Matt Franklin (Ed.)

Advances in Cryptology -
CRYPTO 2004

24th Annual International Cryptology Conference
Santa Barbara, California, USA, August 2004
Proceedings

LNCS 3152

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
MosheY.Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3152

TERAM LING

This page intentionally left blank

TERAM LING

Matt Franklin (Ed.)

Advances in Cryptology —
CRYPTO 2004

24th Annual International Cryptology Conference
Santa Barbara, California, USA, August 15-19, 2004

Proceedings

Springer

TERAM LING

eBook ISBN: 3-540-28628-4
Print ISBN: 3-540-22668-0

©2005 Springer Science + Business Media, Inc.

Print ©2004 International Association for Cryptologic Research

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

TERAM LING

Preface

Crypto 2004, the 24th Annual Crypto Conference, was sponsored by the Inter-
national Association for Cryptologic Research (IACR) in cooperation with the
IEEE Computer Society Technical Committee on Security and Privacy and the
Computer Science Department of the University of California at Santa Barbara.

The program committee accepted 33 papers for presentation at the confer-
ence. These were selected from a total of 211 submissions. Each paper received
at least three independent reviews. The selection process included a Web-based
discussion phase, and a one-day program committee meeting at New York Uni-
versity.

These proceedings include updated versions of the 33 accepted papers. The
authors had a few weeks to revise them, aided by comments from the reviewers.
However, the revisions were not subjected to any editorial review.

The conference program included two invited lectures. Victor Shoup’s invited
talk was a survey on chosen ciphertext security in public-key encryption. Susan
Landau’s invited talk was entitled “Security, Liberty, and Electronic Communi-
cations” . Her extended abstract is included in these proceedings.

We continued the tradition of a Rump Session, chaired by Stuart Haber.
Those presentations (always short, often serious) are not included here.

I would like to thank everyone who contributed to the success of this confer-
ence. First and foremost, the global cryptographic community submitted their
scientific work for our consideration. The members of the Program Committee
worked hard throughout, and did an excellent job. Many external reviewers con-
tributed their time and expertise to aid our decision-making. James Hughes,
the General Chair, was supportive in a number of ways. Dan Boneh and Victor
Shoup gave valuable advice. Yevgeniy Dodis hosted the PC meeting at NYU.

It would have been hard to manage this task without the Web-based submis-
sion server (developed by Chanathip Namprempre, under the guidance of Mihir
Bellare) and review server (developed by Wim Moreau and Joris Claessens, under
the guidance of Bart Preneel). Terri Knight kept these servers running smoothly,
and helped with the preparation of these proceedings.

June 2004 Matt Franklin

TERAM LING

CRYPTO 2004

August 15-19, 2004, Santa Barbara, California, USA

Sponsored by the
International Association for Cryptologic Research (IACR)

in cooperation with

IEEE Computer Society Technical Committee on Security and Privacy,

Computer Science Department, University of California, Santa Barbara

General Chair
James Hughes, StorageTek

Program Chair
Matt Franklin, U.C. Davis, USA

Program Committee

Bill Alello o.vvvniiii e AT&T Labs, USA
Jee Hea An ..ot i e e s SoftMax, USA
) 231 o P2 o o L Technion, Israel
John Blackcoooviiiiiiaiii, University of Colorado at Boulder, USA
ANne Canteaulovtrreteee et INRIA, France
Ronald Cramerccooviivnan... University of Aarhus, Denmark
Yevgeniy Dodiscooiiiiiiiiiiii New York University, USA
Yuval Ishal ..o e e e Technion, Israel
Lars Knudsen Technical University of Denmark, Denmark
Hugo Krawczyk ...t Technion/IBM, Israel/USA
Pil Joong Leec.oooiiiiiiiiiiiiiiiiiii i, POSTECH/KT, Korea
Phil MacKenzi€cceueiririieier e iieianainnnns Bell Labs, USA
Tal Malkinooiiiiiiiiiiiiiii i, Columbia University, USA
Willi Meiercovviiiiviiiiniinn. Fachhochschule Aargau, Switzerland
Daniele MiccianCioooviiiineniiniininiennennnn. U.C. San Diego, USA
Ilya Mironovc.cooviiiiiniiiiiiiininennannn. Microsoft Research, USA
Tatsuaki OKamotoo.viniiniiiinii it NTT, Japan
Rafail OStrovskycooiiiiiiiiiiii i aens U.C.L.A.,USA
Torben Pedersenccovvviiiviniiiiinene... Cryptomathic, Denmark
Benny Pinkaso e HP Labs, USA
Bart Preneel Katholieke Universiteit Leuven, Belgium
Alice Silverbergcooviiiiiiiiiiiiiiii, Ohio State University, USA
Nigel Smartoovveiiiiiiiiiiiiii e Bristol University, UK
David Wagnercoooviniiiniiiiiiiiiiii i, U.C. Berkeley, USA
Stefan Wolf ...t University of Montreal, Canada

TERAM LING

Dan Boneh (Crypto 2003 Program Chair)
Victor Shoup (Crypto 2005 Program Chair)

External Reviewers

Masayuki Abe
Siddhartha Annapuredy
Frederik Armknecht
Daniel Augot

Boaz Barak

Elad Barkan

Amos Beimel

Mihir Bellare

Daniel Bleichenbacher
Dan Boneh

Carl Bosley

Ernie Brickell

Ran Canetti

Jung Hee Cheon

Don Coppersmith
Jean-Sébastien Coron
Nicolas Courtois
Christophe De Canniere
Anand Desai
Simon-Pierre Desrosiers
Irit Dinur

Mario di Raimondo
Orr Dunkelman

Glenn Durfee

Iwan Duursma

Stefan Dziembowski
Andreas Enge

Nelly Fazio

Serge Fehr

Marc Fischlin
Matthias Fitzi
Caroline Fontaine
Michael J. Freedman
Atsushi Fujioka
Eiichiro Fujisaki
Martin Gagne

Steven Galbraith
Juan Garay

Advisory Members

Pierrick Gaudry
Rosario Gennaro
Craig Gentry
Shafi Goldwasser
Jovan Golic

Rob Granger

Jens Groth

Stuart Haber

Shai Halevi
Helena Handschuh
Danny Harnik
Johan Hastad
Alejandro Hevia
Jim Hughes

Yong Ho Hwang
Oleg [zmerly
Markus Jakobsson
Stanislaw Jarecki
Rob Johnson

Yael Tauman Kalai
Jonathan Katz
Dan Kenigsberg
Dmitriy Kharchenko
Aggelos Kiayias
Eike Kiltz

Kihyun Kim

Ted Krovetz
Klaus Kursawe
Eyal Kushilevitz
Joseph Lano
In-Sok Lee

Arjen Lenstra
Yehuda Lindell
Hoi-Kwong Lo
Pierre Loidreau
Anna Lysyanskaya
John Malone-Lee
Dominic Mayers

CRYPTO 2004 VII

... Stanford University, USA

New York University, USA

Marine Minier
Bodo Moeller
Havard Molland
David Molnar
Tal Mor

Sara Miner More
Francois Morain
Waka Nagao
Phong Nguyen
Antonio Nicolosi
Jesper Nielsen
Miyako Ohkubo
Kazuo Ohta
Roberto Oliveira
Seong-Hun Paeng
Dan Page

Dong Jin Park
Jae Hwan Park
Joonhah Park
Matthew Parker
Rafael Pass
Kenny Paterson
Erez Petrank
David Pointcheval
Prashant Puniya
Tal Rabin
Haavard Raddum
Zulfikar Ramzan
Oded Regev
Omer Reingold
Renato Renner
Leonid Reyzin
Vincent Rijmen
Phillip Rogaway
Pankaj Rohatgi
Adi Rosen

Karl Rubin

Alex Russell

TERAM LING

VIII CRYPTO 2004

Amit Sahai
Gorm Salomonsen
Louis Salvail
Tomas Sander
Hovav Shacham
Ronen Shaltiel
Jonghoon Shin
Victor Shoup
Thomas Shrimpton
Berit Skjernaa
Adam Smith
Jerome A. Solinas
Jessica Staddon

Martijn Stam
Jacques Stern
Douglas Stinson
Koutarou Suzuki
Keisuke Tanaka
Edlyn Teske
Christian Tobias
Yuuki Tokunaga
Vinod Vaikuntanathan
Brigitte Vallee

R. Venkatesan
Frederik Vercauteren
Felipe Voloch

Luis von Ahn
Jason Waddle
Shabsi Walfish
Andreas Winter
Christopher Wolf
Juerg Waullschleger
Go Yamamoto
Yeon Hyeong Yang
Sung Ho Yoo
Young Tae Youn
Dae Hyun Yum
Moti Yung

TERAM LING

Table of Contents

Linear Cryptanalysis

On Multiple Linear Approximationsouuenniuiennennnn.n. 1
Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

Feistel Schemes and Bi-linear Cryptanalysisccovveunoo... 23
Nicolas T. Courtois

Group Signatures

Short Group Signaturesviuvtnnenetn i iae s ineenannan 41
Dan Boneh, Xavier Boyen, and Hovav Shacham

Signature Schemes and Anonymous Credentials from Bilinear Maps 56
Jan Camenisch and Anna Lysyanskaya

Foundations

Complete Classification of Bilinear Hard-Core Functions 73
Thomas Holenstein, Ueli Maurer, and Johan Sjodin

Finding Collisions on a Public Road,
or Do Secure Hash Functions Need Secret Coins?c.ovvuininvn.n. 92
Chun-Yuan Hsiao and Leonid Reyzin

Security of Random Feistel Schemes with 5 or More Rounds 106
Jacques Patarin

Efficient Representations

Signed Binary Representations Revisitedo oiin.. 123
Katsuyuki Okeya, Katja Schmidt-Samoa, Christian Spahn,
and Tsuyoshi Takagi

Compressed Pairings i e 140
Michael Scott and Paulo S.L.M. Barreto

Asymptotically Optimal Communication for Torus-Based Cryptography .. 157
Marten van Dijk and David Woodruff

How to Compress Rabin Ciphertexts and Signatures (and More) 179
Craig Gentry

TERAM LING

X Table of Contents

Public Key Cryptanalysis

On the Bounded Sum-of-Digits Discrete Logarithm Problem

in Finite Fields i i e e 201
Qi Cheng

Computing the RSA Secret Key Is Deterministic Polynomial Time

Equivalent to Factoringt 213
Alexander May

Zero-Knowledge

Multi-trapdoor Commitments and Their Applications to Proofs
of Knowledge Secure Under Concurrent Man-in-the-Middle Attacks 220
Rosario Gennaro

Constant-Round Resettable Zero Knowledge
with Concurrent Soundness in the Bare Public-Key Model 237
Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti

Zero-Knowledge Proofs
and String Commitments Withstanding Quantum Attacks 254
Ivan Damgdrd, Serge Fehr, and Louis Salvail

The Knowledge-of-Exponent Assumptions
and 3-Round Zero-Knowledge Protocols............... .o, 273
Mihir Bellare and Adriana Palacio

Hash Collisions

Near-Collisions Of SHA-0. . . oo o ittt e et et et e et e 290
Eli Biham and Rafi Chen

Multicollisions in Iterated Hash Functions.
Application to Cascaded Constructionscoovvuivivnvann.ns 306
Antoine Joux

Secure Computation

Adaptively Secure Feldman VSS and Applications
to Universally-Composable Threshold Cryptography.................... 317
Masayuki Abe and Serge Fehr

Round-Optimal Secure Two-Party Computation 335
Jonathan Katz and Rafail Ostrovsky

Invited Talk

Security, Liberty, and Electronic Communicationsc...un.. 355
Susan Landau

TERAM LING

Table of Contents XI

Stream Cipher Cryptanalysis

An Improved Correlation Attack Against Irregular Clocked
and Filtered Keystream Generatorscoouuieuneeninennnn. 373
Havard Molland and Tor Helleseth

Rewriting Variables: The Complexity of Fast Algebraic Attacks
on Stream CIPhersot e e e 390
Philip Hawkes and Gregory G. Rose

Faster Correlation Attack on Bluetooth Keystream Generator EO 407
Yi Lu and Serge Vaudenay
Public Key Encryption

A New Paradigm of Hybrid Encryption Scheme 426
Kaoru Kurosawa and Yvo Desmedt

Secure Identity Based Encryption Without Random Oracles............. 443
Dan Boneh and Xavier Boyen

Bounded Storage Model

Non-interactive Timestamping in the Bounded Storage Model 460
Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma

Key Management

IPAKE: Isomorphisms for Password-Based Authenticated Key Exchange. .. 477
Dario Catalano, David Pointcheval, and Thomas Pornin

Randomness Extraction and Key Derivation

Using the CBC, Cascade and HMAC Modes............c.ccoviiin.... 494
Yevgeniy Dodis, Rosario Gennaro, Johan Hdstad, Hugo Krawczyk,
and Tal Rabin

Efficient Tree-Based Revocation in Groups of Low-State Devices 511
Michael T. Goodrich, Jonathan Z. Sun, and Roberto Tamassia

Computationally Unbounded Adversaries

Privacy-Preserving Datamining on Vertically Partitioned Databases 528
Cynthia Dwork and Kobbi Nissim
Optimal Perfectly Secure Message TransmiSsion.cuveuuneen.. 545

K. Srinathan, Arvind Narayanan, and C. Pandu Rangan

Pseudo-signatures, Broadcast, and Multi-party Computation
from Correlated Randomnessttt 562
Matthias Fitzi, Stefan Wolf, and Jiirg Wullschleger

Author Index ... 579

TERAM LING

This page intentionally left blank

TERAM LING

On Multiple Linear Approximations*

Alex Biryukov**, Christophe De Canniere***, and Michaé€l Quisquater*

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium
{abiryuko, cdecanni, mgquisqual}@esat. kuleuven. ac. be

Abstract. In this paper we study the long standing problem of informa-
tion extraction from multiple linear approximations. We develop a formal
statistical framework for block cipher attacks based on this technique
and derive explicit and compact gain formulas for generalized versions of
Matsui’s Algorithm 1 and Algorithm 2. The theoretical framework allows
both approaches to be treated in a unified way, and predicts significantly
improved attack complexities compared to current linear attacks using
a single approximation. In order to substantiate the theoretical claims,
we benchmarked the attacks against reduced-round versions of DES and
observed a clear reduction of the data and time complexities, in almost
perfect correspondence with the predictions. The complexities are re-
duced by several orders of magnitude for Algorithm 1, and the significant
improvement in the case of Algorithm 2 suggests that this approach may
outperform the currently best attacks on the full DES algorithm.

Keywords: Linear cryptanalysis, multiple linear approximations,
stochastic systems of linear equations, maximum likelihood decoding,
key-ranking, DES, AES.

1 Introduction

Linear cryptanalysis [8] is one of the most powerful attacks against modern cryp-
tosystems. In 1994, Kaliski and Robshaw [5] proposed the idea of generalizing
this attack using multiple linear approximations (the previous approach consid-
ered only the best linear approximation). However, their technique was mostly
limited to cases where all approximations derive the same parity bit of the key.
Unfortunately, this approach imposes a very strong restriction on the approxima-
tions, and the additional information gained by the few surviving approximations
is often negligible.

In this paper we start by developing a theoretical framework for dealing with
multiple linear approximations. We first generalize Matsui’s Algorithm 1 based

* This work was supported in part by the Concerted Research Action (GOA) Mefisto-
2000/06 of the Flemish Government.
** F.W.O. Researcher, Fund for Scientific Research — Flanders (Belgium).
* F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 1-22, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

2 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

on this framework, and then reuse these results to generalize Matsui’s Algo-
rithm 2. Our approach allows to derive compact expressions for the performance
of the attacks in terms of the biases of the approximations and the amount of
data available to the attacker. The contribution of these theoretical expressions
is twofold. Not only do they clearly demonstrate that the use of multiple ap-
proximations can significantly improve classical linear attacks, they also shed a
new light on the relations between Algorithm 1 and Algorithm 2.

The main purpose of this paper is to provide a new generally applicable crypt-
analytic tool, which performs strictly better than standard linear cryptanalysis.
In order to illustrate the potential of this new approach, we implemented two
attacks against reduced-round versions of DES, using this cipher as a well estab-
lished benchmark for linear cryptanalysis. The experimental results, discussed
in the second part of this paper, are in almost perfect correspondence with our
theoretical predictions and show that the latter are well justified.

This paper is organized as follows: Sect. 2 describes a very general maximum
likelihood framework, which we will use in the rest of the paper; in Sect. 3 this
framework is applied to derive and analyze an optimal attack algorithm based
on multiple linear approximations. In the last part of this section, we provide
a more detailed theoretical analysis of the assumptions made in order to derive
the performance expressions. Sect. 4 presents experimental results on DES as
an example. Finally, Sect. 5 discusses possible further improvements and open
questions. A more detailed discussion of the practical aspects of the attacks and
an overview of previous work can be found in the appendices.

2 General Framework

In this section we discuss the main principles of statistical cryptanalysis and
set up a generalized framework for analyzing block ciphers based on maximum
likelihood. This framework can be seen as an adaptation or extension of earlier
frameworks for statistical attacks proposed by Murphy et al. [11], Junod and
Vaudenay [3,4,14] and Selguk [12].

2.1 Attack Model

We consider a block cipher Ej which maps a plaintext P € P to a ciphertext
C = E,(P) € C. The mapping is invertible and depends on a secret key k € K.
We now assume that an adversary is given N different plaintext—ciphertext pairs
(P;, C;) encrypted with a particular secret key k* (a known plaintext scenario),
and his task is to recover the key from this data. A general statistical approach
also followed by Matsui’s original linear cryptanalysis — consists in performing
the following three steps:

Distillation phase. In a typical statistical attack, only a fraction of the infor-
mation contained in the N plaintext—ciphertext pairs is exploited. A first step
therefore consists in extracting the relevant parts of the data, and discarding

TERAM LING

On Multiple Linear Approximations 3

all information which is not used by the attack. In our framework, the distil-
lation operation is denoted by afunction ¥ : P x C — X which is applied to
each plaintext—ciphertext pair. The result is a vector x = (z1,...,zN) with
z; = Y(F;, C;), which contains all relevant information. If | X| <« N, whichis
usually the case, we can further reduce the data by counting the occurrence of
each element of &' and only storing a vector of counters t = (to, ..., txj-1)-
In this paper we will not restrict ourselves to a single function 1, but consider
m separate functions v;, each of which maps the text pairs into different sets
&; and generates a separate vector of counters t;.

Analysis phase. This phase is the core of the attack and consists in generating
a list of key candidates from the information extracted in the previous step.
Usually, candidates can only be determined up to a set of equivalent keys,
i.e., typically, a majority of the key bits is transparent to the attack. In
general, the attack defines a function ¢ : X — Z which maps each key &
onto an equivalent key class z = a(k). The purpose of the analysis phase is
to determine which of these classes are the most likely to contain the true
key k* given the particular values of the counters t;.

Search phase. In the last stage of the attack, the attacker exhaustively tries
all keys in the classes suggested by the previous step, until the correct key
is found. Note that the analysis and the searching phase may be intermixed:
the attacker might first generate a short list of candidates, try them out, and
then dynamically extend the list as long as none of the candidates turns out
to be correct.

2.2 Attack Complexities

When evaluating the performance of the general attack described above, we
need to consider both the data complexity and the computational complexity.
The data complexity is directly determined by N, the number of plaintext—
ciphertext pairs required by the attack. The computational complexity depends
on the total number of operations performed in the three phases of the attack.
In order to compare different types of attacks, we define a measure called the
gain of the attack:

Definition 1 (Gain). [fan attack is used to recover an n-bit key and is expected
to return the correct key after having checked on the average M candidates, then
the gain of the attack, expressed in bits, is defined as:

2-M-1

s M

Let us illustrate this with an example where an attacker wants to recover an
n-bit key. If he does an exhaustive search, the number of trials before hitting
the correct key can be anywhere from 1 to 2™. The average number M is (2" +
1)/2, and the gain according to the definition is 0. On the other hand, if the
attack immediately derives the correct candidate, M equals 1 and the gain is
~ = n. There is an important caveat, however. Let us consider two attacks

v = —log,

TERAM LING

4 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

which both require a single plaintext—ciphertext pair. The first deterministically
recovers one bit of the key, while the second recovers the complete key, but
with a probability of 1/2. In this second attack, if the key is wrong and only
one plaintext—ciphertext pair is available, the attacker is forced to perform an
exhaustive search. According to the definition, both attacks have a gain of 1 bit
in this case. Of course, by repeating the second attack for different pairs, the
gain can be made arbitrary close to n bits, while this is not the case for the first
attack.

2.3 Maximum Likelihood Approach

The design of a statistical attack consists of two important parts. First, we need
to decide on how to process the N plaintext—ciphertext pairs in the distillation
phase. We want the counters t; to be constructed in such a way that they con-
centrate as much information as possible about a specific part of the secret key
in a minimal amount of data. Once this decision has been made, we can proceed
to the next stage and try to design an algorithm which efficiently transforms this
information into a list of key candidates. In this section, we discuss a general
technique to optimize this second step. Notice that throughout this paper, we
will denote random variables by capital letters.

In order to minimize the amount of trials in the search phase, we want the
candidate classes which have the largest probability of being correct to be tried
first. If we consider the correct key class as a random variable Z and denote the
complete set of counters extracted from the observed data by t, then the ideal
output of the analysis phase would consist of a list of classes {z}, sorted according
to the conditional probability Pr[Z = z | t]. Taking the Bayesian approach, we
express this probability as follows:

PrT=t|z2]-Pr[Z =2z]
Pr[T = ¢] ' @)

PriZ==z|t]=

The factor Pr[Z = z] denotes the a priori probability that the class z contains
the correct key k*, and is equal to the constant 1/|Z|, with | Z]| the total number
of classes, provided that the key was chosen at random. The denominator is
determined by the probability that the specific set of counters t is observed,
taken over all possible keys and plaintexts. The only expression in (2) that
depends on z, and thus affects the sorting, is the factor Pr [T = t | z], compactly
written as P,(t). This quantity denotes the probability, taken over all possible
plaintexts, that a key from a given class z produces a set of counters t. When
viewed as a function of z for a fixed set t, the expression Pr|{T =t | 2] is also
called the likelihood of z given t, and denoted by Ly(z), i.e.,

Li(z) =P,(t)=Pr[T=t]2].

This likelihood and the actual probability Pr[Z = z | t] have distinct values, but
they are proportional for a fixed t, as follows from (2). Typically, the likelihood

TERAM LING

On Multiple Linear Approximations 5

expression is simplified by applying a logarithmic transformation. The result is
denoted by
L¢(z) = log Li(2)

and called the log-likelihood. Note that this transformation does not affect the
sorting, since the logarithm is a monotonously increasing function.

Assuming that we can construct an efficient algorithm that accurately esti-
mates the likelihood of the key classes and returns a list sorted accordingly, we
are now ready to derive a general expression for the gain of the attack.

Let us assume that the plaintexts are encrypted with an n-bit secret key k*,
contained in the equivalence class z*, and let Z* = Z\ {2*} be the set of classes
different from z*. The average number of classes checked during the searching
phase before the correct key is found, is given by the expression

1+ Y PriLa() > Lo() | 2],
ze€Z*

where the random variable T represents the set of counters generated by a key
from the class z*, given N random plaintexts. Note that this number includes
the correct key class, but since this class will be treated differently later on,
we do not include it in the sum. In order to compute the probabilities in this
expression, we define the sets 7, = {t | L¢(2) > L¢(z*)}. Using this notation,
we can write
Pr(lr(z) > Lr(2*) | 2*] =) Pau(t).
teT,

Knowing that each class z contains 2"/|Z| different keys, we can now derive the
expected number of trials M*, given a secret key k£*. Note that the number of keys
that need to be checked in the correct equivalence class z* is only (2*/|2|+1)/2
on the average, yielding

L2 1
M :EI'[5+Z > Pe(t)

1
+3- 3)
zeZ* teT,

This expression needs to be averaged over all possible secret keys k* in order to
find the expected value M, but in many cases' we will find that M* does not
depend on the actual value of k*, such that M = M*. Finally, the gain of the
attack is computed by substituting this value of M into (1).

3 Application to Multiple Approximations

In this section, we apply the ideas discussed above to construct a general frame-
work for analyzing block ciphers using multiple linear approximations.

" In some cases the variance of the gain over different keys would be very significant.
In these cases it might be worth to exploit this phenomenon in a weak-key attack
scenario, like in the case of the IDEA cipher.

TERAM LING

6 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

The starting point in linear cryptanalysis is the existence of unbalanced lin-
ear expressions involving plaintext bits, ciphertext bits, and key bits. In this
paper we assume that we can use m such expressions (a method to find them is
presented in an extended version of this paper [1]):

Pr[P[XJP]eBO[x’C]@K[XJK]=O]=%+ej, i=1,...,m, (4)
with (P, C) arandom plaintext—ciphertext pair encrypted with a random key K.
The notation X [x] stands for X;, ® X, ®...® X;,,where X, ..., X;, represent
particular bits of X. The deviation ¢; is called the bias of the linear expression.
We now use the framework of Sect. 2.1 to design an attack which exploits
the information contained in (4). The first phase of the cryptanalysis consists in
extracting the relevant parts from the N plaintext—ciphertext pairs. The linear
expressions in (4) immediately suggest the following functions ;:

z;; = ¥;(P;,Ci) = B[xbl @ Cilxk], i=1,...,N,

with z; ; € X; = {0,1}. These values are then used to construct m counter
vectors tj = (tj, N — t;}, where t; and N — t; reflect the number of plaintext—
ciphertext pairs for which z; ; equals 0 and 1, respectively”.

In the second step of the framework, a list of candidate key classes needs to
be generated. We represent the equivalent key classes induced by the m linear
expressions in (4) by an m-bit word z = (21,...,2m) With z; = k[x%]. Note
that m might possibly be much larger than n, the length of the key &. In this
case, only a subspace of all possible m-bit words corresponds to a valid key class.
The exact number of classes |Z| depends on the number of independent linear
approximations (i.e., the rank of the corresponding linear system).

3.1 Computing the Likelihoods of the Key Classes

We will for now assume that the linear expressions in (4) are statistically in-
dependent for different plaintext—ciphertext pairs and for different values of j
(in the next section we will discuss this important point in more details). This
allows us to apply the maximum likelihood approach described earlier in a very
straightforward way. In order to simplify notations, we define the probabilities
p; and g;, and the imbalances’® ¢; of the linear expressions as

_ 1+¢ 1

pi=1—gq;= 2 =§+€j.

We start by deriving a convenient expression for the probability P,(t). To
simplify the calculation, we first give a derivation for the special key class

%2 The vectors t; are only constructed to be consistent with the framework described
earlier. In practice of course, the attacker will only calculate £; (this is a minimal
sufficient statistic).

* Also known in the literature as “correlations”.

TERAM LING

On Multiple Linear Approximations 7

7
112

7
/

Fig. 1. Geometrical interpretation for m = 2. The correct key class z* has the second
largest likelihood in this example. The numbers in the picture represent the number of
trials M* when & falls in the associated area.

2" = (0,...,0). Assuming independence of different approximations and of dif-
ferent (P;, C;) pairs, the probability that this key generates the counters ¢; is
given by the product

=11 () 5 4. 6

=1

In practice, p; and g; will be very close to 1/2, and N very large. Taking this
into account, we approximate the m-dimensional binomial distribution above by
an m-dimensional Gaussian distribution:

(t;—p;-N)2 . o
™ e £) e~ @) —E X (&-c)?

e
Pot)y=]| ——— = = T
J.I;Il V- N/2 JI=II V- N/2 (ﬂ—.N/z)
The variable é; is called the estimated imbalance and is derived from the counters

t; according to the relation N -(1+¢&;)/2 =t;. For any key class z, we can repeat
the reasoning above, yielding the following general expression:

e=F L (&G—(=1)%¢;)?
(v N/Q)m

This formula has a useful geometrical interpretation: if we take a key from a
fixed key class 2* and construct an m-dimensional vector & = (é1,...,émn) by
encrypting N random plaintexts, then & will be distributed around the vector
¢z = ((=1)%ey,...,(=1)%m¢n) according to a Gaussian distribution with a
diagonal variance-covariance matrix 1/ VN - I,, where I, is an m x m identity
matrix. This is illustrated in Fig. 1. From (6) we can now directly compute the
log-likelihood:

P(t) (6)

TERAM LING

8 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

Li(2) = log Le(2) = log P,(t) ~ C — % S (@G- (=072 (D)

j=1

The constant C depends on m and N only, and is irrelevant to the attack. From
this formula we immediately derive the following property.

Lemma 1. The relative likelihood of a key class z is completely determined by
the Euclidean distance |& — ¢,|, where € is an m-dimensional vector containing
the estimated imbalances derived from the known texts, and c; = ((—1)*'ey,...,

(—1)mem).

The lemma implies that Lr(2) > Lr(2*) if and only if |€ — ¢;| < |[& — ¢+ |. This
type of result is common in coding theory.

3.2 Estimating the Gain of the Attack

Based on the geometrical interpretation given above, and using the results from
Sect. 2.3, we can now easily derive the gain of the attack.

Theorem 1. Given m approximations and N independent pairs (P;,C;), an
adversary can mount a linear attack with a gain equal to:

_ 1 |ez — x| 1
~ = —log, [2m Z @(—\/]_V_-—T——)-i-@

zEZ*

: (8)

where ®(-) is the cumulative normal distribution function, c¢; = ((—1)*'¢y, ...,
(=1)*mem), and |Z] is the number of key classes induced by the approximations.

Proof. The probability that the likelihood of a key class 2z exceeds the likelihood
of the correct key class z* is given by the probability that the vector & falls
into the half plane 7, = {c | |&¢ — cz| £ |& — c,+|}. Considering the fact that &
describes a Gaussian distribution around c,+ with a variance-covariance matrix
1/ VN - I,, we need to integrate this Gaussian over the half plane 7; and due to
the zero covariances, we immediately find:

PriCr(z) 2 Lr(2") | "] = @ (—m, |__—2_|> :

By summing these probabilities as in (3) we find the expected number of trials:

%_'_st(_\/jv‘_[cz—zcz’I)}Jr%_ (9)

2’n
M= .
|Z| zEZ*

The gain is obtained by substituting this expression for M* in equation (1). O

The formula derived in the previous theorem can easily be evaluated as long as
| Z] is not too large. In order to estimate the gain in the other cases as well, we
need to make a few approximations.

TERAM LING

On Multiple Linear Approximations 9

Corollary 1. If |Z| is sufficiently large, the gain derived in Theorem 1 can
accurately be approximated by

~— Bl-1 g(_ /N-2) L

2 _3m 2
where & =30, ¢

éf(N'E2a|ZD’ (10)

Proof. See App. A.

An interesting conclusion that can be drawn from the corollary above is that
the gain of the attack is mainly determined by the product N -&%. As aresult, if
we manage to increase & by using more linear characteristics, then the required
number of known plaintext—ciphertext pairs N can be decreased by the same
factor, without affecting the gain. Since the quantity & plays a very important

role in the attacks, we give it a name and define it explicitly.

Definition 2. The capacity & of a system of m approximations is defined as

m

m
2 2 _ 4. 2
I —ch—Ll Zej.

i=1 j=1

3.3 Extension: Multiple Approximations and Matsui’s Algorithm 2

The approach taken in the previous section can be seen as an extension of Mat-
sui’s Algorithm 1. Just as in Algorithm 1, the adversary analyses parity bits
of the known plaintext—ciphertext pairs and then tries to determine parity bits
of internal round keys. An alternative approach, which is called Algorithm 2
and yields much more efficient attacks in practice, consists in guessing parts of
the round keys in the first and the last round, and determining the probability
that the guess was correct by exploiting linear characteristics over the remaining
rounds. In this section we will show that the results derived above can still be
applied in this situation, provided that we modify some definitions.

Let us denote by Zo the set of possible guesses for the targeted subkeys of the
outer rounds (round 1 and round r). For each guess zp and for all N plaintext—
ciphertext pairs, the adversary does a partial encryption and decryption at the
top and bottom of the block cipher, and recovers the parity bits of the intermedi-
ate data blocks involved in mdifferent (r —2)-round linear characteristics. Using
this data, he constructs m' = |Zp|-m counters t;, which can be transformed
into a m’-dimensional vector & containing the estimated imbalances.

As explained in the previous section, the m linear characteristics involve m
parity bits of the key, and thus induce a set of equivalent key classes, which we
will here denote by Z; (I from inner). Although not strictly necessary, we will
for simplicity assume that the sets Zp and Zj are independent, such that each
guess zp € Zp can be combined with any class z; € Zj, thereby determining a
subclass ofkeys z = (zo, z1) € Z with |2| = |20/ - | Z1].

TERAM LING

10 Alex Biryukov, Christophe De Canniere, and Micha&l Quisquater

At this point, the situation is very similar to the one described in the previous
section, the main difference being a higher dimension m/. The only remaining
question is how to construct the m’-dimensional vectors ¢, for each key class
z = (20, 21). To solve this problem, we will need to make some assumptions.
Remember that the coordinates of ¢, are determined by the expected imbalances
of the corresponding linear expressions, given that the data is encrypted with
a key from class z. For the m counters that are constructed after guessing the
correct subkey zp, the expected imbalances are determined by zy and equal to
(—1)*4teyq, ..., (—1)*me,,. For each of the m’ — m other counters, however, we
will assume that the wrong guesses result in independent random-looking parity
bits, showing no imbalance at all*. Accordingly, the vector ¢, has the following
form:

c; =(0,...,0,(=1)* ¢y, ..., (-1)*'™ep,0,...,0)

With the modified definitions of £ and ¢, given above, both Theorem 1 and
Corollary 1 still hold (the proofs are given in App. A). Notice however that the
gain of the Algorithm-2-style linear attack will be significantly larger because it
depends on the capacity of linear characteristics over r — 2 rounds instead of r
rounds.

3.4 Influence of Dependencies

When deriving (5) in Sect. 3, we assumed statistical independence. This assump-
tion is not always fulfilled, however. In this section we discuss different potential
sources of dependencies and estimate how they might influence the cryptanalysis.

Dependent plaintext—ciphertext pairs. A first assumption made by equa-
tion (5) concerns the dependency of the parity bits z; ; with 1 < i < N, com-
puted with a single linear approximation for different plaintext—ciphertext pairs.
The equation assumes that the probability that the approximation holds for a
single pair equals p; = 1/2 + ¢;, regardless of what is observed for other pairs.
This is a very reasonable assumption if the N plaintexts are chosen randomly,
but even if they are picked in a systematic way, we can still safely assume that
the corresponding ciphertexts are sufficiently unrelated as to prevent statistical
dependencies.

Dependent text mask. The next source of dependencies is more fundamental
and is related to dependent text masks. Suppose for example that we want to use
three linear approximations with plaintext—ciphertext masks (xb, x&), (x%, x%),
(x},x%), and that xb ®x% ®xb =xL ®x% ®xE =0. It is immediately clear
that the parity bits computed for these three approximations cannot possibly be
independent: for all (P;, C;) pairs, the bit computed for the 3rd approximation
z; 3 is equal to x;1 ® 2.

4 Note that for some ciphers, other assumptions may be more appropriate. The rea-
soning in this section can be applied to these cases just as well, yielding very similar
results.

TERAM LING

On Multiple Linear Approximations 11

Even in such cases, however, we believe that the results derived in the pre-
vious section are still quite reasonable. In order to show this, we consider the
probability that a single random plaintext encrypted with an equivalent key z
yields a vector’ of parity bits x = (z1,...,Zm). Let us denote by x} the con-
catenation of both text masks x} and ch Wlthout loss of generality, we can
assume that the m masks XJT are linearly independent for 1 < j <! and linearly
dependent (but different) for { < j < m. This implies that x is restricted to a
l-dimensional subspace R. We will only consider the key class 2’ = (0,...,0) in
order to simplify the equations. The probability we want to evaluate is:

Py(x)=Pr[X;=z;for1<j<m]|?2|

These (unknown) probabilities determine the (known) imbalances c; of the linear
approximations through the following expression:

=) Po(x)-(-1)7

XER

We now make the (in many cases reasonable) assumption that all 2! — m masks
xT, which depend linearly on the masks x7., but which differ from the ones
considered by the attack, have negligible imbalances. In this case, the equation
above can be reversed (note the similarity with the Walsh-Hadamard transform),

and we find that:
P,y (x) = 5 Z ¢i-(-1)°
Assuming that m - ¢; < 1 we can make the following approximation:

2m T l4¢j-(—1)%
Pz,(x)z—y—n__J_;_)_

Apart from an irrelevant constant factor 2™ /2!, this is exactly what we need:
it implies that, even with dependent masks, we can still multiply probabilities
as we did in order to derive (5). This is an important conclusion, because it
indicates that the capacity of the approximations continues to grow, even when
m exceeds twice the block size, in which case the masks are necessarily linearly
dependent.

Dependent trails. A third type of dependencies might be caused by merging
linear trails. When analyzing the best linear approximations for DES, for exam-
ple, we notice that most of the good linear approximations follow a very limited
number of trails through the inner rounds of the cipher, which might result in
dependencies. Although this effect did not appear to have any influence on our
experiments (with up to 100 different approximations), we cannot exclude at
this point that they will affect attacks using much more approximations.

* Note a small abuse of notation here: the definition of x differs from the one used in

Sect. 2.1.

TERAM LING

12 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

Table 1. Attack Algorithm MK 1 and its complexity.

Distillation phase. Obtain N plaintext—ciphertext pairs (pi,e;). For 1 <
j < m, count the number t; of pairs satisfying pi[x}] @ ci[x’] = 0 and
compute the estimated imbalance é; =2-t; /N — 1.

Analysis phase. For each equivalent key class z € Z, determine the distance

el =3 (& - (-1)% - ;)

ji=1

and use these values to construct a sorted list, starting with the class with
the smallest distance.

Search phase. Run through the sorted list and exhaustively try all n-bit
keys contained in the equivalence classes until the correct key is found.

Data compl. Time compl. Memory compl.
Distillation: 0(1/&%) O(m/&*) O(m)
Analysis: - O(m-|Z|) O(|Z])
Search: - o2™=") O(|Z))

Dependent key masks. We finally note that we did not make any assumption
about the dependency of key masks in the previous sections. This implies that
all results derived above remain valid for dependent key masks.

4 Experimental Results

In Sect. 3 we derived an optimal approach for cryptanalyzing block ciphers using
multiple linear approximations. In this section, we implement practical attack
algorithms based on this approach and evaluate their performance when applied
to DES, the standard benchmark for linear cryptanalysis. Our experiments show
that the attack complexities are in perfect correspondence with the theoretical
results derived in the previous sections.

4.1 Attack Algorithm MK 1

Table 1 summarizes the attack algorithm presented in Sect. 2 (we call this al-
gorithm Attack Algorithm MK I). In order to verify the theoretical results, we
applied the attack algorithm to 8 rounds of DES. We picked 86 linear approx-
imations with a total capacity & = 27156 (see Definition 2). In order to speed
up the simulation, the approximations were picked to contain 10 linearly inde-
pendent key masks, such that |Z| = 1024. Fig. 2 shows the simulated gain for
Algorithm MK 1 using these 86 approximations, and compares it to the gain of
Matsui’s Algorithm 1, which uses the best one only (€2 = 27194). We clearly see
a significant improvement. While Matsui’s algorithm requires about 22! pairs
to attain a gain close to 1 bit, only 2! pairs suffice for Algorithm MK 1. The
theoretical curves shown in the figure were plotted by computing the gain using

TERAM LING

On Multiple Linear Approximations 13

10

Simulation of MK 1 (m = 86) - : [
9 Theorem 1 for m =86 - - - -
Corollary 1 for m =86 --------
L Simulation of Matsui’s Algorithm 1 — — —
Theorem 1 for m =1

Fig. 2. Gain (in bits) as a function of data (known plaintext) for 8-round DES.

the exact expression for M* derived in Theorem 1 and using the approximation
from Corollary 1. Both fit nicely with the experimental results.

Note, that the attack presented in this section is just a proof of concept,
even higher gains would be possible with more optimized attacks. For a more
detailed discussion of the technical aspects playing a role in the implementation
of Algorithm MK 1, we refer to App. B.

4.2 Attack Algorithm MK 2

In this section, we discuss the experimental results for the generalization of Mat-
sui’s Algorithm 2 using multiple linear approximations (called Attack Algorithm
MK 2). We simulated the attack algorithm on 8 rounds of DES and compared
the results to the gain of the corresponding Algorithm 2 attack described in
Matsui’s paper [9].

Our attack uses eight linear approximations spanning six rounds with a total
capacity & = 2~!19 In order to compute the parity bits of these equations,
eight 6-bit subkeys need to be guessed in the first and the last rounds (how this
is done in practice is explained in App. B). Fig. 3 compares the gain of the attack
to Matsui’s Algorithm 2, which uses the two best approximations (&% = 2713-2),
For the same amount of data, the multiple linear attack clearly achieves a much
higher gain. This reduces the complexity of the search phase by multiple orders
of magnitude. On the other hand, for the same gain, the adversary can reduce
the amount of data by at least a factor 2. For example, for a gain of 12 bits, the
data complexity is reduced from 2178 to 2166, This is in a close correspondence
with the ratio between the capacities. Note that both simulations were carried

TERAM LING

14 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

60

T T
Simulation for m = 8
Theory for m =8 - - - - i
50 Simulation for m =1 «-------
Theory for m=1 — — — '

D _ﬂ;_;‘;_#;h__ ,,,,,, . | | |
gl4 915 2's ol 2'8 2 2%

Fig. 3. Gain (in bits) as a function of data (known plaintext) for 8-round DES.

out under the assumption of independent subkeys (this was also the case for
the simulations presented in [9]). Without this assumption, the gain will closely
follow the graphs on the figure, but stop increasing as soon as the gain equals
the number of independent key bits involved in the attack.

As in Sect. 4.1 our goal was not to provide the best attack on 8-round DES,
but to show that Algorithm-2 style attacks do gain from the use of multiple linear
approximations, with a data reduction proportional to the increase in the joint
capacity. We refer to App. B for the technical aspects of the implementation of
Algorithm MK 2.

4.3 Capacity — DES Case Study

In Sect. 3 we argued that the minimal amount of data needed to obtain a certain
gain compared to exhaustive search is determined by the capacity & of the linear
approximations. In order to get a first estimate of the potential improvement of
using multiple approximations, we calculated the total capacity of the best m
linear approximations of DES for 1 < m < 26, The capacities were computed
using an adapted version of Matsui’s algorithm (see [1]). The results, plotted for
different number of rounds, are shown in Fig. 4 and 5, both for approximations
restricted to a single S-box per round and for the general case. Note that the
single best approximation is not visible on these figures due to the scale of the
graphs.

Kaliski and Robshaw [5] showed that the first 10006 approximations with a
single active S-box per round have a joint capacity of 4.92-10~1! for 14 rounds

TERAM LING

On Multiple Linear Approximations 15

9x 10710 TR0

" Multiple active S-booes —
Single active S-box - - - -

8% 1071

6x 107"

Tx107"
-1z

6x 107" 5 10

Bx 107 4x 10"

1
4% 10 Axi0~? HL
Ix1p710
2x20"?

2x 1071

1072 | A
Multiple active 5-boxes ————
Single artive S-hax - - - -

10-

0 L
o 10000 20000 30000 40000 50000 60000 0000

Fig. 4. Capacity (14 rounds). Fig. 5. Capacity (16 rounds).

of DES®. Fig. 4 shows that this capacity can be increased to 4 -107!% when
multiple S-boxes are allowed. Comparing this to the capacity of Matsui’s best
approximation (€2 = 1.29-10~12), the factor 38 gained by Kaliski and Robshaw is
increased to 304 in our case. Practical techniques to turn this increased capacity
into an effective reduction of the data complexity are presented in this paper,
but exploiting the full gain of 10000 unrestricted approximations will require
additional techniques. In theory, however, it would be possible to reduce the
data complexity form 243 (in Matsui’s case, using two approximations) to about
236 (using 10000 approximations).

In order to provide a more conservative (and probably rather realistic) es-
timation of the implications of our new attacks on full DES, we searched for
14-round approximations which only require three 6-bit subkeys to be guessed
simultaneously in the first and the last rounds. The capacity of the 108 best
approximations satisfying this restriction is 9.83 - 10712, This suggests that an
MK 2 attack exploiting these 108 approximations might reduce the data com-
plexity by a factor 4 compared to Matsui’s Algorithm 2 (i.e., 24! instead of 243).
This is comparable to the Knudsen-Mathiassen reduction [6], but would preserve
the advantage of being a known-plaintext attack rather than a chosen-plaintext
one.

Using very high numbers of approximations is somewhat easier in practice
for MK 1 because we do not have to impose restrictions on the plaintext and
ciphertext masks (see App. B). Analyzing the capacity for the 10000 best 16-
round approximations, we now find a capacity of 5. 10712, If we restrict the
complexity of the search phase to an average of 243 trials (i. e., a gain of 12 bits),
we expect that the attack will require 24! known plaintexts. As expected, this
theoretical number is larger than for the MK 2 attack using the same amount
of approximations.

5 Future Work

In this paper we proposed a framework which allows to use the information
contained in multiple linear approximations in an optimal way. The topics below
are possible further improvements and open questions.

® Note that Kaliski and Robshaw calculated the sum of squared biases: 3 & =2/4.

TERAM LING

16 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

Application to 16-round DES. The results in this paper suggest that Algo-
rithms MK 1 and MK 2 could reduce the data complexity to 24! known
plaintexts, or even less when the number of approximations is further in-
creased. An interesting problem related to this is how to merge multiple lists
of key classes (possibly with overlapping key-bits) efficiently.

Application to AES. Many recent ciphers, e.g., AES, are specifically designed
to minimize the bias of the best approximation. However, this artificial flat-
tening of the bias profile comes at the expense of a large increase in the
number of approximations having the same bias. This suggests that the gain
made by using multiple linear approximations could potentially be much
higher in this case than for a cipher like DES. Considering this, we expect
that one may need to add a few rounds when defining bounds of provable se-
curity against linear cryptanalysis, based only on best approximations. Still,
since AES has a large security margin against linear cryptanalysis we do not
believe that linear attacks enhanced with multiple linear approximations will
pose a practical threat to the security of the AES.

Performance of Algorithm MD. Using a very high number of independent
approximations seems impractical in Algorithms MK 1 and MK 2, but could
be feasible with Algorithm MD described in App. B.3. Additionally, this
method would allow to replace the multiple linear approximations by multi-
ple linear hulls.

Success rate. In this paper we derived simple formulas for the average number
of key candidates checked during the final search phase. Deriving a simple
expression for the distribution of this number is still an open problem. This
would allow to compute the success rate of the attack as a function of the
number of plaintexts and a given maximal number of trials.

6 Conclusions

In this paper, we have studied the problem of generalizing linear cryptanalytic
attacks given m multiple linear approximations, which has been stated in 1994
by Kaliski and Robshaw [5]. In order to solve the problem, we have developed
a statistical framework based on maximum likelihood decoding. This approach
is optimal in the sense that it utilizes all the information that is present in the
multiple linear approximations. We have derived explicit and compact gain for-
mulas for the generalized linear attacks and have shown that for a constant gain,
the data-complexity N of the attack is proportional to the inverse joint capacity
¢? of the multiple linear approximations: N o 1/&2. The gain formulas hold for
the generalized versions of both algorithms proposed by Matsui (Algorithm 1
and Algorithm 2).

In the second half of the paper we have proposed several practical methods
which deliver the theoretical gains derived in the first part of the paper. We
have proposed a key-recovery algorithm MK 1 which has a time complexity
O(m/e? +m-|Z|) and a data complexity O(1/¢%), where |Z]| is the number of
solutions of the system of m equations defined by the linear approximations. We

TERAM LING

On Multiple Linear Approximations 17

have also designed an algorithm MK 2 which is a direct generalization of Matsui’s
Algorithm 2, as described in [9]. The performances of both algorithms are very
close to our theoretical estimations and confirm that the data-complexity of the
attack decreases proportionally to the increase in the joint capacity of multiple
approximations. We have used 8-round DES as a standard benchmark in our
experiments and in all cases our attacks perform significantly better than those
given by Matsui. However our goal in this paper was not to produce the most
optimal attack on DES, but to construct a new cryptanalytic tool applicable to
a variety of ciphers.

References

1. A. Biryukov, C. De Canniere, and M. Quisquater, “On multiple linear approxi-
mations (extended version).” Cryptology ePrint Archive: Report 2004/057, http:
//eprint.iacr.org/2004/057/.

2. J. Daemen and V. Rijmen, The Design of Rijndael: AES — The Advanced En-
cryption Standard. Springer-Verlag, 2002.

3. P. Junod, “On the optimality of linear, differential, and sequential distinguishers,”
in Advances in Cryptology — EUROCRYPT 2003 (E. Biham, ed.), Lecture Notes
in Computer Science, pp. 17-32, Springer-Verlag, 2003.

4. P. Junod and S. Vaudenay, “Optimal key ranking procedures in a statistical crypt-
analysis,” in Fast Software Encryption, FSE 2003 (T. Johansson, ed.), vol. 2887
of Lecture Notes in Computer Science, pp. 1-15, Springer-Verlag, 2003.

5. B. S. Kaliski and M. J. Robshaw, “Linear cryptanalysis using multiple approxima-
tions,” in Advances in Cryptology — CRYPTO’94 (Y. Desmedt, ed.), vol. 839 of
Lecture Notes in Computer Science, pp. 26-39, Springer-Verlag, 1994.

6. L. R. Knudsen and J. E. Mathiassen, “A chosen-plaintext linear attack on DES,”
in Fast Software Encryption, FSE 2000 (B. Schneier, ed.), vol. 1978 of Lecture
Notes in Computer Science, pp. 262-272, Springer-Verlag, 2001.

7. L. R. Knudsen and M. J. B. Robshaw, “Non-linear approximations in linear crypt-
analysis,” in Proceedings of Eurocrypt’96 (U. Maurer, ed.), no. 1070 in Lecture
Notes in Computer Science, pp. 224-236, Springer-Verlag, 1996.

8. M. Matsui, “Linear cryptanalysis method for DES cipher,” in Advances in Cryptol-
ogy — EUROCRYPT’93 (T. Helleseth, ed.), vol. 765 of Lecture Notes in Computer
Science, pp. 386-397, Springer-Verlag, 1993.

9. M. Matsui, “The first experimental cryptanalysis of the Data Encryption Stan-
dard,” in Advances in Cryptology — CRYPTO’94 (Y. Desmedt, ed.), vol. 839 of
Lecture Notes in Computer Science, pp. 1-11, Springer-Verlag, 1994.

10. M. Matsui, “Linear cryptanalysis method for DES cipher (I).” (extended paper),
unpublished, 1994.

11. S. Murphy, F. Piper, M. Walker, and P. Wild, “Likelihood estimation for block
cipher keys,” Technical report, Information Security Group, Royal Holloway, Uni-
versity of London, 1995.

12. A. A. Selguk, “On probability of success in linear and differential cryptanalysis,”
in Proceedings of SCN’02 (S. Cimato, C. Galdi, and G. Persiano, eds.), vol. 2576
of Lecture Notes in Computer Science, Springer-Verlag, 2002. Also available at
https://www.cerias.purdue.edu/papers/archive/2002-02.ps.

TERAM LING

18 Alex Biryukov, Christophe De Canniére, and Michaél Quisquater

13. T. Shimoyama and T. Kaneko, “Quadratic relation of s-box and its application
to the linear attack of full round des,” in Advances in Cryptology — CRYPTO’98
(H. Krawczyk, ed.), vol. 1462 of Lecture Notes in Computer Science, pp. 200-211,
Springer-Verlag, 1998.

14. S. Vaudenay, “An experiment on DES statistical cryptanalysis,” in 3rd ACM Con-
ference on Computer and Communications Security, CCS, pp. 139-147, ACM
Press, 1996.

A Proofs

A.1 Proof of Corollary 1

Corollary 1. If |Z]| is sufficiently large, the gain derived in Theorem 1 can
accurately be approximated by

’Yz—logz[llzlgl-l-@(— NTch +]17‘} (11)

where &2 = Z;’;l c]2- is called the total capacity of the m linear characteristics.

Proof. In order to show how (11) is derived from (8), we just need to construct
an approximation for the expression

IZ*| Z é(2‘:2‘) 127 Z 45(\/N/4-[cz—-cz,|2). (12)

2€2* ze€Z*

We first define the function f(x) = #(—+/N/4- z). Denoting the average value
of a set of variables by E[-] =7, we can reduce (12) to the compact expression
E[f(z)}, with = |c, — c,+|2. By expanding f(z) into a Taylor series around the
average value Z, we find

Elf(2)] = f@) +0+ f'() - El(x ~ D)% +... .

Provided that the higher order moments of z are sufficiently small, we can use
the approximation E[f(z)] = f(Z). Exploiting the fact that the jth coordinate
of each vector c, is either ¢; or —¢;, we can easily calculate the average value 7:

~ Z
mle* Z|cz cz.]2—2 ||Z*||Zc

zeZ*

When |Z] is sufficiently large (say |Z| > 28), the right hand part can be ap-
proximated by 2 - > 1€ =22 (remember that Z* = Z\ {2*}, and thus
|Z2*| = |2] - 1). Substltutmg this into the relation E[f(z)] = f{(Z), wefind

o 3t () e (57,

z€Z*

By applying this approximation to the gain formula derived in Theorem 1, we
directly obtain expression (11). 0O

TERAM LING

On Multiple Linear Approximations 19

A.2 Gain Formulas for the Algorithm-2-Style Attack

With the modified definitions of Z and ¢, given in Sect. 3.3, Theorem 1 can
immediately be applied. This results in the following corollary.

Corollary 2. Given m approximations and N independent pairs (P;, C;), an
adversary can mount an Algorithm-2-style linear attack with a gain equal to:

1 lez — cz¢| 1
7=—10g2[2-EZ¢(-\/ﬁ-—2——)+|—Z—|}. (13)

z€Z*

The formula above involves a summation over all elements of Z*. Motivated
by the fact that |Z2*| = |Zp| - |Zf| — 1 is typically very large, we now derive
a more convenient approximated expression similar to Corollary 1. In order to
do this, we split the sum into two parts. The first part considers only keys
z € Zf = 21\ {2*} where Z; = {z | zo0 = 25}; the second part sums over
all remaining keys z € 2 = {z | zo # 25}. In this second case, we have that

lcz —coe|? =237 c2 =22 forall z € Z;, such that

qu(—x/fv"-ﬁ’%"') =|zz|-q5<- Nf) .

2€EZ,

For the first part of the sum, we apply the approximation used to derive Corol-
lary 1 and obtain a very similar expression:

—Coe)
Z@(_\/N.lﬁf%>z|zn_¢(_ N2c)

z€Z¢

Combining both result we find the counterpart of Corollary 1 for an Algorithm-
2-style linear attack.

Corollary 3. If |Z| is sufficiently large, the gain derived in Theorem 2 can
accurately be approximated by

L 12l-1 ([N-2\ 1
v~ log2[2 2 &) tE| (14)

where & = Z;’;l c? is the total capacity of the m linear characteristics.

Notice that although Corollary 1 and 3 contain identical formulas, the gain of
the Algorithm-2-style linear attack will be significantly larger because it depends
on the capacity of linear characteristics over r — 2 rounds instead of r rounds.

B Discussion — Practical Aspects

When attempting to calculate the optimal estimators derived in Sect. 3, the
attacker might be confronted with some practical limitations, which are often
cipher-dependent. In this section we discuss possible problems and propose ways
to deal with them.

TERAM LING

20 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

B.1 Attack Algorithm MK 1

When estimating the potential gain in Sect. 3, we did not impose any restrictions
on the number of approximations m. However, while it does reduce the complex-
ity of the search phase (since it increases the gain), having an excessively high
number m increases both the time and the space complexity of the distillation
and the analysis phase. At some point the latter will dominate, cancelling out
any improvement made in the search phase.

Analyzing the complexities in Table 1, we can make a few observations. We
first note that the time complexity of the distillation phase should be compared
to the time needed to encrypt N oc 1/&* plaintext—ciphertext pairs. Given that
a single counting operation is much faster than an encryption, we expect the
complexity of the distillation to remain negligible compared to the encryption
time as long as m is only a few orders of magnitude (say m < 100).

The second observation is that the number of different key classes |.Z| clearly
plays an important role, both for the time and the memory complexities of the
algorithm. In a practical situation, the memory is expected to be the strongest
limitation. Different approaches can be taken to deal with this problem:

Straightforward, but inefficient approach. Since the number of different
key classes | Z| is bounded by 2™, the most straightforward solution is to limit
the number of approximations. A realistic upper bound would be m < 32.
The obvious drawback of this approach is that it will not allow to attain
very high capacities.

Exploiting dependent key masks. A better approach is to impose a bound
on the number [of linearly independent key masks xJ. This way, we limit
the memory requirements to |Z| = 2, but still allow a large number of ap-
proximations (for ex. a few thousands). This approach restricts the choice
of approximations, however, and thus reduces the maximum attainable ca-
pacity. This is the approach taken in Sect. 4.1. Note also that the attack
described in [5] can be seen as a special case of this approach, with [= 1.

Merging separate lists. A third strategy consists in constructing separate
lists and merging them dynamically. Suppose for simplicity that the m key
masks x% considered in the attack are all independent. In this case, we can
apply the analysis phase twice, each time using m/2 approximations. This
will result in two sorted lists of intermediate key classes, both containing
2™/2 classes. We can then dynamically compute a sorted sequence of final
key classes constructed by taking the product of both lists. The ranking of
the sequence is determined by the likelihood of these final classes, which is
just the sum of the likelihoods of the elements in the separate lists. This
approach slightly increases’ the time complexity of the analysis phase, but
will considerably reduce the memory requirements. Note that this approach
can be generalized in order to allow some dependencies in the key masks.

" In cases where the gain of the attack is several bits, this approach will actually
decrease the complexity, since we expect that only a fraction of the final sequence
will need to be computed.

TERAM LING

On Multiple Linear Approximations 21

B.2 Attack Algorithm MK 2

We now briefly discuss some practical aspects of the Algorithm-2-style multiple
linear attack, called Attack Algorithm MK 2. As discussed earlier, the ideas of
the attack are very similar to Attack Algorithm MK 1, but there are a number of
additional issues. In the following paragraphs, we denote the number of rounds
of the cipher by 7.

Choice of characteristics. In order to limit the amount of guesses in rounds 1
and r, only parts of the subkeys in these rounds will be guessed. This restricts
the set of useful r — 2-round characteristics to those that only depend on
bits which can be derived from the plaintext, the ciphertext, and the partial
subkeys. This obviously reduces the maximum attainable capacity.

Efficiency of the distillation phase. During the distillation phase, all N
plaintexts need to be analyzed for all |Zo| guesses zp. Since |Zp] is rather
large in practice, this could be very computational intensive. For example,
a naive implementation would require O(N - |Z0]|) steps and even Matsui’s
counting trick would use O(N + |Zo|?) steps. However, the distillation can
be performed in O(N + |Z0]) steps by gradually guessing parts of zp and
re-processing the counters.

Merging Separate lists. The idea of working with separate lists can be ap-
plied here just as for MK 1.

Computing distances. In order to compare the likelihoods of different keys,
we need to evaluate the distance |& — (:z|2 for all classes z € Z. The vectors
¢ and ¢, are both |Zp| - m-dimensional. When calculating this distance as
a sum of squares, most terms do not depend on z, however. This allows the
distance to be computed very efficiently, by summing only m terms.

B.3 Attack Algorithm MD (distinguishing/key-recovery)

The main limitation of Algorithm MK 1 and MK 2 is the bound on the number
of key classes |Z|. In this section, we show that this limitation disappears if
our sole purpose is to distinguish an encryption algorithm Ej from a random
permutation R. As usual, the distinguisher can be extended into a key-recovery
attack by adding rounds at the top and at the bottom.

If we observe N plaintext—ciphertext pairs and assume for simplicity that the
a priori probability that they were constructed using the encryption algorithm
is 1/2, we can construct a distinguishing attack using the maximum likelihood
approach in a similar way as in Sect. 3. Assuming that all secret keys k are equally
probable, one can easily derive the likelihood that the encryption algorithm was
used, given the values of the counters t:

1 {7 (N t; N—t; t; N-—t;
LE(t)z'é',;H(tj) '(pj " g +4q; - p;)
j=1

This expression is correct if all text masks and key masks are independent, but
is still expected to be a good approximation, if this assumption does not hold

TERAM LING

22 Alex Biryukov, Christophe De Canniere, and Michaél Quisquater

(for the reasons discussed in Sect. 3.4). A similar likelihood can be calculated
for the random permutation:

o) @)

J=1

Contrary to what was found for Algorithm MK 1, both likelihoods can be com-
puted in time proportional to m, i.e., independent of |Z|. The complete distin-
guishing algorithm, called Artack Algorithm MD consists of two steps:

Distillation phase. Obtain N plaintext—ciphertext pairs (F;, C;). For 1 < j <
m, count the number ¢; of pairs satisfying P;[xp]| & Ci[x%] = 0.

Analysis phase. Compute Lg(t) and Lg(t). If Lg(t) > Lg(t), decide that
the plaintexts were encrypted with the algorithm Ej (using some unknown
key k).

The analysis of this algorithm is a matter of further research.

C Previous Work: Linear Cryptanalysis

Since the introduction of linear cryptanalysis by Matsui [8-10], several gen-
eralizations of the linear cryptanalysis method have been proposed. Kaliski-
Robshaw [5] suggested to use many linear approximations instead of one, but
did provide an efficient method for doing so only for the case when all the ap-
proximations cover the same parity bit of the key. Realizing that this limited
the number of useful approximations, the authors also proposed a simple (but
somewhat inefficient) extension to their technique which removes this restriction
by guessing a relation between the different key bits. The idea of using non-
linear approximations has been suggested by Knudsen-Robshaw [7]. It was used
by Shimoyama-Kaneko [13] to marginally improve the linear attack on DES.
Knudsen-Mathiassen [6] suggest to convert linear cryptanalysis into a chosen
plaintext attack, which would gain the first round of approximation for free.
The gain is small, since Matsui’s attack gains the first round rather efficiently
as well.

A more detailed overview of the history of linear cryptanalysis can be found
in the extended version of this paper [1].

TERAM LING

Feistel Schemes and Bi-linear Cryptanalysis
(Extended Abstract)

Nicolas T. Courtois

Axalto Smart Cards Crypto Research,
36-38 rue de la Princesse, BP 45, F-78430 Louveciennes Cedex, France

courtois@minrank.org

Abstract. In this paper we introduce the method of bi-linear crypt-
analysis (BLC), designed specifically to attack Feistel ciphers. It allows
to construct periodic biased characteristics that combine for an arbitrary
number of rounds. In particular, we present a practical attack on DES
based on a 1-round invariant, the fastest known based on such invariant,
and about as fast as the best Matsui’s attack. For ciphers similar to DES,
based on small S-boxes, we claim that BLC is very closely related to LC,
and we do not expect to find a bi-linear attack much faster than by
LC. Nevertheless we have found bi-linear characteristics that are strictly
better than the best Matsui’s result for 3, 7, 11 and more rounds.

For more general Feistel schemes there is no reason whatsoever for BLC
to remain only a small improvement over LC. We present a construction
of a family of practical ciphers based on a big Rijndael-type S-box that
are strongly resistant against linear cryptanalysis (LC) but can be easily
broken by BLC, even with 16 or more rounds.

Keywords: Block ciphers, Feistel schemes, S-box design, inverse-based
S-box, DES, linear cryptanalysis, generalised linear cryptanalysis, /O
sums, correlation attacks on block ciphers, multivariate quadratic equa-
tions.

1 Introduction

In spite of growing importance of AES, Feistel schemes and DES remain widely
used in practice, especially in financial/banking sector. The linear cryptanalysis
(LC), due to Gilbert and Matsui is the best known plaintext attack on DES, see
[4, 25, 27,16, 21]. (For chosen plaintext attacks, see [21, 2]).

A straightforward way of extending linear attacks is to consider nonlinear
multivariate equations. Exact multivariate equations can give a tiny improve-
ment to the last round of a linear attack, as shown at Crypto’98 [18]. A more
powerful idea is to use probabilistic multivariate equations, for every round, and
replace Matsui’s biased linear I/O sums by nonlinear I/O sums as proposed by
Harpes, Kramer, and Massey at Eurocrypt’95 [9]. This is known as Generalized
Linear Cryptanalysis (GLC). In [10,11] Harpes introduces partitioning crypt-
analysis (PC) and shows that it generalizes both LC and GLC. The correlation
cryptanalysis (CC) introduced in Jakobsen’s master thesis [13] is claimed even

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 23-40, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

24 Nicolas T. Courtois

more general. Moreover, in [12] it is shown that all these attacks, including also
Differential Cryptanalysis are closely related and can be studied in terms of the
Fast Fourier Transform for the cipher round function. Unfortunately, computing
this transform is in general infeasible for a real-life cipher and up till now, non-
linear multivariate I/O sums played a marginal role in attacking real ciphers.
Accordingly, these attacks may be excessively general and there is probably no
substitute to finding and studying in details interesting special cases.

At Eurocrypt’96 Knudsen and Robshaw consider applying GLC to Feistel
schemes [20], and affirm that in this case non-linear characteristics cannot be
joined together. We will demonstrate that GLC can be applied to Feistel ciphers,
which is made possible with our “Bi-Linear Cryptanalysis” (BLC) attack.

2 Feistel Schemes and Bi-linear Functions

Differential [2] and linear attacks on DES [25,1] have periodic patterns with
invariant equations for some 1, 3 or 8 rounds. In this paper we will present
several new practical attacks with periodic structure for DES, including new
l-round invariants.

2.1 The Principle of the Bi-linear Attack on Feistel Schemes

In one round of a Feistel scheme, one half is unchanged, and one half is linearly
combined with the output of the component connected to the other half. This will
allow bi-linear I/O expressions on the round function to be combined together.
First we will give an example with one product, and extend it to arbitrary bi-
linear expressions. Then in Section 3 we explain the full method in details (with
linear parts present too) for an arbitrary Feistel schemes. Later we will apply it
to get concrete working attacks for DES and other ciphers.

In this paper we represent Feistel schemes in a completely “untwisted” way,
allowing to see more clearly the part that is not changed in one round. As a
consequence, the orientation changes compared to most of the papers and we
obtain an apparent (but extremely useful) distinction between odd and even
rounds of a Feistel scheme. Otherwise, our notations are very similar to these
used for DES in [23,18]. For example Lo[a] denotes a sum (XOR) of some subset
a of bits of the left half of the plaintext. Combinations of inputs (or outputs) of
round function number r = 1,2, ... are denoted by I,[e] (or O,[8]). Our exact
notations for DES will be explained in more details when needed, in Section 6.1.
For the time being, we start with a simple rather self-explaining example (cf.
Figure 1) that works for any Feistel cipher.

Proposition 2.1.1 (Combining bi-linear expressions in a Feistel cipher).
For all (even unbalanced) Feistel ciphers operating on n +n’ bits with arbitrary
round functions we have: Vo C {1,...,n},V8C {1,...,n'}, Vr > 0:

[r/2] lr/2]

L.[a)R.[8) ® Lo[a]Ro[B] = Z Ozi-1[a]l2i—1 (0] ® Z I;[c] O] 0
=1 i=1

TERAM LING

Feistel Schemes and Bi-linear Cryptanalysis 25

Lole] * Rolf]

P ouelenia o = M@]—LO[G]*RO[»@]
L |a] * Ry[]

ol nielsoasl [= Lala z[ﬁ}—wl
Lo[a] * Ra[f]

P oslal=nsls] [= Ls[ai*Rs[ﬁ}—w

| el malg) |

Fig. 1. Fundamental remark: combining bi-linear expressions in a Feistel cipher

From one product this fundamental result extends immediately, by linearity,
to arbitrary bi-linear expressions. Moreover, we will see that these bi-linear ex-
pressions do not necessarily have to be the same in every round, and that they
can be freely combined with linear expressions (BLC contains LC).

3 Bi-linear Characteristics

For simplicity let n = n’. In this section we construct a completely general
bi-linear characteristic for one round of a Feistel cipher. Then we show how it
combines for the next round. Here we study bits locally and denote them by
A;, Bj etc. Later for constructing attacks for many rounds of practical Feistel
ciphers we will use (again) the notations L;[j1, ..., j&] (cf. Section 6.1).

3.1 Constructing a Bi-linear Characteristic for One Round

Let S be a homogeneous bi-linear Boolean function GF(2") x GF(2™) — GF(2).
Let S(Al, c ,An; Bl, ceey Bn) = EsiinBj'

Let fx be the round function of a Feistel cipher. We assume that there exist
two linear combinations « and v such that the function:

ZsijOiBj (&) EuiOi D E'UiBi
(Bla-.-an)H{ with (01,,,,,071)=fK(B1""’Bn)

is biased and equal to O with some probability p # 1/2 with p = p(K) depending
in some way on the round key K.

TERAM LING

26 Nicolas T. Courtois

Wehave C; = A; & O;. By bi-linearity (or from Proposition 2.1.1) the fol-

lowingholds:
Z SiinBj &5 Z .S‘,'jO,'Bj = Z SijCiBj

From this, for the first round, (could be also any odd-numbered round), we
obtain the following characteristic:

> 8ijAB; @ uiA; dY vB; =
> 54;CiB; @3 uC;
Finally, we note that, the part linear in the B; can be arbitrarily split in two
parts: > v;B; = Evi(l)Bi ® Zv}z)Bi with v; = vi(l) ® vi(z) forall i =1,...,n.
All this is summarized on the following picture:

} with probability p(K)

ZSQ‘A;'BJ‘ [a] 2 u; A; @ Z’UE”B@

Alw“:An Bl,-":Bn
4 O1 Bi
P : : P 2. 8i;0iB; ®) ui0; ® 3 viB;
O, B,
Cl,...,Cn" "B1, sEbG

Z S,;ngBj & Z ’H,,'O,g ® Z’L’Ez)Bi

Fig. 2. Constructing a bi-linear characteristic for an odd round of a Feistel cipher

3.2 Application to the Next (Even) Round

The same method can be applied to the next, even, round of a Feistel scheme,
with the only difference that the round function is connected in the inverse
direction. In this case, to obtain a characteristic true with probability # 1/2, we
need to have a bias in the function:

YO8 @ Zw,(-l)cs; @ > z:B;

C],...‘Cn Bla“'!Bﬂ
Cy h ! !
> CHD 2 tCiP @ Y wiCi @ Yz P
Cﬂ Pﬁ
Cl?" }Cﬂ.‘r Y Dl: "1D‘n

> t:;C:D; & Y wPC; & Y x:D;

Fig. 3. Constructing a bi-linear characteristic for an even round of a Feistel cipher

TERAM LING

Feistel Schemes and Bi-linear Cryptanalysis 27

S0P & Y wiCi © Y i P
(01,...,011)'—‘){ with (Pl,...,Pn)=fK(Cl,...,Cn)

3.3 Combining Approximations to Get a Bi-linear Attack
for an Arbitrary Number of Rounds

It is obvious that such I/O sums as specified above can be combined for an
arbitrary number of rounds (contradicting [20] page 226). To combine the two
characteristics specified above, we require the following three conditions:

1. Weneed u = w(D),

2. We need v = z.

3. We need the homogenous quadratic parts s et ¢t to be correlated (seen as
Boolean functions). They do not have to be the same (though in many
cases they will). In linear cryptanalysis (LC), a correlation between two
linear combinations means that these linear combinations have to be the
same. In generalized linear cryptanalysis (GLC) [9], and in particular here,
for bi-linear I/O sums, it is no longer true. Correlations between quadratic
Boolean functions are frequent, and does not imply that s = £. For these
reasons the number of possible bi-linear attacks is potentially very large.

Summary: We observe that bi-linear characteristics combine exactly as in LC
for their linear parts, and that their quadratic parts should be either identical
(with orientation that changes in every other round), or correlated.

4 Predicting the Behaviour of Bi-linear Attacks

The behaviour of LC is simple and the heuristic methods of Matsui [25] are
known to be able to predict the behaviour of the attacks with good precision
(see below). Some attacks work even better than predicted. As already suggested
in [9,20] the study of generalised linear cryptanalysis is much harder.

4.1 Computing the Bias of Combined Approximations

A bi-linear attack will use an I/O sum for the whole cipher, being a sum of I/O
sums for each round of the cipher such that the terms in the internal variables do
cancel. To compute the probability the resulting equation is true, is in general not
obvious. Assuming that the I/O sum uses balanced Boolean functions, (otherwise
it will be even harder to analyse) one can apply the Matsui’s Piling-up Lemma
from [25]. This however can fail. It is known from [9] that a sum of two very
strongly biased characteristics can have a bias much weaker than expected. The
resulting bias can even be exactly zero: an explicit example can be found in
Section 6.1. of [9]. Such a problem can arise when the connecting characteristics
are not independent. This will happen more frequently in BLC than in LC:
two linear Boolean functions are perfectly independent unless equal, for non-
linear Boolean functions, correlations are frequent. Accordingly, we do not sum
independent random variables and the Matsui’s lemma may fail.

At this stage there are two approaches: one can try to define a class of
attacks that can be proved to work, and restrict oneself only to studying such

TEAM LING

28 Nicolas T. Courtois

attacks, or try to explore all possible attacks, including those that do work
experimentally without proof. This first approach is adopted in [9]: the Lemma
6 gives a sufficient condition to guarantee that the Piling-up lemma will apply.
For this the probability, that the characteristic is true, for a random partial key,
should be independent of the input (e.g. the input of the whole round). This
explains why Matsui’s attacks indeed work well. In [9] it allows to prove that the
proposed family of GLC attacks based on homomorphic properties will work as
predicted. We will also use this argument in Section 5.

In this paper we frequently adopt rather the second approach: try find as
many working attacks as possible, even if current theory does not allow to pre-
dict their behaviour with accuracy. A price to pay for this is that each application
of Matsui’s Lemma will be systematically questioned and confronted to experi-
mental results.

4.2 Key Dependence in Bi-linear Attacks

Another important property of bi-linear cryptanalysis is that the existence of
a bias for one characteristic does frequently depend on the key. This does not
really happen for LC applied DES, because in DES all key bits are combined
linearly and a linear equation will be true with probability either p or 1 — p
depending on the key. However it will happen for LC and other ciphers, if key
bits are involved in a more complex way, for example for ICE [22].

In bi-linear cryptanalysis, the behaviour becomes complex already when the
key bits are combined linearly as in DES. Adding a constant (a key bit) to
an input of an S-box, does not only modify the constant part in a bi-linear
characteristic, but also the linear part. (We note that for DES only the linear
part in the output variables will be modified when the key changes). From this,
quite frequently two bi-linear characteristics for two parts of a cipher (e.g. for
S-boxes) will only connect together for some keys. Such attacks are still very
interesting and frequently also do work, with only a slightly weaker bias, for all
the other keys. For simplicity, no key bits are displayed in bi-linear characteristics
for one or several rounds of a cipher that are studied/displayed in this paper.
The values of biases we will present (unless otherwise stated) are given for the
reference key being zero. Yet typically we observed that they exist, and slightly
vary in value, also for any other key (chosen at random). In rare cases, the bias
works well only for a fraction of keys (e.g. 25 %): this happens in Appendix B.1.

4.3 Exploring Bi-linear Cryptanalysis

There are different approaches to finding interesting bi-linear attacks to block
ciphers. In few cases one can construct attacks that will provably or arguably
work (see [9] and later Section 5). Another method is to construct characteristics
“by hand” around some particularly strong bias found for one S-box.

We noted the two major difficulties: predicting the bias of combined charac-
teristics, and huge number of possible characteristics (including fragmentation
due to the fact they the bias does in general depend on the key). These make
it very difficult to have a systematic method (a computer program) that would

TERAM LING

Feistel Schemes and Bi-linear Cryptanalysis 29

compute the best bi-linear characteristic for a given cipher. To check if an attack
indeed works requires to be able to generate as many plaintexts as for the real
attack. To find the best attack is even much harder. It requires to exhaustively
search and reject lots of other combinations that should work well but they don’t.
Each of them has to be tested on an equally large set of plaintexts.

5 The Killer Example for Bi-linear Cryptanalysis

We will construct a practical cipher that is very secure w.r.t. all known attacks
for block ciphers, in particular for LC, yet broken by BLC. It mixes two group
operations: the XOR and the multiplication in GF'(2"}e.g. n = 32 or 64. It uses
the inverse in GF(2") (cf. Rijndael): let Inv(X) = X! in GF(2") when X # 0
and O otherwise. We build a 2n-bit Feistel cipher with the i-th round function
being:

Fi(X) = Inv(X) - (K; ®G(X)) in GF(2™), (1)

with K; being the partial key, and G being some function with S-boxes and
arbitrary components {0,1}" — {0,1}". In order to get an insecure cipher, we
need to assume that some linear combination of outputs of G is biased. For
example, let Y7 & Ys = 0 with probability 3/4. Building a cipher with G alone
would be insecure for LC, however here G is composed by a group operation -
with Inv(X). The Inv(X) assures global diffusion and very high non-linearity
(cf. [3]). Accordingly our round function has very good resistance to linear and
differential cryptanalysis for most G, even when G = 0. But not against BLC.

First, we can consider a bi-linear attack with bi-linear equations over GF'(2"):
Vr > 0:

[r/2] Lr/2]
Lr-Re®Lo-Ro=) Ozi-1-lois1 ® Z Ini- Oy = ZI 0 (2)
i=1

Let X-Y =(Z,...,2Z,) with Z = Zij M,ini}/}. From (2), or if we prefer,
directly from Proposition 2.1.1 and by symmetry M 9= M ,Zi, we get:

VeEe {l,...,n},¥r >0 Y MY (L.:Re; ® LoiRo;) ZZMk I,0; (3)

ij I=1 ij

Now, VIl > 1, I - O; = K; & G(I;) with probability (1 —1/2™). We rewrite it:

Vke{l,...,n},VI>20 Y MJL;Oy = Ku © Gk(L) (4)

i
Then we use the linear output bias of G: G1 & Gs = 0 with probability 3/4.
V20 Y MPI:0,;6) MILO;=Ku®G(L)oKsoGs(L)~C (5)
ij ij

TERAM LING

30 Nicolas T. Courtois

The last expression is equal to come constant denoted C; with probability
3/4. Finally, we combine with (3) (or equivalently sum these bi-linear expressions
over the whole cipher with r rounds).

r
. y . g 11
3 (Ml” ® M;f) (LyiRerj ® LoiRoj) = IZ Ci with probability =+ > (6)
i =1

What we obtained is a biased bi-linear I/O sum for the whole cipher. We can
distinguish this cipher from a random permutation given about 227*2 plaintexts.

For example 16 rounds will be broken on a laptop PC.

Does it work as predicted? In general, as we explain in Section 4.1, it is hard
to predict accurately the behaviour of a composed bi-linear attack. However we
have little doubt it will work: the Inv(X) should render possible correlation
between approximations being combined negligible. In some case we can even
prove that this attack works: when G = 0, and also when one fixed linear com-
bination of output bits of G is 0, (the other parts can be arbitrary functions). In
these cases, dependencies cannot be a problem: we add equations (5) true with
probability 1 to get the equation (6) true with probability 1.

Related work: Similar results were previously obtained for some substitution-
permutation network (SPN) ciphers. In [9] Harpes, Kramer and Massey give
an example of 8-bit SPN that is secure against LC and DC, but insecure for
generalised linear cryptanalysis due to a probabilistic homomorphic property of
each round relative to quadratic residuosity function modulo 28+41. The Jakobsen
attack for substitution ciphers that uses probabilistic univariate polynomials
from [15] can also be seen as a special case of GLC. However, it is the first time
that GLC allows to break a Feistel cipher, which contradicts the impossibility
professed by Knudsen and Robshaw [20]. This cipher is built with state-of-art
components (inverse in GF(2™)) and can in addition incorporate any additional
fashionable component with lots of theory and designer tricks, as a part of G.
Due to G it will not have homomorphic properties. Moreover, by adjusting the
bias in G, the security of this cipher against BLC will be freely adjusted between
(nearly) zero and infinity. It can therefore be arbitrarily weak for BLC, and this
even for a very large number of rounds. Yet, the security against the usual attacks
(LC, DC) should remain equally good (due to the big Inv S-box).

