line user who has missed a
sequence of group modifications with message size. Also of note is work
of Rodeh et al. [19], who describe how to use AVL trees to keep the LKH tree
balanced. Thus, the broadcast encryption problem is well-studied for the case
of fully-dynamic keys and devices organized in a complete or balanced k-ary
tree (noticing that a k-ary tree can transform to binary with constant times of
height increasing). We are not familiar with any previous work that deals with
unbalanced trees whose structure must be maintained for the sake of subtree
broadcasts, however.
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There has also been some interesting recent work on broadcast encryption
for zero-state devices (the static case). To begin, we note that several researchers
have observed (e.g., see [10]) that the LKH approach can be used in the zero-
state model under the log-key restriction to achieve broadcast
cost. (We will review the LKH approach in more detail in the next section.)
Naor, Naor, and Lotspiech [16] introduce an alternative approach to LKH, which
they call the sub set-difference revocation (SDR) approach. They show that if
devices are allowed to store static keys, then the group controller
can send out secure broadcasts using messages, i.e., the broadcast cost
of their approach is Halevy and Shamir [10] improve the performance of
the SDR scheme, using an approach they call layered subset difference (LSD).
They show how to reduce the number of keys per device to be
while keeping the broadcast cost They also show how to further extend
their approach to reduce the number of keys per device to be
while increasing the broadcast cost to be These latter results are
obtained using a super-logarithmic number of device keys; hence, they violate
the log-key restriction.

Our Results. We provide several new techniques for broadcast encryption
under the log-key restriction. We study both the static (zero-state) and dynamic
(low-state) versions of this model, and present efficient broadcast encryption
schemes for devices organized in tree structures. We study new solutions for
balanced trees, organizational charts, and multicast trees. We show in Table 1
the best bounds on the broadcast, insertion and revocation cost for each of the
possible combinations of state and tree structure we consider, under the log-key
restriction.

So, for example, we are able to match the log-key bound of the static LKH
scheme while also achieving the broadcast encryption complexity of the
SDR scheme. Indeed, our scheme for this case, which we call the stratified subset
difference (SSD) scheme, is the first scheme we are aware of for zero-state de-
vices that simultaneously achieves both of these bounds. Moreover, we are able
to match the best bounds for balanced trees, even for unbalanced high-degree
organizational charts, which would not be possible using the natural conversion
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to a binary tree. Instead, we use biased trees [1] to do this conversion. But this
approach is nevertheless limited, under the log-key restriction, to cases where the
organizational chart has logarithmic height. Thus, for multicast trees, which can
be very unbalanced (we even allow for height that is we must take a dif-
ferent approach. In particular, in these cases, we extend the linking and cutting
dynamic trees of Sleator and Tarjan [22] to the context of broadcast encryption,
showing how to do subtree broadcasts in this novel context. This implies some
surprisingly efficient performance bounds for broadcast encryption in multicast
trees, for in severely unbalanced multicast trees the number of ancestors of the
leaf associated with some device can be exponentially greater than the number
of keys that device is allowed to store.

2 Preliminaries

The LKH Scheme for a Single Group. Let us briefly review the LKH
scheme [26, 28], which is well known for key management in single groups. The
LKH scheme organizes a group of devices as a complete binary tree with the
GC represented by the root and each user (that is, device) by a leaf, with a key
stored at each node. Each device, as a leaf, knows the path from the root to
itself and all the keys on this path. The GC, as the root, knows the whole tree
and all the keys. (See Figure 1.)

To revoke a device the GC updates every key on the path from itself to
so that: (a) cannot receive any updated key; and (b) any device other than
can receive an updated key if and only if it knows the old value of that key.

The key updating is bottom-up, from the parent of to the root. To distribute
the new key at a node if is the parent of then the GC encrypts the new
key with the current key of the sibling of otherwise, GC encrypts the new
key with the current keys of the two children of respectively. This procedure
guarantees (a) and (b). The total number of messages is Broadcasting
to a subtree simply involves encrypting a message using the key for the root of
that subtree; hence, the broadcast cost is O(1).

In the static case, no updating is allowed. So, the GC must encrypt a broad-
cast using the root of every maximal subtree containing no revoked devices.
Thus, in the static case, LKH has broadcast cost (Recall that is
the number of revoked devices.) In both the static and dynamic case, however,
the number of keys per device remains

Subset Difference Revocation (SDR). The subset difference revocation
(SDR) approach of Naor, Naor, and Lotspiech [16] is also based on associat-
ing all the devices with the leaves of a complete binary tree T. Define a subtree
B as the union of all the paths from the root to leaves associated with revoked
devices. Some internal nodes in B have one child and some two. Mark each in-
ternal node in B with two children as a “cut vertex” and imagine that we cut
out from T the edges from to its two children. This would leave us with
rooted subtrees, each containing some number of valid devices and one revoked
leaf (which may have previously been an internal node). Each such subtree is
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Fig. 1. The LKH scheme for key management in single groups.

therefore uniquely identified by its root, and its descendent node that is
revoked. The GC associates a secret key with each node and defines a label

for each node in the subtree, of T rooted at is secret
key, and for any internal node in with left child and right child we
define and where and are collision-
resistant one-way hash functions that maintain the size of input strings. (Here
we use the abstract model of and Naor, Naor, and Lotspiech use in [16] a
pseudo-random generator G that triples the size of input, and take the left 1/3
and right 1/3 of the output to be the values of and Each leaf in stores
the values of all the labels of the nodes that are siblings of the path from
to (that is, not on the path itself, but are siblings of a node on the path). The
key used to encode a subtree rooted at with a revoked node inside is
Note that no descendent of knows this value and no node outside of can
compute this value, which is what makes this a secure scheme. However, this
scheme requires each device to hold keys, which violates the log-key
restriction.

3 Improved Zero-State Broadcast Encryption

To improve the storage requirements for stateless broadcast encryption, so as to
satisfy the log-key restriction, we take a data structuring approach. We begin
with the basic approach of the subset difference (SDR) method. Without loss of
generality, we assume that we are given a complete binary tree T with leaves
such that each leaf of T is associated with a different user. For any node in
T, let denote the subtree rooted at In addition, for any node and a
descendent of we let denote tree that is, all the nodes that
are descendents of but not Given a set of revoked users, we can use the
same approach as SDR to partition T into at most subtrees such
that union of all these trees represent the complete set of unrevoked users.

A Linear-Work Solution. As a warm-up for our efficient broadcast encryption
scheme, we first describe a scheme that uses keys per device and
messages per broadcast, but requires work per device to decrypt messages
(we will then show how to improve the device work bound keeping the other two
asymptotic bounds unchanged).
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The main idea is that the GC needs a way of encoding a message so that
every leaf node in can decrypt this message, but not other user (or group
of users) can decrypt it. We note as an additional space saving technique, we
can name each node in T according to a level-numbering scheme (e.g., see [9]),
so that the full structure of any tree can be completely inferred using just
the names of and Moreover, any leaf in can determine its relative
position in immediately from its own name, and the names of and

Let us focus on a specific subtree for a node in T. We define a set of
leftist labels, and rightist labels, for each node of In particular,
let us number the nodes in two ways—first according to a left preorder num-
bering (which visits left children before right children) and second according to
a right preorder numbering (which visits right children before left children) [9].
For a non-root node in let denote the predecessor of in the left pre-
order numbering of the nodes in We define to be where is
a collision-resistant one-way hash function. Likewise, we let denote the prede-
cessor of in the right preorder numbering of the nodes in We define to
be where is a (different) collision-resistant one-way hash function.
We initialize these two hash chains by setting and to random seeds
known only to the GC.

For each leaf node in let and respectively denote the successors
of (if they exist) in the left and right preorder numberings of the nodes in
The keys we store at for are and (Note that we specifically
do not store nor at For the complete key distribution, we store
these two keys for each subtree containing (there are such subtrees).
Given this key distribution, to encrypt a message for the nodes in a GC
encrypts the message twice—once using and once using

Decryption. Let us next consider how a leaf node in can decrypt a message
sent to this subtree from the GC. Since is not an ancestor of there are two
possibilities: either comes after in the left preorder numbering of or
comes after in the right preorder numbering. Since can determine the complete
structure of and relative position with in this subtree from the names of

and it can implicitly represent and know which of these two cases
apply. So suppose the first case applies (as the second case is symmetric with the
first). In this case, starts with the label it stores, where is successor
in the left preorder numbering of  It then continues a left preorder traversal of

(which it can perform implicitly if memory is tight) until it reaches With
each new node encounters in this traversal, makes another application of the
one-way function computing the labels of each visited node. Thus, when
visits in this traversal, it will have computed and can then decrypt the
message. This computation takes at most hash function computations.

Security. Let us next consider the security of this scheme. First, observe that
any node outside of has no information that can be used to help decode a
message for the nodes in some tree since and are chosen as
random seeds and nodes outside of receive no function of or
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So the security risk that remains is that leaf descendents of might be able
to decrypt a message sent to the nodes in Let denote the set of leaf
descendents of For each node in with successors and in the two
preorder numberings, we store and at But none of these values
for the nodes in are useful for computing or without inverting
a one-way function, since, in any preorder traversal, all the ancestors of a node
are visited before the node is visited.

Thus, we have a key distribution strategy for the zero-state case that uses
keys per device and messages per broadcast, albeit with work at

each device that could be In the remainder of this section, we describe
how we can reduce this work bound while keeping the other asymptotic bounds
unchanged.

The Stratified Subset Difference (SSD) Method. Given a constant we
can decrease the work per device to be while increasing the space and
message bounds by at most a factor of which should be a good trade-off in
most applications. For example, when is less than one trillion, is less than

The method involves a stratified version of the scheme described above,
giving rise to a scheme we call the stratified subset difference (SSD) method.

We begin by marking each node at a depth that is a multiple of
as “red;” the other nodes are colored “blue.” (See Figure 2.) Imagine further
that we partition the tree T along the red nodes, subdividing T into maximal
trees whose root and leaves are red and whose internal nodes are blue. Call each
such tree a blue tree (even though its root and leaves are red). We then apply
the method described above in each blue tree, as follows. For each leaf in T,
let be the red ancestors of in top-down order. For let
be the blue tree rooted at and note that is a leaf of

We store at node labels and in T), where and
are the left and right preorder successors of in respectively. Storing

these labels increases the space per device by a factor of

Fig. 2. Illustration of the stratified subset difference (SSD) scheme.

To encrypt a message, the GC first performs the subdivision of T into the
subtrees as before. Then, the GC further partitions each tree at the
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red levels, and encodes the broadcast message, using the previously described
scheme, for each blue subtree rooted at a node on the path from to This
increases the broadcast size by at most a factor of but now the work needed
by each device is reduced to computing the L or R labels in a blue tree, which
has size at most Thus, the work per device is reduced to in this
SSD scheme.

Theorem 1. Given a balanced tree T with devices, for zero-state broadcast
encryption, the stratified subset difference (SSD) scheme for T uses
keys per device and has broadcast cost, where is the number of revoked
devices in the subtree receiving the broadcast. The work per device can be made
to be for any fixed constant

Moreover, as we have noted, the security of this scheme is as strong as that
for SDR and LKH, i.e., it is resilient to collusions of any set of revoked devices.

4 A Biased Tree Scheme for an Organizational Chart

We recall that in the organizational chart structure for devices, we have a
hierarchical partition of the devices induced by a tree T of height
but with unbounded branches at each internal node. Namely, the leaves of T are
associated with the devices and an internal node of T represents the group
(set) of devices associated with the leaves of the subtree rooted at Thus,
sibling nodes of T are associated with disjoint groups and each device belongs
to a unique sequence of groups whose nodes are on the path from the
device’s leaf to the root of T. Without loss of generality, we assume that an
internal node of T has either all internal children (subgroups) or all external
children (devices), and its group is called an interior group or exterior group
accordingly. We consider four types of update operations: insertion and deletion
(revocation) of a device or of an empty group. After each modification, we want
to maintain both forward and backward security.

Biased Trees. Biased trees, introduced by Bent et al. [1], are trees balanced by
the weights of leaves (typically set as access frequencies). There are two versions
of biased trees: locally biased and globally biased. We denote by and

the parent, left child and right child of a node of a tree, and we use these
denotations cumulatively. E.g., is the left child of the grandparent of
The following definitions are taken from [1].