6 Bi-linear Attacks on DES

6.1 Notation

We ignore the initial and final permutations of DES that have no incidence on the
attacks. We use the “untwisted method” of representing DES, as on the right-
hand figure, page 254 in [28]. The bit numbering is compatible with the FIPS
standard [8], and [23,18], and differs from Biham, Shamir [2] or Matsui [25,27].
We denote the bits of the left hand side of the plaintext by Lg[1] ... Lg[n]. The
bits of the right hand side are Rp[1]...Ro[n]. Similarly, as in other papers, the

TERAM LING

Feistel Schemes and Bi-linear Cryptanalysis 31

plaintext after ¢ rounds will be L;, R;, except that we felt it necessary to have our
notations completely “untwisted” which implies that our L; and R; for an odd
1 =1,3,... will be inversed compared to [23, 18, 28], Then, we apply the popular
convention X [i1,...,i,]being X[i1] ® ... ® X[i,]. For example Lq[9, 7,23, 31] is
the XOR of 4 bits of the left half of the plaintext that are added to the outputs
of S1 in the first round. We denote the input bits to the :—th round function by
L{1],...,I;[32]. Similarly the output bits will be O;[1],..., O:{l].

For odd ¢ we have I[j] = Ri—1[j] = Ri[j] and O;[§] = L;—1[j] ® Li[4].

For even ¢ we have I;[j] = L;—1[j] = Li[j] and O;[5] = Ri_1[4] ® R:i[j]-

For individual S-boxes, we will denote the inputs/outputs by respectively
Oli] and J[j] with 7,7 being directly the numbers 1.32 in the round function
of DES. For example O[8],0[14],0[25],0[3] are the outputs of S-box S5, and
J[16],..., J[21] are the inputs of this S-box S5. Depending on the key in round
i, we have I;[k] = Ji[k] or I;[k] = J;[k] + 1. For better readability, we will avoid
naming precisely the key bits involved.

6.2 First Example of Bi-linear Cryptanalysis of DES

Our simulations on DES S-boxes (cf. Appendix A) show that the following two
bi-linear characteristics exist for DES S-boxes S1 and S5:

0[8,14,25,3]® J[17]- O[3] =0 for S5 with probability 17/64

O[17] @ J[3]-O[17) =0 for S1 with probability 47/64

From these, acting as if all the key bits were zero (I;[k] = J;{k]), we deduce
the following bi-linear characteristic for two rounds:

(%) Lo(3,8,14,25] @ Lo[3]Ro[17] & Ro[17]® 1 176 . 94
L2[3,8,14,25| @ L[3|R2[17) ® Re[17) = K[sth] [2~
The explanation is given on the following picture:
85
814253 [17/64
[3][17]
L1[8,14,25,3] | L1[3] = Ry[17] | Ry[17]
Sl Y
aali 17 HP 47/64
[8]«[17]
LQ[S, 14, 25, 3] Y Lg [3} * Rg[]_?] A Rg[l?]

Fig. 4. Our first example - an invariant bi-linear attack on DES (%)

TERAM LING

32 Nicolas T. Courtois

We verified this bias experimentally, and the probability is (we were lucky)
equal to the probability that is predicted by Matsui’s Piling-Up Lemma.

Key Dependence: Very surprisingly, the above equation (%) is biased, not only
when all key bits are 0, but for every DES key. This can be seen to come from
a couple of other (different) bi-linear characteristics from Appendix A.

More rounds: It is easy to see from the picture, and we verified it experimen-
tally, that (%) is also biased for 1,2,3,4,5,6,7,8,9,10,11,... rounds of DES, and
all this happens to work about equally well for an arbitrary key.

Relation to LC: The bias of (x) is closely related to some prominent equations
of Matsui, see the extended version of this paper.

6.3 Invariant Attacks on DES

The equation (*) is an invariant equation, i.e. the input and the output bi-linear
expressions are the same. We have found a simple invariant bi-linear I/O sum
for DES that is biased for any key and for any number of rounds. For LC and
DES, such simple invariant characteristics do exist, have been found by Biham
(page 347 in [1]) in close relation to Davies-Murphy attack. The example (*)
above is one of the best we found for DES, and so far it also the only known
non-linear 1-round invariant attack on DES that works really well in practice.
Our invariant on DES is stronger than Biham’s. We recall that Biham uses a
bias on a sum of some outputs for two successive DES S-boxes. The best bias
obtained by Biham (also exhibited by Matsui in [26] and contained unnoticed in
the earlier Davies-Murphy attack [6,7]) is equal to (35/64 — 1/2) for 2 rounds
and for S-boxes S7-S8. This gives 1.4 - 2722 for 12 rounds. Instead, (x) gives
experimentally only about 1.3-27!8, Accordingly, () is the strongest known
1-round invariant attack on DES.

To break full DES requires a bias for 14 rounds (Matsui’s 2R method) and
the Biham’s invariant requires then 25° plaintexts. Our invariant attack requires
about 243 plaintexts (the bias of () for 14 rounds is expected to be about 2722,
we did not dispose of a sufficient computing power to compute it exactly).

6.4 How Good Is Our First Example, BLC vs. LC

These new properties of DES give a chosen-plaintext attack on an arbitrary
number of rounds of DES, somewhat simpler than Matsui’s laborious search
for the best linear characteristic. If we try here to predict the resulting bias
for 14 rounds by applying the Matsui’s Piling-up formula, we would get for 14
rounds the biasof: 1.63-2717 which means an attack on full DES with only 232-6
known plaintexts (!?). Unfortunately, unlike for LC in DES, such predictions are
frequently not valid for BLC. Starting from 3 rounds, the bias of our invariant
does not follow the prediction at all, yet remains significative. For example if we
apply Matsui’s Piling-Up Lemma to predict the bias for 4 rounds as 2+2 rounds,
we obtain 1.55-276, while in practice it is about 1.80-278. Our invariant attack
seems very bad for 4 rounds, and unfortunately with (*) we never get a bias better

TERAM LING

Feistel Schemes and Bi-linear Cryptanalysis 33

than obtained by Matsui. Yet, it is the best invariant attack on DES known, and
for more than 4 rounds the results are again not so bad. Only slightly worse
than Matsui. For example for 12 rounds the best result of Matsui from [25] gives
1.19 . 217 while for () and a random key our simulation gives 1.3 - 2718, To
break full DES Matsui requires about 24* plaintexts, and with (*) we also need
about 2%3 (and both are related). In the full version of this paper we give a
heuristic argumentation why for DES (but not in general !) the complexity of
the best bi-linear attack should be roughly the same than for LC.

For DES and 1-round invariants attacks extended to an arbitrary number of
rounds, BLC gives strictly better results than LC. It is also so for more complex
periodic constructions and we are going to see that BLC attacks can also be
strictly better than any existing linear attack.

6.5 Second Example of Bi-linear Cryptanalysis of DES

In order to exhibit biases really better than Matsui we looked what is the best
bi-linear characteristic that exists in DES:

J[16,20]®0]8, 14, 25, 3]®J[16,17,20]-O[3] = 0 for S5 with probability 61/64.

We note that this equation can be seen as ‘“‘causing” the existence of the
Matsui’s best equation (A) for S5: their difference is highly biased. Based mainly
on this, we constructed a periodic characteristic for 3,7, 11 and more rounds that
is strictly better than the best results of Matsui for the same number of rounds.

Proposition 6.5.1 (Our Best Attack on 11 Rounds of DES). For all keys,
the following equation is biased for 11 rounds of DES:
Lo[3,8,14,25] @ Lo[3]Ro[16, 17, 20] & Ro[17)® 1
(#%) L11[3,8,14,25] @ L11[3]R11[16,17,20) ® Ry1[17] = } = +around 1.2-2715
K[sth] + K[sth'|Lo[3] + K[sth"'| L11[3] 2

The exact construction to achieve this is a bit complicated. (cf. Appendix
B). The bias of this equation is strictly better than the best linear characteristic
for 11 rounds obtained by Matsui (which gives 1.91 - 2716 for 11 rounds). It has
been verified by computer simulations at every stage. We note also that both
are closely related: their difference, is a biased Boolean function.

Our second example allows us to give an attack strictly better than Matsui
for 11+2=13 rounds of DES. For the full 16-round DES our results are roughly
as good as Matsui (but we hope to improve this soon too). For 17 rounds of
DES, as the construction of our second example (*#) is periodic, we expect that
for 11+4=15 rounds it should also be better than the best bias of Matsui, which
would allow to break 15+2=17 rounds of DES faster than by LC. We do not
dispose of a sufficient computing power to fully confirm this fact.

7 Conclusion

It was stated that for Feistel ciphers non-linear characteristics cannot be joined
together for several rounds, see [20]. In this paper we show that generalised linear

TERAM LING

34 Nicolas T. Courtois

cryptanalysis (GLC) is in fact possible for Feistel schemes. To achieve this goal,
we introduced bi-linear cryptanalysis (BLC). It gives a new (and the fastest
known) 1-round invariant attack on DES. Though more powerful, generalized
linear cryptanalysis is unfortunately much harder to study than LC. At present
heuristic constructions, to be confirmed (or not) by computer simulations are
the only method known to explore it. BLC is related to LC in multiple important
ways. It contains LC as a sub-set. LC can be used to construct good bi-linear
characteristics and vice-versa. BLC also contains LC as an extension: a combi-
nation of biased bi-linear characteristics may extend a concrete combination of
biased linear characteristics by adding quadratic polynomials. Yet BLC can be
strictly better than any (existing) linear attack. This was demonstrated for 3, 7,
11 and more rounds of DES, and also for s?DES.

In this paper we only initiate the study of bi-linear cryptanalysis. BLC and
GLC extend the role of LC as an essential tool to evaluate the real-life security
of many practical ciphers. An interesting contribution of this paper is to point
out that, though GLC is excessively general to be systematically explored, the
properties of the top-level structure of a cryptographic scheme (e.g. being a
Feistel scheme) will determine the type of the attacks (e.g. BLC) that may indeed
work. Our new attack can be quite devastating: we constructed a large family of
practical ciphers based on big Rijndael-type S-box, that are strongly resistant
against LC and all previously known attacks on Feistel ciphers, yet can be broken
in practice with BLC for an important number of rounds. Fortunately, for DES,
BLC gave only slight improvements over LC and does not cause excessive trouble.

References

1. Eli Biham: On Matsui’s Linear Cryptanalysis, Eurocrypt’94, LNCS 950, Springer-
Verlag pp. 341-355, 1994.

2. Eli Biham and Adi Shamir, Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, vol. 4, pp. 3-72, IACR, 1991.

3. Anne Canteaut, Marion Videau: Degree of composition of highly nonlinear func-
tions and applications to higher order differential cryptanalysis, Eurocrypt 2002,
LNCS 2332, Springer, 2002.

4. Anne Tardy-Corfdir, Henri Gilbert: A Known Plaintext Attack of FEAL-4 and
FEAL-6, Crypto’91, LNCS 576, Springer, pp. 172-181, 1992.

5. Nicolas Courtois, Guilhem Castagnos and Louis Goubin: What do DES S-boxes
Say to Each Other ? Available on eprint.iacr.org/2003/184/.

6. D.W. Davies, Some Regular Properties of the Data Encryption Standard,
Crypto’82, pp. 89-96, Plenum Press, New-York, 1982.

7. D. Davies and S. Murphy, Pairs and Triplets of DES S-Boxes, Journal of Cryptol-
ogy, vol. 8, Nb. 1, pp. 1-25, 1995.

8. Data Encryption Standard (DES), Federal Information Processing Standards Pub-
lication (FIPS PUB) 46-3, National Bureau of Standards, Gaithersburg, MD
(1999). http://csrc.nist.gov/publications/fips/fips46-3/fipsd6-3.pdf

9. C. Harpes, G. Kramer, and J. Massey: A Generalization of Linear Cryptanaly-
sis and the Applicability of Matsui’s Piling-up Lemma, Eurocrypt’95, LNCS 921,
Springer, pp.24-38.http://www.isi.ee.ethz.ch/ harpes/GLClong.ps

TERAM LING

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Feistel Schemes and Bi-linear Cryptanalysis 35

Carlo Harpes: Cryptanalysis of iterated block ciphers, PhD thesis, No 11625, Swiss
Federal Int. of Tech., ETH Series in Information Processing, Ed. J. L. Massey,
Hartung-Gorre Verlag Konstanz, 1996, ISBN 3-89649-079-6, ISSN 0942-3044.
Carlo Harpes: Partitioning Cryptanalysis, Post-Diploma Thesis, Signal and Infor-
mation Processing Lab., Swiss Federal Institute of Technology, Zurich, March 1995.
http://www.isi.ee.ethz.ch/~harpes/pc.ps

Thomas Jakobsen, Carlo Harpes: Non-Uniformity Measures for Generalized Linear
Cryptanalysis and Partitioning Cryptanalysis, Pragocrypt’96, 1996.

Thomas Jakobsen: Correlation Attacks on Block Ciphers, Master’s Thesis, Dept.
of Mathematics, Technical University of Denmark, January 1996.

Thomas Jakobsen: Higher-Order Cryptanalysis of Block Ciphers. Ph.D. thesis,
Dept. of Math., Technical University of Denmark, 1999.

Thomas Jakobsen: Cryptanalysis of Block Ciphers with Probabilistic Non-Linear
Relations of Low Degree, Crypto 98, LNCS 1462, Springer, pp. 212-222, 1998.
Pascal Junod: On the complexity of Matsui’s attack, Selected Areas in Cryptog-
raphy (SAC’01), Toronto, Canada, LNCS 2259, pp. 199-211, Springer, 2001.
Burton S. Kaliski Jr, and M.J.B. Robshaw. Linear Cryptanalysis Using Multiple
Approximations, Crypto’94, LNCS, Springer, pp. 26-39, 1994.

Toshinobu Kaneko and Takeshi Shimoyama: Quadratic Relation of S-box and Its
Application to the Linear Attack of Full Round DES, In Crypto 98, LNCS 1462,
p- 200-211, SPringer, 1998.

Kwangjo Kim. Sangjin Lee, Sangjoon Park, Daiki Lee: Securing DES S-boxes
against Three Robust Cryptanalysis, SAC’95, pp.145-157, 1995.

Lars R. Knudsen, Matthew J. B. Robshaw: Non-Linear Characteristics in Linear
Cryptoanalysis. Eurocrypt’96, LNCS 1070, Springer, pp. 224-236, 1996.

Lars R. Knudsen, John Erik Mathiassen: A Chosen-Plaintext Linear Attack on
DES. FSE’ 2000, LNCS 1978, Springer, pp. 262-272, 2001.

Matthew Kwan: The Design of the ICE Encryption Algorithm, FSE’97, 4th Inter-
national Workshop, Haifa, Israel, Springer, LNCS 1267, pp. 69-82, 1997.
Available from http://www.darkside.com.au/ice/ice.ps.gz.

Susan K. Langford, Martin E. Hellman: Differential-linear cryptanalysis, Crypto
94, LNCS 839, pp. 17-25, Springer, 1994.

Michael Luby, Charles W. Rackoff, How to construct pseudorandom permutations
from pseudorandom functions, SIAM Journal on Computing, vol. 17, n. 2, pp.
373-386, April 1988.

M. Matsui: Linear Cryptanalysis Method for DES Cipher, Eurocrypt’93, LNCS
765, Springer, pp. 386-397, 1993.

M. Matsui, On correlation between the order of S-boxes and the strength of DES,
Eurocrypt’94, LNCS 950, pp. 366-375, Springer, 1995.

M.Matsui: The First Experimental Cryptanalysis of the Data Encryption Stan-
dard, Crypto’94, LNCS 839, Springer, pp. 1-11, 1994.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied
Cryptography; CRC Press, 1996.

J. Patarin, How to construct pseudorandom and super pseudorandom permutations
from one single pseudorandom function. Eurocrypt’92,Springer, pp. 256-266, 1992.
Adi Shamir: On the security of DES, Crypto’85, LNCS 218, Springer, pp. 280-281,
1985.

TERAM LING

36 Nicolas T. Courtois

A Selected Bi-linear Characteristics of DES S-Boxes

In this section we give some bi-linear characteristics for DES S-boxes. Our results
are not exhaustive: the number of possible bi-linear characteristics is huge and
we do not have a fast method to find all interesting characteristics. Accordingly
we are not certain to have found the best existing characteristics. It is certain
that there is no characteristics true with probability 1, as these are easy to check
algebraically. Otherwise we explored all cases that use up to two products and
we conjecture that the other does not have practical relevance for the security
of DES. We give here some interesting results we have found. More will appear
in the extended version of this paper.

Table 1. A few selected bi-linear characteristics for DES S-boxes

equation remarks and
input output input*output comments

S5(12/64 17 8,14,25,3 Matsui’s equation A
S5| 6/64 17 8,14,25,3 17] * [8,14, 25,3 gets better
55| 58/64 17] % [8,14, 25,3
S5| 8/64 17 8,14,25,3 [16,17,20] = [8]
S5| 8/64 | 16,20 | 8,14,25 [16, 20] * [8, 14, 25]
S5/61/64| 16,20 |8,14,25,3 [16, 17, 20] = [3] the best in DES
S5|47/64 8,14,25 17 %3
S§5[17/64 8,14,25,3 17 %3
S55|47/64 17 %3
55|49/64 3 17%3
§5|49/64 17 17%3
S55|17/64 17 3 17 %3
S51|30/64 3 17 Matsui’s equation C
S1|15/64 3 17 3%17 gets better
S1{47/64 17 317
S51|47/64 3 317
S1]49/64 3x17
[S2[8/64 5 [13,28,18 8 %2
[S4]56/64] | | [12,14,16,17] [26,1] |(there are many similar)|
56]38/64 11,19 21 %29 |
S7[11/64] 25,28 [32,12,7 28 % 12,27 % 22 |
58]40/64 5,27,15 29 * 21 |

B Improved Bi-linear Attacks for DES

The goal of this section is to find or construct examples where bi-linear crypt-
analysis gives strictly better bias on DES than the best Matsui’s result.

We look at the best Matsui’s characteristic on 3 rounds given at the last
page of [25]. By itself, it can be considered as very good, even compared to

TERAM LING

Feistel Schemes and Bi-linear Cryptanalysis 37

other Matsui’s characteristics: it uses twice the best element (A) of Matsui, and
nothing between them. Moreover, this element (A) is in itself the best linear
characteristic that exist in DES, first described by Shamir in [30]:

(A) J[171® 0[8,14,25,3] =0 for S5 with probability 12/64

From this we get immediately, using Matsui’s Piling-Up Lemma from [25],
that for 3 rounds, and for any key, the following equation is biased:

Lo[8,14,25,3] & Ro[17)® } 1 156.2-3

L3[8,14,25,3] @ R3[17] = K[sth] 9

We call Matsui-3 this equation.

B.1 Improving on Matsui-3

We will show that with bi-linear characteristics, there are strictly better equa-
tions than Matsui-3. Our simulations looking for the best bi-linear characteristics
for DES S-boxes (cf. Appendix A), showed that the best one is the following:

J[16,20]@0I[8, 14,25, 3]@J[16,17,20]-O[3] =0 for S5 with probability 61/64

Remark: It is clearly related to, and can be seen as ‘“causing” the existence of
the Matsui’s equation (A): their difference is naturally biased.

We will use this characteristic. Let KS5 denote the combination of the S-box
S5 and the key bits XORed to its inputs. It is easy to see that for KS5, if we
denote by K[sth] some constant linear combination of key bits, for any key, one
of the following equations is always strongly biased:

(a1) I[16,20] ® O[8, 14, 25,3] ® I[16, 17, 20] - O[3] = Ksth]
or |bias| =1/2—3/64
(a2) I]16,20] ® O[8, 14, 25] @ I[16,17,20] - O[3] = K[sth]

In our construction, we will use one of the above, and we will also use another,
naturally biased equation, which will be one of the following:

and |bias| =1/2—1/4

(b) O[16,17,20] @ I]3] - O[16,17,20] = 0
{ (c) I13] & O[16,17,20] & I[3] - O[16,17,20] - O3] = 0

Now we are ready to construct characteristics for 3 rounds of DES.

TERAM LING

38 Nicolas T. Courtois

L0[8, 14, 25, 3] Ly [3]R0{16, 17, 20] Rg[l?]

Y KS5

D 8.14,253] [16,20] [+ 3/64
(3]+[16,17,20]

L1[8,14,25,3] | L1[3]R1[16,17,20] | Ry[16,17,20]

(natural) v
> () (16,17,201~P 3/4
[3]%[16,17,20]
L[8,14,25,3] | L,[3]R,[16,17,20] | Ra[16,17,20]
KS5
D 8.14,253] [16,20] 1 3/64
[3]%[16,17,20]

Ls[8,14,25,3] | Lg[3] x Rs[16,17,20] | Rs[17]

Fig. 5. Combining al-b-al to get a characteristic for 3 rounds of DES

Lo[8,14,25] | Lo[3]Ro[16,17,20] | Ro[17]

Y KS5

Ea— [8,14,25] [16,20] [+ 3/64
[3]%[16,17,20]

L1[8,14,25] | L1[3]R1[16,17,20] | R,[16,17,20]

(natural) :

r
> [3] (16,17,20P 1/4
(3]%[16,17,20]
L2[8,14,25,3] | L,[3|R1[16,17,20] | Ro[16,17,20]
KS5
D8,14,25,3] [16,20] e 3/64
[3]%[16,17,20]

L4[8,14,25,3] | Ls[3] Rs[16,17,20] | Rs[17]

Fig. 6. Combining a2-c-al to get a characteristic for 3 rounds of DES

As one should expect, our construction goes as follows:

¢ In round 1 and 3, depending on the key either al or a2 is strongly biased.
© To connect al to al, or a2 with a2, we can use b, as in Figure 5.
¢ To connect al with a2 and the reverse, we use c, as in Figure 6.
¢ For 3 rounds and for any key, we always have a strong bias on one of the
four possibilities: al-b-al, al-c-a2, a2-c-al, a2-b-a2.
TEAM LING

Feistel Schemes and Bi-linear Cryptanalysis 39

o From Matsui’s Piling-Up Lemma, we expect that the whole characteristic
will be true with probability % +1.64 - 273, Our simulations show that it is
between § +1.65-273 and § +1.67-273.

o Since, the choice of al/a2 depends on a linear combination of key bits, We
can combine all these into one equation and we get the following result:

Proposition B.1.1 (Our Best Attack on 3 Rounds of DES). For all keys,
the following equation is biased for 3 rounds of DES:

LO[3a 87 141 25] D LO [3]R0[16: 17’ 20] &b R0[17]®
(#x) L3[3,8,14,25] @ La[3]R3[16,17,20] ® Ra[17] = } ~+166-273
K[sth] + K[sth'|Lo[3] + K[sth”]Rs[3] 2
In comparison, Matsui-3 gives % — 1.56 - 23, Bi-linear cryptanalysis works
better than LC. In the next section we will extend this result (and again beat
Matsui) to 7, 11 and more rounds.

Remark: The equation above can be seen as 4 different equations, each of them
is highly biased for 1/4 of all keys. We observed that each of the 4 equations
is also biased for all DES keys, except that for 3/4 of them the bias is much
weaker, we get about 1 +1.6-277.

B.2 Extending the Result for 7, 11 and More Rounds

The idea is to find an element (maybe not very good in itself) that will allow to
connect together our (very good) characteristics on 3 rounds. For example, to
connect Figure 5 with Figure 6 we use the following element:

L3[8,14,25,3] | Ls3[3]R3[16,17,20] | Rs[17]

S1+natural v
> (3] nnHP 1/2+0.8/64
(3]%[16,17,20]

La[8,14,25] | La[3]R4[16,17,20] | R4[17]

Fig. 7. Connecting the output of al to the input of a2

Simulations show that, for any key, this characteristic is true with probability
about 1/2 + 0.8/64. The explanation is as follows: the bias is due to to the
combination of Matsui’s equation (C)

(C) J[3]®O[17] =0 for S1 with probability 30/64

and of the fact that I[3] - O[16,17, 20] is naturally biased. The same element
(Figure 7) does also work to connect a2 to al.

It remains to be seen how the connection between al and al or a2 and a2.
This is done in a very similar way: we combine (C) with I{3] & I{3]- O[16,17, 20]
that is also naturally biased.

TERAM LING

40 Nicolas T. Courtois

Summary: In every of 4 possible cases, there is a connecting element based
on (C). This means that, also for 7 rounds and for any key, again one of the
four possibilities is quite biased: al-b-al, al-c-a2, a2-c-al, a2-b-a2. Again we
can recompose it in a single attack:

Proposition B.2.1 (Extension to 7 Rounds of DES). For all keys, the
following equation is biased for 7 rounds of DES:

Lo[3,8,14,25] @ Lo[3]Ro[16, 17, 20) ® Ro[17|®
L+[3,8,14,25) ® L7[3]R/[16,17,20] @ Rs[17) = p = = about 27°
K[sth] + K[sth)Lo[3] + K[sth"|Lz[3] 2

This bias is, depending on the key, sometimes better, sometimes worse than
Matsui-7 that gives 3 — 1.95- 2710,

Finally, it is now obvious, that our construction works also for 11, 15, 19
rounds etc. We verified experimentally that for 11 rounds we have:

Proposition B.2.2 (Our Best Attack on 11 Rounds of DES). For all
keys, the following equation is biased for 11 rounds of DES:

Lo[3,8, 14,25 @ Lo[3]Ro[16, 17, 20] & Ro[17]® 1
L11[3,8,14,25] @ L11[3]R11[16,17,20] ® R11[17) = } = Zaround 1.2-2718
K[sth] + Ksth'|Lo[3] + K[sth"]|L11[3] 2

For a few different keys we have tried (long computation on a PC) the bias
was always strictly better than Matsui-11 that gives 7 —1.91 . 2716,

Remark: The best characteristics found by Matsui for 3 and 11 rounds [25]
are closely related to those presented here: their difference is a biased Boolean
function. BLC contains LC not only as a subset, but also as an extension allowing
to strictly improve the best linear attacks on DES by adding higher degree
monomials.

B.3 Beyond Bi-linear Attacks: Using Cubic Equations

We observed that, for 3 rounds, even better results can be achieved using cu-
bic partially bi-linear characteristics, instead of quadratic bi-linear (**) from
Proposition B.1.1. Our simulations show that, for an important fraction of keys:

Lo[3,8,14,25] @ Lo[3]Ro[16,17, 20 Ro[17,18,19, 20}) 4
(% % %) La[3,8,14,25] @ La[3]Rs[16, 17,20| R3[17,18,19,20}® » — —1.82-273
Ro[17) ® Rs[17] = K|sth]

The explanation why this works is quite similar. Though the non-linear part
of this equation is not bi-linear, it is well correlated with a truly bi-linear func-
tion:

L{3]R[16,17,20]R[17,18,19,20] = L[3]R[16,17,20] with probability 7/8

Unfortunately, the bias of (x x x) is worse for other keys. On average, the
best bias we know for 3 rounds remains (*%) from Proposition B.1.1. We also
observed that that (* x*) works for any number of DES rounds and for any key,
but again the results are not as good as with (¥x).

TERAM LING

Short Group Signatures

Dan Boneh'*, Xavier Boyen®, and Hovav Shacham’

! Stanford University
dabo@cs.stanford.edu
% Voltage Security

xb@boyen.org

Stanford University
hovav@cs.stanford.edu

3

Abstract. We construct a short group signature scheme. Signatures
in our scheme are approximately the size of a standard RSA signa-
ture with the same security. Security of our group signature is based
on the Strong Diffie-Hellman assumption and a new assumption in bilin-
ear groups called the Decision Linear assumption. We prove security of
our system, in the random oracle model, using a variant of the security
definition for group signatures recently given by Bellare, Micciancio, and
‘Warinschi.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [14], provide anonymity
for signers. Any member of the group can sign messages, but the resulting signa-
ture keeps the identity of the signer secret. In some systems there is a third party
that can trace the signature, or undo its anonymity, using a special trapdoor.
Some systems support revocation [12,4,29,15] where group membership can be
selectively disabled without affecting the signing ability of unrevoked members.
Currently, the most efficient constructions [2,12,4] are based on the Strong-RSA
assumption introduced by Baric and Pfitzman [5].

In the last two years a number of projects have emerged that require the
properties of group signatures. The first is the Trusted Computing effort [28]
that, among other things, enables a desktop PC to prove to a remote party
what software it is running via a process called attestation. Group signatures
are needed for privacy-preserving attestation [17, Sect. 2.2]. Perhaps an even
more relevant project is the Vehicle Safety Communications (VSC) system from
the Department of Transportation in the U.S. [18]. The system embeds short-
range transmitters in cars; these transmit status information to other cars in
close proximity. For example, if a car executes an emergency brake, all cars in
its vicinity are alerted. To prevent message spoofing, all messages in the system
are signed by a tamper-resistant chip in each car. (MACs were ruled out for this
many-to-many broadcast environment.) Since VSC messages reveal the speed
and location of the car, there is a strong desire to provide user privacy so that

* Supported by NSF and the Packard Foundation.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 41-55, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

42 Dan Boneh, Xavier Boyen, and Hovav Shacham

the full identity of the car sending each message is kept private. Using group
signatures, where the group is the set of all cars, we can maintain privacy while
still being able to revoke a signing key in case the tamper resistant chip in a car
is compromised. Due to the number of cars transmitting concurrently there is a
hard requirement that the length of each signature be under 250 bytes.

The two examples above illustrate the need for efficient group signatures.
The second example also shows the need for short group signatures. Currently,
group signatures based on Strong-RSA are too long for this application.

We construct short group signatures whose length is under 200 bytes that
offer approximately the same level of security as a regular RSA signature of the
same length. The security of our scheme is based on the Strong Diffie-Hellman
(SDH) assumption [8] in groups with a bilinear map. We also introduce a new as-
sumption in bilinear groups, called the Linear assumption, described in Sect. 3.2.
The SDH assumption was recently used by Boneh and Boyen to construct short
signatures without random oracles [8]. A closely related assumption was used by
Mitsunari et al. [22] to construct a traitor-tracing system. The SDH assumption
has similar properties to the Strong-RSA assumption. We use these properties
to construct our short group signature scheme. Our results suggest that systems
based on SDH are simpler and shorter than their Strong-RSA counterparts.

Our system is based on a new Zero-Knowledge Proof of Knowledge (ZKPK)
of the solution to an SDH problem. We convert this ZKPK to a group signature
via the Fiat-Shamir heuristic [16] and prove security in the random oracle model.
Our security proofs use a variant of the security model for group signatures
proposed by Bellare, Micciancio, and Warinschi [6].

Recently, Camenisch and Lysyanskaya [13] proposed a signature scheme with
efficient protocols for obtaining and proving knowledge of signatures on commit-
ted values. They then derive a group signature scheme using these protocols as
building blocks. Their signature scheme is based on the LRSW assumption [21],
which, like SDH, is a discrete-logarithm-type assumption. Their methodology
can also be applied to the SDH assumption, yielding a different SDH-based
group signature.

The SDH group signature we construct is very flexible and we show how to
add a number of features to it. In Sect. 7 we show how to apply the revocation
mechanism of Camenisch and Lysyanskaya [12]. In Sect. 8 we briefly sketch how
to add strong exculpability.

2 Bilinear Groups

We first review a few concepts related to bilinear maps. We follow the notation
of Boneh, Lynn, and Shacham [9]:

1. Gy and G are two (multiplicative) cyclic groups of prime order p;
2. g1 is a generator of G; and g¢» is a generator of Gy;
3. 9 is a computable isomorphismfrom G, to Gy, with ¥(g2) = g1; and
4. e is a computable map e : G; x G2 — Gr with the following properties:
— Bilinearity: for all u € G1,v € Gy and a,b € Z, e(u®,v®) = e(u, v).
— Non-degeneracy: e{gi, g2} # 1.
TEAM LING

Short Group Signatures 43

Throughout the paper, we consider bilinear maps e : G; x Gy — G where
all groups G1,Gs,Gr are multiplicative and of prime order p. One could set
G1 = G42. However, we allow for the more general case where Gy # G2 so that
our constructions can make use of certain families of non-supersingular elliptic
curves defined by Miyaji et al. [23]. In this paper we only use the fact that Gy
can be of size approximately 2170, elements in G are 171-bit strings, and that
discrete log in G is as hard as discrete log in Zj where g is 1020 bits. We will
use these groups to construct short group signatures. We note that the bilinear
groups of Rubin and Silverberg [25] can also be used.

We say that two groups (Gy,G3) as above are a bilinear group pair if the
group action in G1 and Gg, the map ¥, and the bilinear map e are all efficiently
computable.

The isomorphism % is only needed for the proofs of security. To keep the
discussion general, we simply assume that ¢ exists and is efficiently computable.
(When G1, G are subgroups of the group of points of an elliptic curve E/F,, the
trace map on the curve can be used as this isomorphism. In this case, Gy C E(F,)
and G2 C E(F4).)

3 Complexity Assumptions

3.1 The Strong Diffie-Hellman Assumption

Let G, G2 be cyclic groups of prime order p, where possibly G; = Ga. Let g1
be a generator of G; and g2 a generator of Ga. Consider the following problem:

g-Strong Diffie-Hellman Problem. The ¢-SDH problem in (G;,G2) is de-
2

fined as follows: given a (g + 2)-tuple (g1,92,97,9% ,...,05"") as input,

output a pair (g%/ ('H'm), x) where z € Zjy. An algorithm A has advantage €

in solving ¢-SDH in (G4, G2) if

p 1
Pr[afl(gl,gz,gg,---,gé7) = (977, x)] >e,

where the probability is over the random choice of v in Zy and the random
bits of A.

Definition 1. We say that the (q,t,€)-SDH assumption holds in (G1,G3) if
no t-time algorithm has advantage at least € in solving the g-SDH problem in
(G1,G2).

Occasionally we drop the ¢ and e and refer to the g-SDH assumption rather
than the (g, t,€)-SDH assumption. The ¢-SDH assumption was recently used by
Boneh and Boyen [8] to construct a short signature scheme without random
oracles. To gain confidence in the assumption they prove that it holds in generic
groups in the sense of Shoup [27]. The ¢-SDH assumption has similar properties
to the Strong-RSA assumption [5]. We use these properties to construct our
short group signature scheme.

TERAM LING

44 Dan Boneh, Xavier Boyen, and Hovav Shacham

3.2 The Linear Diffie-Hellman Assumption

With g; € G; as above, along with arbitrary generators u, v, and h of Gy,
consider the following problem:

Decision Linear Problem in G;. Given u,v, h,u®,v®, h¢ € G; asinput, out-
put yves if a + b = ¢ and no otherwise.

One can easily show that an algorithm for solving Decision Linear in Gy gives
an algorithm for solving DDH in G;. The converse is believed to be false. That
is, it is believed that Decision Linear is a hard problem even in bilinear groups
where DDH is easy. More precisely, we define the advantage of an algorithm 4
in deciding the Decision Linear problem in G; as

a a R R
Adv Linear & Pr [A(u,v,h,u 08, het) = yes 1 u, v, h & Gy, a,b — Zp]
—Pr [.A(u, v, h,u®, 0%) = yes : u,v, h,n hid G1,a,b & Zp]

The probability is over the uniform random choice of the parameters to A, and
over the coin tosses of A. We say that an algorithm 4 (¢, €)-decides Decision
Linear in Gy if A runs in time at most #, and Adv Linear4 is at least e.

Definition 2. We say that the (¢, €)-Decision Linear Assumption (LA) holds in
G1 if no t-time algorithm has advantage at least € in solving the Decision Linear
problem in G.

In the full version of the paper we show that the Decision Linear Assumption
holds in generic bilinear groups.

Linear Encryption. The Decision Linear problem gives rise to the Linear
encryption (LE) scheme, a natural extension of ElGamal encryption. Unlike
ElGamal encryption, Linear encryption can be secure even in groups where a
DDH-deciding algorithm exists. In this scheme, a user’s public key is a triple
of generators u,v,h € Gy; her private key is the exponents z,y € Zj, such that
u® = v¥ = h. To encrypt a message M € G, choose random values a,b € Z,, and
output the triple (u®,v®,m - h*+®), To recover the message from an encryption
(T1,T,,T3), the user computes T3 /(T - TY). By a natural extension of the proof
of security of ElGamal, LE is semantically secure against a chosen-plaintext
attack, assuming Decision-LA holds.

4 A Zero-Knowledge Protocol for SDH

We are now ready to present the underlying building block for our group sig-
nature scheme. We present a protocol for proving possession of a solution to
an SDH problem. The public values are g;,u,v,h € Gy and gz, w € Gg. Here
w = gJ for some (secret) v € Zjp. The protocol proves possession of a pair
(A,x), where A € Gy and = € Zy, such that A**7 = g;. Such a pair satisfies
e(A,wg3) = e(g1,g2). We use a standard generalization of Schnorr’s protocol for
proving knowledge of discrete logarithm in a group of prime order [26].

TERAM LING

Short Group Signatures 45

Protocol 1. Alice, the prover, selects exponents a, 3 & Zp, and computes a
Linear encryption of A:

T —u® Tpe—P Ty — Ah®tB

She also computes two helper values d; «— za and §; — zf3.
Alice and Bob then undertake a proof of knowledge of values (e, 3, z, 81, 62)
satisfying the following five relations:

u® = T1 7)5 = T2
e(T3,92)" - e(h,w) 7P . e(h, g2) " 7% = e(g1, g2)/ (T3, w)
TEu™ % =1 Tev™%2 =1 .

This proof proceeds as follows. Alice picks blinding values rq, 73, 2, s, , and
s, at random from Z,. She computes five values based on all these:

Rl A u’!‘a R2 — fUTB
Rs — e(Ts,02)" - e(h,w)™"e""5 - e(h, gz) """
Ry —T{=-u™™ Ry — Tf= v~ ™52

She then sends (73,72, T3, R1, Ra, R3, R4, Rs) to the verifier. Bob, the verifier,
sends a challenge value ¢ chosen uniformly at random from Z,. Alice computes
and sends back so = r4 + ca, sg =15 + 8, 55 = r; +cx, 85, =15 + b1, and
85, = 15, + c62. Finally, Bob verifies the following five equations:

u' T Ry (1)

vs LTS R, 2)

e(Ts, 92)" - e(h,w) "7 - e(h, g2)~* s < (e(g1,92)/e(T3,w))" - R (3)
Teeu=* £ Ry (4)

Ts=v=*% < Ry . (5)

Bob accepts if all five hold.

Theorem 1. Protocol 1 is an honest-verifier zero-knowledge proof of knowledge
of an SDH pair under the Decision Linear assumption.

The proof of the theorem follows from the following lemmas that show that
the protocol is (1) complete (the verifier always accepts an interaction with
an honest prover), (2) zero-knowledge (can be simulated), and (3) a proof of
knowledge (has an extractor).

Lemma 1. Protocol 1 is complete.

Proof. If Alice is an honest prover in possession of an SDH pair (A4, z) she follows
the computations specified for her in the protocol. In this case,

ude = ura+ca — (ua)c e = Tf . Rl ,

TERAM LING

46 Dan Boneh, Xavier Boyen, and Hovav Shacham

so (1) holds. For analogous reasons (2) holds. Further,
1-11.91,“—351 — (ua)r,+czu—'r,sl—cza — (,U'oz)r,u——'r‘;1 — Tir,,. A R4 ,
so (4) holds. For analogous reasons (5) holds. Finally,

e(T3,92)°= - e(h,w)™*=7%0 . e(h, go) %1 %52
= e(Ts,gz)r”'H:I . e(h, w)—ra—rg—ca—cﬂ . e(h,gz)_r"l ~T5y —cxa—czf

— e(Ts, g3)° - e(h™, wg§)" - (e(Ts, g2)"™ - e(h, w) ™"~ - e(h, ga) "1 ~"%1)
= e(Tsh™ P wgf)® - e(T3,w) ¢ - (R3)

= (e(A,wg)/e(Ts,w))° - Ry = (e(g1,92)/e(Ta,w))" - Ry .

so (3) holds. 0

Lemma 2. Transcripts of Protocol I can be simulated, under the Decision Lin-
earassumption.

Proof. We describe a simulator that outputs transcripts of Protocol 1.

Pick 4 & Gy, and o, bid Zp. Set T1 — u®, Ty — vP, and Ty — AR5,
Assuming the Decision Linear assumption holds on G1, the tuples (11,72, 73)
generated by the simulator are drawn from a distribution that is indistinguish-
able from the distribution output by any particular prover.

The remainder of this simulator does not assume knowledge of A, z, o, or 3,
so it can also be used when Tj, T», and T3 are pre-specified. When the pre-
specified (T}, T2, T3) are a random Linear encryption of some A, the remainder
of the transcript is simulated perfectly.

Now choose achallenge ¢ & Zy. Select s, & Zy, and set Ry — T{/u’>. Then
(1) is satisfied. With « and ¢ fixed, a choice for either of r, or s, determines
the other, and a uniform random choice of one gives a uniform random choice
of the other. Therefore s, and R; are distributed as in a real transcript. Choose
sg and Ry analogously.

R .
Select sg, Ss;, 85, < Zp and set Ry — Ty*u*s1 and Ry « Ty=v*%2. Again, all
the computed values are distributed as in a real transcript. Finally set

R3 — (T3, 92)° - e(h,w) ™= - e(h, g2) % %% - (e(T3,w)/e(91,92))" -

This Rg satisfies (3), and it, too, is properly distributed.

The transcript output is (T1,Ts, T3, R1, Re, R3, R4, Rs, ¢, 8, S8, Sz, 86, 55,)-
As argued above, this transcript is distributed identically to transcripts of Pro-
tocol 1, assuming the Decision Linear assumption holds. O

Lemma 3. There exists an extractor for Protocol 1.

Proof. Suppose that an extractor can rewind a prover in the protocol above to
the point just before the prover is given a challenge c¢. At the first step of the
protocol, the prover sends Ty,T%,T3 and Ri, Rz, Rs, R4, Rs. Then, to challenge

TERAM LING

Short Group Signatures 47

value ¢, the prover responds with s4, g, Sz, Ss,, and ss,. To challenge value ¢’ 3
¢, the prover responds with s, s3, s;, s5,, and sj,. If the prover is convincing,
all five verification equations (1-5) hold for each set of values.

For brevity, let Ac = ¢ — ¢/, Asy = 84 — 8, and similarly for Asg, As,,
Ass,, and Ass,.

Now consider (1) above. Dividing the two instances of this equation, we
obtain u4% = TA¢. The exponents are in a group of known prime order, so we
can take roots; let & = Asy/Ac. Then u& = Tj. Similarly, from (2), we obtain
,3 = Asg/Ac such that v# = Tb.

Consider (4) above. Dividing the two instances gives TlA” = u?%1 . Substi-
tuting Ty = u® gives u4%= = u4%51 or As;, = @&As,. Similarly, from (5) we
deduce that Ass, = BAsz.

Finally, dividing the two instances of (3), we obtain

(e(91, 92)/e(Ts, w)) ™ = e(T3,92) - e(h, w)~4%2=2% . e(h, gy) =451~ A%

_ e(TS’gz)As, -e(h, ,w)—Asa—As,g -e(h, gz)—&Asz—ﬁAsz)
Taking Ac-th roots, and letting £ = As,/Ae, we obtain
(01, 92)/e(Ts, w) = o(T3, 02)" - e(h,w) %7 - e(h, g2)~*+H) .
This can be rearranged as
e(g1,92) = e(Tsh™* P, wgf) ,
or, letting A = T3h=5-8,
e(fi, wg3) = e(g1,92) -

Thus the extractor obtains an SDH tuple (A, Z). Moreover, the A in this SDH
tuple is, perforce, the same as that in the Linear encryption (T3, T2, T5s). O

S SDH Signatures of Knowledge

Armed with Theorem 1, we obtain from Protocol 1 a signature scheme secure in
the random oracle model by applying the Fiat-Shamir heuristic [16]. Signatures
obtained from a proof of knowledge via the Fiat-Shamir heuristic are often called
signatures of knowledge. We use a variant of the Fiat-Shamir heuristic, used also
by Ateniese et al. [2], where the challenge c rather than the values R;,..., Rs is
transmitted in the signature; the output of the random oracle acts as a checksum
for those values not transmitted.

The signature scheme is defined as follows. The public key contains a hash
function (viewed as a random oracle) H : {0,1}* — Zy, groups G and G2 with
respective generators g; and g2 as in Sect. 2, the random generators u, v, and h
of G1, and w = g € G, where + is chosen at random in Z. The private key

TERAM LING

48 Dan Boneh, Xavier Boyen, and Hovav Shacham

is an SDH pair (A, z), i.e., a pair such that A+ = g;. Any such pair is a valid
private key.

The signer signs a message M € {0,1}" using the private key (A4, z) asfollows.
She first undertakes the computation specified in the first round of Protocol 1
to obtain 73,75, T3, Ry, Rs, Rs, R4, Rs. She obtains the challenge ¢ by giving M
and her first-round values to the random oracle:

c(—H(M)T17T2)T37R1aR2aR3,R47R5) eZp . (6)

She then undertakes the computation specified in the third round of the protocol
using the challenge value ¢ to obtain s, $g, Sg, Ss,, S5, Finally, she outputs the
signature o, computed as

0 — (11,T5,T3,¢, 50,58, Sz, 861, 56,) -)
The verifier uses equations (1-5) to re-derive Ry, Rs, Rs, R4, and Rj:
Ry —u*)Tf Ry —v*/T§ Ry—T=/u*s™ Rg« Ti=/v*%
Rs — e(T3,92)% - e(h,w) %>~ . e(h, gz) %1%z . (e(T3,w)/e(g1,92))° .

He then checks that these, along with the other first-round messages included
in o, give the challenge c, i.e., that

c ; H(M’ Tl)T27T3, R.la R~27 RS) ﬁ4, R~5) . (8)

He accepts if this check succeeds.

The Fiat-Shamir heuristic shows that this signature scheme is secure against
existential forgery in the random oracle model [1]. Note that a signature com-
prises three elements of G and six of Zp.

6 Short Group Signatures from SDH

The signature scheme presented in Sect. 5 is, in fact, also a group signature
scheme. In describing the scheme, we follow the definitions given by Bellare
et al. [6].

Consider bilinear groups G; and Gy with respective generators g; and gs,
as in Sect. 2. Suppose further that the SDH assumption holds on (Gi,G2),
and the Linear assumption holds on G;. The scheme employs a hash function
H:{0,1}" — Z,, treated as a random oracle in the proof of security.

KeyGen(n). This randomized algorithm takes as input a parameter n, the
number of members of the group, and proceeds as follows. Select h & G1\
{lg,} and &, & & Zj, and set u,v € G such that uf = v = h. Select
¥ & Z,, and set w = g3. Using v, generate for each user ¢, 1 < i < n,
an SDH tuple (A;,z;): select z; & Zy, and set A; gi/ (r+29) The group
public key is gpk = (g1, g2, b, u, v, w). The private key of the group manager
(the party able to trace signatures) is gmsk = (£1,&2). Each user’s private
key is her tuple gsk[i] = (A;, z;). No party is allowed to possess =; it is only
known to the private-key issuer.

TERAM LING

Short Group Signatures 49

Sign(gpk, gskl[i], M). Given a group public key gpk = (91,92, h,u,v,w), a
user’s key gsk[i] = (A;,), and a message M € {0,1}*, compute and out-
put a signature of knowledge o = (T1,T%, T3, ¢, Sa, 38, Sz 85, 85,) as in the
scheme of Sect. 5 (Equation (7)).

Verify(gpk, M, o). Given a group public key gpk = (g1, g2, h, u, v, w), a mes-
sage M, and a group signature o, verify that ¢ is a valid signature of knowl-
edge in the scheme of Sect. 5 (Equation (8)).

Open(gpk, gmsk, M, o). This algorithm is used for tracing a signature to a
signer. It takes as input a group public key gpk = (g1, 92, h,u,v,w) and
the corresponding group manager’s private key gmsk = (£;,£2), together
with a message M and a signature ¢ = (11,75, T3,¢, S, 38, Sz, S5, S5,) 1O
trace, and proceeds as follows. First, verify that o is a valid signature on M.
Second, consider the first three elements (T3,75,7T3) as a Linear encryption,
and recover the user’s A as A « T3/ (Tf1 . T§2), following the decryption
algorithm given at the end of Sect. 3.2. If the group manager is given the
elements {A;} of the users’ private keys, he can look up the user index
corresponding to the identity A recovered from the signature.

Signature Length. A group signature in the system above comprises three ele-
ments of G and six elements of Z,. Using any of the families of curves described
in [9], one can take p to be a 170-bit prime and use a group G; where each ele-
ment is 171 bits. Thus, the total group signature length is 1533 bits or 192 bytes.
With these parameters, security is approximately the same as a standard 1024-
bit RSA signature, which is 128 bytes.

Performance. The pairings e(h,w), e(h, g2), and e(g1, g2) can be precomputed
and cached by both signers and verifiers. The signer can cache e(A, g2), and, when
signing, compute (73, g2) without evaluating a pairing. Accordingly, creating a
group signature requires eight exponentiations (or multi-exponentiations) and
no pairing computations. The verifier can derive Rg efficiently by collapsing the
e(T3, g2)°= and e(Ts, w)® pairings into asingle (T3, wg5*) term. Thus verifying a
group signature requires six multi-exponentiations and one pairing computation.
With parameters selected as above, the exponents are in every case 170-bit
numbers. For the signer, all bases for exponentiation are fixed, which allows
further speedup by precomputation.

6.1 Group Signature Security

We now turn to proving security of the system. Bellare et al. [6] give three
properties that a group signature scheme must satisfy:

- correctness, which ensures that honestly-generated signatures verify and
trace correctly;

— full-anonymity, which ensures that signatures do not reveal their signer’s
identity; and

— full-traceability, which ensures that all signatures, even those created by the
collusion of multiple users and the group manager, trace to a member of the
forging coalition.

TERAM LING

50 Dan Boneh, Xavier Boyen, and Hovav Shacham

For the details of the definitions, see Bellare et al. [6]. We prove the security
of our scheme using a variation of these properties. In our proofs, we relax the
full-anonymity requirement. As presented [6, Sect. 2], the full-anonymity exper-
iment allows the adversary to query the opening (tracing) oracle before and
after receiving the challenge o. In this respect, the experiment mirrors the indis-
tinguishability experiment against an adaptive CCA2 adversary. We therefore
rename this experiment CCA2-full-anonymity. We define a corresponding exper-
iment, CPA-full-anonymity, in which the adversary cannot query the opening
oracle. We prove privacy in this slightly weaker model.

Access to the tracing functionality will likely be carefully controlled when
group signatures are deployed, so CPA-full-anonymity is a reasonable model to
consider. In any case, anonymity and unlinkability, the two traditional group
signature security requirements implied by full anonymity [6, Sect. 3], also fol-
low from CPA-full-anonymity. Thus a fully-traceable and CPA-fully-anonymous
group signature scheme is still secure in the traditional sense.

In the statements of the theorem, we use big-O notation to elide the specifics
of additive terms in time bounds, noting that, for given groups G; and Gj,
operations such as sampling, exponentiation, and bilinear map evaluation are all
constant-time.

Theorem 2. The SDH group signature scheme is correct.

Proof. For any group public key gpk = (g1, g2, h, u, v, w), and for any user with
key gskli] = (As,x;), the key generation algorithm guarantees that A7*t™ =
g1, 50 (A;,z;) is an SDH tuple for w = g3. A correct group signature o is a
proof of knowledge, which is itself a transcript of the SDH protocol given in
Sect. 4. Verifying the signature entails verifying that the transcript is correct;
thus Lemma 1 shows that o will always be accepted by the verifier.

Moreover, an honest signer outputs, as the first three components of any
signature o, values (T}, Ta,T3) = (u®,v?, A; - h*+P) for some o, 8 € Zjp. These
values form a Linear encryption of A; under public key («, v, h), which the group
manager, possessing the corresponding private key (&1, £2), can always recover.
Therefore any valid signature will always be opened correctly. |

Theorem 3. If Linear encryption is (¥, €')-semantically secure on Gy then the
SDH group signature scheme is (t, qu, €)-CPA-fully-anonymous, where € = €’ and
t = t' — qgO(1). Here qy is the number of hash function queries made by the
adversary and n is the number of members of the group.

Proof. Suppose A is an algorithm that (¢, gy, €)-breaks the anonymity of the
group signature scheme. We show how to construct a t+g,O(1)-time algorithm B
that breaks the semantic security of Linear encryption (Sect. 3.2) with advantage
at least e.

Algorithm B is given a Linear encryption public key (u, v, k). It generates the
remaining components of the group signature public key by following the group
signature’s key generation algorithm. It then provides to A the group public
key (g1, g2, h,u,v,w), and the users’ private keys (A;, z;).

TERAM LING

Short Group Signatures 51

At any time, A can query the random oracle H. Algorithm B responds with
elements selected uniformly at random from Z,, making sure to respond identi-
cally to repeated queries.

Algorithm A requests its full-anonymity challenge by providing two indices,
1o and i1, and a message M. Algorithm B, in turn, requests its indistinguishabil-
ity challenge by providing the two user private keys A;, and A;, as the messages
whose Linear encryption it must distinguish. It is given a Linear encryption
(Th, T», T3) of A;,, where bit b is chosen by the Linear encryption challenger.

Algorithm B generates from this Linear encryption a protocol transcript
(T1,T,, T3, R1, Ra, R3, R4, Rs, ¢, 84, 88, Sz, 851, 55,) by means of the simulator of
Lemma 2. This simulator can generate a trace given {1, T3, T3), even though B
does not know e, 8, or z. Since (13,7T»,T3) is a random Linear encryption of
A;,, the remainder of the transcript is distributed exactly as in a real protocol
with a prover whose secret A is A, .

Algorithm B then patches H at (M, T;,T2,T3, Ry, Ro, R3, R4, Rs) to equal c.
It encounters a collision only with negligible probability. In case of a collision,
B declares failure and exits. Otherwise, it returns the valid group signature
g < (Th T2, T37 C,8ay 83,8z 85y, 353) to A.

Finally, 4 outputs a bit . Algorithm B returns & as the answer to its own
challenge. Since the encryption of A;, is turned by B into a group signature by
user i, B answers its challenge correctly whenever A does.

The keys given to .4, and the answers to .A’s queries, are all valid and properly
distributed. Therefore A succeeds in breaking the anonymity of the group signa-
ture ¢ with advantage €, and B succeeds in distinguishing the Linear encryption
(Th, T2, T3) with the same advantage.

Algorithm B’s running time exceeds .4’s by the amount it takes to answer
A’s queries. Each hash query can be answered in constant time, and there are at
most g5 of them. Algorithm B can also create the challenge group signature ¢
in constant time. If A runs in time ¢, B runs in time ¢ + g, O(1). 0

The following theorem proves full traceability of our system. The proof is
based on the forking lemma [24] and is given in the full version of the paper.

Theorem 4. If SDH is (q,t',€¢)-hard on (G1,Gz2), then the SDH group signature
scheme is (t,qu,qs,n, €)-fully-traceable, where n = q — 1, € = 4dn+/2e'q; + n/p,
and t = (1) - t'. Here qy is the number of hash function queries made by the
adversary, qs is the number of signing queries made by the adversary, and n is
the number of members of the group.

7 Revocation

We now discuss how to revoke users in the SDH group signature scheme of
Sect. 6. A number of revocation mechanisms for group signatures have been
proposed [4,12]. All these mechanisms can be applied to our system. Here we
describe a revocation mechanism along the lines of [12].

Recall that the group’s public key in our system is (g1, g2, h, %, v, w) where
w = g7 € Go for random vy € Zy and random h,u,v € Gy. User 4’s private key

is a pair (A;,z;) where 4; = g//*") ¢ G,.

TERAM LING

52 Dan Boneh, Xavier Boyen, and Hovav Shacham

Now, suppose we wish to revoke users 1,...,7 without affecting the signing
capability of other users. To do so, the Revocation Authority (RA) publishes
a Revocation List (RL) containing the private keys of all revoked users. More
precisely, RL = {(A},z1),..., (A}, z,)}, where A} = g;/(7+xi) € G,. Note that
A; = P(A}). Here the SDH secret « is needed to compute the Aj’s. In the case
where Gy equals G then A; = A} and consequently the Revocation List can be
derived directly from the private keys of revoked users without having to use v.

The list RL is given to all signers and verifiers in the system. It is used to

update the group public key used to verify signatures. Let y = []i_; (v + ;) €

Z,. The new public key is (gl,gg,h u,v, W) where g = g]/y, o = g;/y, and

w = (g2)7. We show that, given RL, anyone can compute this new public key,
and any unrevoked user can update her private key locally so that it is well
formed with respect to this new public key. Revoked users are unable to do so.

We show how to revoke one private key at a time. By repeating the process 7
times (as the revocation list grows over time) we can revoke all private keys on
the Revocation List. We first show how given the public key (g1, g2, h, u, v, w)
and one revoked private key (A}, z1) € RL anyone can construct the new public

key (g1, G2, hy u, v, ®) where §; = g/ O+ gy = g/ and w = (§,)". This
new public key is constructed simply as:

g1 —¥(Al) g2 Al and W gy (A7)

A *« _ 1/{y+z1) A . *—m;_l—ﬁt?_ Y —— (AT
then §; = ¢(A1)* = g1 and W = g2 - (47) =92 = (A])" = (g2)",
as required.

Next, we show how unrevoked users update their own private keys. Con-
sider an unrevoked user whose private key is (A4,z). Given a revoked private
key, (Af,z,) the user computes A — (A} @=z)/ AV (@=21) and sets his new
private key to be (A, z). Then, indeed,

(yte)H(e—zy)

(A = (A EE/ a7 = g T FE S =0

as required. Hence, (A, z) is a valid private key with respect to (g1, go, h, u, v,).

By repeating this process r times (once for each revoked key in RL) anyone
can compute the updated public key (g1, g2, b, u, v, @) defined above. Similarly,
an unrevoked user with private key (A, z) can compute his updated private key
(4,) where A = (§1)"/*+*). We note that it is possible to process the entire
RL at once (as opposed to one element at a time) and compute (g1, gz, b, u, v, @)
directly; however this is less efficient when keys are added to RL incrementally.

A revoked user cannot construct a private key for the new public key (gi, g2, £,
u, v, w). In fact, the proof of Theorem 4 shows that, if a revoked user can generate
signatures for the new public key (g1, 2, h, ©, v, @), then that user can be used
to break the SDH assumption. Very briefly, the reason is that given an SDH
challenge one can easily generate a public key tuple (g1, §z2, h,u, v, @) along with

the private key for a revoked user (gl/ (I’H) z). Then an algorithm that can forge
signatures given these two tuples can be used to solve the SDH challenge.

TERAM LING

Short Group Signatures 53

Brickell [11] proposes an alternate mechanism where revocation messages are
only sent to signature verifiers, so that there is no need for unrevoked signers to
update their keys. Similar mechanisms were also considered by Ateniese et al. [4]
and Kiayias et al. [19]. We refer to this as Verifier-Local Revocation (VLR) group
signatures. Boneh and Shacham [10] show how to modify our group signature
scheme to support this VLR revocation mechanism.

8 Exculpability

In Bellare et al. [6], exculpability (introduced by Ateniese and Tsudik [3]) is
informally defined as follows: No member of the group and not even the group
manager — the entity that is given the tracing key — can produce signatures on
behalf of other users. Thus, no user can be framed for producing a signature
he did not produce. They argue that a group signature secure in the sense of
full-traceability also has the exculpability property. Thus, in the terminology of
Bellare et al. [6], our group signature has the exculpability property.

A stronger notion of exculpability is considered in Ateniese et al. [2], where
one requires that even the entity that issues user keys cannot forge signatures
on behalf of users. Formalizations of strong exculpability have recently been
proposed by Kiayias and Yung [20] and by Bellare, Shi, and Zhang [7].

To achieve this stronger property the system of Ateniese et al. [2] uses a
protocol (called JOIN) to issue a key to a new user. At the end of the protocol,
the key issuer does not know the full private key given to the user and therefore
cannot forge signatures under the user’s key.

Our group signature scheme can be extended to provide strong exculpabil-
ity using a similar mechanism. Instead of simply giving user ¢ the private key
(gi/ (r+ed) z;), the user and key issuer engage in a JOIN protocol where at the end
of the protocol user i has a triple (A;,z;,y:) such that A]***hY = g, for some
public parameter h;. The value y; is chosen by the user and is kept secret from
the key issuer. The ZKPK of Sect. 4 can be modified to prove knowledge of such a
triple. The resulting system is a short group signature with strong exculpability.

9 Conclusions

We presented a group signature scheme based on the Strong Diffie-Hellman
(SDH) and Linear assumptions. The signature makes use of a bilinear map
e : G x G — Gr. When any of the curves described in [9] are used, the
group G; has a short representation and consequently we get a group signature
whose length is under 200 bytes — less than twice the length of an ordinary RSA
signature (128 bytes) with comparable security. Signature generation requires no
pairing computations, and verification requires a single pairing; both also require
a few exponentiations with short exponents.

Acknowledgments

The authors thank the anonymous referees for their valuable feedback.

TERAM LING

54 Dan Boneh, Xavier Boyen, and Hovav Shacham

References

1. M. Abdalla, J. An, M. Bellare, and C. Namprempre. From identification to sig-
natures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In L. Knudsen, editor, Proceedings of Eurocrypt 2002, volume
2332 of LNCS, pages 418-33. Springer-Verlag, May 2002.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In M. Bellare, editor, Proceedings
of Crypto 2000, volume 1880 of LNCS, pages 255-70. Springer-Verlag, Aug. 2000.

3. G. Ateniese and G. Tsudik. Some open issues and directions in group signatures. In
Proceedings of Financial Cryptography 1999, volume 1648, pages 196-211. Springer-
Verlag, Feb. 1999.

4. G. Ateniese, G. Tsudik, and D. Song. Quasi-efficient revocation of group signatures.
In M. Blaze, editor, Proceedings of Financial Cryptography 2002, Mar. 2002.

5. N. Baric and B. Pfitzman. Collision-free accumulators and fail-stop signature
schemes without trees. In Proceedings of Eurocrypt 1997, pages 480—494. Springer-
Verlag, May 1997.

6. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of
LNCS, pages 614-29. Springer-Verlag, May 2003.

7. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case
of dynamic groups. Cryptology ePrint Archive, Report 2004/077, 2004. http:
//eprint.iacr.org/.

8. D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin
and J. Camenisch, editors, Proceedings of Eurocrypt 2004, LNCS, pages 56-73.
Springer-Verlag, May 2004.

9. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
In Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 514-32. Springer-
Verlag, Dec. 2001. Full paper: http://crypto.stanford.edu/ dabo/pubs.html.

10. D. Boneh and H. Shacham. Group signatures with verifier-local revocation, 2004.
Manuscript.

11. E. Brickell. An efficient protocol for anonymously providing assurance of the con-
tainer of a private key, Apr. 2003. Submitted to the Trusted Computing Group.

12. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to ef-
ficient revocation of anonymous credentials. In M. Yung, editor, Proceedings of
Crypto 2002, volume 2442 of LNCS, pages 61-76. Springer-Verlag, Aug. 2002.

13. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, Proceedings of Crypto 2004, LNCS.
Springer-Verlag, Aug. 2004.

14. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Proceedings
of Eurocrypt 1991, volume 547 of LNCS, pages 257-65. Springer-Verlag, 1991.

15. X. Ding, G. Tsudik, and S. Xu. Leak-free group signatures with immediate revo-
cation. In T. Lai and K. Okada, editors, Proceedings of ICDCS 2004, Mar. 2004.

16. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In A. M. Odlyzko, editor, Proceedings of Crypto 1986,
volume 263 of LNCS, pages 186-194. Springer-Verlag, Aug. 1986.

17. T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual
machine-based platform for trusted computing. In Proceedings of SOSP 2003, pages
193-206, Oct. 2003.

TERAM LING

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Short Group Signatures 55

IEEE P1556 Working Group, VSC Project. Dedicated short range communications
(DSRC), 2003.

A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In C. Cachin and
J. Camenisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
571-89. Springer-Verlag, May 2004.

A. Kiayias and M. Yung. Group signatures: Efficient constructions and anonymity
from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076, 2004. http:
//eprint.iacr.org/.

A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys
and C. Adams, editors, Proceedings of SAC 1999, volume 1758 of LNCS, pages
184-99. Springer-Verlag, Aug. 1999.

S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans.
Fundamentals, E5-A(2):481-4, Feb. 2002.

A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic
curve traces for FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234-43,
May 2001.

D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. J. Cryptology, 13(3):361-96, 2000.

K. Rubin and A. Silverberg. Supersingular Abelian varieties in cryptology. In
M. Yung, editor, Proceedings of Crypto 2002, volume 2442 of LNCS, pages 336-53.
Springer-Verlag, Aug. 2002.

C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161—
174, 1991.

V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy,
editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 256-66.
Springer-Verlag, May 1997.

Trusted Computing Group. Trusted Computing Platform Alliance (TCPA) Main
Specification, 2003. Online: www. trustedcomputinggroup.org.

G. Tsudik and S. Xu. Accumulating composites and improved group signing. In
C. S. Laih, editor, Proceedings of Asiacrypt 2003, volume 2894 of LNCS, pages
269-86. Springer-Verlag, Dec. 2003.

TERAM LING

Signature Schemes and Anonymous Credentials
from Bilinear Maps

Jan Camenisch' and Anna Lysyanskaya®

' IBM Research, Zurich Research Laboratory, CH-8803 Riischlikon
jca@zurich.ibm.com
2 Computer Science Department, Brown University, Providence, RI 02912, USA
anna@cs .brown.edu

Abstract. We propose a new and efficient signature scheme that is prov-
ably secure in the plain model. The security of our scheme is based on a
discrete-logarithm-based assumption put forth by Lysyanskaya, Rivest,
Sahai, and Wolf (LRSW) who also showed that it holds for generic groups
and is independent of the decisional Diffie-Hellman assumption. We prove
security of our scheme under the LRSW assumption for groups with bi-
linear maps. We then show how our scheme can be used to construct
efficient anonymous credential systems as well as group signature and
identity escrow schemes. To this end, we provide efficient protocols that
allow one to prove in zero-knowledge the knowledge of a signature on a
committed (or encrypted) message and to obtain a signature on a com-
mitted message.

1 Introduction

Digital signatures schemes, invented by Diffie and Hellman [20], and formalized
by Goldwasser, Micali and Rivest [26], not only provide the electronic equivalent
of signing a paper document with a pen but also are an important building block
for many cryptographic protocols such as anonymous voting schemes, e-cash, and
anonymous credential schemes, to name just a few.

Signature schemes exists if and only if one-way functions exist [32,35]. How-
ever, the efficiency of these general constructions, and also the fact that these
signature schemes require the signer’s secret key to change between invocations
of the signing algorithm, makes these solutions undesirable in practice.

Using an ideal random function (this is the so-called random-oracle model),
several, much more efficient signature schemes were shown to be secure. Most
notably, those are the RSA [34], the Fiat-Shamir [21], and the Schnorr [36]
signature schemes. However, ideal random functions cannot be implemented in
the plain model [13,25], and therefore in the plain model, these signature schemes
are not provably secure.

Over the years, many researchers have come up with signature schemes that
are efficient and at the same time provably secure in the plain model. The most
efficient ones provably secure in the standard model are based on the strong RSA
assumption [23,19,22,10]. However, no scheme based on an assumption related
to the discrete logarithm assumption in the plain (as opposed to random-oracle)
model comes close to the efficiency of these schemes.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 5672, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

Signature Schemes and Anonymous Credentials from Bilinear Maps 57

In this paper, we propose a new signature scheme that is based on an assump-
tion introduced by Lysyanskaya, Rivest, Sahai, and Wolf [30] and uses bilinear
maps. This assumption was shown to hold for generic groups [30], and be in-
dependent of the decisional Diffie-Hellman assumption. Our signature scheme’s
efficiency is comparable to the schemes mentioned above that are based on the
Strong RSA assumption.

We further extend our basic signature scheme such that it can be used as a
building block for cryptographic protocols. To this end, we provide protocols to
prove knowledge of a signature on a committed message and to obtain a signa-
ture on a committed message. These protocols yield a group signature scheme
[17] or an anonymous credential system [14] (cf. [10]). That is, we obtain the
first efficient and secure credential system and group signature/identity escrow
schemes [28] that are based solely on discrete-logarithm-related assumptions.
We should mention that an anonymous credential system proposed by Verheul
[38] is also only based on discrete logarithm related assumptions; however, the
scheme is not proven secure. Also note that the recent scheme by Ateniese and de
Medeiros [2] requires the strong RSA assumption although no party is required
to know an RSA secret key during the operation of the system.

Note that not only are our group signature and anonymous credential schemes
interesting because they are based on a different assumption, but also because
they are much more efficient than any of the existing schemes. All prior schemes
[1,9,10,2] required proofs of knowledge of representations over groups modulo
large moduli (for example, modulo an RSA modulus, whose recommended length
is about 2K Bits).

Recently, independently from our work, Boneh and Boyen [4] put forth a
signature scheme that is also provably secure under a discrete-logarithm-type
assumption about groups with bilinear maps. In contrast to their work, our
main goal is not just an efficient signature scheme, but a set of efficient pro-
tocols to prove knowledge of signatures and to issue signatures on committed
(secret) messages. Our end goal is higher-level applications, i.e., group signature
and anonymous credential schemes that can be constructed based solely on an
assumption related to the discrete logarithm assumption.

In another recent independent work, Boneh, Boyen, and Shacham [5] con-
struct a group signature scheme based on different discrete-logarithm-type as-
sumptions about groups with bilinear pairings. Their scheme yields itself to the
design of a signature scheme with efficient protocols as well. In §5 we describe
their scheme and its connection to our work in more detail.

Outline of the Paper. In §2 we give our notation and some number-theoretic
preliminaries, including bilinear maps and the LRSW assumption. In §3, we
give our signature scheme and prove it secure. In §4 we show how our signature
yields itself to the design of an anonymous credential system: we give protocols
for obtaining a signature on a committed value, and for proving knowledge of a
signature on a committed value. In the end of that section, we show how to realize
a group signature scheme based on our new signature. Finally, in Section 5, we
show that the scheme of Boneh, Boeyn and Shacham can be extended so that

TERAM LING

58 Jan Camenisch and Anna Lysyanskaya

a signature scheme with efficient protocols, similar to the one we describe in
Sections 3 and 4 can be obtained based on their assumptions as well.

2 Preliminaries

We use notation introduced by Micali [31] (also called the GMR notation), and
also notation introduced by Camenisch and Stadler [12]. Here we review it briefly;
the complete description can be found in the full version [CLO04] of this paper.

If A is an algorithm, and b be a Boolean function, then by (y « A(z) : b(y)),
we denote the event that b(y) = 1 after y was generated by running A on input z.
By AP(.), we denote a Turing machine that makes queries to an oracle O. By
Q = Q(A°(z)) « A°(x) we denote the contents of the query tape once A
terminates, with oracle O and input z.

A function v(k) is negligible if for every positive polynomial p(-) and for
sufficiently large &, v(k) < RIFF'

Camenisch and Stadler[12] introduced notation for various proofs of knowl-
edge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For instance,

PK{(a,8,7) :y=g*F? A §=§"h" A (u<a<v)}

denotes a “zero-knowledge Proof of Knowledge of integers a, 3, and vy such _that
y=g°hP and §j = xRy holds where u < a £ v,” where y,g,h,%,§, and h are
elements of some groups G = (g) = (k) and G = (§) = (h). The convention
is that Greek letters denote quantities the knowledge of which is being proved,
while all other parameters are known to the verifier. We will sometimes apply
the Fiat-Shamir heuristic to turn such a proof into a signature on a message m,
which we will denote as, e.g., SPK{(a) : y = g*}(m).
We also use the standard definition of a digital signature scheme [26].

2.1 Number-Theoretic Preliminaries

We now describe some number-theoretic preliminaries. Suppose that we have
a setup algorithm Serup that, on input the security parameter 1¥, outputs the
setup for G = (g) and G = {g), two groups of prime order ¢ = 6(2*) that have a
non-degenerate efficiently computable bilinear map e. More precisely: We assume
that associated with each group element, there is a unique binary string that
represents it. (For example, if G = Z;, then an element of G can be represented
as an integer between 1 and p — 1.) Following prior work (for example, Boneh
and Franklin [6]), e is afunction, e : G X G — G, such that

— (Bilinear) For all P,Q € G, for all a,b € Z, e(P*, Q%) = e(P, Q).

— (Non-degenerate) There exists some P,Q € G such that e(P, Q) # 1, where
1 is the identity of G.

— (Efficient) There exists an efficient algorithm for computing e.

TERAM LING

Signature Schemes and Anonymous Credentials from Bilinear Maps 59

We write: (g, G,G,g,g,e) «— Setup(1¥). It is easy to see, from the first two
properties, and from the fact that G and G are both of the same prime order ¢,
that whenever g is a generator of G, g = e(g, g) is a generator of G.

Such groups, based on the Weil and Tate pairings over elliptic curves (see
Silverman [37]), have been extensively relied upon in cryptographic literature
over the past few years (cf. [27,6,7,24] to name a few results).

Further, we make the following assumption about the groups G and G.

Assumption 21 (LRSW Assumption) Suppose that G = (g} isagroup cho-
sen by the setup algorithm Setup. Let X,Y € G, X = ¢*, Y = g¥. Let Ox vy (")
be an oracle that, on input a value m € Zgq, outputs a triple A = (a,a¥,a®t™=¥)
for a randomly chosen a. Then for all probabilistic polynomial time adversaries
A?, v(k) defined as follows is a negligible function:

Pri(q, G, G, g,8,€) — Setup(1¥);z «— Zg;y — Zy; X = g% Y = g¥%;
(m,a,b,c) — A9%¥(q,G,G,g,8,6,X,Y) : m¢Q A m € Zg A
Am#OAN a€ GA b=a¥ A c=a" ¥ =y(k) ,

where Q is the set of queries that A made to Ox.y (-).

This assumption was introduced by Lysyanskaya et al. [30], and considered
for groups that are not known to admit an efficient bilinear map. It was also
shown, in the same paper, that this assumption holds for generic groups. It is
not hard to see that the proof carries over to generic groups G and G with a
bilinear map between them.

3 Three Signature Schemes

First, we present a simple signature scheme (Scheme A) and prove it secure under
the LRSW assumption. Then, we modify this scheme to get signature schemes
that lend themselves more easily to the design of efficient protocols for issuing
a signature on a committed value and proving knowledge of a signature on a
committed value. The first generalization will allow to sign such that the signa-
ture produced is independent of the message (Scheme B), which we generalize
further into a scheme that allows to sign blocks of messages (Scheme C).

Schemes A and B are, in fact, special cases of Scheme C. So we really propose
just one new signature scheme, namely Scheme C. Schemes A and B are just
steps that simplify our presentation by making it more modular.

3.1 Scheme A: A Simple Signature Scheme

The signature scheme consists of the following algorithms:

Key generation. The key generation algorithm runs the Serup algorithm in
order to generate (g, G,G, g,8,€). It then chooses z «— Z; and y « Z,, and
sets sk = (z,v), pk = (¢, G, G, g,8,¢,X,Y), where X = ¢® andY = ¢V.

TERAM LING

60 Jan Camenisch and Anna Lysyanskaya

Signature. On input message m, secret key sk = (z,y), and public key pk =
(¢,G,G,g,8,6,X,Y), choose a random ¢ € G, and output the signature
o = (a,a¥,a®t™m*Y),

Verification. On input pk = (g, G, G, ¢,8, ¢, X, Y’), message m, and purported
signature ¢ = (a, b, ¢), check that the following verification equations hold.

e(a,Y) =¢e(g,b) and e(X,a) e(X,b)" =e(g,c) . (1)

Theorem 1. Signature Scheme A described above is correct and secure under
the LRSW assumption.

Proof. We first show correctness. The first verification equation holds as e(a, Y)=
e(a, g)¥ = e(g,a)? = e(g,b) and the second one holds because e(X, a)-e(X,b)™ =
e(g,a)” - e(g,a)™ ¥ = e(g,a)*t™¥ = e(g, c).

We now show security. Without loss of generality, let g = e{g, g).

Consider the adversary interacting with the signer and outputting a valid
signature o on some message m that he did not query for. It is clear that the
signer acts the same way as the oracle Ox y defined in the LRSW assumption.
Therefore, in order to prove security, we must show that the forgery ¢ = (a, b, ¢)
that passes the verification equations, must be of the form (*) b = a¥ and (*¥)
c = a*tmay,

Let a = g%, b = g®, ¢ = g7. So, we wish to show that 3/a = y, and that
v/ =z + mzxy.

Prom the first verification equation and the bilinearity of e, we get that

g™ =e(9,9)* = e(a,Y) = e(g,b) = e(g,9)’ =g&” .

As g is a generator of G, we can take the logarithm base g on both sides, and
obtain ay = 8 mod ¢, which gives us (¥) as desired.

From the second verification equation, using the above, and, again, the fact
that g is a generator:

E(X, a’) . G(X, b)m = e(g,c)
e(9,9)"%e(g,9)™" = e(g,9)"
rza+mzf = oz +mzy) =" .

3.2 Scheme B: Where Signature Is Independent of the Message

For constructing anonymous credentials, we need a signature scheme where the
signature itself is distributed in a way that is information-theoretically indepen-
dent of the message m being signed. In essence, what is being signed should be
an information-theoretically secure commitment (Pedersen commitment) of the
message. Thus, we modify Scheme A and obtain Scheme B as follows:

Key generation. Run the Serup algorithm to generate (¢, G, G, g, g, ¢). Choose
T —Lg,y—Zg,z+—ZLg.Let X =¢°, Y =g¥ and Z = ¢*. Set sk = (z,y, 2),
pk=(q,G,G,g,8,¢,X,Y,Z).

TERAM LING

Signature Schemes and Anonymous Credentials from Bilinear Maps 61

Signature. On input message (m,r), secret key sk = (z,y, 2), and public key
pk =(q,G,G, 9,86 X,Y,Z) do:
— Choose a random a « G.
— Let A = a®.
— Let b=a¥, B=AY,
— Let ¢ = a*t=ym A%vr,
Output ¢ = (a, 4,b, B, c).
Verification. On input pk = (g, G, G, g,8,¢,X,Y, Z), message (m,r), and pur-
ported signature o = (a, A, b, B, ¢), check the following:
1. A was formed correctly: e(a, Z) = e(g, A).
2. b and B were formed correctly: e(a,Y) = e(g,b) and e(A,Y) = e(g, B).
3. ¢ was formed correctly: e(X, a) - e(X,b)™ - (X, B)" = e(g, ¢).

Note that the values (¢™Z7,a, A, b, B,c) are information-theoretically inde-
pendent of m if r is chosen randomly. This will become crucial when using this
signature scheme in the context of an anonymous credential system.

Theorem 2. Signature Scheme B described above is correct and secure under
the LRSW assumption.

The full proof of this theorem is found in the full version [CL04] of this paper.
Here we give a sketch. Correctness follows by inspection. To show security, we
consider two types of forgery. Type 1 forgery is on some message (m,r) such
that for all previously queried (m;,r;) wehave g™Z" # g™ Z™. Type 2 forgery
is when this is not the case.

The existence of Type-1 forger contradicts the LRSW assumption by reduc-
tion from Signature Scheme A. On input a public key pk = (¢, G, G, g,g,¢,X,Y)
for Scheme A, our reduction forms a public key pk’ = (g, G, G, g,g8,¢,X,Y, Z)
for Scheme B by choosing z «— Z, and setting Z = g*. It then runs the forger
on input pk’, and answers signature queries of the form (m;,r;) by transforming
them into queries m, = m; + r;z mod ¢ for the signature oracle for Scheme A.
It is easy to see that a Type 1 forgery on (m,r) constitutes a successful forgery
for the message m' = m + rz in Scheme A.

The existence of Type-2 forger contradicts the discrete logarithm assumption
(and therefore the LRSW assumption). The reduction takes as input (g, G, G, g,
g.,e,Z), and sets up the public key for the signature scheme by choosing X and
Y. It then runs the forger, answers all the signature queries (since it generated
X and Y itself) and obtains a Type-2 forgery, namely {m,r), (m;,r;) such that
gmZ" = g™ Z" forsome i. This immediately gives the discrete logarithm of Z
to the base g.

3.3 Scheme C: For Blocks of Messages

Scheme B allows us to generate a signature on m in such a way that the signature
itself reveals no information about m. Namely, one can choose a random r and
sign (m, r) using Scheme B. In general, however, there is no reason that we should
limit ourselves to pairs {m,r) when signing. In fact, the construction of Scheme

TERAM LING

62 Jan Camenisch and Anna Lysyanskaya

B can be generalized to obtain Scheme C which can sign tuples (m(©, ..., m®),
i.e., blocks of messages.
Scheme C consists of the following algorithms:

Key generation. Run the Serup algorithm to generate (g, G, G, g, g, €). Choose
@ — Zg,y — Zg,and for1 <4 <4, z; — Zg. Let X = g%, Y = g¥ and, for 1 <
(S e; Z’i = gZi- Set sk = (xaya TR 721)’ pk = (q7 Ga G:.gag7e1X)Y$ {Zz})
Signature. On input message (m©@,mM, ... m®), secret key sk = (z,v,
z1,...,2¢), and public key pk = (q, G, G, g,8,e,X,Y,{Z;}) do:
— Choose a random a « G.
— Let A; =a* forl <i</{.
—lLetb=a¥, B; = (A,')y.
— Let ¢ = a=+evm® [T, AZv™
Output o = (a, {4:},b,{Bi},c).
Verification. On input pk = (¢, G,G,g,8,e,X,Y,{Z;}), message (m®,...,
m®), and purported signature o = (a, {A:}, b, {B:},¢), check the following:
1. {A;} were formed correctly: e(a, Z;) = e(g, As).
2. b and {B;} were formed correctly: e(a,Y) = e(g,b) and e(A;,Y) =
€(g, Bz))
3. ¢ was formed correctly: e(X, a) - e(X, b)m(o) -Hf=1 e(X, B,-)’"(l) =e(g,¢).

(O]

The proof that this scheme is secure and correct is deferred to Corollary 1.

4 Anonymous Credential System
and Group Signature Scheme

Following Camenisch and Lysyanskaya [10,29], in order to construct an anony-
mous credential system, it is sufficient to exhibit a commitment scheme, a sig-
nature scheme, and efficient protocols for (1) proving equality of two committed
values; (2) getting a signature on a committed value (without revealing this value
to the signer); and (3) proving knowledge of a signature on a committed value.
We provide all these tools in this section.

Constructing a group signatures scheme or identity escrow scheme addition-
ally requires an encryption scheme that is secure against adaptively chosen ci-
phertext attacks and a protocol that a committed value is contained in a cipher-
text (cf. [12,3,11]). Camenisch and Shoup provide an encryption scheme and
such a protocol [11]. However, in our case we could also use the Cramer-Shoup
encryption scheme [18], provided that the order of the group over which encryp-
tion is carried out is the same as the order of the group over which our signature
scheme is constructed. This will allow for a more efficient proof that a ciphertext
contains information to identify a group member and thus a more efficient group
signatures/identity escrow scheme. We will describe the details of this in §4.4.

The reason that our new signature schemes are particularly suitable for the
credential scheme application, is the fact that, given one signature on a given
message, it is easy to generate another one. Consider Signature Scheme A. From

TERAM LING

Signature Schemes and Anonymous Credentials from Bilinear Maps 63

a signature o = (a,b,c) on message m, it is very easy to compute a different
signature o = (&, b, €) on the same message m: just choose a random r € Z, and
leta =a", b= b", ¢ = ¢". This alone is, of course, not sufficient, but this already
shows the way in which the pieces of our credential scheme will fall into place.

4.1 The Relevant Commitment Scheme

Recall the Pedersen commitment scheme [33]: given a group G of prime order
g with generators g and h, a commitment to z € Z,4 is formed by choosing
a random r « Z, and setting the commitment C' = g*h". This commitment
scheme is information-theoretically hiding, and is binding under the discrete
logarithm assumption, which is implied by the LRSW assumption. Moreover,
there exist in the literature efficient protocols for proving knowledge and equality
of committed values (see, for example, [16,36,8,15]).

4.2 Obtaining a Signature on a Committed Value

When Information-Theoretic Hiding Is Not Needed. Consider the signing algo-
rithm for Scheme A. Note that, if the input to the signer is g™ instead of m,
the algorithm will still work: on input M = g™, output a = ¢", b = a¥, and
¢ =a*M™¥ = q®t™*¥ To maintain security of the signature scheme, however,
the user must prove knowledge of m to the signer.

As we will discuss in more detail in §4.4, this leads to a natural application
to constructing group signatures: in order to join a group, a new member will
choose a secret m, give g™ to the group manager, prove knowledge of m, and
obtain the membership certificate (a, b, ¢) formed as above.

However, note here that the input to the signer, the value ¢™, does not
unconditionally hide the value m. Thus, if the user wishes to become a member
in more than one group using the same secret m (as is the case if we want to build
an anonymous credential system), the two group managers can discover that they
are talking to the same user. This is easy to see if both group managers use the
same generator g for G, because in that case, the user will give g™ to both of
them. But this is true even if one group manager uses g, while the other uses §:
recall that in groups with bilinear pairings, the decisional Diffie-Hellman problem
is easy, and so g™ and §™ can be correlated: e(¢™, §) = e(g,§)™ = e(g, §™)-

This is why we need Schemes B and C instead of Scheme A. However, we
note that for group signatures, Scheme A is sufficient. In the sequel, we will give
the description of the protocol for Scheme C, together with a proof of security.
Because Scheme A is a special case of Scheme C (in Scheme A, ¢ = 0), the
security of the protocols for A is implied by that for C.

Signing an Information-Theoretically Hidden Message. Signature Schemes B
and C are ideally suited for obtaining a signature on a committed value.
Consider Signature Scheme B. Note that to generate a valid signature, the
signer need not know (m,r). Instead, it is sufficient that the signer know M =
g™Z". The values (a, A,b, B) are not a function of (m,r) — so the signer need

TERAM LING

64 Jan Camenisch and Anna Lysyanskaya

not know (m,r) to generate them. Suppose that the signer generates them as
follows: choose & « Zg, and let a = ¢%. Choose A, b, and B as prescribed
by the signing algorithm. Finally, the signer can compute ¢ = aZT2¥™4%Y" 35
¢ = a®*M>*¥. This will be correct, because:

c = a:tMaIy
=a%(a™A")*Y because by construction, A = ¢%** = Z*
— an:+a:ymAa:yr

More generally, in Signature Scheme C, all the signer needs is the value M =
g Hle Z{"m. He can then compute (¢ = g%, {Ai},b,{B;}) as prescribed,
and let ¢ = a* M %Y as above.

We do not know how to prove such a method for signing secure under the
LRSW assumption: the difference from the usual method is that here, the ad-
versary may win by asking a signature query for M for which he does not know
the representation in terms of ¢ and Z.

Thus, in order to obtain a signature on a committed value, the protocol needs
to be amended by having a recipient of the signature prove that he knows the
representation of M in bases g and Z.

Let us give the protocol in detail now. We give the protocol for Signature
Scheme C, the ones for Signature Schemes A and B follow from this as they are
special cases of Signature Scheme C.

Ob(t_t)zining a Signature C on a Committed Value. Suppose that M = gm(o) Hf=1
Z™" is a commitment to a set of messages (m(®, ..., m(®) whose signature the

user wishes to obtain. Then the user and the signer run the following protocol:

Common Input. The publickey pk = (g, G, G, g,8,¢, X,Y,{Z;}), and a com-
mitment M.

User’s Input. Values m(®,...,m® such that M = g™ [T%_, Zzm®.

Signer’s Input. Signing key sk = (z,y, {2:}).

Protocol. First, the user gives a zero-knowledge proof of knowledge of the open-
ing of the commitment:

e .
PE{(u®,...,u®) : M = ¢ T[2’}

i=1

Next, the signer computes o = (a, {A;}, b, { B;}, ¢) as described above, namely:
—a— Ly, a =g
— Forl1 <i¢< ¥ let A; = a%. Thenset b = a¥, andfor 1 < i < £, let
B; = AY.
— c=a" M"Y,

The user outputs the signature o.

TERAM LING

Signature Schemes and Anonymous Credentials from Bilinear Maps 65

Theorem 3. The protocol above is a secure two-party computation of a signa-
ture on a discrete-logarithm representation of M under the signer’s public key.

Proof. (Sketch) From the signer’s point of view, this protocol is as secure as
when the user submits his signature queries in the clear. This is because of the
proof of knowledge: there exists an extractor that can discover the value of the
message being signed, and ask it of the signer in the clear.

From the user’s point of view, as the only place where the user’s secret input
(m@,...,m®) is used is the zero-knowledge proof of knowledge of these values,
the only thing that the signer finds out about the message (m(®,...,m®), is
the input value M. Note that if m(® is distributed uniformly at random, then
M information-theoretically hides the values (m(®,...,m{¢=1),

4.3 Proving Knowledge of a Signature

We first present a protocol to prove knowledge of a signature that works for
Scheme A. We then explain why the protocol does not generalize to Scheme B
(and thus also Scheme C), show how Scheme C needs to be extended to fix this
problem, and obtain Scheme D. We then give a proof of security of Scheme D and
a zero-knowledge protocol for proving knowledge of a signature under Scheme
D. We note that the protocol to sign a committed (secret) message also works
for Scheme D.

The following protocol is a zero-knowledge proof of knowledge of a signed
message for Scheme A.

Common input. The public key pk = (¢, G, G, g,8,e,X,Y).
Prover’s input. The message m € Z, andsignature o = (a, b, c).
Protocol. The prover does the following:
1. Compute a blinded version of his signature o: Choose random r,r’ € Z,,
and blind the signature to form G := (@', b7 ,¢"T) = (&,b,&) = (&,b, &).
Send (a, b, &) to the verifier.
2. Let the vy, vy, and v, be as follows:

ve = e(X,d) , sz=€(X,B) ’ vs = e(g,¢) .

The Prover and Verifier compute these values (locally) and then carry
out the following zero-knowledge proof protocol:

PE{(p,p) : v§ = vavi,}
The Verifier accepts if it accepts the proof above and e(@,Y) = e(g, 5).

Theorem 4. The protocol above is a zero knowledge proof of knowledge of a
signature o on amessage m under Signature Scheme A.

Proof. First, we prove the zero-knowledge property. The values that the verifier
receives from the prover in Step 1 are independent of the actual signature: @ and b

TERAM LING

66 Jan Camenisch and Anna Lysyanskaya

are Just random values satlsfylng e(@,Y) = e(g, b) and ¢ is random in G because
é=2¢" for a randomly chosen /. Therefore, consider the followmg simulator S:
Choose random 7 and r/, and set & = g", b = Y7, & = ¢g"'. Then (a,b,é) is
distributed correctly, and so Step 1 is sirnulated correctly. Then, because in
Step 2, the Prover and Verifier execute a zero-knowledge proof, it follows that
there exists a simulator S’ for this step; just run S§’. It is easy to see that S
constructed this way is the zero-knowledge simulator for this protocol.

Next, let us prove that this protocol is a proof of knowledge. That is to say, we
must exhibit a knowledge extractor algorithm E that, given access to a Prover
such that the Verifier’s acceptance probability is non-negligible, outputs a value
(m, o), such that o is a valid signature. Suppose that we are given such a prover.
The extractor proceeds as follows: first, it runs the extractor for the proof of
knowledge protocol of Step 2. As a result, it obtains the values r,m € Z,; such
that vi = VzVgy. Then:

Vg = VeVgy
e(g,¢)" = e(X,8)e(X, g)m
e(g,&") = e(X,a)e(X, I;)"‘

And therefore the triple o = (@, b, &™) satisfies the verification equation (1) and
hence is a signature on the message m, so our extractor outputs (m,o).

Let us now try to adapt this protocol for Signature Scheme C. There is one
subtlety that arises here: The zero-knowledge simulator needs to be able to come
up with something that looks like a blinded signature (let us call it simulated
signature), even though the simulator is not given any signature. In Signature
Scheme A this turned out not to be a problem: the simulator simply picked a
random r and set @ = g”, and b = Y™. Here, this is not going to work, because,
in addition to @ and b, the simulated signature needs to include the values {A;}
and {B }. Now, forming A; is not aproblem: A; = Z7. But how do we compute

Ay = ¢g"%¥ without knowing z; or y?

To that end, we may augment the public key for signature scheme C to
include a signature on some dummy message, so that the simulator will be given
some valid signature that includes the correctly formed tuple (a, {A4;}, b, {B:}),
and then, in order to obtain the simulated signature, the simulator will pick a
random r, and let @ = a”, b= b", A; = A7, and B; = BI.

An even better solution, in terms of reducing the size of the public key, is
actually to include the values W; = Y* in the public key, instead of the signature
on the dummy message. It is easy to see that this has no effect on the security
of the signature scheme.

Let us now give this new, augmented signature scheme, and prove it secure.
Signature Scheme D. This signature scheme is the same as Signature Scheme
C, except that the public key also includes the values {W; = Y*}.

Key generation. Run the Serup algorithm to generate (g, G, G, g,g,). Choose
T — ZLq,y «— Zg, and for 1 < i < 4, z; +— Zg. Let X = g%, ¥V =
and, for 1 < i < £, Z; = g% and W; = Y*. Set sk = (z,y, 21,...,22),
Pk = (q7 G1 Ga 9:8,¢, Xa Y; {Zz}7 {Wl})

TERAM LING

Signature Schemes and Anonymous Credentials from Bilinear Maps 67

The signature and verification algorithm are identical to the ones of Scheme C.

Theorem S. Signature Scheme D is correct and secure under the LRSW as-
sumption.

The detailed proof of this theorem is given in the full version of this paper.
The main idea of the proof of security is that the proof for Scheme B generalizes
to the case when we have several Z;’s.

As a forger for Scheme C is also a forger for Scheme D, we have:

Corollary 1. Signature Scheme C is correct and secure under the LRSW as-
sumption.

The full description of the protocol and proof of security follow.

Common input. The publickey pk = (g, G, G, ¢,8,¢, X, Y, {Z:}, {W:}).
Prover’s input. The block of messages (m(?,...,m®) and signature ¢ =
(a" {A'i}, b, {Bi}a C)'
Protocol. The prover does the following:
1. Compute a blinded version of his signature o: Choose random 7,7’ € Z,.

Form & = (&, {A:},b, {B:}, &) as follows:
Gg=a", b=0b" and é=¢"

Ai=A7 and Bi=Bl for1<i<¢

Further, blind € to obtain a value ¢ that it is distributed independently
of everything else: é=¢" "
Send (&, {A;},b,{B:},8) to the verifier.

2. Let vg, Vay, Vizy,i), 1 =1,...,¢, and v, be as follows:

ve = e(X,8) , Voy =e(X, E) v Viay,) = e(X, B,) , Vs =e(g,¢)

The Prover and Verifier compute these values (locally) and then carry
out the following zero-knowledge proof protocol:

[4
(0) (O]
PK{(H’(O)v e ’/"(Z)v P) : (Vs)p = Vz‘(vfﬂy)“ ’ H(V(fl’y,l))“ }
i=1

The Verifier accepts if it accepts_the proof above and (a) {/L} were
formed correctly: e(a, Z;) = e(g, A:); and (b) b and {B;} were formed
correctly: e(a,Y) = e(g,b) and e(A;,Y) = e(g, B;).

Theorem 6. The protocol above is a zero knowledge proof of knowledge of a
signature ¢ on a block of messages (m®,...,m®Y under Signature Scheme D.

The proof of this theorem follows the proof of Theorem 4 and is provided in the
full version of this paper.

TERAM LING

68 Jan Camenisch and Anna Lysyanskaya

4.4 An Efficient Group Signature Scheme Secure
under the LSWR-Assumption

We now present the first efficient group signature (and identity escrow) scheme
whose security relies solely on assumptions related to the discrete logarithm
problem (in the random oracle model). In contrast, all previous efficient schemes
rely on the strong RSA assumption plus the decisional Diffie-Hellman assump-
tion.

Recall that a group signatures scheme allows members of a group to sign
anonymously on the group’s behalf. In case of disputes, there exists a trusted
third party called revocation manager who will be able to open a signature and
reveal the identity of the signer. A group signature scheme consists of five proce-
dures: (1) a key generation procedure that produces the public key of the group
(and also some keys for the group and revocation manager), (2) a join protocol
for a member to get admitted by the group manager, (3) a sign algorithm for an
admitted member to sign a message, (4) a verification algorithm to check group
signatures for validity with respect to the group’s public key, and (5) an opening
algorithm that allows the revocation manager to reveal the identity of a signer.
A group signature scheme is secure if only the revocation manager can reveal
the identity of the signer (anonymity) and if the revocation manager can do this
for all valid signatures (traceability) [3].

Our construction follows the approach introduced by Camenisch and Stadler
[12]: A member gets a certificate on a membership public key from the group
manager when she joins the group. When she wants to sign on behalf of the
group, she encrypts her membership public key under the encryption key of the
party who will later be able to open group signatures (revocation manager) and
then proves that she possesses a certificate on the encrypted membership public
key and that she knows its secret key. To make this proof a signature, one usually
applies the Fiat-Shamir heuristic to this proof [21].

The public key of the group manager is the public key of our Scheme A, i.e.,
pky = (9, G,G,9,8,6,X,Y) and his secret key is z = log, X and y = log, Y.
The public key of the revocation manager is the public key of the Cramer-Shoup
encryption scheme [18] in the group G = (g), i.e., pkg = (h,y;,¥s,¥s), With
her G, y1 = g"th*?, yp = g**h*4, and y3 = g*¢, where z1,...,25 €r Z, are the
revocation manager’s secret key'. Finally, let H() : {0,1}* — Z4 be a collision
resistant hash function (modeled as a random oracle in the proof of security).

The join protocol is as follows. The future group member chooses her mem-
bership secret key k €r Zg, sets P = g*, sends P authentically to the group
manager, and proves to the group manager the knowledge of log, P. The group
manager replies with a Scheme A signature (a, b, ¢) on the message committed
by P, i.e., computes a = g", b = a¥, and c = a®P"™Y, where r €g Z, (cf. §4.2).

! The Cramer-Shoup cryptosystem is secure under the decisional Diffie-Hellman
(DDH) assumption. Therefore, we cannot use it over group G, because the exis-
tence of a bilinear map implies that the DDH problem is tractable. Thus, we use the
CS cryptosystem in group G instead.

TERAM LING

Signature Schemes and Anonymous Credentials from Bilinear Maps 69

The group manager stores P = e(P, g) together with P and the identity of the
new group member.

To sign a message m on behalf of the group, the user computes P = g¥F =
e(P, g) and a blinded version of the certificate by choosing random r,r’ € Z, and
computing & := (a” ,b" ,¢"'") = (&,b,&") = (@, b, &). Next, she encrypts P under
the revocation manager’s public key pkg, i.e., she chooses u €r Z4, computes
¢y =g% cg=h% c3 =y}P, andcy = ygy;‘H(QIIC"’"cs). Then she computes the
following proof-signature (cf. §2):

X = SPK{(u,p,v) : Ve =vzvhy, A c1=g" A ca=h"A

Aca=ylgh A cy= (Yzy;'l(cluczﬂca))v}(m) ,

wherev, = e(X,a), vzy = e(X, l~)), and v, = e(g,é). A group signature consists
of ((a, b, ¢), (c1,¢2,¢3,¢4), &) and is valid if X is a valid SPK as defined above
and ife(d,Y) = e(g,b) holds.

To open such a group signature, the revocation managers needs to decrypt
(c1,€2,c3,¢4) to obtain P which identifies the group member.

It is not hard to see that, in the random oracle model, this is a secure group
signatures scheme under the LRSW and the decisional Diffie-Hellman assump-
tion in G. Let us give a proof sketch for security under the Bellare et al. [3]
definition. If an adversary can break anonymity, then one can break the encryp-
tion scheme as (&, b, € are random values and X is derived from an honest-verifier
zero-knowledge proof. If an adversary can produce a signature that cannot be
opened, i.e., linked to a registered member by the revocation manager, then one
can use rewinding to extract a forged signature and break the signature scheme
(cf. analysis of the protocol to prove knowledge of a signatures in §4.3). If used as
an identity escrow scheme (i.e., if X' is not a proof-signature but a real protocol
between a group member and a verifier), the security proof need not to assume
random oracles.

The scheme just described can be extended in several ways. For instance,
we could use Scheme D instead of Scheme A and include the user’s identity
id directly into her membership key P, e.g., P = g*¥Z}4. That is, in the join
protocol, the user would send P’ = g* (and prove knowledge of log, P) and the
group manager would then compute P as to ensure that indeed id is contained in
P. Then, instead of encrypting P, one could use the Camenisch-Shoup encryption
scheme [11] to directly encrypt the identity as one of the discrete logarithms the
knowledge of which is proven when proving knowledge of a signature.

S Constructions Based on the BBS Group Signature

Recently and independently of this work, Boneh, Boyen and Shacham [5] pre-
sented a group signature scheme secure under the strong Diffie-Hellman and the
Linear assumptions. They showed that, under these assumptions in groups with
bilinear pairings, it is hard, on input (g;,g2 = g7) to sample tuples of the form

TERAM LING

70 Jan Camenisch and Anna Lysyanskaya

(A, z) where A = g2/ (in other words, A7+ = g;), even given a polynomial
number of such samples. In their group signature scheme, such a tuple (4, x) is a
user’s group membership certificate, while (g;, g2) is the public key of the group.
At the heart of their construction are (1) a zero-knowledge proof of knowledge
of such a tuple; and (2) a scheme for encrypting z. They prove the resulting
construction secure under a slightly weaker variant of the Bellare, Micciancio,
and Warinschi [3] definition of security.

Boneh, Boyen, and Shacham also modify their main group signature scheme
to achieve exculpability, as follows. The public key of the group is augmented
by an additional value h; it is now (g1, g2, k). The membership certificate of a
group member is (4, z,y) such that A7**hY = g;. This membership certificate
is created via a protocol in which the group manager only learns the value
k¥, but not the value y. The unforgeability of membership certificates in this
modified scheme can be derived from that of their main scheme. They achieve
exculpability because a proof of knowledge of a membership certificate requires
the knowledge of the value y.

Note that this latter signature scheme gives rise to the equivalent of our
Signature Scheme A, but under a different assumption. Namely, the membership
certificate (4, z,y) is a signature on the value y. Just as in our Scheme A, a group
member obtains his group membership certificate in such a way that the group
manager learns the value A¥ but not the value y itself.

Not surprisingly, this signature scheme can be extended to the equivalent of
our Schemes B and C using techniques similar to the ones described above. As
a result, we can obtain signature schemes with efficient protocols based on the
BBS signature. Let us give a sketch for the equivalent for Scheme C. A public key

would be (g1, g2, ho, b1, ..., he). A signature on a block of messages (mog, . . ., my)
consists of values (4, z) such that A7+ Hf=o hi*. In order to obtain a signature

on a committed block of messages, a user will have to supply the signer with
the value Y = He h7™, and prove knowledge of its representation in the bases

1=0""%
(ho, ..., he). If mg is chosen at random, then Y information-theoretically hides
(mq,...,mg). The signer will then generate the signature. A proof of knowledge

of a signature on a committed value can be obtained by appropriate modifications
to the BBS group signature protocol.

Acknowledgments

We thank Dan Boneh, Xavier Boyen and Hovav Shacham for making their paper
[5] available to us as we were preparing the final version of this paper. We
also thank the anonymous referees for helpful comments. Anna Lysyanskaya is
supported by NSF Career grant CNS-0347661.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In CRYPTO 2000, vol. 1880 of
LNCS, pp. 255-270. Springer Verlag, 2000.

TERAM LING

Signature Schemes and Anonymous Credentials from Bilinear Maps 71

2. G. Ateniese and B. de Medeiros. Efficient group signatures without trapdoors. In
ASIACRYPT 2003, vol. 2894 of LNCS, pp. 246-268. Springer Verlag, 2003.

3. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definition, simplified requirements and a construction based on general
assumptions. In Eurocrypt 2003, vol. 2656 of LNCS, pp. 614-629, 2003.

4. D. Boneh and X. Boyen. Short signatures without random oracles. In EURO-
CRYPT 2004. Springer Verlag, 2004.

5. D. Boneh, X. Boyen, and H. Shacham. Short group signatures using strong diffie
hellman. In CRYPTO 2004. Springer Verlag, 2004.

6. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
CRYPTO 2001, vol. 2139 of LNCS, pp. 213-229. Springer Verlag, 2001.

7. D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. In
Topics in Algebraic and Noncommutative Geometry, Contemporary Mathematics,
vol. 324, pp. 71-90. American Mathematical Society, 2003.

8. S. Brands. Rapid demonstration of linear relations connected by boolean operators.
In EUROCRYPT ’97, vol. 1233 of LNCS, pp. 318-333. Springer Verlag, 1997.

9. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In EUROCRYPT
2001, vol. 2045 of LNCS, pp. 93-118. Springer Verlag, 2001.

10. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
Security in communication networks, vol. 2576 of LNCS, pp. 268-289, 2002.

[CLO4] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. http: //eprint.iacr.org, 2004.

11. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO 2003, LNCS, pp. 126-144. Springer Verlag, 2003.

12. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO 97, vol. 1296 of LNCS, pp. 410-424. Springer Verlag, 1997.

13. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In Proc. 30th Annual ACM STOC, pp. 209-218, 1998.

14. D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030-1044, Oct. 1985.

15. D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demon-
strating possession of discrete logarithms and some generalizations. In EURO-
CRYPT 87, vol. 304 of LNCS, pp. 127-141. Springer-Verlag, 1988.

16. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO ’92,
vol. 740 of LNCS, pp. 89-105. Springer-Verlag, 1993.

17. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT ’91, vol. 547 of
LNCS, pp. 257-265. Springer-Verlag, 1991.

18. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO ’98, vol. 1642 of LNCS,
pp- 13-25, Berlin, 1998. Springer Verlag.

19. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
In Proc. 6th ACM CCS, pp. 46-52. ACM press, nov 1999.

20. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. on
Information Theory, 1T-22(6):644-654, Nov. 1976.

21. A. Fiat and A. Shamir. How to prove yourself: Practical solution to identification
and signature problems. In CRYPTO ’86, vol. 263 of LNCS, pp. 186-194, 1987.

22. M. Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In Public
Key Cryptography - PKC 2003, vol. 2567 of LNCS. Springer-Verlag, 2002.

23. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the
random oracle. In EUROCRYPT ’99, vol. 1592 of LNCS, pp. 123-139, 1999.

TERAM LING

72

24

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.
38.

Jan Camenisch and Anna Lysyanskaya

. C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In ASIACRYPT
2002, vol. 2501 of LNCS, pp. 548-566. Springer Verlag, 2002.

S. Goldwasser and Y. T. Kalai. On the (in)security of the Fiat-Shamir paradigm.
In Proc. 44th IEEE FOCS, pp. 102-115. IEEE Computer Society Press, 2003.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281-308,
Apr. 1988.

A. Joux. A one-round protocol for tripartite Diffie-Hellman. In Proceedings of the
ANTS-1V conference, vol. 1838 of LNCS, pp. 385-394. Springer-Verlag, 2000.

J. Kilian and E. Petrank. Identity escrow. In CRYPTO 98, vol. 1642 of LNCS,
pp. 169-185, Berlin, 1998. Springer Verlag.

A. Lysyanskaya. Signature Schemes and Applications to Cryptographic Protocol
Design. PhD thesis, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, Sept. 2002.

A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In Selected
Areas in Cryptography, vol. 1758 of LNCS. Springer Verlag, 1999.

S. Micali. 6.875: Introduction to cryptography. MIT course taught in Fall 1997.
M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proc. 21st Annual ACM STOC, pp. 33-43, 1989. ACM.

T. P. Pedersen. Non-interactive and information—theoretic secure verifiable secret
sharing. In CRYPTO 91, vol. 576 of LNCS, pp. 129-140. Springer Verlag, 1992.
R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.
J. Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proc. 22nd Annual ACM STOC, pp. 387-394, Baltimore, Maryland, 1990. ACM.
C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,
4(3):239-252, 1991.

J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

E. Verheul. Self-blindable credential certificates from the weil pairing. In ASI-
ACRYPT 2001, vol. 2248 of LNCS, pp. 533-551. Springer Verlag, 2001.

TERAM LING

Complete Classification
of Bilinear Hard-Core Functions

Thomas Holenstein, Ueli Maurer, and Johan Sjodin

Department of Computer Science,
Swiss Federal Institute of Technology (ETH),
Ziirich, Switzerland
{thomahol ,maurer, sjoedin}@inf.ethz.ch

Abstract. Let f: {0,1}" — {0,1}' be a one-way function. A function
h:{0,1}* — {0,1}™ is called a hard-core function for f if, when given
f(z) for a (secret) z drawn uniformly from {0,1}", it is computationally
infeasible to distinguish A(z) from a uniformly random m-bit string. A
(randomized) function & : {0,1}™ x {0,1}* — {0,1}™ is a general hard-
core function if it is hard-core for every one-way function f : {0,1}" —
{0,1}', where the second input to k is a k-bit uniform random string
r. Hard-core functions are a crucial tool in cryptography, in particular
for the construction of pseudo-random generators and pseudo-random
functions from any one-way function.

The first general hard-core predicate, proposed by Goldreich and Levin,
and several subsequently proposed hard-core functions, are bilinear func-
tions in the two arguments z and r. In this paper we introduce a param-
eter of bilinear functions h : {0,1}" x {0,1}* — {0,1}™, called expo-
nential rank loss, and prove that it characterizes exactly whether or not
h is a general hard-core function. The security proofs for the previously
proposed bilinear hard-core functions follow as simple consequences. Our
results are obtained by extending the class of list-decodable codes and by
generalizing Hast’s list-decoding algorithm from the Reed-Muller code to
general codes.

Keywords: List-decoding, hard-core functions, Goldreich-Levin predi-
cate.

1 Introduction

Blum and Micali [BM84] showed a hard-core predicate’ for the exponentiation
function modulo a prime, which is widely conjectured to be one-way (except
for special primes). They also showed how to construct a pseudo-random gen-
erator based on it. Hard-core predicates are also known for some other specific
(conjectured) one-way functions.

In a seminal paper [GL89], Goldreich and Levin proved that for any one-
way function f : {0,1}* — {0,1}!, the XOR of a random subset of then bits

! The term predicate is used throughout to denote a function with range {0,1}.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 73-91, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

74 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

of the input z constitutes a hard-core predicate. This function is randomized
(because of the choice of a random subset), and it is easy to see that any general
hard-core function must be randomized. An alternative view is to interpret the
randomizing input of the hard-core function as an extra input and output of a
modified one-way function f: {0,1}2" — {0,1}!*" defined by

fl(e,r) = (f(=z),7)

which now has a deterministic hard-core function h(z,r) *. The Goldreich-Levin
hard-core function is simply the inner product of and r, which is a bilinear
function k: {0,1}" x {0,1}" — {0,1}.

Any such bilinear map h is characterized by a binary n X n matrix M, where
h(z,r) = T - M - 7. For the Goldreich-Levin predicate, M is simply the identity
matrix.

One can show (see [Lub96]) that m = O(log n) independent Goldreich-Levin
predicates are jointly hard-core, i.e., they form a hard-core function A : {0,1}" x
{0,1}™* — {0,1}™. An important issue is to reduce the required amount of
randomness in a hard-core function. A construction presented in [GL89] (see
also [Go101]) requires only n+m—1 instead of mn random bits for an m-bit hard-
core function. Goldreich, Rubinfeld, and Sudan [GRS00] reduced the number of
random bits down to n, as for the Goldreich-Levin function which produces only
one (rather than m) bits. While some of the proofs of these results as they appear
in the literature are non-trivial, they will all follow as simple consequences of
our main theorem.

More generally, one can consider bilinear functions for vector spaces over
any finite field IF, i.e., functions h : IF"* x IF* — IF™. We are interested in
characterizing which of these functions are general hard-core functions. This
characterization turns out to be given by a quite simple parameter of such a
bilinear function. The characterization is complete in the sense that when the
parameter is below a certain threshold, then the function is hard-core, and other-
wise there exist one-way functions (under some reasonable complexity-theoretic
assumption) such that & is not a hard-core function for f.

Let us discuss this parameter. For any linear function £ : ™ — IF, the
function £ o h is a bilinear function IF™ x IF* — IF which can be characterized
by an n x k£ matrix over IF. The parameter of interest, which we call exponential
rank loss, is defined as the expected value of the exponentially weighted rank of
this matrix, when averaged over all non-zero functions £.

The main technical part of [GL89] consists in showing that an error-correcting
code has certain list-decoding properties, i.e., that it is possible to find a list of
all codewords in a Hamming ball of a certain size. In this paper we show how
to list-decode a larger class of codes. The stated characterization of hard-core
functions will then follow.

An application of one-way functions and hard-core predicates are pseudoran-
dom generators. It is easy to obtain a pseudorandom generator from any one-way

% Yao’s method (implicit in [Ya082]) of using several copies of a one-way function and
computing the XOR of some of the inputs can also be seen in the same light.

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 75

permutation f by iterating f and after each iteration extracting a (the same)
hard-core predicate. It is much more complicated and less efficient to use any
one-way function (see [HILL99]).

The security of a cryptographic scheme that uses a pseudo-random generator
is proven by showing that an algorithm breaking the scheme could distinguish
the pseudo-randomness from real randomness. Hast [Has03] showed that in many
cryptographic applications, breaking the scheme is actually stronger than just
distinguishing the randomness from pseudorandomness with small probability,
in the sense that if an algorithm is given a pseudo-random or random input and
it breaks the scheme, then it is almost certain that the input was pseudo-random
rather than random. Hast then shows that this leads to an improved security
analysis for many constructions. The main technical tool is an extension of the
list-decoding algorithm to the case where erasures in the codewords are allowed.
We use this extension, and furthermore generalize Hast’s result by giving list-
decoding algorithms that are able to handle erasures for more general codes.

Section 2 introduces the notation and discusses bilinear functions and list-
decoding, the main technical tool of the paper. Previous work is also summarized
in this section. In Section 3, we analyze a special case of bilinear functions,
namely these for which all matrices mentioned above (i.e., for all non-zero linear
functions) have full rank. This special case already suffices to prove previous
results in the literature. We generalize the algorithm in Section 4 such that it
works with any bilinear code, where the running time and the produced list will
grow linearly with the exponential rank loss of the code. In Section 5 we discuss
the application to characterizing hard-core functions.

2 Preliminaries

We use calligraphic letters to denote sets. Capital letters denote random variables
over the corresponding sets; and lowercase letters denote specific values of these
random variables, i.e., values in the sets.

The notation f : X — Y is used to denote afunction f from the domain X
to the range). Sometimes, functions take additional randomness (i.e., for every
input z € X the function only specifies a probability distribution over Y). In
this case we write f : X ~» YV, a notation which also will be used to denote
randomized algorithms with domain X and range). If an algorithm has access
to a randomized function, we use the term oracle for the randomized function.

2.1 Bilinear Functions

Let F = GF(q) be the finite field with ¢ elements and let IF® be the n-
dimensional vector space of n-tuples over IF. As a special case, we identify {0,1}
with GF(2), and the bitstrings {0, 1}" of length n with the n-dimensional vector
space over GF(2).

A linear function £ : IF™ — IF can be specified by a vector w € IF™ such that
Lv) = (w,v) := Y, viw;. Weuse %, to denote the set of all linear functions

TERAM LING

76 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

£:TF" — IF. Furthermore, 0 will denote the zero function 0(v) = 0 and we use
Ly = £,\{0} for the set of all linear functions excluding 0.

A bilinear map h : F™ x IF* — IF can be specified by a matrix M € IFn*¥
such that h(v,w) = vT Mw. The rank of a bilinear map is just the rank of this
matrix. A bilinear function h : F™ x IF¥ — TF™ is a function where every entry
in the output vector is specified by a bilinear map. Note that for any function
{ € %4, the concatenation £ o h is a bilinear map. If L is a uniformly chosen
random linear function from .%,, the exponential rank loss p(h) is defined as

p(h) = E[qn—rank(Loh)] .

We say that a bilinear function is full-rank, if rank(€ o h) = n for every ¢ € £>,
(in which case p(h) = 1).

2.2 List-Decoding

The main tool in the construction of hard-core functions is the notion of a list-
decodable code. Such a code has the property that, given a noisy codeword, it
is possible to find a list of all codewords which have a certain agreement with
the noisy codeword.

Consider a code C given as a function C : X — Z*. Note that the input
to the function (usually the message) is an element of X while the output (the
codeword) is a k-tuple over Z. The Hamming distance of two words of Z* is
the number of coordinates in which the words differ. List-decoding is the task
of finding for a given z¥ € Z* all the values x for which C(z) has a Hamming
distance from z* that is smaller than some predefined bound. This is in contrast
to usual error-correcting, where one aims to find the one codeword which is
closest to the received word. The most ambitious task is to list-decode close to
the noise barrier: given any € > 0 one wants to find all values z for which C(z)

has a Hamming distance of at most (1 —]é—] — e)k from a given word. Since a

random word has expected distance (1 — ﬁ)k from any codeword, this is clearly

the best one can expect to achieve.

Instead of considering the function C(z), one can equivalently consider a
function b : X x {1,...,k} — Z, such that h(z,%) is the value of C(z) at the
i~th position. More generally we consider functions A : X x Y -+ Z for any
domain Y. Analogous, we assume that we have oracle access to the noisy word
to be decoded: instead of reading the complete word it will be convenient to
assume that an oracle O : Y ~» Z, on input y, returns the symbol at position y.
This allows us to list-decode in sublinear time, i.e., without looking at every
position of the word, which in turn allows the codewords to be exponentially
large. The oracle is stateless, but may be randomized and is not required to
return the same symbol if queried twice with the same input. The agreement of
an oracle with a codeword is then expressed as Pr[h{z,Y) = O(Y)], where the
probability is over the choices of Y and the randomness of the oracle.

Additionally, we allow erasures in the word which will be denoted by L. Thus,
the oracle is a randomized function O : Y ~» Z U {L}. The rate é of such an
oracle is the probability that a symbol in Z is returned,

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 77

6 :=Pr{O(Y) # 1].
For a fixed word z, the advantage € of O is defined as

£ i= Pr[O(Y) = h(z,Y) | O(Y) # L] - IT}Z_I

This motivates the following definition:

Definition 1 (List-decodable code).’ The function h: X xY — Z is (8,¢)-
list-decodable with « oracle calls and list size A if there exists an oracle algorithm
with running time X - poly(log(|X|)) which, after at most & oracle calls to an
oracle O : Y ~~ ZU{L} with rate at least 8, generates a set A of size at most A,
such that for every z with Pr[O(Y) = h(z,Y) | OY) # 1] >]—%—[+ € the set
satisfies Pr{x € A] > /2.

2.3 Hard-Core Functions

Informally, a one-way function is a function which is easy to evaluate but hard
to invert.

Definition 2 (One-way function). An efficiently computable function fam-
ily £ : {0,1}* — {0,1}?") with p(n) € poly(n) is a one-way function if for
every probabilistic polynomial time (in n) algorithm A the inverting probability
Pr[f(A(f(X))) = f(X)] is negligible.

A hard-core function & : {0,1}" x {0,1}* — {0,1}™ can intuitively extract
bits from the input of a one-way function f such that these bits look random,
even given f(z). We can distinguish (strong) hard-core functions, where the
output is indistinguishable from a random string of length m (which we denote
by U™), and weak hard-core functions, where the output of the function is hard
to predict.

Definition 3 (Strong hard-core function). An efficiently computable family
h:{0,1}" x {0,1}*(™ — {0,1}™™ of functions, with k(n),m(n) € poly(n) is a
(strong) hard-core function if, for every one way function f = {0,1}" — {0,1}7(™
and every probabilistic polynomial time algorithm A, the distinguishing advantage
given by Pr[A(f(X), R,h(X,R)) = 1] — Pr[A(f(X),R,U™) = 1], is negligible
in n.

Definition 4 (Weak hard-core function). An efficiently computable family
h:{0,1}" x {0,1}*®) — {0,1}™(with k(n), m(n) € poly(n) offunctions is a
weak hard-core function if, for every ome-way function f : {0,1}* — {0,1}?(™
and every probabilistic polynomial time algorithm A, the advantage ofA in guess-
ing h(z,r) on input f(z) and r, defined as Pr{A(f(X),R) = h(X,R)] — 5, is
negligible in n.

* We require the list-decoding algorithm to work in time X - poly(log(}X])). Note that
in some cases, A will be superpolynomial in the input size log(]X|} and log(|))}).

TERAM LING

78 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

In general, weak hard-core functions are easier to construct than strong ones.
However, we will see that for small outputs the notions are equivalent.

As shown in [Sud00], any list-decodable code A : {0,1}" x {0,1}* — {0,1}™
as defined above yields a weak hard-core function. To prove this, one assumes for
the sake of contradiction that an algorithm B is given which on input f(z) and r
predicts h(z,r) with probability higher than -2-—1,; + ¢, for some non-negligible* €.
After arguing that B needs to have a reasonable success probability for a sig-
nificant subset of the possible values for z, one then uses B as the oracle in the
list-decoding algorithm. The resulting list, which is small, then contains with
non-negligible probability, and one can find a preimage of f(x) by applying f to
all values in the list.

In such a reduction, the running time of the resulting algorithm is dominated
by the running time of B. Thus, one is interested in the exact number &« of oracle
calls, while the exponent in the running time of the (polynomial) algorithm
is of minor importance. In this application, the second input (from {0,1}¥)
corresponds to a random string. As randomness is an expensive resource, one
wants k to be as small as possible. We show how to achieve k = n for any n.

2.4 Previous Work

The fundamental result on bilinear list-decodable codes implicitly appears in
[GL89], stating that the Reed-Muller code of first order, defined as & : {0,1}" x
{0,1}* — {0,1}, h(z,y) = (z,¥) = >, T:¥;, has an algorithm which efficiently
list-decodes it up to an error rate of 1/2 + ¢, for any € > 0.

The standard proof used today was found independently by Levin and Rack-
off and is given in [GolOl] (see also [Lev87]). In [Has03], Hast introduces the
extension of list-decoding algorithms for oracles with erasures. The existence of
the resulting algorithm is asserted in the following theorem:

Theorem 5 (Goldreich-Levin, cf. [Has03]). For any €,8 > 0, the function
h:{0,1}" x {0,1}" — {0,1}, h(x,r) = (z,r) is (0, €)-list-decodable with list size
O(%,—) and G(n%;) oracle calls. The list-decoding algorithm needs 6 as input.

This theorem is slightly stronger than the original version in [Has03], where
an additional factor n appears in the number of oracle calls and the list size.
The version as stated here can be obtained by applying a trick that appears in
[Gol0l, Section 2.5.2.41.

It is natural to generalize this theorem to vector spaces over any finite field.
For this, the best known result is given in [GRS00].

Theorem 6. For any 8, > 0, the function h : F" x F* — F, h(z,r) = (z,7)
is (8,€)-list-decodable with list size poly(n,d~te~1) and poly(n,8=e™!) oracle
calls. The list-decoding algorithm needs 8¢ as input.

* We use non-negligible to denote a function which is nor negligible.
5 Basically, one uses a linear, asymptotically optimal error-correcting code to find z
instead of finding the bits one by one.

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 79

The algorithm which is used to prove Theorem 6 is similar to the original
algorithm given in [GL89]. The exponents in poly(n,d~*e~!) are rather high, so
we refrain from stating them explicitly.

Nislund shows in [Nds95] that for any one-way function f(z), a hard-core
predicate can be obtained if one interprets z as a value in GF(2™), and outputs
any bit of ax + b for randomly chosen @ and b; a result which also follows from
the characterization in this paper. Furthermore, he proves that for randomly
chosen a, b and prime p the least significant bit of axz + b mod p is a hard-core
predicate. More generally, in [Nds96] he shows that all bits of az + b mod p are
hard-core.

In a different line of research, in [STVO1] Sudan et al. give very strong list-
decodable codes which are not bilinear, based on Reed-Muller codes. These codes
can also be used to obtain hard-core functions for any one-way function.

In [AGSO03], Akavia et al. show that list-decoding can also be used to prove
specific hard-core results. For example, they give a proof based on list-decodable
codes that the least significant bit of RSA is hard-core (which was first shown
in [ACGS88]).

3 Full-Rank Bilinear Functions

The main technical goal of this paper is to give a list-decoding procedure for
any bilinear function h : IF™ x IF* — IF™. In this section, we will first consider
a simple, but very general subset of bilinear functions, namely full-rank bilinear
functions A (i.e., rank(£ ¢ h) = n for every £ # 0). We show that these functions
have very good list-decoding algorithms.

In a second step we will construct full-rank bilinear functions h : IF™ x F* —
IF™ which are optimal in the sense that for fixed n the dimension k is made as
small as possible, while for m every value 0 < m < k is possible. This allows us
to give a very large class of strong hard-core functions.

3.1 List-Decoding of Full-Rank Functions

In this section, we give a list-decoding algorithm for every full-rank bilinear
function h : IF™ x IF* — IF*. In particular, for the case IF = GF(2), we will show
that there exists a list-decoding algorithm for h which is as strong as the one
guaranteed in Theorem 5.

Theorem 7. Leth:{0,1}"x {0,1}* — {0,1}™ be afull rank bilinear function.
Forany é,e > 0, the function h(z,y) is (8,&)-list-decodable with list size O(z4)
and Q(nﬁ:,-) oracle calls. The list-decoding algorithm needs 8€* as input.

For general finite fields, analogously to Theorem 6, the following holds.

Theorem 8. Let h: IF™ x F* — IF™ be a full-rank bilinear function. For any
8,€ > 0, the function h(z,y) is (8,¢)-list-decodable with list size poly(n,5—te~1)
and poly(n,8=1e~1) oracle calls. The list-decoding algorithm needs 8¢ as input.

TERAM LING

80 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

To prove Theorems 7 and 8, we describe an algorithm which, on access to an
oracle O with rate 8, outputs a list of all z € IF" which satisfy

Pr{O(Y) = h(z,Y) | O(Y) # 1] > q—fn- te (1)

For this purpose we convert O to an oracle ¢ with the same rate and related
advantage, but for a different code. Namely, @’ will have advantage /2 on {z,r)
for any = which satisfies (1), i.e., Pr[0’(R) = (z,R) | O'(R) # L] > 7 + 5.
Applying Theorems 5 and 6, respectively, then yields the result.

In the following, let L be a uniform random function from %, i.e., L is a
random variable taking as values functions from %;,. We show that if a value z
returned by the oracle is better than a random guess for h(z,y), then L(z) is
better than a random guess for L(h{z,y)) as well. To see why this holds, we first
compute the probability that L(a) equals L(b) for two distinct values a and b;
this probability is close to 1/q.
qm—l -1
g -1
Proof. First note that Pr[L(a) = L(b)] = Pr[L(a — b) = 0] = Pr[L(v) = 0] for
some v # 0. If L' is chosen uniformly at random from all functions in .%,, (not
excluding 0), then Pr[L/(v) = 0] = %, and since 0(v) = 0 for every v, we can
write

Lemma 9. For any distinct a,b € IF™, Pr[L(a) = L(b)] =

1

-—r’v::i g -1
L= pe/) =

m + m

q
~ SN —
Pr[L’=0] Pr[L’#0]

Pr[L(v) = 0),

which implies the lemma. a

Now we can estimate the probability that L(Z;) equals L(Z3) for two random
variables Z; and Z,. Later, Zy will be h(z,Y) and Z; a guess of an oracle
for h{z,Y).

Lemma 10. Ler Z; be a random variable over F™ U {1} and Z2 a random
variable over F™. If, for any & > 0,
1

PI‘[Zl =Zz l Z1 #_L] = q—m+6,
then
€
5
Proof. Obviously, if Z; = Z; we also have £(Z1) = £(Z2) for every £ € 2.
Using Lemma 9 we obtain

Pr{L(Z) = L(Z) | 2 £ 1] 2 - +

_ _ _1— qm_l—. qm-—l_l
Prl(Z) = L(Z) | Z# L= e +() T

m
S —
Pr{Z1=221Z1%#1] Pr{Z1#Z2|Z17#1]

1 11 m-1_q
=—n—l+e+(———)—eq————21+
q g

m]
q q™ qm -1

£
5

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 81

Next, we translate a uniform query r into a uniform pair (£, y) € -£*x {0, 1}*,
such that {z,7) = £(h(z,y)). We will be able to use this by giving y to the
oracle O which predicts h{z,y) and then apply £ to get a prediction for {z,r}.
Since y is uniform we will know the advantage of the oracle in predicting h(z, y),
and since £ is uniform, we can apply Lemma 10.

Lemma 11. Let b : F™ x F* — F™ be a full-rank bilinear function. There
exists an efficiently computable random mapping G, : F™ ~ TF* x %y, which,
for a uniformly chosen input v outputs a uniform random pair (€,y) such that
h(z,y)) = (z,7) for every z.

Proof. The algorithm implementing Gy, first chooses an £ € %}, uniformly at
random. For a fixed ¢, let M be the matrix for which £(h(z,y)) = T My; note
that rank(M) = n. As a second step, the algorithm chooses y as a uniform
random solution of My = r, and returns the pair (¢,y). For every fixed £ if r is

uniformly distributed; the vector ¥ will be uniformly distributed. Furthermore,
h(z,y)) ="My = zTr = (z,7).]

The next lemma proves the claimed conversion; i.e., given an oracle which
predicts h(z,y) we implement an oracle which predicts {z,). For this, on input r
the algorithm first gets a pair (¢,y) using Lemma 11. Then, it queries the given
oracle O with y, applies £ to the output and returns the result.

Lemma 12. Let h: F® x ¥ — F™ be a full-rank bilinear function. There is
an efficient oracle algorithm A such that for any € > 0, every x € IF™ and any
oracle © : TF* ~ TF™ which satisfies

Pr{O(Y) = h(z,Y) | O(Y) # 1] > qim +e

algorithm AC satisfies

€

2

and Pr[A®(R) # 1] = Pr[O(Y) # L]. Algorithm A makes one oracle call to O.

Proof. Given a uniformly chosen 7, the algorithm first evaluates the function
Ghr(r) as guaranteed by Lemma 11, to get a uniform pair (¢,y) with £(h(z,y)) =
(z,r). It then queries the oracle with y. In case the answer z is not L it returns
£(z); otherwise it returns L.

Let = be fixed such that

Pr{O(Y) = h(z,Y) | O(Y) # 1] > qim te.

Pr{A°(R) = (z, R) | A°(R) # 1] > - +

|

Lemma 10 implies that

£

[\]

Pr{L(O(Y)) = L(h(z,Y)) | O(Y) # 1] > % 4

Since (£,y) is uniformly distributed this together with £(h(z,y)) = (z,r) con-
cludes the proof. g

TERAM LING

82 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

Lemma 12 can be seen as a reduction of a code to another one, in the sense
that given a noisy codeword of one code we can generate a noisy codeword of a
related code such that the Hamming distances to codewords are related in some
sense. The proofs of Theorems 7 and 8 are now obvious.

Proof (of Theorems 7 and 8). Use Lemma 12, and apply Theorems 5 and 6,
respectively. |

3.2 Construction of Full-Rank Functions

As mentioned before, a list-decodable code can be used to obtain a hard-core
function, which means that a family of full-rank bilinear functions can be used
as a hard-core function. This is stated in the following proposition (a more exact
version will be given in Theorem 25, Section 5).

Proposition 13. Any efficiently computable family of full-rank bilinear func-
tions h : {0,1}" x {0,1}* — {0,1}™,where k € poly(n) and m € O(logn) is a
strong hard-core function.

The proposition implies that in order to give a hard-core function it is suf-
ficient to construct a full-rank bilinear function family. In this section, we will
present constructions which appear in the literature as hard-core functions, and
show that they satisfy rank(€ o h) = n forevery £ # 0.

As usual in the context of hard-core functions, we will explain the construc-
tions for vector spaces over {0,1}. However, all constructions immediately gen-
eralize to vector spaces over any finite field.

Recall that any bilinear function h : {0,1}™ x {0,1}* — {0,1}™ can be de-
scribed by a sequence Mjy,..., M,, of n x k matrices over GF(2) as h(z,r) =
(xTer, .. .,a:TMmr). It follows that for every £ there exists a non-empty sub-
set I C {1,...,m} such that the function £o h can be written as £(h(z,r)} =
=’ (Eiel Mi)r'

In order to get a full-rank bilinear function it is therefore sufficient to give
matrices My,..., M, which satisfy

rank(z M,-) =n for every I # 0. (2)

i€l

Example 14. In [Lub96] it is shown that O(logn) independent inner product
bits give a hard-core function. This function k : {0,1}" x {0,1}*™ — {0,1}™ is
defined by matrices Mj, ..., My, such that M; consists of all zeros, except that
from column n(i — 1) + 1 to ni it contains a n x n identity matrix. Here it is
obvious that (2) is satisfied.

Example 15. In order to keep the dimension k small, one can obtain a full-rank
bilinear function h : {0,1}" x {0,1}**™=1 — {0,1}™ with the construction
given in [GolO1] and [GL89]. There, M; is a matrix of size n x (n+m — 1) which
contains only zeros with the exception of an n X n identity matrix starting at
column 4. Again, it is obvious that (2) holds.

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 83

Note that since rank(£ o h) cannot be larger than k for any 4, it is necessary
to have k > n. If m is small enough this is indeed sufficient:

Theorem 16. Let vector spaces {0,1}", {0,1}* and {0,1}™ over {0, 1} be given.
If n <k and m < k, then there exists a full-rank bilinear function h : {0,1}" x
{0,1}* — {0,1}™.

Proof. We first note that it is sufficient to give a full-rank bilinear function
{0,1}* x {0,1}* — {0,1}* for every k, since one can first obtain a bilinear
function {0, 1}* x {0, 1}*¥ — {0,1}™ by ignoring some of the output coordinates,
and in a second step one can get a full-rank bilinear function {0,1}" x {0,1}* —
{0,1}™ by setting some of the inputs to the first arguments to zero.

To construct a full-rank bilinear function & : {0,1}* x {0,1}* — {0,1}* we
observe that the finite field GF(2¥) is a vector space over {0,1} of dimension k,
and for every € GF(2*) the map g (r) = -7 is linear. Let zy,..., 2 be a basis
of GF(2%) and let M; be the matrix which describes the linear mapping g, in
this basis. Since for any I # @ the matrix)_,.; M; describes the linear mapping
g. for some non-zero z € GF(2F), this map is invertible and thus has rank k. O

The bilinear function used in this proof is strongly related to the hard-core
function given at the end of [GRS00], and indeed the function given there also
satisfies the rank condition needed for Theorem 8°.

4 General Bilinear Functions

In this section we give a list-decoding algorithm for every (possibly non full-
rank) bilinear function. Using the same technique as in Section 3.1 we prove the
following analogue of Theorem 7 (recall that p(h) = E[gr—r2nk(LoR)]),

Theorem 17. Let h: {0,1}"x {0,1}* — {0,1}™ be any bilinear function. After
a preprocessing phase taking time 2™ - poly(k,n), the function h(z,y) is (8,¢)-
list-decodable with list size 0(%5;2) and an expected number ©(ngk) of oracle
calls. The algorithm needs 6 as input.

Note that ©(52z) is the expected number of queries. For general finite fields
Theorem 18 holds.

Theorem 18. Ler b : F™ x IF* — IF™ be any bilinear function over IF. After
a preprocessing phase taking time q™ - poly{n, k), the function h(z,y) is (é,¢)-
list-decodable with list size p(h) - poly(n, k,6Ye™1) and an expected number of
poly(n, k,6~1e™1) oracle calls. The list-decoding algorithm needs 8¢ as input.

® The functions are not identical, but if one considers the “cube” given by stacking
the matrices for different linear maps £, then the functions are obtained from each
other by a rotation of this cube. It is possible to show that for any two cubes which
are obtained by rotation from each other, the corresponding function satisfies the
full-rank condition if and only if the same holds for the other cube.

TERAM LING

84 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

As before we prove these theorems by converting a given oracle @ which on
input y predicts h{z,y) to an oracle @' which on input r predicts {z,r). We use
Lemma 10 again (and thus Lemma 9), but we modify Lemmas 11 and 12.

A problem is that for some r it may be impossible to choose a pair (¢,y)
with £(h(z,y)) = (z,r) forevery z. This will force our reduction to return L on
input r, since there is no way to get a reasonable guess for {z,r} from O. Further-
more, the pair (£,y) must be uniformly distributed which makes the conversion
return L more often. We get the following generalization of Lemma 11:

Lemma 19. Let h : F™ x F* — IF™ be a bilinear function. There exists an
efficiently computable mapping Gp, : IF™ ~» (% x £*)YU{ L} which, on uniformly
distributed input v outputs L with probability 1 — le, and otherwise a uniform
random pair (€,y), satisfying £(h(z,y)) = (z,r) for all z. The algorithm uses a

precomputation with time complexity ¢™ - poly(n, k).

Proof. First, as a precomputation, for every £ € %, the algorithm calculates
grank(h) - and stores it in such a way that later it is possible to efficiently
draw an element £ € & with probability g"~™2rk(h) / 5(p) where p(h) =
Ze#o qn—rank(loh) — (qm _ 1) p(h)

After the precomputation, on input r, the algorithm chooses £ according to
this probability distribution and obtains the matrix M with £(h(z,y)) = 2T My.
If the system My = r is solvable, it chooses a solution y uniformly at random
and returns (¢,y); otherwise it returns L.

Note that the precomputation can obviously be done in time g™ - poly(n, k)
and every returned pair (£,y) satisfies £(h(z,y)) = (z, 7).

For a fixed ¢ and uniformly chosen r, the probability that there exists a y
such that My = ris grank(M)—n _ grank{éoh)—n Eyrthermore, conditioned on the
event that the system above is solvable, every vector y has the same probability.
This implies that the probability that a fixed pair (£,y) is returned is

PI‘[G (R) = (£ y)] = q_n__ik(lih_) rank(foh)—n 1 _ 1

" ’ PO AR
which is independent of the pair (¢,y). Summing over all possible pairs (¢, y) we
get Pr[Gh(R) # L] = 1/p(h). 0

We point out that the probability of G, not returning L cannot be made any
higher. To see why, first note that a pair (¢,y) can only be the answer for one
specific input r. Furthermore, there are g* (h) possible pairs (¢,y), which can
only be output for y = 0; implying that every pair can occur with probability at
most g% 57 1(h).

Along the same line of reasoning as in Section 3, we can now prove the

generalized version of Lemma 12.

Lemma 20. Let h: IF" xIF* — ™ be a bilinear function. There is an efficient
oracle algorithm A such that for any € > 0, every z € IF™ and any oracle O :
IF* ~ TF™ which satisfies

Pr[O(Y) = h(z,Y) | O(Y) #£ 1] > qim +e,

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 85

algorithm A® satisfies

Pr[A°(R) = (z,R) | A°(R) # 1] > g I
and Pr[A°(R) # 1] = ﬁPr[O(R) # 1]. The algorithm makes one query

to O with probability ﬁ. It uses a preprocessing phase with time complexity
g™ - poly(n, k).

Proof. The preprocessing is the one needed for Gy of Lemma 19. On input 7,
the algorithm first uses G, to obtain either a pair (¢,y) or 1. In the second
case, the algorithm returns L and does not make an oracle query; this happens
with probability 1 — RIF?' If a pair (¢,y) is returned, the algorithm makes one
query z = O(y). If 2 # L the algorithm returns £(z), otherwise it returns L.

We fix € and z such that Pr[O(Y) = h(z,Y) | O(Y) # L] > q—l,;+€. Lemma 10
implies that Pr[L{O(Y)) = L(h{z,Y)) | OY) # 1} > % + £ . Conditioned on
the event that A makes a query to O the pair (£,y) is uniformly distributed
and satisfies £(h(z,y)) = (z,r). Also, when A does not make a query to O it
returns L. This implies

Pr{L(O(Y)) = L(h(z,Y)) | O(Y) # 1] = Pr{A°(R) = (z, R) | A°(R) # 1].

Finally, we see that A does not return L if both Gp, of Lemma 19 and O do not
return L, which happens with probability —th—) Pr[O(Y) # 1]. O

Using this conversion, the proofs of Theorems 17 and 18 are now straightforward.

Proof (of Theorems 17 and 18). Use Lemma 20 and apply Theorems 5 and 6,
respectively.

S Implications for Hard-Core Functions

The results of the previous sections have implications in cryptography, namely
for one-way functions. In particular, under a reasonable complexity-theoretic
assumption the results allow us to classify basically every bilinear function family
h : {0,1}" x {0,1}* — {0,1}™ according to whether it is a strong hard-core
function or not.

We formulate our results in the context of uniform algorithms, but they
immediately generalize to a non-uniform context.

5.1 Weak vs. Strong Hard-Core Functions

In general, it is easier to construct weak hard-core functions than to construct
strong ones. For example the identity function h(z) = z is a weak hard-core
function for any one-way function f (predicting z given f(z) is the same as
inverting f), but not a strong hard-core function (given f(z) it is easy to distin-
guish z from a random value).

TERAM LING

86 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

For small output values the two notions are equivalent: every weak hard-core
functionh : {0,1}"x{0,1}* — {0,1}™for m € O(logn) is also a strong one. This
follows from the fact that any distinguisher for such a function can be converted
to a predictor. More concretely, assume that an oracle @ has advantage € in
distinguishing h(z,y) from a random value. It is well known that one can get a
predictor with advantage 2™ from O (see for example [Lub96]). The following
lemma improves this fact by following the idea of Hast that, in cryptographic
applications, a distinguisher often comes from an algorithm which tries to break
a scheme; if it succeeds then it is almost certain that the input was not random.
This can be used to obtain a predictor with lower rate but higher advantage. In
the following lemma we use this idea since the probability po that a distinguisher
answers 1 on random input can be very small. By replacing L with a uniform
random output one obtains the well-known version mentioned above.

Lemma 21. There exists a randomized oracle algorithm A such that for any
z € {0,1}™, oracle O with

po :=Pr[O(U™) =1]

and € defined by
po(l +) = Pr[O(2) = 1],

algorithm A queries O once and outputs a value from {0,1}™ U {L} such that
Pr[{A® # 1] = po

and
PriA® =z | A® # 1] = 2Lm +27 e,

Proof. Algorithm A chooses a uniform randomvalue 2’ € {0,1}™. It then queries
O(z') and outputs 2’ if the oracle outputs 1. Otherwise, it outputs L.

The probability that A outputs L is 1 —pg. The probability that A outputs z
is 55 (po(1 + £)) and thus the probability that A outputs z conditioned on the
event that it does not output L is —12—'!;—5 8]

As a corollary we obtain the following result:

Corollary 22. Let h: {0,1}" x {0,1}* — {0,1}™ be a weak hard-corefunction
and m € O(logn). Then, h is a strong hard-core function.

Proof. Assume that h is not a strong hard-core function. Then, there exists an
algorithm A which on input (f(z),r) can distinguish h(z,r) from a uniform
random string with non-negligible advantage €. According to Lemma 21 we can
use this algorithm to obtain an algorithm which predicts the same string with
success probability at least 2%,, + 5%, and thus A is not a weak hard-core function.

a

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 87

5.2 List-Decodable Codes and Weak Hard-Core Functions

Every list-decodable code can be used as a weak hard-core function. The idea to
prove this is to assume that the function & is not a weak hard-core function, and
to use the algorithm A which predicts h{z,r) given f(z) and r together with
the list-decoding algorithm to find a list which contains = with probability at
least 1/2. Applying f to each element of the list and comparing the input we are
guaranteed to find a preimage of f(z) with high probability.

In our case, we would like to use the algorithm guaranteed in Theorem 17.
This algorithm requires to know the product §€2, and works as long as the correct
value is at least as large as the value given to the algorithm.

Note that the value of z is fixed during a run of algorithm A. Consequently
such an algorithm can only be successful if the rate d, and advantage e, for
a fixed z is large enough. However, typically only the rate § and advantage €
averaged over all z is guaranteed to have a certain value. In order to show that
this is sufficient we first prove that E[§xe%] > d¢2. In the following lemma, it is
useful to think of Z as an indicator variable which is 1 if the predictor guesses
correctly; 0 on a wrong guess and L if the predictor refuses to produce a guess.
The random variable X corresponds to the value of z.

Lemma 23. Let X be a uniformly distributed random variable over X and let Z
be some random variable in {0,1, L}. Let § := Pr{Z # 1] and 6, :=Pr[Z # L |
X = z|. Fix any constant ¢ andlete == Pr[Z = 1| Z # 1] —cand &, :=
PriZ=1|X=2AZ# 1] —c. Then,

E[0xe%] > é¢2.

4,. Furthermore we have

Proof. First we observe that § = ﬁ[Y ozex

PriZ=1] F{»‘szexpr{Z=1|X=w]

c+e= =
PriZ £ 1] L S uex bs
_ Exex bz(c+&q) —cd Zzex 6265
ZIGX 6-"-‘ Z.’EGX 61

and thus € = (3=, 6:¢2)/ (X, 8z). To show that

E[dxek] = lxl 2‘5151 > (|X| 25)(zex56€z) = d¢?,

IGX

we note that this is equivalent to
(o) (T aet) > (Sos)
zEX reX zeX

which follows directly from the Cauchy-Schwarz inequality. |

TERAM LING

88 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

We now show how to use the list-decoding algorithm to invert a function f.
The following lemma is usually used when f is a one-way function, m € O(logn)
and p(h) € poly(n), in which case it states that h is a weak hard-core function.

Lemma 24. Let f : {0,1}* — {0,1}? be any efficiently computable function
family. Let h: {0,1}" x {0,1}¥ — {0,1}™ be any efficiently computable bilinear
function with k € poly(n). There exists an oracle algorithm A such that for any
O :{0,1}? x {0,1}* ~» {0,1}™ U {L} which satisfies Pr[@(f(X),Y) # 1] =19,

and Pr[O(f(X), Y) =h(X,Y) | O(f(X),Y) # L] = 5% +e¢, algorithm A® is
running in time & TsT poly(n) + 2™ - poly(n) and sansﬁes
Prls (49 (x0) = 7(0)] 2 2,

while makmg an expected number 9(n) of oracle calls to ©O. Algorithm A
needs 6€* as an input.

If h is a full-rank bilinear function, the term 2™ - poly(n) in the running time
can be omitted.

Proof. For any fixed z € {0,1}", let &, := Pr[O(f(m) Y) # 1] and g, =
Pr[O(f(z),Y) = h(z,Y) | O(f(2),Y) # J_] ==. Using Lemma 23 we obtain
E[éxe%] > 6. Since 0 < é,¢2 < 1 for any z, We can apply Markov’s inequality

to obtain Pr[fxe% > 14¢%] > 1(56 A run of the algorithm guaranteed in Theo-

rem 17 with input §&2/2 thus gives a set A of size at most O(ﬂﬁzf—) contalmng z

with probability at least 1662 while doing an expected number Q(nj) of ora-
cle calls. Applying f to each z € A and testing if it is correct yields the claimed
result. O

5.3 Bilinear Hard-Core Functions

Lemma 21 converts a distinguisher to a predictor, while Lemma 24 uses a pre-
dictor to invert a function. Combining these two lemmas gives the following
theorem:

Theorem 25. Let f: {0,1}" — {0,1}P be any efficiently computable function.
Let h:{0,1}"x {0,1}* — {0,1}™ be any efficiently computable bilinear function
with k € poly(n). There exists an oracle algorithm A such that for ,§ > 0 and
any O :{0,1}? x {0,1}* ~ {0,1} which satisfies

Pr[O(f(X), R, h(X, R))] =4, and Pr[O(f(X),R,U™)] = §(1 +e),

algorithm A satisfies

de 2
Pr[f(A°(f(X))) = f(X)] > 1o
and makes an expected number of
22m
x=6(n5z)

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 89

oracle queries to ©. Algorithm A runs in time ﬂ%?:—": poly(n) + 2™ poly(n) and
needs &2 as input.

Proof. Combine Lemma 21 with Lemma 24.]

This theorem implies that any bilinear function k : {0,1}" x {0,1}* — {0,1}™
with m € O(logn) and p(h) € poly(n) can be used as a hard-core function.

Corollary 26. Let h: {0,1}" x {0,1}* — {0,1}™ be a bilinear function with
m € O(logn) and p(h) € poly(n). Then h is a strong hard-core function.

Proof. Assume otherwise and use Theorem 25 to arrive at a contradiction. 0O

5.4 Bilinear Functions not Suitable as Hard-Core Functions

In this section we also consider bilinear functions & : {0,1}" x {0,1}* — {0,1}™
for which m ¢ O(logn) or p(h) ¢ poly(n). One can show that m ¢ O(logn)
implies the existence of a function m € w(logn) which is infinitely often smaller
than m. Analogously, p(h) ¢ poly(n) implies the existence of a function g which
is strictly superpolynomial (i.e., log(g) € w(logn)) and infinitely often smaller
than p(h). We say that a hard-core function is regular if m € O(logn) or a
polynomial time computable function 7 as above exists; and p € poly{n) or a
polynomial time computable g as above exists.

We show that any regular bilinear function not satisfying the conditions of
Corollary 26 is not a hard-core function if some reasonable complexity-theoretic
assumption holds, namely the existence of a one-way permutation with expo-
nential security.

Definition 27 (Very strong one-way permutation).” A family of polyno-
mial time computable functions f : {0,1}™ — {0,1}" is a very strong one-way
permutation if there exists a constant ¢ > 0, such that for every algorithm A
with running time at most 2°™, the inverting probability Pr[f(A(f(X))) = f(X)]
is at most 2" for all but finitely many n.

Proving that no such functions exist would be a breakthrough in complexity
theory. Furthermore, Gennaro and Trevisan show in [GTOO] that in relativized
worlds such functions exist, and thus our results exclude a relativizing hard-
core result for any bilinear function which does not satisfy the conditions of
Corollary 26 unconditionally.

As a first step, we show that it is impossible to use a bilinear function to
extract w(logn) hard bits from z. Such a lemma was already hinted at in [GL89].

Lemma 28. Let h: {0,1}" x {0,1}* — {0,1}™ be a regular bilinear function
with m ¢ O(logn). If a very strong one-way permutation exists, then h is not a
strong hard-core function.

7 We use permutations for the sake of simplicity. It is easy to see that arbitrary one-way
functions with exponential security suffice to prove Theorem 30.

TERAM LING

90 Thomas Holenstein, Ueli Maurer, and Johan Sjodin

Proof. Since m ¢ O(logn) and k is regular, there exists a polynomial-time com-
putable function 7 € w(logn) with M(n) < m(n) for infinitely many n.

We define a one-way function f : {0,1}"* — {0,1}" for which it is easy to
give a distinguisher for A{z,). For this purpose, let g : {0,1}™/2 — {0,1}"/2 be
a very strong one-way permutation. On input z € {0,1}", split the input = into
two parts, T3 € {0,1}™/2 and x5 € {0,1}*~™/2. The output of f is then g(z1)
concatenated with z9. We see that f is a one-way function, since an algorithm A
which inverts f in poly(n)-time with non-negligible success probability can be
used to invert g in time 2°(™(") with probability 2=°(*™) for infinitely many n.

Furthermore, for any n with m(n) < m(n) it is easy to distinguish h(z,r)
from a random string, given f(z) and r. First, we find zz from f(x). Since
h(z,r) = T Mr we see that for fixed z and r only a subspace of dimension at
most #/2 is possible as output value for k{z, r). Also, it is easy to check whether
a given value is within this subspace or not. Since a random value will be in the
subspace with probability at most 2~™/2, h cannot be a hard-core function. O

Using basically the same technique, we can now show that only functions
with nearly full rank can be used as hard-core functions.

Lemma 29. Let h: {0,1}™ x {0,1}? — {0,1}™ be a regular bilinear function
with m € O(logn) and p(h) ¢ poly(n). If a very strong one-way permutation
exists, then h is not a strong hard-core function.

Proof. Since h is regular and p(h) ¢ poly(n), there exists a function g such that
log(p) € w(logn) and p(n) < p(h)(n) for infinitely many n.

As in the proof of Lemma 28, we construct a one-way function f : {0,1}" —
{0,1}" by embedding a preimage of size {0, 1}1°5(5("))/ 2 to a very strong one-
way permutation g. Consider an n for which g(n) < p(h)(n). For such an n it
is easy to find a linear map to embed the preimage to g such that for some
£ € &> the value of £(h(z,y)) does not depend on the input to g. As in the
proof of Lemma 28 it follows immediately that f is a one-way function, and
since £(h(z,y)) only depends on a part of z which can be found by a linear
transformation of the output, kA cannot be a hard-core function. [}

Together, this implies the following theorem.

Theorem 30. Letk: {0,1}" x {0,1}* — {0,1}™ be a regular bilinear function,
and assume the existence of a very strong one-way permutation. Then h is a
strong hard-core function if and only if p(h) € poly(n) and m € O(logn).

Proof. If p(h) € poly(n) and m € O(logn), then h is a hard-core function
according to Corollary 26. If m € O(logn) and p(h) ¢ poly(n), then h is not
a hard-core function according to Lemma 29. If m ¢ O(logn) then h is not a
hard-core function according to Lemma 28. a

Acknowledgments

We would like to thank Gustav Hast and Johan Hastad for helpful discussions.
This research was supported by the Swiss National Science Foundation, project
no. 2000-066716.01/1.

TERAM LING

Complete Classification of Bilinear Hard-Core Functions 91

References

[ACGS88] Werner Alexi, Benny Chor, Oded Golreich, and Claus P. Schnorr. RSA

[AGSO03]

[BM84]

[GLR9]

[Gol01]

[GRS00]

[GTO0]

[Has03]

[HILL99]

[Lev87]

[Lub96]

[N&ds95]

[Nds96]

[STVOI1]

[Sud00]

[Yao82]

and Rabin functions: Certain parts are as hard as the whole. Siam Journal
on Computation, 17(2):194-209, 1988.

Adi Akavia, Shafi Goldwasser, and Samuel Safra. Proving hard-core pred-
icates using list decoding. In The 44th Annual Symposium on Foundations
of Computer Science, pages 146-157, 2003.

Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. Siam Journal on Computation,
13(4):850-864, 1984.

Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the Twenty First Annual ACM Symposium on
Theory of Computing, pages 25-32, 1989.

Oded Goldreich. Basic Tools. Foundations of Cryptography. Cambridge
University Press, first edition, 2001. ISBN 0-521-79172-3.

Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polyno-
mials with queries: The highly noisy case. Siam Journal on Discrete Math-
ematics, 13(4):535-570, 2000.

Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In The 41st Annual Symposium on
Foundations of Computer Science, pages 305-313, 2000.

Gustav Hast. Nearly one-sided tests and the Goldreich-Levin predicate. In
Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 195-210, 2003. Extended
version to appear in Journal of Cryptology.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. Siam Journal on
Computation, 28(4): 1364—1396, 1999.

Leonid A. Levin. One-way functions and pseudorandom generators. Com-
binatorica, 7(4):357-363, 1987.

Michael Luby. Pseudorandomness and Cryptographic Applications. Prince-
ton University Press, first edition, 1996. ISBN 0-691-02546-0.

Mats Nislund. Universal hash functions & hard core bits. In Louis C. Guil-
lou and Jean-Jacques Quisquater, editors, Advances in Cryptology — EU-
ROCRYPT ’95, volume 921 of Lecture Notes in Computer Science, pages
356-366, 1995.

Mats Nislund. All bits in az + b mod p are hard. In Neal Koblitz, editor,
Advances in Cryptology — CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science, pages 114-128, 1996. Extended Abstract.

Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom genera-
tors without the XOR lemma. Journal of Computer and System Sciences,
62(2):236-266,2001.

Madhu Sudan. List decoding: Algorithms and applications. SIGACTN:
SIGACT News (ACM Special Interest Group on Automata and Computabil-
ity Theory), 31(1):16-27, 2000.

Andrew C. Yao. Theory and applications of trapdoor functions (extended
abstract). In The 23rd Annual Symposium on Foundations of Computer
Science, pages 80-91, 1982.

TERAM LING

Finding Collisions on a Public Road,
or Do Secure Hash Functions Need Secret Coins?

Chun-Yuan Hsiao and Leonid Reyzin

Boston University Computer Science
111 Cummington Street

Boston MA 02215 USA
{cyhsiao, reyzin}@cs.bu.edu

Abstract. Many cryptographic primitives begin with parameter gener-
ation, which picks a primitive from a family. Such generation can use pub-
lic coins (e.g., in the discrete-logarithm-based case) or secret coins (e.g.,
in the factoring-based case). We study the relationship between public-
coin and secret-coin collision-resistant hash function families (CRHFs).
Specifically, we demonstrate that:

— there is a lack of attention to the distinction between secret-coin
and public-coin definitions in the literature, which has led to some
problems in the case of CRHFs;

— in some cases, public-coin CRHFs can be built out of secret-coin
CRHFs;

~— the distinction between the two notions is meaningful, because in
general secret-coin CRHFs are unlikely to imply public-coin CRHFs.

The last statement above is our main result, which states that there is no
black-box reduction from public-coin CRHFs to secret-coin CRHFs. Our
proof for this result, while employing oracle separations, uses a novel ap-
proach, which demonstrates that there is no black-box reduction without
demonstrating that there is no relativizing reduction.

1 Introduction

1.1 Background

Collision-Resistant Hashing. Collision-resistant (CR) hashing is one of the
earliest primitives of modern cryptography, finding its first uses in digital signa-
tures [Rab78,Rab79] and Merkle trees [Mer82,Mer89]. A hash function, of course,
maps (potentially long) inputs to short outputs. Informally, a hash function is
collision-resistant if it is infeasible to find two inputs that map to the same
output.

It is easy to see there is no meaningful way to formalize the notion of collision-
resistance for a single fixed-output-length hash function. Indeed, at least half of
the 26! possible 161-bit inputs to SHA-1 [NIS95] have collisions (because SHA-1
has 160-bit outputs). Hence, an algorithm finding collisions for SHA-1 is quite
simple: it just has, hardwired in it, two 161-bit strings that collide. It exists,
even if no one currently knows how to write it down.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 92-105, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

Finding Collisions on a Public Road 93

Due to this simple observation, formal definitions of collision-resistant hash-
ing (first given by Damgard [Dam87]) usually speak of collision-resistant function
families (CRHFs)'. A hash function family is collision-resistant if any adversary,
given a function chosen randomly from the family, is unable to output a collision
for it.

How to Choose from a Family? Most definitions of CRHFs do not dwell on
the issue of how a hash function is to be chosen from a family. In this paper, we
point out that this aspect of the definition is crucial. Indeed, in any application
of collision-resistant hashing, some party P must choose a function from the
family by flipping some random coins to produce the function description. As
we demonstrate, it is important to distinguish between two cases. In the public-
coin case these random coins can be revealed as part of the function description.
In the secret-coin case, on the other hand, knowledge of the random coins may
allow one to find collisions, and thus P must keep the coins secret after the
description is produced. (For examples of both cases, see Section 2.) We note
that the original definition of [Dam87] is secret-coin, and that the secret-coin
definition is more general: clearly, a public-coin CRHF will also work if one
chooses to keep the coins secret.

1.2 Initial Observations

Importance of the Distinction. The distinction between public-coin and
secret-coin CRHFs is commonly overlooked. Some works modify the secret-coin
definition of [Dam87] to a public-coin definition, without explicitly mentioning
the change (e.g., [BR97,Sim98]). Some definitions (e.g., [Mir01]) are ambiguous
on this point. This state of affairs leads to confusion and potential problems, as
discussed in three examples below.