A biased search tree is a full binary search tree such that each node has a
weight and a rank The weight of a leaf is initially assigned, and the
weight of an internal node is the sum of the weights of its children. The rank

of a node is a positive integer such that

1.
2.
3.

if is a leaf.
if is a leaf.

and
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A locally biased search tree has the following additional property:

A globally biased search tree has the following additional property:

Global bias. For any with both of the two neighboring
leaves of i.e., the right-most leaf on the left and the left-most leaf on the
right, have rank at least

Group Hierarchies and Biased Trees. Given an organizational chart T
that represents a group hierarchy, we have to convert T to a binary tree before
applying any encryption scheme for key management. Without loss of generality,
we convert T to a binary tree that preserves the original group hierarchy.
Each internal node of T, representing a group becomes a special internal
node in that still represents and accommodates a GC. Additional internal
nodes are added between and its children in T (i.e., subgroups or devices)
for the purpose of binarization. As result,node plus all its children in T and
the paths between them in form a binary subtree in with being
the root and each of its children in T being a leaf. Note that, without special
care, is likely to have super-logarithm height and balancing such a tree using
standard techniques would destroy the group hierarchy.

Given a group hierarchy tree T, we assign a unit weight to each leaf and
calculate the weights of other nodes in T accordingly, i.e., the weight of each
internal node is the number of devices in the subtree of T rooted at We
replace each node with a biased binary tree having the children of as its
leaves (using the weights of these nodes for the biasing). Thus, each subtree
representing a group rooted at a node in T can be initialized into a biased
tree without affecting the structure of group hierarchy. Since for each
is an invariant, i.e., the weights of the root and leaves in every are invariant,
the initialization is well defined and can be done in each independently. That
is, combining all the biased into will not change the structure of the
original hierarchy represented by T. (See Figure 3)

Key Assignment. After initializing the biased we still assign a key to
each node of as in the LKH, and inform the keys to devices and GC’s by the
following security properties:

1.
2.

each device knows all but only the keys on the path from to itself.
the GC of each knows all but only the keys of descendants in
and those on the path from to

Local bias. For any with
1.

2.

if then either or is a leaf with rank if
then either or is a leaf with rank and

if and then either
or is a leaf with rank if and

then either or is a leaf with rank
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Fig. 3. Binary tree consisting of biased trees and The ranks of the
nodes in and are shown.

Broadcast and Multicast. Using the above security properties and appro-
priate signature or authentication mechanism [2,4,20,25], the GC of each
can send a message securely with one key encryption to or any subgroup or
super-group of without any ambiguity.

Key Update and Tree Rebalance. As in the LKH scheme, keys should be
updated after each insertion or deletion (revocation) of a device or group so
that the security properties 1 and 2 are maintained. Moreover, we should also
rebalance to preserve the bias properties in each Assume that we can
insert a leaf, delete a leaf, or update the weight of a leaf in (by

and respectively) while preserving both the security and
bias properties. Then inserting or deleting a device
can be done in three steps:

1.
2.

3.

insert or delete a leaf in the exterior tree
update the weights in the interior trees

accordingly; and
update the keys on the path from to bottom-up, as in the LKH scheme.

To insert or delete a group is a similar process except
starting with an insertion or deletion in an interior Therefore insert, delete
and reweight in each suffice all our hierarchy modifications in Such
operations preserving the bias properties were already given and analyzed in
[1], we now describe how to modify them to preserve the security properties,
too.

Recall that the biased tree operations, including insert, delete and reweight,
recursively call an operation tilt as the only subroutine to rebalance the biased
tree structure [1]. Operation tilt performs a single rotation associated with rank
modification. Since a node loses descendants during a rotation if it is rotated
down and losing descendants is the only chance of key leaks in the LKH scheme.
To maintain the security properties 1 and 2 after any rotation in it is neces-
sary and sufficient to update the key at the node rotated down. Observing that
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updating a single key and distributing the result of a rotation are both easy in
our scheme, we can replace the tilt in [1] with our secure-tilt which preserves the
security properties 1 and 2.We give a detailed description of secure-tilt-left in
Figure 4. Operation secure-tilt-right is analogous. Using secure-tilt as the sub-
routine in biased tree operations, the scheme is as secure as LKH.

Fig. 4. The algorithm for operation

Efficiency of the Scheme. The insert, delete and reweight operations in biased
trees are implemented as follows: join and split are the two basic biased tree
operations. has global and local versions, which will merge two global
or local biased trees with roots and and return the root of the resulting
tree, and both versions work by recursively calling secure-tilt. will
split T into two biased trees and each containing all the leaves of T with
their binary search keys less than and greater than respectively, split calls
local-join as a subroutine and is applicable to both local and global biased trees.

Other operations are based on join and split: operation splits T by
and then joins and together; operation splits T by and

then joins and back ignoring and operation splits T by
updates the weight of and then joins and back into T.

The correctness and efficiency of our hierarchy modifications in follow
those of biased tree operations. Notice that our secure-tilt takes constant message
size as well as the constant-time tilt in [1], all time bounds in [1] also hold as
bounds of message size in our scheme.

This gives us the following.

Theorem 2. Given an organizational chart tree T with height and devices,
under the log-key restriction, the dynamic biased binary tree scheme for T has
has O(1) broadcast cost and revocation and insertion cost.

Proof. We show how to access a device from
The analysis of other operations is similar. Since the root of is a leaf of
and each biased tree has the ideal access time, the time to
access from is
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Thus, we satisfy the log-key restriction for any organizational chart with
height. We also note that applying our SSD approach to a static

application of the techniques developed in this section results in a scheme using
keys per device and messages per broadcast for an organization

chart with height

5 A Dynamic Tree Scheme for a Multicast Tree

Let us next consider the multicast tree structure, which, for the sake of broadcast
encryption, is similar to the organizational chart, except that the height of a
multicast tree can be much larger than logarithmic (we even allow for linear
height). For a multicast tree T with devices and groups, we give a scheme
with broadcast cost and update cost, irrespectively of the
depth of T.

Dynamic Trees. Dynamic trees were first studied by Sleator and Tarjan [22]
and used for various tree queries and network flow problems. The key idea is
to partition a highly unbalanced tree into paths and associate a biased tree
structure, which is in some sense balanced, to each path. Thus any node in the
tree can be accessed and any update to the tree can be done in time
through the associated structure, regardless the depth of node or the height of
tree. The dynamic tree used in our scheme is specified by taking the partition by
weight (size) approach and not having cost on each edge. The following definition
refers to this specification.

A dynamic tree T is a weighted binary search tree where the weight is
initially assigned if is a leaf, or if is an internal
node. The edges of T are partitioned into solid and dashed edges so that each
node links with its heavier child by a solid edge and with the lighter child by a
dashed edge. Thus T is partitioned into solid paths linked by dashed edges.
We denote by the deepest node in and the upper-most one1. Then
the edge between any and its parent must be dashed, and vice versa. For

operations, each solid path is further organized as a global biased
tree, denoted by so that the nodes from to become leaves
of from left to right, and the weight of a leaf in is assigned as

where is the dashed child of in T. Then T consists of
these by linking the root of each with the parent of unless

is the root of T. (See Figure 5.) To show that such structure of T is well
defined, let the root of be and the parent of be then we
have that Thus, can replace as a
child of

1 must be a leaf of T by the “partition by weight” approach.
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Fig. 5. Partition of tree and the accessing path to

Group Hierarchies and Dynamic Trees. We convert a multicast tree T to a
binary tree that preserves the group hierarchy in T as same as in the biased
tree scheme. Instead of using a biased tree, we simply use a complete binary tree
for each then assign a unit weight to each device and partition

into a dynamic tree as above. A key is assigned to each node of each
Since the root of becomes child of a leaf of each device becomes a
descendant of a unique string of biased trees of paths
The way a device is accessed is not through the real path in but through the
path in the string of (See Figure 5.)

Broadcast and Multicast. Broadcast in a group becomes a little more
complicate because, although device is a descendant of in T, may not
be on the accessing path from to However, if then the accessing
path to any descendant of must pass a node in the prefix of from
to So, to broadcast in it is sufficient to encrypt the message by the keys
in that cover this prefix of In the full version, we show that, with the
dynamic tree scheme, it takes encryptions to broadcast a message in
any group either in worst case or in average.

Key Updates. We follow the dynamic tree operations in [22] to modify the
hierarchy, and update the keys in the accessing path of the updated item as in
the LKH scheme. Dynamic tree operations dynamically change the solid path
partition to guarantee the running time, and such change is carried out
by the biased tree operations among Therefore, operation secure-tilt
preserves the security properties along any accessing path. The dynamic tree
operations we use are as follows:

extend by converting the edge from to its parent solid,
and the edge between and its parent dashed.
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Let be the upper most edge in such that is not the
heavier child of if there exist such edges in Then cut by converting

into dashed and into solid.
make the path from to (the real path in into a single

solid path by a series of splices.
convert every edge in who does not link to a heavier child of

parent into dashed by a series of slices.
combine two dynamic trees by making the parent of where

is the root of the first tree and is a node in the second.
divide a dynamic tree into two by deleting the edge between and

Inserting or deleting a device or a group corresponds to a link or cut operation,
respectively. Such dynamic tree operation take time and can be reduced
to a series of join and split operation on biased trees. The algorithmic template
for a dynamic tree operation is the expose-and-conceal strategy, described as
follows:

1.
2.

perform on a node
if the above expose operation violates the “partition by weight” property,
restore the property by executing on the appropriate path

Since all the dynamic tree operations reduce to a series of biased tree opera-
tions, operation secure-tilt is still the only subroutine that adjusts the partition
of Notice that the structure is never adjusted, but the accessing
path to each device are adjusted through operations. From [22], we know that,
with partition by weight and representing the solid paths as global biased trees,
any dynamic tree operation takes time. Since a hierarchy modification
consists of a dynamic tree operation plus updating the keys in an access path,
which is also of length the efficiency of key updating for hierarchy
modifications follows.

Theorem 3. Given a multicast tree T with devices, under the log-key re-
striction, structured in groups, the dynamic tree scheme for T has
broadcast cost and revocation and insertion cost.

A zero-state version can also be developed, which uses the biased trees and
broadcast scheme to send messages to the unrevoked leaves in a multicast tree
T using broadcasts for devices storing keys each, where is
the number of revoked devices.
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Abstract. In a recent paper Dinur and Nissim considered a statistical
database in which a trusted database administrator monitors queries
and introduces noise to the responses with the goal of maintaining data
privacy [5]. Under a rigorous definition of breach of privacy, Dinur and
Nissim proved that unless the total number of queries is sub-linear in the
size of the database, a substantial amount of noise is required to avoid a
breach, rendering the database almost useless.
As databases grow increasingly large, the possibility of being able to
query only a sub-linear number of times becomes realistic. We further
investigate this situation, generalizing the previous work in two impor-
tant directions: multi-attribute databases (previous work dealt only with
single-attribute databases) and vertically partitioned databases, in which
different subsets of attributes are stored in different databases. In addi-
tion, we show how to use our techniques for datamining on published
noisy statistics.

Keywords: Data Privacy, Statistical Databases, Data Mining, Vertically
Partitioned Databases.

1 Introduction

In a recent paper Dinur and Nissim considered a statistical database in which
a trusted database administrator monitors queries and introduces noise to the
responses with the goal of maintaining data privacy [5]. Under a rigorous defini-
tion of breach of privacy, Dinur and Nissim proved that unless the total number
of queries is sub-linear in the size of the database, a substantial amount of noise
is required to avoid a breach, rendering the database almost useless1. However,
when the number of queries is limited, it is possible to simultaneously preserve
privacy and obtain some functionality by adding an amount of noise that is a
function of the number of queries. Intuitively, the amount of noise is sufficiently
large that nothing specific about an individual can be learned from a relatively
small number of queries, but not so large that information about sufficiently
strong statistical trends is obliterated.

1 For unbounded adversaries, the amount of noise (per query) must be linear in the
size of the database; for polynomially bounded adversaries, noise is required.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 528–544, 2004.
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As databases grow increasingly massive, the notion that the database will be
queried only a sub-linear number of times becomes realistic. We further inves-
tigate this situation, significantly broadening the results in [5], as we describe
below.

Methodology. We follow a cryptography-flavored methodology, where we con-
sider a database access mechanism private only if it provably withstands any
adversarial attack. For such a database access mechanism any computation over
query answers clearly preserves privacy (otherwise it would serve as a privacy
breaching adversary). We present a database access mechanism and prove its
security under a strong privacy definition. Then we show that this mechanism
provides utility by demonstrating a datamining algorithm.