Example 1. Some applications use the wrong definition of CRHF. For in-
stance, in Zero-Knowledge Sets of Micali, Rabin and Kilian [MRKO03], the
prover uses a hash function to commit to a set. The hash function is chosen
via a shared random string, which is necessary because the prover cannot be
trusted to choose his own hash function (since a dishonest prover could ben-
efit from finding collisions), and interaction with the verifier is not allowed at
the commit stage (indeed, the prover does not yet know who the verifier(s)
will be). In such a setting, one cannot use secret-coin CRHFs (however, in
an apparent oversight, [MRKO3] defines only secret-coin CRHFs). A clear
distinction between public-coin and secret-coin CRHFs would make it easier
to precisely state the assumptions needed in such protocols.

Example 2. The result of Simon [Sim98] seems to claim less than the proof
implies. Namely, the [Sim98] theorem that one-way permutations are unlikely
to imply CRHFs is stated only for public-coin CRHFs, because that is the

' It is possible to define a single hash function (with variable output-length; cf. previous
paragraph) instead of a collection of them. In this case, it can be collision-resistant
only against a uniform adversary.

TERAM LING

94 Chun-Yuan Hsiao and Leonid Reyzin

definition [Sim98] uses. It appears to hold also for secret-coin CRHFs, but
this requires re-examining the proof. Such re-examination could be avoided
had the definitional confusion been resolved.

Example 3. The original result of Goldwasser and Kalai [GKO03] on the
security of the Fiat-Shamir transform without random oracles has a gap
due to the different notions of CRHF (the gap was subsequently closed,
see below). Essentially, the work first shows that if no secret-coin CRHFs
exist, then the Fiat-Shamir transform can never work. It then proceeds to
show, in a sophisticated argument, that if public-coin CRHFs exist, then it
is possible to construct a secure identification scheme for which the Fiat-
Shamir transform always results in an insecure signature scheme. This gap
in the result would be more apparent with proper definitions.

Let us elaborate on the third example, as it was the motivating example for our
work. It is not obvious how to modify the [GKO03] proof to cover the case when
secret-coin CRHFs exist, but public-coin ones do not. Very recently, Goldwasser
and Kalai [GK] closed this gap by modifying the identification scheme of the
second case to show that the Fiat-Shamir transform is insecure if secret-coin
(rather than public-coin) CRHFs exist. Briefly, the modification is to let the
honest prover choose the hash function during key generation (instead of the
public-coin Fiat-Shamir verifier choosing it during the interaction, as in the
earlier version).

Despite the quick resolution of this particular gap, it and other examples
above demonstrate the importance of distinguishing between the two types of
collision-resistant hashing. Of course, it is conceivable that the two types are
equivalent, and the distinction between them is without a difference. We there-
fore set out to discover whether the distinction between public-coin and secret-
coin hashing is real, i.e., whether it is possible that public-coin CRHFs do not
exist, but secret-coin CRHFs do.

1.3 Our Results

Recall that public-coin hashing trivially implies secret-coin hashing. We prove
the following results:

1. Dense” secret-coin CRHFs imply public-coin CRHFs; but
2. There is no black-box reduction from secret-coin CRHFs to public-coin
CRHFs.

The first result is quite simple. The second, which is more involved, is obtained by
constructing oracles that separate secret-coin CRHFs from public-coin CRHFs.
Our technique for this oracle separation is different from previous separations
(such as [IR89,Sim98,GKM*00,GMRO01,CHLO02]), as explained below. We note
that our second result, as most oracle separations, applies only to uniform ad-
versaries (a notable exception to this is [GTO0O0]).

2 A CRHEF is dense if a noticeable subset of all keys of a particular length is secure;
see Section 3.

TERAM LING

Finding Collisions on a Public Road 95

Our results suggest that a gap between secret-coin and public-coin CRHFs
exists, but only if no dense secret-coin CRHFs exist. They highlight the impor-
tance of distinguishing between the two definitions of CRHFs.

In addition to these main results, Section 5 addresses secret vs. public coins
in other cryptographic primitives.

1.4 On Oracle Separations

Usually when one constructs a cryptographic primitive P (e.g., a pseudorandom
generator [BM84]) out of another cryptographic primitive Q (e.g., a one-way
permutation), P uses Q as a subroutine, oblivious to how Q implemented. The
security proof for P usually constructs an adversary for Q using any adversary
for P as a subroutine. This is known as a “black-box reduction from P to Q.”

Note that to show that no general reduction from P to Q exists requires
proving that Q does not exist, which is impossible given the current state of
knowledge. However, it is often possible to show that no black-box reduction
from P to Q exists; this is important because most cryptographic reductions are
black-box.

The first such statement in cryptography is due to Impagliazzo and
Rudich [IR89]. Specifically, they constructed an oracle relative to which key
agreement does not exist, but one-way permutations do. This means that any
construction of key agreement from one-way permutations does not relativize
(i.e., does not hold relative to an oracle). Hence no black-box reduction from key
agreement to one-way permutations is possible, because black-box reductions
relativize.

The result of [IR89] was followed by other results about “no black-box
reduction from P to Q exists,” for a variety of primitives P and Q (e.g.,
[Sim98,GKM*00,GMR01,CHL02]). Most of them, except [GMRO1], actually
proved the slightly stronger statement that no relativizing reduction from P
to Q exists, by using the technique of constructing an oracle.

Our proof differs from most others in that it directly proves that no black-box
reduction exists, without proving that no relativizing reduction exists. We do so
by constructing different oracles for the construction of P from Q and for the
security reduction from adversary for P to adversary for Q. This proof technique
seems more powerful than the one restricted to a single oracle, although it proves
a slightly weaker result. The weaker result is still interesting, however, because it
still rules out the most common method of cryptographic reduction. Moreover,
the stronger proof technique may yield separations that have not been achievable
before.

We note that [GMROI] also directly prove that no black-box reduction exists,
without proving that no relativizing reduction exists. Our approach is different
from [GMRO1], whose approach is to show that for every reduction, there is an
oracle relative to which this reduction fails.

For a detailed discussion on black-box reductions, see [RTV04]. All reductions
in this paper are what they refer to as fully black-box reductions.

TERAM LING

96 Chun-Yuan Hsiao and Leonid Reyzin

2 Definitions of Public-Coin and Secret-Coin CRHFs

Examples. Before we define public-coin and secret-coin hashing formally, con-
sider the following two example hash function families. The first one, keyed by
a prime p with a large prime g|(p ~ 1), and two elements g,k € Z;, of order g,
computes Hp, g n(m) = g™ h™2, where my and mq are two halves of m (here we
think of m as an element of Z, x Z,) 3. The second one, keyed by a product n of
two primes p1 =3 (mod 8), and p2 = 7 (mod 8) and a value r € Z}, computes
Hyp o (m) = 4mr2™ mod n *.

The first hash function family is secure as long as discrete logarithm is hard.
Thus, if one publishes the random coins used to generate p,g and k, the hash
function remain secure (as long as the generation algorithm doesn’t do anything
esoteric, such as computing h as a random power of g). On the other hand, the
second hash function family is secure based on factoring, and is entirely insecure
if the factors of n are known. Thus, publishing the random coins used to generate
p1 and p, renders the hash function insecure, and the coins must be kept secret”.

Definitions. We say that a function is negligible if it vanishes faster than any
inverse polynomial. We let PPTM stand for a probabilistic polynomial-time Tur-
ing machine. We use M7 to denote an oracle Turing machine, and M4 to denote
M instantiated with oracle A.

Let k be the security parameter, and let £ be a (length) function that does
not expand or shrink its input more than a polynomial amount. Below we de-
fine two kinds of CRHFs: namely, secret-coin and public-coin. The secret-coin
CRHFs definition is originally due to Damgard [Dam87], and the definition here
is adapted from [Rus95].

Definition 1. A Secret-Coin Collision Resistant Hash Family is a collection
of functions {h;}icr for some index set I C {0,1}*, where h; : {0,1}I#+t —
{0,1}!%, and

1. There exists a PPTM GEN, called the generating algorithm, so that
GEN(1%) € {0,1}*® N L.

2. There exists a PPTM EVA, called the function evaluation algorithm, so that
Vi € I and Vz € {0,1}#+1 EVA(i,z) = hi(z).

3. For all PPTM ADV, the probability that ADV(i) outputs a pair (z,y) such
that hi(x) = hi(y) is negligible in k, where the probability is taken over the
random choices of GEN in generating © and the random choices of ADV.

3 This family is derived from Pedersen commitments [Ped91].

* This is essentially the construction of [Dam87] based on the claw-free permutations
of [GMRSS].

5 Tt should be noted, of course, whether it is secure to publish the coins depends not
only on the family, but also on the key generating algorithm itself: indeed, the first
family can be made insecure if the coins are used to generate h as a power of g,
rather than pick h directly. Likewise, the second family could be made secure if it
were possible to generate n “directly,” without revealing p; and p2 (we are not aware
of an algorithm to do so, however).

TERAM LING

Finding Collisions on a Public Road 97

Definition 2. A Public-Coin Collision Resistant Hash Family is a collection of
functions {hi}tieqo,1)+, where hy : {0, 1}0D+1 — fo 130D gng

1. A PPTM GEN on input 1¥ outputs a uniformly distributed string i of length
k.

2. There exists a PPTM EVA, called the function evaluation algorithm, so that
Vi € {0,1}* and ¥z € {0,1}¢UD+1 EVA(i, z) = hi(z).

3. For all PPTM ADV, the probability that ADV(i) outputs a pair (z,y) such
that hi(z) = hi(y) is negligible in k, where the probability is taken over the
random choices of GEN in generating i and the random choices of ADV.

A pair (z,y) such that h;(z) = h;(y) is called a collision for h;.

Remarks. The generating algorithm in the public-coin case is trivially satisfied.
We keep it here for comparison with the secret-coin case. Note that in both
cases, on security parameter k, GEN outputs a function that maps {0, 1}4(%)+1
to {0,1}¢%), This may seem restrictive as the hash functions only compress one
bit. However, it is easy to see that h; can be extended to {0,1}™ for any n, and
remain collision-resistant with £(k)-bit outputs, by the following construction:
hi(z) = hi(. .. hi(hi(hi(z1 02 0. .. 0 Tpiy11) © Te(k)+2) © Te(k)+3) - - - © Tn), Where
x; denotes the j-th bit of the input string z.

3 Dense Secret-Coin CRHF's Imply Public-Coin CRHF's

The notion of dense public-key cryptosystems was introduced by De Santis and
Persiano in [DP92]. By “dense” they mean that a uniformly distributed string,
with some noticeable probability, is a secure public key. We adapt the notion of
denseness in public-key cryptosystems from [DP92] to the context of CRHFs.
Informally,a d-dense secret-coin CRHF is a secret-coin CRHF with the following
additional property: if we pick a k-bit string at random, then we have probability
at least k¢ of picking an index 4 for a collision-resistant function®.

Note that, for example, the factoring-based secret-coin CRHF from Section 2
is dense, because the proportion of k-bit integers that are products of two equal-
length primes is ©(k~2). In fact, we are not aware of any natural examples of
secret-coin CRHFs that are not dense (artificial examples, however, are easy to
construct).

Given a d-dense secret-coin CRHF, if we pick k%! strings of length k at
random, then with high probability, at least one of them defines a collision-
resistant hash function.

Hence, we can build a public-coin CRHF from such dense secret-coin CRHF
as follows.

® Confusingly, sometimes the term dense is used to denote a function family where
each function has a dense domain, e.g., [Hai04]. This is unrelated to our use of the
term.

TERAM LING

98 Chun-Yuan Hsiao and Leonid Reyzin

1. Generate k%! random k-bit strings, independently. These strings specify
k+! hashfunctions Ay, hg, . .. hgas1 in the secret-coin CRHF (strictly speak-
ing, some strings may not define functions at all, because they are not pro-
duced by GEN ; however, simply define h;(xz) = 0%¥) if EVA(4,z) does not
produce an output of length k in the requisite number of steps).

2. Through the construction described in Section 2, extend the domain of each
of these function to binary strings of length £(k)k%*! + 1. Let the resulting
functions be A%,..., AL, .

3. On an input z of length £(k)k*t' + 1, output concatenation of
hi(2), h3(z); - . - s hfass (@)

The resulting hash maps binary strings of length £(k)k4*+* + 1 to binary
strings of length £(k)k4t1, and is collision-resistant because at least one of

105, .-, hfasa is. (If an adversary could find a collision in the resulting hash
function, then the same collision would work for collision-resistant hash function
among hi,h3, ..., k1., immediately leading to a contradiction.)

The above discussion yields the following theorem.

Theorem 1. The existence of dense secret-coin CRHF implies the existence of
public-coin CRHF.

4 Separating Public-Coin CRHF's
from Secret-Coin CRHFs

4.1 Black-Box Reductions

Impagliazzo and Rudich [IR89] provided an informal definition of black-box re-
ductions, and Gertner et al. [GKM™*00] formalized it. We recall their formaliza-
tion.

Definition 3. A black-box reduction from primitive P to primitive Q consists
of two oracle PPTMs M and Aq satisfying the following two conditions:

If QO can be implemented, so can P: VN (not necessarily PPTM) imple-
menting Q, M N implements P; and
If P is broken, so is Q: YAp (not necessarily PPTM)breaking M~ (as an

implementation of P), Ag“’ N breaks N (as an implementation of Q).

The first condition is only a functional requirement; i.e., the term “implement”
says nothing about security, but merely says an algorithm satisfies the syntax of
the primitive.

4.2 The Main Result

Theorem 2. There is no black-box reduction from public-coin CRHF to secret-
coin CRHF.

TERAM LING

Finding Collisions on a Public Road 99

Proof. The following proposition is at the heart of our approach: it shows that
it is sufficient to construct different oracles F and G, such that G is used in the
implementations, while F and G are used for the adversaries. This is in contrast
to the single-oracle approach usually taken to prove black-box separations.

Proposition 1. To show that there is no black-box reduction from public-coin
collision resistant hashing (P) to secret-coin collision resistant hashing (Q), it
suffices to construct two oracles F and G such that,

1. there is an oracle PPTM L such that N = L® implements secret-coin hash-
ing;

2. for all oracle PPTM M, if M® implements public-coin hashing, then there
exists a probabilistic polynomial time adversary A such that Ap = AF finds
a collision for MS;

3. there is no oracle PPTM B such that BYC finds a collision for N.

Proof. To show that there is no black-box reduction from public-coin collision
resistant hashing (P) to secret-coin collision resistant hashing (Q), we need to
negate the definition of black-box reduction from Section 2; i.e., we need to show
that for every oracle PPTMs M and Ag,

Q can be implemented: 3N that implements Q, and if MY implements P,
then

P can be broken, without breaking Q: JAp that breaks M¥ (asanimple-
mentation of P), while A‘gp N does not break N (as an implementation of

0.

Recall that “implement” here has only functional meaning.

The first condition clearly implies that Q can be implemented. The second
condition also clearly implies that P can be broken: one simply observes that
MYN =M LG, and L is a PPTM; hence, writing M€ is equivalent to writing
MY . The third condition implies that P can be broken without breaking Q,
essentially because Q can never be broken. More precisely, the third condition
is actually stronger than what we need: all we need is that for each Agq, there is
Ap that breaks MY, while ASP N does not break N. Instead, we will show that

a single Ap essentially works for all Ag: namely, Ap = AF, for a fixed oracle
F and a polynomial-time A. Such Ap breaks M¥; however, as condition 3 in
the proposition statement implies, ASP "N will be unable to break N, because

Ag" N = ASF’LG = BFS for some oracle PPTM B.

Remarks. Note that if the implementation has access to not only G but also
F, it becomes the usual single-oracle separation. The reason why we do not give
the implementation access to F is to avoid “self-referencing” when defining F.
To see this, note that F is the “collision finder” and is defined according to the
oracles that the implementation has access to’.

7 Similar concern occurs in [Sim98], where constructing the collision-finder requires
more careful design.

TERAM LING

100 Chun-Yuan Hsiao and Leonid Reyzin

The rest of this section is devoted to constructing such F and G and proving
that they work.

4.3 The Oracles F and G

In constructing F and G, we will use the Borel-Cantelli Lemma (see, e.g., [AG96]),
which states that if the sum of the probabilities of a sequence of events converges,
then the probability that infinitely many of these events happen is zero. Formally,

Lemma 1 (Borel-Cantelli Lemma). Letr Bj,Bs,... be a sequence of
events on the same probability space. Then Y o> Pr[B,] < oo implies

Pr(A{Z) Voo Ba]l = 0.

We first construct “random” F (collision-finder) and G (secret-coin hash),
and then use the above lemma to show that at least one pair of F and G works.
Intuitively, we want F to break any public-coin hashing but not break some
secret-coin hashing. More precisely, F will find a collision if it is supplied with
the coins of the generating algorithm and will refuse to do so without the coins.

— G consists of two collections of functions {g;}ien and {ha}ac{o,1}+, Where
each g; is a random function from {0,1}* to {0,1}2%. We will call a binary
string valid if it is in the range of g, and invalid if not. Each h, is a random
functionfrom {0, 1}{*!*1 to {0, 1}!* if ¢ is valid, and is a constant function
olel if o is invalid. We will call queries to hg valid (resp. invalid) if o is valid
(resp. invalid).

— F takes a deterministic oracle machine M’ and 1¢ as input, and outputs a
collision of length £ 4 1 for M€ if M¢ satisfies the following conditions.

1. M maps {0,1}*+! to {0,1}%.
2. MS never queries hq for some a not obtained by previously querying g.
Le., whenever M© queries hq, this « is the answer to some g-query that

M has previously asked.
When both conditions hold, F picks a random z from {0,1}¢*! that has a

collision, then a random y (# z) that collides to z (i.e., M¢(z) = M%(y)),
and outputs (z,y). Otherwise F outputs L.

Observe that when F outputs (z,y), not only z, but also y isuniformly
distributed over all points that have a collision. Indeed, let C be the to-
tal number of points that have a collision, and suppose y has ¢ colli-
sions (z1,Z2,...,%c): then Prly is chosen| = 37, 1/cPr|xz; is chosen] =

1/c-(e/C)=1/C.

Remarks. The reason for g being length-doubling is to have a “sparse” function
family. More specifically, it should be hard to get a value in the range of g without
applying it.

As in [Sim98], there are various ways of constructing F (the collision-finding
oracle): one can choose a random pair that collides, or a random z then a ran-
dom y (possibly equal to x) that collides to z. The second construction has the
advantage, in analysis, that both z and y are uniformly distributed but does
not always give a “correct” collision, like the first one does. Our F has both
properties.

TERAM LING

Finding Collisions on a Public Road 101

4.4 Secret-Coin Collision-Resistant Hash Family Based on G

In this section we construct a secret-coin CRHF. The construction is straight-
forward given the oracle G: the generating algorithm uses g and the hashing
uses h. More precisely, on input 1* the generating algorithm picks a random
seed € {0,1}* and outputs a = gg(r). The hash function is h,. Note that the
adversary A (who is trying to find a collision) is given only « but not r. We will
show that for measure one of oracles F and G, the probability over » and A’s
coin tosses that A finds a collision for A, is negligible. Recall that A has access
to both F and G.

Define D as the event that A outputs a collision for &, in the following
experiment:

r —gr {0,1}F, a — gi(r), (z,9) — AFC(a).

And in the same experiment, define B as the event that during its computation,
A queries Fon M?,where M? is some deterministic oracle machine that queries
its oracle on a preimage of « under gx (i.e., intuitively, M7 has r hardwired in it).
Suppose A’s running time is bounded by &€ for some constant ¢. The probability
that B happens is at most the probability of inverting the random function g.
If o has a unique preimage, this is at most k¢/2¥; the probability that & has two
or more preimages is at most 1/2% (because it’s the probability that r collides
with another value under gx); hence Pr[B] < (k¢ + 1)/2%. The probability that
D happens conditioned on —B is at most the probability of finding a collision
for random function hy, which is bounded by k2¢/2%%. Recall that A can be
randomized. We thus have

. E’PA[D] = Pr(B] - Pr[D|B] + Pr{-B] - Pr[D|-B]
< Pr(B] + Pr{D|-B]
< (kc + 1)/2k + k2C/22k
< 2k°/2F .

By the Markov inequality, Prgg[Pr,a[D] > k% - 2k°/ 2%] < 1/k?. Since
Y=« 1/k?% converges, the Borel-Cantelli lemma implies that for only measure zero
of F and G, can there be infinitely many & for which event D happens with prob-
ability (over r and A’s coins) greater than or equal to k*2/2¥=1, This implies
that for measure one of F and G, event D happens with probability (over = and
A’s coins) smaller than k°*+2/2%=1 (a negligible function) for all large enough .
There are only countably many adversaries A, so we have the following lemma.

Lemma 2. For measure one of F and G, there is a CRHF using G, which is
secure against adversaries using G and F.
4.5 No Public-Coin Collision-Resistant Hash Family Based on G

In this section we show that any implementation of public-coin hashing using
oracle G cannot be collision-resistant against adversaries with oracle access to

TERAM LING

102 Chun-Yuan Hsiao and Leonid Reyzin

both F and G ®. More precisely, let r € {0,1}* be the public randomness used
by the generating algorithm for a family of hash functions, and let M’ be the
evaluation algorithm. Le., M®(r,.) is the hash function specified by . Assume
that MS(-) £ MC(r,-) maps {0, 1}¢*)+1 0 {0,1}*%), where £ is a function that
does not expand or shrink the input by more than a polynomial amount. We
will show how to find z and y of length £(k) + 1 such that MS(z) = MS(y).

An immediate attempt is to query F(MJ,14%), but notice that MS may
query hq for arbitrary a °, which prevents F from finding a collision for us.
However, these a are likely to be invalid, and hence oracle answers to these
queries are likely to be 0!*. So we can construct a machine M: that behaves
“similar” to M/ but only after getting afrom g does it query hq. And instead of
finding collision for ME, we find collision for M,.G, which can be done by simply
querying F(M], 145)).

Suppose the running time of ME is bounded by k¢ for some constant ¢ > 1.
Before simulating M, MTG queries g on all inputs of length smaller than or equal
to 4clogk. This takes 2k%¢ steps. Now MS simulates MS step by step, except
for queries to h,. If @ is the answer to one of the queries Mf already asked of G
(either before the beginning of the simulation or when simulating M), then]\;ITG
actually queries hq. Else it returns 01%! as the answer to MS without querying
ha.
Now fix r and z.For every M? the probability, over random G, that MS(z) #
ME(z) is at most the probability, over G, that MSE queries h,, for some valid « of
length greater than 8clog k without receiving it from g '°. Consider the very first
time that MS makes such a “long” valid query. Let ng be the number of queries
to g on inputs longer than 4clogk, and np be the number of invalid queries
to h prior to this point. Then the probability in question is upper bounded by

ke - %{c—"_‘ln;"i, which is at most 1/k3¢. For every fixed G and r, call an = “bad”
if MS(x) # MS(z). We have

Ex[Pr[z is bad]] = Pr(z is bad] < 1/k3.

Next, notice that there are at most half of z that have no collisions, and F
would pick its answer (zf, yF), uniformly, from those points that have a collision.
So for a fixed G, the probability over F that z¢ is bad is at most twice the
probability over random z € {0,1}¢*)+1 that z is bad. Also recall that the
distribution of yg is the same as zf. So for every M?,

I?(.;x[f":r[at least one of (zr,yr) is bad]] < 4- EGx[Pr[z is bad]].

If none of (zg, yr) is bad, this pair would be a collision not only for Mf but also
for MS. We have

I}Zr [(zF, yF) is not a collision of MC] < 4GPr [z is bad] < 4/K>°,

s T, T

8 In fact, only F is needed to find a collision.
° In particular, those a not obtained by previously querying g.
!0 Recall that g is length-doubling.

TERAM LING

Finding Collisions on a Public Road 103

then
E’g[Pr[(mp,yF) is not a collision of M®] > 4/k°] < 1/k%.
N T

Since Y, 1/k2%¢ converges, the Borel-Cantelli lemma implies that for only
measure zero of F and G, can we have Pr,[(zf,y¢) is not a collision of MF] >
4/k¢ for infinitely many k. In other words, for measure one of F and G,
Pr,.[(zF, yF) is a collision of ME] > 4/k® for all large enough k. There are only
countably many oracle machines M”, each of which can be collision resistant for
only measure zero of F and G. We conclude the following.

Lemma 3. For measure one of F and G, any implementation of public-coin
hash function families using G cannot be collision-resistant against adversaries
using F.

This concludes the proof of Theorem 2.

5 Public Coins vs. Secret Coins for Other Primitives

Perhaps the lack of attention in the literature to the distinction between secret-
and public-coin primitives is due, in part, to the fact that this distinction is often
not meaningful.

For example, for one-way function families, these two notions are equivalent,
because a secret-coin one-way function family implies a single one-way function
(which trivially implies a public-coin one-way function family). Indeed, take
the generating algorithm g and evaluation algorithm f and define F(r,z) £
(g(r), fo(r)(x)); this is one-way because an adversary who can come up with
(r',x') such that g(r) = g(r') and fg(y(z') = fo(r)(z) can be directly used to
invert fy((@), since for) (') = foy(2') = for) (@)

On the other hand, for trapdoor permutations (and public-key schemes),
the notion of public-coin generation is meaningless: indeed the trapdoor (or the
secret key) must be kept secret.

However, it seems that this distinction is interesting for some primitives in ad-
dition to collision-resistant hash functions. The relationships between public-coin
and secret-coin versions of one-way permutation families and claw-free permuta-
tion families are unknown''. In particular, claw-free permutations are related to
collision-resistant hashing [Dam87,Rus95], which suggests that the distinction
for claw-free permutations is related to the distinction for CRHFs.

Acknowledgments. We thank Yael Tauman Kalai for many helpful discus-
sions, and Ron Rivest for assistance with the history of hashing. Thanks also to
the anonymous referees for insightful comments. This work was funded in part
by the National Science Foundation under Grant No. CCR-0311485.

"' We believe that the same construction of F and G (up to slight modifications) sepa-
rates public-coin and secret-coin one-way permutation families.

TERAM LING

104 Chun-Yuan Hsiao and Leonid Reyzin
References

[AGI6] Malcolm Adams and Victor Guillemin. Measure Theory and Probability.
Springer Verlag, 1996.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM Journal on Computing, 13(4) :850—
863, November 1984.

[BRY7] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards
making uowhfs practical. In Burton S. Kaliski, Jr., editor, Advances in
Cryptology—CRYPTO 97, volume 1294 of Lecture Notes in Computer
Science, pages 470-484. Springer-Verlag, 17-21 August 1997.

[CHLO2] Yan-Cheng Chang, Chun-Yun Hsiao, and Chi-Jen Lu. On the imposibili-
ties of basing one-way permutations on central cryptographic primitives.
In Yuliang Zheng, editor, Advances in Cryptology—ASIACRYPT 2002,
volume 2501 of Lecture Notes in Computer Science, pages 110-124, Queen-
stown, New Zealand, 1-5 December 2002. Springer-Verlag.

[Dam87] Ivan Damgérd. Collision-free hash functions and public-key signature
schemes. In David Chaum and Wyn L. Price, editors, Advances in
Cryptology—EUROCRYPT 87, volume 304 of Lecture Notes in Computer
Science. Springer-Verlag, 1988, 13-15 April 1987.

[DP92] Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowl-
edge without interaction. In 33rd Annual Symposium on Foundations of
Computer Science, pages 427-436, Pittsburgh, Pennsylvania, 24-27 Octo-
ber 1992. IEEE.

[GK] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-
Shamir paradigm. Available From http://www.mit.edu/ tauman/.

[GKO03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the
Fiat-Shamir paradigm. In 44th Annual Symposium on Foundations of
Computer Science [IEE03].

[GKM+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and obliv-
ious transfer. In 47st Annual Symposium on Foundations of Computer
Science [IEE00], pages 325-335.

[GMRS88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281-308, April 1988.

[GMRO1] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of
basing trapdoor functions on trapdoor predicates. In 42nd Annual Sym-
posium on Foundations of Computer Science, Las Vegas, Nevada, October
2001.

[GTO00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In 41st Annual Symposium on Foun-
dations of Computer Science [IEE0O].

[Hai04] Iftach Haitner. Implementing oblivious transfer using collection of dense
trapdoor permutations. In Naor [Nao04], pages 394-409.

[IEEOO] IEEE. 41st Annual Symposium on Foundations of Computer Science, Re-
dondo Beach, California, November 2000.

[IEEO3] IEEE. 44th Annual Symposium on Foundations of Computer Science,
Cambridge, Massachusetts, October 2003.

TERAM LING

Finding Collisions on a Public Road 105

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In Proceedings of the Twenty First An-
nual ACM Symposium on Theory of Computing, pages 44-61, May 1989.

[Mer82] Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. UMI
Research Press, 1982.

[Mer89] Ralph C. Merkle. A certified digital signature. In G. Brassard, editor,
Advances in Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in
Computer Science, pages 218-238. Springer-Verlag, 1990, 20-24 August
1989.

[MirO1] Ilya Mironov. Hash functions: From merkle-damgérd to shoup. In Joe
Kilian, editor, Advances in Cryptology—CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science, pages 166-181. Springer-Verlag, Au-
gust 2001.

[MRKO3] Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In 44th
Annual Symposium on Foundations of Computer Science [IEE03], pages
80-91.

[Nao04] Moni Naor, editor. First Theory of Cryptography Conference, volume 2951
of Lecture Notes in Computer Science. Springer-Verlag, February 2004.

[NIS95] FIPS publication 180-1: Secure hash standard, April 1995. Available from
http://csrc.nist.gov/f ips/.

[PedO1] Torben Pryds Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In J. Feigenbaum, editor, Advances in
Cryptology—CRYPTO ’91, volume 576 of Lecture Notes in Computer Sci-
ence, pages 129-140. Springer-Verlag, 1992, 11-15 August 1991.

[Rab78] Michael O. Rabin. Digitalized signatures. In Richard A. Demillo, David P.
Dobkin, Anita K. Jones, and Richard J. Lipton, editors, Foundations of
Secure Computation, pages 155-168. Academic Press, 1978.

[Rab79] Michael O. Rabin. Digitalized signatures and public-key functions as
intractable as factorization. Technical Report MIT/LCS/TR-212, Mas-
sachusetts Institute of Technology, Cambridge, MA, January 1979.

[RTV04] Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility
between cryptographic primitives. In Naor [Nao04], pages 1-20.

[Rus95] A. Russell. Necessary and sufficient conditions for collision-free hashing.
Journal of Cryptology, 8(2):87-100, 1995.
[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash

functions be based on general assumptions. In Kaisa Nyberg, editor, Ad-
vances in Cryptology—EUROCRYPT 98, volume 1403 of Lecture Notes in
Computer Science. Springer-Verlag, May 31-June 4 1998.

TERAM LING

Security of Random Feistel Schemes
with 5 or More Rounds

Jacques Patarin

Université de Versailles
45 avenue des Etats-Unis
78035 Versailles Cedex, France

Abstract. We study cryptographic attacks on random Feistel schemes.
We denote by m the number of plaintext/ciphertext pairs, and by k the
number of rounds. In their famous paper [3], M. Luby and C. Rackoff have
completely solved the cases m <K 27/2: the schemes are secure against
all adaptive chosen plaintext attacks (CPA-2) when k > 3 and against
all adaptive chosen plaintext and chosen ciphertext attacks (CPCA-2)
when & > 4 (for this second result a proof is given in [9]).

In this paper we study the cases m & 2". We will use the “coefficients
H technique” of proof to analyze known plaintext attacks (KPA), adap-
tive or non-adaptive chosen plaitext attacks (CPA-1 and CPA-2) and
adaptive or non-adaptive chosen plaitext and chosen ciphertext attacks
(CPCA-1 and CPCA-2). In the first part of this paper, we will show
that when m <« 2™ the schemes are secure against all KPA when k > 4,
against all CPA-2 when k > 5 and against all CPCA-2 attacks when
k > 6. This solves an open problem of [1], [14], and it improves the result
of [14] (where more rounds were needed and m & 2"(1=¢) \as obtained
instead of m <« 2"). The number 5 of rounds is minimal since CPA-2
attacks on 4 rounds are known when m > 0(2"/ 2) (see [1], [10]). Further-
more, in all these cases we have always obtained an explicit majoration
for the distinguishing probability. In the second part of this paper, we
present some improved generic attacks. For k = 5 rounds, we present a
KPA with m ~ 2°*/2 and a non-adaptive chosen plaintext attack (CPA-
1) with m =~ 2". For k > 7 rounds we also show some improved attacks
against random Feistel generators (with more than one permutation to
analyze and > 22® computations).

1 Introduction

A “Luby - Rackoff construction with k rounds”, which is also known as a “ran-
dom Feistel cipher” is a Feistel cipher in which the round functions fi,..., fx
are independently chosen as truly random functions (see section 2 for precise
definitions).

Since the famous original paper [3] of M. Luby and C. Rackoff, these con-
structions have inspired a considerable amount of research. In [8] and [14] a
summary of existing works on this topic is given.

We will denote by & the number of rounds and by n the integer such that
the Feistel cipher is a permutation of 2n bits — 2n bits. In [3] it was proved

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 106-122, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

Security of Random Feistel Schemes with 5 or More Rounds 107

that when k& > 3 these Feistel ciphers are secure against all adaptative chosen
plaintext attacks (CPA-2) when the number of queries (i.e. plaintext/ciphertext
pairs obtained) is m < 2™/2. Moreover when k > 4 they are secure against all
adaptative chosen plaintext and chosen ciphertext attacks (CPCA-2) when the
number of queries is m & om/2 (a proof of this second result is given in [9]).

These results are valid if the adversary has unbounded computing power as
long as he does only m queries.

These results can be applied in two different ways: directly using & truly
random functions fi,..., fr (that requires significant storage), or in a hybrid
setting, in which instead of using %k truly random functions fi,..., fr, we use k
pseudo-random functions. These two ways are both interesting for cryptography.
The first way gives “locally random permutations” where we have proofs of
security without any unproven hypothesis (but we need a lot of storage), and the
second way gives constructions for block encryption schemes where the security
can be relied on a pseudo-random number generator, or on any one-way function.

In this paper, we will study security when m <« 27, instead of m < 27/2
for the original paper of M. Luby and C. Rackoff. For this we must have k > 5,
since for k < 4 some CPA-2 attacks when m > 0(2"/ 2) exist (see [1], [10]).
Moreover the bound m « 2™ is the larger bound that we can get, since an
adversary with unlimited computing power can always distinguish a k-round
random Feistel scheme from a random permutation with O(k - 2*) queries and
O(2¥"?") computations by simply guessing all the round functions (it is also
possible to do less computing with the same number of queries by using collisions,
see [13]).

The bound m < 2™/? is called the ‘birthday bound’, i.e. it is about the square
root of the optimal bound against an adversary with unbounded computing
power. In [1] W. Aiello and R. Venkatesan have found a construction of locally
random functions (‘Benes’) where the optimal bound (m < 2") is obtained
instead of the birthday bound. However here the functions are not permutations.
Similarly, in [4], U. Maurer has found some other construction of locally random
functions (not permutations) where he can get as close as wanted to the optimal
bound (i.e. m < 2™1-9 and for all € > 0 he has a construction). In [8] the
security of unbalanced Feistel schemes is studied and a security proof in 27(1~€)
is obtained, instead of 2*/2, but for much larger round functions (from 2n bits
to € bits, instead of n bits to n bits). This bound is basically again the birthday
bound for these functions.

In this paper we will show that 5-round random Feistel schemes resist all
CPA-2 attacks when m < 2™ and that 6-round random Feistel schemes resist all
CPCA-2 attacks when m < 2™. Here we are very near the optimal bound, and we
have permutations. This solves an open problem of [1], [10]. It also significantly
improves the results of [6] in which the 2™ security is only obtained when the
number of rounds tends to infinity, and the result of [14] where 27(1—€) security
was proved for CPA-2 after 7 rounds (instead of 5 here) and for CPCA-2 after 10
rounds (instead of 6 here). Moreover we will obtain in this paper some explicit
and simple majorations for the distinguishing probabilities. We will also present
some improved generic attacks. All these results are summarized in appendix A.

TERAM LING

108 Jacques Patarin

2 Notations

General notations

— I, = {0,1}" denotes the set of the 2™ binary strings of length n. |I,| = 2™

— The set of all functions from I, to I, is Fy,. Thus |F,| = 2"

— For any f,g € F,, f o g denotes the usual composition of functions.

— For any a,b € I, [a,b] will be the string of length 2n of Iz, which is the
concatenation of @ and b.

— For a,b € I,, a ® b stands for bit by bit exclusive or of a and b.

— Let f; be a function of F,,. Let L, R, S and T be four n-bit strings in I,,.
Then by definition

()L R = [S,T] {S - R

T=L®o fi(R)

— Let f1, fo,..., fx be k functions of F,,. Then by definition:
T*(f1, ..., fu) = O (fe) o - 0 U(f2) o U(f1).

The permutation ¥*(fy,..., f) is called a ‘Feistel scheme with k rounds’
or shortly ¥*. When fi,..., fx are randomly and independently chosen in F,,
then ¥*(f1,..., fi) is called a ‘random Feistel scheme with & rounds’ or a ‘Luby-
Rackoff construction with & rounds’.

We will first study 4 rounds (with some limitations on the inputs/outputs),
then prove our cryptographic results by adding one or two rounds.

Notations for 4 rounds

¢ We will denote by [L;, Ri], 1 < i < m, the m cleartexts. These cleartexts
can be assumed to be pairwise distinct, i.e. ¢ # j = L; # L; or R; # R;.

¢ We call “index” any integer between 1 and m.

e [R;, X,] is the output after one round, i.e.

Vi, 1 <i<m,X; =L ® fi(R;).
e [X;, Y] is the output after two rounds, i.e.
Vi,1<i<m,Y; =R @ fo(Xi) = Ri @ fa(Li @ f1(R:)).
¢ [Y;, 5] is the output after three rounds, i.e.
Vi, 1 <i<m,Si = X;® f3(Yi) = Li ® f1(R:) ® f3(V3).
e [S;,T;] is the output after 4 rounds, i.e.
Vi, 1 <i<m,T; =Y; ® fa(Si).

Notations for 5 rounds. We keep the same notations for L;, R;, X;, Y;. Now
Z; = X; ® fa(Y:), and [S;, T3] is still the output: S; = Y; & fa(Z;) and T; =
Z; ® f5(S;).

TERAM LING

Security of Random Feistel Schemes with 5 or More Rounds 109

Part I: Security Results

3 The General Proof Strategy

We will first study the properties of 4-round schemes. Our result on 4-round
schemes for proving KPA security will be:

Theorem 3.1 (4 rounds) For random values [L;, R;], [S;, T3], 1 < ¢
such that the [L;, R;], 1 < i < m, are pairwise distinct, with probability >
we have:

£m,
1-8
1. the number H of (f1, f2, fa, f1) € F2 such that ¥i, 1 <i < m,

T4(f1, f2, f3, fa)[Li, Ri] = [S:, T}

satisfies:

H> |Fnl*

2 Sonm (1-a).

2. a andf can be chosen € 1 when m <& 2™.
For 5 rounds, we will have:

Theorem 3.2 (5 rounds) There are some values o > 0 and 3 > 0 and there
is a subset E C I3} such that:

1. for all pairwise distinct [L;, R;], 1 < i < m, and for all sequences [S;, T;],
1 < i < m, of E the number H of (f1, f2, f3, fa, fs) € F2 such that Vi,
1<i<m,

O°(f1, fa, f3, fa, f5)[Lis Ri] = [Ss, T

satisfies:
k

F,
H> |22nm (1-0a).
2. |E| > (1-p)-22"", and a and B can be chosen < 1 when m < 2179,
Ve > 0.

Remark

1. Here the set E does not depend on the [L;, B;], and it will give security
against CPA-2. If E depends on the [L;, R;], we will obtain security against
CPA-1 only.

2. Instead of fixing a set E, as in theorem 3.2, we can formulate a similar
theorem in term of expectancy of the deviation of H from the average value
(see[15]: there is a formulation for CPA-1 and another for CPA-2). From
these formulas we will get security when m < 2™.

For 6 rounds, we will have:

TERAM LING

110 Jacques Patarin
Theorem 3.3 (6 rounds) There are some values a > 0 and 8 > 0 and there
is a subset E C I*™ such that:
1. for all [L;, Ri, i, T3}, 1 < i < m, of E, the number H of (f1, f2, fa, f4, f5,
fs) € F8 such that Vi, 1 <i<m,
P8(£1, f2, f3, fa, s, fo) [Li, Ri] = [S:, T

satisfies:

|Fnl®
H = 22nm

(1-a).

2. For all super distinguishing circuit @ with m oracle gates, the probability that
[Li,Ri, S;, T;)(®), 1 <i<m, be inEis 21~ 3, when & acts on a random
permutation f of Inp — Ion (here [L;, Ri, Si, T](®), 1 < i < m, denotes the
successive [S;, T;) = f[Li, Ri} or [Li, Ri] = 7S, Ti], 1 < i < m, that will
appear).

3. a and 3 can be chosen €« 1 when m < 2™.

Now from these theorems and from the general “coefficients H technique”
theorems given in [11], [12], we will get immediately that when m <« 27, Ut is
secure against all KPA, ¥® against all CPA-2 and ¥® against all CPCA-2.

4 Circles

One of the terms of the the deviation of ¥* from random permutations will be
the probability to get “circles” in the variables, as we will explain below.

Def inition. We will say that we have ‘a circle in R, X, Y’ if there arek indices
.,ix with k > 3 and such that:

—

. 11,19,...,%k—1 are pairwise distinct and iz = i;.

2. VA, 1 < A< k—2 we have at least one of the three following conditions:
o Ri,\ = Ri,\+1 and (XtA+1 = X"'A+2 or YL\+1 = Yu+2)

or e Xu = X1A+1 and (Rz,\+1 = Ru+2 Y1A+1 = 1A+2)

or e Y‘A = Y;,\+1 and (R1A+l = R‘u+2 or Xu+1 = Xi,\+2)

Example. If Ry = R and X; = X3, then we have a circle in R, X, Y. If Ry = Ry,
X5 = X3, Y3 =Y; then we have a circle in R, X, Y.

We will prove the following theorems.

Theorem 4.1 (For 4 rounds) When [Li, Rs], 1 <1i < m, are pairwise distinct
and randomly chosen, the probability p to obtain a circle in R, X,Y with at least
one equation in Y when fy, fo are randomly chosen in F, satisfies:

3m? 3m? 1

pS2.22n+23n. _227_7771'

TERAM LING

Security of Random Feistel Schemes with 5 or More Rounds 111

Theorem 4.2 (For 5 rounds) For all pairwise distinct [Li,R;], 1 < i < m
and for all value X\, such that X > 0 and 2m+v/X < 2™, we have: the probability p
to obtain a circle in X, Y, Z with at least one equation Z; = Z; when f1, fa, fa
are randomly chosen in F,, satisfies:

m(m —1) + m(m — 1)(m — 2) + 4 m* . 1

2.92n 23n 24n 1— 2mvV
27\

1
< —
p_)\+

Corollary 4.1 From this theorem 4.2 we get immediately that ifm <« 2™, then
(A can be chosen such that), p is very small. So when m & 2™, the probability
to have a circle in X, Y, Z with at least one equation Z; = Z; is negligible.

Remark. In [15] we show that the condition ‘with at least one equation Z; = Z;’
is important: sometime we cannot avoid some circles in X, Y.
With 6 rounds, we can get a simpler formula:

Theorem 4.3 (For 6 rounds) Forall [L;,R;], 1 <i<m (suchthat i # j =
L; # L; or R; # R;), theprobability p to obtain a circle in X, Y, Z with at
least one equation in Z when fi, fa, fs, fa are randomly chosen in F, satisfies:

< 3m?2 11m?® 1
p—22n+23n. _2m-

2n

Proof of theorem 4.1, 4.2, 4.3 are given in the extended version of this paper
([15]). A basic tool for these proofs is:

Theorem 4.4 Y\ > 0, for all pairwise distinct [Li,R;], 1 < i < m, when fi
is randomly chosen in F, we have aprobability > 1 — % that the number N of
(i’j); 1<]/X, = Xj satisfies:

Am(m —1)
L _ 7
N= 2.2n

Proof. This result comes immediately from this lemma:

Lemma 4.1 For all [L;,R;], 1 < i <m, (such thati# j = L; # LjorR; # R;)
the number of (f1,1,]) such that X; = X;,1 < j, is < |F,|- —"32%%1-2

Proof of lemma4.1. X; = X; means L; ® fi(R;) = L; ® f1(R;). This implies
R; # R; (because Ly = L; and R; = R; = i = j). Thus, when (i, j) is fixed,
the number of f; such that X; = X is exactly]%1 if R; # R;, and exactly O if
R; = R;. Therefore, since we have at most m(m — 1)/2 values (,5), i < j/R; #
R;, the total number of (f1,%, j) such that X; = X; is < IFnIﬂ;’;—:ll as claimed.

TERAM LING

112 Jacques Patarin

5 Properties of H with 4 Rounds

We give here the main ideas. See the extended version of this paper for more
details ([15]). We will first prove that if the [Y;, S;] are given, 1 < i < m, (i.e. the
output after 3 rounds), then the S; variables will look random as long as m < 2"
(but the Y; variables will not look random in general). Then, with one more
round and the same argument, we will obtain that the [S;, T;] variables will look
random as long as m < 2. We want to evaluate the number H of f, fa, f3 such
that: Vi, 1 S i <m, §; = Li® fi(R:)@fa(Ys) withY; = Ri@ fa(Li® fr(R:)) (D).

Remarks

L If Y; = Y; with ¢ # j, then S; # S;. So the §; variables are not perfectly
random in [, when the Y; are given. However, here we just say that the
[Y;, Si] must be pairwise distinct, since ¥* is a permutation.

2. If §; is a constant (V7, 1 < i < m, §; = 0 for example), then all the ¥;
variables must be pairwise distinct, and in (1) f3 is then fixed on exactly
m points. However the probability for fi, fo to be such that all the Y; are

pairwise distinct is very small. So in this case H <« 12—1—

3. Let us consider that instead of (1) we had to evaluate the number J of
f1, f2, fa such that Vi, 1 <i<m, S; = f3(Y;) with Y; = R; @ f2(L: @ f1(R:))
(i.e. here we do not have the term L; & f1(R;)). Then, for random L;, R;
and for random fi, fz, f3, we will have about 2 times more collisions S; = S;

compared with a random variable S;. So if S; is random, J <« I_21_"£;|; in this
case. For (1) we will prove (among other results) that, unlike here for J,

when the S; are random, we always have H ~ lszl—

Analysis of (I1). (In appendix B an example is given on what we do here) We
will consider that all the Y; are given (as well as the L;, R;, S;), and we want
to study how H can depend on the values S;. If H has almost always the same

value for all the S;, then (by summation on all the ¥;) we will get H ~ 2,,,,, , and
for all [L;, R;] the S; will look random, as wanted, when f1, fz, f3 are randomly
chosen in F,, (this is an indirect way to evaluate H).

In (1), when we have a new value Y;, whatever S; is, fs is exactly fixed
on this point ¥; by (1). However if Y; is not a new value, we have ¥; = Y; =
Li® fi(R;) = L ® f1(R;)® S; ® S;. For each equation Y; = Y}, we will introduce
a value Ag(; ;) = S; ® §;. We want to evaluate the number H' of (fy, f2) such
that: Vi, 1 < i< m, fo(L; ® fl(R'L)) =R;9Y; (2)

We will fix the points (4,) where X; = Xj, i.e. we look for solutions (fi, f2)
such that X; = X exactly on these (,7), and, again, we want to evaluate how
the number H’ of (fi, f2) can depend on the values S; (i.e. on the values Ag).

We will group the equations (2) by the same fi(R;), ie. by “blocks in
R, X, Y”: two indices 7 and j are in the same block if we can go from ¢ to j
by equations Ry = Ry, or X = X, or Y = Y7 (Since Xy, = X; = fi(Rg) =
HR)® Ly ® Ly and Yy =Yy = fi(Rr) = f1{R1) ® L ® Ly ® A(s), from these
relations, we can replace the variable fi{Ry) by the variable f1(R;) instead).

TERAM LING

Security of Random Feistel Schemes with 5 or More Rounds 113

Finally, the only dependencies on the Ax come when we want to evaluate the
number H” of f; such that: Vi, 1 < ¢ < o, X; are pairwise distinct, where «
is the number of X; that we want pairwise distinct (if wanted we can assume

a<0 '—;,; since variables with no equation in R, X or Y create no problem).
Each X; has an expression like this: X; = fi(R;) @ Ax @ L] (where Lj is an
expression in @ of some L; values), or like this: X; = fi(R;) @ Lj. This gives a
number of solutions for f; that depends only of the fact that some equations of
degree one in the Ag variables are satisfied or not.

(These equations are X; & X; = X @ X; where 4,3 are in the same block
in R, X, Y and k,l are in the same block in R, X, Y, so these equations can be

written only the L; and A variables).

Example. In the example given in appendix B, Ay = L1 & L4 & Ls & L~ is one
of these equations, that can be true or not when the A; values are fixed (here it
comes from X; & Xo & X5 ® X7).

Analysis of the dependencies inthe M. First, we can notice that if the system has
no solution due to an incompatibility (for example if we want X; = f;(R;) & Ly
and Xs = f1(R;) ® A; to be distinct) then we have a circle in R, X, Y with at
least one equation in Y. The probability to get such circles has been evaluated
in section 4 and is negligible if m <« 2™. So we will assume that we have no
incompatibility in the system that says that the X; variables considered are
pairwise distinct. Let x4 be the number of variables Ag that satisfied at least one

. 2 . . .
of these equations among the (95— equations considered for the evaluation of

fi1. Each of the p special A; values can have at most o exceptional relations.
So for a A like this, we have: H < H* (1 - 2%)*”. The value (1— 2%;)_” can
be > 1, but since we have p exceptional relations of degree one on u variables
A;, the weight W), of these A values (i.e. the number of fi, fa, f3 that give these
values multiplied by the number of these values) satisfies:

@

1 . —n . .
Wi < fgn_uc] (1 - 2—;) (we denote by A, this expression).

. 2 . .
(since we have < %- possible equations). We have:

a? a\~l . a?
A}L+12A[t<:>(_2__lu’> (1—-2—,;) >2™Mu+) e u< about2'2n.

. .. 2
So the weight W) becomes negligible as soon as p > 3%

Remark. 1f these p variables A; generate almost all the possible relations with
these variables, then the weight of these variables is even smaller since we just
have to choose these p variables among the a variables and then they are fixed
(since almost all the equations are satisfied, many of these equations give equiv-

alent values for the special A;). So we will have a C# instead of C’; -
T

TERAM LING

114 Jacques Patarin

Finally we have obtain:

Theorem 5.1 Let F be the set of values that we fix: i.e. in F we have the values
of the Yy, and all the indices (i,) where we have all the equations X; = X;. Then
if S and S' are two sequences of values of I'"* such that:

1.Y,5, Y, =Y; = 8 #8; (and S; # S;).
2. No circle in R, X, Y can be created from the equalitiesY; =Y; = S; ® S; =
X,-GBXJ- and Ry =Ri= Xy Xi=Ly® L.

Then the number Hx of f1, fa, fs solutions satisfies:
|Hz(S) — Hr(S')| < HF(S) - (¢ + 1)

where q = 5"—‘;,7 comes from the X\; with very few special equalities, and r is a
very small term related to the weight of the A; with a lot of special equalities (as

we have seen v is negligible when m < 2™),

We can do the same for [S;, T3], as we did for [Y;, S;]. So, since by summation,
we must obtain all the (fi,...,fs) with no circles, from theorem 5.1 we will
get our results. Here the set E' depends on E, so this works for non-adaptive
attacks. For adaptive attacks see [15] (then we have to eliminate some equations
by conditions in [S;, T;] independently of {L;, R;], or to study the expectancy of
the deviation of H).

Remark. Another possibility is to use the result of [5]: with 2 times more rounds,
security in CPA-1 can be changed in security in CPCA-2. However we would get
like this CPCA-2 for 10 rounds (exactly as in [14]) instead of 6 rounds.

6 Comparing [14] and This Paper

Technically the main differences between [14] and this paper are:

1. Here we introduce a condition: no more than Windices (4,7),i<j
such that X; = X; (instead of no more than é pairwise distinct indices such
that X;, = X;, = ... = X;, of [14]). this gives us security whenm <« 2"
(instead of m < 2”179 or m <« Z- of [14]).

2. In [14], 3 rounds are needed for half the variables to look random, and then 4
more rounds for the {S;, T;}. Here we show that the S; will look random after
4 rounds even if the Z; are public (with a probability near 1 when m < 2™).
So for the T; we can use the same result with only one more round. Like
this, we need less rounds in this paper compared with [14].

3. In this paper we study A, that come for ¥ from Y; @ ¥; = 0 (or similarly
Z; ® Z; = 0 for ¥5) while in [14] all possible Ak can be fixed.

TERAM LING

Security of Random Feistel Schemes with 5 or More Rounds 115

Part I1: Best Found Attacks

7

Generic Attacks on ¥?

We will present here the two best generic attacks that we have found on ¥5:

1.

2.

A CPA-1 attack on ¥® with m ~ 2" and A = O(2") computations (This is
an improvement compared with m ~ 237/2 and A = O(2%"/2) of [13]).

A KPA on @5 with m ~ 232 and X\ = O(23"/2)computations (This is an
improvement compared with m =~ 27%/4 and XA = O(27™/4) of [13]).

. CPA-1 attack on &5,

Let us assume that R; =constant, Vi, 1 < i < m, m ~ 2™, We will simply
count the number N of (3, 7), ¢ < j such that S; = S; and L; ®T; = L; & T;.
This number N will be about double for ¥® compared with a truly random

permutation.
Proof:
If S; =9;,

LieTi=LioT; & Li®Z;=L;®Z; & f1(R1)® f3(Y:) = f1(R1) ® f3(Yj)
< fa(R1 @ fa(Li © f1(R1))) = f3(R1 ® fo(L; ® f1(R1))) (#).

This will occur if fa(L; ® fi(R1)) = fo(L; & f1(R1)), or if these values are
distinct but have the same images by f3, so the probability is about two
times larger.

Remarks
(a) By storing the S;}|L;®T; values and looking for collisions, the complexity

is in A >~ O(2%).

(b) With a single value for R;, we will get very few collisions. However this
attack becomes significant if we have a few values R; and for all these
values about 2" values L;.

. KPA on %5,

The CPA attack can immediately be transformed in a KPA: for random
[L;, R;], we will simply count the number N of (4,), ¢ < j such that R; = R;,
S; =S8;,and L @ T; = L; & T;. We will get about ﬂ%‘,‘;lz such collisions
for 5, and about ﬂ;’“ﬁ:—l) for a random permutation. This KPA is efficient

when m? becomes not negligible compared with 23", i.e. whenm > about
23n/ 2

Remark. These attacks are very similar with the attacks on 5-round Feistel
schemes described by Knudsen (cf [2]) in the case where (unlike us) f2 and f3
are permutations (therefore, not random functions). Knudsen attacks are based
on this theorem:

Theorem 7.1 (Knudsen, see [2]) Let [L1,R1] and [La, Rs] be two inputs of
a 5-round Feistel scheme, and let [S1,T1] and [S2,Ta] be the outputs. Let us
assume that the round functions fo and f3 are permutations (therefore they are
not random functions of F,). Then, if Ri = Ry and Ly # L, it is impossible to
have simultaneously Sy = Sp and L1 ® Ly =T, & Ts.

TERAM LING

116 Jacques Patarin

Proof. This comes immediately from (#) above.

8 Generic Attacks on ¥* Generators, k > 6

¥* has always an even signature. This gives an attack in 22" if we want to dis-
tinguish ¥* from random permutations (see [13]) and if we have all the possible
cleartext/ciphertext. In this appendix, we will present the best attacks that we
know when we want to distinguish ¥* from random permutations with an even
signature, or when we do not have exactly all the possible cleartext/ciphertext.

1. KPA with k even.
Let (z,7) be two indices, ¢ # j, such that R; = R; and S; @ S; = L; & L;.
From [10] or [11] p.146, we know the exact value of H in this case, when &
is even. We have:

. 1 1 2 1
H=H (1 TG g % 30— 1)n>

[Folf 1

92nm 1— 5%_1_‘_

where
H* =

i.e. H* is the average value of H on two cleartext/ciphertext. So there is a
. . 1
small deviation, of about “Foom from the average value.

So in a KPA, when the [L;, B;] are chosen at random, and if the f; functions
are chosen at random, we will get slightly more (%,7), ¢ < j, with R; = R;
and S; ® S; = L; ® L; from a ¥* (with k even) than from a truly random
permutation. This can be detected if we have enough cleartext/ciphertext
pairs from many ¥* permutations. In first approximation, these relations
will act like independent Bernoulli variables (in reality the equations are
not truly independent, but this is expected to create only a modification of
second order).
If we have N possibilities for (,7), i < 7, and if X is the number of (%, j),
i<j/Ri= R and S; @ S; = L; ® L;, we expect to have:

E(X) ~

fﬁ
V(X)~ o=
o(X)~ YE.

We want o(X) < _(E_N—z)— - z%= in order to distinguish ¥* from a random
E-on

permutation. So we want £ < T ie N > 2(k—2n

However, if we have p avallable permutations, with about 22" cleartext/ci-
phertext for each of these permutations, then N =~ 24"y (here we know these
¢ permutations almost on every possible cleartext. If not, u will be larger
and we will do more computations). N > 2(k=2)n gives pu > 2(k=6)n This is
an attack with 2(*~6)» permutations and 22"y ~ 2(¢=4" computations.

2. KPA with k odd.
In [15], a KPA with k odd is given (it has the same properties as the attack
above for k even).

TERAM LING

Security of Random Feistel Schemes with 5 or More Rounds 117

9 Conclusion

For a block cipher from 2n bits — 2n bits, we generally want to have no better
attack than attacks with > 227 computations. If this block cipher is a Feistel
scheme we then need to have > 6 rounds since (as shown in this paper) there is
a generic attack on 5 rounds with 2* computations in CPA-1 and 23*/2 compu-
tations in KPA.

In this paper we have also shown that however, in the model where the
adversaries have unlimited computing power but have access to only m cleart-
ext/ciphertext pairs, the maximum possible security (i.e. m <« 2") is obtained
already for 5 rounds for CPA-1 and CPA-2 attacks. This solves an open prob-
lem of [1] and [14]. Moreover 6-round Feistel schemes can resist all CPCA-1
and CPCA-2 attacks when m <« 2™ (For CPCA-1 or CPCA-2 the case k = 5
rounds is still unclear: we only know that the security is between m < 22 and
m < 2™). When 22" is small (for example to generate 1000 pseudorandom per-
mutations with an even signature of 30 bits — 30 bits) then more than 6 rounds
are needed. In this paper we have studied such attacks, and we have extended
the “coefficients H technique” to various cryptographic attacks.

We think that our proof strategy is very general and should be also efficient in
the future to study different kinds of functions or permutation generators, such
as, for example, Feistel schemes with a different group law than &, or unbalanced
Feistel schemes.

References

1. W. Aiello and R. Venkatesan. Foiling Birthday Attacks in Length-Doubling
Transformations-Benes: A Non-Reversible Alternative to Feistel. EUROCRYPT
"96 (Lecture Notes in Computer Science 1070), pp. 307-320, Springer-Verlag.

2. L. R. Knudsen. DEAL - A 128 bit Block Cipher. Technical Report #151, Univer-
sity of Bergen, Departement of Informatics, Norway, February 1998.

3. M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, vol. 17, no 2, pp. 373—
386, April 1988.

4. U. Maurer. A simplified and generalized treatment of Luby-Rackoff pseudorandom
permutation generators. EUROCRYPT 92, pp. 239-255, Springer-Verlag.

5. U. Maurer. Indistinguishability of Random Systems. EUROCRYPT ’02 (Lecture
Notes in Computer Science 2332), pp. 110-132, Springer-Verlag.

6. U. Maurer and K. Pietrzak. The security of Many-Round Luby-Rackoff Pseudo-
Random Permutations. EUROCRYPT ’03, pp. —, Springer-Verlag.

7. V. Nachev. Random Feistel schemes for m = 3, available from the author at:
Valerie.nachef @math.u-cergy.fr.

8. M. Naor and O. Reingold. On the Construction of pseudo-random perlutations:
Luby-Rackoff revisited. Journal of Cryptology, vol. 12, 1999, pp. 29-66. Extended
abstract was published in Proc. 29th Ann. ACM Symp. on Theory of Computing,
1997, pp. 189-199.

9. J. Patarin. Pseudorandom Permutations based on the DES Scheme. Eurocode 90,
LNCS 514, pp. 193-204, Springer-Verlag.

TERAM LING

118 Jacques Patarin

10. J. Patarin. New results on pseudorandom permutation generators based on the
DES scheme. Crypto 91,pp. 301-312, Springer-Verlag.

11. J. Patarin. Etfude des générateurs de permutations basés sur le schéma du DES.
Ph. D. Thesis, Inria, Domaine de Voluceau, Le Chesnay, France, 1991.

12. J. Patarin. About Feistel Schemes with 6 (or More) Rounds. Fast Software En-
cryption 1998, pp. 103-121.

13. J. Patarin. Generic Attacks on Feistel Schemes. Asiacrypt '01 (Lecture Notes in
Computer Science 2248), pp. 222238, Springer-Verlag.

14. J. Patarin. Luby-Rackoff: 7 Rounds are Enough for 2**~ Security. Crypto "03
(Lecture Notes in Computer Science 2729), pp.513-529, Springer-Verlag.

15. J. Patarin. Extended version of this paper, avaible from the author.

16. B. Schneier and J. Kelsey. Unbalanced Feistel Networks and Block Cipher Design.
FSB ’96 (Lecture Notes in Computer Science 1039), pp. 121-144, Springer-Verlag.

Appendices

A Summary of the Known Results
on Random Feistel Schemes

KPA denotes known plaintext attacks. CPA-1 denotes non-adaptive chosen plain-
text attacks. CPA-2 denotes adaptive chosen plaintext attacks. CPCA-1 denotes
non-adaptive chosen plaintext and ciphertext attacks. CPCA-2 denotes adaptive
chosen plaintext and chosen ciphertext attacks. Non-Homogeneous properties are
defined in [12].

This figure 1 present the best known results against unbounded adversaries
limited by m oracle queries.

KPA|CPA-1|CPA-2|CPCA-1|CPCA-2|Non-Homogeneous

v 1 1 1 1 1 1
gi gl 2 2 g 2 2
!I,.'S 271/2 21'1./2 2!1}2 2?1/2 3 2
4‘,4 gn 211/2 2\1/2 2n/2 271/2 2
!!'/5 gn on gn > 271/2 > 2n/2 2
g gn] 2 | B o r 4%
g E>6 2" | 2 | 2 | o | = (Eay

Fig. 1. Minimum number m of queries to distinguish ¥* from a random permutation
of I, — I,,. For simplicity we denote 2% for O(2%) i.e. when we have security as long
as m < 2%. > means best security proved.

* < 4 comes from [13] and > 4 comes from [7].

**with k even and with (k — 2)(k — 4) exceptional equations, so if & > 7 we need more than
one permutation for this property.

TERAM LING

Security of Random Feistel Schemes with 5 or More Rounds 119

KPA CPA-1 | CPA-2 |CPCA-1|CPCA-2
' 1 1 1 1 1
w2 gpid 2 2 2 2
'I,B 271/2 2n/2 2n/2 2:1,/2 3
!{’4 gn 2n/2 2n/‘2 2n/‘2 2:4,,1"2
!PS < 2371/2 ogn on _<_. gn S qr
krlﬁ & 22n < 22n < 22n < 2271 < 221-1,
@"—7 S 23n S 23‘1 S 23)1. s 2311 E 23‘1
4’,3 S 24!1 S 24!1 S 24?‘& s 241’1 S 241’1
',Fk,k >6 * < 2(&:—4)?1 < 2(k—~4)ﬂ < 2(1:—4)“ < 2(Fc—4)n < 2{k—4)n

Fig. 2. Minimum number A of computations needed to distinguish a generator wk
(with one or many such permutations available) from random permutations with an
even signature of I, — I,. For simplicity we denote a for O(e). £ means best known
attack.

If k > 7 these attacks analyze about 2(=6)» permutations of the generator and if ¥ < 6
only one permutation is needed.

History for U5, For ¥® the best results of security against CPA-2 was:

— In 1988: m < 2™2 (cf [3]).

— In 1998: m < 234 (cf [12]).

~ In 2003: m < 25™/8 (cf[13)).

—~ In2004: m <« 2™ (cf this paper).

However CPCA-2 for ¥* is still unclear: so far we only have the original result
of Luby and Rackoff m « 27/2,

B Example for Theorem 3.1

We will illustrate here theorem 3.1 on a small toy example. Let 1,2,3,4,5,6,7
be our indices (m = 7). Let us assume that f; is fixed such that Ry = Ry,
and R; = Ry, are our only equations R; = R; i > j. Let us assume that the
Y; are given, and that Yy = Y5, and Y7 = Y3 are the only equations Y; =Y},
i > j.Then we want to show that A\; and Ag look random, where A1 = X4 & Xo
and \s = X7 & X3 when fi, fo are randomly chosen. For this, we fix A; and Ag,
A1 # 0, A2 # 0, and we look for the number H of (f1, f2) that give these values.
We want to prove that this number H does not depend significantly on A; and
Az (except for well detected values of small weight). H is the number of (f1, f2)
such that (here we put only pairwise distinct R; variables):

1. fl(Rg) =h (Rl) ®LydLy®) and f1(R5) =fy (R3) @ L3y® Ly @ Ay (these
two equations do not create any problem: they just fix f; on two points).

2. Block RY:

foL1® ilR1)) =R
fo(Ls® M @ fi(R1)) =R Y3
fo(La® f1i(R1)) = Ry @ Ya.

TERAM LING

120 Jacques Patarin

Block R3Y:

fo(Ls® fi(R3)) =Rz @ Y3
folLs®Ls @ L7 @ X2® f1(R3)) = Rs © Y5
fo(Ls® fi(R3) D A2) = Rs B Ys.

Block RgY:
f2(Le ® f1(Re)) = Rs ® Ys

Let us assume that, for example, all the R; & Y; are pairwise distinct. Then
we want to evaluate the number of functions f; such that all the X; are pairwise
distinct. These conditions are more difficult to analyze since here we do not want
equalities, but non equalities.

— IfA; € {0,L1 ® L4}, or Az € {0, L5 ® L7}, we have no solution (these values
give a circle in R, X, Y).

— For the X; to be pairwise distinct, we must choose fi such that: fi(R;) @
Sf1(R3) is not in A, where A is a set of 9 values (or less if we have collisions):
A={L,®L3, L& 1 ®L3, L4 B L3, Li®L3BLs®L7D A2, L1®N1® L3 B L5®
Li®X, Li®L3®Ls®Lr® A2, Ly®L3® A2, La® A1 ® L3 ® A2, L4 S L3 ® A2},
In the proof of theorem 3.1, we analyze the possible dependencies of |A| with
the A; values.

C Examples of Unusual Values of H for ¥*

Example 1: Large value for H
With m = 2, when Ry = Ry, S1 =85, and Ly ® Ly, = T1 ® 15, then

_EP 1
H= 92nm 2 on | °

So here the value of H is about double than average with only m = 2.

Remark: Vk € N*, ¥* has always such large H with small m (m < (% - 1)2if
k is even), we say that “&* is not homogeneous™: see [12]. However, when k > 7,
the probability that such inputs/outputs exist is generally negligible if we study
only one single specific permutation.

Example 2: Small value for H
Here our example cannot be with m < 2*/2 since we know that we always

have E |5 (0
" m(m —
H ‘>— 22nm (1 - an)

(the proof is the same for * and &°).

However, we will show that when m — 27/ 2, H can be much smaller than
average (i.e. m — 2" is not necessary, m — 2™/2 is enough). In this example 2,
we will assume:

TERAM LING

Security of Random Feistel Schemes with 5 or More Rounds 121

1. V’L,],lSZS]Sm,Rz=R3 (=R1)

2. Vi, 7, 1<i<ji<m, Si:Sj (:SI)

3.Vi,j,1<i<j<m,i# 7= L, ®L; #T;®T; (in example 3 below we will
not need this condition 3).

To get condition 3, we may assume, for example, that Vi, 1 <i < m, L; =
i ® (i) and T; = (i), where ¢ is well chosen. So L;® L; =T, ¢ T; & i =j.

From 1 we have: Vi,j, 1 <i<j<m, X; 0 X; =L; ® L;.

From 2 we have: Vi, 5,1 <i<j<m, Z; & Z; =T; ® T;.

H is the number of fi, fo, f3, f4, fs such that: Vi, 1 <i < m,

L;® fl(Rl) = X;

Ri& fo(Li® f1(R1)) =Y;
X:i@ fs(Yi) =Z;
Y ® fo(T: ® f5(51)) = 51
Z;o fs(51) =T,
So H is |F,,|? times the number of fa, f3, f4 such that: Vi, 1 <i < m,

{Yi = Ry ® fo(Li ® f1(R1)) = 51 @ f4(T: ® f5(51))
[Y:)=L;oTi® f1(R1) ® f5(S1)

Since all the L;®T; are pairwise distinct, all the Y; must be pairwise distinct.
Sofor Y;, 1 < i < m, we have exactly: 2"(2"—1)(2"—2)... (2" —m+1) solutions.

Now when Y;, 1 < i < m, are fixed, fa, f3 and f; are fixed on exactly m
pairwise distinct points. So H =]517&,172"(2" -DE2"—-2)...(2" -m+1).

Let H* be the average value of H (when the [S;,T;] are pairwise distinct).

« | | Fal®
= > .
H 22 (220 —1)(2" —2)...(22* —m + 1) ~ 22nm
So here: H . 5)
m_
<(l-=)1-=)...1—
7 SA-2)0-50). (- —5)
In HY 1+2+4..+(m-1) m(m-—1)
o)~ an - n)

So when m{m~1) is not negligible compared with 2", H will be significatively
smaller than H*, as claimed.

Remark 1. Here R; @ S; is not random (since R; & S;is constant), and L; & T;
is not random (in example 3 below we will remove this condition on L; & T3).
These hypothesis are generally unrealistic in a cryptographic attack, where V4,
1<i<m,L; orT;, and R; or S;, cannot be chosen.

TERAM LING

122 Jacques Patarin

Remark 2. 1f we start, as here, from [L;, R;] values with R; constant, then the
X; values are pairwise distinct, so the ¥; values are perfectly random (if we
define Y; only from the relation ¥; = R; & f2(X;)). However, the Z; values are
not perfectly random (since the probability to have Z; & Z; = L; & L; is the
probability to have f3(Y;) = fa(Y;) so is about double than average). Similarly,
the [S;, T;] values are not perfectly random since the probability to have S; = §;
and T;®T; = L;® L; is in relation with the probability to have f3(Y;) = f3(Y;),
so is about double than average. We will use again this idea in example 3 below.

Remark 3. Here when m — 27/ 2, we can have circles in Y, S, (and circles in

R, Y) and this is a way to explain why in this example H can be much smaller
than H*.

Example 3: Small value for H, with random L; and T;
In this example 3, we will assume:

1. V'l:,j, 1S’LS]STTL,R,=R] (=R1)
2. Vi,j, 151535771,, S,'=Sj (=Sl)
3. Let A, = L; & T;. Then A;, 1 < i < m, is random. More precisely it will

be enough to assume that the number N of collisions A; = A4;, i < j, is

< TZ,J;"Tln—;l to show that H is small compared with the average value H*. For

random values A; we have N ~ —122—,,)- s0 it is the case (5 ~ 1,44).

As in example 2, H is |F,|? times the number of f3, fas, fs4 such that: Vi,
1<i<m,

{Y Ry ® fo(Li ® f1(R1)) = 51 ® fu(T: €9f5(51))
HRYD)=L;oT,® f1(R) ® f5(51)

Since all the L; @ fi(Ry) are pairwise distinct, and all the T; & f5(S;) are
pairwise distinct, fo and f4 are fixed on exactly m points when Y;, 1 < ¢ < m,
is fixed. iy

So H is 12—;:%!,; times the number of Y;, f3 such that: Vi, 1 <i < m, f3(¥;) =
L;o T ® fi(R1) ® f5(51)-

Let A; be a sequence of values of I,, 1 < i < m. We want to evaluate the
number £ of Y;, f3 such that: Vi, 1 < i <m, f3(Y;) = A;. Let h* be the average
value for k (average on all sequences A;). Wehave h* = |Fy,|. For random values
Yi, and random functions f3, A; will have about 2 times more collisions A; = A;,
i < j, than average sequences A;.

So h for random values A; is < h*, and h for values A; with 2 times more
collisions than average is > h*. This shows that if in this example 3 L; & T; is
random, then H <« H*.

TERAM LING

Signed Binary Representations Revisited

Katsuyuki Okeya', Katja Schmidt-Samoa®,
Christian Spahn?, and Tsuyoshi Takagi®

! Hitachi, Ltd., Systems Development Laboratory,
292, Yoshida-cho, Totsuka-ku, Yokohama, 244-0817, Japan
ka-okeya@sdl .hitachi.co.jp
2 Technische Universitit Darmstadt, Fachbereich Informatik,
Hochschulstr. 10, D-64289 Darmstadt, Germany
{samoa, takagi}@ informatik. tu-darmstadt.de

Abstract. The most common method for computing exponentiation of
random elements in Abelian groups are sliding window schemes, which
enhance the efficiency of the binary method at the expense of some
precomputation. In groups where inversion is easy (e.g. elliptic curves),
signed representations of the exponent are meaningful because they de-
crease the amount of required precomputation. The asymptotic best
signed method is wNAF, because it minimizes the precomputation effort
whilst the non-zero density is nearly optimal. Unfortunately, wINAF can
be computed only from the least significant bit, i.e. right-to-left. How-
ever, in connection with memory constraint devices left-to-right recoding
schemes are by far more valuable.

In this paper we define the MOF (Mutual Opposite Form), a new canon-
ical representation of signed binary strings, which can be computed in
any order. Therefore we obtain the first left-to-right signed exponent-
recoding scheme for general width w by applying the width w sliding
window conversion on MOF left-to-right. Moreover, the analogue right-
to-left conversion on MOF yields wNAF, which indicates that the new
class is the natural left-to-right analogue to the useful wNAF. Indeed,
the new class inherits the outstanding properties of wINAF, namely the
required precomputation and the achieved non-zero density are exactly
the same.

Keywords: addition-subtraction chains, exponentiation, scalar multipli-
cation, signed binary, elliptic curve cryptosystem, efficient computation,
non-adjacent form (NAF), mutual opposite form (MOF), left-to-right

1 Introduction

In modern cryptosystems one of the most important basic operations is expo-
nentiation g%, where g is an element of an Abelian group G and d is an integer.
A non-zero positive integer d is uniquely represented by a binary string:

d= dp_1|dn—-2|-.--|d1|do,
where a|b denotes the concatenation of bits a, b, and d; € {0,1}for i =0,1,...,

n—1.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 123-139, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

124 Katsuyuki Okeya et al.

The most common method for performing an exponentiation is the square-
and-multiply algorithm, which computes g% according to the bits d; (therefore it
is often called binary method). The efficiency of this procedure may be enhanced
if precomputation is allowed. In this case, we consider more general represen-
tations of the exponent, where each non-zero bit d; is not restricted to be 1,
but is an element of a suitable digit set 7 of integers. We call d = 3, d;2* a
T -representation, if d; € 7 U {0} holds for each i. In general, 7 -representations
loose the property of uniqueness. The left-to-right square-and-multiply algorithm
is easily adjusted to work with a 7 -representation of the exponent, namely multi-
plication by the base g is replaced with multiplication by precomputed elements
g%,where d; € T is the appropriate digit of d. Therefore, the important fea-
tures of a 7 -representation are the number of non-zero digits and the cardinality
of T, because they determine the required time and memory consumption for
computing g%, respectively. The research problem here is to find optimized rep-
resentation classes in the sense of trade-off between high non-zero density and
low memory consumption.

1.1 New Motivation for Exponentiation Algorithms

As the ubiquitous computing devices are penetrating our daily life, the impor-
tance of memory constraint devices (e.g. smart cards) in cryptography is increas-
ing. Smart cards are equipped with several Kbytes RAM only and most of them
are reserved for OS and stack. Thus, cryptographic algorithms should be opti-
mized in terms of memory. For this reason we are reluctant to consume memory
except the necessary precomputation related to 7 for computing exponentia-
tion. Note that in connection with memory constraint devices, the most popular
cryptosystems are based on elliptic curves [Kob87,Mil86], because elliptic curve
cryptosystems (ECC) provide high security with moderate key-lengths. As ellip-
tic curve groups are written additively, exponentiation has to be understood as
scalar multiplication in this context.

Exponent recoding, i.e. the rewriting of the binary exponent to a 7 -represen-
tation, may be performed from the least significant bit (we say “right-to-left”)
and from the most significant bit (“left-to-right”), respectively. For the pur-
pose of ECC on memory constraint devices we prefer left-to-right to right-to-left
recoding methods. The reason is as follows: In the case of elliptic curve scalar
multiplication, the left-to-right evaluation stage is the natural choice (see Section
5 for details). If the exponent recoding is done right-to-left, it is necessary to fin-
ish the recoding and to store the recoded string before starting the left-to-right
evaluation stage. In other words, we require additional n-bit (i.e. exponential
size O(n)) RAM for the right-to-left exponent recoding, where nis the bit size
of the scalar.

On the contrary, if a left-to-right recoding technique is available, the recoding
and evaluation stage may be merged to obtain an efficient exponentiation on the
fly, without storing the recoded exponent at all. Therefore it is an important
task to construct a left-to-right recoding scheme, even if the size of 7 and the
non-zero density are not improved.

TERAM LING

Signed Binary Representations Revisited 125

1.2 Known Solutions

The most established techniques for generating 7 representations are window
methods (see, e.g., the textbooks [Knu81,MOV96] and the survey paper [Gor98]).
Loosely speaking, in the window method with width w successively w consecutive
bits of the binary exponent are scanned and, if necessary, replaced by a table-
entry according to 7. We distinguish fixed window methods like the 2%¥-ary
method, where the window segmentation of the binary string is predetermined
and the more advanced sliding window methods, where zero runs are skipped.
As an example, let us consider the sliding window method with width w = 3. In
this case, T equals {1,3,5,7}. During the recoding stage, the binary exponent
is rewritten by performing the following replacements: 1|1 — 0|3, 1|0|1 — 0]0|5,
and 1|11 ~ 0]0|7. Note that the sliding window conversion can be performed
left-to-right and right-to-left as well. The results may differ syntactically, but
the asymptotic non-zero density of both representations is the same, namely
1/(w+1). In the unsigned case (i.e. T consists only of positive integers), sliding
window techniques are the method of choice.

However, a nice property of elliptic curves is that inversion is computed vir-
tually for free. In this case, it is meaningful to consider digit sets containing
negative integers, too. This reduces precomputation effort, because g~¢ may be
computed from g* on the fly, such that only the elements g!!l for i € T have
to be precomputed. However, the question arises how to construct a signed T
representation. In general, there are two strategies. The first one is to construct a
{1, +1} representation of d (also called a signed binary representation) and to
apply window methods afterwards. Here, the most common signed binary rep-
resentation is NAF (non-adjacent-form) [Rei60,IEEE], which can be obtained
from the binary representation by applying the conversion *|1|1 + x + 1]0|T
repeatedly, where T denotes —1 and * stands for any binary digit. However, the
carry-over +1 occurring in the first digit forces the recoding to be performed
from the least significant bit, i.e. right-to-left. The second strategy is to gen-
eralize the NAF recoding for w > 2 in order to obtain wNAF [Sol00,BSS99]
(here, the non-adjacent property states that among any w adjacent bits, at
most one is non-zero). According to [BSS99], this strategy is the optimal one
for w > 3. But unfortunately, this strategy suffers from the same drawback as
the first one, namely as carry-overs are required, the recoding is restricted to be
done right-to-left. Consequently, all exponentiation strategies based on signed
T -representations require O(n) bits of RAM additional memory to store the
recoded exponent. Solely in the case of w = 2, Joye and Yen proposed a left-
to-right binary recoding algorithm [JY00]. But it has been an unsolved problem
to generate a left-to-right recoding algorithm for a general width w > 2. Note
that the asymptotic non-zero density of wINAF is the same as for the unsigned
sliding window method on binary, namely 1/{w + 1). Therefore, wNAF can be
seen as its natural signed analogue, and we guess that there could be a carry-
free generation method for wNAF. In this paper, the term carry-free refers to
an algorithm that transforms the input string in situ, i.e. in each step only the
knowledge of a fixed number of consecutive input bits is necessary.

TERAM LING

126 Katsuyuki Okeya et al.

1.3 Our Contributions

The aim of this paper is to solve both problems as follows: (1) we define a new
canonical representation class of signed binary. We call it MOF (Mutual Opposite
Form) and prove that each integer can be uniquely represented as a MOF. But
the outstanding property of MOF is that it can be efficiently developed from a
binary string right-to-left or left-to-right, likewise. Consequently, analogue to the
unsigned case, sliding window methods may be applied to receive left-to-right
and right-to-left recoding schemes for general width w. Surprisingly, applying the
right-to-left width w sliding window method on MOF yields wNAF. However,
the observation that in the unsigned case right-to-left sliding window yields
an unsigned string with non-adjacent property stresses the analogy between
unsigned Binary and signed MOF. Therefore we achieve a carry-free wNAF
generation, a benefit of its own.

(2) Our major aim is to develop a left-to-right recoding algorithm, and this
is achieved straightforwardly by applying the width w sliding window method
left-to-right on MOF. We call the so-defined class wMOF and prove that each
integer can be uniquely represented as a wMOF and that the asymptotic non-
zero density of wMOF equals 1/(w+1), which is the same as for wNAF. Therefore
the classes wWNAF and wMOF may be seen as dual to each other. In general our
proposed algorithm asymptotically requires additional O(w) bits of RAM, which
is independent from the bit size n and dramatically reduces the required space
comparing with previous methods. Consequently, due to its left-to-right nature,
the new scheme is by far more convenient with respect to memory consumption
than previous schemes. Interestingly, a straight-forward proof shows that for
w = 2 the proposed method produces the same output as the Joye-Yen recoding,
but 2MOF is more efficient in terms of counting the number of basic operations.

We finish this work with some explicit algorithms, proving that the proposed
schemes are indeed useful for practical purposes. For example, we develop gen-
erating algorithms for wMOF based on efficient table-lookups, and we show how
to exploit wMOF for implementing on-the-fly elliptic curve scalar multiplication.

2 Signed Representations

In this section we review some signed representations, which are important in
connection with elliptic curve scalar multiplication. For the sake of simplicity,
we only deal with non-negative integers d in the following. We call d = 3, d;2°
a 7T-representation, if 7 is a set of integers and d; € T U {0} holds for each
i. If 7 contains negative integers, we speak of signed representations, and if 7°
equals {1}, of signed binary representations. In general, signed binary repre-
sentations are redundant. The most established one is NAF (non-adjacent form),
introduced by Reitwiesner 1960 [Rei60]. A generalization of Reitwiesner’s NAF
recoding idea can be found in [Pro00,Avi61]. NAF can be easily defined by the
property that at most one out of two consecutive digits is non-zero. Reitwiesner
was able to show that ignoring leading zeros each integer has a unique NAF

TERAM LING

Signed Binary Representations Revisited 127

representation. For this reason, some authors call NAF a canonical signed bi-
nary representation [EK94]. In addition, as shown among others by Jedwab and
Mitchell [JM89], NAF representation provides the minimal Hamming weight.
Consequently, the NAF representation of the exponent is the optimal choice if
signed methods are meaningful and no precomputation is considered. It was first
pointed out by Morain and Olivos that NAF can be used to speed up elliptic
curve scalar multiplication [MO90].

However, the situation is less clear if extra memory is available and precom-
putation is admitted. In this case, signed representations using larger digit sets
T should be taken into account. One strategy to construct a signed representa-
tion is to apply sliding window methods on signed binary representations. But as
signed binary representation is redundant, the question arises which representa-
tion is the best for this purpose. Indeed, this is assumed to be an open problem
by De Win et al. [WMPWO98]. There are several methods to construct signed
binary representations as a base for sliding window schemes [KT92,WMPW9§],
but none of these can be performed left-to-right. In this paper, we will develop a
left-to-right recoding scheme, which is of high value in connection with memory
constraint devices.

A different approach is wNAF. Instead of applying window techniques to
signed binary representations, wNAF is computed directly from binary strings
using a generalization of NAF recoding. First we review the definition of wNAF
as stated in [Sol00].

Definition 1 (WNAF). A sequence of signed digits is called wNAF iff the fol-
lowing three properties hold:

1. The most significant non-zero bit is positive.
2. Among any w consecutive digits, at most one is non-zero.
3. Each non-zero digit is odd and less than 2“1 in absolute value.

Note that 2NAF and NAF are the same. Algorithm 1 describes the generation
of wNAF as proposed by Solinas [Sol00].

Algorithm 1 Generation of wNAF [Sol00]
Input: width w, an n-bit integer d
Output: wNAF 6,|6n-1]...|00 of d
1+0
while d > 1 do
if d is even then
(5«,‘ i 0
else
8; —dmods 2¥; d «—d — §;
d — d/?; 1141
return (6n,0n-1,...,00).

TERAM LING

128 Katsuyuki Okeya et al.

Here “mods” means the signed modulo, namely a mods b is defined as ¢ mod b
and —b/2 < a < b/2. The algorithm generates wNAF from the least signif-
icant bit, that is right-to-left generation again. The average density of non-
zero bits is asymptotically 1/(w + 1) for n — oo, and the digit set equals
T = {£1,43,...,£(2¥~! — 1)} which seems to be minimal. Thus wNAF and
its variants like modified window NAF [Mo6102] are optimal in the sense of the
trade-off between speed and memory for w > 3 [BSS99,BHLMOI1]. There are
several other algorithms for generating wNAF, for example see [BSS99,MOC97]
but each method needs carry-overs. Note that in the worst case all remaining
bits are affected by the carry, therefore the previously known wNAF algorithms
can not be considered as local methods. By inspecting Algorithm 1 closely, we
observe that this generation can be seen as the natural signed analogue to the
right-to-left sliding window method on (unsigned) Binary (here, mod instead of
mods is computed). Indeed, the latter method produces a representation that
fulfills the nonadjacent requirement (see Definition 1, property 3). Consequently,
we conjecture that there might be a signed binary representation that produces
wNAF when handled with sliding window conversions. The signed binary rep-
resentation introduced in the next section will also serve for this purpose.

3 MOF: New Canonical Representation
for Signed Binary Strings

In this section we present a new signed representation of integers. The proofs of
the propositions in this section are in the full version of this paper [OSSTO04].
In order to achieve a unique representation, we introduce the following special
class of signed binary strings, called the mutual opposite form (MOF).

Definition 2 (MOF).The n-bit mutual opposite form (MOF) is an n-bit signed
binary string that satisfies the following properties:

1. The signs of adjacent non-zero bits (without considering zero bits) are oppo-
site.

2. The most non-zero bit and the least non-zero bit are 1 and 1, respectively,
unless all bits are zero.

Some zero bits are inserted between non-zero bits that have a mutual opposite
sign. An example of MOF is 0100101000100110. An important observation is that
each positive integer can be uniquely represented by MOF. Indeed, we have the
following theorem.

Theorem 1. Let n be a positive integer. {n + 1)-bit MOF has 2™ pair-wise
different representations. There is the bijective map between elements of (n+1)-
bit MOF and n-bit binary strings.

From this theorem, any n-bit binary string can be uniquely represented by
(n + 1)-bit MOF. We obviously have the following corollary about the non-zero
density of MOF.

Corollary 1. The average non-zero density of n-bit MOF is 1/2 for n — oo.

TERAM LING

Signed Binary Representations Revisited 129

3.1 Converting Binary String to MOF

We show a simple and flexible conversion from n-bit binary string to (n + 1)-bit
MOF.

The crucial point is the following observation. The n-bit binary string d can
be converted to a signed binary string by computing u = 2d & d, where ‘&’
stands for a bitwise subtraction. Indeed, we convert d asfollows:

2d=dn-1| dn-2 di1 di | do |

... | [oo
6d= | dn_1 I l d; | | da | dy | do
H = dn-1 | dn—2 —dn-1 | | di—1 — d; | | di —d2 | do —d I —dpo.

Here the i-th signed bit of u is denoted by u;, namely g; = d;—1 — d; for i =
1,..,n—1land pn = dn_1, o = —dp. We can prove that the signed representation
u is MOF.

Proposition 1. The operation p = 2d&d convertsbinarystring d to its MOF p.

Algorithm 2 provides an explicit conversion from Binary to MOF.

Algorithm 2 Left-to-Right Generation from Binary to MOF
Input: a non-zero n-bit binary string d = dn—1|dn—2|-..|d1]|do
Output: MOF pn|...|u1|po of d

fin — dn_1

fori=n—1 down to 1 do

pi —di—1 —d;
o — —do,
return (fin, fin—1,..., 1, Ho)-

In order to generate the i-th bit u;, Algorithm 2 stores just two consecutive
bits d;—; andd;. This algorithm converts a binary string to MOF from the most
significant bit in an efficient way. Note that it is also possible to convert a binary
string to MOF right-to-left. Thus MOF representation is highly flexible.

Remark 1. Interestingly, the MOF representation of an integer d equals the re-
coding performed by the classical Booth algorithm for binary multiplication
[Boo51]. The classical Booth algorithm successively scans two consecutive bits
of the multiplier A (right-to-left). Depending on these bits, one of the following
operations is performed:

No operation, if (as, ai-1) € {(0,0),(1,1)},
Subtract multiplicand B from the partial product, if (as,a:i-1) = (1,0),
Add multiplicand B to the partial product, if (ai,a:i-1) = (0,1),

where a_; is defined as 0. Of course, the design goal of this algorithm was to
speed up multiplication when there are consecutive ones in the multiplier A, and
to provide a multiplication method that works for signed and unsigned numbers
as well. To our knowledge, this representation never served as a fundament of
theoretical treatment of signed binary strings.

TERAM LING

130 Katsuyuki Okeya et al.

4 Window Methods on MOF

In this section we show how to decrease the non-zero density of MOF by ap-
plying window methods on it. First we consider the right-to-left width w sliding
window method which surprisingly yields the familiar wNAF. In contrast to pre-
viously known generation methods, the new one is carry-free, i.e. in each step
the knowledge of at most w + 1 consecutive input bits is sufficient.

Then we define the dual new class wMOF as the result of the analogue left-
to-right width w sliding window method on MOF. This conversion leads to the
first left-to-right signed recoding scheme for general width w.

4.1 Right-to-Left Case: wNAF

In order to describe the proposed scheme, we need the conversion table for width
w. First, we define the conversions for MOF windows of length [, such that the
first and the last bit is non-zero:

1/1]0] ... |ojo]1 1/3[0]...|0J1]0[T
0...J0]12" 2 +1

4

110} ...|oJ1|T 0)..10|12""2 + 3 «= { 1[T]0}...JO[2[T]L ...

3 l !

o002t =3

l

1/0] ... o[T|2[T 1/0] ... ojo|T
1/0]...|0[T|o]1 0]...J0]2' 7" — 1« ¢ 1j0]...]0[T|1
~ ~ ud ~ N N e’

[{ [1

In addition, we have analogue conversions with all signs changed. To generate
the complete table for width w, we have to consider all conversions of length
1=2,3,...,w. If | <w holds, the window is filled with leading zeros.

Example: In the case of w = 3, we use the following table for the right-to-left
sliding window method:

— 001 - ool 101 . J101
Table; 53 : 001 {oﬁ 001 {Oil 003 { 1 003 {111

In an analogue way Table, gy is defined for general w. Based on this table,
Algorithm 3 provides a simple carry-free wNAF generation.

Algorithm 3 Right-to-Left Generation from Binary to wNAF

Input: width w, a non-zero n-bit binary string d = dn—1|dn-2| ... |d1|do
Output: wNAF vy|...|v1|wo of d
dn.'_w_g 1—10; dn.'.w_g 4—40;...; dn HG; d_l <—|0; 2+ 0

while i <n do
if d,‘,_l = d,‘ then
vi —0; =i+ 1
else {The MOF window begins with a non-zero digit righthand}

(1’£+w—1, sray Vg) i Tablew};Ty[dg+w._g = G‘."+w_1,di+w_3 — dg+w_g, ey (1'4_1 == d")
i1+ w
return (vn,...,v1,00)

TERAM LING

Signed Binary Representations Revisited 131

Obviously, the output of Algorithm 3 meets the notations of Definition 1,
therefore it is wWNAF. If we knew that Definition 1 provides a unique represen-
tation, we could deduce that Algorithm 3 outputs the same as Algorithm 1.
This is true, although we could not find a proof in literature. For the sake of
completeness, we prove the following theorem in the full version of this paper
[OSST04] via exploiting the uniqueness of MOF representation.

Theorem 2. Every non-negative integerd has a representation as wNAF , which
is unique except for the number of leading zeros.

4.2 Left-to-Right Case: wMOF

In this section we introduce our new proposed scheme. The crucial observation
is that as the generation Binary — MOF can be performed left-to-right, the
combination of this generation and left-to-right sliding window method leads to
a complete signed left-to-right recoding scheme dual to wNAF.

In order to describe the proposed scheme, we need the conversion table for
width w. The conversions for MOF windows of length I, such that the first and
the last bit is non-zero, are defined in exactly the same way as in the right-to-
left case (see the table in section (4.1) and reflect the assignments). To generate
the complete table for width w, we have to consider all conversions of length
1 =2,3,...,w as before. The only difference is that if [< w holds, the window
is filled with closing zeros instead of leading ones. As an example, we construct
the conversion table Table, gy, for width 4:

= 1110 1101 1001
1000} — 1000 1100} 0100 1070 } — 0030 1T } 0005 1071 } 0007
= - = — 1170 — 1101 -~ 1001 -
1000} 1000 1100} — 0100 1010 } — 0030 1111 } +— 0005 To11 } — 0007

The table is complete due to the properties of MOF. Note that because of the
equalities *1T = %01, x11 = x0T usually two different MOF-strings are converted
to the same pattern. In an analogue way, Table, gy is defined for general width
w. In this case the digit set equals 7 = {&£1,+3,...,4+2*~! — 1}, which is
the same as for wNAF. Therefore, the scheme requires only 2¥~2 precomputed
elements. Algorithm 4 makes use of this table to generate wMOF left-to-right.

In order to deepen the duality between wNAF and wMOF, we give a formal
definition of wMOF and prove that it leads to a unique representation of non-
negative integers.

Definition 3. A sequence of signed digits is called wMOF iff the following three
properties hold:

1. The most significant non-zero bit is positive.
2. All but the least significant non-zero digit x are adjoint by w-1 zeros as
follows:
— in case of 27! < lz] < 2% for an integer 2 < k < w — 1 the pattern
equals 0...020...0,
S S~
k w—k—1

TERAM LING

132 Katsuyuki Okeya et al.

—~ in case of |x| = 1 either the pattern equals z0...0 and the next lower
w—1
non-zero digit has opposite sign from x or the pattern equals 0z 0...0
w—2
and the next lower non-zero digit has the same sign as x.
If « is the least significant non-zero digit, it is possible that the number of

right-hand adjacent zeros is smaller than stated above. In addition it is not

possible that the last non-zero digit is a 1 following any non-zero digit.
3. Each non-zero digit is odd and less than 2¥~1 in absolute value.

This definition is directly related to the generation of wMOF. Note that the
exceptional case corresponding to the least significant bit takes in account that
the last window may be shorter than w.

Algorithm 4 Left-to-Right Generation from Binary to wMOF
Input: width w, a non-zero n-bit binary string d = dn_1|dn—2|...|d1|do
Output: wMOF 6 = 6,|6,-1]...|61]60 of d
d_1—0;d,—0;i—n
while: > w—1do
if d;‘ = di...]_ then
;1 0; i —i—1
else {The MOF window begins with a non-zero digit lefthand}
(6:,8i-1...,08i—ws1) « Table,gw(di-1 —di,di—2 — di—1,...,di—w — di—ws1)
il —w
if i > 0 then
(5{, (5,‘,_1 ceay 150} — Table,-+1§-;'a}(dg_1 == dg, d§_2 = d§_1, e ,do = dl, —do)
return (6,,0n-1,...,01,00).

Regarding the uniqueness and the non-zero density of wMOF, we have the
following two theorems, proven in the full version of this paper [OSST04].

Theorem 3. Every non-negative integer d has a representation as wMOF, which
is unique except for the number of leading zeros.

Theorem 4. The average non-zero density of wWMOF is asymptotically 1/(w+1)
forn — oo.

We finish this section with a detailed example of the conversion from Binary
to MOF and the effects of several sliding window methods.

Bin 11101001100100010101110101010111
MOF 1007110107011T00171171100T111171710601

2MOF 1000171010100100010110001010107001
3MOF 100003000300100003010000300307001
4MOF 00070005000070000050007000500300T
NAF 1007101010100100t107107T00010T7010100T
3NAF 100003000300100010030007003003001
ANAF 000700050003000700050000300050007

TERAM LING

Signed Binary Representations Revisited 133

4.3 Left-to-Right Generation of (w)NAF

Although in the preceding section we have presented left-to-right generated
signed representations that are at least as useful as (w)NAFs, from a theoretical
point of view it is still an interesting question how to generate the (w)NAF from
the most significant bit. The reason for the difficulty is a carry caused by the
statement d «— d—J; of Algorithm 1. To illustrate the problem, note that the bi-
nary strings 101010 and 101011 that only differ in the last digit are converted to
the NAFs 101010 and 1010101, respectively, which differ completely. Intuitively,
it is not possible to generate NAF left-to-right without scanning any higher bits.
In this section we exploit the MOF representation to discuss how many bits have
to be scanned and how many additional storage is required.

Note that we obtain NAF if we apply the conversions 1T ~ 01 and 11 + 0T
right-to-left on MOF. However, performing the same conversions left-to-right
may yield a different result. The critical sequence is of the shape

011...10, or 0I1...10.
S——r S——
odd odd

Note that this sequence corresponds to the binary string 1010...011. If the
length of the sequence of alternating bits is even, then both of left-to-right and
right-to-left conversions uniquely generate the same string, namely bb...bb
0b...0b for b € {£1}. But if the length is odd, left-to-right we obtain b. .. bb s
0b...0bb, whereas right-to-left generates bb...bb — b0b0b...0b. Consequently,
if this sequence appears, we have to scan it completely in order to compute the
corresponding NAF. However, the first bit and the length of the critical sequence
can uniquely determine the corresponding NAF, hence it is not necessary to store
the sequence. Thus, the additional required storage in RAM is at most a few bits,
namely the bit length of the critical sequence. Therefore, we obtain Algorithm 5.

Algorithm 5 Left-to-Right Generation Binary to NAF
Input: a non-zero n bit binary string d = dn—1|dn—2|...|d1]do
Output: NAF v,|vn_1]|...|v|vo of d
1ein; dn—0; doy —0; dog—0
while i > —1 do
bediy—d;
if b = 0 then
v —i0; ie—i—1
else {b # 0}
find the largest j s.t. di—j_1 = di_;
if j is odd then

Vi by vi1 005 vicg 1 =by g Viejyo 105 viejun by vin; 10
else {j is even}
vi 05 viey by Viejie 10 Viejp1 — by viej <40

1e—i1—7j7—1
return (vn,Vn—1,....,¥1,%0)

TERAM LING

134 Katsuyuki Okeya et al.

It is also possible to construct a left-to-right generation algorithm of wNAF,
w > 2. In this case, the critical sequence is of the following shape

0...00,‘(1,‘..1...0.10,00...0, (1)

w—1 w—1

where the most and least (w — 1) bits are zero and no zero run of length w — 1
appears in a;a;-1...a1ag. If it is possible to convert the critical sequence (1)
left-to-right to wNAF, then we can generate wNAF from any MOF. In order
to find the corresponding wNAF of (1), we scan the whole sequence right-to-
left and obtain the segmentations that are produced by the right-to-left sliding
window conversion MOF — wNAF. Note that there is no need to store the width
w windows, but we must detect and store the length of the zero runs between
any two windows. In addition, the content of the left-most window, which may
be smaller than w, has to be transfered. Afterwards, the sequence (1) can be
rewritten as follows:

0...0|r[bi|ti|...lb2|t2]b1|t1|0...0, (2)

w—1 w—1

where 7 consists of at most w — 1 consecutive bits of MOF (and may be the

empty word €), b; € {¢,0,00,...,0...0}, and each ¢; is a length w pattern of
w—2

MOF, corresponding to an entry of Table,, gy;,. Here we have to store r and the b;.

Based on these informations, the corresponding wINAF is completely determined

left-to-right. Thus we need to store at most (w — 1 + logy(w — 2)) %) bits.

4.4 Comparison with Previous Methods

In this section we clarify the difference to previous schemes for generating signed
representations.

In 1992, Koyama and Tsuruoka developed a new recoding technique to con-
vert a binary string to a signed binary string [KT92]. Following this step, a
left-to-right sliding window method is applied. The new signed binary represen-
tation has the benefit that it reduces the asymptotic non-zero density, but it
requires the sub-optimal digit set 7 = {+1,+3,...,+(2% — 3)}. If the sliding
window method is directly applied to NAF, due to the NAF property fewer pos-
sible window contents have to be taken into account, resulting in a smaller digit
set 7. An easy calculation shows that the largest odd NAF consisting of at most
w digits equals 3(2¥*! — 1) forodd w (cf. 1010...01) and £(2¥*! +1) — 2 for
even w (cf. 1010...1001). For this reason, De Win et al. prefer the latter method
for elliptic curve scalar multiplication [WMPWO98]. Although there are slightly
more point operations needed to evaluate the scalar multiplication if the expo-
nent is represented as wNAF compared to the [WMPWO98] representation, the
required precomputation is less in the wNAF case because of the smaller digit
set. Indeed, Blake et al. proved that wNAF is asymptotically better than sliding
window on NAF schemes if w > 3 [BSS99]. In the context of memory constraint

TERAM LING

Signed Binary Representations Revisited 135

devices, a small digit set 7 is even more valuable, because fewer precomputed el-
ements have to be stored. But as none of the preceding methods is a left-to-right
scheme, each one requires additional memory O{n) to store the recoded string
before starting the left-to-right evaluation of the scalar product. Note that in
the context of sliding window on signed binary schemes like [KT92,WMPW98]
the sliding window conversion may be performed left-to-right, but to obtain the
signed binary representation we have to proceed right-to-left in either case.

In contrast, wMOF turns out as a complete left-to-right scheme. Conse-
quently, there is no additional memory required for performing the scalar mul-
tiplication. In addition, due to the properties of MOF, the digit set of wMOF is
the same as for wNAF and therefore minimal.

In order to compare the proposed algorithms with previous ones, we summa-
rize the memory requirements of the new left-to-right schemes in the following
theorem.

Theorem 5. Algorithm 4 requires only O{w) bits memory for generating wMOF.
Algorithm 5 requires at most (logan) bits memory for generating NAF left-to-
right. For general width w, there is a left-to-right algorithm that generates wNAF
with at most (w — 1 + logy(w — 2))2) bit memory.

Next, we compare the characterizing properties for the proposed schemes and
some previous ones. In the second column, the value #7 /2 equals the number
of elements, that have to be precomputed and stored. In the last column, we
describe the amount of memory (in bits) that is required additionally to this
storage, e.g. to construct the signed representation or to store the converted
string in right-to-left schemes. As usual, n equals the bit-length of the scalar,
and SW is an abbreviation for sliding window.

Table 1. Comparison of Memory Requirement and Non-zero Density

| Scheme | #T)2 [1/N.-z. Density[Additional Memory|
wNAF [S0100,BSS99,MOC97] ow—2 w1 O(n)
[KT92] ov-1_1 w+ 3 O(n)
NAF+SW as [WMPW98] [3(2* + (—1)**)|w + £ — S5 O(n)
wMOF, Sec. 4.2 go—2 w1 O(w)
l-t-r wNAF, Sec. 4.3 o w+1 Ol 02
) O(E20), w > 2

S Applications to Elliptic Curve Scalar Multiplication

Let K = GF(p) be a finite field, where p > 3 is a prime. Let E be an elliptic
curve over K. The elliptic curve E has an Abelian group structure with identity
element O called the point of infinity. A point P € E is represented as P = (z, y).
The inverse of point P = (z,y) is equal to —P = (z,—y), hence it can be
computed virtually for free. The elliptic curve additions Py + P, and 2P are
denoted by ECADD and ECDBL, respectively, where Py, P2, P € E.

TERAM LING

136 Katsuyuki Okeya et al.

As elliptic curves are written additively, exponentiation has to be under-
stood as scalar multiplication. The familiar binary algorithms are adopted by
computing ECADD instead of multiplying and ECDBL instead of squaring.

In general, we distinguish two main concepts of performing scalar multiplica-
tion: left-to-right and right-to-left. Here, d is represented as d = >, d;2¢, d; €
{0,1}, dn-1 = 1.

Algorithm Binary Method, l-t-r Algorithm Binary Method, r-t-I

Input: P; d =dn_1]...|d1]do Input: P; d =d,—1]...|di|do
Output: scalar multiplication dP Output: scalar multiplication dP
QP Qi = P; Qa0
fori=n—2 down to 0 fori=0ton—1

Q — ECDBL(Q) ifd; =1

ifdi=1 Q2 <+ ECADD(Q2,@1)

Q — ECADD(Q, P) Q1 — ECDBL(Q1)

return Q. return Q.

Though in general both methods provide the same efficiency, the left-to-right
method is preferable due to the following reasons:

1. The left-to-right method can be adjusted for general 7 -representationsof d
like wNAF or wMOF in a more efficient way than the right-to-left method.

2. The ECADD step in the left-to-right method has the fixed input tP, t € 7.
Therefore it is possible to speed up these steps if P is expressed in affine
coordinates for each ¢t € 7, since some operations are negligible in this case.
The improvement for a 160-bit scalar multiplication is about 15% with NAF
over right-to-left scheme in the Jacobian coordinates [CMQO98].

3. The right-to-left method needs an auxiliary register for storing 2*P.

5.1 Explicit Implementation for w = 2

In the following we show how the ideas of Section 4.2 lead to an efficient left-to-
right scalar multiplication algorithm. For the sake of simplicity, we begin with
the special case w = 2. The treatment for general width w can be found in the
full version of this paper [OSST04].

Let d be a binary string. The MOF and 2MOF representation of d are
denoted by p and 4, respectively. The proposed scheme scans the two bits
of p from the most significant bit, and if the sequences 11 or 11 appear, we
perform the following conversions: 11 + 01 and 11 ~ 0I. Two consecutive
bits of d determine the corresponding bit of MOF u. Thus, three consecutive
bits of d can generate the corresponding bit of the 2MOF 4. In order to find
an efficient implementation, we discuss the relationship of bit representation
among p, 4, and d. The i-th bits of u,d,d are denoted by s, d;,d;, respec-
tively. Because of the relation p; = d;—; — d;, we know p; = 0 if and only
if d;_1 = d;. The other 3-bit binary strings (d;,d;—1,d;—2) where d;_1 # d;
are only (di,di—1,d;—2) = (0,1,1),(1,0,0),(0,1,0),(1,0,1), corresponding to
(6:,6i-1) = (1,0),(-1,0),(0,1),(0,—1). Thus, there is a one-to-one map be-
tween (0;,6;—1) and (d;, di—1,d;—2) leading to the explicit Algorithm 6.

TERAM LING

Signed Binary Representations Revisited 137

Algorithm 6 Explicit Left-to-Right Generation of 2MOF
Input: a non-zero n-bit binary string d = dn—1|dn—2|...|d1|do
Output: 2MOF § = 6,|6n-1]-..|61|60 of d
d_] — 0
i+ c+ 1 for the largest ¢ with d. # 0
On —10; Spe1 = 0;...; dig1 <10
while: > 1 do
if d;‘..;. = d«. then
6; —0; ie—=i—1
else {d.ﬁ-'l ?5 d@}
i ——di+di2; 61— —digt+dig;iei—2
if i =0 then
g «— —dp
return d,,0,-1,...,01,00.

Finally, Algorithm 7 merges the recoding stage and evaluation stage of scalar
multiplication.

Algorithm 7 Left-to-Right Scalar Multiplication Algorithm (On the Fly), w = 2

Input: a point P, a non-zero n-bit binary string d = dn—1|dn—_2|...|d1|do
Output: product dP
d_1—0; dp—=0
i+ ¢+ 1 for the largest ¢ with d; # 0
if d;_2 = 0 then
Q—P;,i—=i-2
else {d«g_z =]}
Q —ECDBL(P); i «—i—2
while i > 1 do
if d;_1 = d; then
Q@ —ECDBL(Q); i «i—1
else {dg..l # dg}
Q —ECDBL(Q)
if (di,d"_z) = (1, 1) then
Q —ECDBL(Q); Q —ECADD(Q,—P)
else if (di,di—2) = (1,0) then
Q —ECADD(Q,—P); Q@ —ECDBL(Q)
else if (d;,di—2) = (0,1) then
Q —ECADD(Q, P); Q —ECDBL(Q)
else if (d;,di—2) = (0,0) then
Q —ECDBL(Q); Q@ —ECADD(Q, P)
ie—1i—2
if i =0 then
Q —ECDBL(Q); @ —ECADD(Q, —doP)

return Q.

The advantage of the previous algorithm is that it reduces the memory re-
quirement since it does not store the converted representation of d.

TEAM LING

138 Katsuyuki Okeya et al.

6 Conclusion

It was an unsolved problem to generate a signed representation left-to-right for
a general width w. In this paper we presented a solution of this problem. The
proposed scheme inherits the outstanding properties of wNAF, namely the set
of pre-computed elements and the non-zero density are same as those of wNAF.
In order to achieve a left-to-right exponent recoding, we defined a new canonical
representation of signed binary strings, called the mutual opposite form (MOF).
An n-bit integer can be uniquely represented by (n+1)-bit MOF, and this repre-
sentation can be constructed efficiently left-to-right. Then the proposed exponent
recoding is obtained by applying the width w (left-to-right) sliding window con-
version to MOF. The proposed scheme is conceptually easy to understand and
it is quite simple to implement. Moreover, if we apply the width w (right-to-left)
sliding window conversion to MOF, we surprisingly obtain the classical wNAF.
This is the first carry-free algorithm for generating wNAF. Therefore the pro-
posed scheme has a lot of advantages and it promises to be a good alternative to
wNAF. We believe that there will be many new applications of this algorithms
for cryptography.

References

[Avi6l] Aviziensis, A., Signed digit number representations for fast parallel arith-
metic, IRE Trans. Electron. Comput., 10:389-400, (1961).

[BSS99] Blake, I., Seroussi, G., and Smart, N., Elliptic Curves in Cryptography,
Cambridge University Press, 1999.

[BHLMO1] Brown, M., Hankerson, D., Lopez, J., and Menezes, A., Software Im-
plementation of the NIST Elliptic Curves Over Prime Fields, Topics in
Cryptology - CT-RSA 2001, LNCS 2020, (2001), 250-265.

[Boo51] Booth, A., A signed binary multiplication technique, Journ. Mech. and
Applied Math., 4(2), (1951), 236-240.

[CMO98] Cohen, H., Miyaji, A., and Ono, T., Efficient Elliptic Curve Exponenti-
ation Using Mixed Coordinates, Advances in Cryptology - ASIACRYPT
’98, LNCS1514, (1998), 51-65.

[EK94] Egecioglu, O, and Koc, C, Exponentiation using Canonical Recoding, The-
oretical Computer Science, 129(2), (1994), 407-417.

[Gor98] Gordon, D., A survey of fast exponentiation methods, Journal of Algo-
rithms, vol.27, (1998), 129-146.

[IEEE] IEEE P1363, Standard Specifications for Public-Key Cryptography.
http://groupe.ieee.org/groups/1363/

[IM89] Jedwab, J., and Mitchell, C.J., Minimum Weight Modified Signed-digit
Representations and Fast Exponentiation, Electronics Letters 25, (1989),
1171-1172.

[JY00] Joye, M., and Yen, S.-M., Optimal Left-to-Right Binary Signed-digit Expo-
nent Recoding, 1EEE Transactions on Computers 49(7), (2000), 740-748.

[Knu81] Knuth, D. E., The art of computer programmming, vol. 2, Seminumerical

Algorithms, 2nd ed., Addison-Wesley, Reading, Mass. (1981).
[Kob87] Koblitz, N., Elliptic Curve Cryptosystems, Math. Comp. 48, (1987), 203-
209.

TERAM LING

[KT92]

[Mil86]

[MO90]

[MOC97]

[MOV96]

[Mo102]

[OC099]

[OSSTO04]

[Pro00]

[Rei60]
[Sol00]

[WMPWIS]

Signed Binary Representations Revisited 139

Koyama, K. and Tsuruoka, Y., Speeding Up Elliptic Curve Cryptosys-
tems using a Signed Binary Windows Method, Advances in Cryptology -
CRYPTO ’92, LNCS740, (1992), 345-357.

Miller, V.S., Use of Elliptic Curves in Cryptography, Advances in Cryp-
tology - CRYPTO ’85, LNCS218, (1986), 417-426.

Morain, F., Olivos, J., Speeding Up the Computations on an Elliptic Curve
using Addition-Subtraction Chains, Informa. Theor. Appl., 24, (1990),
pp-531-543.

Miyaji, A., Ono, T., and Cohen, H., Efficient Elliptic Curve Exponentia-
tion, Information and Communication Security, ICICS 1997, LNCS 1334,
(1997), 282-291.

Menezes, A., van Oorschot, P. and Vanstone, S., Handbook of Applied
Cryptography, CRC Press, 1996.

Moller, B., Improved Techniques for Fast Exponentiation, The 5th In-
ternational Conference on Information Security and Cryptology (ICISC
2002), LNCS 2587, (2003), 298-312.

O’Connor, L., An Analysis of Exponentiation Based on Formal Lan-
guages, Advances in Cryptology - EUROCRYPT ’99, LNCS1592, (1999),
375-388.

Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T., Signed Binary
Representations Revisited, Cryptology ePrint Archive (2004).
http://eprint.iacr.org/

Prodinger, H., On Binary Representations of Integers with Digits {-1,0-
1}, Integers: Electronic Journal of Combinatorial Number Theory O,
(2000)

Reitwiesner, G. W., Binary arithmetic, Advances in Computers, vol.l,
(1960), 231-308.

Solinas, J.A., Efficient Arithmetic on Koblitz Curves, Designs, Codes and
Cryptography, 19, (2000), 195-249.

Win, E., Mister, S., Preneel, B., and Wiener, M., On the Performance of
Signature Schemes Based on Elliptic Curves, Algorithmic Number The-
ory, ANTS-III, LNCS 1423, (1998), 252-266.

TERAM LING

Compressed Pairings

Michael Scott"* and Paulo S.L.M. Barreto’

' School of Computing, Dublin City University
Ballymun, Dublin 9, Ireland
mike@computing.dcu.ie
2 Escola Politécnica, Universidade de Sao Paulo
Av. Prof. Luciano Gualberto, tr. 3, 158
BR 05508-900, Sdao Paulo(SP), Brazil
pbarreto@larc.usp.br

Abstract. Pairing-based cryptosystems rely on bilinear non-degenerate
maps called pairings, such as the Tate and Weil pairings defined over
certain elliptic curve groups. In this paper we show how to compress
pairing values, how to couple this technique with that of point compres-
sion, and how to benefit from the compressed representation to speed
up exponentiations involving pairing values, as required in many pairing
based protocols.

Keywords: pairing-based cryptosystem, efficient implementation.

1 Introduction

With the discovery of a viable identity-based encryption scheme based on the
Weil pairing [5], pairing-based cryptography has become of great interest to
cryptographers. Since then, pairing-based protocols — many with novel properties
— have been proposed for key exchange [30], digital signature [6], encryption [5],
and signcryption [28]. Although the Weil pairing was initially proposed as a
suitable construct for the realisation of such protocols, it is now usually accepted
that the Tate pairing is preferable for its greater efficiency. Supersingular elliptic
curves were originally proposed as a suitable setting for pairing-based schemes;
recent work has shown that certain ordinary curves are equally suitable, and
offer greater flexibility in the choice of security parameters [3, 26]. Fast computer
algorithms for the computation of the Tate pairing on both supersingular and
ordinary curves have been suggested in [1, 3, 12].

The Tate pairing calculation involves an application of Miller’s algorithm [24]
coupled to a final exponentiation to get a unique value. A typical protocol step
requires the calculation of a pairing value followed by a further exponentiation
of the result.

In this paper we explore the concept of compressed pairings, their efficient
computation, and the subsequent processing (typically exponentiation) of pairing
values. Our main contribution is to show that one can effectively reduce the

* Supported in part by Enterprise Ireland RIF grant IF/2002/0312/N

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 140-156, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

Compressed Pairings 141

bandwidth occupied by pairing values without impairing security nor processing
time; in some cases, one even obtains a 30%—40% speed enhancement. Our work
gives further motivation for the approach of Galbraith et al. [14], who investigate
the bit security of pairing values and show that taking the trace causes no loss
of security.

This paper is organized as follows. Section 2 introduces basic mathemati-
cal concepts. Section 3 discusses laddering exponentiation of pairing values, and
introduces a laddering variant of the BKLS [1] algorithm to compute pairings.
Section 4 describes how to compress pairing values to half length, and establishes
a connection with the techniques of point compression and point reduction. Sec-
tion 5 defines a ternary exponentiation ladder for finite fields in characteristic 3.
Section 6 describes how to compress pairing values to one third of their length,
presents a more efficient and slightly simpler version of the Duursma-Lee algo-
rithm [11] that enables pairing computation in compressed form, and discusses
improved variants of point compression and point reduction in characteristic 3.
We summarise our work in section 7.

2 Mathematical Preliminaries

The theory behind elliptic curve cryptography is well documented in standard
texts. The reader is referred to [23] for more background.

Let p be a prime number, m a positive integer and F,~ the finite field with
p™ elements; p is said to be the characteristic of Fp, and m is its extension
degree. Unless otherwise stated, we assume p # 2 throughout this paper.

Let ¢ = p™. An elliptic curve E(Fg) is the set of solutions (z,y) over Fq to
an equation of form E : y? + a1y + asy = z° + a22? + a4 + a¢, where a; € Fy,
together with an additional point at infinity, denoted O. The same equation
defines curves over Fgx for k > 0 (although note that the a; remain in Fy). The
number of points on an elliptic curve E(Fgx), denoted #E(Fg), is called the
order of the curve over the field Fgx.

An (additive) Abelian group structure is defined on E by the well known
secant-and-tangent method [29]. Let n = #E(Fgx). The order of a point P € E
is the least nonzero integer r such that rP = O, where rP is the sum of r terms
equal to P. The order of a point divides the curve order. For a given integer r,
the set of all points P € E such that rP = O is denoted E[r]. We say that E[r]
has embedding degree k if r | ¢* —1 and r 4 ¢* — 1 for any 0 < s < k. In this
paper we assume k > 1. It is in fact not difficult to find suitable curves with
this property for relatively small values of k as described in [2,7, 10]. We are
interested here in curves where k is even, as this case facilitates fast calculation
of the Tate pairing [3].

For our purposes, a divisor is a formal sum A = Y pap(P) of points on
the curve E(Fg). An Abelian group structure is defined on the set of divisors
by the addition of corresponding coefficients in their formal sums; in particular,
nA = Y p(nap)(P). The degree of a divisor A is the sum deg(A) = > pap.
Let f : E(Fyx) — Fgx be a function on the curve and let deg(.A) = 0. We define

TERAM LING

142 Michael Scott and Paulo S.L..M. Barreto

f(A) = [1p f(P)*P. The divisor of afunction fis (f) = Y pordp(f)(P). A
divisor A is called principal if A = (f) for some function (f). A divisor A is
principal if and only if deg(4) = 0 and)" papP = O [23, theorem 2.25]. Two
divisors A and B are equivalent, A ~ B, if their difference .4 — B is a principal
divisor. Let P € E(F,)[r] where r is coprime to ¢, and let .4p be a divisor
equivalent to (P) — (O), under these circumstances the divisor rAp is principal,
and hence there is a function fp such that (fp) = rAp = r(P) — r(O). The
(reduced) Tate pairing of order ris the map e, : E(Fg)[r] X E(Fgx) — IF7. given

by e-(P,Q) = fp(’D)(qk“l)/’ for some divisor D ~ (Q) — (O). The Tate pairing
is bilinear and non-degenerate; assuming k > 1, one gets e.(P,Q) # 1 if Q is
chosen from a coset containing a point of order r which is linearly independent
from P. The computation of fp(D) is achieved by an application of Miller’s
algorithm [24], whose output is only defined up to an r-th power in]F;k. The final

exponentiation to the power of (g — 1)/r is needed to produce a unique result,
and it also makes it possible to compute fp(Q)rather than fp(D) [1]. Sometimes
we will drop the r subscript of the Tate pairing, writing simply e(P, @).

2.1 Lucas Sequences

Lucas sequences provide a relatively cheap way of implementing Fg2 exponen-
tiation in a subgroup whose order divides ¢ + 1. They have been extensively
studied in the literature, and a fast “laddering” algorithm for their computa-
tion has been developed [18,19,32], using ideas originally developed by Lehmer
and Montgomery [20,27]. Lucas sequences have been suggested as a suitable
vehicle for certain public-key schemes (see [4]). The laddering algorithm can in
fact be used as an alternative to the standard square-and-multiply approach to
exponentiation in any Abelian group, but it is particularly well-suited for Lu-
cas sequences and certain parameterisations of elliptic curves [19]. The authors
of [19] go on to emphasise that the laddering algorithm requires very little mem-
ory, facilitates parallel computing, and has a natural resistance to side-channel
attacks when used in a cryptographic context.

The Lucas sequence consists of a pair of functions Uk, Vi : Fg x Fq — F,.
Commonly one is interested in computing Ux(P,1) and Vi(P,1) for some field
element P, in which case we write simply Ux{P) and V4 (P) or omit the arguments
altogether. For this distinguished case the sequences are defined as

Up=0, U1 =1, Ugy1 = PUp — U4
Ww=2, V=P, Viq1 =PV, —Viy

Only the Vi sequence needs to be explicitly evaluated, as we also have the
relationship

U = (PVi — 2Vi_1)/(P? — 4)

The fast laddering algorithm is described in Appendix A. Lucas sequences
are useful in the exponentiation of certain field elements, as we will see next.

TERAM LING

Compressed Pairings 143

3 Exponentiating Pairing Values

We consider first the case of embedding degree & = 2 (although the following
discussion also covers the case k = 2d with the substitution ¢ — g%). Recall that
we assume the characteristic to be odd.

We represent an element of the field Fg2 as x + 4y, where z,y € Fy, and

= ¢ for some quadratic non-residue § € F,. Assume in what follows that all
arlthmetlc is in the field F,.

The final exponentiation in this case consists of a raising to the power of
(g —1){q + 1)/r. This can be considered in two parts — exponentiation to the
power of ¢ — 1 followed by exponentiation to the power of (g + 1)/r. Now if the
output of Miller’s algorithm is z + iy € Fg2, then

(@ +iy)'™" = (z +iy)?/(z +iy) = (z — iy)/(z +iy)

which is obviously much quicker than the standard square-and-multiply algo-
rithm. The element a + b = (z + iy)?~! calculated in this fashion has the
property:

a?-6b? =1 (1)
where a? — §b? is called the norm of a+ib; this property, easily verified by simple
substitution, is maintained under any subsequent exponentiation. An element of
this form in F,2 is called unitary [16]. Also observe that (a + ib)~! = (a — ib)
for a unitary element. In fact, any element of Fyz whose order divides q + 1 will
have this property.

A unitary element can obviously be determined up to the sign of b from a
alone, using equation 1. And this is our first observation - the output of the Tate
algorithm contains some considerable redundancy. It could be represented by a
single element of Fy and a single bit to represent the sign of b, rather than as a
full element of Fge.

One can efficiently raise a unitary element of Fg2 to a power m by means of
Lucas sequences. This is a consequence of the observation that

(a+bi)™ = Vin(2a)/2 + U (2a)bi,

as one can verify by induction. As pointed out above, only V;,(2a) needs to be
explicitly calculated.

If M is a multiplication and S a squaring in Fg, then the computational cost
of this method to compute (a + b)™ is therefore 1M + 1S per step, where a
step involves the processing associated with a single bit of m (see appendix A).
The conventional binary exponentiation algorithm in Fg. takes 1 squaring and
about 1/2 multiplication in Fg2 for an overall cost of roughly 2§ + SM/2 per
step. If § = —1, then this can be reduced to 25 + 3M/2 per step'. Thus the
improved algorlthm costs about 60% as much as the basic binary square-and-
multiply method. When memory is not an issue the binary algorithm can be

"If @ +bi is unitary and § = —1, one can compute (a+bi)? as (2a% — 1)+ [(a+b)% 14,
and (a+bi)(c+di)as (u—v)+(w—u—v)iwhere u = ac, v = bd, w = (a+b)(c+d).

TERAM LING

144 Michael Scott and Paulo S.L.M. Barreto

implemented by using windowing techniques, as described in [15]. However the
laddering algorithm proposed here for unitary elements will always be faster
than a conventional binary algorithm for a general element in F2.

Note that this improvement is relevant not only for the second part of the
final exponentiation of the Tate pairing, but for any exponentiation directly
involving pairing values, as happens in many pairing-based protocols [5,17,28].

3.1 A Laddering Pairing Algorithm

For U,V € E(F,), define gy,v to be the line through U and V. For alla,b € Z,
the line function satisfies (gappp) = (aP) + (bP) + (—[a + b]P) — 3(0).

Let P € E(Fy), and for ¢ € Z let f. be a function with divisor (f.) =
¢(P)—(cP)—(c—1)(0). One can show that fo4s(D) = fo(D)- fo(D)-gapr,sp(D)/
9a+b]P,—[a+b] p(D) up to a constant nonzero factor. This is called Miller’s for-
mula. In the computation of the Tate pairing e,{P, Q) for even & and a careful
choice of P and Q (see [l,3]), this formula can be simplified to f,+5(Q) =
fa(Q) - f5(Q) - gaPpP(Q).

Let (r¢,...,70)2 be the binary representation of 7. By coupling Miller's simpli-
fied formula with Montgomery's scalar multiplication ladder, we get a laddering
version of the BKLS algorithm [1] to compute e,(P, @):

Laddering BKLS algorithm to compute e, (P, Q):

vg — 1, v7 « 1
Ry — P, Ry « 2P
for i —t—1 downto 0 do
if 7, =0 then
Vo — V3 gRo,R(Q), R1 «— Ro+ Ry
Ry « 2Ry, v1 « vo - gRr,,P(Q)
else
v — v gr, R (Q), Ro — Ro+ Ry
Ry « 2Ry, v « v1-9gr,,-pP(Q)
end if
end for

k_
return v§ /"

Although this algorithm has no computational advantage over the original
BKLS, it may be useful in the same context of the laddering algorithms described
in [19].

4 Compressing Pairings to Half Length

Instead of keeping the full a + bi value of the Tate pairing, it may be possible
for cryptographic purposes to discard b altogether, leaving the values defined

TERAM LING

Compressed Pairings 145

only up to conjugation, which means one of the pairing arguments will only be
defined up to a sign:

e(PQ)=a+bi=a—bi=(a+bi) ' =e(P,Q) ! =e(P,-Q).

This is similar to the point reduction technique, whereby instead of keeping
Q = (z,y) one only keeps the abscissa z.

Definition 1. The Fy-trace of an element u € Fp2 is the sum of the conjugates
of u, tr(u) =u+ ud.

Notice that tr(a + ib) = (a + ib) + (@ — ib) = 2a, in effect discarding the
imaginary part. We define the compressed Tate pairing (P, Q) as tr(e(P,Q)) *.

4.1 Point Reduction

Point reduction is an optimization technique introduced by Miller in 1985 [25]. It
consists of basing cryptographic protocols solely on the z coordinate of the points
involved rather than using both coordinates. This setting is possible because the
z coordinate of any multiple of a given point P depends only on the z coordinate
of P. A related but less efficient technique is that of point compression, which
consists of keeping not only the z coordinate but also a single bit 8 from the y
coordinate to choose between the two roots yy = ++/z3 + az + b.

Some pairing-based cryptosystems have been originally defined to take profit
from point reduction. An example is the BLS signature scheme [6], where the
signature of a message represented by a curve point M under the signing key s is
the 2 coordinate ¢ of the point S = sM. This means that, implicitly, the actual
signature is +S rather than § alone. To verify a BLS signature, the verifier checks
whether e(M, V) = e(+S5, @), where the verification key is V = sQ. Incidentally,
the verification key itself can be reduced to its = coordinate (say, £), even though
this possibility does not seem to have been considered by the authors of BLS.

4.2 Coupling Point Reduction with Compressed Pairings

Verifying a BLS signature involves computing a point V' € {V, -V} from &,
a point S* € {S,—S} from ¢ and checking whether e.(M,V’) = (5,Q) or
e(M, V') = e(S’,Q)~ . Using the property that any pairing value z is unitary
(and hence 27! = %), one can simply check whether tr(e(M, V') = tr(e(S, Q)).
This is especially interesting, since a compressed pairing £(P, Q) is precisely
tr(e(+£P, £Q)).

An important aside is that exponentiation of compressed pairings must take
into account the fact that they are actually traces of full pairings. This means
one cannot exponentiate a pairing as if it were a simple F«,2 value; rather, one
must always handle it as a Lucas sequence element.

2 Rubin and Silverberg [13] use traces to compress BLS signatures, but in an entirely
different manner, and with a compression factor much closer to 1.

TERAM LING

146 Michael Scott and Paulo S.L.M. Barreto

5 A Ternary Exponentiation Ladder

Supersingular curves in characteristic 3 are a popular choice of underlying al-
gebraic structure for pairing-based cryptosystems, since many optimisations are
possible in such a setting [I, 11, 12]. Pairing compression is possible for those
systems, and we now propose a ternary ladder for Lucas sequences in charac-
teristic 3 that keeps the exponentiation cost in Fgx within about 33% of the
exponentiation cost in Fgxsa.

Assume the sequence element index is written in signed ternary notation,
K = (d¢-1,.-.,do)3, with di_1 = 1. At step j (counting downwards from ¢ — 1
to 0), we want to compute Vg, where K; = Z:;Jl d;3"7. Thus, by definition,
Kj = 3Kj+1 +dj.

For d; = —1, we write down the formulas to compute V3Kj+1_2, VE;KJ.H_l,
and Vag,,,:

- 1/3
%Kj+l - VKj+l
3
Vak,ao1 = PVarynmz — Va1

i1 i i+1—

3
VK2 = PVag; -1 — VKJ-+1

Similarly, for d; = 1 we write down the formulas to compute Vak,;, Var, 1 +1,
and ‘/3Kj+1 +2°

Vak,

173
,+1"VK

i+l
= 3
Vakin+1 = PVak; 10 — VK,-+1+1
= 3
‘/3Kj+1+2 = P‘/3Kj+1+l - VKJ.+1
In each case, the second and third relations constitute a simple linear system.
Solving them, we get these expressions for Vak,,, -1, Vak,,,, and Vak, ;+1:

Vak;a-1= (PP —1)"Y(PVE,,, + Vi,ia-1)
= (P2 - 1)7'PVR,,, + PV, — Via+1)?]
= (P21 (P+ PR, - VR, .+l
Vak, = Vi,

i+1

%Kj.}.l-i-l = (P2 - 1)—1(PVI%]'+1 + VI%J'+1+1)
= (P2 - 1)—1[PVI%J~+1 + (PVKj+1 - VK5+1~1)3]
=P -1 (P+PYVR,, - VR

j+1—1]

If (P2 — 1)~ and P + P3 are precomputed, computing Vsg,,, and one of
Vik;41—10r Vg, +1 involves two products and two cubes, and the computation
can be carried out using only Vk,,, and one of Vk,,, -1 or Vi, ,+1. We can
therefore keep track of which value between these two actually accompanies

VK41, and compute Vg, and Vi, 41 at the cost of only 2 products and two

TERAM LING

Compressed Pairings 147

cubes per step. Besides, since we are working in characteristic 3, the cost of
cubing is negligible compared to the cost of multiplying.

The binary ladder computes Vi, and Vk;+1 at the cost of one squaring
and one product, or about 1.8 product, per step. However, the step count of
the ternary ladder is only about 1/ 1g(3) of its binary counterpart, and hence
its total cost is about 70% of the binary ladder. We point out that the ternary
ladder can be used for plain exponentiation in characteristic 3 as an independent
technique, even in contexts where compressed pairings are not desired or not an
option.

A detailed ternary ladder algorithm is described in Appendix A.

6 Compressing Pairings to a Third of Their Length

Definition 2. The Fg-trace of an element f € Fye is the value tr(f) = f +
fq2+fq4 EIqu.

The trace is F2-linear: tr(ou) = atr(u) for any o € Fpz and u € Fge.

When the elliptic curve has an embedding degree k = 6, the Tate pairing
algorithm outputs an element of Fge of order r, where r divides ¢® — 1, but not
¢* — 1for 0 < i < 6.Now ¢® — 1 = ®1(q)®P2(q)®3(q)Ps(g). Therefore the output
of the Tate pairing is an element of order » which divides ®s(q) = ¢*> — g + 1.
For ¢ = 2 (mod 3), these are precisely the type of points considered in the
XTR public key scheme [21] (which is based on the ideas of [8]), and all of the
time/space optimizations that have been developed for this scheme [21,31] apply
here as well. In particular, we note that laddering algorithms again appear to be
optimal [31], and the Tate pairing output can be represented by its Fq2-trace, and
hence compressed by a factor of 3. Observe that the compressed value, being a
trace, must be implicitly exponentiated using the Lenstra-Verheul algorithm [21,
Algorithm 2.3.7] — the trace value per se is not even a point of order 7.

For supersingular curves in characteristic 3 we can do better than merely take
the trace — rather, it is possible to do nearly all computations without resorting
to arithmetic any more complex than that on Fga.

6.1 Simpler Arithmetic for Pairing Computation in Characteristic 3

Let ¢ = 3™ forsome m = 1,5 (mod 6), let b = +1, and let 0,p € Fge be
elements satisfying 62 +1 = 0 and p* — p — b = 0. The modified Tate pairing
on the supersingular curve E(F3=) : y? = 2% — z + b is the mapping é,.(P,Q) =
Fp(6(Q))@° -1/ where ¢ : E(F,) — E(Fg) is the distortion map ¢(z,y) =
(p -z, o'y)

Duursma and Lee showed [11, Theorem 5] that the modified Tate pairing for
points P = (e, 8) and Q = (z,y) can be written as a product of factors of form
g = By — (a+x — p+b)2. This expression can be rewritten as g = A — pup — p?,
wherep = a+z+beF, and A = Bys —pu? € Fg2. Specifically, the Duursma-Lee
algorithm to compute fp($(Q)) is as follows (cf. [11, Algorithm 4]):

TERAM LING

148 Michael Scott and Paulo S.L..M. Barreto

Duursma-Lee algorithm to compute fp(¢(Q)):

fe1

for i — 1 tomdo
a—ad, fp°
p—a+z+b I\ pys—pu?
ge—A—pp—p f—f-g
€ zl/3, y e yl/3

end for

return f

The output is an element f € Fgs. We now show that this algorithm can
be modified to compute tr(f) instead, by maintaining a ladder of three values
[tr(f), tr(fp), tr(fp?)]. Since f is initialized to 1, the initial ladder can be com-
puted from p alone, namely, {tr(1), tr(p), tr(p?)] = [0,0, 2], as one readily deduces
from the definition of p:

Theorem 1. Let g = 3™ for some m = 1,5 (mod 6), and let p € Fge satisfy
P2 — p—b=0. Then tr(p) = 0 and tr(p?) = 2.

Proof From PP =p+bit follows by induction that p®" = p + nb, and hence
pq =p8 —p+2mbandpq =p? —p+mb sothattr(p)—p—l—pq +p7 =
p+p+2mb+ p+mb= 0. Moreover, (p?)%" = (p°7)% = (p+nb)? = p? —nbp+n?,
so that tr(p?) = p2+(p?)? +(p2)T" = p*+p2—2mbp+(2m)2+p2—mbp+m? = 2.
0

At each step of the loop, we compute [tr(fg), tr(fgp), tr(fgp?)] according to
the following theorem:

Theorem 2.

t31'(.709) tr(f) A — -1
l:tr(fgp)] =A. |:tr(fp) :l , where A = [-b (A-1) ~pu } .
(fgp?) tr(fp?) bu —(u+b) (A-1)

Proof. Using the F2-linearity of the trace and the defining property p* = p+b,
wehave fg = f(A—pp—p?) = tr(fg) = Atr(f)—ptr(fp)—tr(fp?). Similarly,
fap = fOA—pp—pPp = Mp—ufp> — fo—bf = tr(fgp) = —btr(f) +
(A —1)tr(fp) — ptr(fp?). Finally, fgp® = —bfp+ (A —1)fp® — ufp — pbf =
tr(fgp?) = —ubtr(f) — (u +b) tr(fp) + (A — 1) tr(fp?). o

Therefore, defining L = [Lo, L1, L2)T = [tr(f), tr(fp), tr(fp?)]T and using
the matrix A defined above, the modified algorithm to compute pairing traces
reads:

TERAM LING

Compressed Pairings 149

A laddering algorithm to compute tr(fp(¢(Q))):

L—[0,0,2] //=[tr(1), tx(p), tr(p?)]
fori—1tomdo
a—a?, f—p°
pe—at+z+bd X By —pu?
L—A-L
T z1/3,
end for
return L

Y — y1/3

However, to obtain a unique pairing value suitable for pairing-based protocols
we need tr(fp(qS(Q))(qs‘l)/T) rather than tr(fp(¢(Q))). Let e = fp(4(Q)). The
simplest (and seemingly the most efficient) way to do it is to recover e from all
three components of L = [tr(e), tr(ep), tr(ep?)].

We use the Fg2-linearity of the trace and fact that {1, p, p?} is a basis of Fys
with respect to Fgz, i.e. any element e € Fge can be written as e = = + yp + zp?
where z,y, 2 € Fg2. The trick is straightforward:

1. Lo = tr(e) = tr(z+yp+2p?) = tr(1) +ytr(p)+ztr(p?) = 22 = 2z = —Lo.

2. Ly = tr(ep) = tr(zp + yp? + z(p + b)) = bz tr(1) + (z + z) tr(p) + ytr(p?) =
2y = y=—~L.

3. Lg = tr(ep?) = tr(zp® + y(p + b) + 2(p® + bp)) = by tr(1) + (y + bz) tr(p) +
(x+2)tr(p?) = 2(x 4+ 2) = z=Lo— Lo.

Thus we recover e from the pairing ladder essentially for free. Now one must
compute g = e@®-1)/ ", and then take the trace of g. This can be efficiently done
using the techniques described in [1, Appendix A.2], at a cost roughly equivalent
to a few extra steps of the laddering algorithm.

Each step of this laddering algorithm takes 17 Fy multiplications. This com-
pares well with the original Duursma-Lee algorithm where each step takes 20 F,
multiplications, and avoids Fge arithmetic in the main loop.

6.2 Implicit Exponentiation in Characteristic 3

It is quite commonplace that the pairing value undergoes further exponentiation
as dictated by the underlying cryptographic protocol. We are thus confronted
with the task of computing tr(¢g™) given the value of tr(g). The Lenstra-Verheul
algorithm [21, Algorithm 2.3.7] performs this task for characteristic p = 2
{mod 3). We now describe a variant tailored for characteristic 3.

Let ¢ € Fgz, and let F(c,X) = X3 — cX% + ¢7X — 1 € Fp[X] with roots
ho, h1,ha € Fgs. One can show [21, Lemma 2.2.1] that, if g € Fge is an element
of order dividing ®¢(q) = ¢® — ¢ + 1, then the roots of F(tr(g), X) are the
F,2-conjugates of g. Defining ¢, = hy + AT + h3, one can further show [21,
Lemmas 2.3.2 and 2.3.4] (see also [9]) that c_, = ¢ and cy4v = CuCy —ccy—_y +
cu—2v- The proofs of these properties are independent of the field characteristic.

TERAM LING

150 Michael Scott and Paulo S.L..M. Barreto

From the above properties, one easily deduces the following relations that
hold in characteristic 3:

Con = cf, +cl

3
C3n = C,

C3p—~1 = C2n * Cn—1 — Co_; * Cnp1 +C2

Cn—2=c¢ - (cho1—Cn)°+c Y C3n1
g g

C3n+1 = C2n * Cnt+1 —Cpig " Cn—1 + G5

1 —
Canta =€ 1 (Cnr1 —)2+ cangr

Computing ez, takes two I, multiplications, c3n+1 takes four Fy multiplications,
and c3n+2 takes six F, multiplications.

Define Ln(c) = (c3n, Can+1,C3nt2:C3n+3) € (Fg2)3. Using the above formulas,
one can compute any one of Lgn(c), Lant1(c), or Lant2(c) from L,(c) at the
cost of 12 F, multiplications:

Lzn = (Con, €9n+1,Con+2,Con+3) = (C3(3n)s C3(3n+1)—2> C3(3n+1)—1>C3(3n+1))
L3n+1 = {Con+3, Contd, Con+5,Con+6) = (C3(3n+1)» C3(3n+1)+1s C3(3n+2)— 1> C3(3n+2))
L3ni2 = (Con+6,Con+7,Con+8, Con+9) = (Ca(3n+2)s C3(3n+2)+1> C3(3n+2)+2> C3(3n+3))

From the definition of e, it is clear that ¢, = tr(g™) if ¢ = tr(g). Hence,
ift Lyns3)(tr(g)) = (So,51,82,53), then tr(g") = Spmods. The total cost of
this algorithm, about 7.61gn F, multiplications, matches the complexity of the
ternary ladder introduced in section 5 for Fgs-trace exponentiation. Appendix B
lists this algorithm in detail. We point out that this ternary ladder can also be
the basis of a characteristic 3 variant of the XTR cryptosystem.

6.3 Coupling Pairing Compression with Point Reduction

A nice feature of this algorithm is that it is compatible with a variant of the
point reduction technique.

The conventional approach to compress a point R = (u,v) is to keep only u
and a single bit of v; point reduction discards v altogether. In characteristic 3, it
is more advantageous to discard u instead, keeping v and a trit of u to distinguish
among the solutions of the curve equation u® — u + (b — v?) = 0; alternatively,
one can reduce R by keeping only v and modifying the cryptographic protocols
to allow for any of the three points Ry, R1, and Rs that share the same v. Thus,
we will show that the input to the laddering algorithm of section 6.1 can be only
y (or B); the corresponding z (or &) can be easily recovered except for a trit,
and the actual choice of this trit does not affect the compressed pairing value.

Let z € Fge where ¢ = 3™ for odd m, and assume the order r of z divides
®s(q), i.e. 7 | g% — g + 1. The conjugates of z are z, zqz, and z‘14, or equivalently
z, 2971, and 279, since ¢> = ¢ — 1 (mod r) and ¢* = —q (mod r). The trace
of z is the sum of the conjugates, tr(z) = z + 297! + 279 [21]. Consider the
supersingular elliptic curve E: y? = z3 — z + b, b € {—1, 1}, whose order is [23,

TERAM LING

Compressed Pairings 151

section 5.2.2] n = g4+ 1 —t = 3™ + 1 4 3(m+t1)/2 where t = +3(m+1)/2 is the
trace of the Frobenius.

Let P = (z,y) € E(F,), and let Q € E(Fg) be a linearly independent
point. The conjugates of e(P, Q) are e(P,Q), e(P, Q) ! = e([g — 1]P,Q), and
e(P, Q)% = e(—qP, Q). The following property holds:

Lemma 1. [f P € E|r], points P, |g — 1P, and —qP share precisely the same
y coordinate.

Proof. Let P = (z,y). A simple inspection of the group law for characteristic 3 [1]
reveals that 3P = (z° — b, —¢°), and hence 37P = (z% — jb, (—=1)7y*). Thus
[¢ - 1P = ¢?P = 32™P = (%" — 2mb, (=1)>"y*") = (%" + mb, y*'") =
(z + mb, y), where we used the fact that 43" = u for any u € Fam. Similarly,
—qP = ¢*(¢*P) = ¢*(z +mb, y) = (x — mb, y). o

We see that, for m #£ 0 (mod 3), the = coordinates of P, {¢ — 1]P, and —¢P
are the three solutions to z® —z+ (1 —y?) = 0, which are exactly {z,z+1,z+2}.
Obviously, the traces of the pairings computed from the conjugates of P are all
equal, since tr(e(P,Q)) is simply the sum of the conjugates of e(P, Q). Thus,
the actual solution z to the curve equation above used to compute tr(e(P, Q)) is
irrelevant. Also, computing xfrom y is very efficient, since it amounts to solving
a linear system (see appendix C).

7 Conclusions

We have introduced the notion of compressed pairings, and suggested how they
can be realised as traces of ordinary Tate pairings. We also described how com-
pressed pairings can be computed and implicitly exponentiated by means of
laddering algorithms, with a compression ratio of 1/2 in characteristic p > 3
and 1/3 in characteristic 3; our algorithms thus reduce bandwidth requirements
without impairing performance. Finally, we showed how to couple compressed
pairings with the technique of point compression or point reduction. As a side
result, we proposed an efficient laddering algorithm for plain exponentitation in
characteristic 3, which can be used even in contexts where compressed pairings
are not desired.

Our work constitutes evidence that the security of pairing-based cryptosys-
tems is linked to the security of the Lucas/XTR schemes, and gives further
motivation for the approach of Galbraith et al. regarding the use of traces to
prevent security losses.

We leave it as an open problem to find a method to compute pairings directly
in compressed form when the compression ratio is 1/3 or better on ordinary
(non-supersingular) curves in characteristic p > 3.

TERAM LING

152 Michael Scott and Paulo S.L.M. Barreto

Acknowledgements

We are grateful to Steven Galbraith, Robert Granger, and Waldyr Benits Jr.
for their valuable comments during the preparation of this work, and to the
anonymous referees for their improvement suggestions.

References

1. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology — Crypto’2002, volume
2442 of Lecture Notes in Computer Science, pages 354-368, Santa Barbara, USA,
2002. Springer-Verlag.

2. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with pre-
scribed embedding degrees. In Security in Communication Networks — SCN’2002,
volume 2576 of Lecture Notes in Computer Science, pages 263-273, Amalfi, Italy,
2002. Springer-Verlag.

3. P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In Selected Areas in Cryptography — SAC’2003, Ottawa, Canada, 2003. to
appear.

4. D. Bleichenbacher, W. Bosma, and A. K. Lenstra. Some remarks on lucas-based
cryptosystems. In Advances in Cryptology — Crypto ’95, volume 963 of Lecture Notes
in Computer Science, pages 386-396, Santa Barbara, USA, 1995. Springer-Verlag.

5. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586-615, 2003.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology — Asiacrypt’2001, volume 2248 of Lecture Notes in Com-
puter Science, pages 514-532, Gold Coast, Australia, 2002. Springer-Verlag.

7. F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptog-
raphy. Cryptology ePrint Archive, Report 2003/143, 2003. Available from
http://eprint.iacr.org/2003/143.

8. A. E. Brouwer, R. Pellikaan, and E. R. Verheul. Doing more with fewer bits. In
Advances in Cryptology — Asiacrypt’99, volume 1716 of Lecture Notes in Computer
Science, pages 321-332, Singapore, 1999. Springer-Verlag.

9. L. Carlitz. Recurrences of the third order and related combinatorial identities.
Fibonacci Quarterly, 16(1):11-18, 1978.

10. R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary small MOV
degree over finite prime fields. Cryptology ePrint Archive, Report 2002/094, 2002.
Available from http://eprint.iacr.org/2002/094.

11. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperelliptic curves
y? = zP—z+d. In Advances in Cryptology — Asiacrypt’2003, volume 2894 of Lecture
Notes in Computer Science, pages 111-123, Taipei, Taiwan, 2003. Springer-Verlag.

12. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
Algorithmic Number Theory Symposium — ANTS V, volume 2369 of Lecture Notes
in Computer Science, pages 324-337, Sydney, Australia, 2002. Springer-Verlag.

13. S. Galbraith, K. Harrison, and D. Soldera. Using primitive subgroups to do more
with fewer bits. In Algorithmic Number Theory Symposium — ANTS VI, volume
3076 of Lecture Notes in Computer Science, pages 1841, Annapolis, USA, 2004.
Springer-Verlag.

TERAM LING

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

21.

28.

29.

30.

31

32.

Compressed Pairings 153

S. Galbraith, H. Hopkins, and I. Shparlinski. Secure bilinear diffie-hellman
bits. Cryptology ePrint Archive, Report 2002/155, 2002. Available from http:
//eprint.iacr.org/2002/155.

D. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27:129-146, 2002.

K. Hoffman and R. Kunze. Linear Algebra. Prentice Hall, New Jersey, USA, 2nd
edition, 1971.

A. Joux. A one-round protocol for tripartite Diffie-Hellman. In Algorithmic Num-
ber Theory Symposium — ANTS IV, volume 1838 of Lecture Notes in Computer
Science, pages 385-394, Leiden, The Netherlands, 2000. Springer-Verlag.

M. Joye and J. J. Quisquater. Efficient computation of full Lucas sequences. Elec-
tronics Letters, 32(6):537-538, 1996.

M. Joye and S. Yen. The montgomery powering ladder. In Cryprographic Hardware
and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in Computer
Science, pages 291-302, Berlin, Germany, 2003. Springer-Verlag.

D. H. Lehmer. Computer technology applied to the theory of numbers. In W. J.
LeVeque, editor, Studies in Number Theory, volume 6 of MAA Studies in Mathe-
matics, pages 117-151. Math. Assoc. Amer. (distributed by Prentice-Hall, Engle-
wood Cliffs, N.J.), 1969.

A. K. Lenstra and E. R. Verheul. The xtr public key system. In Advances in
Cryptology — Crypto’2000, volume 1880 of Lecture Notes in Computer Science,
pages 1-19, Santa Barbara, USA, 2000. Springer-Verlag.

R. Lidl and H. Niederreiter. Finite Fields. Number 20 in Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, UK, 2nd
edition, 1997.

A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publish-
ers, 1993.

V. S. Miller. Short programs for functions on curves. Unpublished manuscript,
1986. Available from http://crypto.stanford.edu/miller/miller.pdf.

V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology
— Crypto’85, volume 218 of Lecture Notes in Computer Science, pages 417-426,
Santa Barbara, USA, 1986. Springer-Verlag.

A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals, E84-A(5):1234—
1243,2001.

P. L. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243-264, 1987.

D. Nalla and K. C. Reddy. Signcryption scheme for identity-based cryptosys-
tems. Cryptology ePrint Archive, Report 2003/066, 2002. Available from http:
//eprint.iacr.org/2003/066.

J. H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate
Texts in Mathematics. Springer-Verlag, Berlin, Germany, 1986.

N. P. Smart. An identity based authenticated key agreement protocol based on
the weil pairing. Electronics Letters, 38:630-632, 2002.

M. Stam and A. K. Lenstra. Speeding up XTR. In Advances in Cryptology —
Asiacrypt’2001, volume 2248 of Lecture Notes in Computer Science, pages 125—
143, Gold Coast, Australia, 2001. Springer-Verlag.

S. M. Yen and C. S. Laih. Fast algorithms for LUC digital signature computation.
IEE Proceedings on Computers and Digital Techniques, 142(2):165-169, 1995.

TERAM LING

154 Michael Scott and Paulo S.L.M. Barreto
A Computation of Lucas Sequence Elements

The Lucas sequence V, (P, 1) for some field element P is defined by the following
recurrence relations:

‘/022, ‘/IZP, Vn+1=PVn—'Vn—1-

Let n = (n;...ng)2 be an integer in binary representation, with n; = 1. The
Lucas sequence element V,,(P,1) can be computed as:

Vg — 2, vy — P
for j — t downto 0 do
if n; =1 then
vo — vou1 — P, vy —v? —2
else
v — vou1 — P, v+ v ~2
end if
end for
return vg

Let n = (n¢...ng)z be the signed ternary representation of n > 0. The
Lucas sequence element V,,(P,1) in characteristic 3 (as needed for the implicit
exponentiation of Fgs-traces of Fge values) can be computed using the following
algorithm:

pe—= P -1)"Y, T—P+P3
vp 2, vy — P, up «— true
for j — t downto 0 do
W — v
if n; = —1 then
vp « if up then u(Tw — v}) else u(Pw + v3)
!y «—w
up + true
else if n; =1 then
vg «— if up then p(Pw +v3) else u(Tw —v})
v —w
up «— false
else /*n; =0%*/
vy « if up then pu(Pw +3) else p(Tw — v3)
Vg — W
up «— true
end if
end for
return vy

TERAM LING

Compressed Pairings 155

B Implicit Exponentiation of F jx/s-Traces

Let n = (ng...ng)s be the plain ternary representation of n > 0. The following
algorithm computes the Fg-trace ¢, = tr(g™) of an element g € Fe from its
Fg2-trace ¢ = tr(g).

¢l ct-(c?¢)71 //NB. (c?-¢) €F,
Al el et e (e, et (T, e — 24
Sp— 0,8 —c, S +— cg, S3 3
for j « t downto 0 do
if n; = 0 then
8% S:f
Sé — (S%+Sg)-SQ—Sg'Sz+CQ
S{ —c 7. (So - 51)3 +cl9. Sé
Sp — S3
else if n; =1 then
81 «— Sl
89 +— Sz
S~ (s2+5])-s2—53-So+cd
Sh — 53
She(sk+s2)-s1—51-S3+co
St — s3
else /*n; =2 %/
Sy — S3
S| — (S2453)-83—-57-81+c}
Sé —c1. (S3 — 52)3 + cl—e. Si
S — 83
end if
end for
return S, mod 3

C Solving the Curve Equation in Characteristic 3

Definition 3. The absolute trace of a field element a € F3m is the linear form:

tr(@) =a+a®+a®+ - +a3"

The absolute trace will always be in F3 as one can easily check by noticing
from the above definition that tr(a)® = tr(a), for all a € F3m. Being surjective
and linear over F3, it can always be represented as a (usually sparse) dual vector
T € F3= in a given basis, so that one can compute tr{(u) = T - » in no more than
O(m) time. In a normal basis {#%'} with tr(#) = 1, computing tr(u) amounts to
summing up all coefficients of w.

The coordinates of a curve point P = (z,y) are constrained by the curve
equation to satisfy y2 = z3+az+b. Thus one can represent a point as either (z,)

TERAM LING

156 Michael Scott and Paulo S.L..M. Barreto

where 3 € F indicates which of the two roots correspond to y = £vz3 + az + b,
or else by (r,y) where T € F3 indicates which of the three solutions one has to
take of the equation %+ ax + (b—y?) = 0. In characteristic 3, cubing is a linear
operation, which makes the second possibility more advantageous.

Consider the special equation 3 — z — u = 0 for a given u € F3m, which is
relevant for supersingular curves in characteristic 3. This equation has a solution
if, and onlyif, tr(x) = 0 [22, theorem 2.25]. This is the case for 1/3 of the elements
in F3m, since the trace function is linear and surjective. The complexity of solving
the cubic equation is only O(m?), as we show now.

Let C : F3m — Fam be defined by C(z) = x® — x. The kernel of C is F3 [22,
chapter 2,section 1], hence the rank of C is m — 1 [16, section 3.1, theorem 2].

3

Theorem 3. The equation 3 — x — u = 0 over Fsm can be solved in O(m?)

steps.

Proof. If Fam is represented in standard polynomial basis, the cubic equation
reduces to a system of linear equations with coefficients in Fg, and can be solved
in no more than O(m?) steps. This is achieved by first checking whether the
system has solutions, i.e. whether tr(u) = 0. If so, since the rank of C is m — 1
one obtains an invertible (m — 1) x (m — 1) matrix A by leaving out the one row
and correspondingly one column of the matrix representation of C on the given
basis. A solution of the cubic equation is then given by an arbitrary element
zo € F3 and by the solution of system A% = @, which is obtained as & = A™'a
in O(m?) time.

Using a normal basis to represent field elements, it is not difficult to see
that the cubic equation can be efficiently solved in O(m) time by the following
algorithm (the proof is straightforward and left as an exercise):

Cubic equation solving in normal basis:
Zp « root selector (an arbitrary element from IF3)
fori—1ltom—1do{

Ti ¢ Tim1 — Ug
}

x is a solution if, and only if, z,,,—1 = zo + uo-

TERAM LING

Asymptotically Optimal Communication
for Torus-Based Cryptography

Marten van Dijk'* and David Woodruff"*

' MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, USA
{marten, dpwood}@mit .edu
2 Philips Research Laboratories, Eindhoven, The Netherlands

Abstract. We introduce a compact and efficient representation of ele-
ments of the algebraic torus. This allows us to design a new discrete-
log based public-key system achieving the optimal communication rate,
partially answering the conjecture in [4]. For n the product of distinct
primes, we construct efficient ElGamal signature and encryption schemes
in a subgroup of Fgn in which the number of bits exchanged is only a
¢(n)/n fraction of that required in traditional schemes, while the se-
curity offered remains the same. We also present a Diffie-Hellman key
exchange protocol averaging only ¢(n) log, ¢ bits of communication per
key. For the cryptographically important cases of n = 30 and n = 210,
we transmit a 4/5 and a 24/35 fraction, respectively, of the number of
bits required in XTR [14] and recent CEILIDH [24] cryptosystems.

1 Introduction

In classical Diffie-Hellman key exchange there are two fixed system parameters
- a large prime ¢ and a generator g of the multiplicative group Fy of the field
F,. In [10], the idea of working in finite extension fields instead of prime fields
was proposed, but no computational or communication advantages were implied.
In [26] Schnorr proposed working in a relatively small subgroup of Fy of prime
order, improving the computational complexity of classical DH, but requiring
the same amount of communication.

In [4] it is shown how to combine these two ideas so that the number of bits
exchanged in DH key exchange is reduced by a factor of 3. Specifically, it is shown
that elements of an order r subgroup G of F;G can be efficiently represented
using 2log, g bits if = divides g% — ¢ + 1, which is one third of the 6log, g bits
required for elements of Fq*c. Since the smallest field containing G is q*s, one
can show [13] that with respect to attacks known today, the security of working
in G is the same as that of working in F;‘G for r large enough. In [14,15] the
XTR public key system was developed using the method of [4] together with an
efficient arithmetic to achieve both computational and communication savings.
These papers also show how to reduce communication in ElGamal encryption
and signature schemes in F;a.

* Supported by an NDSEG fellowship.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 157-178, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

158 Marten van Dijk and David Woodruff

In [4] it was conjectured that one can extend this technique to any n by
working in the subgroup of Fy. of order ®,(g), where ®,(z) denotes the nth
cyclotomic polynomial. Since the degree of @,(z) is ¢(n), where ¢ is the Euler
function, one could transmit a ¢(n)/n fraction of the number of bits needed in
classical DH, while achieving the same level of security. For n the product of
the first & primes, ¢(n)/n — 0 as k — oo, so the savings get better and better.
In [3,24], evidence that the techniques of [4] cannot generalize to arbitrary n
was presented, and in [3,24], some specific versions of the conjecture in [4] made
in [3] were shown to be false. Also in [24,25,23] it is shown that the group of
order &, (q) is isomorphic to the well-studied algebraic torus T, (Fg) [30] and
that a positive answer to the conjecture in [4] is possible if one can construct
an efficient rational parameterization of T, (Fy). However, such a construction
is only known when n is a prime power or the product of two prime powers,
although it is conjectured to exist for all n [24,30]. In [24] a construction is
given for n = 6, which is the basis for the CEILIDH public-key cryptosystem.
CEILIDH achieves the same communication as XTR with a few computational
differences.