Statistical Databases. A statistical database is a collection of samples that are
somehow representative of an underlying population distribution. We model
a database as a matrix, in which rows correspond to individual records and
columns correspond to attributes. A query to the database is a set of indices
(specifying rows), and a Boolean property. The response is a noisy version of the
number of records in the specified set for which the property holds. (Dinur and
Nissim consider one-column databases containing a single binary attribute.) The
model captures the situation of a traditional, multiple-attribute, database, in
which an adversary knows enough partial information about records to “name”
some records or select among them. Such an adversary can target a selected
record in order to try to learn the value of one of its unknown sensitive at-
tributes. Thus, the mapping of individuals to their indices (record numbers) is
not assumed to be secret. For example, we do not assume the records have been
randomly permuted.

We assume each row is independently sampled from some underlying distri-
bution. An analyst would usually assume the existence of a single underlying
row distribution and try to learn its properties.

Privacy. Our notion of privacy is a relative one. We assume the adversary knows
the underlying distribution on the data, and, furthermore, may have some a
priori information about specific records, e.g., the a priori probability that
at least one of the attributes in record 400 has value 1 – is .38”. We anlyze
privacy with respect to any possible underlying (row) distributions where
the ith row is chosen according to This partially models a priori knowledge
an attacker has about individual rows (i.e. is conditioned on the attacker’s
knowledge of the ith record). Continuing with our informal example, privacy is
breached if the a posteriori probability (after the sequence of queries have been
issued and responded to) that “at least one of the attributes in record 400 has
value 1” differs from the a priori probability “too much”.

Multi-attribute Sub-linear Queries (SuLQ) Databases. The setting studied in [5],
in which an adversary issues only a sublinear number of queries (SuLQ) to a
single attribute database, can be generalized to multiple attributes in several

TEAM LinG



530 Cynthia Dwork and Kobbi Nissim

natural ways. The simplest scenario is of a single SuLQ database,
queried by specifying a set of indices and a Boolean function. The re-
sponse is a noisy version of the number of records in the specified set for which
the function, applied to the attributes in the record, evaluates to 1. A more
involved scenario is of multiple single-attribute SuLQ databases, one for each
attribute, administered independently. In other words, our database
is vertically partitioned into single-attribute databases. In this case, the chal-
lenge will be datamining: learning the statistics of Boolean functions of the at-
tributes, using the single-attribute query and response mechanisms as primitives.
A third possibility is a combination of the first two: a database that
is vertically partitioned into two (or more) databases with and (possibly
overlapping) attributes, respectively, where Database can
handle functional queries, and the goal is to learn relationships between
the functional outputs, eg, “If holds, does this increase the
likelihood that holds?”, where is a function on the attribute
values for records in the ith database.

1.1 Our Results

We obtain positive datamining results in the extensions to the model of [5]
described above, while maintaining the strengthened privacy requirement:

1.

2.

3.

Multi-attribute SuLQ databases: The statistics for every Boolean func-
tion can be learned2. Since the queries here are powerful (any function), it is
not surprising that statistics for any function can be learned. The strength
of the result is that statistics are learned while maintaining privacy.
Multiple single-attribute SuLQ databases: We show how to learn the statis-
tics of any 2-ary Boolean function. For example, we can learn the fraction of
records having neither attribute 1 nor attribute 2, or the conditional proba-
bility of having attribute 2 given that one has attribute 1. The key innovation
is a procedure for testing the extent to which one attribute, say, implies
another attribute, in probability, meaning that where

can be estimated by the procedure.
Vertically Partitioned SuLQ Databases: The constructions here
are a combination of the results for the first two cases: the attributes are
partitioned into (possibly overlapping) sets of size and respectively,
where each of the two sets of attributes is managed by a multi-
attribute SuLQ database. We can learn all 2-ary Boolean functions of the
outputs of the results from the two databases.

We note that a single-attribute database can be simulated in all of the above
settings; hence, in order to preserve privacy, the sub-linear upper bound on
queries must be enforced. How this bound is enforced is beyond the scope of this
work.
2 Note that because of the noise, statistics cannot be learned exactly. An additive error

on the order of is incurred, where is the number of records in the database.
The same is true for single-attribute databases.
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Datamining on Published Statistics. Our technique for testing implication in
probability yields surprising results in the real-life model in which confidential
information is gathered by a trusted party, such as the census bureau, who pub-
lishes aggregate statistics. Describing our results by example, suppose the bureau
publishes the results of a large (but sublinear) number of queries. Specifically, for
every, say, triple of attributes and for each of the eight conjunctions
of literals over three attributes the bureau
publishes the result of several queries on these conjunctions. We show how to
construct approximate statistics for any binary function of six attributes. (In
general, using data published for it is possible to approximately learn
statistics for any function.) Since the published data are the results of
SuLQ database queries, the total number of published statistics must be sub-
linear in the size of the database. Also, in order to keep the error down,
several queries must be made for each conjunction of literals. These two facts
constrain the values of and the total number of attributes for which the result
is meaningful.

1.2 Related Work

There is a rich literature on confidentiality in statistical databases. An excellent
survey of work prior to the late 1980’s was made by Adam and Wortmann [2].
Using their taxonomy, our work falls under the category of output perturbation.
However, to our knowledge, the only work that has exploited the opportunities
for privacy inherent in the fact that with massive of databases the actual number
of queries will be sublinear is Sect. 4 of [5] (joint work with Dwork). That work
only considered single-attribute SuLQ databases.

Fanconi and Merola give a more recent survey, with a focus on aggregated
data released via web access [10]. Evfimievski, Gehrke, and Srikant, in the Intro-
duction to [7], give a very nice discussion of work in randomization of data, in
which data contributors (e.g., respondents to a survey) independently add noise
to their own responses. A special issue (Vol.14, No. 4, 1998) of the Journal of Of-
ficial Statistics is dedicated to disclosure control in statistical data. A discussion
of some of the trends in the statistical research, accessible to the non-statistician,
can be found in [8].

Many papers in the statistics literature deal with generating simulated data
while maintaining certain quantities, such as marginals [9]. Other widely-studied
techniques include cell suppression, adding simulated data, releasing only a sub-
set of observations, releasing only a subset of attributes, releasing synthetic or
partially synthetic data [13,12], data-swapping, and post-randomization. See
Duncan (2001) [6].

R. Agrawal and Srikant began to address privacy in datamining in 2000 [3].
That work attempted to formalize privacy in terms of confidence intervals (in-
tuitively, a small interval of confidence corresponds to a privacy breach), and
also showed how to reconstruct an original distribution from noisy samples (i.e.,
each sample is the sum of an underlying data distribution sample and a noise
sample), where the noise is drawn from a certain simple known distribution.
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This work was revisited by D. Agrawal and C. Aggarwal [1], who noted that it
is possible to use the outcome of the distribution reconstruction procedure to
significantly diminish the interval of confidence, and hence breach privacy. They
formulated privacy (loss) in terms of mutual information, taking into account
(unlike [3]) that the adversary may know the underlying distribution on the data
and “facts of life” (for example, that ages cannot be negative). Intuitively, if the
mutual information between the sensitive data and its noisy version is high, then
a privacy breach occurs. They also considered reconstruction from noisy sam-
ples, using the EM (expectation maximization) technique. Evfimievsky, Gehrke,
and Srikant [7] criticized the usage of mutual information for measuring privacy,
noting that low mutual information allows complete privacy breaches that hap-
pen with low but significant frequency. Concurrently with and independently of
Dinur and Nissim [5] they presented a privacy definition that related the a priori
and a posteriori knowledge of sensitive data. We note below how our definition
of privacy breach relates to that of [7,5].

A different and appealing definition has been proposed by Chawla, Dwork,
McSherry, Smith, and Wee [4], formalizing the intuition that one’s privacy is
guaranteed to the extent that one is not brought to the attention of others. We
do not yet understand the relationship between the definition in [4] and the one
presented here.

There is also a very large literature in secure multi-party computation. In
secure multi-party computation, functionality is paramount, and privacy is only
preserved to the extent that the function outcome itself does not reveal infor-
mation about the individual inputs. In privacy-preserving statistical databases,
privacy is paramount. Functions of the data that cannot be learned while pro-
tecting privacy will simply not be learned.

2 Preliminaries

Notation. We denote by (read: negligible) a function that is asymptoti-
cally smaller than any inverse polynomial. That is, for all for all sufficiently
large we have We write for

2.1 The Database Model

In the following discussion, we do not distinguish between the case of a verti-
cally partitioned database (in which the columns are distributed among several
servers) and a “whole” database (in which all the information is in one place).

We model a database as an binary matrix Intuitively, the
columns in correspond to Boolean attributes and the rows in
correspond to individuals where iff attribute holds for individual
We sometimes refer to a row as a record.

Let be a distribution on We say that a database is
chosen according to distribution if every row in is chosen according to
independently of the other rows (in other words, is chosen according to
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In our privacy analysis we relax this requirement and allow each row to be
chosen from a (possibly) different distribution In that case we say that the
database is chosen according to

Statistical Queries. A statistical query is a pair where indicates a
set of rows in and denotes a function on attribute values.
The exact answer to is the number of rows of in the set for which
holds (evaluates to 1):

We write when the function is a projection onto the jth element:
In that case is a query on a subset of the entries in

the jth column: When we look at vertically partitioned single-
attribute databases, the queries will all be of this form.

Perturbation. We allow the database algorithm to give perturbed (or “noisy”)
answers to queries. We say that an answer is within perturbation if

Similarly, a database algorithm is within perturbation if for every
query

The probability is taken over the randomness of the database algorithm

2.2 Probability Tool

Proposition 1. Let be random variables so that and
then

Proof. Let hence Using Azuma’s inequality3 we
get that As

the proposition follows.

3 Privacy Definition

We give a privacy definition that extends the definitions in [5,7]. Our definition
is inspired by the notion of semantic security of Goldwasser and Micali [11]. We
first state the formal definition and then show some of its consequences.

Let be the a priori probability that (taking into account that
we assume the adversary knows the underlying distribution on row In
3 Let be a martingale with for all Let

be arbitrary. Azuma’s inequality says that then
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general, for a Boolean function we let be the a priori
probability that We analyze the a posteriori probability
that given the answers to T queries, as well as all the values
in all the rows of other than for all We denote this a posteriori
probability

Confidence. To simplify our calculations we follow [5] and define a monotoni-
cally-increasing 1-1 mapping conf : as follows:

Note that a small additive change in conf implies a small additive change in
4. Let and We write our privacy

requirements in terms of the random variables defined as5:

Definition 1 A database access mechanism is
if for every distribution on for every row index for every function

and for every adversary making at most T queries it
holds that

The probability is taken over the choice of each row in according to and the
randomness of the adversary as well as the database access mechanism.

A target set F is a set of Boolean functions (one can think of the
functions in F as being selected by an adversary; these represent information it
will try to learn about someone). A target set F is if for
all and Let F be a target set. Definition 1 implies that under a

database mechanism, F is with probability

Proposition 2. Consider database with attributes.
Let F be the target set containing all the Boolean functions over the at-
tributes. Then,

Proof. Let be a target set containing all conjuncts of attributes. We
have that and hence is with probability

To prove the proposition we show that F is safe whenever is. Let
be a Boolean function. Express as a disjunction of conjuncts of attributes:
4 The converse does not hold – conf grows logarithmically in for and logarith-

mically in for
5 Our choice of defining privacy in terms of is somewhat arbitrary, one could

rewrite our definitions (and analysis) in terms of the a priori and a posteriori proba-
bilities. Note however that limiting in Definition 1 is a stronger requirement
than just limiting
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Similarly, express as the disjunction of the remaining
conjuncts: (So

We have:

vs. Finding Very Heavy Sets. Let be a target function and
Our privacy requirement implies such

that it is infeasible to find a “very” heavy set that is, a set for which
Such a set would violate our privacy

requirement as it would allow guessing for a random record in

Relationship to the Privacy Definition of [7]. Our privacy definition extends the
definition of privacy breaches of [7]. Their definition is introduced with
respect to a scenario in which several users send their sensitive data to a center.
Each user randomizes his data prior to sending it. A privacy breach
occurs if, with respect to some property the a priori probability that holds
for a user is at most whereas the a posteriori probability may grow beyond

(i.e. in a worst case scenario with respect to the coins of the randomization
operator).

4 Privacy of Multi-attribute SuLQ Databases

We first describe our SuLQ Database algorithm, and then prove that it preserves
privacy.

Let and define for some
(taking will work). To simplify notation, we write for

for (and later for

Note that is a binomial random variable with and standard devi-
ation In our analysis we will neglect the case where largely deviates from

Let maximize and maximize Us-
ing we get that

where the last inequality holds as
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zero, as the probability of such an event is extremely small:
In particular, this implies that our SuLQ database algorithm is within

perturbation.
We will use the following proposition.

Proposition 3. Let B be a binomially distributed random variable with expec-
tation 0 and standard deviation Let L be the random variable that takes the
value Then

1.

2.

For this value is

bounded by
E[L] = O(1/R), where the expectation is taken over the random choice of B.

Proof. 1. The equality follows from the symmetry of the Binomial distribution
(i.e.Pr[B]=Pr[–B]).
To prove the bound consider

Using the limits on B and the definition of R we

get that this value is bounded by
2. Using the symmetry of the Binomial distribution we get:

Our proof of privacy is modeled on the proof in Section 4 of [5] (for single
attribute databases). We extend their proof (i) to queries of the form where

is any Boolean function, and (ii) to privacy of Boolean functions

Theorem 1. Let and for and
Then the SuLQ algorithm is within

perturbation.

Note that whenever bounding the adversary’s number of
queries to allows privacy with perturbation magnitude less than

Proof. Let be as in the theorem and recall for some

Let the queries issued by the adversary be denoted
Let be the perturbed answers to

these queries. Let and
We analyze the a posteriori probability that given the answers to

the first queries and (where denotes the entire database
except for the ith row). Let Note that
(of Section 3), and (due to the independence of rows in
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By the definition of conditional probability6 we get

Note that the probabilities are taken over the coin flips of the SuLQ algorithm
and the choice of In the following we analyze the numerator (the denominator
is analyzed similarly).

The last equality follows as the rows in are chosen independently of each
other. Note that given both and the random variable is independent
of Hence, we get:

Next, we observe that although depends on the dependence is weak.
More formally, let be such that and Note
that whenever we have that

When, instead, we can relate and
via Proposition 3:

Lemma 1. Let be such that Then
where and

and is noise that yields when

Proof. Consider the case Writing
and the proof follows from

Proposition 3. Similarly for

Note that the value of does not depend on
Taking into account both cases and we get

6 I.e.
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Let be the probability, over that Letting be such that
we have

and similarly

Putting the pieces together we get that

Define a random walk on the real line with To
conclude the proof we show that (with high probability) T steps of the random
walk do not suffice to reach distance From Proposition 3 and Lemma 1 we get
that

and

Using Proposition 1 with we get that for all

5 Datamining on Vertically Partitioned Databases

In this section we assume that the database is chosen according to for some
underlying distribution on rows, where is independent of the size of the
database. We also assume that is sufficiently large that the true database
statistics are representative of Hence, in the sequel, when we write things like

we mean the probability, over the entries in the database, that holds.
Let and be attributes. We say that implies in probability if the

conditional probability of given exceeds the unconditional probability of
The ability to measure implication in probability is crucial to datamining. Note
that since is simple to estimate well, the problem reduces to obtaining a
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good estimate of Moreover, once we can estimate the we can use
Bayes’ Rule and de Morgan’s Laws to determine the statistics for any Boolean
function of attribute values.

Our key result for vertically partitioned databases is a method, given two
single-attribute SuLQ databases with attributes and respectively, to measure

For more general cases of vertically partitioned data, assume a
database is partitioned into databases, with (possibly
overlapping) attributes, respectively, where We can use functional
queries to learn the statistics on Boolean functions of the attributes in the
ith database, and then use the results for two single-attribute SuLQ databases
to learn binary Boolean functions of any two functions (on attributes in
database and (on attributes in database where

5.1 Probabilistic Implication

In this section we construct our basic building block for mining vertically parti-
tioned databases.

We assume two SuLQ databases of size with attributes respec-
tively. When implies in probability with a gap of we write meaning
that We note that and are easily computed
within error simply by querying the two databases on large subsets.
Our goal is to determine or equivalently, the method will be
to determine if, for a given and then to estimate
by binary search on

Notation. We let and
Let X be a random variable counting the number of times holds when we

take N samples from Then and
Let

Note that Substituting for we get

and hence (by another application of Eq. (1))

We define the following testing procedure to determine, given if
Step 1 finds a heavy (but not very heavy) set for attribute that is, a set for
which the number of records satisfying exceeds the expected number by more
than a standard deviation. Note that since the noise
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is so the heavy set really has records for which holds.
Step 2 queries on this heavy set. If the incidence of on this set sufficiently
(as a function of exceeds the expected incidence of then the test returns
“1” (ie, success). Otherwise it returns 0.

Theorem 2. For the test procedure

1.
2.

If then
If then

where for the advantage is constant, and for
the advantage with constant

In the following analysis we neglect the difference between and since,
as noted above, the perturbation contributes only low order terms (we neglect
some other low order terms). Note that it is possible to compute all the required
constants for Theorem 2 explicitly, in polynomial time, without neglecting these
low-order terms. Our analysis does not attempt to optimize constants.

Proof. Consider the random variable corresponding to given
that is biased according to Step 1 of  By linearity of expectation, together
with the fact that the two cases below are disjoint, we get that

The last step uses Eq. (3). Since the distribution of is symmetric around
we get that the first part of the claim, i.e. if then

To get the second part of the claim we use the de Moivre-Laplace theorem
and approximate the binomial distribution with the normal distribution so that
we can approximate the variance of the sum of two distributions (when holds
and when does not hold) in order to obtain the variance of conditioned
on We get:
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Assuming N is large enough, we can neglect the terms involving Hence,

The transition from the second to third lines follows from

We have that the probability distribution on is a Gaussian with mean
and variance at most and respectively.
To conclude the proof, we note that the conditional probability mass of
exceeding its own mean by is at most

where is the cumulative distribution function for the normal distribution.
For constant this yields a constant advantage For we get that

By taking we can run the Test procedure enough times to
determine with sufficiently high confidence which “side” of the interval

is on (if it is not inside the interval). We proceed by binary search to
narrow in on We get:

Theorem 3. There exists an algorithm that invokes the test

times and outputs such that

6 Datamining on Published Statistics

In this section we apply our basic technique for measuring implication in prob-
ability to the real-life model in which confidential information is gathered by
a trusted party, such as the census bureau, who publishes aggregate statistics.
The published statistics are the results of queries to a SuLQ database. That is,
the census bureau generates queries and their noisy responses, and publishes the
results.
7 In more detail:
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Let denote the number of attributes (columns). Let be fixed (typi-
cally, will be small; see below). For every of attributes
and for each of the conjunctions of literals over these attributes,

and so on), the bureau publishes the result of some number  of
queries on these conjunctions. More precisely, a query set is selected,
and noisy statistics for all conjunctions of literals are published for the
query. This is repeated times.

To see how this might be used, suppose and we wish to learn if
implies in probability. We know from the results in Section 4 that we
need to find a heavy set for and then to query the database on the
set with the function Moreover, we need to do this several times
(for the binary search). If is sufficiently large, then with high probability such
query sets are among the queries. Since we query all triples (generally,

of literals for each query set all the necessary information is published.
The analyst need only follow the instructions for learning the strength of
the implication in probability looking up the results of the
queries (rather than randomly selecting the sets and submitting the queries to
the database).

As in Section 4, once we can determine implication in probability, it is easy
to determine (via Bayes’ rule) the statistics for the conjunction
In other words, we can determine the approximate statistics for any conjunction
of literals of attribute values. Now the procedure for arbitrary func-
tions is conceptually simple. Consider a function of attribute values
The analyst first represents the function as a truth table: for each possible

of literals over the function has value either zero or one. Since
these conjunctions of literals are mutually exclusive, the probability (overall)
that the function has value 1 is simply the sum of the probabilities that each of
the positive (one-valued) conjunctions occurs. Since we can approximate each of
these statistics, we obtain an approximation for their sum. Thus, we can approx-
imate the statistics for each of the Boolean functions of attributes. It
remains to analyze the quality of the approximations.

Let be an upper bound on the number of queries permitted by the
SuLQ database algorithm, e.g., Let and be as above:
is the total number of attributes, and statistics for will be published.
Let be the (combined) additive error achieved for all conjuncts with
probability

Privacy is preserved as long as (Theorem 1). To determine util-
ity, we need to understand the error introduced by the summation of estimates.
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Let If our test results in a additive error for each possible conjunct
of literals, the truth table method described above allows us to compute the
frequency of every function of literals within additive error (a lot better in
many cases). We require that our estimate be within error with probability

where Hence, the probability that a ‘bad’ conjunct exists
(for which the estimation error is not within is bounded by

Plugging and into Theorem 3, we get that for each conjunction of
literals, the number of subsets on which we need to make queries is

For each subset we query each of the conjuncts of attributes. Hence,
the total number of queries we make is

For constant we get that the total number of queries is To
see our gain, compare this with the naive publishing of statistics for all conjuncts
of attributes, resulting in queries.

7 Open Problems

Datamining of 3-ary Boolean Functions. Section 5.1 shows how to use two SuLQ
databases to learn that As noted, this allows estimating

for any Boolean function Consider the case where there exist
three SuLQ databases for attributes In order to use our test procedure
to compute one has to either to find heavy sets for (having
bias of order or, given a heavy set for to decide whether it is also
heavy w.r.t. It is not clear how to extend the test procedure of Section 5.1
in this direction.

Maintaining Privacy for All Possible Functions. Our privacy definition (Defini-
tion 1) requires for every function that with high probability the
confidence gain is limited by some value If is small (less than then,
via the union bound, we get that with high probability the confidence gain is
kept small for all the possible functions.

For large the union bound does not guarantee simultaneous privacy for all
the possible functions. However, the privacy of a randomly selected function
is (with high probability) preserved. It is conceivable that (e.g. using crypto-
graphic measures) it is possible to render infeasible the task of finding a function

whose privacy was breached.

Dependency Between Database Records. We explicitly assume that the database
records are chosen independently from each other, according to some underlying
distribution We are not aware of any work that does not make this assumption
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(implicitly or explicitly). An important research direction is to come up with
definition and analysis that work in a more realistic model of weak dependency
between database entries.
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Abstract. In the perfectly secure message transmission (PSMT) prob-
lem, two synchronized non-faulty players (or processors), the Sender S
and the Receiver R are connected by wires (each of which facilitates
2-way communication); S has an message that he wishes to send to
R; after exchanging messages in phases1 R should correctly obtain S’s
message, while an adversary listening on and actively controlling any set
of (or less) wires should have no information about S’s message.
We measure the quality of a protocol for securely transmitting an
message using the following parameters: the number of wires the num-
ber of phases and the total number of bits transmitted The optima
for and are respectively and 2. We prove that any 2-phase
reliable message transmission protocol, and hence any secure protocol,
over wires out of which at most are faulty is required to transmit

at least While no known protocol is simultaneously

optimal in both communication and phase complexity, we present one
such optimum protocol for the case when the size of message
is large enough, viz., that is, our optimal protocol has

and Note that privacy is for free, if the
message is large enough.
We also demonstrate how randomness can effectively improve the phase
complexity. Specifically, while the (worst-case) lower bound on is 2, we
design an efficient optimally tolerant protocol for PSMT that terminates
in a single phase with arbitrarily high probability.
Finally, we consider the case when the adversary is mobile, that is, he
could corrupt a different set of wires in different phases. Again, the
optima for and are respectively and 2; However we show that

irrespective of We present the first protocol that is

(asymptotically) optimum in for Our protocol has a phase
complexity of

1 Introduction

Consider a synchronous network represented by an undirected graph
where denotes the set of players (nodes) in

*  Financial support from Infosys Technologies Limited, India, is acknowledged.
1  A phase is a send from S to R or from R to S or both simultaneously.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 545–561, 2004.
© International Association for Cryptologic Research 2004
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the network that are connected by 2-way communication links as defined by
The players S and R do not trust the network connecting them.

Nevertheless, the sender S wishes to securely send a message to the receiver R
through the network. Security here means that R should receive exactly what
S sent to him while other players should have no information about it, even
if up to of the players (excluding S and R) collude and behave maliciously.
This problem, known as perfectly secure message transmission (PSMT), was first
proposed and solved by Dolev et al.[3]. In essence, it is proved in [3] that PSMT
from S to R across the network tolerating a static2 adversary that corrupts
up to players (nodes), is possible if and only if is at least

3. We use the approach of [3] and abstract away the network entirely
and concentrate on solving the PSMT problem for a single pair of synchronized
processors, the Sender S and the Receiver R, connected by some number of
wires denoted by We may think of these wires as a collection of
vertex-disjoint paths between S and R in the underlying network4.