In this paper we finally break the “n < 6 barrier” by constructing, for every
n, efficient ElGamal encryption and signature schemes in Fj., which require
transmitting at most a ¢(n)/n fraction of the bits required in their classical
counterparts. Further, we present an asymptotical variant of DH key exchange
in which the average number of bits exchanged per key approaches ¢(n)log, g.
The key property that we use is the fact that T,,(Fy) is stably rational (see [30],
section 5.1). Specifically, our enabling technique is the construction of efficiently
computable bijections 8 and =1 with

6 : T.(Fy) x (xdln, u(n/d)——-—lF;d) = Xdjn, p(n/dy=1Fa,

where x denotes direct product, and p is the Mdbius function'. This allows
us to bypass the torus conjecture of [24], by relaxing the problem of efficiently
representing a single symbol of T;,(Fy), to the problem of efficiently representing
a sequence of symbols in T;,(Fy). Our bijections enable us to compactly represent
m elements of T (Fy) with (m@(n)+ 3 4 4(n/a)=—1 @) log g bits, which for large
enough m, is roughly ¢(n)log g bits per element. We stress that while our key
exchange protocol achieves the optimal n/¢(n) reduction factor asymptotically,
our encryption and signature schemes achieve this even for the encrypting or
signing of a single message.

Note that the domain and range of # need not be isomorphic. Indeed, letting
Gg4 denote the cyclic group of order d, if n = 2 and ¢ = 3, then the domain
of 8 is isomorphic to G4 x G, while the range is isomorphic to Gg. We show,
however, that § can be decomposed into isomorphisms plus a map requiring a
table lookup. We show how to choose ¢ so that constructing and querying this
table is extremely efficient.

! For an integer n, u(n) = 1 if n = 1, uy(n) = 0 if n has a repeated factor, and
u(n) = (=1)* if n is a product of k distinct primes (see [11], section 16.3).

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 159

Our choice of ¢ and r for fixed n will also affect the security of our scheme.
We give an efficient heuristic for choosing ¢ and r for the practical cases of
n = 30 and n = 210, where we achieve a communication reduction by factors
of 15/4 and 35/8, respectively. Further, for any n, we give an efficient algorithm
for choosing ¢ and r with a theoretical guarantee on its performance. This latter
algorithm is primarily of theoretical interest, showing how to optimally choose
g and r when n tends to infinity for a sufficiently large security requirement.

While our main focus and contribution is on the communication complexity,
we also calculate the amount of computation necessary to evaluate § and -1
for general n, and we attempt to minimize the number of modular exponentia-
tions. We show that our representation enjoys some of the same computational
advantages of CEILIDH over XTR, including the ability to multiply elements
of T, (Fy) directly. This allows us to come close to the non-hybrid version of El-
Gamal encryption in [24]. Indeed, in addition to constructing a hybrid ElGamal
encryption scheme, we construct a scheme in which to encrypt m messages, we
form m ElGamal encryptions in T, (F;) plus one additional encryption using a
symmetric cipher. Unfortunately, the computational complexity of our scheme
is not that practical, whereas XTR for instance, permits very efficient compu-
tations if just exponentiation is required. For n = 30, we hand-optimize the
computation of § and #~1. Our analysis for general n shows that all of our pro-
tocols and algorithms are (theoretically) efficient in n and the sizes of ¢ and .

QOutline: Section 2 discusses the algebraic and number-theoretic tools we use. In
section 3 we construct the bijections § and #~*. Section 4 shows how to choose
system parameters to guarantee security and efficiency, giving both a practical
algorithm for n = 30 and n = 210, and a theoretical algorithm for general
n. In section 5 we discuss our cryptographic applications. Section 6 treats the
computational complexity of our bijections, and we conclude in section 7.

2 Preliminaries

2.1 Cyclotomic Polynomials and Algebraic Tori

We first state a few facts about the cyclotomic polynomials. See [19] for more
background.

Definition 1. Let n be a positive integer and let ¢, = €*™*/™. The nth cyclotomic
polynomial &,(x) is defined by:

o= [(@-¢

1<k<n, ged(k,n)=1

It is easy to see that the degree of @,(z) is ¢(n), where ¢ is the Euler-totient
function. We also have:

" ~1= Hdid(a:),

din

TERAM LING

160 Marten van Dijk and David Woodruff

and using the Mobius function u,

&u(z) = [J(* - /9.

dln

It can be shown that the cyclotomic polynomials are irreducible polynomials
over Q with integer coefficients. For ¢ a prime power, let F, denote the finite
field with ¢ elements. For integers n > 0 we define the algebraic torus’ T (Fy):

To(F) = {a€ F. | a®™@ =1}

2.2 Number Theory
The following is the celebrated prime number theorem (see [11], chapter 22):

Theorem 1. For large enough n, the number of primes less than or equal to n
is g +o(@5)-

We also need the fact that for any n > 6, ¢(n) > n/(6Inlnn), and for n the prod-
uct of the first k distinct primes, ¢(n) = 8(n/loglogn). We use the following

density theorem in our analysis:

Theorem 2. (Chebotarev [5,16]) For any integer n and any a € Z, the
density of primes p (among the set of all primes) with p=a mod n is 1/¢(n).

3 The Bijection

Let g be a prime power, n a positive integer, Fg. the multiplicative group of

the field of order ¢*, and T,,(F,) the ¢(n)-dimensional algebraic torus over Fj.
For an integer k, let [k] = {1,2,...,k}. The goal of this section is to construct
efficiently computable bijections 8 and 81, where

0 : Tn(Fy) x (de, p(n/d)=—1 Fq*-i) = Xdjn, u(n/d)=1 Fga.

1

Our strategy is to first find efficient bijections vy and y~*, where

v:Fp — X gnTa(Fy).

Note that in general F. and xg),T4(Fy) need not be isomorphic. Let Gy, de-
note the cyclic group of order m. We first need a few lemmas. The following is
an immediate consequence of the structure theorem of abelian groups, but for
completeness and to exhibit the efficient isomorphisms, we include it:

Lemma 1. Suppose n = ry -rg-- -1 for pairwise relatively prime positive inte-
gers r1,...,1,. Then there exist efficiently computable isomorphisms p : G, —
XiekGr; and o : Xieg)Gr; = Gn.

* Technically, Tw(Fy) just refers to the F, points of the algebraic torus rather than
the torus itself (see [24,30]).

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 161

Proof. For i € [k], put d; = n/r;. Since the r; are pairwise relatively prime,
ged(dy,da, .. .,dk) =1, so there exist integers e; for which Zie[k] e;d; = 1. For
o € Gy, define p(a) = (a%);ep. Since (%)™ = 1, p maps elements of Gy
to elements in the product group X;exGr,. For (@i)icix) € Xicik)Gr:, define
o((ai)ier) = e o§*, where multiplication occurs in Gy,.

The claim is that p and o are inverse isomorphisms between G, and X ;(x) Gr;-
For a € Gp, wehave a(p(a)) = o((a®))ic = [Tic a%i® = o, Similarly, for
(Oli)ie[k] € Xicx]Gr;, we have

p(o((cu)ien))) = p (H af‘) = (H a;jdi) '
ie[k] jElk] _—

op - . . . ~d; . 1— Z e; —kr;
Now,r; | dsif j # 4, so in this case a5’ = 1. Also, ot = o = i =)k

for an integer k, so a%%

= a;. Hence, p(o((ai)iepr))) = (@i)icqx), which shows
p and o are inverses. Observe that p(oy - a2) = ((oq + 02)%)iepy = (a‘f")ie[k] .
(ag')ze[k] = p(c1)-p(a2), and similarly U((ai)ie[k] '(ag)ie[k]) = Hie[k] (i) =
ILiem()* Tliew (0d)™ = o((@)iepn) - o((@5)iek)), which shows that the maps
are isomorphisms. Computing p and ¢ just requires multiplication and exponen-
tiation, which can be made efficient by repeated squaring.

Let U = U(n,q) be the smallest positive integer for which ged(Pa(q), Pc(q),

n

4-1y=1forall d #ewithd|n and e | n.

Lemma 2. Ford|n, let yg = ged(Pa(q), L52). Then Fin = Gy x (XginGy,)-
Furthermore, the isomorphisms are efficiently computable.

Proof. By lemma 1 it suffices to show (1) ¢ — 1 = UHd|n Y4, (2) for all d,
ged(U,yq) =1, and (3) for all d # e, ged(ya, ve) = 1.

Using the fact that ¢" -1 = Hdln ®4(q), the following establishes (1):

an_ = ged <H¢d(q) ——) JJESS (éd 9), L) 11w

d|n d|n dln

where the second equality follows from the definition of U. For (2), observe that

eod(U,a) = ecd (0, 2a(0), 5) Lo (0. 550) = 1,

since if prime p | U, by minimality of U there exist d # e for which p |
ged(Da(q), Be(q)), so if p | 9:(—]‘—1, then p | gcd(sﬁd(q),@e(q),ﬂU_—l), a contra-
diction. To see (3), note that ged(ya,ye) = ged(Pa(q), Pe(q), 9%) =1 by the
definition of U.

TERAM LING

162 Marten van Dijk and David Woodruff

We use the following bijections with complexity proportional to U, which we
later show to be negligible for an appropriate choice of q.

Lemma 3. For d | n, let 24 = ged{®Pa(q),U). There exist bijections between
Gu and X gnG., requiring O(logU + logn + logloggq) time to evaluate and
O(Un'*¢logq) space for any € > 0.

Proof. Using the definition of U,

[11G-.] =[] ecd(®a(a), U) = ged H%(q), Ul =ged(¢"-1,U) =0,

din d|n dln

so there exists a bijection between the two groups. Choose a generator g of
Gy and generators gq of G,,. For each ¢ € [U], make a table entry mapping
g* to a unique tuple (gfid)dln- Since the sum of the divisors of n is less than
O(n'*€) for any € > 0 ([H], section 18.3), the table consumes O(Un'*¢loggq)
space. We sort the entries in both directions so that both bijections are efficient.
Evaluations of either bijection can then be performed with a binary search in
O(logU + logn + loglog ¢) time.

We need another auxiliary map:

Lemma 4. Letyq and zq4 be as in the previous two lemmas. Then, Xd]an(Fq) =t
(xd|nGyd) X (Xd|nsz) . Furthermore, the isomorphisms are efficiently com-
putable.

Proof. 1t suffices to show for any d | n, Ta(Fy) = Gy, X G,,, and that this isomor-
phism is efficiently computable. Note that ygzq = ged(Pa(g), gnT_-l-) ged(Pa(q),

U) = &4(q) since ged(U, 9%) = 1 by the definition of U. By the same observa-
tion, ged{y4, z4) = 1. Lemma 1 establishes the claim.

The following is immediate from the previous 3 lemmas:

Lemma 5. Assuming the maps of lemma 3 are efficient, there exist efficiently
computable bijections ¥ and y~t, where v : Fin — XgnTa(Fy).

We now have the bijection claimed at the beginning:

Theorem 3. Assuming the maps of lemma 3 are efficient, there exist efficiently
computable bijections 8 and 8=, where 8 : Tno(Fy) X (Xdln, wn/d)=—1 F;d) —

Xdin, u(n/dy=1 Fga-

Proof. Lemma 5 gives efficient bijections between Tr, (Fy) x (x d|n, u(n /d)=_1F;,,)
and Tn(Fy) X (Xdjn, pn/dy=—1 (XejaTe(Fy))), and also between X gy, u(n/d)=1F a

and Xgjn, p(n/d)=1 (xe|dTe(Fq)). By permuting coordinates, the theorem will fol-
low if we show the multiset equality

{n}u U {est.e|d} = |_| {es.t. e|d}.

dln, p(n/d)=-1 dln, p(n/d)=1

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 163

From section 2, @5(2) [1utn/ay=—1(2* = 1) = [1n/a)=1(x? — 1) in the polyno-
mial ring Q[z]. Decomposing this equation into irreducible polynomials, we have
®0(Z) [1n/ay=-1leja Pe(®) = I1,(n/ay=1 [1eja Pe(@), and since Qz] is a unique
factorization domain, the irreducible polynomials on the left must be the same
as those on the right. This gives the desired multiset equality.

4 Parameter Selection

The two constraints on choosing ¢ and r for fixed n are security and efficiency
constraints, the latter measured by the size U(n,¢) of the tables needed in our
bijections. We first discuss the role of security in parameter selection:

4.1 Security Measures

Our schemes derive their security from the same assumptions of XTR and
CEILIDH. That is, if there is a successful attack against one of our crypto-
graphic primitives, then there is a successful attack against the corresponding
primitive in the underlying group we use, which we assume is impossible. Let
(g) C Fj» be a multiplicative group of order r with generator g. The security of
our applications relies on the hardness of both the Computational Diffie-Hellman
problem (CDH) and the Decisional Diffie-Hellman problem (DDH) in (g}. The
former is the problem of computing ¢*¥ given g* and g¥ and the latter is that
of distinguishing triples of the form (g¢, g%, g°) from (g°, ¢°, g¢) for random a, b,
and c¢. The hardness of both of these problems implies the hardness of the dis-
crete logarithm problem (DL) in (g): find = given g*. Due to the Pohlig-Hellman
algorithm [21], the DL problem in {(g) can be reduced to the DL problem in all
prime order subgroups of {g), so we might as well assume that 7 is prime.

There are two known approaches to solving the DL problem in {g) [1,7,9,13,
20,27,28], one which attacks the full multiplicative group of Fgn itself using the
Discrete Logarithm variant of the Number Field Sieve, and one which concen-
trates directly on the subgroup (g} using Pollard’s Birthday Paradox based rho
method [22]. Let s be the smallest divisor of n for which {g) can be embedded in
F}.. The heuristic expected running time of the first attack is Lg®,1/3,1.923],
where L[n, v, u] = exp((u+0(1))(Inn)*(Inlnn)!=7). If ¢ is small, e.g. ¢ = 2, then
the constant 1.923 can be replaced with 1.53. The second attack, due to Pollard,
takes O(+/7) operations in {g).

Hence we see that the difficulty of solving the DL problem in {g) depends
on both the size of the minimal surrounding subfield and on the size of its
prime order 7. If Fyn is itself the minimal surrounding subfield, as is the case
if we choose r | &,{q) with r > n, then for sufficiently large » the DL, CDH,
and DDH problems in (g) are widely believed to be just as hard as solving
their classical counterparts w.r.t. an element of prime order = r in the prime
field of cardinality ~ ¢™ [14]. As mentioned in [14], when nlog, ¢ ~ 1024 and
log, r =~ 160, solving the DL problem in {g) is generally believed to be harder
than factoring an 1024-bit RSA modulus provided g is not too small.

TERAM LING

164 Marten van Dijk and David Woodruff

4.2 Practical Algorithm for n = 30 and n = 210

Based on our security discussion, it is shown in [4] that, assuming an RSA key
length between 1024 and 2048 bits gives adequate security, for n = 30 we should
choose ¢ to be a prime between 35 and 70 bits long, and for n = 210 we should
choose g to be a prime between 5 and 10 bits long. Note that for the next value
of n for which we achieve a communication savings, n = 2310 = 2-3-5-7-11, the
field size will have to be at least 2310 bits, so any setting of g already exceeds
the 2048 bits needed for adequate security.

In [13] it is shown how to quickly find a ¢ and an r meeting these requirements
for fixed n. The algorithm is heuristic, and involves choosing random ¢ of a
certain size and checking if @,(g) contains a sufficiently large prime factor r
by trial division with the primes up to roughly 105. On a 166MHz processor,
for n = 30 it was shown that it takes 12 seconds to find an r of size between
214 and 251 bits for ¢ of size 32 bits. Note that for n = 30 we actually need
r to be slightly smaller, as claimed in the previous paragraph. This way we
can achieve the largest efficiency gain for a fixed security guarantee. Using the
algorithm of [13], fixing the size of 7 to be approximately 161 bits and searching
for an appropriate g took three hours instead of the 12 seconds needed previously.
However, there are three reasons we do not consider this to be problematic. First,
CPU speeds are easily ten times as fast these days. Second, we don’t need to fix
the size of r to be exactly 161 bits; we just need to find an r of approximately
this size. And third, finding the system parameters is a one-time cost and can
be done offline, or even by a trusted third party.

From the efficiency analysis in the next section and lemma 6, one can show
that the table size U(n,¢) resulting from choosing ¢ at random subject to the
above constraints is likely to be small with good probability. Hence, this heuristic
algorithm is likely to find a ¢ and an 7 so that both security and efficiency
constraints are met in a reasonable amount of time.

4.3 Theoretical Algorithm for General n
with Probabilistic Guarantees

In this section we use properties of the density of primes to design a parame-
ter selection algorithm and rigorously analyze its performance. Unfortunately,
since the factorization of @,(g) for random primes g does not seem to be well-
understood, we are forced to choose ¢ > r, which with respect to attacks known
today, doesn’t allow for choosing the optimal ¢ and r for n = 30 and n = 210
if we just want 2048 bit RSA security. A straightforward calculation shows that
forn = 30, the following algorithm gives us the largest efficiency gain for a fixed
security guarantee if and only if g is at least 558 bits. Hence, we should view
the algorithm as theoretical in nature, and apply the heuristic of the previous
section for small n.

Let k& be a positive integer tending to infinity and let n be the product of the
first k£ primes. We want to choose ¢ so that:

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 165

1. nloggq is sufficiently large.
2. There exists a large prime factor r of @,(q).
3. U=U(n,q) is small.

We say an integer is squarefree if it contains no repeated factors. The selection
algorithm is as follows:

Parameter Selection Algorithm PSA(n = p; ---pg, Q, R):

1. Let S be the subset of the first & primes p for which p — 1 is squarefree, and
put T = {p1,...,pk} \ S.
2. Find an R-bit prime r for which 7 =1 mod n, and find a z € Z* of order n.
3. Find a Q-bit prime ¢ = z + kr > n, for some integer k, such that:
(a) For all p€ S, ¢PP»@ £ 1 mod p3, where O,(q) denotes the order of ¢
in Zg.
(b) Forallpe T, Op(g)=p—1.
4. Find a generator g of the subgroup of order r of Fi.. Output r, ¢, and g.

We first claim that if the PSA algorithm terminates, then r» and ¢ meet the
aforementioned properties. By setting Q large enough, the first property holds.
We have @,(q) = Pn(z+ kr) = &,(z) + sr for some integer s, and since O(z) =
n, $n(z) + sr = 0 mod r. Hence by choosing R sufficiently large, the second
property holds. To show U = U(n, ¢q) is small, we need the following lemma:

Lemma 6. Let p be aprime and q an integer such that p } q. Then p | U if and
only ifpOp(q) | n. In case of the latter, p* | U if and only if p* | (gPP#(® — 1).

Proof. By minimality of U, p | U if and only if there exist divisors d < e of n
for which p | ged(®4(q), Pe(g)). Fix two such divisors d and e, let f = ged(d, e),
and suppose f < d. Since f < d, p| Palq) | (¢* —1)/(¢f —1) =1+¢f +¢* +
<o+ q@WI=Df Since p | ged(Sa(q), Pe(q)) | ged(¢? — 1,¢° —1) = ¢/ — 1, we
have ¢ =1 mod p,so d/f =0 mod p, or p | d/f.Similarly, p | e¢/f. But then
p | ged(d/ f,e/f), contradicting our choice of f. Hence, d = f which means d | e
and p | e/d | n.

Suppose there is another divisor ¢ < d of n forwhich p | $.(¢g). Then by the
above, ¢ | d and p | (d/c), and since p | (e/d), p? | e | n, contradicting the fact
that n is squarefree. This means that (d, e) is the unique pair of divisors for which
p | ged(Pa(q), Pe(q)). Since p | g™ — 1, Op(q) | n, and since ged(Op(q),p) = 1,
pOp(q) | n. Putd = Oy(q) and e = pOp(q). Then d is the smallest positive
integer for which ¢¢ = 1, so p | ®a(g). Also, $.(q) = (¢° — 1)/(¢® — 1) =
14¢%4---+¢¢/4-V4 =¢/d mod p=0 mod p. Hence if p | ged(Pa(q), Pe(q)),
‘tihen d = Oy(q) and e = pO,(gq). Conversely, if pO,(q) | n, then p | U for these

, €.

We have shown p | U if and only if pOp(g) | n. The above shows that
if p* | U, then p* | ($o,(¢)(q) - Bpo,@)(2)) | (gPP»0) — 1), and conversely if

p' | (gP%*@D —1) | (¢" — 1), then p* | ged(Da(q), P(q)) | U.

TERAM LING

166 Marten van Dijk and David Woodruff

Remark 1. Note that p? | (gP9#»(@ — 1), since on the one hand we have p |
(g% @ — 1), and on the other hand we have (g —1)/(¢%*@ —1) = 14 ¢ (@ +
q2%e @ . q(”‘l)op(q) =14+1+4---41=0 mod p. Hence if p | U, then
(PO»(a) 1) | (g™ — 1), so it follows that p? | U.

The following lemma provides tight asymptotic bounds on U = U(n, q):

Lemma 7. [f the PSA algorithm terminates, U = &(n?C), where C =~ .374 is
Artin’s constant.

Proof. By the previous lemma, if p | U, then p | n, so p € {p1,...,px}. Nowif
p €T, p—1 is not squarefree, so Op{(gq) f n by step 3b, so p f U. On the other
hand, if p € §, p—1 is a product of distinct primes in {pi,...,px}, s0 Op(q) | n
and hence p | U. Combining this with the remark above, step 3a of the PSA
algorithm, and the previous lemma, we conclude that U is exactly the square of
the product of primes in S and that the PSA algorithm chooses ¢ so that U is
minimal.

To obtain the bound on U it suffices to show that the density of primes p
for which p — 1 is squarefree is C, where C is Artin’s constant [8]. The bound
will then hold for large enough k. For a prime p, p — 1 is not squarefree if and
only if p = 1 mod ¢? for a prime ¢. By the inclusion-exclusion principle, the
multiplicativity of ¢(-), and theorem 2, the density of primes p for which p — 1
is squarefree is:

1 1
p> #(p)+ 2 2¢?) 11 (1‘&@5):0

primes p primes p,q primes p

By theorem 1, for sufficiently large k, pr =~ klogk and k ~ ﬁgﬁ?, where the
approximation is up to low order terms. Hence, U < p#C* ~ (klogk)2¢* ~

(log n)2C wstos =~ n2C.

Finally, we show the PSA algorithm terminates quickly in expectation:

Efficiency Analysis: By theorem 1, k = ﬁ)ﬁ—n and pi = logn. Determining

S and T in step 1 can therefore be done by trial division in O(log2 n) time. We
can perform step 2 by choosing a random R-bit number r, efficiently checking
if r is prime, and checking if = 1 mod n. This requires an expected ¢(n)R =

g:l

Rn —
O (Bm_n') samples . To find 2, we choose a random o € Z}, set 8 = a™ = ,

and check that 8¢ # 1 mod r for all proper divisors d of n. In expectation,
after O(logR) trials one such a will be a generator of Z*, for which setting
z=f= o5 gives z with O,(z) = n. Conversely, if for all proper divisors d of
n we have 8¢ # 1 mod r, then O,(8) = n. Since the number of proper divisors
of n is O(n¢) for any € > 0 ([11], section 18.1), the check in step 2 is efficient.

For step 3, for each p € T', we can find an element a, € Z; with Op(a,) = p-1
by simply trying each of the p — 1 = O(logn) elements of Z; until we succeed.

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 167

We then choose a random integer k forwhich ¢ = 2 + kr is a Q-bit number and
efficiently checkiif g is prime. If so, then for each p € S, we can compute O,(gq) in
O(logn) time, then check if gPP»(9) = 1 mod p® by repeated squaring. For each
p € T we check if ¢ = a, mod p.

The claim is that the number of random samples k needed in step 3 is only
O(Qnl~C). Using the fact that the density of primes amongst integers of the

form z+kris O (m), an integer k for which z+ kris prime can be found
with O(Q) samples in expectation. By independence, the density of primes ¢
which are a, mod p forevery p € T is HpeT g(lp—) = (l—";lgll—f%ﬂ), where C is
Artin’s constant. Fix any p € S. By theorem 2, for all but a negligible fraction

of primes ¢, ¢ = ¢* mod p3 for g a generator of Z;a. Since g is a generator,

gP%@ = 1 mod p® if and only if ¢ is a multiple of %, and there are only

p0,(q) < p(p—1) such multiples. By theorem 2, it is equally likely that g = g* for
any i € [p(p®)], so the density of primes ¢ forwhich gP% (@) =£ 1 mod p? is at least
1 —1/p. By independence, the density of ¢ forwhich ¢P®#(9) = 1 mod p® for all
pe Sisat least [[,es(1 ~1/p) =[]pes = 2 (W). Applying independence
one last time, we conclude that ¢ can be found with an expected O(Qn!~%)
samples k.

Finally, step 4 can be implemented by choosing a random g € Fyj. and making
sure that (g™ —1)/r # 1. The number of generators of Fy. is ¢(g™ — 1) which is

0 (————q———l = _:10 - Q)’ so the expected number of samples g needed is O(log n +log Q).

5 Cryptographic Applications

Let n be the product of the first k primes, and let r,q, and g be public param-
eters generated as in section 4. Define 07 (n) = 34, u(njaj=—1 4 and o+ (n) =
Ydjn, p(n/dy=1 % and observe that ¢(n) + ¢~ (n) = o¥(n). From section 3,
we have an efficiently computable bijection # and its inverse !, with @ :

Tn(FQ) X (xd]n, u(n/dy=—1 F;d — Xdjn, pu(n/d)=1 F;d.

From the proof of theorem 3, we see that there are a number of choices
for depending on which coordinate permutation is chosen. While this choice
does not affect the communication of our protocols or the size of our encryp-
tions/signatures, it can affect the computational costs. In section 6 we choose a
specific permutation and analyze the computational requirements for n = 30.

We will think of # and 1 as efficiently computatble maps between Ty (Fy) %

FZ ™ and FY *(m) by fixing polynomial representations of Fya with d | n. An ele-

ment of Fy “™ is then just a list of o (n) g-ary coefficients with respect to these
polynomials, and can be treated as an element of X gjn, pu(n/d)y=—1 F;d. Let iq,iq+

()

1,...,iq+d—1 denote the coordinates of an element z € Fy corresponding
to the coefficients of z with respect to the irreducible polynomial for Fya. Our
map may not be well-defined because we may have (z.,, Zi +1,- - - ; Tig+d—1) = 0.

TERAM LING

168 Marten van Dijk and David Woodruff

However, ify € Fy “™ i5 chosen randomly, the probability that some coordinate
of y is zero is less than o7 (n)/q = O(n¢/q) for any € > 0, which is negligible.
The same is true of a randomly chosen element of Fy +("). Hence, if we apply 8
and 6~ to random (z1,z2) € To(F,) x FY ™ and y € F;+("), 8(x1,xs) and
6~1(y) are well-defined with overwhelming probability.

It is possible to modify § and #~! if one wants more than a probabilistic
guarantee. Define d™(n) = Xy, un/ay=—11 and d*(n) = 34, uinjay=1 1- We
can efficiently extend € to the well-defined map 6,

§:Ta(Fy) x F{™™ o (Xam, wisayms Fia) x {0,134,

where for each (z,y) € Tn(Fy) x Fy ™ and for each d | n with p(n/d) = —

if (Yigs-- s Yig+d—1) = 0, we replace ¥i,+4-1 With 1, obtaining a new string 3/,
and define 0(z,y) = 8(x,y’) o b, where for all j € [d~(n)], b; = 1 if and only
if (4ig---,Yia+d—1) = 0 for the jth divisor d. Note that 6, the inverse of]
restncted to the image of 6, is also well-defined. Slrnllarly, letting 3 denote -1,

we can extend S to a well-defined map g : Fy ™, T (Fy) x F& ™ x
{0,1}4* (™ and construct G-

The next sections describe our cryptographic applications. For simplicity,
in our security analyses we assume 6 and 6~ are actually bijections between
T.(Fy) x E] ™ and Fj T), although it should be understood that our pro-
tocols can be slightly modified so that 6 or B can be used without affecting
the security. The only application where this is not immediately obvious is the
non-hybrid ElGamal encryption, but step 3 of that protocol can be modified to
additionally encrypt the “extra bits” from § using, say, the same key used in
step 3.

5.1 Diffie-Hellman Key Agreement

For Alice and Bob to agree on a sequence of m secret keys K;, they engage in
the following protocol:

1. Alice and Bob choose random Sp and Tp in X gjn, p(n/dy=—1 F;,,, respectively,

and treat them as elements of F¢7 (n)

2. Fori=1tom,
(a) Alice selects a random integer x; with 1 < z; < r, sets A; = g%, com-
putes 8(A;, Si—1) = (a:,S:) € FY™ x FZ™™ and transmits a; to Bob.
(b) Bob selects a random integer y; w1th 1 <y; <r, sets B; = g¥, computes
0(B;,Ti—1) = (b;,T3) € Ff(") X F;W") and transmits b; to Alice.
3. Alice sends S, to Bob and Bob sends T,,, to Alice.
4. Fori=mto 1.
(a) Alice computes 87 1(b;,T;) = (B;,Ti—1), and sets K; = Bf* = g%i¥:.
(b) Bob computes 81(a;, S;) = (Ai, Si—1), and sets K; = AV = gTivi,

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 169

The number of bits sent from Alice to Bob (and from Bob to Alice) is about
(m¢(n)+0~(n)) logg, so the rate approaches the optimal ¢(n)log g bits per key
as m gets large. This beats all known schemes for n > 30. In particular, for
n = 30, our scheme requires only 8loggq bits per shared key while generalizing
the scheme in section 4.11 of [14] to n = 30 gives a scheme requiring 10log ¢ bits
per key exchange. The scheme in [24] would also achieve our rate, but needs an
unproven conjecture concerning the rationality of Tso(Fy).

Observe that (A1, So) and (B1,Ty) are random, and since 8 is a bijection, the
last 0~ (n) coordinates of §(A;, So) are of a random element in X gjp, u(n/dy=1Fra-
Hence the probability that some coordinate of S; is zero is even less than that for

a random element in Fy +(d), which is negligible. One can then verify that every
application of § or #~! is on a random element. It follows from the foregoing
discussion and the union bound that the probability of either Alice or Bob ever
attempting to apply 8 or 6~ on an element outside of the domain is negligible.
For deterministic guarantees, one can replace 8 and 8~ with 8 and 8, negligibly
changing the rate to ¢(n)logq + O(n®) for any € > 0. Given the overwhelming
probability guarantees for § and #~!, this does not seem necessary.

Security: An eavesdropper obtains ai,...,@m,b1,...,bm,Sm, and T,,. Since
0 and ~! are efficient bijections, this is equivalent to obtaining Ay,..., Am,
Bi,...,Bn, S, and Tp. Since Sy and Ty are random, determining a shared secret
K; is equivalent to solving the CDH problem in (g}, given Ay,...,Am,B1,...,
B,,.

5.2 ElGamal Signature Schemes

Suppose the message M to be signed is at least o~ (n)logq — logr bits long. If
this is not the case, one can wait until there are m > 1 messages M; to be signed
for which Y, |M;| > 0~ (n)logg — logr, then define M to be the concatenation
M;o---0M,, and sign M. For a random a, 1 < a < r — 1, let a be Alice’s
private key and A = g her public key. Let A : {0,1}* — Z, be a cryptographic
hash function. We have the following generalized ElGamal signature scheme (see
p-458 of [18] for background):

Signature Generation (M):

1. Alice selects a random secret integer k, 1 < k < r, and computes d = g*.
2. Alice then computes e = k~(h(M) — ah(d)) mod r.

3. Alice expresses M oe as (R,S) € FZ ™ x {0,1}*, computes 6(d,R) =T,
and outputs (S, 7) as her signature.

Signature Verification (M, S, T):

1. Bob computes §~}(T') = (d, R) and constructs M and e from R and S.
2. Bob accepts the signature if and only if A*(@de = gh(¥),

The communication of this scheme is at the optimal |M|+ logr + ¢(n)log g for
ElGamal signature schemes, even for one message (as long as M is large enough).

TERAM LING

170 Marten van Dijk and David Woodruff

This beats the |M|+ logr + (n/3)logg communication of the scheme in [4,17]
when n > 30, in particular for the practical values n = 30 and n = 210. Our
communication is the same as that in [24], but we do not rely on any conjectures.

Note that our map # may fail since M need not be random. One can avoid
this by excluding the negligibly few M for which 8 is not defined (as in RSA
or the schemes of [24]), or one can replace 8 with 8, as defined above, and
communicate an additional O(n¢) bits of overhead. Alternatively Alice can use
a pseudorandom generator to randomize M and communicate the small seed
used to Bob, requiring even less communication than the already asymptotically
negligible O(n*) bits.

We note that a simple modification of our protocol, making it similar in
spirit to our key exchange protocol, can allow Alice to sign each M; individually,
allowing for incremental verification.

Security: In this scheme the verifier obtains (S,7’), which is equivalent to ob-
taining M, d, and e. Thus, the security of this scheme reduces to the security of
the generalized ElGamal signature scheme in (g).

5.3 ElGamal Encryption

We present two flavors of ElGamal encryption. The first is a hybrid scheme with
shorter encryptions than the one in [14], while the second is essentially a non-
hybrid analogue of ElGamal in T, (Fy). In the second, to encrypt a sequence of
m messages, m+1 encryptions are created and m of them are performed directly
in Tn(Fq). The first scheme achieves optimal communication, while the second
is asymptotically optimal.

Hybrid ElGamal. For random b, 1 < b <r—1, let b be Bob’s private key and
B = g® his public key. Suppose Alice wants to encrypt the message M € Fj)
with Bob’s public key. Let E be an agreed upon symmetric encryption scheme

with domain FY ™. We have the following protocol:
Encryption (M):
. Alice selects a random secret integer k, 1 < k < r, and computes d = gk.

1
2. From B Alice computes e = B* = g®¢,
3. From e Alice derives a key Q for E and computes the encryption of M,

E(M), under key Q. Alice writes E(M) as (R,S) € FY n) « {0,1}~.
4. Alice computes 8(d, R) = T and outputs her encryption (S, 7).

Decryption (S,7):

1. Bob computes 8~ Y(T) = (d, R).

2. From d and b Bob computes e = g

3. From e Bob derives Q and decrypts E(M) = (R, S) to obtain and output
M.

bk

The communication of this scheme is at the optimal |E(M)|+ ¢(n)loggq bits
for hybrid FlGamal encryption. As in our protocol for signature schemes, we

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 171

achieve this rate even for a single message. This beats the |E(M)|+ (n/3)logg
bit scheme in [14] for n > 30.

It is unlikely that 8 or 8! is applied to an element with any zero coordinates
since d is random and E(M) is likely to “look random” in practice, so #(d, R) is

likely to be a random element of Fy T for which it is extremely unlikely that
any coordinates are zero. An exact analysis, though, depends on one’s choice
of E. As in our protocol for signature schemes, one can randomize E(M) to
decrease the error probability or replace 8 with € for a deterministic guarantee
at the cost of a few bits of communication.

Security: An adversary learns (S,7), which is equivalent to learning d and
E(M). Assuming the CDH problem is hard in (g}, the security of this scheme
is just that of the symmetric scheme E, assuming the key Q to E is chosen
reasonably from e. To derive Q from e, one can extract bits that are hard to
compute by an eavesdropper, see [2].

Almost Non-hybrid ElGamal. In the following, Alice will encrypt a sequence
of m messages My,..., M,,, each in Ff ™ She will form m + 1 encryptions, m
of which are encryptions in T, (Fy), and one requiring the use of an agreed upon
symmetric encryption scheme F.

In the encryption phase of our scheme we will apply #~! to (M;o R) for some
R e F” ™. For semantic security, for all 4 it must hold that 6=*(M; o R) €
(g) x FZ~™ which in general may be strictly contained in Tn(F,) x FZ ™.
For this we adopt the technique in section 3.7 of [25]. Namely, by reserving a
few bits of each M; to be “redundancy bits”, if {(g) has small enough index in
T.(q), then for any R we need only try a few random settings of these bits until
9-1(M;oR) € (g)x F{ ™ = (c,d) € (g)x FY ™, which we can test by checking
if ¢" = 1. In the following protocol description we ignore this issue and assume
whenever -1 is applied, its image is in (g) x Ff ™.

For random by,bg, 1 < by,bs < r —1, let by,b; be Bob’s private keys and
B; = g*, By = g** be his public keys. We have the following scheme:
Encryption (M):

1. Alice chooses a random Rp € Fy),
2. For i =1to m,
(a) Alice computes 8=1(M; o R;_1) = (c;, R:) € {g) x Fy),
(b) Alice chooses a random secret integer k;,1 < k; < 7, and forms the
encryption (d;, e;) = (g%, c; B¥).
3. Alice uses the hybrid ElGamal encryption scheme with symmetric cipher
E and public key B to encrypt Ry, as (Tm,S) with T, € Fy ™ and
S e{o,1}*
4. Fori=mto 1,

(a) Alice computes 8(d;, T;) = (z;, W;) € Ff™ x FZ™ ™,

(b) Alice computes 8(e;, Wi) = (yi, Tj_1) € F$™ x FZ~ ™
5. Alice outputs z1,...,ZTm, Y1, - -, Ym, Lo, S as her encryptionof My,..., M.

TEAM LING

172 Marten van Dijk and David Woodruff

Decryption (Z1, .-+, ZmsY1y---»Yms L0, S):

1. For i =1to m,
(a) Bob computes 6~ (y; o Ti—1) = (ei, Ws).
(b) Bob computes 8~ (z; o W) = (d;, T5).
(c) Bob computes ¢; = e;/ d’i”.
2. Bob uses T, and S, together with bs, in the decryption procedure of the
hybrid ElGamal scheme to recover Ry,.
3. For i =mto 1, Bob computes 8(c;, R;) = M; o R;_;.
4. Bob outputs My,..., Mn,.

The communication of this scheme is 2m@(n)logq + |E(Rm)| + ¢#(n)logg bits.
Hence, as m grows, the rate of this scheme approaches 2¢(n)logg, which is
optimal for ElGamal type encryption.

Note that the M;’s need not be random, and consequently 0‘1(Mi,Ri_1)
may not be well-defined. Choosing random Ry will increase the chances that
6~1(M;, R;_1) is always defined. Alternatively, one can use the ideas of section
5.2 to randomize M;, or one can use (3 instead of §~1. Again, since E(R,,) =
(S, T;n) needn’t be random even if E is semantically secure, one may want to
use 6 in place of 8. This adds a negligible amount to the communication, and as
stated earlier, encrypting the extra bits of 8 can be done in step 3.

Security: An adversary learns z1,...,ZTm, Y1, ---,Ym, L0, S, which is equivalent
to learning E'(Ry,),ds,...,dm,€1,...,em, where E’ is the semantically secure
hybrid encryption scheme. Assummg DDH is hard in {g), (d;, €;) is a semantically
secure encryption E”(¢;) of ¢; for all i. The security of the scheme then follows
from the fact that the keypairs (b1, By) and (ba, Ba) of E’, E” are independent.

6 Computational Complexity

In this section we present efficient algorithms for computing 4 and -1, analyze
their complexity, and suggest an alternative way of improving computational
costs with slightly more communication. Each of these is described in turn.

6.1 Algorithm

Before describing # and 81, we need some notation:

— For d | n, let Uy be the smallest integer for which ged(®.(q), @7 (q), ﬂ:}%l) =1
forall e # f withe |d and f | d.

— For e | d | n, we define yq. = ged(P. (q),) and zq,e = ged(Pe(q), Ua).

d
Generalizing section 3, we can find wg and wd,e s.t. g—wd+ze| d gyd;lwd@ =
1. Further, we can find ug, and vg e for which qsw(q) de + Q’(q) L vge = 1.

~ Let pe(d) : {d: e | d | nyu(n/d) = —1} — {d : e d | n, pu(njd) = +1} for
e | n, e # n, be a bijective mapping and define p,(n) = n.

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 173

A naive implementation of 8 consists of the following steps:

. We first use an isomorphism
Ta(Fq) X X p(n/ay=—1Fgs — Ta(Fo) X X u(nja)=-1Gvy X G(ga—1)/U,-

. By using a table lookup we map X,(n/q)=—1Gus — Xpum/dy=—1 Xeld Gza.
and we use an iSOomorphism X ,;(n/dy=—1G(qa—1)/U; — Xpun/d)=—1%e[dGya,.-
By the structure theorem of Abelian groups there is an isomorphism G, , x
Gy, — Te(Fy) foreach din with u(n/d) = —1 and e | d.

. By using a permutation we obtain a mapping

Ta(Fq) X Xp(n/dy=—1 Xejd Te(Fg) = X pun/dy=+1 Xeja Te(Fy)-

. By the structure theorem of Abelian groups there is, for each d|n with
u(n/d) = +1 and e | d, an isomorphism T, (Fy) — G, , x Gy, .. By using a
table lookup we map X ,(n/dy=+1 Xeld Gza. — Xu(n/d)=+1Gu, and we use
an isomorphism X y(n/dy=41 Xejd Gya. = X p(n/d)=+1G(qé—1)/U,-

. In the last step we use an isomorphism

Xp(n/d)=+1GUs X Gga-1)/Us = Xpu(n/d)=+1F .

Each of the isomorphisms are defined by taking simultaneous exponentiations.
An improved implementation combines different isomorphisms in a single simul-
taneous exponentiation. Each table lookup followed by an exponentiation can
be implemented as a single table lookup. This reduces the number of exponen-
tiations and multiplications.

Computation of 8(z, (Ta)djn,u(n/d)=—1) for (Ta)dn,u(n/d)=—1 € Xdjn,u(n/d)=—1Fja
and z € T,,(Fg):

1. For d | n, u{n/d) = —

(a) Compute xfiqd—l)/vd

a table look up.
(b) Compute (Z,, () .=(Z% Z04e (q —1)ug, =/yde)45=(q)/zpe(d)’¢)eld € oG, o
2. Compute Zp n = 2%» (4)/zn ne G
3. For d | n, p(n/d) =
(@) Map (Za,e)p. (d)=d,eld € Xe|dGzq. 10 Za € Gu,, by using a table look up.

€ Gy, and map it to (Zg,e)ejd € Xe|aGzy,. Dy using

Zpn(n),n

(b) Compute za=Z7"* - [1,_ 4= deld, e#n(zv"” - (q Dy, ©)Pe(@)wa,e /e
which is in G'Ud Gga-1)Uy =
4. Multiply x,, with £2n(@%n.n/ynn,

5. 8(z, (2d)ajn, p(n/dy=—1) = (Td)din,u(n/d)y=+1-

q"'

The ideas in section 3 can be used to show the algorithm above is well-defined.
The improved computation of §~! is similar, where we make sure to use the
inverse of the coordinate permutation used in 6.

TERAM LING

174 Marten van Dijk and David Woodruff

6.2 Complexity

For background on efficient computations in fields and subgroups, see [6,12,29].
Consider the algorithm for 4. In step 1, for d | n, u(n/d) = —1, we perform 1 +
3 ela 1 exponentiations in Fya. Notice that, in step 1b we do not need to compute

Z :f’: since it can be combined with the table lookup in step 1a (there is an entry
in the table corresponding to Z,}”e for every v). Step 2 costs 1 exponentiation in
Fqﬂ -

For d | n, p(n/d) = —1 or d = n, we precompute z2, 0 < i < dlogg. This
costs dlog ¢ multiplications in Fya. By using the results of the precomputation, an
exponentiation z};, forsome ¢, in Fya costs on average (dlogg)/2 multiplications
in Fa (the bit length of the exponent t is (dlogq) and roughly half the time a
bit is equal to 1). Each multiplication in Fys costs f(d) < d? multiplications in

F,. Summarizing, steps 1 and 2 cost about

Ci=(3f(n+ Y. (B+> 1f(d)d logq

d|n,u(n/d)=-1 eld 2

multiplications in Fj.

In step 3, for d | n, p(n/d) = +1, we need to perform, for each e | d with
pe(d’) = d, one exponentiation in F,«s. We do not need to compute Z;jf'"e" which
can be combined with the table lookup in step la.

The cost of step 3, measured in multiplications in the base field Fy, is on

average approximately >4 o av—i1 2oeia (021 (d))p (d)(log ¢)/2. Since pe
defines a permutation, this expression is equal to

Co=flnn+ (Zl)f(d)d) 135—3

dinp(n/d)=—1 eld

The total cost is Cy +C2 multiplications in Fy, where we neglect the cost of table
lookups, addition, and multiplication modulo an integer. Since Zel 41 =0(d*),

we have 31, n/ay=—1 (342X a D (d)d = O, &%) = O((L g, 9)3F°) =
O(n3+¢), since the sum of divisors of n is O(n!*€) for any € > 0. This proves
C1 + Cy = O(n®*¢ log q).

The same techniques show 8~! requires O(n3*¢log ¢) multiplications in Fj,.

6.3 Efficiency Improvements

To improve the efficiency we may use exponentiation algorithms for fixed expo-
nents using vector addition chains. Also, we may group several exponentiations
of x4 together into one exponentiation by appropriately choosing the bijections
pe. If » 1s not too large, we may use simultaneous exponentiation to speed up
the computations. Full simultaneous exponentiations in every step requires a
precomputation of 2™ multiplications. We may optimize by using simultaneous

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 175

exponentiation to compute intermediate results which we multiply together to
compute the full exponentiation. Finally, we may combine the exponentiations
required in our applications with the evaluation of 6.

Notice that € is much more efficient if, for d | n with u(n/d) = -1, z4 €
G(qa—1)/u,- Then, for e | d | n with u(n/d) = -1, Zy. =1 and Zy = 1. Table
lookups can be avoided. Therefore each x4, for d | n with p(n/d) = +1, can
be computed by a single simultaneous exponentiation of z,zq € Gqa—1),v,,4 |
n, p(n/d) = —1, with fixed exponents in step 3. To make use of this, we define
anew map 7 which maps (z, (4)djn,p(n/d)=—1) into 8(z, (zg" Ydin,pu(n/d)=-1) and

the table entries of (z&qd"l)/ U‘)d|n,#(n/d)=_1. This increases the communication
cost by
Z log, U
din,pu(n/d)=-1

bits which in practice is much less than log, g. So at the cost of a small increase
in communication we improve the computational efficiency.

Computation of 7(x, (Ta)djn,u(n/d)=—1) and 7

(qd—l)/Ud)
d d|n

1. For d | n, pu(n/d) = —1, compute (z, =z (n/d)y=—1-
2. Compute
@ . ’ *
za= [(@t TR @wansvas € Gayy, C

pe(d')=d,eld,e£n

for d | n with p(n/d) = +1. Multiply z, with 22»@wn/2Znn+@a(@Wn.n/ynn,

3. 7(z, (Za)djn,p(n/d)=—1) = (Zd)djnun/d)=+1, (T@)djn,u(n/d)=—1)-
(" —1)vn,n/Un+(q"— 1)“n,n/yn,n

4. Compute zy, =z.
5. Compute
by
d
—1u Uyb,
m/;;i’ H (xfiq) d,e’ /yd"')ég' (q)wd’.e' /yd'.e’ = .’E’Z;‘I (L‘d/dl L g,
d=p,:(d"),e’|d’

for d' | n with p{n/d') = —1, where -‘fvflladl + Ugby = 1.
6. 77 ((Zd)dn,u(n/d)y=+1: (T@)din,u(n/dy=—1) = (T, (Td)d|n, u(n/d)y=—1)-

For n = 30, {d | n: p(n/d) = -1} = {15,10,6,1} and {d | n : u(n/d) =
+1} = {30,5,3,2}. We define p1(15) = 5, p3(15) = 30, p5(15) = 5,p15(15) =
307,01(10) = 2792(10) = 2,P5(10) = 307/’10(10) = 30,P1(6) = 3,P2(6) = 307
p3(6) = 3,pe(6) = 30, p1(1) = 30, p30 = 30. We use f(30) = 234, f(15) = 78,
F(10) = 45, f(6) = 18, f(5) = 15, f(3) = 6,and f(2) = 3 [31]. Instep 1, we
compute zis, rig, g, and zj using single exponentiations by using the square
and multiply method [18, p. 614]. This costs in total 3(78-15+45-10+18-6+
1)(log q)/2 = 2593.5log ¢ multiplications in Fy.

TERAM LING

176 Marten van Dijk and David Woodruff

In step 2, z30 is computed as a simultaneous exponentiation [18, p. 618]in
xz € Fpo,x15 € Fpis,210 € Foo,26 € Fye,x1 € F,. In a precomputation we
compute for each of the 25 possible sets S C {z,z1s, 10, %6, 1} the product
[I.,es w- The whole precomputation costs at most 25 multiplications in Fyso. In
the computation of 3¢ the exponents of z, 15, Z10, €tc., have bit lengths 30log g,
15logq, 10loggq, etc. This means that in the second half of the simultaneous
exponentiation (the last 30logq — 15log ¢ bits of the exponents) we only need to
square or square-and-multiply with z € Fyse. So the average costs in the second
half of the simultaneous multiplication is equal to 3(15loggq)/2 multiplications
in Fyso. The simultaneous exponentiation corresponding to the bits ranging from
position 10loggq to 15logq involves square or square and multiply with z, x5,
or z - x15. This costs on average 7(5log g)/4 multiplications (5 is the difference
between 15 and 10, on average we need 1 multiplication in 1 out of 4 cases
and 2 multiplications in 3 out of 4 cases). Notice that we treat squaring as a
single multiplication in this excersise. Continuing this argument we need in total
234(2° +15(3/2) +5(7/4) +4(15/8) +5(31/16) +1(63/32)) (logq) = 19283.1logq
multiplications in F, (2% comes from preprocessing).

The outputs x5, 3 and z2 are single multiplications in z35, g, and zg,
respectively costing a total of 3(78-15+18-6+445-10)(logq)/2 = 2592 log ¢ mul-
tiplications. Concluding, the computation of 7 costs approximately 24468.6 log g
multiplications in Fy. A single exponentiation in Fgso costs 234 - 30(log ¢)3/2 =
10530log ¢ multiplications. Hence, 7 costs about 2.32 exponentiations in Fyso.

In the implementation of 7~ wecompute z as a single exponentiation in 3,
costing 234 - 30(log ¢)3/2 = 10530 log ¢ multiplications. In step 5, 15 is a simul-
taneous exponentiation in z3g and x5 (and a table look up for the exponentiation
in z5). This costs 78(22+25(3/2) +5(7/4))(logq) = 3919.5log g multiplications.
Similarly, 19 costs 45(22 + 28(3/2) + 2(7/4))(log g) = 2227.5logq and zg costs
18(22 +27(3/2) + 3(7/4))(log q) = 895.5 log ¢ multiplications. We compute 1 as
a single exponentiation in z3g, costing 234 - 30(log ¢)3/2 = 10530 log ¢ multipli-
cations. Concluding, the computation of 7 costs approximately 28102.5logqg
multiplications, which is equivalent to 2.67 exponentiations in Fgso.

7 Conclusions and Open Problems

Our fundamental contribution is a compact and efficient representation of ele-
ments of T,,(Fy), namely, the construction of bijections # and =1 of section 3.
This allows us to construct EIGamal signature and encryption schemes meeting
the optimal rate of communication, as well as a secret key exchange protocol
meeting this rate asymptotically. If the torus conjecture of [24] is proven, the
schemes in that paper will also achieve this rate, and moreover, their scheme for
DH key exchange will meet the optimal rate even for a single key exchanged.
Hence, resolving their conjecture is an important problem. Another important
question is whether the computational cost of our schemes can be reduced to
a more practical level. Finally, our representation of T,(F,) may have other
applications.

TERAM LING

Asymptotically Optimal Communication for Torus-Based Cryptography 177
References

1. L. M. Adelman, J. DeMarrais, A Subexponential Algorithm for Discrete Loga-
rithms over All Finite Fields, in Advances in Cryptology — Crypto ’93, LNCS
773, Springer-Verlag 1994, 147-158.

2. D. Boneh and R. Venkatesan, Rounding in lattices and its cryptographic applica-
tions, Proc. 8-rd Annual ACM-SIAM Symposium on Discrete Algorithms, ACM,
NY, 1997, 675- 681.

3. W. Bosma, J. Hutton, and E. R. Verheul, Looking Beyond XTR, in Advances in
Cryptology — Asiacrypt 02, LNCS 2501, Springer, Berlin, 2002, 46 - 63.

4. A. E. Brouwer, R. Pellikaan, and E. R. Verheul, Doing More with Fewer Bits, In
Advances of Cryptology — Asiacrypt 99, LNCS 1716, Springer, 321-332.

5. N. G. Chebotarev, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen,
welche zu einer gegebenen Substitutionsklasse gehoren. Math. Ann. 95, 191-228
(1926).

6. H. Cohen and A. K. Lenstra, Supplement to Implementation of a New Primality
Test, Mathematics of Computation, volume 48, number 177, 1987.

7. D. Coppersmith, Fast Evaluation of Logarithms in Fields of Characteristic Two,
IEEE Trans. Inform. Theory 30 (1984), 587-594.

8. S. R. Finch, Artin’s Constant, 2.4 in Mathematical Constants, Cambridge, Eng-
land: Cambridge University Press (2003), 104-110.

9. D. Gordon, Discrete Logarithms in GF(p) Using the Number Field Sieve, SIAM J.
Discrete Math. 6 (1993), 312-323.

10. T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms, IEEE Transactions on Information Theory 31(4), 1985, 469-472.

11. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th
edition, Oxford University Press, 1979.

12. A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata,
Soviet Physics Doklady, volume 7, 1963, 595-596.

13. A. K. Lenstra, Using Cyclotomic Polynomials to Construct Efficient Discrete Log-
arithm Cryptosystems over Finite Fields, Proceedings of ACISP 97, LNCS 1270,
Springer-Verlag 1997, 127-138.

14. A. K. Lenstra and E. R. Verheul, The XTR Public Key System, In Advances of
Cryptology — Crypto 2000, LNCS 1880, Springer, 1-19.

15. A. K. Lenstra and E. R. Verheul, An Overview of the XTR Public Key System,
in Public-key cryptography and computational number theory (Warsaw, 2000), de
Gruyter, Berlin, 2001, 151-180.

16. H. W. Lenstra, The Chebotarev Density Theorem, URL:
http://math.berkeley.edu/jvoight/notes/oberwolfach/Lenstra-Chebotarev.pdf

17. Seongan Lim, Seungjoo Kim, Ikkwon Yie, Jaemoon Kim, Hongsub Lee, XTR Ex-
tended to GF(p®™), Selected Areas in Cryptography, 8th Annual International
Workshop, SAC 2001, 301-312, Springer Verlag, 2001.

18. A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, FL, 1997.

19. T. Nagell, “The Cyclotomic Polynomials” and “The Prime Divisors of the Cy-
clotomic Polynomial”, 46 and 48 in Introduction to Number Theory. New York:
Wiley, 158-160 and 164-168, 1951.

20. A. Odlyzko, Discrete Logarithms: The past and the future, Designs, Codes and
Cryptography, 19 (2000), 129-145.

TERAM LING

178 Marten van Dijk and David Woodruff

21. S. C. Pohlig, M. E. Hellman, An Improved Algorithm for Computing Logarithms
over GF(p) and its Cryptographic Significance, IEEE Trans. on IT, 24 (1978),
106-110.

22. J. M. Pollard, Monte Carlo methods for index computation (mod p), Math. Comp.,
32 (1978), 918-924.

23. K. Rubin and A. Silverberg, Algebraic tori in cryptography, to appear in High
Primes and Misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie
Williams, Fields Institute Communications Series, American Mathematical Soci-
ety, Providence, RI (2004).

24. K. Rubin and A. Silverberg, Torus-Based Cryptography, In Advances of Cryptology
— Crypto 2003, LNCS 2729, Springer, 349-365.

25. K. Rubin and A. Silverberg, Using primitive subgroups to do more with fewer bits,
In Algorithmic Number Theory (ANTS VI), Lecture Notes in Computer Science
3076 (2004), Springer, 1841.

26. C. P. Schnorr, Efficient Signature Generation by Smart Cards, Journal of Cryptol-
ogy, 4 (1991), 161-174.

27. O. Schirokauer, Discrete Logarithms and Local Units, Phil. Trans. R. Soc. Lond. A
345, 1993, 409-423.

28. O. Schirokauer, D. Weber, Th. F. Denny, Discrete Logarithms: the effectiveness
of the index calculus method, Proceedings ANTS II, LNCS 1122, Springer-Verlag
1996.

29. M. Stam, Speeding up Subgroup Cryptosystems, PhD Thesis, Eindhoven University
of Technology, 2003.

30. V. Voskresenskii, Algebraic Groups and Their Birational Invariants, Translations
of Mathematical Monographs 179, American Mathematical Society, Providence,
RI, 1998.

31. A. Weimerskirch and C. Paar, Generalizations of the Karatsuba Algorithm for Ef-
ficient Implementations, URL:
http://www.crypto.ruhr-uni-bochum.de/Publikationen/, 2003.

TERAM LING

How to Compress Rabin Ciphertexts
and Signatures (and More)

Craig Gentry

DoCoMo USA Labs

cgentry@docomolabs-usa.com

Abstract. Ordinarily, RSA and Rabin ciphertexts and signatures are
log N bits, where N is a composite modulus; here, we describe how to
“compress” Rabin ciphertexts and signatures (among other things) down
to about (2/3) log N bits, while maintaining a tight provable reduction
from factoring in the random oracle model. The computational overhead
of our compression algorithms is small. We also improve upon Coron’s re-
sults regarding partial-domain-hash signature schemes, reducing by over
300 bits the hash output size necessary to prove adequate security.

1 Introduction

The hardness of factoring is one of the most fundamental and frequently used
assumptions of public-key cryptography; yet cryptosystems that rely on the fac-
toring assumption have relatively poor performance in terms of bandwidth. For
example, RSA and Rabin ciphertexts and signatures are typically at least as
many bits as the composite modulus N, while recent advances in hardware-based
approaches to factoring (e.g., [32]) suggest that N must be more than 1024 bits
for strong security. So, factoring-based cryptosystems often do not compare fa-
vorably with cryptosystems based on alternative hard problems — e.g., ECC for
encryption or DSA for signatures.

Bandwidth consumption is important, in part because fundamental limita-
tions of wireless technology put bandwidth at a premium. For example, Barr
and K. Asanovié [2] note that wireless transmission of a single bit can cost more
than 1000 times as much energy as a 32-bit computation. Since battery efficiency
is growing relatively slowly, energy consumption (particularly through wireless
transmission) may become a significant bottleneck.

Moreover, signal interference places physical limits on how much data can
be transmitted wirelessly in a given region. This was not a problem in wired
networks. These limitations are compounded by the lossiness of wireless channels,
which necessitates additional bandwidth in the form of forward error correction
(FEC). FEC is particularly important for cryptographic transmissions, where
partial recovery of a ciphertext or digital signature is typically useless.

These considerations make compression algorithms very attractive. In fact, in
recent years, substantial progress has been made in constructing “compressed”
cryptosystems. For example, XTR [22] and CEILIDH [30] both use “compact

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 179-200, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

180 Craig Gentry

representations” of certain elements to achieve a bandwidth savings. There are
also a variety of hybrid cryptosystems, such as signcryption and aggregate sig-
nature schemes, in which multiple cryptographic functionalities are somehow
represented by a single, relatively short string. However, although such hybrid
cryptosystems exist for RSA and Rabin, none of them breaks the “(log N)-bit
barrier.”

OUR DESIGN GOALS. In light of these considerations, we would like to construct
a compression algorithm that is broadly applicable to factoring-based schemes,
such as RSA and Rabin. Ideally, the compression algorithm should allow RSA
and Rabin ciphertexts and signatures to be substantially less than log N bits
without sacrificing any security — i.e., while still using (and retaining the secu-
rity of) a (log N)-bit modulus. Moreover, the compression algorithm should add
minimal computational overhead. If the compression algorithm requires addi-
tional computation, this computation should not require use of the secret key,
so that it can be performed (more quickly) outside of a “secure environment,”
such as a smart card.

OUR RESULTS. We essentially achieve our design goals, except that our tech-
niques work only for Rabin-type cryptosystems, not for RSA. Along the way, we
also substantially improve upon Coron’s results on partial-domain-hash Rabin
signature schemes (Rabin-PDH).

Coron [16] proved the security of a variant of the Rabin signing scheme
(Rabin-PDH) in which the hash function that is used to hash the message out-
puts strings of length (-§- +€)log N bits. It turns out that this € has a large effect
in practice; if the simulator in the security proof wishes to generate a distribution
of signatures whose statistical distance from uniform is less than 278%, Coron’s
method requires that the hash output length be at least at §log N 4364 bits. We
provide a perfectly uniform drawing algorithm that reduces the necessary hash
output length to only log N + 3 bits; moreover, our security proof is tighter.

Our main result, however is a compression algorithm that allows a 33%
reduction in the bit-length of Rabin signatures and ciphertexts, without any
sacrifice in security. (Notice that Coron’s result is not a compression algorithm;
although the hash output length of Coron’s Rabin-PDH scheme may be less
than log N bits, the Rabin-PDH signature itself, which is essentially a modular
square root of the hash output, is a (log N)-bit value.) For our improved version
of Rabin-PDH signatures, the “entropy” of the hash output is just over -g—logN
bits; thus, it is theoretically possible that the signature could also be expressed in
about 2 % log N bits. In fact, up to the loss of a few bits, this is precisely what we
achleve a (2log N + 6)-bit Rabin-PDH signature, with a tight reduction from
factoring M.

Our lossless compression algorithm also works for Rabin encryption, but in
reverse. A (2 log N)-bit plamtext is “decompressed” by mapping it to a (log N)-
bit number that has a (2log N + 3)-bit modular square. This modular square
is a “compressed” Rabin ciphertext. Numerous other cryptosystems also involve
computing square roots modulo a composite modulus #, including Fiat-Shamir,
Cocks’s identity-based encryption scheme, as well as various schemes enabling

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 181

ring signatures, signcryption, and so on. Our techniques enable a similar 33%
bandwidth reduction for these schemes.

RELATED WORK. Like Coron’s work, our techniques build upon Brigitte Vallée’s
elegant analysis of the distribution, in Z/NZ, of integers in By = {z €
[1,N): h < z%(modN) < '} for A’ — h < 8N?/3 _ie., integers with modular
squares in a “narrow’” interval. We provide a self-contained discussion of her
results in section 3.

Some previous work has been done on compressing Rabin and low-exponent
RSA signatures — in particular, Bernstein [7] mentions that one can simply re-
move the %logz N least significant bits of any regular Rabin or RSA signature,
and the verifier can use Coppersmith’s method [17] to recover those bits. Ble-
ichenbacher [8] describes an improvement: the signer can use continued fractions
to express the signature s as a/b(modN), where a is about €1 log, N bits and
b is about %logzN bits, and send a as the signature. The verifier checks that
¢ = a®/H(m)(modN) is an e!* power (namely b°) over Z. The drawback of
these methods, though they arguably reduce Rabin signature length to %log2 N
bits, is that they do not allow message recovery; the verifier needs m before
verifying, which effectively adds to the signature length. These methods also do
not appear to be very broadly applicable; e.g., they do not appear to lead to
low-bit-length encryption, signcryption and aggregate signature schemes.

As mentioned above, Coron [16] uses a “compressed” output space for the
hash function in a Rabin signature scheme, but the partial-domain hash signa-
tures themselves are still log N bits.

ORGANIZATION OF THE PAPER. This paper is organized as follows. After noting
some preliminaries in Section 2, we describe Vallée’s distributional observations
and her “quasi-uniform” drawing algorithm in section 3. In section 4, we describe
our perfectly uniform drawing algorithm, and our improvement upon Coron’s
results regarding Rabin-PDH. We describe our compression algorithm in section
5, after which we describe compressed Rabin encryption and signature schemes
in section 6. Finally, in Section 7, we mention other cryptosystems — such as
signcryption, aggregate signature and ring signature schemes — for which our
compression algorithm allows a 33% bandwidth reduction.

2 Preliminaries

We gather some mathematical notation here for convenience. Let {0,1}* denote
the set of all bit strings, and let {0,1}™ denote the set of all bit-strings of length
n. For a real number =, [r] denotes the ceiling of r, that is, the smallest integer
value greater than or equal to 7. Similarly, |r| denotes the floor of r, that is,
the largest integer value less than or equal to r. Finally, |r] denotes the closest
integer to r. Let the symbol || denote concatenation.

Throughout, N will denote a suitable integer modulus. To be suitable, N
should at least be computationally hard to factor using any modern factoring
algorithm. In practice, one often generates N as the product of two large prime

TERAM LING

182 Craig Gentry

numbers p and ¢q —e.g., 512 bits apiece. However, one could choose N differently
for our schemes, if desired. For example, setting N = p%gfor d > 1 can lead to
efficiency advantages, though one should be wary of setting d too large [11].

Let BN pa = {z € [1,N] : h < 22(modN) < h'} for integers h and k' and
suitable modulus N - i.e., the set of integers with modular squares in [, h’). Let
B be shorthand for By 4, when N, h and b’ are understood.

A “lattice” consists of the set of all vectors that can be generated as integer
linear combinations of a set of basis vectors. For example, if (a,b) and (c,d) are
two basis vectors in two-dimensional space, the lattice that they generate is the
set of vectors {(k1a + kec, k1b + kod) : k1, k2 € Z}.

3 Distribution of Numbers with Small Modular Squares

Developing a compressed representation of numbers in By p »/ that is efficiently
computable and invertible requires an understanding of how numbers in By 4 n/
are distributed in [0, N/2). The compression algorithm works, at a high level, by
taking this distribution into account.

In [33], Vallée describes the ‘“global” distribution of By an in [0,N/2) in
terms of its “local” distribution in each of a set of Farey intervals that covers
[0, N/2). She then describes each local distribution in terms of points of a lattice
that lie in the region between two parabolas. For A’ — h > 8N?/3, the distri-
bution of By p r-elements among the Farey intervals is “quasi-independent,”
allowing her to construct an algorithm that draws integers from By p ns “quasi-
uniformly.” Since Vallée’s analysis forms the basis of our compression algorithm,
we review it in detail in this section.

3.1 Farey Sequences
Some properties of Farey sequences are collected in [20]; we recall them below.

Definition 1 (Farey Sequence). The Farey sequence Fi of order k is the
ascending sequence (%,%,...,%) of fractions g with 1 < a; < b; < k and
ged(a;, by) = 1.

The characteristic property of Farey sequences is expressed in the following the-
orem [20]:

Theorem 1. If %‘? and ‘;:1‘ are consecutive in Fy, then bjai+i — abiy1 = 1.
Another useful theorem concerning Farey sequences is the following:
Theorem 2. If %.-i and ‘;:ﬁ are consecutive in Fy, then by + b;41 > k.

The latter theorem follows from the fact that (a; + ait1)/(b; + bit1), the so-
called “mediant” of a;/b; and @;t+1/bit1, is between a;/b; and a;11/bi+1 and
would be in Fj if b; + biy1 < k. Farey sequences lead naturally to the notion
of a Farey partition, in which the set of mediants partition the interval [0, N/2)
into subintervals. The formal definition is as follows.

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 183

Definition 2 (Farey Partition). The Farey partition of order k of the interval
[0, N/2) is the set of intervals J(a;, b;) = [%@‘_Ti‘gj;’, (;(‘;::‘l:'l)f)v), where § is
the i-th term in Fy,.

So that each “end” of [0, N/2) is covered by the partition, we set (ag,bp) =
(a1,b1) and (az+1,b,41) = (az,b;), where a, /b, = 1/1 is the final fraction in the
Farey sequence.

Vallée found it convenient to use another set of intervals I(a;,b;), called
“Farey intervals,” that are related to J(a;, b;).
Definition 3 (Farey Interval). The Farey interval I(a;,b;) of order k is the

open interval with center %‘},—N and radius ﬂ%, where 3+ is the i-th term in Fy.

Using Theorems 1 and 2, one can easily prove that I(a;, b;) contains J(a;, b;), and
that the interval I(a;, b;) is no more than twice as wide as the interval J(a;, b;)
[1]. One can also prove that every number in [0, N/2) is covered by at least one,
and at most two, Farey intervals — e.g., by showing that, for every i, I{a;—1,b;—1)
intersects I(as, b;), but neither I(a;_1,b;—1) nor I(a;+1,b:+1) contains the center
of I(a;,b;). Vallée probably favored using the Farey intervals rather than the
J(a;,b;) in her analysis, because (roughly speaking) the fact that each I(as, b;)
is symmetric about a;/N/2b; makes her analysis cleaner. A “Farey Covering,”
which is analogous to a Farey partition, is then defined as follows.

Definition 4 (Farey Covering). The Farey covering oforder k of the interval
[0, N/2) is the set Farey intervals I(a;,b;) of order k.

3.2 The Connection between Farey Sequences and B’s Distribution

Although it is far from obvious, Farey sequences have a close connection with
the distribution in Z/NZ of integers in By ap. Vallée observed that the gaps
between consecutive integers in B vary widely close to the rationals a;/N/2b; of
small denominator b;. Close to these rationals, the distribution might be called
“clumpy,” with large gaps separating sequences of small gaps. However, as one
considers wider intervals centered at a;N/2b;, the distribution of B-elements
provably “evens out” — i.e., the ratio of the number of B-elements in the in-
terval, versus the number one would expect if the B-elements were distributed
uniformly, approaches 1. Roughly speaking, the width of interval needed before
the “clumpiness” can be disregarded is inversely proportional to b;. This is one
reason why Farey intervals are useful for analyzing B’s distribution; the diameter
of I(a;,b;) is also inversely proportional to b;.

Building on the above observations, Vallée ultimately proved that the number
of Bn,p,n-elements in I(a;, b;) is essentially proportional to the width of I(a;, b;)
(as one would expect), as long as k' — h is large enough. Formally, Vallée proved
the following theorem [33].

Theorem 3. For —h = h' > AN?/3 gnd k = %, the subset By p pe and the
Farey covering of order k are quasi-independent.

Vallée defines quasi-independence as follows.

TERAM LING

184 Craig Gentry

Definition 5 (Quasi-Independence). A subset X and a coveringY = {Y;} of
Zy are quasi-independent if, for all j, the sets X andY; are (l1,12)-independent
for some positive constants 1 and ly — i.e., I1 < %{% <ls.

Clearly, this definition is meaningless unless !; and ls are independent of N.
Vallée proves that I; = % and I, = 4 suffice when—h = k' > 4N?/3 and k = %
This means that, for these parameters, any given Farey interval has no more
than la/l; = 20 times the “density” of By g n/-elements than any other Farey
interval.

Interestingly, Vallée’s proof of Theorem 3 is essentially constructive. To an-
alyze the distribution of By n/-elements in the “local” region I(a,,b;), Vallée
associates each By p n-element with a point that is in a particular lattice and
that lies in the region between two particular parabolas. She then partitions the
lattice into a set of parallel lines. The number of lines may be very large — e.g.,
superpolynomial in log N. Her distribution analysis then becomes ‘“even more
local”; she provides upper and lower bounds on how many associated lattice
points can occur on each line (except for at most 6 of the lines, for which she
only provides upper bounds). These bounds imply similar bounds on the num-
ber of By i n-elements in I{a;, b;). Her constructive approach results in what
one may call a “quasi-enumeration” of Bp,n n/-elements in I(a;,b;), in which
each element is indexed first by the line of its associated lattice point, and then
by the lattice point’s position on the line. This quasi-enumeration is crucial
to Vallée’s “quasi-uniform” drawing algorithm (subsection 3.3), to our uniform
drawing algorithm (section 4), and to our algorithms for losslessly compressing
By n n-elements (section 5).

Before discussing these algorithms we review the details of Vallée’s analysis.
Set zo to be the closest integer to —J— (the center of the Farey interval). If z =
xo+u isin By a,n, then b < .'1:0+2a:0u+u (mod N) < h'. Now, let L(zq) be the
lattice generated by the vectors (1,2xzo) and (0, N). Then, x = zo+u isin By s p/
precisely when there is a w such that (u, w) € L(zo) and h < z3+w+u? < h’. The
latter requirement implies that (u,w) is in between the two parabolas defined,
in variables u’ and w', by the formulas z2 4w’ + 42 = h and 22 +w' +u'? = I/,
Thus, if we set ug = zg — 2b , then each z € By n' N I(a;,b;) corresponds to
a lattice point in:

P(as, bs) = {(u,w) € L(zo) : |u+uo| < 2”

B, and h < z2 + w4+ u? < K'}. (1)

It may seem like a fairly complicated task to approximate how many lattice
points in L(zo) are between the two parabolas defined above', but, as Vallée
describes, it is possible to find a lattice basis of L{zg) in which the basis vectors
are each short, with one basis vector being ‘“quasi-horizontal” and the other
being “quasi-vertical.” The basis is (r, 8) with:

' Indeed, finding all of the L(zo) points on a single parabola is equivalent to finding
all of a number’s modular square roots, which is equivalent to factoring.

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 185

r= bz(l, 2130) et ai(O, N) = (b,, 2b1u0) . (2)
N
$§ = bi_l(l, 2.’L‘o) - ai_l(O, N) = (bi—h b_ + 2bi_1uo) . (3)

Recall that |ue| < 3, and b; < k with k = N/3,

Having computed this short lattice basis, Vallée considers the distribution of
P(a;, b;)-points (and hence B-elements) on individual lines parallel to vecr. Each
point in P{a;, b;) lies on a quasi-horizontal line that intersects the vertical axis at
ordinate wo—vN/b; for some rational index v € [0, (h'—h)2/16b; N+(h'—h)b;/N],
where wo = h' — 22 + 42 and where consecutive indices differ by 1. For lines with
indices from vy = [2(h’ — h)b;/N] to vg = |(h' — h)2/16b;N |, which intersect
the region between the two parabolas in an area she dubs the “legs” (which is
in between the “chest” and the “feet”), Vallée proves the following theorem:

Theorem 4. The number n(v) of points in P{a;,b;) on the line with index v in

oo LA —h) 7 (h'—h)
the legs satisfies: 5 AN S n{v) < £ N

Her bounds on each individual line in the legs imply lower and upper bounds on
the total number of lattice points in the legs, using the inequalities:

5 o2 L T v, @

V=1
2001 1 Y2 dy 1

—S—-!—/ —= = —— + 2/v3 . 5
;1 N O RN T 1 VU U1 (5)

For lines with indices in [0, 2(h'—h)b;/N] or [(h'—hk)?/16b;N, (k' —h)?/16b; N +
(k' — h)b;/N] that intersect the “chest” or “feet,” Vallée provides no nontrivial
lower bounds on the number of P(a;, b;)-points they may contain, only upper
bounds. For A’ —h = 8N?/3, one can verify Vallée’s results that there are at most
4 lines in the chest, each with fewer than 7)2:\/ (v1 — 1)N/b; + 1 points, and that
there are at most 2 lines in the feet, each with fewer than 8 points. Ultimately,
Vallée proves Theorem 3 using her lower bounds for the legs, and upper bounds
for the chest, legs and feet.

3.3 Vallée’s Quasi-uniform Drawing Algorithm

Vallée uses the above results, particularly her lower and upper bounds for the
legs, to obtain a concrete algorithm for drawing integers from By p ns quasi-
uniformly when k' — h > 8N?/3, For a quasi-uniform drawing algorithm, the
respective probabilities of any two By p p-elements being drawn are within a
constant factor of each other; formally:

Definition 6 (Quasi-Uniform). A drawing algorithm C, defined over a finite
set U and with values in a subset X of Zn, is said to be (11, 12)-uniform (or quasi-
uniform) for constants ly and ly if, for all z € X, -I—l)-}-l <Prju~U|Cu) =

l
z}sl_)zf_l

TERAM LING

186 Craig Gentry
Vallée’s algorithm is as follows:

1. Randomly Select a Starting Point: Pick random integer = € [0, N/2) with
uniform distribution.

2. Determine Farey Interval: Use continued fractions to compute (a;, b;) for
which z € J(a;, b:).

3. Evaluate the Number of Points in P(a;,b;): Compute zo = L%ﬂ], count
exactly the number n.4 s of points in the chest and feet, and obtain a lower
bound n; on the number of points in the legs using Vallée’s lower bounds
(with Equation 4).

4. Pick a Point from P(a;,b;): Randomly select an integer in t € [1,ncq s + ni]
with uniform distribution. If t < n.4f, output the appropriate point from
the chest or feet. Else, use Equation 4 to determine which quasi-horizontal
line would contain the nt* point in the legs if each line met Vallée’s lower
bounds, and randomly choose a point in P{a;,b;) on that line with uniform
distribution.

5. Compute z’ from the Chosen Point in P(a;,b;): Let (u,w) be the lattice
point output by the previous step. Set z’ = z¢ + u.

Remark 1. In Step 3, one can quickly can get an exact count for how many points
are in the chest and the feet by counting the exact number of points on each
line, using simple geometry. (Recall that there are at most 4 lines in the chest,
2 in the feet.) A line intersects one of the two parabolas in at most 4 locations,
possibly cutting the line into two segments that lie in between the parabolas.
After finding the first and last lattice points on each segment, extrapolating
the total number of points on each segment is easy since the z-coordinates of
consecutive lattice points differ by b; (see Equation 2). Vallée avoids counting
the number of points on lines in the legs, since the number of lines in the legs
may be super-polynomial in log V.

The drawing algorithm outputs an z’ € By s »/ that is in the same J(a;, b;)
interval as z. A wider interval (recall that I'(a;, b;) has diameter 2 pEfor1<b; <
k, and that J (a,,b) is at least half as wide as I(a;,b;)) has a higher chance
of being chosen in the first two steps. However, once an interval is chosen, any
given B-element in that interval has a lower probability of being chosen if the
interval is wide than if it is narrow. On balance, these factors even out (this is
quasi-independence), and the drawing algorithm is quasi-uniform.

In computing l5/14, there are three things to consider. First, different Farey
intervals may have different “densities” of By s n/-elements; specifically, the ratio
may be as much as 20 (see discussion after Theorem 3). Second, in Step 2, we
used J(a;,b;) rather than I(a;,b;); since I(ai,b;) is between 1 and 2 times as
wide as J(as,b;), this costs us another factor of 2. Finally, within the J{a;, b;)
interval, different lines may be closer t0 the lower bounds or closer to the upper

bounds, leading to a factor of T/Lz 5. Thus, I3/l is at most 20 -2 - £ = 140.

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 187

4 Improving Vallée’s and Coron’s Results

In this section, we describe how to modify Vallée’s quasi-uniform drawing al-
gorithm to make it perfectly uniform. Our perfectly uniform drawing algorithm
gives us an immediate improvement upon Coron’s proof of security for Rabin-
PDH; in particular, it allows us to reduce the output size of the partial domain
hash function (see subsection 4.2). More generally, the fact that a simulator
can draw B-elements uniformly in responding to an adversary’s hash queries
allows us (when combined with the compression schemes of Section 5) to reduce
the bandwidth of several signature-related cryptosystems, including aggregate
signature schemes, ring signature schemes and signcryption schemes.

4.1 A Perfectly Uniform Drawing Algorithm

Modifying Vallée’s quasi-uniform drawing algorithm to make it perfectly uni-
form is surprisingly simple. Our modification is based on our observation that,
for any By p n-element (with ' —h > 8N?/3, as required by Vallée), anyone can
efficiently compute the exact probability P,. that Vallée’s quasi-uniform draw-
ing algorithm will output z’. For example, a simulator in a security proof can
compute this probability (without, of course, needing the factorization of N).