The PSMT problem is important in its own right as well as a very useful
primitive in various secure distributed protocols. Note that if S and R are con-
nected directly via a private and authenticated link (like what is assumed in
generic secure multiparty protocols [15,6,1,12]), secure communication is triv-
ially guaranteed. However, in reality, it is not economical to directly connect
every two players in the network. Therefore, such a complete network can only
be (virtually) realized by simulating the missing links using SMT protocols as
primitives.

In this paper, we shall use the simple and standard model of a synchronous
network wherein any communication protocol evolves as a series of phases, during
which the players (S or R) send messages, receive them and perform (polynomial
time) local computations according to the protocol.

There are three basic aspects contributing to the quality of an algorithm for
PSMT: the maximum tolerable number of faulty wires, the number of phases
and the total number of bits sent The optima for the above quality parameters
are as follows: The lower bound for is proved in this

work to be bits when for any
In the last few years, there have been some attempts toward improving the

quality of protocols. All protocols proposed so far, securely communicate an
element of a finite field extending this to securely communicate field elements
would result in a proportional increase of communication complexity. Dolev et
al. [3] proposed three protocols: the first one with
field elements, the second one with field elements

2 By static adversary, we mean an adversary that decides on the set of players to
corrupt before the start of the protocol.

3 We say that a network is if the deletion of no or less
nodes from   disconnects and

4 The approach of abstracting the network as a collection of wires is justified using
Monger’s theorem [8] which states that a graph is if and only if
S and R are connected by at least vertex-disjoint paths.
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and the third one with and not polynomial in This was
substantially improved by the protocol of [13], that has and

field  elements.  The  protocol  of  [14]  has and
field elements.

However, no known protocol is simultaneously optimal in both and In
this paper, we present (in Section 4.1) an (asymptotically) optimal protocol to
perfectly securely transmit a message consisting of field elements, viz., our
protocol has and field elements, if Since
we require the field size to be at least this means that the message size is

Unfortunately, due to the stringent requirements of privacy and reliability,
(even optimal) PSMT protocols are not always as efficient as we would like them
to be in practice. Therefore, one often relaxes either the reliability or the privacy
requirement, or both, and tries to achieve statistical reliability/privacy.

Thus, we look for protocols in which the probability that R will receive the
correct message is and the probability that the adversary will learn the
message is for arbitrarily small and Of course, PSMT is the case
broadcast satisfies and so on. In [5], a with

and field elements was presented to securely communicate one
field element. For an extensive discussion of protocols see [5].

In this paper we introduce a new way of relaxing the requirements. We study
the average case efficiency of SMT protocols, rather than the worst case. We do
not require that the worst case complexity be polynomially bounded, or even
finite; we feel that nonterminating protocols that nevertheless complete quickly
with high probability and have perfect security and reliability are very useful
constructions.

In Section 5 we present an optimally fault-tolerant protocol that terminates
in a single with high probability, and having field elements. We note that
the significance of a single phase protocol is more than merely a gain in efficiency
(in terms of network latency): S and R are not required to be on the network
at the same time for executing a single phase protocol, and therefore they are
applicable in a much bigger set of scenarios than are multi-phase protocols.

Most of the results in the literature model the sender’s distrust in the network
via a centralized static adversary that can corrupt up to of the wires and
assume the worst-case that the adversary can completely control the behavior
of the corrupted wires [3,13]. In line with this, we assume up to section 6 that
the adversary is static, i.e., he (a) decides on the set of wires to corrupt before
the start of the protocol and (b) a wire once corrupted remains so subsequently.

However, in practice the bound on the number of corrupted wires may depend
on the total time of the protocol execution. Thus motivated, in section 6 we model
the faults via a mobile adversary, in line with [10]. In this model, the adversary
can corrupt any set of wires in the lifetime of the protocol but is constrained to
corrupt at most wires in any single phase of the protocol.

We show that our ideas in the case of static adversaries can be extended
to withstand mobile adversaries. We prove that the lower bound of
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for reliable message transmission holds for mobile adversaries irrespective of the
number of rounds. We also give a bit-optimal protocol when

2 Preliminaries

Notation. Throughout the paper, we use M to denote the message that S wishes
to securely communicate to R. The message is assumed to be a sequence of
elements from the finite field   The only constraint on is that its size must be
no less than the number of wires Since we measure the size of the message in
terms of the number of field elements, we must also measure the communication
complexity in units of field elements; we follow this convention in the rest of
the paper. We assume that there exists a publicly specified one-to-one mapping

For convenience, we use to denote
We say that a wire is faulty if it is controlled by the adversary; all other

wires are called honest. A faulty wire is corrupted in a specific phase if the value
sent along that wire was changed. When the context makes clear which phase
is being referred to, we simply say that a wire is corrupted. Observe that a wire
may be faulty but not corrupted in a particular phase.

2.1 Efficient Single Phase Reliable Communication

To reliably communicate a message m, a sequence of  field elements, to R,
one simple way is for S to send m along each wire – i.e, broadcast. However,
when where out of wires are corrupted, broadcast, requiring
O(nk) field elements, is not the most efficient method of (single phase) reliable
communication. Instead, it is possible to use an error-correcting code to improve
the communication complexity of reliable communication to     field elements.
A block error correcting code encoding a message of field elements to a codeword
of symbols is an injective mapping The encoding function
is used in conjunction with a decoding function with the property
that if its input differs from a valid codeword in at most  field elements, then

outputs the message corresponding to that codeword. We say that the code
corrects errors. Clearly, such a decoding function will always exist if any two
valid codewords differ in at least symbols, that is, the distance of the code

The efficiency of an error correcting code is subject to the Singleton bound:

Lemma 1. Let C be a block code which reliably transmits  field elements by
communicating a total of field elements and has a distance of Then

We observe that for a correcting code, the distance (which is the
minimum Hamming distance between any two codewords) is at least Thus
we have

Corollary 1. Let C be a correcting block code as in lemma 1. Then
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We now consider a special class of error correcting codes called Reed-Solomon
codes (RS codes).

Definition 1. Let be a finite field and be a collection of distinct
elements of Given and a block the encod-
ing function for the Reed-Solomon code is defined as

where is the polynomial

Theorem 1 ([7]). The Reed-Solomon code meets the Singleton bound.

The following special property of the RS-code will be of use in our subsequent
discussion:

Lemma 2. Let be an of B. Then
for any any subsequence of of length
forms a valid of B.

Proof: Easy observation.
Constructing message transmission protocols using error correcting codes is a

typical application, for example see [2,11]. We now describe
a protocol for reliable communication obtained by using the corresponding Reed-
Solomon code will be used as a sub-protocol later on.

We note that the resulting protocol is a single phase protocol. The reverse
process is equally valid - given a single phase reliable communication protocol, we
can convert it into a block error correcting code. Thus, the maximum attainable
efficiency for single phase reliable communication is also subject to the Singleton
bound.

Remark: This conversion to an error correcting code is straightforward if the
messages sent along each wire in the protocol are of the same length. Suppose,
however, that there is exists a protocol that does not have this symmetry
property and beats the Singleton bound. Then consider the protocol which
consists of sequential executions of protocol with the identities or numbers
of the wires being “rotated” by a distance of in the execution. Clearly, this
protocol achieves the symmetry property by “spreading the load”; further its
message expansion factor is equal to that of It therefore beats the Singleton
bound as well, which is a contradiction.
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Lemma 3. Suppose that the receiver R knows faults among the wires, and
be the number of faulty wires apart from those Then

works if

Proof: Since R knows faults, he simply ignores those wires; and by lemma 2,
this converts the code into an RS code with parameters and The result
now follows from lemma 1 and theorem 1.

2.2 Extracting Randomness

In several of our protocols we have the following situation: S and R by some
means agree on a sequence of numbers such that

The adversary knows of the components of x
The adversary has no information about the other components of x
S and R do not necessarily know which values are known to the adversary.

The goal is for S and R to agree on a sequence of numbers
such that the adversary has no information about This is achieved
by the following algorithm:

Lemma 4. The adversary has no information about in algorithm
EXTRAND.

Proof. We need to show that there is a bijective mapping between the tuple
of values that are not known to the adversary and the tuple But
this is a direct consequence of the fact that every in an
Vandermonde matrix is nonzero.

3 Lower Bound on Communication Complexity

Theorem 2. Any 2-phase perfectly reliable message transmission (PRMT) of
bits requires communicating

We first observe that a probabilistic polynomial time (PPT) protocol for PRMT
with a worst-case communication complexity of bits exists if and only if there is
a deterministic protocol with the same communication complexity. Since perfect
reliability is required, the algorithm must succeed for every possible choice of
coin tosses; in particular, it must succeed when all the random bits of S and R
are zeroes. Thus we convert any PPT protocol into a deterministic protocol by
fixing the sequence of coin-tosses to all zeros. Hence, we assume that S and R
are deterministic polynomial time algorithms.
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R computes and sends it to S.
S, using and the message computes and sends it to R.
R recovers the message using

In the above protocol, we see that step 1 is “useless”: consider the protocol
in which step 1 is replaced with the following step:
S and R both locally compute by simulating R’s execution in step 1 of
(Since the adversary is passive, is guaranteed to have been received by S

in the first phase of
It is clear that succeeds whenever succeeds.

being a single phase protocol, can also be viewed as an error correcting
code. That is, the concatenation of the data sent along all the wires forms the
codeword. Let be the set of possible values of the data sent along the wire
Thus, each codeword is of length at least consisting of elements
one from each Now, the removal of any elements from each
of the codewords should result in shortened codewords that are all distinct.
For if any two were identical, the original codewords could have differed only
among at most elements implying that there exist two original codewords
and and an adversarial strategy such that the receiver’s view is the same on
the receipt of either or In more detail, without loss of generality assume
that and differ only in their last elements. That is, and

 where denotes concatenation and elements. Let
denote the first  elements of while be the last elements. That is, let

Similarly, let
Now, consider the two cases: (a) is sent and the adversary corrupts it to (by
corrupting the last wires and changing to and (b) is sent
and the adversary corrupts it to (by corrupting the penultimate set of wires
and changing to Thus, the receiver cannot distinguish between
the receipt of and which violates the reliable communication property.
Therefore, all shortened codewords are distinct and there are as many shortened

1.
2.
3.

We recall that in a phase, both S and R may simultaneously send messages
to the other player. If this happens we call it a bidirectional phase. On the other
hand, if only one of the players sends a message, we call it a unidirectional phase.

Without loss of generality we assume that in the first phase communication
is from R to S and in the second phase it is from S to R. (Clearly there is no
point in communication from R to S in the second phase; similarly if S sends
any messages to R in the first phase we can consider these to be part of the
second phase as well.) In the rest of the paper we assume that communication
in each phase is unidirectional.

We prove the stronger statement that any 2-phase PRMT of bits requires
communicating t least bits even against a weaker adversary, namely, one
that is passive in the first phase.

Thus, let be a two phase protocol in which is the totality of messages
sent by R to S in phase I and the totality of messages sent by S to R in
phase 2. The steps of are as follows:
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codewords as original codewords. But the number of shortened codewords is at
most the minimum among all sized subsets
of Thus we may sort the in a non-decreasing order and multiply
the first values to obtain the number of original codewords denoted by C.
Thus, reliable communication of bits incurs a communication cost of
at least bits. But Thus, in the best case all the
domains are of equal size and is thus subject to the Singleton bound. By corollary
to lemma 1, reliable communication of bits incurs a communication
cost of bits. Since communicates an bit message, it follows that has a
communication complexity of bits.

Corollary 2. Any 2-phase perfectly reliable message transmission (PRMT) of
field elements requires communicating field elements.

The above corollary follows from the fact that a field element can be repre-
sented as a string of bits.

4 An Optimal Protocol for PSMT

4.1 The PSMT Protocol

In this section, we present our 2-phase protocol for PSMT for any message that
is a sequence of  field elements, with and field elements,
for a sufficiently large It turns out that we require

Suppose that there exists a protocol that securely transmits a message con-
sisting of    field elements with and         field elements.
It is evident that for any integer t j field elements can be sent in
field elements whilst maintaining and this is because we can
run the sub-protocols in parallel. Setting we obtain a protocol that
communicates  field elements by sending      field elements. Thus, our goal
now reduces to the design of a protocol that achieves secure transmission of
field elements over a network of wires, in two rounds by communi-
cating          field elements. We now present one such protocol. Specifically,
our protocol sends field elements by sending O(nt) field elements.

In our protocol, the first phase is a send from R to S and the second phase is
from S to R. We denote the set of wires by We assume
that S wishes to communicate a block, denoted by m, that consists of field
elements from

Phase I (R to S)

The receiver R selects at random polynomials over each of
degree
Next, through each wire R sends the following to S:

The polynomial 5.
For each the value of (which we denote by where

are arbitrary distinct publicly specified members of
5 We assume that the polynomial is sent by sending a of field elements.
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Phase II (S to R)

S begins this phase after receiving what R has sent in the first phase. Let S
receive the polynomial and the values along the wire In this phase, S
must locate all the corruptions that occurred in the previous phase, communicate
the corruptions and send the message securely. A naive and straightforward way
of doing this is as follows: communicate the list of contradictions (we say
that wire contradicts wire if among the wires (in the worst case).
However, there are two problem with this approach: (a) the method requires
communicating      field elements, and (b) such an approach necessitates more
than two phases.

We solve the former problem by using a two step technique to communicate
the list of contradictions. In the first step we broadcast a selected set of contra-
dictions; this will enable the players to find sufficiently many faults to facilitate
sending the remaining contradictions in     field elements  using the REL-
SEND protocol in the second step. The second problem is solved using some
new techniques described in the sequel.

S’s computation.

Next, S finds a maximum matching6 of the graph this can be
done efficiently using the algorithms of [4, 9].
For each arc in G that does not belong to M, S associates the four-
tuple Let be the arcs in G that are not
in M. Replacing each arc with its associated 4-tuple, S gets a set of 4N field
elements,
Let Next, S creates the message-carrying polynomial

as follows: let

6 A subset M of the edges of H, is called a matching in H if no two of the edges in
M are adjacent. A matching M is called maximum if H has no matching with a
greater number of edges than M has.

S initializes his fault-list, denoted by to
S constructs a directed graph where arc if

Let be the undirected graph based on G; that is,
if or
For each such that the degree of node in the graph H
constructed above is greater than (i.e., S adds to

Let be the induced subgraph of H on the vertex set
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S initializes the set Y as follows:

S computes
For each let denote the value of With each of the

arcs in the graph G, S associates the four-tuple and
He initiates the set Z in similar lines as X to contain field
elements.

S’s communication.

S sends the following to R through all the wires:

The blinded message
The set
For each edge the following four field elements: and

Along each wire S sends the following as specified by the REL-SEND(·, ·)
Algorithm:

Again, through each wire S sends the following to R:

The polynomial
For each the value of

Message recovery by R.
R receives what S sent in the second phase and locally deciphers the message
m as follows:

R reliably receives and knows that the wires in this set are faulty. He
initializes
For each arc reliably receives and He

locally verifies: and If the former check fails (that
is the values are unequal), then R adds to If the latter check fails,
then R adds to (note that both and may be identified as
faulty; in any case, at least one of them is guaranteed to be found faulty).
Thus, at least new faults are caught in this step.

1.
2.
3.

1.
2.
3.

1.

2.

Finally, the sender S selects at random polynomials over
each of degree such that the values lie on a polynomial of degree
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From Lemma 5, it is clear that R receives the set X reliably. Again R locally
verifies for each arc’s (say 4-tuple: and
If the former check fails (that is the values are unequal), then R adds
to If the latter check fails, then R adds to At the end of
this step, all the faults that occurred during transmission in Phase I are
guaranteed to have been identified (see Lemma 6).
We know from Lemma 5 that the R receives the set Y correctly. If the
number of faults (which are not in that occurred in Phase I was

then in the polynomial R has unknowns and equations
(which are bound to be consistent whatever the number of unknowns may
be, since all faults have been eliminated). Thus, in this case, R obtains the
message m.
Similarly, from Lemma 5, we know that R receives the set Z correctly. If
the number of faults (which are not in that occurred in Phase I was

then from Lemma 9, we know that R can obtain the message using
the polynomials and Z. Thus, in this case too, R obtains the message
m.

Lemma 5. R is guaranteed to receive the sets X, Y and Z correctly.

Proof: From lemma 3, the protocol succeeds provided that
here, and Therefore,

REL-SEND succeeds if or if,
Since, R is guaranteed to have identified at least

faulty wires at this stage, the lemma follows.

Lemma 6. If the set X was received correctly, then R can find all the corrup-
tions that occurred during Phase I.

Proof: Suppose wire was corrupted in Phase I, i.e, Then the two
polynomials can intersect in at most points. Since there are honest wires,
there is guaranteed to be at least one honest wire which contradicts Since
the correct values corresponding to every contradiction have been received by
R, R can find all the corruptions.

Lemma 7. If the number of corruptions that occurred in Phase I was R
obtains the polynomial correctly.

Proof: To find the message R must find the polynomial To find  R
must find  for Of these R does not yet know for
and does not know of the a total of at most
field elements. But the set Y gives R values of which yield linear
equations on the coefficients, and using these values R can determine all

Lemma 8. For some if the wire was corrupted in Phase I then R can
correct any corruption of the corresponding in Phase II.

3.

4.

5.
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Proof: Let the in-degree of in G be Then there must have been at least
corruptions in Phase I (since the number of honest wires is

Thus in the second phase, there are at most legitimate
wires. The maximum number of faults that R needs to correct in this phase is

We verify that these parameters satisfy the constraint in
lemma 3, and therefore R will be able to correct all corruptions of

Lemma 9. If the set Z was received correctly and if the number of faults that
occurred in Phase I was then R can obtain the message m.

Proof: By lemma 8, R can correct all except a maximum of of the The
degree of the polynomial that they lie on is since these parameters satisfy
the constraints of lemma 3, it follows from the correctness of the REL-SEND

Theorem 3. The protocol presented in Section 4.1 achieves perfect reliability.

Proof: Perfect reliability is a consequence of lemmas 7 and 9.

Lemma 10. For every honest wire the adversary has no information about
and

Proof: Obvious. is a random polynomial of degree but the adversary has
seen only points on it. The same argument holds for as well.

Theorem 4. The protocol presented in Section 4.1 achieves perfect security.

Proof (sketch): First we prove that the adversary has no information about the
coefficients of the polynomial There are at least values
of which are not known to the adversary. The adversary obtains linear
equations on the coefficients by knowing the values of
which are sent reliably by S. Thus the adversary has linear equations on

unknowns, which implies that he has no information about any
of them.

Next we observe that among the values of the adversary knows
at most and hence by the security of the EXTRAND algorithm (lemma 4) it

4.2 Performance

Theorem 5. Given an undirected graph H = (V, E), with a maximum degree of
and a maximum matching M, the number of edges is less than or equal

to

Proof: We first fix a representation of the maximum matching M as a set of
ordered pairs of vertices as described below.

We say that a vertex belongs to vertex-set of the matching, denoted by
Vertex(M), if there exists another vertex such that the edge

protocol that R can obtain all the and hence m.

follows that the adversary gets no information about m.
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vertex is called the match-vertex if the degree of in the subgraph
induced by H over the vertices is
Given a maximum matching M, a match-vertex may have at most one

incident edge in We call the edge as a match-edge (correspond-
ing to the match-vertex We now define X to be the set of all match-edges
(corresponding to each of the match-vertices in M).

Claim. Every edge has at least one match-vertex.

Proof: On the contrary, if neither nor was a match-vertex, then, both and
are adjacent to at least two vertices in (V \ Vertex(M)). Let be adjacent to

vertices and in (V\Vertex(M)) and let be adjacent to a vertex in
(V \ Vertex(M)). Now, removing the edge from M and adding the edges

and to M gives rise to a new matching in H of size which
contradicts the maximality of the matching M. Hence the claim holds.

Hereafter, we represent every edge in as if and only if is a
match-vertex; in case of both and being match-vertices, is the one with the
lower number of corresponding match-edges (ties broken by random choice). We
fix one such representation of the edges in To avoid confusion between
the unordered pair and the ordered pair used in the representation of an
edge in hereafter, we denote the ordered pair as A vertex belonging
to Vertex(M) is called a left-vertex if, in the representation of M that we fixed
earlier, there exists a vertex such that We call all the non-left-
vertices belonging to M as right-vertices.

Note that the number of left-vertices is equal to the number of right-vertices
is equal to Also note that by definition, every left-vertex is a match-vertex.

Theorem 6. The PSMT protocol presented in Section 4.1 communicates
field elements in order to securely transmit    field elements.

Proof: We have already proved that the protocol securely transmits        field ele-
ments. From the description of the protocol, it is easy to verify that all steps ex-
cept possibly the invocations of REL-SEND(X,.) and REL-SEND(Z,.) in Phase
II have a communication cost of      field elements. Since the maximum degree
of a node in is at most and is also at most from theorem 5 it
follows that (and hence also is Since the efficiency
of is the theorem follows.
The main result now follows from the discussion at the beginning of Section 4.1:

Corollary 3. There exists a 2-round PSMT protocol that securely communicates
a message consisting field elements and has a communication complexity of

field elements when   if

Now, it is easy to place an upper bound on as follows: the maximum
number of edges among the vertices in Vertex(M) is Again,
the maximum number of edges from the left-vertices to is

since each left vertex is a match-vertex (having at most one edge to
and there are left vertices. Furthermore, each right vertex can

have at most edges to (by the definition of Thus,
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5 A Las Vegas Single Phase Protocol

In this section we present an optimally tolerant PSMT pro-
tocol which terminates in a single phase with (arbitrarily) high probability.
We represent the block of field elements m that S wishes to send to R as

Let be a bound on the probability that the protocol does not terminate
in a single phase. We require that the size of the field  be for some
polynomial but this is of course acceptable since the complexity of the
protocol increases logarithmically with field size. We now discuss the correctness
of the protocol.

Lemma 11. R will never output an incorrect value.

Proof. Since any corruption involves changing the polynomial corresponding to
that wire, it is clear that no corrupted wire can escape contradiction by at least
one other wire. If and agree on points (corresponding to the
honest wires) then and must be equal. Therefore, at the start of step 7, all
the wires which were used in calculation of the output could not have corrupted
their values. This guarantees that R’s output in step 8 is correct.

Lemma 12. The protocol terminates in a single phase with high probability.
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Proof. Since no uncorrupted wire changes the value sent on the wire, it follows
that no honest wire can contradict another honest wire. Thus, if wire contra-
dicts wire then either wire or wire is faulty. From this it is easy to see that
an honest wire can be contradicted by at most other wires, and therefore any
wire that is contradicted or more wires has to be faulty. Hence R can be
sure that all the wires removed by him are indeed faulty.

We need to show that if a wire is corrupted, then it will be contradicted by
all the honest players with high probability. Let be the probability that the
corrupted wire will not be contradicted by This means that the adversary
can ensure that with a probability of Since there are only

points at which these two polynomials intersect, this allows the adversary to
guess the value of with a probability of at least But since was selected
uniformly in the probability of guessing it is at most Therefore we have

for each Thus the total probability that the adversary can find

such that corrupted wire will not be contradicted by is at most

Since is chosen such that it follows that the protocol terminates
in a single phase with probability if we set

Lemma 13. The adversary gains no information about the message.

Proof: We observe that the adversary has no information about for each
honest wire This is because is a random polynomial of degree and the
adversary has seen only points on it (one corresponding to each faulty wire.)
The proof now follows from lemma 4.

6 Mobile Adversaries

6.1 Lower Bound on Bit Complexity

The lower bound on the bit complexity of perfectly reliable message transmission
proved in section 3 holds for mobile adversaries with no restriction on the number
of phases. We give below a brief sketch of the proof.

Since the adversary can corrupt a different set of wires in each phase, the
protocol cannot adapt as it finds corrupted wires; thus it can be considered to be
memoryless. Therefore the total number of bits transmitted reliably is no more
than the sum of the number of bits transmitted reliably in each phase; we have
already shown in section 3 that the Singleton bound implies a lower bound of

for a single phase; therefore this bound holds for multiple phase protocols
as well.

6.2 An Optimal Protocol

The protocol with optimal fault tolerance and optimal communication complex-
ity is presented below. Let m be a block of     field elements that S wishes to
communicate securely to R.
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Theorem 7. The adversary gains no information about the message.

Proof: First we note that at the end of the first phase, the adversary has no
information about for each honest wire This is because is a random
polynomial of degree and the adversary has seen only points on it (one
corresponding to each faulty wire.) Furthermore, the adversary gains no new
information in step 2. This can be seen as follows: each phase in step 2 involves
broadcast of the 4-tuple Since either wire or wire is faulty,
this information is already known to the adversary. The other information that
is broadcasted is which of wire and wire is faulty, which is also known to
the adversary. The theorem follows.