Assume, for now, that we can efficiently compute P, for any given z’. Let
P,.in, be alower bound on such probabilities over all By j n-elements. Then, the
improved drawing algorithm is as follows:

1. Use Vallée’s method to pick an ¢’ € By p s quasi-uniformly.
2. Compute P,.

3. Goto Step 1 with probability (Pys — P)/ Py-

4. Otherwise, output z'.

Since Vallée’s drawing algorithm is quasi-uniform, the expected number of
“Goto” loops per draw is a small constant; thus, the simulator’s estimated time-
complexity increases only by a constant factor. The probability that z’ is cho-
sen in Step 1 and that it “survives” Step 3 is the same for all ' — namely,
Py - (1- L ’;17 =in) = Phnip; for this reason, and since each run of Vallée’s

algorithm is in&ependent, the algorithm is perfectly uniform.

Now, given z’, how does one (say, a simulator) compute P,/? First, the sim-
ulator determines the at most two Farey intervals I{a;,b;) and I(a;41,bit+1)
that contain z’. For I(a;,b;), the simulator computes the index v; of the quasi-
horizontal line {,, that contains the lattice point (u;,w;) associated to z’, and
the exact number n(v;) of lattice points on l,,. Similarly, if there is a second
Farey interval I(a;+1,bs41) that contains 2/, the simulator computes vit1, ly,,,,
(#i+1,wi41), and n(v;4+1). Then, using the variables = and ¢ from Vallée’s draw-
ing algorithm, the probability that =’ will be chosen is:

(Pr(z € J(ai, b;)]) - (Prlt; € Lo, | = € J(a;,b:)]) - (L) +

n(v;)

(P’I‘[:L‘ € J(ai+1,b,-+1)]) . (P’I‘[t,'+1 € lv-‘+1 |z e J(ai+1,bi+1)}) ’ (;l(_’l)]z:l_)-) ’

TERAM LING

188 Craig Gentry

where we use Prit; € l,,,] to denote the probability that the choice of ¢ in Step
4 of Vallée’s algorithm will map to the line Z,,.

Remark 2. So that the above terminology works when (u;,w;) (or (wiq1,wiy1))
lies in the chest or feet, we can pretend that these n.,; points lie on a single
“line.”

Focusing on the first summand in the expression above, the simulator can
compute each of the two probabilities in this term efficiently. First, the simu-
lator computes the number of integers in J(a;, b;); denoting this number by j;,
Pr[z € J(a;,b;)] is simply 7;/[N/2]. Next, for the second probability, suppose
that ncy s+ ny is the approximation used in Step 4 of Vallée’s algorithm derived

from her lower bounds (namely, n; = I_(—h,-:-’-l-)-(\/’l)z +1—,/v1)]) for the legs, and

that n,, = }' b Vi ¥ 1] — fu\/m is her approximation for the number
of points on l,,, (Warning: our v; notation collides here with Vallée’s definition
of v; and va.) Then, Prlt € &, | z € J(@i,b;)] = ny, /(Retr + ni). In a similar
fashion, the simulator can compute the necessary probabilities for I(a;+1,bi+1),
thereby obtaining a perfectly uniform drawing algorithm.

Vallée was presumably content with finding a quasi-uniform drawing al-
gorithm, since a uniform algorithm would not have improved her result of a
provable exp(+/(4/3)lognloglogn)-time factoring algorithm by a significant
amount. However, as described below, our uniform drawing algorithm has a
significant practical impact on Coron’s partial-domain hash variant of Rabin’s
signature scheme.

4.2 Improving Coron’s Results for Rabin-PDH

Coron [16] provided a random-oracle security proof for a partial-domain hash
Rabin signature scheme (Rabin-PDH), in which the signature z’ is a modular
square root (up to a fudge factor) of vy - H(m) + f(m), where H is a partial-
domain hash with output space [0, N?] for 2 + € < 8 < 1, f is a possibly
constant function, and = is a constant. In Rabin signing, a common fudge factor
is to accept the signature if 2 = c(y - H(m) + f(m))(modN) for any ¢ €
{-2,-1,1,2}, when N = pq for p = 3(mod8) and g = 7(mod8). In this case,
z’ is an integer in By pp for A = cf(m) and b’ = h + ¢yNP? if ey is positive,
or for h = h’ + ¢yN? and b/ = cf(m) if ¢y is negative. Coron’s proof requires
that + be very small in magnitude (e.g., 16 or 256) [16], so that A’ — h = |cyN?|
is sufficiently small. One reason that Rabin-PDH was an interesting problem
for Coron to analyze was that partial-domain hashes were already being used by
standardized encoding schemes. For example, ISO 9796-2 defined the encoding
(m) = 4As6l|m| H(m)|[BCis.

As mentioned above, Coron provides a proof of security for Rabin-PDH when
h' — h is at least (3 + €)log N bits, but this “¢” can be quite large in practice.
Coron’s security proof relies completely on his algorithm for drawing integers
from By n With a distribution whose distance from uniform is at most 16 NV 5,
This statistical distance must be very small, so that an adversary cannot distin-
guish a real attack from a simulated attack, in which the simulator uses Coron’s

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 189

drawing algorithm to respond to hash queries. For the statistical distance to be at

most 27, we must have that 4 — 3¢log N < —k, which implies that € > %kgl:,l

This implies that kA’ — h is at least (+€)logN = 2log N + M bits. When
k = 80, forexample, k' —h must be at least 2 logN + 364 bits. Th1$ means that,
for k = 80, Coron’s technique does not reduce the minimum output size of the
hash function at all, until N is at least 3 - 364 = 1092 bits!

We get a better, and much more practical, provable security result by using
our perfectly uniform drawing algorithm. In particular, since our algorithm al-
lows us to draw Bp 4 p/-elements uniformlyfor A’ — h > 8N 2/3, we can prove
a reduction from factoring to Rabin-PDH when A’ — h is only %logN + 3 bits,
over 300 bits less than Coron’s result for k = 80! Moreover, the proof of security
is tighter than Coron’s proof for two reasons: 1) the adversary cannot possi-
bly distinguish the simulated distribution from uniform; and 2) Coron’s proof,
which adapts his proof for RSA-FDH [15], does not provide a tight reduction
from factoring (cf. Bernstein [6]).

For completeness, we prove the security of a specific variant of our improved
Rabin-PDH, though it should be clear that our drawing algorithm can work
with essentially any variant. We pick the one (succintly) described below for
its simplicity. Other variants may have advantages; e.g., Bernstein’s [6] security
reduction is tighter by a small constant, and Bellare and Rogaway [3] describe
an encoding scheme that allows (at least partial) recovery of the message being
signed.

Let N be the public key, with N = pq for p = 3(mod8) and ¢ = 7(mod8).
Let A, be the unique number modulo N that satisfies A, = e(modp) and
Aqp = b(modg). Let Hy : {0,1}* — [h, k') be the partial-domain hash function
with " = k' — h(modN) > 8N?/3 and H, : {0,1}* — {A41,41} be a keyed
hash function, with the key known only to the signer. To sign M, the signer first
computes m = Hy(M), and then:

1. Sets 8" = m®=P=9+9/8 mod nif () = 1; else, sets s’ = (m/2)n—Pa+5)/8;
2. Sends s = s’ - Hy(m) mod n.

To verify, the recipient checks that either s? = +£H;(M)(modN) or s2 = +2 -
H,(M)(mod N). This scheme can be easily modified, & la Bernstein [6], to avoid
the computation of Jacobi symbols.

In Appendix A, we prove the following theorem.

Theorem 5. Assume that there is a chosen-message attack adversary A that
breaks our Rabin-PDH scheme for modulus N in time t with probability €. Then,
in the random oracle model, there is an algorithm B that factors N in time t'
with probability €', where € > Le(1—), and t' = O(t + qu log® N).

5 The Compression Algorithms

In the previous section, we reduced the permissible output size of the hash
function in Rabin-PDH to about %logN bits, but Rabin-PDH signatures are

TERAM LING

190 Craig Gentry

still log N bits. In this section, we describe compression algorithms that allow
us to compress not only Rabin-PDH signatures, but also Rabin ciphertexts (not
to mention aggregate signatures, ring signatures, signcryptions, and so on).

A prerequisite of any compression algorithm is to understand the distribu-
tion of what is being compressed. Vallée gives a constructive characterization
of the distribution, in Z/NZ, of integers in By s n; we leverage her character-
ization to construct a lossless compression algorithms. Roughly speaking, we
associate By p nr-elements to strings of about log,(h’ — h) bits that specify the
By p,n-element’s Farey interval and its “address” (according to Vallée’s rough
enumeration) within that interval. For a B-element in a wider Farey interval,
we use fewer bits of the bit string to specify the Farey interval and more bits to
specify its address; on balance, it evens out.

Our compression algorithms involve two nondeterministic quasi-bijections,
6 : Bvow xD — {0,1}°2+1°g2(h'_h) (used in the signature schemes) and
7 2 {0,1}crtloga(F’=h) 5 D _, By n (used in the encryption scheme), for
small nonnegative constants ¢; and co. These mappings are not actual bijections;
we call them “nondeterministic quasi-bijections” since the image of an element
under each mapping or its inverse has a small constant cardinality; formally:

Definition 7 (Nondeterministic Quasi-bijection). For sets (X,D,Y) and
constants (11, 1l3,13,14), we say w : XxD — Yis an (11,13, 13, l4)-nondeterministic-
quasi-bijection if:

1. For all x € X, the cardinality of {m(zx,d):d € D} is in [l1,lq].
2. Forally €), the cardinality of {x : 3d € D with n(z,d) = y} is in [l3,l4].

Above, D is an auxiliary set — e.g., it may be used as a source of (a small number
of) random dummy bits if one wishes to make 7 randomized. The purpose of D
is simply to make 7 an actual “mapping,” with a single output for a given input
(even though for a single z € & there may be multiple outputs). Notice that an
actual bijection is a (1,1,1,1)-quasi-bijection.

Roughly speaking, our signature scheme uses 8 to compress, without loss,
a Rabin-PDH signature (an element of BN,h,h:) to a short bit string. Since the
“entropy”’ of the hash output in Rabin-PDH is about glog N bits, one may hope
that a Rabin-PDH signature can also be this short; in fact, within a few bits, this
is precisely the case. To verify the compressed signature, it is decompressed to
recover the ordinary Rabin-PDH signature, which is then verified in the normal
fashion. Our encryption scheme uses 7 to map encoded bit strings to integers in
By p,n, which are then squared to create short ciphertexts. Both 8 and 7 are
efficiently computable and efficiently invertible —i.e., it is easy to recover z from
w(z,d) or ' from 8(z’,d) — without any trapdoor information.

Why don’t we just replace = with §=1? Indeed, we could if § were a bijec-
tion, but (unfortunately) é maps each By , p-element to possibly several short
strings; if we used ! to map short encoded messages to By, x/-elements, mul-
tiple plaintexts would correspond to the same ciphertext, which we wish to avoid.
Thus, although the only real difference between 7 and §~1 is that we reduce the

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 191

size of s domain to ensure that it is an injection, we find it convenient to keep
the notation separate.

5.1 Mapping B-Elements to Short Strings (The 8 Quasi-bijection)

Below, we give one approach to the # quasi-bijection. Roughly speaking, 8(z’, d)
re-expresses a By p n-element ' according to its Farey interval and its “address”
(using Vallée’s lattice) within the Farey interval. For example, a “naive” way to
re-express z’ is as (a;, b;, v,1), where (a;, b;) defines z'’s Farey interval, v is the
index of the quasi-horizontal line that contains the lattice point associated to z’,
and ! represents the lattice point’s position on the line. In this format, z’ has at
most two representations, one corresponding to each Farey interval that contains
z'; the only effect of “d” is to pick one of these representations. We describe a
different format below that has tighter compression and does not suffer from the
parsing problems of the naive approach.

The # quasi-bijection below maps ' € By n to a short string in [0, "],
where A is a parameter whose value will be calibrated later.

Computing 0(z',d):

1. Determine (a;,b;) forwhich &’ is in J(as, b;).

2. Compute Zieys, the smallest integer in [0, h"] with (et +1)- 2% in J(ai, bs),
and Z,ight, the largest integer in [0, h”] with Z,sgpe - % in J{a;, b;).

3. Compute nc4 s, the number of lattice points in the chest and feet of P(as, b;),
and n;, an upper bound for the number of points in the legs.

4. Using Vallée’s enumeration, select one integer in Tright — Tiefr (there may
be several) that corresponds to the lattice point (u,w) that is associated to
z'. More specifically:

— If (u,w) is the I** point in the chest or feet, set ¢ = L.

— Otherwise, let s, be Vallée’s upper bound for the number of leg lattice
points on quasi-horizontal lines with index at most v. Compute the index v
of the line containing (u,w). Let n, be the actual number of lattice points
on the line with index v and let n! = s, — s,—1 be Vallée’s upper-bound
estimate. Suppose that x' is the kth lattice point on the line. Pick an integer
CE (Nerf+8u—1+nt L ne s+ 5,1 -l—n

- Pick an integer ¢’ € ((:cr,ght — Zleft)
T =Ziepr + .

(mr'igh,t - -'Eleft)] Set

nc+f+nz n +f+m

Although not mentioned explicitly in the algorithm description above, Vallée’s
quasi-enumeration, and the steps that use this quasi-enumeration, depend on
the values of h and h’ (which we assume to be public, and which could be
most conveniently be set to 0 and 8 N?/3). Shortly, we will calibrate h” so that
Tright — Tleft 15 larger than (but within a constant of) nc4 s + ni. In computing
0(z',d), d is used — either deterministically or as a source of random bits — to
pick the values of ¢ and ¢’. Given 6(z’,d), one can recover the value of =’ as
follows:

TERAM LING

192 Craig Gentry

Computing 67 (x):

1. Determine {a;, b;) forwhich z - % isin J(a;, b;).

2. Compute ziegy, the smallest integer in [0, h”] with (ziep: +1)- % in J{a;, b;),
and Zright, the largest integer in [0, h”] with Zrighs - %,— in J(a;, b;).

3. Compute n.4f, the number of lattice points in the chest and feet of P(a;, b;),
and ny, an upper bound for the number of points in the legs.

4. Compute ¢’ = z — Ziefs. From ¢ and nqs + ny, compute the value of c.If
¢ < ey g, let (u, w) be the ¢ point in the chest or feet. Otherwise, compute
the index v such that ¢ € (ngyg + Su—1, et f + Su), as well as the value of
k (defined as above), and let (u,w) be the k** point on the quasi-horizontal
line with index wv.

5. Set &' =0~Y(z) = [%’,ﬂ] +u.

Now, we calibrate A” to be as small as possible while still allowing the prop-
erty that at least one bit string in [0, ~"] is uniquely associated to each By s n-
element. We can ensure this property if, for every interval, Zright — Tiep: =
Ney s + ny — 1.e., the number of bit strings associated to J(a;, b;) is at least the
number of points in P(a;, ;).

Since zi, ft}i_\,l,' and (Zright + 1);11-\’,7 are separated by a distance greater than the
width of J(as, b;), we get that (Tright —Zie ft-,—l)%’,' > %’ where the latter term

is the half of the diameter of I(a;, b;); thus, we get Zright — Tieps +1 > h—‘i(fi%hl.

N
To determine an h” for which —%Thl > T + ny, We use an upper bound

proven by Vallée [33]: ney s+ ny < 4("21,1_1’:,)2 = 2(h h) . Thus, if A" > 8(h' — h),

then Zright — Ziegs +1 > ey p +ny. As long as the nl estimate is an integer, this
implies that Trighs — Zieft = Netf +mu, as desired. So, we can set k" = 8(h/ — k).
For this value of h”, the # mapping compresses By, n-elements to within 3 bits
of the theoretical minimum. The reader can verify that 8 outputs an answer for

every z' (i.e., I > 1) and that 8! has exactly one possible output for each z
(i.e., l3 = l4 = 1).

5.2 Mapping Short Strings to B-Elements (The = Quasi-bijection)

Like 81, the 7 quasi-bijection maps short strings to B p p/-elements. However,
we would like 7 to map short strings (e.g., plaintext strings) into By p n injec-
tively (e.g., to allow correct decryption); thus, the set of short strings is smaller
than the set of By p n-elements (rather than the reverse). For that reason, 7
uses Vallée’s lower bounds (unlike 8). Since 7 is otherwise similar to 8=, we
relegate a precise description of 7 to Appendix B.

In terms of performance, all steps of the 8 and 7 quasi-bijections and their
inverses are O(log? N), except (possibly) the determination of the Farey interval,
which uses continued fractions. However, even the continued fraction step can
be computed in O(log? N) time —e.g., using adaptations of techniques from [14].

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 193

6 Compressed Rabin-PDH Signing
and Compressed Rabin-OAEP+ Encryption

In this section, we describe how to use the 8 and 7 quasi-permutations to achieve
a 33% reduction in the size of Rabin signatures and Rabin ciphertexts.

The signature case is easy to describe. Recall that, in Section 4.2, we de-
scribed how to construct a Rabin-PDH signature s that satisfies either s? =
+H(M)(modN) or s = £2 - H;(M)(modN) for Hy : {0,1}* — [h, '), where
k' —h > 8N?/3, For simplicity, let’s assume that s> = H;(M)(modN); the
other cases can be handled similarly. In this case, we simply set the compressed
Rabin-PDH signature to be 8y xn(s,d) — ie., the # quasi-permutation’s com-
pression of s for modulus N and parameters h and h'. To verify the compressed
Rabin-PDH signature, the verifier simply recovers sfrom O n (s, d), and then
verifies s in the normal fashion. Note that anybody can create a compressed
Rabin-PDH signature from a (non-compressed) Rabin-PDH signature, and vice
versa, without needing trapdoor information — i.e., the compression algorithm is
completely separate from the signing process.

The proof of security for compressed Rabin-PDH follows easily from the proof
of security for (non-compressed) Rabin-PDH. Specifically, let A be a chosen-
message attack adversary against Compressed Rabin-PDH, and let B be chosen-
message attack adversary against Rabin-PDH that interacts both with a ‘“chal-
lenger” and with A. To respond to .A’s signature query on M, B queries the
challenger regarding M, receives back Rabin-PDH signature z’, and sends x to
A, where z = Oy 4 n(z’,d). Eventually, A aborts or sends B aforgery z* on a
message M* that it has never queried. B aborts or computes z’™* = 0N hhe (T z*)
and sends ™ to the challenger as its forgery.

The encryption case is more complicated, because the compression algorithm
cannot be separated from the encryption process. Unfortunately, this fact —
together with the fact the encryption scheme is not quite a one-way permutation
as required by OAEP+, but rather a quasi-bijection — requires us redo the entire
OAEP+ security proof, albeit with relatively minor modifications. At a high
level, encryption and decryption proceed as follows:

Encryption:

1. Compute z € [1, k"], an encoding of M.

2. Compute &' = 7wy pn(x,d) € Bypn N[0, N/2).
3. Compute y = z'2(modN).

4. Outpute =y — h as the ciphertext.

Decryption:

1. Recover y from ¢ and h.

2. Compute each =’ € By pn N [0, N/2) such that 2 = y(mod N).

3. For each z’, compute the values of T = 7rN1h w (@,

4. For each z, undo the message encoding, and conflrm that the message M is
encoded correctly

5. If an z is encoded correctly, output the decryption; otherwise, indicate de-

cryption failure.

TERAM LING

194 Craig Gentry

For Vallée’s parameters, for a given z’, there are at most two values of z in Step
3 —1ie., l4y =2 — so the encoding of at most 4 values of z must be checked.
As mentioned in section 5 and further discussed in Appendix B, our preferred
parameters are b’ —h =8N 2/3 and A" < ﬁ#l

Although we could use any of a variety of encoding schemes, we prove that
Compressed Rabin-OAEP+ has a tight reduction to factoring. The OAEP+
encoding scheme uses three hash functions:

G : {0,1}% - {0,1}™ H': {0,1}™F % _ {0,1}**, and H : {0,1}™FF — {0,1}k0

where m, ko, k; are security parameters. The quantities 27% and 2~% should
be negligible. Let n = m + ko + k1 = logh” < Zlog N + £. To encode message
M € {0,1}™, the sender:

1. Picks a random r € {0, 1}¥o.
2. Sets s — (G(r) ® M)||H'(r|M) and t — H(s) & r.
3. Sets z « sljt, an n-bit integer.

In Step 4 of Decryption, the recipient decodes by parsing each candidate z into
s;||t; for s; € {0,1}™+%1 and t; € {0,1}*0, and then parsing s; into for s}||s” for
st € {0,1}™ and s/ € {0,1}*1. For each 4, the recipient computes r; «— t;® H(s;)
and M; « s; & G(r;), and tests whether s = H'(r;|| M;). If there is a unique
¢ for which the condition is satisfied, the recipient outputs M; as the correct
plaintext; otherwise, it indicates a decryption failure. For technical reasons in
the security proof, we require that d = r — i.e., that the encrypter use r as the
random bits in the computation of mx » ' (z, d) — and that the decrypter indicate
a decryption failure if this is not done. For compressed Rabin-OAEP+, we prove
the following theorem in Appendix C.

Theorem 6. Let A be an IND-CCA2 adversary that breaks Compressed Rabin-
OAEP+ in time t with advantage € for modulus N. Then € < %e’ + (qu +
ap)/2% + (gp + 1)ga /2%, where € is the success probability that a particular
algorithm B can factor, t' = O(t + qaquTy + (9¢ + qu + qu + qp)log N), and
Ty is the complexity of encryption.

7 Extensions

In the full version of the paper, we describe compressed signcryption, aggregate
signature and ring signature schemes, in which we achieve a 33% bandwidth
reduction in comparison to Rabin-variants of the schemes in [24], [23] and [29].
We also note that our compression algorithms can be applied to allow shorter
identity-based secret and public keys for the Fiat-Shamir signature scheme and
Cocks’ identity-based encryption scheme.

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 195

References

1. TM. Apostol, Modular Functions and Dirichlet Series in Number Theory,
Springer-Verlag (1976).

2. K. Barr and K. Asanovié, Energy Aware Lossless Data Compression, in Proc. of
MobiSys 2003.

3. M. Bellare and P. Rogaway, The Exact Security of Digital Signatures — How to
Sign with RSA and Rabin, in Proc. of Eurocrypt 1996, LNCS 1070, pages 399-416.
Springer-Verlag, 1996.

4. M. Bellare and P. Rogaway, Optimal Asymmetric Encryption — How to Encrypt
with RSA, in Proc. of Eurocrypt 1994, LNCS 950, pages 92-111. Springer-Verlag,
1994.

5. D.J. Bernstein, A Secure Public-Key Signature System with Extremely Fast Veri-
fication, 2000. Available at http://cr.yp.to/djb.html.

6. D.J. Bernstein, Proving Tight Security for Standard Rabin-Williams Signatures,
2003. Available at http://cr.yp.to/djb.html.

7. D.J. Bemnstein, Reducing Lattice Bases to Find Small-Height Values of Univariate
Polynomials, 2003. Available athttp: //cr.yp.to/djb.html.

8. D. Bleichenbacher, Compressed Rabin Signatures, in Proc. of CT-RSA 2004.

9. D. Boneh, Simplified OAEP for the RSA and Rabin Functions, in Proc. of Crypto
2001, LNCS 2139, pages 275-291. Springer-Verlag, 2001.

10. D. Boneh, C. Gentry, B. Lynn, and H. Shacham, Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps, in Proc. of Eurocrypt 2003, LNCS 2656, pages 416-
432. Springer-Verlag, 2003.

11. D. Boneh, G. Durfee, and N. Howgrave-Graham, Factoring N = p"q for Large v,
in Proc. of Crypto 1999, LNCS 1666, pages 326-337. Springer-Verlag, 1999.

12. D. Boneh and R. Venkatesan, Breaking RSA May Not Be Equivalent to Factoring,
in Proc. of Eurocrypt 1998, LNCS 1233, pages 59-71. Springer-Verlag, 1998.

13. C. Cocks, An Identity Based Encryption Scheme Based on Quadratic Residues, in
Proc. of Cryptography and Coding 2001, LNCS 2260, Springer (2001). Available
at http://www.cesg.gov.uk/technology/id-pkc/media/ciren.pdf.

14. H. Cohen, A Course in Computational Algebraic Number Theory, 4th ed., Graduate
Texts in Mathematics, Springer, 2000.

15. J.S. Coron, On the Exact Security of Full Domain Hash, in Proc. of Crypto 2000,
LNCS 1880, pages 229-235. Springer-Verlag, 2000.

16. J.-S. Coron, Security Prooffor Partial-Domain Hash Signature Schemes, In Proc.
of Crypto 2002, LNCS 2442, pages 613-626. Springer-Verlag, 2002.

17. D. Coppersmith, Finding a Small Root of a Univariate Modular Equation, in Proc.
of Eurocrypt 1996, LNCS 1070, pages 155-165. Springer-Verlag, 1996.

18. U. Feige, A. Fiat, A. Shamir, Zero-Knowledge Proofs of Identity, in Jour, of Cryp-
tology (1), pp. 77-94 (1988).

19. A. Fiat, A. Shamir, How to Prove Yourself: Practical Solutions to Identification
and Signature Problems, in Proc. of Crypto 1986, LNCS 263, pp. 186-194. Springer
(1986).

20. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford
Science Publications (5" edition).

21. J. Jonsson, A OAEP Variant with a Tight Security Proof, 2003. Available at
http://www.math.kth.se/~jakob]j/crypto.html.

22. A.K. Lenstra and E.R. Verheul, The XTR Public Key System, In Proc. of Crypto
2000, LNCS 1880, pages 1-20. Springer-Verlag, 2000.

TERAM LING

196 Craig Gentry

23. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham, Sequential Aggregate Sig-
natures from Trapdoor Homomorphic Permutations, in Proc. of Eurocrypt 2004,
LNCS 3027, pages 74-90. Springer-Verlag, 2004.

24. J. Malone-Lee and W. Mao, Two Birds One Stone: Signcryption Using RSA, 2002.
Available at http://www.hpl.hp.com/techreports/2002/HPL-2002-293 .html.

25. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

26. S. Micali, A. Shamir, An Improvement of the Fiat-Shamir Identification and Sig-
nature Scheme, in Proc. of Crypto 1988, LNCS 403, pp. 244-247. Springer-Verlag
(1990).

27. H. Ong, C.P. Schnorr, Fast Signature Generation with a Fiat Shamir - Like Scheme,
in Proc. of Eurocrypt 1990, LNCS 473, pp. 432-440. Springer-Verlag (1990).

28. M.O. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as
Factorization, MIT/LCS/TR-212, MIT Laboratory for Computer Science, 1979.

29. R.L. Rivest, A. Shamir, and Y. Tauman, How to Leak a Secret, in Proc. of Asiacrypt
2001, LNCS 2248, pages 552-565. Springer-Verlag, 2001.

30. K. Rubin and A. Silverberg, Torus-based Cryptography, in Proc. of Crypto 2003,
LNCS 2729, pages 349-365. Springer-Verlag, 2003.

31. V. Shoup, OAEP Reconsidered, in Proc. of Crypto 2001, LNCS 2139, pages 239-
259. Springer-Verlag, 2001.

32. A.K. Lenstra, A. Shamir, J. Tomlinson and E. Tromer, Analysis of Bernstein’s
Factorization Circuit, in Proc. of Asiacrypt 2002, LNCS 2501, pages 1-26. Springer-
Verlag, 2002.

33. B. Vallée, Provably Fast Integer Factoring with Quasi-Uniform Small Quadratic
Residues, In Proc. of STOC 1989, pages 98—-106.

34. B. Vallée, Generation of Elements with Small Modular Squares and Provably Fast
Integer Factoring Algorithms, Mathematics of Computation, vol. 56, no. 194, pages
823-849, 1991.

A Security Proof for Improved Rabin-PDH

To prove our scheme secure against existential forgery under chosen-message
attacks, we construct the following game:

Setup: B gives A the public key N, retaining H; for use as a random oracle.

Hash Queries: A can make a query M; to the Hi-oracle at any time. If B
has received an identical query before, it responds as it did before. Other-
wise, B responds by first generating a random value ¢; € {—2,—1,1,2} with
uniform distribution. It then generates a number s; € By c;h,c;pr With uni-
form distribution and sets Hy(M;) = sZ/ci(modN). It logs (M;,s;) into its
Hj-list. (When ¢; = £2, there is a small complication — namely, s; must be cho-
sen s.t. not only ¢;h(modn) < s?(modn) < c¢;h’/(modn), but also s?(modn) €
{eih(modn),...,ci(h’ — 1)(modn)}. The simulator can accomplish this easily
simply by discarding the sampled s;’s that don’t satisfy the latter inequality
(50% of them for |c;| = 2).)

Signature Queries: .4 can make a query M; to the Hj-oracle at any time. B
responds by using M; to recover s; fromits Hj-list; it then sends s;.

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 197

Forgery: Eventually, the adversary either aborts or outputs a signature s on a
message M for which it has not made a signature query.

One can easily confirm that B’s H;-query responses, as well as its signature
responses, are indistinguishable from uniform; in fact, they are perfectly uniform.

Any forgery that A manages to generate for message M must satisfy s2 =
+H;(M)(modN) or s? = +2 - H;(M)(modN). If A made no Hj-query at M,
then its probability of success is at most 1/h”. If A did make an Hy-query at M,
then B recovers the value s’ associated to M from its H;-list. With probability
%, ged(s — s', N) gives a nontrivial factor of N. Thus, € > %6(1 - -th,), and
t' = O(t + qi log® N).

B Details of the m Quasi-bijection

Let z € [0,h”], where h” is a parameter whose value will be calibrated later.
The n quasi-permutations sends z to an element of By s xs, as follows.

Computing m(z,d):

1. Compute z - %, and determine {a;, b;) for which the result is in J{a;, b;).

2. Compute zjes:, the smallest integer in [0, A"} with (zefs +1)- % in I{a;, b;),
and Zrignt, the largest integer in [0, h”] with Zyigns - % in I(a;,b;).

3. Compute n.4 s, the number of lattice points in the chest and feet of P(a;,b;),
and ny, a lower bound for the number of points in the legs.

4. Using Vallée’s enumeration, select one lattice point (u,w) (there may be
several) that corresponds to z — zjef:. More specifically:
~ Pick an integer in ¢ € ((Regf +np) ot (ngy f +ny) el]

Tright —Tleft Tright —Lleft

— If ¢ < n, + ny, pick the lattice point (u,w) that has enumeration ¢ in the
chest or feet.

— Otherwise, let s, be Vallée’s lower-bound for the number of leg lattice
points on quasi-horizontal lines with index at most v. Compute v such that
Sy—1 < € — Neyg < 8. Let n, be the number of lattice points on the line
with index v and let nl, be Vallée’s lower-bound estimate. Pick an integer
¢ € (n, (ERetlfenizly py (S2Netd =91 and set (u, w) to be the ¢/** point
in P(a;, b;) on the line. ’

5. Set =’ = xg + u,where z¢ = L“—I;IX] Output z'.

We omit the description of #~1(z’), since it should be clear from the above. Now,
we mention some of the properties of the © quasi-permutation.

Choosing the parameters such that 0 < Tright — Ttefr < Negp + M — i€,
such that the lower bound on the number of points in P(a;,b;) is greater than
the number of bit strings associated to I(a;,b;) — ensures that /; is at least 1,
since one can always find a value for ¢ in the computation of w. Notice that
(Tright — Tleft — 1)% < %, where the latter term is the diameter of I(a;, b;).

This implies that Zr;gnt —Ziefe—1 < Mz%’\;i)_ Now, consider the parameters used

by Vallée. Vallée considered the case—h = h! = 4N?/3 so that b’ — h = 8N?/3.

TERAM LING

198 Craig Gentry

For this value of h’ — h, Vallée proved a lower bound of 7y + ny > %‘(’)—;—h]\),i

(see [33]). Thus, if A" < ghT_hl, then Zright — Tteft — 1 < My + ni. As long
as the m; estimate is an integer, this implies that Zyight — Tiefs < nc+ §+mnyg, as
desired. To ensure that Trgh: — Ziey: 1S Never zero, we want that h,, < i\ﬁ- =

h" > k% = N2/3/16 = gTzs—l’ where the latter is the diameter of the narrowest

Farey interval. So, we can set h” to be anything between (128h) and &= 5 h);
values closer to the latter involve less ciphertext expansion.

On the other hand, we would like I and {4 to be small positive constants.
This ensures that picking z (and d) uniformly and outputting #(z, d) is a quasi-
uniform drawing algorithmfor By p e (this helps get a tight security proof for
the encryption scheme). The computation of 7~1(z’) outputs up to two values
of z, exactly one for each Farey interval that contains z’; thus I, = 2. We
use Vallée’s upper bounds to bound I5. Specifically, Vallée’s computations allow
Ne+s +mu to be upper bounded by (1.004 4 0.125 + 4= ‘/_)(h —h)? < 7('; h)2
allowing us to upper bound the number of possible values of ¢ by 4, for h'. Also
there are at most [1 = 4 (see Vallée’s Leg Theorem) possible values of ¢/, so Io

is at most 4 x 4 = 16. Accordingly, for b’ — h = 8N?/3 and b" = [ghls;hz_[, one
gets a (1,16,1, 2) quasi-bijection.

C Security Proof for Compressed Rabin-OAEP+

Recall the standard definition of security against adaptive chosen-ciphertext at-
tack. An algorithm .A “breaks” the encryption scheme if, in the following game,
it outputs the correct value of b in the final stage with more than negligible
advantage:

Setup: The challenger generates a Rabin modulus N and hash functions G, H'
and H, defined as above. It sends (N, G, H', H) to A.
Phase 1: A requests the challenger to decrypt ciphertexts of A’s choosing.
Challenge: A chooses two plaintexts Mg and M; and sends them to the chal-
lenger. The challenger randomly chooses bit b € {0,1}, encrypts M, and sends
the ciphertext ¢ to A.
Phase 2: A again requests the challenger to decrypt ciphertexts of .A’s choosing,
other than the Challenge ciphertext.
Output: Finally, A outputs a bit ¥’ € {0,1}.
Wedefine A’s advantage as: Adv(A) = |Pr[t' =b] — 5

In the game above, algorithm B plays the part of the challenger, using its
its control over the random oracles G, H' and H to respond to .A’s decryption
queries. We say that the system is (t,€,qp,qq,qn’,qr)-secure if no attacker
limited to time t, to gp decryption queries, to g¢ G-queries, to gy H’-queries,
and to gy H-queries, has advantage more than €. Now, we define aspects of the
game more precisely.

Hash queries: A can query G, H' or H at any time. In responding to these
queries, B maintains a G-list, H'-list and H-list logging queries and responses. If

TERAM LING

How to Compress Rabin Ciphertexts and Signatures (and More) 199

A makes a query that is contained in one of B’s lists, B responds the same way
it did before. Otherwise, for G, it generates a random m-bit string with uniform
distribution, sends this to A as its G-query response, and logs .A’s G-query and
its response on its G-list. It responds similarly to H’'-queries and H-queries. We
use the convention that before .4 makes an H’-query on (r;, M;), it makes a
G-query onr; and an H-query on s; = (G(r;) & M;)||H' (r;|| M5).

Challenge: At some point, A produces two plaintexts Mg, M; € {0,1}™ on
which it wishes to be challenged. B picks a random b € {0,1} and encrypts M,
in the usual way. Let ¢* be the resulting ciphertext, and let s™,s"* ¢t* r*, and
M* denote the values corresponding to ¢* that would be obtained through the
decryption process.

Decryption Queries and Probability Analysis: 4 can make decryption
queries at any time, subject to the constraint that it cannot query the Challenge
ciphertext in Phase 2. Our treatment of decryption queries closely tracks Shoup’s
analysis for trapdoor permutations encoded using OAEP+. Shoup’s analysis con-
sists of a sequence of games G; for 0 < 7 < 5, each game a slight modification
of the previous one, where Gy represents the attack on the encryption scheme,
and Gy is a certain attack in which an adversary obviously has no advantage.
Shoup bounds |Pr{S;—;] — Pr[S;]| for 1 < i < 5, where Pr[S;] is an adversary’s
probability of success in game G;, thereby bounding an adversary’s advantage
in Gy. To reduce space, our proof draws heavily from Shoup’s proof.

In game Gy, the decryption oracle decrypts ciphertext ¢; as usual, recovering
s},s4 t;,r;, and M; in the process. The decryption oracle is identical to Gq (e.g.,
it can find modular square roots) except that the decryption oracle in G; rejects
whenever r; is not on its G-list. Let F; be the event that a ciphertext rejected in
(G4 would not have been rejected in Gg. Consider a ciphertext ¢ # ¢* submitted
to the decryption oracle. If » = r* and M = M*, then since there is only a
single legitimate ciphertext generated from r* and M* (recall that we use r
as the random bits in the 7 quasi-bijection), Go would also have rejected. Our
analysis of the case of r; # r* or M; # M™* is identical to Shoup’s, leading to
the conclusion that [Pr[So] — Pr[S1]| < gp/2*:.

In game G5, the decryption oracle is identical to that of Gq, except it rejects
when s; is not on its .H-list. Let F> be the event that a ciphertext rejected in Ga
would not have been rejected in Gy. For ciphertext ¢; # ¢* with s; not on the
H-list, we consider two cases:

Casel: s; = s*.Now, s; = s* and ¢; # ¢* implies ; # t* (again because we
made 7 deterministic given). Shoup’s remaining analysis of this case also works
for our situation.

Case2: s; # s*. Our analysis here is again identical.

Like Shoup, we obtain [Pr[S1] — Pr[S2]| = Pr[Fs] < qu+ /2% + qpgc/2*°.

In game G3 the decryption oracle does not have access to a trapdoor, but
instead maintains a ciphertext-list. After receiving an H’-query (r;, M;), it com-
putes all possible values of z} = 7y nn(sillti;s) and ¢ = 2% — h(modN). It
logs these ciphertexts in its ciphertext-list. Shoup’s probability analysis applies
to our case: Pr[S2] = Pr[S3]. His time-complexity analysis also applies: over the

TERAM LING

200 Craig Gentry

course of Gs, the decryption oracle’s complexity is O(min{gn-,qu))Ts + (g¢ +
qu' + qu + gp) log N), where Ty is the complexity of the encryption function.

Game Gy, in which Shoup replaces the original random oracles with different
but identically distribute variables, also works in our case. (See [31] for details
of G4.) Note the new encryption oracle in G4 is identically distributed to the old
one, even though “f” is not a permutation in our case, since Shoup’s changes
only affect f’s input, not f itself. Pr[S3] = Pr[S4].

Game Gj is the same as G3 (we skipped describing G4) except that the
encryption oracle chooses random strings r* € {0,1}* and g* € {0,1}™, and
it uses these values in the computation of the ciphertext, as described in [31].
Since gt is only used to mask M*, Pr[Ss] = % Like Shoup, we also obtain in
our case that Pr[Sy] — Pr[Ss] < Pr[F5], where F3 is the event that A4 queries
G at r*. However, our proofs finally diverge significantly at this point. Shoup
describes an auxiliary game G§ in which the encryption oracle is modified again
to simply output a random number ¢ in the ciphertext space (in our case,
By h,w N[0, N/2)), and then he uses the fact that, for a permutation, ¢t comes
from a distribution identical to ¢*. We cannot do this, since the 7 quasi-bijection
chooses from By p N[0, N/2) — and thus from the ciphertext space — only quasi-
uniformly.

Instead, we define our ¢t as f(w) for w € {0,1}" chosen randomly with
uniform distribution, and (as always) r* and s* are defined with respect to this
ciphertext. Then, for reasons analogous to those used by Shoup, if we define Fj
to be the event that .4 queries G at r* in game Gg, we have Pr[F5] = Pr[F{].
Letting Fy' be the event that A queries H at s* in game G§, we have that
Pr[F{] = Pr[Fi A F{'] + Pr[F{ A —FY].

Now, we claimthat, if 7 is an (11, 2, l3,14) quasi-bijection, then Pr[Ff A FY] <
%Adv(B). For brevity, denote the probability Pr[FiAFE |w'] —i.e., the probability

s and Fg' occur given the value w’ = wy pn(w,r) for w as chosen above — by
P/, where w’ will be treated as a random variable. Notice that, for any w/’,
there exists a v’ such that w? = v'?(modN) and ged(w’,v’, N) is a nontrivial
factor of N; in fact, we can “pair off” the numbers in By n ns, so that each w’
corresponds to exactly one v’. Suppose that 7’ € {0,1}* and s" € {0,1}™tk
correspond to v'. If A queries 7 € {0,1}* and s” € {0,1}™**1 (whichoccurs
with probability P,), then B can use w’ = f(w) to find a nontrivial factor of N
by taking every pair r;, s; queried by .4, deriving the corresponding ¢/, computing
z" = 7N nne(8illts), and checking whether ged(z”, w’, N) is a nontrivial factor.

Overall, we have that Pr[F§AFE} = 5", Pr[F{ A FY'|w'}- Pr[w’]. This proba-
bilility is less than %’f Y Pr[FiAFY|w') Prv'] by quasi-uniformity, where each
w’ is paired off with a v’ that gives a nontrivial factor. However, the probability
> w PrlF{ A FY'|w']- Pr[v/] is less than B’s probability of success, which proves
the claim.

For the same reason as in [31], Pr[F{ A=FY'] < ga/2%°. Thus, we get Pr[FY] <
%Adv(B) +qc /2%, Collecting all of the results, we get the time and complexity
stated in the theorem.

TERAM LING

On the Bounded Sum-of-Digits Discrete
Logarithm Problem in Finite Fields*

Qi Cheng

School of Computer Science
The University of Oklahoma
Norman, OK 73019, USA

gcheng@cs.ou.edu

Abstract. In this paper, we study the bounded sum-of-digits discrete
logarithm problem in finite fields. Our results concern primarily with
fields Fg» where njg— 1. The fields are called kummer extensions of Fy.
It is known that we can efficiently construct an element g with order
greater than 2" in the fields. Let Sg(e) be the function from integers
to the sum of digits in their g-ary expansions. We first present an algo-
rithm that given g° (0 < e < ¢") finds e in random polynomial time,
provided that Sq(e) < n. We then show that the problem is solvable in
random polynomial time for most of the exponent e with S,(e) < 1.32n,
by exploring an interesting connection between the discrete logarithm
problem and the problem of list decoding of Reed-Solomon codes, and
applying the Guruswami-Sudan algorithm. As a side result, we obtain a
sharper lower bound on the number of congruent polynomials generated
by linear factors than the one based on Stothers-Mason ABC-theorem.
We also prove that in the field ¥ -1, the bounded sum-of-digits dis-
crete logarithm with respect to g can be computed in random time
O(f(w) log*(g7™!)), where f is a subexponential function and w is the
bound on the g-ary sum-of-digits of the exponent, hence the problem is
fixed parameter tractable. These results are shown to be generalized to
Artin-Schreier extension Fyr where p is a prime. Since every finite field
has an extension of reasonable degree which is a Kummer extension, our
result reveals an unexpected property of the discrete logarithm problem,
namely, the bounded sum-of-digits discrete logarithm problem in any
given finite field becomes polynomial time solvable in certain low degree
extensions.

1 Introduction and Motivations

Most of practical public key cryptosystems base their security on the hardness
of solving the integer factorization problem or the discrete logarithm problem
in finite fields. Both of the problems admit subexponential algorithms, thus we
have to use long parameters, which make the encryption/decryption costly if
the parameters are randomly chosen. Parameters of low Hamming weight, or
more generally, of small sum-of-digits, offer some remedy. Using them speeds

* This research is partially supported by NSF Career Award CCR-0237845.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 201-212, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

202 Qi Cheng

up the system while seeming to keep the security intact. In particular, in the
cryptosystem based on the discrete logarithm problem in finite fields of small
characteristic, using small sum-of-digits exponents is very attractive, due to the
existence of normal bases [1]. It is proposed and implemented for smart cards and
mobile devices, where the computing power is severely limited. Although attacks
exploring the specialty were proposed [14], none of them have polynomial time
complexity.

Let Fgn be a finite field. For B € Fgn, if 8,59 ﬂ ,ﬂq"_l form a linear
basis of Fg» over Fy, we call them a normal basis. It is known that a normal
basis exists for every pair of prime power ¢ and a positive integer n [11, Page
29]. Every element « in Fy» can be represented as

a=aof+afl + - +an 1B

where a; € Fy for 0 < i < n— 1. The power of q is a linear operation, thus

a? =aoff?! +--- + an-Zﬁq"_l +an-18.

Hence to compute the g-th power, we only need to shift the digits, which can be
done very fast, possibly on the hardware level. Let e be an integer with g-ary
expansion

e=eo~l~elq-}~e2q2+---+en_1q"_1 (0<e;<qgfor 0<i<n-1). (1)
The sum-of-digits of e in the g-ary expansion is defined as Sy(e) = Y7~ e:.
When ¢ = 2, the sum-of-digits becomes the famous Hamming weight. To com-
pute o, we only need to do shiftings and at most Sg(e) many of multiplications.
Furthermore, the exponentiation algorithm can be parallelized, which is a prop-
erty not enjoyed by the large characteristic fields. For details, see [16].

1.1 Related Work

The discrete logarithm problem in finite field Fgn, is to compute an integer e such
that g’ = g*, given a generator g of a subgroup of F;.. and ¢’ in the subgroup.
The general purpose algorithms to solve the discrete logarithm problem are the
number field sieve and the function field sieve (for a survey see [13]). They have
time complexity

exp(c(log ¢")*/3(log log ¢™)*/3)

for some constant ¢, when ¢ is small, or n is small.

Suppose we want to compute the discrete logarithm of g¢ with respect to
base g in the finite field Fg». If we know that the Hamming weight of e is equal
to w, there is an algorithm proposed by Coppersmith (described in [14]), which
works well if w is very small. It is a clever adaption of the baby-step giant-
step idea, and runs in random time O(y/w U°Lg "/2JQJ) It is proved in [14] that
the average-case complexity achieves only a constant factor speed-up over the
worst case. It is not clear how his idea can be generalized when the exponent

has small sum-of-digits in the base ¢ > 2. However, we can consider the very

TERAM LING

On the Bounded Sum-of-Digits Discrete Logarithm Problem in Finite Fields 203

special case where e; € {0,1} for 0 < 4 < n—1and } cic,s8 = [5]-
Recall that e;’s are the digits of e in the g-ary expansion. It can be verified
that Coppersmith’s algorithm can be applied in this case. The time complexity
becomes O(\/ﬁ(t::ﬁj))- If ¢ < n®® it is much worse than the time complexity
of the function field sieve on a general exponent.

If the g-ary sum-of-digits of the exponent is bounded by w, is there an algo-
rithm which runs in time f(w) log®(¢™) and solves the discrete logarithm problem
in Fgn, for some function f and a constant ¢? A similar problem has been raised
from the parametric point of view by Fellows and Koblitz [10], where they con-
sider the prime finite fields and the bounded Hamming weight exponents. Their
problem is listed among the most important open problems in the theory of
parameterized complexity [9]. From the above discussions, it is certainly more
relevant to cryptography to treat the finite fields with small characteristic and
exponents with bounded sum-of-digits.

Unlike the case of the integer factorization, where a lot of special purpose
algorithms exist, the discrete logarithm problem is considered more intractable
in general. As an example, one should not use a RSA modulus of about 1000 bits
with one prime factor of 160 bits. It would be vulnerable to the elliptic curve
factorization algorithm. However, in the Digital Signature Standard, adopted by
the U.S. government, the finite field has cardinality about 2024 or larger, while
the encryption/decryption is done in a subgroup of cardinality about 2160, As
another example, one should search for a secret prime as random as possible in
RSA, while in the case of the discrete logarithm problem, one may use a finite
field of small characteristic, hence the group of very special order. It is believed
that no trapdoor can be placed in the group order, as long as it has a large
prime factor (see the panel report on this issue in the Proceeding of Eurocrypt
1992). In order to have an efficient algorithm to solve the discrete logarithm,
we need that every prime factor of the group order is bounded by a polynomial
function on the logarithm of the cardinality of the field. Given the current state
of analytic number theory, it is very hard, if not impossible, to decide whether
there exists infinitely many finite fields of even (or constant) characteristic, where
the discrete logarithm can be solved in polynomial time.

In summary, there are several common perceptions about the discrete loga-
rithm problem in finite fields:

1. As long as the group order has a big prime factor, the discrete logarithm
problem is hard. We may use exponents with small sum-of-digits, since the
discrete logarithm problem in that case seems to be fixed parameter in-
tractable. We gain advantage in speed by using bounded sum-of-digits ex-
ponents, and at the same time keep the problem as infeasible as using the
general exponents.

2. If computing discrete logarithm is difficult, it should be difficult for any
generator of the group. The discrete logarithm problem with respect to one
generator can be reduced to the discrete logarithm problem with respect
to any generator. Even though in the small sum-of-digits case, a reduction
is not available, it is not known that changing the generator of the group
affects the hardness of the discrete logarithm problem.

TEAM LING

204 Qi Cheng

1.2 Our Results

In this paper, we show that those assumptions taken in combination are incor-
rect. We study the discrete logarithm problem in large multiplicative subgroups
of the Kummer and Artin-Schreier extensions with a prescribed base, and prove
that the bounded sum-of-digits discrete logarithm are easy in those groups. More
precisely we prove constructively:

Theorem 1. (Main) There exists a random algorithm to find the integer e given
g and g¢ in Fgn in time polynomial in log(q™) under the conditions:

1 nlg—1;
2.0<e<q" and Sy(e) < n;
3. g=a+b where Fy(a) =Fyn, b€ Fy and o™ € Fy.

Moreover, there does not exist an integer € # e satisfying that 0 < €' < q™,
Sq(€') <m and g¢ = ¢°

The theorem leads directly to a parameterized complexity result concerning
the bounded sum-of-digits discrete logarithm, which answers an important open
question for special, yet non-negligibly many, cases.

Corollary 1. There exists an element g of order greater than 29 in F;q—l, such
that the discrete logarithm problem with respect to the generator g can be solved
in time f{w) log4(qq_1), where f is a subexponential function and w is the bound
of the sum-of-digits of the exponent in q-ary expansion.

A few comments are in order:

— For a finite field Fgn, if n|g — 1, then there exists g € Fy» satisfying the
condition in the theorem, in the other words, there exists an irreducible
polynomial of form z" —a (a € Fy) over Fg; if there exists o such that
Fq (a) =F¢ and o™ € Fy, then njg—1.

— As a comparison, Coppersmith’s algorithm runs in exponential time in the
case where e; € {0,1}for 0 <i<n—1, Sy(e) =5 and ¢ < nP® . while our
algorithm runs in polynomial time in that case. On the other hand, Copper-
smith’s algorithm works for every finite field, while our algorithm works in
Kummer extensions. Our result has an indirect affect on an arbitrary finite
field though, since every finite field has extensions of degree close to a given
number, which are Kummer extensions. As an example, suppose we want
to find such an extension of Fy with degree about log? q. We first pick a
random 7 close to log ¢ such that (n,q) = 1. Let ! be the order of ¢ in Z/nZ.
The field F(gyn is a Kummer extension of Fy, and an extension of Fy. Ac-
cording to Theorem 1, there is a polynomial time algorithm which computes
the discrete logarithm to some element g in Fg~ provided that the sum-
of-digits of the exponent in the g!-ary expansion is less than n. Hence our
result reveals an unexpected property of the discrete logarithm problem in
finite fields: the difficulty of bounded sum-of-digits discrete logarithm prob-
lem drops dramatically if we move up to extensions and increase the base of
the exponent accordingly.

TERAM LING

On the Bounded Sum-of-Digits Discrete Logarithm Problem in Finite Fields 205

— Numerical evidences suggest that the order of g is often equal to the group
order ¢" — 1, and is close to the group order otherwise. However, it seems
hard to prove it. In fact, this is one of the main obstacles in improving the
efficiency of AKS-style primality testing algorithm [2]. We make the following
conjecture.

Conjecture 1. Suppose that a finite field Fg» and an element g in the field
satisfy the conditions in Theorem 1. In addition, n > loggq. The order of g
is greater than ¢™/¢ for an absolute constant c.

— Even though we can not prove that the largest prime factor of the orderof g
is very big, it seems, as supported by numerical evidences, that the order of
g, which is a factor of g™ — 1 bigger than 2", is rarely smooth. For instance,
in the Fasss = Fygg127, any g generates the whole group Fisso. The order
2889 _ 1 contains a prime factor of 749 bits. One should not attempt to apply
the Silver-Pohlig-Hellman algorithm here.

A natural question arises: can the restriction on the sum-of-digits in Theo-
rem 1 be relaxed? Clearly if we can solve the problem under condition S,(e) <
(g — D)n in polynomial time, then the discrete logarithm problem in subgroup
generated by g is broken. If g is a generator of F;,., then the discrete logarithm
problem in Fg~ and any of its subfields to any base are broken. We find a sur-
prising relationship between the relaxed problem and the list decoding problem

of Reed-Solomon codes. We are able to prove:
Theorem 2. Suppose e is chosen randomly from the set
{0 <e< g™ —1|8(e) < 1.32n}.

There exists an algorithm given g and g° in F g, to find e in time polynomial in
log(q™), with probability greater than 1 — ¢~ for some constant ¢ greater than
1, under the conditions:

1. njg—1;
2. g =oa+b where Fo(a) =F4n, b€ F; and o™ € Fy.

Given a polynomial ring Fg[z]/(h(z)), it is an important problem to deter-
mine the size of multiplicative subgroup generated by = — 81, — 82, ,Z — sp,
where (s1, 82,7+ ,8,) = S is a list of distinct elements in Fy, and for all i,
h(s;) # 0. The lower bound of the order directly affects the time complex-
ity of AKS-style primality proving algorithm. In that context, we usually have
deg h(x)|n. Assume that deg h(z) = n. For a list of integers E = (e1,€e2,- -+ ,en),
we denote

(@ —51)" (z — $2)* - - (T — 80)""

by (z — S)F. One can estimate the number of distinct congruent polynomi-
als of form (z — S)® modulo h(z) for E in certain set. It is obvious that if
E € {(e1,€2, - ,en)| > e; < n—1,e; > 0}, then all the polynomials are in
different congruent classes. This gives a lower bound of 4™. Through a clever

TERAM LING

206 Qi Cheng

use of Stothers-Mason ABC-theorem, Voloch [15] and Berstein [5] proved that
if ¥ e; < 1.1n, then at most 4 such polynomials can fall in the same congruent
class, hence obtained a lower bound of 4.27689™. We improve their result and
obtain a lower bound of 5.17736™.

Theorem 3. Use the above notations. Let C be

{(e1,e2, - ,en)les > 0 for 1 < i< n, Z e; < 1.5501n, {{ile; # 0}| = [0.7416n]}.

i=1
If there exist pairwise different element E1,Ey,--- , Ey € C such that
(z-8)Pr=(x-8P2=...= (-)P (mod h(z)),
then m = O(n?). Note that |C| = 5.17736"n®)

By allowing negative exponents, Voloch [15] obtained a bound of 5.828™, Our
bound is smaller than his. However, startingfrom |S| = 2deg h(z), our method
gives better bounds. Details are left in the full paper. A distinct feature of our
bound is that it relates to the list decoding algorithm of Reed-Solomon codes.
If a better list decoding algorithm is found, then our bound can be improved
accordingly.

1.3 Organization of the Paper

The paper is organized as follows. In Section 2, we list some results of counting
numbers with small sum-of-digits. In Section 3, we present the basic idea and
the algorithm, and prove Theorem 1 and Corollary 1. In Section 4, we prove
Theorem 2 and Theorem 3. In Section 5, we extend the results to Artin-Schreier
extensions. We conclude our paper with discussions of open problems.

2 Numbers with Small Sum-of-Digits
Suppose that the g-ary expansion of a positive integer e is

n—1

6=€0+€1q+62q2+"'+en—1q)

than g™ satisfy Sq(e) = w? Denote the number by N(w,n,q). Then N(w,n,q)
equals the number of nonnegative integral solutions of

n—1
E e =w
=0

under the conditions that 0 < e; < g—1 forall 0 < ¢ <n— 1. The generating
function for N(w,n,q) is

Q4+z+- +297)" = ZN(i,n,q)xi.

where 0 < e; < ¢g—1 forall 0 £ < n-1. How many nonnegative integers e less

If w £ ¢ — 1, then the conditions e; < ¢ — 1 can be removed, we have that
N(w,n,q) = (“I771). It is easy to see that if ¢ = 2, we have that N(w,n,2) =
(Z) In the later section, we will need to estimate N(w,n, g), where w is n times

a small constant less than 2. Since
TEAM LING

On the Bounded Sum-of-Digits Discrete Logarithm Problem in Finite Fields 207

(1 +z + A

()
()
_(1-1131,-‘1)2;\"‘_41 <’:’1)) ¢ (mod z29)

S R (T ey

Hence N(w,n,q) = (“}"7H) —n(*"277Yif ¢ <w < 2q.

n—1

3 The Basic Ideas and the Algorithm

The basic idea of our algorithm is adopted from the index calculus algorithm. Let
F,~ be a Kummer extension of Fg, namely, n|g — 1. Assume that ¢ = p% where
p is the characteristic. The field Fg- is usually given as Fp[z]/(u(z)) where u(z)
is an irreducible polynomial of degree dn over F,,. If g satisfies the condition in
Theorem 1, then z™ — o™ must be an irreducible polynomial over F,. Denote
a™ by a. To implement our algorithm, it is necessary that we work in another
model of Fyn, namely, Fg4[z]/(z" — a). Fortunately the isomorphism

¥ : Folyl/(u(y)) = For = Fola]/ (2" - a)

can be efficiently computed. To compute (v(y)), where v(y) is a polynomial
of degree at most dn — 1 over Fp, all we have to do is to factor u(y) over
Fglz]/(z™ — a), and to evaluate v(y) at one of the roots. Factoring polynomials
over finite fields is a well-studied problem in computational number theory, we
refer to [3] for a complete survey of results. The random algorithm runs in
expected time O(dn(dn + log q™)(dnlogq™)?), and the deterministic algorithm
runs in time O(dn(dn + q)(dnlogg™)?). From now on we assume the model
Folz]/(2" - a).

Consider the subgroup generated by g = & + b in (F4[z]/{(z™ — a))*, recall
that b € F; and a = z (mod z" — a). The generator g has order greater than

2™ [8], and has a very nice property as follows. Denote P by h, we have
g =(a+b?=a+b=a"" a+b=ha+b
and more generally ‘ _
(a+b) =af +b=h'a+b.

In other words, we obtain a set of relations: log,, ,(h'a +b) = ¢* for 0 <
i < n — 1. This corresponds to the precomputation stage of the index calculus.

TERAM LING

208 Qi Cheng

The difference is that, in our case, the stage finishes in polynomial time, while
generally it requires subexponential time. For a general exponent e,

(a+b)° = (a+pyorasatdenad™™

= (4 B2 (ha 4 b - (B 4 B)% - (A b,

If f(e) is an element in Fgn, where f € Fy[z] is a polynomial of degree less
than n, and f(a) = (o + b)® and S,(e) < n, then due to unique factorization
in Fylz], f(z) can be completely split into the product of linear factors over Fy.
We can read the discrete logarithm from the factorizations, after the coefficients
are normalized. The algorithm is described as follows.

Algorithm 1 Input: g, g¢ in Fgn = Fylz]/(z™ — a) satisfying the conditions in
Theorem 1.
Output: e.

1. Define an order in Fy (for example, use the lexicographic order). Compute
and sort the list (1,h,h% h3,--- A"71),

2. Suppose that g¢ is represented by f(a), where f € Fg[z] has degree less
than n. Factoring f(z) over Fg, let f(z) = c(z +d1)® - - - (x + di)* where
¢, dy, - ,dg are in Fy.

3. (Normalization) Normalize the coefficients and reorder the factors of f(x)
such that their constant coefficients are b and f(z) = (x +b)** - - (hn—17 +
b)e—1, where h; = ht;

4. Output eg+e1q+ -+ ep_14™1;

The step 1 takes time O(nlog? glogn+nlognlogq) = O(nlognlog? q). The
most time-consuming part is to factor a polynomial over F, with degree at most
n. The random algorithm runs in expected time O(n(n + logg)(nlog g)?) and
the deterministic algorithm runs in time O(n(n + g)(nlogg)?) = O(n3qlog?q).
Normalization and reordering can be done in time O(nlognlogg), since we have
a sorted list of (1,h, h%, k%, -.- A"~1). Thus the algorithm can be finished in
random time O(n(n + log q)(nlogg)?) and in deterministic time O(n3glog? q).
This concludes the proof of the main theorem.

Now we are ready to prove Corollary 1. Any f(z) where f(a) = (a+b)¢ €<
a+b >C Fg-1 is congruent to a product of at most w = S,(e) linear factors
modulo z7~! —a. If w < g—1, we have an algorithm running in time O(q* log? q),
according to Theorem 1. So we only need to consider the case when w > g — 1.
The general purpose algorithm will run in random time f(logq?~!), where f
is a subexponential function. Theorem 1 follows from the fact that logq?~! <
wlogw.

4 The Application of the List Decoding Algorithm
of Reed-Solomon Codes

A natural question arises: can we relax the bound on the sum-of-digits and
still get a polynomial time algorithm? Solving the problem under the condition

TERAM LING

On the Bounded Sum-of-Digits Discrete Logarithm Problem in Finite Fields 209

S,(e) < (g — 1)n basically renders the discrete logarithm problems in Fg» and
any of its subfields easy. Suppose that g¢ = f(c) where f(z) € F,[z] has degree
less than n. Using the same notations as in the previous section, we have

fl@) = (a+b)®(ha+b)2. .. (K" la 4 b)e-1.
Hence there exists a polynomial t(z) with degree Z;:ol e; — n such that
f(@) + (z" — a)t(z) = (z + b)®(hx + b) - - (A" 1z -+ b)*-1,

If the cardinality of {i|e; # 0} is greater than k then the curve y = t(z) will pass
at least k points in the set

() b b
— —b,——, -, ——1}.
{6~ 52N € {(=b =3+ =g 1)
To find all the polynomials of degree d = Z;:Ol e; — n, which pass at least k
points in a given set of n points, is an instance of the list decoding problem of
Reed-Solomon codes. It turns out that there are only a few of such polynomials,
and they can be found efficiently as long as k¥ > v/nd.

Proposition 1. (Guruswami-Sudan [12]) Given n distinct elements xo,zy,-- - ,
Zn-1 € ¥y, nvalues yo,y1, -+ ,Yn-1 € ¥4 and a natural number d, there are
at most O(v/n3d) many univariate polynomials t(z) € Fy[x] ofdegree at most d
such that y; = t(x;) for at least v'nd many points. Moreover, these polynomials
can be found in random polynomial time.

For each t(z), we use the Cantor-Zassenhaus algorithm to factor f(z)+(z" —
a)t(x). There must exist a t(z) such that the polynomial f(z)+ (2™ —a)*t(z) can
be completely factored into a product of linear factors in {h*z+b|0 < i < n—1},
and e is computed as a consequence.

4.1 The Proof of Theorem 2

In this section, we consider the case when S;(e) < 1.32n. If there are at least
0.5657n > /0.32n - n number of nonzero e;’s, then we can apply the Guruswami-
Sudan algorithm to find all the ¢(z). In order to prove Theorem 2, it remains to
show:

Lemma 1. Define A, 4 as

{(61,62,-‘- ,en) I er+ex+---+e,<132n,e;€¢Z and0<e; < g—1 for 1< Sn}

and B, as
{(e1, €2, ,en) | [{ile: # 0} < 0.5657n}.
We have
Mng 0 Bn| _ _n
| An,q]

for some constant ¢ > 1 when n is sufficiently large.

TERAM LING

210 Qi Cheng

Proof. The cardinality of Ang is 3232 N(i,n,q) > (3%%) > 4.883987.."
The cardinality of An¢NBxy is less than 370 ses7q (3) 1327). The summands

v —v—1
maximize at v = 0.5657n if v > 0.5657n. Hence we haven

o W)

n |1.32n)
0.4343
< " <f0.5657n]> (|_0.4343n J)
< 4.883799..

This proves the lemma with ¢ = 4.883987.../4.883799... > 1.

4.2 The Proof of Theorem 3

Proof. Let T be a positive real number less than 1. Define

etrtez+ - te,=|(1+7)n),e €Z
Crnqgr=1{(e1,e2,--- ,en)| and0<e; <qg—1 for 1<i<n }

and [{ile; # 0} = [/7n]

Given f(z) € F4[z], if there exists E € Cpgq,r, such that (z — S)F = f(z)
(mod h(z)), there must exist a polynomial ¢(z) such that (z —S)¥ = t(z)h(zx) +
f(z), and t(z) is a solution for the list decoding problem with input {(s, —%)ls

€ S}. According to Propostion 1, there are at most O(n2) solutions. Thus the
number of congruent classes modulo h(z) that {(z — S)®|E € Cp 4} hasis
greater than 2(|Cp, 4.-|/n%). We have

= (2)()
(14 7)H+7

=n6(1)(T(1 — 17 14+7— T)n'
TN e (TN

It takes the maximum value 5.17736..." at T = 0.5501.

5 Artin-Schreier Extensions

Let p be a prime. The Artin-Schreier extension of a finite field Fy, is Fps. It is
easy to show that zP — x —a = 0 is an irreducible polynomial in F, for any
a € F,. Sowe maytake Fp» = Fp[z]/(2P — 2z —a). Let o =z (mod zP — = — a).
For any b € F,, we have

(a+b)f=a’+b=a+b+a,

and similarly A '
(a+b)P =af +b=a+b+ia.

TERAM LING

On the Bounded Sum-of-Digits Discrete Logarithm Problem in Finite Fields 211

Hence the results for Kummer extensions can be adopted to Artin-Schreier ex-
tensions. For the subgroup generated by a + b, we have a polynomial algorithm
to solve the discrete logarithm if the exponent has p-ary sum-of-digits less than
p. Note that b may be O in this case.

Theorem 4. There exists an algorithm to find the integer e given g and g¢ in
Fpe in time polynomial in logpP under the conditions:

1. 0<e<p?, and Sq(e) <p-1;
2. g=a+b where Fy(a) =Fp, be Fp and of +a € Fy,.

Moreover, there does not exist an integer ¢ # e satisfying that 0 < e’ < pP,
Sy(e") <n and g¢ = g°.

Theorem 5. There exists an element g of order greater than 2P in ¥, such
that the discrete logarithm problem with respect to g can be solved in time
O(f(w)(log pP)*), where f is a subexponential function and w is the bound of
the sum-of-digits of the exponent in the p-ary expansion.

Theorem 6. Suppose that g = a+b, where Fyp(o) =Fpe, be Fp and o + o €
F;. Suppose e is chosen in random from the set

{0<e< g™ —1]5,(e) < 1.32n}.

There exists an algorithm given g and g° in Fys, to find e in time polynomial in
log(p?), with probability greater than 1 — ¢~ for some constant ¢ greaterthan 1.

6 Concluding Remarks

A novel idea in the celebrated AKS primality testing algorithm, is to construct a
subgroup of large cardinality through linear elements in finite fields. The subse-
quent improvements [6,7,4] rely on constructing a single element of large order.
It is speculated that these ideas will be useful in attacking the integer factor-
ization problem. In this paper, we show that they do affect the discrete loga-
rithm problem in finite fields. We give an efficient algorithm which computes
the bounded sum-of-digits discrete logarithm with respect to prescribed bases
in Kummer extensions. We believe that this is more than a result which deals
with only special cases, as every finite field has extensions of reasonable degrees
which are Kummer extensions. For instance, if we need to compute the discrete
logarithm of s in ¥, base g, we can construct a suitable Kummer extention Fgn,
and try to solve the discrete logarithms of @ and g with respect to a selected base
in the extension. This approach is worth studying. Another interesting problems
is to further relax the restriction on the sum-of-digits of the exponent. It is also
important to prove or disprove Conjecture 1. If that conjecture is true, the AKS-
style primality proving can be made compatible or even better than ECPP or
the cyclotomic testing in practice.

TERAM LING

212 Qi Cheng
Acknowledgments

We thank Professor Pedro Berrizbeitia for very helpful discussions.

References

1. G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone. An implemen-
tation for a fast public-key cryptosystem. Journal of Cryptology, 3:63-79, 1991.

2. M. Agrawal, N. Kayal, and N. Saxena. Primes is in P.
http://www.cse.iitk.ac.in/news/primality.pdf, 2002.

3. Eric Bach and Jeffrey Shallit. Algorithmic Number theory, volume 1. The MIT
Press, 1996.

4. D. J. Bernstein. Proving primality in essentially quartic random time.
http://cr.yp.to/papers/quartic.pdf, 2003.

5. D. J. Bernstein. Sharper ABC-based bounds for congruent polynomials.
http://cr.yp.to/, 2003.

6. Pedro Berrizbeitia. Sharpening “primes is in p” for a large family of numbers.
http://lanl.arxiv.org/abs/math.NT/0211334, 2002.

7. Qi Cheng. Primality proving via one round in ECPP and one iteration in AKS. In
Dan Boneh, editor, Proc. of the 23rd Annual International Cryptology Conference
(CRYPTO), volume 2729 of Lecture Notes in Computer Science, Santa Barbara,
2003. Springer-Verlag.

8. Qi Cheng. Constructing finite field extensions with large order elements. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2004.

9. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

10. M. Fellows and N. Koblitz. Fixed-parameter complexity and cryptography. In Pro-
ceedings of the Tenth International Symposium on Applied Algebra, Algebraic Al-
gorithms and Error-Correcting Codes (AAECC’93), volume 673 of Lecture Notes
in Computer Science. Springer-Verlag, 1993.

11. Shuhong Gao. Normal Bases over Finite Fields. PhD thesis, The University of
Waterloo, 1993.

12. Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon
and algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):
1757-1767, 1999.

13. A. M. Odlyzko. Discrete logarithms: The past and the future. Designs, Codes, and
Cryptography, 19:129-145, 2000.

14. D. R. Stinson. Some baby-step giant-step algorithms for the low Hamming weight
discrete logarithm problem. Math. Comp., 71:379-391, 2002.

15. J. F. Voloch. On some subgroups of the multiplicative group of finite rings.
http://www.ma.utexas.edu/users/voloch/preprint.html, 2003.

16. Joachim von zur Gathen. Efficient exponentiation in finite fields. In Proc. 32nd
IEEE Symp. on Foundations of Comp. Science, 1991.

TERAM LING

Computing the RSA Secret Key Is Deterministic
Polynomial Time Equivalent to Factoring

Alexander May

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn
33102 Paderborn, Germany

alexx@uni-paderborn.de

Abstract. We address one of the most fundamental problems concern-
ing the RSA cryptoscheme: Does the knowledge of the RSA public key/
secret key pair (e,d) yield the factorization of N = pg in polynomial
time? It is well-known that there is a probabilistic polynomial time algo-
rithm that on input (V, e, d) outputs the factors p and q. We present the
first deterministic polynomial time algorithm that factors N provided
that e,d < ¢(N) and that the factors p, g are of the same bit-size. Our
approach is an application of Coppersmith’s technique for finding small
roots of bivariate integer polynomials.

Keywords: RSA, Coppersmith’s method

1 Introduction

One of the most important tasks in public key cryptography is to establish the
polynomial time equivalence of

— the problem of computing the secret key from the public information to
— a well-known hard problem P that is believed to be computational infeasible.

This reduction establishes the security of the secret key under the assumption
that the problem P is computational infeasible. On the other hand, such a re-
duction does not provide any security for a public key system itself, since there
might be ways to break a system without computing the secret key.

Now let us look at the RSA scheme. We briefly define the RSA parameters:
Let N = pg be a product of two primes of the same bit-size. Furthermore, let e, d
be integers such that ed = 1 mod ¢(IN), where ¢(N) is Euler’s totient function.

For the RSA scheme, we know that there exists a probabilistic polynomial
time equivalence between the secret key computation and the problem of fac-
toring the modulus N. The proof is given in the original RSA paper by Rivest,
Shamir and Adleman [9] and is based on a work by Miller [8].

In this paper, we present a deferministic polynomial time algorithm that on
input (N,e,d) outputs the factors p,q, provided that p and ¢ are of the same
bit-size and that

ed < N2,

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 213-219, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

214 Alexander May

In the normal RSA-case we have e,d < @(N), since e,d axe defined modulo
#(N). This implies that ed < N2 as required. Thus, our algorithm establishes the
deterministic polynomial time equivalence between the secret key computation
and the factorization problem in the most common RSA case. We reduce the
problem of factoring N to the problem of computing d, the reduction in the
opposite direction is trivial.

Our approach is an application of Coppersmith’s method [4] for finding small
roots of bivariate integer polynomials. We want to point out that some crypt-
analytic results [1,2] are based on Coppersmith’s technique for solving modular
bivariate polynomial equations. In contrast to these, we make use of Copper-
smith’s algorithm for bivariate polynomials with a small root over the integers.
Therefore, our result does not depend on the usual heuristic for modular multi-
variate polynomial equations but is rigorous.

To the best of our knowledge, the only known application of Coppersmith’s
method for bivariate polynomials with a root over the integers is the so-called
“factoring with high bits known” [4]: Given half of the most significant bits of
p, one can factor N in polynomial time. Howgrave-Graham [6] showed that this
problem can be solved alternatively using an univariate modular approach (see
also [5]).

Since our approach directly uses Coppersmith’s method for bivariate integer
polynomials, the proof of our reduction is brief and simple.

The paper is organized as follows. First, we present in Sect. 2 a deterministic
polynomial time algorithm that factors N on input (N, e, d) provided that ed <

N2, This more restricted result is interesting, since RSA is frequently used with
small e in practice. Additionally, we need only elementary arithmetic in order to
prove the result. As a consequence, the underlying algorithm has running time
O(log® N).

Second, we show in Sect. 3 how to improve the previous result to the desired
bound ed < N? by applying Coppersmith’s method for solving bivariate integer
polynomials. We conclude by giving experimental results in Sect. 4.

2 An Algorithm for ed < N3

In this work, we always assume that N is a product of two different prime factors
p, q of the same bitsize, wlog p < q. This implies

p<N? <q<2p<2N%.
We obtain the following useful estimates:
1
p+q<3N? and ¢(N)=N+1—(p+q)> 5.

Let us denote by [k] the smallest integer greater or equal to k. Furthermore, we
denote by Zj y, the ring of invertible integers modulo o(N).

TERAM LING

Computing the RSA Secret Key 215

In the following theorem, we present a very efficient algorithm that on input
. 3
(N, e,d) outputs the factors of N provided that ed < NZ.

Theorem 1 Let N = pg be an RSA-modulus, where p and q are of the same
bit-size. Suppose we know integers e, d with ed > 1,

ed=1mod ¢(N) and ed < N%.
Then N can be factored in time O(log® N).
Proof: Since ed = 1 mod ¢(N), we know that
ed=1+k¢(N) for some k € N,

Next, we show that k& can be computed up to a small constant for our choice of

e and d. Therefore, let us define k= “5\71 as an underestimate of k. We observe
that
-~ ed—-1 ed-1
k—k=—r — ————
#(N) N
_N(ed-1)—(N—-p—qg+1)(ed—1)
(N)N
_(p+g—1)(ed-1)
#(N)N

Using the inequalities p+ ¢ — 1 < 3N% and ¢(N) > AN, we conclude that
k—k < 6N"%(ed —1). 1)

Since ed < N%, we know that k — k < 6. Thus, one of the six values [E-| + 1,

i =10,1,...5 must be equal to k. We test these six candidates successively. For
the right choice k, we can compute
1l—ed

N+1+=—0—=p+q

From the value p + ¢, we can easily find the factorization of V.
Our approach uses only elementary arithmetic on integers of size log (V).
Thus, the running time is @(log? N') which concludes the proof of the theorem.

3 The Main Result

In this section, we present a polynomial time algorithm that on input (V, e, d)
outputs the factorization of N provided that ed < N2. This improves upon the
result of Theorem 1. However, the algorithm is less efficient, especially when we
get close to the bound N2,

Our approach makes use of the following result of Coppersmith [4] for finding
small roots of bivariate integer polynomials.

TERAM LING

216 Alexander May

Theorem 2 (Coppersmith) Let f(z,y) be an irreducible polynomial in two
variables over Z, of maximum degree § in each variable separately. Let X, Y be
bounds on the desired solution (xg,yo). Let W be the absolute value of the largest
entry in the coefficient vector of f(zX,yY). If

XY <WH

then in time polynomial in log W and 2% we can find all integer pairs (o, ¥o)
with f(ze,y0) =0, |zo] < X and |yo] <Y.

Now, let us prove our main theorem.

Theorem 3 Let N = pg be an RSA-modulus, where p and q are of the same
bit-size. Suppose we know integers e, d with ed > 1,

ed=1mod ¢(N) and ed < NZ
Then N can be factored in time polynomial in the bit-size of N.
Proof: Let us start with the equation
ed=1+k¢(N) for somek €N, 2

Analogous to the proof of Theorem 1, we define the underestimate k= e—d]\—,‘—l of
k. Using (1), we know that

k—k<6N"%(ed—1) < 6N,

Let us denote z = k— k. Therefore, we have an approximation k for the unknown
parameter % in (2) up to an additive error of z.

Next, we also want to find an approximation for the second unknown param-
eter ¢(N) in (2). Note that

N—¢(N)=p+q—1<3N1.

That is, ¢(N) lies in the interval [N —3N#, N]. We can easily guess an estimate
of ¢(N) with additive error at most iN 3 by doing a brute-force search on the
most significant bits of ¢(N).

More precisely, we divide the interval [N — 3N %, N] into 6 sub-interval of
length %N% with centers N — 21;1_—1N%, i=1,2,...,6. For the correct choice of
1 we have

N —

20—1 .1 1. 1
3 _ < =N13.
2 N &(N) _4N2

Let g denote the term 2i‘1‘1N % for the right choice of i. That is, we know ¢(N) =
N - g — y for some unknown y with |y| < %N%.
Plugging our approximations for k£ and ¢(V) in (2) leads to

ed—1—(k+x)(N—-g—y)=0.

TERAM LING

Computing the RSA Secret Key 217

_ Letusround k and g to the next integers. Here we omit the rounding brackets
[k7,[g] for ease of simplicity. Notice that the effect of this rounding on the
bounds of the estimation errors z and y can be neglected (z becomes even
smaller). Thus, we assume in the following that k, g are integers. Therefore, we
can define the following bivariate integer polynomial

fay)=oy—(N-g)z+ky—k(N—g)+ed—1

with a root (2o, o) = (k — k,p+q— 1 — g) over the integers.

In order to apply Coppersmith’s theorem (Theorem 2), we have to bound
the size of the root (zo,yo). We define X = 6N2 and Y = %N%. Then, |zg| < X
and |yo| €Y.

Let W denote the £.-norm of the coefficient vector of f(zX,yY). We have

W > (N —g)X >3N%.

By Coppersmith’s theorem, we have to satisfy the condition XY < W#. Using
our bounds, we obtain

XY = -;iN < (3N%)§ < w3,

Thus, we can find the root (2o, yo) in time polynomial in the bit-size of W using
Coppersmith’s method. Note that the running time is also polynomial in the
bit-size of N since W < NX =6N3%. Finally, the term yo =p+ g —1— g yields
the factorization of N. This concludes the proof of the theorem.

We want to point out that Theorem 3 can be easily generalized to the case,
where p+¢ < poly(log N) - N 3. Le., we do not necessarily need that p and g are
of the same bit-size. All that we have to require is that they are balanced up to
some polylogarithmic factor in N.

The following theorem is a direct consequence of Theorem 3. It establishes
the polynomial time equivalence of computing d and factoring N in the common
RSA case, where e,d € Z;(N).

Theorem 4 Let N = pg be an RSA-modulus, where p and q are of the same
bit-size. Furthermore, let e € Z;’(N) be an RSA public exponent.

Suppose we have an algorithm that on input (N,e) outputs in deterministic
polynomial time the RSA secret exponent d € Z;(n) satisfying ed = 1 mod ¢(N)
Then N can be factored in deterministic polynomial time.