6.3 Complexity

The first phase of the protocol involves communication of  field elements.
In step 2, each phase of communication results in the elimination of one wire.
Therefore the number of phases in this step is Since each phase involves
the broadcast of      field elements, step 2 has a communication complexity
of       field elements. The final phase involves broadcast a string of length

field elements. Therefore the entire protocol has communication complex-
ity       field elements. Thus the protocol for a message M consisting of an
arbitrary number of field elements obtained by executing this protocol in par-
allel times has a communication complexity of        field elements, which
is optimal when
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7 Conclusion

References

M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In 20th ACM STOC, pages
1–10, 1988.
Y. Desmedt and Y. Wang. Perfectly secure message transmission revisited. In EU-
ROCRYPT ’02, volume 2332 of LNCS, pages 502–517. Springer-Verlag, 2002.
D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmis-
sion. JACM, 40(l):17–47, January 1993.
J. Edmonds. Paths, trees and flowers. Canadian Jl. of Math., 17:449–467, 1965.
M. Franklin and R.N. Wright. Secure communication in minimal connectivity mod-
els. Journal of Cryptology, 13(1):9–30, 2000.
O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In 19th
ACM STOC, pages 218–229, 1987.
F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting Codes.
North Holland Publishing Company, 1978.
K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:96–115,
1927.
S. Micali and V. Vazirani. An algorithm for maximum matching in
general graphs. In 21st IEEE FOCS, pages 17–27, 1980.
R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In 10th ACM
PODC, pages 51–61, 1991.
M.O. Rabin. Efficient dispersal of information for security, load balancing, and
fault tolerance. JACM, 36:335–348, 1989.
T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority. In 21st ACM STOC, pages 73–85, May 1989.
H. Sayeed and H. Abu-Amara. Efficient perfectly secure message transmission in
synchronous networks. Information and Computation, 126(1):53–61, 1996.
K. Srinathan, V. Vinod, and C. Pandu Rangan. Brief announcement: Efficient
perfectly secure communication over synchronous networks. In 22nd ACM PODC,
page 252, 2003.
A. C. Yao. Protocols for secure computations. In 23rd IEEE FOCS, pages 160–164,
1982.

1.

2.

3.

4.
5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

In this paper we have contributed significantly to the progress of the state of the
art in the problem of Perfectly Secure Message Transmission. The protocol of
section 4.1 constitutes a major improvement over existing protocols tolerating
static adversaries; in fact we have achieved the optimal communication complex-
ity when and The protocol can be extended to achieve the
optimal communication complexity when as well, though we have
not presented it here. It would be interesting to see if the lower bound we have
proved in section 3 holds when as well (for PSMT); we conjecture that it
does.

Perhaps our most interesting result is the average case single phase PSMT
protocol. It is in fact surprising that such a protocol even exists; in addition our
protocol is also very efficient in terms of communication complexity.
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Abstract. Unconditionally secure multi-party computations in general,
and broadcast in particular, are impossible if any third of the players can
be actively corrupted and if no additional information-theoretic primitive
is given. In this paper, we relativize this pessimistic result by showing
that such a primitive can be as simple as noisy communication channels
between the players or weakly correlated pieces of information. We con-
sider the scenario where three players have access to random variables
X, Y, and Z, respectively, and give the exact condition on the joint dis-
tribution under which unconditional broadcast is possible. More
precisely, we show that this condition characterizes the possibility of real-
izing so-called pseudo-signatures between the players. As a consequence
of our results, we can give conditions for the possibility of achieving un-
conditional broadcast between players and any minority of cheaters
and, hence, general multi-party computation under the same condition.

Keywords: Unconditional security, pseudo-signatures, broadcast, multi-
party computation, information theory.

1 Motivation and Preliminaries

1.1 Introduction

Digital signatures [11,19] are a powerful tool not only in the context of digital
contract signing, but also as a basic primitive for cryptographic protocols such
as electronic voting or secure multi-party computation. Much less known are
so-called pseudo-signature schemes, which guarantee unconditional security—in
contrast to classical digital-signature schemes. The inherent price for their higher
security, however, is the signatures’ limited transferability: Whereas classical
signatures can be arbitrarily transfered without losing conclusiveness, pseudo-
signatures only remain secure for a fixed number transferability—of trans-
fers among different parties. Since the necessary number of signature transfers
in a protocol is typically bounded by the number of involved parties, pseudo-
signatures are, nevertheless, useful and offer a provably higher security level than

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 562–578, 2004.
© International Association for Cryptologic Research 2004
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traditional signature schemes. For example, the authenticated broadcast proto-
col in [13] can be based on pseudo-signatures and then guarantees unconditional
(instead of computational) security against any number of corrupted players [25].

A pseudo-signature scheme among a number of players can either be set up
by a mutually trusted party, by a protocol among the players when given global
broadcast channels, or—as we will show—by exploiting an information source
that provides the players with certain correlated pieces of information—a similar
model has been considered in [21] in the context of secret-key agreement.

In this paper, we consider the general case of an information source that pro-
vides a set of players with pieces of information distributed according to some
given joint probability distribution. For the case of three players, we completely
characterize when such an information source allows for setting up a pseudo-
signature scheme. This result can be used for deriving a complete characteriza-
tion of when unconditionally secure three-party computation—or broadcast, in
particular—is achievable in the presence of an actively corrupted player. Fur-
thermore, we give, in the same model, a sufficient condition for the achievability
of unconditionally secure multi-party computation for any number of players
secure against actively corrupted players.

1.2 Context and Previous Work

Pseudo-signature schemes (PSS). The first pseudo-signature-like scheme was
given in form of an information-checking protocol among three players [26]. In
contrast to real pseudo-signatures, however, the signer is required to commit to
her input value already during the setup of the scheme.

The first PSS was introduced in [7] with the restriction to be secure only
with respect to a correct signer. In [25], finally, a complete PSS was proposed
for any transferability and any number of corrupted players.

Setting up a PSS. It was shown in [25] how to set up a PSS using global broadcast
channels, where the dining-cryptographers protocol [5,4] was used. Obtaining a
PSS from a common random source was considered in [15,16], but only with
respect to three players and one particular probability distribution.

Broadcast. The broadcast problem was introduced in [20]. It was proven that,
in the standard model with secure channels between all pairs of players, but
without the use of a signature scheme, broadcast is achievable if and only if
the number of cheaters satisfies Furthermore, it was shown that
when additionally a signature scheme is given among the players, then com-
putationally secure broadcast is achievable for any number of corrupted players.
The first efficient such protocol was given in [12]. In [25], an efficient protocol
was given with unconditional security based on a pseudo-signature scheme with
transferability

Multi-party computation (MPC). Broadcast—or the availability of signatures
with sufficiently high transferability—is a limiting factor for general multi-party
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computation introduced in [27]. A complete solution with respect to computa-
tional security was given in [18]. In [2,6], it was shown that in a model with
only pairwise secure channels, MPC unconditionally secure against an active
adversary is achievable if and only if players are corrupted. As shown
in [1,26], is achievable when global broadcast channels are additionally
given—and this bound was shown tight. A protocol more efficient than those
in [1,26] was given in [10].

1.3 Our Results

We first consider a set of three players, connected in pairs by secure channels,
where an additional information source provides the players with correlated
pieces of information. We give a necessary and sufficient condition on the joint
probability distribution of this side information for when a pseudo-signature
scheme can be set up among the three players with a designated signer. Fur-
thermore, we show that the tight condition for the achievability of broadcast or
multi-party computation among three players unconditionally secure against one
actively corrupted player is exactly the same as the one for a pseudo-signature
scheme with respect to an arbitrary. The derived condition shows that pseudo-
signature schemes and broadcast among three players are possible under much
weaker conditions than previously known.

We further consider the general case of players, connected in pairs by
secure channels, where, again, an additional information source provides the
players with side information. For this model, and under the assumption that
an active adversary can corrupt up to players, we show that MPC is
possible under much weaker conditions than previously known.

1.4 Model and Definitions

We consider a set of players that are connected by a com-
plete, synchronous network of pairwise secure channels—in the presence of an
active adversary who can select up to players and corrupt them in an arbitrary
way. Furthermore, we assume this adversary to be computationally unbounded.
A player which does not get corrupted by the adversary is called correct.

Pseudo-signatures. We follow the definition of pseudo-signature schemes as
given in [25].

Definition 1. A pseudo-signature scheme (PSS) with transferability among
the players where is the signer, satisfies the following properties.

Correctness. If player is correct and signs a message, then a correct player
accepts this message from except with small probability.

Unforgeability. A correct player rejects any message that has not been signed
by except with small probability.
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Transferability. A message signed by the correct player can be transfered
times, e.g., via

such that we have for each and correct players and that if
accepts a message then accepts the same message except with

small probability.

If the path can be arbitrary, we call the scheme a PSS with arbitrary
transfer paths, if the transfer is restricted to a specific path we call
it a PSS with transfer path

The choice will be sufficient in our case since any such PSS allows for
broadcast for corrupted players [17].

Broadcast and Multi-party Computation. Broadcast is the problem of
having a (possibly corrupted) sender distribute a value to every player such that
all correct players are guaranteed to receive the same value.

Definition 2. A protocol among players where is the sender
and holds input and where every player computes an output achieves
broadcast if it satisfies the following conditions.

Validity. If the sender is correct, then every correct player computes the
output

Consistency. All correct players and compute the same output value, i.e.,
holds.

Broadcast is a special case of the more general problem of multi-party com-
putation (MPC), where the players want to evaluate in a distributed way some
given function of their inputs and hereby guarantee privacy of these inputs as
well as correctness of the computed result. From a qualitative point of view,
the security of multi-party computation is often broken down to the conditions
privacy, correctness, robustness, and fairness. In [8], it was shown that all these
conditions can only be satisfied simultaneously if holds—the case to
which we restrict our considerations in this paper.

2 Dependent Parts and Simulation of Random Variables

In this section we introduce the notion of the dependent part of a random variable
with respect to another, and a certain simulatability condition, defined for a
triple of random variables. The dependent part of X from Y isolates the part of
X that is dependent on Y. Note that we always assume that the joint distribution
is known to all the players.

Definition 3. Let X and Y be two random variables, and let
The dependent part of X from Y is defined as
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The random variable is a function of X and takes on the value of the
conditional probability distribution

Lemma 1. For all X and Y, we have i.e., the
sequence is a Markov chain1

.

Proof. Let For all range of X—and
we have and, hence,

We will now show that is the part of X that a player who knows
Y can verify to be correct. Lemma 2 shows that every a player knowing X
can construct that has the same joint distribution with Y as the actual K must
indeed be identical with K. Lemma 3 shows that from K, a random variable
can be constructed which has the same joint distribution with Y as X. Hence,
K is the largest part of X that someone knowing Y can verify to be correct.

Lemma 2. Let X, K, and Y be random variables such that
and hold. Then we have

Proof. We have and
Let us have a look at a value for which cannot be expressed as a
linear combination of for with (It is easy to see
that such a must exist.) Let S be the set of all with In order to
achieve no not in S can be mapped to by Since

holds, must map all values from S to
We remove the elements of S from repeat the same argument for the next

and continue this process until is empty. Hence, maps all to
and holds.

Lemma 3. Let X and Y be random variables, and let There
exists a channel is equal to that holds,
where

Proof. Using Lemma 1, we get

The simulatability condition, which allows for determining the possibility of
secret-key agreement over unauthenticated channels, was defined in [22] and
further analyzed in [24]. It defines whether given Z, it is possible to simulate X
in such a way that someone who only knows Y cannot distinguish the simulation
of X from the true X.

1 A sequence of three random variables A, B, C forms a Markov chain, denoted by
if holds or, equivalently, if we have

for all
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Definition 4. Let X, Y, and Z be random variables. Then X is simulatable by
Z with respect to Y, denoted by

if there exists a conditional distribution such that holds,
where

Lemma 4. For all        we have                if and only if

Proof. Let K is a function of X and can be simulated whenever
the same holds for X. On the other hand, let be a channel that simulates
K. It follows from Lemma 3 that there exists a channel is equal
to that the channel simulates X.

Lemma 5. For all we have if and only if

Proof. Suppose first that we have There must exist a channel
such that holds, where Let

and Because of and
we have and It follows from Lemma 2 that
holds. From Lemma 1 follows that We also have
Now,

Suppose now that we have It follows Let
We get

It follows that holds and, hence,
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3 Pseudo-signature Schemes

3.1 The Case of Three Players

We will state the exact condition under which a PSS can be set up from correlated
pieces of information. We need the following lemma.

Lemma 6. Let be the probability distribution of three random variables
X, Y, and Z. Then the following three conditions are equivalent:

1.

2.
3.

There exist two channels and such that and
hold, where

and

Proof. Lemma 5 implies that 2. and 3. are equivalent. In the following we will
prove that 1. and 2. are equivalent.

Assume that 1. is true. We have for some with
and Let and We have

and From Lemma 2, it follows Since
is a function of we get

Assume now that 2. is true. Hence, there exists a channel such that
holds for Lemma 3 implies that there exists a

channel is equal to that holds. We set
and to get

Our pseudo-signature protocol makes use of typical sequences. Intuitively, a
sequence of independent realizations of a random variable is typical if the actual
rate of occurrences of every specific outcome symbol in the sequence is close to
the probability of this symbol.

Definition 5. [3,9] Let X be a random variable with distribution and range
let be an integer, and let A sequence
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is called (strongly) if, for all the actual number of
appearances of  in satisfies

It is a consequence of the law of large numbers that for every suf-
ficiently long sequences of independent realizations of a random variable are

with overwhelming probability.

Theorem 1. [3,9] Let be a sequence of independent real-
izations of the random variable X with distribution and range and let

Then

The following protocol allows for signing a bit along the transfer path

Protocol 1 Let be such that does not hold. Let
and Lemma 4 implies that there must exist

such that for all channels the statistical distance between the distributions
and is at least

Let be an even integer, and let be triples
distributed independently according to Let be a security parameter
and be large enough. Let and know and

respectively. Let, finally,                 be the value      wants to sign.

checks whether the received and the corresponding are a
sequence with respect to If so, he accepts, calculates

and sends to
checks whether the received and the corresponding are a

sequence with respect to If so, he accepts.

Theorem 2. Let be triples distributed indepen-
dently according to Let and know the values and
respectively. Let be able to send messages to and to

If does not hold and is large enough, then Proto-
col 1 achieves PSS for the three players with the transfer path

Proof. We prove that Protocol 1 implements a PSS. First of all, it follows from
Theorem 1 that the value from a correct sender is accepted by except
with exponentially small probability. If is correct and accepts a value and if
is small enough, Lemma 2 implies that must indeed have sent an arbitrarily
large fraction (for sufficiently large N) of correct values to

calculates and sends to
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(Note that the knowledge of the values for do not help to cheat
since they are independent of and

Therefore, also an arbitrarily large fraction of the values
are correct and—if is will accept the values sent to him by
(except with exponentially small probability).

however, cannot (except with exponentially small probability) send any
other value than the one sent by Indeed, his ability to do so would imply
the existence of a channel such that and are identical (see the
proof of Lemma 6 in [23]); such a channel, however, does not exist because of
the assumption stated at the beginning of the protocol.

We now show that the condition of Theorem 2 for the achievability of a
PSS among three players is tight, in other words, that
and imply that no PSS with signer is possible. In
order to demonstrate impossibility, we use a similar technique as in [14]. There,
the impossibility of broadcast among three players secure against one corrupted
player was shown by analyzing a related system obtained by copying some of
the players and rearranging the original players together with their copies in a
specific way.

Theorem 3. Let be triples distributed indepen-
dently according to Let and know the values and
respectively. Let the players be connected by pairwise secure channels.

If and hold, then there does
not exist—for any PSS for the three players with any transfer path and
with as the signer.

is still connected to as originally, but disconnected from i.e., all
messages would send to are discarded and no message would send
to is ever received by

is still connected to and as in the original system.
is still connected to as originally, but disconnected from Instead,
is connected to All messages that would send to are delivered

to instead, and all messages would send to are indeed delivered to

Let be an identical copy of We now rearrange the four players
and in the following way to form a new system. The analysis of that

system then reveals that no PSS among the three original players is possible.
Note that, in the new system, no player is corrupted: It is rather the arrangement
of this new system that simulates corruption in the original system towards the
players in the new system.

Proof. Let us assume that there exists a protocol among the players and
that achieves a PSS for the three players with transfer path

From Lemma 6, it follows that there exist channels and such that
such thatand hold, and and

and hold.

is connected to as originally, but disconnected from
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Furthermore, instead of let have input and have input Let
them execute their local programs defined by the PSS protocol, where signs
the message and signs the message

Since holds, the joint view among and is indistinguishable
from their view in the original system where holds input and is
corrupted in the following way: cuts off communication to simulates

using the channel to produce the values and and acts
towards as if communicating with instead of (indistinguishability
follows from Hence, by the correctness property, must
accept as signed by
The joint view of and is indistinguishable from their view in the original
system where is corrupted in the following way: simulates player
uses the channel for his own and the channel for input, and
acts towards as Thus, by the transferability property, must accept
the transfered message from
Since holds, the joint view of and is indistinguishable
from their view in the original system2 where holds input and is
corrupted in the following way: cuts off communication to simulates

using the channel to produce the values and and acts towards
as if communicating with instead of (indistinguishability follows

from Hence, by the unforgeability property, must reject
the signature transferred to him by

However, this is impossible since cannot accept and reject at the same
time. The proof for the transfer path is analogous. Hence, there
does not exist a PSS for any transfer path.

If the condition of Theorem 3 does not hold, then there exists a transfer
path—namely either or which Theorem 2
can be applied. Therefore, the bound of Theorem 3 is tight, and we can state
the exact condition under which a PSS for three players and a designated signer
exists.

Theorem 4. Let be triples distributed indepen-
dently according to Let and know the values and
respectively. Let the players pairwisely be connected by secure channels.

There exists a PSS for the three players with transfer path
for large enough if and only if either or

does not hold.

Application of Lemma 5 leads to the following corollary.

2 For simplicity, we assume the original system to consist of the players
for this case.
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Corollary 1. Let be triples distributed indepen-
dently according to Let and know the values and
respectively. Let the players pairwisely be connected by secure channels.

There exists a PSS for the three players with transfer path
for large enough if and only if either or

does not hold.

We will now present a special case of noisy channels among three players
for which our PSS works. This special case is related to the “satellite scenario”
of [21] for secret-key agreement.

Corollary 2. Let R be a binary random variable and let X, Y, and Z be random
variables resulting from the transmission of R over three binary symmetric chan-
nels with error probabilities and respectively, such that

and hold. Let be
triples generated independently this way. Let and be three players and
assume that they know and respectively. Let, finally, the players pair-
wisely be connected by secure channels. Then, for large enough there exists a
PSS for the three players with arbitrary transfer path.

Proof. We have that and X are—up to renaming—equal, and
neither nor holds.

Corollary 3. Let the players and be connected by a noisy broadcast
channel. This is a channel for which has an input bit X, and and
get output bits Y and Z, respectively, which result from sending X over two
independent noisy channels with error probabilities and

Then a PSS for the three players with arbitrary transfer path can be realized.

Proof. Let the transfer path be sends random bits over the
channel. Both and check whether the received values are indeed random,
that is, whether they are and The values and are chosen
such that even if cheats, does not accept if does not either—except
with small probability. The resulting joint distribution satisfies the condition of
Corollary 2.

3.2 The Case of More Than Three Players

Theorem 2 can be generalized to players in a natural way. Assume
that players want to implement a PSS along the transfer path

Let be lists distributed inde-
pendently according to Let player know the values

As in the protocol for three players, player sends together with his
signature where to is
able to check whether sent the correct values or not, and he only accepts
the signature if almost all values were correct.
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Now we let sign the value himself, using the random variable
(Since he only received half of the values he is able to sign but not
He sends where to
Now can check the signature and, if he accepts, sign the value himself,
and so forth. Note that the security parameter for every signature must be less
restrictive than the previous one, because some of the received may have
been faulty. Nevertheless, the error probability remains exponentially small in

Player is not able to forge a signature if

does not hold. Hence, we get the following theorem.

Theorem 5. Let be lists distributed indepen-
dently according to Let be players, and let know all the

Assume that for all player can send messages to in a secure way
(where Let and for

4 Broadcast and Multi-party Computation

4.1 The Case of Three Players

We will now apply the results of Section 3 and state the exact condition under
which broadcast is possible for three players.

Theorem 6. Let be triples distributed indepen-
dently according to Assume that and know the values
and respectively. Let all players pairwisely be connected by secure channels.

If is large enough and or
does not hold, then there exists a broadcast protocol for three players with sender

Proof. If either or does not hold,
it is possible to set up a PSS with either the transfer path or

It was shown in [16] that this is sufficient to construct a broad-
cast protocol for three players.

Theorem 7. Let be triples distributed indepen-
dently according to Assume that and know the values
and respectively. Let all players pairwisely be connected by secure channels.

If both and hold, then there
exists no broadcast protocol (for any for three players with sender

Then, for large enough there exists a PSS for players with the transfer
path and tolerating one corrupted player if there does not exist

with
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Proof. From Lemma 6, it follows that there exist channels and such
that and hold, as well as and such
that and hold.

As in the proof of Theorem 3, we duplicate the sender and rearrange the
four resulting players in the following way: We disconnect and but connect

to instead, whereas stays connected as originally.
gets input constructed by applying the channel on gets

input constructed by applying the channel on gets input
and gets input

We give and two different inputs and and let them all execute
the protocol; they all output a value. We now consider three scenarios of an
original system involving some of the players and of the new
system obtained by interconnecting all four players as described above.

Let and be correct and be corrupted. Using his variables
can produce and such that cannot distinguish them from and

Furthermore, cannot distinguish which he receives from from
simulates giving him the values as input, and using the values

himself.
Let and be correct and be corrupted. Using his variables
can produce and such that cannot distinguish them from and

Furthermore, cannot distinguish which he receives from from
simulates giving him the values as input, and using the values

himself.
Let and be correct and be corrupted. Using his variables
can produce and He can simulate player with as input and
use for himself.

The joint view of the players and in the new system is indistinguishable
from their view in the first scenario, and they must thus output The joint
view of the players and in the new system is indistinguishable from their
joint view in the second scenario, and they, therefore, output But also the
joint view of players and in the new system is indistinguishable from their
view in the third scenario, and thus they must agree on their output value, which
contradicts what we derived above. Therefore, no broadcast protocol can exist.

Using Theorems 6 and 7 we can now state the exact condition under which
broadcast and MPC among three players are possible.

Theorem 8. Let be triples distributed indepen-
dently according to Let and know the values and
respectively. Let all players pairwisely be connected by secure channels. Broadcast
with sender is possible if and only if

holds.
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Corollary 4. Let be triples distributed indepen-
dently according to Let and know the values and
respectively. Let all players pairwisely be connected by secure channels.

Broadcast with sender is possible if and only if

holds.

Lemma 7. Given three players and connected pairwisely by secure
channels and additionally by broadcast channels from to and from

to (but no other primitive such as a PSS among the players). Then
broadcast from to is impossible.

Proof. This follows from a generalization of the proof in [14], where only pair-
wise channels are assumed.

Theorem 9. Let be triples distributed indepen-
dently according to Let and know the values and
respectively. Let all players pairwisely be connected by secure channels.

Broadcast with arbitrary sender as well as general multi-party computation
secure against one corrupted player are possible if and only if

holds.

Proof. The condition is sufficient for the possibility of broadcast because of The-
orem 8 and Lemma 7. The achievability of multi-party computation then follows
from [1,26,10]. Furthermore, since broadcast is a special case of multi-party
computation, the impossibility of broadcast immediately implies the impossibil-
ity of MPC.

Corollary 5. Let be triples distributed indepen-
dently according to Let and know the values and
respectively. Let all players pairwisely be connected by secure channels.

Broadcast with arbitrary sender as well as general multi-party computation
secure against one corrupted player are possible if and only if

holds.
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4.2 The Case of More than Three Players

Corollary 6. Let be players. Let all players pairwisely be con-
nected by secure channels. Furthermore, let every triple of players
have enough independent realizations of and respectively, such that
either or does not
hold. Then broadcast and multi-party computation unconditionally secure against

corrupted players are achievable.

Proof. From Theorem 9, it follows that any triple of players can execute a broad-
cast protocol. Using the protocol from [17], broadcast for players tolerating

corrupted players can be achieved. Using [1,26,10], a protocol for uncon-
ditional MPC can be constructed that can tolerate corrupted players.

5 Concluding Remarks

In the model of unconditional security, we have completely characterized the
possibility of pseudo-signatures, broadcast, and secure multi-party computation
among three players having access to certain correlated pieces of information.
Interestingly, this condition is closely related to a property called (non-) simu-
latability previously studied in an entirely different context, namely information-
theoretic secret-key agreement.

As a consequence of this result, we gave a new, weaker condition for the
possibility of achieving unconditional broadcast between players and any mi-
nority of cheaters and, hence, general multi-party computation under the same
conditions.
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