4 Experiments

We want to provide some experimental results. We implemented the algorithm
introduced in the previous section on an 1GHz Linux-PC. Our implementation
of Coppersmith’s method follows the description given by Coron [4]. L3-lattice
reduction [7] is done using Shoup’s NTL library [10].

TERAM LING

218 Alexander May

We choose e < ¢(N) randomly. Therefore, in every experiment the product
ed is very close to the bound N2. Notice that in Theorem 3, we have to do a
small brute-force search on the most significant bits of ¢(N) in order to prove
the desired bound. The polynomial time algorithm of Coppersmith given by
Theorem 2 requires a similar brute-force search on the most significant bits.

In Table 1, we added a column that states the total number ¢ of bits that one
has to guess in order to find a sufficiently small lattice vector. Thus, we have to
multiply the running time of the lattice reduction algorithm by a factor of 2¢.
As the results indicate, the number ¢ heavily depends on the lattice dimension.
Coppersmith’s technique yields a polynomial time algorithm when the lattice
dimension is of size 8(log W). However, we only tested our algorithm for lattices
of small fixed dimensions 16, 25 and 36.

Table 1. Results for ed ~ N?

N c dim | L3*-time

512 bit 55 bit 16 0.5 min

512 bit 43 bit 25 6 min

512 bit | 36 bit 36 53 min

768 bit 80 bit 16 1 min

768 bit 63 bit 25 13 min

768 bit 53 bit 36 128 min

1024 bit | 105 bit 16 2.5 min

1024 bit | 82 bit 25 26 min

1024 bit | 67 bit 36 242 min

Our experiments compare well to the experimental results of Coron [3]: One
cannot come close to the bounds of Coppersmith’s theorem without reducing
lattices of large dimension. Notice that we have to guess a large number of bits.
In contrast, by the proof of Coppersmith’s theorem (see [4]) the number of bits
that one has to guess for lattice dimension 8(log W) is a small constant. However,
it is a non-trivial task to handle lattices of these dimensions in practice.

TERAM LING

Computing the RSA Secret Key 219

One might conclude that our method is of purely theoretical interest. But let
us point out that we have a worst case for our approach when the product ed is
very close to thebound N2. In Table 2, we provide some more practical results
for the case ed ~ N1-75,

Table 2. Results for ed ~ N8

N c dim | L3-time

512 bit | 10 bit 25 6 min

768 bit | 13 bit 25 13 min

1024 bit | 18 bit 25 26 min

References

1. D. Boneh, G. Durfee, “Cryptanalysis of RSA with private key d less than N%29%7
IEEE Trans. on Information Theory, Vol. 46(4), pp. 1339-1349, 2000

2. J. Blomer, A. May, “New Partial Key Exposure Attacks on RSA”, Advances in
Cryptology — Crypto 2003, Lecture Notes in Computer Science Vol. 2729, pp. 27—
43, Springer-Verlag, 2003

3. Jean-Sébastien Coron, “Finding Small Roots of Bivariate Integer Polynomial Equa-
tions Revisited”, Advances in Cryptology — Eurocrypt *04, Lecture Notes in Com-
puter Science Vol. 3027, pp. 492-505, Springer-Verlag, 2004

4. D. Coppersmith, “Small solutions to polynomial equations and low exponent vul-
nerabilities”, Journal of Cryptology, Vol. 10(4), pp. 223-260, 1997.

5. D. Coppersmith, “Finding Small Solutions to Small Degree Polynomials”, Cryp-
tography and Lattice Conference (CaLC 2001), Lecture Notes in Computer Science
Volume 2146, Springer-Verlag, pp. 20-31, 2001.

6. N. Howgrave-Graham, “Finding small roots of univariate modular equations re-
visited”, Proceedings of Cryptography and Coding, Lecture Notes in Computer
Science Vol. 1355, Springer-Verlag, pp. 131-142, 1997

7. A. K. Lenstra, H. W. Lenstra, and L. Lovdsz, “Factoring polynomials with rational
coefficients,” Mathematische Annalen, Vol. 261, pp. 513-534, 1982

8. G. L. Miller, “Riemann’s hypothesis and tests for primality”, Seventh Annual ACM
Symposium on the Theory of Computing, pp. 234-239, 1975

9. R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”, Communications of the ACM, Vol. 21(2), pp. 120-
126, 1978

10. V. Shoup, NTL: A Library for doing Number Theory, online available at
http://www.shoup.net/ntl/index.html

TERAM LING

Multi-trapdoor Commitments and Their
Applications to Proofs of Knowledge Secure
Under Concurrent Man-in-the-Middle Attacks™*

Rosario Gennaro

IBM T.J.Watson Research Center
P.O.Box 704, Yorktown Heights NY 10598

rosario@watson.ibm.com

Abstract. We introduce the notion of multi-trapdoor commitments
which is a stronger form of trapdoor commitment schemes. We then
construct two very efficient instantiations of multi-trapdoor commitment
schemes, one based on the Strong RSA Assumption and the other on the
Strong Diffie-Hellman Assumption.

The main application of our new notion is the construction of a compiler
that takes any proof of knowledge and transforms it into one which is
secure against a concurrent man-in-the-middle attack (in the common
reference string model). When using our specific implementations, this
compiler is very efficient (requires no more than four exponentiations)
and maintains the round complexity of the original proof of knowledge.
The main practical applications of our results are concurrently secure
identification protocols. For these applications our results are the first
simple and efficient solutions based on the Strong RSA or Diffie-Hellman
Assumption.

1 Introduction

A proof of knowledge allows a Prover to convince a Verifier that he knows some
secret information w (for example a witness for an N P-statement). Since w
must remain secret, one must ensure that the proof does not reveal any informa-
tion about w to the Verifier (who may not necessarily act honestly and follow the
protocol). Proofs of knowledge have several applications, chief among them iden-
tification protocols where a party, who is associated with a public key, identifies
himself by proving knowledge of the matching secret key.

However when proofs of knowledge are performed on an open network, like
the Internet, one has to worry about an active attacker manipulating the con-
versation between honest parties. In such a network, also, we cannot expect to
control the timing of message delivery, thus we should assume that the adversary
has control on when messages are delivered to honest parties.

* Extended Abstract. The full version of the paper is available at
http://eprint.iacr.org/2003/214/

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 220-236, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

Multi-trapdoor Commitments 221

The adversary could play the ‘“man-in-the-middle” role, between honest
provers and verifiers. In such an attack the adversary will act as a prover with
an honest verifier, trying to make her accept a proof, even if the adversary does
not know the corresponding secret information. During this attack, the adver-
sary will have access to honest provers proving other statements. In the most
powerful attack, the adversary will start several such sessions at the same time,
and interleave the messages in any arbitrary way.

Informally, we say that a proof of knowledge is concurrently non-malleable,
if such an adversary will never be able to convince a verifier when she does not
know the relevant secret information (unless, of course, the adversary simply
relays messages unchanged from an honest prover to an honest verifier).

OUR MAIN CONTRIBUTION. We present a general transformation that takes any
proof of knowledge and makes it concurrently non-malleable. The transformation
preserves the round complexity of the original scheme and it requires a common
reference string shared by all parties.

The crucial technical tool to construct such compiler is the notion of multi-
trapdoor commitments (MTC) which we introduce in this paper. After defining
the notion we show specific number-theoretic constructions based on the Strong
RSA Assumption and the recently introduced Strong Diffie-Hellman Assump-
tion. These constructions are very efficient, and when applied to the concurrent
compiler described above, this is the whole overhead.

MULTI-TRAPDOOR COMMITMENTS. Recall that a commitment scheme consist
of two phases, the first one in which a sender commits to a message (think of it
as putting it inside a sealed envelope on the table) and a second one in which
the sender reveals the committed message (opens the envelope).

A trapdoor commitment scheme allows a sender to commit to a message with
information-theoretic privacy. L.e., given the transcript of the commitment phase
the receiver, even with infinite computing power, cannot guess the committed
message better than at random. On the other hand when it comes to open-
ing the message, the sender is only computationally bound to the committed
message. Indeed the scheme admits a trapdoor whose knowledge allows to open
a commitment in any possible way. This trapdoor should be hard to compute
efficiently.

A multi-trapdoor commitment scheme consists of a family of trapdoor com-
mitments. Each scheme in the family is information-theoretically private. The
family admits a master trapdoor whose knowledge allows to open any commit-
ment in the family in any way it is desired. Moreover each commitment scheme
in the family admits its own specific trapdoor. The crucial property in the def-
inition of multi-trapdoor commitments is that when given the trapdoor of one
scheme in the family it is infeasible to compute the trapdoor of another scheme
(unless the master trapdoor is known).

CONCURRENT COMPOSITION IN DETAIL. When considering a man-in-the-middle
attacker for proofs of knowledge we must be careful to define exactly what kind
of concurrent composition we allow.

TERAM LING

222 Rosario Gennaro

Above we described the case in which the attacker acts as a verifier in sev-
eral concurrent executions of the proof, with several provers. We call this left-
concurrency (as usually the provers are positioned on the left of the picture). On
the other hand right-concurrency means that the adversary could start several
concurrent executions as a prover with several verifiers.

Under these attacks, we need to prove that the protocols are zero-knowledge
(i.e. simulatable) and also proofs of knowledge (i.e. one can extract the wit-
ness from the adversary). When it comes to extraction one also has to make
the distinction between on-line and post-protocol extraction [27]. In an on-line
extraction, the witness is extracted as soon as the prover successfully convinces
the verifier. In a post-protocol extraction procedure, the extractor waits for the
end of all the concurrent executions to extract the witnesses of the successful
executions.

In the common reference string it is well known how to fully (i.e. both left and
right) simulate proofs of knowledge efficiently, using the result of Damgard [16].
We use his techniques, so our protocols are fully concurrently zero-knowledge.
Extraction is more complicated. Lindell in [30] shows how to do post-protocol
extraction for the case of right concurrency. We can use his techniques as well.
But for many applications what really matters is on-line extraction. We are able
to do that only under left-concurrency'. This is however enough to build fully
concurrently secure applications like identification protocols.

PRIOR WORK. Zero-knowledge protocols were introduced in [24]. The notion of
proof of knowledge (already implicit in [24]) was formalized in [21,6].

Concurrent zero-knowledge was introduced in [20]. They point out that the
typical simulation paradigm to prove that a protocol is zero-knowledge fails to
work in a concurrent model. This work sparked a long series of papers culmi-
nating in the discovery of non-constant upper and lower bounds on the round
complexity of concurrent zero-knowledge in the black-box model [13,34], unless
extra assumptions are used such as a common reference string. Moreover, in a
breakthrough result, Barak [2] shows a constant round non-black-box concurrent
zero-knowledge protocol, which however is very inefficient in practice.

If one is willing to augment the computational model with a common refer-
ence string, Damgéard [16] shows how to construct very efficient 3-round protocols
which are concurrent (black-box) zero-knowledge.

However all these works focus only on the issue of zero-knowledge, where one
has to prove that a verifier who may engage with several provers in a concurrent
fashion, does not learn any information. Our work focuses more on the issue
of malleability in proofs of knowledge, i.e. security against a man-in-the-middle
who may start concurrent sessions.

The problem of malleability in cryptographic algorithms, and specifically
in zero-knowledge proofs, was formalized by Dolev et al. in [19], where a non-
malleable ZK proof with a polylogarithmic number of rounds is presented. This
protocol, however, is only sequentially non-malleable, i.e. the adversary can only

! However, as we explain later in the Introduction, we could achieve also right-
concurrency if we use so-called §2-protocols

TERAM LING

Multi-trapdoor Commitments 223

start sessions sequentially (and non concurrently) with the prover. Barak in [3]
shows a constant round non-malleable ZK proof in the non-black-box model (and
thus very inefficient).

Using the taxonomy introduced by Lindell [29], we can think of concurrent
composition as the most general form of composition of a protocol with itself
(i.e. in a world where only this protocol is run). On the other hand it would
be desirable to have protocols that arbitrarily compose, not only with them-
selves, but with any other “secure” protocol in the environment they run in.
This is the notion of universal composable security as defined by Canetti [11].
Universally composable zero-knowledge protocols are in particular concurrently
non-malleable. In the common reference string model (which is necessary as
proven in [11]), a UCZK protocols for Hamiltonian Cycle was presented in [12].
Thus UCZK protocols for any NP problem can be constructed, but they are
usually inefficient in practice since they require a reduction to the Hamiltonian
Cycle problem.

As it turns out, the common reference string model is necessary also to
achieve concurrent non-malleability (see [30]). In this model, the first theoretical
solution to our problem was presented in [17]. Following on the ideas presented
in [17] more efficient solutions were presented in [27,22,31].

Our compiler uses ideas from both the works of Damgéard [16] and Katz [27],
with the only difference that it uses multi-trapdoor instead of regular trapdoor
commitments in order to achieve concurrent non-malleability.

SIMULATION-SOUND TRAPDOOR COMMITMENTS. The notion of Simulation-
Sound Trapdoor Commitments (SSTC), introduced in [22] and later refined and
improved in [31], is very related to our notion of MTC. The notion was introduced
for analogue purposes: to compile (in a way similar to ours) any X-protocol into
one which is left-concurrently non-malleable. They show generic constructions
of SSTC and specific direct constructions based on the Strong RSA Assumption
and the security of the DSA signature algorithm.

The concept of SSTC is related to ours, though we define a weaker notion
of commitment (we elaborate on the difference in Section 3). The important
contribution of our paper with respect to [22,31] is twofold: (i) we show that
this weaker notion is sufficient to construct concurrently non-malleable proofs;
(i1) because our notion is weaker, we are able to construct more efficient number
theoretic instantiations. Indeed our Strong RSA construction is about a factor of
2 faster than the one presented in [31]. This efficiency improvement is inherited
by the concurrently non-malleable proof of knowledge, since in both cases the
computation of the commitment is the whole overhead”.

2 In [22,31] §2-protocols are introduced, which dispense of the need for rewinding when
extracting and thus can be proven to be left and right-concurrently non-malleable
(and with some extra modification even universally composable). It should be noted
that if we apply our transformation to the so-called {2-protocols introduced by [22],
then we obtain on-line extraction under both left and right concurrency. However we
know how to construct efficient direct constructions of {2-protocols only for knowl-
edge of discrete logarithms, and even that is not particularly efficient. Since for the
applications we had in mind left-concurrency was sufficient, we did not follow this
path in this paper. TEAM LING

224 Rosario Gennaro

REMARK. Because of space limitations, all the proofs of the Theorems, and
various technical details are omitted and can be found in the full version of the

paper.
2 Preliminaries

In the following we say that function f(n) is negligible if for every polynomial
Q(-) there exists an index n¢g such that for all n > ng, f(n) < 1/Q(n).

Also if A(+) is a randomized algorithm, with a « A(-) we denote the event
that A outputs the string a. With Prob[A4,;...; Ak : B] we denote the probability
of event B happening after Aj, ..., Ak.

2.1 One-Time Signatures

Our construction requires a strong one-time signature scheme which is secure
against chosen message attack. Informally this means that the adversary is given
the public key and signatures on any messages of her choice (adaptively chosen
after seeing the public key). Then it is infeasible for the adversary to compute a
signature of a new message, or a different signature on a message already asked.
The following definition is adapted from [25].

Definition 1. (SG,Sig, Ver) is a strong one-time secure signature if for every
probabilistic polynomial time forger F, the following

(sk,vk) < SG(1™) ; M — F(vk);
sig — Sig(M,sk) ; F(M,sig,vk) = (M',sig’) :
Ver(M',sig/,vk) =1 and
(M #M' or sig # sig’)

Prob

is negligible in n.

One-time signatures can be constructed more efficiently than general signatures
since they do not require public key operations (see [7, 8, 28]). Virtually all the
efficient one-time signature schemes are strong.

2.2 The Strong RSA Assumption

Let N be the product of two primes, N = pg. With ¢(N) we denote the Euler
function of N, i.e. ¢(N) = (p—1)(g—1). With Z3} we denote the set of integers
between 0 and N — 1 and relatively prime to N.

Let e be an integer relatively prime to ¢(N). The RSA Assumption [35]
states that it is infeasible to compute e-roots in Z}. Le. given a random element
s €gp Zy; itis hard to find z such that z° = s mod N.

The Strong RSA Assumption (introduced in [4]) states that given a random
element s in Zj it is hard to find ,e % 1 such that z® = smod N. The
assumption differs from the traditional RSA assumption in that we allow the
adversary to freely choose the exponent e for which she will be able to compute
e-roots.

We now give formal definitions. Let RSA(n) be the set of integers N, such
that N is the product of two n/2-bit primes.

TERAM LING

Multi-trapdoor Commitments 225

Assumption 1 We say that the Strong RSA Assumption holds, if for all prob-
abilistic polynomial time adversaries A the following probability

Prob[N — RSA(n); s — Z} : A(N,s) = (z,e) s.t. 2° =smod N]
is negligible in n.

A more efficient variant of our protocol requires that N is selected as the product
of two safe primes, i.e. N = pg where p = 2p’ +1, ¢ = 2¢’ + 1 and both p/, ¢’
are primes. We denote with SRSA(n) the set of integers N, such that N is the
product of two n/2-bit safe primes. In this case the assumptions above must be
restated replacing RSA(n) with SRSA(n).

2.3 The Strong Diffie-Hellman Assumption

We now briefly recall the Strong Diffie-Hellman (SDH) Assumption, recently
introduced by Boneh and Boyen in [9].

Let G be cyclic group of prime order g, generated by g. The SDH Assumption
can be thought as an equivalent of the Strong RSA Assumptlon over cyclic
groups. It basically says that no attacker on input G, g, g%, ¢* ,g" ., for some
random z € Zg, should be able to come up with a pair (e, k) such that h’“"e =g.

Assumption 2 We say that the £-SDH Assumption holds over a cyclic group
G of prime orderq generated by g, if for all probabilistic polynomial time adver-
saries A the following probability

Prob{z «— Zy : A(g,6°9% 1..,9°) = (e € Zg,h € G) s.t. hot =g]
is negligible inn = |q|.

Notice that, depending on the group G, there may not be an efficient way to
determine if A succeeded in outputting (e, k) as above. Indeed in order to check
if h*+¢ = g when all we have is g%, we need to solve the Decisional Diffie-
Hellman (DDH) problem on the triple (¢®g%, h,g). Thus, although Assumption
2 is well defined on any cyclic group G, we are going to use it on the so-called
gap-DDH groups, i.e. groups in which there is an efficient test to determine (with
probability 1) on input (g2, g%, g°) if ¢ = ab mod q or not. The gap-DDH property
will also be required by our construction of multi-trapdoor commitments that
uses the SDH Assumption®.

2.4 Definition of Concurrent Proofs of Knowledge

POLYNOMIAL TIME RELATIONSHIPS. Let R be a polynomial time computable
relationship, i.e. a language of pairs (y,w) such that it can be decided in polyno-
mial time in |y| if (y,w) € R or not. With £z we denote the language induced
by Rie. Lr={y : FJw : (y,w) € R}.

3 Gap-DDH groups where Assumption 2 is believed to hold can be constructed using
bilinear maps introduced in the cryptographic literature by [10].

TERAM LING

226 Rosario Gennaro

More formally an ensemble of polynomial time relationships P7R consists
of a collection of families PTR = U,PTR,, where each PTR,, is a family of
polynomial time relationships R,. To anensemble P7TR we associate a random-
ized instance generator algorithm |G that on input 1™ outputs the description of
a relationship R,,. In the following we will drop the suffix n when obvious from
the context.

PROOFS OF KNOWLEDGE. In a proof of knowledge for a relationship R, two
parties, Prover P and Verifier V, interact on a common input y. P also holds a
secret input w, such that (y,w) € R. The goal of the protocol is to convince V
that P indeed knows such w. Ideally this proof should not reveal any information
about w to the verifier, i.e. be zero-knowledge.

The protocol should thus satisfy certain constraints. In particular it must be
complete: if the Prover knows w then the Verifier should accept. It should be
sound: for any (possibly dishonest) prover who does not know w, the verifier
should almost always reject. Finally it should be zero-knowledge: no (poly-time)
verifier (no matter what possibly dishonest strategy she follows during the proof)
can learn any information about w.

2-PROTOCOLS. Many proofs of knowledge belong to a class of protocols called
X-protocols. These are 3-move protocols for a polynomial time relationship R in
which the prover sends the first message a, the verifier answers with a random
challenge ¢, and the prover answers with a third message z. Then the verifier
applies a local decision test on y,a, ¢,z to accept or not.

2-protocols satisfy two special constraints:

Special soundness. A cheating prover can only answer one possible challenge
c¢. In other words we can compute the witness w from two accepting conver-
sations of the form (e, ¢, 2) and (a,c’, 2’).

Special zero-knowledge. Given the statement y and a challenge ¢, we can
produce (in polynomial time) an accepting conversation (a,c, z), with the
same distribution of real accepting conversations, without knowing the wit-
ness w. Special zero-knowledge implies zero-knowledge with respect to the
honest verifier.

All the most important proofs of knowledge used in cryptographic applications
are X-protocols (e.g.[36,26]).

We will denote with a «— X[y, w] the process of selecting the first message a
according to the protocol X. Similarly we denote ¢ «— X5 and z « X3y, w, a,d].

MAN-IN-THE-MIDDLE ATTACKS. Consider now an adversary A that engages
with a verifier V in a proof of knowledge. At the same time A acts as the verifier
in another proof with a prover P. Even if the protocol is a proof of knowledge
according to the definition in [6], it is still possible for .A to make the verifier
accept even without knowing the relevant secret information, by using P as an
oracle. Of course A could always copy the messages from P to V, but it is not
hard to show (see for example [27]) that she can actually prove even a different
statement to V.

TERAM LING

Multi-trapdoor Commitments 227

In a concurrent attack, the adversary A is activating several sessions with
several provers, in any arbitrary interleaving. We call such an adversary a con-
current man-in-the-middle. We say that a proof of knowledge is concurrently
non-malleable if such an adversary fails to convince the verifier in a proof in
which he does not know the secret information. In other words a proof of knowl-
edge is concurrently non-malleable, if for any such adversary that makes the
verifier accept with non-negligible probability we can extract a witness.

Since we work in the common reference string model we define a proof sys-
tem as tuple (crsG,P,V), where crsG is a randomized algorithm that on input
the security parameter 1™ outputs the common reference string crs. In our def-
inition we limit the prover to be a probabilistic polynomial time machine, thus
technically our protocols are arguments and not proofs. But for the rest of the
paper we will refer to them as proofs.

If Ais a concurrent man-in-the-middle adversary, let 7 4(n) be the probability
that the verifier V accepts. That is

T4 = Prob[R, « IG(1") ; crs « crsG(1™) ; [APW)PWe) V(crs,y) = 1]

where the statements y,y1,...,yx are adaptively chosen by A. Also we denote
with View[A, P, V]qrs the view of A at the end of the interaction with P and V
on common reference string crs.

Definition 2. We say thar (crsG,P,V) is a concurrently non-malleable proof of
knowledge for a relationship (PTR,1G) if the following properties are satisfied:

Completeness. For all (y,w) € Ry, (forall R,) we have that [P(y, w), V(y)]=1.

Witness Extraction. There exist a probabilistic polynomial time knowledge
extractor KE, a function & : {0,1}* — [0,1] and a negligible function e,
such that for all probabilistic polynomial time concurrent man-in-the-middle
adversary A, if m4(n) > k(n) then KE, given rewind access to A, computes
w such that (y,w) € Ry with probability atleast wa(n) — k(n) — €(n).

Zero-Knowledge. There exist a probabilistic polynomial time simulator SIM =
(S!M4, SIMp, SIMv), such that the two random variables

Real(n) = [ers — crsG(1™) , View[A4, P, V]crs]
Sim(n) = [crs « SIM{(1™) , View[A, SIMp, SIMy]crs |
are indistinguishable.

Notice that in the definition of zero-knowledge the simulator does not have the
power to rewind the adversary. This will guarantee that the zero-knowledge
property will hold in a concurrent scenario. Notice also that the definition of
witness extraction assumes only left-concurrency (i.e. the adversary has access
to many provers but only to one verifier).

3 Multi-trapdoor Commitment Schemes

A trapdoor commitment scheme allows a sender to commit to a message with
information-theoretic privacy. Le., given the transcript of the commitment phase

TERAM LING

228 Rosario Gennaro

the receiver, even with infinite computing power, cannot guess the committed
message better than at random. On the other hand when it comes to opening
the message, the sender is only computationally bound to the committed mes-
sage. Indeed the scheme admits a trapdoor whose knowledge allows to open a
commitment in any possible way (we will refer to this also as equivocate the
commitment). This trapdoor should be hard to compute efficiently.

A multi-trapdoor commitment scheme consists of a family of trapdoor com-
mitments. Each scheme in the family is information-theoretically private. We
require the following properties from a multi-trapdoor commitment scheme:

1. The family admits a master trapdoor whose knowledge allows to open any
commitment in the family in any way it is desired.

2. Each commitment scheme in the family admits its own specific trapdoor,
which allows to equivocate that specific scheme.

3. For any commitment scheme in the family, it is infeasible to open it in
two different ways, unless the trapdoor is known. However we do allow the
adversary to equivocate on a few schemes in the family, by giving it access
to an oracle that opens a given committed value in any desired way. The
adversary must selects this schemes, before seeing the definition of the whole
family. It should remain infeasible for the adversary to equivocate any other
scheme in the family.

The main difference between our definition and the notion of SSTC [22,31]
is that SSTC allow the adversary to choose the schemes in which it wants to
equivocate even after seeing the definition of the family. Clearly SSTC are a
stronger requirement, which is probably why we are able to obtain more efficient
constructions.

We now give a formal definition. A (non-interactive) multi-trapdoor com-
mitment scheme consists of five algorithms: CKG, Sel, Tkg, Com, Open with the
following properties.

CKG is the master key generation algorithm, on input the security parameter
it outputs a pair PK, TK where PK is the master public key associated with the
family of commitment schemes, and TK is called the master trapdoor.

The algorithm Sel selects a commitment in the family. On input PK it outputs
a specific public key pk that identifies one of the schemes.

Tkg is the specific trapdoor generation algorithm. On input PK,TK,pk it
outputs the specific trapdoor information tk relative to pk.

Com is the commitment algorithm. On input PK,pk and a message M it
outputs C(M) = Com(PK, pk, M, R) where R are the coin tosses. To open a
commitment the sender reveals M, R and the receiver recomputes C.

Open is the algorithm that opens a commitment in any possible way given
the trapdoor information. It takes as input the keys PK,pk, a commitment C(M)
and its opening M, R, a message M’/ # M and a string T. If T = TK or T = tk
then Open outputs R’ such that C(M) = Com(PK, pk, M’, R').

We require the following properties. Assume PK and all the pk’s are chosen
according to the distributions induced by CKG and Tkg.

TERAM LING

Multi-trapdoor Commitments 229

Information Theoretic Security. For every message pair M, M’ the distri-
butions C(M) and C(M') are statistically close.

Secure Binding. Consider the following game. The adversary A selects k
strings (pky, ..., pkg). It is then given a public key PK for a multi-trapdoor
commitment family, generated with the same distribution as the ones gen-
erated by CKG. Also, .4 is given access to an oracle £Q (for Equivocator),
which is queried on the following string C = Com(PK, pk, M, R), M, R, pk
and a message M’ # M. If pk = pk; for some 4, and is a valid public key,
then £Q answers with R’ such that C = Com(PK, pk, M’, R’) otherwise it
outputs nil. We say that 4 wins if it outputs C, M, R, M’, R', pk such that
C = Com(PK, pk, M, R) = Com(PK, pk, M’',R"), M # M’ and pk # pk; for
all <. We require that for all efficient algorithms .4, the probability that A
wins is negligible in the security parameter.

We can define a stronger version of the Secure Binding property by requiring
that the adversary A receives the trapdoors tk;’s matching the public keys pk;’s,
instead of access to the equivocator oracle £Q. In this case we say that the
multi-trapdoor commitment family is strong”.

3.1 A Scheme Based on the Strong RSA Assumption

The starting point for the our construction of multi-trapdoor commitments based
on the Strong RSA Assumption, is a commitment scheme based on the (regular)
RSA Assumption, which has been widely used in the literature before (e.g. [14,
15)).

The master public key is a number N product of two large primes p, g, and s
a random element of Z%. The master trapdoor is the factorization of V, i.e. the
integers p, g. The public key of a scheme in the family is an £-bit prime number
e such that GCD(e, ¢(N)) = 1. The specific trapdoor of the scheme with public
key eis the e-rootof s,i.e. avalue o, € Zj such that gf = s mod N.

To commit to a € [1..2671] the sender chooses r €g Z} and computes A =
s% -7 mod N. To decommit the sender reveals a,r and the previous equation is
verified by the receiver.

Proposition 1. Under the Strong RSA Assumption the scheme described above
is a multi-trapdoor commitment scheme.

Sketch of Proof: Each scheme in the family is unconditionally secret. Given a
value A = s% - r® we note that for each value @’ # a there exists a unique value
7 such that A = s* (r')°. Indeed this value is the e-root of A - s2~%". Observe,
moreover that »' can be computed efficiently as a‘;‘“', thus knowledge of o,
allows to open a commitment (for which we know an opening) in any desired
way.

* This was actually our original definition of multi-trapdoor commitments. Phil
MacKenzie suggested the possibility of using the weaker approach of giving access to
an equivocator oracle (as done in [31]) and we decided to modify our main definition
to the weaker one, since it suffices for our application. However the strong definition
may also have applications, so we decided to present it as well.

TEAM LING

230 Rosario Gennaro

We now argue the Secure Binding property under the Strong RSA As-
sumption. Assume we are given a Strong RSA problem istance N, o. Let’s now
run the Secure Binding game. The adversary is going to select k public keys
which in this case are k primes, ej,...,ex. We set s = of where E = Hf=1 e;
and return N, s as the public key of the multi-trapdoor commitment family. This
will easily allow us to simulate the oracle £Q, as we know the e;-roots of s, i.e.
the trapdoors of the schemes identified by e;.

Assume now that the adversary equivocates a commitment scheme in the
family identified by aprime e # e;. The adversary returns a commitment A and
two distinct openings of it {a,r) and (a’,7’). Thus

’] 7”, ©
A=s*r=5*(r)* = s*7% = (—) (1)
Let § = a —a'. Since a,a’ < e and e and the e;’s are all distinct primes we have

that GCD(6E,e) = 1. We canfindintegers «, 8 such that adF + fe = 1.Now
we can compute (using Shamir’s GCD trick [37] and Eq.(1))

1\ ae
o= Ua6E+ﬁe = (UE)GJ . Uﬂe — (SJ)a) o.ﬂe = (7;"_) U,Be (2)
I\
By taking e-roots on both sides we find that g, = (%) sP. O

Remark: The commitment scheme can be easily extended to any message do-
main M, by using a collision-resistant hash function H from M to [1..2¢71].In
this case the commitment is computed as s#(2)7¢, In our application we will use
a collision resistant function like SHA-1 that maps inputs to 160-bit integers and
then choose e’s larger than 260,

3.2 A Scheme Based on the SDH Assumption

Let G be a cyclic group of prime order q¢ generated by g. We assume that G
is a gap-DDH group, i.e. a group such that deciding Diffie-Hellman triplets is
easy. More formally we assume the existence of an efficient algorithm DDH-Test
which on input a triplet (g%, g% g°) of elements in G outputs 1 if and only if,
¢ = ab mod ¢q. We also assume that the Assumption 2 holds in G.

The master key generation algorithm selects a random z € Z; which will be
the master trapdoor. The master public key will be the pair g, h where h = ¢g*
in G. Each commitment in the family will be identified by a specific public key
pk which is simply an element e € Z,4. The specific trapdoor tk of this scheme is
the value f. in G, such that f¥+¢ =g.

To commit to a message a € Z, with public key pk = e, the sender chooses at
random ¢ € Z, and computes k. = (h-g®)®. It then runs Pedersen’s commitment
[33] with bases g, he, i.e., it selects a random r € Z; and computes A = g*h’.
The commitment to a is the value A.

To open a commitment the sender reveals a and F = g%7. The receiver
accepts the opening if DDH-Test(F,h- g%, A-g™%) = 1.

TERAM LING

Multi-trapdoor Commitments 231

Proposition 2. Under the SDH Assumption the scheme described above is a
multi-trapdoor commitment scheme.

Sketch of Proof: Each scheme in the family is easily seen to be unconditionally
secret. The proof of the Secure Binding property follows from the proof of
Lemma 1 in [9], where it is proven that the trapdoors f, can be considered
“weak signatures”. In other words the adversary can obtain several fe,,..., fe,
for values ey, ..., e; chosen before seeing the public key g, k, and still will not be
able (under the (€ + 1)-SDH) to compute f. for anew e # e;.

The proof is then completed if we can show that opening a commitment in
two different ways for aspecific e is equivalent to finding fe.

Assume we can open a committment A = g® in two ways a,F = g# and
a,F' = ¢ with a # a'. The DDH-Test tells us that & —a = B(z + e) and
a—ad =p0(zx+e),thusa—a =(f —B)(z+e)or

N A) pry (a=a) 7
(a_a) = — = = _—

By the same reasoning, if we know f, and we have an opening F, a and we want
to open it as a’ we need to set F/ = F' - f¢=* . O

4 The Protocol

In this section we describe our full solution for non-malleable proofs of knowledge
secure under concurrent composition using multi-trapdoor commitments.

INFORMAL DESCRIPTION. We start from a X-protocol as described in Section
2. That is the prover P wants to prove to a verifier V that he knows a witness w
for some statement y. The prover sends a first message a. The verifier challenges
the prover with a random value ¢ and the prover answers with his response z.

We modify this X-protocol in the following way. We assume that the parties
share a common reference string that contains the master public key PK for a
multi-trapdoor commitment scheme. The common reference string also contains
a collision-resistant hash function H from the set of verification keys vk of the
one-time signature scheme, to the set of public keys pK in the multi-trapdoor
commitment scheme determined by the master public key PK.

The prover chooses a key pair (sk, vk) for a one-time strong signature scheme.
The prover computes pk= H(vVK) and A = Com(PK, pk,a,r) where a is the first
message of the X-protocol and r is chosen at random (as prescribed by the
definition of Com). The prover sends VK, A to the verifier. The crucial trick is that
we use the verification key VK to determine the value pK used in the commitment
scheme.

The verifier sends the challenge ¢. The prover sends back a,r as an opening
of A and the answer z of the X-protocol. It also sends sig a signature over the
whole transcript, computed using sk. The verifier checks that a,r is a correct
opening of A, that sig is a valid signature over the transcript using vk and also

TERAM LING

232 Rosario Gennaro

CNM-POK

Common Reference String: PK the master public key for a multi-trapdoor
commitment scheme. A collision resistant hash function H which maps inputs
to public keys for the multi-trapdoor commitment scheme determined by PK.

Common Input: A string y.

Private Input for the Prover: a witness w for the statement y, i.e. (y,w) €

R.

The Prover computes (sk, vk) «+ SG(1"); pk = H(vk); a «— Zi[y,w]; r €r
Zy; A = Com(PK, pk,a,r)
The Prover sends A and vk to the Verifier.

P A,Vk . V

The Verifier selects a random challenge ¢ «— Y3 and sends it to the Prover.

P L Vv

— The Prover computes z + X3y, w, a,c] and sig = Sig, (y, 4,¢,a,r,2). He
sends a,r, z,sig to the Verifier.

P a,r, z,sig vV

— The Verifier accepts iff A = Com(PK, pk,a,r); Verw(y, 4,c,a,r,z) =1 and
Acc(y,a,c,z) = 1.

Fig. 1. A Concurrently Non-malleable Proof of Knowledge

that (a, ¢, z) is an accepting conversation for the X-protocol. The protocol is
described in Figure 1.

Theorem 1. If multi-trapdoor commitments exist, if H is a collision-resistant
hash function, and if (SG,Sig,Ver) is a strong one-time signature scheme, then
CNM-POK is a concurrently non-malleable proof of knowledge (see Definition 2).

4.1 The Strong RSA Version

In this section we are going to add a few comments on the specific implementa-
tions of our protocol, when using the number-theoretic constructions described
in Sections 3.1 and 3.2. The main technical question is how to implement the
collision resistant hash function H which maps inputs to public keys for the
multi-trapdoor commitment scheme.

The SDH implementation is basically ready to use “as is”. Indeed the public
keys pk of the multi-trapdoor commitment scheme are simply elements of Z,,
thus all is needed is a collision-resistant hash function with output in Z,.

On the other hand, for the Strong RSA based multi-trapdoor commitment,
the public keys are prime numbers of the appropriate length. A prime-outputting

TERAM LING

Multi-trapdoor Commitments 233

collision-resistant hash function is described in [23]. However we can do better
than that, by modifying slightly the whole protocol. We describe the modifica-
tions (inspired by [32, 15]) in this section.

MODIFYING THE ONE-TIME SIGNATURES. First of all, we require the one-time
signature scheme (SG,Sig,Ver) to have an extra property: i.e. that the distribution
induced by SG over the verification keys VK is the uniform one’. Virtually all the
known efficient one-time signature schemes have this property.

Then we assume that the collision resistant hash function used in the pro-
tocol is drawn from a family which is both a collision-resistant collection and a
collection of families of universal hash functions®.

Assume that we have a randomly chosen hash function H from such a collec-
tion mapping n-bit strings (the verification keys) into k-bit strings and a prime
P > 2k/2,

We modify the key generation of our signature scheme as follows. We run
SG repeatedly until we get a verification key vk such that e = 2P - H(vk) + 1
is a prime. Notice that £ = |e| > 3k. Let us denote with SG’ this modified key
generation algorithm.

We note the following facts:

— H(vk) follows a distribution over k-bit strings which is statistically close to
uniform; thus using results on the density of primes in arithmetic progres-
sions (see [1], the results hold under the Generalized Riemann Hypothesis)
we know that this process will stop in polynomial time, i.e. after an expected
£ iterations.

— Since e is of the form 2PR + 1, and P > e!/3, primality testing of all the e
candidates can be done deterministically and very efficiently (see Lemma 2
in [32]).

Thus this is quite an efficient way to associate primes to the verification keys.

Notice that we are not compromising the security of the modified signature
scheme. Indeed the keys of the modified scheme are a polynomially large fraction
of the original universe of keys. Thus if a forger could forge signature on this
modified scheme, then the original scheme is not secure as well.

ON THE LENGTH OF THE PRIMES. In our application we need the prime e to
be relatively prime to ¢(NN) where N is the RSA modulus used in the protocol.
This can be achieved by setting £ > n/2 (i.e. e > v/N). In typical applications
(i.e. |N| = 1024) this is about 512 bits (we can obtain this by setting |P| = 352
and k, the length of the hash function output, to 160). Since the number of
iterations to choose VK depends on the length of e, it would be nice to find a way
to shorten it.

> This requirement can be relaxed to asking that the distribution has enough min-
entropy.

© This is a reasonable assumption that can be made on families built out of a collision-
resistant hash function (such as SHA-1). See also [18] for analysis of this type of
function families.

TERAM LING

234 Rosario Gennaro

If we use safe RSA moduli, then we can enforce that GCD(e,¢(N)) = 1 by
choosing e small enough (for 1024-bit safe moduli we need them to be smaller
than 500 bits). In this case the collision-resistant property will become the limit-
ing factor in choosing the length. By today’s standards we need k to be at least
160. So the resulting primes will be = 240 bits long.

4.2 Identification Protocols

The main application of our result is the construction of concurrently secure
identification protocols. In an identification protocol, a prover, associated with
a public key pk, communicates with a verifier and tries to convince her to be
the legitimate prover (i.e. the person knowing the matching secret key sk.) An
adversary tries to mount an impersonation attack, i.e. tries to make the verifier
accept without knowing the secret key sk.

The adversary could be limited to interact with the real prover only before
mounting the actual impersonation attack [21]. On the other hand a more re-
alistic approach is to consider the adversary a “man-in-the-middle” possibly in
a concurrent fashion [5]. Clearly such an attacker can always relays messages
unchanged between the prover and the verifier. In order to make a security def-
inition meaningful, one defines a successful impersonation attack as one with a
transcript different from the ones between the attacker and the real prover’.

It is not hard to see that CNM-POK is indeed a concurrently secure identifi-
cation protocol. It is important to notice that we achieve full concurrency here,
indeed the extraction procedure in the proof of Theorem 1 does not ‘“care” if
there are many other executions in which the adversary is acting as a prover.
Indeed we do not need to rewind all executions, but only one in order to extract
the one witness we need. Thus if there are other such executions “nested’ inside
the one we are rewinding, we just run them as the honest verifier.

Acknowledgments

I would like to thank Hugo Krawczyk for conversations that started the research
on this paper. Thanks also to Dario Catalano, Shai Halevi, Jonathan Katz, Dah-
Yoh Lim, Yehuda Lindell and especially Phil MacKenzie for helpful conversations
and advice.

References

1. E. Bach and J. Shallit. Algorithmic Number Theory - Volume 1. MIT Press, 1996.
2. B. Barak. How o go beyond the black-box simulation barrier. Proc. of 42™* IEEE
Symp. on Foundations of Computer Science (FOCS’01), pp.106-115, 2001.

" In [5] an even more powerful adversary is considered, one that can even reset the
internal state of the prover. The resulting notion of security implies security in the
concurrent model. We do not consider the resettable scenario, but our protocols are
more efficient than the ones proposed in [5].

TERAM LING

3.

11.

12.

13.

14.

15.

16.

17.

18.

1.

20.

21.

22.

23.

Multi-trapdoor Commitments 235

B. Barak. Constant-round Coin Tossing with a Man in the Middle or Realizing
the Shared Random String Model. Proc. of 43" IEEE Symp. on Foundations of
Computer Science (FOCS’02), pp.345-355, 2001.

. N. Barié, and B. Pfitzmann. Collision-free accumulators and Fail-stop signa-

ture schemes without trees. Proc. of EUROCRYPT’97 (LNCS 1233), pp.480—494,
Springer 1997.

. M. Bellare, M. Fischlin, S. Goldwasser and S. Micali. Identification Protocols Se-

cure against Reset Attacks. Proc. of EUROCRYPT’01 (LNCS 2045), pp.495-511,
Springer 2001.

. M. Bellare and O. Goldreich. On defining proofs of knowledge. Proc. of CRYPTO’92

(LNCS 740), Springer 1993.

. D. Bleichenbacher and U. Maurer. Optimal Tree-Based One-time Digital Signature

Schemes. STACS’96, LNCS, Vol. 1046, pp.363—-374, Springer-Verlag.

. D. Bleichenbacher and U. Maurer. On the efficiency of one-time digital signatures.

Proc. of ASTACRYPT’96 (LNCS 1163), pp.145-158, Springer 1996.

. D. Boneh and X. Boyen. Short Signatures without Random Oracles. Proc. of EU-

ROCRYPT’04 (LNCS 3027), pp-382—400, Springer 2004.

. D. Boneh and M. Franklin. Identity-Based Encryption from the Weill Pairing.

SIAM J. Comp. 32(3):586-615, 2003.

R. Canetti. Universally Composable Security: A new paradigm for cryptographic
protocols. Proc. of 42" 1EEE Symp. on Foundations of Computer Science
(FOCS’01), pp-136-145, 2001.

R. Canetti and M. Fischlin. Universally Composable Commitments. Proc. of
CRYPTO’01 (LNCS 2139), pp.19-40, Springer 2001.

R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge
requires 2(logn) rounds. Proc. of 33" ACM Symp. on Theory of Computing
(STOC’01), pp.570-579, 2001.

R. Cramer and I. Damgéard. New Generation of Secure and Practical RSA-based
signatures. Proc. of Crypto 96 LNCS no. 1109, pages 173-185.

R. Cramer and V. Shoup. Signature schemes based on the Strong RSA assumption.
Proc. of 6* ACM Conference on Computer and Communication Security 1999.
I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
Proc. of EUROCYPT’00 (LNCS 1807), pp.174—-187, Springer 2000.

A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust
Non-Interactive Zero Knowledge. Proc. of CRYPTO’01, (LNCS 2139), pp.566-598,
Springer 2001.

Y. Dodis, R. Gennaro, J. Héstad, H. krawczyk and T. Rabin. Randomness Ex-
traction and Key Derivation using the CBC, Cascade and HMAC Modes. This
proceedings.

D. Dolev, C. Dwork and M. Naor. Non-malleable Cryptography. SIAM J. Comp.
30(2):391-437, 2000.

C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. Proc. of 30 ACM
Symp. on Theory of Computing (STOC’98), pp.409-418, 1998.

U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. J. of Crypt.
1(2):77-94, Springer 1988.

J. Garay, P. MacKenzie and K. Yang. Strengthening Zero-Knowledge Protocols
Using Signatures. Proc. of EUROCRYPT’03 (LNCS 2656), pp.177-194, Springer
2003. Final version at eprint.iacr.org

R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures Without
the Random Oracle. Proc. of Eurocrypt 99 LNCS no. 1592, pages 123-139.

TERAM LING

236 Rosario Gennaro

24. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. SIAM. J. Computing, 18(1):186-208, February 1989.

25. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281-308, April 1988.

26. L.C. Guillou and J.J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessors Minimizing both Transmission and Memory. Proc. of EU-
ROCRYPT’88 (LNCS 330), pp.123—128, Springer 1989.

27. 1. Katz. Efficient and Non-Malleable Proofs of Plaintext Knowledge and Applica-
tions. Proc. of EUROCRYPT’03 (LNCS 2656), pp.211-228, Springer 2003.

28. L. Lamport. Constructing Digital Signatures from a One-Way Function. Technical
Report SRI Intl. CSL 98, 1979.

29. Y. Lindell. Composition of Secure Multi-Party Protocols. Lecture Notes in Com-
puter Science vol.2815, Springer 2003.

30. Y. Lindell. Lower Bounds for Concurrent Self Composition. Proc of the 1st Theory
of Cryptography Conference (TCC’04), LNCS 2951, pp.203—-222, Springer 2004.

31. P. MacKenzie and K. Yang. On Simulation-Sound Trapdoor Commitments. Proc.
of EUROCRYPT 04 (LNCS 3027), pp.382-400, Springer 2004.

32. U. Maurer. Fast Generation of Prime Numbers and Secure Public-Key Crypto-
graphic Parameters. J. of Crypt. 8(3):123—156, Springer 1995.

33. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Crypto ’91, pages 129—-140, 1991. LNCS No. 576.

34. M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-Knowledge with loga-
rithmic round complexity. Proc. of 43" IEEE Symp. on Foundations of Computer
Science (FOGS’02), pp.366-375, 2002.

35. R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature
and Public Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120-126

36. C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4:161-174, 1991.

37. A. Shamir. On the generation of cryptographically strong pseudorandom sequences.
ACM Trans. on Computer Systems, 1(1), 1983, pages 38-44.

TERAM LING

Constant-Round Resettable Zero Knowledge
with Concurrent Soundness
in the Bare Public-Key Model

Giovanni Di Crescenzo', Giuseppe Persiano’, and Ivan Visconti’

' Telcordia Technologies, Piscataway, NJ, USA
giovanni@research. telcordia.com
2 Dip. di Informatica ed Appl., Univ. di Salerno, Baronissi, Italy
giuper@dia.unisa.it
3 Département d’Informatique, Ecole Normale Supérieure, Paris, France
ivan.visconti@ens. fr

Abstract. In the bare public-key model (BPK in short), each verifier
is assumed to have deposited a public key in a file that is accessible by
all users at all times. In this model, introduced by Canetti et al. [STOC
2000], constant-round black-box concurrent and resettable zero knowl-
edge is possible as opposed to the standard model for zero knowledge. As
pointed out by Micali and Reyzin [Crypto 2001], the notion of soundness
in this model is more subtle and complex than in the classical model
and indeed four distinct notions have been introduced (from weakest to
strongest): one-time, sequential, concurrent and resettable soundness.
In this paper we present the first constant-round concurrently sound re-
settable zero-knowledge argument system in the bare public-key model
for N"P. More specifically, we present a 4-round protocol, which is opti-
mal as far as the number of rounds is concerned. Our result solves the
main open problem on resettable zero knowledge in the BPK model and
improves the previous works of Micali and Reyzin [EuroCrypt 2001] and
Zhao et al. [EuroCrypt 2003] since they achieved concurrent soundness
in stronger models.

1 Introduction

The classical notion of a zero-knowledge proof has been introduced in [1]. Roughly
speaking, in a zero-knowledge proof a prover can prove to a verifier the validity of
a statement without releasing any additional information. In order to prove that
a zero-knowledge protocol does not leak information it is required to show the
existence of a probabilistic polynomial-time algorithm, referred to as Simulator,
whose output is indistinguishable from the output of the interaction between the
prover and the verifier. Since its introduction, the concept of a zero-knowledge
proof and the simulation paradigm have been widely used to prove the security
of many protocols. More recently, it has been recognized that in several practical
settings the original notion of zero knowledge (which in its original formulation

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 237-253, 2004.

© International Association for Cryptologic Research 2004
TEAM LING

238 Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti

only considered one prover and one verifier that carried out the proof proce-
dure in isolation) was insufficient. For example, the notion of concurrent zero
knowledge [2] formalizes security in a scenario in which several verifiers access
concurrently the same prover and maliciously coordinate their actions so to ex-
tract information from the prover. Motivated by considerations regarding smart
cards, the notion of resettable zero knowledge (rZK, in short) was introduced
in [3]. An rZK proof remains “secure” even if the verifier is allowed to tamper
with the prover and to reset the prover in the middle of a proof to any previous
state and then asks different questions. It is easy to see that concurrent zero
knowledge is a special case of resettable zero knowledge and, currently, rZK is
the strongest notion of zero knowledge that has been studied. Unfortunately,
if we only consider black-box zero knowledge, constant-round concurrent zero
knowledge is only possible for trivial languages (see [4]). Moreover, the existence
of a constant-round concurrent zero-knowledge argument in the non-black-box
model (see [5] for the main results in the non-black-box model) is currently an
open question. Such negative results have motivated the introduction of the bare
public-key model [3] (BPK, in short). Here each possible verifier deposits a public
key pk in a public file and keeps private the associated secret information sk.
From then on, all provers interacting with such a verifier will use pk and the
verifier cannot change pk from proof to proof. Canetti et al. [3] showed that
constant-round rZK is possible in the BPK model. However, the fact that the
verifier has a public key means that it is vulnerable to an attack by a mali-
cious prover that opens several sessions with the same verifier in order to violate
the soundness condition. This is to be contrasted with the standard models for
interactive zero knowledge [1] or non-interactive zero knowledge [6] where, as
far as soundness is concerned, it does not matter whether a malicious prover is
interacting once or multiple times with the same verifier.

Indeed, in [7], Micali and Reyzin pointed out, among other contributions,
that the known constant-round rZK arguments in the BPK model did not seem
to be sound if a prover was allowed to concurrently interact with several instances
of the same verifier. In other words, the known rZK arguments in the BPK were
not concurrently sound.

Micali and Reyzin gave in [7] a 4-round argument system which is sequentially
sound (i.e., the soundness holds if a prover can play only sequential sessions)
and probably is not concurrently sound, and they also showed that the same
holds for the five-round protocol of Canetti et al. [3]. Moreover they proved that
resettable soundness cannot be achieved in the black-box model. In [8], Barak
et al. used non-black-box techniques in order to obtain a constant-round rZK
argument of knowledge but their protocol enjoys only sequential soundness.

In order to design a concurrently sound resettable zero-knowledge argument
system, Micali and Reyzin proposed (see [9]) the upper bounded public-key
(UPK, in short) model in which a honest verifier possesses a counter and uses
the same private key no more than a fixed polynomial number of times. A weaker
model than the UPK model but still stronger than the BPK model is the weak
public-key (WPK, in short) model introduced in [10]. In this model an honest

TERAM LING

Constant-Round Resettable Zero Knowledge with Concurrent Soundness 239

verifier can use the same key no more than a fixed polynomial number of times
for each statement to be proved.

Other models were proposed in order to achieve constant-round concur-
rent zero knowledge. In particular, in [2, 11] a constant-round concurrent zero-
knowledge proof system is presented by relaxing the asynchrony of the model or
the zero-knowledge property. In [12] a constant-round concurrent zero-knowledge
proof system is presented by requiring a pre-processing stage in which both the
provers and the verifiers are involved. In [13] a constant-round concurrent zero-
knowledge proof is presented assuming the existence of a trusted auxiliary string.
All these models are considered stronger than the BPK model.

Our results. In this paper we present the first constant-round concurrently sound
resettable zero-knowledge argument system in the BPK model for A'P. In par-
ticular we show a 4-round argument that is optimal in light of a lower bound for
concurrent soundness proved in [7]. We stress that our result is the best one can
hope for in terms of combined security against malicious provers and verifiers if
we restrict ourselves to black-box zero knowledge, since in this setting simulta-
neously achieving resettable soundness and zero knowledge has been shown to
be possible only for languages in BPP by [7]. Our construction employs the tech-
nique of complexity leveraging used in the previous results [3,7, 10] in order to
prove the soundness of their protocols and is based on the existence of a verifiably
binding cryptosystem semantically secure against subexponential adversaries.
The existence of cryptographic primitives secure against subexponential adver-
saries 18 used also in [3,7, 10] and the existence of a constant-round black-box
rZK argument system in the BPK model assuming only cryptographic primitives
secure against polynomial-time adversaries is an interesting open question.

Finally, we describe a simple 3-round sequentially sound and sequential zero-
knowledge argument system in the BPK model for all N'P.

2 Definitions

The BPK model. The Bare Public-Key (BPK, in short) model assumes that:

1. there exists a public file F that is a collection of records, each containing a
public key;

2. an (honest) prover is an interactive deterministic polynomial-time algorithm
that takes as input a security parameter 1", F, an n-bit string z, such that
z € L and L is an NP-language, an auxiliary input y, a reference to an entry
of F and a random tape;

3. an (honest) verifier V is an interactive deterministic polynomial-time algo-
rithm that works in the following two stages: 1) in a first stage on input a
security parameter 1" and a random tape, V generates a key pair (pk, sk)
and stores pk in one entry of the file F; 2) in the second stage, V takes as
input sk, a statement £ € L and a random string, V performs an interactive
protocol with a prover, and outputs “accept” or ‘“reject”;

4. the first interaction of each prover starts after that all verifiers have com-
pleted their first stage.

TERAM LING

240 Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti

Definition 1. Given an NP-language L and its corresponding relation Ry, we
say that a pair (P, V) is complete for L, if for all n-bit strings = € L and any
witness y such that (z,y) € Ry, the probability that V interacting with P on
input 1y, outputs “reject”is negligible in n.

Malicious provers in the BPK model. Let s be a positive polynomial and P* be
a probabilistic polynomial-time algorithm that takes as first input 17,

P* is an s-sequential malicious prover if it runs in at most s(n) stages in the
following way: in stage 1, P* receives a public key pk and outputs an n-bit string
z1. In every even stage, P* starts from the final configuration of the previous
stage, sends and receives messages of a single interactive protocol on input pk
and can decide to abort the stage in any moment and to start the next one.
In every odd stage ¢ > 1, P* starts from the final configuration of the previous
stage and outputs an n-bit string ;.

P* is an s-concurrent malicious prover if on input a public key pk of V,
can perform the following s(n) interactive protocols with V: 1) if P* is already
running ¢ protocols 0 < 7 < s(n) he can start a new protocol with V choosing
the new statement to be proved; 2) he can output a message for any running
protocol, receive immediately the response from V and continue.

Attacks in the BPK model. In [7] the following attacks have been defined.

Given an s-sequential malicious prover P* and an honest verifier V, a se-
quential attack is performed in the following way: 1) the first stage of V is run
on input 1™ and a random string so that a pair (pk, sk) is obtained; 2) the first
stage of P* is run on input 1™ and pk and z; is obtained; 3) for 1 < ¢ < s(n)/2
the 2i-th stage of P* is run letting it interact with V that receives as input sk, z;
and a random string 7;, while the (2i + 1)-th stage of P* is run to obtain z;.

Given an s-concurrent malicious prover P* and an honest verifier V, a con-
current attack is performed in the following way: 1) the first stage of V is run on
input 1™ and a random string so that a pair (pk, sk) is obtained; 2) P* is run on
input 1* and pk; 3) whenever P* starts a new protocol choosing a statement, V
is run on inputs the new statement, a new random string and sk.

Definition 2. Given a complete pair (P, V) for an NP-language L in the BPK
model, then (P,V) is a concurrently (resp. sequentially) sound interactive ar-
gument system for L if for all positive polynomial s, for all s-concurrent (resp
s-sequential) malicious prover P*, for any false statement “r € L” the proba-
bility that in an execution of a concurrent (resp. sequential) attack V outputs
“accept” for such a statement is negligible in n.

The strongest notion of zero knowledge, referred to as resettable zero knowledge,
gives to a verifier the ability to rewind the prover to a previous state. This is
significantly different from a scenario of multiple interactions between prover
and verifier since after a rewinding the prover uses the same random bits.

We now give the formal definition of a black-box resettable zero-knowledge
argument system for AP in the bare public-key model.

TERAM LING

Constant-Round Resettable Zero Knowledge with Concurrent Soundness 241

Definition 3. An interactive argument system {(P,V) in the BPK model is
black-box resettable zero-knowledge if there exists a probabilistic polynomial-time
algorithm S such that for any probabilistic polynomial time V*, for any polyno-
mials s,t, for any z; € L, |z;| =n, i = 1,...,s(n), V* runs in at most t steps
and the following two distributions are indistinguishable:

1. the output of V* that generates F with s(n) entries and interacts (even

concurrently) a polynomial number of times with each P(x;, ys, j, Tk, F') where

y; is a witness for x; € L, |z;| = n and ry is a random tape for 1 < 1,5,k <

s(n);

2. the output of S interacting with V* on input i, ..., Zsn)-
Moreover we define such an adversarial verifier V¥ as an (s, t)-resetting mali-
cious verifier.

An important tool used this paper is that of a non-interactive zero-knowledge
argument system.

Definition 4. A pair of probabilistic polynomial-time algorithms (NIPK,NIVK)
is a non-interactive zero-knowledge argument system for an NP language L if
there exists a polynomial k(-),

1. (Completeness) for all x € L, with |z| = n and NP-witness y for x € L,

Pric & {0,1}*™); IT — NIPK(z,y,0) : NIVK(z, IT,0) = 1] = 1.
2. (Soundness) for all x ¢ L

Prlo & {0,1}¥"™);317 : NIVK(z, IT, 0) = 1]

is negligible.
3. (Simulatability) there exists a probabilistic polynomial-time algorithm S such
that the family of distributions

{(o,) & 5(z) : (0, 1)}, and {0 & {0,1}*™; T & N1PK(z,y,0) : (0,)}, .,
are computationally indistinguishable.

We assume, without loss of generality, that a random reference string of length
n is sufficient for proving theorems of length n (that is, we assume k(n) = n).

3 Concurrently Sound rZK Argument System for NP
in the BPK Model

In this section we present a constant-round concurrently sound resettable zero-
knowledge argument in the BPK model for all NP languages.

In our construction we assume the existence of an encryption scheme that is
secure with respect to sub-exponential adversaries and that is verifiably binding.
We next review the notion of semantic security adapted for sub-exponential
adversaries and present the notion of a verifiably binding cryptosystem.

TERAM LING

242 Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti

An encryption scheme is a triple of efficient algorithms PK = (G, E, D). The key
generator algorithm G on input a random k-bit string r (the security parameter)
outputs a pair (pk, sk) of public and private key. The public key pk is used to
encrypt a string m by computing E(pk, m;r) where r is a random string of length
|m].

Semantic security [14] is defined by considering the following experiment for
encryption scheme PK = (G, E, D) involving a two-part adversary A = (A, Ay).
The key generator G is run on a random k-bit string and keys (pk, sk) are given
in output. Two POLY(k)-bit strings wg and w; are returned by .Ag on input pk.
Then b is taken at random from {0,1} and an encryption £ of wy, is computed. We
say that adversary A is successful for PK if the probability that 4; outputs b on
input pk, wg,w; and € is non-negligibly (in k) greater than 1/2. We say that PK is
n-secure if no adversary running in time o(2*") is successful. The classical notion
of semantic security is instead obtained by requiring that no polynomial-time
adversary is successful.

Roughly speaking, a verifiably binding cryptosystem PK is a cryptosystem for
which 1) given a string pk and an integer k, it is easy to verify that pk is a legal
public key with security parameter k and 2) to each ciphertext corresponds at
most one plaintext.

Moreformally,

Definition 5. An n-secure encryption scheme PK = (G, E, D) is verifiably bind-
ing iff:
1. (binding): for any probabilistic polynomial-time algorithm A it holds that

Pr{(pk, mo, m1,70,71) « A(1*) : E(pk, mo; 7o) = E(pk, my;71)]

is negligible in k;
2. (verifiability): there exists a probabilistic polynomial-time algorithm VER
such that if pk belongs to the output space of G on input a k-bit string then
VER(pk, 1¥) = 1; VER(pk, 1¥) = 0 otherwise.

Assumptions. To prove the properties of our protocol we make the following
complexity theoretic assumptions:

1. The existence of an 7-secure verifiably binding encryption scheme PK =
(G, E, D) for some > 0.

We briefly note that the El Gamal encryption scheme [15] is verifiably bind-
ing since an exponentiation in Zg is one to one and it can be easily verified
that a positive integer g is a prime.

2. The existence of a one-to-one length-preserving one-way function f : {0,1}*—
{0,1}* which, in turn, implies the existence of a pseudo-random family of
functions R = {R,}.

3. The existence of a non-interactive zero-knowledge proof system (NIZK, in
short) (NIPM, NIVM) for an N"P-complete language.

TERAM LING

Constant-Round Resettable Zero Knowledge with Concurrent Soundness 243

4. The existence of a 3-round witness indistinguishable argument of knowledge
WI = (WI;,WIz, WI3) for a specific polynomial-time relation that we define
in the following way. Let f be a one-to-one length-preserving one-way func-
tion and let PK be an n-secure verifiably binding encryption scheme. Then
define the polynomial-time relation C = C(PK, f) as consisting of all pairs
((pk,v), (wit)), where pk is a public key of the output space of G and v is a
string and either wit = sk and (pk, sk) is in the output space of G or wit = u
and f(u) =wv.

Before describing our protocol formally, let us try to convey the main idea
behind it. Fix an AP language L and let = be the input statement. The prover
generates a puzzle (in our construction, the puzzle consists of a string v and
solving the puzzle consists in finding the inverse f~1(v) of the one-to-one length-
preserving one-way function f) and sends it to the verifier. The verifier uses WI
to prove knowledge of the private key sk; associated to her public key pk; or
knowledge of the solution of the puzzle given to her by the prover. Moreover,
the prover and the verifier play a coin tossing protocol, based on the encryption
scheme PK to generate a reference string for the NIZK proof that = € L.

In our implementation of the FLS-paradigm [16], in the interaction between
the prover and the verifier, the verifier will use his knowledge of the private key
to run WI. In order to prove concurrent soundness, we show an algorithm 4 that
interacts with a (possibly) cheating prover P* and breaks an n-secure encryption
scheme in time o(2*"). The puzzle helps algorithm A in simulating the verifier
with respect to a challenge public key pk for which it does not have access to the
private key. Indeed, A instead of proving knowledge of the private key associated
to pk proves knowledge of the solution of the puzzle by performing exhaustive
search. By carefully picking the size of the puzzle (and thus the time required
to solve it) we can make sure .A runs in time o(2*").

Note that when A inverts the one-to-one length-preserving one-way function
and computes the witness-indistinguishable argument of knowledge, it runs in
subexponential time in order to simulate the verifier without performing rewinds.
Straight-line quasi-polynomial time simulatable argument systems were studied
in detail in [17], where this relaxed simulation notion is used to decrease the
round complexity of argument systems. We use a similar technique but for sub-
exponential time simulation of arguments of knowledge.

If the steps described above were executed sequentially, we would have an
8-round protocol (one round for the prover to send the puzzle, three rounds
for the coin tossing, three rounds for the witness-indistinguishable argument of
knowledge, and one round for the NIZK)). However, observe that the coin-tossing
protocol and the 3-round witness-indistinguishable argument of knowledge can
be performed in parallel thus reducing the the round complexity to 5 rounds.
Moreover, we can save one more round, by letting the prover send the puzzle
in parallel with the second round of the witness indistinguishable argument of
knowledge. To do so, we need a special implementation of this primitive since,
when the protocol starts, only the size of the statement is known and the state-
ment itself is part of the second round. Let us now give the details of our con-
struction.

TEAM LING

244 Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti

The public file. The public file F contains entries consisting in public keys with
security parameter & for the public-key cryptosystem PK.

Private inputs. The private input of the prover consists of a witness y for € L.
The private input of the verifier consists of the secret key sk; corresponding to
the public key pk;.

The protocol. Suppose that the prover wants to prove that £ € L and denote
by n = PoLy(k) the length of z. We denote by ¢ the index of the verifier in the
public file so that the verifier knows the private key sk; associated with the i-th
public key pk; of the public file F.

In the first round V randomly picks an n-bit string o, that will be used as
V’s contribution to the reference string for the non-interactive zero-knowledge
protocol. V compute the encryption £ of g, using an n-bit string r,, as random-
ness and by using public key pk;. Moreover, Vruns WI; in order to compute the
first message a, of the witness-indistinguishable argument of knowledge. Then
V sends (£,a1) to P. In the second round P verifies that pk, is a legal public key
for PK with k as security parameter and then computes its contribution to the
random string to be used for the non-interactive argument by picking a random
seed s and computing (u,0p) = Rs(xoyo Fo&oaj0i) (“o” denotes concate-
nation) where {R,} is a family of pseudorandom functions. The string u has
length k' < k (to be determined later) whereas o, has length n and is P’s con-
tribution for the reference string. P runs WI to compute the second message aq
of the witness-indistinguishable argument of knowledge. Moreover P computes
v = f(u)where f is a one-to-one length-preserving one-way function and sends
(0p, a2, v) to the verifier. In the third round of the protocol V uses his knowledge
of the private key to run WI3 obtaining as, so that she proves that she knows ei-
ther the private key associated with pk; or f~1(v). V then sends a3, o, and r, to
P. In the last round of the protocol P verifies that the witness-indistinguishable
argument of knowledge is correct and that £ is an encryption of o,,. Then P runs
algorithm NIPM on input z and using ¢ = o, @ 0, as reference string obtaining
a proof I, that is sent to V. A more formal description of the protocols is found
in Figure 1.

Theorem 1. If there exists an n-secure verifiably binding encryption scheme,
a one-to-one length-preserving one-way function then there exists a constant-
round concurrently sound resettable zero-knowledge argument for all languages
in NP in the BPK model.

Proof. Consider the protocol found in Figure 1.

Completeness. If z € L then P can always compute the proof I and V accepts
it.

Concurrent soundness. Assume by contradiction that the protocol is not con-
currently sound. Thus there exists an s-concurrent malicious prover P* that by,

TERAM LING

Constant-Round Resettable Zero Knowledge with Concurrent Soundness 245

Common input: the public file F, n-bit string £ € L and index 7 that
specifies the i-th entry of F'. Public key pk, has security parameter k.
P’s private input: a witness y for z € L.

V’s private input: private key sk;.

V-round-1:

1. randomly pick o, «— {0,1}" and r, « {0,1}";

2. compute ¢ = E(pk;,0,;7,) and a; = WI;(1¥);

3. send (£,a1) to P;

P-round-2:

1. verify that pk; is a public key with security parameter k for PK;

2. randomly pick s < {0,1}" and compute R = R;(zoyoFofoa;oi);
let u be the string consisting of the first k' bits of R and o, the
string consisting of the next n bits of R;

3. compute az = WIz(a1);

4. compute v = f(u) where f is a one-to-one length preserving one-
way function;

5. send (op,a2,v) to V;

V-round-3:

1. verify that v is a k’-bit string;

2. set 0 = 0p B Ou;

3. run algorithm WI; on input instance (pk,,v), messages ai, az using
sk; as a witness and obtaining as;

4. send (oy,as,r,) to P;

P-round-4:

1. verify that £ = E(pk;, ou;70);

2. set 0 =0, B 0u;

3. verify that (a1, a2, as) is the correct transcript of the 3-round wit-
ness indistinguishable argument on input instance (pk;,v);

4. run NIPM on input instance z, y as a witness and o as reference
string obtaining proof IT;

5. send IT to V;

V-decision: verify that IT is a proof by running algorithm NIVM on
input z, IT and o.

Fig. 1. The 4-round concurrently sound rZK argument system for AP in the BPK
model. The values k and k' are determined as functions of n in the proof of concurrent
soundness.

concurrently interacting with V, has non-negligible probability p(n) of making
the verifier accept some = ¢ L of length n. We assume we know the index of
the session 7* in which the prover will succeed in cheating (this assumption will
be later removed) and exhibit an algorithm .4 that has black-box access to P*
(i.e., Asimulates the work of a verifier V) and breaks the encryption scheme PK
in 0(2%") steps, thus reaching a contradiction.

We now describe algorithm A. A runs in two stages. First, on input the
challenge public key pk, A randomly picks two strings wg and w; of the same

TERAM LING

246 Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti

length as the length of the reference string used by (NIPM,NIVM) for inputs of
length n. Then A receives as a challenge an encryption £ of wp computed using
publickey pk and b € {0,1}. A’s task is to guess b € {0, 1} with a non-negligible
advantage over 1/2 (we assume that b is randomly chosen).

For all the sessions, .4 interacts with the an s-concurrent prover P* mounting
a concurrent attack, and simulates the verifier by computing the two messages
as explained below. When A4 reaches session j*, A outputs her guess for bit b.

1. Session j # j*.
At V-round-1, A sends an encryption £ of a randomly chosen string o,
computed with 7, as randomness and sends the first round of the witness-
indistinguishable argument of knowledge a;. Upon receiving message (0p,
ag,v) fromP* A inverts the one-to-one length-preserving one-way function
fon v obtaining u = f~!(v) by performing exhaustive search in {0, 1}’“’. A
then computes az by running WIz on input instance (pk;,v) and witness u
and sends to P* the triple {0, a3, 7).
Note that A plays round V-round-1 identically to the honest verifier while
A plays round V-round-3 by using a different witness w.r.t. V for the non-
interactive zero-knowledge argument of knowledge that however is concur-
rent witness indistinguishable.

2. Session j*.
At V-round-1, A computes the first message of the witness-indistinguishable
argument of knowledge a; and sets £ equal to the challenge encryption £.
Then A sends (§,a1) to V.
At V-round-3, A cannot continue with this session since she does not know
the decryption of £ (remember that £ = E) and thus can not play the third
round. However, by assumption P* can produce with non-negligible prob-
ability a string IT* that is accepted by NIVM on input z and reference
string pj = wp @ op. Let 7 be an upper bound on the length of such a
non-interactive zero-knowledge argument. .4 checks, by exhaustive search, if
there exists ITp € {0,1}7, such that NIVM accepts IIg on input z and p§ as
reference string. Then A searches for a string IT; € {0,1}" by considering
pi as reference string. If a proof Iy is found and no proof II; is found then
A outputs 0; in the opposite case A outputs 1; otherwise (that is, if both or
neither proof exists) A4 randomly guesses the bit b.
We note that the distribution of the first message of session 7* is still identical
to the distribution of the honest verifier’s message.

Let us now show that the probability that .4 correctly guesses b is non-
negligibly larger that 1/2. We have that

Pr[A outputs 8] = PrAM,A Alli_s) + % (Pr{3I0, A 3T1_s] + Pr{A,A AIT_s))
11
2 2
+ % (Pri3IsA BTy Az ¢ L] — Pr[A0y ASMi_y Az & L))

(Pr[3MeA AII_s] — Pr[Ay A 3M1_s))

(ST

TERAM LING

Constant-Round Resettable Zero Knowledge with Concurrent Soundness 247

The last equality follows from the observation that, by the completeness of the
NIZK, the events AIly_y and AII, can happen only if z ¢ L. Now, we have

PrlA outputs b = + 3 (Pr{3My A & L] — Pri3M, A3IT s Az & 1] -

P’I‘[Eﬂb AJIL_py Az ¢ L])
1 p(n) PrA_sAz¢glL]
“at T T D '

Now, since the string wj-p is picked at random and P* has no information
about it, the string p]_, is random and thus, by the soundness of (NIPM,NIVM),
Pr[3II_y Az ¢ L] is negligible. Therefore, the probability that .4 correctly
guesses b is non-negligibly larger than 1/2.

We note that algorithm A takes time POLY(n)-(27+2*"). Writing 7 as 7 = n?,
for some constant -y, we pick k and k' so that n? < k"2 and k' < k"/2. We thus
have that .4 breaks an n-secure verifiably binding cryptosystem in time bounded
by POLY(k"/2)(2K"* 4 2K"/*) = o(2¥"),

Therefore the existence of A contradicts the 7-security of the cryptosystem.

In our proof we assumed that .A knows the value j. If this is not the case that
A can simply guess the values and the same analysis applies and the probability
that A correctly guesses b decreases by a polynomial factor.

Resettable Zero Knowledge. Let V*be an (s, t)-resetting verifier. We now present
a probabilistic polynomial-time algorithm § = SV that has black-box access to
V* and whose output is computationally indistinguishable from the view of the
interactions between P and V*

We start with an informal discussion. The construction of S is very similar
to the construction of the simulator for the constant-round (sequentially sound)
resettable zero-knowledge argument for any NP language and in the BPK model,
given in [3] (protocol 6.2). In particular, note that both the protocol of Figure 1
and protocol 6.2 in [3] can be abstractly described as follows. The prover and
the verifier run a 3-round argument of knowledge, where the verifier, acting as
a prover, proves knowledge to the prover, acting as verifier, of some trapdoor
information. Knowledge of the trapdoor information allows for efficient simula-
tion of the interaction between the prover and the verifier. In [3], the trapdoor
information is the private key associated with the verifier’s public key. In our
protocol, the trapdoor information is either the private key associated with the
verifier’s public key (for the real verifier) or the inverse of an output of a one-to-
one length-preserving one-way function sent from the prover to the verifier. Note
that just to obtain round optimality we use a special witness-indistinguishable
argument of knowledge where the statement is known only after that the second
round is played while its size is known from the beginning. Due to this difference,
our simulator only differs from the one of [3] in the fact that we need to prove
that when the simulator runs the extractor of the argument of knowledge, with
high probability it extracts the verifier’s private key (rather than f~1(v)). The
rest of the construction of our simulator is conceptually identical to that of [3],
but we still review a more precise description here for completeness.

TERAM LING

248 Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti

First of all, without loss of generality, we make the following two simplifying
assumptions. Recall that, since our protocol is a resettable zero-knowledge ar-
gument system, V* is allowed to reset the prover. However, in [3] Canetti et al.
proved that in such a setting a verifier that concurrently interacts with many in-
carnations of the prover does not get any advantage with respect to a sequential
(resetting) verifier (that is, a verifier that runs a new session only after having
terminated the previous one). Thus in this proof we will consider V* as a se-
quential (resetting) verifier. A second assumption is that we can define S for a
modification of our protocol in which the prover uses a truly random function
rather than a pseudo-random one to compute her random bits. Proving that the
two views are computationally indistinguishable is rather standard.

S runs the first stage of V* so that the public file composed by s(n) entries
is obtained. In the second stage, the aim of the simulator is to obtain the private
keys corresponding to the public keys of the public file. Let V*(F) be the state
of V* at the end of the first stage.

In the following, we say that a session is solved by S if S has the private key
corresponding to the public key used by V* in this session. The work of S in the
second stage of the simulation is composed by at most s(n)+1 sequential phases.
In each phase, either S has a chance of terminating the simulation or S learns
one more private key. At the end of each phase 5 rewinds V* to state V*(F).
The simulation ends as soon as S manages to solve all sessions of a phase.

We describe now the work of S during a phase. Once a session is started,
S receives the first message from V* Then there are two cases. If the session
is solved by S then S can simulate the prover; otherwise, S tries to obtain the
private key used in this session so that all future sessions involving this verifier
will be solved by 5.

Specifically, first consider the simpler case of a solved session. We distinguish
two sub-cases. First, we consider the sub-case where the first message in the
session (£, a1) has not appeared before for the same incarnation of the prover,
i.e., (€,a1) has not appeared before for the same prover oracle accessed by V*
with the same random tape, same witness and same theorem. Then S runs the
simulator for (NIPM,NIVM) on input z and obtains a pair (¢*,IT*) and then
forces oequal to o* in the following way. Since S knows the verifier’s secret-key
(we are assuming in this sub-case that the session is solved), S can decrypt £
and thus obtain the string o, computed by the verifier at the first round. Thus
S sets op = 0, @ g*. Consequently, in round P-round-4, § will send “proof”
IT* (that is computationally indistinguishable from the proof computed by the
real prover). We use here the binding property of the encryption scheme since
S must decrypt £ obtaining the same value o, that will be sent by V* in round
V-round-3.

Now we consider the sub-case where the first message in the session (£, a;)
has already appeared in such a phase for the same incarnation of the prover. Here
S sends the same strings g, az and the same k’-bit string v that was sent in the
previous session containing (£, a1) as first message for the same incarnation of
the prover. Even for the case of the third message of a session that has already

TERAM LING

Constant-Round Resettable Zero Knowledge with Concurrent Soundness 249

appeared for the same incarnation of the prover, S replies with the same round
P-round-4 played before.

We now consider the harder case of a session which is not solved by S. In this
case S uses the argument of knowledge of V* to obtain the private key used in
this session. Specifically, in any unsolved session, the simulator uses the extractor
E associated with the witness-indistinguishable argument of knowledge used by
the verifier.

Recall that we denote by (£,a;) the first message sent by the verifier in the
current session, by pk, the verifier’s public key and by v = f(u) the puzzle sent
by the simulator when simulating the prover’s first message. We now distinguish
three possible cases.

Case 1: The message (£,a1) has not yet appeared in a previous session for
the same incarnation of the prover and the extractor E obtains sk; as witness.
Note that S obtains the verifier’s private key by running E. This is the most
benign of the three cases since the session is now solved.

Case 2: The message (£, a1) has not yet appeared in a previous session for the
same incarnation of the prover and the extractor E obtains f~1(v) as witness.
Note however that the value v has been chosen by S itself. If this case happens
with non-negligible probability then we can use V* to invert the one-way function
f. We stress that this case is the only conceptual difference between our proof
and the proof of r”ZK of protocol 6.2 in [3].

Case 3: The message (£, a3) has already appeared in a previous session for the
same incarnation of the prover. Note that since we are assuming that the current
session is not solved by S, this means that in at least one previous session, V*
sent (£1,a1) but then did not continue with such a session. This prevents S from
simulating as in case 2 since the simulation would not be correct. (Specifically, as
discussed in [3], in a real execution of the argument, the pseudo-random string
used as random string for the prover’s first message is determined by the previous
uncompleted session (the input of R, is the same in both cases and the seed s
is taken from the same random string) and therefore cannot be reset by S to
simulate this case by running an independent execution of E.) This problem is
bypassed precisely as in [3]. That is, S tries to continue the simulation from the
maximal sequence of executions which does not contain (£, a1) as a first step of
the verifier for such an incarnation of the prover, using a new random function.

The same analysis in [3] shows that this simulation strategy ends in expected
polynomial time and returns a distribution indistinguishable from a real execu-
tion of the argument. [

3-Round WI Argument of Knowledge. As already pointed out above, we can save
one round (and thus obtain a 4-round argument system instead of 5-round one)
by having the prover send the puzzle after the verifier has started the witness-
indistinguishable argument of knowledge. In this argument of knowledge, the
verifier acts as a prover and shows knowledge of either the secret key associated
with his private key or of a solution of the puzzle. Consequently, the input
statement of such an argument of knowledge is not known from the start and
actually, when the first message is produced, only its length is known.

TERAM LING

250 Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti

Next we briefly describe such an argument of knowledge by adapting to our
needs the technique used by [16] to obtain a non-interactive zero-knowledge proof
system for Hamiltonicity.

1. The prover commits to n randomly generated Hamil